repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
encode/httpx
asyncio
2,304
unhashable type: 'bytearray'
ERROR: type should be string, got "\r\nhttps://github.com/encode/httpx/discussions\r\n\r\nGives the error \"unhashable type: 'bytearray' \" when I make a GET request using cookies, headers and parameters\r\n\r\nCode:\r\n`\r\nfor _ in range(retries):\r\n response = await self.session.request(\r\n method=method, url=url, data=data, params=params,headers=headers,\r\n follow_redirects=allow_redirects, timeout=35\r\n )\r\n`"
closed
2022-07-13T19:39:44Z
2022-07-14T12:34:45Z
https://github.com/encode/httpx/issues/2304
[]
Vigofs
2
Kludex/mangum
asyncio
105
`rawQueryString` seems to be a string instead of bytes literals
👋 @erm, first let me thank you for this ~great~ awesome library, as the author of another `proxy` for aws lambda I know this can be a 🕳️ sometimes. I'm currently working on https://github.com/developmentseed/titiler which is a FastAPI based tile server. When deploying the lambda function using mangum and the new api gateway HTTP endpoint, most of my endpoints works except for the ones where I call `request.url.scheme` e.g: https://github.com/developmentseed/titiler/blob/master/titiler/api/api_v1/endpoints/metadata.py#L59 and I get `AttributeError: 'str' object has no attribute 'decode'` #### Logs ``` File "/tmp/pip-unpacked-wheel-a0vaawkp/titiler/api/api_v1/endpoints/metadata.py", line 59, in tilejson File "/tmp/pip-unpacked-wheel-xa0z_c8l/starlette/requests.py", line 56, in url File "/tmp/pip-unpacked-wheel-xa0z_c8l/starlette/datastructures.py", line 45, in __init__ AttributeError: 'str' object has no attribute 'decode' ``` So looking at my cloudwatch logs I can deduce: 1. in https://github.com/encode/starlette/blob/97257515f8806b8cc519d9850ecadd783b3008f9/starlette/datastructures.py#L45 starlette expect the `query_string` to be a byte literal 2. in https://github.com/erm/mangum/blob/4fbf1b0d7622c19385a549eddfb603399a125bbb/mangum/adapter.py#L100-L106 it seems that Mangum is getting the `rawQueryString` for the event, and in my case I think this would be a string instead of a byte literal. I'll work on adding logging and test in my app to confirm this, but I wanted to share this to see if I was making sense ;-) Thanks
closed
2020-05-09T02:55:34Z
2020-05-09T14:23:05Z
https://github.com/Kludex/mangum/issues/105
[]
vincentsarago
5
litestar-org/litestar
pydantic
3,758
Enhancement: "Remember me" support for ServerSideSessionBackend / ClientSideSessionBackend
### Summary "Remember me" checkbox during user log in is a common practice currently does not supported by implementations of ServerSideSessionBackend / ClientSideSessionBackend classes. ### Basic Example ``` def set_session(self, value: dict[str, Any] | DataContainerType | EmptyType) -> None: """Set the session in the connection's ``Scope``. If the :class:`SessionMiddleware <.middleware.session.base.SessionMiddleware>` is enabled, the session will be added to the response as a cookie header. Args: value: Dictionary or pydantic model instance for the session data. Returns: None """ self.scope["session"] = value ``` I think the best way would be to add ability to set specific cookie params in 'set_session' method, they would be used over default ones specified in SessionAuth instance. Then add support for it for ServerSideSessionBackend / ClientSideSessionBackend. ### Drawbacks and Impact Need to be careful about backward compability but i think there should not be much of a problem. ### Unresolved questions _No response_
open
2024-09-25T07:26:20Z
2025-03-20T15:54:55Z
https://github.com/litestar-org/litestar/issues/3758
[ "Enhancement" ]
Rey092
0
ivy-llc/ivy
tensorflow
28,648
Fix Frontend Failing Test: jax - averages_and_variances.numpy.average
To-do List: https://github.com/unifyai/ivy/issues/27496
closed
2024-03-19T18:21:46Z
2024-03-26T04:48:36Z
https://github.com/ivy-llc/ivy/issues/28648
[ "Sub Task" ]
ZJay07
0
fastapi-users/fastapi-users
fastapi
600
Backref not working at route users/me
**Using fastapi-users 3.0.6 and tortoise orm 0.16.17** I have been stuck by almost a week trying to solve this problem and now it seems to be a bug, so I'm leaving evidence. I want to access the route **users/me** and append some extra data from a couple of relations I created, these are: **Tortoise models** class UserModel(TortoiseBaseUserModel): nombre = fields.CharField(max_length=100) apellidos = fields.CharField(max_length=100) fecha_nacimiento = fields.DateField(default=None) telefono = fields.CharField(max_length=20) rut = fields.CharField(max_length=10) cargo = fields.CharField(max_length=30) class Rol(models.Model): id = fields.UUIDField(pk=True) nombre = fields.CharField(max_length=100) class Permiso(models.Model): id = fields.UUIDField(pk=True) nombre = fields.CharField(max_length=100) class Auth_Rol_Permiso(models.Model, TimestampMixin): -->Relational table between user,permiso and rol classes id = fields.UUIDField(pk=True) rol = fields.ForeignKeyField('models.Rol', related_name="auth_rol", on_delete=fields.CASCADE) permiso = fields.ForeignKeyField('models.Permiso', related_name="auth_permiso", on_delete=fields.CASCADE) user = fields.ForeignKeyField("models.UserModel", related_name="auth_user", on_delete=fields.CASCADE) So, for Pydantic User schema, I created this: class User(fastapi_users_model.BaseUser): nombre: str apellidos: str fecha_nacimiento: date telefono: str rut: str cargo: str auth_user: List[UserPermission] --> Backref for getting permiso and rol relation data class Permisoo(BaseModel): id: UUID nombre: str class UserPermission(BaseModel): permiso: Optional[Permisoo] created_at: datetime rol: Optional[Dict[str, Any]] The problem comes when I try to get data from route **users/me**, this is the response: ![captura](https://user-images.githubusercontent.com/10148942/114432580-d9ff9880-9b8e-11eb-832c-03a42270e45e.png) But if I go into a custom endpoint that I create for getting rol class, it's working and getting all data without problems!!...I think maybe the problem is that rol pydantic schema is generated by tortoise, with this function -> **pydantic_model_creator**, like this: `rol_out = pydantic_model_creator(Rol, name="RolOut")` Anyway, this is the result of getting rol class(working fine): ![captura_1](https://user-images.githubusercontent.com/10148942/114433484-e2a49e80-9b8f-11eb-8d0d-c89e28f6cacd.png) this doesn't make any sense to me, so I hope you can help me, thanks for your time.
closed
2021-04-12T17:08:12Z
2021-04-20T15:06:07Z
https://github.com/fastapi-users/fastapi-users/issues/600
[ "bug" ]
Master-Y0da
5
coqui-ai/TTS
python
3,530
Add "host" argument to the server.py script
Hello, I tried using the default server.py script as-is but it is trying to use the IPv6 by default and I get stuck as I don't have IPv6 in my environment. The command: ```bash python3 TTS/server/server.py --model_name tts_models/en/ljspeech/tacotron2-DCA ``` Gives the following error: ```bash Traceback (most recent call last): │ │ File "/root/TTS/server/server.py", line 258, in <module> │ │ main() │ │ File "/root/TTS/server/server.py", line 254, in main │ │ app.run(debug=args.debug, host="::", port=args.port) │ │ File "/usr/local/lib/python3.10/site-packages/flask/app.py", line 612, in run │ │ run_simple(t.cast(str, host), port, self, **options) │ │ File "/usr/local/lib/python3.10/site-packages/werkzeug/serving.py", line 1077, in run_simple │ │ srv = make_server( │ │ File "/usr/local/lib/python3.10/site-packages/werkzeug/serving.py", line 917, in make_server │ │ return ThreadedWSGIServer( │ │ File "/usr/local/lib/python3.10/site-packages/werkzeug/serving.py", line 737, in __init__ │ │ super().__init__( │ │ File "/usr/local/lib/python3.10/socketserver.py", line 448, in __init__ │ │ self.socket = socket.socket(self.address_family, │ │ File "/usr/local/lib/python3.10/socket.py", line 232, in __init__ │ │ _socket.socket.__init__(self, family, type, proto, fileno) │ │ OSError: [Errno 97] Address family not supported by protocol ```
closed
2024-01-19T13:04:43Z
2024-03-02T00:44:46Z
https://github.com/coqui-ai/TTS/issues/3530
[ "wontfix", "feature request" ]
spartan
2
gee-community/geemap
jupyter
586
ValueError: Unknown color None. when trying to use a coloramp
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information - geemap version: 0.8.18 - Python version: 3 - Operating System: google collab ### Description ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-8-8010224dd26d> in <module>() 4 vmax = visPara['max'] 5 ----> 6 Map.add_colorbar(visPara, label="Elevation (m a.s.l)", orientation="vertical", layer_name="Arctic DEM") 7 # Map.add_colorbar_branca(colors=colors, vmin=vmin, vmax=vmax, caption="m a.s.l") 3 frames /usr/local/lib/python3.7/dist-packages/branca/colormap.py in _parse_color(x) 43 cname = _cnames.get(x.lower(), None) 44 if cname is None: ---> 45 raise ValueError('Unknown color {!r}.'.format(cname)) 46 color_tuple = _parse_hex(cname) 47 else: ValueError: Unknown color None. ``` ### What I Did For either my geemap code or even this example (https://colab.research.google.com/github/fsn1995/GIS-at-deep-purple/blob/main/02%20gee%20map%20greenland.ipynb#scrollTo=RJdNLlhQjajw) I cant get the colorbars to display (see error above). On the other hand using the same version of geemap etc on my own computer in a Jupyter notebook running in conda it works. It seems to be some issue when I try to run the exact same code in google collab; or that's a red herring and I am doing something else wrong Here is the code in that example that fails ``` greenlandmask = ee.Image('OSU/GIMP/2000_ICE_OCEAN_MASK') \ .select('ice_mask').eq(1); #'ice_mask', 'ocean_mask' arcticDEM = ee.Image('UMN/PGC/ArcticDEM/V3/2m_mosaic') arcticDEMgreenland = arcticDEM.updateMask(greenlandmask) palette = cm.get_palette('terrain', n_class=10) visPara = {'min': 0, 'max': 2500.0, 'palette': ['0d13d8', '60e1ff', 'ffffff']} visPara # visPara = {'min': 0, 'max': 2500.0, 'palette': palette} Map.addLayer(arcticDEMgreenland, visPara, 'Arctic DEM') Map.setCenter(-41.0, 74.0, 3) #add colorbar colors = visPara['palette'] vmin = visPara['min'] vmax = visPara['max'] Map.add_colorbar(visPara, label="Elevation (m a.s.l)", orientation="vertical", layer_name="Arctic DEM") # Map.add_colorbar_branca(colors=colors, vmin=vmin, vmax=vmax, caption="m a.s.l") ``` or ``` greenlandmask = ee.Image('OSU/GIMP/2000_ICE_OCEAN_MASK') \ .select('ice_mask').eq(1); #'ice_mask', 'ocean_mask' arcticDEM = ee.Image('UMN/PGC/ArcticDEM/V3/2m_mosaic') arcticDEMgreenland = arcticDEM.updateMask(greenlandmask) palette = cm.get_palette('terrain', n_class=10) # visPara = {'min': 0, 'max': 2500.0, 'palette': ['0d13d8', '60e1ff', 'ffffff']} visPara = {'min': 0, 'max': 2500.0, 'palette': palette} Map.addLayer(arcticDEMgreenland, visPara, 'Arctic DEM terrain') Map.setCenter(-41.0, 74.0, 3) Map.add_colorbar(visPara, label="Elevation (m)", discrete=False, orientation="vertical", layer_name="Arctic DEM terrain") ``` or in my code (again works on my computer in Jupyter) ``` ### Get GEE imagery # DEM elev_dataset = ee.Image('USGS/NED') ned_elevation = elev_dataset.select('elevation') #colors = cmr.take_cmap_colors('viridis', 5, return_fmt='hex') #colors = cmr.take_cmap_colors('viridis', None, cmap_range=(0.2, 0.8), return_fmt='hex') #dem_palette = cmr.take_cmap_colors(mpl.cm.get_cmap('Spectral', 30).reversed(),30, return_fmt='hex') dem_palette = cm.get_palette('Spectral_r', n_class=30) demViz = {'min': 0.0, 'max': 2000.0, 'palette': dem_palette, 'opacity': 1} # LandFire lf = ee.ImageCollection('LANDFIRE/Vegetation/EVH/v1_4_0'); lf_evh = lf.select('EVH') #evh_palette = cmr.take_cmap_colors(mpl.cm.get_cmap('Spectral', 30).reversed(),30, return_fmt='hex') evh_palette = cm.get_palette('Spectral_r', n_class=30) evhViz = {'min': 0.0, 'max': 30.0, 'palette': evh_palette, 'opacity': 1} # Global Forest Canopy Height (2005) gfch = ee.Image('NASA/JPL/global_forest_canopy_height_2005'); forestCanopyHeight = gfch.select('1'); #gfch_palette = cmr.take_cmap_colors(mpl.cm.get_cmap('Spectral', 30).reversed(),30, return_fmt='hex') gfch_palette = cm.get_palette('Spectral_r', n_class=30) gfchViz = {'min': 0.0, 'max': 40.0, 'palette': gfch_palette, 'opacity': 1} ### Plot the elevation data # Prints the elevation of Mount Everest. xy = ee.Geometry.Point(sitecoords[:2]) site_elev = ned_elevation.sample(xy, 30).first().get('elevation').getInfo() print('Selected site elevation (m):', site_elev) # display NED data # https://geemap.org/notebooks/14_legends/ # https://geemap.org/notebooks/49_colorbar/ # https://colab.research.google.com/github/fsn1995/GIS-at-deep-purple/blob/main/02%20gee%20map%20greenland.ipynb#scrollTo=uwLvDKHDlN0l #colors = demViz['palette'] #vmin = demViz['min'] #vmax = demViz['max'] srtm = geemap.Map(center=[33.315809,-85.198609], zoom=6) srtm.addLayer(ned_elevation, demViz, 'Elevation above sea level'); srtm.addLayer(xy, {'color': 'black', 'strokeWidth': 1}, 'Selected Site') #srtm.add_colorbar_branca(colors=colors, vmin=vmin, vmax=vmax, label="Elevation (m)", # orientation="vertical", layer_name="SRTM DEM") srtm.add_colorbar(demViz, label="Elevation (m)", layer_name="SRTM DEM") states = ee.FeatureCollection('TIGER/2018/States') statesImage = ee.Image().paint(states, 0, 2) srtm.addLayer(statesImage, {'palette': 'black'}, 'US States') srtm.addLayerControl() srtm ``` here is the script on GitHub https://github.com/serbinsh/amf3_seus/blob/main/python/amf3_radar_blockage_demo_gee.ipynb Any ideas? I was using a different colormap system (cmasher) that also worked for me but not on collab. I switched to the geemap version based on that geemap lib example in the hopes it would fix this "none" issue but it doesn't seem to have fixed it. I wonder if its a geemap versioning issue?
closed
2021-07-16T16:26:55Z
2021-07-19T15:06:05Z
https://github.com/gee-community/geemap/issues/586
[ "bug" ]
serbinsh
7
PaddlePaddle/models
computer-vision
4,740
关于se+resnet vd的问题
请问 re_resnet_vd中我找到的是这个位置。先经过一个2*2的池化 ,再经过一个1*1的卷积 与原来的131结构add。可以解释一下这样做的原因么,有什么可解释性么? 为什么不能用1*1卷积 s=2 完成2*2池化+1*1卷积呢 谢谢 https://github.com/PaddlePaddle/models/blob/365fe58a0afdfd038350a718e92684503918900b/PaddleCV/image_classification/models/se_resnet_vd.py#L145
open
2020-07-05T23:54:34Z
2024-02-26T05:11:03Z
https://github.com/PaddlePaddle/models/issues/4740
[]
lxk767363331
2
horovod/horovod
deep-learning
3,958
Horovod docker unable to distribute training on another node. Shows error - No module named horovod.runner
**Environment:** 1. Framework: (TensorFlow, Keras, PyTorch, MXNet) TensorFlow 2. Framework version: 2.9.2 3. Horovod version: 0.28.1 4. MPI version:4.1.4 5. CUDA version: 6. NCCL version: 7. Python version: 3.8.10 8. Spark / PySpark version: 3.3.0 9. Ray version: 2.5.0 10. OS and version: 11. GCC version:9.4.0 12. CMake version:3.16.3 **Checklist:** 1. Did you search issues to find if somebody asked this question before? 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? **Bug report:** I am using the docker image of horovod that I pulled from dockerhub (docker pull horovod/horovod:latest). My setup is that I have two different nodes assigned on HPC. I wanted to dsitribute the training on both nodes and initially I logged in to node1 and ran `dockerun -np 2 address_of_node2:2 python script_name` and the output was ``` $ horovodrun -np 2 -H xxxx.iitd.ac.in:2 python tensorflow2_mnist.py Launching horovod task function was not successful: Attaching 25746 to akshay.cstaff /etc/profile.d/lang.sh: line 19: warning: setlocale: LC_CTYPE: cannot change locale (C.UTF-8) /usr/bin/python: No module named horovod.runner ``` Then i ran python command to see if horovd.runner was missing ``` $ python Python 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import horovod >>> horovod.runner <module 'horovod.runner' from '/usr/local/lib/python3.8/dist-packages/horovod/runner/__init__.py'> >>> ``` As you can see it is available. How to proceed from here? Both my machines are setup for passwordless ssh too.
