repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
modin-project/modin
data-science
6,849
Possible to remove to_pandas calls in merge and join operations
In query_compiler.merge and query_compiler.join we use `to_pandas()` eg [right_pandas = right.to_pandas()](https://github.com/modin-project/modin/blob/7ef544f4467ddea18cfbb51ad2a6fcbbb12c0db3/modin/core/storage_formats/pandas/query_compiler.py#L525) in This operation in the main thread is blocking. This could be expensive if the right dataframe size is too large. It is possible to remove the `to_pandas` calls by replacing `apply_full_axis` with broadcast_apply_full_axis and pass the `right` dataframe to `broadcast_apply_full_axis` as _Originally suggested by @YarShev in https://github.com/modin-project/modin/issues/5524#issuecomment-1880982441_ and
closed
2024-01-10T14:04:22Z
2024-01-11T16:18:29Z
https://github.com/modin-project/modin/issues/6849
[]
arunjose696
1
aiortc/aiortc
asyncio
201
how can i get a certain channel and sample_rate like `channel=1 sample_rate=16000` when i use `MediaRecorder, MediaPlayer or AudioTransformTrack` to get audio frame ?
hi, i use MediaPlayer to read a wav file , and it not works when i change options parameters . to get origin data, i have to use channel=2 and sample_rate=48000 to save it . does options works? please help me . ```python async def save_wav(fine_name): # player = MediaPlayer(fine_name, options={'channels': '1', 'sample_rate': '16000'}) with wave.open(fine_name, 'rb') as rf: print("rf.getnchannels():", rf.getnchannels()) print("rf.getframerate():", rf.getframerate()) print("rf.getsampwidth():", rf.getsampwidth()) player = MediaPlayer(fine_name) frames = [] frame = None try: frame = await player.audio.recv() except Exception as e: print("error 1:") print("type(e):", type(e)) print(e) while frame is not None: for p in frame.planes: data = p.to_bytes() # print("p.buffer_size):", p.buffer_size) # print("len(data):", len(data)) frames.append(data) try: frame = await player.audio.recv() except Exception as e: print("error 2:") print("type(e):", type(e)) print(e) frame = None wave_save_path = os.path.join(file_path, "save.wav") if wave_save_path is not None: p = pyaudio.PyAudio() CHANNELS = 2 FORMAT = pyaudio.paInt16 RATE = 48000 print("p.get_sample_size(FORMAT):", p.get_sample_size(FORMAT)) wf = wave.open(wave_save_path, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() with wave.open(wave_save_path, 'rb') as rf: print("rf.getnchannels():", rf.getnchannels()) print("rf.getframerate():", rf.getframerate()) print("rf.getsampwidth():", rf.getsampwidth()) ``` ``` 2019-08-27 16:02:14,128 asyncio-DEBUG __init__:65 Using selector: EpollSelector rf.getnchannels(): 1 rf.getframerate(): 16000 rf.getsampwidth(): 2 ... ALSA lib pcm.c:2495:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.rear ALSA lib pcm.c:2495:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.center_lfe ALSA lib pcm.c:2495:(snd_pcm_open_noupdate) Unknown PCM cards.pcm.side ALSA lib pcm_route.c:867:(find_matching_chmap) Found no matching channel map ALSA lib pcm_route.c:867:(find_matching_chmap) Found no matching channel map ALSA lib pcm_route.c:867:(find_matching_chmap) Found no matching channel map ALSA lib pcm_route.c:867:(find_matching_chmap) Found no matching channel map p.get_sample_size(FORMAT): 2 rf.getnchannels(): 2 rf.getframerate(): 48000 rf.getsampwidth(): 2 ```
closed
2019-08-27T04:16:09Z
2023-12-10T16:30:53Z
https://github.com/aiortc/aiortc/issues/201
[]
supermanhuyu
5
jadore801120/attention-is-all-you-need-pytorch
nlp
79
Question about beamsearch
hello, Your code is very clear! However, I have a quesion about beam search in your code. Why did you do two sorting operations in transformer/beam.py? Is there any special purpose? ![image](https://user-images.githubusercontent.com/27281510/50480257-d1164780-0a15-11e9-8591-14e237c8ed6f.png) Thanks a lot!
closed
2018-12-27T12:32:34Z
2019-12-08T10:28:40Z
https://github.com/jadore801120/attention-is-all-you-need-pytorch/issues/79
[]
ZhengkunTian
2
hzwer/ECCV2022-RIFE
computer-vision
142
关于新添加的VGG模型
您好h佬,最近在试图训练RIFE时,发现RIFE更新了新的VGG损失函数相关代码,但在rife.py中相关代码被注释掉了。单纯的取消注释并修改相关代码后并不能顺利运行,想请问这部分工作是否是完成的。不胜感激。 就像这样 ``` self.vgg = VGGPerceptualLoss().to(device) # loss_G = loss_l1 + loss_cons + loss_ter loss_G = self.vgg(pred, gt) + loss_cons + loss_ter ``` When trying to train RIFE recently, I found that RIFE updated the new VGG loss function related code, but the related code in rife.py was commented out. Simply uncomment and modify the relevant code can not start train, I would like to ask whether this part of the work is completed. I am very grateful. like,this ``` self.vgg = VGGPerceptualLoss().to(device) # loss_G = loss_l1 + loss_cons + loss_ter loss_G = self.vgg(pred, gt) + loss_cons + loss_ter ```
closed
2021-04-19T01:05:32Z
2021-04-21T09:03:28Z
https://github.com/hzwer/ECCV2022-RIFE/issues/142
[]
98mxr
2
miguelgrinberg/python-socketio
asyncio
455
restricting access to socketio/client files with flask-socketio?
Hi, i am having a problem where i am able to download certain socketio files from my flask application. sending a call to https://localhost:port/socket.io/ downloads a file with 'sid' and other information. Similarly i am able to download different socketio files like : socket.io.tar.gz and socket.io.arj and other socketio compressed files by appending the names in the path. e.g. https://localhost:port/socket.io/socket.io.tar.gz gives me the file. after searching alot about this issue, one thing i think can be helpful is setting serveClient=false as it is recommended in production environment. but i am unable find any information on how and where to set this parameter in case of python flask socketio. So my question is how can we restrict access to these files? is there some socketio side configuration or some Content-Security-Policy i am missing. I ll be grateful if someone can help with this issue. Thanks
closed
2020-04-01T10:39:12Z
2020-04-02T11:25:44Z
https://github.com/miguelgrinberg/python-socketio/issues/455
[ "question" ]
raheel-ahmad
4
strawberry-graphql/strawberry
django
3,583
pyinstrument extension doesn't seem to give detail breakdown
<!-- Provide a general summary of the bug in the title above. --> I'm using strawberry with fastapi running everything in docker. I've tried using the pyinstrument extension as per the doc but am not getting breakdown of the execution. <!--- This template is entirely optional and can be removed, but is here to help both you and us. --> <!--- Anything on lines wrapped in comments like these will not show up in the final text. --> ## Describe the Bug When using pyinstruemnt extention, there is no breakdown. Only [Self] category. <!-- A clear and concise description of what the bug is. --> ## System Information - Operating system: MacOS - Strawberry version (if applicable): ## Additional Context <!-- Add any other relevant information about the problem here. --> <img width="1369" alt="image" src="https://github.com/user-attachments/assets/7d23a35a-9005-48bc-9bf1-ef37fd08d9ec">
open
2024-07-27T16:32:23Z
2025-03-20T15:56:48Z
https://github.com/strawberry-graphql/strawberry/issues/3583
[ "bug" ]
Vincent-liuwingsang
0
deepspeedai/DeepSpeed
machine-learning
6,692
Installing DeepSpeed in WSL.
