repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
pywinauto/pywinauto
automation
887
Error after 'from pywinauto.application import Application'
## Expected Behavior ``` from pywinauto.application import Application ``` ## Actual Behavior ``` Traceback (most recent call last): File "d:\Devel\python\lib\ctypes\__init__.py", line 121, in WINFUNCTYPE return _win_functype_cache[(restype, argtypes, flags)] KeyError: (<class 'ctypes.HRESULT'>, (<class 'ctypes.c_long'>, <class 'comtypes.automation.tagVARIANT'>, <class 'comtypes.LP_POINTER(IUIAutomationCondition)'>), 0) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "d:\Devel\python\lib\site-packages\pywinauto\__init__.py", line 89, in <module> from . import findwindows File "d:\Devel\python\lib\site-packages\pywinauto\findwindows.py", line 42, in <module> from . import controls File "d:\Devel\python\lib\site-packages\pywinauto\controls\__init__.py", line 36, in <module> from . import uiawrapper # register "uia" back-end (at the end of uiawrapper module) File "d:\Devel\python\lib\site-packages\pywinauto\controls\uiawrapper.py", line 47, in <module> from ..uia_defines import IUIA File "d:\Devel\python\lib\site-packages\pywinauto\uia_defines.py", line 181, in <module> pattern_ids = _build_pattern_ids_dic() File "d:\Devel\python\lib\site-packages\pywinauto\uia_defines.py", line 169, in _build_pattern_ids_dic if hasattr(IUIA().ui_automation_client, cls_name): File "d:\Devel\python\lib\site-packages\pywinauto\uia_defines.py", line 50, in __call__ cls._instances[cls] = super(_Singleton, cls).__call__(*args, **kwargs) File "d:\Devel\python\lib\site-packages\pywinauto\uia_defines.py", line 60, in __init__ self.UIA_dll = comtypes.client.GetModule('UIAutomationCore.dll') File "d:\Devel\python\lib\site-packages\comtypes\client\_generate.py", line 110, in GetModule mod = _CreateWrapper(tlib, pathname) File "d:\Devel\python\lib\site-packages\comtypes\client\_generate.py", line 184, in _CreateWrapper mod = _my_import(fullname) File "d:\Devel\python\lib\site-packages\comtypes\client\_generate.py", line 24, in _my_import return __import__(fullname, globals(), locals(), ['DUMMY']) File "d:\Devel\python\lib\site-packages\comtypes\gen\_944DE083_8FB8_45CF_BCB7_C477ACB2F897_0_1_0.py", line 1870, in <module> ( ['out', 'retval'], POINTER(POINTER(IUIAutomationElement)), 'element' )), File "d:\Devel\python\lib\site-packages\comtypes\__init__.py", line 329, in __setattr__ self._make_methods(value) File "d:\Devel\python\lib\site-packages\comtypes\__init__.py", line 698, in _make_methods prototype = WINFUNCTYPE(restype, *argtypes) File "d:\Devel\python\lib\ctypes\__init__.py", line 123, in WINFUNCTYPE class WinFunctionType(_CFuncPtr): TypeError: item 2 in _argtypes_ passes a union by value, which is unsupported. ``` ## Steps to Reproduce the Problem ## Short Example of Code to Demonstrate the Problem ## Specifications - Pywinauto version: comtypes-1.1.7 pywin32-227 pywinauto-0.6.8 six-1.14.0 - Python version and bitness: Python 3.7.6, 32bit - Platform and OS: Win 10
closed
2020-02-03T15:30:10Z
2020-02-13T17:17:44Z
https://github.com/pywinauto/pywinauto/issues/887
[ "duplicate", "3rd-party issue" ]
arozehnal
5
scikit-optimize/scikit-optimize
scikit-learn
1,076
ImportError when using skopt with scikit-learn 1.0
When importing Scikit-optimize, the following ImportError is returned: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.7/dist-packages/skopt/__init__.py", line 55, in <module> from .searchcv import BayesSearchCV File "/usr/local/lib/python3.7/dist-packages/skopt/searchcv.py", line 16, in <module> from sklearn.utils.fixes import MaskedArray ImportError: cannot import name 'MaskedArray' from 'sklearn.utils.fixes' (/usr/local/lib/python3.7/dist-packages/sklearn/utils/fixes.py) ![image](https://user-images.githubusercontent.com/18738435/136021537-7d270f93-1980-4a6b-b195-ac2c4c67b590.png) This issue started occurring when upgrading from Scikit-learn 0.24.2 to 1.0. System dependencies: Python 3.7.12 scikit-image 0.18.3 scikit-learn 1.0 scikit-optimize 0.8.1 sklearn 0.0
closed
2021-10-05T12:30:14Z
2021-10-12T14:41:36Z
https://github.com/scikit-optimize/scikit-optimize/issues/1076
[]
SenneDeproost
3
s3rius/FastAPI-template
fastapi
96
Request object isn't passed as argument
Thanks for this package. I have created graphql app using template but getting below error. It seems fastapi doesn't pass request object. ```log ERROR: Exception in ASGI application Traceback (most recent call last): File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/uvicorn/protocols/websockets/websockets_impl.py", line 184, in run_asgi result = await self.app(self.scope, self.asgi_receive, self.asgi_send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/uvicorn/middleware/proxy_headers.py", line 75, in __call__ return await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/applications.py", line 261, in __call__ await super().__call__(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/applications.py", line 112, in __call__ await self.middleware_stack(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/middleware/errors.py", line 146, in __call__ await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/exceptions.py", line 58, in __call__ await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__ raise e File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__ await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/routing.py", line 656, in __call__ await route.handle(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/routing.py", line 315, in handle await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/routing.py", line 77, in app await func(session) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/routing.py", line 264, in app solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 498, in solve_dependencies solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 498, in solve_dependencies solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 498, in solve_dependencies solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 523, in solve_dependencies solved = await solve_generator( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 443, in solve_generator cm = asynccontextmanager(call)(**sub_values) File "/Users/test/.pyenv/versions/3.10.2/lib/python3.10/contextlib.py", line 314, in helper return _AsyncGeneratorContextManager(func, args, kwds) File "/Users/test/.pyenv/versions/3.10.2/lib/python3.10/contextlib.py", line 103, in __init__ self.gen = func(*args, **kwds) TypeError: get_db_session() missing 1 required positional argument: 'request' INFO: connection open INFO: connection closed ```
closed
2022-07-05T07:01:34Z
2022-10-13T21:26:26Z
https://github.com/s3rius/FastAPI-template/issues/96
[]
devNaresh
16
unionai-oss/pandera
pandas
1,261
Fix to_script description
#### Location of the documentation [DataFrameSchema.to_script](https://github.com/unionai-oss/pandera/blob/62bc4840508ff1ac0df595b57b2152737a1228a2/pandera/api/pandas/container.py#L1251) #### Documentation problem This method has the description for `from_yaml`. #### Suggested fix for documentation Something like "Write `DataFrameSchema` to script".
closed
2023-07-15T19:25:28Z
2023-07-17T17:47:29Z
https://github.com/unionai-oss/pandera/issues/1261
[ "docs" ]
tmcclintock
1
onnx/onnx
pytorch
5,926
Add TopK node to a pretrained Brevitas model
We are working with FINN-ONNX, and we want the pretrained models from Brevitas that classify the MNIST images to output the index (class) instead of a probabilities tensor of dim 1x10.To our knowledge, the node responsible for this is the TopK. Where do we have to add this layer, and what function can we add so the 'export_qonnx' would understand it as a TopK node? The desired block is in the following image: ![Screenshot from 2024-02-09 16-56-07](https://github.com/onnx/onnx/assets/92207421/2b5cd758-a044-4b99-928a-5f8f51c22a6f)
open
2024-02-09T17:21:55Z
2024-02-13T10:04:09Z
https://github.com/onnx/onnx/issues/5926
[ "question" ]
abedbaltaji
1
flasgger/flasgger
flask
443
Compatibility Proposal for OpenAPI 3
This issue to discuss compatibility of OpenAPI3 in flasgger. Currently, the code differentiates them in runtime, and mixes up the processing of both specifications. In long term, I believe that this would lower code quality, and make the code harder to maintain. Please raise any suggestions or plans to make Flasgger work better with OpenAPI 3 and 2 at the same time.
open
2020-11-21T18:15:27Z
2021-11-14T08:53:02Z
https://github.com/flasgger/flasgger/issues/443
[]
billyrrr
3
nteract/papermill
jupyter
575
Some weird error messages when executing a notebook involving pytorch
I have a notebook for training a model using pytorch. The notebook runs fine if I run it from browser. But I ran into the following problem when executing it via papermill ``` Generating grammar tables from /home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/blib2to3/Grammar.txt Writing grammar tables to /home/ubuntu/.cache/black/20.8b1/Grammar3.6.10.final.0.pickle Writing failed: [Errno 2] No such file or directory: '/home/ubuntu/.cache/black/20.8b1/tmp0twtlmvs' Generating grammar tables from /home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/blib2to3/PatternGrammar.txt Writing grammar tables to /home/ubuntu/.cache/black/20.8b1/PatternGrammar3.6.10.final.0.pickle Writing failed: [Errno 2] No such file or directory: '/home/ubuntu/.cache/black/20.8b1/tmp2_jvdud_' Executing: 0%| | 0/23 [00:00<?, ?cell/s]Executing notebook with kernel: pytorch_p36 Executing: 22%|████████████████▎ | 5/23 [00:03<00:13, 1.38cell/s] Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/pytorch_p36/bin/papermill", line 8, in <module> sys.exit(papermill()) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/click/core.py", line 764, in __call__ return self.main(*args, **kwargs) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/click/core.py", line 717, in main rv = self.invoke(ctx) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/click/core.py", line 956, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/click/core.py", line 555, in invoke return callback(*args, **kwargs) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/click/decorators.py", line 17, in new_func return f(get_current_context(), *args, **kwargs) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/papermill/cli.py", line 256, in papermill execution_timeout=execution_timeout, File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/papermill/execute.py", line 118, in execute_notebook raise_for_execution_errors(nb, output_path) File "/home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/papermill/execute.py", line 230, in raise_for_execution_errors raise error papermill.exceptions.PapermillExecutionError: --------------------------------------------------------------------------- Exception encountered at "In [2]": --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-2-3916aaf64ab2> in <module> ----> 1 from torchvision import datasets, transforms 2 3 datasets.MNIST('data', download=True, transform=transforms.Compose([ 4 transforms.ToTensor(), 5 transforms.Normalize((0.1307,), (0.3081,)) ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/__init__.py in <module> 1 import warnings 2 ----> 3 from torchvision import models 4 from torchvision import datasets 5 from torchvision import ops ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/__init__.py in <module> 10 from .shufflenetv2 import * 11 from . import segmentation ---> 12 from . import detection 13 from . import video 14 from . import quantization ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/detection/__init__.py in <module> ----> 1 from .faster_rcnn import * 2 from .mask_rcnn import * 3 from .keypoint_rcnn import * ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/detection/faster_rcnn.py in <module> 11 12 from .generalized_rcnn import GeneralizedRCNN ---> 13 from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork 14 from .roi_heads import RoIHeads 15 from .transform import GeneralizedRCNNTransform ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/detection/rpn.py in <module> 9 from torchvision.ops import boxes as box_ops 10 ---> 11 from . import _utils as det_utils 12 from .image_list import ImageList 13 ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/detection/_utils.py in <module> 17 18 @torch.jit.script ---> 19 class BalancedPositiveNegativeSampler(object): 20 """ 21 This class samples batches, ensuring that they contain a fixed proportion of positives ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torch/jit/__init__.py in script(obj, optimize, _frames_up, _rcb) 1217 if _rcb is None: 1218 _rcb = _jit_internal.createResolutionCallback(_frames_up + 1) -> 1219 _compile_and_register_class(obj, _rcb, qualified_name) 1220 return obj 1221 else: ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torch/jit/__init__.py in _compile_and_register_class(obj, rcb, qualified_name) 1074 def _compile_and_register_class(obj, rcb, qualified_name): 1075 ast = get_jit_class_def(obj, obj.__name__) -> 1076 _jit_script_class_compile(qualified_name, ast, rcb) 1077 _add_script_class(obj, qualified_name) 1078 ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torch/jit/_recursive.py in try_compile_fn(fn, loc) 220 # object 221 rcb = _jit_internal.createResolutionCallbackFromClosure(fn) --> 222 return torch.jit.script(fn, _rcb=rcb) 223 224 ~/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torch/jit/__init__.py in script(obj, optimize, _frames_up, _rcb) 1224 if _rcb is None: 1225 _rcb = _gen_rcb(obj, _frames_up) -> 1226 fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj)) 1227 # Forward docstrings 1228 fn.__doc__ = obj.__doc__ RuntimeError: builtin cannot be used as a value: at /home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/detection/_utils.py:14:56 def zeros_like(tensor, dtype): # type: (Tensor, int) -> Tensor return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout, ~~~~~~~~~~~~~ <--- HERE device=tensor.device, pin_memory=tensor.is_pinned()) 'zeros_like' is being compiled since it was called from '__torch__.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.__call__' at /home/ubuntu/anaconda3/envs/pytorch_p36/lib/python3.6/site-packages/torchvision/models/detection/_utils.py:72:12 # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx_per_image = positive[perm1] neg_idx_per_image = negative[perm2] # create binary mask from indices pos_idx_per_image_mask = zeros_like( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... <--- HERE matched_idxs_per_image, dtype=torch.uint8 ) neg_idx_per_image_mask = zeros_like( matched_idxs_per_image, dtype=torch.uint8 ) pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8) neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8) ```
closed
2021-01-26T23:16:54Z
2021-02-04T17:06:27Z
https://github.com/nteract/papermill/issues/575
[ "question" ]
hongshanli23
12
twopirllc/pandas-ta
pandas
807
SyntaxWarning: invalid escape sequence '\g' return re_.sub("([a-z])([A-Z])","\g<1> \g<2>", x).title()
I got this warning after upgrade python from 3.11 to 3.12: pandas_ta\utils\_core.py:14: SyntaxWarning: invalid escape sequence '\g' return re_.sub("([a-z])([A-Z])","\g<1> \g<2>", x).title() python 3.12.4 pandas_ta 0.3.14b Do I need to downgrade to python 3.11 for now?