open
2023-07-11T11:23:35Z
2023-07-11T11:23:35Z
https://github.com/horovod/horovod/issues/3958
[ "bug" ]
AkshayRoyal
0
koxudaxi/datamodel-code-generator
pydantic
1,996
Support NaiveDateTime
**Is your feature request related to a problem? Please describe.** Add support to choose between `AwareDateTime`, `NaiveDateTime` or generic `datetime`. **Describe the solution you'd like** A CLI option to choose between the both. **Describe alternatives you've considered** Updating the generated models **Additional context** Migrating to pydantic v2 has proven to be very time consuming. Typing becomes more strict, which is a good thing, but going the extra mile as to update the full codebase to ensure all `datetime` objects are using a timezone is too demanding when interact with other tools such as SQLAlchemy, etc. Pydantic V2 supports: - `AwareDateTime` - `NaiveDateTime` - or the more generic `datetime` Being able to use the later would make things much easier. Thanks
closed
2024-06-06T14:56:33Z
2024-10-12T16:42:30Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1996
[]
pmbrull
1
mckinsey/vizro
pydantic
723
Fix capitalisation of `Jupyter notebook` to `Jupyter Notebook`
- Do a quick search and find for any `Jupyter notebook` version and replace with `Jupyter Notebook` where suitable
closed
2024-09-19T15:22:09Z
2024-10-07T10:16:16Z
https://github.com/mckinsey/vizro/issues/723
[ "Good first issue :baby_chick:" ]
huong-li-nguyen
3
jonaswinkler/paperless-ng
django
259
Post-Hook - How to set ASN
Every scanned Document which is archived as paper get's a Number (Always 6-digits, the first 2 Digits are a long time 0 ;-)). This would be in the File-Content after Consumption and OCR by Paperless. Now i would like to extract the number by RegEx 00\d{4} and setting the ASN of the consumed document. I did not find any solution using the manage.py Script. Any Idea how to handle this? Is it possible to use a self developed SQL-Statement? Thx.
closed
2021-01-03T01:41:59Z
2021-01-27T10:38:51Z
https://github.com/jonaswinkler/paperless-ng/issues/259
[]
andbez
13
napari/napari
numpy
7,702
[test-bot] pip install --pre is failing
The --pre Test workflow failed on 2025-03-15 00:43 UTC The most recent failing test was on windows-latest py3.12 pyqt6 with commit: cb6f6e6157990806a53f1c58e31e9e7aa4a4966e Full run: https://github.com/napari/napari/actions/runs/13867508726 (This post will be updated if another test fails, as long as this issue remains open.)
closed
2025-03-15T00:43:01Z
2025-03-15T03:24:08Z
https://github.com/napari/napari/issues/7702
[ "bug" ]
github-actions[bot]
1
lepture/authlib
django
365
Flask client still relies on requests (missing dependecy)
**Describe the bug** I was following this documentation: https://docs.authlib.org/en/latest/client/flask.html In Installation doc section (https://docs.authlib.org/en/latest/basic/install.html) it says to use Authlib with Flask we just need to install Authlib and Flask. However, when using `authlib.integrations.flask_client.OAuth` we still get a missing requests dependency. The docs rightfully say that requests is an optional dependency. But the documentation implies (at least to me) that Authlib is able to use `flask.request`, and that `requests` library is not needed if Flask is used. I'm using `Flask == 2.0.1` **Error Stacks** ``` webservice_1 | from authlib.integrations.flask_client import OAuth webservice_1 | File "/usr/local/lib/python3.9/site-packages/authlib/integrations/flask_client/__init__.py", line 3, in <module> webservice_1 | from .oauth_registry import OAuth webservice_1 | File "/usr/local/lib/python3.9/site-packages/authlib/integrations/flask_client/oauth_registry.py", line 4, in <module> webservice_1 | from .integration import FlaskIntegration webservice_1 | File "/usr/local/lib/python3.9/site-packages/authlib/integrations/flask_client/integration.py", line 4, in <module> webservice_1 | from ..requests_client import OAuth1Session, OAuth2Session webservice_1 | File "/usr/local/lib/python3.9/site-packages/authlib/integrations/requests_client/__init__.py", line 1, in <module> webservice_1 | from .oauth1_session import OAuth1Session, OAuth1Auth webservice_1 | File "/usr/local/lib/python3.9/site-packages/authlib/integrations/requests_client/oauth1_session.py", line 2, in <module> webservice_1 | from requests import Session webservice_1 | ModuleNotFoundError: No module named 'requests' ``` **To Reproduce** - pip install Authlib Flask - Follow https://docs.authlib.org/en/latest/client/flask.html **Expected behavior** - Authlib to use Flask requests interface, instead of requiring requests. **Environment:** - OS: Docker (Apline) - Python Version: `3.9` - Authlib Version: `==0.15.4` **Additional context** - Could this be because some internal change to Flask 2.0, recently released? - Could a quick solution be just to update documentation to include requests also for a Flask installation?
closed
2021-07-16T11:07:18Z
2021-07-17T03:16:51Z
https://github.com/lepture/authlib/issues/365
[ "bug" ]
sergioisidoro
1
Evil0ctal/Douyin_TikTok_Download_API
web-scraping
61
求赐教!如何获取用户的总粉丝量(tiktok)
您好,非常想请教一下调用哪些方法可以获取到user的followers amount,感谢
closed
2022-08-06T19:40:03Z
2024-11-13T08:19:31Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/61
[ "help wanted" ]
Ang-Gao
6
dmlc/gluon-nlp
numpy
1,526
Pre-training scripts should allow resuming from checkpoints
## Description Currently, the ELECTRA pre-training script can't resume from last checkpoint. It will be useful to enhance the script to resume from checkpoints.
open
2021-02-21T18:23:04Z
2021-03-12T18:44:59Z
https://github.com/dmlc/gluon-nlp/issues/1526
[ "enhancement" ]
szha
3
tensorflow/datasets
numpy
4,874
flower
* Name of dataset: <name> * URL of dataset: <url> * License of dataset: <license type> * Short description of dataset and use case(s): <description> Folks who would also like to see this dataset in `tensorflow/datasets`, please thumbs-up so the developers can know which requests to prioritize. And if you'd like to contribute the dataset (thank you!), see our [guide to adding a dataset](https://github.com/tensorflow/datasets/blob/master/docs/add_dataset.md).
closed
2023-04-17T09:33:21Z
2023-04-18T11:18:04Z
https://github.com/tensorflow/datasets/issues/4874
[ "dataset request" ]
y133977
1
JaidedAI/EasyOCR
pytorch
1,083
Jupyter kernel dies every time I try to use easyocr following a youtube tutorial's Kaggle notebook
I was trying locally so just did ! pip install easyocr. My notebook as a gist: https://gist.github.com/nyck33/9e02014a9b173071ae3dc62fa631454c The kernel dies every time in the cell that is : `results = reader.readtext(handwriting[2])` Just tried again and get ``` OutOfMemoryError: CUDA out of memory. Tried to allocate 1.17 GiB (GPU 0; 4.00 GiB total capacity; 1.32 GiB already allocated; 0 bytes free; 1.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF ``` Mine is a GeForce GTX 1650 on notebook, should have 4GB or the GPU RAM. Do I really need to dig in and make changes to Pytorch configurations? conda list shows: ``` # packages in environment at /home/nobu/miniconda3/envs/kerasocr: # # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 5.1 1_gnu absl-py 1.4.0 pypi_0 pypi anyio 3.7.1 pypi_0 pypi argon2-cffi 21.3.0 pypi_0 pypi argon2-cffi-bindings 21.2.0 pypi_0 pypi arrow 1.2.3 pypi_0 pypi asttokens 2.2.1 pypi_0 pypi astunparse 1.6.3 pypi_0 pypi async-lru 2.0.3 pypi_0 pypi attrs 23.1.0 pypi_0 pypi babel 2.12.1 pypi_0 pypi backcall 0.2.0 pypi_0 pypi beautifulsoup4 4.12.2 pypi_0 pypi bleach 6.0.0 pypi_0 pypi ca-certificates 2023.05.30 h06a4308_0 cachetools 5.3.1 pypi_0 pypi certifi 2023.5.7 pypi_0 pypi cffi 1.15.1 pypi_0 pypi charset-normalizer 3.2.0 pypi_0 pypi cmake 3.26.4 pypi_0 pypi comm 0.1.3 pypi_0 pypi contourpy 1.1.0 pypi_0 pypi cycler 0.11.0 pypi_0 pypi debugpy 1.6.7 pypi_0 pypi decorator 5.1.1 pypi_0 pypi defusedxml 0.7.1 pypi_0 pypi easyocr 1.7.0 pypi_0 pypi editdistance 0.6.2 pypi_0 pypi efficientnet 1.0.0 pypi_0 pypi essential-generators 1.0 pypi_0 pypi exceptiongroup 1.1.2 pypi_0 pypi executing 1.2.0 pypi_0 pypi fastjsonschema 2.17.1 pypi_0 pypi filelock 3.12.2 pypi_0 pypi flatbuffers 23.5.26 pypi_0 pypi fonttools 4.41.0 pypi_0 pypi fqdn 1.5.1 pypi_0 pypi gast 0.4.0 pypi_0 pypi google-auth 2.22.0 pypi_0 pypi google-auth-oauthlib 1.0.0 pypi_0 pypi google-pasta 0.2.0 pypi_0 pypi grpcio 1.56.0 pypi_0 pypi h5py 3.9.0 pypi_0 pypi idna 3.4 pypi_0 pypi imageio 2.31.1 pypi_0 pypi imgaug 0.4.0 pypi_0 pypi importlib-metadata 6.8.0 pypi_0 pypi importlib-resources 6.0.0 pypi_0 pypi ipykernel 6.24.0 pypi_0 pypi ipython 8.12.2 pypi_0 pypi isoduration 20.11.0 pypi_0 pypi jedi 0.18.2 pypi_0 pypi jinja2 3.1.2 pypi_0 pypi json5 0.9.14 pypi_0 pypi jsonpointer 2.4 pypi_0 pypi jsonschema 4.18.3 pypi_0 pypi jsonschema-specifications 2023.6.1 pypi_0 pypi jupyter-client 8.3.0 pypi_0 pypi jupyter-core 5.3.1 pypi_0 pypi jupyter-events 0.6.3 pypi_0 pypi jupyter-lsp 2.2.0 pypi_0 pypi jupyter-server 2.7.0 pypi_0 pypi jupyter-server-terminals 0.4.4 pypi_0 pypi jupyterlab 4.0.3 pypi_0 pypi jupyterlab-pygments 0.2.2 pypi_0 pypi jupyterlab-server 2.23.0 pypi_0 pypi keras 2.13.1 pypi_0 pypi keras-applications 1.0.8 pypi_0 pypi keras-ocr 0.9.2 pypi_0 pypi kiwisolver 1.4.4 pypi_0 pypi lazy-loader 0.3 pypi_0 pypi ld_impl_linux-64 2.38 h1181459_1 libclang 16.0.0 pypi_0 pypi libffi 3.4.4 h6a678d5_0 libgcc-ng 11.2.0 h1234567_1 libgomp 11.2.0 h1234567_1 libstdcxx-ng 11.2.0 h1234567_1 lit 16.0.6 pypi_0 pypi markdown 3.4.3 pypi_0 pypi markupsafe 2.1.3 pypi_0 pypi matplotlib 3.7.2 pypi_0 pypi matplotlib-inline 0.1.6 pypi_0 pypi mistune 3.0.1 pypi_0 pypi mpmath 1.3.0 pypi_0 pypi nbclient 0.8.0 pypi_0 pypi nbconvert 7.6.0 pypi_0 pypi nbformat 5.9.1 pypi_0 pypi ncurses 6.4 h6a678d5_0 nest-asyncio 1.5.6 pypi_0 pypi networkx 3.1 pypi_0 pypi ninja 1.11.1 pypi_0 pypi notebook-shim 0.2.3 pypi_0 pypi numpy 1.24.3 pypi_0 pypi nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi nvidia-cuda-cupti-cu11 11.7.101 pypi_0 pypi nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi nvidia-curand-cu11 10.2.10.91 pypi_0 pypi nvidia-cusolver-cu11 11.4.0.1 pypi_0 pypi nvidia-cusparse-cu11 11.7.4.91 pypi_0 pypi nvidia-nccl-cu11 2.14.3 pypi_0 pypi nvidia-nvtx-cu11 11.7.91 pypi_0 pypi oauthlib 3.2.2 pypi_0 pypi opencv-python 4.8.0.74 pypi_0 pypi opencv-python-headless 4.8.0.74 pypi_0 pypi openssl 3.0.9 h7f8727e_0 opt-einsum 3.3.0 pypi_0 pypi overrides 7.3.1 pypi_0 pypi packaging 23.1 pypi_0 pypi pandas 2.0.3 pypi_0 pypi pandocfilters 1.5.0 pypi_0 pypi parso 0.8.3 pypi_0 pypi pexpect 4.8.0 pypi_0 pypi pickleshare 0.7.5 pypi_0 pypi pillow 10.0.0 pypi_0 pypi pip 23.1.2 py38h06a4308_0 pkgutil-resolve-name 1.3.10 pypi_0 pypi platformdirs 3.8.1 pypi_0 pypi prometheus-client 0.17.1 pypi_0 pypi prompt-toolkit 3.0.39 pypi_0 pypi protobuf 4.23.4 pypi_0 pypi psutil 5.9.5 pypi_0 pypi ptyprocess 0.7.0 pypi_0 pypi pure-eval 0.2.2 pypi_0 pypi pyasn1 0.5.0 pypi_0 pypi pyasn1-modules 0.3.0 pypi_0 pypi pyclipper 1.3.0.post4 pypi_0 pypi pycparser 2.21 pypi_0 pypi pygments 2.15.1 pypi_0 pypi pyparsing 3.0.9 pypi_0 pypi pytesseract 0.3.10 pypi_0 pypi python 3.8.17 h955ad1f_0 python-bidi 0.4.2 pypi_0 pypi python-dateutil 2.8.2 pypi_0 pypi python-json-logger 2.0.7 pypi_0 pypi pytz 2023.3 pypi_0 pypi pywavelets 1.4.1 pypi_0 pypi pyyaml 6.0 pypi_0 pypi pyzmq 25.1.0 pypi_0 pypi readline 8.2 h5eee18b_0 referencing 0.29.1 pypi_0 pypi requests 2.31.0 pypi_0 pypi requests-oauthlib 1.3.1 pypi_0 pypi rfc3339-validator 0.1.4 pypi_0 pypi rfc3986-validator 0.1.1 pypi_0 pypi rpds-py 0.8.10 pypi_0 pypi rsa 4.9 pypi_0 pypi scikit-image 0.21.0 pypi_0 pypi scipy 1.10.1 pypi_0 pypi send2trash 1.8.2 pypi_0 pypi setuptools 67.8.0 py38h06a4308_0 shapely 2.0.1 pypi_0 pypi six 1.16.0 pypi_0 pypi sniffio 1.3.0 pypi_0 pypi soupsieve 2.4.1 pypi_0 pypi sqlite 3.41.2 h5eee18b_0 stack-data 0.6.2 pypi_0 pypi sympy 1.12 pypi_0 pypi tensorboard 2.13.0 pypi_0 pypi tensorboard-data-server 0.7.1 pypi_0 pypi tensorflow 2.13.0 pypi_0 pypi tensorflow-estimator 2.13.0 pypi_0 pypi tensorflow-io-gcs-filesystem 0.32.0 pypi_0 pypi termcolor 2.3.0 pypi_0 pypi terminado 0.17.1 pypi_0 pypi tifffile 2023.7.10 pypi_0 pypi tinycss2 1.2.1 pypi_0 pypi tk 8.6.12 h1ccaba5_0 tomli 2.0.1 pypi_0 pypi torch 2.0.1 pypi_0 pypi torchvision 0.15.2 pypi_0 pypi tornado 6.3.2 pypi_0 pypi tqdm 4.65.0 pypi_0 pypi traitlets 5.9.0 pypi_0 pypi triton 2.0.0 pypi_0 pypi typing-extensions 4.5.0 pypi_0 pypi tzdata 2023.3 pypi_0 pypi uri-template 1.3.0 pypi_0 pypi urllib3 1.26.16 pypi_0 pypi validators 0.20.0 pypi_0 pypi wcwidth 0.2.6 pypi_0 pypi webcolors 1.13 pypi_0 pypi webencodings 0.5.1 pypi_0 pypi websocket-client 1.6.1 pypi_0 pypi werkzeug 2.3.6 pypi_0 pypi wheel 0.38.4 py38h06a4308_0 wrapt 1.15.0 pypi_0 pypi xz 5.4.2 h5eee18b_0 zipp 3.16.2 pypi_0 pypi zlib 1.2.13 h5eee18b_0 ```
open
2023-07-15T07:11:40Z
2023-07-16T05:51:58Z
https://github.com/JaidedAI/EasyOCR/issues/1083
[]
nyck33
1
junyanz/pytorch-CycleGAN-and-pix2pix
pytorch
1,176
l2 regularisation
Hello, I want to add l2 regularisation .Can you tell me where can I add this line: optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
open
2020-11-06T20:03:48Z
2020-11-25T18:01:54Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1176
[]
SurbhiKhushu
1
dropbox/sqlalchemy-stubs
sqlalchemy
216
(Clarification) What LICENSE does this package use?