I am using Windows 11. I have Windows Subsystem for Linux activated (Ubuntu) as well as installed CUDA, and Visual Studio C++ Build tools. I am trying to install deepspeed. However, I am getting the following 2 errors. Could anybody please help resolve this? ![Image](https://github.com/user-attachments/assets/cd4ae56a-5738-4cc5-bc1d-59db6be8a595) ![Image](https://github.com/user-attachments/assets/ffd310e3-e807-4371-b37d-96b8b0baa139)
closed
2024-10-30T20:17:24Z
2024-11-08T22:11:37Z
https://github.com/deepspeedai/DeepSpeed/issues/6692
[ "install", "windows" ]
anonymous-user803
5
chezou/tabula-py
pandas
156
tabula merges column in HDFC bank statement
Tabula merges columns of last page in HDFC bank statement and even if there is any field which is empty in any page then tabula does not detect that field and even it writes the output of nest column. tabula.read_pdf(pdfpath,pages='all',columns=['68.0,272.0,357.5,397.0,474.5,553.0']) I even tried to take column co-ordinate but tabula is not detecting it like Camelot did camelot separates columns if provided but tabula doesn't
closed
2019-06-26T13:17:36Z
2019-06-27T01:54:53Z
https://github.com/chezou/tabula-py/issues/156
[]
ayubansal1998
1
modin-project/modin
pandas
6,849
Possible to remove to_pandas calls in merge and join operations
In query_compiler.merge and query_compiler.join we use `to_pandas()` eg [right_pandas = right.to_pandas()](https://github.com/modin-project/modin/blob/7ef544f4467ddea18cfbb51ad2a6fcbbb12c0db3/modin/core/storage_formats/pandas/query_compiler.py#L525) in This operation in the main thread is blocking. This could be expensive if the right dataframe size is too large. It is possible to remove the `to_pandas` calls by replacing `apply_full_axis` with broadcast_apply_full_axis and pass the `right` dataframe to `broadcast_apply_full_axis` as _Originally suggested by @YarShev in https://github.com/modin-project/modin/issues/5524#issuecomment-1880982441_ and
closed
2024-01-10T14:04:22Z
2024-01-11T16:18:29Z
https://github.com/modin-project/modin/issues/6849
[]
arunjose696
1
mwaskom/seaborn
data-visualization
3,219
A violinplot in a FacetGrid can ignore the `split` argument
I try to produce a FacetGrid containing violin plots with the argument `split=True` but the violins are not split. See the following example: ```python import numpy as np import pandas as pd import seaborn as sns np.random.seed(42) df = pd.DataFrame( { "value": np.random.rand(20), "condition": ["true", "false"]*10, "category": ["right"]*10 + ["wrong"]*10, } ) g = sns.FacetGrid(data=df, col="category", hue="condition", col_wrap=5) g.map( sns.violinplot, "value", split=True, # it is irrelevant if this is present or not the violin plots are never split. ); ``` Plots can be seen here: https://stackoverflow.com/q/74617402/6018688
closed
2023-01-10T15:20:58Z
2023-01-10T23:40:53Z
https://github.com/mwaskom/seaborn/issues/3219
[]
fabianegli
4
matplotlib/mplfinance
matplotlib
619
PnF charts using just close.
I have a dataset with only 1 column that represents close price. I am unable to generate a PnF chart as it appears that PnF expects date, open, high, low & close. PnF charts are drawn using either High/Low or just considering close. Is there a way to generate a PnF with just close?
closed
2023-05-29T16:10:02Z
2023-05-30T10:22:51Z
https://github.com/matplotlib/mplfinance/issues/619
[ "question" ]
boomkap
4
NVlabs/neuralangelo
computer-vision
28
Cuda out of memory. Anyway to run training on 8GB GPU
Is there anyway to run training using nvidia gpu with only 8GB ? no matter how much time it take. But because I can't train on my gpu nvidia 3070 with 8GB. what parameters can I edit to solve this issue?
closed
2023-08-16T15:09:57Z
2023-08-25T06:24:26Z
https://github.com/NVlabs/neuralangelo/issues/28
[]
parzoe
14
ghtmtt/DataPlotly
plotly
202
scatterplot of time-data cross-connects
**Describe the bug** a bug plotting time-plots. the "line cross connects" a few places and runs back to start. **To Reproduce** 1. plot this data geopkg provided as a scatter plot - [time-plot-bug.zip](https://github.com/ghtmtt/DataPlotly/files/4298541/time-plot-bug.zip) 2. use x-field: format_date( "dato_tid",'yyyy-MM-dd hh:mm:ss') 3. use y-field: kotevann 4. check results in screenshot below **Screenshots** ![image](https://user-images.githubusercontent.com/36916831/76085144-c0fede00-5fb1-11ea-8f3e-d79bca8f7f17.png) ![image](https://user-images.githubusercontent.com/36916831/76084632-96605580-5fb0-11ea-887a-92356c6a099e.png) **Desktop (please complete the following information):** - OS: win10 - QGIS release: 3.12.0 - DataPlotly release: 3.3 **Additional context** I wonder if it have something with feature id? When i delete the "fid" (in the screenshot below) it works ![image](https://user-images.githubusercontent.com/36916831/76088241-f60e2f00-5fb7-11ea-967f-69cfc0515fb2.png)
closed
2020-03-06T13:38:54Z
2020-03-11T12:03:49Z
https://github.com/ghtmtt/DataPlotly/issues/202
[ "bug" ]
danpejobo
5
mwaskom/seaborn
data-visualization
3,542
[BUG] Edge color with `catplot` with `kind=bar`
Hello, When passing `edgecolor` to catplot for a bar, the argument doesn't reach the underlying `p.plot_bars` to generate the required output. Currently there is a line `edgecolor = p._complement_color(kwargs.pop("edgecolor", default), color, p._hue_map)` is _not_ passed into the block `elif kind=="bar"`. A local "hack" I implemented is to add a `kwargs["edgecolor"] = edgecolor` before `p.plot_bars` call. Let me know if I should provide more details. This is on version `0.13.0`.
closed
2023-10-27T07:33:09Z
2023-11-04T16:09:47Z
https://github.com/mwaskom/seaborn/issues/3542
[ "bug", "mod:categorical" ]
prabhuteja12
5
onnx/onnx
deep-learning
5,853
Request for Swish Op
# Swish/SiLU Do you have any plans to implement the Swish Op in ONNX? ### Describe the operator Swish is a popular Activation fuction. Its mathematical definition could be found at https://en.wikipedia.org/wiki/Swish_function TensorFLow has https://www.tensorflow.org/api_docs/python/tf/nn/silu Keras has https://keras.io/api/layers/activations/ (also in https://www.tensorflow.org/api_docs/python/tf/keras/activations/swish) Pytorch has https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html ### Can this operator be constructed using existing onnx operators? Yes, it could be implemented as a combination of Mul and Sigmoid Ops: x * Sigmoid (beta * x) ### Is this operator used by any model currently? Which one? Yes. Modern Yolo series like yolov5, yolov7, yolov8, yolop and EfficientNet all have such Swish Ops. Yolov5: https://github.com/ultralytics/yolov5/blob/master/models/tf.py#L224 EfficientNet: https://paperswithcode.com/method/efficientnet which has Swish in https://github.com/lukemelas/EfficientNet-PyTorch/blob/2eb7a7d264344ddf15d0a06ee99b0dca524c6a07/efficientnet_pytorch/model.py#L294 ### Are you willing to contribute it? (Y/N) Possibly Yes. ### Notes
open
2024-01-11T08:18:22Z
2025-02-01T06:43:04Z
https://github.com/onnx/onnx/issues/5853
[ "topic: operator", "stale", "contributions welcome" ]
vera121
7
sqlalchemy/sqlalchemy
sqlalchemy
11,994
missing type cast for jsonb in values for postgres?
### Discussed in https://github.com/sqlalchemy/sqlalchemy/discussions/11990 <div type='discussions-op-text'> <sup>Originally posted by **JabberWocky-22** October 12, 2024</sup> I'm using `values` to update multi rows in single execution in postgres. The sql failed due to type match on jsonb column, since it doesn't have a type cast and take text as fallback. Currently I can add type cast in update statement, but it will nice to add it in rendering just like uuid column. To Reproduce: ```python import sqlalchemy as sa from sqlalchemy.dialects.postgresql import JSONB table = sa.Table( "test", sa.MetaData(), sa.Column("id", sa.Integer), sa.Column("uuid", sa.Uuid, unique=True), sa.Column("extra", JSONB), ) engine = sa.create_engine("postgresql://xxx:xxx@localhost:1234/db") with engine.begin() as conn: table.create(conn, checkfirst=True) conn.execute( table.insert().values( [ {"id": 1, "uuid": "d24587a1-06d9-41df-b1c3-3f423b97a755"}, {"id": 2, "uuid": "4b07e1c8-d60c-4ea8-9d01-d7cd01362224"}, ] ) ) value = sa.values( sa.Column("id", sa.Integer), sa.Column("uuid", sa.Uuid), sa.Column("extra", JSONB), name="update_data" ).data( [ ( 1, "8b6ec1ec-b979-4d0b-b2ce-9acc6e4c2943", {"foo": 1}, ), ( 2, "a2123bcb-7ea3-420a-8284-1db4b2759d79", {"bar": 2}, ), ] ) conn.execute( table.update() .values(uuid=value.c.uuid, extra=value.c.extra) .where(table.c.id == value.c.id) ) ``` traceback: ```bash sqlalchemy.exc.ProgrammingError: (psycopg2.errors.DatatypeMismatch) column "extra" is of type jsonb but expression is of type text LINE 1: UPDATE test SET uuid=update_data.uuid, extra=update_data.ext... ^ HINT: You will need to rewrite or cast the expression. [SQL: UPDATE test SET uuid=update_data.uuid, extra=update_data.extra FROM (VALUES (%(param_1)s, %(param_2)s::UUID, %(param_3)s), (%(param_4)s, %(param_5)s::UUID, %(param_6)s)) AS update_data (id, uuid, extra) WHERE test.id = update_data.id] [parameters: {'param_1': 1, 'param_2': '8b6ec1ec-b979-4d0b-b2ce-9acc6e4c2943', 'param_3': '{"foo": 1}', 'param_4': 2, 'param_5': 'a2123bcb-7ea3-420a-8284-1db4b2759d79', 'param_6': '{"bar": 2}'}] ``` Versions: SQLAlchemy: 2.0.35 psycopg2-binary: 2.9.3 db: PostgreSQL 15.2 Have a nice day</div>
closed
2024-10-13T09:00:38Z
2024-12-03T08:43:54Z
https://github.com/sqlalchemy/sqlalchemy/issues/11994
[ "postgresql", "schema", "use case" ]
CaselIT
6
ageitgey/face_recognition
python
968
Crop image to preferred region to speed up detection
Hi everyone. My problem is that I cannot resize the input image to smaller resolution (because faces then are to small to be detected) to apply cnn detection. My application scenario is that faces only appear in some specific region of a frame. Is it okay to keep the image the original size, but crop only the region that faces most likely appear, then apply face detection to that cropped region and then just use it for recognition without resizing anything? Is this okay? Have anyone tried this please give me some advice. Thank you a lot!!!