closed
2024-07-02T05:57:48Z
2024-12-01T22:06:59Z
https://github.com/twopirllc/pandas-ta/issues/807
[ "bug" ]
kopes18
1
deepfakes/faceswap
deep-learning
1,356
Training collapse
*Note: For general usage questions and help, please use either our [FaceSwap Forum](https://faceswap.dev/forum) or [FaceSwap Discord server](https://discord.gg/FC54sYg). General usage questions are liable to be closed without response.* **Crash reports MUST be included when reporting bugs.** **Describe the bug** Please take a screenshot **To Reproduce** Steps to reproduce the behavior: 1. input A 2. input B 3. input model 4. click train **Expected behavior** normal operation **Screenshots** ![image](https://github.com/deepfakes/faceswap/assets/84235524/21a18311-86cd-4bc6-899c-9ea3a78f776a) ![image](https://github.com/deepfakes/faceswap/assets/84235524/f37b0483-f7d5-4908-8926-434a8605a40a) **Desktop (please complete the following information):** - OS: Window11 23H2 22635.2486 - Python Version [e.g. 3.5, 3.6] - Conda Version [e.g. 4.5.12] - Commit ID [e.g. e83819f] - **Additional context** ============ System Information ============ backend: nvidia encoding: cp936 git_branch: master git_commits: 8e6c6c3 patch writer: Sort the json file by key gpu_cuda: 12.3 gpu_cudnn: No global version found. Check Conda packages for Conda cuDNN gpu_devices: GPU_0: NVIDIA GeForce RTX 3050 Laptop GPU gpu_devices_active: GPU_0 gpu_driver: 545.84 gpu_vram: GPU_0: 4096MB (3977MB free) os_machine: AMD64 os_platform: Windows-10-10.0.22635-SP0 os_release: 10 py_command: d:\faceswap/faceswap.py gui py_conda_version: conda 23.9.0 py_implementation: CPython py_version: 3.10.13 py_virtual_env: True sys_cores: 20 sys_processor: Intel64 Family 6 Model 154 Stepping 3, GenuineIntel sys_ram: Total: 16076MB, Available: 4159MB, Used: 11916MB, Free: 4159MB =============== Pip Packages =============== absl-py==2.0.0 astunparse==1.6.3 cachetools==5.3.1 certifi==2023.7.22 charset-normalizer==3.3.0 colorama @ file:///C:/b/abs_a9ozq0l032/croot/colorama_1672387194846/work contourpy @ file:///C:/b/abs_d5rpy288vc/croots/recipe/contourpy_1663827418189/work cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work fastcluster @ file:///D:/bld/fastcluster_1695650232190/work ffmpy @ file:///home/conda/feedstock_root/build_artifacts/ffmpy_1659474992694/work flatbuffers==23.5.26 fonttools==4.25.0 gast==0.4.0 google-auth==2.23.3 google-auth-oauthlib==0.4.6 google-pasta==0.2.0 grpcio==1.59.0 h5py==3.10.0 idna==3.4 imageio @ file:///C:/b/abs_3eijmwdodc/croot/imageio_1695996500830/work imageio-ffmpeg @ file:///home/conda/feedstock_root/build_artifacts/imageio-ffmpeg_1694632425602/work joblib @ file:///C:/b/abs_1anqjntpan/croot/joblib_1685113317150/work keras==2.10.0 Keras-Preprocessing==1.1.2 kiwisolver @ file:///C:/b/abs_88mdhvtahm/croot/kiwisolver_1672387921783/work libclang==16.0.6 Markdown==3.5 MarkupSafe==2.1.3 matplotlib @ file:///C:/b/abs_085jhivdha/croot/matplotlib-suite_1693812524572/work mkl-fft @ file:///C:/b/abs_19i1y8ykas/croot/mkl_fft_1695058226480/work mkl-random @ file:///C:/b/abs_edwkj1_o69/croot/mkl_random_1695059866750/work mkl-service==2.4.0 munkres==1.1.4 numexpr @ file:///C:/b/abs_5fucrty5dc/croot/numexpr_1696515448831/work numpy @ file:///C:/b/abs_9fu2cs2527/croot/numpy_and_numpy_base_1695830496596/work/dist/numpy-1.26.0-cp310-cp310-win_amd64.whl#sha256=11367989d61b64039738e0c68c95c6b797a41c4c75ec2147c0541b21163786eb nvidia-ml-py @ file:///home/conda/feedstock_root/build_artifacts/nvidia-ml-py_1693425331741/work oauthlib==3.2.2 opencv-python==4.8.1.78 opt-einsum==3.3.0 packaging @ file:///C:/b/abs_28t5mcoltc/croot/packaging_1693575224052/work Pillow @ file:///C:/b/abs_153xikw91n/croot/pillow_1695134603563/work ply==3.11 protobuf==3.19.6 psutil @ file:///C:/Windows/Temp/abs_b2c2fd7f-9fd5-4756-95ea-8aed74d0039flsd9qufz/croots/recipe/psutil_1656431277748/work pyasn1==0.5.0 pyasn1-modules==0.3.0 pyparsing @ file:///C:/Users/BUILDE~1/AppData/Local/Temp/abs_7f_7lba6rl/croots/recipe/pyparsing_1661452540662/work PyQt5==5.15.7 PyQt5-sip @ file:///C:/Windows/Temp/abs_d7gmd2jg8i/croots/recipe/pyqt-split_1659273064801/work/pyqt_sip python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work pywin32==305.1 pywinpty @ file:///C:/ci_310/pywinpty_1644230983541/work/target/wheels/pywinpty-2.0.2-cp310-none-win_amd64.whl requests==2.31.0 requests-oauthlib==1.3.1 rsa==4.9 scikit-learn @ file:///C:/b/abs_55olq_4gzc/croot/scikit-learn_1690978955123/work scipy==1.11.3 sip @ file:///C:/Windows/Temp/abs_b8fxd17m2u/croots/recipe/sip_1659012372737/work six @ file:///tmp/build/80754af9/six_1644875935023/work tensorboard==2.10.1 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorflow==2.10.1 tensorflow-estimator==2.10.0 tensorflow-io-gcs-filesystem==0.31.0 termcolor==2.3.0 threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work toml @ file:///tmp/build/80754af9/toml_1616166611790/work tornado @ file:///C:/b/abs_0cbrstidzg/croot/tornado_1696937003724/work tqdm @ file:///C:/b/abs_f76j9hg7pv/croot/tqdm_1679561871187/work typing_extensions==4.8.0 urllib3==2.0.7 Werkzeug==3.0.0 wrapt==1.15.0 ============== Conda Packages ============== # packages in environment at C:\Users\cui19\MiniConda3\envs\faceswap: # # Name Version Build Channel absl-py 2.0.0 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi blas 1.0 mkl brotli 1.0.9 h2bbff1b_7 brotli-bin 1.0.9 h2bbff1b_7 bzip2 1.0.8 he774522_0 ca-certificates 2023.08.22 haa95532_0 cachetools 5.3.1 pypi_0 pypi certifi 2023.7.22 pypi_0 pypi charset-normalizer 3.3.0 pypi_0 pypi colorama 0.4.6 py310haa95532_0 contourpy 1.0.5 py310h59b6b97_0 cudatoolkit 11.8.0 hd77b12b_0 cudnn 8.9.2.26 cuda11_0 cycler 0.11.0 pyhd3eb1b0_0 decorator 5.1.1 pyhd3eb1b0_0 fastcluster 1.2.6 py310hecd3228_3 conda-forge ffmpeg 4.3.1 ha925a31_0 conda-forge ffmpy 0.3.0 pyhb6f538c_0 conda-forge flatbuffers 23.5.26 pypi_0 pypi fonttools 4.25.0 pyhd3eb1b0_0 freetype 2.12.1 ha860e81_0 gast 0.4.0 pypi_0 pypi giflib 5.2.1 h8cc25b3_3 git 2.40.1 haa95532_1 glib 2.69.1 h5dc1a3c_2 google-auth 2.23.3 pypi_0 pypi google-auth-oauthlib 0.4.6 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi grpcio 1.59.0 pypi_0 pypi h5py 3.10.0 pypi_0 pypi icc_rt 2022.1.0 h6049295_2 icu 58.2 ha925a31_3 idna 3.4 pypi_0 pypi imageio 2.31.4 py310haa95532_0 imageio-ffmpeg 0.4.9 pyhd8ed1ab_0 conda-forge intel-openmp 2023.1.0 h59b6b97_46319 joblib 1.2.0 py310haa95532_0 jpeg 9e h2bbff1b_1 keras 2.10.0 pypi_0 pypi keras-preprocessing 1.1.2 pypi_0 pypi kiwisolver 1.4.4 py310hd77b12b_0 krb5 1.20.1 h5b6d351_0 lerc 3.0 hd77b12b_0 libbrotlicommon 1.0.9 h2bbff1b_7 libbrotlidec 1.0.9 h2bbff1b_7 libbrotlienc 1.0.9 h2bbff1b_7 libclang 16.0.6 pypi_0 pypi libclang13 14.0.6 default_h8e68704_1 libdeflate 1.17 h2bbff1b_1 libffi 3.4.4 hd77b12b_0 libiconv 1.16 h2bbff1b_2 libpng 1.6.39 h8cc25b3_0 libpq 12.15 h906ac69_1 libtiff 4.5.1 hd77b12b_0 libwebp 1.3.2 hbc33d0d_0 libwebp-base 1.3.2 h2bbff1b_0 libxml2 2.10.4 h0ad7f3c_1 libxslt 1.1.37 h2bbff1b_1 libzlib 1.2.13 hcfcfb64_5 conda-forge libzlib-wapi 1.2.13 hcfcfb64_5 conda-forge lz4-c 1.9.4 h2bbff1b_0 markdown 3.5 pypi_0 pypi markupsafe 2.1.3 pypi_0 pypi matplotlib 3.7.2 py310haa95532_0 matplotlib-base 3.7.2 py310h4ed8f06_0 mkl 2023.1.0 h6b88ed4_46357 mkl-service 2.4.0 py310h2bbff1b_1 mkl_fft 1.3.8 py310h2bbff1b_0 mkl_random 1.2.4 py310h59b6b97_0 munkres 1.1.4 py_0 numexpr 2.8.7 py310h2cd9be0_0 numpy 1.26.0 py310h055cbcc_0 numpy-base 1.26.0 py310h65a83cf_0 nvidia-ml-py 12.535.108 pyhd8ed1ab_0 conda-forge oauthlib 3.2.2 pypi_0 pypi opencv-python 4.8.1.78 pypi_0 pypi openssl 3.0.11 h2bbff1b_2 opt-einsum 3.3.0 pypi_0 pypi packaging 23.1 py310haa95532_0 pcre 8.45 hd77b12b_0 pillow 9.4.0 py310hd77b12b_1 pip 23.3 py310haa95532_0 ply 3.11 py310haa95532_0 protobuf 3.19.6 pypi_0 pypi psutil 5.9.0 py310h2bbff1b_0 pyasn1 0.5.0 pypi_0 pypi pyasn1-modules 0.3.0 pypi_0 pypi pyparsing 3.0.9 py310haa95532_0 pyqt 5.15.7 py310hd77b12b_0 pyqt5-sip 12.11.0 py310hd77b12b_0 python 3.10.13 he1021f5_0 python-dateutil 2.8.2 pyhd3eb1b0_0 python_abi 3.10 2_cp310 conda-forge pywin32 305 py310h2bbff1b_0 pywinpty 2.0.2 py310h5da7b33_0 qt-main 5.15.2 h879a1e9_9 qt-webengine 5.15.9 h5bd16bc_7 qtwebkit 5.212 h2bbfb41_5 requests 2.31.0 pypi_0 pypi requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.9 pypi_0 pypi scikit-learn 1.3.0 py310h4ed8f06_0 scipy 1.11.3 py310h309d312_0 setuptools 68.0.0 py310haa95532_0 sip 6.6.2 py310hd77b12b_0 six 1.16.0 pyhd3eb1b0_1 sqlite 3.41.2 h2bbff1b_0 tbb 2021.8.0 h59b6b97_0 tensorboard 2.10.1 pypi_0 pypi tensorboard-data-server 0.6.1 pypi_0 pypi tensorboard-plugin-wit 1.8.1 pypi_0 pypi tensorflow 2.10.1 pypi_0 pypi tensorflow-estimator 2.10.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.31.0 pypi_0 pypi termcolor 2.3.0 pypi_0 pypi threadpoolctl 2.2.0 pyh0d69192_0 tk 8.6.12 h2bbff1b_0 toml 0.10.2 pyhd3eb1b0_0 tornado 6.3.3 py310h2bbff1b_0 tqdm 4.65.0 py310h9909e9c_0 typing-extensions 4.8.0 pypi_0 pypi tzdata 2023c h04d1e81_0 ucrt 10.0.22621.0 h57928b3_0 conda-forge urllib3 2.0.7 pypi_0 pypi vc 14.2 h21ff451_1 vc14_runtime 14.36.32532 hdcecf7f_17 conda-forge vs2015_runtime 14.36.32532 h05e6639_17 conda-forge werkzeug 3.0.0 pypi_0 pypi wheel 0.41.2 py310haa95532_0 winpty 0.4.3 4 wrapt 1.15.0 pypi_0 pypi xz 5.4.2 h8cc25b3_0 zlib 1.2.13 hcfcfb64_5 conda-forge zlib-wapi 1.2.13 hcfcfb64_5 conda-forge zstd 1.5.5 hd43e919_0 ================= Configs ================== --------- .faceswap --------- backend: nvidia --------- convert.ini --------- [color.color_transfer] clip: True preserve_paper: True [color.manual_balance] colorspace: HSV balance_1: 0.0 balance_2: 0.0 balance_3: 0.0 contrast: 0.0 brightness: 0.0 [color.match_hist] threshold: 99.0 [mask.mask_blend] type: normalized kernel_size: 3 passes: 4 threshold: 4 erosion: 0.0 erosion_top: 0.0 erosion_bottom: 0.0 erosion_left: 0.0 erosion_right: 0.0 [scaling.sharpen] method: none amount: 150 radius: 0.3 threshold: 5.0 [writer.ffmpeg] container: mp4 codec: libx264 crf: 23 preset: medium tune: none profile: auto level: auto skip_mux: False [writer.gif] fps: 25 loop: 0 palettesize: 256 subrectangles: False [writer.opencv] format: png draw_transparent: False separate_mask: False jpg_quality: 75 png_compress_level: 3 [writer.patch] start_index: 0 index_offset: 0 number_padding: 6 include_filename: True face_index_location: before origin: bottom-left empty_frames: blank json_output: False separate_mask: False bit_depth: 16 format: png png_compress_level: 3 tiff_compression_method: lzw [writer.pillow] format: png draw_transparent: False separate_mask: False optimize: False gif_interlace: True jpg_quality: 75 png_compress_level: 3 tif_compression: tiff_deflate --------- extract.ini --------- [global] allow_growth: False aligner_min_scale: 0.07 aligner_max_scale: 2.0 aligner_distance: 22.5 aligner_roll: 45.0 aligner_features: True filter_refeed: True save_filtered: False realign_refeeds: True filter_realign: True [align.fan] batch-size: 12 [detect.cv2_dnn] confidence: 50 [detect.mtcnn] minsize: 20 scalefactor: 0.709 batch-size: 8 cpu: True threshold_1: 0.6 threshold_2: 0.7 threshold_3: 0.7 [detect.s3fd] confidence: 70 batch-size: 4 [mask.bisenet_fp] batch-size: 8 cpu: False weights: faceswap include_ears: False include_hair: False include_glasses: True [mask.custom] batch-size: 8 centering: face fill: False [mask.unet_dfl] batch-size: 8 [mask.vgg_clear] batch-size: 6 [mask.vgg_obstructed] batch-size: 2 [recognition.vgg_face2] batch-size: 16 cpu: False --------- gui.ini --------- [global] fullscreen: False tab: extract options_panel_width: 30 console_panel_height: 20 icon_size: 14 font: default font_size: 9 autosave_last_session: prompt timeout: 120 auto_load_model_stats: True --------- train.ini --------- [global] centering: face coverage: 87.5 icnr_init: False conv_aware_init: False optimizer: adam learning_rate: 5e-05 epsilon_exponent: -7 save_optimizer: exit lr_finder_iterations: 1000 lr_finder_mode: set lr_finder_strength: default autoclip: False reflect_padding: False allow_growth: False mixed_precision: True nan_protection: True convert_batchsize: 16 [global.loss] loss_function: ssim loss_function_2: mse loss_weight_2: 100 loss_function_3: None loss_weight_3: 0 loss_function_4: None loss_weight_4: 0 mask_loss_function: mse eye_multiplier: 3 mouth_multiplier: 2 penalized_mask_loss: True mask_type: extended mask_blur_kernel: 3 mask_threshold: 4 learn_mask: False [model.dfaker] output_size: 128 [model.dfl_h128] lowmem: False [model.dfl_sae] input_size: 128 architecture: df autoencoder_dims: 0 encoder_dims: 42 decoder_dims: 21 multiscale_decoder: False [model.dlight] features: best details: good output_size: 256 [model.original] lowmem: False [model.phaze_a] output_size: 128 shared_fc: None enable_gblock: True split_fc: True split_gblock: False split_decoders: False enc_architecture: fs_original enc_scaling: 7 enc_load_weights: True bottleneck_type: dense bottleneck_norm: None bottleneck_size: 1024 bottleneck_in_encoder: True fc_depth: 1 fc_min_filters: 1024 fc_max_filters: 1024 fc_dimensions: 4 fc_filter_slope: -0.5 fc_dropout: 0.0 fc_upsampler: upsample2d fc_upsamples: 1 fc_upsample_filters: 512 fc_gblock_depth: 3 fc_gblock_min_nodes: 512 fc_gblock_max_nodes: 512 fc_gblock_filter_slope: -0.5 fc_gblock_dropout: 0.0 dec_upscale_method: subpixel dec_upscales_in_fc: 0 dec_norm: None dec_min_filters: 64 dec_max_filters: 512 dec_slope_mode: full dec_filter_slope: -0.45 dec_res_blocks: 1 dec_output_kernel: 5 dec_gaussian: True dec_skip_last_residual: True freeze_layers: keras_encoder load_layers: encoder fs_original_depth: 4 fs_original_min_filters: 128 fs_original_max_filters: 1024 fs_original_use_alt: False mobilenet_width: 1.0 mobilenet_depth: 1 mobilenet_dropout: 0.001 mobilenet_minimalistic: False [model.realface] input_size: 64 output_size: 128 dense_nodes: 1536 complexity_encoder: 128 complexity_decoder: 512 [model.unbalanced] input_size: 128 lowmem: False nodes: 1024 complexity_encoder: 128 complexity_decoder_a: 384 complexity_decoder_b: 512 [model.villain] lowmem: False [trainer.original] preview_images: 14 mask_opacity: 30 mask_color: #ff0000 zoom_amount: 5 rotation_range: 10 shift_range: 5 flip_chance: 50 color_lightness: 30 color_ab: 8 color_clahe_chance: 50 color_clahe_max_size: 4 **Crash Report** The crash report generated in the root of your Faceswap folder
closed
2023-10-22T05:54:22Z
2023-10-23T00:03:58Z
https://github.com/deepfakes/faceswap/issues/1356
[]
Cashew-wood
1
alteryx/featuretools
scikit-learn
2,156
release Featuretools v1.11.0
- We can release **once these are merged in** - https://github.com/alteryx/featuretools/pull/2136 - https://github.com/alteryx/featuretools/pull/2157 - The instructions for releasing: - https://github.com/alteryx/featuretools/blob/main/release.md
closed
2022-06-29T15:46:14Z
2022-06-30T23:07:11Z
https://github.com/alteryx/featuretools/issues/2156
[]
gsheni
0
iperov/DeepFaceLab
machine-learning
826
Save ERROR
The SAEHD and Quick96 training run as expected however it crashes every time I wanted to press save. This makes all of the previous progress useless. This error message pops up 2020-07-12 09:48:02.749598: E tensorflow/stream_executor/cuda/cuda_driver.cc:806] failed to allocate 517.44M (542572544 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory [09:48:09][#000002][0912ms][5.9417][4.6986] Error: [WinError 32] The process cannot access the file because it is being used by another process: 'C:\\Users\\USER\\Downloads\\DeepFaceLab_NVIDIA\\workspace\\model\\ _SAEHD_encoder.npy.tmp' -> 'C:\\Users\\USER\\Downloads\\DeepFaceLab_NVIDIA\\workspace\\model\\ _SAEHD_encoder.npy' Traceback (most recent call last): File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\mainscripts\Trainer.py", line 178, in trainerThread model_save() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\mainscripts\Trainer.py", line 68, in model_save model.save() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\models\ModelBase.py", line 374, in save self.onSave() File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 604, in onSave model.save_weights ( self.get_strpath_storage_for_file(filename) ) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\leras\layers\Saveable.py", line 60, in save_weights pathex.write_bytes_safe ( Path(filename), d_dumped ) File "C:\Users\USER\Downloads\DeepFaceLab_NVIDIA\_internal\DeepFaceLab\core\pathex.py", line 14, in write_bytes_safe p_tmp.rename (p) File "pathlib.py", line 1309, in rename File "pathlib.py", line 393, in wrapped PermissionError: [WinError 32] The process cannot access the file because it is being used by another process: 'C:\\Users\\USER\\Downloads\\DeepFaceLab_NVIDIA\\workspace\\model\\ _SAEHD_encoder.npy.tmp' -> 'C:\\Users\\USER\\Downloads\\DeepFaceLab_NVIDIA\\workspace\\model\\ _SAEHD_encoder.npy' It did not happened to me on last year's version so I tried using the previous version 06_27_2020 instead of 07_04_2020 but it didn't seem to fix the problem at all. Furthermore, I tried deleting new _SAEHD_encoder.npy.tmp but it recreated the file everytime I pressed save so I tried removing the permission to manage files from new_SAEHD_encoder.npy.tmp but when I tried to save, there is an error saying that new_SAEHD_encoder.npy.tmp doesn't have permission so I don't know what to do with the file. ![108002476_2671415746459545_2096267356288105485_n](https://user-images.githubusercontent.com/68173463/87237994-1ac35900-c427-11ea-9e22-ee95b86ed9b8.png)
closed
2020-07-12T03:05:47Z
2020-07-12T05:39:00Z
https://github.com/iperov/DeepFaceLab/issues/826
[]
THE-MATT-222
1
dynaconf/dynaconf
flask
993
[bug] Default value on empty string
## Problem I have a nested structure whose value i need to set to a specific string when empy string or `None` is provided. Take the following for example: ```python from dynaconf import Dynaconf, Validator settings = Dynaconf( settings_files=[ 'config.toml', '.secrets.toml' ], merge_enabled=True, # Merge all found files into one configuration. validators=[ # Custom validators. Validator( "files.output.kml", default="output.kml", apply_default_on_none=True, ), ], environments=False, # Disable environments support. apply_default_on_none=True # Apply default values when a value is None. ) print(f"KML FILE: '{settings.files.output.kml}'") ``` With the following configuration file (saved as `config.toml`): ```toml [files.output] kml = "" ``` - When the `kml` key is **not present** in the config file, the default is given to the setting as espected - When the `kml` key is set to an **empty string**, the default is completely ignored, even if I passed `apply_default_on_none=True`, while I would expect it to print `output.kml` It is somehow related to #973, since if that issue was solved I could simply put a `condition=lambda value: value is not None and value.strip() != ""` parameter to the `Validator` and then use the default value since a `ValidationError` would occur. ## What I expected From the [documentation](https://www.dynaconf.com/validation/#default-values): > Warning > > YAML reads empty keys as `None` and in that case defaults are not applied, if you want to change it set `apply_default_on_none=True` either globally to `Dynaconf` class or individually on a `Validator`. Reading this I expected the default value to kick in even on empty strings if i set `apply_default_on_none=True` on the `Validator` or on the `Dynaconf` class (I tried both but got the same result). ## Workaround To work around this issue I had to check manually if the setting was still empty: ```python from dynaconf import Dynaconf, Validator settings = Dynaconf( settings_files=[ 'config.toml', '.secrets.toml' ], merge_enabled=True, # Merge all found files into one configuration. validators=[ # Custom validators. Validator( "files.output.kml", default="output.kml", apply_default_on_none=True, ), ], environments=False, # Disable environments support. apply_default_on_none=True # Apply default values when a value is None. ) # Setup default values for missing settings if str(settings.files.output.kml.strip()) == "": settings.files.output.kml = "output.kml" print(f"KML FILE: '{settings.files.output.kml}'") # Correctly prints `KML FILE: 'output.kml'` ``` And the same for all the other keys I have to make sure exist.
open
2023-09-04T17:18:12Z
2023-11-04T00:47:48Z
https://github.com/dynaconf/dynaconf/issues/993
[ "Docs" ]
LukeSavefrogs
9
kizniche/Mycodo
automation
867
compatible with DFRobot sensor/controller or other Chinese made sensors
**Is your feature request related to a problem? Please describe.** Altas scientific is too costly even though it is very accurate and stable so i prefer cheaper one like DFRobot. **Describe the solution you'd like** will mycodo work with product from DFRobot or other Chinese brand? i am not sure if they are all standardised output.
closed
2020-10-18T09:32:21Z
2020-11-17T03:11:01Z
https://github.com/kizniche/Mycodo/issues/867
[ "question" ]
garudaonekh
9
aimhubio/aim
data-visualization
2,658
Show the number of metrics (and system metrics) tracked on the Run page
## 🚀 Feature Add the number of tracked metrics on the Run metrics page. ### Motivation It would be great to see how many metrics had been tracked. A couple of use-cases: - make sure the same number of metrics are shown as intended - when metrics take time to load and lots are tracked, the number could help shed some light <img width="1365" alt="Screenshot 2023-04-17 at 16 27 53" src="https://user-images.githubusercontent.com/3179216/232632082-36e9dfe0-266d-4edb-a49d-c1c03fc67fe1.png"> For instance Hyperparameters tab does a good job of showing the number of items. <img width="555" alt="Screenshot 2023-04-17 at 16 26 09" src="https://user-images.githubusercontent.com/3179216/232632103-c8d4bf6d-cce9-438c-9338-bb949af17b19.png"> ### Pitch Add dimensions of metrics in the Run page.