Hi! I'm currently packaging this for [Guix](https://guix.gnu.org/); and the setup file indicates that the project is MIT licensed, yet the actual LICENSE file is Apache 2.0. Could someone please clarify this. Guix review [here](https://patches.guix-patches.cbaines.net/project/guix-patches/patch/20210508204124.38500-2-me@bonfacemunyoki.com/)
closed
2021-05-10T09:36:10Z
2021-05-10T19:47:27Z
https://github.com/dropbox/sqlalchemy-stubs/issues/216
[]
BonfaceKilz
2
WZMIAOMIAO/deep-learning-for-image-processing
pytorch
807
请教vit模型,百度网盘里面的权重是怎么得到的?自己重新训练的还是从官方实现的npz权重转换过来的?
def vit_base_patch16_224(num_classes: int = 1000): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer. weights ported from official Google JAX impl: 链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密码: eu9f """ model = VisionTransformer(img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12, representation_size=None, num_classes=num_classes) return model 百度网盘里的权重,weights ported from official Google JAX impl是什么意思?直接从npz模型转过来的,还是自己重新训练得到了这个模型?
closed
2024-05-14T07:02:06Z
2024-06-26T15:28:49Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/807
[]
ShihuaiXu
1
Asabeneh/30-Days-Of-Python
matplotlib
526
Դասեր
closed
2024-06-07T07:31:12Z
2024-06-07T07:50:12Z
https://github.com/Asabeneh/30-Days-Of-Python/issues/526
[]
Goodmood55
0
polarsource/polar
fastapi
4,744
Upcoming deprecation in Pydantic 2.11
### Description We recently added polar in our list of our tested third party libraries, to better prevent regressions in future versions of Pydantic. To improve build performance, we are going to make some internal changes to the handling of `__get_pydantic_core_schema__` and Pydantic models in https://github.com/pydantic/pydantic/pull/10863. As a consequence, the `__get_pydantic_core_schema__` method of the `BaseModel` class was going to be removed, but turns out that some projects (including polar) are relying on this method, e.g. in the `ListResource` model: https://github.com/polarsource/polar/blob/ae2c70aeb877969bb2267271cd33cced636e4a2d/server/polar/kit/pagination.py#L146-L155 As a consequence, we are going to raise a deprecation warning when `super().__get_pydantic_core_schema__` is being called to ease transition. In the future, this can be fixed by directly calling `handler(source)` instead. However, I wouldn't recommend implementing `__get_pydantic_core_schema__` on Pydantic models, as it can lead to unexpected behavior. In the case of `ListResource`, you are mutating the core schema reference, which is crashing the core schema generation logic in some cases: ```python class ListResource[T](BaseModel): @classmethod def __get_pydantic_core_schema__( cls, source: type[BaseModel], handler: GetCoreSchemaHandler, / ) -> CoreSchema: """ Override the schema to set the `ref` field to the overridden class name. """ result = super().__get_pydantic_core_schema__(source, handler) result["ref"] = cls.__name__ # type: ignore return result class Model(BaseModel): a: ListResource[int] b: ListResource[int] # Crash with a KeyError when the schema for `Model` is generated ``` The reason for this is that internally, references are used to avoid generating a core schema twice for the same object (in the case of `Model`, the core schema for `ListResource[int]` is only generated once). To do so, we generate a reference for the object and compare it with the already generated definitions. But because the `"ref"` was dynamically changed, Pydantic is not able to retrieve the already generated schema and this breaks a lot of things. It seems that changing the ref was made in order to simplify the generated JSON Schema names in https://github.com/polarsource/polar/pull/3833. Instead, I would suggest [using a custom `GenerateJsonSchema` class](https://docs.pydantic.dev/latest/concepts/json_schema/#customizing-the-json-schema-generation-process), and overriding the relevant method (probably `get_defs_ref`). I know it may be more tedious to do so, but altering the core schema ref directly is never going to play well [^1] --- As a side note, I also see you are using the internal `display_as_type` function: https://github.com/polarsource/polar/blob/ae2c70aeb877969bb2267271cd33cced636e4a2d/server/polar/kit/pagination.py#L127-L141 Because `ListResource` is defined with a single type variable, I can suggest using the following instead: ```python @classmethod def model_parametrized_name(cls, params: tuple[type[Any]]) -> str: # Guaranteed to be of length 1 """ Override default model name implementation to detect `ClassName` metadata. It's useful to shorten the name when a long union type is used. """ param = params[0] if hasattr(param, "__metadata__"): for metadata in param.__metadata__: if isinstance(metadata, ClassName): return f"{cls.__name__}[{metadata.name}]" return super().model_parametrized_name(params) ``` But, again, if this is done for JSON Schema generation purposes, it might be best to leave the model name unchanged and define a custom `GenerateJsonSchema` class. [^1]: Alternatively, we are thinking about designing a new API for core schema generation, that would allow providing a custom reference generation implementation for Pydantic models (but also other types).
open
2025-01-01T19:52:49Z
2025-01-10T21:22:58Z
https://github.com/polarsource/polar/issues/4744
[ "bug" ]
Viicos
2
tflearn/tflearn
tensorflow
896
Decoder output giving wrong result in textsum
Hi,michaelisard I trained the model using toy dataset .when I am trying to test using one article in decode ,then decoder is giving the other article as output which is not in test data .when i tried it with 5000 epochs Eg: abstract=<d> <p> <s> sri lanka closes schools as war escalates . </s> </p> </d> article=<d> <p> <s> the sri lankan government on wednesday announced the closure of government schools with immediate effect as a military campaign against tamil separatists escalated in the north of the country . </s> <s> the cabinet wednesday decided to advance the december holidays by one month because of a threat from the liberation tigers of tamil eelam -lrb- ltte -rrb- against school children , a government official said . </s> <s> `` there are intelligence reports that the tigers may try to kill a lot of children to provoke a backlash against tamils in colombo . </s> <s> `` if that happens , troops will have to be withdrawn from the north to maintain law and order here , '' a police official said . </s> <s> he said education minister richard pathirana visited several government schools wednesday before the closure decision was taken . </s> <s> the government will make alternate arrangements to hold end of term examinations , officials said . </s> <s> earlier wednesday , president chandrika kumaratunga said the ltte may step up their attacks in the capital to seek revenge for the ongoing military offensive which she described as the biggest ever drive to take the tiger town of jaffna . . </s> </p> </d> publisher=AFP output:output=financial markets end turbulent week equipment business .
open
2017-09-02T11:36:24Z
2017-09-02T11:36:24Z
https://github.com/tflearn/tflearn/issues/896
[]
ashakodali
0
pytest-dev/pytest-html
pytest
476
Lines on both \r and \n
html report for log add lines for both \r and \n. This seems to be a bug. Suppose we had a test: def test_01_print(): print("one") print("two\r\n", end="") print("three\raaa") print("four") assert True Terminal would show: __________test_01_print ________ ----- Captured stdout call ----- one two aaaee four However, report adds a line with \r ![image](https://user-images.githubusercontent.com/96763963/147535810-9fd8a0b3-cd6e-458c-8556-8f9d7957a20c.png)
open
2021-12-28T06:37:43Z
2021-12-28T08:00:24Z
https://github.com/pytest-dev/pytest-html/issues/476
[]
listerplus
1
CorentinJ/Real-Time-Voice-Cloning
deep-learning
577
List python/whatever versions required for this to work
Could you list proper versions of the required components? There seem to be a hundred versions of Python, not to mention there's something called "Python 2" and "Python 3". Even minor versions of these thingies have their own incompatibilities and quirks. I keep getting there's no package for TensorFlow for my config, I've tried a lot of combinations with x64 Pythons for about an hour. Now I'm giving up, it's hopeless...
closed
2020-10-28T09:56:55Z
2020-10-28T15:21:07Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/577
[]
ssuukk
2
JaidedAI/EasyOCR
pytorch
530
Question regarding training custom model
To the concerned, * Just took a look at your training custom model section * Reviewed the sample dataset and corresponding pth file. I see in your data set each jpg contained is one single word. I am not sure how to go about generating such a dataset in my case from P&ID engineering diagrams (printed not hand drawn/written). * What do you suggest in my case? * How to go about? * Currently -- some of the vertical text in the diagram is not getting detected - this just using whatever default detector and recognizer models that EasyOCR downloads on readtext. -- also there are overlapping detections, for e.g. I have a valve part that has the tag 14-HV-334-02, sometimes the detections are 14-, HV-334 (with -02 not all detected) or may be with overlap as 14-HV and HV-334-02 or some combination of... Please advise. I can post screen shots, if you need.
closed
2021-08-30T15:27:44Z
2021-10-06T08:52:41Z
https://github.com/JaidedAI/EasyOCR/issues/530
[]
pankaja0285
2
GibbsConsulting/django-plotly-dash
plotly
464
Having issues with dynamically loading images in dash app. Demo-nine missing
Trying to port existing dash apps into dpd. I'm having an issue with displaying images or other media in my django dash app. The documentation doesn't say much on the matter. The dash app requests are return 404 not found errors even though the files are in the assets folders. Have also tried with static folders. I also noticed that demo-nine's images are coming up as broken links and demo-nine is commented out from the live demo. My use case is for the user to upload and view files through the dash app. Is this supported or am I using django-plotly-dash for the wrong use case.
closed
2023-06-12T20:10:12Z
2024-10-01T03:33:00Z
https://github.com/GibbsConsulting/django-plotly-dash/issues/464
[]
giaxle
2
onnx/onnx
scikit-learn
6,290
Inference session with 'optimized_model_filepath' expands Gelu operator into atomic operators
# Inference session with `optimized_model_filepath` expands Gelu operator into atomic operators. Can we turn this off? ### Question When I create InferenceSession and specify `optimized_model_filepath` in `SessionOptions`, Gelu operator is expanded into atomic operators. Same happens also for HardSwish. Can this optimization be turned off, so the optimized model contains only single Gelu operator? I went through available flags in `SessionOptions` but nothing seems to resolve this. I also tried to disable all optimizations via attribute `disabled_optimizers` but this doesn't work either. ### Further information Code to reproduce: ```python import onnx import onnxruntime from onnx import TensorProto graph = onnx.helper.make_graph( [onnx.helper.make_node("Gelu", ["x"], ["output"])], 'Gelu test', [onnx.helper.make_tensor_value_info("x", TensorProto.FLOAT, [10])], [onnx.helper.make_tensor_value_info("output", TensorProto.FLOAT, ())], ) onnx_model = onnx.helper.make_model(graph) sess_options = onnxruntime.SessionOptions() sess_options.optimized_model_filepath = "expanded_gelu.onnx" sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL optimizers = [ "AttentionFusion", "Avx2WeightS8ToU8Transformer", "BiasDropoutFusion", "BiasGeluFusion", "BiasSoftmaxDropoutFusion", "BiasSoftmaxFusion", "BitmaskDropoutReplacement", "CommonSubexpressionElimination", "ConcatSliceElimination", "ConstantFolding", "ConstantSharing", "Conv1dReplacement", "DoubleQDQPairsRemover", "DummyGraphTransformer", "DynamicQuantizeMatMulFusion", "EmbedLayerNormFusion", "EnsureUniqueDQForNodeUnit", "FastGeluFusion", "FreeDimensionOverrideTransformer", "GatherToSplitFusion", "GatherToSliceFusion", "GeluApproximation", "GeluFusion", "GemmActivationFusion", "TrainingGraphTransformerConfiguration", "IdenticalChildrenConsolidation", "RemoveDuplicateCastTransformer", "IsInfReduceSumFusion", "LayerNormFusion", "SimplifiedLayerNormFusion", "GeluRecompute", "AttentionDropoutRecompute", "SoftmaxCrossEntropyLossInternalFusion", "MatMulActivationFusion", "MatMulAddFusion", "MatMulIntegerToFloatFusion", "MatMulScaleFusion", "MatmulTransposeFusion", "MegatronTransformer", "MemoryOptimizer", "NchwcTransformer", "NhwcTransformer", "PaddingElimination", "PropagateCastOps", "QDQFinalCleanupTransformer", "QDQFusion", "QDQPropagationTransformer", "QDQS8ToU8Transformer", "QuickGeluFusion", "ReshapeFusion", "RocmBlasAltImpl", "RuleBasedGraphTransformer", "ScaledSumFusion", "SceLossGradBiasFusion", "InsertGatherBeforeSceLoss", "SelectorActionTransformer", "ShapeOptimizer", "SkipLayerNormFusion", "TransformerLayerRecompute", "MemcpyTransformer", "TransposeOptimizer", "TritonFusion", "UpStreamGraphTransformerBase"] sess = onnxruntime.InferenceSession(onnx_model.SerializeToString(), sess_options, disabled_optimizers=optimizers) ``` `expanded_gelu.onnx`: ![image](https://github.com/user-attachments/assets/3ba1f3cd-94ea-47c0-bf95-2977047989e4) ### Notes onnx=1.15.0 onnxruntime=1.17.3
closed
2024-08-09T11:33:44Z
2024-08-12T06:58:27Z
https://github.com/onnx/onnx/issues/6290
[ "question" ]
skywall
0
lux-org/lux
jupyter
159
ERROR:root:Internal Python error in the inspect module.
Printing out Vis and VisList occasionally results in this error. It is unclear where this traceback error is coming from. ![image](https://user-images.githubusercontent.com/5554675/100499005-2e3a4b00-31a1-11eb-8339-b6a3223c7873.png) ![image](https://user-images.githubusercontent.com/5554675/100499015-372b1c80-31a1-11eb-8208-38bc644e28fc.png)
closed
2020-11-28T09:44:17Z
2020-11-28T12:05:35Z
https://github.com/lux-org/lux/issues/159
[ "bug", "priority" ]
dorisjlee
2
jupyterhub/jupyterhub-deploy-docker
jupyter
69
Fails if behind proxy
This currently doesn't work if you're on a proxied network. I've made some changes that have fixed most of it, but I haven't completely gotten it working yet. This is from the `make notebook_image` command. ``` e1677043235c: Pulling from jupyter/minimal-notebook Status: Image is up to date for jupyter/minimal-notebook:e1677043235c docker build -t jupyterhub-user \ --build-arg JUPYTERHUB_VERSION=0.8.0 \ --build-arg DOCKER_NOTEBOOK_IMAGE=jupyter/minimal-notebook:e1677043235c \ singleuser Sending build context to Docker daemon 2.048kB Step 1/4 : ARG DOCKER_NOTEBOOK_IMAGE Step 2/4 : FROM $DOCKER_NOTEBOOK_IMAGE ---> c86d7e5f432a Step 3/4 : ARG JUPYTERHUB_VERSION ---> Using cache ---> be71e0724cd5 Step 4/4 : RUN python3 -m pip install --no-cache jupyterhub==$JUPYTERHUB_VERSION ---> Running in 02c9c26fcc9b Collecting jupyterhub==0.8.0 Retrying (Retry(total=4, connect=None, read=None, redirect=None)) after connection broken by 'ConnectTimeoutError(<pip._vendor.requests.packages.urllib3.connection.VerifiedHTTPSConnection object at 0x7f2f0f764710>, 'Connection to pypi.python.org timed out. (connect timeout=15)')': /simple/jupyterhub/ ```
closed
2018-04-03T07:41:34Z
2018-04-04T04:17:09Z
https://github.com/jupyterhub/jupyterhub-deploy-docker/issues/69
[]
moppymopperson
3
grillazz/fastapi-sqlalchemy-asyncpg
pydantic
174
implement scheduler
https://apscheduler.readthedocs.io/en/3.x/
closed
2024-10-09T09:58:09Z
2024-10-16T13:37:36Z
https://github.com/grillazz/fastapi-sqlalchemy-asyncpg/issues/174
[]
grillazz
0
dropbox/PyHive
sqlalchemy
120
Extra requirements are not installed on Python 3.6
I'm trying to install pyhive with hive interfaces with pip. But pip does not install extra requirements for hive interface. Here's my shell output with warning messages ``` (venv) $ python --version Python 3.6.1 (venv) $ pip --version pip 9.0.1 from /Users/owen/.virtualenvs/venv/lib/python3.6/site-packages (python 3.6) (venv) $ pip install pyhive[hive] Requirement already satisfied: pyhive[hive] in /Users/owen/.virtualenvs/venv/lib/python3.6/site-packages Ignoring sasl: markers 'extra == "Hive"' don't match your environment Ignoring thrift-sasl: markers 'extra == "Hive"' don't match your environment Ignoring thrift: markers 'extra == "Hive"' don't match your environment Requirement already satisfied: future in /Users/owen/.virtualenvs/venv/lib/python3.6/site-packages (from pyhive[hive]) ``` I'm working on macOS 10.12.4 and Python 3.6.1 installed by pyenv. `sasl`, `thrift-sasl`, `thrift` are installed very well when I try to install them manually (`pip install sasl ...`) It works very well when I try to install in Python 2.7.11 installed by pyenv.