closed
2019-11-05T03:56:06Z
2019-11-05T07:42:59Z
https://github.com/ageitgey/face_recognition/issues/968
[]
congphase
2
KevinMusgrave/pytorch-metric-learning
computer-vision
300
Error when using a Miner with ArcFaceLoss when training with Mixed Precision
I'm training my model with pytorch-lightning, using its mixed precision. When I tried to add a miner with the ArcFaceLoss, I got the following error: ``` File "/opt/conda/lib/python3.7/site-packages/pytorch_metric_learning/losses/base_metric_loss_function.py", line 34, in forward loss_dict = self.compute_loss(embeddings, labels, indices_tuple) File "/opt/conda/lib/python3.7/site-packages/pytorch_metric_learning/losses/large_margin_softmax_loss.py", line 105, in compute_loss miner_weights = lmu.convert_to_weights(indices_tuple, labels, dtype=dtype) File "/opt/conda/lib/python3.7/site-packages/pytorch_metric_learning/utils/loss_and_miner_utils.py", line 211, in convert_to_weights weights[indices] = counts / torch.max(counts) RuntimeError: Index put requires the source and destination dtypes match, got Half for the destination and Float for the source. ``` I guess the output of my model (which is a convolutional model) had `torch.float16` as its type and when converting the mined indices to weights, it ended up trying to put a `torch.float32` into the weights (which were created with the same dtype of my embedding). I can see that the code actually tries to convert the `counts` to the same dtype: ``` counts = c_f.to_dtype(counts, dtype=dtype) / torch.sum(counts) weights[indices] = counts / torch.max(counts) ``` However, when debugging, I noticed that it doesn't have any effect because `torch.is_autocast_enabled()` returns `True`.
closed
2021-04-08T11:01:39Z
2021-05-10T02:54:30Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/300
[ "bug", "fixed in dev branch" ]
fernandocamargoai
2
quokkaproject/quokka
flask
97
Relase PyPi package and change the core architecture
closed
2013-11-22T12:14:54Z
2015-07-16T02:56:42Z
https://github.com/quokkaproject/quokka/issues/97
[]
rochacbruno
6
deeppavlov/DeepPavlov
nlp
1,628
Predictions NER_Ontonotes_BERT_Mult for entities with interpunction
DeepPavlov version: 1.0.2 Python version: 3.8 Operating system: Ubuntu **Issue**: I am using the `ner_ontonotes_bert_mult` model to predict entities for text. For sentences with interpunction in the entities, this gives unexpected results. Before the 1.0.0 release, I used the [Deeppavlov docker image](https://hub.docker.com/r/deeppavlov/base-cpu) with the `ner_ontonotes_bert_mult` config as well. I didn't encounter these issues with the older version of Deeppavlov. **Content or a name of a configuration file**: ``` [ner_ontonotes_bert_mult](https://github.com/deeppavlov/DeepPavlov/blob/1.0.2/deeppavlov/configs/ner/ner_ontonotes_bert_mult.json) ``` **Command that led to the unexpected results**: ```python from deeppavlov import build_model deeppavlov_model = build_model( "ner_ontonotes_bert_mult", install=True, download=True) sentence = 'Today at 13:10 we had a meeting' output = deeppavlov_model([sentence]) print(output[0]) [['Today', 'at', '13', ':', '10', 'we', 'had', 'a', 'meeting']] print(output[1]) [['O', 'O', 'B-TIME', 'O', 'B-TIME', 'O', 'O', 'O', 'O']] ``` As you can see `13:10` is not recognized as a time entity as a whole, but `13` as `B-TIME`, `:` as O, and `10` as `B-time`. The same happens for names with interpunctions such as `E.A. Jones`. I was wondering what I could do to solve this issue, is it possible to fine-tune this model on such examples?
closed
2023-02-15T15:17:20Z
2023-03-16T08:22:50Z
https://github.com/deeppavlov/DeepPavlov/issues/1628
[ "bug" ]
ronaldvelzen
3
marcomusy/vedo
numpy
882
Slice error
Examples with `msh.intersect_with_plane` (tried torus and bunny from `Mesh.slice`) produce the same error : AttributeError: module 'vedo.vtkclasses' has no attribute 'vtkPolyDataPlaneCutter'
closed
2023-06-14T17:07:00Z
2023-10-18T13:09:54Z
https://github.com/marcomusy/vedo/issues/882
[]
mAxGarak
5
Evil0ctal/Douyin_TikTok_Download_API
fastapi
176
[BUG] Cannot read property 'JS_MD5_NO_COMMON_JS' of null
***发生错误的平台?*** 抖音 ***发生错误的端点?*** API-V1 http://127.0.0.1:8000/api?url= ***提交的输入值?*** https://www.douyin.com/video/7153585499477757192 ***是否有再次尝试?*** 是,发生错误后X时间后错误依旧存在。 ***你有查看本项目的自述文件或接口文档吗?*** 有,并且很确定该问题是程序导致的。官网的接口也试过,报500
closed
2023-03-14T03:23:14Z
2023-03-14T20:08:00Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/176
[ "BUG" ]
WeiLi1201
3
pytest-dev/pytest-django
pytest
790
Tests do not run without django-configuration installed.
In my project I do not use django-configuration as I don't really need it. When installing `pytest-django` I try to run my tests, here's what I've got: ``` pytest Traceback (most recent call last): File "/home/jakub/.virtualenvs/mobigol/bin/pytest", line 8, in <module> sys.exit(main()) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/_pytest/config/__init__.py", line 72, in main config = _prepareconfig(args, plugins) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/_pytest/config/__init__.py", line 223, in _prepareconfig pluginmanager=pluginmanager, args=args File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/hooks.py", line 286, in __call__ return self._hookexec(self, self.get_hookimpls(), kwargs) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/manager.py", line 93, in _hookexec return self._inner_hookexec(hook, methods, kwargs) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/manager.py", line 87, in <lambda> firstresult=hook.spec.opts.get("firstresult") if hook.spec else False, File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/callers.py", line 203, in _multicall gen.send(outcome) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/_pytest/helpconfig.py", line 89, in pytest_cmdline_parse config = outcome.get_result() File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/callers.py", line 80, in get_result raise ex[1].with_traceback(ex[2]) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/callers.py", line 187, in _multicall res = hook_impl.function(*args) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/_pytest/config/__init__.py", line 742, in pytest_cmdline_parse self.parse(args) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/_pytest/config/__init__.py", line 948, in parse self._preparse(args, addopts=addopts) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/_pytest/config/__init__.py", line 906, in _preparse early_config=self, args=args, parser=self._parser File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/hooks.py", line 286, in __call__ return self._hookexec(self, self.get_hookimpls(), kwargs) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/manager.py", line 93, in _hookexec return self._inner_hookexec(hook, methods, kwargs) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/manager.py", line 87, in <lambda> firstresult=hook.spec.opts.get("firstresult") if hook.spec else False, File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/callers.py", line 208, in _multicall return outcome.get_result() File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/callers.py", line 80, in get_result raise ex[1].with_traceback(ex[2]) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pluggy/callers.py", line 187, in _multicall res = hook_impl.function(*args) File "/home/jakub/.virtualenvs/mobigol/lib/python3.6/site-packages/pytest_django/plugin.py", line 239, in pytest_load_initial_conftests import configurations.importer ModuleNotFoundError: No module named 'configurations' ``` Also my package versions: ``` pytest==5.3.1 pytest-django==3.3.0 pytest-factoryboy==2.0.3 ``` Is `django-configuration` required? I couldn't find any information about it in the documentation.
