repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pytest-dev/pytest-html
pytest
11
Show extras with screenshot for passed tests as well
Hi, Dave! Is it possible to show a screenshots for the passed tests as well? This is my code: ``` python def pytest_runtest_makereport(__multicall__, item): _driver = item.funcargs['app'].driver browser_type = _driver.capabilities['browserName'] pytest_html = item.config.pluginmanager.getplugin('html') report = __multicall__.execute() extra = getattr(report, 'extra', []) if report.when == 'call': url = _driver.current_url extra.append(pytest_html.extras.url(url)) screenshot = _driver.get_screenshot_as_base64() extra.append(pytest_html.extras.image(screenshot, '')) report.extra = extra return report ``` Both passed and failed tests has an URL field, however, only failed tests are displayed with screenshot. BR and thanks for the great plugin :) Michael
closed
2015-07-14T16:19:15Z
2016-01-16T01:10:51Z
https://github.com/pytest-dev/pytest-html/issues/11
[ "bug" ]
shat00n
13
stanfordnlp/stanza
nlp
1,370
Italian model runs out of memory on COLAB A100 gpu
Trying to process small texts (300-500kb) on a 40gb GPU on colab raises an OutOfMemoryError. Here is log. The English model, on the same text, does not. It happens even with processors='tokenize,lemma,pos'. --------------------------------------------------------------------------- OutOfMemoryError Traceback (most recent call last) <ipython-input-4-e215e2dbfcd3> in <cell line: 2>() 1 s = open('KINGSLEY_TIASPETTOACENTRALPARL.txt').read() ----> 2 doc = nlp(s) 11 frames /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py in forward(self, input) 114 115 def forward(self, input: Tensor) -> Tensor: --> 116 return F.linear(input, self.weight, self.bias) 117 118 def extra_repr(self) -> str: OutOfMemoryError: CUDA out of memory. Tried to allocate 9.50 GiB. GPU 0 has a total capacity of 15.77 GiB of which 5.42 GiB is free. Process 3295 has 10.35 GiB memory in use. Of the allocated memory 9.93 GiB is allocated by PyTorch, and 37.90 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
closed
2024-03-19T10:04:36Z
2024-04-20T19:01:48Z
https://github.com/stanfordnlp/stanza/issues/1370
[ "bug", "fixed on dev" ]
lucaducceschi
7
pandas-dev/pandas
data-science
61,076
PERF: why nlargest is so slower?
### Pandas version checks - [x] I have checked that this issue has not already been reported. - [x] I have confirmed this issue exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [x] I have confirmed this issue exists on the main branch of pandas. ### Reproducible Example nlargest is so slow, I think this is question, maybe we should do someting to improve it. Here, is my code, you can see nlargest use many time more than it should use. ![Image](https://github.com/user-attachments/assets/cac98d73-b0ed-4e6d-8a1d-51798c1ad96d) ### Installed Versions <details> Replace this line with the output of pd.show_versions() </details> ### Prior Performance _No response_
open
2025-03-07T14:31:23Z
2025-03-08T00:50:36Z
https://github.com/pandas-dev/pandas/issues/61076
[ "Performance", "Needs Info" ]
ZGarry
4
MaartenGr/BERTopic
nlp
1,720
flan-t5 for
Hi @MaartenGr, I hope you are doing well. I am getting the following error when using the flan-t5 model for topic representation. Any solution for this? Thanks ``` from transformers import pipeline from bertopic.representation import TextGeneration prompt = "I have a topic described by the following keywords: [KEYWORDS]. Based on the previous keywords, what is this topic about?" # Create your representation model generator = pipeline('text2text-generation', model='google/flan-t5-base') representation_model = TextGeneration(generator) topic_model_t5 = BERTopic(representation_model=representation_model) ``` Error: ----> 2 topics, probs = topic_model_t5.fit_transform(docs) 3 print(topic_model_t5.get_topic_info()) [/usr/local/lib/python3.10/dist-packages/bertopic/representation/_textgeneration.py](https://localhost:8080/#) in extract_topics(self, topic_model, documents, c_tf_idf, topics) 145 146 # Prepare prompt --> 147 truncated_docs = [truncate_document(topic_model, self.doc_length, self.tokenizer, doc) for doc in docs] 148 prompt = self._create_prompt(truncated_docs, topic, topics) 149 self.prompts_.append(prompt) TypeError: 'NoneType' object is not iterable
open
2024-01-02T00:09:46Z
2024-01-06T22:08:49Z
https://github.com/MaartenGr/BERTopic/issues/1720
[]
mjaved-nz
4
modoboa/modoboa
django
3,241
Documentation lacks using unix socket
# Impacted versions * OS Type: Arch * OS Version: current * Database Type: MySQL * Database version: 11.3.2 * Modoboa: 2.2.4 * installer used: No * Webserver: Nginx The documentation assumes that all connections to external services use TCP, but unix socket may be used too. I struggled to configure MySQL this way since it's not documented, but now that redis is required, I can't figure out how to use it. I use this in settings.py: ``` REDIS_HOST = '/run/redis/redis.sock' REDIS_PORT = 6279 REDIS_QUOTA_DB = 0 REDIS_URL = 'unix://{}?db={}'.format(REDIS_HOST, REDIS_QUOTA_DB) ``` But django seems to keep using REDIS_PORT as i get this error: ``` ConnectionError at / Error -2 connecting to /run/redis/redis.sock:6279. Name or service not known. ``` Overwriting REDIS_PORT with 0 or empty value keeps throwing errors. So, how to use redis unix socket?
closed
2024-04-27T19:16:34Z
2024-05-10T10:52:00Z
https://github.com/modoboa/modoboa/issues/3241
[ "documentation" ]
yannfill
4
httpie/cli
api
829
Cannot install with apt-get
I tried to install on Ubuntu 18.04.3 and got the following ```bash root@machine:~# apt-get install httpie Reading package lists... Done Building dependency tree Reading state information... Done Package httpie is not available, but is referred to by another package. This may mean that the package is missing, has been obsoleted, or is only available from another source E: Package 'httpie' has no installation candidate ```
closed
2020-01-07T13:56:41Z
2020-01-07T14:59:30Z
https://github.com/httpie/cli/issues/829
[]
tiagomsmagalhaes
4
Tinche/aiofiles
asyncio
99
about code generator
your idea is so good(use executor to run async task) however, anyone can not list all the functions. so, what if use a code generator to generate all the api
closed
2021-04-17T09:12:46Z
2022-01-25T14:41:36Z
https://github.com/Tinche/aiofiles/issues/99
[]
GoddessLuBoYan
3
pydantic/pydantic
pydantic
10,699
Subclassing Pydantic models with Python 3.13 and mypy
### Initial Checks - [X] I confirm that I'm using Pydantic V2 ### Description Hi Pydantic folks, I'm opening this issue because before reading the code I thought the problem was with Pydantic, but I'm not 100% sure, so please let me know if I need to open this in the mypy repository. When I'm using Models that inherit from another Models and I try to mutate fields like `str` -> `Literal`, mypy is complaining because the type in the `__replace__` function is not valid. ```sh (venv) ➜ leo313 mypy --pretty x.py x.py:9: error: Signature of "__replace__" incompatible with supertype "MyBaseClass" [override] class MyInheritedClass_A(MyBaseClass): ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x.py:9: note: Superclass: x.py:9: note: def __replace__(*, __pydantic_extra__: dict[str, Any] | None = ..., __pydantic_fields_set__: set[str] = ..., __pydantic_private__: dict[str, Any] | None = ..., RequestType: str = ...) -> MyBaseClass x.py:9: note: Subclass: x.py:9: note: def __replace__(*, __pydantic_extra__: dict[str, Any] | None = ..., __pydantic_fields_set__: set[str] = ..., __pydantic_private__: dict[str, Any] | None = ..., RequestType: Literal['Create'] = ..., PhysicalResourceId: str = ...) -> MyInheritedClass_A x.py:13: error: Signature of "__replace__" incompatible with supertype "MyBaseClass" [override] class MyInheritedClass_B(MyBaseClass): ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x.py:13: note: Superclass: x.py:13: note: def __replace__(*, __pydantic_extra__: dict[str, Any] | None = ..., __pydantic_fields_set__: set[str] = ..., __pydantic_private__: dict[str, Any] | None = ..., RequestType: str = ...) -> MyBaseClass x.py:13: note: Subclass: x.py:13: note: def __replace__(*, __pydantic_extra__: dict[str, Any] | None = ..., __pydantic_fields_set__: set[str] = ..., __pydantic_private__: dict[str, Any] | None = ..., RequestType: Literal['Delete'] = ..., PhysicalResourceId: str = ...) -> MyInheritedClass_B ``` If I run the same code in Python 3.12 it works without any problem. ```sh (venv) ➜ leo313 mypy --version mypy 1.13.0 (compiled: yes) ``` Can you please give me a direction how to solve this problem? Thank you ### Example Code ```Python from typing import Literal from pydantic import BaseModel, Field class MyBaseClass(BaseModel): request_type: str = Field(..., alias="RequestType") class MyInheritedClass_A(MyBaseClass): request_type: Literal["Create"] = Field(..., alias="RequestType") physical_resource_id: str = Field(..., alias="PhysicalResourceId") class MyInheritedClass_B(MyBaseClass): request_type: Literal["Delete"] = Field(..., alias="RequestType") physical_resource_id: str = Field(..., alias="PhysicalResourceId") ``` ### Python, Pydantic & OS Version ```Text (venv) ➜ leo313 python -c "import pydantic.version; print(pydantic.version.version_info())" pydantic version: 2.9.2 pydantic-core version: 2.23.4 pydantic-core build: profile=release pgo=false install path: /private/tmp/leo313/venv/lib/python3.13/site-packages/pydantic python version: 3.13.0 (main, Oct 7 2024, 05:02:14) [Clang 15.0.0 (clang-1500.3.9.4)] platform: macOS-14.7-arm64-arm-64bit-Mach-O related packages: mypy-1.13.0 typing_extensions-4.12.2 commit: unknown ```
closed
2024-10-24T13:43:20Z
2025-01-15T08:47:47Z
https://github.com/pydantic/pydantic/issues/10699
[ "topic-type checking" ]
leandrodamascena
3
Avaiga/taipy
automation
1,454
action_keys for date with_time
### What would you like to share or ask? is there something similar to #action_keys but for date? ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [X] I am willing to work on this issue (optional)
open
2024-06-26T17:00:10Z
2024-10-11T13:14:11Z
https://github.com/Avaiga/taipy/issues/1454
[ "🖰 GUI", "❓ Question", "🟨 Priority: Medium", "💬 Discussion" ]
carza06
6
dynaconf/dynaconf
flask
893
[RFC] Restructure docs pages hierarchy
## Is your feature request related to a problem? Please describe The lack of hierarchy in the menu makes it harder to navigate. Related to 4.0.0 roadmap proposals. ## Describe the solution you'd like **Add hierarchy to the pages**, nesting them in categories. Eg: - Home `(describe features in Home with links to other parts)` - Getting started `(simple end to end tutorial covering most features)` - Guides `(in-depth look at specific tasks)` - Doing that ... - How to ... - Reference `(this may be generated from code?)` - Configuration - Validation - Converters - CLI - Contributing `(may be from CONTRIBUTING.md)` - FAQ **Redirect old links to new or related ones**, so they would not break. Eg: dynaconf.com/configuration -> dynaconf.com/reference/configuration **Questions** - If menus are foldable or always open - If guides should be further subdivided - Should such drastic (structural) changes be released just in 4.0.0? Or the existing content could be migrated to a similar format before that? ## Describe alternatives you've considered There are many. ## Additional context As there are proposed changes about docs in the 4.0.0 roadmap, like adding guides/tutorial format, it should be designed to acommodate these proposals too. (if it is to be released before that).
open
2023-03-16T16:28:17Z
2023-08-21T19:47:46Z
https://github.com/dynaconf/dynaconf/issues/893
[ "Not a Bug", "RFC", "Docs" ]
pedro-psb
1
littlecodersh/ItChat
api
397
您好,请问有详细的针对小白(无编程基础)的教程或是可执行运行的程序吗?
您好,本人只是简单的接触到python,并不是很熟悉。关于教程中的讲解发现还是不太理解,针对所提到的问题,请问有什么好的解决办法吗?个人微信自动回复
closed
2017-06-05T12:42:41Z
2017-06-13T02:56:15Z
https://github.com/littlecodersh/ItChat/issues/397
[ "question" ]
lvbin8023
3
RobertCraigie/prisma-client-py
pydantic
52
Add support for full text search for PostgreSQL
[https://www.prisma.io/docs/concepts/components/prisma-client/full-text-search](https://www.prisma.io/docs/concepts/components/prisma-client/full-text-search) ## Suggested solution Something like the following, `search` should be added to `StringFilter` and must be an instance of `String`. Should be noted that I'm not stuck on `String` being the name. ```py # NOTE: actual API is still TODO from prisma.querying import String await client.post.find_first( where={ 'content': { 'search': String.contains('cat', 'dog'), }, }, ) await client.post.find_first( where={ 'content': { # for anything we don't explicitly support 'search': String.raw('fox \| cat'), }, }, ) ```
closed
2021-08-26T07:55:37Z
2024-08-11T09:05:03Z
https://github.com/RobertCraigie/prisma-client-py/issues/52
[ "kind/feature", "process/candidate", "topic: client", "level/advanced", "priority/high" ]
RobertCraigie
4
matplotlib/matplotlib
data-visualization
28,855
[Bug]: Using an ipython config of `InteractiveShellApp.matplotlib='inline'` fails on macos for `matplotlib>3.9.0`
### Bug summary I am using a Jupyter notebook in VS Code Version: 1.93.1. on MacOS Ventura 13.4.1 and Python 3.12.5 With `matplotlib<=3.9.0`, I can plot visualizations inline within VS Code. The reported backend is by default `inline` and everything is fine. Starting with version 3.9.1, the default backend apparently switched to `macosx`. When I try to plot something now, a new Python window pops up, but no plot is created unless I add `plt.show()`. Is this the intended behavior? It breaks essentially all of my notebooks because I would have to go in and add `%matplotlib inline` to make things work again. ### Code for reproduction ```Python import matplotlib.pyplot as plt import matplotlib print(matplotlib.get_backend()) plt.plot([0, 1, 2], [1, 2, 3]) ``` ### Actual outcome With `matplotlib<=3.9.0`: <img width="941" alt="image" src="https://github.com/user-attachments/assets/35144b43-2452-455c-a93a-2d4f63ea2123"> With `matplotlib>3.9.0`: <img width="720" alt="image" src="https://github.com/user-attachments/assets/5c4d9e93-b7da-48a8-8551-d3b56874a450"> ### Expected outcome Default backend should be `inline` in `matplotlib>3.9.0`. ### Additional information _No response_ ### Operating system MacOS Ventura 13.4.1 ### Matplotlib Version 3.9.0, 3.9.1, 3.9.2 ### Matplotlib Backend inline, macosx ### Python version 3.12.5 ### Jupyter version 6.5.1 ### Installation pip
open
2024-09-20T19:03:55Z
2025-02-21T19:09:02Z
https://github.com/matplotlib/matplotlib/issues/28855
[ "OS: Apple", "third-party integration: jupyter" ]
Simon-Stone
14
encode/apistar
api
180
Add render_form to jinja2
When I'm trying to use `render_form` in the template like this: ``` <html> <body> <h1>{{ message }}</h1> {{ render_form('https://google.com') }} </body> </html> ``` I get an error message: <img width="787" alt="jinja2_exceptions_undefinederror___render_form__is_undefined____werkzeug_debugger" src="https://cloud.githubusercontent.com/assets/3472902/26384435/0a559d82-3fee-11e7-9426-f84e2293c89a.png"> What I'm doing wrong? (haven't change anything yet)
closed
2017-05-24T02:29:57Z
2018-09-25T14:45:54Z
https://github.com/encode/apistar/issues/180
[]
nirgn975
4
django-import-export/django-import-export
django
1,779
Issue with adding rows with generated field
**Describe the bug** Import of rows via django admin breaks when I have a generated column, but works with that field commented out. **To Reproduce** Steps to reproduce the behavior: Import of rows for a model with a generated field. **Versions (please complete the following information):** - Django Import Export: [e.g. 1.2, 2.0] - django 5.0 - import export 3.3.7 **Expected behavior** Import of rows for a table. The import works fine when I have no generated column, but breaks when the table has a generated column ```python class OperationsExportShipments(models.Model): shipment_id = models.CharField(primary_key=True) <details removed> # cost = models.GeneratedField( # expression=RawSQL('COALESCE(quote_cost, reconciled_cost)',[]), # db_column='cost', # output_field=models.DecimalField(max_digits=10, decimal_places=2), # db_persist=True, # ) ``` Import of my spreadsheet works fine with the cost generated field commented out, but breaks when it is present **Screenshots** I can DM these but as it's company code and data I cannot post here. **Additional context** Add any other context about the problem here.
closed
2024-03-29T15:55:06Z
2024-04-28T15:08:09Z
https://github.com/django-import-export/django-import-export/issues/1779
[ "bug" ]
ghost
6
deepspeedai/DeepSpeed
machine-learning
6,978
[BUG] pdsh runner doesn't work with tqdm bar
**Describe the bug** Training tqdm bar won't show in the rank0 console if pdsh is used as the launcher. **To Reproduce** Run any multi-node training on an example script, the tqdm bar from local rank (localhost) won't show up but show as a blank line. I assume the root cause it pdsh tries to ssh into even localhost, then the bar cannot be logged through a ssh session somehow. **Expected behavior** Be able to see the tqdm bar. **System info (please complete the following information):** - OS: Ubuntu 22.04 - x8 GPUs each node - Python version 3.12.8 - 4 Nodes, same network **Launcher context** PDSH
open
2025-01-29T08:03:44Z
2025-01-31T17:39:38Z
https://github.com/deepspeedai/DeepSpeed/issues/6978
[ "bug", "training" ]
Superskyyy
3
PaddlePaddle/PaddleHub
nlp
2,259
测试国产加速卡寒武纪MLU下,跑ernie的序列标注任务的无法调用mlu加速任务bug,希望官方开发能够答复,非常感谢!!