closed
2017-05-16T04:31:19Z
2017-05-16T23:51:16Z
https://github.com/dropbox/PyHive/issues/120
[]
Hardtack
2
gradio-app/gradio
python
10,267
gradio 5.0 unable to load javascript file
### Describe the bug if I provide JavaScript code in a variable, it is executed perfectly well but when I put the same code in a file "app.js" and then pass the file path in `js` parameter in `Blocks`, it doesn't work. I have added the code in reproduction below. if the same code is put in a file, the block will be unable to execute that. It was working fine in version 4. Now I am upgrading to 5.0. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr login_page_js = """ () => { //handle launch let reload = false; let gradioURL = new URL(window.location.href); if( !gradioURL.searchParams.has('__theme') || (gradioURL.searchParams.has('__theme') && gradioURL.searchParams.get('__theme') !== 'dark') ) { gradioURL.searchParams.delete('__theme'); gradioURL.searchParams.set('__theme', 'dark'); reload = true; } if(reload) { window.location.replace(gradioURL.href); } } """ with gr.Blocks( js = login_page_js ) as login_page: gr.Button("Sign in with Microsoft", elem_classes="icon-button" ,link="/login") if __name__ == "__main__": login_page.launch() ``` ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell linux 2204 ``` ### Severity I can work around it
open
2024-12-30T15:09:28Z
2024-12-30T16:19:48Z
https://github.com/gradio-app/gradio/issues/10267
[ "bug" ]
git-hamza
2
alirezamika/autoscraper
web-scraping
35
ERROR: Package 'autoscraper' requires a different Python: 2.7.16 not in '>=3.6'
All 3 listed installation methods return the error shown in the issue title & cause an installation failure. No change when using pip or pip3 command. I tried running the following 2 commands to get around the pre-commit issue but with no change in the result: $ pip uninstall pre-commit # uninstall from Python2.7 $ pip3 install pre-commit # install with Python3
closed
2020-10-28T23:40:46Z
2020-10-29T14:58:19Z
https://github.com/alirezamika/autoscraper/issues/35
[]
mechengineermike
4
NullArray/AutoSploit
automation
703
Divided by zero exception23
Error: Attempted to divide by zero.23
closed
2019-04-19T15:59:23Z
2019-04-19T16:38:55Z
https://github.com/NullArray/AutoSploit/issues/703
[]
AutosploitReporter
0
skypilot-org/skypilot
data-science
4,728
Restart an INIT cluster skips file_mounts and setup
## Actual Behavior Launched a cluster but failed when syncing file mounts: ``` $ sky launch -c aylei-cs api-server-test.yaml YAML to run: api-server-test.yaml Considered resources (1 node): --------------------------------------------------------------------------------------------- CLOUD INSTANCE vCPUs Mem(GB) ACCELERATORS REGION/ZONE COST ($) CHOSEN --------------------------------------------------------------------------------------------- AWS c6i.2xlarge 8 16 - ap-southeast-1 0.39 ✔ --------------------------------------------------------------------------------------------- Launching a new cluster 'aylei-cs'. Proceed? [Y/n]: Y ⚙︎ Launching on AWS ap-southeast-1 (ap-southeast-1a,ap-southeast-1b,ap-southeast-1c). ├── Instance is up. └── Docker container is up. Open file descriptor limit (256) is low. File sync to remote clusters may be slow. Consider increasing the limit using `ulimit -n <number>` or modifying system limits. ✓ Cluster launched: aylei-cs. View logs: sky api logs -l sky-2025-02-16-22-16-56-301393/provision.log ⚙︎ Syncing files. Syncing (to 1 node): /Users/aylei/repo/skypilot-org/skypilot -> ~/.sky/file_mounts/sky_repo sky.exceptions.CommandError: Command rsync -Pavz --filter='dir-merge,- .gitignore' -e 'ssh -i /Users/aylei/.sky/clients/57339c81/ssh/sky-... failed with return code 255. Failed to rsync up: /Users/aylei/repo/skypilot-org/skypilot -> ~/.sky/file_mounts/sky_repo. Ensure that the network is stable, then retry. ``` Restarted the cluster in `INIT` state: ``` sky start aylei-cs Restarting 1 cluster: aylei-cs. Proceed? [Y/n]: Y ⚙︎ Launching on AWS ap-southeast-1 (ap-southeast-1a). ├── Instance is up. └── Docker container is up. Open file descriptor limit (256) is low. File sync to remote clusters may be slow. Consider increasing the limit using `ulimit -n <number>` or modifying system limits. ✓ Cluster launched: aylei-cs. View logs: sky api logs -l sky-2025-02-16-22-23-19-710647/provision.log Cluster aylei-cs started. ``` SSH to the cluster, observed no `/sky_repo` mounted and no setup executed. ``` ssh aylei-cs ls /sky_repo ls: cannot access '/sky_repo': No such file or directory ``` ## Expected Behavior I expect skypilot either: - setup `file_mounts` and run setup job idempotently on cluster restart - or warn user that the state might be broken when restarting a cluster in `INIT` state and hint user re-launch the cluster (`sky down && sky launch`) to get a clean state ## Appendix The sky yaml I used: ```yaml resources: cloud: aws cpus: 8+ memory: 16+ ports: 46580 image_id: docker:berkeleyskypilot/skypilot-beta:latest region: ap-southeast-1 file_mounts: /sky_repo: /Users/aylei/repo/skypilot-org/skypilot ~/.ssh/id_rsa.pub: ~/.ssh/id_rsa.pub envs: SKYPILOT_POD_CPU_CORE_LIMIT: "7" SKYPILOT_POD_MEMORY_GB_LIMIT: "14" setup: | cd /sky_repo pip install -r requirements-dev.txt pip install -e .[aws] mkdir -p ~/.sky # Add any custom config here cat <<EOF > ~/.sky/config.yaml allowed_clouds: - gcp - aws - kubernetes EOF sky api start --deploy ```
open
2025-02-16T15:53:21Z
2025-02-20T05:11:01Z
https://github.com/skypilot-org/skypilot/issues/4728
[ "bug", "core" ]
aylei
2
marshmallow-code/flask-smorest
rest-api
55
Fix base path when script root present
Same as flask_apispec's issue: https://github.com/jmcarp/flask-apispec/pull/125/files The application may be deployed under a path, such as when deploying as a serverless lambda. The path needs to be prefixed.
closed
2019-04-03T08:21:47Z
2021-04-29T07:53:15Z
https://github.com/marshmallow-code/flask-smorest/issues/55
[]
revmischa
25
litestar-org/litestar
pydantic
3,764
Enhancement: local state for websocket listeners
### Summary There seems to be no way to have a state that is unique to a particular websocket connection. Or maybe it's possible, but it's not documented? ### Basic Example Consider the following example: ``` class Listener(WebsocketListener): path = "/ws" def on_accept(self, socket: WebSocket, state: State): state.user_id = str(uuid.uuid4()) def on_receive(self, data: str, state: State): logger.info("Received: %s", data) return state.user_id ``` Here, I expect a different `user_id` for each connection, but it turns out to not be the case: ``` def test_listener(app: Litestar): client_1 = TestClient(app) client_2 = TestClient(app) with ( client_1.websocket_connect("/ws") as ws_1, client_2.websocket_connect("/ws") as ws_2, ): ws_1.send_text("Hello") ws_2.send_text("Hello") assert ws_1.receive_text() != ws_2.receive_text() # FAILS ``` I figured that there is a way to define a custom `Websocket` class which seems to be bound to a particular connection, but if that's the only way, should it be that hard for such a common use case? UPDATE: `WebSocketScope` contains it's own state dict, and it's unique to each connection. So my suggestion is to resolve the `state` dependency corresponding to the scope in that case.
closed
2024-09-28T15:00:48Z
2025-03-20T15:54:56Z
https://github.com/litestar-org/litestar/issues/3764
[ "Enhancement" ]
olzhasar
4
adamerose/PandasGUI
pandas
222
Having following issue on install of pandasGUI
### Discussed in https://github.com/adamerose/PandasGUI/discussions/221 <div type='discussions-op-text'> <sup>Originally posted by **decisionstats** March 6, 2023</sup> ModuleNotFoundError: No module named 'PyQt5.sip' Uninstalling and reinstalling PyQt did not work for me . Please help in how to install on Windows</div>
open
2023-03-06T14:25:01Z
2023-03-06T14:25:01Z
https://github.com/adamerose/PandasGUI/issues/222
[]
decisionstats
0
nvbn/thefuck
python
1,349
make appimage or binary file
appimage format can run everywhere so , we can not use apt-get install, just download one file
open
2022-12-11T04:25:47Z
2022-12-11T04:25:47Z
https://github.com/nvbn/thefuck/issues/1349
[]
newyorkthink
0
AirtestProject/Airtest
automation
828
1.1.6版本basetouch无效求助
升级到1.1.6版本后,使用如下代码模拟拖动图标操作 longtouch_event = [ DownEvent([908, 892]),# 待删除应用的坐标 SleepEvent(2), MoveEvent([165,285]),# 删除应用的垃圾桶坐标 UpEvent(0)] dev.touch_proxy.perform(longtouch_event) 实际效果为仅拖动了下拉栏的第一行,如下 ![image](https://user-images.githubusercontent.com/24997118/98779225-839afc00-242e-11eb-9c50-6cd1e2263614.png) 本地报错如下: Note: device /dev/input/mouse0 is not supported by libevdev' Note: device /dev/input/mice is not supported by libevdev' 尝试了安卓7/9的多个机器,现象一样
closed
2020-11-11T07:01:11Z
2021-02-21T03:20:15Z
https://github.com/AirtestProject/Airtest/issues/828
[]
masterKLB
1
Lightning-AI/pytorch-lightning
data-science
19,699
Modules with `nn.Parameter` not Converted by Lightning Mixed Precision
### Bug description I have an `nn.Module` (call it `Mod`) which adds its input `x` to an internal `nn.Parameter`. I'm using `Mod` as part of a `pl.LightningModule` which I'm training in `16-mixed` precision. However, the output of calling `Mod` is a tensor with dtype `torch.float32`. When I use other layer types, they output `torch.float16` tensors as expected. This failure is often silent (as in the example provided below), but can cause issues if a model contains a component (e.g. flash attention) that requires fp16. Furthermore, after loading a model trained this way at inference time and calling `.half()` on it, the output is `NaN` or otherwise nonsensical, despite being perfectly fine if I load the model in fp32. ### What version are you seeing the problem on? v2.0 ### How to reproduce the bug This is a small, reproducible example with `lightning==2.0.2`. Note how the output of `Mod` has dtype `torch.float32` while the output of a linear layer has dtype `torch.float16`. The example runs distributed on 8 GPUs, but the issue is the same on a single GPU. ```python from lightning import pytorch as pl import torch from torch import nn from torch.utils.data import TensorDataset, DataLoader class Mod(nn.Module): def __init__(self): super().__init__() derp = torch.randn((1, 32)) self.p = nn.Parameter(derp, requires_grad=False) def forward(self, x): return x + self.p class Model(pl.LightningModule): def __init__(self): super().__init__() self.lin = nn.Linear(32, 32) self.m = Mod() self.l = nn.MSELoss() def forward(self, x): print('x', x.dtype) y = self.lin(x) print('y', y.dtype) z = self.m(y) print('z', z.dtype) print('p',self.m.p.dtype) print('lin', self.lin.weight.dtype) return z def training_step(self, batch, batch_idx): x, y = batch z = self(x) loss = self.l(z, y) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters()) xdata = torch.randn((1000, 32)) ydata = xdata + torch.randn_like(xdata) * .1 dataset=TensorDataset(xdata,ydata) dataloader=DataLoader(dataset, batch_size=8, num_workers=4, pin_memory=True) model = Model() trainer = pl.Trainer( strategy='ddp', accelerator='gpu', devices=list(range(8)), precision='16-mixed' ) trainer.fit(model=model, train_dataloaders=dataloader) ``` ### Error messages and logs Example output: ``` Epoch 3: 78%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 98/125 [00:00<00:00, 138.94it/s, v_num=5]x torch.float32 x torch.float32 y torch.float16 z torch.float32 p torch.float32 lin torch.float32 ``` ### Environment <details> <summary>Current environment</summary> ``` #- Lightning Component (e.g. Trainer, LightningModule, LightningApp, LightningWork, LightningFlow): Trainer, LightningModule #- PyTorch Lightning Version (e.g., 1.5.0): 2.0.2 #- PyTorch Version (e.g., 2.0): 2.1.0 #- Python version (e.g., 3.9): 3.10.12 #- OS: Ubuntu 20.04.6 LTS (Focal Fossa) #- CUDA/cuDNN version: 11.8 #- GPU models and configuration: 8xA100 #- How you installed Lightning(`conda`, `pip`, source): pip ``` </details> ### More info Thank you for your help!
open
2024-03-25T21:32:26Z
2024-03-25T23:24:48Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19699
[ "question", "ver: 2.0.x" ]
nrocketmann
2
nerfstudio-project/nerfstudio
computer-vision
2,916
Unable to render to mp4 with `RuntimeError: stack expects a non-empty TensorList`
**Describe the bug** Tried to render to MP4. got this error: ``` ✅ Done loading checkpoint from outputs/lego_processed/nerfacto/2024-02-14_193442/nerfstudio_models/step-000029999.ckpt Traceback (most recent call last): File "/usr/local/bin/ns-render", line 8, in <module> sys.exit(entrypoint()) File "/usr/local/lib/python3.10/dist-packages/nerfstudio/scripts/render.py", line 896, in entrypoint tyro.cli(Commands).main() File "/usr/local/lib/python3.10/dist-packages/nerfstudio/scripts/render.py", line 456, in main camera_path = get_path_from_json(camera_path) File "/usr/local/lib/python3.10/dist-packages/nerfstudio/cameras/camera_paths.py", line 178, in get_path_from_json camera_to_worlds = torch.stack(c2ws, dim=0) RuntimeError: stack expects a non-empty TensorList root@3eada9a39237:/workspace# ns-render camera-path --load-config outputs/lego_processed/nerfacto/2024-02-14_193442/config.yml --camera-path-filename /workspace/lego_processed/camera_paths/2024-02-14-19-34-49.json --output-path renders/lego_processed/2024-02-14-19-34-49.mp4 ``` **To Reproduce** 1. Download images for training. https://files.extrastatic.dev/extrastatic/Photos-001.zip. Unzip into a directory called lego 1. ` ns-process-data images --data lego/ --output-dir lego_processed` 2. `ns-train nerfacto --data lego_processed/` 3. When completed, try to run render command: `ns-render camera-path --load-config outputs/lego_processed/nerfacto/2024-02-14_193442/config.yml --camera-path-filename /workspace/lego_processed/camera_paths/2024-02-14-19-34-49.json --output-path renders/lego_processed/2024-02-14-19-34-49.mp4` **Expected behavior** It should create the mp4 file. **Additional context** Using docker: ``` docker build \ --build-arg CUDA_VERSION=11.8.0 \ --build-arg CUDA_ARCHITECTURES=86 \ --build-arg OS_VERSION=22.04 \ --tag nerfstudio-86:0.0.1 \ --file Dockerfile . ``` Inside container `nvidia-smi`: ``` # nvidia-smi Wed Feb 14 20:39:13 2024 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 545.29.02 Driver Version: 545.29.02 CUDA Version: 12.3 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA GeForce RTX 3090 Off | 00000000:0A:00.0 Off | N/A | | 0% 41C P8 23W / 370W | 5MiB / 24576MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | No running processes found | +---------------------------------------------------------------------------------------+ ``` `colmap -h` ``` # colmap -h COLMAP 3.8 -- Structure-from-Motion and Multi-View Stereo (Commit 43de802 on 2023-01-31 with CUDA) Usage: colmap [command] [options] Documentation: https://colmap.github.io/ Example usage: colmap help [ -h, --help ] colmap gui colmap gui -h [ --help ] colmap automatic_reconstructor -h [ --help ] colmap automatic_reconstructor --image_path IMAGES --workspace_path WORKSPACE colmap feature_extractor --image_path IMAGES --database_path DATABASE colmap exhaustive_matcher --database_path DATABASE colmap mapper --image_path IMAGES --database_path DATABASE --output_path MODEL ... Available commands: help gui automatic_reconstructor bundle_adjuster color_extractor database_cleaner database_creator database_merger delaunay_mesher exhaustive_matcher feature_extractor feature_importer hierarchical_mapper image_deleter image_filterer image_rectifier image_registrator image_undistorter image_undistorter_standalone mapper matches_importer model_aligner model_analyzer model_comparer model_converter model_cropper model_merger model_orientation_aligner model_splitter model_transformer patch_match_stereo point_filtering point_triangulator poisson_mesher project_generator rig_bundle_adjuster sequential_matcher spatial_matcher stereo_fusion transitive_matcher vocab_tree_builder vocab_tree_matcher vocab_tree_retriever ``` Last commit from `git log:` ``` commit 4f798b23f6c65ef2970145901a0251b61ec8a447 (HEAD -> main, origin/main, origin/HEAD) Author: Sebastiaan <751205+SharkWipf@users.noreply.github.com> Date: Tue Feb 13 19:09:59 2024 +0100 ... ```
open
2024-02-14T20:43:12Z
2024-05-09T13:32:28Z
https://github.com/nerfstudio-project/nerfstudio/issues/2916
[]
xrd
5
pallets/flask
flask
5,119
Flask 2.3.2 is not compatible with Flassger
Flask 2.3.2 is not compatible with Flassger Description: After upgrading Flask to latest version we are getting below error. ``` from flasgger import Swagger File "C:\Python310\lib\site-packages\flasgger\__init__.py", line 10, in <module> from .base import Swagger, Flasgger, NO_SANITIZER, BR_SANITIZER, MK_SANITIZER, LazyJSONEncoder # noqa File "C:\Python310\lib\site-packages\flasgger\base.py", line 28, in <module> from flask.json import JSONEncoder ImportError: cannot import name 'JSONEncoder' from 'flask.json' (C:\Python310\lib\site-packages\flask\json\__init__.py) ``` After downgrading flask to 2.2.3, it works again! Environment: - Python version: 3.10.10 - Flask version: 2.3.2 - Flassger: Latest
closed
2023-05-09T10:04:25Z
2023-05-24T00:05:28Z
https://github.com/pallets/flask/issues/5119
[]
nagamanickamm
1
Josh-XT/AGiXT
automation
1,367
`Providers` has Nested GQL Key
### Description `providers` is the only object that has itself as a subkey in GQL. ![Image](https://github.com/user-attachments/assets/c48402cd-07da-4c52-9914-2418dc2e5d6a) ### Operating System - [x] Linux - [ ] Windows - [ ] MacOS ### Acknowledgements - [x] I am NOT trying to use localhost for providers running outside of the docker container. - [x] I am NOT trying to run AGiXT outside of docker, the only supported method to run it. - [x] Python 3.10.X is installed and the version in use on the host machine. - [x] The latest version of Docker is installed and running on the host machine. - [x] I am using the latest stable version of AGiXT. - [x] I have provided enough information for the maintainers to reproduce and diagnose the issue. - [x] I have searched the existing issues to make sure this bug has not been reported yet.