closed
2020-01-04T17:42:33Z
2025-01-31T08:23:15Z
https://github.com/pytest-dev/pytest-django/issues/790
[ "bug" ]
jakubjanuzik
6
ranaroussi/yfinance
pandas
2,155
Wrong time stamp for 1h time frame for versions after 0.2.44
### Describe bug Whenever I am trying to download stock data for 1h time frame it shows wrong time frame. This problem was not present in 0.2.44 and previous versions. It was easier to use when it used to give output in local time frames ### Simple code that reproduces your problem import yfinance as yf print("\nyfinance version:", yf.__version__) ticker = 'AAPL' interval = '1h' data = yf.download(ticker, period='1mo', interval=interval) print("\nLast 7 Close Prices:") print(data['Close'].tail(7)) ### Debug log I downloaded stock data of AAPL in 0.2.44 version this is the print out. Last 7 Close Prices: Datetime 2024-11-25 11:30:00-05:00 230.206802 2024-11-25 12:30:00-05:00 230.414993 2024-11-25 13:30:00-05:00 230.684998 2024-11-25 14:30:00-05:00 230.520004 2024-11-25 15:30:00-05:00 232.880005 2024-11-26 09:30:00-05:00 234.360001 2024-11-26 10:30:00-05:00 235.139999 But when I downloaded stock data of AAPL in 0.2.50 version this is the print out. Ticker AAPL Datetime 2024-11-25 16:30:00+00:00 230.206802 2024-11-25 17:30:00+00:00 230.414993 2024-11-25 18:30:00+00:00 230.684998 2024-11-25 19:30:00+00:00 230.520004 2024-11-25 20:30:00+00:00 232.880005 2024-11-26 14:30:00+00:00 234.360001 2024-11-26 15:30:00+00:00 235.313507 ### Bad data proof ![1](https://github.com/user-attachments/assets/85f2a6e7-a018-4cb6-8638-58f9a3a43b7f) ![2](https://github.com/user-attachments/assets/2a03807d-0690-4494-915e-b339f56d9cba) ### `yfinance` version 0.2.50 ### Python version 3.10 ### Operating system _No response_
open
2024-11-26T16:10:00Z
2025-02-16T20:12:37Z
https://github.com/ranaroussi/yfinance/issues/2155
[]
indra5534
10
nonebot/nonebot2
fastapi
2,924
Plugin: LLOneBot-Master
### PyPI 项目名 nonebot-plugin-llob-master ### 插件 import 包名 nonebot_plugin_llob_master ### 标签 [{"label":"LLOneBot","color":"#e3e9e9"},{"label":"Windows","color":"#1da6eb"}] ### 插件配置项 _No response_
closed
2024-08-25T08:15:27Z
2024-08-27T13:20:46Z
https://github.com/nonebot/nonebot2/issues/2924
[ "Plugin" ]
kanbereina
5
smarie/python-pytest-cases
pytest
91
Enforce file naming pattern: automatically get cases from file named `test_xxx_cases.py`
We suggest this pattern in the doc, we could make it a default.
closed
2020-06-02T12:57:26Z
2020-07-09T09:18:12Z
https://github.com/smarie/python-pytest-cases/issues/91
[ "enhancement" ]
smarie
2
browser-use/browser-use
python
668
Unable to submit vulnerability report
### Type of Documentation Issue Incorrect documentation ### Documentation Page https://github.com/browser-use/browser-use/security/policy ### Issue Description The documentation states that security issues should be reported by creating a report at https://github.com/browser-use/browser-use/security/advisories/new. However, accessing this link results in a 404 error. It seems that the repository's private vulnerability reporting setting is not enabled. ref: https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/configuring-private-vulnerability-reporting-for-a-repository Could you update the settings to allow vulnerability reports to be submitted? ### Suggested Changes There is no need to update the document itself.
closed
2025-02-11T14:05:47Z
2025-02-22T23:31:32Z
https://github.com/browser-use/browser-use/issues/668
[ "documentation" ]
melonattacker
5
jowilf/starlette-admin
sqlalchemy
477
Enhancement: Register Page
What about an out-of-the-box register page? We have a login page, why not have a register page? We can use `Fields` system to make the registration form more dynamic.
open
2024-01-17T12:20:00Z
2024-01-27T20:55:33Z
https://github.com/jowilf/starlette-admin/issues/477
[ "enhancement" ]
hasansezertasan
0
snarfed/granary
rest-api
122
json feed: handle displayName as well as title
e.g. @aaronpk's articles feed: https://granary.io/url?input=html&output=jsonfeed&reader=false&url=http://aaronparecki.com/articles
closed
2017-12-05T20:59:31Z
2017-12-06T05:10:46Z
https://github.com/snarfed/granary/issues/122
[]
snarfed
0
eriklindernoren/ML-From-Scratch
deep-learning
55
Moore-Penrose pseudo-inverse in linear regression
Hi, I am reimplementing ml algorithms based on yours But I am a little confused about the part of the calculation of Moore-Penrose pseudoinverse in linear regression. https://github.com/eriklindernoren/ML-From-Scratch/blob/40b52e4edf9485c4e479568f5a41501914fdc55c/mlfromscratch/supervised_learning/regression.py#L111-L114 Why do not use`np.linalg.pinv(X)`, according to the docstring: ![image](https://user-images.githubusercontent.com/11924130/59895491-661f5980-9417-11e9-95b6-858fe988f6ec.png) It can compute the Moore-Penrose pseudo-inverse directly. Thanks!
open
2019-06-21T03:27:28Z
2019-11-20T16:09:03Z
https://github.com/eriklindernoren/ML-From-Scratch/issues/55
[]
liadbiz
3
fastapi/sqlmodel
pydantic
126
max_length does not work in Fields
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python from sqlmodel import SQLModel, Field class Locations(SQLModel, table=True): LocationName: str = Field(max_length=255) ``` ### Description When running the above code, I get a `ValueError: On field "LocationName" the following field constraints are set but not enforced: max_length` I also tried pydantic's documentation by changing the 'str' typing to `constr(max_length=255)` to no avail. ### Operating System Windows ### Operating System Details _No response_ ### SQLModel Version 0.0.4 ### Python Version 3.9.4 ### Additional Context _No response_
closed
2021-10-08T13:35:17Z
2024-04-03T16:05:03Z
https://github.com/fastapi/sqlmodel/issues/126
[ "question" ]
yudjinn
7
ading2210/poe-api
graphql
170
KeyError: 'payload'
Getting the following error ``` INFO:root:Setting up session... INFO:root:Downloading next_data... Traceback (most recent call last): File "/home/shubharthak/Desktop/apsaraAI/ChatGPT.py", line 10, in <module> client = poe.Client(api) File "/home/shubharthak/miniconda3/lib/python3.10/site-packages/poe.py", line 123, in __init__ self.connect_ws() File "/home/shubharthak/miniconda3/lib/python3.10/site-packages/poe.py", line 366, in connect_ws self.setup_connection() File "/home/shubharthak/miniconda3/lib/python3.10/site-packages/poe.py", line 149, in setup_connection self.next_data = self.get_next_data(overwrite_vars=True) File "/home/shubharthak/miniconda3/lib/python3.10/site-packages/poe.py", line 198, in get_next_data self.viewer = next_data["props"]["pageProps"]["payload"]["viewer"] KeyError: 'payload' ``` Code:- ``` import poe import sys import logging import os api = os.environ.get('poe') from IPython.display import display, Markdown, Latex poe.logger.setLevel(logging.INFO) client = poe.Client(api) def say(msg): ans = '' for chunk in client.send_message('chinchilla', msg, with_chat_break=False): # print(not chunk['text_new'].find("'''")) # if not chunk['text_new'].find("'''"): # print(chunk['text_new'], end=' ', flush=True) ans += chunk['text_new'] #yield(chunk['text_new']) print(chunk['text_new'], end = '', flush=True) # return ans # # res = Markdown(ans + ' ') # display(res) # print(display(res), end=' ') if __name__ == '__main__': while True: msg = input('> ') if 'bye' in msg or 'exit' in msg: break say(msg) print() print('Thank you for using me') ```
closed
2023-07-17T19:29:04Z
2023-07-17T19:38:47Z
https://github.com/ading2210/poe-api/issues/170
[]
shubharthaksangharsha
0
OWASP/Nettacker
automation
171
Issue in getting results via discovery funstion in service scanner
I was trying to perform the same operation on my localhost and results were different everytime. ```python In [1]: from lib.payload.scanner.service.engine import discovery In [2]: discovery("127.0.0.1") Out[2]: {443: 'UNKNOWN', 3306: 'UNKNOWN'} In [3]: discovery("127.0.0.1") Out[3]: {80: 'http', 443: 'UNKNOWN', 631: 'UNKNOWN', 3306: 'UNKNOWN', 5432: 'UNKNOWN', 8002: 'http'} In [4]: discovery("127.0.0.1") Out[4]: {80: 'http', 139: 'UNKNOWN', 443: 'UNKNOWN', 445: 'UNKNOWN', 631: 'UNKNOWN', 3306: 'UNKNOWN', 5432: 'UNKNOWN', 8001: 'UNKNOWN', 8002: 'http'} In [5]: discovery("127.0.0.1") Out[5]: {80: 'http', 139: 'UNKNOWN', 443: 'UNKNOWN', 445: 'UNKNOWN', 631: 'UNKNOWN', 3306: 'UNKNOWN', 5432: 'UNKNOWN', 8001: 'UNKNOWN', 8002: 'http'} ``` ![image](https://user-images.githubusercontent.com/21990986/41881942-d63dc2ea-7903-11e8-87a5-5084c6e74d16.png) Am I doing anything wrong or is it some problem with the module!! Performing a port scan however works fine for me. _________________ **OS**: `Ubuntu` **OS Version**: `16.04` **Python Version**: `2.7.12`
closed
2018-06-26T01:49:22Z
2021-02-02T20:28:14Z
https://github.com/OWASP/Nettacker/issues/171
[ "enhancement", "possible bug" ]
shaddygarg
8
newpanjing/simpleui
django
512
包括但不限于base.less等多个样式表文件对用户模型依赖问题
base.less 273 行: ``` #user_form{ background-color: white; margin: 10px; padding: 10px; //color: #5a9cf8; } ``` 当用户模型User被swap以后,其名称不再是user,这个选择器将失效,从而导致样式有一些怪异。
open
2025-02-05T12:22:14Z
2025-02-05T12:22:14Z
https://github.com/newpanjing/simpleui/issues/512
[]
WangQixuan
0
mljar/mljar-supervised
scikit-learn
447
Where can I find model details?