1)PaddlePaddle版本:docker环境下的 ,PaddlePaddle-mlu==0.0.0 2) PaddleHub版本:2.1.0 2)系统环境:centos7.6 linux 任务启动日志: ``` /opt/py37env/lib/python3.7/site-packages/paddle/fluid/framework.py:193: UserWarning: We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. " [2023-05-29 16:37:34,910] [ INFO] - Already cached /root/.paddlenlp/models/ernie-1.0/ernie_v1_chn_base.pdparams W0529 16:37:34.916133 5170 device_context.cc:48] Please NOTE: device: 0, MLU Compute Capability: 3.0, Driver API Version: 4.20.18, Runtime API Version: 6.0.2, Cnnl API Version: 1.13.0, MluOp API Version: 0.2.0 [2023-05-29 16:37:54,520] [ INFO] - Loaded parameters from /home/suntao_test/v2_nlp_es005/nlp_mod_005/best_model/model.pdparams * Serving Flask app 'hub_serving' * Debug mode: off INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. * Running on all addresses (0.0.0.0) * Running on http://127.0.0.1:8867 INFO:werkzeug:Press CTRL+C to quit INFO:werkzeug:127.0.0.1 - - [29/May/2023 16:38:04] "POST /predict/NLP_ES005 HTTP/1.1" 200 - INFO:werkzeug:127.0.0.1 - - [29/May/2023 16:38:05] "POST /predict/NLP_ES005 HTTP/1.1" 200 - ``` 报错信息: ``` { "msg": "The device should not be 'gpu', since PaddlePaddle is not compiled with CUDA", "status": "000", "results": "" } ```
open
2023-05-29T09:24:01Z
2024-02-26T04:59:30Z
https://github.com/PaddlePaddle/PaddleHub/issues/2259
[]
suntao2015005848
0
JaidedAI/EasyOCR
deep-learning
1,192
Unable to do text recognition with custom trained model
Hi I followed the tutorial to retrain the model. I created my own dataset of around 700 images, placed them in all data folder and started the training. Below is the training logs: [20000/300000] Train loss: 0.14954, Valid loss: 0.09600, Elapsed_time: 1291.66819 Current_accuracy : 90.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 23 Church St | 23 Church St | 0.7626 True 049481 | 049481 | 0.9509 True -------------------------------------------------------------------------------- [40000/300000] Train loss: 0.11850, Valid loss: 0.12338, Elapsed_time: 2585.50984 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- United States | United States | 0.8934 True United States | United States | 0.8934 True -------------------------------------------------------------------------------- [60000/300000] Train loss: 0.11800, Valid loss: 0.12152, Elapsed_time: 3880.77837 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 049481 | 049481 | 0.9912 True California | Palieornia | 0.0043 False -------------------------------------------------------------------------------- [80000/300000] Train loss: 0.11783, Valid loss: 0.09142, Elapsed_time: 5178.66774 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 255 Park Drive | 255 Park Drive | 0.9866 True #10-01 | #10-01 | 0.9993 True -------------------------------------------------------------------------------- [100000/300000] Train loss: 0.11770, Valid loss: 0.15695, Elapsed_time: 6477.48967 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- #10-01 | #10-01 | 0.9994 True #10-01 | #10-01 | 0.9994 True -------------------------------------------------------------------------------- [120000/300000] Train loss: 0.11767, Valid loss: 0.15748, Elapsed_time: 7776.41339 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- California | Patteorson | 0.0055 False 049481 | 049481 | 0.9948 True -------------------------------------------------------------------------------- [140000/300000] Train loss: 0.11759, Valid loss: 0.09135, Elapsed_time: 9076.36160 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 95363-8876 | 95363-8876 | 0.9956 True 23 Church St | 23 Church St | 0.9874 True -------------------------------------------------------------------------------- [160000/300000] Train loss: 0.11780, Valid loss: 0.15532, Elapsed_time: 10374.95994 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 23 Church St | 23 Church St | 0.8750 True #10-01 | #10-01 | 0.9980 True -------------------------------------------------------------------------------- [180000/300000] Train loss: 0.11749, Valid loss: 0.12327, Elapsed_time: 11673.57297 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 23 Church St | 23 Church St | 0.9194 True Singapore | Singapore | 0.9681 True -------------------------------------------------------------------------------- [200000/300000] Train loss: 0.11743, Valid loss: 0.09138, Elapsed_time: 12974.15161 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- Jenny Wilson | Jenny Wilson | 0.9762 True 255 Park Drive | 255 Park Drive | 0.9212 True -------------------------------------------------------------------------------- [220000/300000] Train loss: 0.11754, Valid loss: 0.12260, Elapsed_time: 14272.45811 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- California | Patieorson | 0.0044 False 255 Park Drive | 255 Park Drive | 0.9711 True -------------------------------------------------------------------------------- [240000/300000] Train loss: 0.11742, Valid loss: 0.12318, Elapsed_time: 15571.78331 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- United States | United States | 0.8852 True Jenny Wilson | Jenny Wilson | 0.9856 True -------------------------------------------------------------------------------- [260000/300000] Train loss: 0.11739, Valid loss: 0.09150, Elapsed_time: 16869.83790 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- 95363-8876 | 95363-8876 | 0.9934 True United States | United States | 0.8652 True -------------------------------------------------------------------------------- [280000/300000] Train loss: 0.11738, Valid loss: 0.12504, Elapsed_time: 18167.31517 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- California | Patteorson | 0.0058 False United States | United States | 0.8228 True -------------------------------------------------------------------------------- [300000/300000] Train loss: 0.11735, Valid loss: 0.09141, Elapsed_time: 19466.37895 Current_accuracy : 80.000, Current_norm_ED : 0.9200 Best_accuracy : 90.000, Best_norm_ED : 0.9200 -------------------------------------------------------------------------------- Ground Truth | Prediction | Confidence Score & T/F -------------------------------------------------------------------------------- #10-01 | #10-01 | 0.9994 True 255 Park Drive | 255 Park Drive | 0.9794 True -------------------------------------------------------------------------------- I am using my Ubuntu machine. I have created below folders ~/.EasyOCR/model ~/.EasyOCR/user_network I have renamed the best accuracy pt file to custom_model.pt and have placed it in model dir and have also placed custom_model.py and custom_model.yaml. But when doing inferencing using below code, it shows no output and prints out empty list import easyocr img_path = '1a1.png' reader = easyocr.Reader(['en'], recog_network='custom_model') result = reader.readtext(img_path, detail=0) print(result) How do I solve this? Is there any problem in model or is there any other issue ?
open
2023-12-26T14:52:56Z
2024-10-18T15:05:15Z
https://github.com/JaidedAI/EasyOCR/issues/1192
[]
abhinavrawat27
2
microsoft/unilm
nlp
891
LayoutReader with LayoutLMv3 Pre-Training for Chinese
Hi Huang Yupan Thanks a lot for your code and the LayoutReader example. You gave us LayoutReader with LayoutLM Pre-Training, could you please also give LayoutReader with LayoutLMv3 Pre-Trainin for Chinese ? Thanks!
closed
2022-10-14T20:17:07Z
2022-11-03T14:55:22Z
https://github.com/microsoft/unilm/issues/891
[]
hehuang139
1
ibis-project/ibis
pandas
10,780
bug(interactive-repr): interactive repr of null date scalar raises an exception
### What happened? ``` In [10]: from ibis.interactive import * In [11]: s = ibis.null("date") In [12]: s ``` raises an exception: ``` │ …/ibis/expr/types/pretty.py:139 in _ │ │ │ │ 136 @format_values.register(dt.Date) │ │ 137 def _(dtype, values, **fmt_kwargs): │ │ 138 │ dates = [v.date() if isinstance(v, datetime.datetime) else v for v in values] │ │ ❱ 139 │ return [Text.styled(d.isoformat(), "magenta") for d in dates] │ │ 140 │ │ 141 │ │ 142 @format_values.register(dt.Time) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ AttributeError: 'NoneType' object has no attribute 'isoformat' ``` ### What version of ibis are you using? `main` @ 12a45cfeaa25129b58632f1ea2dccbf468a84fbb ### What backend(s) are you using, if any? _No response_ ### Relevant log output ```sh ``` ### Code of Conduct - [x] I agree to follow this project's Code of Conduct
closed
2025-02-03T12:16:49Z
2025-02-05T15:43:36Z
https://github.com/ibis-project/ibis/issues/10780
[ "bug" ]
cpcloud
0
AirtestProject/Airtest
automation
1,219
connect_device说明示例错误,通过窗口名称匹配连接,不用单引号
**描述问题bug** 错误示例:connect_device("windows:///?title_re='.*explorer.*'") 正确示例:connect_device("windows:///?title_re=.*explorer.*") **相关截图** (贴出遇到问题时的截图内容,如果有的话) (在AirtestIDE里产生的图像和设备相关的问题,请贴一些AirtestIDE控制台黑窗口相关报错信息) ![image](https://github.com/AirtestProject/Airtest/assets/43411125/129ed8f8-8daf-4411-8620-db03fbdc1f35) **python 版本:** `python3.12` **airtest 版本:** `1.3.4`
open
2024-06-14T08:03:37Z
2024-06-14T08:03:37Z
https://github.com/AirtestProject/Airtest/issues/1219
[]
skyfire1997
0
gee-community/geemap
jupyter
2,114
Help needed
import geemap import geopandas as gpd import ee import pandas as pd from shapely.geometry import mapping import geemap.foliumap as geemap import pandas as pd import numpy as np ee.Initialize() region3_gdf = gpd.read_file("Untitled_layer.geojson") aoi_total_bounds = region3_gdf.total_bounds center_lat = (aoi_total_bounds[1] + aoi_total_bounds[3]) / 2 center_lon = (aoi_total_bounds[0] + aoi_total_bounds[2]) / 2 Map = geemap.Map(center=(center_lat, center_lon), zoom=10) Map.add_gdf(region3_gdf, layer_name="Region AOI", style_dict={'color': 'blue', 'fillColor': 'none'}) geojson = region3_gdf.__geo_interface__ roi = ee.Geometry(geojson['features'][0]['geometry']) modis_aod = ee.ImageCollection("MODIS/061/MCD19A2_GRANULES") start_date = '2023-11-01' end_date = '2023-11-11' modisaod_filtered = modis_aod.filterDate(start_date, end_date).filterBounds(roi) aod_mean_image = modisaod_filtered.mean().clip(roi) aod_viz_params = { 'min': 0.0, 'max': 1.0, 'palette': ['blue', 'green', 'yellow', 'red'] } Map.addLayer(aod_mean_image.select('Optical_Depth_047'), aod_viz_params, 'MODIS AOD (Clipped to Polygon)') grid_generator1k = grids.SquareGridGenerator(1_000) grid_gdf1k = grid_generator1k.generate_grid(region3_gdf) Map.add_gdf(grid_gdf1k, layer_name="Grid", style_dict={'color': '#95ddf1', 'fillColor': 'black', 'opacity': 0.5}) Map.addLayerControl() Map i want to extract date, time, latitudes, longitudes and Optical_Density_047 values for every cell inside the grid but i am having trouble doing it. please help as it either provides a client side error or query aborts after 5000 elements.
closed
2024-08-16T05:42:35Z
2024-08-16T13:12:55Z
https://github.com/gee-community/geemap/issues/2114
[]
sgindeed
0
chezou/tabula-py
pandas
238
WARNING: No Unicode mapping for C14 (1) in font ECONFB+AdvP4C4E74
<!--- Provide a general summary of your changes in the Title above --> # Summary of your issue I am trying to read a pdf file that has a table in it. Though the installation is successful, I encounter the below error when I try to extract the table from the pdf and it returns 0 records <!-- Write the summary of your issue here --> # Check list before submit - [x] Did you read [FAQ](https://tabula-py.readthedocs.io/en/latest/faq.html)? - [x] (Optional, but really helpful) Your PDF URL: [https://www.ijidonline.com/article/S1201-9712(20)30141-7/pdf](url) - [x] Paste the output of `import tabula; tabula.environment_info()` on Python REPL: ? `3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] Java version: java version "1.8.0_131" Java(TM) SE Runtime Environment (build 1.8.0_131-b11) Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode) tabula-py version: 2.1.0 platform: Windows-10-10.0.17134-SP0 uname: uname_result(system='Windows', node='1234-PC', release='10', version='10.0.17134', machine='AMD64', processor='Intel64 Family 6 Model 142 Stepping 9, GenuineIntel') linux_distribution: ('', '', '') mac_ver: ('', ('', '', ''), '')` If not possible to execute `tabula.environment_info()`, please answer following questions manually. - [x] Paste the output of `python --version` command on your terminal: yes, refer below `Python version: - [x] Paste the output of `java -version` command on your terminal: yes, refer below `java version "1.8.0_131" Java(TM) SE Runtime Environment (build 1.8.0_131-b11) Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)` - [x] Does `java -h` command work well?; Ensure your java command is included in `PATH` - [x] Write your OS and it's version: windows 10, # What did you do when you faced the problem? ## Code: ``` df = tabula.read_pdf('pd.pdf',multiple_tables=True) ``` ## Expected behavior: I expect to see the table from pdf in a dataframe ## Actual behavior: empty dataframe with warning as given below `'pages' argument isn't specified.Will extract only from page 1 by default. Got stderr: May 22, 2020 12:11:26 AM org.apache.pdfbox.pdmodel.font.PDSimpleFont toUnicode WARNING: No Unicode mapping for C14 (1) in font ECONFB+AdvP4C4E74 May 22, 2020 12:11:26 AM org.apache.pdfbox.rendering.PDFRenderer suggestKCMS INFO: Your current java version is: 1.8.0_131 May 22, 2020 12:11:26 AM org.apache.pdfbox.rendering.PDFRenderer suggestKCMS INFO: To get higher rendering speed on old java 1.8 or 9 versions, May 22, 2020 12:11:26 AM org.apache.pdfbox.rendering.PDFRenderer suggestKCMS INFO: update to the latest 1.8 or 9 version (>= 1.8.0_191 or >= 9.0.4), May 22, 2020 12:11:26 AM org.apache.pdfbox.rendering.PDFRenderer suggestKCMS INFO: or May 22, 2020 12:11:26 AM org.apache.pdfbox.rendering.PDFRenderer suggestKCMS INFO: use the option -Dsun.java2d.cmm=sun.java2d.cmm.kcms.KcmsServiceProvider May 22, 2020 12:11:26 AM org.apache.pdfbox.rendering.PDFRenderer suggestKCMS INFO: or call System.setProperty("sun.java2d.cmm", "sun.java2d.cmm.kcms.KcmsServiceProvider") May 22, 2020 12:11:27 AM org.apache.pdfbox.pdmodel.font.PDSimpleFont toUnicode WARNING: No Unicode mapping for C14 (1) in font ECONFB+AdvP4C4E74`
closed
2020-05-21T16:27:22Z
2020-06-04T02:26:03Z
https://github.com/chezou/tabula-py/issues/238
[]
Ak784
1
PokeAPI/pokeapi
graphql
1,208
Sylveon's back sprite is a blank value
<!-- Thanks for contributing to the PokéAPI project. To make sure we're effective, please check the following: - Make sure your issue hasn't already been submitted on the issues tab. (It has search functionality!) - If your issue is one of outdated API data, please note that we get our data from [veekun](https://github.com/veekun/pokedex/). If they are not up to date either, please look for or create an issue there. Otherwise, feel free to create an issue here. - Provide a clear description of the issue. - Provide a clear description of the steps to reproduce. - Provide a clear description of the expected behavior. Thank you! --> When I tried to get the back sprite for Sylveon it didn't show up. I don't know whether this is normal or not (I'm new to this). Please don't get frustrated, I'm looking to help... Thanks :)
open
2025-02-23T01:06:28Z
2025-03-17T00:09:09Z
https://github.com/PokeAPI/pokeapi/issues/1208
[]
superL132
4
developmentseed/lonboard
jupyter
492
Adding a legend?
The examples on `deck.gl` don't have an integrated legend but I saw [this suggestion on Pydeck](https://github.com/visgl/deck.gl/issues/4850#issuecomment-1188226561) and wonder if something similar would work with `lonboard`? There isn't an equivalent argument of `description` in the layers but it does look like [there is a description card component in `deck.gl` Jupyter widget](https://github.com/visgl/deck.gl/blob/02d6813584aa10d108e8cb28b7cc84ee6d6a31a9/modules/jupyter-widget/src/lib/components/description-card.js#L5) though not sure how to call it through `lonboard`..
open
2024-04-29T23:29:20Z
2024-09-09T13:05:49Z
https://github.com/developmentseed/lonboard/issues/492
[]
shriv
3
allenai/allennlp
pytorch
5,106
Setting `requires_grad = True` for optimizer parameters
**Is your feature request related to a problem? Please describe.** I'd like the ability to set `requires_grad=True` in the optimizer parameter groups. For instance: ``` ... "text_field_embedder": { "token_embedders": { "tokens": { "type": "pretrained_transformer", "model_name": transformer_model, "max_length": 512, "train_parameters": false, } } }, .... "optimizer": { ... "parameter_groups": [ # This turns on grad for the attention query bias vectors and the intermediate MLP bias vectors. # Since we set train_parameters to false in the token_embedder, these are the only weights that will be updated # in the token_embedder. [["^_text_field_embedder.token_embedder_tokens.transformer_model.*attention.self.query.bias$"], {"requires_grad": true}], [["^_text_field_embedder.token_embedder_tokens.transformer_model.*intermediate.dense.bias$"], {"requires_grad": true}] ] }, ``` In this config, I set the token embedder `train_parameters` to false, so it's not trainable. However, i want to train some of the parameters (defined by the regex). The intended outcome is that the token embedder parameters are non-trainable (since `train_parameters = False`), but a subset of them _are_ trainable (defined by the regex). The current behavior is that these groups are just ignored. This is because, the non-trainable parameters aren't even passed to the optimizer, so the regexes don't match anything / they accordingly can't have their `requires_grad` value changed. (i realize that i can do this by setting `train_parameters = True`, and then writing a regex to select out all of the parameters that _don't_ match the regexes above and then setting `{requires_grad: False}` on those. however, that regex is borderline unmaintainable / certainly not very readable.)
open
2021-04-09T01:01:56Z
2021-05-05T16:11:26Z
https://github.com/allenai/allennlp/issues/5106
[ "Contributions welcome", "Feature request" ]
nelson-liu
4
ray-project/ray
python
50,739
[Core] Negative available resources
### What happened + What you expected to happen Currently available CPU resource can be negative due to the behavior that `ray.get()` will temporarily release and acquire CPU resources. We should make `NotifyDirectCallTaskUnblocked` message sync and only sends the response back after we can acquire back the CPU resource. ### Versions / Dependencies master ### Reproduction script N/A ### Issue Severity None
open
2025-02-19T20:43:16Z
2025-03-22T00:57:14Z
https://github.com/ray-project/ray/issues/50739
[ "bug", "P1", "core" ]
jjyao
0
PokeAPI/pokeapi
graphql
1,151
Some Generation VIII and all Generation IX moves are returning 404
Some `Generation VIII` and all `Generation IX` moves seem to be returning 404 since yesterday. On the `Generation VIII` moves, the ones that seem to be returning 404 are also missing effect entries, for example: - [apple-acid](https://pokeapi.co/api/v2/move/apple-acid) - [court-change](https://pokeapi.co/api/v2/move/court-change) Other moves from the same generation seem to work as usual, for example: - [astral-barrage](https://pokeapi.co/api/v2/move/astral-barrage) - [dragon-energy](https://pokeapi.co/api/v2/move/dragon-energy) Example of a Generation IX move: - [kowtow-cleave](https://pokeapi.co/api/v2/move/kowtow-cleave) All of these move were returning data up until yesterday so I was wondering if anything has changed since then?
closed
2024-10-16T08:43:09Z
2024-10-20T10:57:50Z
https://github.com/PokeAPI/pokeapi/issues/1151
[]
andreferreiradlw
5
aleju/imgaug
machine-learning
810
Upstream as much as possible from `parameters.py` into `scipy.stats`
I feel like some things from `parameter.py`, such as visualizatiin and composition of distributions, should not really belong to this project and should probably belong to `scipy.stats`.
open
2022-02-25T16:32:46Z
2022-02-25T16:32:46Z
https://github.com/aleju/imgaug/issues/810
[]
KOLANICH
0
deeppavlov/DeepPavlov
nlp
1,511
Support Cuda 11
Hi, I am trying to Run NER model on A100. I get CUBLAS_STATUS_ALLOC_FAILED error. Is it something to do with CUDA ? A100 supports CUDA 11 - do you have a docker image compatible with CUDA 11? Thanks
closed
2021-12-27T16:56:02Z
2022-04-01T11:13:26Z
https://github.com/deeppavlov/DeepPavlov/issues/1511
[ "bug" ]
lizush23
2
onnx/onnxmltools
scikit-learn
545
Can I change attribute type to get a smaller model file size?
