repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pallets/flask
flask
4,976
mypy 1.0 no longer accepts flask.Response as redirect type
``` from __future__ import annotations from flask import Response, redirect def handler() -> Response: return redirect("") ``` ``` ❯ .tox/type/bin/mypy magic.py magic.py:7: error: Incompatible return value type (got "werkzeug.wrappers.response.Response", expected "flask.wrappers.Response") [return-value] Found 1 error in 1 file (checked 1 source file) ~/git/dqc/bsso-flask on  timeout [!] ❯ .tox/type/bin/mypy --version mypy 1.0.0 (compiled: yes) ```
closed
2023-02-13T20:16:49Z
2023-03-02T00:06:54Z
https://github.com/pallets/flask/issues/4976
[ "typing" ]
gaborbernat
2
MagicStack/asyncpg
asyncio
605
Passing table name as a parameter
Hi there, Thanks for a great library. I just swapped from `aiopg` and I'm impressed with `asyncpg` so far. I'm trying to pass a table name as an input parameter, like this: ```python await conn.fetchrow("select count(*) as count from $1", table) ``` And getting: ```txt asyncpg.exceptions.PostgresSyntaxError: syntax error at or near "$1" ``` In `psycopg2` you solve it with a special `Identifier` class as described in this post: https://stackoverflow.com/questions/13793399/passing-table-name-as-a-parameter-in-psycopg2 My thoughts so far: 1. Export and document the sanitizer methods such that one can write code like this: `conn.fetchrow(f"select count(*) from {asyncpg.sanitize(table)})`. I've seen this earlier, but I forgot which library. 2. Or support the `$...` syntax in table names also, and either make it work directly with strings, or an `Identifier` type as used by `psycopg` 3. Remember to update documentation and/or FAQ. Let me know what you think! Håkon
closed
2020-08-09T18:03:02Z
2025-01-09T20:22:42Z
https://github.com/MagicStack/asyncpg/issues/605
[]
hawkaa
7
jonaswinkler/paperless-ng
django
1,552
[BUG] password authentication failed for user "paperless"
<!--- => Before opening an issue, please check the documentation and see if it helps you resolve your issue: https://paperless-ng.readthedocs.io/en/latest/troubleshooting.html => Please also make sure that you followed the installation instructions. => Please search the issues and look for similar issues before opening a bug report. => If you would like to submit a feature request please submit one under https://github.com/jonaswinkler/paperless-ng/discussions/categories/feature-requests => If you encounter issues while installing of configuring Paperless-ng, please post that in the "Support" section of the discussions. Remember that Paperless successfully runs on a variety of different systems. If paperless does not start, it's probably an issue with your system, and not an issue of paperless. => Don't remove the [BUG] prefix from the title. --> **Describe the bug** Hi community I installed paperless-ng via docker-compose on my linux system for test purposes. I had a working configuration and imported some 100 documents. Looked really good. To move the deployment to my productive system I planned to change the default postgres DB password. I changed POSTGRES_PASSWORD in docker-compose.yml and added a corresponding PAPERLESS_DBPASS line in docker-compose.env. I received a couple of error messages after the docker-compose up and decided to revert the config. I was unable to do so. Despite having deleted all volumes, directories (I even removed the images) Postgres complains about a wrong password. So I completely screwed up my config... How can I debug this? **To Reproduce** execute docker-compose-up ``` error messages: webserver_1 | 19:58:52 [Q] ERROR FATAL: password authentication failed for user "paperless" webserver_1 | db_1 | 2022-01-16 19:59:22.618 UTC [3358] FATAL: password authentication failed for user "paperless" db_1 | 2022-01-16 19:59:22.618 UTC [3358] DETAIL: Role "paperless" does not exist. db_1 | Connection matched pg_hba.conf line 99: "host all all all md5" webserver_1 | 19:59:22 [Q] ERROR FATAL: password authentication failed for user "paperless" webserver_1 | db_1 | 2022-01-16 19:59:52.687 UTC [3360] FATAL: password authentication failed for user "paperless" db_1 | 2022-01-16 19:59:52.687 UTC [3360] DETAIL: Role "paperless" does not exist. db_1 | Connection matched pg_hba.conf line 99: "host all all all md5" webserver_1 | 19:59:52 [Q] ERROR FATAL: password authentication failed for user "paperless" webserver_1 | db_1 | 2022-01-16 20:00:22.756 UTC [3361] FATAL: password authentication failed for user "paperless" db_1 | 2022-01-16 20:00:22.756 UTC [3361] DETAIL: Role "paperless" does not exist. db_1 | Connection matched pg_hba.conf line 99: "host all all all md5" webserver_1 | 20:00:22 [Q] ERROR FATAL: password authentication failed for user "paperless" webserver_1 | ``` And that's the config in the container: ``` ms@oscar:~/Projekte/docker/paperless$ docker exec -it paperless_webserver_1 bash root@68637bd68bb2:/usr/src/paperless/src# env | sort GPG_KEY=E3FF2839C048B25C084DEBE9B26995E310250568 HOME=/root HOSTNAME=68637bd68bb2 LANG=C.UTF-8 PAPERLESS_CONSUMER_RECURSIVE=true PAPERLESS_CONSUMER_SUBDIRS_AS_TAGS=true PAPERLESS_DBHOST=db PAPERLESS_FILENAME_FORMAT={created_year}/{correspondent}/{title} PAPERLESS_OCR_LANGUAGE=deu PAPERLESS_REDIS=redis://broker:6379 PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin PWD=/usr/src/paperless/src PYTHON_GET_PIP_SHA256=fa6f3fb93cce234cd4e8dd2beb54a51ab9c247653b52855a48dd44e6b21ff28b PYTHON_GET_PIP_URL=https://github.com/pypa/get-pip/raw/c20b0cfd643cd4a19246ccf204e2997af70f6b21/public/get-pip.py PYTHON_PIP_VERSION=21.2.4 PYTHON_VERSION=3.9.6 SHLVL=0 TERM=xterm USERMAP_GID=1000 USERMAP_UID=1026 _=/usr/bin/env ``` ``` ms@oscar:~/Projekte/docker/paperless$ docker exec -it paperless_db_1 bash root@037eab1907b5:/# env | sort GOSU_VERSION=1.14 HOME=/root HOSTNAME=037eab1907b5 LANG=en_US.utf8 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/lib/postgresql/13/bin PGDATA=/var/lib/postgresql/data PG_MAJOR=13 PG_VERSION=13.5-1.pgdg110+1 POSTGES_USER=paperless POSTGRES_DB=paperless POSTGRES_PASSWORD=paperless PWD=/ SHLVL=0 TERM=xterm _=/usr/bin/env ``` My docker-compose.yml: ``` version: "3.4" services: broker: image: redis:6.0 restart: unless-stopped db: image: postgres:13 restart: unless-stopped volumes: - pgdata:/var/lib/postgresql/data environment: POSTGRES_DB: paperless POSTGES_USER: paperless POSTGRES_PASSWORD: paperless webserver: image: jonaswinkler/paperless-ng:latest restart: unless-stopped depends_on: - db - broker ports: - 8200:8000 healthcheck: test: ["CMD", "curl", "-f", "http://localhost:8200"] interval: 30s timeout: 10s retries: 5 volumes: - data:/usr/src/paperless/data - media:/usr/src/paperless/media - ./export:/usr/src/paperless/export - ./consume:/usr/src/paperless/consume env_file: docker-compose.env environment: PAPERLESS_REDIS: redis://broker:6379 PAPERLESS_DBHOST: db volumes: data: media: pgdata: ``` My docker-compose.env: ``` USERMAP_UID=1099 USERMAP_GID=1000 # Additional languages to install for text recognition, separated by a # whitespace. Note that this is # different from PAPERLESS_OCR_LANGUAGE (default=eng), which defines the # language used for OCR. # The container installs English, German, Italian, Spanish and French by # default. # See https://packages.debian.org/search?keywords=tesseract-ocr-&searchon=names&suite=buster # for available languages. #PAPERLESS_OCR_LANGUAGES=tur ces ############################################################################### # Paperless-specific settings # ############################################################################### # All settings defined in the paperless.conf.example can be used here. The # Docker setup does not use the configuration file. # A few commonly adjusted settings are provided below. # Adjust this key if you plan to make paperless available publicly. It should # be a very long sequence of random characters. You don't need to remember it. #PAPERLESS_SECRET_KEY=change-me # Use this variable to set a timezone for the Paperless Docker containers. If not specified, defaults to UTC. #PAPERLESS_TIME_ZONE=America/Los_Angeles # The default language to use for OCR. Set this to the language most of your # documents are written in. PAPERLESS_OCR_LANGUAGE=deu PAPERLESS_CONSUMER_RECURSIVE=true PAPERLESS_CONSUMER_SUBDIRS_AS_TAGS=true PAPERLESS_FILENAME_FORMAT={created_year}/{correspondent}/{title} ``` That's the db container log: ``` 2022-01-16 20:10:24.213 UTC [3399] FATAL: password authentication failed for user "paperless" 2022-01-16 20:10:24.213 UTC [3399] DETAIL: Role "paperless" does not exist. ``` The broker: ``` 1:C 16 Jan 2022 19:48:44.067 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo 1:C 16 Jan 2022 19:48:44.067 # Redis version=6.0.16, bits=64, commit=00000000, modified=0, pid=1, just started 1:C 16 Jan 2022 19:48:44.067 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf 1:M 16 Jan 2022 19:48:44.068 * Running mode=standalone, port=6379. 1:M 16 Jan 2022 19:48:44.068 # Server initialized 1:M 16 Jan 2022 19:48:44.068 # WARNING overcommit_memory is set to 0! Background save may fail under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect. 1:M 16 Jan 2022 19:48:44.068 * Ready to accept connections 1:M 16 Jan 2022 19:53:45.045 * 100 changes in 300 seconds. Saving... 1:M 16 Jan 2022 19:53:45.045 * Background saving started by pid 19 19:C 16 Jan 2022 19:53:45.046 * DB saved on disk 19:C 16 Jan 2022 19:53:45.047 * RDB: 0 MB of memory used by copy-on-write 1:M 16 Jan 2022 19:53:45.145 * Background saving terminated with success 1:M 16 Jan 2022 19:58:46.028 * 100 changes in 300 seconds. Saving... 1:M 16 Jan 2022 19:58:46.028 * Background saving started by pid 20 20:C 16 Jan 2022 19:58:46.029 * DB saved on disk 20:C 16 Jan 2022 19:58:46.029 * RDB: 0 MB of memory used by copy-on-write 1:M 16 Jan 2022 19:58:46.128 * Background saving terminated with success 1:M 16 Jan 2022 20:03:47.075 * 100 changes in 300 seconds. Saving... 1:M 16 Jan 2022 20:03:47.075 * Background saving started by pid 21 21:C 16 Jan 2022 20:03:47.076 * DB saved on disk 21:C 16 Jan 2022 20:03:47.076 * RDB: 0 MB of memory used by copy-on-write 1:M 16 Jan 2022 20:03:47.175 * Background saving terminated with success 1:M 16 Jan 2022 20:08:48.051 * 100 changes in 300 seconds. Saving... 1:M 16 Jan 2022 20:08:48.052 * Background saving started by pid 22 22:C 16 Jan 2022 20:08:48.053 * DB saved on disk 22:C 16 Jan 2022 20:08:48.053 * RDB: 0 MB of memory used by copy-on-write ``` And the webserver ``` 20:09:24 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:09:54 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:10:24 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:10:54 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:11:24 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:11:54 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:12:24 [Q] ERROR FATAL: password authentication failed for user "paperless" 20:12:54 [Q] ERROR FATAL: password authentication failed for user "paperless" ``` As it once wokred, I do assume that I screw it up by trying to change the default db password. I am not familiar with postgres. I tried to connect to the database inside the DB container with psql and user paperless, but that didn't work. How can I check whether this user does reall exist in the db? **Relevant information** ``` ms@oscar:~/Projekte/docker/paperless$ uname -a Linux oscar 5.13.0-25-generic #26-Ubuntu SMP Fri Jan 7 15:48:31 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux ```
closed
2022-01-16T20:19:40Z
2022-01-18T19:16:33Z
https://github.com/jonaswinkler/paperless-ng/issues/1552
[]
miknuc
1
tox-dev/tox
automation
2,872
set_env substitution doesn't pass PYTHONHASHSEED in tox 4.x
## Issue Hi, I have encountered what I believe is tox bug. With 2 test environments: base (`[testenv]`) and non-base (`[testenv:hs]`), _some_ environment variables from the base one aren't set in the non-base when they are passed as a substitution, like: ```ini [testenv] setenv = PYTHONHASHSEED=0 OTHER=foo [testenv:hs] setenv = {[testenv]setenv} ``` In above example `PYTHONHASHSEED` will be random for every run of `tox -e has` and `OTHER` will be correctly set to foo. I found out that tox displays the same behaviour for some other variables, like `PATH`, but I didn't dig any further. Funny thing is that if we mix `setenv` and `set_env` a little bit, tox suddenly starts passing `PYTHONHASHSEED`, for example below tox.ini sets `PYTHONHASHSEED` to 0. ```ini [testenv] set_env = PYTHONHASHSEED=0 OTHER=foo [testenv:hs] setenv = {[testenv]set_env} ``` I checked this on tox 4.3.1, 4.3, 4.2, 4.1 and 4.0. Tox 3.x doesn't have this behaviour. Full tox.ini files attached below. ## Environment ## Output of running tox Provide the output of `tox -rvv`: ```console using tox.ini: /home/mgoral/test/tox.ini (pid 279807) removing /home/mgoral/test/.tox/log could not satisfy requires MissingDependency(<Requirement('tox>=4.0')>) using tox-3.21.4 from /usr/lib/python3/dist-packages/tox/__init__.py (pid 279807) /usr/bin/python3 (/usr/bin/python3) is {'executable': '/usr/bin/python3', 'implementation': 'CPython', 'version_info': [3, 9, 2, 'final', 0], 'version': '3.9.2 (default, Feb 28 2021, 17:03:44) \n[GCC 10.2.1 20210110]', 'is_64': True, 'sysplatform': 'linux', 'extra_version_info': None} .tox uses /usr/bin/python3 .tox start: getenv /home/mgoral/test/.tox/.tox .tox cannot reuse: -r flag .tox recreate: /home/mgoral/test/.tox/.tox removing /home/mgoral/test/.tox/.tox setting PATH=/home/mgoral/test/.tox/.tox/bin:/home/mgoral/.cargo/bin:/home/mgoral/.local/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games [279827] /home/mgoral/test/.tox$ /usr/bin/python3 -m virtualenv --no-download --python /usr/bin/python3 .tox created virtual environment CPython3.9.2.final.0-64 in 81ms creator CPython3Posix(dest=/home/mgoral/test/.tox/.tox, clear=False, no_vcs_ignore=False, global=False) seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/home/mgoral/.local/share/virtualenv) added seed packages: pip==20.3.4, pkg_resources==0.0.0, setuptools==44.1.1, wheel==0.34.2 activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator .tox installdeps: tox>=4.0 setting PATH=/home/mgoral/test/.tox/.tox/bin:/home/mgoral/.cargo/bin:/home/mgoral/.local/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games [279835] /home/mgoral/test$ /home/mgoral/test/.tox/.tox/bin/python -m pip install 'tox>=4.0' Collecting tox>=4.0 Using cached tox-4.3.1-py3-none-any.whl (147 kB) Collecting platformdirs>=2.6.2 Using cached platformdirs-2.6.2-py3-none-any.whl (14 kB) Collecting virtualenv>=20.17.1 Using cached virtualenv-20.17.1-py3-none-any.whl (8.8 MB) Collecting pyproject-api>=1.4 Using cached pyproject_api-1.4.0-py3-none-any.whl (12 kB) Collecting pluggy>=1 Using cached pluggy-1.0.0-py2.py3-none-any.whl (13 kB) Collecting chardet>=5.1 Using cached chardet-5.1.0-py3-none-any.whl (199 kB) Collecting tomli>=2.0.1 Using cached tomli-2.0.1-py3-none-any.whl (12 kB) Collecting filelock>=3.9 Using cached filelock-3.9.0-py3-none-any.whl (9.7 kB) Collecting colorama>=0.4.6 Using cached colorama-0.4.6-py2.py3-none-any.whl (25 kB) Collecting packaging>=23 Using cached packaging-23.0-py3-none-any.whl (42 kB) Collecting cachetools>=5.2.1 Using cached cachetools-5.2.1-py3-none-any.whl (9.3 kB) Collecting distlib<1,>=0.3.6 Using cached distlib-0.3.6-py2.py3-none-any.whl (468 kB) Installing collected packages: tomli, platformdirs, packaging, filelock, distlib, virtualenv, pyproject-api, pluggy, colorama, chardet, cachetools, tox Successfully installed cachetools-5.2.1 chardet-5.1.0 colorama-0.4.6 distlib-0.3.6 filelock-3.9.0 packaging-23.0 platformdirs-2.6.2 pluggy-1.0.0 pyproject-api-1.4.0 tomli-2.0.1 tox-4.3.1 virtualenv-20.17.1 .tox finish: getenv /home/mgoral/test/.tox/.tox after 3.43 seconds .tox start: finishvenv write config to /home/mgoral/test/.tox/.tox/.tox-config1 as '409276cb52787e20907912730020ca0f84204a375c30a79fcb494ffde0e0f116 /usr/bin/python3\n3.21.4 0 0 0\n00000000000000000000000000000000 tox>=4.0' .tox finish: finishvenv after 0.02 seconds .tox start: provision [279851] /home/mgoral/test$ /home/mgoral/test/.tox/.tox/bin/python -m tox -rvv -e hs hs: 135 W remove tox env folder /home/mgoral/test/.tox/hs [tox/tox_env/api.py:321] hs: 159 I find interpreter for spec PythonSpec(major=3) [virtualenv/discovery/builtin.py:56] hs: 159 D discover exe for PythonInfo(spec=CPython3.9.2.final.0-64, exe=/home/mgoral/test/.tox/.tox/bin/python, platform=linux, version='3.9.2 (default, Feb 28 2021, 17:03:44) \n[GCC 10.2.1 20210110]', encoding_fs_io=utf-8-utf-8) in /usr [virtualenv/discovery/py_info.py:437] hs: 159 D filesystem is case-sensitive [virtualenv/info.py:24] hs: 160 D got python info of /usr/bin/python3.9 from /home/mgoral/.local/share/virtualenv/py_info/1/36cf16204b8548560b1c020c4e8fb5b57f0e4c58016f52f2d4be01e192833930.json [virtualenv/app_data/via_disk_folder.py:129] hs: 161 I proposed PythonInfo(spec=CPython3.9.2.final.0-64, system=/usr/bin/python3.9, exe=/home/mgoral/test/.tox/.tox/bin/python, platform=linux, version='3.9.2 (default, Feb 28 2021, 17:03:44) \n[GCC 10.2.1 20210110]', encoding_fs_io=utf-8-utf-8) [virtualenv/discovery/builtin.py:63] hs: 161 D accepted PythonInfo(spec=CPython3.9.2.final.0-64, system=/usr/bin/python3.9, exe=/home/mgoral/test/.tox/.tox/bin/python, platform=linux, version='3.9.2 (default, Feb 28 2021, 17:03:44) \n[GCC 10.2.1 20210110]', encoding_fs_io=utf-8-utf-8) [virtualenv/discovery/builtin.py:65] hs: 186 I create virtual environment via CPython3Posix(dest=/home/mgoral/test/.tox/hs, clear=False, no_vcs_ignore=False, global=False) [virtualenv/run/session.py:48] hs: 186 D create folder /home/mgoral/test/.tox/hs/bin [virtualenv/util/path/_sync.py:9] hs: 186 D create folder /home/mgoral/test/.tox/hs/lib/python3.9/site-packages [virtualenv/util/path/_sync.py:9] hs: 187 D write /home/mgoral/test/.tox/hs/pyvenv.cfg [virtualenv/create/pyenv_cfg.py:30] hs: 187 D home = /usr/bin [virtualenv/create/pyenv_cfg.py:34] hs: 187 D implementation = CPython [virtualenv/create/pyenv_cfg.py:34] hs: 187 D version_info = 3.9.2.final.0 [virtualenv/create/pyenv_cfg.py:34] hs: 187 D virtualenv = 20.17.1 [virtualenv/create/pyenv_cfg.py:34] hs: 187 D include-system-site-packages = false [virtualenv/create/pyenv_cfg.py:34] hs: 187 D base-prefix = /usr [virtualenv/create/pyenv_cfg.py:34] hs: 187 D base-exec-prefix = /usr [virtualenv/create/pyenv_cfg.py:34] hs: 187 D base-executable = /usr/bin/python3.9 [virtualenv/create/pyenv_cfg.py:34] hs: 187 D symlink /usr/bin/python3.9 to /home/mgoral/test/.tox/hs/bin/python [virtualenv/util/path/_sync.py:28] hs: 187 D create virtualenv import hook file /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/_virtualenv.pth [virtualenv/create/via_global_ref/api.py:89] hs: 187 D create /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/_virtualenv.py [virtualenv/create/via_global_ref/api.py:92] hs: 188 D ============================== target debug ============================== [virtualenv/run/session.py:50] hs: 188 D debug via /home/mgoral/test/.tox/hs/bin/python /home/mgoral/test/.tox/.tox/lib/python3.9/site-packages/virtualenv/create/debug.py [virtualenv/create/creator.py:197] hs: 188 D { "sys": { "executable": "/home/mgoral/test/.tox/hs/bin/python", "_base_executable": "/home/mgoral/test/.tox/hs/bin/python", "prefix": "/home/mgoral/test/.tox/hs", "base_prefix": "/usr", "real_prefix": null, "exec_prefix": "/home/mgoral/test/.tox/hs", "base_exec_prefix": "/usr", "path": [ "/usr/lib/python39.zip", "/usr/lib/python3.9", "/usr/lib/python3.9/lib-dynload", "/home/mgoral/test/.tox/hs/lib/python3.9/site-packages" ], "meta_path": [ "<class '_virtualenv._Finder'>", "<class '_frozen_importlib.BuiltinImporter'>", "<class '_frozen_importlib.FrozenImporter'>", "<class '_frozen_importlib_external.PathFinder'>" ], "fs_encoding": "utf-8", "io_encoding": "utf-8" }, "version": "3.9.2 (default, Feb 28 2021, 17:03:44) \n[GCC 10.2.1 20210110]", "makefile_filename": "/usr/lib/python3.9/config-3.9-x86_64-linux-gnu/Makefile", "os": "<module 'os' from '/usr/lib/python3.9/os.py'>", "site": "<module 'site' from '/usr/lib/python3.9/site.py'>", "datetime": "<module 'datetime' from '/usr/lib/python3.9/datetime.py'>", "math": "<module 'math' (built-in)>", "json": "<module 'json' from '/usr/lib/python3.9/json/__init__.py'>" } [virtualenv/run/session.py:51] hs: 213 I add seed packages via FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=/home/mgoral/.local/share/virtualenv) [virtualenv/run/session.py:55] hs: 215 D got embed update of distribution wheel from /home/mgoral/.local/share/virtualenv/wheel/3.9/embed/3/wheel.json [virtualenv/app_data/via_disk_folder.py:129] hs: 216 D got embed update of distribution setuptools from /home/mgoral/.local/share/virtualenv/wheel/3.9/embed/3/setuptools.json [virtualenv/app_data/via_disk_folder.py:129] hs: 216 D got embed update of distribution pip from /home/mgoral/.local/share/virtualenv/wheel/3.9/embed/3/pip.json [virtualenv/app_data/via_disk_folder.py:129] hs: 219 D install wheel from wheel /home/mgoral/test/.tox/.tox/lib/python3.9/site-packages/virtualenv/seed/wheels/embed/wheel-0.38.4-py3-none-any.whl via CopyPipInstall [virtualenv/seed/embed/via_app_data/via_app_data.py:47] hs: 219 D install setuptools from wheel /home/mgoral/test/.tox/.tox/lib/python3.9/site-packages/virtualenv/seed/wheels/embed/setuptools-65.6.3-py3-none-any.whl via CopyPipInstall [virtualenv/seed/embed/via_app_data/via_app_data.py:47] hs: 219 D install pip from wheel /home/mgoral/test/.tox/.tox/lib/python3.9/site-packages/virtualenv/seed/wheels/embed/pip-22.3.1-py3-none-any.whl via CopyPipInstall [virtualenv/seed/embed/via_app_data/via_app_data.py:47] hs: 220 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/pip-22.3.1-py3-none-any/pip-22.3.1.dist-info to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/pip-22.3.1.dist-info [virtualenv/util/path/_sync.py:36] hs: 220 D copy /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/setuptools-65.6.3-py3-none-any/setuptools-65.6.3.virtualenv to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/setuptools-65.6.3.virtualenv [virtualenv/util/path/_sync.py:36] hs: 220 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/wheel-0.38.4-py3-none-any/wheel to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/wheel [virtualenv/util/path/_sync.py:36] hs: 221 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/setuptools-65.6.3-py3-none-any/setuptools to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/setuptools [virtualenv/util/path/_sync.py:36] hs: 224 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/pip-22.3.1-py3-none-any/pip to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/pip [virtualenv/util/path/_sync.py:36] hs: 227 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/wheel-0.38.4-py3-none-any/wheel-0.38.4.dist-info to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/wheel-0.38.4.dist-info [virtualenv/util/path/_sync.py:36] hs: 229 D copy /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/wheel-0.38.4-py3-none-any/wheel-0.38.4.virtualenv to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/wheel-0.38.4.virtualenv [virtualenv/util/path/_sync.py:36] hs: 231 D generated console scripts wheel-3.9 wheel3 wheel3.9 wheel [virtualenv/seed/embed/via_app_data/pip_install/base.py:41] hs: 256 D copy /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/setuptools-65.6.3-py3-none-any/distutils-precedence.pth to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/distutils-precedence.pth [virtualenv/util/path/_sync.py:36] hs: 256 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/setuptools-65.6.3-py3-none-any/pkg_resources to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/pkg_resources [virtualenv/util/path/_sync.py:36] hs: 264 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/setuptools-65.6.3-py3-none-any/_distutils_hack to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/_distutils_hack [virtualenv/util/path/_sync.py:36] hs: 264 D copy directory /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/setuptools-65.6.3-py3-none-any/setuptools-65.6.3.dist-info to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/setuptools-65.6.3.dist-info [virtualenv/util/path/_sync.py:36] hs: 265 D generated console scripts [virtualenv/seed/embed/via_app_data/pip_install/base.py:41] hs: 286 D copy /home/mgoral/.local/share/virtualenv/wheel/3.9/image/1/CopyPipInstall/pip-22.3.1-py3-none-any/pip-22.3.1.virtualenv to /home/mgoral/test/.tox/hs/lib/python3.9/site-packages/pip-22.3.1.virtualenv [virtualenv/util/path/_sync.py:36] hs: 287 D generated console scripts pip3.9 pip3 pip-3.9 pip [virtualenv/seed/embed/via_app_data/pip_install/base.py:41] hs: 287 I add activators for Bash, CShell, Fish, Nushell, PowerShell, Python [virtualenv/run/session.py:61] hs: 288 D write /home/mgoral/test/.tox/hs/pyvenv.cfg [virtualenv/create/pyenv_cfg.py:30] hs: 288 D home = /usr/bin [virtualenv/create/pyenv_cfg.py:34] hs: 288 D implementation = CPython [virtualenv/create/pyenv_cfg.py:34] hs: 288 D version_info = 3.9.2.final.0 [virtualenv/create/pyenv_cfg.py:34] hs: 288 D virtualenv = 20.17.1 [virtualenv/create/pyenv_cfg.py:34] hs: 288 D include-system-site-packages = false [virtualenv/create/pyenv_cfg.py:34] hs: 288 D base-prefix = /usr [virtualenv/create/pyenv_cfg.py:34] hs: 288 D base-exec-prefix = /usr [virtualenv/create/pyenv_cfg.py:34] hs: 288 D base-executable = /usr/bin/python3.9 [virtualenv/create/pyenv_cfg.py:34] hs: 291 W commands[0]> python -c 'import os; print(os.environ["PYTHONHASHSEED"])' [tox/tox_env/api.py:427] 288846098 hs: 311 I exit 0 (0.02 seconds) /home/mgoral/test> python -c 'import os; print(os.environ["PYTHONHASHSEED"])' pid=279864 [tox/execute/api.py:275] hs: 312 W commands[1]> python -c 'import os; print(os.environ["OTHER"])' [tox/tox_env/api.py:427] foo hs: 327 I exit 0 (0.01 seconds) /home/mgoral/test> python -c 'import os; print(os.environ["OTHER"])' pid=279870 [tox/execute/api.py:275] hs: OK (0.19=setup[0.16]+cmd[0.02,0.01] seconds) congratulations :) (0.24 seconds) .tox finish: provision after 0.39 seconds ``` ## Minimal example tox.ini which doesn't pass `PYTHONHASHSEED` to `hs` environment, but passes `OTHER`: ```ini [tox] requires = tox>=4.0 skipsdist = True [testenv] basepython = python3 setenv = PYTHONHASHSEED=0 OTHER=foo [testenv:hs] commands = python -c 'import os; print(os.environ["PYTHONHASHSEED"])' python -c 'import os; print(os.environ["OTHER"])' setenv = {[testenv]setenv} ``` tox.ini which passes `PYTHONHASHSEED` to `hs` environment (watch the underscores in set_env and setenv) ```ini [tox] requires = tox>=4.0 skipsdist = True [testenv] basepython = python3 set_env = PYTHONHASHSEED=0 OTHER=foo [testenv:hs] commands = python -c 'import os; print(os.environ["PYTHONHASHSEED"])' python -c 'import os; print(os.environ["OTHER"])' setenv = {[testenv]set_env} ```
open
2023-01-16T15:23:34Z
2024-03-05T22:15:13Z
https://github.com/tox-dev/tox/issues/2872
[ "bug:minor", "help:wanted" ]
mgoral
3
holoviz/panel
matplotlib
7,567
Make TextInput work for forms
When comparing to [Reflex](https://reflex.dev/) its clear they have given more thought to their TextInput for forms. We are missing basic attributes like - `required` (`True` or `False`) - `type` (for example `"email"`) - `pattern` (`".+@example\.com"`) That can help users when they enter text. Reflex will - make a TextInput active is its required and nothing is input - show a tooltip explaining what is missing (for example a `@` in an email) https://github.com/user-attachments/assets/a10a04c9-8537-48e4-80b5-6fc876052fe3
open
2024-12-23T07:18:32Z
2025-01-20T21:32:15Z
https://github.com/holoviz/panel/issues/7567
[ "type: enhancement" ]
MarcSkovMadsen
3
oegedijk/explainerdashboard
plotly
32
Problem with deploying a custom dashboard using waitress
I am currently trying to deploy explainer dashboards using waitress. Whereas it's working fine using the vanilla regression dashboard, there is an error when running _waitress-serve --call "dashboard:create_c_app"_ where dashboard.py is ``` from explainerdashboard import ExplainerDashboard from custom_tabs import * def create_c_app(): db = ExplainerDashboard.from_config("dashboard.yaml") app = db.flask_server() return app ``` The error is ``` Traceback (most recent call last): File "C:\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "C:\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\...\venv\Scripts\waitress-serve.exe\__main__.py", line 7, in <module> File "c:\...\venv\lib\site-packages\waitress\runner.py", line 280, in run app = app() File "C:\...\dashboard.py", line 10, in create_c_app db = ExplainerDashboard.from_config("dashboard.yaml") File "c:\...\venv\lib\site-packages\explainerdashboard\dashboards.py", line 483, in from_config tabs = cls._yamltabs_to_tabs(dashboard_params['tabs'], explainer) File "c:\...\venv\lib\site-packages\explainerdashboard\dashboards.py", line 611, in _yamltabs_to_tabs return [instantiate_tab(tab, explainer) for tab in yamltabs] File "c:\...\venv\lib\site-packages\explainerdashboard\dashboards.py", line 611, in <listcomp> return [instantiate_tab(tab, explainer) for tab in yamltabs] File "c:\...\venv\lib\site-packages\explainerdashboard\dashboards.py", line 600, in instantiate_tab tab_class = getattr(import_module(tab['module']), tab['name']) AttributeError: module '__main__' has no attribute 'CustomDescriptiveTab ``` The .yaml file looks like this: ``` [...] decision_trees: true tabs: - name: CustomDescriptiveTab module: __main__ params: null - name: CustomFeatImpTab module: __main__ params: null - name: CustomWhatIfTab module: __main__ params: null ``` I don't understand why running via waitress is not working whereas loading the dashboard using ExplainerDashboard.from_config("dashboard.yaml") and running it locally works fine.
closed
2020-12-01T13:38:12Z
2020-12-01T20:18:58Z
https://github.com/oegedijk/explainerdashboard/issues/32
[]
hkoppen
6
flasgger/flasgger
api
487
Sorting tags in swagger UI
How do I sort only the tags in alpha order (I don't really care about the order of API and Operations) ? I have tried adding config similar to the ones mentioned in issue #277 but the UI is sorted based on API end point instead of tags. Kindly let me know if any other details are needed.
open
2021-07-25T14:07:02Z
2023-09-22T11:04:07Z
https://github.com/flasgger/flasgger/issues/487
[]
ajaynarayanan
10
LAION-AI/Open-Assistant
machine-learning
3,429
Download links in sft training folder
Please add links or cite to the opensource data in sft training.
closed
2023-06-14T06:04:57Z
2023-06-14T08:14:46Z
https://github.com/LAION-AI/Open-Assistant/issues/3429
[]
lucasjinreal
1
Sanster/IOPaint
pytorch
152
Error when using cpu text encoder
This error happens when using the cpu text encoder with 0.29.0: ``` ... File ".\lama-cleaner\lama_cleaner\server.py", line 159, in process res_np_img = model(image, mask, config) File ".\lama-cleaner\lama_cleaner\model_manager.py", line 38, in __call__ return self.model(image, mask, config) File ".\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File ".\lama-cleaner\lama_cleaner\model\sd.py", line 183, in __call__ crop_image = self._pad_forward(crop_img, crop_mask, config) File ".\lama-cleaner\lama_cleaner\model\base.py", line 56, in _pad_forward result = self.forward(pad_image, pad_mask, config) File ".\lama-cleaner\lama_cleaner\model\sd.py", line 147, in forward width=img_w, File ".\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File ".\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion_inpaint.py", line 650, in __call__ prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt File ".\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion_inpaint.py", line 379, in _encode_prompt if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: AttributeError: 'CPUTextEncoderWrapper' object has no attribute 'config' ``` Without `--sd-cpu-textencoder` it works fine.
closed
2022-12-04T13:32:06Z
2022-12-04T14:24:21Z
https://github.com/Sanster/IOPaint/issues/152
[]
fiskbil
1
dynaconf/dynaconf
fastapi
322
[RFC] Merge all settings files before merging defaults and environment settings
**Is your feature request related to a problem? Please describe.** Currently, a default setting from settings.local.yaml takes precedence over an environment-specific setting in settings.yaml. To me, the intuitive behaviour would be that default settings in settings.local.yaml only would be used if no environment-specific setting has already been set. ``` # settings.yaml default: key: default-from-settings development: production: key: production-from-settings ``` ``` # settings.local.yaml dynaconf_merge: true default: key: default-from-local ``` In the above example, the key would always be "default-from-local". **Describe the solution you'd like** To me, a more useful behaviour would be to have key be "default-from-local" only when the development setting, but the production value would still remain "production-from-settings". **Additional context** The current behaviour is to individually merge each files default settings with environment specific settings first, then to merge the files together. I propose that the behaviour changes to first merge all files together, then merge default settings with the environment-specific settings.
closed
2020-03-21T13:21:29Z
2022-07-02T20:12:26Z
https://github.com/dynaconf/dynaconf/issues/322
[ "wontfix", "hacktoberfest", "Not a Bug", "RFC" ]
tjader
3
cvat-ai/cvat
computer-vision
8,504
I created a Cvat account but I did not receive the verification email
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce _No response_ ### Expected Behavior _No response_ ### Possible Solution _No response_ ### Context I can see that people hade had this issue but no solution i can do // Adam ### Environment _No response_
closed
2024-10-03T11:01:44Z
2024-12-07T08:17:33Z
https://github.com/cvat-ai/cvat/issues/8504
[ "bug" ]
aerngren
4
airtai/faststream
asyncio
1,181
Feature: add K8S probes checker API
We should provides users with an ability to check application health in a some way. It can be reached by using multiple mechanism, so we can create a base `Checker` Protocol and use it the following way ```python app = FastStream(broker) app.add_checker( SocketChecker("/sock"), # HTTPChecker(port=8000), # ... ) ``` And check all of them by the same command ```shell faststream probe main:app ``` So, we can create multiple checkers for various cases and user can implement any checker by itself in the same time * [x] add `broker.ping()` unified method * [ ] add `BaseCheker` using `broker.ping()` * [ ] implement `HTTPChecker` (inheritor of `BaseCheker`) * [ ] add CLI command to use any checker
closed
2024-01-29T16:41:18Z
2024-08-07T19:36:48Z
https://github.com/airtai/faststream/issues/1181
[ "enhancement", "good first issue" ]
Lancetnik
3
docarray/docarray
fastapi
1,324
Improve fastapi-docarray compatibility
Improve the way we send/receive DocArray objects with FastAPI. ### Context Currently, DocArray objects are received as lists, so we have to construct an actual DocArray inside the function, and in case of returning, we have to convert it into a list ourselves (done in https://github.com/docarray/docarray/pull/1320) ```python @app.post("/doc/", response_class=DocArrayResponse) async def func(fastapi_docs: List[ImageDoc]) -> List[ImageDoc]: # The docs FastAPI will receive will be treated as List[ImageDoc] # so you need to cast it to DocArray docarray_docs = DocArray[ImageDoc].construct(fastapi_docs) ... # In case you want to return a DocArray, return it as a list return list(docarray_docs) ``` ### What we want The goal is to receive/return DocArray objects without any additional operations from the developer side. ```python @app.post("/doc/", response_class=DocArrayResponse) async def func(docs: DocArray[ImageDoc]) -> DocArray[ImageDoc]: return docs ``` ### Ways to do it I've investigated couple of approaches, and here are the most plausible ones and the main problem I had with them: 1. DocArray inherits from List/Sequence (draft https://github.com/docarray/docarray/pull/1316) FastAPI still received DocArray as a List. If we fix that, this is the best way to go 2. DocArray inherits from Pydantic's GenericModel (draft https://github.com/docarray/docarray/pull/1304) GenericModel does type-checking during runtime which introduces lots of circular imports 3. DocArray inherits from Pydantic's BaseModel (draft https://github.com/docarray/docarray/pull/1303) BaseModel introduced couple of functions that were in conflict with our existing ones In general, extending pydantic's classes was a bit of a headache, the first option is much cleaner.
closed
2023-04-02T18:03:18Z
2023-04-26T09:41:43Z
https://github.com/docarray/docarray/issues/1324
[]
jupyterjazz
1
litestar-org/litestar
api
3,130
Enhancement: Have OpenAPI Schema generation respect route handler ordering
### Summary Opening a new issue as discussed [here](https://github.com/litestar-org/litestar/issues/3059#issuecomment-1960609250). From a DX perspective I personally find very helpful to have ordered routes in the `Controller`, that follow a certain logic: - Progressive nesting (`GET /` comes before `GET /:id` and before `GET /:id/nested`) - Logical actions ordering (`GET`, `POST`, `GET id`, `PATCH id`, `DELETE id`) Example: ```python class MyController(Controller): tags = ["..."] path = "/" dependencies = {...} @routes.get() async def get_many(self): ... @routes.post() async def create(self, data: ...): ... @routes.get("/{resource_id:uuid}") async def get(self, resource_id: UUID): ... @routes.patch("/{resource_id:uuid}") async def update(self, resource_id: UUID): ... @routes.delete("/{resource_id:uuid}") async def delete(self, resource_id: UUID): ... @routes.get("/{resource_id:uuid}/nested") async def get_nested(self, resource_id: UUID): ... ``` Currently the ordering of the route definition at the Controller is not respected by the docs, so I end up having a Swagger that looks like this: ``` - GET /:id/nested/:nest_id/another - POST /:id/nested - GET / - DELETE /:id - PATCH / ``` Which I personally find very confusing since: (1) ~It doesn't seem to follow a pre-defined logic (couldn't find any pattern for that when looking at the docs)~ it does seem to follow the ordering of the methods as defined [here](https://github.com/litestar-org/litestar/blob/3e5c179e714bb074bae13e02d10e2f3f51e24d5c/litestar/openapi/spec/path_item.py#L44) as shared by @guacs [here](https://github.com/litestar-org/litestar/issues/3059#issuecomment-1960609250) (2) It doesn't respect the logic that was defined on the controller (specifically the nesting). Was having a quick look and it seems to be related to logic when registering the route [here](https://github.com/litestar-org/litestar/blob/3e5c179e714bb074bae13e02d10e2f3f51e24d5c/litestar/app.py#L647), and then the handler:method map on the `HTTPRoute` [here](https://github.com/litestar-org/litestar/blob/3e5c179e714bb074bae13e02d10e2f3f51e24d5c/litestar/routes/http.py#L94). It seems that by the time it reaches the plugin the nesting is already out of order - so it might make sense to handle when registering the routes maybe? Anyways, if this is something of interest I'd help to contribute and take a deeper look into it.
open
2024-02-23T02:21:14Z
2025-03-20T15:54:26Z
https://github.com/litestar-org/litestar/issues/3130
[ "Enhancement" ]
ccrvlh
8
huggingface/pytorch-image-models
pytorch
1,396
Swin transformer feature extraction: same input image but get different feature vectors
Hi there, when I used pre-trained 'swin_base_patch4_window7_224_in22k' to extract a 224 feature vector for an input image, every time I called net.forward_features(INPUT), I got a different vector. Is there anything I should be aware? Thanks in advance
closed
2022-08-05T16:21:17Z
2022-08-05T16:25:06Z
https://github.com/huggingface/pytorch-image-models/issues/1396
[ "bug" ]
Dadatata-JZ
1
microsoft/qlib
machine-learning
1,284
Can i use a dataset other than the one provided by Qlib to learn the model?
## ❓ Questions and Help Can I use a dataset other than the one provided by Qlib to learn the model? If possible, is it correct to follow the contents of [Converting CSV Format into Qlib Format](https://qlib.readthedocs.io/en/latest/component/data.html#converting-csv-format-into-qlib-format)?
closed
2022-09-08T04:38:58Z
2023-03-02T09:35:36Z
https://github.com/microsoft/qlib/issues/1284
[ "question", "stale" ]
Haaae
4
Miserlou/Zappa
django
1,267
Need an improved way to distinguish Django from Flask
<!--- Provide a general summary of the issue in the Title above --> cli.py has the code ``` # Detect Django/Flask try: # pragma: no cover import django has_django = True except ImportError as e: has_django = False ``` But some people have both and don't always want Django <!--- Provide a more detailed introduction to the issue itself, and why you consider it to be a bug --> <!--- Also, please make sure that you are running Zappa _from a virtual environment_ and are using Python 2.7/3.6 --> ## Expected Behavior <!--- Tell us what should happen --> There should be a way to notice a flask project ## Actual Behavior <!--- Tell us what happens instead --> If importing django works, it is assumed to be django ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> 1. 2. 3. ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: 0.45.1 * Operating System and Python version: MacOS High Sierra 10.13.1 Python 3.6.3 |Anaconda, Inc.| (default, Oct 6 2017, 12:04:38) * The output of `pip freeze`: Babel==2.5.1 click==6.7 Flask==0.12.2 Flask-Babel==0.11.2 Flask-Table==0.4.1 itsdangerous==0.24 Jinja2==2.10 MarkupSafe==1.0 PyMySQL==0.7.11 pytz==2017.3 SQLAlchemy==1.1.15 Werkzeug==0.12.2 * Link to your project (optional): * Your `zappa_settings.py`:
closed
2017-11-28T23:24:19Z
2017-11-29T01:20:52Z
https://github.com/Miserlou/Zappa/issues/1267
[]
grfiv
0
ray-project/ray
pytorch
51,135
CI test windows://python/ray/tests:test_logging is consistently_failing
CI test **windows://python/ray/tests:test_logging** is consistently_failing. Recent failures: - https://buildkite.com/ray-project/postmerge/builds/8722#01956cdc-3ef9-480f-934c-c866f9d45f90 - https://buildkite.com/ray-project/postmerge/builds/8722#01956c6c-bdef-45b6-9e8e-d051acbaa89e DataCaseName-windows://python/ray/tests:test_logging-END Managed by OSS Test Policy
closed
2025-03-06T20:18:20Z
2025-03-07T20:44:30Z
https://github.com/ray-project/ray/issues/51135
[ "bug", "triage", "core", "flaky-tracker", "ray-test-bot", "ci-test", "weekly-release-blocker", "stability" ]
can-anyscale
4
allenai/allennlp
pytorch
4,855
Models: missing None check in PrecoReader's text_to_instance method.