I want to see the best model parameters, preprocessing, etc so that I can reproduce it later or train the model again with the same parameters. Thanks,
closed
2021-07-30T19:37:58Z
2021-08-28T19:56:47Z
https://github.com/mljar/mljar-supervised/issues/447
[]
abdulwaheedsoudagar
1
fohrloop/dash-uploader
dash
73
Uploading multiple files shows wrong total file count in case of errors
Affected version: f033683 (flow-dev branch) Steps to reproduce 1. Use `max_file_size` for `du.Upload` 2. Upload multiple files (folder of files) where part of files (e.g. 2 files) are below `max_file_size` and part of files (e.g. 2 files) is above `max_file_size` 3. The upload text total files will reflect the *original* amount of selected files, even though some of the files were dropped away because of `max_file_size`. (In the figure: `Uploading (64.00 Mb, File 1/4)` should be `Uploading (64.00 Mb, File 1/2)`) ![image](https://user-images.githubusercontent.com/17479683/155592485-600ae9de-da18-46d8-9a06-7ce412733f30.png)
closed
2022-02-24T19:23:56Z
2022-02-24T19:29:21Z
https://github.com/fohrloop/dash-uploader/issues/73
[ "bug" ]
fohrloop
2
HumanSignal/labelImg
deep-learning
748
No module named 'libs.resources'
(ve) user1@comp1:~/path/to/labelImg$ python labelImg.py Traceback (most recent call last): File "labelImg.py", line 33, in <module> from libs.resources import * ModuleNotFoundError: No module named 'libs.resources' Ubuntu - **PyQt version:** 5
closed
2021-05-16T06:52:54Z
2021-05-17T05:00:50Z
https://github.com/HumanSignal/labelImg/issues/748
[]
waynemystir
1
huggingface/diffusers
deep-learning
10,080
Proposal to add sigmas option to FluxPipeline
**Is your feature request related to a problem? Please describe.** Flux's image generation is great, but it seems to have a tendency to remove too much detail. **Describe the solution you'd like.** Add the `sigmas` option to `FluxPipeline` to enable adjustment of the degree of noise removal. **Additional context.** I propose adding the `sigmas` option to `FluxPipeline`. The details are as follows. [Yntec](https://huggingface.co/Yntec) picked up a FLUX modification proposal from [Reddit](https://www.reddit.com/r/comfyui/comments/1g9wfbq/simple_way_to_increase_detail_in_flux_and_remove/), and [r3gm](https://huggingface.co/r3gm), the author of [stablepy](https://github.com/R3gm/stablepy), wrote the code for the logic part of the FLUX pipeline modification, and I made [a demo](https://huggingface.co/spaces/John6666/flux-sigmas-test) by making [a test commit on github](https://github.com/huggingface/diffusers/commit/ad3344e2be033887d854d2731757db8b80dcfb06), and it turned out that it was working as expected. This time, we only modified the pipeline for T2I for testing. During discussions with r3gm, it was discovered that [the `sigmas` option, which exists in StableDiffusionXLPipeline](https://github.com/huggingface/diffusers/blob/c96bfa5c80eca798d555a79a491043c311d0f608/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L841), does not exist in `FluxPipeline`, so the actual implementation was switched to porting the `sigmas` option. Also, in the current `FluxPipeline`, I also found a bug where specifying `timesteps` would probably result in an error because `sigmas` are hard-coded, even though the SDXL pipeline code is reused, so I fixed it while I was at it. If you want to use Reddit's suggested **0.95**, specify it as follows. ```py factor = 0.95 sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) sigmas = sigmas * factor image_sigmas = pipe( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", sigmas=sigmas ).images[0] ``` I will post some samples that were actually generated in the demo. Prompt: anthropomorphic pig Programmer with laptop, colorfull, funny / Seed: 9119 ![pig](https://github.com/user-attachments/assets/8db063eb-8dda-4d97-8828-c0dec201e8b6) Prompt: A painting by Picasso of Hatsune Miku in an office. Desk, window, books. / Seed: 9119 ![miku](https://github.com/user-attachments/assets/16435570-e65f-48fe-8a53-e67140684eb1) Prompt: 80s cinematic colored sitcom screenshot. young husband with wife. festive scene at a copper brewery with a wooden keg of enjoying burrito juice in the center. sitting cute little daughter. Display mugs of dark beer. Closeup. beautiful eyes. accompanied by halloween Shirley ingredients. portrait smile / Seed: 9119 ![family](https://github.com/user-attachments/assets/ce036c0f-e038-4686-9002-dafa8d2722bb)
closed
2024-12-02T11:14:40Z
2024-12-02T18:16:49Z
https://github.com/huggingface/diffusers/issues/10080
[]
John6666cat
3
AUTOMATIC1111/stable-diffusion-webui
deep-learning
15,773
[Bug]: CUDA error: an illegal instruction was encountered
### Checklist - [ ] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? The Generation stops and display this error CUDA error: an illegal instruction was encountered Complete log given below. ### Steps to reproduce the problem Occurs while generating the image after clicking the generate button. ### What should have happened? Should have generated the output. It goes upto 10 percent or so then quits. ### What browsers do you use to access the UI ? _No response_ ### Sysinfo [sysinfo-2024-05-13-05-11.json](https://github.com/AUTOMATIC1111/stable-diffusion-webui/files/15289638/sysinfo-2024-05-13-05-11.json) ### Console logs ```Shell venv "D:\AI\stable-diffusion-webui\venv\Scripts\Python.exe" Python 3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)] Version: v1.9.3 Commit hash: 1c0a0c4c26f78c32095ebc7f8af82f5c04fca8c0 Launching Web UI with arguments: --lowvram --precision full --no-half --skip-torch-cuda-test no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Loading weights [6ce0161689] from D:\AI\stable-diffusion-webui\models\Stable-diffusion\v1-5-pruned-emaonly.safetensors Creating model from config: D:\AI\stable-diffusion-webui\configs\v1-inference.yaml Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. D:\AI\stable-diffusion-webui\venv\lib\site-packages\huggingface_hub\file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`. warnings.warn( Startup time: 11.7s (prepare environment: 0.3s, import torch: 4.6s, import gradio: 1.3s, setup paths: 1.4s, initialize shared: 0.5s, other imports: 0.7s, load scripts: 1.1s, create ui: 0.9s, gradio launch: 0.7s). Applying attention optimization: Doggettx... done. Model loaded in 5.5s (load weights from disk: 1.1s, create model: 0.6s, apply weights to model: 3.3s, calculate empty prompt: 0.4s). 10%|████████▎ | 2/20 [00:06<00:58, 3.22s/it]Exception in thread MemMon:█▋ | 2/20 [00:02<00:23, 1.28s/it] Traceback (most recent call last): File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.10_3.10.3056.0_x64__qbz5n2kfra8p0\lib\threading.py", line 1016, in _bootstrap_inner self.run() File "D:\AI\stable-diffusion-webui\modules\memmon.py", line 53, in run free, total = self.cuda_mem_get_info() File "D:\AI\stable-diffusion-webui\modules\memmon.py", line 34, in cuda_mem_get_info return torch.cuda.mem_get_info(index) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\cuda\memory.py", line 663, in mem_get_info return torch.cuda.cudart().cudaMemGetInfo(device) RuntimeError: CUDA error: an illegal instruction was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. *** Error completing request *** Arguments: ('task(rxe7j3hmflc31l0)', <gradio.routes.Request object at 0x000002B1642C5A20>, 'hello', '', [], 1, 1, 7, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', 'Use same scheduler', '', '', [], 0, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {} Traceback (most recent call last): File "D:\AI\stable-diffusion-webui\modules\call_queue.py", line 57, in f res = list(func(*args, **kwargs)) File "D:\AI\stable-diffusion-webui\modules\call_queue.py", line 36, in f res = func(*args, **kwargs) File "D:\AI\stable-diffusion-webui\modules\txt2img.py", line 109, in txt2img processed = processing.process_images(p) File "D:\AI\stable-diffusion-webui\modules\processing.py", line 845, in process_images res = process_images_inner(p) File "D:\AI\stable-diffusion-webui\modules\processing.py", line 981, in process_images_inner samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) File "D:\AI\stable-diffusion-webui\modules\processing.py", line 1328, in sample samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) File "D:\AI\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 218, in sample samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "D:\AI\stable-diffusion-webui\modules\sd_samplers_common.py", line 272, in launch_sampling return func() File "D:\AI\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 218, in <lambda> samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m denoised = model(x, sigmas[i] * s_in, **extra_args) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\modules\sd_samplers_cfg_denoiser.py", line 237, in forward x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in)) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) File "D:\AI\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps return self.inner_model.apply_model(*args, **kwargs) File "D:\AI\stable-diffusion-webui\modules\sd_hijack_utils.py", line 18, in <lambda> setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) File "D:\AI\stable-diffusion-webui\modules\sd_hijack_utils.py", line 32, in __call__ return self.