open
2023-04-17T23:34:35Z
2023-04-17T23:34:35Z
https://github.com/aimhubio/aim/issues/2658
[ "type / enhancement" ]
SGevorg
0
ipython/ipython
data-science
14,540
add support for capturing entire ipython interaction [enhancement]
It would be good if IPython can support running exported Jupyter python notebooks in batch mode in a way that better matches the Jupyter output. In particular, being able to see the expressions that are evaluated along with the output would be beneficial, even when the output is not explicit. For example, there could be a command-line option like -capture-session, so that the complete interaction of the REPL is captured in the output. For example, the following code evaluates an expression and then re-outputs the result. ``` (2 + 2) _ ``` Ideally the session output when running it in batch mode would be like the following: ``` In [1]: (2 + 2) Out [1]: 4 In [2]: _ Out [2]: 4 ``` It seems that the closest ipython current comes to this would be when running the script from stdin: ``` In [1]: Out[1]: 4 In [2]: Out[2]: 4 ``` Unfortunately, the input expression is not shown. An additional complication with running scripts from stdin is that indentation issues can arise. See the attached file for a script that runs into an Indentation error due to an empty line in a function definition. I tried it with four combinations for stdin-vs-file and interactive-vs-non, hoping to find an approximate solution. [interaction_quirk.py.txt](https://github.com/user-attachments/files/17358257/interaction_quirk.py.txt) I'm not sure if modern interactive languages support this, but Lisp supports it via its "dribble" mechanism. After a call to dribble, both the input and output of the REPL are saved in the specified log. This is analogous to running the Unix script command. The motivation for all this comes in the context of testing. With more development being done via Jupyter notebooks, it becomes harder to develop automated tests because the notebooks tend to be opaque and monolithic. If the notebook can be evaluated in batch mode, then automated tests can be written checking for expected output. For this to be effective, all output from the notebook should be included, not just output from explicit calls to print or write. In addition, the output should include the evaluated expressions to allow for more precise tests.
open
2024-10-14T02:18:47Z
2024-10-18T02:18:05Z
https://github.com/ipython/ipython/issues/14540
[]
thomas-paul-ohara
2
samuelcolvin/watchfiles
asyncio
56
[FEATURE] add ‘closed’ as change type
I have a server for file uploads. With low latency I need to trigger some python code that reads the incoming files and... I have an issue right now though. Some times the files are empty and I think it’s because the upload is not done yet. How can I determine if the file is done being written to? I think inotify have this functionality but I agree with you that it is nice to have it platform independent. Do you have a proposal for on how to handle this?
closed
2020-03-30T21:33:04Z
2020-05-22T11:44:58Z
https://github.com/samuelcolvin/watchfiles/issues/56
[]
NixBiks
1
unionai-oss/pandera
pandas
1,059
Getting "TypeError: type of out argument not recognized: <class 'str'>" when using class function with Pandera decorator
Hi. I am having trouble to get Pandera work with classes. First I create schemas: ``` from pandera import Column, Check import yaml in_ = pa.DataFrameSchema( { "Name": Column(object, nullable=True), "Height": Column(object, nullable=True), }) with open("./in_.yml", "w") as file: yaml.dump(in_, file) out_ = pa.DataFrameSchema( { "Name": Column(object, nullable=True), "Height": Column(object, nullable=True), }) with open("./out_.yml", "w") as file: yaml.dump(out_, file) ``` Next I create test.py file with class: ``` from pandera import check_io import pandas as pd class TransformClass(): with open("./in_.yml", "r") as file: in_ = file.read() with open("./out_.yml", "r") as file: out_ = file.read() @staticmethod @check_io(df=in_, out=out_) def func(df: pd.DataFrame) -> pd.DataFrame: return df ``` Finally I importing this class: ``` from test import TransformClass data = {'Name': [np.nan, 'Princi', 'Gaurav', 'Anuj'], 'Height': [5.1, 6.2, 5.1, 5.2], 'Qualification': ['Msc', 'MA', 'Msc', 'Msc']} df = pd.DataFrame(data) TransformClass.func(df) ``` I am getting: ``` File C:\Anaconda3\envs\py310\lib\site-packages\pandera\decorators.py:464, in check_io.<locals>._wrapper(fn, instance, args, kwargs) 462 out_schemas = [] 463 else: --> 464 raise TypeError( 465 f"type of out argument not recognized: {type(out)}" 466 ) 468 wrapped_fn = fn 469 for input_getter, input_schema in inputs.items(): 470 # pylint: disable=no-value-for-parameter TypeError: type of out argument not recognized: <class 'str'> ``` Any help would much appreciated
closed
2022-12-19T08:55:30Z
2022-12-19T19:55:28Z
https://github.com/unionai-oss/pandera/issues/1059
[ "question" ]
al-yakubovich
1
pyeve/eve
flask
964
PyMongo 3.4.0 support
closed
2017-01-15T16:54:21Z
2017-01-15T16:58:25Z
https://github.com/pyeve/eve/issues/964
[ "enhancement" ]
nicolaiarocci
0
gradio-app/gradio
python
10,850
Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.
### Describe the bug Hi, I am using the latest version of Gradio. But I encounter this problem: ![Image](https://github.com/user-attachments/assets/d672fd36-3686-4866-9056-f2d61cae15f2) Do you know how can I solve this problem? Thank you very much! ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr gr.Interface(lambda x: x, "text", "text").launch(share=True) ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.22.0 gradio_client version: 1.8.0 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.9.0 audioop-lts is not installed. fastapi: 0.115.11 ffmpy: 0.5.0 gradio-client==1.8.0 is not installed. groovy: 0.1.2 httpx: 0.28.1 huggingface-hub: 0.29.3 jinja2: 3.1.4 markupsafe: 2.1.5 numpy: 1.24.4 orjson: 3.10.15 packaging: 24.2 pandas: 2.2.3 pillow: 11.0.0 pydantic: 2.10.6 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.11.1 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.46.1 tomlkit: 0.13.2 typer: 0.15.2 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.6.1 httpx: 0.28.1 huggingface-hub: 0.29.3 packaging: 24.2 typing-extensions: 4.12.2 websockets: 14.2 ``` ### Severity Blocking usage of gradio
closed
2025-03-21T04:00:17Z
2025-03-22T22:36:48Z
https://github.com/gradio-app/gradio/issues/10850
[ "bug" ]
Allen-Zhou729
7
ultralytics/ultralytics
machine-learning
19,781
High CPU Usage with OpenVINO YOLOv8n on Integrated GPU – How Can I Reduce It?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hi everyone, I'm running inference using an OpenVINO-converted YOLOv8n model on an integrated GPU (IGPU), but I'm noticing that the CPU usage stays around 90% while the GPU is only at about 50%. I’ve tried configuring various GPU-specific properties to reduce the CPU load, yet the high CPU usage persists. ```python import collections import time import openvino as ov import openvino.properties as properties import openvino.properties.device as device import openvino.properties.hint as hints import openvino.properties.streams as streams import openvino.properties.intel_auto as intel_auto import cv2 from ultralytics import YOLO import torch def open_video_stream(): return cv2.VideoCapture(0) model_path = r"\yolov8n_openvino_model\yolov8n.xml" core = ov.Core() # Read the quantized model print("Loading OpenVINO model...") ov_model = core.read_model(str(model_path)) # Reshape the input for GPU ov_model.reshape({0: [1, 3, 640, 640]}) gpu_config = { hints.inference_precision: "FP16", # Alternatively, use ov.Type.f16 if available in your API hints.execution_mode: "PERFORMANCE", "ENABLE_CPU_PINNING": "NO", "NUM_STREAMS": "1", "ENABLE_CPU_PINNING": "NO", "COMPILATION_NUM_THREADS": "2", "GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES", "GPU_QUEUE_THROTTLE": hints.Priority.LOW, "GPU_HOST_TASK_PRIORITY": hints.Priority.LOW, } # Compile the model for GPU print(f"Compiling model for {device}...") compiled_model=core.compile_model(ov_model,"GPU",gpu_config) det_model = YOLO("yolov8n.pt") label_map = det_model.model.names # Extract class names test_img_path = "coco_bike.jpg" # Test inference try: test_results = det_model(test_img_path) print(f"Test inference successful! Found {len(test_results[0].boxes)} objects") except Exception as e: print(f"Warning: Test inference failed: {e}") print("Error details:", e) print("Continuing anyway...") def infer(*args): result = compiled_model(args) return torch.from_numpy(result[0]) det_model.predictor.inference = infer det_model.predictor.model.pt = False # Indicate PyTorch model is not used def run_object_detection(): print("Opening video stream...") cap = open_video_stream() if not cap.isOpened(): print("Error: Could not open RTSP stream.") return print("Starting object detection loop...") processing_times = collections.deque() while True: ret, frame = cap.read() if not ret: print("Failed to get frame from stream. Retrying...") # Try to reopen the stream if it's dropped cap.release() time.sleep(1) # Wait a bit before reconnecting cap = open_video_stream() continue frame= cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_NV12) # Optionally, resize frame for faster processing if it's too large scale = 1280 / max(frame.shape) if scale < 1: frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) try: # Run inference on the frame results = det_model(frame, verbose=False) if len(processing_times) > 200: processing_times.popleft() # Overlay inference time and FPS on the output frame output_frame = results[0].plot() cv2.imshow("annotated frame", output_frame) except Exception as e: print(f"Error during inference: {e}") # Show the original frame if inference fails cv2.putText(frame, "Inference Error", (20, 40), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) cv2.imshow("annotated frame", frame) if cv2.waitKey(1) == 27: # Exit if ESC key is pressed break print("Cleaning up...") cap.release() cv2.destroyAllWindows() if __name__ == "__main__": print("Starting application...") run_object_detection() ``` ### Additional _No response_
open
2025-03-19T10:56:05Z
2025-03-20T01:34:16Z
https://github.com/ultralytics/ultralytics/issues/19781
[ "question", "detect", "exports" ]
AlaaArboun
2
facebookresearch/fairseq
pytorch
4,754
Forced decoding for translation
Hello, Is there a flag in fairseq-cli to specify a prefix token for forced decoding? The [fairseq-generate](https://fairseq.readthedocs.io/en/latest/command_line_tools.html#fairseq-generate) documentation shows a flag to indicate the size *prefix-size* but I haven't found how to indicate what that token(s) is. Also looking at [sequence-generator.py](https://github.com/facebookresearch/fairseq/blob/main/fairseq/sequence_generator.py) there are code for handling prefix-tokens, but I haven't seen how to specify it in either the code or using fairseq-generate cli. Thanks
open
2022-10-03T23:15:45Z
2022-10-03T23:15:45Z
https://github.com/facebookresearch/fairseq/issues/4754
[ "question", "needs triage" ]
Pogayo
0
nalepae/pandarallel
pandas
244
Some workers stuck while others finish 100%
## General - **Operating System**: Centos 7 - **Python version**: 3.8 - **Pandas version**: 2.0.1 - **Pandarallel version**: 1.6.4 ## Acknowledgement - [x] My issue is **NOT** present when using `pandas` without alone (without `pandarallel`) - [ ] If I am on **Windows**, I read the [Troubleshooting page](https://nalepae.github.io/pandarallel/troubleshooting/) before writing a new bug report ## Bug description <img width="809" alt="image" src="https://github.com/nalepae/pandarallel/assets/12313888/4e12c9ea-a95b-4b55-b136-39d890a71058"> I started a parallel_apply program with 80 workers to decode and clean a large amount of data(about 50GB), after nearly 8mins, most of them reached 100%, but some got stuck. And after 20mins, the progress_bar is still freeze. ``` pandarallel.initialize(nb_workers=os.cpu_count(), progress_bar=True) df["text"] = df["text"].parallel_apply(decode_clean) ``` ### Observed behavior Progress_bar freezes and cpu usage is 0% ### Expected behavior The process progress should be nearly linear, the program should be finished after arount 10mins according to the progress_bar. ## Minimal but working code sample to ease bug fix for `pandarallel` team _Write here the minimal code sample to ease bug fix for `pandarallel` team_
closed
2023-06-12T13:36:37Z
2023-06-28T08:41:51Z
https://github.com/nalepae/pandarallel/issues/244
[]
SysuJayce
5
KevinMusgrave/pytorch-metric-learning
computer-vision
531
DistributedLossWrapper always requires labels
It shouldn't require labels if `indices_tuple` is provided.
closed
2022-09-29T13:42:08Z
2023-01-17T01:26:39Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/531
[ "bug" ]
KevinMusgrave
1
tatsu-lab/stanford_alpaca
deep-learning
210
Does this code still work when fine-tune with encoder-decoder (BLOOMZ or mT0) ?
I'm worry this code doesn't run when use pre-trained BLOOMZ or mT0 [https://github.com/bigscience-workshop/xmtf]. Have anyone fine-tuned this ?
open
2023-04-14T02:30:27Z
2023-04-14T02:30:27Z
https://github.com/tatsu-lab/stanford_alpaca/issues/210
[]
nqchieutb01
0
iMerica/dj-rest-auth
rest-api
542
Get JWT secret used for encoding
How can i get the secret being used be library for encoding jwt tokens?
closed
2023-09-01T13:15:25Z
2023-09-01T13:19:25Z
https://github.com/iMerica/dj-rest-auth/issues/542
[]
legalimpurity
0
horovod/horovod
tensorflow
3,707
Reducescatter: Support ncclAvg op for averaging
Equivalently to #3646 for Allreduce
open
2022-09-20T12:17:35Z
2022-09-20T12:17:35Z
https://github.com/horovod/horovod/issues/3707
[ "enhancement" ]
maxhgerlach
0
mars-project/mars
numpy
2,645
[BUG] Groupby().agg() returned a DataFrame with index even as_index=False
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** Groupby().agg() returned a DataFrame with index even as_index=False. **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version 2. The version of Mars you use 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. ``` In [10]: def g(x): ...: return (x == '1').sum() ...: In [11]: df = md.DataFrame({'a': ['1', '2', '3'], 'b': ['a1', 'a2', 'a1']}) In [12]: df.groupby('b', as_index=False)['a'].agg((g,)).execute() /Users/qinxuye/Workspace/mars/mars/deploy/oscar/session.py:1932: UserWarning: Out[12]: g b a1 1 a2 0 ```
closed
2022-01-21T07:58:47Z
2022-01-21T09:26:23Z
https://github.com/mars-project/mars/issues/2645
[ "type: bug", "reso: invalid", "mod: dataframe" ]
qinxuye
1
graphql-python/graphene-mongo
graphql
24
Types are unaware of parent class attributes defined on child model
First of all, thank you for writing this library. I've been wanting to try GraphQL out with my current project but didn't want to have to create an entire new backend application from scratch. I can reuse my existing models thanks to this library, way cool 👍 🥇 Now for my issue... I have a parent/child relationship defined like this: ``` from mongoengine import Document class Parent(Document): bar = StringField() class Child(Parent): baz = StringField() ``` When I defined my schema and attempt to query against the `Child` model, it says `Unknown argument "bar" on field "child" of type "Query"` My query: ``` { child(bar:"a valid value") { edges { node { bar baz } } } } ``` ``` from graphene_mongo import MongoengineConnectionField, MongoengineObjectType from app.models import Child as ChildModel class Child(MongoengineObjectType): class Meta: model = ChildModel interfaces = (Node,) class Query(graphene.ObjectType): node = Node.Field() child = MongoengineConnectionField(Child) schema = graphene.Schema(query=Query, types=[Child]) ``` I may just be misusing the library, or perhaps this is a feature that isn't implemented yet. If the feature hasn't been implemented yet I am up for taking a stab at it. Is there a way for my schema to infer the parent's attributes based on how I define them like the above example? Thank you again!
closed
2018-04-01T13:42:14Z
2018-04-02T13:59:45Z
https://github.com/graphql-python/graphene-mongo/issues/24
[]
msholty-fd
1
iterative/dvc
machine-learning
10,064
dvc pull: failed to load directory when first failed s3 connection
# Bug Report <!-- ## Issue name Issue names must follow the pattern `command: description` where the command is the dvc command that you are trying to run. The description should describe the consequence of the bug. Example: `repro: doesn't detect input changes` --> ## Description <!-- A clear and concise description of what the bug is. --> The command `dvc pull` consistently fails with the error message "failed to load directory" when there was a previous occurrence of "failed to connect to s3". This issue persists even after fixing the s3 credentials. ### Reproduce <!-- Step list of how to reproduce the bug --> #### Reset DVC at the initial step. ```bash $ rm -rf .dvc $ git checkout . Updated 2 paths from the index ``` #### Move credentials to provoke failed s3 connection ```bash $ mv ~/.aws/credentials{,.tmp} $ dvc pull Collecting |25.0 [00:00, 36.8entry/s] ERROR: failed to connect to s3 (XXX/files/md5) - The config profile (YYY) could not be found ERROR: failed to pull data from the cloud - 25 files failed to download ``` #### Restore credentials to resolve s3 connection ```bash $ mv ~/.aws/credentials{.tmp,} ``` #### Reproduce the Bug ```bash $ dvc pull Collecting |0.00 [00:00, ?entry/s] Fetching ERROR: unexpected error - failed to load directory ('d6', '38d9367bc2b169fb89b59f19e2844f.dir'): [Errno 2] No such file or directory: '/ZZZ/.dvc/cache/files/md5/d6/38d9367bc2b169fb89b59f19e2844f.dir' ``` #### Workaround ```bash $ rm -rf .dvc/tmp $ dvc pull Collecting |1.56k [00:07, 221entry/s] Fetching |Fetching from s3 63/130 [00:01<00:00, 78.26file/s] ``` <!-- Example: 1. dvc init 2. Copy dataset.zip to the directory 3. dvc add dataset.zip 4. dvc run -d dataset.zip -o model ./train.sh 5. modify dataset.zip 6. dvc repro --> ### Expected <!-- A clear and concise description of what you expect to happen. --> `dvc pull` should work without removing ` .dvc/tmp`! ### Environment information <!-- This is required to ensure that we can reproduce the bug. --> **Output of `dvc doctor`:** ```console DVC version: 3.28.0 (pip) ------------------------- Platform: Python 3.10.9 on Linux-4.18.0-372.70.1.1.el8_6.x86_64-x86_64-with-glibc2.28 Subprojects: dvc_data = 2.20.0 dvc_objects = 1.1.0 dvc_render = 0.5.3 dvc_task = 0.3.0 scmrepo = 1.4.0 Supports: http (aiohttp = 3.8.4, aiohttp-retry = 2.8.3), https (aiohttp = 3.8.4, aiohttp-retry = 2.8.3), s3 (s3fs = 2023.6.0, boto3 = 1.26.76) Config: Global: /YYY/.config/dvc System: /etc/xdg/dvc Cache types: hardlink, symlink Cache directory: lustre on XXX Caches: local Remotes: s3 Workspace directory: lustre on XXX Repo: dvc, git Repo.site_cache_dir: /var/tmp/dvc/repo/4372a7cb7af0fda33045046f65b86013 ``` ## Notes Maybe related to #10030 ? <!-- Please check https://github.com/iterative/dvc/wiki/Debugging-DVC on ways to gather more information regarding the issue. If applicable, please also provide a `--verbose` output of the command, eg: `dvc add --verbose`. If the issue is regarding the performance, please attach the profiling information and the benchmark comparisons. -->
closed
2023-11-03T10:33:57Z
2023-12-15T13:36:31Z
https://github.com/iterative/dvc/issues/10064
[ "awaiting response" ]
fguiotte
3
man-group/notebooker
jupyter
134
Add option to pass scheduled cron time to the notebook
Being able to read scheduled cron time from the notebook would improve the use case of using notebooker as tool to generate periodic reports. Might also need to maintain that time if same report is re-run.
open
2023-02-02T20:41:31Z
2023-10-11T15:34:27Z
https://github.com/man-group/notebooker/issues/134
[]
marcinapostoluk
1
ivy-llc/ivy
numpy
28,764
Fix Frontend Failing Test: tensorflow - pooling_functions.torch.nn.functional.max_pool2d
closed
2024-06-15T20:44:58Z
2024-07-15T02:29:34Z
https://github.com/ivy-llc/ivy/issues/28764
[ "Sub Task" ]
nicolasb0
0
waditu/tushare
pandas
1,526
股票列表接口中没有标明请求所需积分值
https://tushare.pro/document/2?doc_id=94 股票列表请求提示无权限,没有明确标明具体所需分值
open
2021-03-23T06:04:20Z
2021-03-23T06:04:20Z
https://github.com/waditu/tushare/issues/1526
[]
mestarshine
0
microsoft/nni
pytorch
5,309
inputs is empty!