<!-- Please fill this template entirely and do not erase any of it. We reserve the right to close without a response bug reports which are incomplete. If you have a question rather than a bug, please ask on [Stack Overflow](https://stackoverflow.com/questions/tagged/allennlp) rather than posting an issue here. --> ## Checklist <!-- To check an item on the list replace [ ] with [x]. --> - [x] I have verified that the issue exists against the `master` branch of AllenNLP. - [x] I have read the relevant section in the [contribution guide](https://github.com/allenai/allennlp/blob/master/CONTRIBUTING.md#bug-fixes-and-new-features) on reporting bugs. - [x] I have checked the [issues list](https://github.com/allenai/allennlp/issues) for similar or identical bug reports. - [x] I have checked the [pull requests list](https://github.com/allenai/allennlp/pulls) for existing proposed fixes. - [x] I have checked the [CHANGELOG](https://github.com/allenai/allennlp/blob/master/CHANGELOG.md) and the [commit log](https://github.com/allenai/allennlp/commits/master) to find out if the bug was already fixed in the master branch. - [x] I have included in the "Description" section below a traceback from any exceptions related to this bug. - [x] I have included in the "Related issues or possible duplicates" section beloew all related issues and possible duplicate issues (If there are none, check this box anyway). - [x] I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug. - [x] I have included in the "Environment" section below the output of `pip freeze`. - [x] I have included in the "Steps to reproduce" section below a minimally reproducible example. ## Description Hi, I think a `None` check is missing at that [line](https://github.com/allenai/allennlp-models/blob/ea1f71c79c329db1b66d9db79f0eaa39d2fd2857/allennlp_models/coref/dataset_readers/preco.py#L94) in `PrecoReader`. According to the function argument list, and the subsequent call to `make_coref_instance`, `clusters` should be allowed to be `None`. A typical use-case would be e.g. inference where we don't have any info about the clusters. <details> <summary><b>Python traceback: </b></summary> <p> <!-- Paste the traceback from any exception (if there was one) in between the next two lines below --> ``` Traceback (most recent call last): File "/home/fco/coreference/bug.py", line 15, in <module> instance = reader.text_to_instance(sentences) File "/home/fco/anaconda3/envs/coref/lib/python3.8/site-packages/allennlp_models/coref/dataset_readers/preco.py", line 94, in text_to_instance for cluster in gold_clusters: TypeError: 'NoneType' object is not iterable ``` </p> </details> ## Related issues or possible duplicates - None ## Environment <!-- Provide the name of operating system below (e.g. OS X, Linux) --> OS: Ubuntu 18.04.3 LTS <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: 3.8.5 <details> <summary><b>Output of <code>pip freeze</code>:</b></summary> <p> <!-- Paste the output of `pip freeze` in between the next two lines below --> ``` absl-py==0.11.0 allennlp==1.2.0 allennlp-models==1.2.0 attrs==20.3.0 blis==0.4.1 boto3==1.16.14 botocore==1.19.14 cachetools==4.1.1 catalogue==1.0.0 certifi==2020.6.20 chardet==3.0.4 click==7.1.2 conllu==4.2.1 cymem==2.0.4 en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz filelock==3.0.12 ftfy==5.8 future==0.18.2 google-auth==1.23.0 google-auth-oauthlib==0.4.2 grpcio==1.33.2 h5py==3.1.0 idna==2.10 importlib-metadata==2.0.0 iniconfig==1.1.1 jmespath==0.10.0 joblib==0.17.0 jsonnet==0.16.0 jsonpickle==1.4.1 Markdown==3.3.3 murmurhash==1.0.4 nltk==3.5 numpy==1.19.4 oauthlib==3.1.0 overrides==3.1.0 packaging==20.4 pandas==1.1.4 plac==1.1.3 pluggy==0.13.1 preshed==3.0.4 protobuf==3.13.0 py==1.9.0 py-rouge==1.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pyconll==2.3.3 pyparsing==2.4.7 PySocks==1.7.1 pytest==6.1.2 python-dateutil==2.8.1 pytz==2020.4 regex==2020.10.28 requests==2.24.0 requests-oauthlib==1.3.0 rsa==4.6 s3transfer==0.3.3 sacremoses==0.0.43 scikit-learn==0.23.2 scipy==1.5.4 sentencepiece==0.1.94 six==1.15.0 spacy==2.3.2 srsly==1.0.3 tensorboard==2.4.0 tensorboard-plugin-wit==1.7.0 tensorboardX==2.1 thinc==7.4.1 threadpoolctl==2.1.0 tokenizers==0.9.2 toml==0.10.2 torch==1.7.0 tqdm==4.51.0 transformers==3.4.0 tweepy==3.9.0 typing==3.7.4.3 typing-extensions==3.7.4.3 urllib3==1.25.11 wasabi==0.8.0 wcwidth==0.2.5 Werkzeug==1.0.1 word2number==1.1 zipp==3.4.0 ``` </p> </details> ## Steps to reproduce <details> <summary><b>Example source:</b></summary> <p> <!-- Add a fully runnable example in between the next two lines below that will reproduce the bug --> ```python import spacy from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenCharactersIndexer from allennlp_models.coref import PrecoReader my_text = "Night you. Subdue creepeth cattle creeping living lesser." sp = spacy.load("en_core_web_sm") doc = sp(my_text) sentences = [[token.text for token in sent] for sent in doc.sents] reader = PrecoReader(max_span_width=10, token_indexers={"tokens": SingleIdTokenIndexer(), "token_characters": TokenCharactersIndexer()}) instance = reader.text_to_instance(sentences) ``` </p> </details>
closed
2020-12-09T14:16:36Z
2020-12-10T20:30:06Z
https://github.com/allenai/allennlp/issues/4855
[ "bug" ]
frcnt
0
littlecodersh/ItChat
api
514
发送消息的时候,返回1024是什么原因?
`{u'MsgID': u'', u'LocalID': u'', u'BaseResponse': {u'ErrMsg': u'', u'Ret': 1204, 'RawMsg': u''}}`
closed
2017-09-20T02:24:07Z
2017-09-20T02:36:51Z
https://github.com/littlecodersh/ItChat/issues/514
[]
ysnows
2
CTFd/CTFd
flask
1,935
Make the distinction between user and team mode clearer during setup
We should probably have some kind of big checkbox div that explains what it means to be in user/teams mode. It would reduce the likelihood of needing to switch.
closed
2021-07-02T05:01:12Z
2021-07-17T19:44:24Z
https://github.com/CTFd/CTFd/issues/1935
[ "easy" ]
ColdHeat
0
ymcui/Chinese-LLaMA-Alpaca
nlp
376
为什么我训练总结提示缺失output_dir
(torch) root@autodl-container-ce8743b1d5-46215747:~/autodl-tmp/LLAMA_cn/src/Chinese-LLaMA-Alpaca/scripts# bash run_pt.sh run_pt.sh: line 7: $'\r': command not found run_pt.sh: line 17: $'\r': command not found run_pt.sh: line 19: $'\r': command not found ===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues ================================================================================ CUDA SETUP: CUDA runtime path found: /root/miniconda3/envs/torch/lib/libcudart.so CUDA SETUP: Highest compute capability among GPUs detected: 8.6 CUDA SETUP: Detected CUDA version 116 CUDA SETUP: Loading binary /root/miniconda3/envs/torch/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda116.so... ===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues ================================================================================ CUDA SETUP: CUDA runtime path found: /root/miniconda3/envs/torch/lib/libcudart.so CUDA SETUP: Highest compute capability among GPUs detected: 8.6 CUDA SETUP: Detected CUDA version 116 CUDA SETUP: Loading binary /root/miniconda3/envs/torch/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda116.so... usage: run_clm_pt_with_peft.py [-h] [--model_name_or_path MODEL_NAME_OR_PATH] [--tokenizer_name_or_path TOKENIZER_NAME_OR_PATH] [--model_type MODEL_TYPE] [--config_overrides CONFIG_OVERRIDES] [--config_name CONFIG_NAME] [--tokenizer_name TOKENIZER_NAME] [--cache_dir CACHE_DIR] [--use_fast_tokenizer [USE_FAST_TOKENIZER]] [--no_use_fast_tokenizer] [--model_revision MODEL_REVISION] [--use_auth_token [USE_AUTH_TOKEN]] [--torch_dtype {auto,bfloat16,float16,float32}] [--dataset_dir DATASET_DIR] [--dataset_config_name DATASET_CONFIG_NAME] [--train_file TRAIN_FILE] [--validation_file VALIDATION_FILE] [--max_train_samples MAX_TRAIN_SAMPLES] [--max_eval_samples MAX_EVAL_SAMPLES] [--streaming [STREAMING]] [--block_size BLOCK_SIZE] [--overwrite_cache [OVERWRITE_CACHE]] [--validation_split_percentage VALIDATION_SPLIT_PERCENTAGE] [--preprocessing_num_workers PREPROCESSING_NUM_WORKERS] [--keep_linebreaks [KEEP_LINEBREAKS]] [--no_keep_linebreaks] [--data_cache_dir DATA_CACHE_DIR] --output_dir OUTPUT_DIR [--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]] [--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]] [--do_predict [DO_PREDICT]] [--evaluation_strategy {no,steps,epoch}] [--prediction_loss_only [PREDICTION_LOSS_ONLY]] [--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE] [--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE] [--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE] [--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE] [--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS] [--eval_accumulation_steps EVAL_ACCUMULATION_STEPS] [--eval_delay EVAL_DELAY] [--learning_rate LEARNING_RATE] [--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1] [--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON] [--max_grad_norm MAX_GRAD_NORM] [--num_train_epochs NUM_TRAIN_EPOCHS] [--max_steps MAX_STEPS] [--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt}] [--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS] [--log_level {debug,info,warning,error,critical,passive}] [--log_level_replica {debug,info,warning,error,critical,passive}] [--log_on_each_node [LOG_ON_EACH_NODE]] [--no_log_on_each_node] [--logging_dir LOGGING_DIR] [--logging_strategy {no,steps,epoch}] [--logging_first_step [LOGGING_FIRST_STEP]] [--logging_steps LOGGING_STEPS] [--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]] [--no_logging_nan_inf_filter] [--save_strategy {no,steps,epoch}] [--save_steps SAVE_STEPS] [--save_total_limit SAVE_TOTAL_LIMIT] [--save_safetensors [SAVE_SAFETENSORS]] [--save_on_each_node [SAVE_ON_EACH_NODE]] [--no_cuda [NO_CUDA]] [--use_mps_device [USE_MPS_DEVICE]] [--seed SEED] [--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]] [--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]] [--fp16_opt_level FP16_OPT_LEVEL] [--half_precision_backend {auto,cuda_amp,apex,cpu_amp}] [--bf16_full_eval [BF16_FULL_EVAL]] [--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32] [--local_rank LOCAL_RANK] [--xpu_backend {mpi,ccl,gloo}] [--tpu_num_cores TPU_NUM_CORES] [--tpu_metrics_debug [TPU_METRICS_DEBUG]] [--debug DEBUG] [--dataloader_drop_last [DATALOADER_DROP_LAST]] [--eval_steps EVAL_STEPS] [--dataloader_num_workers DATALOADER_NUM_WORKERS] [--past_index PAST_INDEX] [--run_name RUN_NAME] [--disable_tqdm DISABLE_TQDM] [--remove_unused_columns [REMOVE_UNUSED_COLUMNS]] [--no_remove_unused_columns] [--label_names LABEL_NAMES [LABEL_NAMES ...]] [--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]] [--metric_for_best_model METRIC_FOR_BEST_MODEL] [--greater_is_better GREATER_IS_BETTER] [--ignore_data_skip [IGNORE_DATA_SKIP]] [--sharded_ddp SHARDED_DDP] [--fsdp FSDP] [--fsdp_min_num_params FSDP_MIN_NUM_PARAMS] [--fsdp_config FSDP_CONFIG] [--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP] [--deepspeed DEEPSPEED] [--label_smoothing_factor LABEL_SMOOTHING_FACTOR] [--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_apex_fused,adafactor,adamw_bnb_8bit,adamw_anyprecision,sgd,adagrad}] [--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]] [--group_by_length [GROUP_BY_LENGTH]] [--length_column_name LENGTH_COLUMN_NAME] [--report_to REPORT_TO [REPORT_TO ...]] [--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS] [--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB] [--dataloader_pin_memory [DATALOADER_PIN_MEMORY]] [--no_dataloader_pin_memory] [--skip_memory_metrics [SKIP_MEMORY_METRICS]] [--no_skip_memory_metrics] [--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]] [--push_to_hub [PUSH_TO_HUB]] [--resume_from_checkpoint RESUME_FROM_CHECKPOINT] [--hub_model_id HUB_MODEL_ID] [--hub_strategy {end,every_save,checkpoint,all_checkpoints}] [--hub_token HUB_TOKEN] [--hub_private_repo [HUB_PRIVATE_REPO]] [--gradient_checkpointing [GRADIENT_CHECKPOINTING]] [--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]] [--fp16_backend {auto,cuda_amp,apex,cpu_amp}] [--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID] [--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION] [--push_to_hub_token PUSH_TO_HUB_TOKEN] [--mp_parameters MP_PARAMETERS] [--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]] [--full_determinism [FULL_DETERMINISM]] [--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE] [--ddp_timeout DDP_TIMEOUT] [--torch_compile [TORCH_COMPILE]] [--torch_compile_backend TORCH_COMPILE_BACKEND] [--torch_compile_mode TORCH_COMPILE_MODE] [--trainable TRAINABLE] [--lora_rank LORA_RANK] [--lora_dropout LORA_DROPOUT] [--lora_alpha LORA_ALPHA] [--modules_to_save MODULES_TO_SAVE] [--debug_mode [DEBUG_MODE]] [--peft_path PEFT_PATH] run_clm_pt_with_peft.py: error: the following arguments are required: --output_dir usage: run_clm_pt_with_peft.py [-h] [--model_name_or_path MODEL_NAME_OR_PATH] [--tokenizer_name_or_path TOKENIZER_NAME_OR_PATH] [--model_type MODEL_TYPE] [--config_overrides CONFIG_OVERRIDES] [--config_name CONFIG_NAME] [--tokenizer_name TOKENIZER_NAME] [--cache_dir CACHE_DIR] [--use_fast_tokenizer [USE_FAST_TOKENIZER]] [--no_use_fast_tokenizer] [--model_revision MODEL_REVISION] [--use_auth_token [USE_AUTH_TOKEN]] [--torch_dtype {auto,bfloat16,float16,float32}] [--dataset_dir DATASET_DIR] [--dataset_config_name DATASET_CONFIG_NAME] [--train_file TRAIN_FILE] [--validation_file VALIDATION_FILE] [--max_train_samples MAX_TRAIN_SAMPLES] [--max_eval_samples MAX_EVAL_SAMPLES] [--streaming [STREAMING]] [--block_size BLOCK_SIZE] [--overwrite_cache [OVERWRITE_CACHE]] [--validation_split_percentage VALIDATION_SPLIT_PERCENTAGE] [--preprocessing_num_workers PREPROCESSING_NUM_WORKERS] [--keep_linebreaks [KEEP_LINEBREAKS]] [--no_keep_linebreaks] [--data_cache_dir DATA_CACHE_DIR] --output_dir OUTPUT_DIR [--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]] [--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]] [--do_predict [DO_PREDICT]] [--evaluation_strategy {no,steps,epoch}] [--prediction_loss_only [PREDICTION_LOSS_ONLY]] [--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE] [--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE] [--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE] [--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE] [--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS] [--eval_accumulation_steps EVAL_ACCUMULATION_STEPS] [--eval_delay EVAL_DELAY] [--learning_rate LEARNING_RATE] [--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1] [--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON] [--max_grad_norm MAX_GRAD_NORM] [--num_train_epochs NUM_TRAIN_EPOCHS] [--max_steps MAX_STEPS] [--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt}] [--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS] [--log_level {debug,info,warning,error,critical,passive}] [--log_level_replica {debug,info,warning,error,critical,passive}] [--log_on_each_node [LOG_ON_EACH_NODE]] [--no_log_on_each_node] [--logging_dir LOGGING_DIR] [--logging_strategy {no,steps,epoch}] [--logging_first_step [LOGGING_FIRST_STEP]] [--logging_steps LOGGING_STEPS] [--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]] [--no_logging_nan_inf_filter] [--save_strategy {no,steps,epoch}] [--save_steps SAVE_STEPS] [--save_total_limit SAVE_TOTAL_LIMIT] [--save_safetensors [SAVE_SAFETENSORS]] [--save_on_each_node [SAVE_ON_EACH_NODE]] [--no_cuda [NO_CUDA]] [--use_mps_device [USE_MPS_DEVICE]] [--seed SEED] [--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]] [--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]] [--fp16_opt_level FP16_OPT_LEVEL] [--half_precision_backend {auto,cuda_amp,apex,cpu_amp}] [--bf16_full_eval [BF16_FULL_EVAL]] [--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32] [--local_rank LOCAL_RANK] [--xpu_backend {mpi,ccl,gloo}] [--tpu_num_cores TPU_NUM_CORES] [--tpu_metrics_debug [TPU_METRICS_DEBUG]] [--debug DEBUG] [--dataloader_drop_last [DATALOADER_DROP_LAST]] [--eval_steps EVAL_STEPS] [--dataloader_num_workers DATALOADER_NUM_WORKERS] [--past_index PAST_INDEX] [--run_name RUN_NAME] [--disable_tqdm DISABLE_TQDM] [--remove_unused_columns [REMOVE_UNUSED_COLUMNS]] [--no_remove_unused_columns] [--label_names LABEL_NAMES [LABEL_NAMES ...]] [--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]] [--metric_for_best_model METRIC_FOR_BEST_MODEL] [--greater_is_better GREATER_IS_BETTER] [--ignore_data_skip [IGNORE_DATA_SKIP]] [--sharded_ddp SHARDED_DDP] [--fsdp FSDP] [--fsdp_min_num_params FSDP_MIN_NUM_PARAMS] [--fsdp_config FSDP_CONFIG] [--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP] [--deepspeed DEEPSPEED] [--label_smoothing_factor LABEL_SMOOTHING_FACTOR] [--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_apex_fused,adafactor,adamw_bnb_8bit,adamw_anyprecision,sgd,adagrad}] [--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]] [--group_by_length [GROUP_BY_LENGTH]] [--length_column_name LENGTH_COLUMN_NAME] [--report_to REPORT_TO [REPORT_TO ...]] [--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS] [--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB] [--dataloader_pin_memory [DATALOADER_PIN_MEMORY]] [--no_dataloader_pin_memory] [--skip_memory_metrics [SKIP_MEMORY_METRICS]] [--no_skip_memory_metrics] [--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]] [--push_to_hub [PUSH_TO_HUB]] [--resume_from_checkpoint RESUME_FROM_CHECKPOINT] [--hub_model_id HUB_MODEL_ID] [--hub_strategy {end,every_save,checkpoint,all_checkpoints}] [--hub_token HUB_TOKEN] [--hub_private_repo [HUB_PRIVATE_REPO]] [--gradient_checkpointing [GRADIENT_CHECKPOINTING]] [--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]] [--fp16_backend {auto,cuda_amp,apex,cpu_amp}] [--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID] [--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION] [--push_to_hub_token PUSH_TO_HUB_TOKEN] [--mp_parameters MP_PARAMETERS] [--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]] [--full_determinism [FULL_DETERMINISM]] [--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE] [--ddp_timeout DDP_TIMEOUT] [--torch_compile [TORCH_COMPILE]] [--torch_compile_backend TORCH_COMPILE_BACKEND] [--torch_compile_mode TORCH_COMPILE_MODE] [--trainable TRAINABLE] [--lora_rank LORA_RANK] [--lora_dropout LORA_DROPOUT] [--lora_alpha LORA_ALPHA] [--modules_to_save MODULES_TO_SAVE] [--debug_mode [DEBUG_MODE]] [--peft_path PEFT_PATH] run_clm_pt_with_peft.py: error: the following arguments are required: --output_dir ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 2) local_rank: 0 (pid: 10520) of binary: /root/miniconda3/envs/torch/bin/python Traceback (most recent call last): File "/root/miniconda3/envs/torch/bin/torchrun", line 33, in <module> sys.exit(load_entry_point('torch==1.13.1', 'console_scripts', 'torchrun')()) File "/root/miniconda3/envs/torch/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/root/miniconda3/envs/torch/lib/python3.10/site-packages/torch/distributed/run.py", line 762, in main run(args) File "/root/miniconda3/envs/torch/lib/python3.10/site-packages/torch/distributed/run.py", line 753, in run elastic_launch( File "/root/miniconda3/envs/torch/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/root/miniconda3/envs/torch/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 246, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ run_clm_pt_with_peft.py FAILED ------------------------------------------------------------ Failures: [1]: time : 2023-05-18_16:26:57 host : autodl-container-ce8743b1d5-46215747 rank : 1 (local_rank: 1) exitcode : 2 (pid: 10521) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2023-05-18_16:26:57 host : autodl-container-ce8743b1d5-46215747 rank : 0 (local_rank: 0) exitcode : 2 (pid: 10520) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ run_pt.sh: line 21: --deepspeed: command not found run_pt.sh: line 22: --model_name_or_path: command not found run_pt.sh: line 23: --tokenizer_name_or_path: command not found run_pt.sh: line 24: --dataset_dir: command not found run_pt.sh: line 25: --data_cache_dir: command not found run_pt.sh: line 26: --validation_split_percentage: command not found run_pt.sh: line 27: --per_device_train_batch_size: command not found run_pt.sh: line 28: --per_device_eval_batch_size: command not found run_pt.sh: line 29: --do_train: command not found run_pt.sh: line 30: --seed: command not found run_pt.sh: line 31: --fp16: command not found run_pt.sh: line 32: --max_steps: command not found run_pt.sh: line 33: --lr_scheduler_type: command not found run_pt.sh: line 34: --learning_rate: command not found run_pt.sh: line 35: --warmup_ratio: command not found run_pt.sh: line 36: --weight_decay: command not found run_pt.sh: line 37: --logging_strategy: command not found run_pt.sh: line 38: --logging_steps: command not found run_pt.sh: line 39: --save_strategy: command not found run_pt.sh: line 40: --save_total_limit: command not found run_pt.sh: line 41: --save_steps: command not found run_pt.sh: line 42: --gradient_accumulation_steps: command not found run_pt.sh: line 43: --preprocessing_num_workers: command not found run_pt.sh: line 44: --block_size: command not found run_pt.sh: line 45: --ddp_timeout: command not found run_pt.sh: line 46: --logging_first_step: command not found run_pt.sh: line 47: --lora_rank: command not found run_pt.sh: line 48: --lora_alpha: command not found run_pt.sh: line 49: --trainable: command not found run_pt.sh: line 50: --modules_to_save: command not found run_pt.sh: line 51: --lora_dropout: command not found run_pt.sh: line 52: --torch_dtype: command not found run_pt.sh: line 53: --gradient_checkpointing: command not found run_pt.sh: line 54: --ddp_find_unused_parameters: command not found 配置文件: lr=2e-4 lora_rank=8 lora_alpha=32 lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj" modules_to_save="embed_tokens,lm_head" lora_dropout=0.05 pretrained_model=/root/autodl-tmp/LLAMA_cn/resources/model/LLaMA_7B_cn_merge chinese_tokenizer_path=/root/autodl-tmp/LLAMA_cn/resources/model/LLaMA_7B_cn_merge dataset_dir=/root/autodl-tmp/LLAMA_cn/resources/data/pretrain_data data_cache=/root/autodl-tmp/LLAMA_cn/resources/data/data_cache per_device_train_batch_size=1 per_device_eval_batch_size=1 training_steps=10000 gradient_accumulation_steps=8 output_dir=/root/autodl-tmp/LLAMA_cn/resources/model/pretrain_model deepspeed_config_file=/root/autodl-tmp/LLAMA_cn/src/Chinese-LLaMA-Alpaca/scripts/ds_zero2_no_offload.json torchrun --nnodes 1 --nproc_per_node 2 run_clm_pt_with_peft.py \ --deepspeed ${deepspeed_config_file} \ --model_name_or_path ${pretrained_model} \ --tokenizer_name_or_path ${chinese_tokenizer_path} \ --dataset_dir ${dataset_dir} \ --data_cache_dir ${data_cache} \ --validation_split_percentage 0.001 \ --per_device_train_batch_size ${per_device_train_batch_size} \ --per_device_eval_batch_size ${per_device_eval_batch_size} \ --do_train \ --seed $RANDOM \ --fp16 \ --max_steps ${training_steps} \ --lr_scheduler_type cosine \ --learning_rate ${lr} \ --warmup_ratio 0.05 \ --weight_decay 0.01 \ --logging_strategy steps \ --logging_steps 10 \ --save_strategy steps \ --save_total_limit 30 \ --save_steps 500 \ --gradient_accumulation_steps ${gradient_accumulation_steps} \ --preprocessing_num_workers 8 \ --block_size 512 \ --ddp_timeout 30000 \ --logging_first_step True \ --lora_rank ${lora_rank} \ --lora_alpha ${lora_alpha} \ --trainable ${lora_trainable} \ --modules_to_save ${modules_to_save} \ --lora_dropout ${lora_dropout} \ --torch_dtype float16 \ --gradient_checkpointing \ --ddp_find_unused_parameters False --output_dir ${output_dir} \ --overwrite_output_dir \
closed
2023-05-18T08:25:55Z
2023-09-22T06:52:26Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/376
[ "stale" ]
fan159159
4
nok/sklearn-porter
scikit-learn
63
Fails with big dataset
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1, train_size=0.0001) clf = DecisionTreeClassifier() clf.fit(train_X, train_y) # Export: porter = Porter(clf, language='java') output = porter.export(embed_data=True) print(output) fails with bigger train sizespython3.7/site-packages/sklearn_porter/estimator/classifier/DecisionTreeClassifier/__init__.py", line 308, in create_branches out += temp.format(features[node], '<=', self.repr(threshold[node])) IndexError: list index out of range
closed
2020-01-31T10:25:56Z
2020-01-31T10:38:13Z
https://github.com/nok/sklearn-porter/issues/63
[]
mmhobi7
2
qwj/python-proxy
asyncio
152
Is this project still maintained?