closed
2025-01-17T22:42:55Z
2025-01-19T00:46:00Z
https://github.com/Josh-XT/AGiXT/issues/1367
[ "type | report | bug", "area | back end" ]
JamesonRGrieve
0
christabor/flask_jsondash
plotly
83
Add Vega support
https://vega.github.io/vega-lite
closed
2017-02-11T01:10:22Z
2017-05-03T06:47:31Z
https://github.com/christabor/flask_jsondash/issues/83
[]
christabor
2
pallets-eco/flask-sqlalchemy
flask
1,289
Potential memory leak with table polymorphism
## Description <!--Describe the bug clearly and concisely. Include screenshots if possible--> I have a Flask application interacting with a PostgreSQL database, and I'm using Flask-SQLAlchemy to define my schemas and queries. I have multiple tables and a polymorphic relationship between them, and what I've realised is that when I call a Flask route that queries large amounts of rows on a table that's related to other with some polymorphic relationship, the RAM allocated to the query does not get released properly even after the request has completed and even if I try to manually call the garbage collector or delete the variable that was holding the query response. I have tried narrowing down the problem to the simplest chunk of code that still produces the memory leak, and I observe that when I either remove the polymorphic relationship between my tables or simply use SQLAlchemy to make the same computations, the memory is released correctly and goes back down to its pre-query consumption, which makes me believe it is related to the Flask-SQLAlchemy library and polymorphy. ## Reproduce <!--Describe step-by-step instructions to reproduce the behavior--> As the problem is not super trivial to reproduce, I added the code for both scenarios : - Only with SQLAlchemy : <a href='https://github.com/Rmarieta/sqlalchemy-leak'>Repository link</a>. - With Flask-SQLAlchemy : <a href='https://github.com/Rmarieta/flask-sqlalchemy-leak'>Repository link</a>. 1. In both cases, I build two containers, one for the database and one for either the python process that will use SQLAlchemy or the Flask process using Flask-SQLAlchemy. 2. The containers can be started with `docker-compose up --build` 3. It automatically populates the Event table with 50'000 dummy rows, so it takes some time for it to be ready. 4. Then the following query can be executed : - SQLAlchemy container: within the `alchemy-test` container, run `python query.py`, which queries all rows from Event table and prints the number of rows. - Flask-SQLAlchemy container: make a GET request to `http://localhost:5000/listevents` and it will return the number of rows. Should be 50'000 in both cases. 5. Regarding the memory consumption now, which can be monitored with `docker stats`: - SQLAlchemy container: MEM Usage of the query [Before vs During vs After] = [30Mb, 105Mb, 30Mb] so it completely comes back down to the initial value. - Flask-SQLAlchemy container: MEM Usage of the query [Before vs During vs After] = [78Mb, 156Mb, 86Mb], and it never comes back down to the initial value, unless I hit save in a flask files to restart the container. Here, 8Mb is okay, but in my actual use case on AWS, I don't have much RAM available, the queries I have to make are larger than this, resulting in my RAM staying overwhelmed because of that problem, and significantly slowing down everything. When I run the same experiment with my Flask-SQLAlchemy container, but removing the polymorphic association between the tables and simply having one table that unites columns from both tables, so the table : ``` class Event(db.Model): __tablename__ = 'Event' id = db.Column(db.Integer, primary_key=True) notebook_id = db.Column(db.String(100), nullable=False) event_type = db.Column(db.String(32), nullable=False) col_1 = db.Column(db.String(200), nullable=False) ``` and populating the table with the same content and as many rows, I observe that the RAM comes back to the initial consumption as I would expect after the route responds. So I'm not completely sure whether this a bug between Flask-SQLAlchemy and the polymorphic association or whether there's something wrong with my code. I tried to keep the implementation as simple as possible and follow the documentation for the polymorphic relationship, which makes me believe there's something strange happening here. Let me know if you need any clarification or any additional context, thank you for your help ! ## Context <!--Complete the following for context, and add any other relevant context--> As listed in the `requirements.txt` and in the `Dockerfile` : - Python version: 3.9.16 - Flask-SQLAlchemy version: 3.0.3 - SQLAlchemy version: 2.0.9
closed
2023-12-15T14:58:10Z
2023-12-30T00:56:35Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/1289
[]
Rmarieta
1
Teemu/pytest-sugar
pytest
170
test failure with pytest 4.2
Caused by https://github.com/pytest-dev/pytest/commit/0f546c4670146fbb89407cad85518e3a7dcfa833 (pytest 4.2.0): The test itself works in pytest without pytest-sugar, so likely caused by overridden hooks. ``` % pytest -k test_collect_error Test session starts (platform: linux, Python 3.7.2, pytest 4.2.1.dev64+g67dd10de, pytest-sugar 0.9.2) rootdir: …/Vcs/pytest-sugar, inifile: plugins: sugar-0.9.2 collecting ... ――――――――――――――――――――――― TestTerminalReporter.test_collect_error ――――――――――――――――――――――― self = <test_sugar.TestTerminalReporter object at 0x7f8d69310278> testdir = <Testdir local('/tmp/pytest-of-user/pytest-773/test_collect_error0')> def test_collect_error(self, testdir): testdir.makepyfile("""raise ValueError(0)""") assert_count(testdir) result = testdir.runpytest('--force-sugar') result.stdout.fnmatch_lines([ "*ERROR collecting test_collect_error.py*", "test_collect_error.py:1: in <module>", " raise ValueError(0)", > "E ValueError: 0", ]) E Failed: nomatch: '*ERROR collecting test_collect_error.py*' E and: 'Test session starts (platform: linux, Python 3.7.2, pytest 4.2.1.dev64+g67dd10de, pytest-sugar 0.9.2)' E and: 'rootdir: /tmp/pytest-of-user/pytest-773/test_collect_error0, inifile:' E and: 'plugins: sugar-0.9.2' E and: '\r' E and: '―――――――――――――――――――――――――――― test_collect_error.py ―――――――――――――――――――――――――――――' E and: 'test_collect_error.py:1: in <module>' E and: ' raise ValueError(0)' E and: 'E ValueError: 0' E and: '' E and: '!!!!!!!!!!!!!!!!!!! Interrupted: 1 errors during collection !!!!!!!!!!!!!!!!!!!!' E and: '' E and: 'Results (0.04s):' E and: '' E remains unmatched: '*ERROR collecting test_collect_error.py*' …/Vcs/pytest-sugar/test_sugar.py:430: Failed -------------------------------- Captured stdout call --------------------------------- ============================= test session starts ============================== platform linux -- Python 3.7.2, pytest-4.2.1.dev64+g67dd10de, py-1.7.0, pluggy-0.8.1 rootdir: /tmp/pytest-of-user/pytest-773/test_collect_error0, inifile: collected 0 items / 1 errors ==================================== ERRORS ==================================== ____________________ ERROR collecting test_collect_error.py ____________________ test_collect_error.py:1: in <module> raise ValueError(0) E ValueError: 0 !!!!!!!!!!!!!!!!!!! Interrupted: 1 errors during collection !!!!!!!!!!!!!!!!!!!! =========================== 1 error in 0.06 seconds ============================ Test session starts (platform: linux, Python 3.7.2, pytest 4.2.1.dev64+g67dd10de, pytest-sugar 0.9.2) rootdir: /tmp/pytest-of-user/pytest-773/test_collect_error0, inifile: plugins: sugar-0.9.2 ―――――――――――――――――――――――――――― test_collect_error.py ――――――――――――――――――――――――――――― test_collect_error.py:1: in <module> raise ValueError(0) E ValueError: 0 !!!!!!!!!!!!!!!!!!! Interrupted: 1 errors during collection !!!!!!!!!!!!!!!!!!!! Results (0.05s): Test session starts (platform: linux, Python 3.7.2, pytest 4.2.1.dev64+g67dd10de, pytest-sugar 0.9.2) rootdir: /tmp/pytest-of-user/pytest-773/test_collect_error0, inifile: plugins: sugar-0.9.2 ―――――――――――――――――――――――――――― test_collect_error.py ――――――――――――――――――――――――――――― test_collect_error.py:1: in <module> raise ValueError(0) E ValueError: 0 !!!!!!!!!!!!!!!!!!! Interrupted: 1 errors during collection !!!!!!!!!!!!!!!!!!!! Results (0.04s): test_sugar.py ⨯ 100% ██████████ Results (0.25s): 1 failed - test_sugar.py:422 TestTerminalReporter.test_collect_error 27 deselected ``` _Originally posted by @blueyed in https://github.com/Frozenball/pytest-sugar/issues/167#issuecomment-462462930_
closed
2019-02-11T20:27:53Z
2019-06-09T10:03:14Z
https://github.com/Teemu/pytest-sugar/issues/170
[]
blueyed
2
robotframework/robotframework
automation
4,494
Enhance public `robot.api.Languages` and `robot.api.Language` APIs
In order to support languages reasonably in RobotCode (and other tools), it would be nice if we could talk about the Language API again. 1. To give the user a good error message which language or custom language was not loaded or found, it should be possible to load individual languages and import custom language files. - In the current implementation I can either create the `Languages` class in the hope that it works, in case of error I can not easily filter out the language that does not work. - `add_language` can't load user defined language files 2. There should be a public API that returns all available languages. - already exists, is just not public 3. The process of loading custom language files should be separated from loading the real language. - Before loading the real languages, the custom language files should be loaded, only then you can load the language - I think this should also be done with the command line parameters, there should be 2 arguments, one for loading the custom language files and the current one for the real language 4. it should be possible to create a `Languages` instance that does not insert English and the deprecated single forms of the headers automatically - I currently have to filter it out again if I want to show only the specified languages e.g. in the completion. Let's discuss ;-)
closed
2022-10-03T23:59:47Z
2022-10-11T19:26:43Z
https://github.com/robotframework/robotframework/issues/4494
[ "priority: medium", "task", "rc 2", "acknowledge" ]
d-biehl
23
apache/airflow
automation
47,988
Do not call runtime-checks api from the task sdk anymore
### Body https://github.com/apache/airflow/pull/47893 removed the significance of doing: `/task_instances/{uuid}/runtime-checks` during task runs. We did it earlier to register asset changes but that has fundamentally changed in https://github.com/apache/airflow/pull/47677. Since that API doesnt do much, it would be nice to just remove the API as well as its consumption. ### Committer - [x] I acknowledge that I am a maintainer/committer of the Apache Airflow project.
open
2025-03-20T07:57:56Z
2025-03-21T09:21:52Z
https://github.com/apache/airflow/issues/47988
[ "area:API", "kind:meta", "priority:medium", "area:task-execution-interface-aip72", "area:task-sdk" ]
amoghrajesh
2
miguelgrinberg/python-socketio
asyncio
694
Question: How to run the socketio client?
Hello there! I built a chat app using Flask-SocketIO and I am trying to build a bot for it. I decided to use this module for the client module. I needed it for real-time sending and receiving. Now I am at the part where I need to run it. I couldn't find any information on the docs. My Bot Code: ```python import socketio class Bot(object): _CHAT_URL = "<my flask-socketio server>" room_code = None def __init__(self, bot_username): self.bot_username = bot_username self.sio = socketio.Client() self.sio.connect(self._CHAT_URL) self.sio.on('message', self._on_message) def _on_message(self, **kwargs): if not self.room_code: raise Exception("Room Code Variable (room_code) not found.") self.on_message(**kwargs) def on_message(self, json): pass def send_message(self, message_json): self.sio.emit('message', message_json) def run(self): pass ``` So my question, how do I run the client from the run method?