**Describe the bug**: inputs is empty!As show in figure: ![image](https://user-images.githubusercontent.com/104077097/210755780-0d1adcf4-eaa0-4b27-b683-9d24d5152f5e.png) node-----> name: .aten::mul.146, type: func, op_type: aten::mul, sub_nodes: ['_aten::mul'], inputs: ['logvar'], outputs: ['809'], aux: None node-----> name: .aten::exp.147, type: func, op_type: aten::exp, sub_nodes: ['_aten::exp'], inputs: ['809'], outputs: ['std'], aux: None node-----> name: .aten::randn_like.148, type: func, op_type: aten::randn_like, sub_nodes: ['_aten::randn_like'], inputs: ['mu'], outputs: ['eps'], aux: None node-----> name: .aten::mul.149, type: func, op_type: aten::mul, sub_nodes: ['_aten::mul'], inputs: ['eps', 'std'], outputs: ['817'], aux: None node-----> name: .aten::add.150, type: func, op_type: aten::add, sub_nodes: ['_aten::add'], inputs: ['817', 'mu'], outputs: ['819'], aux: None node-----> name: .aten::unsqueeze.151, type: func, op_type: aten::unsqueeze, sub_nodes: ['_aten::unsqueeze'], inputs: ['819'], outputs: ['821'], aux: None node-----> name: .aten::unsqueeze.152, type: func, op_type: aten::unsqueeze, sub_nodes: ['_aten::unsqueeze'], inputs: ['821'], outputs: ['z.1'], aux: None node-----> name: .aten::repeat.153, type: func, op_type: aten::repeat, sub_nodes: ['_aten::repeat', '_prim::ListConstruct'], inputs: ['z.1'], outputs: ['z'], aux: None node-----> name: .aten::cat.154, type: func, op_type: aten::cat, sub_nodes: ['_aten::cat', '_prim::ListConstruct'], inputs: ['z', 'x_stereo'], outputs: ['input.9'], aux: {'out_shape': [2, 322, 276, 513], 'cat_dim': 1, 'in_order': ['.aten::repeat.153', '.aten::transpose.115'], 'in_shape': [[2, 320, 276, 513], [2, 2, 276, 513]]} node-----> name: .aten::relu.155, type: func, op_type: aten::relu, sub_nodes: ['_aten::relu'], inputs: ['input.82'], outputs: ['input_tensor'], aux: None node-----> name: .aten::size.156, type: func, op_type: aten::size, sub_nodes: ['_aten::size'], inputs: ['input_tensor'], outputs: ['1812'], aux: None node-----> name: .aten::Int.157, type: func, op_type: aten::Int, sub_nodes: ['_aten::Int', '_prim::NumToTensor'], inputs: ['1812'], outputs: ['2374'], aux: None node-----> name: .aten::size.158, type: func, op_type: aten::size, sub_nodes: ['_aten::size'], inputs: ['input_tensor'], outputs: ['1818'], aux: None node-----> name: .aten::Int.159, type: func, op_type: aten::Int, sub_nodes: ['_aten::Int', '_prim::NumToTensor'], inputs: ['1818'], outputs: ['2125'], aux: None node-----> name: .aten::Int.160, type: func, op_type: aten::Int, sub_nodes: ['_aten::Int', '_prim::NumToTensor'], inputs: ['1818'], outputs: ['2119'], aux: None node-----> name: .aten::size.161, type: func, op_type: aten::size, sub_nodes: ['_aten::size'], inputs: ['input_tensor'], outputs: ['1821'], aux: None node-----> name: .aten::Int.162, type: func, op_type: aten::Int, sub_nodes: ['_aten::Int', '_prim::NumToTensor'], inputs: ['1821'], outputs: ['2126'], aux: None node-----> name: .aten::Int.163, type: func, op_type: aten::Int, sub_nodes: ['_aten::Int', '_prim::NumToTensor'], inputs: ['1821'], outputs: ['2120'], aux: None node-----> name: .aten::slice.164, type: func, op_type: aten::slice, sub_nodes: ['_aten::slice'], inputs: ['input_tensor'], outputs: ['1827'], aux: None node-----> name: .aten::slice.166, type: func, op_type: aten::slice, sub_nodes: ['_aten::slice'], inputs: ['1827'], outputs: ['1839'], aux: None node-----> name: .aten::slice.167, type: func, op_type: aten::slice, sub_nodes: ['_aten::slice'], inputs: ['1839'], outputs: ['1844'], aux: None **Environment**: - NNI version: 2.10 - Training service (local|remote|pai|aml|etc): remote - Python version: 3.8.13 - PyTorch version: 1.8.0 - Cpu or cuda version: cuda111 **Reproduce the problem** - Code|Example: According to my position, the mistake should be here: def feature_maps_to_wav( self, input_tensor: torch.Tensor, cos_in: torch.tensor, sin_in: torch.tensor, cos_c: torch.tensor, sin_c: torch.tensor, audio_length: int, ) -> torch.Tensor: r"""Convert feature maps to waveform. Outputs: waveform: (batch_size, output_channels, segment_samples) """ batch_size, _, time_steps, freq_bins = input_tensor.shape l_mag = input_tensor[:, [0], :, :] r_mag = input_tensor[:, [1], :, :] c_mag = input_tensor[:, [2], :, :] lfe_mag = input_tensor[:, [3], :, :] ls_mag = input_tensor[:, [4], :, :] rs_mag = input_tensor[:, [5], :, :] lls_cos_in = cos_in[:, 0:1, :, :] rrs_cos_in = cos_in[:, 1:2, :, :] lls_sin_in = sin_in[:, 0:1, :, :] rrs_sin_in = sin_in[:, 1:2, :, :] real = torch.cat( (l_mag * lls_cos_in, r_mag * rrs_cos_in, c_mag * cos_c, lfe_mag * cos_c, ls_mag * lls_cos_in, rs_mag * rrs_cos_in), dim=1) imag = torch.cat( (l_mag * lls_sin_in, r_mag * rrs_sin_in, c_mag * sin_c, lfe_mag * sin_c, ls_mag * lls_sin_in, rs_mag * rrs_sin_in), dim=1) real = torch.cat((clfe_mag * cos_c, lls_mag * lls_cos_in, rrs_mag * rrs_cos_in), dim=1) imag = torch.cat((clfe_mag * sin_c, lls_mag * lls_sin_in, rrs_mag * rrs_sin_in), dim=1) real = real.reshape((-1, 1, time_steps, freq_bins)) imag = imag.reshape((-1, 1, time_steps, freq_bins)) # ISTFT. x = self.istft(real, imag, audio_length) # Reshape. waveform = x.reshape(batch_size, -1, audio_length) return waveform - How to reproduce: I hope you can help me solve this problem, thanks! https://github.com/microsoft/nni/issues/5309#tasklist-block-ed4e9d7e-b082-416c-97ab-bcff3aa3c51e
closed
2023-01-05T10:33:19Z
2023-01-06T02:19:42Z
https://github.com/microsoft/nni/issues/5309
[]
Blakey-Gavin
0
aleju/imgaug
machine-learning
849
Adding BlendAlphaSimplexNoise into an augmentation sequence fails to convert keypoints
Imgaug 0.4.0 Python 3.10 `iaa.BlendAlphaSimplexNoise` seems to cause problems when converting keypoints. I have created an sequence of augmentations: ```python seq = iaa.Sequential([ iaa.Affine(rotate=(-25, 25)), iaa.AllChannelsCLAHE(clip_limit=(1, 3), tile_grid_size_px=(10, 25)), iaa.BlendAlphaSimplexNoise(iaa.Multiply(iap.Uniform(0.7, 1.3), per_channel=True), size_px_max=(2, 16), upscale_method="nearest") # iaa.BlendAlphaFrequencyNoise(foreground=iaa.Multiply(iap.Choice([0.8, 1.2]), per_channel=True)) ], random_order=False) ``` When I try to augment image and the corresponding keypoints with: ```python image_aug, kps_aug = seq(image=image, keypoints=kps_oi) ``` I get the error: ```python File ~/anaconda3/envs/dlc239-gui/lib/python3.10/site-packages/imgaug/augmenters/blend.py:757, in BlendAlphaMask._blend_coordinates(cls, cbaoi, cbaoi_fg, cbaoi_bg, mask_image, mode) 755 subgen = zip(coords, coords_fg, coords_bg) 756 for coord, coord_fg, coord_bg in subgen: --> 757 x_int = int(np.round(coord[0])) 758 y_int = int(np.round(coord[1])) 759 if 0 <= y_int < h_img and 0 <= x_int < w_img: ValueError: cannot convert float NaN to integer ``` My keypoints include some NaN values (as a side note). If I remove specifically `iaa.BlendAlphaSimplexNoise` there no error. For example If use `iaa.BlendAlphaFrequencyNoise` instead there is also no error.
open
2024-05-03T12:39:05Z
2024-05-03T12:39:05Z
https://github.com/aleju/imgaug/issues/849
[]
vonaviv
0
alteryx/featuretools
data-science
2,047
Investigate and resolve warnings related to pandas
- Our unit tests currently output these warnings. - We should determine the cause of these warnings, and resolve them.
closed
2022-04-29T20:47:16Z
2022-05-13T21:24:26Z
https://github.com/alteryx/featuretools/issues/2047
[]
gsheni
1
google-research/bert
nlp
372
Two to Three mask word prediction at same sentence is very complex?
Two to Three mask word prediction at same sentence also very complex. how to get good accuracy? if i have to pretrained bert model and own dataset with **masked_lm_prob=0.25** (https://github.com/google-research/bert#pre-training-with-bert), what will happened? Thanks.
open
2019-01-18T05:48:06Z
2019-02-11T07:10:39Z
https://github.com/google-research/bert/issues/372
[]
MuruganR96
1
JaidedAI/EasyOCR
deep-learning
992
EasyOCR failed when the picture has long height like long wechat snapshot contained several small snapshots
open
2023-04-17T04:07:42Z
2023-04-17T04:07:42Z
https://github.com/JaidedAI/EasyOCR/issues/992
[]
crazyn2
0
Yorko/mlcourse.ai
plotly
406
Topic 4. Part 4: Some modules are imported at the beginning, but are not used further in the text
![2018-11-05 23-42-56 jupyter notebook viewer - google chrome](https://user-images.githubusercontent.com/1929262/48025917-b7fbc380-e155-11e8-95e2-2666ea50c833.jpg) It seems that _TfidfTransformer, TfidfVectorizer, LinearSVC_ were forgotten to be removed when preparing the final [article](https://mlcourse.ai/notebooks/blob/master/jupyter_english/topic04_linear_models/topic4_linear_models_part4_good_bad_logit_movie_reviews_XOR.ipynb). If they are left on purpose, it seems that it is worth adding a few words about them in the text.
closed
2018-11-05T20:57:44Z
2018-11-10T16:18:38Z
https://github.com/Yorko/mlcourse.ai/issues/406
[ "minor_fix" ]
ptaiga
1
taverntesting/tavern
pytest
505
Question: Any experience with using mocking with Tavern?
Would like to get head start on automating new api by mocking requests/responses while using Tavern and pytest.
closed
2020-01-06T20:18:37Z
2020-01-13T18:27:48Z
https://github.com/taverntesting/tavern/issues/505
[]
pmneve
2
horovod/horovod
pytorch
4,110
[+[!𝐅𝐔𝐋𝐋 𝐕𝐈𝐃𝐄𝐎𝐒!]+]Sophie Rain Spiderman Video Original Video Link Sophie Rain Spiderman Video Viral On Social Media X Trending Now
20 seconds ago L𝚎aked Video Sophie Rain Spiderman Original Video Viral Video L𝚎aked on X Twitter Telegram .. .. [🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶](https://usnews-daily.com/free-watch/) .. .. [🔴 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🌐==►► 𝖣𝗈𝗐𝗇𝗅𝗈𝖺𝖽 𝖭𝗈𝗐](https://usnews-daily.com/free-watch/?t) .. .. <a href="https://usnews-daily.com/free-watch/?y" rel="nofollow" data-target="animated-image.originalLink"><img src="https://i.imgur.com/vN3eWE7.png"></a> .. .. [-wATCH-]— Sophie Rain Spiderman Video Original Video Link Sophie Rain Spiderman Video Viral On Social Media X Trending Now [-wATCH-]— Sophie Rain Spiderman ʟᴇᴀᴋᴇᴅ Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ [-wATCH-]— Sophie Rain Spiderman ʟᴇᴀᴋᴇᴅ Video ᴠɪʀᴀʟ On Social Media ˣ ᵀʷⁱᵗᵗᵉʳ [-wATCH-]— Sophie Rain Spiderman Video Original Video Link Sophie Rain Spiderman Video Viral On Social Media X Trending Now Sophie Rain Spiderman Original Video video took the internet by storm and amazed viewers on various social media platforms. Sophie Rain Spiderman, a young and talented digital creator, recently became famous thanks to this interesting video. L𝚎aked Video Sophie Rain Spiderman Original Video Viral Video L𝚎aked on X Twitter Sophie Rain Spiderman Original Video video oficial twitter L𝚎aked Video Sophie Rain Spiderman Original Video Viral Video L𝚎aked on X Twitter.. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
closed
2024-11-17T17:23:26Z
2024-11-20T12:23:49Z
https://github.com/horovod/horovod/issues/4110
[]
ghost
1
dynaconf/dynaconf
fastapi
823
[bug] Validator cast happens before must_exist check
**Describe the bug** The `Validator` `cast` function call happens before the `must_exist`, which doesn't make sense since you first want to ensure that the value has been provided, and then cast it into a different object. **To Reproduce** Steps to reproduce the behavior: Having the following app code: <details> <summary> Code </summary> **/path/src/app.py** ```python3 from dynaconf import Dynaconf, Validator from pathlib import Path settings = Dynaconf( validators=[ Validator("java_bin", must_exist=True, cast=Path) ] ) settings.validators.validate() ``` </details> **Expected behavior** The validator should have raise the exception related to `must_exist` check first. **Environment (please complete the following information):** - OS: Ubuntu 20.04 - Dynaconf Version 3.1.11 **Additional context** Would it be possible to document these Validators additionals arguments: - `cast` - `condition` In the [documentation](https://www.dynaconf.com/validation/) ? I almost passed on dynaconf today and I found them by luck. Thanks for Dynaconf, I ❤️ it !
closed
2022-10-28T15:16:59Z
2023-03-02T13:29:40Z
https://github.com/dynaconf/dynaconf/issues/823
[ "bug" ]
Wenzel
0
SciTools/cartopy
matplotlib
2,311
Chart Server dependency
Google chart server has been deprecated in 2012, and the notification for turning it down was in 2019: https://groups.google.com/g/google-chart-api/c/rZtHTyYgyXI The servers can be gone at any moment at this point. These cartopy tests still seem to rely on the chart server API: https://github.com/SciTools/cartopy/blob/da6a8c521f614abea4d16e659b3c87ec80025a66/lib/cartopy/tests/test_img_tiles.py#L39 Could we remove the chartserver dependencies? What is the best path forward? How deep does cartopy depend on the chart server API?
open
2024-01-08T22:09:19Z
2024-01-09T00:18:47Z
https://github.com/SciTools/cartopy/issues/2311
[]
rainwoodman
1
ageitgey/face_recognition
python
1,247
Different domains
Hi guys, If I want to use images coming from different domains, e.g., webcamera and professional camera or identification cards, with different colors, what should be the best option/way to normalize images? face_encodings perform the normalization, really? It should be better to apply first an early normalization?
open
2020-11-21T10:24:19Z
2020-11-21T10:24:19Z
https://github.com/ageitgey/face_recognition/issues/1247
[]
MarioProjects
0
fastapi/fastapi
pydantic
12,055
Why can't the key of the returned value start with “_sa”?
### Privileged issue - [X] I'm @tiangolo or he asked me directly to create an issue here. ### Issue Content ``` import uvicorn from fastapi import FastAPI app = FastAPI() @app.get("/") def root(): return {"_sa": "Hello World", "status": "OK"} if __name__ == '__main__': uvicorn.run(app, host="0.0.0.0", port=8000) ``` The result of the above code is: ``` { "status": "OK" } ```
closed
2024-08-21T23:42:20Z
2024-08-22T13:54:53Z
https://github.com/fastapi/fastapi/issues/12055
[]
leafotto
2
roboflow/supervision
pytorch
1,052
DetectionDataset.from_yolo bad conversion with autodistill_grounded_sam DetectionDataset object
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar bug report. ### Bug The sv.DetectionDataset.from_yolo function has abnormal behavior when processing DetectionDataset objects from autodistil_grounded_sam When I use sv.DetectionDataset.from_yolo on a dataset generated via `base_model.label` (base_model being GroundedSAM), I get a different detection number of the object returned by `base_model.label`, whereas this is supposed to only carry out a conversion. Note that I did the test with a GroundingDino base_model, and I did not encounter the problem. The detections returned can be lower or higher than the basic detections (900 maximum according to what I have experienced with a confidence of 0.00) ### Environment Supervision = 0.19.0 ### Minimal Reproducible Example ```py from autodistill_grounded_sam import GroundedSAM from autodistill.detection import CaptionOntology from pathlib import Path import supervision as sv ``` ```py base_model = GroundedSAM( ontology=CaptionOntology( { "screen": "a computer screen", } ), box_threshold = 0.00 ) ``` ```py # Put the cat image on your input directory # Put your input directory path input_dir = "/home/ggiret/Téléchargements/chat" output_dir = "test/" ``` ```py results = base_model.label( input_folder=input_dir, extension=".png", output_folder=output_dir, record_confidence=True) ``` ```py # Put the correct image name if the name changed len(results.annotations['images.png'].class_id) ``` > 900 ```py sv_dataset = sv.DetectionDataset.from_yolo( images_directory_path=Path(output_dir).joinpath("images"), annotations_directory_path=Path(output_dir).joinpath("annotations"), data_yaml_path=Path(output_dir).joinpath("data.yaml")) ``` ```py # Put the correct image name if the name changed len(sv_dataset.annotations['test/images/images.jpg'].class_id) ``` > 1100 ### Additional ![images.png](https://github.com/roboflow/supervision/assets/44434482/02105793-a783-4c1f-a974-fd71696a76b2) This is the image I used for the 1100 number of class_id result. ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-03-26T13:59:20Z
2024-04-02T12:40:16Z
https://github.com/roboflow/supervision/issues/1052
[ "bug" ]
Youho99
7
ymcui/Chinese-BERT-wwm
nlp
132
预训练维基 繁/简体
您好: 感谢您提供预训练模型。想请教 BERT-wwm 在进行预训练时,使用的中文维基,是简体中文,还是繁体中文,还是两者都有?