### What happened? I still use this package and still running on prod now, but I'm now a little worried that the project might be unmaintained. last PR over 7 months ago. and no new release for more than one year. this is a cool project I hope this project still continue
open
2022-07-25T03:23:16Z
2023-03-27T12:09:11Z
https://github.com/qwj/python-proxy/issues/152
[]
aarestu
1
keras-team/autokeras
tensorflow
1,853
Is there a table of Keras and AutoKeras, or which TF2 version should be installed for the latest AutoKeras?
I'm using Tensorflow 2.11 now, will it automatically uninstall keras when I install autokeras? Is there a table of Keras and AutoKeras, or which TF2 version should be installed for the latest AutoKeras?
open
2023-02-15T22:18:00Z
2023-02-16T12:04:34Z
https://github.com/keras-team/autokeras/issues/1853
[ "feature request" ]
Prince5867
1
CorentinJ/Real-Time-Voice-Cloning
tensorflow
1,314
vioce clone
please i need your help on my set up, am unable to get librispeech on my file, what should i do have downloaded it so manytime
open
2024-10-22T18:30:18Z
2024-10-22T18:30:18Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1314
[]
richmind1
0
RobertCraigie/prisma-client-py
asyncio
661
Deserialize raw query types into richer python types
## Problem <!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] --> We currently deserialize raw query fields into types that are different than what the core ORM uses, e.g. `Decimal` becomes `float` instead of `decimal.Decimal`, this was implemented this way for backwards compatibility reasons. ## Suggested solution <!-- A clear and concise description of what you want to happen. --> We should use types that are nicer to work with: - [ ] `datetime.datetime` for `DateTime` fields - [ ] `decimal.Decimal` for `Decimal` fields - [ ] `prisma.Base64` for `Bytes` fields
open
2022-12-31T23:18:37Z
2022-12-31T23:18:37Z
https://github.com/RobertCraigie/prisma-client-py/issues/661
[ "kind/improvement", "topic: client", "level/intermediate", "priority/low", "topic: raw queries" ]
RobertCraigie
0
gradio-app/gradio
deep-learning
10,411
`show_row_numbers` in `gr.Dataframe` doesn't work
### Describe the bug According to the [change log](https://github.com/gradio-app/gradio/blob/main/CHANGELOG.md), #10376 is included in `gradio==5.13.0`, but row numbers are not displayed when setting `show_row_numbers=True`. Also, when using the wheel in #10376 , row numbers is shown, but it's rendered like this: ![](https://github.com/user-attachments/assets/69bcf3b3-33d5-4023-847a-9e73bd50ad5e) - The column for row numbers is too narrow. - The width of the column next to the row number is different from other columns, and as it's too narrow, you can't click the sort button. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction repro Space: https://huggingface.co/spaces/hysts-debug/dataframe-show-row-numbers ```python import gradio as gr import numpy as np np.random.seed(0) data = np.random.randint(0, 100, size=(10, 10)) with gr.Blocks() as demo: gr.Dataframe(value=data, show_row_numbers=True) demo.launch() ``` ### Screenshot ![](https://github.com/user-attachments/assets/d30efc16-5924-4200-b1e6-b45597347f2f) ### Logs ```shell ``` ### System Info ```shell gradio==5.13.0 ``` ### Severity I can work around it
closed
2025-01-23T03:01:52Z
2025-02-05T20:20:45Z
https://github.com/gradio-app/gradio/issues/10411
[ "bug" ]
hysts
2
unit8co/darts
data-science
1,812
Please help me
Please help me I'm having problems with the tool. I'm training the model using RNNModel using yahoo finance only the close values. The loss values are: train_loss=0.000101, val_loss=0.00272 But when making the prediction (model.predict) the forecasting values are very bad. I know this is just for reporting bugs but I don't know where to turn. Please could someone help me?
closed
2023-06-02T17:29:33Z
2023-08-07T08:13:35Z
https://github.com/unit8co/darts/issues/1812
[ "question" ]
rafaepires
1
cuemacro/chartpy
matplotlib
2
any difference from altair?
open
2016-08-25T15:18:03Z
2016-08-28T08:13:41Z
https://github.com/cuemacro/chartpy/issues/2
[]
den-run-ai
1
coqui-ai/TTS
deep-learning
3,574
Not working for multiple sentences
### Describe the bug When I send more than one sentence, it is giving me the error. ### To Reproduce Input Text: a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are usable as lumber or plants above a specified height. import os from TTS.api import TTS TTS_MODEL_PATH = "tts_models/multilingual/multi-dataset/xtts_v2" tts = TTS(model_name=TTS_MODEL_PATH, gpu=True) def text_to_speech(text, speaker_wav_file, language, output_path): os.makedirs(os.path.dirname(output_path), exist_ok=True) tts.tts_to_file(text, speaker_wav=speaker_wav_file, language=language, file_path=output_path) return output_path @app.route('/text-to-speech', methods=['POST']) def text_to_speech_api(): try: text = request.form.get('text') language = request.form.get('language') speaker_wav_file = request.files['speaker_wav'] output_path = '/data/ai-tools/voice_cloning/output.wav' # Update this with the actual path output_file = text_to_speech(text, speaker_wav_file, language, output_path) return send_file(output_file) except Exception as e: return str(e), 500 ### Expected behavior _No response_ ### Logs ```shell Getting Error: Failed to open the input "Custom Input Context" (Invalid data found when processing input). Exception raised from get_input_format_context at /__w/audio/audio/pytorch/audio/torchaudio/csrc/ffmpeg/stream_reader/stream_reader.cpp:42 (most recent call first): frame #0: c10::Error::Error(c10::SourceLocation, std::string) + 0x57 (0x7f4ea370f617 in /data/ai-tools/venv/lib64/python3.9/site-packages/torch/lib/libc10.so) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::string const&) + 0x64 (0x7f4ea36ca98d in /data/ai-tools/venv/lib64/python3.9/site-packages/torch/lib/libc10.so) frame #2: <unknown function> + 0x43944 (0x7f4d9c583944 in /data/ai-tools/venv/lib/python3.9/site-packages/torchaudio/lib/libtorchaudio_ffmpeg6.so) frame #3: torchaudio::io::StreamReader::StreamReader(AVIOContext*, c10::optional<std::string> const&, c10::optional<std::map<std::string, std::string, std::less<std::string>, std::allocator<std::pair<std::string const, std::string> > > > const&) + 0x43 (0x7f4d9c586283 in /data/ai-tools/venv/lib/python3.9/site-packages/torchaudio/lib/libtorchaudio_ffmpeg6.so) frame #4: torchaudio::io::StreamReaderCustomIO::StreamReaderCustomIO(void*, c10::optional<std::string> const&, int, int (*)(void*, unsigned char*, int), long (*)(void*, long, int), c10::optional<std::map<std::string, std::string, std::less<std::string>, std::allocator<std::pair<std::string const, std::string> > > > const&) + 0x2f (0x7f4d9c58631f in /data/ai-tools/venv/lib/python3.9/site-packages/torchaudio/lib/libtorchaudio_ffmpeg6.so) frame #5: <unknown function> + 0x17a89 (0x7f4d9c47aa89 in /data/ai-tools/venv/lib64/python3.9/site-packages/torchaudio/lib/_torchaudio_ffmpeg6.so) frame #6: <unknown function> + 0x2de35 (0x7f4d9c490e35 in /data/ai-tools/venv/lib64/python3.9/site-packages/torchaudio/lib/_torchaudio_ffmpeg6.so) <omitting python frames> frame #12: <unknown function> + 0xf744 (0x7f4dc5a20744 in /data/ai-tools/venv/lib64/python3.9/site-packages/torchaudio/lib/_torchaudio.so) ``` ### Environment ```shell TTS Version: 2 AWS EC2 ffmpeg version N-112128-gfa20f5cd9e Copyright (c) 2000-2023 the FFmpeg developers built with gcc 11 (GCC) configuration: --enable-shared --disable-static --enable-gpl --enable-libfreetype libavutil 58. 25.100 / 58. 25.100 libavcodec 60. 26.100 / 60. 26.100 libavformat 60. 13.100 / 60. 13.100 libavdevice 60. 2.101 / 60. 2.101 libavfilter 9. 11.100 / 9. 11.100 libswscale 7. 3.100 / 7. 3.100 libswresample 4. 11.100 / 4. 11.100 libpostproc 57. 2.100 / 57. 2.100 ``` ### Additional context _No response_
closed
2024-02-13T06:46:54Z
2024-06-26T16:49:25Z
https://github.com/coqui-ai/TTS/issues/3574
[ "bug", "wontfix" ]
ayushi15092002
1
qubvel-org/segmentation_models.pytorch
computer-vision
287
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
`RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED` I have tried many pytorch versions. The error is still there. Could anyone help me?
closed
2020-12-02T09:56:50Z
2020-12-03T07:58:51Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/287
[]
somebodyus
2
roboflow/supervision
tensorflow
1,042
[Detections] extend `from_transformers` with segmentation models support
### Description Currently, Supervision only supports Transformers object detection models. Let's expand [`from_transformers`](https://github.com/roboflow/supervision/blob/781a064d8aa46e3875378ab6aba1dfdad8bc636c/supervision/detection/core.py#L391) by adding support for segmentation models. ### API The code below should enable the annotation of an image with segmentation results. ```python import torch import supervision as sv from PIL import Image from transformers import DetrImageProcessor, DetrForSegmentation processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") image = Image.open(<PATH TO IMAGE>) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) width, height = image.size target_size = torch.tensor([[height, width]]) results = processor. post_process_segmentation( outputs=outputs, target_sizes=target_size)[0] detections = sv.Detections.from_transformers(results) mask_annotator = sv.MaskAnnotator() annotated_image = mask.annotate(scene=image, detections=detections) ``` ### Additional - [Transformers DETR Docs](https://huggingface.co/docs/transformers/en/model_doc/detr) - Note: Please share a Google Colab with minimal code to test the new feature. We know it's additional work, but it will speed up the review process. The reviewer must test each change. Setting up a local environment to do this is time-consuming. Please ensure that Google Colab can be accessed without any issues (make it public). Thank you! 🙏🏻
closed
2024-03-25T12:58:25Z
2024-04-11T18:03:26Z
https://github.com/roboflow/supervision/issues/1042
[ "enhancement", "good first issue", "api:detection" ]
SkalskiP
8
satwikkansal/wtfpython
python
87
Is this organization related to this repository?
I wanted to know if the following organization is connected with this project as it seems to have no connection with you, with respect to membership. **_https://github.com/wtfpython-web_**
closed
2018-06-20T22:26:34Z
2018-06-21T19:47:27Z
https://github.com/satwikkansal/wtfpython/issues/87
[]
0x48piraj
2
dropbox/sqlalchemy-stubs
sqlalchemy
194
Add "common issues" doc to cover known workarounds
I'm happy to write a first draft of this if the maintainers would like it. But I don't want to put in the effort if it's not wanted. I've run into two issues which really puzzled me in terms of what to do until I poked around in issues here. I'm sure there are others. `hybrid_property` can't use the special magic of `property` in `mypy`, but #98 has a workaround seems to work. And #94 covers ways of getting `UUID(as_uuid=True)` to work. It would be helpful (since these are not going to be fixed soon) if this library made these workarounds part of its docs. It could be done at the end of the readme or in a separate markdown doc linked in the repo.
open
2020-12-11T15:28:53Z
2021-04-22T13:47:35Z
https://github.com/dropbox/sqlalchemy-stubs/issues/194
[]
sirosen
1
huggingface/transformers
deep-learning
36,322
Look like there is error with `sentencepiece ` and `protobuf`
### System Info Hi, I'm install transformers to convert Llama-11B-Vision-Instruct `.pth` to HF format `.safetensors`. I was carefully install follow the https://github.com/huggingface/transformers?tab=readme-ov-file#with-pip Then I run my bash command: ```sh python /home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct \ --model_size 11B \ --output_dir /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct/hf ``` and here is my terminal: ``` (pth_convert_st) (base) chwenjun225@chwenjun225:~/.llama/checkpoints/transformers$ python /home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct \ --model_size 11B \ --output_dir /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct/hf Converting the tokenizer. You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message. Traceback (most recent call last): File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py", line 502, in write_tokenizer tokenizer = tokenizer_class(input_tokenizer_path) File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/tokenization_llama_fast.py", line 157, in __init__ super().__init__( ~~~~~~~~~~~~~~~~^ vocab_file=vocab_file, ^^^^^^^^^^^^^^^^^^^^^^ ...<10 lines>... **kwargs, ^^^^^^^^^ ) ^ File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/tokenization_utils_fast.py", line 133, in __init__ slow_tokenizer = self.slow_tokenizer_class(*args, **kwargs) File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/tokenization_llama.py", line 169, in __init__ self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/tokenization_llama.py", line 196, in get_spm_processor tokenizer.Load(self.vocab_file) ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/home/chwenjun225/miniconda3/envs/pth_convert_st/lib/python3.13/site-packages/sentencepiece/__init__.py", line 961, in Load return self.LoadFromFile(model_file) ~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "/home/chwenjun225/miniconda3/envs/pth_convert_st/lib/python3.13/site-packages/sentencepiece/__init__.py", line 316, in LoadFromFile return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ RuntimeError: Internal: could not parse ModelProto from /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct/tokenizer.model During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py", line 601, in <module> main() ~~~~^^ File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py", line 576, in main write_tokenizer( ~~~~~~~~~~~~~~~^ args.output_dir, ^^^^^^^^^^^^^^^^ ...<4 lines>... push_to_hub=args.push_to_hub, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "/home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py", line 504, in write_tokenizer raise ValueError( "Failed to instantiate tokenizer. Please, make sure you have sentencepiece and protobuf installed." ) ValueError: Failed to instantiate tokenizer. Please, make sure you have sentencepiece and protobuf installed. ``` ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction python /home/chwenjun225/.llama/checkpoints/transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct \ --model_size 11B \ --output_dir /home/chwenjun225/.llama/checkpoints/Llama3.2-11B-Vision-Instruct/hf ### Expected behavior I think it should be ok after ```pip install transformers[sentencepiece]``` and ```pip install transformers[protobuf]```. But no, I upgrade my python from 3.11 to 3.13, I still get this problem
closed
2025-02-21T07:39:19Z
2025-02-21T15:44:31Z
https://github.com/huggingface/transformers/issues/36322
[ "bug" ]
chwenjun225
1
huggingface/transformers
machine-learning
36,272
Device Movement Error with 4-bit Quantized LLaMA 3.1 Model Loading
### System Info ```shell I'm running into a persistent issue when trying to load the LLaMA 3.1 8B model with 4-bit quantization. No matter what configuration I try, I get this error during initialization: pgsql Copy CopyValueError: `.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the model has already been set to the correct devices and casted to the correct `dtype`. ``` ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [x] My own task or dataset (give details below) ### Reproduction Environment: Python: 3.10 Transformers: Latest version PyTorch: Latest version GPU: 85.05 GB memory available CUDA: Properly installed and available What I've tried: Loading with a BitsAndBytesConfig: python Copy bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, llm_int8_has_fp16_weight=True ) base_model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.1-8B-Instruct", quantization_config=bnb_config, trust_remote_code=True, use_cache=True, device_map='auto', max_memory={0: "24GiB"} ) Loading without device mapping: python Copy model_kwargs = { "trust_remote_code": True, "load_in_4bit": True, "torch_dtype": torch.float16, "use_cache": True } ### Expected behavior ```shell Clearing CUDA cache and running garbage collection beforehand. Experimenting with different device mapping strategies. Even with an ample GPU memory (85.05 GB) and confirmed CUDA availability, I still can't seem to get the model to load without running into this device movement error. Other models load fine when using quantization, so I'm not sure what's special about this setup. Any ideas on how to resolve this or work around the error? Thanks in advance for your help! ``` ### Checklist - [x] I have read the migration guide in the readme. ([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers); [pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers)) - [ ] I checked if a related official extension example runs on my machine.
open
2025-02-19T07:33:39Z
2025-03-13T13:29:01Z
https://github.com/huggingface/transformers/issues/36272
[]
Pritidhrita
2
AirtestProject/Airtest
automation
883
在执行用例的过程中,会频繁发生微信闪退的问题
**描述问题bug** 测试**微信小程序** 在执行用例的过程中,会频繁发生微信闪退的问题,导致后续测试用例无法执行 **预期效果** 执行过程中能够稳定 **python 版本:** `python3.7` **airtest 版本:** `1.1.8` **设备:** - 型号: [HUAWEI Mate 10] - 系统: [Android 10]
open
2021-03-31T02:09:03Z
2021-03-31T02:09:03Z
https://github.com/AirtestProject/Airtest/issues/883
[]
DDDDanny
0
ray-project/ray
machine-learning
51,207
[Data] Adding streaming capability for `ray.data.Dataset.unique`
### Description The current [doc](https://docs.ray.io/en/latest/data/api/doc/ray.data.Dataset.unique.html) indicates that `ray.data.Dataset.unique` is a blocking operation: **_This operation requires all inputs to be materialized in object store for it to execute._**. But I presume, conceptually, it's possible to implement a streaming one: keeps a record of "seen" values and drops entry when its value is in the "seen" collection ### Use case A streaming `unique` function will be very useful when the amount of data is too large to be materialized.
open
2025-03-10T05:26:33Z
2025-03-13T12:37:57Z
https://github.com/ray-project/ray/issues/51207
[ "enhancement", "triage", "data" ]
marcmk6
7
lux-org/lux
pandas
169
[SETUP] Support for Google Colab
How to use this libary in colab
open
2020-12-01T11:07:56Z
2022-08-01T22:02:23Z
https://github.com/lux-org/lux/issues/169
[ "enhancement", "setup" ]
rizwannitk
11
google-research/bert
nlp
1,177
3090
I used a 3090 graphics card, TensorFlow1.14. There will be a problem. The same code will work on 2080. Have you come across anything like this?
open
2020-11-23T06:50:48Z
2020-11-23T06:50:48Z
https://github.com/google-research/bert/issues/1177
[]
Mbdn
0
lucidrains/vit-pytorch
computer-vision
52
How to run this model on linear data?
How to run this model on image features rather than image data like image features generated from pretrained ResNet?
closed
2020-12-26T20:14:21Z
2020-12-29T17:57:51Z
https://github.com/lucidrains/vit-pytorch/issues/52
[]
purbayankar
9
FujiwaraChoki/MoneyPrinter
automation
152
[BUG] More than 5 videos are downloaded
Caused by this: main.py ``` # Check for duplicates for url in found_urls: if url not in video_urls: video_urls.append(url) ``` found_urls is a list that contains all urls of a given search term. We only want the first one of those that isn't a duplicate to be added to the downloads, otherwise we will have more cips than set by `AMOUNT_OF_STOCK_VIDEOS = 5`
closed
2024-02-10T14:47:02Z
2024-02-10T15:18:10Z
https://github.com/FujiwaraChoki/MoneyPrinter/issues/152
[]
radry
0
unionai-oss/pandera
pandas
1,866
Empty (all-null) or missing fields with Python (non-Pandas) types fail validation despite `coerce=True` and `nullable=True`
**Describe the bug** Pandera raises `SchemaError` when passed data with an entirely empty or missing non-Pandas type column, despite use of `coerce=True`, `nullable=True` and `add_missing_columns=True`, whereas an equivalent Pandas-type column _is_ filled with null values as expected. - [x] I have checked that this issue has not already been reported. - [x] I have confirmed this bug exists on the latest version of pandera. - [ ] (optional) I have confirmed this bug exists on the main branch of pandera. **Note**: Please read [this guide](https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) detailing how to provide the necessary information for us to reproduce your bug. #### Code Sample, a copy-pastable example ```python import datetime as dt import pandas as pd import pandera as pa class Schema(pa.DataFrameModel): class Config: coerce = True add_missing_columns = True timestamp: pa.Timestamp = pa.Field(nullable=True) date: dt.date = pa.Field(nullable=True) """Columns present but null.""" complete = dict(timestamp=dt.datetime(1964, 8, 24), date=dt.datetime(1964, 8, 24)) null_timestamp = dict(complete, timestamp=None) null_date = dict(complete, date=None) # ✅ everything coerced as expected: print(Schema.validate(pd.DataFrame([complete])).dtypes) # -> # timestamp datetime64[ns] # date object # dtype: object # ✅null-only `timestamp` column still coerced as expected print(Schema.validate(pd.DataFrame([null_timestamp]))) # -> # timestamp date # 0 NaT 1964-08-24 # ✅ with a mix of null and non-null, `date` column still coerced as expected print(Schema.validate(pd.DataFrame([complete, null_date]))) # -> # timestamp date # 0 1964-08-24 1964-08-24 # 1 1964-08-24 NaT # ❗️ with all nulls, `date` fails print(Schema.validate(pd.DataFrame([null_date]))) # -> # pandera.errors.SchemaError: expected series 'date' to have type date: # failure cases: # index failure_case # 0 0 NaT """Columns missing.""" missing_timestamp, missing_date = complete.copy(), complete.copy() missing_timestamp.pop("timestamp") missing_date.pop("date") # ✅ missing `timestamp` column created as expected print(Schema.validate(pd.DataFrame([missing_timestamp]))) # timestamp date # 0 NaT 1964-08-24 # ❗️ missing `date` column fails print(Schema.validate(pd.DataFrame([missing_date]))) # -> # pandera.errors.SchemaError: expected series 'date' to have type date: # failure cases: # index failure_case # 0 0 NaT ``` This was run with: - pandas==2.2.3" - pandera==0.21.0 #### Expected behavior In the example above, I would expect the non-Pandas type column (`date`) to behave identically to a pandas type column (`timestamp`) i.e. here be filled with a null value (`NaT`) when: - all values are null - the column is missing entirely This is not specific to date types, that's just for illustration; you can swap out for `int`/`pa.Int` etc. #### Desktop (please complete the following information): - OS: Mac OS X
open
2024-11-29T18:03:51Z
2024-11-29T18:08:41Z
https://github.com/unionai-oss/pandera/issues/1866
[ "bug" ]
stainbank
0
harry0703/MoneyPrinterTurbo
automation
159
cannot unpack non-iterable NoneType object
TypeError: [Uploading 075251ac-edaa-4e24-b72a-03530e5336a1.zip…]() Traceback: File "C:\Users\hourp\anaconda3\envs\MoneyPrinterTurbo\lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 542, in _run_script exec(code, module.__dict__) File "C:\Users\hourp\Downloads\MoneyPrinterTurbo-main\webui\Main.py", line 376, in <module> tm.start(task_id=task_id, params=params) File "C:\Users\hourp\Downloads\MoneyPrinterTurbo-main\app\services\task.py", line 158, in start video.generate_video(video_path=combined_video_path, File "C:\Users\hourp\Downloads\MoneyPrinterTurbo-main\app\services\video.py", line 225, in generate_video sub = SubtitlesClip(subtitles=subtitle_path, make_textclip=generator, encoding='utf-8') File "C:\Users\hourp\anaconda3\envs\MoneyPrinterTurbo\lib\site-packages\moviepy\video\tools\subtitles.py", line 69, in __init__ self.duration = max([tb for ((ta, tb), txt) in self.subtitles]) File "C:\Users\hourp\anaconda3\envs\MoneyPrinterTurbo\lib\site-packages\moviepy\video\tools\subtitles.py", line 69, in <listcomp> self.duration = max([tb for ((ta, tb), txt) in self.subtitles])
closed
2024-04-03T17:07:01Z
2024-04-04T03:13:24Z
https://github.com/harry0703/MoneyPrinterTurbo/issues/159
[]
pupheng
3
microsoft/nni
data-science
5,383
The following code block gives me error
The following code block gives me error ``` import bz2 import urllib.request import numpy as np from sklearn.datasets import load_svmlight_file from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel from nni.algorithms.feature_engineering.gradient_selector import FeatureGradientSelector def test(): url_zip_train = 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/rcv1_train.binary.bz2' urllib.request.urlretrieve(url_zip_train, filename='train.bz2') f_svm = open('train.svm', 'wt') with bz2.open('train.bz2', 'rb') as f_zip: data = f_zip.read() f_svm.write(data.decode('utf-8')) f_svm.close() X, y = load_svmlight_file('train.svm') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) pipeline = make_pipeline(FeatureGradientSelector( n_epochs=1, n_features=10), LogisticRegression()) # pipeline = make_pipeline(SelectFromModel(ExtraTreesClassifier(n_estimators=50)), LogisticRegression()) pipeline.fit(X_train, y_train) print("Pipeline Score: ", pipeline.score(X_train, y_train)) if __name__ == "__main__": test() ``` ![image](https://user-images.githubusercontent.com/46800696/219932815-7011f41d-f5d2-4bf8-8cfa-78db26f1ee65.png) _Originally posted by @AbdelrahmanHamdy1996 in https://github.com/microsoft/nni/discussions/5382_
closed
2023-02-19T14:12:35Z
2023-09-15T04:22:12Z
https://github.com/microsoft/nni/issues/5383
[]
AbdelrahmanHamdy1996
3
napari/napari
numpy
7,547
Viewer FPS label gallery example not displaying FPS in gallery preview
### 🐛 Bug Report Viewer FPS label no longer shows in the [gallery example](https://napari.org/stable/gallery/viewer_fps_label.html). However, FPS label still works when script run locally. Gallery example shows FPS label up through 0.4.19. Starting with 0.5.0 the FPS label is no longer visible.