closed
2021-05-30T20:25:04Z
2021-05-30T22:28:35Z
https://github.com/miguelgrinberg/python-socketio/issues/694
[ "question" ]
TechStudent10
6
graphistry/pygraphistry
jupyter
301
[BUG] `CONTAINS(...)` filters cause server error if NULL values
**Describe the bug** Applying a `CONTAINS(some_attribute, "some_substring")` filter to an attribute that contains NULL values (`None` or `np.nan` in the dataframes used for graph creation) causes a (presumed) internal server error - UI shows `Herding stray GPUs...` then requests to reload. **To Reproduce** Example graph: https://hub.graphistry.com/graph/graph.html?dataset=cb1d727659684c74bb64195e1881d1f9 Working example: filter with `CONTAINS(edge:attribute_1, "foo") -> works as expected Breaking example: filter with `CONTAINS(point:attribute_1, "a") -> `Herding stray GPUs...` **Expected behavior** Filtering using `CONTAINS()` with NULL values in attribute should just filter out those NULL values and not break. **Actual behavior** `Herding stray GPUs` **Screenshots** See graph example above. **Browser environment (please complete the following information):** - OS: PopOS - Browser: Firefox **Graphistry GPU server environment** - Graphistry hosted
closed
2022-01-21T20:16:15Z
2022-01-22T09:15:24Z
https://github.com/graphistry/pygraphistry/issues/301
[ "bug", "p3" ]
DBCerigo
2
jumpserver/jumpserver
django
14,314
[Question] nginx二级目录代理 jms 无法访问
### 产品版本 jumpserver/jms_all:latest ### 版本类型 - [X] 社区版 - [ ] 企业版 - [ ] 企业试用版 ### 安装方式 - [ ] 在线安装 (一键命令安装) - [ ] 离线包安装 - [X] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] 源码安装 ### 环境信息 docker部署 ### 🤔 问题描述 nginx二级目录代理 jms 无法访问,具体配置如下: ![image](https://github.com/user-attachments/assets/5966ea24-7ee3-43be-9cf7-86e70b1857f7) ### 期望结果 nginx二级目录代理 jms 如何配置? ### 补充信息 _No response_
closed
2024-10-16T14:03:49Z
2024-11-28T03:26:33Z
https://github.com/jumpserver/jumpserver/issues/14314
[ "🤔 Question" ]
caichangchun
3
pytorch/vision
computer-vision
8,255
`to_image` does not handle numpy 2D arrays
### 🐛 Describe the bug [`to_image`](https://github.com/pytorch/vision/blob/806dba678d5b01f6e8a46f7c48fdf8c09369a267/torchvision/transforms/v2/functional/_type_conversion.py#L11) should be able to handle [numpy arrays](https://numpy.org/doc/stable/reference/generated/numpy.array.html) with shape `(H, W)`. This corresponds to the previous behavior of [`to_tensor`](https://github.com/pytorch/vision/blob/806dba678d5b01f6e8a46f7c48fdf8c09369a267/torchvision/transforms/functional.py#L149). Running the following: ```python import numpy as np from torchvision.transforms.v2.functional import to_image img_npy = np.random.randint(0, 256, (224, 224), dtype=np.uint8) to_image(img_npy) ``` results in error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/mantasu/programs/anaconda/envs/glasses-detector-312/lib/python3.12/site-packages/torchvision/transforms/v2/functional/_type_conversion.py", line 14, in to_image output = torch.from_numpy(inpt).permute((2, 0, 1)).contiguous() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: permute(sparse_coo): number of dimensions in the tensor input does not match the length of the desired ordering of dimensions i.e. input.dim() = 2 is not equal to len(dims) = 3 ``` PIL grayscale images are handled correctly: ```python from PIL import Image img_pil = Image.fromarray(img_npy) print(to_image(img_pil).shape) # (1, 224, 224) ``` ### Versions ``` PyTorch version: 2.2.0 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.7 | packaged by conda-forge | (main, Dec 23 2023, 14:43:09) [GCC 12.3.0] (64-bit runtime) Python platform: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Ti Laptop GPU Nvidia driver version: 546.33 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12800HX CPU family: 6 Model: 151 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 2 BogoMIPS: 4607.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 576 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 15 MiB (12 instances) L3 cache: 25 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.3 [pip3] torch==2.2.0 [pip3] torchaudio==2.2.0 [pip3] torchvision==0.17.0 [pip3] triton==2.2.0 [conda] blas 1.0 mkl conda-forge [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] mkl 2023.1.0 h213fc3f_46344 [conda] numpy 1.26.3 py311h64a7726_0 conda-forge [conda] pytorch 2.2.0 py3.11_cuda12.1_cudnn8.9.2_0 pytorch [conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchaudio 2.2.0 py311_cu121 pytorch [conda] torchtriton 2.2.0 py311 pytorch [conda] torchvision 0.17.0 py311_cu121 pytorch ```
closed
2024-02-05T14:27:58Z
2024-02-06T11:10:20Z
https://github.com/pytorch/vision/issues/8255
[]
mantasu
0
mljar/mercury
jupyter
143
Import class from another directory that notebook
Hello, I have python project with notebooks. Noteboks are in direcotry ./notebooks Python classes and code are in ./twitter folder. When i want to use classes in notebooks and use in Mercury app i have error ModuleNotFoundError: No module named 'twitter' I use: from twitter .... So it look like mercury cannot access my local folder/module. I found solution to add my code to conda modules but i need create that module but maybe is another way to show mercury that i have local code ? Thanks for answer.
closed
2022-07-14T10:33:17Z
2022-07-14T12:08:59Z
https://github.com/mljar/mercury/issues/143
[]
kamiljaszczynski
3
autokey/autokey
automation
135
Autokey installs but won't run on (18.04)
## Classification: Bug ## Reproducibility: - Try to install autokey through ubuntu store - Try to install autokey with the pip3 setup.py install command - Try to install autokey with the apt-get autokey-gtk ## Summary I am trying to install the autokey package on Ubuntu 18.04 and It worked the first time but when I had to remove it I couldn't get it to reinstall again. ## Steps to Reproduce Remove the program the following way: - sudo apt-get purge --auto-remove autokey-gtk Install the program by using one of the following ways; - sudo apt-get update; sudo apt-get autokey-gtk - pip3 setup.py install; ## Expected Results When i try to open autokey from terminal or the pacakge explorere I would expect a GUI to open. ## Actual Results The program won't open the GUI. ## Error While loading autokey-gtk --version Traceback (most recent call last): File "/usr/local/bin/autokey-gtk", line 11, in <module> load_entry_point('autokey==0.94.0', 'console_scripts', 'autokey-gtk')() File "/home/ricks/.local/lib/python3.6/site-packages/pkg_resources/__init__.py", line 480, in load_entry_point return get_distribution(dist).load_entry_point(group, name) File "/home/ricks/.local/lib/python3.6/site-packages/pkg_resources/__init__.py", line 2693, in load_entry_point return ep.load() File "/home/ricks/.local/lib/python3.6/site-packages/pkg_resources/__init__.py", line 2324, in load return self.resolve() File "/home/ricks/.local/lib/python3.6/site-packages/pkg_resources/__init__.py", line 2330, in resolve module = __import__(self.module_name, fromlist=['__name__'], level=0) File "/usr/local/lib/python3.6/dist-packages/autokey-0.94.0-py3.6.egg/autokey/gtkui/__main__.py", line 4, in <module> from autokey.gtkapp import Application File "/usr/local/lib/python3.6/dist-packages/autokey-0.94.0-py3.6.egg/autokey/gtkapp.py", line 44, in <module> from autokey import service, monitor File "/usr/local/lib/python3.6/dist-packages/autokey-0.94.0-py3.6.egg/autokey/service.py", line 25, in <module> from .iomediator.key import Key ModuleNotFoundError: No module named 'autokey.iomediator' ## my thoughts I am new to Linux so I accidentally removed some crucial files when purging the program. ## Version AutoKey-Py3 version: Latest version Installed via: (PPA, pip and ubuntu store) Distro: Ubuntu Bionic beaver (18.04)
closed
2018-04-26T08:00:27Z
2018-04-29T04:19:59Z
https://github.com/autokey/autokey/issues/135
[]
rickstaa
4
elliotgao2/toapi
api
51
Ip proxies.
closed
2017-12-11T01:53:04Z
2017-12-13T03:44:28Z
https://github.com/elliotgao2/toapi/issues/51
[]
elliotgao2
0
coqui-ai/TTS
pytorch
3,617
[Bug] atttributeError: 'Tacotron2' object has no attribute 'args'
### Describe the bug Traceback (most recent call last): File &quot;/home/mariah/.local/bin/tts&quot;, line 8, in &lt;module&gt; sys.exit(main()) ^^^^^^ File &quot;/home/mariah/Applications/tts/TTS/bin/synthesize.py&quot;, line 468, in main wav = synthesizer.tts( ^^^^^^^^^^^^^^^^ File &quot;/home/mariah/Applications/tts/TTS/utils/synthesizer.py&quot;, line 463, in tts outputs = transfer_voice( ^^^^^^^^^^^^^^^ File &quot;/home/mariah/Applications/tts/TTS/tts/utils/synthesis.py&quot;, line 319, in transfer_voice reference_wav, sr=model.args.encoder_sample_rate if model.args.encoder_sample_rate else model.ap.sample_rate ^^^^^^^^^^ File &quot;/home/mariah/.local/pipx/venvs/tts/lib/python3.11/site-packages/torch/nn/modules/module.py&quot;, line 1688, in __getattr__ raise AttributeError(f&quot;&apos;{type(self).__name__}&apos; object has no attribute &apos;{name}&apos;&quot;) AttributeError: &apos;Tacotron2&apos; object has no attribute 'args' ### To Reproduce <pre>\ 9-year-old\ Doctor\ Who\ fan\ \[VS0iFWwvDbs\].wav --text &quot;test&quot; --pipe_out --out_path t.wav &gt; error.txt ### Expected behavior _No response_ ### Logs _No response_ ### Environment ```shell I tried running collect_env_info.py but it says no module found torch ``` ### Additional context _No response_
closed
2024-03-01T19:40:43Z
2025-01-03T09:47:59Z
https://github.com/coqui-ai/TTS/issues/3617
[ "bug", "wontfix" ]
MariahWest01
1
huggingface/datasets
pytorch
7,215
Iterable dataset map with explicit features causes slowdown for Sequence features
### Describe the bug When performing map, it's nice to be able to pass the new feature type, and indeed required by interleave and concatenate datasets. However, this can cause a major slowdown for certain types of array features due to the features being re-encoded. This is separate to the slowdown reported in #7206 ### Steps to reproduce the bug ``` from datasets import Dataset, Features, Array3D, Sequence, Value import numpy as np import time features=Features(**{"array0": Sequence(feature=Value("float32"), length=-1), "array1": Sequence(feature=Value("float32"), length=-1)}) dataset = Dataset.from_dict({f"array{i}": [np.zeros((x,), dtype=np.float32) for x in [5000,10000]*25] for i in range(2)}, features=features) ``` ``` ds = dataset.to_iterable_dataset() ds = ds.with_format("numpy").map(lambda x: x) t0 = time.time() for ex in ds: pass t1 = time.time() ``` ~1.5 s on main ``` ds = dataset.to_iterable_dataset() ds = ds.with_format("numpy").map(lambda x: x, features=features) t0 = time.time() for ex in ds: pass t1 = time.time() ``` ~ 3 s on main ### Expected behavior I'm not 100% sure whether passing new feature types to formatted outputs of map should be supported or not, but assuming it should, then there should be a cost-free way to specify the new feature type - knowing feature type is required by interleave_datasets and concatenate_datasets for example ### Environment info 3.0.2
open
2024-10-10T22:08:20Z
2024-10-10T22:10:32Z
https://github.com/huggingface/datasets/issues/7215
[]
alex-hh
0
Textualize/rich
python
2,921
Add comparison methods to rich Text
Text could use comparison methods for this use case: https://github.com/Textualize/textual/issues/2261 Comparisons should treat strings and `Text` in the same way. This will allow sorting of `Text` objects.
open
2023-04-12T10:08:50Z
2023-04-12T11:58:26Z
https://github.com/Textualize/rich/issues/2921
[ "Needs triage" ]
willmcgugan
3
lepture/authlib
flask
204
AttributeError: 'NoneType' object has no attribute 'split' if self.scope is None
`AttributeError` occurs when the client scopes is `None` **Error Stacks** ``` def get_allowed_scope(self, scope): if not scope: return '' > allowed = set(self.scope.split()) E AttributeError: 'NoneType' object has no attribute 'split' ``` As informed in [rfc6749#section-3.3](https://tools.ietf.org/html/rfc6749#section-3.3), that ``` ... The authorization server MAY fully or partially ignore the scope requested by the client, based on the authorization server policy or the resource owner's instructions. ... ``` I think its better if we add empty string as default value: ```python ... # line 68 @property def scope(self): return self.client_metadata.get('scope', '') ... ``` All tests run well Pull request: [github.com/lepture/authlib/pull/205](https://github.com/lepture/authlib/pull/205)
closed
2020-03-12T14:52:46Z
2020-03-20T03:22:10Z
https://github.com/lepture/authlib/issues/204
[ "bug" ]
GulaAren
0
huggingface/datasets
machine-learning
7,443
index error when num_shards > len(dataset)
In `ds.push_to_hub()` and `ds.save_to_disk()`, `num_shards` must be smaller than or equal to the number of rows in the dataset, but currently this is not checked anywhere inside these functions. Attempting to invoke these functions with `num_shards > len(dataset)` should raise an informative `ValueError`. I frequently work with datasets with a small number of rows where each row is pretty large, so I often encounter this issue, where the function runs until the shard index in `ds.shard(num_shards, indx)` goes out of bounds. Ideally, a `ValueError` should be raised before reaching this point (i.e. as soon as `ds.push_to_hub()` or `ds.save_to_disk()` is invoked with `num_shards > len(dataset)`). It seems that adding something like: ```python if len(self) < num_shards: raise ValueError(f"num_shards ({num_shards}) must be smaller than or equal to the number of rows in the dataset ({len(self)}). Please either reduce num_shards or increase max_shard_size to make sure num_shards <= len(dataset).") ``` to the beginning of the definition of the `ds.shard()` function [here](https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/arrow_dataset.py#L4728) would deal with this issue for both `ds.push_to_hub()` and `ds.save_to_disk()`, but I'm not exactly sure if this is the best place to raise the `ValueError` (it seems that a more correct way to do it would be to write separate checks for `ds.push_to_hub()` and `ds.save_to_disk()`). I'd be happy to submit a PR if you think something along these lines would be acceptable.
open
2025-03-10T22:40:59Z
2025-03-10T23:43:08Z
https://github.com/huggingface/datasets/issues/7443
[]
eminorhan
1
gradio-app/gradio
machine-learning
10,708
Cache especific examples
Can I cache only some examples from the list? Scenario: I have some examples that can only be run locally on a good GPU and others that can be run on huggingface's Zero GPU. I thought of something like "example_labels" something like "examples_enable_cache" = [True, False, True, False ....]
open
2025-03-02T14:25:38Z
2025-03-03T14:10:47Z
https://github.com/gradio-app/gradio/issues/10708
[ "enhancement" ]
elismasilva
1
django-cms/django-cms
django
7,449
KeyError at /xxxxx - After removing a plugin
<!-- Please fill in each section below, otherwise, your issue will be closed. This info allows django CMS maintainers to diagnose (and fix!) your issue as quickly as possible. --> ## Description I have a plugin **NavbarPlugin** that I coded inside **cms_plugins.py.** - The code : ```py @plugin_pool.register_plugin class NavbarPlugin(CMSPluginBase): model = CMSPlugin render_template = "frontend/inviso_plugins_templates/menu/inviso_navbar.html" name="Navbar plugin" module = "Inviso" def render(self, context, instance, placeholder): context = super().render(context, instance, placeholder) return context ``` I used this plugin inside a page that I created, then it worked well. Then I decided to delete the plugin from the code inside **cms_plugins.py**, but I forgot to remove it from the page in the first place. Then I got an error like : ``` KeyError at /actualites/ 'NavbarPlugin' ``` I decided then to undo the suppression of the plugin from **cms_plugins.py**, but then it turned out that there's always the same error again and again. I searched on the internet and all but I didn't got what I searched for. Thanks <!-- If this is a security issue stop immediately and follow the instructions at: http://docs.django-cms.org/en/latest/contributing/development-policies.html#reporting-security-issues --> ## Steps to reproduce <!-- Clear steps describing how to reproduce the issue. Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error --> - Create a plugin in **cms_plugins.py** - Use the plugin in a page - Delete the plugin code in **cms_plugins.py** - Refresh the page (or the project) - Getting an error - Rewritting the same plugin code in **cms_plugins.py** - Refresh the page (or the project) ## Expected behaviour <!-- A clear and concise description of what you expected to happen. --> After rewritting the plugin code in **cms_plugins.py**, the plugin should be seen by the application and no errors should occur anymore. ## Actual behaviour The same error that occurs after deleting the plugin code from **cms_plugins.py** persists <!-- A clear and concise description of what is actually happening. --> ## Screenshots <!--If applicable, add screenshots to help explain your problem. --> ## Additional information (CMS/Python/Django versions) <!-- Add any other context about the problem such as environment, CMS/Python/Django versions, logs etc. here. --> ## Do you want to help fix this issue? <!-- The django CMS project is managed and kept alive by its open source community and is backed by the [django CMS Association](https://www.django-cms.org/en/about-us/). We therefore welcome any help and are grateful if people contribute to the project. Please use 'x' to check the items below. --> * [ ] Yes, I want to help fix this issue and I will join #workgroup-pr-review on [Slack](https://www.django-cms.org/slack) to confirm with the community that a PR is welcome. * [ ] No, I only want to report the issue.