closed
2020-07-23T08:16:17Z
2020-07-23T11:12:37Z
https://github.com/ymcui/Chinese-BERT-wwm/issues/132
[]
d223302
1
Evil0ctal/Douyin_TikTok_Download_API
api
161
[BUG] 抖音接口应该是换了
抖音接口应该是换了
closed
2023-02-27T09:27:49Z
2024-08-23T05:25:17Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/161
[ "BUG", "Fixed" ]
jw-star
29
strawberry-graphql/strawberry
graphql
3,119
FastAPI GraphQL: Unknown type 'Upload'
<!--- Provide a general summary of the changes you want in the title above. --> I'm getting an error `Unknown type 'Upload'` when calling my file upload API. Have I missed something? Or is it a bug? Most of this code is based off the [Strawberry file upload guide](https://strawberry.rocks/docs/guides/file-upload) <!--- Anything on lines wrapped in comments like these will not show up in the final text. --> Here's what I've done so far: Javascript: ```js const query = ` mutation($files: [Upload!]!) { uploadFiles(files: $files, projectId: ${projectId}) }`; const formData = new FormData(); // We're only testing a single file for now formData.append('map', JSON.stringify({ 0: ['variables.files.0'] })); const filesVariable = []; for (let i = 0; i < files.length; i++) { filesVariable.push(null); } formData.append('operations', JSON.stringify({ query, variables: { 'files': filesVariable } }).replace('\n', '')); files.forEach((file, index) => { formData.append(index.toString(), file); }); const response = await this.api.post( '/obsidian-graphql', formData ) ``` Python backend: ```py import strawberry from strawberry.fastapi import GraphQLRouter from strawberry.exceptions import StrawberryGraphQLError from strawberry.types import Info from strawberry.file_uploads import Upload # other imports are omitted @strawberry.type class Mutation: @strawberry.mutation async def upload_files(self, files: list[Upload], project_id: int) -> None: # TODO: Add business logic for file in files: assert validate_file_type(file.filename) return None schema = strawberry.Schema(Query) obsidian_router_ql = GraphQLRouter(schema, context_getter=get_context) ``` And the error: ``` 2023-09-25 06:40:21,872:ERROR - Unknown type 'Upload'. GraphQL request:2:27 1 | 2 | mutation($files: [Upload!]!) { | ^ 3 | uploadFiles(files: $files, projectId: 31) ``` It would be great to understand what's going wrong. Sincerely, Aiden.
closed
2023-09-24T20:52:14Z
2025-03-20T15:56:23Z
https://github.com/strawberry-graphql/strawberry/issues/3119
[]
SquarerFive
2
simple-login/app
flask
2,292
None of the SL domains accepted in www.studystream.live
Please note that this is only for bug report. For help on your account, please reach out to us at hi[at]simplelogin.io. Please make sure to check out [our FAQ](https://simplelogin.io/faq/) that contains frequently asked questions. For feature request, you can use our [forum](https://github.com/simple-login/app/discussions/categories/feature-request). For self-hosted question/issue, please ask in [self-hosted forum](https://github.com/simple-login/app/discussions/categories/self-hosting-question) ## Prerequisites - [ ] I have searched open and closed issues to make sure that the bug has not yet been reported. ## Bug report **Describe the bug** A clear and concise description of what the bug is. **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Environment (If applicable):** - OS: Linux, Mac, Windows - Browser: Firefox, Chrome, Brave, Safari - Version [e.g. 78] **Additional context** Add any other context about the problem here.
open
2024-10-26T11:50:45Z
2024-10-26T11:50:45Z
https://github.com/simple-login/app/issues/2292
[]
homeostashish
0
whitphx/streamlit-webrtc
streamlit
1,254
Webcam Stream not showing up
First of all, thank you very much for your really great work and contribution!!! I currently need help accessing some of your demos and running my own App on the Streamlit Cloud. When accessing the demos and starting the webcam (after granting access) it looks like this : <img width="743" alt="image" src="https://github.com/whitphx/streamlit-webrtc/assets/20643017/26e56afc-ed19-46d0-8f95-55d2a8b98cde"> or <img width="758" alt="image" src="https://github.com/whitphx/streamlit-webrtc/assets/20643017/de98323d-2543-41e5-b3cf-5eb9512253eb"> I have written a short sample app: ```python import streamlit as st from streamlit_webrtc import webrtc_streamer, WebRtcMode # Streamlit app st.title("DEMO APP") # Instantiate WebRTC (and show start button) ctx = webrtc_streamer( key="FaceIDAppDemo", mode=WebRtcMode.SENDONLY, media_stream_constraints={"video": True, "audio": False}, rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]}, video_receiver_size=1, async_processing=True, ) # Live Stream Display image_loc = st.empty() if ctx.video_receiver: while True: try: frame = ctx.video_receiver.get_frame(timeout=1) img = frame.to_ndarray(format="rgb24") except: continue # Display Live Frame image_loc.image(img) ``` , which is running fine locally. But on Streamlit Cloud, after I press start, it seems to get a connection to the webcam (the text turns to "Stop", but after a few seconds the text turns back to "Start". In the logs, my app got stuck at "Collecting usage statistics. To deactivate, set browser.gatherUsageStats to False." Do you have any suggestions, on what I could have done wrong here? Or where the error is? Thank you, Cheers, Martlgap
closed
2023-05-10T20:38:48Z
2024-05-05T04:59:15Z
https://github.com/whitphx/streamlit-webrtc/issues/1254
[]
Martlgap
2
yunjey/pytorch-tutorial
pytorch
185
there was a problem in language model
hello,when I try to run pytorch-tutorial/tutorials/02-intermediate/language_model/main.py this file,but I got some error,Firstly,when it comes to "ids = corpus.get_data('data/train.txt', batch_size)",it will display shape '[20,-1]' is invalid for input of size 929589,Is there any wrong with the train.txt? Secondly,sample.txt doesn't contain in the dictionary 'data'.Hope you can fix it,thanks!
open
2019-07-27T09:35:45Z
2019-12-17T22:47:25Z
https://github.com/yunjey/pytorch-tutorial/issues/185
[]
TobeyLi
1
serengil/deepface
machine-learning
465
OS error occurs when running DeepFace.stream()
Hello, I am completely new to deepface and I recently faced an error stated in this image when running DeepFace.stream(). I tried to reinstall deepface, keras and h5py packages but the problem still occurs. Any solutions for this? This is what i ran, [ ![image](https://user-images.githubusercontent.com/62991941/165404798-59d5509e-4d4d-432e-9ad2-48474929d9ab.png) ](url) This is the error, ![Screenshot 2022-04-27 040920](https://user-images.githubusercontent.com/62991941/165404920-fe5a8c24-31e8-4e93-97a0-31e83ec2ccb6.jpg)
closed
2022-04-26T22:45:21Z
2022-05-01T08:30:54Z
https://github.com/serengil/deepface/issues/465
[ "dependencies" ]
thushaltk
2
biolab/orange3
numpy
6,089
Group by: change categorical default
Currently, the default aggregation method for categorical variables is "Concatenate", which is quite a strange default and not very useful in general for categorical data. I propose not having any aggregation by default (None) or, alternatively, setting it to Mode. On that note, *Mode* is currently unavailable for categorical data, which is a shame. It would be fantastic to take the majority value for aggregation.
closed
2022-08-04T08:29:16Z
2022-08-04T09:08:02Z
https://github.com/biolab/orange3/issues/6089
[ "bug report" ]
ajdapretnar
1
guohongze/adminset
django
96
持续交付
持续交付,发布代码支持版本回滚么
open
2019-02-21T07:00:08Z
2019-02-22T03:49:30Z
https://github.com/guohongze/adminset/issues/96
[]
frank0826
2
vllm-project/vllm
pytorch
15,056
[Bug]: [Minor] Forking happens after the creation of tokenizer
### Your current environment When testing prefix caching on TPU, we got the following in the log: ```text huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) … ``` ```text Command to reproduce: _VLLM_USE_V1=1 python benchmark_prefix_caching.py --model meta-llama/Llama-3.1-8B-Instruct --dataset-path ~/data/ShareGPT_V3_unfiltered_cleaned_split.json --enable-prefix-caching --num-prompts 20 --repeat-count 5 --input-length-range 128:256 --gpu-memory-utilization 0.95 --max-model-len 2048 ``` <summary>The output of `python collect_env.py`</summary> <details> ```text Collecting environment information... PyTorch version: 2.7.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-1015-gcp-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 180 On-line CPU(s) list: 0-179 Vendor ID: AuthenticAMD Model name: AMD EPYC 9B14 CPU family: 25 Model: 17 Thread(s) per core: 1 Core(s) per socket: 90 Socket(s): 2 Stepping: 1 BogoMIPS: 5199.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm Hypervisor vendor: KVM Virtualization type: full L1d cache: 5.6 MiB (180 instances) L1i cache: 5.6 MiB (180 instances) L2 cache: 180 MiB (180 instances) L3 cache: 768 MiB (24 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-89 NUMA node1 CPU(s): 90-179 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] pyzmq==26.3.0 [pip3] torch==2.7.0 [pip3] torch-xla==2.7.0+git6c53a1e [pip3] transformers==4.49.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] pyzmq 26.3.0 pypi_0 pypi [conda] torch 2.7.0 pypi_0 pypi [conda] torch-xla 2.7.0+git6c53a1e pypi_0 pypi [conda] transformers 4.49.0 pypi_0 pypi ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.7.4.dev452+g46f98893 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: Could not collect VLLM_XLA_CACHE_PATH=/user/ymu_google_com LD_LIBRARY_PATH=/home/ymu_google_com/miniconda3/envs/vllm2/lib/python3.11/site-packages/cv2/../../lib64: NCCL_CUMEM_ENABLE=0 TORCHINDUCTOR_COMPILE_THREADS=1 ``` </details> ### 🐛 Describe the bug When testing prefix caching on TPU, we got the following in the log: ```text huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks... To disable this warning, you can either: - Avoid using `tokenizers` before the fork if possible - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false) … ``` Command to reproduce: ```text VLLM_USE_V1=1 python benchmark_prefix_caching.py --model meta-llama/Llama-3.1-8B-Instruct --dataset-path ~/data/ShareGPT_V3_unfiltered_cleaned_split.json --enable-prefix-caching --num-prompts 20 --repeat-count 5 --input-length-range 128:256 --gpu-memory-utilization 0.95 --max-model-len 2048 ``` ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
closed
2025-03-18T18:08:20Z
2025-03-18T18:58:42Z
https://github.com/vllm-project/vllm/issues/15056
[ "bug" ]
yarongmu-google
3
pennersr/django-allauth
django
3,391
LinkedIn with OpenID Connect
First off, thank you for all your work on `django-allauth`. It is an indispensable addition to the Django ecosystem and I have been very happy with it for the past few years whenever I've needed the functionality. I created a new LinkedIn App and wanted to use `django-allauth` to integrate with it. Newly created apps seem to only have a `Sign In with LinkedIn using OpenID Connect` integration available for authentication purposes. <img width="751" alt="image" src="https://github.com/pennersr/django-allauth/assets/317045/34fd8cd4-957c-4a3e-bb8b-12024bb9f6ce"> This seems to be a new API that is different than what is supported by the `linkedin` or `linkedin_oauth2` providers. I did also try to use the OpenID and OpenID Connect providers in `django-allauth`, but couldn't figure out how to make them work with LinkedIn's offering. More details about their OpenID Connect product: https://learn.microsoft.com/en-us/linkedin/consumer/integrations/self-serve/sign-in-with-linkedin-v2. I ended up creating a new provider for `django-allauth` based on `linkedin_oauth2` that implements the correct API calls -- it all seems to work with my testing. I would be happy to polish up my code, add more tests, write docs, and create a PR to add this functionality if you would be interested. Thanks again for all that you do! 🚀
closed
2023-08-25T23:53:11Z
2024-06-28T01:21:06Z
https://github.com/pennersr/django-allauth/issues/3391
[]
adamghill
9
Neoteroi/BlackSheep
asyncio
341
Cryptic error message when a list is expected and an object is received
Consider the following example: ```python from dataclasses import dataclass from blacksheep import Application, pretty_json app = Application() @dataclass class Access: id: int name: str permissions: list[str] @app.router.post("/") def set_access(data: list[Access]): # Just an example... return pretty_json(data) if __name__ == "__main__": import uvicorn uvicorn.run(app, port=44555, lifespan="on") ``` The server endpoint expects a list of objects. If the client sends a dictionary, the server produces a cryptic error message. ```bash curl -X POST http://127.0.0.1:44555 -H "Content-Type: application/json" -d '{"id": 1, "name": "foo", "permissions": []}' Bad Request: invalid parameter in request payload, caused by type Access or one of its subproperties. Error: __main__.Access() argument after ** must be a mapping, not str ``` "Bad Request: invalid parameter in request payload, caused by type Access or one of its subproperties. Error: __main__.Access() argument after ** must be a mapping, not str". This happens because the function `_get_default_converter_for_iterable` does not handle properly this case. Improve to raise a clearer exception: ```python def _get_default_converter_for_iterable(self, expected_type): generic_type = self.get_type_for_generic_iterable(expected_type) item_type = self.generic_iterable_annotation_item_type(expected_type) if isinstance(item_type, ForwardRef): # pragma: no cover from blacksheep.server.normalization import ( UnsupportedForwardRefInSignatureError, ) raise UnsupportedForwardRefInSignatureError(expected_type) item_converter = self._get_default_converter_single(item_type) def list_converter(values): if not isinstance(values, list): raise BadRequest("Invalid input: expected a list of objects.") return generic_type(item_converter(value) for value in values) return list_converter ```
closed
2023-04-26T19:43:31Z
2023-04-28T05:50:19Z
https://github.com/Neoteroi/BlackSheep/issues/341
[]
RobertoPrevato
1
ansible/ansible
python
84,843
ansible-config does not correclty validate all entries
### Summary Mostly the dynamic 'galaxy servers' ### Issue Type Bug Report ### Component Name ansible-config ### Ansible Version ```console $ ansible --version all ``` ### Configuration ```console # if using a version older than ansible-core 2.12 you should omit the '-t all' $ ansible-config dump --only-changed -t all any ``` ### OS / Environment all ### Steps to Reproduce <!--- Paste example playbooks or commands between quotes below --> ``` [galaxy] server_list=my_org_hub [galaxy_server.my_org_hub] # url missing ``` ```yaml (paste below) ansible-config validate ``` ### Expected Results error! ### Actual Results ```console alls good! ``` ### Code of Conduct - [x] I agree to follow the Ansible Code of Conduct
open
2025-03-17T19:15:38Z
2025-03-18T15:14:21Z
https://github.com/ansible/ansible/issues/84843
[ "bug" ]
bcoca
1
HumanSignal/labelImg
deep-learning
666
Unable to open previously saved .xml file
- **OS: Mac - **PyQt version: 5.15.1 - Python 3.8.6 Homebrew Python crashes and this error appears when i "Open Dir > .xml file" Traceback (most recent call last): File "labelimg.py", line 1367, in openFile self.loadFile(filename) File "labelimg.py", line 1065, in loadFile self.lineColor = QColor(*self.labelFile.lineColor) AttributeError: 'LabelFile' object has no attribute 'lineColor' zsh: abort python labelimg.py
open
2020-10-24T12:56:20Z
2022-05-30T20:07:07Z
https://github.com/HumanSignal/labelImg/issues/666
[]
zoehako
3
plotly/dash
plotly
3,218
deselect all tabs in dcc tab component
I'm building an application that is using the tab dcc component. This component provide the option of not selecting anything as initial value. I want to take davantage of this feature to display specific information but if I interact with the tabs I have no way to go back to a "nothing selected" state. The following demo application is showing this exact behaviour, once I click somewhere i cannot show back the "dark" content. ```python import dash from dash import dcc, html # Initialize Dash app app = dash.Dash(__name__) app.layout = html.Div([ dcc.Tabs( id="tabs-example", value=None, # No tab selected by default children=[ dcc.Tab(label="Tab Alpha", value="alpha"), dcc.Tab(label="Tab Beta", value="beta"), dcc.Tab(label="Tab Gamma", value="gamma"), ], ), html.Div(id="tabs-content", style={"padding": "20px", "fontSize": "18px"}) ]) @app.callback( dash.Output("tabs-content", "children"), dash.Output("tabs-content", "style"), dash.Input("tabs-example", "value"), ) def update_content(selected_tab): content_styles = {"padding": "20px", "fontSize": "18px"} if selected_tab == "alpha": return html.P("Lorem ipsum dolor sit amet, consectetur adipiscing elit."), {**content_styles, "color": "red"} elif selected_tab == "beta": return html.P("Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."), {**content_styles, "color": "blue"} elif selected_tab == "gamma": return html.P("Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris."), {**content_styles, "color": "green"} else: return html.P("Nothing selected", style={"color": "black"}), content_styles # Run app if __name__ == "__main__": app.run_server(debug=True) ``` Can you had a way to get back to this state like clicking again on the selected one ?
open
2025-03-14T11:00:04Z
2025-03-17T18:20:23Z
https://github.com/plotly/dash/issues/3218
[ "feature", "P3" ]
12rambau
2
recommenders-team/recommenders
machine-learning
1,516
Run tests in the appropriate extra dependencies.
### Description Our recommender package has several `extra` dependencies to address the different compute environments: `recommender[spark,gpu,example,dev]`. We should run our tests against the specific extra dependency so we can ensure users of the library would have minimum problems installing these extra dependencies. ### Expected behavior with the suggested feature For example: - A user `pip install recommenders[gpu, examples]` should be able to run recommender utilities tested by `pytest -m "gpu and notebooks and not spark` ### Other Comments
closed
2021-09-01T21:32:17Z
2021-09-16T13:11:30Z
https://github.com/recommenders-team/recommenders/issues/1516
[ "enhancement" ]
laserprec
0
seleniumbase/SeleniumBase
web-scraping
2,255
Looks like Cloudflare found out about SeleniumBase UC Mode
The makers of the **Turnstile** have found out about **SeleniumBase UC Mode**: <img width="480" alt="Screenshot 2023-11-08 at 5 47 30 PM" src="https://github.com/seleniumbase/SeleniumBase/assets/6788579/08fa67af-262e-48e4-8699-33e04c15ab54"> **To quote Dr. Emmett Brown from Back to the Future:** > **"They found me. I don't how, but they found me."** ![dr-emmett-brown-doc](https://github.com/seleniumbase/SeleniumBase/assets/6788579/0268c030-96b5-4e22-a0f1-d648a6375f68) I guess that means they watched the **SeleniumBase UC Mode** video: https://www.youtube.com/watch?v=5dMFI3e85ig -------- In other news, I'm working on more updates and demo pages for running tests. Once the next release is shipped, I'll start going through the notification queue.
closed
2023-11-08T23:43:16Z
2023-11-15T02:40:06Z
https://github.com/seleniumbase/SeleniumBase/issues/2255
[ "News / Announcements", "UC Mode / CDP Mode", "Fun" ]
mdmintz
10
pydantic/pydantic
pydantic
11,361
Override composed Field constraints not working when using AfterValidator
### Initial Checks - [x] I confirm that I'm using Pydantic V2 ### Description Hi! First of all, thank you for all the time you put into building/maintaining this fantastic library! I've noticed that when using shared annotated types with some sane default constraints/validation, later, when overriding the constraints, the new constraints don't have any effect. For example: ```python from typing import Annotated from pydantic import Field, BaseModel, AfterValidator String = Annotated[ str, Field(min_length=5, max_length=10), AfterValidator(lambda v: v), ] class TestModel(BaseModel): title: Annotated[String, Field(max_length=20)] TestModel(title="a" * 20) ``` Generates this error: ``` pydantic_core._pydantic_core.ValidationError: 1 validation error for TestModel title String should have at most 10 characters [type=string_too_long, input_value='aaaaaaaaaaaaaaaaaaaa', input_type=str] ``` However, if I remove the `AfterValidator` it will work as expected. I've nailed down that the behavior change was first introduced between version `2.1.1` -> `2.2.0` (it works as expected in `2.1.1`). I can work around the problem by using the `f: <type> = Field(...)` form like this: ```python class TestModel(BaseModel): title: String = Field(max_length=20) ``` Is this the expected behavior, or is it a bug? Best regards, Simon ### Python, Pydantic & OS Version ```Text pydantic version: 2.10.6 pydantic-core version: 2.27.2 pydantic-core build: profile=release pgo=false install path: /home/simon/dev/lab/pydantic/.venv/lib/python3.12/site-packages/pydantic python version: 3.12.4 (main, Jul 9 2024, 10:49:22) [GCC 14.1.1 20240522] platform: Linux-6.6.72-1-lts-x86_64-with-glibc2.40 related packages: typing_extensions-4.12.2 commit: unknown ```
open
2025-01-30T10:38:29Z
2025-02-12T20:00:27Z
https://github.com/pydantic/pydantic/issues/11361
[ "change", "bug V2", "topic-annotations" ]
simonwahlgren
7
fastapi/sqlmodel
fastapi
475
How to join tables across multiple schemas
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python Not applicable ``` ### Description Hi there, it is possible to join tables that are '*within*' the same database but '*in different'* schemas? Lets say I have two schemas: `A` and `B` For schema `A` I have full control and populate it with tables with SQLModel; e.g. ``` class Sample(SQLModel, table=True): __table_args__ = {"schema": "A"} id: Optional[int] = Field(default=None, primary_key=True) key: int ``` For schema `B` I only have read rights. The table of interest named `Order` within schema `B` looks like this: ``` Order id | key | ============= 1 | 435 ... | .... ``` Now I would like to join my `Sample` table within schema `A` with the `Order` table within schema `B`. From my understanding I should implement the `Order` table as pydantic model which I can use then in my SQL Statement powerd by SQLModel ``` class Order(SQLModel): __table_args__ = {"schema": "B"} id: Optional[int] = Field(default=None, primary_key=True) key: int ``` ``` statement = select(Sample).join(Table, Sample.key == Order.key) ``` However, this seems not to work. Any help would be highly appreciated ### Operating System Windows ### Operating System Details _No response_ ### SQLModel Version 0.0.7 ### Python Version 3.8.1 ### Additional Context _No response_
closed
2022-10-21T11:28:47Z
2022-11-26T11:04:32Z
https://github.com/fastapi/sqlmodel/issues/475
[ "question", "investigate" ]
christianholland
3
s3rius/FastAPI-template
asyncio
40
Database is not initialized without migrations
If you choose to skip adding migrations, you'll face this issue. We must add a function in application's startup that initializes database using metadata.