I installed ONNX 1.10.0, ONNX Runtime 1.10.0 and ONNXMLTools 1.10.0 I converted a XGBoost classifier model (trained in Python 3.8.5) to an ONNX model by `onnxmltools.convert.convert_xgboost()`. However I could not quantize the ONNX model by `onnxruntime.quantization.quantize_dynamic()`. I found there was only the `TreeEnsembleClassifier `op in the ONNX model. The `TreeEnsembleClassifier `op has many attributes with different type (ints, floats, ...). [reference](https://github.com/onnx/onnx/blob/main/docs/Changelog-ml.md#aionnxmltreeensembleclassifier-3) Attribute type can be found by uploading the ONNX model to https://netron.app/ After uploading the ONNX model to https://netron.app/, the `floats` type is as `float32`. As shown as highlight part in the screen capture below: ![screen_2022-05-04 171145](https://user-images.githubusercontent.com/5093417/166653306-1f8daff4-f5c7-42a3-b075-0b6888b36031.png) Is there any way to make the ONNX model (file size) smaller by changing the types of attributes? (or other alternatives) Like `float32 `to `float16 `or `float8 `or `int8`? I appreciate any help and guidance.
open
2022-05-04T09:32:31Z
2022-07-26T08:05:22Z
https://github.com/onnx/onnxmltools/issues/545
[]
shcchen
1
Evil0ctal/Douyin_TikTok_Download_API
fastapi
7
结果页增加快捷一键下载所有无水印视频
如果一次给的链接比较多,现在的结果页我感觉更像是详情条目,如果想增加一个按钮 一键下载所有视频 所有背景音乐 你有什么思路吗
closed
2022-03-13T09:10:42Z
2022-11-09T21:10:47Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/7
[ "enhancement", "Fixed" ]
wanghaisheng
10
paperless-ngx/paperless-ngx
machine-learning
7,733
[BUG] PAPERLESS_ACCOUNT_SESSION_REMEMBER not being recognized
### Description I'm using latest stable (2.12.1). Setting Environmet variable PAPERLESS_ACCOUNT_SESSION_REMEMBER as implementet in #6105 makes no difference: Regardles if the value is set to "true", "false" or left unset, the session cookie's expiry is always set to 14 days. ### Steps to reproduce 1. Clearing session cookie 2. Setting PAPERLESS_ACCOUNT_SESSION_REMEMBER to true --> cookie sessionid expiry: 14 days 3. Clearing session cookie 4. Setting PAPERLESS_ACCOUNT_SESSION_REMEMBER to false --> cookie sessionid expiry: 14 days ### Webserver logs ```bash N/A ``` ### Browser logs _No response_ ### Paperless-ngx version 2.12.1 ### Host OS Debian 12 aarch64 ### Installation method Docker - official image ### System status _No response_ ### Browser Edge, Chrome, Safari ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-09-18T08:25:44Z
2024-10-21T03:11:27Z
https://github.com/paperless-ngx/paperless-ngx/issues/7733
[ "not a bug" ]
oeiber
13
comfyanonymous/ComfyUI
pytorch
7,007
Are ComfyUI and SDXL incompatible?
### Your question The same prompt、model、parameters、and seeds are drawn in completely different pictures in WebUI and ComfyUI, and the effect of ComfyUI is worse. ComfyUI is very good when used with SD3.5 and flux, but the effect is a bit poor on SDXL. Is there something missing in my ComfyUI? Or is it not compatible with SDXL? ### Logs ```powershell ``` ### Other _No response_
closed
2025-02-28T03:13:26Z
2025-02-28T06:45:10Z
https://github.com/comfyanonymous/ComfyUI/issues/7007
[ "User Support" ]
Gaki1993
0
geopandas/geopandas
pandas
2,787
BUG: to_crs() does not recognize the current CRS
- [x] I have checked that this issue has not already been reported. - [x] I have confirmed this bug exists on the latest version of geopandas. - [ ] (optional) I have confirmed this bug exists on the main branch of geopandas. --- Let's create 2 geaopandas using the same coordinate, but different CRS (WGS84 and ED50) ```{python} import pandas as pd import geopandas as gpd CRS_ED50 = 'EPSG:4230' # ED50, https://epsg.io/4230 CRS_WGS84 = 'EPSG:4326' # WGS84, https://epsg.io/4326 CRS_proj = 'EPSG:21500' # BD50 (Brussels) / Belge Lambert 50, https://epsg.io/21500 # Atomium dfa = pd.DataFrame({'lat':[50.893989], 'lon':[4.340358]}) gdfa_wgs84 = (gpd.GeoDataFrame(dfa, crs = CRS_WGS84, geometry = gpd.points_from_xy(dfa.lon, dfa.lat))) print(gdfa_wgs84.crs) display(gdfa_wgs84) gdfa_ed50 = (gpd.GeoDataFrame(dfa, crs = CRS_ED50, geometry = gpd.points_from_xy(dfa.lon, dfa.lat))) print(gdfa_ed50.crs) display(gdfa_ed50) ``` #### Problem description Projecting both GeoDataFrames, the result is the same, even though the set CRS was different: ```python gdfa_wgs84.to_crs(crs = CRS_proj) ``` <html> <body> <!--StartFragment--> lat | lon | geometry -- | -- | -- 50.893989 | 4.340358 | POINT (148056.929 175811.492) <!--EndFragment--> </body> </html> ```{python} gdfa_ed50.to_crs(crs = CRS_proj) ``` <html> <body> <!--StartFragment--> lat | lon | geometry -- | -- | -- 50.893989 | 4.340358 | POINT (148056.929 175811.492) <!--EndFragment--> </body> </html> I have to convert first to WGS84 to be able to project it correctly. ```{python} gdfa_ed50.to_crs(crs = CRS_WGS84).to_crs(crs = CRS_proj) ``` <html> <body> <!--StartFragment--> lat | lon | geometry -- | -- | -- 50.893989 | 4.340358 | POINT (147966.530 175718.918) <!--EndFragment--> </body> </html> It looks the set CRS of the GeoDataFrame is **not recognized** by the `to_crs()`. --- #### Output of ``geopandas.show_versions()`` <details> SYSTEM INFO ----------- python : 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:14:58) [MSC v.1929 64 bit (AMD64)] executable : c:\Users\USER\AppData\Local\miniconda3\envs\ENV\python.exe machine : Windows-10-10.0.19044-SP0 GEOS, GDAL, PROJ INFO --------------------- GEOS : 3.11.1 GEOS lib : None GDAL : 3.6.2 GDAL data dir: None PROJ : 9.1.1 PROJ data dir: C:\Users\USER\AppData\Local\miniconda3\envs\ENV\Library\share\proj PYTHON DEPENDENCIES ------------------- geopandas : 0.12.2 numpy : 1.24.1 pandas : 1.5.3 pyproj : 3.4.1 shapely : 2.0.1 fiona : 1.9.0 geoalchemy2: None geopy : None matplotlib : 3.6.3 mapclassify: 2.5.0 pygeos : None pyogrio : None psycopg2 : None pyarrow : None rtree : 1.0.1 </details>
open
2023-02-11T19:01:42Z
2023-03-03T15:08:44Z
https://github.com/geopandas/geopandas/issues/2787
[ "bug", "upstream issue" ]
kbzsl
9
sunscrapers/djoser
rest-api
52
Feedback and questions
hi Guys, I do like the product. The following is the feedback and questions: **/password/reset** If you provide invalid email it does return you 200 HTTP code and doesn't tell you that email is not found in the database. I'd like to get a different response back, such as 404 with "details": "such email doesn't exists" **How to integrate with custom model inherited from django.contrib.auth.user model?** Would be awesome if small tutorial is provided **Update profile - 3 methods?** What's the motivation to make a 3 different methods to update profile /me and POST /username, POST /password? I think it's nicer to just call PUT /me method to update username, password. Otherwise a client should hit 3 different API endpoints. **How to update other fields of profile with PUT /me?** It seems right now it only updates email field and nothing else. What about first_name, last_name? What about other custom fields of the model (question #2 above)? **HTTP Error codes (404, 422)** For example when you do POST /login with non-existing username you get this ``` 400 { "non_field_errors": [ "Unable to login with provided credentials." ] } ``` but it's correct request, while the response says: 400 (Bad Request). It would be nicer to have 404, error. Also when you do POST /register and provide non-unique username you get this: ``` 400 { "username": [ "This field must be unique." ] } ``` however this is a business logic error and code 422 is better for such use case **Generic message** If I do POST /username and provide incorrect value of current_password I get this: ``` 400 { "current_password": [ "Invalid password." ] } ``` Which makes it hard for the client (say Android mobile app) as I need to know and define maps ahead of time. Would not it better to return something like this: ``` 422 { "errors": [ {"field": "password", "message""Invalid password provided"}, .... ] } ``` the same would be for registration and other methods. That way I don't need to define the model for each JSON response body, as they're all generic. Otherwise for each API call you have to create a custom parser (and you have to know all the fields ahead of time). **Validation for Incorrect request** If I do: _PUT /me_ ``` { "email": "admin@admin.com", "eeee": "jim", "zzz": "smith" } ``` I'll get 200 HTTP code back: ``` { "email": "admin@admin.com", "id": 1, "username": "admin" } ``` However the example above submitted 2 random fields. I would value if API return something like this: ``` 422 or 400 { "errors": [ {"field": "eee", "message""Unknown field"}, {"field": "zzz", "message""Unknown field"}, .... ] } ```
closed
2015-06-03T01:51:14Z
2023-04-15T13:50:42Z
https://github.com/sunscrapers/djoser/issues/52
[ "enhancement", "question" ]
dmitry-saritasa
4
aimhubio/aim
tensorflow
2,807
Problem of using Aim
## ❓Question Dear author, I use Aim to track training metrics during Federated Learning where multi participants trains a model using their own data collaboratively. Each participant has metrics such as training loss, trianing accuracy. And I want to plot the same metric of all participant in the same figure so that I can conviently observe the difference of behaviour among participants. Is there a way for me to do this?
open
2023-06-02T02:13:53Z
2023-06-05T19:49:11Z
https://github.com/aimhubio/aim/issues/2807
[ "type / question" ]
lhq12
1
comfyanonymous/ComfyUI
pytorch
6,763
mat1 and mat2 shapes cannot be multiplied (1x768 and 2816x1280)
### Expected Behavior ![Image](https://github.com/user-attachments/assets/638edd07-a0c7-4981-a122-1727ae75fde3) ### Actual Behavior 11111111 ### Steps to Reproduce 1111111 ### Debug Logs ```powershell 111111111 ``` ### Other 11111
closed
2025-02-10T10:40:52Z
2025-03-11T10:44:51Z
https://github.com/comfyanonymous/ComfyUI/issues/6763
[ "Potential Bug" ]
hitcaven
2
Lightning-AI/pytorch-lightning
deep-learning
19,861
Validation dataloader is added to train dataloader after first epoch
### Bug description Validation dataloader is added to train dataloader after first epoch. What the f*ck ? ### What version are you seeing the problem on? v1.8 ### How to reproduce the bug ```python trainer.fit(model, train_dataloader, valid_dataloader) ``` ### Error messages and logs ``` # Error messages and logs here please ``` ewgtwag ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): #- PyTorch Lightning Version (e.g., 1.5.0): #- Lightning App Version (e.g., 0.5.2): #- PyTorch Version (e.g., 2.0): #- Python version (e.g., 3.9): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): #- Running environment of LightningApp (e.g. local, cloud): ``` </details> egewsg ### More info ![image](https://github.com/Lightning-AI/pytorch-lightning/assets/65295663/b61f4697-83c9-4eaa-ad60-13b2b9d85931)
closed
2024-05-12T15:55:37Z
2024-05-12T16:57:23Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19861
[ "bug", "needs triage", "ver: 1.8.x" ]
AndreyStille
0
Anjok07/ultimatevocalremovergui
pytorch
1,205
Mac error
I keep getting this Mac error message when I try to run the Ultimate Vocal Remover. I am using a MacBook M1 Sonoma 14.0 " Ensemble Mode - 1_HP-UVR - Model 1/2 File 1/1 Loading model ... Done! File 1/1 Running inference... Process failed, please see error log Time Elapsed: 00:00:03" Can someone guide me on what the problem is? thanks
open
2024-02-25T13:28:28Z
2024-04-08T07:40:51Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1205
[]
Gazzanic
1
gradio-app/gradio
machine-learning
10,268
gr.Image fullscreen button does not scale the image but scales the EventData
### Describe the bug When I load an image into gr.Image which is smaller than my screen, and I press the fullscreen button, the image remains the same size and surrounded by black borders, rather than being enlarged to fill the screen. I would expect the fullscreen button to make the image larger, otherwise, what is the point? However, I noticed that when in fullscreen mode, the EventData x/y coordinates DO get scaled as if the image is fullscreen, which breaks use cases where you need to obtain the clicked coordinates. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ``` import gradio as gr # Define a function to handle the image click event def handle_click(image, event_data: gr.SelectData): # Extract the coordinates from the event data x, y = event_data.index # Return the coordinates as a string return f"Clicked at coordinates: ({x}, {y})" # Create a Gradio Blocks app with gr.Blocks() as demo: # Add an Image component for the user to upload an image image_input = gr.Image(label="Upload an Image") # Add a Textbox to display the coordinates coordinates_output = gr.Textbox(label="Coordinates") # Attach the click event to the image input image_input.select(handle_click, [image_input], coordinates_output) # Launch the app if __name__ == "__main__": demo.launch(show_error=True) ``` ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell Operating System: Windows gradio version: 5.9.1 gradio_client version: 1.5.2 ``` ### Severity I can work around it
open
2024-12-30T17:14:12Z
2025-03-23T21:27:20Z
https://github.com/gradio-app/gradio/issues/10268
[ "bug" ]
Zarxrax
4
huggingface/datasets
deep-learning
6,621
deleted
...
closed
2024-01-27T16:59:58Z
2024-01-27T17:14:43Z
https://github.com/huggingface/datasets/issues/6621
[]
kopyl
0
paperless-ngx/paperless-ngx
django
8,082
[BUG] TIF document is not displayed when editing
### Description Hello, As you can see, in the overview all TIF documents are displayed like the PDF documents: ![grafik](https://github.com/user-attachments/assets/dc9966a6-63bc-4a52-b436-6452fe715dd9) However, if I edit a TIF document, it is not displayed on the right. ![grafik](https://github.com/user-attachments/assets/50485f12-2419-4d2d-be24-1251cefd0e54) ### Steps to reproduce Upload a TIF file to Paperless ### Webserver logs ```bash Which log is required here? ``` ### Browser logs _No response_ ### Paperless-ngx version 2.13.0 ### Host OS Synology 723+ / Container Manager / Docker ### Installation method Docker - official image ### System status ```json { "pngx_version": "2.13.0", "server_os": "Linux-4.4.302+-x86_64-with-glibc2.36", "install_type": "docker", "storage": { "total": 5749758619648, "available": 2635827060736 }, "database": { "type": "postgresql", "url": "paperless", "status": "OK", "error": null, "migration_status": { "latest_migration": "paperless_mail.0027_mailaccount_expiration_mailaccount_account_type_and_more", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://broker:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2024-10-28T17:38:44.082029+01:00", "index_error": null, "classifier_status": "OK", "classifier_last_trained": "2024-10-28T16:05:37.881750Z", "classifier_error": null } } ``` ### Browser FireFox v131.0.3 ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-10-28T16:47:58Z
2024-12-01T19:46:20Z
https://github.com/paperless-ngx/paperless-ngx/issues/8082
[ "not a bug" ]
OSch24
7
flairNLP/flair
nlp
2,657
TARS training error
Hi, I would like to fine-tune the tars-ner few shot model with a few additional examples. I think my issue might be related to https://github.com/flairNLP/flair/issues/1540, but I'm getting a different error. I tried with the following code: ``` label_dict = corpus.make_label_dictionary(label_type='ner') tars = TARSTagger.load('tars-ner') tars.add_and_switch_to_new_task('med_device_ner',label_dictionary=label_dict, label_type='ner') trainer = ModelTrainer(tars, corpus) trainer.train(base_path='resources/taggers/continued_model', # path to store the model artifacts learning_rate=0.02, mini_batch_size=16, mini_batch_chunk_size=4, max_epochs=5, ) ``` The error I'm getting is: ``` --------------------------------------------------------------------------- IndexError Traceback (most recent call last) /var/folders/st/9h9r98294q54zswbxdsg8z980000gp/T/ipykernel_31425/4102635640.py in <module> 6 7 labels = ['TRADENAME'] ----> 8 tars.add_and_switch_to_new_task('ner',label_dictionary=label_dict, label_type='ner') 9 10 trainer = ModelTrainer(tars, corpus) [dev.txt](https://github.com/flairNLP/flair/files/8197089/dev.txt) ~/opt/anaconda3/envs/basic_env/lib/python3.9/site-packages/flair/models/tars_model.py in add_and_switch_to_new_task(self, task_name, label_dictionary, label_type, multi_label, force_switch) 202 for tag in label_dictionary: 203 if tag == '<unk>' or tag == 'O': con [dev.txt](https://github.com/flairNLP/flair/files/8197083/dev.txt) tinue --> 204 if tag[1] == "-": 205 tag = tag[2:] 206 tag_dictionary.add_item(tag) IndexError: string index out of range ``` I'm also attaching a small sample of the data I tried to train with. Thank you so much for your time!