closed
2022-12-07T13:51:20Z
2023-01-11T07:07:17Z
https://github.com/django-cms/django-cms/issues/7449
[ "status: marked for rejection" ]
cedricrabarijohn
2
zappa/Zappa
django
655
[Migrated] module 'pip' has no attribute 'get_installed_distributions'
Originally from: https://github.com/Miserlou/Zappa/issues/1658 by [nabaz](https://github.com/nabaz) <!--- Provide a general summary of the issue in the Title above --> ## module 'pip' has no attribute 'get_installed_distributions' no matter what you do you get this error, so frustrating, makes you not use zappa anymore it's unfortunate <!--- Provide a more detailed introduction to the issue itself, and why you consider it to be a bug --> <!--- Also, please make sure that you are running Zappa _from a virtual environment_ and are using Python 2.7/3.6 --> 3.6 ## Expected Behavior <!--- Tell us what should happen --> module 'pip' has no attribute 'get_installed_distributions' ## Actual Behavior <!--- Tell us what happens instead --> ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> 1. 2. 3. ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: * Operating System and Python version: * The output of `pip freeze`: * Link to your project (optional): * Your `zappa_settings.py`:
closed
2021-02-20T12:32:30Z
2022-07-16T06:46:47Z
https://github.com/zappa/Zappa/issues/655
[ "needs-info" ]
jneves
1
simple-login/app
flask
1,002
MX setting for custom domain on self hosted instance
first - brilliant product, just set up using the self hosting instructions which were straightforward one thing to note - in the custom domain setup instructions and DNS verification - MX record is meant to point to _mydomain.com_ but this didn't work for me until this was changed _app.mydomain.com_
closed
2022-05-19T05:13:28Z
2022-05-19T05:48:04Z
https://github.com/simple-login/app/issues/1002
[]
mascooler
1
recommenders-team/recommenders
deep-learning
1,210
[ASK]
### NPA metrics Hello! I am testing NAML, NRMS and NPA algorithms for MIND-dataset. I noticed that the metric HIT@1,5,10 has a non-zero value for the first two algorithms, but for NPA it is zero. Can someone explain why this is so? thnx
closed
2020-10-01T11:57:21Z
2020-10-07T08:18:42Z
https://github.com/recommenders-team/recommenders/issues/1210
[ "help wanted" ]
Holyland-EG
3
fastapi/sqlmodel
fastapi
314
`sqlalchemy.Column` parameters are not passed forward when set on `sqlmodel.Field` and a column is provided via `sa_column`
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python name: str = Field( sa_column=Column( String, # ... other attrs not exposed in sqlmodel.Field today ), index=True # this is ignored, must be set on `Column` above ) ``` ### Description `sqlmodel.Field` exposes some but not all fields from `sqlalchemy.Column`. This means in some cases it is necessary to provide a `Column` via the `sa_column=` param on `sqlmodel.Field`. However, when this is the case the parameters set on `sqlmodel.Field` are not forwarded to the new `sa_column` object. I think the expected behavior here is that parameters set on `Field` would be combined with those from the `sa_column` object. Either this or setting a parameter that will be ignored should trigger a warning/exception along the lines of `"You have set index but also provided a sqlalchemy.Column object, index will be ignored"`. ### Operating System Linux ### Operating System Details _No response_ ### SQLModel Version 0.0.6 ### Python Version 3.9.5 ### Additional Context _No response_
closed
2022-04-26T18:59:26Z
2022-11-22T00:12:00Z
https://github.com/fastapi/sqlmodel/issues/314
[ "question", "answered" ]
JLHasson
6
mwaskom/seaborn
data-visualization
3,617
seaborn scatterplot hue= datetime bug
### my issue is: why 2023 can appear in the below figure's legend? **Please see below codes.** ``` import pandas as pd import seaborn as sns from matplotlib import pyplot as plt df = pd.DataFrame( {"Time_str": ["2024,10,1", "2024,11,1"], "x": [1, 2], "y": [10, 20] }) df["Datetime"] = pd.to_datetime(df["Time_str"]) df["year"] = df["Datetime"].dt.year fig, ax = plt.subplots(figsize=(14, 8)) sns.scatterplot(data=df, x="x", y="y", hue="year") ``` ![Figure_1](https://github.com/mwaskom/seaborn/assets/147300950/41dcc611-f856-422e-903e-598b3412d49c) >
closed
2024-01-16T07:16:49Z
2024-01-17T02:21:57Z
https://github.com/mwaskom/seaborn/issues/3617
[]
juanjuanlovelearning
3
amidaware/tacticalrmm
django
1,255
Users can see and assign automatisch Policies from Users/Sites/Clients they do not belong to.
I would expect that Automation-Policies are limited the same way as Policy-Overview is? You should not be able to see Policies created from Users who belong only to specific Clients or Sites. Also it should not be possible to assign them. ![image](https://user-images.githubusercontent.com/68963439/186144696-776d16fb-3c05-4123-ab6b-212c6d1c5b41.png)
open
2022-08-23T11:17:38Z
2022-08-23T18:39:50Z
https://github.com/amidaware/tacticalrmm/issues/1255
[ "enhancement" ]
JSuenram
1
pyeventsourcing/eventsourcing
sqlalchemy
101
How to install with Cassandra?
I'm using pip version 9.01 and I tried using python 3.5, pypy 5.8, and python 2.7 But everytime when I try to install eventsourcing with either cassandra or sqlalchemy, it gives me error like the following: ``` $ pip install eventsourcing[cassandra] zsh: no matches found: eventsourcing[cassandra] ``` Is there a way that I could install eventsourcing with the specified event store?
closed
2017-06-27T12:51:57Z
2017-06-27T20:01:53Z
https://github.com/pyeventsourcing/eventsourcing/issues/101
[]
subokita
2
psf/black
python
4,573
Projeto
closed
2025-02-02T01:19:49Z
2025-02-02T02:46:46Z
https://github.com/psf/black/issues/4573
[]
thiagomsa
0
piskvorky/gensim
data-science
2,804
ModuleNotFoundError: No module named 'testfixtures'
<!-- **IMPORTANT**: - Use the [Gensim mailing list](https://groups.google.com/forum/#!forum/gensim) to ask general or usage questions. Github issues are only for bug reports. - Check [Recipes&FAQ](https://github.com/RaRe-Technologies/gensim/wiki/Recipes-&-FAQ) first for common answers. Github bug reports that do not include relevant information and context will be closed without an answer. Thanks! --> #### Problem description * running the following code in `/docs/notebooks/howtos/run_doc2vec_imdb.ipynb`: `from gensim.test.test_doc2vec import ConcatenatedDoc2Vec` ![Selection_013](https://user-images.githubusercontent.com/79341/80056798-aabdca80-84ea-11ea-8cf9-c2d60b6ecd0d.png) * A quick review of `/gensim/test/test_doc2vec.py` shows the offending import on line#21. I've tried replacing the line with `from fixtures import log_capture`, but with no improvement. #### Steps/code/corpus to reproduce run `run_doc2vec_imdb.ipynb` #### Versions Linux-4.15.0-91-generic-x86_64-with-Ubuntu-18.04-bionic Python 3.6.9 (default, Jul 3 2019, 15:36:16) [GCC 5.4.0 20160609] NumPy 1.18.3 SciPy 1.4.1 gensim 3.8.1 FAST_VERSION 1
open
2020-04-23T03:53:21Z
2020-08-13T12:24:45Z
https://github.com/piskvorky/gensim/issues/2804
[ "documentation", "impact HIGH", "reach LOW" ]
bjpcjp
8
PeterL1n/BackgroundMattingV2
computer-vision
167
Details of the training process
你好,关于训练细节,我请教几个问题: 1、训练中数据集的使用顺序依次为:VideoMatte240K、PhotoMatte13K、Distinctions-646,请问为什么要将PhotoMatte13K、Distinctions-646二者分离而不是合并在一起训练?分离的做法是出于什么样的考虑? 2、对于refine 模型的训练过程中,各个阶段(各个数据集上的训练)都是训练到收敛再进入下一个阶段?如果不是的话,那应该训练到什么样的程度才进入下一阶段? 3、在本文中似乎提到AIM和Distinctions-646数据集差异较大,但为什么没有像RVM(你的另一篇论文)那样,将两者结合训练? 谢谢。
open
2021-12-21T08:01:38Z
2021-12-21T17:21:25Z
https://github.com/PeterL1n/BackgroundMattingV2/issues/167
[]
li-wenquan
1
awesto/django-shop
django
810
Support for django 3.0
Please support for django 3.0 . django-cms has already upgraded
open
2020-05-04T05:04:06Z
2020-06-28T15:39:31Z
https://github.com/awesto/django-shop/issues/810
[]
pupattan
23
pinry/pinry
django
112
No way to change password?
I'm setting up a private board and want to create a few accounts for friends and then close registrations. I was going to generate passwords which they could then change to something they prefer but as far as I can tell there's no way to change passwords. Am I just missing where that's done?
closed
2017-06-21T01:43:16Z
2019-12-08T19:35:26Z
https://github.com/pinry/pinry/issues/112
[ "enhancement" ]
Flamekebab
4
Lightning-AI/pytorch-lightning
deep-learning
19,973
FSDPPrecision should support 16-true with a loss scaler
### Description & Motivation https://github.com/Lightning-AI/pytorch-lightning/blob/f6fd046552a1504023cb3386a8a0df418a810e4f/src/lightning/fabric/plugins/precision/fsdp.py#L61 What if I want to use fp16 true, but with a loss scaler? This is closer to DeepSpeed's default settings. With FSDP, 16-true, no loss scaler my model doesn't converge. However, with FSDP, 16-true, and a loss scaler (commented out the assert and fixed the typo'ed return scaler instead of return none line) my model converges. ### Pitch _No response_ ### Alternatives _No response_ ### Additional context _No response_ cc @borda
open
2024-06-13T02:13:59Z
2024-06-13T21:11:12Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19973
[ "feature", "needs triage" ]
zaptrem
1
plotly/dash
jupyter
2,788
[Feature Request] Supports more flexible and free component type properties
Currently, as mentioned in the documentation ( https://dash.plotly.com/component-properties ), only a few valid formats are supported for component elements as attributes, the hope is that dash will support freer component-type property definitions under the hood, including arbitrary depth nesting, to cope with some tree-like data structures.
closed
2024-03-11T07:38:53Z
2024-07-26T13:06:40Z
https://github.com/plotly/dash/issues/2788
[ "feature" ]
CNFeffery
2
strawberry-graphql/strawberry
graphql
3,158
Default values for scalar arguments passed as string
When declaring an optional argument with a scalar type, its default value is passed as a string in the resulting schema. This makes Strawberry-declared schemas incompatible with externally connected GraphQL consumers with strict schema checkers, such as Hasura. The following code: ```python from typing import Optional import strawberry @strawberry.type class Query: @strawberry.field def example(self, baz: int, foo: int | None = None , bar: int = 10 ) -> None: return None schema = strawberry.Schema(query=Query) ``` produces the following default values in the schema: ``` ... "defaultValue": null ... "defaultValue": "null" ... "defaultValue": "10" ``` <details> <summary> Schema inspection </summary> ```graphql { "data": { "__schema": { "queryType": { "name": "Query" }, "mutationType": null, "types": [ { "kind": "OBJECT", "name": "Query", "description": null, "fields": [ { "name": "example", "description": null, "args": [ { "name": "baz", "description": null, "type": { "kind": "NON_NULL", "name": null, "ofType": { "kind": "SCALAR", "name": "Int", "ofType": null } }, "defaultValue": null }, { "name": "foo", "description": null, "type": { "kind": "SCALAR", "name": "Int", "ofType": null }, "defaultValue": "null" }, { "name": "bar", "description": null, "type": { "kind": "NON_NULL", "name": null, "ofType": { "kind": "SCALAR", "name": "Int", "ofType": null } }, "defaultValue": "10" } ``` </details> ## System Information Python 3.11 Ubuntu 22.10 Strawberry version: 0.209.2
closed
2023-10-18T09:52:49Z
2025-03-20T15:56:26Z
https://github.com/strawberry-graphql/strawberry/issues/3158
[ "bug" ]
ichorid
7
deezer/spleeter
tensorflow
130
[Bug] Tuple formatting incorrectly included in output directory name
## Description I am using the [separator.py](https://github.com/deezer/spleeter/blob/master/spleeter/separator.py) file to include `spleeter` in my own Python development. The [separate_to_file](https://github.com/deezer/spleeter/blob/85ff00797f6c615c62885793923eca952e9e791f/spleeter/separator.py#L93) function is erroneously including parentheses in the name of the output directory. The user does not have a way to avoid this formatting. Example: > Input filename: `GilScottHeron_WeAlmostLostDetroit.mp3` > Output directory name : `('GilScottHeron_WeAlmostLostDetroit', '.mp3')/` ## Step to reproduce 1. Installed using `pip` 2. Run as a Python script 3. Got no error. The output directory name formatting is tuple. ```python from spleeter.spleeter.separator import Separator separator = Separator('spleeter:2stems') filein = 'GilScottHeron_WeAlmostLostDetroit.mp3' fileout = './stems' separator.separate_to_file(filein, fileout, codec='mp3') ``` ## Output Output directory name : `./stems/('GilScottHeron_WeAlmostLostDetroit', '.mp3')/` Expected output: `./stems/GilScottHeron_WeAlmostLostDetroit/` ## Environment <!-- Fill the following table --> | | | | ----------------- | ------------------------------- | | OS | MacOS | | Installation type | `pip` | | RAM available | 8 GB | | Hardware spec | CPU: 3.2 GHz Intel Core i5, GPU: NVIDIA GeForce GT 755M 1 GB | ## Additional context The reason for this bug is [line 124 in `separator.py`](https://github.com/deezer/spleeter/blob/85ff00797f6c615c62885793923eca952e9e791f/spleeter/separator.py#L124). There needs to be a `[0]` added after the output of `splitext` so that the directory name is created from a `string`, not a `tuple`.
closed
2019-11-23T23:27:28Z
2019-11-25T14:34:13Z
https://github.com/deezer/spleeter/issues/130
[ "bug", "next release" ]
johnwmillr
2
MycroftAI/mycroft-core
nlp
2,425
Language Settings not working
## Be clear about the software, hardware and version you are running * I'm running a rapsberrypi 3 * With Mycroft from master branch * With the standard Wake Word ## Try to provide steps that we can use to replicate the Issue install mycroft as in the tutortial described use the command: mycroft-config set lang "de-de" restart mycroft instance mycroft is still only working in english and not in german or any other language
closed
2019-12-13T19:11:30Z
2019-12-14T21:00:18Z
https://github.com/MycroftAI/mycroft-core/issues/2425
[]
flozi00
8
adbar/trafilatura
web-scraping
81
Trafilatura duplicating text
Issue described [here](https://stackoverflow.com/questions/67812700/has-anyone-experience-issues-with-duplicated-text-while-using-trafilatura)
closed
2021-06-03T13:31:37Z
2021-06-04T17:12:28Z
https://github.com/adbar/trafilatura/issues/81
[ "bug" ]
cta2106
8
iperov/DeepFaceLab
deep-learning
820
Is OpenCL supported ?
I have an AMD videocard and thus i cannot run the proprietary cuda. Is it possible or be possible in the future to use OpenCL ?
open
2020-07-08T20:01:17Z
2023-06-08T22:24:52Z
https://github.com/iperov/DeepFaceLab/issues/820
[]
ghost
3
plotly/dash-table
dash
622
Table export to xlsx, applying styles
It would be amazing to be able to export the table including the formats applied to the dash table. This was already hinted at here: https://github.com/plotly/dash-table/issues/313#issuecomment-503628712
open
2019-10-09T05:16:48Z
2022-09-20T08:14:46Z
https://github.com/plotly/dash-table/issues/622
[ "dash-type-enhancement" ]
bjonen
3
bmoscon/cryptofeed
asyncio
738
Do XX on websocket error?
I am listening to bybit websocket and doing operations on trades >f = FeedHandler() f.add_feed(BYBIT, channels=[TRADES], symbols=['BTC-USD-PERP'], callbacks={TRADES: trade}, timeout=-1) f.run() Whenever the live wss goes down, I get this expected trackback error. >WARNING : BYBIT.ws.1: encountered connection issue no close frame received or sent - reconnecting in 1.0 seconds... Traceback (most recent call last): File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 944, in transfer_data message = await self.read_message() File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 1013, in read_message frame = await self.read_data_frame(max_size=self.max_size) File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 1089, in read_data_frame frame = await self.read_frame(max_size) File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 1144, in read_frame frame = await Frame.read( File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/framing.py", line 70, in read data = await reader(2) File "/usr/lib/python3.8/asyncio/streams.py", line 723, in readexactly await self._wait_for_data('readexactly') File "/usr/lib/python3.8/asyncio/streams.py", line 517, in _wait_for_data await self._waiter ConnectionResetError: [Errno 104] Connection reset by peer > >The above exception was the direct cause of the following exception: > >Traceback (most recent call last): File "/home/ubuntu/.local/lib/python3.8/site-packages/cryptofeed/connection_handler.py", line 69, in _create_connection await self._handler(connection, self.handler) File "/home/ubuntu/.local/lib/python3.8/site-packages/cryptofeed/connection_handler.py", line 115, in _handler async for message in connection.read(): File "/home/ubuntu/.local/lib/python3.8/site-packages/cryptofeed/connection.py", line 320, in read async for data in self.conn: File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 481, in __aiter__ yield await self.recv() File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 552, in recv await self.ensure_open() File "/home/ubuntu/.local/lib/python3.8/site-packages/websockets/legacy/protocol.py", line 920, in ensure_open raise self.connection_closed_exc() websockets.exceptions.ConnectionClosedError: no close frame received or sent` Because of timeout=-1 the program continues to run as expected once the socket is back. But whenever there an error in wss (ie the above takes place) i want to call a function (to cancel all orders in bybit). How do i call a function on error?