closed
2021-10-10T05:57:07Z
2021-10-13T10:03:45Z
https://github.com/s3rius/FastAPI-template/issues/40
[ "bug" ]
s3rius
2
kubeflow/katib
scikit-learn
1,971
Katib-DB-Manager is not automatically creating katib database in external mysql DB
/kind bug **What steps did you take and what happened:** When we point Katib-DB-manager to AWS RDS MySql Database, it is not automatically creating katib database automatically like pipeline/metadata pods **What did you expect to happen:** katib-db-manager to automatically create database in RDS mysql (external-db) **Anything else you would like to add:** [Miscellaneous information that will assist in solving the issue.] **Environment:** - Katib version (check the Katib controller image version): 0.14.0 - Kubernetes version: (`kubectl version`): 1.22 - OS (`uname -a`): --- <!-- Don't delete this message to encourage users to support your issue! --> Impacted by this bug? Give it a 👍 We prioritize the issues with the most 👍
closed
2022-10-05T15:58:08Z
2023-09-14T00:17:37Z
https://github.com/kubeflow/katib/issues/1971
[ "kind/bug", "lifecycle/stale" ]
moorthy156
3
serengil/deepface
machine-learning
996
update illustration for detectors
We recently added yolo and yunet, add their outputs in the illustration
closed
2024-02-01T11:51:09Z
2024-02-03T10:49:18Z
https://github.com/serengil/deepface/issues/996
[ "enhancement" ]
serengil
1
dmlc/gluon-nlp
numpy
1,008
GPT2BPETokenizer produce strange symbol
## Description I ran code piece from https://gluon-nlp.mxnet.io/model_zoo/bert/index.html and the GPT2BPETokenizer produce a strange symbol Ġ ### Error Message In [1]: import gluonnlp as nlp; import mxnet as mx; ...: model, vocab = nlp.model.get_model('roberta_12_768_12', dataset_name='openwebtext_ccnew ...: s_stories_books_cased', use_decoder=False); ...: tokenizer = nlp.data.GPT2BPETokenizer(); ...: text = [vocab.bos_token] + tokenizer('Hello world!') + [vocab.eos_token]; ...: seq_encoding = model(mx.nd.array([vocab[text]])) ...: ...: In [2]: print(text) ['\<s\>', 'Hello', 'Ġworld', '!', '\</s\>'] command and paste the outputs below:
closed
2019-11-14T09:38:41Z
2020-10-26T22:48:10Z
https://github.com/dmlc/gluon-nlp/issues/1008
[ "bug" ]
hutao965
9
flairNLP/flair
nlp
3,543
[Bug]: Cannot load pre-trained models after fine-tuning (Transformers)
### Describe the bug Hello, I was trying to fine tune a mT5 model (google/mT5 series models) on a custom dataset that follows the text format given in your documentation for the column data loader. I have been trying to figure out what is happening but I think there is some problem in the way the model is being loaded/saved. I am sharing my files that have changes done to them (uses the base template of [this example](https://github.com/flairNLP/flair/blob/master/examples/ner/run_ner.py)). ### To Reproduce `run_ner.py` (I am trying to reproduce results from this repo: https://github.com/MLlab4CS/Astro-mT5/tree/main) ```python import inspect import json import logging import os import sys from dataclasses import dataclass, field import torch from transformers import HfArgumentParser import flair from flair import set_seed from flair.embeddings import TransformerWordEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer from flair.datasets import ColumnCorpus logger = logging.getLogger("flair") logger.setLevel(level="INFO") @dataclass class ModelArguments: model_name_or_path: str = field( metadata={"help": "The model checkpoint for weights initialization."}, ) layers: str = field(default="-1", metadata={"help": "Layers to be fine-tuned."}) subtoken_pooling: str = field( default="first", metadata={"help": "Subtoken pooling strategy used for fine-tuned."}, ) hidden_size: int = field(default=256, metadata={"help": "Hidden size for NER model."}) use_crf: bool = field(default=False, metadata={"help": "Whether to use a CRF on-top or not."}) @dataclass class TrainingArguments: num_epochs: int = field(default=10, metadata={"help": "The number of training epochs."}) batch_size: int = field(default=8, metadata={"help": "Batch size used for training."}) mini_batch_chunk_size: int = field( default=1, metadata={"help": "If smaller than batch size, batches will be chunked."}, ) learning_rate: float = field(default=5e-05, metadata={"help": "Learning rate"}) seed: int = field(default=42, metadata={"help": "Seed used for reproducible fine-tuning results."}) device: str = field(default="cuda:0", metadata={"help": "CUDA device string."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for optimizer."}) embeddings_storage_mode: str = field(default="none", metadata={"help": "Defines embedding storage method."}) @dataclass class FlertArguments: context_size: int = field(default=0, metadata={"help": "Context size when using FLERT approach."}) respect_document_boundaries: bool = field( default=False, metadata={"help": "Whether to respect document boundaries or not when using FLERT."}, ) @dataclass class DataArguments: dataset_name: str = field(metadata={"help": "Flair NER dataset name."}) dataset_arguments: str = field(default="", metadata={"help": "Dataset arguments for Flair NER dataset."}) output_dir: str = field( default="resources/taggers/ner", metadata={"help": "Defines output directory for final fine-tuned model."}, ) def get_flair_corpus(data_args): ner_task_mapping = {} for name, obj in inspect.getmembers(flair.datasets.sequence_labeling): if inspect.isclass(obj): if name.startswith("NER") or name.startswith("CONLL") or name.startswith("WNUT"): ner_task_mapping[name] = obj dataset_args = {} dataset_name = data_args.dataset_name if data_args.dataset_arguments: dataset_args = json.loads(data_args.dataset_arguments) if dataset_name not in ner_task_mapping: raise ValueError(f"Dataset name {dataset_name} is not a valid Flair datasets name!") return ner_task_mapping[dataset_name](**dataset_args) def main(): parser = HfArgumentParser((ModelArguments, TrainingArguments, FlertArguments, DataArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): ( model_args, training_args, flert_args, data_args, ) = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: ( model_args, training_args, flert_args, data_args, ) = parser.parse_args_into_dataclasses() set_seed(training_args.seed) flair.device = training_args.device columns = {0: 'tokens', 1: 'ner'} corpus: Corpus = ColumnCorpus('some_directory/astrobert_models/Model_3(mT5)', columns, train_file='train-80txt', test_file='test-10.txt', dev_file='val-10.txt' ) logger.info(corpus) tag_type: str = "ner" tag_dictionary = corpus.make_label_dictionary(tag_type, add_unk=False) logger.info(tag_dictionary) embeddings = TransformerWordEmbeddings( model=model_args.model_name_or_path, layers=model_args.layers, subtoken_pooling=model_args.subtoken_pooling, fine_tune=True, allow_long_sentences=True, use_context=flert_args.context_size, respect_document_boundaries=flert_args.respect_document_boundaries, ) tagger = SequenceTagger( hidden_size=model_args.hidden_size, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type, use_crf=model_args.use_crf, use_rnn=False, allow_unk_predictions=True, reproject_embeddings=True, ) trainer = ModelTrainer(tagger, corpus) trainer.fine_tune( data_args.output_dir, learning_rate=training_args.learning_rate, mini_batch_size=training_args.batch_size, mini_batch_chunk_size=training_args.mini_batch_chunk_size, max_epochs=training_args.num_epochs, embeddings_storage_mode=training_args.embeddings_storage_mode, weight_decay=training_args.weight_decay, param_selection_mode=False, use_final_model_for_eval=False, save_final_model=False, ) torch.save(model_args, os.path.join(data_args.output_dir, "model_args.bin")) torch.save(training_args, os.path.join(data_args.output_dir, "training_args.bin")) # finally, print model card for information tagger.print_model_card() if __name__ == "__main__": main() ``` This uses the `google/mT5-large` model to fine tune but I am using the `google/mT5-base` which is similar architecture but less parameters. Also, this is using the `add-t5-encoder-support` branch for running the code. ### Expected behavior Expected behaviour is that these parameters: ```py param_selection_mode=False, use_final_model_for_eval=False, save_final_model=False, ``` should allow me to save the best model and run the tests on this. But I am unable to do so. ### Logs and Stack traces Command to invoke the training (fine tuning) ```sh python3 run_ner.py --dataset_name NER_MASAKHANE --model_name_or_path google/mt5-base --layers -1 --subtoken_pooling first_last --hidden_size 256 --batch_size 4 --learning_rate 5e-05 --num_epochs 5 --use_crf True --output_dir ./content/mt5-large ``` Stack Trace with the training log: ```stacktrace 2024-09-02 22:12:56,024 Reading data from some_directory/astrobert_models/Model_3(mT5) 2024-09-02 22:12:56,024 Train: some_directory/astrobert_models/Model_3(mT5)/train-80.txt 2024-09-02 22:12:56,025 Dev: some_directory/astrobert_models/Model_3(mT5)/val-10.txt 2024-09-02 22:12:56,025 Test: some_directory/astrobert_models/Model_3(mT5)/test-10.txt 2024-09-02 22:13:02,297 Corpus: 2028 train + 226 dev + 251 test sentences 2024-09-02 22:13:02,298 Computing label dictionary. Progress: 2028it [00:00, 22607.38it/s] 2024-09-02 22:13:02,408 Dictionary created for label 'ner' with 31 values: Organization (seen 9269 times), Citation (seen 7050 times), Person (seen 4895 times), Grant (seen 4199 times), Wavelength (seen 3773 times), CelestialObject (seen 3035 times), Formula (seen 2860 times), Model (seen 2531 times), Telescope (seen 1929 times), Location (seen 1817 times), Software (seen 1154 times), Observatory (seen 1036 times), Survey (seen 1034 times), Instrument (seen 912 times), CelestialObjectRegion (seen 619 times), ComputingFacility (seen 496 times), Fellowship (seen 495 times), Dataset (seen 448 times), Collaboration (seen 370 times), EntityOfFutureInterest (seen 347 times) 2024-09-02 22:13:02,408 Dictionary with 31 tags: Organization, Citation, Person, Grant, Wavelength, CelestialObject, Formula, Model, Telescope, Location, Software, Observatory, Survey, Instrument, CelestialObjectRegion, ComputingFacility, Fellowship, Dataset, Collaboration, EntityOfFutureInterest, URL, Archive, Database, TextGarbage, Mission, CelestialRegion, Proposal, Identifier, Tag, ObservationalTechniques, Event /home/bob2/.local/lib/python3.10/site-packages/transformers/convert_slow_tokenizer.py:560: UserWarning: The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option which is not implemented in the fast tokenizers. In practice this means that the fast version of the tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these unknown tokens into a sequence of byte tokens matching the original piece of text. warnings.warn( /home/bob2/.local/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( 2024-09-02 22:13:08,487 SequenceTagger predicts: Dictionary with 126 tags: <unk>, O, S-Organization, B-Organization, E-Organization, I-Organization, S-Citation, B-Citation, E-Citation, I-Citation, S-Person, B-Person, E-Person, I-Person, S-Grant, B-Grant, E-Grant, I-Grant, S-Wavelength, B-Wavelength, E-Wavelength, I-Wavelength, S-CelestialObject, B-CelestialObject, E-CelestialObject, I-CelestialObject, S-Formula, B-Formula, E-Formula, I-Formula, S-Model, B-Model, E-Model, I-Model, S-Telescope, B-Telescope, E-Telescope, I-Telescope, S-Location, B-Location, E-Location, I-Location, S-Software, B-Software, E-Software, I-Software, S-Observatory, B-Observatory, E-Observatory, I-Observatory 2024-09-02 22:13:09,364 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:13:09,365 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): T5EncoderModel( (shared): Embedding(250112, 768) (encoder): T5Stack( (embed_tokens): Embedding(250112, 768) (block): ModuleList( (0): T5Block( (layer): ModuleList( (0): T5LayerSelfAttention( (SelfAttention): T5Attention( (q): Linear(in_features=768, out_features=768, bias=False) (k): Linear(in_features=768, out_features=768, bias=False) (v): Linear(in_features=768, out_features=768, bias=False) (o): Linear(in_features=768, out_features=768, bias=False) (relative_attention_bias): Embedding(32, 12) ) (layer_norm): T5LayerNorm() (dropout): Dropout(p=0.1, inplace=False) ) (1): T5LayerFF( (DenseReluDense): T5DenseGatedActDense( (wi_0): Linear(in_features=768, out_features=2048, bias=False) (wi_1): Linear(in_features=768, out_features=2048, bias=False) (wo): Linear(in_features=2048, out_features=768, bias=False) (dropout): Dropout(p=0.1, inplace=False) (act): NewGELUActivation() ) (layer_norm): T5LayerNorm() (dropout): Dropout(p=0.1, inplace=False) ) ) ) (1-11): 11 x T5Block( (layer): ModuleList( (0): T5LayerSelfAttention( (SelfAttention): T5Attention( (q): Linear(in_features=768, out_features=768, bias=False) (k): Linear(in_features=768, out_features=768, bias=False) (v): Linear(in_features=768, out_features=768, bias=False) (o): Linear(in_features=768, out_features=768, bias=False) ) (layer_norm): T5LayerNorm() (dropout): Dropout(p=0.1, inplace=False) ) (1): T5LayerFF( (DenseReluDense): T5DenseGatedActDense( (wi_0): Linear(in_features=768, out_features=2048, bias=False) (wi_1): Linear(in_features=768, out_features=2048, bias=False) (wo): Linear(in_features=2048, out_features=768, bias=False) (dropout): Dropout(p=0.1, inplace=False) (act): NewGELUActivation() ) (layer_norm): T5LayerNorm() (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (final_layer_norm): T5LayerNorm() (dropout): Dropout(p=0.1, inplace=False) ) ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (embedding2nn): Linear(in_features=1536, out_features=1536, bias=True) (linear): Linear(in_features=1536, out_features=128, bias=True) (loss_function): ViterbiLoss() (crf): CRF() )" 2024-09-02 22:13:09,365 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:13:09,365 Corpus: "Corpus: 2028 train + 226 dev + 251 test sentences" 2024-09-02 22:13:09,365 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:13:09,365 Parameters: 2024-09-02 22:13:09,365 - learning_rate: "0.000050" 2024-09-02 22:13:09,365 - mini_batch_size: "4" 2024-09-02 22:13:09,365 - patience: "3" 2024-09-02 22:13:09,365 - anneal_factor: "0.5" 2024-09-02 22:13:09,365 - max_epochs: "5" 2024-09-02 22:13:09,365 - shuffle: "True" 2024-09-02 22:13:09,365 - train_with_dev: "False" 2024-09-02 22:13:09,365 - batch_growth_annealing: "False" 2024-09-02 22:13:09,365 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:13:09,365 Model training base path: "content/mt5-large" 2024-09-02 22:13:09,365 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:13:09,366 Device: cuda:0 2024-09-02 22:13:09,366 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:13:09,366 Embeddings storage mode: none 2024-09-02 22:13:09,366 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:14:22,599 epoch 1 - iter 50/507 - loss 5.21869016 - samples/sec: 2.73 - lr: 0.000010 2024-09-02 22:15:31,374 epoch 1 - iter 100/507 - loss 4.76969707 - samples/sec: 2.91 - lr: 0.000020 2024-09-02 22:16:44,454 epoch 1 - iter 150/507 - loss 3.84992501 - samples/sec: 2.74 - lr: 0.000030 2024-09-02 22:17:57,165 epoch 1 - iter 200/507 - loss 3.22765532 - samples/sec: 2.75 - lr: 0.000040 2024-09-02 22:19:07,797 epoch 1 - iter 250/507 - loss 2.81055829 - samples/sec: 2.83 - lr: 0.000049 2024-09-02 22:20:24,791 epoch 1 - iter 300/507 - loss 2.47280144 - samples/sec: 2.60 - lr: 0.000049 2024-09-02 22:21:34,641 epoch 1 - iter 350/507 - loss 2.25822920 - samples/sec: 2.86 - lr: 0.000048 2024-09-02 22:22:49,561 epoch 1 - iter 400/507 - loss 2.06685372 - samples/sec: 2.67 - lr: 0.000047 2024-09-02 22:24:04,744 epoch 1 - iter 450/507 - loss 1.91565943 - samples/sec: 2.66 - lr: 0.000046 2024-09-02 22:25:15,756 epoch 1 - iter 500/507 - loss 1.80107189 - samples/sec: 2.82 - lr: 0.000045 2024-09-02 22:25:23,133 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:25:23,133 EPOCH 1 done: loss 1.7909 - lr 0.000045 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 57/57 [00:37<00:00, 1.50it/s] 2024-09-02 22:26:01,071 Evaluating as a multi-label problem: False 2024-09-02 22:26:01,123 DEV : loss 0.40007856488227844 - f1-score (micro avg) 0.4167 2024-09-02 22:26:01,134 BAD EPOCHS (no improvement): 4 2024-09-02 22:26:01,134 saving best model 2024-09-02 22:26:02,344 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:27:14,119 epoch 2 - iter 50/507 - loss 0.66224097 - samples/sec: 2.79 - lr: 0.000043 2024-09-02 22:28:26,077 epoch 2 - iter 100/507 - loss 0.66289136 - samples/sec: 2.78 - lr: 0.000042 2024-09-02 22:29:43,508 epoch 2 - iter 150/507 - loss 0.66188128 - samples/sec: 2.58 - lr: 0.000041 2024-09-02 22:30:56,096 epoch 2 - iter 200/507 - loss 0.64561237 - samples/sec: 2.76 - lr: 0.000040 2024-09-02 22:32:07,025 epoch 2 - iter 250/507 - loss 0.63093977 - samples/sec: 2.82 - lr: 0.000039 2024-09-02 22:33:13,665 epoch 2 - iter 300/507 - loss 0.62267017 - samples/sec: 3.00 - lr: 0.000038 2024-09-02 22:34:27,071 epoch 2 - iter 350/507 - loss 0.61492844 - samples/sec: 2.72 - lr: 0.000037 2024-09-02 22:35:41,670 epoch 2 - iter 400/507 - loss 0.60867990 - samples/sec: 2.68 - lr: 0.000036 2024-09-02 22:36:53,006 epoch 2 - iter 450/507 - loss 0.60102799 - samples/sec: 2.80 - lr: 0.000035 2024-09-02 22:38:06,344 epoch 2 - iter 500/507 - loss 0.59238830 - samples/sec: 2.73 - lr: 0.000034 2024-09-02 22:38:15,044 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:38:15,045 EPOCH 2 done: loss 0.5919 - lr 0.000034 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 57/57 [01:26<00:00, 1.52s/it] 2024-09-02 22:39:41,854 Evaluating as a multi-label problem: False 2024-09-02 22:39:41,895 DEV : loss 0.258797824382782 - f1-score (micro avg) 0.6063 2024-09-02 22:39:41,907 BAD EPOCHS (no improvement): 4 2024-09-02 22:39:41,907 saving best model 2024-09-02 22:39:50,782 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:40:52,674 epoch 3 - iter 50/507 - loss 0.53751011 - samples/sec: 3.23 - lr: 0.000032 2024-09-02 22:42:07,553 epoch 3 - iter 100/507 - loss 0.51292905 - samples/sec: 2.67 - lr: 0.000031 2024-09-02 22:43:15,788 epoch 3 - iter 150/507 - loss 0.52074144 - samples/sec: 2.93 - lr: 0.000030 2024-09-02 22:44:29,978 epoch 3 - iter 200/507 - loss 0.50887246 - samples/sec: 2.70 - lr: 0.000029 2024-09-02 22:45:44,776 epoch 3 - iter 250/507 - loss 0.50465450 - samples/sec: 2.67 - lr: 0.000028 2024-09-02 22:46:53,595 epoch 3 - iter 300/507 - loss 0.49652591 - samples/sec: 2.91 - lr: 0.000027 2024-09-02 22:48:03,269 epoch 3 - iter 350/507 - loss 0.49103096 - samples/sec: 2.87 - lr: 0.000026 2024-09-02 22:49:22,787 epoch 3 - iter 400/507 - loss 0.48587132 - samples/sec: 2.52 - lr: 0.000025 2024-09-02 22:50:40,318 epoch 3 - iter 450/507 - loss 0.47988559 - samples/sec: 2.58 - lr: 0.000024 2024-09-02 22:51:53,871 epoch 3 - iter 500/507 - loss 0.47534172 - samples/sec: 2.72 - lr: 0.000022 2024-09-02 22:52:02,896 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:52:02,896 EPOCH 3 done: loss 0.4754 - lr 0.000022 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 57/57 [01:27<00:00, 1.53s/it] 2024-09-02 22:53:30,026 Evaluating as a multi-label problem: False 2024-09-02 22:53:30,067 DEV : loss 0.22028639912605286 - f1-score (micro avg) 0.6517 2024-09-02 22:53:30,079 BAD EPOCHS (no improvement): 4 2024-09-02 22:53:30,079 saving best model 2024-09-02 22:53:39,030 ---------------------------------------------------------------------------------------------------- 2024-09-02 22:54:58,710 epoch 4 - iter 50/507 - loss 0.42972222 - samples/sec: 2.51 - lr: 0.000021 2024-09-02 22:56:09,934 epoch 4 - iter 100/507 - loss 0.42529253 - samples/sec: 2.81 - lr: 0.000020 2024-09-02 22:57:18,254 epoch 4 - iter 150/507 - loss 0.41949796 - samples/sec: 2.93 - lr: 0.000019 2024-09-02 22:58:35,158 epoch 4 - iter 200/507 - loss 0.41590241 - samples/sec: 2.60 - lr: 