closed
2022-03-07T10:57:43Z
2022-06-27T14:05:35Z
https://github.com/flairNLP/flair/issues/2657
[ "question" ]
MagdalenaMladenova
3
deepset-ai/haystack
machine-learning
8,324
Fix broken md in ChatPromptBuilder API ref
closed
2024-09-04T15:30:19Z
2024-09-05T09:13:24Z
https://github.com/deepset-ai/haystack/issues/8324
[]
dfokina
0
quantumlib/Cirq
api
6,440
Cannot serialize cirq_google.experimental.ops.coupler_pulse.CouplerPulse()
**Description of the issue** Serialization isn't supported for `cirq_google.experimental.CouplerPulse()` **How to reproduce the issue** Run the following circuit: ``` this_circuit = cirq.Circuit( cirq_google.experimental.CouplerPulse(hold_time=hold_time, coupling_mhz = 20)(*qubits), cirq.measure(*qubits, key = 'thequbits') ) ``` <details> Cannot serialize op cirq_google.experimental.ops.coupler_pulse.CouplerPulse(hold_time=5, coupling_mhz=20, rise_time=cirq.Duration(nanos=8), padding_time=cirq.Duration(picos=2500.0), q0_detune_mhz=0.0, q1_detune_mhz=0.0).on(cirq.GridQubit(4, 5), cirq.GridQubit(5, 5)) of type <class 'cirq_google.experimental.ops.coupler_pulse.CouplerPulse'> </details> **Cirq version** 1.3.0
closed
2024-02-02T19:44:34Z
2024-02-26T21:38:41Z
https://github.com/quantumlib/Cirq/issues/6440
[ "kind/bug-report", "triage/accepted", "area/google/qrp" ]
aasfaw
2
huggingface/datasets
pytorch
7,147
IterableDataset strange deadlock
### Describe the bug ``` import datasets import torch.utils.data num_shards = 1024 def gen(shards): for shard in shards: if shard < 25: yield {"shard": shard} def main(): dataset = datasets.IterableDataset.from_generator( gen, gen_kwargs={"shards": list(range(num_shards))}, ) dataset = dataset.shuffle(buffer_size=1) dataset = datasets.interleave_datasets( [dataset, dataset], probabilities=[1, 0], stopping_strategy="all_exhausted" ) dataset = dataset.shuffle(buffer_size=1) dataloader = torch.utils.data.DataLoader( dataset, batch_size=8, num_workers=8, ) for i, batch in enumerate(dataloader): print(batch) if i >= 10: break print() if __name__ == "__main__": for _ in range(100): main() ``` ### Steps to reproduce the bug Running the script above, at some point it will freeze. - Changing `num_shards` from 1024 to 25 avoids the issue - Commenting out the final shuffle avoids the issue - Commenting out the interleave_datasets call avoids the issue As an aside, if you comment out just the final shuffle, the output from interleave_datasets is not shuffled at all even though there's the shuffle before it. So something about that shuffle config is not being propagated to interleave_datasets. ### Expected behavior The script should not freeze. ### Environment info - `datasets` version: 3.0.0 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.5 - `huggingface_hub` version: 0.24.7 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1 I observed this with 2.21.0 initially, then tried upgrading to 3.0.0 and could still repro.
closed
2024-09-12T18:59:33Z
2024-09-23T09:32:27Z
https://github.com/huggingface/datasets/issues/7147
[]
jonathanasdf
6
deepset-ai/haystack
nlp
9,030
Enhance Type Validation to Handle Callable Bare Types
**Is your feature request related to a problem? Please describe.** - The current implementation for bare type validation does not adequately support callable bare types due to their unique structure. **Describe the solution you'd like** - Update the type validation logic to include specific handling for callable bare types by incorporating `_check_callable_compatibility`. This ensures that callable types are validated correctly and consistently. For example, the test case `pytest.param(Callable[[Any], Any], Callable)` should pass with the updated implementation.
open
2025-03-12T16:09:18Z
2025-03-14T11:41:20Z
https://github.com/deepset-ai/haystack/issues/9030
[]
mdrazak2001
0
encode/apistar
api
465
KeyError: 'return_value' on handlers that annotate `http.Response` on return
I ran into this while upgrading my app to 0.5. Minimal example: ```python from apistar import App, Route, http def index() -> http.Response: return http.Response(b"hello", headers={ "content-type": "foo" }) app = App(routes=[Route("/", "GET", index)]) app.serve(host="127.0.0.1", port=8000, debug=True) ``` Visiting `/` will raise a KeyError: ``` Traceback (most recent call last): File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/app.py", line 202, in __call__ return self.injector.run(funcs, state) File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/injector.py", line 104, in run state[output_name] = func(**func_kwargs) File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/app.py", line 160, in finalize_wsgi raise exc_info[0].with_traceback(exc_info[1], exc_info[2]) File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/app.py", line 198, in __call__ return self.injector.run(funcs, state) File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/injector.py", line 104, in run state[output_name] = func(**func_kwargs) File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/app.py", line 193, in __call__ return self.injector.run(funcs, state) File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/injector.py", line 102, in run func_kwargs = {key: state[val] for key, val in kwargs.items()} File "/Users/bogdan/.virtualenvs/blockfraud/lib/python3.6/site-packages/apistar/server/injector.py", line 102, in <dictcomp> func_kwargs = {key: state[val] for key, val in kwargs.items()} KeyError: 'return_value' ``` It works fine if you drop the `-> http.Response` annotation.
closed
2018-04-19T06:33:28Z
2018-04-19T08:47:55Z
https://github.com/encode/apistar/issues/465
[]
Bogdanp
2
ultralytics/ultralytics
computer-vision
18,982
YOLOv11 vs SSD performance on 160x120 infrared images
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hello, in our previous project, we successfully implemented object detection in images from 160x120 infrared camera on Raspberry Pi 4. We used SqueezeNet-SSD network trained with CaffeSSD framework. Its performance was very good for our needs (about 60 ms per frame) with excellent accuracy on normal-sized objects (confidence mostly over 90%) but lower accuracy on smaller objects (mostly detected correctly with very low confidence 30%). Later, we stripped SqueezeNet's fire modules to simple squeeze-expand blocks, added feature-fusion for the first SSD layer and modified priorboxes ratios to match our dataset. We reached detection speed of about 30 ms per frame and excellent accuracy for all objects. In our upcoming project, we are continuing with similar task but we would like to use more innovative approach, because Caffe framework has not been maintained for years anymore. We're experimenting with Ultralytics framework and it looks very modern to us. We're also thinking about switching to Raspberry Pi 5, maybe with Hailo8 kit which is not supported by CaffeSSD so Ultralytics seems to be good way to go. Our dataset consists of 5000 training grayscale images and 1000 testing images with resolution of 160x120. Many augmented versions of each training image was added to the training dataset thus it has over 40000 images. We identify 5 types of objects - example: face (about 64x100) and eyes (45x10). It's exactly the same dataset that was used for training our SSD networks. Now we have trained several versions of YOLOv11 with batch size of 128 for 300 epochs. Results are good, but not as good as our original SSD network. Here, I would like to share our benchmarks with others: **Detection speed** ``` RPi5 Rock 4B+ RPi4 RPi 5 + Hailo 8 ---------------------------------------------------------------------------------------------------- SEnet-FSSD-160x120 7.542 ms 27.478 ms 29.263 ms - SqueezeNet-SSD 10.074 ms 32.615 ms 38.491 ms - Yolo11n-160 12.317 ms 49.212 ms 45.283 ms 4.252 ms Yolo11n-320 48.207 ms 177.076 ms 178.268 ms 7.236 ms Yolo11s-160 30.835 ms 129.767 ms 127.677 ms 10.999 ms Yolo11m-320 313.738 ms 1121.319 ms 1180.839 ms 24.829 ms ``` As you can see, even the nano version of YOLOv11 is much slower than the original SqueezeNet-SSD. Although we would prefer better times, it is still usable for our needs, especially when we're thinking about Hailo8. **Detection accuracy** I don't have specific objective statistics here but it is worst just visually. Even yolo11m-320 version provides worst results. Rectangles are not as exact, confidences are lower and there is a bit higher number of false results. Just for illustration on 1000 validation images: (mean wIoU is average of IoU for all detections with threshold of 50 weighted by the confidence) SEnet-FSSD-160x120 - total detections: 2014, false positives: 6, false negatives: 9, mean wIoU: 0.892 SqueezeNet-SSD - total detections: 2029, false positives: 59, false negatives: 47, mean wIoU: 0.855 Yolo11n-160 - total detections: 2027, false positives: 28, false negatives: 18, mean wIoU: 0.851 Yolo11s-160 - total detections: 2023, false positives: 26, false negatives: 20, mean wIoU: 0.859 Yolo11m-320 - total detections: 2078, false positives: 71, false negatives: 12, mean wIoU: 0.845 ``` $ ./test image.png senet-fssd-160x120 0: class = 3, confidence = 1.000000, [61, 10, 124, 107] 1: class = 1, confidence = 0.999990, [72, 49, 115, 57] $ ./test image.png squeezenet-ssd-160x120 0: class = 3, confidence = 1.000000, [61, 10, 123, 108] 1: class = 1, confidence = 0.774772, [72, 49, 114, 57] $ ./test image.png yolo11n-160.onnx 0: class = 3, confidence = 0.920182, [60, 11, 123, 99] 1: class = 1, confidence = 0.766865, [71, 49, 115, 57] $ ./test image.png yolo11m-320.onnx 0: class = 3, confidence = 0.895741, [61, 12, 123, 103] 1: class = 1, confidence = 0.745349, [72, 50, 115, 56] ``` Maybe the problem lies in training hyperparameters. We just set batch size to 128 and number of epochs to 300. I would appreciate any ideas. Thank you! Meanwhile, I've been trying to simulate our SEnet-FSSD using YAML model in Ultralytics. I don't know if it is good idea, I just would like to see if it changes anything. I made pure copy of our network, but it is not possible to train it, because of layers sizes mismatch. MaxPool2d layers don't seem to downscale the resolution in the same way as it happens in Caffe framework. There is also no Eltwise (element sum) layer so I had to change it to Concat layer. Adding padding=1 to all MaxPool2d layers works but it automatically changes the input resolution to 192. But results are practically very similar to other YOLO models and not to our original network. Here is the model that is 1:1 rewrite of our SSD network. Maybe, someone will be able to fix it: ``` nc: 5 activation: nn.ReLU6() backbone: - [-1, 1, Conv, [64, 3, 2, 0]] # 0,conv1 - [-1, 1, nn.MaxPool2d, [3, 2]] # 1,pool1 - [-1, 1, Conv, [32, 1, 1, 0] ] # 2,fire2 squeeze - [-1, 1, Conv, [64, 3, 1, 1] ] # 3,fire2 expand - [-1, 1, Conv, [32, 1, 1, 0] ] # 4,fire3 squeeze - [-1, 1, Conv, [64, 3, 1, 1] ] # 5,fire3 expand - [-1, 1, nn.MaxPool2d, [3, 2]] # 6,pool3 - [-1, 1, Conv, [64, 1, 1, 0] ] # 7,fire4 squeeze - [-1, 1, Conv, [128, 3, 1, 1] ] # 8,fire4 expand - [-1, 1, Conv, [64, 1, 1, 0] ] # 9,fire5 squeeze - [-1, 1, Conv, [128, 3, 1, 1] ] # 10,fire5 expand - [-1, 1, nn.MaxPool2d, [3, 2]] # 11,pool5 - [-1, 1, Conv, [96, 1, 1, 0] ] # 12,fire6 squeeze - [-1, 1, Conv, [192, 3, 1, 1] ] # 13,fire6 expand - [-1, 1, Conv, [96, 1, 1, 0] ] # 14,fire7 squeeze - [-1, 1, Conv, [192, 3, 1, 1] ] # 15,fire7 expand - [-1, 1, Conv, [64, 1, 1, 0] ] # 16,fire8 squeeze - [-1, 1, Conv, [256, 3, 1, 1] ] # 17,fire8 expand - [-1, 1, Conv, [64, 1, 1, 0] ] # 18,fire9 squeeze - [-1, 1, Conv, [256, 3, 1, 1] ] # 19,fire9 expand head: - [-1, 1, nn.MaxPool2d, [3, 2]] # 20,pool9 - [-1, 1, Conv, [96, 1, 1, 0] ] # 21,fire10 squeeze - [-1, 1, Conv, [384, 3, 1, 1] ] # 22,fire10 expand - [-1, 1, nn.MaxPool2d, [3, 2]] # 23,pool10 - [-1, 1, Conv, [64, 1, 1, 0] ] # 24,fire11 squeeze - [-1, 1, Conv, [256, 3, 1, 1] ] # 25,fire11 expand # feature-fusion layers - [19, 1, Conv, [128, 1, 1, 0] ] # 26 - [-1, 1, nn.Upsample, [None, 2, "nearest"]] # 27 - [22, 1, Conv, [128, 1, 1, 0] ] # 28 - [-1, 1, nn.Upsample, [None, 4, "nearest"]] # 29 - [[29, 27, 10], 1, Concat, [1]] # 30 - [-1, 1, nn.BatchNorm2d, []] # 31 - [-1, 1, Conv, [64, 1, 1, 0] ] # 32 - [-1, 1, Conv, [128, 3, 1, 1] ] # 33 - [[25, 22, 19, 33], 1, Detect, [nc]] ``` ### Additional EDIT: I forgot to provide information that all detections are done using OpenCV in C++
open
2025-02-03T20:01:01Z
2025-02-27T22:16:34Z
https://github.com/ultralytics/ultralytics/issues/18982
[ "question", "detect", "embedded" ]
BigMuscle85
32
apify/crawlee-python
automation
887
A proxy created with param proxy_urls crashes PlaywrightCrawler
Test program. ```python import asyncio from crawlee.crawlers import PlaywrightCrawler, PlaywrightCrawlingContext from crawlee.proxy_configuration import ProxyConfiguration # If these go out of service then replace them with your own. proxies = ['http://178.48.68.61:18080', 'http://198.245.60.202:3128', 'http://15.204.240.177:3128',] proxy_configuration_fails = ProxyConfiguration(proxy_urls=proxies) proxy_configuration_succeeds = ProxyConfiguration( tiered_proxy_urls=[ # No proxy tier. (Not needed, but optional in case you do not want to use any proxy on lowest tier.) [None], # lower tier, cheaper, preferred as long as they work proxies, # higher tier, more expensive, used as a fallback ] ) async def main() -> None: crawler = PlaywrightCrawler( max_requests_per_crawl=5, # Limit the crawl to 5 requests. headless=False, # Show the browser window. browser_type='firefox', # Use the Firefox browser. proxy_configuration = proxy_configuration_fails, # proxy_configuration=proxy_configuration_succeeds, ) # Define the default request handler, which will be called for every request. @crawler.router.default_handler async def request_handler(context: PlaywrightCrawlingContext) -> None: context.log.info(f'Processing {context.request.url} ...') # Enqueue all links found on the page. await context.enqueue_links() # Extract data from the page using Playwright API. data = { 'url': context.request.url, 'title': await context.page.title(), 'content': (await context.page.content())[:100], } # Push the extracted data to the default dataset. await context.push_data(data) # Run the crawler with the initial list of URLs. await crawler.run(['https://crawlee.dev']) # Export the entire dataset to a JSON file. await crawler.export_data('results.json') # Or work with the data directly. data = await crawler.get_data() crawler.log.info(f'Extracted data: {data.items}') if __name__ == '__main__': asyncio.run(main()) ``` Terminal output. ``` /Users/matecsaj/PycharmProjects/wat-crawlee/venv/bin/python /Users/matecsaj/Library/Application Support/JetBrains/PyCharm2024.3/scratches/scratch_4.py [crawlee._autoscaling.snapshotter] INFO Setting max_memory_size of this run to 8.00 GB. [crawlee.crawlers._playwright._playwright_crawler] INFO Current request statistics: ┌───────────────────────────────┬──────────┐ │ requests_finished │ 0 │ │ requests_failed │ 0 │ │ retry_histogram │ [0] │ │ request_avg_failed_duration │ None │ │ request_avg_finished_duration │ None │ │ requests_finished_per_minute │ 0 │ │ requests_failed_per_minute │ 0 │ │ request_total_duration │ 0.0 │ │ requests_total │ 0 │ │ crawler_runtime │ 0.038974 │ └───────────────────────────────┴──────────┘ [crawlee._autoscaling.autoscaled_pool] INFO current_concurrency = 0; desired_concurrency = 2; cpu = 0.0; mem = 0.0; event_loop = 0.0; client_info = 0.0 [crawlee.crawlers._playwright._playwright_crawler] ERROR Request failed and reached maximum retries Traceback (most recent call last): File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/crawlers/_basic/_context_pipeline.py", line 65, in __call__ result = await middleware_instance.__anext__() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/crawlers/_playwright/_playwright_crawler.py", line 138, in _open_page crawlee_page = await self._browser_pool.new_page(proxy_info=context.proxy_info) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/_utils/context.py", line 38, in async_wrapper return await method(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/browsers/_browser_pool.py", line 241, in new_page return await self._get_new_page(page_id, plugin, proxy_info) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/browsers/_browser_pool.py", line 270, in _get_new_page page = await asyncio.wait_for( ^^^^^^^^^^^^^^^^^^^^^^^ ...<5 lines>... ) ^ File "/Library/Frameworks/Python.framework/Versions/3.13/lib/python3.13/asyncio/tasks.py", line 507, in wait_for return await fut ^^^^^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/browsers/_playwright_browser_controller.py", line 119, in new_page self._browser_context = await self._create_browser_context(browser_new_context_options, proxy_info) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/matecsaj/PycharmProjects/wat-crawlee/venv/lib/python3.13/site-packages/crawlee/browsers/_playwright_browser_controller.py", line 174, in _create_browser_context if browser_new_context_options['proxy']: ~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^ KeyError: 'proxy' [crawlee._autoscaling.autoscaled_pool] INFO Waiting for remaining tasks to finish [crawlee.crawlers._playwright._playwright_crawler] INFO Error analysis: total_errors=3 unique_errors=1 [crawlee.crawlers._playwright._playwright_crawler] INFO Final request statistics: ┌───────────────────────────────┬───────────┐ │ requests_finished │ 0 │ │ requests_failed │ 1 │ │ retry_histogram │ [0, 0, 1] │ │ request_avg_failed_duration │ 0.025703 │ │ request_avg_finished_duration │ None │ │ requests_finished_per_minute │ 0 │ │ requests_failed_per_minute │ 14 │ │ request_total_duration │ 0.025703 │ │ requests_total │ 1 │ │ crawler_runtime │ 4.189647 │ └───────────────────────────────┴───────────┘ [crawlee.storages._dataset] WARN Attempting to export an empty dataset - no file will be created [crawlee.crawlers._playwright._playwright_crawler] INFO Extracted data: [] Process finished with exit code 0 ```
closed
2025-01-09T01:26:37Z
2025-01-17T11:22:57Z
https://github.com/apify/crawlee-python/issues/887
[ "bug", "t-tooling" ]
matecsaj
3
apragacz/django-rest-registration
rest-api
51
Deprecate DefaultLoginSerializer.get_authenticated_user in favor of separate LOGIN_AUTHENTICATOR function
closed
2019-05-11T15:38:49Z
2020-09-29T14:42:28Z
https://github.com/apragacz/django-rest-registration/issues/51
[ "release:next-major-version" ]
apragacz
0
tqdm/tqdm
pandas
887
update paper
Discuss updating [paper](https://github.com/tqdm/tqdm/blob/master/examples/paper.md) (archived at https://doi.org/10.21105/joss.01277) as per https://github.com/openjournals/joss-reviews/issues/1277. - in particular, authors and acknowledgements - upon request of Arfon Smith (@arfon) on behalf of the JOSS editorial team - in addition to assignees; cc @noamraph, @Benjamin-Lee, @GregaVrbancic
open
2020-01-26T01:48:24Z
2020-03-09T12:36:17Z
https://github.com/tqdm/tqdm/issues/887
[ "question/docs ‽" ]
casperdcl
94
wandb/wandb
data-science
9,435
[Bug-App]: The sweep search parameter in offline mode causes most of the results to repeat and loops these results.