closed
2025-01-21T15:58:53Z
2025-01-29T08:53:00Z
https://github.com/napari/napari/issues/7547
[ "bug", "documentation", "example" ]
TimMonko
3
ultralytics/ultralytics
deep-learning
19,631
Slow Tensor Inference on MPS Compared to NumPy - Possible Upsampling Bottleneck
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hi team! Thanks for the amazing YOLOv11 library—truly top-notch. I’m stuck on an issue for quite a long time, truly. So... SOS. I’m running batched PyTorch tensors (`torch.rand(10, 3, 640, 640, device="mps")`) directly into inference on MPS, skipping NumPy preprocessing. Tensor performance lags (~0.07-0.08s per image) versus NumPy (~0.02-0.05s), despite `.contiguous()`, `torch.no_grad()`, warm-up, and manual `non_max_suppression()` batch splitting. Postprocessing is a bottleneck (~0.4s vs. expected ~0.01s), and inference takes ~0.35s. Profiling suggests ~40% in upsampling ops and ~30% in other layers (e.g., conv), hinting at MPS optimization or stride issues. Am I missing a trick here? I'd like to share more profiling data if it helps—just need a nudge in the right direction. Cheers! ### Additional _No response_
open
2025-03-10T20:07:57Z
2025-03-19T09:51:17Z
https://github.com/ultralytics/ultralytics/issues/19631
[ "question", "dependencies", "detect" ]
theOnlyBoy
26
saulpw/visidata
pandas
2,405
[texttables] incorrect 'tabulate' module installed with brew
**Small description** Getting AttributeError with version 3.0.2 installed from homebrew **Expected result** Visidata opens csv file. **Actual result with screenshot** See below. **Steps to reproduce with sample data and a .vd** See below. vd foo.csv Traceback (most recent call last): File "/opt/homebrew/bin/vd", line 3, in <module> import visidata.main File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/__init__.py", line 137, in <module> vd.importSubmodules('visidata.loaders') File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/settings.py", line 495, in importSubmodules vd.importModule(pkgname + '.' + module.name) File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/settings.py", line 481, in importModule r = importlib.import_module(pkgname) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.12/3.12.3/Frameworks/Python.framework/Versions/3.12/lib/python3.12/importlib/__init__.py", line 90, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/loaders/texttables.py", line 6, in <module> for fmt in tabulate.tabulate_formats: ^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: module 'tabulate' has no attribute 'tabulate_formats' echo 'foo,bar' | vd Traceback (most recent call last): File "/opt/homebrew/bin/vd", line 3, in <module> import visidata.main File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/__init__.py", line 137, in <module> vd.importSubmodules('visidata.loaders') File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/settings.py", line 495, in importSubmodules vd.importModule(pkgname + '.' + module.name) File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/settings.py", line 481, in importModule r = importlib.import_module(pkgname) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/python@3.12/3.12.3/Frameworks/Python.framework/Versions/3.12/lib/python3.12/importlib/__init__.py", line 90, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/visidata/3.0.2_1/libexec/lib/python3.12/site-packages/visidata/loaders/texttables.py", line 6, in <module> for fmt in tabulate.tabulate_formats: ^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: module 'tabulate' has no attribute 'tabulate_formats' **Additional context** brew info visidata ==> saulpw/vd/visidata: stable 3.0.2 Terminal utility for exploring and arranging tabular data https://visidata.org/ Installed /opt/homebrew/Cellar/visidata/3.0.2_1 (880 files, 10.4MB) * Built from source on 2024-05-15 at 11:09:53 From: https://github.com/saulpw/homebrew-vd/blob/HEAD/Formula/visidata.rb ==> Dependencies Required: python3 ✔
closed
2024-05-15T18:47:19Z
2024-05-16T23:48:22Z
https://github.com/saulpw/visidata/issues/2405
[ "packaging" ]
bnisly
6
pydata/xarray
numpy
9,300
Unloaded DataArray opened with scipy missing attributes when sliced with a sequence
### What happened? I opened the "air_temperature" dataset using the scipy engine, sliced on a dimension with a list of index and received a seemingly "incomplete" object. It raises `AttributeError: 'DataArray' object has no attribute 'data'` and similar with `values`. ### What did you expect to happen? I expected the sliced result to be a normal DataArray. ### Minimal Complete Verifiable Example ```Python import xarray as xr ds = xr.tutorial.open_dataset("air_temperature", engine='scipy') ds.air.isel(lat=20).data # Works ds.air.isel(lat=slice(20, 22)).data # Works ds.air.isel(lat=[20, 21]).data # Fails ``` ### MVCE confirmation - [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray. - [X] Complete example — the example is self-contained, including all data and the text of any traceback. - [X] Verifiable example — the example copy & pastes into an IPython prompt or [Binder notebook](https://mybinder.org/v2/gh/pydata/xarray/main?urlpath=lab/tree/doc/examples/blank_template.ipynb), returning the result. - [X] New issue — a search of GitHub Issues suggests this is not a duplicate. - [X] Recent environment — the issue occurs with the latest version of xarray and its dependencies. ### Relevant log output ```Python --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[10], line 1 ----> 1 ds.air.isel(lat=[20, 21]).data File ~/miniforge3/envs/xclim/lib/python3.12/site-packages/xarray/core/common.py:286, in AttrAccessMixin.__getattr__(self, name) 284 with suppress(KeyError): 285 return source[name] --> 286 raise AttributeError( 287 f"{type(self).__name__!r} object has no attribute {name!r}" 288 ) AttributeError: 'DataArray' object has no attribute 'data' ``` ### Anything else we need to know? If I `ds.air.load()` first, this doesn't happen. ### Environment <details> INSTALLED VERSIONS ------------------ commit: None python: 3.12.4 | packaged by conda-forge | (main, Jun 17 2024, 10:23:07) [GCC 12.3.0] python-bits: 64 OS: Linux OS-release: 6.9.6-200.fc40.x86_64 machine: x86_64 processor: byteorder: little LC_ALL: None LANG: fr_CA.UTF-8 LOCALE: ('fr_CA', 'UTF-8') libhdf5: 1.14.3 libnetcdf: None xarray: 2024.7.0 pandas: 2.2.2 numpy: 2.0.1 scipy: 1.14.0 netCDF4: None pydap: None h5netcdf: 1.3.0 h5py: 3.11.0 zarr: None cftime: 1.6.4 nc_time_axis: 1.4.1 iris: None bottleneck: 1.4.0 dask: 2024.7.1 distributed: 2024.7.1 matplotlib: 3.9.1 cartopy: None seaborn: None numbagg: None fsspec: 2024.6.1 cupy: None pint: 0.24.3 sparse: 0.16.0a10.dev3+ga73b20d flox: 0.9.8 numpy_groupies: 0.11.1 setuptools: 71.0.4 pip: 24.1.2 conda: None pytest: 7.4.4 mypy: 1.11.0 IPython: 8.26.0 sphinx: 7.4.7 </details>
closed
2024-07-31T19:26:54Z
2024-07-31T20:22:56Z
https://github.com/pydata/xarray/issues/9300
[ "bug", "needs triage" ]
aulemahal
3
biolab/orange3
pandas
6,957
Better "Report"
Reporting currently opens a dialog with a list view on the left-hand side and an html on the right. Images are stored within the document. 1. The document size is probably limited, which is the most probable cause of #6105. This problem seems difficult and nobody touched it in two years, but it makes reporting rather useless. 2. This functionality (and probably *only* this functionality) requires Webkit. Webkit is annoying to install (confession: I don't know how to install it in PyQt6, and don't dare to try because I already ruined my development conda environment more than once) and causes problems like #6746. 3. I'm not sure that images in the report can be saved. 4. It doesn't look to good. It would requires some styling. Saved HTMLs (and PDFs) look pretty sad. The only good thing I see is the integration with Orange: once can click on a reported item and bring the workflow back to the state in which the item was produced. I doubt, though, that many use this functionality. I suggest we think about an alternative: to report, the user can choose a directory into which Orange will write an index.html and where it will drop all images and potentially other files(!). When reporting, Orange would simply add to the index.html, but without undoing any changes the user makes. To view this report, Orange would open the default browser (and instruct the user to do it, if it doesn't happen automatically). The document would probably take care of refreshing when the file changes. This would solve all above problems. 1. Images would be referred to from the document. 2. Orange would no longer require webkit. (Note: this may break some add-ons if they do not explicitly depend upon it under assumption that Orange does. Text mining?) 3. Images are already saved. Potentially in vector and bitmap form, for user convenience. Even more: the user can ignore the index.html altogether and use this to just dump images into some directory without the save dialog. 4. The page can be properly styles (e.g. bootstrap or whatever), it can include the existing interactivity (editing of comment) and add more, such as resizing images, reordering ... (I suppose that we'd have to go with jquery, not react, unfortunately. But we'll live.) As for the functionality of going back to previous workflows: if we really want it (I don't advocate it), Orange can save snapshots of past workflows in a subdirectory of the report directory. Reported items can contain some kind of ids that can be pasted into Orange. Finally, it would be amazing if we could integrate reporting with jupyter notebook instead of plain index.html.
open
2024-12-14T15:50:24Z
2024-12-14T15:50:25Z
https://github.com/biolab/orange3/issues/6957
[ "feast" ]
janezd
0
ultralytics/ultralytics
computer-vision
19,795
YOLO11-OBB for the detection of objects with aspect ratios
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question When I used YOLO11-OBB for object detection, I found that there will be an error in the box angle of the object with a close aspect ratio, is there a way to solve this problem? For example: ![Image](https://github.com/user-attachments/assets/4257a103-6191-4ef0-ae2e-11852b11a862) ### Additional _No response_
closed
2025-03-20T09:09:07Z
2025-03-21T06:10:54Z
https://github.com/ultralytics/ultralytics/issues/19795
[ "question", "OBB", "detect" ]
HOUHarden13
5
iperov/DeepFaceLab
deep-learning
953
Manual DST extract locking up around 20-25%.
Im running DFL on a 3090, I have 64gb of ram. I am not getting any OOM errors. When running data_dst manual RE-EXTRACT DELETED ALIGNED_DEBUG the application is totally locking up around 25%. I have to task manager close it. Doesn't even register as not responding. HIS IS NOT TECH SUPPORT FOR NEWBIE FAKERS POST ONLY ISSUES RELATED TO BUGS OR CODE ## Expected behavior *Describe, in some detail, what you are trying to do and what the output is that you expect from the program.* ## Actual behavior *Describe, in some detail, what the program does instead. Be sure to include any error message or screenshots.* ## Steps to reproduce *Describe, in some detail, the steps you tried that resulted in the behavior described above.* ## Other relevant information - **Command lined used (if not specified in steps to reproduce)**: main.py ... - **Operating system and version:** Windows, macOS, Linux - **Python version:** 3.5, 3.6.4, ... (if you are not using prebuilt windows binary)
open
2020-11-20T14:45:28Z
2023-06-08T21:35:36Z
https://github.com/iperov/DeepFaceLab/issues/953
[]
minestra
2
Nekmo/amazon-dash
dash
22
Delay
What unit is the delay in? Seconds? Minutes? I would guess at seconds, because the dash button seems to be active for just under that. Is there a minimum that we shouldn't go below? Does it take a certain amount of time for the button to drop off the network ready to be picked up again?
closed
2018-01-15T23:37:28Z
2018-03-15T13:53:33Z
https://github.com/Nekmo/amazon-dash/issues/22
[ "Documentation" ]
Kallb123
3
graphdeco-inria/gaussian-splatting
computer-vision
1,180
When running 3dgs on a machine with multiple graphics cards, it reports memory at dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) # (P,)
![Image](https://github.com/user-attachments/assets/dcce28f0-ad2b-4ebe-b17a-01585f2a615f) You can see that the memory is only used for a very small portion, and there is no problem running the same data on a single gpu machine, why is that?
open
2025-03-05T08:27:27Z
2025-03-05T08:27:27Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/1180
[]
p-z-p
0
microsoft/nni
deep-learning
5,510
Getting AttributeError in test_fine_grained_prune() for pruning
**Describe the issue**: So I was trying to run the lab tutorials for proxylessnas and was running training + pruning, where I am getting the following error when using **test_fine_grained_prune()** the earlier line, gives me an error : ############# ############# AttributeError Traceback (most recent call last) [<ipython-input-88-f93ff8dfb8cd>](https://localhost:8080/#) in <cell line: 1>() ----> 1 test_fine_grained_prune() 1 frames [<ipython-input-73-783c2fe47075>](https://localhost:8080/#) in test_fine_grained_prune(test_tensor, test_mask, target_sparsity, target_nonzeros) 29 mask = fine_grained_prune(test_tensor, target_sparsity) 30 sparsity_after_pruning = get_sparsity(test_tensor) ---> 31 sparsity_of_mask = get_sparsity(mask) 32 33 plot_matrix(test_tensor, ax_right, 'sparse tensor') [<ipython-input-72-26703df74fdb>](https://localhost:8080/#) in get_sparsity(tensor) 8 sparsity = #zeros / #elements = 1 - #nonzeros / #elements 9 """ ---> 10 return 1 - float(tensor.count_nonzero()) / tensor.numel() 11 12 AttributeError: 'int' object has no attribute 'count_nonzero' ############# ############# I don't understand what problem is there, could you please explain the issue.Thanks
closed
2023-04-07T22:30:34Z
2023-04-12T04:26:54Z
https://github.com/microsoft/nni/issues/5510
[]
HiiroWakaba
2
kizniche/Mycodo
automation
437
problem with adding SHT75
Hello, thank you for creating Mycodo, I find it very clean, precise and reliable. For some days I'm trying to add SHT75 sensor, but it doesn't match with Mycodo. I followed mk-fg installation instructions - sensor is working with his script using the virtualenv on the terminal. After I try to activate STH75 in the Mycodo Input panel, I get the message: "Error: Could not activate Input controller with ID 11: name 'xrange' is not defined" Here are some logs: 2018-03-30 23:44:35,720 - mycodo.daemon - ERROR - Could not activate Input controller with ID 11: name 'xrange' is not defined Traceback (most recent call last): File "/var/mycodo-root/mycodo/mycodo_daemon.py", line 486, in controller_activate ready, cont_id) File "/var/mycodo-root/mycodo/controller_input.py", line 378, in __init__ self.sht_voltage) File "/var/mycodo-root/mycodo/inputs/sht1x_7x.py", line 35, in __init__ self.sht_sensor = Sht(self.clock_pin, self.pin, voltage=self.voltage) File "/var/mycodo-root/env/lib/python3.5/site-packages/sht_sensor/sensor.py", line 297, in __init__ super(Sht, self).__init__(pin_sck, pin_data, **sht_comms_kws) File "/var/mycodo-root/env/lib/python3.5/site-packages/sht_sensor/sensor.py", line 131, in __init__ self._init() File "/var/mycodo-root/env/lib/python3.5/site-packages/sht_sensor/sensor.py", line 136, in _init self.gpio.set_pin_value(pin, k='direction', v='low') File "/var/mycodo-root/env/lib/python3.5/site-packages/sht_sensor/gpio.py", line 66, in set_pin_value ft.partial(open, get_pin_path(n, k), 'wb', 0) ) as dst: File "/var/mycodo-root/env/lib/python3.5/site-packages/sht_sensor/gpio.py", line 22, in gpio_access_wrap for n in xrange(checks, -1, -1): NameError: name 'xrange' is not defined To my modest coding knowledge, problem has to do with python versions. Where should I dig? What should I learn?
closed
2018-03-30T22:10:21Z
2018-04-09T09:15:11Z
https://github.com/kizniche/Mycodo/issues/437
[]
kobrok
38
junyanz/pytorch-CycleGAN-and-pix2pix
pytorch
1,620
Exception in user code
when i run train.py in pycharm: The code runs incorrectly but does not stop running. how can I solve this? The full script of error as follows: ----------------------------------------------- Setting up a new session... Exception in user code: ------------------------------------------------------------ Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d5a902278>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /env/main (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a902278>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /env/main (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a902278>: Failed to establish a new connection: [Errno 111] Connection refused',)) [Errno 111] Connection refused on_close() takes 1 positional argument but 3 were given Could not connect to Visdom server. Trying to start a server.... Command: /home/ncut/anaconda3/envs/cyclegan/bin/python -m visdom.server -p 8097 &>/dev/null & create web directory ./checkpoints/maps_cyclegan/web... learning rate 0.0002000 -> 0.0002000 /home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:134: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning) (epoch: 1, iters: 100, time: 0.227, data: 0.482) D_A: 0.232 G_A: 0.258 cycle_A: 2.129 idt_A: 0.503 D_B: 0.469 G_B: 0.588 cycle_B: 1.136 idt_B: 1.186 Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d5a5a7748>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a5a7748>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a5a7748>: Failed to establish a new connection: [Errno 111] Connection refused',)) Exception in user code: ------------------------------------------------------------ (epoch: 1, iters: 200, time: 0.230, data: 0.003) D_A: 0.173 G_A: 0.267 cycle_A: 2.317 idt_A: 0.363 D_B: 0.300 G_B: 0.439 cycle_B: 0.697 idt_B: 1.128 Exception in user code: ------------------------------------------------------------ Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d5a5a7438>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a5a7438>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a5a7438>: Failed to establish a new connection: [Errno 111] Connection refused',)) (epoch: 1, iters: 300, time: 0.228, data: 0.002) D_A: 0.230 G_A: 0.256 cycle_A: 1.105 idt_A: 0.872 D_B: 0.302 G_B: 0.293 cycle_B: 1.817 idt_B: 0.469 Exception in user code: ------------------------------------------------------------ Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d5a5a61d0>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a5a61d0>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d5a5a61d0>: Failed to establish a new connection: [Errno 111] Connection refused',)) Exception in user code: ------------------------------------------------------------ Exception in user code: ------------------------------------------------------------ Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d1d89ea20>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d89ea20>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d89ea20>: Failed to establish a new connection: [Errno 111] Connection refused',)) Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d1d89ee48>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d89ee48>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d89ee48>: Failed to establish a new connection: [Errno 111] Connection refused',)) (epoch: 1, iters: 400, time: 0.885, data: 0.002) D_A: 0.271 G_A: 0.305 cycle_A: 1.942 idt_A: 0.247 D_B: 0.309 G_B: 0.210 cycle_B: 0.508 idt_B: 0.921 Exception in user code: ------------------------------------------------------------ Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d1d8b0f98>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d8b0f98>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d8b0f98>: Failed to establish a new connection: [Errno 111] Connection refused',)) (epoch: 1, iters: 500, time: 0.228, data: 0.002) D_A: 0.128 G_A: 0.171 cycle_A: 1.658 idt_A: 0.454 D_B: 0.285 G_B: 0.332 cycle_B: 0.991 idt_B: 0.974 Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 175, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 95, in create_connection raise err File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/connection.py", line 85, in create_connection sock.connect(sa) ConnectionRefusedError: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 722, in urlopen chunked=chunked, File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 416, in _make_request conn.request(method, url, **httplib_request_kw) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 205, in connect conn = self._new_conn() File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connection.py", line 187, in _new_conn self, "Failed to establish a new connection: %s" % e urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7f4d1d8d01d0>: Failed to establish a new connection: [Errno 111] Connection refused During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 450, in send timeout=timeout File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/connectionpool.py", line 800, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d8d01d0>: Failed to establish a new connection: [Errno 111] Connection refused',)) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 760, in _send data=json.dumps(msg), File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/visdom/__init__.py", line 720, in _handle_post r = self.session.post(url, data=data) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 577, in post return self.request('POST', url, data=data, json=json, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 529, in request resp = self.send(prep, **send_kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/sessions.py", line 645, in send r = adapter.send(request, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/requests/adapters.py", line 519, in send raise ConnectionError(e, request=request) requests.exceptions.ConnectionError: HTTPConnectionPool(host='localhost', port=8097): Max retries exceeded with url: /events (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7f4d1d8d01d0>: Failed to establish a new connection: [Errno 111] Connection refused',)) Exception in user code: ------------------------------------------------------------ Traceback (most recent call last): File "/home/ncut/Desktop/pycharm item code/pytorch-CycleGAN-and-pix2pix/train.py", line 52, in <module> model.optimize_parameters() # calculate loss functions, get gradients, update network weights File "/home/ncut/Desktop/pycharm item code/pytorch-CycleGAN-and-pix2pix/models/cycle_gan_model.py", line 183, in optimize_parameters self.forward() # compute fake images and reconstruction images. File "/home/ncut/Desktop/pycharm item code/pytorch-CycleGAN-and-pix2pix/models/cycle_gan_model.py", line 115, in forward self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A)) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 152, in forward for t in chain(self.module.parameters(), self.module.buffers()): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1520, in parameters for name, param in self.named_parameters(recurse=recurse): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1546, in named_parameters for elem in gen: File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1490, in _named_members for module_prefix, module in modules: File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1695, in named_modules for m in module.named_modules(memo, submodule_prefix, remove_duplicate): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1695, in named_modules for m in module.named_modules(memo, submodule_prefix, remove_duplicate): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1695, in named_modules for m in module.named_modules(memo, submodule_prefix, remove_duplicate): File "/home/ncut/anaconda3/envs/cyclegan/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1691, in named_modules for name, module in self._modules.items(): KeyboardInterrupt Process finished with exit code 1
closed
2023-12-11T10:14:32Z
2023-12-11T10:48:36Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1620
[]
L-1027
0
custom-components/pyscript
jupyter
524
Impossible to Install: Hangs on configuration
Hello I've installed this module from Hacs, Then i tried to add the integration from the UI, but it's stuck (and eventually timeout) <img width="614" alt="Capture d’écran 2023-09-06 à 23 22 37" src="https://github.com/custom-components/pyscript/assets/177003/8d7f41de-6792-425c-b21d-b2473c3bf93e"> So i tried to manually add via the config.yml file, but if I add `pyscript: ` with or without config billow, and click "verify configuration" in dev tools, the verification hangs too ... Not sure what's wrong... Nothing in the logs obviously (in HA core 🤔 correct?)