0.000018 2024-09-02 22:59:42,396 epoch 4 - iter 250/507 - loss 0.42134116 - samples/sec: 2.97 - lr: 0.000017 2024-09-02 23:00:51,994 epoch 4 - iter 300/507 - loss 0.42124508 - samples/sec: 2.87 - lr: 0.000016 2024-09-02 23:02:06,538 epoch 4 - iter 350/507 - loss 0.41991969 - samples/sec: 2.68 - lr: 0.000015 2024-09-02 23:03:16,007 epoch 4 - iter 400/507 - loss 0.41864415 - samples/sec: 2.88 - lr: 0.000014 2024-09-02 23:04:30,849 epoch 4 - iter 450/507 - loss 0.41877229 - samples/sec: 2.67 - lr: 0.000012 2024-09-02 23:05:43,238 epoch 4 - iter 500/507 - loss 0.41600581 - samples/sec: 2.76 - lr: 0.000011 2024-09-02 23:05:52,670 ---------------------------------------------------------------------------------------------------- 2024-09-02 23:05:52,670 EPOCH 4 done: loss 0.4157 - lr 0.000011 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 57/57 [01:27<00:00, 1.53s/it] 2024-09-02 23:07:20,127 Evaluating as a multi-label problem: False 2024-09-02 23:07:20,169 DEV : loss 0.20156854391098022 - f1-score (micro avg) 0.6764 2024-09-02 23:07:20,181 BAD EPOCHS (no improvement): 4 2024-09-02 23:07:20,181 saving best model 2024-09-02 23:07:29,094 ---------------------------------------------------------------------------------------------------- 2024-09-02 23:08:41,206 epoch 5 - iter 50/507 - loss 0.41014725 - samples/sec: 2.77 - lr: 0.000010 2024-09-02 23:09:55,703 epoch 5 - iter 100/507 - loss 0.40355902 - samples/sec: 2.68 - lr: 0.000009 2024-09-02 23:11:06,169 epoch 5 - iter 150/507 - loss 0.40052907 - samples/sec: 2.84 - lr: 0.000008 2024-09-02 23:12:16,356 epoch 5 - iter 200/507 - loss 0.40273058 - samples/sec: 2.85 - lr: 0.000007 2024-09-02 23:13:28,812 epoch 5 - iter 250/507 - loss 0.39995092 - samples/sec: 2.76 - lr: 0.000006 2024-09-02 23:14:41,129 epoch 5 - iter 300/507 - loss 0.39412877 - samples/sec: 2.77 - lr: 0.000005 2024-09-02 23:15:54,505 epoch 5 - iter 350/507 - loss 0.39045605 - samples/sec: 2.73 - lr: 0.000004 2024-09-02 23:17:07,290 epoch 5 - iter 400/507 - loss 0.39085101 - samples/sec: 2.75 - lr: 0.000002 2024-09-02 23:18:20,001 epoch 5 - iter 450/507 - loss 0.38970339 - samples/sec: 2.75 - lr: 0.000001 2024-09-02 23:19:30,506 epoch 5 - iter 500/507 - loss 0.38807320 - samples/sec: 2.84 - lr: 0.000000 2024-09-02 23:19:42,705 ---------------------------------------------------------------------------------------------------- 2024-09-02 23:19:42,705 EPOCH 5 done: loss 0.3880 - lr 0.000000 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 57/57 [01:27<00:00, 1.53s/it] 2024-09-02 23:21:09,993 Evaluating as a multi-label problem: False 2024-09-02 23:21:10,034 DEV : loss 0.19652396440505981 - f1-score (micro avg) 0.6858 2024-09-02 23:21:10,046 BAD EPOCHS (no improvement): 4 2024-09-02 23:21:10,046 saving best model 2024-09-02 23:21:20,453 ---------------------------------------------------------------------------------------------------- 2024-09-02 23:21:20,454 loading file content/mt5-large/best-model.pt Traceback (most recent call last): File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/run_ner.py", line 382, in <module> main() File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/run_ner.py", line 363, in main trainer.fine_tune( File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/trainers/trainer.py", line 919, in fine_tune return self.train( File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/trainers/trainer.py", line 836, in train final_score = self.final_test( File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/trainers/trainer.py", line 949, in final_test self.model.load_state_dict(self.model.load(base_path / "best-model.pt").state_dict()) File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/nn/model.py", line 142, in load state = torch.load(f, map_location="cpu") File "/home/bob2/.local/lib/python3.10/site-packages/torch/serialization.py", line 1025, in load return _load(opened_zipfile, File "/home/bob2/.local/lib/python3.10/site-packages/torch/serialization.py", line 1446, in _load result = unpickler.load() File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/embeddings/transformer.py", line 1004, in __setstate__ embedding = self.create_from_state(saved_config=config, **state) File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/embeddings/token.py", line 62, in create_from_state return cls(**state) File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/embeddings/token.py", line 49, in __init__ TransformerEmbeddings.__init__( File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/embeddings/transformer.py", line 810, in __init__ self.tokenizer = self._tokenizer_from_bytes(tokenizer_data) File "/media/bob2/d8c6a01c-a6c1-4ad3-a8d5-a740f2fa4a7a/home/bob2/_dhruv/astrobert_models/Model_3(mT5)/flair/flair/embeddings/transformer.py", line 335, in _tokenizer_from_bytes return AutoTokenizer.from_pretrained(temp_dir, add_prefix_space=True) File "/home/bob2/.local/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py", line 880, in from_pretrained return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) File "/home/bob2/.local/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2110, in from_pretrained return cls._from_pretrained( File "/home/bob2/.local/lib/python3.10/site-packages/transformers/tokenization_utils_base.py", line 2336, in _from_pretrained tokenizer = cls(*init_inputs, **init_kwargs) File "/home/bob2/.local/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5_fast.py", line 120, in __init__ super().__init__( File "/home/bob2/.local/lib/python3.10/site-packages/transformers/tokenization_utils_fast.py", line 124, in __init__ slow_tokenizer = self.slow_tokenizer_class(*args, **kwargs) File "/home/bob2/.local/lib/python3.10/site-packages/transformers/models/t5/tokenization_t5.py", line 151, in __init__ self.sp_model.Load(vocab_file) File "/home/bob2/.local/lib/python3.10/site-packages/sentencepiece/__init__.py", line 367, in Load return self.LoadFromFile(model_file) File "/home/bob2/.local/lib/python3.10/site-packages/sentencepiece/__init__.py", line 171, in LoadFromFile return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg) TypeError: not a string ``` ### Screenshots _No response_ ### Additional Context Please let me know if you need any more context or maybe a very small dataset to reproduce the results for this output. Thanks in advance for any assistance. ### Environment #### Versions: ##### Flair 0.13.1 ##### Pytorch 2.3.1+cu121 ##### Transformers 4.41.2 #### GPU True
closed
2024-09-03T04:42:49Z
2024-10-11T11:07:15Z
https://github.com/flairNLP/flair/issues/3543
[ "bug" ]
DhruvSondhi
1
pydata/xarray
numpy
9,878
multiindex + cftimeindex broken on pandas main
### What happened? This test fails on pandas main branch https://github.com/pydata/xarray/blob/96e0ff7d70c605a1505ff89a2d62b5c4138b0305/xarray/tests/test_cftimeindex.py#L1191-L1195 I will xfail this test but it would be good to fix it cc @spencerkclark
open
2024-12-11T23:16:05Z
2024-12-13T19:32:03Z
https://github.com/pydata/xarray/issues/9878
[ "bug", "topic-cftime" ]
dcherian
1
ydataai/ydata-profiling
jupyter
733
Slack links in the README.md are no longer valid
**Describe the bug** The slack of Join the Slack community links on the README.md - both return an error saying the link is no longer valid **To Reproduce** Click the [Slack](https://join.slack.com/t/pandas-profiling/shared_invite/zt-l2iqwb92-9JpTEdFBijR2G798j2MpQw) link at the [beginning](https://github.com/pandas-profiling/pandas-profiling#pandas-profiling) or [Join the Slack community](https://join.slack.com/t/pandas-profiling/shared_invite/zt-hfy3iwp2-qEJSItye5QBZf8YGFMaMnQ) under the [Contributing](https://github.com/pandas-profiling/pandas-profiling#contributing) section on the rendered README.md ![broken_slack_link](https://user-images.githubusercontent.com/12672027/112476546-f937b100-8dac-11eb-8978-9bdf0c24f458.png)
closed
2021-03-25T12:55:29Z
2021-03-27T19:23:16Z
https://github.com/ydataai/ydata-profiling/issues/733
[]
owenlamont
1
lanpa/tensorboardX
numpy
258
symbolic for max_pool2d_with_indices returned None for the output 1 (indicating conversion for that particular output is not supported), but the network uses this output later
Hi, I am getting this error while adding a graph. Following is the stack trace `--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-43-d96358ad8344> in <module>() 21 use_last_checkpoint =train_params['use_last_checkpoint']) 22 ---> 23 solver.train(train_loader, val_loader) ~/shayan/quickNat_pytorch/quickNat_pytorch/solver.py in train(self, train_loader, val_loader) 140 self.logWriter.update_cm_per_iter(output, y, phase) 141 --> 142 self.logWriter.graph(model, X, phase) 143 del X, y, w, output, loss 144 torch.cuda.empty_cache() ~/shayan/quickNat_pytorch/quickNat_pytorch/log_utils.py in graph(self, model, X, phase) 79 80 def graph(self, model, X, phase): ---> 81 self.writer[phase].add_graph(model, X) 82 83 def update_cm_per_iter(self, predictions, correct_labels, phase): ~/anaconda3/lib/python3.6/site-packages/tensorboardX/writer.py in add_graph(self, model, input_to_model, verbose, **kwargs) 518 print('add_graph() only supports PyTorch v0.2.') 519 return --> 520 self.file_writer.add_graph(graph(model, input_to_model, verbose)) 521 except AttributeError: 522 # Caffe2 models do not have the 'forward' method ~/anaconda3/lib/python3.6/site-packages/tensorboardX/pytorch_graph.py in graph(model, args, verbose) 94 return GraphDef(versions=VersionDef(producer=22)) 95 if LooseVersion(torch.__version__) >= LooseVersion("0.4.1"): ---> 96 torch.onnx._optimize_trace(trace, torch._C._onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK) 97 elif LooseVersion(torch.__version__) >= LooseVersion("0.4"): 98 torch.onnx._optimize_trace(trace, False) ~/anaconda3/lib/python3.6/site-packages/torch/onnx/__init__.py in _optimize_trace(trace, operator_export_type) 39 def _optimize_trace(trace, operator_export_type): 40 from torch.onnx import utils ---> 41 trace.set_graph(utils._optimize_graph(trace.graph(), operator_export_type)) 42 43 ~/anaconda3/lib/python3.6/site-packages/torch/onnx/utils.py in _optimize_graph(graph, operator_export_type) 105 torch._C._jit_pass_lint(graph) 106 if operator_export_type != OperatorExportTypes.RAW: --> 107 graph = torch._C._jit_pass_onnx(graph, operator_export_type) 108 torch._C._jit_pass_lint(graph) 109 torch._C._jit_pass_onnx_peephole(graph)`
open
2018-10-24T10:12:35Z
2019-07-04T18:55:51Z
https://github.com/lanpa/tensorboardX/issues/258
[ "add_graph", "wait for response" ]
shayansiddiqui
9
donnemartin/data-science-ipython-notebooks
machine-learning
71
Data science
closed
2020-06-06T12:05:25Z
2020-06-06T12:06:27Z
https://github.com/donnemartin/data-science-ipython-notebooks/issues/71
[]
Amine-OMRI
0
aiortc/aiortc
asyncio
302
Allow same track to be sent N times
In `rtcpeerconnection.py`: ```py def __assertTrackHasNoSender(self, track: MediaStreamTrack) -> None: for sender in self.getSenders(): if sender.track == track: raise InvalidAccessError("Track already has a sender") ``` May I know why this constraint? is it artificial? Nothing in the spec prevents a PC from sending the same track N times in different transceivers (may be with different encoding settings).
closed
2020-02-25T11:30:25Z
2020-02-26T10:44:01Z
https://github.com/aiortc/aiortc/issues/302
[]
ibc
5
prkumar/uplink
rest-api
119
Class-level decorators on Consumer classes do not apply to inherited methods
**Describe the bug** For consumer classes that inherit consumer methods (i.e., methods decorated with `@uplink.get`, `@uplink.post`, etc.) from one or more parent classes, uplink decorators such as`@response_handler` or `@timeout` are not applied to those inherited methods when these decorators are used as class-level decorators. In other words, these decorators are strictly applied to consumer methods that are directly defined on the decorated consumer class. **To Reproduce** Consider the following consumer class: ```python class GitHub(uplink.Consumer): @uplink.get("/users/{username}") def get_user(self, username): """Get a single user.""" ``` Create a subclass of `GitHub` and decorate it with any uplink decorator that should propagate to consumer methods when used as a class decorator. For this example, I apply a `@response_handler` that should make any consumer method return the integer `1`, regardless of the actual response returned by the server: ```python @response_handler(lambda resp: 1) class GitHubSubclass(GitHub): pass ``` Here’s a quick test that shows that the response handler is not applied to the inherited method (i.e., the assertion fails): ```python client = GitHubSubclass(...) assert github.get_user(“prkumar”) == 1 ``` **Expected behavior** Applying a decorator to a Consumer class should propagate to ALL consumer methods available to that class, including inherited consumer methods. **Additional context** Prior to v0.3.0, the actual behavior reflected the expected behavior detailed above. However, as part of #27, we unnecessarily began restricting the application of class-level decorators to only those consumer methods defined directly on the decorated consumer class. Hence, a fix for this bug should effectively revert the changes made in #27. Notably, this means that the fix should make changes to the function `uplink.helpers.get_api_definitions`.
closed
2018-11-15T19:41:14Z
2019-01-22T18:52:47Z
https://github.com/prkumar/uplink/issues/119
[ "Bug", "help wanted", "good first issue" ]
prkumar
1
ckan/ckan
api
8,647
`package_show` fallback to `name_or_id` does not work, requires `id`
## CKAN version 2.11 ## Describe the bug The `package_show` API is supposed to allow `name_or_id` as a fallback for `id`, but it doesn't work on CKAN 2.11, giving an error if `id` is not present. ### Steps to reproduce - Start a CKAN 2.11 instance. - Create a public dataset named "Test". - Go to `/api/action/package_show?name_or_id=test` ### Expected behavior The API should return a JSON description of the Test dataset. ### Additional details 6:04:20,563 INFO [ckan.views.api] Validation error (Action API): "{'message': 'Missing id, can not get Package object', '__type': 'Validation Error'}" 16:04:20,565 INFO [ckan.config.middleware.flask_app] 409 /api/action/package_show render time 0.024 seconds 127.0.0.1 - - [04/Feb/2025:16:04:20 +1000] "GET /api/action/package_show?name_or_id=testing-qoldev-1070 HTTP/1.0" 409 357 "-" "Amazon CloudFront" `name_or_id` is configured as a fallback at https://github.com/ckan/ckan/blob/df8881ccacb555668207b93a77da6cc65b84bfe0/ckan/logic/action/get.py#L980 But the corresponding auth function requires `id` to be present, and gives an error otherwise: https://github.com/ckan/ckan/blob/df8881ccacb555668207b93a77da6cc65b84bfe0/ckan/logic/auth/get.py#L107 and https://github.com/ckan/ckan/blob/df8881ccacb555668207b93a77da6cc65b84bfe0/ckan/logic/auth/__init__.py#L53
open
2025-02-04T06:14:05Z
2025-02-04T13:21:20Z
https://github.com/ckan/ckan/issues/8647
[]
ThrawnCA
0
cvat-ai/cvat
computer-vision
8,297
Restoring task's backup which initially was created from file share fails
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce During development of #8287 the problem occured: 1. Connect file share to CVAT 2. Create a task with files from share 3. Add some annotations 4. Backup the task 5. Try to restore it, the error occurs: ![image](https://github.com/user-attachments/assets/1dec04f1-f477-4a1a-9b95-e570a151a1f5) ### Expected Behavior Backup should be restored successfully ### Possible Solution It seems backup of the task which is created from local files and file share have different folder structure. Maybe this is the problem. Backup with task from `share` looks like this: ![image](https://github.com/user-attachments/assets/56ae5b9e-5586-4c27-8ba3-51809cfaa826) Backup with task from `local` files looks like: ![image](https://github.com/user-attachments/assets/22ccf7ec-ea78-4738-9d35-a8e9a6a983e1) ### Context _No response_ ### Environment - Git commit ff50b464ddaa85a2496da79ac87fa71455f01c92 - Env: local - Full error log: ``` [2024-08-13 08:10:57,951] ERROR rq.worker: [Job import:task-02f399a3-612d-4bd8-b1fb-9ed57c83c2e9-backup]: exception raised while executing (cvat.apps.engine.utils.import_resource_with_clean_up_after) Traceback (most recent call last): File "/home/kirill/projects/cvat/.env/lib/python3.10/site-packages/rq/worker.py", line 1431, in perform_job rv = job.perform() File "/home/kirill/projects/cvat/.env/lib/python3.10/site-packages/rq/job.py", line 1280, in perform self._result = self._execute() File "/home/kirill/projects/cvat/.env/lib/python3.10/site-packages/rq/job.py", line 1317, in _execute result = self.func(*self.args, **self.kwargs) File "/home/kirill/projects/cvat/cvat/apps/engine/utils.py", line 289, in import_resource_with_clean_up_after result = func(filename, *args, **kwargs) File "/usr/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/home/kirill/projects/cvat/cvat/apps/engine/backup.py", line 751, in _import_task db_task = task_importer.import_task() File "/home/kirill/projects/cvat/cvat/apps/engine/backup.py", line 742, in import_task self._import_task() File "/home/kirill/projects/cvat/cvat/apps/engine/backup.py", line 690, in _import_task _create_thread(self._db_task.pk, data.copy(), isBackupRestore=True) File "/usr/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/home/kirill/projects/cvat/cvat/apps/engine/task.py", line 553, in _create_thread manifest_file = _validate_manifest( File "/home/kirill/projects/cvat/cvat/apps/engine/task.py", line 342, in _validate_manifest if is_manifest(full_manifest_path): File "/home/kirill/projects/cvat/utils/dataset_manifest/core.py", line 819, in is_manifest return is_video_manifest(full_manifest_path) or \ File "/home/kirill/projects/cvat/utils/dataset_manifest/core.py", line 824, in is_video_manifest return validator.validate() File "/home/kirill/projects/cvat/utils/dataset_manifest/core.py", line 737, in validate with open(self._manifest.path, 'r') as manifest: FileNotFoundError: [Errno 2] No such file or directory: '/home/kirill/projects/cvat/share/manifest.jsonl' ```
open
2024-08-13T08:12:35Z
2024-11-07T06:48:15Z
https://github.com/cvat-ai/cvat/issues/8297
[ "bug" ]
klakhov
2
OpenBB-finance/OpenBB
machine-learning
6,720
[🕹️] Create a Simple Sentiment Analysis for Stock Prices Notebook
# 📄 Task Create a notebook that fetches sentiment data from financial news and correlates it with stock price movements. --- ### 📋 Requirements: 1. **Template**: Start by copying the [example template notebook](https://github.com/OpenBB-finance/OpenBB/blob/develop/examples/COMMUNITY_EXAMPLE_TEMPLATE.ipynb). 2. **Content**: - Give your notebook a meaningful name. - Fill in the details in the template, including the notebook title, description, your GitHub username, the notebook name in the Google Colab button, and any additional sections relevant to the task. - Write code that uses OpenBB's features to model risk-return tradeoffs. - If your notebook requires additional dependencies, please specify those. 3. **Testing**: Ensure that all cells in the notebook run successfully and produce the intended results. 4. **Documentation**: Comment your code and add markdown cells where necessary to provide explanations for the analysis. 5. **Output**: The final notebook should be added to the `examples` folder in this repository. ### 💡 Tips: - Refer to the [OpenBB Documentation](https://docs.openbb.co/) for guidance on using OpenBB features. ### 📬 Submission: - Follow the submission instructions [here](https://github.com/OpenBB-finance/OpenBB/tree/develop/oss.gg). - Open a Pull Request (PR) to the `develop` branch. - Include a brief description of your notebook and the analysis it performs in the PR body. Happy hacking!