### Describe the bug <!--- Describe your issue here ---> wandb The sweep search parameter in offline mode, after a period of time (about 1 hour) the later searches will repeat the results of the previous K runs and loop through the results of these K searches until the sweep_num=end search ends. even I update the recently version.
closed
2025-02-07T03:08:09Z
2025-02-13T22:04:28Z
https://github.com/wandb/wandb/issues/9435
[ "ty:bug", "a:app" ]
Tokenmw
3
cvat-ai/cvat
computer-vision
8,312
creating task issue
I recently applied for data annotation position, I was given some tasks to do and I was unable to create the task
closed
2024-08-16T11:20:11Z
2024-08-17T04:38:02Z
https://github.com/cvat-ai/cvat/issues/8312
[]
ToshVits
1
vastsa/FileCodeBox
fastapi
194
增加上传和下载速度
建议后期增加局域网上传和下载的功能,能够自行选择,公网下的优势在于方便但是受限于服务器的带宽,建议未来开发者可以尝试跟进这个功能,进入页面由用户选择公网还是局域网。
open
2024-08-15T07:30:08Z
2025-02-06T12:33:04Z
https://github.com/vastsa/FileCodeBox/issues/194
[]
chenghua-x
2
PaddlePaddle/models
nlp
5,296
CV video_tag中,3000个标签是什么及模型训练的AUC和准确率是什么
想用一下飞桨的视频标签模型,有些疑惑的地方: https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.7/hub_module/modules/video/classification/videotag_tsn_lstm ![Uploading image.png…]() 需要的是: 1. 3000个标签是哪些 2. 模型训练的AUC和准确率是什么
closed
2021-04-06T07:44:13Z
2021-04-07T06:55:09Z
https://github.com/PaddlePaddle/models/issues/5296
[]
zhangweijiqn
2
dropbox/sqlalchemy-stubs
sqlalchemy
244
sql-alchemy 1.4 - using is_not on column leads to mypy warning, while using isnot does not lead to the warning
In the sqlalchemy version 1.4, the method isnot was renamed to is_not, and the old method was left for backward compatibility. (see https://docs.sqlalchemy.org/en/14/core/sqlelement.html#sqlalchemy.sql.expression.ColumnOperators.is_not) However, if one try to use is_not on the column expression (something like: ``` ... .where(and_(pch_alias.c.New_Id.is_not(None)))) ``` ) then one gets following warning in mypy: ` error: "Column[Any]" has no attribute "is_not" ` However, if one is using older isnot construct, then mypy produces no warning. As is_not now is a recommended method, I think stubs should function with it without warnings.
open
2022-06-24T11:22:43Z
2022-10-20T16:56:17Z
https://github.com/dropbox/sqlalchemy-stubs/issues/244
[]
serhiy-yevtushenko
1
huggingface/pytorch-image-models
pytorch
1,601
[FEATURE] Script to convert weight from Jax to PyTorch
**Is your feature request related to a problem? Please describe.** I am trying to create multiple checkpoints of ViT at different iterations. Are there any systematic way to perform such conversion? **Describe the solution you'd like** I would like to be able to convert JAX ViT model to a PyTorch model, similar to this model (https://huggingface.co/google/vit-base-patch16-224) **Describe alternatives you've considered** I have tried to start pre-training HF models on A100 but so far was not successful to reach to same accuracy.
closed
2022-12-23T09:16:04Z
2023-02-08T22:56:52Z
https://github.com/huggingface/pytorch-image-models/issues/1601
[ "enhancement" ]
yazdanbakhsh
6
youfou/wxpy
api
370
发送消息失败
如图所示 为什么发送消息的代码会报错呢? 我是python小白。 `my_friends = bot.search().search('Shi',sex=MALE,)` `my_friends.send("hi")` Traceback (most recent call last): File "C:/Users/Dell/PycharmProjects/WBot/venv/WBot_test.py", line 12, in <module> my_friends.send("hi") **AttributeError: 'Chats' object has no attribute 'send'**
open
2019-03-02T07:34:11Z
2019-04-05T13:33:25Z
https://github.com/youfou/wxpy/issues/370
[]
ShihanZhang44419
1
CTFd/CTFd
flask
2,290
Update SQLAlchemy-Utils
The current version of SQLAlchemy-Utils that we are using was yanked for some reason. We should update this soon.
closed
2023-04-22T06:32:09Z
2023-04-27T05:38:33Z
https://github.com/CTFd/CTFd/issues/2290
[ "easy" ]
ColdHeat
0
scrapy/scrapy
python
6,504
Fix typing for Twisted 24.10.0
This should be easy but we need this to be included in 2.12 so I've created this for visibility. > scrapy/pipelines/media.py:209: error: Cannot assign to a method [method-assign] `Failure.stack` is a special deprecated property thing in Twisted 24.10.0, and assigning to it is a no-op, maybe it's better to put the assignment under a Twisted version check instead of e.g. specifically silencing the typing warning .
closed
2024-10-22T14:40:29Z
2024-10-29T18:08:40Z
https://github.com/scrapy/scrapy/issues/6504
[ "bug", "CI", "typing" ]
wRAR
4
deepset-ai/haystack
pytorch
8,143
Clean up AzureOpenAIChatGenerator docstrings
closed
2024-08-01T13:22:56Z
2024-08-02T12:25:57Z
https://github.com/deepset-ai/haystack/issues/8143
[]
agnieszka-m
0
reloadware/reloadium
pandas
71
Can't get memory line profiler in PyCharm
**Describe the bug** I just downloaded the pycharm plugin for reloadium after seeing it on reddit. Looks like a very useful tool, but I am having trouble replicating the memory line profiling shown in this post (and README doesn't include info on memory profiling yet): https://www.reddit.com/r/pycharm/comments/z0x4gu/memory_profiling_for_pycharm/ Apologies if I am just doing something wrong! **To Reproduce** Steps to reproduce the behavior: 1. Use my code below with breakpoints on each `pass` 2. Debug using reloadium 3. Open profiling details in the margin 4. Details are in units of time, not memory 5. In the Debug tab of pycharm, open the Reloadium sub-tab, change the profiler to "Memory" 6. Nothing changes 7. Repeat steps 2-3, but profiler setting from step 5 resets to Time and details are still in units of time **Expected behavior** Should be able to easily switch between units of time/memory, possibly having to rerun the debugger if technically necessary **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: Pop OS (Ubuntu) - OS version: 22.04 LTS - M1 chip: No - Reloadium package version: 0.9.5 - PyCharm plugin version: 0.9.0 - Editor: PyCharm - Python Version: 2022.2.2 Professional - Python Architecture: 64bit - Run mode: Debug **Additional context** My code: ``` import numpy as np import pandas as pd def foo(): data = np.random.randint(0, 100, size=(10, 1000)) df = pd.DataFrame(data) df = pd.concat([df, df]) pass def bar(): a = b"r" * 10_000 pass if __name__ == '__main__': foo() bar() ``` https://user-images.githubusercontent.com/42096328/203413798-251af93b-c2d4-4df4-adf9-a33ffe569cc7.mov
closed
2022-11-22T20:27:55Z
2022-11-22T22:38:06Z
https://github.com/reloadware/reloadium/issues/71
[]
danb27
2
run-llama/rags
streamlit
37
.
closed
2023-11-28T14:57:51Z
2023-11-28T15:12:28Z
https://github.com/run-llama/rags/issues/37
[]
piyushyadav0191
0
amidaware/tacticalrmm
django
2,068
[Feature request] Tasks History
**Feature Request: Task History Logs** **Is your feature request related to a problem? Please describe.** Currently, there is no way to view historical logs for tasks, which makes it difficult to trace past executions, identify recurring issues. **Describe the solution you'd like** Implement a history log feature for tasks that records: - Each execution timestamp - The task status (e.g., success, failure, timeout) - runtime - Terminal output This would allow to track task to troubleshoot issues **Describe alternatives you've considered** Manually logging task output **Additional context** ![image](https://github.com/user-attachments/assets/7dfcfc7a-bfbe-4ef7-b589-73b071878326)
closed
2024-11-11T10:50:43Z
2024-11-11T23:25:48Z
https://github.com/amidaware/tacticalrmm/issues/2068
[]
P6g9YHK6
4
microsoft/nni
machine-learning
5,665
Repeat is not supported
**Describe the issue**: When I use "model_space = ProxylessNAS()" as the model_space of RetiariiExperiment, there is an error: TypeError: Repeat is not supported ![微信截图_20230817203804](https://github.com/microsoft/nni/assets/114980596/0b61d1c8-4f0a-429f-add7-28cb36d30242) **Environment**: - NNI version:2.10.1 - Training service (local|remote|pai|aml|etc):local - Client OS:windows11 - Server OS (for remote mode only): - Python version:3.9 - PyTorch/TensorFlow version:PyTorch - Is conda/virtualenv/venv used?:colab - Is running in Docker?:no
open
2023-08-17T12:39:13Z
2023-08-17T12:39:13Z
https://github.com/microsoft/nni/issues/5665
[]
flower997
0
plotly/dash
dash
3,119
pattern-matched long callbacks cancelled incorrectly
**Describe your context** Please provide us your environment, so we can easily reproduce the issue. - replace the result of `pip list | grep dash` below ``` dash 2.18.2 /home/amorton/gh/dash dash-core-components 2.0.0 dash_dangerously_set_inner_html 0.0.2 dash-flow-example 0.0.5 dash_generator_test_component_nested 0.0.1 /home/amorton/gh/dash/@plotly/dash-generator-test-component-nested dash_generator_test_component_standard 0.0.1 /home/amorton/gh/dash/@plotly/dash-generator-test-component-standard dash_generator_test_component_typescript 0.0.1 /home/amorton/gh/dash/@plotly/dash-generator-test-component-typescript dash-html-components 2.0.0 dash-table 5.0.0 dash_test_components 0.0.1 /home/amorton/gh/dash/@plotly/dash-test-components dash-testing-stub 0.0.2 ``` **Describe the bug** Pattern-matched long callbacks incorrectly cancelled based on wildcard output Consider the following example app: ```python import time from dash import Dash, DiskcacheManager, callback, html, MATCH, Output, Input, State def build_output_message_id(item_id_str: str) -> dict[str, str]: return { 'component': 'output-message', 'item_id': item_id_str, } def build_output_item(item_id: float) -> html.Div: return html.Div( [ html.Span(f'{item_id:.2} sec delay:', style={'margin-right': '1rem'}), html.Span(0, id=build_output_message_id(str(item_id))), html.Br(), ], style={"margin-top": "1rem"}, ) def build_app_layout() -> html.Div: return html.Div([ html.Button('Fire!', id='button', n_clicks=0), html.Br(), *[build_output_item(i * 0.2) for i in range(20)], ], style={"display": "block"}) @callback( Output(build_output_message_id(MATCH), 'children'), Input('button', 'n_clicks'), State(build_output_message_id(MATCH), 'children'), State(build_output_message_id(MATCH), 'id'), prevent_initial_call=True, background=True, interval=200, ) def update_messages(_, current_value, id_dict): delay_secs = float(id_dict["item_id"]) time.sleep(delay_secs) return current_value + 1 app = Dash( background_callback_manager=DiskcacheManager(), ) app.layout = build_app_layout() app.run( host='0.0.0.0', debug=True, ) ``` Upon pressing the button you should see many numbers _never_ increment, and many requests being made with a list of `oldJob` values. This is unexpected, since the outputs don't correspond to the same concrete component. The following patch resolves the issue in this example app. ```diff diff --git a/dash/dash-renderer/src/actions/callbacks.ts b/dash/dash-renderer/src/actions/callbacks.ts index 23da0a3f..a73af9d0 100644 --- a/dash/dash-renderer/src/actions/callbacks.ts +++ b/dash/dash-renderer/src/actions/callbacks.ts @@ -561,7 +561,7 @@ function handleServerside( cacheKey: data.cacheKey as string, cancelInputs: data.cancel, progressDefault: data.progressDefault, - output + output: JSON.stringify(payload.outputs), }; dispatch(addCallbackJob(jobInfo)); job = data.job; @@ -761,9 +761,10 @@ export function executeCallback( let lastError: any; const additionalArgs: [string, string, boolean?][] = []; + const jsonOutput = JSON.stringify(payload.outputs); values(getState().callbackJobs).forEach( (job: CallbackJobPayload) => { - if (cb.callback.output === job.output) { + if (jsonOutput === job.output) { // Terminate the old jobs that are not completed // set as outdated for the callback promise to // resolve and remove after. ```
open
2025-01-08T19:58:02Z
2025-01-09T19:19:29Z
https://github.com/plotly/dash/issues/3119
[ "bug", "P2" ]
apmorton
0
dynaconf/dynaconf
fastapi
876
[bug] Dynaconf doesn't load configuration file if cwd doesn't exist
**Describe the bug** When the current workdir directory has been removed, dynaconf refuses to load configuration files. **To Reproduce** Steps to reproduce the behavior: 1. Having the following folder structure <!-- Describe or use the command `$ tree -v` and paste below --> <details> <summary> Project structure </summary> ```bash # /tmp/dyn.yaml # /home/user/bug_dynaconf/ # app.py # script.sh ``` </details> 2. Having the following config files: <!-- Please adjust if you are using different files and formats! --> <details> <summary> Config files </summary> **/tmp/dyn.yaml** ```yaml offset: 24 ``` </details> 3. Having the following app code: <details> <summary> Code </summary> **app.py** ```python from dynaconf import Dynaconf settings = Dynaconf( settings_files=["/tmp/dyn.yaml"] ) print(settings.offset) settings.validators.validate() print(type(settings.offset)) ``` </details> 4. Executing under the following environment <details> <summary> Execution </summary> **script.sh** ```bash #!/bin/bash -x python3 -m venv venv source venv/bin/activate pip install dynaconf==3.1.12 PARENT=$(realpath .) mkdir nonexistent_dir cd nonexistent_dir rm -r ../nonexistent_dir python $PARENT/app.py ``` </details> **Expected behavior** the `app.py` should have printed the type of `offset`, which is an `int` **Actual behavior** ~~~Python Traceback (most recent call last): File "/home/mtarral/debug_dynaconf/app.py", line 7, in <module> print(settings.offset) File "/home/mtarral/debug_dynaconf/venv/lib/python3.8/site-packages/dynaconf/base.py", line 138, in __getattr__ value = getattr(self._wrapped, name) File "/home/mtarral/debug_dynaconf/venv/lib/python3.8/site-packages/dynaconf/base.py", line 300, in __getattribute__ return super().__getattribute__(name) AttributeError: 'Settings' object has no attribute 'OFFSET' ~~~ **Environment (please complete the following information):** - OS: ubuntu 20.04 - Dynaconf Version 3.1.12 **Additional context** Following https://github.com/dynaconf/dynaconf/issues/853, I tried to repro with 3.1.12, and found this issue now. Thanks for dynaconf !
closed
2023-03-03T13:40:35Z
2023-07-13T19:11:08Z
https://github.com/dynaconf/dynaconf/issues/876
[ "bug", "Pending Release" ]
Wenzel
8
mitmproxy/mitmproxy
python
7,379
Firebase: NetworkError when attempting to fetch resource
#### Problem Description When the client connects to `POST https://firebaseremoteconfigrealtime.googleapis.com/v1/projects/<..>/namespaces/firebase:streamFetchInvalidations HTTP/1.1 `, the remote server seems to disconnect our connection. Based on [this](https://github.com/mitmproxy/mitmproxy/issues/3362#issuecomment-572694235), I guess missing http2 support might be the reason. Is there a way to enable http2 for a specific set of domains? (e.g. firebaseremoteconfigrealtime.googleapis.com) ``` Error getting content: TypeError: NetworkError when attempting to fetch resource.. ``` Edit: Or maybe the problem is that it's a streaming response?