open
2023-09-06T21:26:45Z
2023-11-01T12:34:22Z
https://github.com/custom-components/pyscript/issues/524
[]
eMerzh
2
modoboa/modoboa
django
2,468
Spam not being released/marked
# Impacted versions * OS Type: Ubuntu OS Version: 20.04 Database Type: PostgreSQL Database version: 10 Modoboa: 1.17 installer used: Yes Webserver: Nginx Steps to reproduce Set domain filters like: ![image](https://user-images.githubusercontent.com/62206774/155690139-21fbc590-0d32-4017-8121-511a2a0f6f54.png) Current behavior mesages with a scrore like 3,4 are not being released to their destination (i mean imap clients like outlook, roundcube ...) Expected behavior messages between 3 and 8 should be released and marked as spam
closed
2022-02-25T09:35:37Z
2022-03-11T09:05:16Z
https://github.com/modoboa/modoboa/issues/2468
[]
sergioeix
1
explosion/spaCy
machine-learning
12,695
spacy-llm is not up to date on PyPI
<!-- NOTE: For questions or install related issues, please open a Discussion instead. --> ## How to reproduce the behaviour <!-- Include a code example or the steps that led to the problem. Please try to be as specific as possible. --> ``` pip install spacy-llm ``` Run example 3 from the documentation: ``` import spacy nlp = spacy.blank("en") nlp.add_pipe( "llm", config={ "task": { "@llm_tasks": "spacy.NER.v2", "labels": ["PERSON", "ORGANISATION", "LOCATION"], }, "backend": { "@llm_backends": "spacy.REST.v1", "api": "OpenAI", "config": {"model": "gpt-3.5-turbo"}, }, }, ) nlp.initialize() doc = nlp("Jack and Jill rode up the hill in Les Deux Alpes") print([(ent.text, ent.label_) for ent in doc.ents]) ``` You will get the error: ``` ConfigValidationError: Config validation error llm.task -> labels str type expected ``` This is due the type hint being specified as: ``` @registry.llm_tasks("spacy.NER.v2") def make_ner_task_v2( labels: str, template: str = _DEFAULT_NER_TEMPLATE_V2, ``` ## Attempts to resolve: I can see that it is updated on the GitHub. So it should be a simple case of updating the dependency: ``` pip install spacy-llm --upgrade ``` This correctly installs the 0.2.0 version that I want but it does not add the change. Installing from github resolves the issue. ## Info about spaCy - **spaCy version:** 3.5.3 - **Platform:** macOS-13.4-arm64-arm-64bit - **Python version:** 3.10.10
closed
2023-06-03T02:22:58Z
2023-07-06T00:02:36Z
https://github.com/explosion/spaCy/issues/12695
[ "bug", "feat/llm" ]
KennethEnevoldsen
4
HumanSignal/labelImg
deep-learning
789
Can I draw splines as annotators using labelImg
Can I draw splines as annotators using labelImg? Thank you.
open
2021-08-26T15:28:00Z
2021-08-26T15:28:00Z
https://github.com/HumanSignal/labelImg/issues/789
[]
JanineCHEN
0
HumanSignal/labelImg
deep-learning
283
Program freezes on last Windows version
<!-- Please provide as much as detail and example as you can. You can add screenshots if appropriate. --> I opened a dir ,made a selection,saved the new label name and then clicked for the next image.Since then everytime I open the program and try to make a selection the program freezes with no error in console - OS:Windows10 - PyQt version:1.3.1
closed
2018-05-03T08:24:55Z
2018-05-27T17:51:30Z
https://github.com/HumanSignal/labelImg/issues/283
[]
raresandrei
4
PaddlePaddle/ERNIE
nlp
592
该模型适用于文本校对吗?
closed
2020-11-12T08:26:01Z
2021-01-22T10:02:02Z
https://github.com/PaddlePaddle/ERNIE/issues/592
[ "wontfix" ]
Baililily
2
microsoft/nni
machine-learning
4,796
How to dynamically skip over empty layers when performing model speedup after pruning?
**Describe the issue**: When pruning a model at various pruning percentages (10%-95%) using the L1Norm Pruner, I get a `nni.compression.pytorch.speedup.error_code.EmptyLayerError: Pruning a Layer to empty is not legal` error. I was wondering if I can dynamically skip over such layers in these cases? Based on the documentation, I can't determine if a layer will be empty after pruning and before model speedup. I couldn't find it in the documentation, but I was wondering if there was a way to tell if a layer is empty after pruning and before speedup, so that I can exclude it when speeding up, preventing the EmptyLayerError. Any help would be greatly appreciated, thanks! **Environment**: - NNI version: nni==2.7 - Python version: Python 3.8.10 - PyTorch/TensorFlow version: torch==1.10.2+cu113 **How to reproduce it?**: Prune a model to the point where it gets very small, or start with a small model and continue to prune.
closed
2022-04-23T20:11:09Z
2022-11-16T07:21:15Z
https://github.com/microsoft/nni/issues/4796
[]
pmmitche
4
modin-project/modin
pandas
6,703
Executing `_query_compiler.set_index_name(None)` seems unnecessary.
closed
2023-11-03T23:45:10Z
2023-11-07T13:05:40Z
https://github.com/modin-project/modin/issues/6703
[ "Performance 🚀", "Code Quality 💯" ]
anmyachev
0
widgetti/solara
fastapi
616
https://solara.dev/documentation/advanced/understanding/routing has some errors in examples
`from solara.website.pages.examples.utilities import calculator` gives an error, that doesn't seem to exist `import solara as sol` but then the example uses solar `route_current, routes_current_level = solara.use_routes()` gives me an error: `AttributeError: module 'solara' has no attribute 'use_routes'` I think I'm on the latest version but maybe I'm out of sync somehow?
closed
2024-04-26T20:02:43Z
2024-04-26T22:10:40Z
https://github.com/widgetti/solara/issues/616
[]
johnowhitaker
3
fohrloop/dash-uploader
dash
34
Write a test
Any kind of test. Just to get testing rolling.
closed
2021-04-26T15:51:58Z
2021-05-13T11:02:54Z
https://github.com/fohrloop/dash-uploader/issues/34
[ "help wanted", "good first issue" ]
fohrloop
3
nl8590687/ASRT_SpeechRecognition
tensorflow
167
点击那个链接,Thchs30和ST-CMDS这两个数据集仍然下载不了
你好,下了几天的数据集都没下载下来,我同学也是的,求大佬
closed
2020-02-06T13:57:07Z
2021-11-22T14:17:50Z
https://github.com/nl8590687/ASRT_SpeechRecognition/issues/167
[]
dl-1875
3
gevent/gevent
asyncio
1,664
TypeError: memoryview: a bytes-like object is required, not 'str'
* gevent version: 20.6.2 * Python version: python:3.8.3-slim * Docker: Docker version 19.03.1, build 74b1e89 * Operating System: debian-9-stretch-v20190813 * Google cloud machine n1-standard-4 (4 vCPUs, 15 GB memory) ### Description: The docker environment starts as follows: ``` CMD /usr/sbin/cron && gunicorn -b 0.0.0.0:5000 -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker -w 1 webserver:server ``` It runs a flask application. Every-time a socket connection seems to acquire the incoming response looks like a string while bytes are expected. ``` Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/gevent/pywsgi.py", line 970, in handle_one_response self.run_application() File "/usr/local/lib/python3.8/site-packages/geventwebsocket/handler.py", line 82, in run_application self.process_result() File "/usr/local/lib/python3.8/site-packages/gevent/pywsgi.py", line 904, in process_result self.write(data) File "/usr/local/lib/python3.8/site-packages/gevent/pywsgi.py", line 751, in write self._write_with_headers(data) File "/usr/local/lib/python3.8/site-packages/gevent/pywsgi.py", line 772, in _write_with_headers self._write(data) File "/usr/local/lib/python3.8/site-packages/gevent/pywsgi.py", line 734, in _write self._sendall(data) File "/usr/local/lib/python3.8/site-packages/gevent/pywsgi.py", line 708, in _sendall self.socket.sendall(data) File "/usr/local/lib/python3.8/site-packages/gevent/_socket3.py", line 533, in sendall data_memory = _get_memory(data) File "src/gevent/_greenlet_primitives.py", line 98, in gevent._gevent_c_greenlet_primitives.get_memory File "src/gevent/_greenlet_primitives.py", line 121, in gevent._gevent_c_greenlet_primitives.get_memory File "src/gevent/_greenlet_primitives.py", line 109, in gevent._gevent_c_greenlet_primitives.get_memory TypeError: memoryview: a bytes-like object is required, not 'str' ``` ### What I've run: The docker environment starts as follows: ``` CMD /usr/sbin/cron && gunicorn -b 0.0.0.0:5000 -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker -w 1 webserver:server ``` Request comes in as ``` 2020-08-18T10:22:51Z {'REMOTE_ADDR': '192.168.1.3', 'REMOTE_PORT': '49710', 'HTTP_HOST': 'somewebsite.com', (hidden keys: 33)} failed with TypeError ``` Perhaps an exception handler? that tries to encode json string
closed
2020-08-18T10:34:16Z
2020-08-19T00:02:59Z
https://github.com/gevent/gevent/issues/1664
[]
0x78f1935
4
dynaconf/dynaconf
django
576
Documenting the used paramaters
Hi, I recently started using Dynaconf for my project and found it very useful. I use yaml file for setting the parameters. Besides describing the used parameters as comments in the yaml file, is some programmable alternative possible? For example, the user calls some method of dynaconf object and it returns the descriptive comment already present in the yaml file. Thanks.
open
2021-05-02T06:25:28Z
2024-07-01T10:22:42Z
https://github.com/dynaconf/dynaconf/issues/576
[ "question", "RFC" ]
sarslanali
3
ultrafunkamsterdam/undetected-chromedriver
automation
911
Can use selenium with chromium on aarch64 ubuntu 18.xx but when I try same with undetected_chromedriver it won't even start
I cannot get Undetected-ChromeDriver working on oracle A1 Ampere server with ubuntu 18.xx installed. I have latest available version of chromium and chromium-chromedriver and I can use everything normally when I use selenium library. But with undetected-chromedriver it fails. Here is some info about my installed versions and system. ubuntu$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 18.04.6 LTS Release: 18.04 Codename: bionic ubuntu$ chromium-browser --version Chromium 107.0.5304.87 Built on Ubuntu , running on Ubuntu 18.04 ubuntu$ file chromedriver chromedriver: ELF 64-bit LSB shared object, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, for GNU/Linux 3.7.0, BuildID[sha1]=9a79cae5c2e9ad7ecbe2aea855e6a09b25cc4ed7, stripped Here is the code which works: from selenium.webdriver.chrome.options import Options from selenium.webdriver import Chrome import time import os copt = Options() copt.add_argument('--headless') copt.add_argument('--disable-web-security') drv = Chrome(executable_path=os.getcwd() + '/chromedriver', options=copt) drv.get('https://www.google.com/') time.sleep(10) drv.save_screenshot('screen_shot.png') drv.quit() According to my understanding this should also work but it just does not. I would be grateful if someone can shed some light. I also read that it can be because the chromedriver exists in a folder under root's control so I copied it from that folder to project folder. import undetected_chromedriver import time import os copt = undetected_chromedriver.ChromeOptions() copt.add_argument('--headless') copt.add_argument('--disable-web-security') copt.add_argument("--remote-debugging-port=9222") #tried after researching, did not work copt.add_argument("--disable-dev-shm-usage") #tried after researching, did not work #copt.add_argument("--disable-gpu") #tried after researching, did not work copt.add_argument("--crash-dumps-dir=/tmp") #tried after researching, did not work copt.add_argument("--no-sandbox") #tried after researching, did not work drv = undetected_chromedriver.Chrome(executable_path=os.getcwd() + '/chromedriver', version_main=107, options=copt) drv.get('https://www.google.com/') time.sleep(10) drv.save_screenshot('screen_shot.png') drv.quit() Here is the output for undetected-chromedriver script: ubuntu$ python3 main.py Traceback (most recent call last): File "main.py", line 83, in <module> drv = CChrome() File "/usr/local/lib/python3.6/dist-packages/undetected_chromedriver/__init__.py", line 53, in __new__ instance.__init__(*args, **kwargs) File "/usr/local/lib/python3.6/dist-packages/selenium/webdriver/chrome/webdriver.py", line 81, in __init__ desired_capabilities=desired_capabilities) File "/usr/local/lib/python3.6/dist-packages/selenium/webdriver/remote/webdriver.py", line 157, in __init__ self.start_session(capabilities, browser_profile) File "/usr/local/lib/python3.6/dist-packages/selenium/webdriver/remote/webdriver.py", line 252, in start_session response = self.execute(Command.NEW_SESSION, parameters) File "/usr/local/lib/python3.6/dist-packages/selenium/webdriver/remote/webdriver.py", line 321, in execute self.error_handler.check_response(response) File "/usr/local/lib/python3.6/dist-packages/selenium/webdriver/remote/errorhandler.py", line 242, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.WebDriverException: Message: unknown error: Chrome failed to start: exited abnormally. (unknown error: DevToolsActivePort file doesn't exist) (The process started from chrome location /usr/bin/chromium-browser is no longer running, so ChromeDriver is assuming that Chrome has crashed.) These are the permissions for py file and chromedriver: ubuntu$ ls -l total 12892 -rwxr-xr-x 1 ubuntu ubuntu 13193696 Nov 20 15:50 chromedriver -rw-r--r-- 1 ubuntu ubuntu 2264 Nov 20 19:28 main.py
open
2022-11-20T20:00:35Z
2023-06-22T13:22:45Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/911
[]
Jook3r
7
roboflow/supervision
pytorch
1,218
tflite with supervison
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Question Hi, does supervsion support tflite detection results? If not, is there a way to convert tflite outputs to the Detections class format? ### Additional _No response_
closed
2024-05-21T15:38:18Z
2024-11-02T17:22:19Z
https://github.com/roboflow/supervision/issues/1218
[ "question" ]
abichoi
4
assafelovic/gpt-researcher
automation
980
Error Code 404 with Azure OpenAI
Hey team, Great work on building this project. I am currently facing an issue while `gpt-researcher` with Azure Open AI in hybrid mode. Here is my current `.env` file ```bash AZURE_OPENAI_API_KEY=XXXXXXXX AZURE_OPENAI_ENDPOINT=https://sydney-openai.openai.azure.com/openai/ AZURE_OPENAI_API_VERSION=2024-08-01-preview note that the deployment name must be the same as the model name FAST_LLM=azure_openai:gpt-4o SMART_LLM=azure_openai:gpt-4o STRATEGIC_LLM=azure_openai:gpt-4o EMBEDDING=azure_openai:text-embedding-3-large ``` And this is the error that I am getting: ```python openai.NotFoundError: Error code: 404 - {'error': {'code': 'DeploymentNotFound', 'message': 'The API deployment for this resource does not exist. If you created the deployment within the last 5 minutes, please wait a moment and try again.'}} INFO: connection closed ``` FYI, the API has been deployed and tested in *Azure OpenAI Studio*! Any tips on how to solve it?
closed
2024-11-11T08:11:19Z
2024-11-11T23:22:18Z
https://github.com/assafelovic/gpt-researcher/issues/980
[]
franckess
1
d2l-ai/d2l-en
deep-learning
2,083
[Enhancement] Add related papers to the Universal Approximator section?
When reading [Section 4.1.1.4](https://d2l.ai/chapter_multilayer-perceptrons/mlp.html#universal-approximators), I am quite interesting that the Neural network can approximate any continuous function, however, it does not provide additional reading materials for this one, which is a bit sad. May I propose adding some related papers in this section, such as [Wang 2017](https://arxiv.org/abs/1702.07800), [Cybenko 1989](https://web.njit.edu/~usman/courses/cs675_fall18/10.1.1.441.7873.pdf), [Hornik 1989](https://www.sciencedirect.com/science/article/abs/pii/0893608089900208) and [Hornik 1991](https://www.sciencedirect.com/science/article/abs/pii/089360809190009T)?
closed
2022-03-26T16:30:14Z
2022-03-27T05:48:17Z
https://github.com/d2l-ai/d2l-en/issues/2083
[]
minhlong94
2
biolab/orange3
pandas
6,699
Read and Write Apache Parquet
<!-- Thanks for taking the time to submit a feature request! For the best chance at our team considering your request, please answer the following questions to the best of your ability. --> **What's your use case?** Apache Parquet ( https://parquet.apache.org/ ) becomes more and more popular and I think it's like a standard now in the data community, this is no more restricted to Hadoop People. Qlik supports it, Alteryx will support it in the next release, even LibreOffice is working on it, etc, etc. Why? -opensource format -fast **What's your proposed solution?** To have Orange Data Mining support Apache Parquet files for read and write. **Are there any alternative solutions?** To convert parquet files before but seems useless
open
2024-01-09T08:25:06Z
2024-11-03T00:19:42Z
https://github.com/biolab/orange3/issues/6699
[ "wish", "meal" ]
simonaubertbd
5
lanpa/tensorboardX
numpy
477
UserWarning: ONNX export failed on ATen operator atan2 because torch.onnx.symbolic.atan2 does not exist .format(op_name, op_name))
**Describe the bug** A clear and concise description of what the bug is. I'm trying add_graph and I get those four errors `C:\Users\s4551072\AppData\Local\conda\conda\envs\python36\lib\site-packages\torch\onnx\utils.py:586: UserWarning: ONNX export failed on ATen operator atan2 because torch.onnx.symbolic.atan2 does not exist .format(op_name, op_name)) C:\Users\s4551072\AppData\Local\conda\conda\envs\python36\lib\site-packages\torch\onnx\utils.py:586: UserWarning: ONNX export failed on ATen operator empty because torch.onnx.symbolic.empty does not exist .format(op_name, op_name)) C:\Users\s4551072\AppData\Local\conda\conda\envs\python36\lib\site-packages\torch\onnx\utils.py:586: UserWarning: ONNX export failed on ATen operator fill because torch.onnx.symbolic.fill does not exist .format(op_name, op_name)) C:\Users\s4551072\AppData\Local\conda\conda\envs\python36\lib\site-packages\torch\onnx\utils.py:586: UserWarning: ONNX export failed on ATen operator index because torch.onnx.symbolic.index does not exist .format(op_name, op_name))` **Minimal runnable code to reproduce the behavior** ``` from tensorboardX import SummaryWriter def crelu(re, im): return nn.functional.relu(re), nn.functional.relu(im) def zlogit(re, im): abs_ = t.sqrt(re ** 2 + im ** 2) ang = t.atan2(im, re) mask = ~(ang > 0) clone = abs_.clone() clone[mask] = -1 * abs_[mask] return clone class Clinear(nn.Module): def __init__(self, in_, out_): super(Clinear, self).__init__() self.Lre = nn.Linear(in_, out_) self.Lim = nn.Linear(in_, out_) def forward(self, re, im): return self.Lre(re) - self.Lim(im), self.Lre(im) + self.Lim(re) class CDan(nn.Module): def __init__(self): super(CDan, self).__init__() self.feat1 = Cconv1d(in_channels=30, out_channels=60, kernel_size=2, stride=1, padding=2) self.feat2 = Cconv1d(in_channels=60, out_channels=120, kernel_size=3, stride=2, padding=0) # self.feat3 = nn.MaxPool1d(kernel_size=4) self.featl1 = Clinear(6360, 500) self.featl2 = Clinear(500, 31) self.featl3 = nn.Softmax(dim=1) def forward(self, x): re, im = x[Ellipsis, 0], x[Ellipsis, 1] op0re, op0im = crelu(*self.feat1(re, im)) op1re, op1im = crelu(*self.feat2(op0re, op0im)) # op2re, op2im = self.feat3(op1re), self.feat3(op1im) op2re, op2im = op1re.view(x.shape[0], -1), op1im.view(x.shape[0], -1) op3re, op3im = crelu(*self.featl1(op2re, op2im)) op4re, op4im = crelu(*self.featl2(op3re, op3im)) op = zlogit(op4re, op4im) return self.featl3(op) my_net = CDan().to(device) writer.add_graph(my_net, next(iter(dataloader_target))[0], verbose=True) ... ``` **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Environment** What is the result of `pip list|grep -E "torch|proto|tensor"` If the version is too old, please try to update first. **Python environment** Which version of python are you using? Did you use Andconda or Virtualenv? Anaconda venv **Additional context** Add any other context about the problem here. I'm using latest versions of Pytorch and TB, that is, 1.1 and 1.14 respectively.
closed
2019-07-26T07:23:45Z
2019-10-23T15:51:50Z
https://github.com/lanpa/tensorboardX/issues/477
[]
thisismygitrepo
2
reiinakano/scikit-plot
scikit-learn
92
Too many indices For Array
I am facing IndexError but i don't know why as my train and test set are in perfect shape as required by cross_val_score but still im getting this error. Any suggestions ? [K-NN for Amazon Fud Review.html.pdf](https://github.com/reiinakano/scikit-plot/files/2300276/K-NN.for.Amazon.Fud.Review.html.pdf)
open
2018-08-19T11:26:33Z
2019-12-06T02:55:05Z
https://github.com/reiinakano/scikit-plot/issues/92
[]
Bhisham-Sharma
4
donnemartin/system-design-primer
python
1,065
Scaliblity link is wrong
The scaliblity link given in the repo is wrong. How i get this because the topic given that will be covered in video , is not actually there . But there is video which match to given description and topic. https://www.youtube.com/watch?v=gmKPkRCLNek&t=130s
open
2025-03-13T14:32:35Z
2025-03-21T03:35:35Z
https://github.com/donnemartin/system-design-primer/issues/1065
[]
jayantk137
1
gunthercox/ChatterBot
machine-learning
1,889
Only return one character as response
I'm study the lib and I had a error in my first test, return o character as response. the code: ``` from chatterbot import ChatBot from chatterbot.trainers import ListTrainer import os bot = ChatBot('teste') treino = ListTrainer(bot) diretorio = '/Users/archo/PycharmProjects/untield/venv/testechatbot/treinadores/' for treinadores in os.listdir(diretorio): treino.train(diretorio + treinadores) while True: req = str(input("Voce: ")) req = bot.get_response(req) print('Bot: ' + str(req)) ``` I used a subdirectory with 4 .yml for training in treinadores: example format: ``` categories: - pedidos conversations: - - Gostaria de uma pizza grande 4 queijos - Anotado, mais alguma coisa? console: ``` **[nltk_data] Downloading package stopwords to /Users/archo/nltk_data... [nltk_data] Package stopwords is already up-to-date! [nltk_data] Downloading package averaged_perceptron_tagger to [nltk_data] /Users/archo/nltk_data... [nltk_data] Package averaged_perceptron_tagger is already up-to- [nltk_data] date! List Trainer: [####################] 100% List Trainer: [####################] 100% List Trainer: [####################] 100% List Trainer: [####################] 100% Voce: oi Bot: a Voce: como vai? Bot: e**
closed
2019-12-26T17:45:17Z
2020-01-10T17:26:11Z
https://github.com/gunthercox/ChatterBot/issues/1889
[]
viniciusyaunner
2
wkentaro/labelme
computer-vision
512
Is it possible to expose this application as an API and access through browser
I was wondering if any one has implemented to access it from browser.