__orig_func(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model x_recon = self.model(x_noisy, t, **cond) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward out = self.diffusion_model(x, t, context=cc) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\modules\sd_unet.py", line 91, in UNetModel_forward return original_forward(self, x, timesteps, context, *args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward h = module(h, emb, context) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1568, in _call_impl result = forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward x = layer(x, context) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 334, in forward x = block(x, context=context[i]) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 269, in forward return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 121, in checkpoint return CheckpointFunction.apply(func, len(inputs), *args) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\autograd\function.py", line 539, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 136, in forward output_tensors = ctx.run_function(*ctx.input_tensors) File "D:\AI\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 273, in _forward x = self.attn2(self.norm2(x), context=context) + x File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "D:\AI\stable-diffusion-webui\modules\sd_hijack_optimizations.py", line 240, in split_cross_attention_forward q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) File "D:\AI\stable-diffusion-webui\modules\sd_hijack_optimizations.py", line 240, in <genexpr> q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\einops\einops.py", line 487, in rearrange return reduce(tensor, pattern, reduction='rearrange', **axes_lengths) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\einops\einops.py", line 410, in reduce return _apply_recipe(recipe, tensor, reduction_type=reduction) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\einops\einops.py", line 239, in _apply_recipe return backend.reshape(tensor, final_shapes) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\einops\_backends.py", line 84, in reshape return x.reshape(shape) RuntimeError: CUDA error: an illegal instruction was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. --- Traceback (most recent call last): File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\gradio\routes.py", line 488, in run_predict output = await app.get_blocks().process_api( File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1431, in process_api result = await self.call_function( File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1103, in call_function prediction = await anyio.to_thread.run_sync( File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\anyio\to_thread.py", line 33, in run_sync return await get_asynclib().run_sync_in_worker_thread( File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread return await future File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run result = context.run(func, *args) File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\gradio\utils.py", line 707, in wrapper response = f(*args, **kwargs) File "D:\AI\stable-diffusion-webui\modules\call_queue.py", line 77, in f devices.torch_gc() File "D:\AI\stable-diffusion-webui\modules\devices.py", line 81, in torch_gc torch.cuda.empty_cache() File "D:\AI\stable-diffusion-webui\venv\lib\site-packages\torch\cuda\memory.py", line 159, in empty_cache torch._C._cuda_emptyCache() RuntimeError: CUDA error: an illegal instruction was encountered CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` ### Additional information I updated to the latest driver of NVIDIA. I tried installing Fooocus but only becuase 1111 stopped working. I have ooba gooba installed in my system. Maybe the CUDA version there is different? Could it possibly clash with 1111?
open
2024-05-13T05:14:24Z
2024-10-18T10:23:20Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15773
[ "bug-report" ]
ClaudeRobbinCR
1
tflearn/tflearn
data-science
578
possible typo line 584
currently: self.train_var = to_list(self.train_vars) should it be this? self.train_vars = to_list(self.train_vars)
open
2017-01-29T07:18:39Z
2017-01-29T07:18:39Z
https://github.com/tflearn/tflearn/issues/578
[]
ecohen1
0
pydantic/FastUI
pydantic
165
Proxy Support
I am running my fastapi behind a proxy. The issue I am running into: assume my path is `https://example.com/proxy/8989/` 1. the root path is invoked 2. the HTMLResponse(prebuilt_html(title='FastUI Demo')) is sent 3. the following content is run ``` <!doctype html> <html lang="en"> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>FastUI Demo</title> <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@pydantic/fastui-prebuilt@0.0.15/dist/assets/index.js"></script> <link rel="stylesheet" crossorigin href="https://cdn.jsdelivr.net/npm/@pydantic/fastui-prebuilt@0.0.15/dist/assets/index.css"> </head> <body> <div id="root"></div> </body> </html> ``` 4. The index.js is installed 5. Then it makes an fetch call with the react js being loaded to `https://example.com/api/proxy/8989/` instead of `https://example.com/proxy/8989/api/` Is this expected? Any plans on fixing it?
closed
2024-01-25T17:36:33Z
2024-02-09T07:04:48Z
https://github.com/pydantic/FastUI/issues/165
[]
stikkireddy
1
facebookresearch/fairseq
pytorch
5,244
facebook/mbart-large-50 VS facebook/mbart-large-50-many-to-many-mmt
Hi!! I am conducting some experiments for NMT on low resource languages, for this purpose I am fine tuning mbart for in a number for directions English to Sinhala, English to Tamil and SInhala to Tamil. I am using huggingface platform to perform this finetuning, while selecting the model i have 2 questions, i will highly appreciate it if some one could help be? 1. What is the difference between mbart-large-50 and mbart-large-50-many-to-many? I have been using mbart-large-50 for finetuing since it supported the above mentioned languages, am i using the correct model for this purpose or should i go with many-to-many 2. I want to confirm the model size as well, is it 610M ? Thank you in Advance!!
open
2023-07-09T11:23:31Z
2023-07-09T11:23:31Z
https://github.com/facebookresearch/fairseq/issues/5244
[ "question", "needs triage" ]
vmenan
0
pytest-dev/pytest-django
pytest
964
Drop support for unsupported Python and Django versions
closed
2021-11-22T11:05:01Z
2021-12-01T19:45:55Z
https://github.com/pytest-dev/pytest-django/issues/964
[]
pauloxnet
2
QingdaoU/OnlineJudge
django
51
批量建立使用者
请问有什么方法可以批量建立使用者
closed
2016-06-24T15:18:56Z
2016-06-28T07:02:55Z
https://github.com/QingdaoU/OnlineJudge/issues/51
[]
kevin50406418
1
littlecodersh/ItChat
api
101
如何获得群里的群友的头像的图片具体binary数据?
比如获得: ``` python "HeadImgUrl": "/cgi-bin/mmwebwx-bin/webwxgetheadimg?seq=642242818&sername=@@21ec4b514edf3e7cb867e0512fb85f3a5e6deb657f4e8573d656bcd4558e3594&skey=", ``` 但如何获得头像呢? 前面的域名应该是用什么?
closed
2016-10-16T20:31:54Z
2017-02-02T14:45:39Z
https://github.com/littlecodersh/ItChat/issues/101
[ "question" ]
9cat
4
graphql-python/graphene-mongo
graphql
220
Releases v0.2.16 and v0.3.0 missing on PyPI
Thanks for the work on this project, happy user here! I noticed that there are releases on https://github.com/graphql-python/graphene-mongo/releases that are not on https://pypi.org/project/graphene-mongo/#history. Is this an oversight or is there something preventing you from releasing on PyPI? In the meantime I am installing v0.3.0 directly from github, but it would be nice if it were on PyPI instead.