closed
2024-12-07T18:54:52Z
2025-01-09T08:33:02Z
https://github.com/mitmproxy/mitmproxy/issues/7379
[ "kind/triage" ]
patrikschmidtke
1
davidteather/TikTok-Api
api
696
[BUG] - if not res["hasMore"] and not first: KeyError: 'hasMore'
Description: Everytime I tried to use by_username() function, i'll encounter this error. It was working last week,, now i cant even get a single post using this function. The bug return the value if not res["hasMore"] and not first: KeyError: 'hasMore' buggy code: The buggy code is by_username() function. Expected: The code is expected to return the user TikTok posts data. Error Trace: if not res["hasMore"] and not first: KeyError: 'hasMore' OS: Windows 10 TikTokApi Version : 4.0.1
closed
2021-09-17T09:51:11Z
2021-09-21T18:18:00Z
https://github.com/davidteather/TikTok-Api/issues/696
[ "bug" ]
Syahrol13
13
ymcui/Chinese-LLaMA-Alpaca
nlp
402
标点符号对QA结果的影响
### 详细描述问题 运行langchain_qa.py得到的效果不理想。 是训练模型的问题还是后期处理问题?应该使用什么手段解决问题? ### 运行截图或日志 如下图所示。 ![img_v2_705cb36a-6840-4e93-8661-911b3c0344cg](https://github.com/ymcui/Chinese-LLaMA-Alpaca/assets/2562230/b036e708-63f0-4e7a-8143-4afafa7d4bda) ### 必查项目(前三项只保留你要问的) - [ ] **基础模型**:Alpaca-Plus-7B - [ ] **运行系统**:Windows - [ ] **问题分类**:效果问题 - [ ] (必选)由于相关依赖频繁更新,请确保按照[Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki)中的相关步骤执行 - [ ] (必选)我已阅读[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案 - [ ] (必选)第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)、[LlamaChat](https://github.com/alexrozanski/LlamaChat)等,同时建议到对应的项目中查找解决方案
closed
2023-05-22T03:41:45Z
2023-06-01T22:02:20Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/402
[ "stale" ]
geniusnut
2
ionelmc/pytest-benchmark
pytest
99
need help with writing tox.ini
I need some assisstance with getting tox to run the suite on both PY27 PY36 and PYPY and dont know how to write it exactly. Could you help me out? Its not entire benchmark-related. ```ini [tox] envlist= python36 [testenv] deps= pytest pytest-benchmark pytest-cov enum34 numpy commands= py.test --benchmark-disable --showlocals {posargs} [testenv:verb] commands= py.test --benchmark-disable --fulltrace --showlocals --verbose {posargs} [testenv:cover] commands= py.test --benchmark-disable --cov {envsitepackagesdir}/construct --cov-report html --cov-report term --verbose {posargs} [testenv:bench] commands= py.test --benchmark-only --benchmark-columns=min,max,mean,stddev,median,rounds --benchmark-sort=name --benchmark-compare {posargs} [testenv:benchsave] commands= py.test --benchmark-only --benchmark-columns=min,max,mean,stddev,median,rounds --benchmark-sort=name --benchmark-autosave {posargs} ```
closed
2018-02-08T18:59:11Z
2018-02-11T05:00:00Z
https://github.com/ionelmc/pytest-benchmark/issues/99
[]
arekbulski
6
KaiyangZhou/deep-person-reid
computer-vision
445
How to apply cross dataset validation on custom torchreid model
Hi. I have a custom person reid model that is currently not available in this torchreid library. I want to perform cross dataset validation on that custom-designed model. The model is originally trained on msmt17 dataset and I have its checkpoint saved. I want to evaluate this model on market1501 or dukemtmc. How can I do that? Can anybody please guide me?
open
2021-06-27T21:15:25Z
2021-06-29T04:06:21Z
https://github.com/KaiyangZhou/deep-person-reid/issues/445
[]
FatimaZulfiqar
4
miguelgrinberg/Flask-SocketIO
flask
1,228
ValueError: Too many packets in payload
I'm trying to make an app that sends a stream of images to the server from webcam and I made those scripts to mimic the process by sending an array of 400x300x3 as image but I got this error ValueError: Too many packets in payload client ```py import socketio import time import numpy as np import pickle arr = np.random.randn(400,300,3) arr = pickle.dumps(arr) sio = socketio.Client() @sio.event def connect(): print('connection established') @sio.event def my_message(data): print('message received with ', data) sio.emit('my response', {'response': 'my response'}) @sio.event def disconnect(): print('disconnected from server') sio.connect('http://localhost:5000') while True: # time.sleep(0.001) sio.emit("message",arr) sio.wait() ``` server ```py from flask import Flask, render_template from flask_socketio import SocketIO app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app) import numpy as np import pickle arr = np.random.randn(300,400,3) arr = pickle.dumps(arr) @socketio.on('message') def handle_message(message): socketio.emit("my_message", 'aaa') if __name__ == '__main__': socketio.run(app) ```
closed
2020-04-01T14:39:31Z
2020-04-02T10:22:52Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1228
[]
DiaaZiada
1
brightmart/text_classification
tensorflow
4
missing word2vec package
I am wondering that the word2vec package is the user defined package, it is not include int the project ---- conda install word2vec
closed
2017-07-24T03:25:05Z
2017-07-25T07:59:31Z
https://github.com/brightmart/text_classification/issues/4
[]
jxlijunhao
1
yunjey/pytorch-tutorial
deep-learning
232
make ur repo cloneable and not editable by anyone.
closed
2021-06-16T05:23:19Z
2021-06-23T11:01:52Z
https://github.com/yunjey/pytorch-tutorial/issues/232
[]
Anindyadeep
0
pydantic/pydantic
pydantic
10,641
add environment option to disable disable Pydantic validations
### Initial Checks - [X] I have searched Google & GitHub for similar requests and couldn't find anything - [X] I have read and followed [the docs](https://docs.pydantic.dev) and still think this feature is missing ### Description It would be good for the ability to disable Pydantic validations, such as via an environment setting. A lot of time can be spent tracking down Pydantic issues when upgrading code. Moreover, this places a burden when testing, such as when upgrading from version 1 to version 2. Although ultimately the code should be fixed, sometimes the code just needs to run. This can be implemented transparently as sketched here: ``` $ git diff pydantic/main.py | grep '[+-]' diff --git a/pydantic/main.py b/pydantic/main.py --- a/pydantic/main.py +++ b/pydantic/main.py @@ -25,6 +25,8 @@ from typing import ( +from mezcla import debug, system + @@ -68,6 +70,8 @@ else: # and https://youtrack.jetbrains.com/issue/PY-51428 +IGNORE_PYDANTIC_ERRORS = system.getenv_bool("IGNORE_PYDANTIC_ERRORS", False) + @@ -210,7 +214,9 @@ class BaseModel(metaclass=_model_construction.ModelMetaclass): - validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self) + validated_self = self + if not IGNORE_PYDANTIC_ERRORS: + validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self) @@ -970,7 +976,10 @@ class BaseModel(metaclass=_model_construction.ModelMetaclass): - raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error]) + if IGNORE_PYDANTIC_ERRORS: + debug.trace(2, f"Warning: validation error in {__pydantic_self__}") + else: + raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error]) def __getstate__(self) -> dict[Any, Any]: @@ -1260,7 +1269,10 @@ class BaseModel(metaclass=_model_construction.ModelMetaclass): - raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error]) + if IGNORE_PYDANTIC_ERRORS: + debug.trace(2, f"Warning: validation error in {__pydantic_self__}") + else: + raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error]) ``` A simple example follows: ``` $ simple_pydantic_example.py ... u2 = User(id="two", name="Jane Doe") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ... pydantic_core._pydantic_core.ValidationError: 1 validation error for User ... $ IGNORE_PYDANTIC_ERRORS=1 python u1=User() u2=User() ``` [simple_pydantic_example.py.txt](https://github.com/user-attachments/files/17406123/simple_pydantic_example.py.txt) ``` $ python -c "import pydantic.version; print(pydantic.version.version_info())" pydantic version: 2.9.2 pydantic-core version: 2.23.4 pydantic-core build: profile=release pgo=false install path: /Users/joe/virtual-environments/agvisor-py-3-12/lib/python3.12/site-packages/pydantic python version: 3.12.3 (main, Apr 9 2024, 08:09:14) [Clang 15.0.0 (clang-1500.3.9.4)] platform: macOS-14.7-arm64-arm-64bit related packages: typing_extensions-4.12.0 pydantic-settings-2.5.2 fastapi-0.104.1 commit: unknown ``` Of course, other changes would be needed to be complete. This is just to illustrate that it can be readily implemented. ### Affected Components - [ ] [Compatibility between releases](https://docs.pydantic.dev/changelog/) - [X] [Data validation/parsing](https://docs.pydantic.dev/concepts/models/#basic-model-usage) - [ ] [Data serialization](https://docs.pydantic.dev/concepts/serialization/) - `.model_dump()` and `.model_dump_json()` - [ ] [JSON Schema](https://docs.pydantic.dev/concepts/json_schema/) - [ ] [Dataclasses](https://docs.pydantic.dev/concepts/dataclasses/) - [ ] [Model Config](https://docs.pydantic.dev/concepts/config/) - [ ] [Field Types](https://docs.pydantic.dev/api/types/) - adding or changing a particular data type - [X] [Function validation decorator](https://docs.pydantic.dev/concepts/validation_decorator/) - [ ] [Generic Models](https://docs.pydantic.dev/concepts/models/#generic-models) - [ ] [Other Model behaviour](https://docs.pydantic.dev/concepts/models/) - `model_construct()`, pickling, private attributes, ORM mode - [ ] [Plugins](https://docs.pydantic.dev/) and integration with other tools - mypy, FastAPI, python-devtools, Hypothesis, VS Code, PyCharm, etc.
closed
2024-10-17T04:55:05Z
2024-10-18T03:21:58Z
https://github.com/pydantic/pydantic/issues/10641
[ "feature request" ]
thomas-paul-ohara
3
ultralytics/yolov5
machine-learning
13,231
How to modify the network structure of the YOLOv5 classification model
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Hello, I tried to change the example of YOLOv5 model=YOLO ('yolov5s-cls. yaml '). load ('yolov5s-cls. pt') to the corresponding YOLOv5-cls yaml and pt files, but encountered an error AttributeError: Can't get attribute 'Classification Model' on<module 'models. yolo' from'D: \ \ anaco \ \ envs \ \ yolo8 \ \ Lib \ \ site packages \ \ ultralytics \ \ models \ \ yolo \ \ __init__. py '>. How can I solve this problem? I tried importing only the YAML file and it ran correctly. But this cannot read the weight of the PT file. Or is there any way to operate in yolov5 master to change the yolov5 classification network structure. ![problem](https://github.com/user-attachments/assets/3e8d3117-97f2-48f4-9024-f700f6820db2) ### Additional _No response_
open
2024-07-31T00:23:10Z
2024-10-20T19:51:05Z
https://github.com/ultralytics/yolov5/issues/13231
[ "question" ]
lielumao
4
babysor/MockingBird
deep-learning
45
Where can I download aidatatang_200zh dataset?
Where can I download aidatatang_200zh dataset?
closed
2021-08-24T03:39:19Z
2021-08-24T03:59:22Z
https://github.com/babysor/MockingBird/issues/45
[]
duke91
2
python-gitlab/python-gitlab
api
2,825
ProjectMergeRequestApprovalManager.set_approvers cannot handle too many approval rules
## Description of the problem, including code/CLI snippet In v4/objects/merge_request_approvals.py ~ line 121 # update any existing approval rule matching the name existing_approval_rules = approval_rules.list() for ar in existing_approval_rules: if ar.name == approval_rule_name: ar.user_ids = data["user_ids"] ar.approvals_required = data["approvals_required"] ar.group_ids = data["group_ids"] ar.save() return ar # if there was no rule matching the rule name, create a new one return approval_rules.create(data=data, **kwargs) An existing approval rule will not be found if it exceeds the default pagination count for list(). It will instead attempt to create it (which will fail because it already exists) ## Expected Behavior approval rule should be found in the list of existing approval rules and be modified. ## Actual Behavior approval rule is not found and creation of new rule fails. ## Specifications I believe this fix is to change approval_rules.list() to approval_rules.list(all=True) - python-gitlab version: 4.4.0 - API version you are using (v3/v4): v4 - Gitlab server version (or gitlab.com):
closed
2024-03-19T20:55:19Z
2024-05-17T10:22:02Z
https://github.com/python-gitlab/python-gitlab/issues/2825
[]
liu15
0
microsoft/MMdnn
tensorflow
41
Error when inception_v3 from tensorflow-IR convert to mxnet
OS: CentOS7.0 tensorflow: 1.4.1 mxnet: 1.0.0 I download pre-train model from [inception_v3_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz) I follow these steps: 1. Use python to extract both network architecture and weights `python -m mmdnn.conversion.examples.tensorflow.extract_model -n inception_v3 -ckpt ./inception_v3.ckpt` 2. Convert model (including architecture and weights) from Tensorflow to IR `python -m mmdnn.conversion._script.convertToIR -f tensorflow -d inception_v3 -n imagenet_inception_v3.ckpt.meta -w inception_v3.ckpt --dstNodeName Squeeze` 3. Convert models from IR to MXNet code snippet and weights `python -m mmdnn.conversion._script.IRToCode -f mxnet --IRModelPath inception_v3.pb --dstModelPath mxnet_inception_v3.py --IRWeightPath inception_v3.npy -dw ./mxnet_inception_v3-0000.params` 4. Convert models from IR to MXNet checkpoint file `python -m mmdnn.conversion.examples.mxnet.imagenet_test -n mxnet_inception_v3 -w mxnet_inception_v3-0000.params --dump inception_v3` Step 1-3 works well, but step 4 reports some warning: `/usr/lib/python2.7/site-packages/mxnet/module/base_module.py:53: UserWarning: You created Module with Module(..., label_names=['softmax_label']) but input with name 'softmax_label' is not found in symbol.list_arguments(). Did you mean one of: input warnings.warn(msg) /usr/lib/python2.7/site-packages/mxnet/module/base_module.py:65: UserWarning: Data provided by label_shapes don't match names specified by label_names ([] vs. ['softmax_label']) warnings.warn(msg) MXNet checkpoint file is saved with prefix [inception_v3] and iteration 0, generated by [mxnet_inception_v3.py] and [mxnet_inception_v3-0000.params].` After step 4, `inception_v3-symbol.json` and `inception_v3-0000.params` generated. When I test these file using `sym, arg_params, aux_params = mx.model.load_checkpoint('inception_v3', 0) mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None)`, the error occurs: `Traceback (most recent call last): File "inception_v3-loading.py", line 10, in <module> mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None) File "/usr/lib/python2.7/site-packages/mxnet/module/module.py", line 93, in __init__ _check_input_names(symbol, data_names, "data", True) File "/usr/lib/python2.7/site-packages/mxnet/module/base_module.py", line 51, in _check_input_names raise ValueError(msg) ValueError: You created Module with Module(..., data_names=['data']) but input with name 'data' is not found in symbol.list_arguments(). Did you mean one of: input` Could someone help me?
closed
2018-01-03T03:42:00Z
2018-01-04T02:53:25Z
https://github.com/microsoft/MMdnn/issues/41
[]
mapicccy
2
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
4,192
Closed and reopend reports are not automatically deleted
### What version of GlobaLeaks are you using? 4.15.9 ### What browser(s) are you seeing the problem on? All ### What operating system(s) are you seeing the problem on? Windows, iOS ### Describe the issue When the report status is changed to closed or a closed report is reopened, it remains on the platform also after the expiration date. The automatic e-mail notification with the reminder of expiration is not sent. In the Changelog I can see that the reopening issue was fixed in 4.15.9, but this doesn't work for me. Could this be related to the issue I reported last month? https://github.com/globaleaks/whistleblowing-software/issues/4158#issuecomment-2301243390 And what about the closed report not deleted? I cannot find documentation about this but I presume that it should be automatically deleted on the expiration date. Is this a bug? Thanks ### Proposed solution _No response_
closed
2024-09-17T08:52:10Z
2024-10-07T14:34:49Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/4192
[]
eleibr
4
sepandhaghighi/samila
matplotlib
10
Add Projection Parameters
closed
2021-09-27T15:04:17Z
2021-09-29T05:14:13Z
https://github.com/sepandhaghighi/samila/issues/10
[ "enhancement" ]
sadrasabouri
0
deepspeedai/DeepSpeed
pytorch
6,935
nv-nightly CI test failure
The Nightly CI for https://github.com/deepspeedai/DeepSpeed/actions/runs/13556042840 failed.
closed
2025-01-09T01:13:10Z
2025-02-27T19:02:09Z
https://github.com/deepspeedai/DeepSpeed/issues/6935
[ "ci-failure" ]
github-actions[bot]
1
deezer/spleeter
deep-learning
551
isolating a guitar solo
<!-- Please respect the title [Discussion] tag. --> Goal is to create a track without the guitar solo. Would spleeter have the ability to isolate a guitar solo from a song if a training track was created consisting of just the actual guitar solo (performed and recorded by me as well as possible)?