closed
2019-11-18T15:36:57Z
2020-01-27T01:47:57Z
https://github.com/wkentaro/labelme/issues/512
[]
surajitkundu29
0
TencentARC/GFPGAN
deep-learning
528
C:\Users\MARY\Downloads
open
2024-03-17T02:29:50Z
2024-03-17T02:30:32Z
https://github.com/TencentARC/GFPGAN/issues/528
[]
waldirsof
1
mljar/mercury
data-visualization
236
Unable to open uploaded image file in "widgets" using Pillow
Hi, @pplonski . How can I open an image uploaded in the "widgets" file using Pillow? The following code doesn't work: ```python import mercury as mr from PIL import Image file = mr.File(label="Upload the file", max_file_size="100MB") filepath = file.filepath im = Image.open(filepath) ``` Thank you for always responding quickly. Please take a break once in a while.
closed
2023-04-03T02:20:37Z
2023-04-03T08:26:23Z
https://github.com/mljar/mercury/issues/236
[ "bug" ]
pythonista-blitz
1
ymcui/Chinese-BERT-wwm
tensorflow
114
请问同一个模型(如RoBERTa-wwm-ext, Chinese),tensorflow版和pytorch版,模型输出是一样的吗
请问同一个模型(如RoBERTa-wwm-ext, Chinese),tensorflow版和pytorch版,模型输出是一样的吗?
closed
2020-05-07T09:21:13Z
2020-05-12T05:09:18Z
https://github.com/ymcui/Chinese-BERT-wwm/issues/114
[]
LowinLi
3
Nemo2011/bilibili-api
api
346
Release v16
还有什么要修的吗qeq
closed
2023-06-17T22:01:20Z
2023-06-21T04:05:57Z
https://github.com/Nemo2011/bilibili-api/issues/346
[]
z0z0r4
0
sktime/pytorch-forecasting
pandas
1,590
[ENH] un-stale the package and give simple instructions for working install
Could somebody give a docker image, or detailes of package versions. I tried multiple installations and most of the time had errors when running the tutorials. As the library becomes stale it is more and more difficult to make the proper environment. Please share detailes, thanks.
open
2024-08-09T11:35:06Z
2024-08-30T12:17:35Z
https://github.com/sktime/pytorch-forecasting/issues/1590
[ "maintenance" ]
veberi-alteo
6
clovaai/donut
nlp
108
What are acceptable values for max_length?
What does max_length refer to? What are the acceptable values?
open
2022-12-20T05:51:59Z
2023-01-06T07:19:47Z
https://github.com/clovaai/donut/issues/108
[]
htcml
7
jupyter/nbgrader
jupyter
1,216
Option to export all feedback as PDF
<!-- Thanks for helping to improve nbgrader! If you are submitting a bug report or looking for support, please use the below template so we can efficiently solve the problem. If you are requesting a new feature, feel free to remove irrelevant pieces of the issue template. --> First, thank you for `nbgrader`! Apologies if I've missed this in the documentation, but is there a config param to generate all feedback as PDF rather than HTML? I suspect this is related to #440. [Based on this comment](https://github.com/jupyter/nbgrader/issues/440#issuecomment-181726806). I'm guessing I'll need to create a template, right? ## Use case I want to mark up/annotate a PDF with additional feedback (drawings, arrows, notes, etc.) ## What I've tried ### `ipynb` -> `pdf` - `jupyter nbconvert --to pdf feedback.html` - **Download as ... PDF (via LaTeX)** - Currently, I get an error ([here's the log](https://gist.github.com/myedibleenso/2c93ff310bf239f07a8e87044e4c2ea4)) when attempting to export via `jupyter nbconvert` ### `html` -> `pdf` - html -> pdf via headless chrome (v76.0.3809.132) - sort of works, but the equations aren't rendered for some reason - print as PDF from browser (Chrome v76.0.3809.132) - this more or less works, although it includes the absolute path of the file as a footer - [`wkhtmltopdf`](https://wkhtmltopdf.org/) - same results as my attempt using headless chrome - html -> tex -> pdf via pandoc - too barebones without a template ## System ### OS macOS Mojave (v10.14.5) ### `nbgrader --version` nbgrader version 0.6.0 ### `jupyter notebook --version` 6.0.1
open
2019-09-13T03:41:21Z
2019-11-02T09:11:50Z
https://github.com/jupyter/nbgrader/issues/1216
[ "enhancement" ]
myedibleenso
1
graphql-python/graphene-mongo
graphql
194
Can I use 'MongoengineConnectionField' without 'edges'?
current: `users { edges { node { id } } }` What I want is: ` users { id }`
closed
2022-03-20T03:43:23Z
2023-03-28T17:51:26Z
https://github.com/graphql-python/graphene-mongo/issues/194
[]
xiangxn
2
saulpw/visidata
pandas
2,266
[undo] can't undo some threaded commands
**Small description** After a pasting into cells or rows using `syspaste-*`, undo does not restore the original value of the cell. **Steps to reproduce with sample data and a .vd** Starting with this tsv sheet: ``` cells first second ``` hit `zY` on the cell that contains`"first"`, then `j` and then `zP` ``` cells first first ``` then hit `U`, and no undo happens. Instead there is a message: `nothing to undo on current sheet`. To trigger the bug, `syspaste-cells` must be done manually. If it's done inside `-p script.vdj`, then `undo-last` works as expected. **Additional context** saul.pw/VisiData v3.1dev The behavior started with a9e4e050 and its parent commit. I've looked into the undo code a bit. The problem is that when `syspaste-*` runs `addUndo()`, `vd.activeCommand` is `None`, so the function returns without adding to `r.undofuncs`. I'm not sure what the fix should be.
closed
2024-01-23T09:42:27Z
2024-03-22T23:17:59Z
https://github.com/saulpw/visidata/issues/2266
[ "bug" ]
midichef
2
YiVal/YiVal
api
45
Concurrency issue, global variable not enabled?
https://rcc5lo3n39a.larksuite.com/docx/ZtYpdJiYtouPiQx2WYIuFcDasRQ?from=from_copylink
closed
2023-08-18T09:13:14Z
2023-09-16T14:00:55Z
https://github.com/YiVal/YiVal/issues/45
[ "bug" ]
crazycth
1
brightmart/text_classification
nlp
27
the last ouput of Bi-RNN in TextRNN
https://github.com/brightmart/text_classification/blob/68e2fcf57a8dcec7e7d12f78953ed570451f0076/a03_TextRNN/p8_TextRNN_model.py#L67 In the implementation, the final outputs of Bi-RNN are calculated as the reduce mean among all time stamps. Compared with `output_rnn_last=output_rnn[:,-1,:]`, what is the difference between these two strategies on the impact of the final classification results?
closed
2018-01-03T07:08:13Z
2018-01-27T15:10:46Z
https://github.com/brightmart/text_classification/issues/27
[]
longbowking
1
pydata/xarray
pandas
9,565
Discrepancy between `.chunk` and provided encoding with `to_zarr`
### What happened? While attempting to reverse engineer the chunking behavior of `to_zarr`, I came across (I think) an unexpected difference between two ways of defining the chunking behavior. Here's a short illustration: via `.chunk`: ```python chunk_scheme = { 'time': 1000, 'lat': 90, 'lon': 180 } ds_chunked = ds.chunk(chunk_scheme) ds_chunked.to_zarr(zarr_path, mode='w') ``` A sample of what is written by the `.chunk` strategy: <img width="715" alt="image" src="https://github.com/user-attachments/assets/14c133ae-f4a9-4fd3-a647-2384e93c548e"> via provided `encoding`: ```python encoding = {'time': {'chunks': (1000,)}, 'lat': {'chunks': (90,)}, 'lon': {'chunks': (180,)}} ds.to_zarr('/tmp/output_zarr_store_cf', encoding=encoding) ``` A sample of what is written by the supplied `encoding` strategy: <img width="671" alt="image" src="https://github.com/user-attachments/assets/9d81e22e-48b0-487e-b14e-8aad813d955a"> Obviously, the above look different from one another. ### What did you expect to happen? 'time' is a coordinate variable, and these seem to be handled differently in the `.chunk` case than one might expect. The `encoding` case has the chunking one might expect while `.chunk` hasn't been chunked at all here. This, from `.info`: ``` default (chunk) method Name : /time Type : zarr.core.Array Data type : float64 Shape : (29200,) Chunk shape : (29200,) Order : C Read-only : True Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0) Store type : zarr.storage.DirectoryStore No. bytes : 233600 (228.1K) No. bytes stored : 4692 (4.6K) Storage ratio : 49.8 Chunks initialized : 1/1 encoding-based method Name : /time Type : zarr.core.Array Data type : int64 Shape : (29200,) Chunk shape : (1000,) Order : C Read-only : True Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0) Store type : zarr.storage.DirectoryStore No. bytes : 233600 (228.1K) No. bytes stored : 14686 (14.3K) Storage ratio : 15.9 Chunks initialized : 30/30 ``` Data variables, too, have significant differences. `pr` is one such variable. For reasons that are pretty unclear, the `.chunk` path is producing what I'd hoped for while the `encoding` path (which does chunk as expected for coordinates, as seen above) appears to be choosing (perhaps sensible) chunks which neatly divide up the shape of this dimension. ``` default (chunk) method Name : /pr Type : zarr.core.Array Data type : float32 Shape : (29200, 192, 288) Chunk shape : (1000, 90, 180) Order : C Read-only : True Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0) Store type : zarr.storage.DirectoryStore No. bytes : 6458572800 (6.0G) No. bytes stored : 5906005659 (5.5G) Storage ratio : 1.1 Chunks initialized : 180/180 encoding-based method Name : /pr Type : zarr.core.Array Data type : float32 Shape : (29200, 192, 288) Chunk shape : (1825, 12, 36) Order : C Read-only : True Compressor : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0) Store type : zarr.storage.DirectoryStore No. bytes : 6458572800 (6.0G) No. bytes stored : 5753062918 (5.4G) Storage ratio : 1.1 Chunks initialized : 2048/2048 ``` I expected these two approaches to produce the same thing in the end. That seems to be what's suggested [here](https://github.com/pydata/xarray/blob/main/xarray/core/dataset.py#L2421-L2422) ### Minimal Complete Verifiable Example ```Python import xarray as xr ds = xr.tutorial.open_dataset('air_temperature') # `.chunk` path chunk_scheme = {'lat': 3, 'lon': 5, 'time': 100} ds_chunked = ds.chunk(chunk_scheme) ds_chunked.to_zarr('/tmp/output_zarr_store_dot-chunk', mode='w') # encoding path encoding = {'lat': {'chunks': (3,)}, 'lon': {'chunks': (5,), 'time': {'chunks': (100,)} ds.to_zarr('/tmp/output_zarr_store_encoding', encoding=encoding) ``` ### MVCE confirmation - [X] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray. - [x] Complete example — the example is self-contained, including all data and the text of any traceback. - [ ] Verifiable example — the example copy & pastes into an IPython prompt or [Binder notebook](https://mybinder.org/v2/gh/pydata/xarray/main?urlpath=lab/tree/doc/examples/blank_template.ipynb), returning the result. - [X] New issue — a search of GitHub Issues suggests this is not a duplicate. - [X] Recent environment — the issue occurs with the latest version of xarray and its dependencies. ### Relevant log output _No response_ ### Anything else we need to know? _No response_ ### Environment <details> INSTALLED VERSIONS ------------------ commit: None python: 3.11.9 (main, May 22 2024, 12:34:58) [Clang 15.0.0 (clang-1500.3.9.4)] python-bits: 64 OS: Darwin OS-release: 23.4.0 machine: arm64 processor: arm byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.2 libnetcdf: None xarray: 2024.6.0 pandas: 2.2.2 numpy: 2.0.0 scipy: 1.14.0 netCDF4: None pydap: None h5netcdf: 1.3.0 h5py: 3.11.0 zarr: 2.18.2 cftime: 1.6.4 nc_time_axis: None iris: None bottleneck: None dask: 2024.8.0 distributed: None matplotlib: None cartopy: None seaborn: None numbagg: None fsspec: 2024.6.1 cupy: None pint: None sparse: None flox: None numpy_groupies: None setuptools: 65.5.0 pip: 24.2 conda: None pytest: 8.2.2 mypy: None IPython: 8.26.0 sphinx: None </details>
closed
2024-10-01T18:48:03Z
2024-12-10T21:03:42Z
https://github.com/pydata/xarray/issues/9565
[ "bug", "needs mcve", "topic-zarr" ]
moradology
4
ploomber/ploomber
jupyter
294
Docs: clarify that other formats are supported as well (any format supported by jupytext)
Percent should be the default format (shown in the docs and examples) since natively supported by some editors and IDEs
closed
2021-05-09T20:04:50Z
2021-10-11T23:32:25Z
https://github.com/ploomber/ploomber/issues/294
[]
edublancas
1
lepture/authlib
django
615
1.3.0: sphinx warnings `reference target not found`
First of all currently it is not possible to use straight `sphinx-build` command to build documentation out of source tree <details> ```console + /usr/bin/sphinx-build -n -T -b man docs build/sphinx/man Running Sphinx v7.1.2 Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/sphinx/config.py", line 356, in eval_config_file exec(code, namespace) # NoQA: S102 File "/home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/conf.py", line 1, in <module> import authlib ModuleNotFoundError: No module named 'authlib' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/sphinx/cmd/build.py", line 285, in build_main app = Sphinx(args.sourcedir, args.confdir, args.outputdir, File "/usr/lib/python3.8/site-packages/sphinx/application.py", line 207, in __init__ self.config = Config.read(self.confdir, confoverrides or {}, self.tags) File "/usr/lib/python3.8/site-packages/sphinx/config.py", line 179, in read namespace = eval_config_file(filename, tags) File "/usr/lib/python3.8/site-packages/sphinx/config.py", line 369, in eval_config_file raise ConfigError(msg % traceback.format_exc()) from exc sphinx.errors.ConfigError: There is a programmable error in your configuration file: Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/sphinx/config.py", line 356, in eval_config_file exec(code, namespace) # NoQA: S102 File "/home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/conf.py", line 1, in <module> import authlib ModuleNotFoundError: No module named 'authlib' Configuration error: There is a programmable error in your configuration file: Traceback (most recent call last): File "/usr/lib/python3.8/site-packages/sphinx/config.py", line 356, in eval_config_file exec(code, namespace) # NoQA: S102 File "/home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/conf.py", line 1, in <module> import authlib ModuleNotFoundError: No module named 'authlib' ``` </details> This can be fixed by patch like below: ```patch --- a/docs/conf.py +++ b/docs/conf.py @@ -1,12 +1,17 @@ -from pallets_sphinx_themes import get_version +import sys +import os +sys.path.insert(0, os.path.abspath("../src")) + from pallets_sphinx_themes import ProjectLink +import cachelib # Project -------------------------------------------------------------- project = "CacheLib" copyright = "2018 Pallets" author = "Pallets" -release, version = get_version("cachelib") +version = cachelib.__version__ +release = version # General -------------------------------------------------------------- ``` This patch fixes what is in the comment and that can of fix is suggested in sphinx example copy.py https://www.sphinx-doc.org/en/master/usage/configuration.html#example-of-configuration-file Please let me know if you want this patch as PR. Than .. on building my packages I'm using `sphinx-build` command with `-n` switch which shows warmings about missing references. These are not critical issues. <details> ```console + /usr/bin/sphinx-build -n -T -b man docs build/sphinx/man Running Sphinx v7.1.2 making output directory... done building [mo]: targets for 0 po files that are out of date writing output... building [man]: all manpages updating environment: [new config] 86 added, 0 changed, 0 removed reading sources... [100%] specs/rfc9068 looking for now-outdated files... none found pickling environment... done checking consistency... done writing... python-authlib.3 { basic/index basic/intro basic/install basic/logging client/index client/oauth1 client/oauth2 client/requests client/httpx client/frameworks client/flask client/django client/starlette client/fastapi client/api jose/index jose/jws jose/jwe jose/jwk jose/jwt oauth/index oauth/1/index oauth/1/intro oauth/2/index oauth/2/intro oauth/oidc/index oauth/oidc/intro oauth/oidc/core oauth/oidc/discovery flask/index flask/1/index flask/1/authorization-server flask/1/resource-server flask/1/customize flask/1/api flask/2/index flask/2/authorization-server flask/2/grants flask/2/endpoints flask/2/resource-server flask/2/openid-connect flask/2/api django/index django/1/index django/1/authorization-server django/1/resource-server django/1/api django/2/index django/2/authorization-server django/2/grants django/2/endpoints django/2/resource-server django/2/openid-connect django/2/api specs/index specs/rfc5849 specs/rfc6749 specs/rfc6750 specs/rfc7009 specs/rfc7515 specs/rfc7516 specs/rfc7517 specs/rfc7518 specs/rfc7519 specs/rfc7523 specs/rfc7591 specs/rfc7592 specs/rfc7636 specs/rfc7638 specs/rfc7662 specs/rfc8037 specs/rfc8414 specs/rfc8628 specs/rfc9068 specs/oidc community/index community/funding community/support community/security community/contribute community/awesome community/sustainable community/authors community/licenses changelog } /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/client/httpx.rst:20: WARNING: py:class reference target not found: AssertionClient /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/requests_client/oauth2_session.py:docstring of authlib.integrations.requests_client.oauth2_session.OAuth2Session:21: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/requests_client/oauth2_session.py:docstring of authlib.oauth2.client.OAuth2Client.fetch_token:14: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/requests_client/oauth2_session.py:docstring of authlib.oauth2.client.OAuth2Client.refresh_token:9: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth1_client.py:docstring of authlib.integrations.httpx_client.oauth1_client.OAuth1Auth.auth_flow:1: WARNING: py:class reference target not found: httpx.Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth1_client.py:docstring of authlib.integrations.httpx_client.oauth1_client.OAuth1Auth.auth_flow:1: WARNING: py:class reference target not found: httpx.Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth1_client.py:docstring of authlib.integrations.httpx_client.oauth1_client.OAuth1Auth.auth_flow:1: WARNING: py:class reference target not found: httpx.Response /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth2_client.py:docstring of authlib.oauth2.client.OAuth2Client.fetch_token:14: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth2_client.py:docstring of authlib.oauth2.client.OAuth2Client.refresh_token:9: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth2_client.py:docstring of authlib.oauth2.client.OAuth2Client.fetch_token:14: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/httpx_client/oauth2_client.py:docstring of authlib.oauth2.client.OAuth2Client.refresh_token:9: WARNING: py:class reference target not found: OAuth2Token /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/flask_client/__init__.py:docstring of authlib.integrations.flask_client.OAuth.register:5: WARNING: py:class reference target not found: RemoteApp /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/django_client/__init__.py:docstring of authlib.integrations.base_client.registry.BaseOAuth.register:5: WARNING: py:class reference target not found: RemoteApp /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/starlette_client/__init__.py:docstring of authlib.integrations.base_client.registry.BaseOAuth.register:5: WARNING: py:class reference target not found: RemoteApp /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/oauth/2/intro.rst:82: WARNING: py:class reference target not found: JWTBearerGrant /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/integrations/flask_oauth1/authorization_server.py:docstring of authlib.integrations.flask_oauth1.authorization_server.AuthorizationServer:1: WARNING: py:class reference target not found: authlib.rfc5849.AuthorizationServer /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/flask/2/openid-connect.rst:95: WARNING: py:class reference target not found: OpenIDCode /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/flask/2/openid-connect.rst:177: WARNING: py:class reference target not found: OpenIDImplicitGrant /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/django/2/openid-connect.rst:103: WARNING: py:class reference target not found: OpenIDCode /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/django/2/openid-connect.rst:185: WARNING: py:class reference target not found: OpenIDImplicitGrant /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/authorization_server.py:docstring of authlib.oauth2.rfc6749.authorization_server.AuthorizationServer.create_json_request:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.JsonRequest /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/authorization_server.py:docstring of authlib.oauth2.rfc6749.authorization_server.AuthorizationServer.create_oauth2_request:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/resource_protector.py:docstring of authlib.oauth2.rfc6749.resource_protector.ResourceProtector.register_token_validator:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.resource_protector.TokenValidator /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/grants/authorization_code.py:docstring of authlib.oauth2.rfc6749.grants.authorization_code.AuthorizationCodeGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/grants/implicit.py:docstring of authlib.oauth2.rfc6749.grants.implicit.ImplicitGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/grants/resource_owner_password_credentials.py:docstring of authlib.oauth2.rfc6749.grants.resource_owner_password_credentials.ResourceOwnerPasswordCredentialsGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/grants/client_credentials.py:docstring of authlib.oauth2.rfc6749.grants.client_credentials.ClientCredentialsGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc6749/grants/refresh_token.py:docstring of authlib.oauth2.rfc6749.grants.refresh_token.RefreshTokenGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/specs/rfc6750.rst:17: WARNING: py:class reference target not found: BearerTokenValidator <unknown>:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6750.token.BearerTokenGenerator <unknown>:1: WARNING: py:class reference target not found: cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey <unknown>:1: WARNING: py:class reference target not found: cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey <unknown>:1: WARNING: py:class reference target not found: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey <unknown>:1: WARNING: py:class reference target not found: cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/jose/rfc7519/jwt.py:docstring of authlib.jose.rfc7519.jwt.JsonWebToken.decode:1: WARNING: py:meth reference target not found: verify /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/specs/rfc7523.rst:69: WARNING: py:class reference target not found: authlib.integrations.httpx_client.AssertionSession /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/docs/specs/rfc7523.rst:70: WARNING: py:class reference target not found: authlib.integrations.httpx_client.AsyncAssertionSession /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc7523/jwt_bearer.py:docstring of authlib.oauth2.rfc7523.jwt_bearer.JWTBearerGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc8628/device_code.py:docstring of authlib.oauth2.rfc8628.device_code.DeviceCodeGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oauth2/rfc9068/token.py:docstring of authlib.oauth2.rfc9068.token.JWTBearerTokenGenerator:5: WARNING: py:class reference target not found: authlib.oauth2.rfc6750.token.BearerTokenGenerator /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oidc/core/grants/implicit.py:docstring of authlib.oidc.core.grants.implicit.OpenIDImplicitGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request /home/tkloczko/rpmbuild/BUILD/authlib-1.3.0/authlib/oidc/core/grants/hybrid.py:docstring of authlib.oidc.core.grants.hybrid.OpenIDHybridGrant:1: WARNING: py:class reference target not found: authlib.oauth2.rfc6749.requests.OAuth2Request done build succeeded, 42 warnings. ``` </details> You can peak on fixes that kind of issues in other projects https://github.com/RDFLib/rdflib-sqlalchemy/issues/95 https://github.com/RDFLib/rdflib/pull/2036 https://github.com/click-contrib/sphinx-click/commit/abc31069 https://github.com/frostming/unearth/issues/14 https://github.com/jaraco/cssutils/issues/21 https://github.com/latchset/jwcrypto/pull/289 https://github.com/latchset/jwcrypto/pull/289 https://github.com/pypa/distlib/commit/98b9b89f https://github.com/pywbem/pywbem/pull/2895 https://github.com/sissaschool/elementpath/commit/bf869d9e https://github.com/sissaschool/xmlschema/commit/42ea98f2 https://github.com/sqlalchemy/sqlalchemy/commit/5e88e6e8
closed
2024-01-11T07:15:28Z
2024-01-17T17:06:09Z
https://github.com/lepture/authlib/issues/615
[]
kloczek
3
sanic-org/sanic
asyncio
2,544
Sanic server
use sanic server in production How to stop or reload gracefully
closed
2022-09-14T08:19:55Z
2022-09-14T09:51:40Z
https://github.com/sanic-org/sanic/issues/2544
[ "feature request" ]
wjy1100
1
man-group/arctic
pandas
617
First, last, and closest
Is it possible to load the first and the last ticks from TickStore? How do I query the closest row to the specified date?