open
2023-05-02T14:55:36Z
2023-07-31T07:20:21Z
https://github.com/graphql-python/graphene-mongo/issues/220
[]
mathiasose
4
Lightning-AI/pytorch-lightning
data-science
20,391
Error if SLURM_NTASKS != SLURM_NTASKS_PER_NODE
### Bug description Would it be possible for Lightning to raise an error if `SLURM_NTASKS != SLURM_NTASKS_PER_NODE` in case both are set? With a single node the current behavior is: * `SLURM_NTASKS == SLURM_NTASKS_PER_NODE`: Everything is fine * `SLURM_NTASKS > SLURM_NTASKS_PER_NODE`: Slurm doesn't let you schedule the job and raises an error * `SLURM_NTASKS < SLURM_NTASKS_PER_NODE`: Lightning thinks there are `SLURM_NTASKS_PER_NODE` devices but the job only runs on `SLURM_NTASKS` devices. Example scripts: ``` #!/bin/bash #SBATCH --ntasks=1 #SBATCH --nodes=1 #SBATCH --gres=gpu:2 #SBATCH --ntasks-per-node=2 #SBATCH --cpus-per-task=3 source .venv/bin/activate srun python train_lightning.py ``` And `train_lightning.py`: ``` from pytorch_lightning.demos.boring_classes import BoringModel, BoringDataModule from pytorch_lightning import Trainer import os def main(): print( f"LOCAL_RANK={os.environ.get('LOCAL_RANK', 0)}, SLURM_NTASKS={os.environ.get('SLURM_NTASKS')}, SLURM_NTASKS_PER_NODE={os.environ.get('SLURM_NTASKS_PER_NODE')}" ) model = BoringModel() datamodule = BoringDataModule() trainer = Trainer(max_epochs=100) print(f"trainer.num_devices: {trainer.num_devices}") trainer.fit(model, datamodule) if __name__ == "__main__": main() ``` This generates the following output: ``` GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores HPU available: False, using: 0 HPUs Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1 ---------------------------------------------------------------------------------------------------- distributed_backend=nccl All distributed processes registered. Starting with 1 processes ---------------------------------------------------------------------------------------------------- LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [1,2] | Name | Type | Params | Mode ----------------------------------------- 0 | layer | Linear | 66 | train ----------------------------------------- 66 Trainable params 0 Non-trainable params 66 Total params 0.000 Total estimated model params size (MB) 1 Modules in train mode 0 Modules in eval mode SLURM auto-requeueing enabled. Setting signal handlers. LOCAL_RANK=0, SLURM_NTASKS=1, SLURM_NTASKS_PER_NODE=2 trainer.num_devices: 2 ``` `MEMBER: 1/1` indicates that only 1 GPU is used but `trainer.num_devices` returns 2. `nvidia-smi` also indicates that only a single device is used. Not sure if there is a valid use case for `SLURM_NTASKS < SLURM_NTASKS_PER_NODE`. But if there is not it would be awesome if Lightning could raise an error in this scenario. The same error also happens if `--ntasks-per-node` is not set. In this case Lightning assumes 2 devices (I guess based on `CUDA_VISIBLE_DEVICES`) but in reality only a single one is used. ### What version are you seeing the problem on? v2.4 ### How to reproduce the bug _No response_ ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> * CUDA: - GPU: - NVIDIA GeForce RTX 4090 - NVIDIA GeForce RTX 4090 - NVIDIA GeForce RTX 4090 - NVIDIA GeForce RTX 4090 - available: True - version: 12.4 * Lightning: - lightning-utilities: 0.11.8 - pytorch-lightning: 2.4.0 - torch: 2.5.1 - torchmetrics: 1.4.3 - torchvision: 0.20.1 * Packages: - aenum: 3.1.15 - aiohappyeyeballs: 2.4.3 - aiohttp: 3.10.10 - aiosignal: 1.3.1 - annotated-types: 0.7.0 - antlr4-python3-runtime: 4.9.3 - attrs: 24.2.0 - autocommand: 2.2.2 - backports.tarfile: 1.2.0 - certifi: 2024.8.30 - charset-normalizer: 3.4.0 - eval-type-backport: 0.2.0 - filelock: 3.16.1 - frozenlist: 1.5.0 - fsspec: 2024.10.0 - hydra-core: 1.3.2 - idna: 3.10 - importlib-metadata: 8.0.0 - importlib-resources: 6.4.0 - inflect: 7.3.1 - jaraco.collections: 5.1.0 - jaraco.context: 5.3.0 - jaraco.functools: 4.0.1 - jaraco.text: 3.12.1 - jinja2: 3.1.4 - lightly: 1.5.13 - lightning-utilities: 0.11.8 - markupsafe: 3.0.2 - more-itertools: 10.3.0 - mpmath: 1.3.0 - multidict: 6.1.0 - networkx: 3.4.2 - numpy: 2.1.3 - nvidia-cublas-cu12: 12.4.5.8 - nvidia-cuda-cupti-cu12: 12.4.127 - nvidia-cuda-nvrtc-cu12: 12.4.127 - nvidia-cuda-runtime-cu12: 12.4.127 - nvidia-cudnn-cu12: 9.1.0.70 - nvidia-cufft-cu12: 11.2.1.3 - nvidia-curand-cu12: 10.3.5.147 - nvidia-cusolver-cu12: 11.6.1.9 - nvidia-cusparse-cu12: 12.3.1.170 - nvidia-nccl-cu12: 2.21.5 - nvidia-nvjitlink-cu12: 12.4.127 - nvidia-nvtx-cu12: 12.4.127 - omegaconf: 2.3.0 - packaging: 24.1 - pillow: 11.0.0 - platformdirs: 4.2.2 - propcache: 0.2.0 - psutil: 6.1.0 - pyarrow: 18.0.0 - pydantic: 2.9.2 - pydantic-core: 2.23.4 - python-dateutil: 2.9.0.post0 - pytorch-lightning: 2.4.0 - pytz: 2024.2 - pyyaml: 6.0.2 - requests: 2.32.3 - setuptools: 75.3.0 - six: 1.16.0 - sympy: 1.13.1 - tomli: 2.0.1 - torch: 2.5.1 - torchmetrics: 1.4.3 - torchvision: 0.20.1 - tqdm: 4.66.6 - triton: 3.1.0 - typeguard: 4.3.0 - typing-extensions: 4.12.2 - urllib3: 2.2.3 - wheel: 0.43.0 - yarl: 1.17.1 - zipp: 3.19.2 * System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.12.3 - release: 6.8.0-38-generic - version: #38-Ubuntu SMP PREEMPT_DYNAMIC Fri Jun 7 15:25:01 UTC 2024 </details> ### More info _No response_
open
2024-11-04T16:19:56Z
2024-11-19T00:18:48Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20391
[ "working as intended", "ver: 2.4.x" ]
guarin
1
taverntesting/tavern
pytest
24
Getting requests.exceptions.InvalidHeader:
In my test.tavern.yaml file ``` - name: Make sure signature is returned request: url: "{signature_url:s}" method: PUT headers: content-type: application/json content: {"ppddCode": "11","LIN": "123456789","correlationID":"{correlationId:s}","bodyTypeCode":"utv"} token: "{sessionToken:s}" response: status_code: 200 save: body: signature: signature ``` I get the following error response: ``` E requests.exceptions.InvalidHeader: Value for header {content: {'ppddCode': '11', 'LIN': '123456789', 'correlationID': '99019c36-4f49-4be8-815c-9ff5cbcc14ff', 'bodyTypeCode': 'utv'}} must be of type str or bytes, not <class 'dict'> venv/lib/python3.6/site-packages/requests/utils.py:872: InvalidHeader ``` How to convert my 'content' in my header to a dict? Or any other solution?
closed
2018-02-06T21:58:48Z
2018-02-07T17:22:38Z
https://github.com/taverntesting/tavern/issues/24
[]
sridharaiyer
2
ansible/awx
django
15,775
How Do I Fail an Ansible Playbook Run or AWX Job when Hosts are Skipped?
### Please confirm the following - [x] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [x] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [x] I understand that AWX is open source software provided for free and that I might not receive a timely response. ### Feature type New Feature ### Feature Summary Hi How Do I Fail an Ansible Playbook Run or AWX Job when Hosts are Skipped? Now my awx job is reported "Successful" but nothing occurred Thanks ### Select the relevant components - [x] UI - [ ] API - [x] Docs - [ ] Collection - [ ] CLI - [ ] Other ### Steps to reproduce Run a job with an offline host and finally job reported successful status with "skipping: no hosts matched" ### Current results Job is currently "Successful" even if hosts are skipped: skipping: no hosts matched For Job: Status: Successful ### Sugested feature result Job failed when hosts are not known "skipping: no hosts matched" ### Additional information _No response_
closed
2025-01-27T08:36:31Z
2025-02-05T18:11:39Z
https://github.com/ansible/awx/issues/15775
[ "type:enhancement", "needs_triage", "community" ]
bskou
1
keras-team/autokeras
tensorflow
896
How to specify the training batch_size?
When I train a StructuredDataClassifier model, I want to specify the training batch_size of input, should I specify the batch_size in fit function? I have try in fit function, but it seems not help.
closed
2020-01-13T09:04:56Z
2020-03-21T02:01:11Z
https://github.com/keras-team/autokeras/issues/896
[ "bug report", "wontfix" ]
Peng-wei-Yu
2
slackapi/bolt-python
fastapi
419
Load testing an app - is there a way to disable or pass authorization
I am trying to implement load-testing for my Django app that utilizes Bolt. I want to stress test it using Locust framework - basically firing http requests to the server running the app to see the response times. The app does not really have to call any requests to Slack API for that – I am planning to patch `App.client` (not sure if it's possible, though) so it will just sleep a little imitating call to slack API. I managed to sign requests properly, but the problem I am facing is that I cannot get past authorization middleware. Whenever I use multi-workspace installation I always get `Please install this app into the workspace` response. I've also tried single-workspace setup, but I am getting a similar error. I see the following in logs: ``` The stored bot token for enterprise_id: None team_id: T111 is no longer valid. (response: {'ok': False, 'error': 'invalid_auth'}) ``` does Bolt try to communicate with Slack API to check the token? If so, is there a way to disable it temporarily for test purposes? I've tried passing `request_verification_enabled=False` and `token_verification_enabled=False` when initializing App, but it didn't change anything. Could you please advise?