closed
2021-01-07T16:49:43Z
2021-01-08T13:21:35Z
https://github.com/deezer/spleeter/issues/551
[ "question" ]
yamtssfa
1
miguelgrinberg/python-socketio
asyncio
169
Running server and client in one application
Hi Miguel, Thanks for the fantastic library! I got it running very quickly. But now I run into a problem with the idea I had: I am writing a sort of broker between socketio clients and server. It should accept connections from the clients and pass their requests on to the server. It should also pass on data coming from the server to the clients. Whereas this does not make sense per se (the clients could connect to the server directly), this broker could (and will!) mangle/change/translate the data. (I hope that makes sense.) For the socketio client I used socketIO-client-2 (https://pypi.python.org/pypi/socketIO-client-2/, https://github.com/feus4177/socketIO-client-2). I use Python 3.4. I started with eventlet: ```python import eventlet eventlet.monkey_patch() import socketio from socketIO_client import SocketIO, LoggingNamespace class Broker: def __init__(self): # Connection to socket.IO server as a client self.client = SocketIO('localhost', 3000, LoggingNamespace) self.setup_client_callbacks() # Our own socket.IO server self.server = socketio.Server(async_mode='eventlet') self.setup_server_callbacks() def run(self): # Start client self.client.wait_for_callbacks() print('*** CLIENT ***') # Start server app = socketio.Middleware(self.server) eventlet.wsgi.server(eventlet.listen(('', 3001)), app) print('*** SERVER ***') def setup_server_callbacks(self): self.server.on('connect', self.on_connect) self.server.on('disconnect', self.on_disconnect) self.server.on('getState', self.on_getState) def setup_client_callbacks(self): self.client.on('pushState', self.on_pushState) # Server callbacks def on_connect(self, sid, environ): print('** connect: {} {}'.format(sid, environ)) def on_getState(self, sid, data): print('** getState: {}'.format(data)) self.client.emit('getState', data) print('** getState emitted') def on_disconnect(self, sid): print('** disconnect: {}'.format(sid)) # Client callbacks def on_pushState(self, data): print('** pushState: {{}}') self.server.emit('pushState', data) if __name__ == '__main__': b = Broker() b.run() ``` The external server (at port 3000) answers a `getState, ''` message with a `pushState, <data>` message. When I run the above program, the following happens: 1. The client part connects to the server at port 3000. 2. `** CLIENT` is printed to the console. 3. The server part starts and listens to port 3001 (and prints some messages). - Now my external client connects to this server at 3001. 4. `** connect: <sid> <environ>` is printed to the console (confirming that the external client connected). - Now my external client emits a `getState, ''` message. 5. `** getState: ` is printed to the console (confirming that the external client emitted that message). 6. `** getState emitted` is printed to the console (confirming that the `getState` message is passed onto the external server). - **Here I would now expect for the server to respond with a `pushState, <data>` message and triggering the `on_pushState()` callback method. This method is never called (does not print `** pushState: {}` to the console).** - I shut down the external client. 7. `** disconnect: <sid>` is printed to the console (confirming that the external client disconnected). - I press `CTRL-C` to shut down my server/client. 8. `** SERVER` is printed to the console. I guessed that there might be a problem between `eventlet` and `threading`, which is used by the `socketIO-client-2` module. Hence I added the `eventlet.monkey_patch()` line. I also tried to use just the `threading` module (here are only the changes): ```python from flask import Flask import socketio from socketIO_client import SocketIO, LoggingNamespace class Broker: def __init__(self): # Connection to socket.IO server as a client self.client = SocketIO('localhost', 3000, LoggingNamespace) self.setup_client_callbacks() # Our own socket.IO server self.server = socketio.Server(async_mode='threading') self.setup_server_callbacks() def run(self): # Start client self.client.wait_for_callbacks() print('*** CLIENT ***') # Start server app = Flask(__name__) app.config['SERVER_NAME'] = 'localhost:3001' app.wsgi_app = socketio.Middleware(self.server, app.wsgi_app) app.run(threaded=True) print('*** SERVER ***') ... ``` but no luck here either. Could you please be so kind to point me in the right direction how I can make that working (or suggest a better way to do that brokerage). Thank you for your kind help!!
closed
2018-02-22T10:39:54Z
2019-01-15T09:00:42Z
https://github.com/miguelgrinberg/python-socketio/issues/169
[ "question" ]
sphh
4
dynaconf/dynaconf
flask
1,134
[RFC]typed: Add support for Any type
```python field: Any field: Annotated[Any] field: tuple[str, Any] field: dict[str, Any] ``` Add support for those types and other variations on `is_type_of` function.
open
2024-07-06T15:17:22Z
2024-07-08T18:38:18Z
https://github.com/dynaconf/dynaconf/issues/1134
[ "Not a Bug", "RFC", "typed_dynaconf" ]
rochacbruno
0
apragacz/django-rest-registration
rest-api
89
Extend views
Is there any way to extend rest registration views and adding other functionallity?
closed
2019-11-26T06:39:40Z
2019-11-26T10:02:46Z
https://github.com/apragacz/django-rest-registration/issues/89
[ "closed-as:duplicate", "type:feature-request" ]
itzmanish
2
fastapi/sqlmodel
sqlalchemy
530
Relationship type annotations disappear after class definition is evaluated
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python from sqlmodel import Relationship, SQLModel, Field from pydantic.main import BaseModel class SpecialFieldValidator(BaseModel): id: int = Field(primary_key=True, index=True) def __init_subclass__(cls) -> None: # Try to figure out what type the special_field relation has print("special_field" in cls.__annotations__) # False print("special_field" in cls.__fields__) # False print("special_field" in cls.__sqlmodel_relationships__) # True, but no type info via this dict, just a plain RelationshipInfo() instance: print(dict(cls.__sqlmodel_relationships__["special_field"].__dict__)) # {'back_populates': None, 'link_model': None, 'sa_relationship': None, 'sa_relationship_args': None, 'sa_relationship_kwargs': None} return super().__init_subclass__() class MyModelA(SQLModel, SpecialFieldValidator, table=True): id: int = Field(primary_key=True) special_field_id: int = Field(foreign_key="mymodelb.id") special_field: "MyModelB" = Relationship() class MyModelB(SQLModel, SpecialFieldValidator, table=True): id: int = Field(primary_key=True) special_field_id: int = Field(foreign_key="mymodela.id") special_field: MyModelA = Relationship() ``` ### Description I'm trying to write a class (SpecialFieldValidator) that is supposed to check whether a specific field, which is always a Relationship, was annotated with a particular type. However, the actual type annotation seems to be getting erased - looking in __fields__, __annotations__ yields nothing, and the data in __sqlmodel_relationships__ does not feature a type. ### Operating System Linux ### Operating System Details _No response_ ### SQLModel Version 0.0.8 ### Python Version 3.11.0 ### Additional Context SQLAlchemy version is 1.4.41 I found this issue: https://github.com/tiangolo/sqlmodel/issues/255 that seems related, saying SQLAlchemy 1.4.36 breaks relationship, but SQLModels dependencies were officially updated to >=1.4.41 more recently than that so I figured this is a new issue.
open
2023-01-15T23:05:48Z
2024-12-02T15:37:34Z
https://github.com/fastapi/sqlmodel/issues/530
[ "question" ]
phdowling
1
MaartenGr/BERTopic
nlp
1,043
Topic modeling regression in 0.14.0 with nr_topics
I have noticed a reduction in the quality of topic modeling in 0.14.0 when specifying the nr_topics parameter. Here is my test script: ``` from bertopic import BERTopic from sklearn.datasets import fetch_20newsgroups from bertopic.vectorizers import ClassTfidfTransformer newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes')) ctfidf_model = ClassTfidfTransformer(reduce_frequent_words=True) topic_model = BERTopic(nr_topics=len(newsgroups_train['target_names']), ctfidf_model=ctfidf_model, calculate_probabilities=True) topic_model.fit(newsgroups_train['data']) print(topic_model.get_topic_info()) ``` With bertopic==0.13.0: ``` Topic Count Name 0 -1 4688 -1_maxaxaxaxaxaxaxaxaxaxaxaxaxaxax_for_on_you 1 0 700 0_car_bike_cars_my 2 1 638 1_drive_scsi_drives_disk 3 2 575 2_gun_guns_militia_firearms 4 3 547 3_key_encryption_clipper_chip 5 4 539 4_team_hockey_550_game 6 5 527 5_patients_msg_medical_disease 7 6 483 6_year_baseball_pitching_he 8 7 405 7_card_monitor_video_vga 9 8 375 8_israel_turkish_jews_israeli 10 9 317 9_ditto_ites_hello_hi 11 10 199 10_god_jesus_hell_he 12 11 182 11_window_widget_colormap_server 13 12 173 12_morality_truth_god_moral 14 13 172 13_fbi_koresh_compound_batf 15 14 171 14_amp_condition_scope_offer 16 15 141 15_atheists_atheism_god_universe 17 16 131 16_printer_fonts_font_print 18 17 118 17_ted_post_challenges_you 19 18 118 18_windows_dos_cview_swap 20 19 115 19_xfree86_libxmulibxmuso_symbol_undefined ``` And with bertopic==0.14.0: ``` Topic Count Name 0 -1 3334 -1_you_it_for_is 1 0 4402 0_for_with_on_be 2 1 620 1_god_stephanopoulos_that_mr 3 2 559 2_patients_medical_msg_health 4 3 437 3_space_launch_nasa_lunar 5 4 436 4_israel_were_turkish_armenian 6 5 376 5_car_bike_cars_dog 7 6 296 6_gun_guns_firearms_militia 8 7 230 7_morality_objective_gay_moral 9 8 139 8_symbol_xterm_libxmulibxmuso_server 10 9 119 9_printer_ink_print_hp 11 10 94 10_requests_send_address_list 12 11 88 11_radar_detector_detectors_radio 13 12 42 12_church_pope_schism_mormons 14 13 40 13_ground_battery_grounding_conductor 15 14 36 14_tax_taxes_deficit_income 16 15 24 15_marriage_married_ceremony_commitment 17 16 20 16_maxaxaxaxaxaxaxaxaxaxaxaxaxaxax_mg9vg9vg9vg... 18 17 12 17_ditto_hello_hi_too 19 18 10 18_professors_tas_phds_teaching ```
open
2023-02-24T16:01:39Z
2023-02-25T07:02:27Z
https://github.com/MaartenGr/BERTopic/issues/1043
[]
damosuzuki
1
AUTOMATIC1111/stable-diffusion-webui
deep-learning
16,586
[Bug]: (ZLUDA) Final step when processing in SD 1.0 takes longer than all previous steps combined
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? Recently did a fresh install of A1111 with ZLUDA config (previously using DirectML) and saw a massive reduction in step time when generating images, but the final(?) step takes longer than all other steps combined before finishing. The image *does* eventually process, and I'm generally pleased with the overall reduction in time, but the last step is hampering the overall time reduction. I'm on a full AMD setup with a Radeon VII (16GB VRAM), so when I was using DirectML I was getting around 5-7 seconds per iteration at 1024X1024. With ZLUDA, it appears I'm getting somewhere between 6-10 iterations per second (depending on checkpoint and LoRA usage), but then there's a very long hang before the process finishes. So, steps 1-19 will process in 2-3 seconds and then step 20 (or sometimes after step 20 is reported as 'finished') will take 2-3 minutes. I'm seeing 95-100% GPU usage (Compute1) during the last step, and if I have live previews enabled it's a little longer but the preview will only update once or twice. I've tried different checkpoints, VAEs, as well as disabling live previews but I've seen no change in behavior. The strange thing is I don't see this with SDXL checkpoints. I get 2-3 iterations per second, steps proceed at a steady pace, and the final step isn't much different than the previous ones (30-40 seconds overall). That's incredible as I wasn't able to even load SDXL checkpoints before ZLUDA, but a lot of the LoRAs I prefer to use are for SD1 and I'd like to be able to use SD1 checkpoints when needed. ### Steps to reproduce the problem 1) Start A1111 with --use-zluda 2) Load a SD1 checkpoint, any VAE 3) Begin a Text2Img or Img2Img process at 1024x1024 4) see nearly all steps running at 5-10 iterations per second 5) see last step take 2-3 minutes while soaking the GPU 6) process finishes, provides image as expected ### What should have happened? I would expect the final step to not take significantly longer than previous steps when using SD1 checkpoints, especially since SDXL checkpoints do not seem to have this issue. ### What browsers do you use to access the UI ? Other ### Sysinfo [sysinfo-2024-10-24-21-06.json](https://github.com/user-attachments/files/17512814/sysinfo-2024-10-24-21-06.json) ### Console logs ```Shell venv "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\Scripts\Python.exe" WARNING: ZLUDA works best with SD.Next. Please consider migrating to SD.Next. Python 3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)] Version: v1.10.1-amd-12-gae5ff7a2 Commit hash: ae5ff7a232cd898f653e4fffb36f507b54de8b72 Using ZLUDA in C:\SD-Zluda\a1111\stable-diffusion-webui-directml\.zluda ROCm agents: ['gfx906:sramecc-:xnack-'], using gfx906:sramecc-:xnack- Installing requirements [Auto-Photoshop-SD] Attempting auto-update... [Auto-Photoshop-SD] switch branch to extension branch. checkout_result: Your branch is up to date with 'origin/master'. [Auto-Photoshop-SD] Current Branch. branch_result: * master [Auto-Photoshop-SD] Fetch upstream. fetch_result: [Auto-Photoshop-SD] Pull upstream. pull_result: Already up to date. Installing requirements for diffusers Requirement already satisfied: insightface==0.7.3 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from -r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (0.7.3) Collecting onnx==1.14.0 (from -r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 2)) Using cached onnx-1.14.0-cp310-cp310-win_amd64.whl.metadata (15 kB) Requirement already satisfied: onnxruntime==1.15.0 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from -r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (1.15.0) Requirement already satisfied: opencv-python==4.7.0.72 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from -r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 4)) (4.7.0.72) Requirement already satisfied: ifnude in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from -r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 5)) (0.0.3) Requirement already satisfied: cython in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from -r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 6)) (3.0.11) Requirement already satisfied: numpy in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.26.2) Requirement already satisfied: tqdm in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (4.66.5) Requirement already satisfied: requests in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (2.32.3) Requirement already satisfied: matplotlib in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.9.2) Requirement already satisfied: Pillow in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (9.5.0) Requirement already satisfied: scipy in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.14.1) Requirement already satisfied: scikit-learn in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.5.2) Requirement already satisfied: scikit-image in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (0.21.0) Requirement already satisfied: easydict in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.13) Requirement already satisfied: albumentations in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.4.3) Requirement already satisfied: prettytable in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.11.0) Collecting protobuf>=3.20.2 (from onnx==1.14.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 2)) Using cached protobuf-5.28.3-cp310-abi3-win_amd64.whl.metadata (592 bytes) Requirement already satisfied: typing-extensions>=3.6.2.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from onnx==1.14.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 2)) (4.12.2) Requirement already satisfied: coloredlogs in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (15.0.1) Requirement already satisfied: flatbuffers in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (24.3.25) Requirement already satisfied: packaging in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (24.1) Requirement already satisfied: sympy in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (1.13.1) Requirement already satisfied: opencv-python-headless>=4.5.1.48 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from ifnude->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 5)) (4.10.0.84) Requirement already satisfied: PyYAML in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from albumentations->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (6.0.2) Requirement already satisfied: networkx>=2.8 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-image->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.2.1) Requirement already satisfied: imageio>=2.27 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-image->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (2.36.0) Requirement already satisfied: tifffile>=2022.8.12 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-image->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (2024.9.20) Requirement already satisfied: PyWavelets>=1.1.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-image->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.7.0) Requirement already satisfied: lazy_loader>=0.2 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-image->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (0.4) Requirement already satisfied: joblib>=1.2.0 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-learn->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.4.2) Requirement already satisfied: threadpoolctl>=3.1.0 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from scikit-learn->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.5.0) Requirement already satisfied: humanfriendly>=9.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from coloredlogs->onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (10.0) Requirement already satisfied: contourpy>=1.0.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.3.0) Requirement already satisfied: cycler>=0.10 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (0.12.1) Requirement already satisfied: fonttools>=4.22.0 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (4.54.1) Requirement already satisfied: kiwisolver>=1.3.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.4.7) Requirement already satisfied: pyparsing>=2.3.