closed
2018-08-28T04:30:29Z
2018-08-30T18:35:27Z
https://github.com/man-group/arctic/issues/617
[]
kothique
1
OFA-Sys/Chinese-CLIP
computer-vision
181
COCO 数据集
作者你好,我已获得coco-cn的许可,希望获得预处理的coco数据,已向该邮箱yangapku@gmail.com发送申请,万分感谢!
closed
2023-08-08T07:45:58Z
2023-08-08T10:25:44Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/181
[]
songtianhui
1
albumentations-team/albumentations
machine-learning
2,041
Shifting augmentation causes 'Tensors must have same number of dimensions: got 2 and 1'
Hello, been recieving the following error when training a YOLOv8 model with Albumentations: `RuntimeError: Tensors must have same number of dimensions: got 2 and 1` Until now I've only seen it happen when using this specific augmentation: (shifting the picture) `A.ShiftScaleRotate( shift_limit=(-0.3, 0.3), # ScaleFloatType scale_limit=(0,0), # ScaleFloatType rotate_limit=(0,0), # ScaleFloatType interpolation=1, # <class 'int'> border_mode=0, # int value=0, # ColorType mask_value=0, # ColorType shift_limit_x=None, # ScaleFloatType | None shift_limit_y=None, # ScaleFloatType | None rotate_method="largest_box", # Literal['largest_box', 'ellipse'] always_apply=None, # bool | None p=1.0, # float )` I'm sadly not very sure when the error started appearing. Console Log: `` `RuntimeError Traceback (most recent call last) Cell In[6], line 35 32 current_params = kfold_params[i] 34 model = YOLO('yolov8x-seg.pt') ---> 35 model_results = model.train(data=os.path.join(ROOT_DIR, f'config{i}.yaml'), imgsz=512, batch=16, deterministic=True, plots=True, 36 close_mosaic = 0, 37 optimizer = current_params["optimizer"], 38 epochs = current_params["epochs"], 39 lr0 = current_params["lr"], 40 dropout = current_params["dropout"], 41 # disable built-in augmentation, instead use Albumentations Library 42 augment=False, hsv_h=0, hsv_s=0, hsv_v=0, degrees=0, translate=0, 43 scale=0, shear=0.0, perspective=0, flipud=0, fliplr=0, bgr=0, 44 mosaic=0, mixup=0, copy_paste=0, erasing=0, crop_fraction=0) 45 results = model.val() 47 print("\n" + "#" * 60) File ~/.local/lib/python3.11/site-packages/ultralytics/engine/model.py:802, in Model.train(self, trainer, **kwargs) 799 self.model = self.trainer.model 801 self.trainer.hub_session = self.session # attach optional HUB session --> 802 self.trainer.train() 803 # Update model and cfg after training 804 if RANK in {-1, 0}: File ~/.local/lib/python3.11/site-packages/ultralytics/engine/trainer.py:207, in BaseTrainer.train(self) 204 ddp_cleanup(self, str(file)) 206 else: --> 207 self._do_train(world_size) File ~/.local/lib/python3.11/site-packages/ultralytics/engine/trainer.py:367, in BaseTrainer._do_train(self, world_size) 365 pbar = TQDM(enumerate(self.train_loader), total=nb) 366 self.tloss = None --> 367 for i, batch in pbar: 368 self.run_callbacks("on_train_batch_start") 369 # Warmup File ~/.local/lib/python3.11/site-packages/tqdm/std.py:1181, in tqdm.__iter__(self) 1178 time = self._time 1180 try: -> 1181 for obj in iterable: 1182 yield obj 1183 # Update and possibly print the progressbar. 1184 # Note: does not call self.update(1) for speed optimisation. File ~/.local/lib/python3.11/site-packages/ultralytics/data/build.py:48, in InfiniteDataLoader.__iter__(self) 46 """Creates a sampler that repeats indefinitely.""" 47 for _ in range(len(self)): ---> 48 yield next(self.iterator) File ~/.local/lib/python3.11/site-packages/torch/utils/data/dataloader.py:630, in _BaseDataLoaderIter.__next__(self) 627 if self._sampler_iter is None: 628 # TODO(https://github.com/pytorch/pytorch/issues/76750) 629 self._reset() # type: ignore[call-arg] --> 630 data = self._next_data() 631 self._num_yielded += 1 632 if self._dataset_kind == _DatasetKind.Iterable and \ 633 self._IterableDataset_len_called is not None and \ 634 self._num_yielded > self._IterableDataset_len_called: File ~/.local/lib/python3.11/site-packages/torch/utils/data/dataloader.py:1324, in _MultiProcessingDataLoaderIter._next_data(self) 1322 if len(self._task_info[self._rcvd_idx]) == 2: 1323 data = self._task_info.pop(self._rcvd_idx)[1] -> 1324 return self._process_data(data) 1326 assert not self._shutdown and self._tasks_outstanding > 0 1327 idx, data = self._get_data() File ~/.local/lib/python3.11/site-packages/torch/utils/data/dataloader.py:1370, in _MultiProcessingDataLoaderIter._process_data(self, data) 1368 self._try_put_index() 1369 if isinstance(data, ExceptionWrapper): -> 1370 data.reraise() 1371 return data File ~/.local/lib/python3.11/site-packages/torch/_utils.py:706, in ExceptionWrapper.reraise(self) 702 except TypeError: 703 # If the exception takes multiple arguments, don't try to 704 # instantiate since we don't know how to 705 raise RuntimeError(msg) from None --> 706 raise exception RuntimeError: Caught RuntimeError in DataLoader worker process 3. Original Traceback (most recent call last): File "/home/user/.local/lib/python3.11/site-packages/torch/utils/data/_utils/worker.py", line 309, in _worker_loop data = fetcher.fetch(index) # type: ignore[possibly-undefined] ^^^^^^^^^^^^^^^^^^^^ File "/home/user/.local/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py", line 55, in fetch return self.collate_fn(data) ^^^^^^^^^^^^^^^^^^^^^ File "/home/user/.local/lib/python3.11/site-packages/ultralytics/data/dataset.py", line 240, in collate_fn value = torch.cat(value, 0) ^^^^^^^^^^^^^^^^^^^ RuntimeError: Tensors must have same number of dimensions: got 2 and 1`
open
2024-10-30T20:51:53Z
2025-01-13T17:25:08Z
https://github.com/albumentations-team/albumentations/issues/2041
[ "bug", "Need check" ]
armanivers
13
sherlock-project/sherlock
python
2,392
Most of the results are 'Error connecting"
### Installation method PyPI (via pip) ### Package version Sherlock v0.15.0 ### Description Hello community ! While everything was working fine, for the last 1 or 2 hours I've been getting mostly incorrect results. here's an example (where I've replaced the real username with “username”) For example, for the username I'm looking for, I'd have to find a telegram, a vsco, a twitter... all I'm left with are false positives. ```[-] ResearchGate: Illegal Username Format For This Site! [-] 1337x: Error Connecting [-] 2Dimensions: Not Found! [-] 3dnews: Error Connecting [-] 7Cups: Not Found! [-] 8tracks: Not Found! [-] 9GAG: Not Found! [-] APClips: Not Found! [-] About.me: Not Found! [-] Academia.edu: Not Found! [-] AdmireMe.Vip: Not Found! [-] Air Pilot Life: Not Found! [-] Airbit: Not Found! [-] Airliners: Not Found! [-] All Things Worn: Not Found! [-] AllMyLinks: Not Found! [-] AniWorld: Not Found! [-] Anilist: Not Found! [-] Apple Developer: Not Found! [-] Apple Discussions: Not Found! [-] Archive of Our Own: Not Found! [-] Archive.org: Not Found! [-] ArtStation: Not Found! [-] Asciinema: Error Connecting [-] Ask Fedora: Not Found! [-] AskFM: Error Connecting [-] Atcoder: Not Found! [-] Audiojungle: Not Found! [-] Autofrage: Not Found! [-] Avizo: Not Found! [-] BLIP.fm: Error Connecting [-] BOOTH: Not Found! [-] Bandcamp: Not Found! [-] Bazar.cz: Not Found! [-] Behance: Not Found! [-] Bezuzyteczna: Not Found! [-] BiggerPockets: Not Found! [-] BioHacking: Not Found! [-] BitBucket: Not Found! [-] Bitwarden Forum: Not Found! [-] Blipfoto: Not Found! [-] Blogger: Not Found! [-] BoardGameGeek: Not Found! [-] BongaCams: Not Found! [-] Bookcrossing: Not Found! [-] BraveCommunity: Not Found! [-] BugCrowd: Not Found! [-] BuyMeACoffee: Not Found! [-] BuzzFeed: Not Found! [-] CGTrader: Not Found! [-] CNET: Not Found! [-] CSSBattle: Not Found! [-] CTAN: Not Found! [-] Caddy Community: Not Found! [-] Car Talk Community: Not Found! [-] Carbonmade: Not Found! [-] Career.habr: Not Found! [-] Championat: Not Found! [-] Chaos: Not Found! [-] Chatujme.cz: Not Found! [-] ChaturBate: Not Found! [-] Chess: Not Found! [-] Choice Community: Not Found! [-] Clapper: Not Found! [-] CloudflareCommunity: Not Found! [-] Clozemaster: Not Found! [-] Clubhouse: Not Found! [-] Code Snippet Wiki: Not Found! [-] Codeberg: Not Found! [-] Codecademy: Not Found! [-] Codechef: Not Found! [-] Codeforces: Not Found! [-] Codepen: Not Found! [-] Coders Rank: Not Found! [-] Coderwall: Not Found! [-] Codewars: Not Found! [-] Coinvote: Not Found! [-] ColourLovers: Not Found! [-] Contently: Not Found! [-] Coroflot: Not Found! [-] Cracked: Not Found! [-] Crevado: Not Found! [-] Crowdin: Not Found! [-] Cryptomator Forum: Not Found! [-] Cults3D: Not Found! [-] CyberDefenders: Not Found! [-] DEV Community: Not Found! [-] DMOJ: Not Found! [-] DailyMotion: Not Found! [-] Dealabs: Not Found! [-] DeviantART: Not Found! [-] Discogs: Not Found! [-] Discord: Not Found! [-] Discuss.Elastic.co: Not Found! [-] Disqus: Not Found! [-] Docker Hub: Not Found! [-] Dribbble: Not Found! [-] Duolingo: Not Found! [-] Eintracht Frankfurt Forum: Not Found! [-] Empretienda AR: Error Connecting [-] Envato Forum: Not Found! [-] Erome: Not Found! [-] Exposure: Not Found! [-] exophase: Not Found! [-] EyeEm: Not Found! [-] F3.cool: Not Found! [-] Fameswap: Not Found! [-] Fandom: Not Found! [-] Fanpop: Not Found! [-] Finanzfrage: Not Found! [-] Fiverr: Not Found! [-] Flickr: Not Found! [-] Flightradar24: Not Found! [-] Flipboard: Not Found! [-] Football: Not Found! [-] FortniteTracker: Not Found! [-] Forum Ophilia: Not Found! [-] Fosstodon: Not Found! [-] Freelance.habr: Not Found! [-] Freelancer: Not Found! [-] Freesound: Not Found! [-] GNOME VCS: Not Found! [-] GaiaOnline: Not Found! [-] Gamespot: Not Found! [-] GeeksforGeeks: Not Found! [-] Genius (Artists): Not Found! [-] Genius (Users): Not Found! [-] Gesundheitsfrage: Not Found! [-] GetMyUni: Not Found! [-] Giant Bomb: Not Found! [-] Giphy: Not Found! [-] GitBook: Not Found! [-] GitHub: Not Found! [-] GitLab: Not Found! [-] Gitea: Not Found! [-] Gitee: Not Found! [-] GoodReads: Not Found! [-] Google Play: Not Found! [-] Gradle: Not Found! [-] Grailed: Not Found! [-] Gravatar: Not Found! [-] Gumroad: Not Found! [-] Gutefrage: Not Found! [-] HackTheBox: Not Found! [-] Hackaday: Not Found! [+] HackenProof (Hackers): https://hackenproof.com/hackers/username [-] HackerEarth: Error Connecting [-] HackerNews: Not Found! [-] HackerOne: Not Found! [-] HackerRank: Not Found! [-] Harvard Scholar: Not Found! [-] Hashnode: Not Found! [-] Heavy-R: Not Found! [-] Holopin: Not Found! [-] Houzz: Not Found! [-] HubPages: Not Found! [-] Hubski: Not Found! [-] HudsonRock: Not Found! [-] IFTTT: Not Found! [-] IRC-Galleria: Not Found! [-] Icons8 Community: Not Found! [-] Image Fap: Not Found! [-] ImgUp.cz: Not Found! [-] Imgur: Not Found! [-] Instagram: Not Found! [-] Instructables: Not Found! [-] Intigriti: Not Found! [-] Ionic Forum: Not Found! [-] Issuu: Not Found! [-] Itch.io: Not Found! [-] Itemfix: Not Found! [-] Jellyfin Weblate: Not Found! [-] Jimdo: Not Found! [-] Joplin Forum: Not Found! [-] KEAKR: Error Connecting [-] Kaggle: Not Found! [-] kaskus: Not Found! [-] Keybase: Not Found! [-] Kick: Not Found! [-] Kik: Not Found! [-] Kongregate: Not Found! [-] LOR: Not Found! [-] Launchpad: Not Found! [-] LeetCode: Not Found! [-] LessWrong: Not Found! [-] Letterboxd: Not Found! [-] LibraryThing: Not Found! [-] Lichess: Not Found! [-] LinkedIn: Not Found! [-] Linktree: Not Found! [-] Listed: Not Found! [-] LiveJournal: Not Found! [-] Lobsters: Not Found! [-] LottieFiles: Not Found! [+] LushStories: https://www.lushstories.com/profile/username [-] MMORPG Forum: Not Found! [-] Mapify: Not Found! [-] Medium: Not Found! [-] Memrise: Not Found! [-] Minecraft: Not Found! [-] MixCloud: Not Found! [-] Monkeytype: Not Found! [-] Motherless: Not Found! [-] Motorradfrage: Not Found! [-] MyAnimeList: Not Found! [-] MyMiniFactory: Not Found! [-] Mydramalist: Not Found! [-] Myspace: Not Found! [-] NICommunityForum: Not Found! [-] NationStates Nation: Not Found! [-] NationStates Region: Not Found! [-] Naver: Not Found! [-] Needrom: Not Found! [-] Newgrounds: Not Found! [-] Nextcloud Forum: Not Found! [-] Nightbot: Not Found! [-] Ninja Kiwi: Not Found! [-] NintendoLife: Not Found! [-] NitroType: Not Found! [-] NotABug.org: Not Found! [-] Nyaa.si: Not Found! [-] OGUsers: Error Connecting [-] OpenStreetMap: Not Found! [-] Opensource: Not Found! [-] OurDJTalk: Error Connecting [-] PCGamer: Not Found! [-] PSNProfiles.com: Not Found! [-] Packagist: Not Found! [-] Pastebin: Not Found! [-] Patreon: Not Found! [-] PentesterLab: Not Found! [-] PepperIT: Error Connecting [+] Periscope: https://www.periscope.tv/username/ [-] Pinkbike: Not Found! [-] PlayStore: Error Connecting [-] PocketStars: Error Connecting [-] Pokemon Showdown: Error Connecting [-] Polarsteps: Error Connecting [-] Polygon: Error Connecting [-] Polymart: Error Connecting [-] Pornhub: Error Connecting [-] ProductHunt: Error Connecting [-] PromoDJ: Error Connecting [-] PyPi: Error Connecting [-] Rajce.net: Error Connecting [-] Rarible: Error Connecting [-] Rate Your Music: Error Connecting [-] Rclone Forum: Error Connecting [-] RedTube: Error Connecting [-] Redbubble: Error Connecting [-] Reddit: Error Connecting [-] Reisefrage: Error Connecting [-] Replit.com: Error Connecting [-] ReverbNation: Error Connecting [-] Roblox: Error Connecting [-] RocketTube: Error Connecting [-] RoyalCams: Error Connecting [-] RubyGems: Error Connecting [-] Rumble: Error Connecting [-] RuneScape: Error Connecting [-] SWAPD: Error Connecting [-] Sbazar.cz: Error Connecting [-] Scratch: Error Connecting [-] Scribd: Error Connecting [-] ShitpostBot5000: Error Connecting [-] Shpock: Error Connecting [-] Signal: Error Connecting [-] Sketchfab: Error Connecting [-] Slack: Error Connecting [-] Slant: Error Connecting [-] Slashdot: Error Connecting [-] SlideShare: Error Connecting [-] Slides: Error Connecting [-] SmugMug: Error Connecting [-] Smule: Error Connecting [-] Snapchat: Error Connecting [-] SoundCloud: Error Connecting [-] SourceForge: Error Connecting [-] SoylentNews: Error Connecting [-] Speedrun.com: Error Connecting [-] Spells8: Error Connecting [-] Splice: Error Connecting [-] Splits.io: Error Connecting [-] Sporcle: Error Connecting [-] Sportlerfrage: Error Connecting [-] SportsRU: Error Connecting [-] Spotify: Error Connecting [-] Star Citizen: Error Connecting [-] Steam Community (Group): Error Connecting [-] Steam Community (User): Error Connecting [-] Strava: Error Connecting [-] SublimeForum: Error Connecting [-] TETR.IO: Error Connecting [-] Tiendanube: Error Connecting [-] TLDR Legal: Error Connecting [-] Topcoder: Error Connecting [-] TRAKTRAIN: Error Connecting [-] Telegram: Error Connecting [-] Tellonym.me: Error Connecting [-] Tenor: Error Connecting [-] ThemeForest: Error Connecting [-] TnAFlix: Error Connecting [-] TorrentGalaxy: Error Connecting [-] TradingView: Error Connecting [-] Trakt: Error Connecting [-] TrashboxRU: Error Connecting [-] Trawelling: Error Connecting [-] Trello: Error Connecting [-] TryHackMe: Error Connecting [-] Tuna: Error Connecting [-] Tweakers: Error Connecting [-] Twitch: Error Connecting [-] Twitter: Error Connecting [-] Typeracer: Error Connecting [-] Ultimate-Guitar: Error Connecting [-] Unsplash: Error Connecting [-] Untappd: Error Connecting [-] VK: Error Connecting [-] VSCO: Error Connecting [-] Velog: Error Connecting [-] Velomania: Error Connecting [-] Venmo: Error Connecting [-] Vero: Error Connecting [-] Vimeo: Error Connecting [-] VirusTotal: Error Connecting [-] VLR: Error Connecting [-] WICG Forum: Error Connecting [-] Warrior Forum: Error Connecting [-] Wattpad: Error Connecting [-] WebNode: Error Connecting [-] Weblate: Error Connecting [-] Weebly: Error Connecting [-] Wikidot: Error Connecting [-] Wikipedia: Error Connecting [-] Windy: Error Connecting [-] Wix: Error Connecting [-] WolframalphaForum: Error Connecting [-] WordPress: Error Connecting [-] WordPressOrg: Error Connecting [-] Wordnik: Error Connecting [-] Wykop: Error Connecting [-] Xbox Gamertag: Error Connecting [-] Xvideos: Error Connecting [-] YandexMusic: Error Connecting [-] YouNow: Error Connecting [-] YouPic: Error Connecting [-] YouPorn: Error Connecting [-] YouTube: Error Connecting [-] akniga: Error Connecting [-] authorSTREAM: Error Connecting [-] babyRU: Error Connecting [-] babyblogRU: Error Connecting [-] chaos.social: Error Connecting [-] couchsurfing: Error Connecting [-] d3RU: Error Connecting [-] dailykos: Error Connecting [-] datingRU: Error Connecting [-] devRant: Error Connecting [-] drive2: Error Connecting [-] eGPU: Error Connecting [-] eintracht: Error Connecting [-] fixya: Error Connecting [-] fl: Error Connecting [-] forum_guns: Error Connecting [-] freecodecamp: Error Connecting [-] furaffinity: Error Connecting [-] geocaching: Error Connecting [-] gfycat: Error Connecting [-] habr: Error Connecting [-] hackster: Error Connecting [-] hunting: Error Connecting [-] iMGSRC.RU: Error Connecting [-] igromania: Error Connecting [-] interpals: Error Connecting [-] irecommend: Error Connecting [-] jbzd.com.pl: Error Connecting [-] jeuxvideo: Error Connecting [-] kofi: Error Connecting [-] kwork: Error Connecting [-] last.fm: Error Connecting [-] leasehackr: Error Connecting [-] livelib: Error Connecting [-] mastodon.cloud: Error Connecting [-] mastodon.social: Error Connecting [-] mastodon.technology: Error Connecting [-] mastodon.xyz: Error Connecting [-] mercadolivre: Error Connecting [-] minds: Error Connecting [-] moikrug: Error Connecting [-] mstdn.io: Error Connecting [-] nairaland.com: Error Connecting [-] nnRU: Error Connecting [-] note: Error Connecting [-] npm: Error Connecting [-] opennet: Error Connecting [-] osu!: Error Connecting [-] phpRU: Error Connecting [-] pikabu: Error Connecting [-] pr0gramm: Error Connecting [-] prog.hu: Error Connecting [-] queer.af: Error Connecting [-] satsisRU: Error Connecting [-] sessionize: Error Connecting [-] skyrock: Error Connecting [-] social.tchncs.de: Error Connecting [-] spletnik: Error Connecting [-] svidbook: Error Connecting [-] threads: Error Connecting [-] toster: Error Connecting [-] uid: Error Connecting [-] wiki.vg: Error Connecting [-] xHamster: Error Connecting [-] znanylekarz.pl: Error Connecting ``` ### Steps to reproduce search for “sherlock username ### Additional information _No response_ ### Code of Conduct - [x] I agree to follow this project's Code of Conduct
open
2025-01-16T16:20:12Z
2025-03-17T17:41:12Z
https://github.com/sherlock-project/sherlock/issues/2392
[ "environment" ]
babbyshark75
1