closed
2024-09-30T19:03:31Z
2024-11-02T07:41:49Z
https://github.com/OpenBB-finance/OpenBB/issues/6720
[ "🕹️ 300 points" ]
piiq
54
JoeanAmier/TikTokDownloader
api
76
如何批量获取达人所有视频的点赞和评论数
目前只能单独视频手动收入。
open
2023-10-26T07:30:33Z
2023-11-13T15:11:29Z
https://github.com/JoeanAmier/TikTokDownloader/issues/76
[]
myrainbowandsky
1
serengil/deepface
machine-learning
824
analyze() detector_backends 'yolov8' and 'dlib' errors
Hey! I was just trying to test out all of the available backend detectors for the analyze function. I have managed to get them all to run except for yolov8 and dlib. Here are the errors: shape_predictor_5_face_landmarks.dat.bz2 is going to be downloaded Detector: dlib Error: 'content-type' -and- Detector: yolov8 Error: invalid detector_backend passed - yolov8 Suggestions? For the yolov8 detector, as I passed the string copied directly from the DeepFace module which states it as an option. Curious if it's just a typo. Maybe no v8, or an n at the end or not actually valid and was just missed when documenting. Idk. I tried installing ultralytics, but it did not solve the issue, which makes sense. lol For dlib, I pip installed the package, then even uninstalled and reinstalled copying the version from the optional requirements text file, it was the same anyway. Google showed that maybe it's a firewall issue? I'm not sure where to find the weights to download them myself nor how to resolve such a firewall issue.
closed
2023-08-15T20:30:57Z
2023-08-18T15:32:52Z
https://github.com/serengil/deepface/issues/824
[ "question" ]
Hipples
2
AutoGPTQ/AutoGPTQ
nlp
378
关于量化使用的数据最后没有eos的问题
在实例脚本中,下面这一段好像没有在每条数据的最后加入eos token?此处是否需要加eos token呢? https://github.com/PanQiWei/AutoGPTQ/blob/e4b2493733d69a6e60e22cebc64b619be39feb0e/examples/quantization/quant_with_alpaca.py#L30-L40
open
2023-10-25T09:19:03Z
2023-10-26T16:46:16Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/378
[ "chinese" ]
sakura-umi
0
chatopera/Synonyms
nlp
93
效率过低,不知能否优化?
使用该库来返回近义词,单核CPU一秒钟只能返回50个不相同的词的近义词,对于NLP任务效率过低,成为数据读取的瓶颈,不知能否进行优化?
closed
2019-07-28T16:32:41Z
2020-10-01T11:36:21Z
https://github.com/chatopera/Synonyms/issues/93
[]
braveryCHR
1
alteryx/featuretools
data-science
2,284
Add primitive for 2 digit Postal Code Prefix (US-only)
- As a user of Featuretools, I would like to do feature engineering for Postal Codes in USA. - I would like to extract the 2 digit prefix: ![ZIP_Code_zones svg](https://user-images.githubusercontent.com/8726321/189682683-10ff2a2c-1136-4cb9-a340-7d75ed59fc71.png)
closed
2022-09-12T14:38:50Z
2022-11-29T20:08:15Z
https://github.com/alteryx/featuretools/issues/2284
[]
gsheni
0
deepspeedai/DeepSpeed
machine-learning
5,579
[BUG] fp6 can‘t load qwen1.5-34b-chat
**Describe the bug** NotImplementedError: Cannot copy out of meta tensor; no data! `import mii model_path = 'Qwen1.5-32B-Chat-hf' pipe = mii.pipeline(model_path, quantization_mode='wf6af16') response = pipe(["DeepSpeed is", "Seattle is"], max_new_tokens=128) print(response)` **System info (please complete the following information):** - OS: Ubuntu 2004] - GPU A100 - Python 3.11 **stark** ![image](https://github.com/microsoft/DeepSpeed/assets/145901472/54d4b604-7822-463e-b901-90e9ba1bce04) ![image](https://github.com/microsoft/DeepSpeed/assets/145901472/7d1116b1-990e-42aa-b3d9-19016ee0ffc5) thanks for your help!
open
2024-05-29T07:32:04Z
2024-05-29T07:32:42Z
https://github.com/deepspeedai/DeepSpeed/issues/5579
[ "bug", "inference" ]
pointerhacker
0
PeterL1n/RobustVideoMatting
computer-vision
78
[Advice] Training in a Low RAM System
I am re-training this code in a 64GB RAM system. Do you have any recommendation on how to reduce the memory utilization? I've already reduced T to 4, but still a lot of swap memory usage, which is bottlenecking my training process.
closed
2021-10-12T17:52:34Z
2021-10-14T14:58:30Z
https://github.com/PeterL1n/RobustVideoMatting/issues/78
[]
SamHSlva
2
aleju/imgaug
deep-learning
705
ValueError with Color Temperature Augmenter
I am using 0.4.0 installed from conda-forge and receive a ValueError in the last step of transform_kelvins_to_rgb_multipliers() in color.py. I am attempting to augment a batch of images. If it reshape and tile the "interpolation_factors" array, then the augmenter works as expected. Is this a bug, or am I using the augmenter incorrectly?
open
2020-07-29T20:06:07Z
2020-09-18T03:39:50Z
https://github.com/aleju/imgaug/issues/705
[]
wjacobward
1
davidsandberg/facenet
tensorflow
527
how to set optional parameters for slim.batch_norm
here is my batch_norm_params, which is soon fed into normalizer_params. ![image](https://user-images.githubusercontent.com/31264567/32766637-d25474bc-c94a-11e7-967f-14e46ccee6a9.png) however, when i print tf.trainable_variables, there are only mean, variance and beta for BN, missing gamma.. ![image](https://user-images.githubusercontent.com/31264567/32766817-816296f0-c94b-11e7-92da-210169a038cd.png) how to change the default settings? such as adding gamma or simply reserve mean and variance.
open
2017-11-14T06:57:37Z
2017-11-14T06:57:37Z
https://github.com/davidsandberg/facenet/issues/527
[]
patienceFromZhou
0
jpadilla/django-rest-framework-jwt
django
334
Authenticate against custom user model
I see PR (Feature/allow custom user identifier and custom user lookup field #211). Is there currently a way to authenticate a token against a custom user model? If so, please point me to the docs. Thank you, Michaela
open
2017-05-15T18:55:11Z
2017-08-27T09:59:16Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/334
[]
michaelaelise
2
Lightning-AI/pytorch-lightning
machine-learning
20,094
Please allow automatic optimization for multiple optimizers again.
### Description & Motivation I'm suggesting allowing the old behavior to work again. While still giving users the option to use the new behavior if they set self.automatic_optimization=False. The old API was well designed and can allow for extremely simple implementations especially in situations where the training step is the same for each optimizer being used (i.e. no optimizer_idx if-statement). ### Pitch The original purpose of Pytorch-Lightning was to simplify & eliminate the boiler plate in the pytorch training loop. But the new behavior is **much more complicated than even using base pytorch**. Since it requires extra bloat like `self.automatic_optimization=False`, `self.toggle_optimizer()`, `self.untoggle_optimizer()`, `self.optimizers()`, then using custom rewrites of well-known base pytorch APIs like `self.manual_backwards()`, in addition to reintroducing the boiler-plate that Pytorch-Lightning was made to remove. As a matter of fact **in the simplest case it adds 12 additional lines of bloat...** ### Alternatives _No response_ ### Additional context Could you at least consider collecting user feedback before you remove useful features like this in the future? cc @borda
open
2024-07-16T02:49:09Z
2024-07-19T16:45:13Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20094
[ "feature", "discussion" ]
profPlum
2
deezer/spleeter
tensorflow
273
[Bug] Failed to load the native TensorFlow runtime.
## Description <!-- Hello. Every time I try to make a split, It always say that Failed to load the native TensorFlow runtime. Can someone help me on this --> ## Step to reproduce <!-- Indicates clearly steps to reproduce the behavior: --> 1. Put the seperate command 2. Pressed enter 3. Got `Failed to load the native TensorFlow` error ## Output PS C:\Users\Purple Flippy\Music> spleeter separate -i 'song.wav' -p spleeter:4stems -o splits Traceback (most recent call last): File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\Users\Purple Flippy\AppData\Local\Programs\Python\Python37\Scripts\spleeter.exe\__main__.py", line 9, in <module> File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\spleeter\__main__.py", line 54, in entrypoint main(sys.argv) File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\spleeter\__main__.py", line 36, in main enable_logging() File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\spleeter\utils\logging.py", line 60, in enable_logging tf_logger = get_tensorflow_logger() File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\spleeter\utils\logging.py", line 27, in get_tensorflow_logger from tensorflow.compat.v1 import logging File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\__init__.py", line 28, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\imp.py", line 242, in load_module return load_dynamic(name, filename, file) File "c:\users\purple flippy\appdata\local\programs\python\python37\lib\imp.py", line 342, in load_dynamic return _load(spec) ImportError: DLL load failed: A dynamic link library (DLL) initialization routine failed. Failed to load the native TensorFlow runtime. See https://www.tensorflow.org/install/errors for some common reasons and solutions. Include the entire stack trace above this error message when asking for help. ## Environment <!-- Fill the following table --> | | | | ----------------- | ------------------------------- | | OS | Windows 10 | | Installation type | Powershell | | RAM available | 16GB | | Hardware spec | GPU / CPU / etc ... | ## Additional context <!-- Add any other context about the problem here, references, cites, etc.. -->
closed
2020-02-15T23:21:02Z
2020-04-05T12:09:00Z
https://github.com/deezer/spleeter/issues/273
[ "bug", "invalid" ]
ghost
5
FlareSolverr/FlareSolverr
api
274
[yggtorrent] Exception (yggtorrent): FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Cloudflare Error: Cloudflare has blocked this request. Probably your IP is banned for this site, check in your web browser.: Parse error (Test)
### Environment * **FlareSolverr version**: 2.1.0 * **Operating system**: Debian 10 * **Are you using Docker**: yes * **Are you using a proxy or VPN?** no * **Are you using Captcha Solver:** no ### Description Hello suddenly FlareSolver stopped to work for on of my indexer. Can you please help me ? ### Error Messages FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Cloudflare Error: Cloudflare has blocked this request. Probably your IP is banned for this site, check in your web browser. ### Screenshots ![2EABAAFD-D182-41EE-A375-2BDB8719E0B0](https://user-images.githubusercontent.com/43102748/147793813-50f58822-94c0-4036-9144-c529cbdea286.jpeg)
closed
2021-12-30T23:57:05Z
2022-01-09T14:07:23Z
https://github.com/FlareSolverr/FlareSolverr/issues/274
[]
MozkaGit
2
Evil0ctal/Douyin_TikTok_Download_API
fastapi
62
API Test
图集链接: https://www.tiktok.com/@pertcghy/video/7113056553556561195
closed
2022-08-08T23:44:10Z
2022-08-09T01:20:59Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/62
[]
Evil0ctal
0
d2l-ai/d2l-en
computer-vision
2,056
multi-head Attention code has a big problem.
I only checked the pytorch version. ################################################################## class MultiHeadAttention(nn.Module): """Multi-head attention. Defined in :numref:`sec_multihead-attention`""" def __init__(self, key_size, query_size, value_size, num_hiddens, num_heads, dropout, bias=False, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size, num_hiddens, bias=bias) ######## should not be 'query_size' self.W_k = nn.Linear(key_size, num_hiddens, bias=bias) #######should not be 'key_size' self.W_v = nn.Linear(value_size, num_hiddens, bias=bias) ####### should not be 'value_size' self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias) def forward(self, queries, keys, values, valid_lens): # Shape of `queries`, `keys`, or `values`: # (`batch_size`, no. of queries or key-value pairs, `num_hiddens`) # Shape of `valid_lens`: # (`batch_size`,) or (`batch_size`, no. of queries) # After transposing, shape of output `queries`, `keys`, or `values`: # (`batch_size` * `num_heads`, no. of queries or key-value pairs, # `num_hiddens` / `num_heads`) queries = transpose_qkv(self.W_q(queries), self.num_heads) ######## here, the last dime of queries is num_hiddens ! keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: # On axis 0, copy the first item (scalar or vector) for # `num_heads` times, then copy the next item, and so on valid_lens = torch.repeat_interleave( valid_lens, repeats=self.num_heads, dim=0) # Shape of `output`: (`batch_size` * `num_heads`, no. of queries, # `num_hiddens` / `num_heads`) output = self.attention(queries, keys, values, valid_lens) # Shape of `output_concat`: # (`batch_size`, no. of queries, `num_hiddens`) output_concat = transpose_output(output, self.num_heads) return self.W_o(output_concat) ##################################################### When training, if you change the num_hiddens from 32 to 64, you will get "RuntimeError: mat1 dim 1 must match mat2 dim 0". After debugging, I found in the MultiheadAttetion block, in the forward function, the shape of X is (`batch_size`, no. of queries or key-value pairs, `num_hiddens`) see the num_hiddens is the last dime But the self.W_q = nn.Linear(query_size, num_hiddens, bias=bias) the first dim of W_q is query_size ! So in this case, you always have to make num_hiddens = query_size to run. Which is obviously wrong. ####################################################### My suggestion is to change self.W_q = nn.Linear(query_size, num_hiddens, bias=bias) ==> self.W_q = nn.Linear(num_hiddens, num_hiddens, bias=bias) But there maybe another solution. If my understanding is wrong, please correct me. d2l is wonderful for sure. P.S. The way for building a large sing-head attention and then bend it into multi-head is not elegant, it would be much better if your guys could find another solution.
open
2022-03-03T18:25:48Z
2022-04-19T12:05:00Z
https://github.com/d2l-ai/d2l-en/issues/2056
[]
Y-H-Joe
2
thewhiteh4t/pwnedOrNot
api
44
Emails and password
closed
2020-07-07T12:29:31Z
2020-07-07T12:31:37Z
https://github.com/thewhiteh4t/pwnedOrNot/issues/44
[ "invalid" ]
33DarkStar
0
airtai/faststream
asyncio
1,311
Implement explicit methods annotations in Kafka and confluent brokers (Refer RabbitBroker)
closed
2024-03-18T07:04:15Z
2024-04-15T06:03:38Z
https://github.com/airtai/faststream/issues/1311
[]
davorrunje
1
tflearn/tflearn
data-science
484
Mulitple outputs with weighted loss?
The loss of the objective function would be like loss = loss_output1 + weight2 * loss_output2. Is there any way to implement this under the current framework? Thanks, Lisheng
open
2016-11-27T22:48:15Z
2016-12-29T18:38:03Z
https://github.com/tflearn/tflearn/issues/484
[]
fufrank5
3
encode/databases
sqlalchemy
404
url parse error
Hi, my url is like this ``` mysql://jydb:G2W9iPwpAqF4R#202@rm-wz9s90lao15s6j4v2ro.mysql.rds.aliyuncs.com:3306/jydb ``` the database password contain `#`, but it split it into two pieces, what can I do for this situation except change the password, thanks.
closed
2021-10-08T10:14:15Z
2021-10-12T09:11:06Z
https://github.com/encode/databases/issues/404
[ "question" ]
szj2ys
2
gunthercox/ChatterBot
machine-learning
1,419
Time consumption for training is very high(reading from excel,55000 conversations)
I'm training data of 55000 questions and answers reading from excel with two columns,the time consumption for training the data is very high.Is there a solution for reducing time for training alexa_bot=ChatBot("alexa_bot",trainer='chatterbot.trainers.ListTrainer',storage_adapter='chatterbot.storage.MongoDatabaseAdapter',database='Alexa_db') #test_bot.storage.drop() alexa_bot.set_trainer(ListTrainer) alexa_data=pd.read_excel("Alexa_train_data.xlsx",encoding='latin1') for index, row in alexa_data.iterrows(): alexa_bot.train([row["Question"], row['Answer']])
closed
2018-09-21T13:28:46Z
2019-08-07T23:45:17Z
https://github.com/gunthercox/ChatterBot/issues/1419
[ "answered" ]
tghv
2
piskvorky/gensim
data-science
2,985
Bug report of gensim official webpage
https://radimrehurek.com/gensim/auto_examples/core/run_similarity_queries.html#sphx-glr-auto-examples-core-run-similarity-queries-py In this page, at the last second code part, the original code is : sims = sorted(enumerate(sims), key=lambda item: -item[1]) for i, s in enumerate(sims): print(s, documents[i]) However, I guess here code should be: sims = sorted(enumerate(sims), key=lambda item: -item[1]) for i, s in enumerate(sims): print(s, documents[s[0]])
closed
2020-10-19T06:31:07Z
2020-10-19T08:09:17Z
https://github.com/piskvorky/gensim/issues/2985
[]
yftadyz
1
explosion/spaCy
machine-learning
12,072
How to get confidence score for each entity for custom NER model?
* spaCy Version Used: 3.1 How to get confidence score for each entity for custom NER model?
closed
2023-01-09T06:27:20Z
2023-01-10T12:12:13Z
https://github.com/explosion/spaCy/issues/12072
[ "usage", "feat / ner" ]
koyelseba
0