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.2.0) Requirement already satisfied: python-dateutil>=2.7 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (2.9.0.post0) Requirement already satisfied: wcwidth in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from prettytable->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (0.2.13) Requirement already satisfied: charset-normalizer<4,>=2 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from requests->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.4.0) Requirement already satisfied: idna<4,>=2.5 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from requests->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (3.10) Requirement already satisfied: urllib3<3,>=1.21.1 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from requests->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (2.2.3) Requirement already satisfied: certifi>=2017.4.17 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from requests->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (2024.8.30) Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from sympy->onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (1.3.0) Requirement already satisfied: colorama in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from tqdm->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (0.4.6) Requirement already satisfied: pyreadline3 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from humanfriendly>=9.1->coloredlogs->onnxruntime==1.15.0->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 3)) (3.5.4) Requirement already satisfied: six>=1.5 in c:\sd-zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages (from python-dateutil>=2.7->matplotlib->insightface==0.7.3->-r C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\requirements.txt (line 1)) (1.16.0) Using cached onnx-1.14.0-cp310-cp310-win_amd64.whl (13.3 MB) Using cached protobuf-5.28.3-cp310-abi3-win_amd64.whl (431 kB) Installing collected packages: protobuf, onnx Attempting uninstall: protobuf Found existing installation: protobuf 3.20.1 Uninstalling protobuf-3.20.1: Successfully uninstalled protobuf-3.20.1 Attempting uninstall: onnx Found existing installation: onnx 1.16.2 Uninstalling onnx-1.16.2: Successfully uninstalled onnx-1.16.2 Successfully installed onnx-1.14.0 protobuf-5.28.3 C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\pytorch_lightning\utilities\distributed.py:258: LightningDeprecationWarning: `pytorch_lightning.utilities.distributed.rank_zero_only` has been deprecated in v1.8.1 and will be removed in v2.0.0. You can import it from `pytorch_lightning.utilities` instead. rank_zero_deprecation( Launching Web UI with arguments: --use-zluda No ROCm runtime is found, using ROCM_HOME='C:\Program Files\AMD\ROCm\5.7' ONNX failed to initialize: Failed to import diffusers.pipelines.pipeline_utils because of the following error (look up to see its traceback): Failed to import diffusers.models.autoencoders.autoencoder_kl because of the following error (look up to see its traceback): Failed to import diffusers.loaders.unet because of the following error (look up to see its traceback): Building PyTorch extensions using ROCm and Windows is not supported. python_server_full_path: C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\Auto-Photoshop-StableDiffusion-Plugin\server/python_server CHv1.8.11: Get Custom Model Folder [-] ADetailer initialized. version: 24.9.0, num models: 10 CivitAI Browser+: Aria2 RPC started 2024-10-24 16:14:37,786 - roop - INFO - roop v0.0.2 2024-10-24 16:14:37,936 - roop - INFO - roop v0.0.2 Loading weights [6ce0161689] from C:\SD-Zluda\a1111\stable-diffusion-webui-directml\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors Creating model from config: C:\SD-Zluda\a1111\stable-diffusion-webui-directml\configs\v1-inference.yaml CHv1.8.11: Set Proxy: creating model quickly: OSError Traceback (most recent call last): File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\utils\_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\requests\models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 404 Client Error: Not Found for url: https://huggingface.co/None/resolve/main/config.json The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\transformers\utils\hub.py", line 403, in cached_file resolved_file = hf_hub_download( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\utils\_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 862, in hf_hub_download return _hf_hub_download_to_cache_dir( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 969, in _hf_hub_download_to_cache_dir _raise_on_head_call_error(head_call_error, force_download, local_files_only) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 1484, in _raise_on_head_call_error raise head_call_error File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 1376, in _get_metadata_or_catch_error metadata = get_hf_file_metadata( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\utils\_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 1296, in get_hf_file_metadata r = _request_wrapper( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 277, in _request_wrapper response = _request_wrapper( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\file_download.py", line 301, in _request_wrapper hf_raise_for_status(response) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\huggingface_hub\utils\_http.py", line 454, in hf_raise_for_status raise _format(RepositoryNotFoundError, message, response) from e huggingface_hub.errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-671ab8be-2a4cdf0f0b47a4405505c709;d2ce9332-101d-404d-bbbd-4c245ea1e656) Repository Not Found for url: https://huggingface.co/None/resolve/main/config.json. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.10_3.10.3056.0_x64__qbz5n2kfra8p0\lib\threading.py", line 973, in _bootstrap self._bootstrap_inner() File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.10_3.10.3056.0_x64__qbz5n2kfra8p0\lib\threading.py", line 1016, in _bootstrap_inner self.run() File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.10_3.10.3056.0_x64__qbz5n2kfra8p0\lib\threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\initialize.py", line 149, in load_model shared.sd_model # noqa: B018 File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\shared_items.py", line 190, in sd_model return modules.sd_models.model_data.get_sd_model() File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\sd_models.py", line 693, in get_sd_model load_model() File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\sd_models.py", line 831, in load_model sd_model = instantiate_from_config(sd_config.model, state_dict) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\sd_models.py", line 775, in instantiate_from_config return constructor(**params) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 563, in __init__ self.instantiate_cond_stage(cond_stage_config) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 630, in instantiate_cond_stage model = instantiate_from_config(config) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\util.py", line 89, in instantiate_from_config return get_obj_from_str(config["target"])(**config.get("params", dict())) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\encoders\modules.py", line 104, in __init__ self.transformer = CLIPTextModel.from_pretrained(version) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\sd_disable_initialization.py", line 68, in CLIPTextModel_from_pretrained res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs) File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\transformers\modeling_utils.py", line 3301, in from_pretrained resolved_config_file = cached_file( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\transformers\utils\hub.py", line 426, in cached_file raise EnvironmentError( OSError: None is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models' If this is a private repository, make sure to pass a token having permission to this repo either by logging in with `huggingface-cli login` or by passing `token=<your_token>` Failed to create model quickly; will retry using slow method. C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\scripts\faceswap.py:38: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components img = gr.inputs.Image(type="pil") C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\gradio_extensons.py:25: GradioDeprecationWarning: `optional` parameter is deprecated, and it has no effect res = original_IOComponent_init(self, *args, **kwargs) C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\scripts\faceswap.py:55: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components upscaler_name = gr.inputs.Dropdown( C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\sd-webui-roop\scripts\faceswap.py:74: GradioDeprecationWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components model = gr.inputs.Dropdown( *** Error executing callback ui_tabs_callback for C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\facechain\scripts\facechain_sdwebui.py Traceback (most recent call last): File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\modules\script_callbacks.py", line 283, in ui_tabs_callback res += c.callback() or [] File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\facechain\scripts\facechain_sdwebui.py", line 15, in on_ui_tabs import app File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\facechain\app.py", line 16, in <module> from facechain.inference_fact import GenPortrait File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\extensions\facechain\facechain\inference_fact.py", line 20, in <module> from modelscope.pipelines import pipeline File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\pipelines\__init__.py", line 4, in <module> from .base import Pipeline File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\pipelines\base.py", line 16, in <module> from modelscope.msdatasets import MsDataset File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\__init__.py", line 2, in <module> from modelscope.msdatasets.ms_dataset import MsDataset File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\ms_dataset.py", line 16, in <module> from modelscope.msdatasets.data_loader.data_loader_manager import ( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\data_loader\data_loader_manager.py", line 12, in <module> from modelscope.msdatasets.data_loader.data_loader import OssDownloader File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\data_loader\data_loader.py", line 15, in <module> from modelscope.msdatasets.data_files.data_files_manager import \ File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\data_files\data_files_manager.py", line 11, in <module> from modelscope.msdatasets.download.dataset_builder import ( File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\download\dataset_builder.py", line 24, in <module> from modelscope.msdatasets.download.download_manager import \ File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\download\download_manager.py", line 9, in <module> from modelscope.msdatasets.utils.oss_utils import OssUtilities File "C:\SD-Zluda\a1111\stable-diffusion-webui-directml\venv\lib\site-packages\modelscope\msdatasets\utils\oss_utils.py", line 7, in <module> import oss2 ModuleNotFoundError: No module named 'oss2' --- [ERROR]: Config states C:\SD-Zluda\a1111\stable-diffusion-webui-directml\config_states\civitai_subfolders.json, "created_at" does not exist Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. COMMANDLINE_ARGS does not contain --api, API won't be mounted. Startup time: 83.4s (prepare environment: 84.3s, initialize shared: 3.3s, other imports: 0.1s, list SD models: 0.2s, load scripts: 2.9s, create ui: 4.5s, gradio launch: 0.8s). Applying attention optimization: Doggettx... done. Model loaded in 8.8s (create model: 1.9s, apply weights to model: 4.5s, apply half(): 0.3s, move model to device: 0.1s, load textual inversion embeddings: 0.4s, calculate empty prompt: 1.5s). 100%|██████████████████████████████████████| 20/20 [00:23<00:00, 1.15s/it] Total progress: 100%|██████████████████████| 20/20 [04:29<00:00, 13.47s/it] Total progress: 100%|██████████████████████| 20/20 [04:29<00:00, 12.15it/s] ``` ### Additional information Installed latest AMD GPU drivers for Radeon VII using ROCm 5.7 ![Screenshot 2024-10-24 162058](https://github.com/user-attachments/assets/e1de7aca-4fa4-42d8-a695-09db69edbfcb) image attached is an example of GPU resource monitoring during the long 'final step' phase.
closed
2024-10-24T21:24:57Z
2024-10-25T03:13:31Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16586
[ "bug-report" ]
Spudsman2600
3
netbox-community/netbox
django
18,449
Clean up formatting errors
### Proposed Changes ``` netbox\dcim\base_filtersets.py:56:8: E121 continuation line under-indented for hanging indent netbox\dcim\filtersets.py:1655:17: E126 continuation line over-indented for hanging indent netbox\extras\tests\test_customfields.py:663:31: E203 whitespace before ',' netbox\ipam\models\vlans.py:364:13: E131 continuation line unaligned for hanging indent netbox\ipam\models\vlans.py:372:13: E131 continuation line unaligned for hanging indent ``` ### Justification These errors were caught by pycodestyle: pycodestyle --ignore=W504,E501 --exclude=node_modules netbox/
closed
2025-01-21T16:23:22Z
2025-01-24T00:51:44Z
https://github.com/netbox-community/netbox/issues/18449
[ "status: accepted", "type: housekeeping", "severity: low", "complexity: low" ]
DanSheps
0
daleroberts/itermplot
matplotlib
29
Plots turn brown when resizing the iTerm2 window
As the title says, the plots turn brown when the iTerm2 window is resized. This is on macOS 10.13, iTerm2 (3.1.5) and Python 3.6.1 using itermplot 0.20. ![screen shot 2018-01-22 at 16 59 46](https://user-images.githubusercontent.com/1730350/35230193-ad029f32-ff95-11e7-9351-ce0663a5730d.png)
open
2018-01-22T16:01:13Z
2018-06-27T08:50:28Z
https://github.com/daleroberts/itermplot/issues/29
[]
tamasgal
1
jonaswinkler/paperless-ng
django
285
[Feature request] bulk export documents
Already requested... sorry...
closed
2021-01-06T22:34:21Z
2021-01-06T22:39:16Z
https://github.com/jonaswinkler/paperless-ng/issues/285
[]
Philmo67
1
0b01001001/spectree
pydantic
98
flask-restful problem: request body and parameters doesn't appear in documentation
![Screenshot from 2021-01-02 17-25-23](https://user-images.githubusercontent.com/33868879/103458663-8d9af600-4d1f-11eb-9fc4-c20545db08d2.png) When I decorate post method in resource class with api.validate(json=User) , request body and parameters doesn't appear in documentation ``` @api.validate(json=User, resp=Response(HTTP_200=None, HTTP_400=None), tags=['UserSignUp']) def post(self): print(reqparse.request.context.json) self.__add_parser_argument() user_args = self.parser.parse_args() ```
closed
2021-01-02T13:56:01Z
2021-01-15T06:39:43Z
https://github.com/0b01001001/spectree/issues/98
[]
arminsoltan
2
fugue-project/fugue
pandas
276
[FEATURE] Get rid of FUGUE_SQL_CONF_SIMPLE_ASSIGN
It seems simple assign in Fugue SQL is the way to go `:=` does not make sense to be another option, we will just remove this option.
closed
2021-12-31T05:36:04Z
2022-01-02T06:48:09Z
https://github.com/fugue-project/fugue/issues/276
[ "enhancement", "Fugue SQL", "behavior change" ]
goodwanghan
0
harry0703/MoneyPrinterTurbo
automation
442
求解,imagemagicky没有下错啊,文件地址也更改了
OSError: MoviePy Error: creation of None failed because of the following error: [WinError 2] 系统找不到指定的文件。. .This error can be due to the fact that ImageMagick is not installed on your computer, or (for Windows users) that you didn't specify the path to the ImageMagick binary. Check the documentation. Traceback: File "D:\ai\anaaconda\Lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 584, in _run_script exec(code, module.__dict__) File "C:\Users\许\MoneyPrinterTurbo\webui\Main.py", line 658, in <module> result = tm.start(task_id=task_id, params=params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\许\MoneyPrinterTurbo\app\services\task.py", line 184, in start video.generate_video(video_path=combined_video_path, File "C:\Users\许\MoneyPrinterTurbo\app\services\video.py", line 257, in generate_video sub = SubtitlesClip(subtitles=subtitle_path, encoding='utf-8') ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\ai\anaaconda\Lib\site-packages\moviepy\video\tools\subtitles.py", line 104, in __init__ hasmask = bool(self.make_textclip("T").mask) ^^^^^^^^^^^^^^^^^^^^^^^ File "D:\ai\anaaconda\Lib\site-packages\moviepy\video\tools\subtitles.py", line 58, in make_textclip return TextClip( ^^^^^^^^^ File "<decorator-gen-102>", line 2, in __init__ File "D:\ai\anaaconda\Lib\site-packages\moviepy\decorators.py", line 89, in wrapper return f(*new_a, **new_kw) ^^^^^^^^^^^^^^^^^^^ File "D:\ai\anaaconda\Lib\site-packages\moviepy\video\VideoClip.py", line 1272, in __init__ raise IOError(error)
closed
2024-07-08T10:28:23Z
2024-07-15T06:13:02Z
https://github.com/harry0703/MoneyPrinterTurbo/issues/442
[]
xdf927
1
jumpserver/jumpserver
django
14,213
[Question] Account Push failed with SSH Key
### Product Version v4.1.0 ### Product Edition - [X] Community Edition - [ ] Enterprise Edition - [ ] Enterprise Trial Edition ### Installation Method - [X] Online Installation (One-click command installation) - [ ] Offline Package Installation - [ ] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] Source Code ### Environment Information We using Jumpserver in cluster mode on Ubuntu 22.04. ### 🤔 Question Description what could be the problem with pushing the account correctly with random generate SSH key? ### Expected Behavior _No response_ ### Additional Information We have a problem with push account with SSH key random generation on asstest using two methods: push account or create template and pushing it via Authorization. Then we takes an error "Authentication failed". We check the asset and find that after creation user in home directory he hasn't public key in authorized_keys file.
closed
2024-09-20T11:51:45Z
2024-10-07T13:37:11Z
https://github.com/jumpserver/jumpserver/issues/14213
[ "🤔 Question" ]
obgranat
5
mckinsey/vizro
data-visualization
1,067
Enable zoom-based interactions between time-series Graphs
### Question Hey there! I have a dashboard that has two components. For the sake of this argument, let's say it is two time series figures captured into a `vm.Graph`. They both plot a continuous value agains the same `pd.DatetimeIndex`. I would like that whenever I zoom on the source plot, I focus on the same x-range on the target plot. This is very similar to #936 but: - Filtering on datetime values does not seem to be supported - I use the figure's `relayoutData` instead of `selectData` as I only want to enable this behavior when I zoom in/out and not when I select. ### Code/Examples I have started to implement a solution based on creating and InvisibleRangeSlider and having it mapped the relayoutData property of my plot using a client-side callback in a way similar to what is recommended in #936 . As datetime-based filtering does not seem to be supported. I have tried a few workarounds but none of the has worked. My experiments are available on this [PyCafe link](https://app.py.cafe/snippet/vizro/v1?#c=H4sIAC0m2GcEA61YC2_jRBD-K4ur0kRKrfZoEQr4BHcHXCU4oXuAUBz5NvYmWep4jb3Og6r_nW92vbaTummR2FSpvfP-ZmYfufNilQhv7IXmM5epFkUkM3zzWEuVsY3US1aKVMRaJG-45r5lDbN5oVZM73KZLZhc5arQ7BdJgmmYhVk9k_Ms4SXDX560k6nS6c5fFDxfRmr2F3QbloVqWNbyn0L5KziXGtJ6dUCqdYhtXojSGtiSXeMVTC6dT0kc98zGqRSZLmUiopin6YzHtyN2k-WVbpi10HIlnIB7r8nGCUf7nV66BN-CV_pRzgu-EgRqjWct0hL25GzAPlAVpWONea6rAobpc8JeV6UG_3ueLcSHFAEULFbgzBAP00uumYRotpalnKWQilMOfG7cREdusF75ndfhOMwYBhkfu1ROQq_RFRXEHJWGO_SmLGCPU8lZ0paIOZtVMk0GKKK5s0GjrHLAgvRDj3keDH3LOexh8ku9SwVY70IvkWWe8l3ojeFAhshD774VKQTgylpJB9yPGYebJTASrCoFU3Pz-LkPms8dTFFaHPXn_8YXAtOZLhQqvJ7weZJEhNggRCsZWhl6VEoPlSIsI1UnvitqG0wBt0dF6ZPMAUC-9VGMHICo-LYksJI50kQFapOSJ75WkSvYQZdqmP1SaPR4IraDM5o_G6FeAGgsgo9FJWpb39d1B-9Mo4YeCSOb1HkRemYAWR7NKRqX1rlcwP5C-T_JBYlCwkwrqtEUVhis46laZeVkfH457ZQDZC0iWHnEADo-xFwDpsE2aA35xu0R23XmJlA4HTFqnSD0Vry4FQVyMDRxOM1VDgERbflWlIPWqKlZW7JBImM9qKG3QIwsY6Oorizoo5kwOw4RqqcD0YhRMmyTBO9Ac5jlBZZbaPhEHtJaalSZdZfKuysH7SQhUbjNHHV7pjQjlR00S80LPWIiS5CQlrtlgBLD84g8DULMiFrGoJlA6RU5PQxqM6F3-uf56er8NGGnb8env45PPxgsjJp6QLiGwmpy2etgZLPLXraWrOnh1KpqFcJ7Cu0ZvlsE3GvrOeb_b7-_a-2QWfLaqrLfKBto2GsOS6DWgGjbGWiMRqTTE3aORqc72kkafb2yz9HTOfsMh33UUmtgGr-77UDvNN9pCbvhGTxNT1CdRwYcU4qD9vGwFT6CYlvTbX5JTys8YQ673nFrtfstwarMaZkP3IJf46ulxqIQeq-XKMeSfbqBN5bS7BNlMLEzNCD9M7XxQCaQKlVVxCKKSZjCAGLwOWgX0vnQrTU09oXRAAus173CMNwVnjY-2Y2o61HfrnJQPNYc4Di3cLgQ3bAI72l1Ay7_YKgHKt2YV5khBw-qwPl-OLAjVQbTjkf-mqcVbWM9Mn16TtgNm4uUjkVYKcqlqtKEbVRxixMJFj4c6hTOA1hB-kSPhXRivpug2sPco7w0bCZtTJ2k-i0aCO0xBShr878zTnqDPuY3jcbrww7pU0bjv2aChqp0I_RoqD2yhz50eToInLB3r8bsI2V1Y5KaF2rGZ-mOzYQ51G34jmmFddJluhRihWMxbXddNbR7rATHKQ_cpjLMfcct411W4Noc3TrQ2uw8K7WdWKyUO_UFN9nR5rTcNI61qOXqImhnVjILsLlI2g18vOCYjeNhvnNB7iW-FuHYSBoRvn1CpM4MahdPdNR-i-sU8oC7CI6a9sRtCsadufvi7aykbLMUWJjBaFdOZsCk3d4iJnCV7LnA1YiF9f2Unl2xDwqBCwOqkm6wQ9whDJUGThJ7RPbll9gZ2vfJGc6MsvQN3pOL6dmUfREErKJNRmYi2VNGg26ZUeudOWyjPHMcO_czx-4MJmM2OW5vdMSfS9Cn98NvWxceXoQ2SKPa4M6w71emInsoroVrQSCHz8g8mglzKYbvh5tY6HXdwr5blwTu42vYwAVDaslTkx1znAbdlEd9rTUX3jCze769_UbRGkcOpCuKwEkOzxQv6PyG5nvjXge0Q6PV6B9daMztGxVq746N1NAvKtS6N4Kff1eyECuKHD91GFsvgwv_0n9xFWZgoEuYI-A13-mlyjCR71QCqM7XF_6Lr_1LkGzA3vjOqz31xi9gQCn9Xm1oulZV4G3kxUt4VAgwTRqK5jNUBIgbmeilN768vhh56Mo_7OtX9u2tkIsl7NCrTCCGX2bEK2gtRfEauztH6RWPWCDW85nlBUvOSa_n3U_vRw1P40WfAhBbOZ7nfr7bl35OdHUAl9fX_nV3XD0n2tr7pyJ1Qe4598CFqyv_am-MvKXz7ptnuYMVH9M8fcofx0cO0ed-ZJKBoptM7_8F3sW1tmsTAAA). Thank you very much for your help! :) ### Which package? vizro ### Code of Conduct - [x] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
open
2025-03-17T13:56:07Z
2025-03-24T10:09:20Z
https://github.com/mckinsey/vizro/issues/1067
[ "General Question :question:" ]
gtauzin
7