closed
2021-12-07T16:12:41Z
2021-12-11T15:11:28Z
https://github.com/bmoscon/cryptofeed/issues/738
[ "question" ]
warproxxx
1
taverntesting/tavern
pytest
721
How to save a list
Hello, I'm testing a REST API which controls the network configuration of a product. In the first test stage, I want to backup the current configuration, so that after my actual test stages, I can have one more stage which will restore it. The problem is that part of this network configuration is stored in lists of unknown length (namely, the IP addresses). I tried the naive approach: ```yaml --- test_name: PUT:api/net/:ifname strict: - json:off stages: - name: Save the configuration of eth0 for further restoration request: url: http://{tavern.env_vars.OFORA_HOST}:8080/api/net/eth0 method: GET response: status_code: 200 save: json: ipv4_method: ipv4.method ipv6_method: ipv6.method ipv6_addresses: ipv6.addresses /* some test stages */ - name: Restore the original configuration request: url: http://{tavern.env_vars.OFORA_HOST}:8080/api/net/eth0 json: autoconnect: False ipv4: method: "{ipv4_method:s}" ipv6: method: "{ipv6_method:s}" addresses: "{ipv6_addresses}" mtu: 0 method: PUT response: status_code: 200 ``` Which generates the `WARNING tavern.util.dict_util:dict_util.py:46 Formatting 'ipv6_addresses' will result in it being coerced to a string (it is a <class 'box.box_list.BoxList'>)` warning and of course, the API complains that tipe tipe of the value is string when it is expecting an array. That was apparently to be expected according to the documentation: > only ‘simple’ values like integers, strings, or float values can be saved. Trying to save a ‘block’ of data such as a JSON list or object is currently unsupported and will cause the test to fail. I also tried with `$ext` blocks but got the same warning. Is there a way to save a list and then, retrieve it in order to pass it as a request argument? Thank you by advance :)
closed
2021-10-15T08:36:34Z
2022-01-04T12:40:45Z
https://github.com/taverntesting/tavern/issues/721
[]
ncarrier
2
OpenBB-finance/OpenBB
machine-learning
6,825
[🕹️] Follow on X
### What side quest or challenge are you solving? Follow on X ### Points 50 ### Description Follow on X ### Provide proof that you've completed the task ![image](https://github.com/user-attachments/assets/68e50b88-274a-4321-877d-4ecf2643d63b)
closed
2024-10-20T13:31:20Z
2024-10-21T12:58:32Z
https://github.com/OpenBB-finance/OpenBB/issues/6825
[]
sateshcharan
1
ipython/ipython
data-science
14,799
Add typst to the display options
[typst](https://typst.app/docs/reference) is gaining serious traction, and rightfully so. I am curios if adding this to the available display types is in the plan: IPython/core/display.py
closed
2025-02-27T01:17:12Z
2025-03-05T12:24:05Z
https://github.com/ipython/ipython/issues/14799
[]
aeslaughter
3
viewflow/viewflow
django
169
'NoneType' object has no attribute '_meta' during ProcessListView rendering
Environment: Request Method: GET Request URL: http://127.0.0.1:8000/crm/flows/ Django Version: 1.10.5 Python Version: 3.6.0 Installed Applications: ['django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', 'material', 'material.frontend', 'material.admin', 'crm.apps.CrmConfig', 'django_mailbox', 'django_markdown', 'viewflow'] Installed Middleware: ['django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware'] Traceback: File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/core/handlers/exception.py" in inner 39. response = get_response(request) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/core/handlers/base.py" in _get_response 187. response = self.process_exception_by_middleware(e, request) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/core/handlers/base.py" in _get_response 185. response = wrapped_callback(request, *callback_args, **callback_kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/views/generic/base.py" in view 68. return self.dispatch(request, *args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/utils/decorators.py" in _wrapper 67. return bound_func(*args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/contrib/auth/decorators.py" in _wrapped_view 23. return view_func(request, *args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/utils/decorators.py" in bound_func 63. return func.__get__(self, type(self))(*args2, **kwargs2) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/viewflow/views/list.py" in dispatch 216. return super(ProcessListView, self).dispatch(request, *args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/viewflow/views/base.py" in dispatch 85. super(FlowViewPermissionMixin, self).dispatch)(*args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/contrib/auth/decorators.py" in _wrapped_view 23. return view_func(request, *args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/views/generic/base.py" in dispatch 88. return handler(request, *args, **kwargs) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django/views/generic/list.py" in get 159. self.object_list = self.get_queryset() File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/viewflow/views/list.py" in get_queryset 205. return self.filter.qs File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/filterset.py" in qs 195. if not self.form.is_valid(): File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/filterset.py" in form 220. for name, filter_ in six.iteritems(self.filters)]) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/filterset.py" in <listcomp> 220. for name, filter_ in six.iteritems(self.filters)]) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/filters.py" in field 159. label=self.label, widget=self.widget, File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/filters.py" in fget 115. model, self.name, self.lookup_expr, self.exclude File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/utils.py" in label_for_filter 219. name = verbose_field_name(model, field_name) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/utils.py" in verbose_field_name 168. parts = get_field_parts(model, field_name) File "/Users/lukasz/Virtualenvs/miracolo/lib/python3.6/site-packages/django_filters/utils.py" in get_field_parts 86. opts = model._meta Exception Type: AttributeError at /crm/flows/ Exception Value: 'NoneType' object has no attribute '_meta'
closed
2017-01-17T12:14:20Z
2017-01-20T09:28:47Z
https://github.com/viewflow/viewflow/issues/169
[]
lukaszolek
2
frappe/frappe
rest-api
31,598
minor: css on form-grid error class
`develop` Seems border-radius is incorrect when grid is in error mode ... (no rows on child) ![Image](https://github.com/user-attachments/assets/5968f6c3-c9b0-4fdb-bfbf-8cf8e13285b8)
closed
2025-03-08T21:52:40Z
2025-03-24T00:16:46Z
https://github.com/frappe/frappe/issues/31598
[ "bug" ]
git-avc
0
praw-dev/praw
api
1,817
contributor_subreddits returns a list with only subreddits you also moderate, the docs should reflect this
**Describe the bug** Hi folks! According to the docs, `contributor_subreddits()` should `return a ListingGenerator of contributor subreddits. These are subreddits in which the user is an approved user`. According to my testing however, this is only partly true. It does return a list of subreddits in which the authenticated user is a contributor, however the list is restricted to subreddits the user also moderates. Both Reddit (https://www.reddit.com/subreddits/mine/contributor/) and the API (https://www.reddit.com/dev/api#GET_subreddits_mine_contributor) work the same, so it probably works as intended (I assume we can't get the full list from the API). But it wouldn't hurt to add a small notice like such: > These are subreddits in which the user is **a moderator and** an approved user. That's just a bit more clear and would help to [prevent confusion](https://www.reddit.com/r/redditdev/comments/oeayi9/how_a_bot_can_know_if_its_approved/). Cheers! Slightly related to #710 and #246. **To Reproduce** ``` reddit = praw.Reddit(username=AmputatorBot, ...) for subreddit in reddit.user.contributor_subreddits(limit=None): print(str(subreddit)) ``` e.g. response: `AmputatorBot `< moderating (r/AmputatorBot) `u_AmputatorBot` < self (..) but missing all non-modded contributing subreddits **Expected behavior** The docs say the following: ``` contributor_subreddits(...) Return a ListingGenerator of contributor subreddits. These are subreddits in which the user is an approved user. ``` **System Info** - OS: Windows 10 - Python: 3.7.8 - PRAW Version: 7.4.0
closed
2021-11-15T19:04:21Z
2021-11-16T00:11:04Z
https://github.com/praw-dev/praw/issues/1817
[]
jvdburgh
4
litestar-org/polyfactory
pydantic
434
Bug: Annotations for nested types are ignored
### Description When a pydantic model contains a simple annotated attribute, the restrictions from the annotation are used for generating the value. Example: ```python Dimension = Annotated[int, Field(gt=1000, lt=2000)] class Item(BaseModel): x: Dimension class ItemFactory(ModelFactory): __model__ = Item print(ItemFactory.build()) ``` ``` >>> x=1456 ``` However, if I change the Item model to ```python class Item(BaseModel): dimensions: list[Dimension] ``` I get the following error saying that polyfactory generated the value 8569 ``` >>> pydantic_core._pydantic_core.ValidationError: 1 validation error for Item dimensions.0 Input should be less than 2000 [type=less_than, input_value=8569, input_type=int] For further information visit https://errors.pydantic.dev/2.4/v/less_than ``` ### URL to code causing the issue _No response_ ### MCVE ```python from polyfactory.factories.pydantic_factory import ModelFactory from typing import Annotated from pydantic import BaseModel, Field Dimension = Annotated[int, Field(gt=1000, lt=2000)] class Item(BaseModel): dimensions: list[Dimension] class ItemFactory(ModelFactory): __model__ = Item print(ItemFactory.build()) ``` ### Steps to reproduce ```bash 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error ``` ### Screenshots "In the format of: `![SCREENSHOT_DESCRIPTION](SCREENSHOT_LINK.png)`" ### Logs _No response_ ### Release Version 2.11.0 ### Platform - [X] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
closed
2023-11-07T13:45:19Z
2025-03-20T15:53:10Z
https://github.com/litestar-org/polyfactory/issues/434
[ "bug" ]
kabell
1
yunjey/pytorch-tutorial
deep-learning
197
已经解决了win10下的训练自己的数据问题,加Q群857449786 注明pytorch-tutorial 共同研究
已经解决了win10下的训练自己的数据问题,加Q群857449786 注明pytorch-tutorial 共同研究
open
2019-11-23T07:08:16Z
2020-08-17T03:31:51Z
https://github.com/yunjey/pytorch-tutorial/issues/197
[]
QQ2737499951
2
influxdata/influxdb-client-python
jupyter
669
Asynchronous client ignoring write precision when set on Point
### Specifications * Client Version: 1.46.0 * InfluxDB Version: 2.7.10 ### Code sample to reproduce problem ```python import asyncio from influxdb_client import Point, WritePrecision from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync _HOST = "http://localhost:8086" _ORG = "primary" _TOKEN = "token" _BUCKET = "MY_BUCKET" _TIMESTAMP = 1725588000000 # milliseconds, september 6th async def main() -> None: p = Point("debug").field("myval", 42).time(_TIMESTAMP, WritePrecision.MS) client = InfluxDBClientAsync(url=_HOST, token=_TOKEN, org=_ORG) write_api = client.write_api() await write_api.write(bucket=_BUCKET, record=p) await client.close() if __name__ == "__main__": asyncio.run(main()) ``` ### Expected behavior The write with `InfluxDBClientAsync` to work the same as `InfluxDBClient` does with Point defined write precision. ### Actual behavior The `InfluxDBClientAsync` does not respect the Point write precision, instead defaults to and uses `DEFAULT_WRITE_PRECISION`. ### Additional info If the write precision is explicitly stated in the `write_api.write` call, it is handled correctly. Also the docs for the function states that Point data takes precedence which does not happen. Looking into the calls, I noticed that even though the docstring says that, the `self._serialize` call in the `WriteApiAsync.write` has the `precision_from_point` arguments is set explicitly false. The `self._serialize` call does the extraction right, but the `body` is built incorrectly because it only uses the `write_precision` of the function.
closed
2024-09-13T13:23:48Z
2024-10-09T07:59:57Z
https://github.com/influxdata/influxdb-client-python/issues/669
[ "bug" ]
lundaw
0
microsoft/MMdnn
tensorflow
467
Could not support LeakyReLU and ConvTranspose2d in pytorch to IR
Platform (like ubuntu 16.04/win10):win10 Python version:3.5 Source framework with version (like Tensorflow 1.4.1 with GPU):pytorch with GPU Destination framework with version (like CNTK 2.3 with GPU):caffe Pre-trained model path (webpath or webdisk path): Running scripts:mmtoir -f pytorch -d unet --inputShape 1,256,256 -n .\model.pth
open
2018-10-24T10:25:36Z
2018-10-24T10:25:36Z
https://github.com/microsoft/MMdnn/issues/467
[]
brisyramshere
0
gradio-app/gradio
data-visualization
10,826
Tackle iframe resizer issues
### Describe the bug As reported by @jsulz, the presence of the certain components, such as the `gr.Dataframe` can make a Gradio app hosted on Spaces have infinitely long vertical scrolling. We've seen similar issues related to the iframe resizer on other Gradio apps, we should fix this. @pngwn do you want to take this on? ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction https://huggingface.co/spaces/huggingface/sizzle/commit/5d4c24bdecc1364c5c4e21af4b6a6cab381264f7 (private Space) ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell gradio==5.20.1 ``` ### Severity I can work around it
open
2025-03-17T21:19:15Z
2025-03-20T20:31:49Z
https://github.com/gradio-app/gradio/issues/10826
[ "bug" ]
abidlabs
1
biolab/orange3
data-visualization
6,175
Data Table hangs in in qt6
**What's wrong?** On MacOS with pyqt6 when viewing a large dataset, specifically one with many columns, scrolling horizontally causes Orange to hang. **How can we reproduce the problem?** run this in Python Script: (maybe try smaller or larger tables) ``` import numpy as np from Orange.data import Table, Domain, ContinuousVariable domain = Domain([ContinuousVariable(str(i)) for i in range(10000)]) arr = np.random.random((100, 10000)) out_data = Table.from_numpy(domain, arr) ``` open in Data Table and drag the scroll bar left and right a bit. (if the widget window is small it tends to handle it a little better) I assume the problem lies with the item delegates as removing them like so fixed the problem for me. ``` diff --git a/Orange/widgets/data/owtable.py b/Orange/widgets/data/owtable.py --- a/Orange/widgets/data/owtable.py +++ b/Orange/widgets/data/owtable.py @@ -264,7 +264,6 @@ class OWDataTable(OWWidget): def _create_table_view(self): view = DataTableView() view.setSortingEnabled(True) - view.setItemDelegate(TableDataDelegate(view)) if self.select_rows: view.setSelectionBehavior(QTableView.SelectRows) @@ -378,13 +377,6 @@ class OWDataTable(OWWidget): QColor(*c) for c in data.domain.class_var.colors] else: color_schema = None - if self.show_distributions: - view.setItemDelegate( - TableBarItemDelegate( - view, color=self.dist_color, color_schema=color_schema) - ) - else: - view.setItemDelegate(TableDataDelegate(view)) # Enable/disable view sorting based on data's type view.setSortingEnabled(is_sortable(data)) ```
closed
2022-10-20T09:09:26Z
2022-11-29T15:42:21Z
https://github.com/biolab/orange3/issues/6175
[ "bug" ]
noahnovsak
2
streamlit/streamlit
deep-learning
10,649
Preserve `st.column_config.Column` visibility restrictions in the UI
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary Thanks to #10264 we can hide/unhide columns directly from the UI but I have two concerns (one subjective and one that could affect all users) : 1- I expected the "Visibility" icon to always be present in the UI (of course after hovering over the table), even if no columns have been hidden yet (whether via [`st.column_config.Column`](https://docs.streamlit.io/develop/api-reference/data/st.column_config/st.column_config.column) or directly in the UI) ![Image](https://github.com/user-attachments/assets/97da341d-9497-417a-a049-f93b07a1e9c6) 2- In my use case, I load a table from the database (_see code below_) and some columns shouldn’t be exposed to the end user. That’s why I tweak the columns configuration under the hood. But with the new feature, it becomes useless since the column (name + content) can be made visible again from the UI <details> <summary>Show code</summary> ```python import pandas as pd import streamlit as st @st.cache_data def load_data() -> pd.DataFrame: """Load the data.""" return pd.DataFrame( { "col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [7, 8, 9], "confidential": ["a", "b", "c"], }, ) st.dataframe(load_data(), column_config={"confidential": {"hidden": True}}) ``` </details> ![Image](https://github.com/user-attachments/assets/c129bbdf-7c3f-4dcc-89a9-1dd7e5801bb6)
open
2025-03-05T10:12:27Z
2025-03-21T17:06:01Z
https://github.com/streamlit/streamlit/issues/10649
[ "type:enhancement", "feature:st.dataframe", "feature:st.data_editor", "feature:st.column_config" ]
VERBOSE-01
3
automl/auto-sklearn
scikit-learn
868
SIGSEGV
auto-sklearn was exactly I was looking for, unfortunately fails even on example from docs: ```python import sklearn.model_selection import sklearn.datasets import sklearn.metrics import autosklearn.regression def main(): X, y = sklearn.datasets.load_boston(return_X_y=True) feature_types = (['numerical'] * 3) + ['categorical'] + (['numerical'] * 9) X_train, X_test, y_train, y_test = \ sklearn.model_selection.train_test_split(X, y, random_state=1) automl = autosklearn.regression.AutoSklearnRegressor( time_left_for_this_task=120, per_run_time_limit=30, tmp_folder='/tmp/autosklearn_regression_example_tmp', output_folder='/tmp/autosklearn_regression_example_out', ) automl.fit(X_train, y_train, dataset_name='boston', feat_type=feature_types) print(automl.show_models()) predictions = automl.predict(X_test) print("R2 score:", sklearn.metrics.r2_score(y_test, predictions)) if __name__ == '__main__': main() ``` ``` /home/.../.venv/bin/python3.8 /home/.../workspace/varia-private/qtrading/asl.py /home/.../.venv/lib/python3.8/site-packages/pyparsing.py:3174: FutureWarning: Possible set intersection at position 3 self.re = re.compile(self.reString) [WARNING] [2020-05-31 16:35:21,635:AutoMLSMBO(1)::boston] Could not find meta-data directory /home/.../.venv/lib/python3.8/site-packages/autosklearn/metalearning/files/r2_regression_dense Process finished with exit code 139 (interrupted by signal 11: SIGSEGV) ``` OS: Ubuntu 20 Python: 3.8.2
closed
2020-05-31T14:36:20Z
2020-06-09T09:52:20Z
https://github.com/automl/auto-sklearn/issues/868
[]
iirekm
1