closed
2021-07-23T02:37:28Z
2021-08-06T09:50:54Z
https://github.com/slackapi/bolt-python/issues/419
[ "question" ]
DataGreed
4
ansible/ansible
python
83,884
uri module encodes uploaded file in base64 but it can't be handled by the server
### Summary I have the exact same issue as described in https://github.com/ansible/ansible/issues/73621 Since that issue was closed and no more comments could be added. So I have to create another issue to address it. Sorry for this. I saw your comments in that issue. I agree base64 encoding is the standard way. However, the server can't handle it and we have no way to change it since we don't own that server. It expects the file in the raw format. Could it be fixed or work around in any way? ### Issue Type Bug Report ### Component Name uri ### Ansible Version ```console $ ansible --version ansible [core 2.14.11] config file = /etc/ansible/ansible.cfg configured module search path = ['/home/cwhuang/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules'] ansible python module location = /usr/lib/python3.11/site-packages/ansible ansible collection location = /home/cwhuang/.ansible/collections:/usr/share/ansible/collections executable location = /usr/bin/ansible python version = 3.11.9 (main, Apr 17 2024, 00:00:00) [GCC 13.2.1 20240316 (Red Hat 13.2.1-7)] (/usr/bin/python3) jinja version = 3.1.3 libyaml = True ``` ### Configuration ```console # if using a version older than ansible-core 2.12 you should omit the '-t all' $ ansible-config dump --only-changed -t all CONFIG_FILE() = /etc/ansible/ansible.cfg $ cat /etc/ansible/ansible.cfg # Since Ansible 2.12 (core): # To generate an example config file (a "disabled" one with all default settings, commented out): # $ ansible-config init --disabled > ansible.cfg # # Also you can now have a more complete file by including existing plugins: # ansible-config init --disabled -t all > ansible.cfg # For previous versions of Ansible you can check for examples in the 'stable' branches of each version # Note that this file was always incomplete and lagging changes to configuration settings # for example, for 2.9: https://github.com/ansible/ansible/blob/stable-2.9/examples/ansible.cfg ``` ### OS / Environment Fedora 38 ### Steps to Reproduce <!--- Paste example playbooks or commands between quotes below --> ```yaml (paste below) ansible-playbook -l rs700 -t update -i ~/ansible/inventory.yaml ~/ansible/customer.yaml - name: "Update {{ t }} of {{ inventory_hostname }}" tags: update ansible.builtin.uri: url: "https://{{ bmc_addr }}/redfish/v1/UpdateService/upload" method: POST force_basic_auth: true user: "{{ bmc_user }}" password: "{{ bmc_password }}" status_code: 202,200 body_format: form-multipart body: UpdateParameters: mime_type: application/json filename: "/tmp/update-bios.json" OemParameters: mime_type: application/json filename: "/tmp/oem-bios.json" UpdateFile: filename: "~/{{ inventory_hostname }}/{{ hostvars[inventory_hostname][t]['image'] }}" mime_type: application/octet-stream encoding: none text_form_field: value validate_certs: false timeout: 300 ### Expected Results The firmware file could be uploaded correctly and the server (an BMC) can handle it correctly. ### Actual Results ```console fatal: [rs700]: FAILED! => {"changed": false, "connection": "close", "content_length": "643", "content_type": "application/json; charset=UTF-8", "date": "Fri, 30 Aug 2024 22:58:19 GMT", "elapsed": 6, "json": {"error": {"@Message.ExtendedInfo": [{"@odata.type": "#Message.v1_0_8.Message", "Message": "The file, UpdateParameters, submitted is a malformed JSON file and could not be parsed successfully by the receiving service.", "MessageArgs": ["UpdateParameters"], "MessageId": "UpdateService.1.0.MalformedJSONFile", "RelatedProperties": ["UpdateParameters"], "Resolution": "Ensure that the file sent is a proper valid JSON file and resubmit the request.", "Severity": "Critical"}], "code": "UpdateService.1.0.MalformedJSONFile", "message": "The file, UpdateParameters, submitted is a malformed JSON file and could not be parsed successfully by the receiving service."}}, "msg": "Status code was 400 and not [202, 200]: HTTP Error 400: Bad Request", "odata_version": "4.0", "redirected": false, "server": "AMI MegaRAC Redfish Service", "status": 400, "url": "https://10.10.95.111/redfish/v1/UpdateService/upload"} ``` ### Code of Conduct - [X] I agree to follow the Ansible Code of Conduct
closed
2024-09-02T04:36:01Z
2024-09-17T13:00:02Z
https://github.com/ansible/ansible/issues/83884
[ "module", "bug", "affects_2.14" ]
cwhuang
6
voila-dashboards/voila
jupyter
543
Too many ipyleaflet layers fail to render
I noticed that notebooks with too many ipyleaflet layers cannot be properly rendered with Voila. Those notebooks are rendered on mybinder.org, so this could be a problem of my computer. That being said, I'd be happy if notebooks that can be rendered with JupyterLab locally can be rendered with Voila as well, or at least Voila issues a warning saying some widgets are not rendered. Below is a table of results with [a reproducible example](https://gist.github.com/yudai-nkt/dcdd9ffb354ab389ca077093cb57ef67) and GIFs capturing the results on my local end. | | JupyterLab | Voila | | --- | ---- | ---- | | my end | success | fail | | online (nbviewer or binder) | [success](https://nbviewer.jupyter.org/gist/yudai-nkt/dcdd9ffb354ab389ca077093cb57ef67/mwe.ipynb) | [success](https://mybinder.org/v2/gist/yudai-nkt/dcdd9ffb354ab389ca077093cb57ef67/master?urlpath=%2Fvoila%2Frender%2Fmwe.ipynb) | **JupyterLab**: ![lab_imagemagick](https://user-images.githubusercontent.com/13291527/74593936-15c6cd00-5074-11ea-91f3-77281f1ebf22.gif) **Voila** ![voila_imagemagick](https://user-images.githubusercontent.com/13291527/74594025-fa0ff680-5074-11ea-994d-da9b3ba1284d.gif) This issue might be a duplicate of #534, but I'm afraid I'm not quite sure. Feel free to close if that's the case.
open
2020-02-15T19:32:37Z
2022-01-20T06:07:12Z
https://github.com/voila-dashboards/voila/issues/543
[]
yudai-nkt
4
wagtail/wagtail
django
12,703
Stop sidebar re-rendering when clicking the page
Spotted as part of the [Wagtail 6.3 admin UI performance audit](https://github.com/wagtail/wagtail/discussions/12578). Our sidebar components are unnecessarily listening to click events on the whole page, most likely as part of their "click outside" logic. We should either remove this unneeded event listening, or if it has to be kept, make sure it "exits early" rather than running React’s rendering logic every time. Spotted with the React Developer Tools’ performance marks. Sample of the flamegraph: ![flamegraph of React rendering](https://github.com/user-attachments/assets/120311c7-8908-45e4-b0ac-98e8d4a6090e)
closed
2024-12-17T11:08:11Z
2025-01-20T07:34:00Z
https://github.com/wagtail/wagtail/issues/12703
[ "type:Cleanup/Optimisation", "🚀 Performance", "component:Design system" ]
thibaudcolas
0
kizniche/Mycodo
automation
501
DHT22 error
## Mycodo Issue Report: - Specific Mycodo Version: 6.1.4 Raspberry PI 3B+ 16 GB SD Card Class10 System : Linux mycodo 4.14.52-v7+ #1123 SMP Wed Jun 27 17:35:49 BST 2018 armv7l GNU/Linux Power 5v 2.0 Amp Sensor : DHT22 ( 3 meters ) , DS18B20 , Original Atlas PH i2c I've already tried everything. other pins, more power, solder tested. The DHT22 runs fine, but only for a few hours. After that, the Raspberry must be taken off and restarted. Restart via the console is not possible. Raspberry must be taken off the mains. After the restart, everything runs again for a few hours sorry my bad English ! #### Problem Description Please list: DHT 22Humidity sensor always fails after 2-5 hours ### Errors from Daemon Log 2018-07-10 17:05:08,952 - mycodo.output - WARNING - Cannot turn on Output with ID 0. It doesn't exist 2018-07-10 17:05:16,201 - mycodo.input_d477bba3 - ERROR - StopIteration raised. Possibly could not read input. Ensure it's connected properly and detected. 2018-07-10 17:05:26,845 - mycodo.inputs.dht22_3 - INFO - Turning off sensor 2018-07-10 17:05:26,851 - mycodo.output - WARNING - Cannot turn off Output with ID 0. It doesn't exist 2018-07-10 17:05:29,854 - mycodo.inputs.dht22_3 - INFO - Turning on sensor 2018-07-10 17:05:29,858 - mycodo.output - WARNING - Cannot turn on Output with ID 0. It doesn't exist 2018-07-10 17:05:47,748 - mycodo.inputs.dht22_3 - INFO - Turning off sensor 2018-07-10 17:05:47,754 - mycodo.output - WARNING - Cannot turn off Output with ID 0. It doesn't exist 2018-07-10 17:05:50,759 - mycodo.inputs.dht22_3 - INFO - Turning on sensor 2018-07-10 17:05:50,763 - mycodo.output - WARNING - Cannot turn on Output with ID 0. It doesn't exist 2018-07-10 17:06:08,662 - mycodo.inputs.dht22_3 - INFO - Turning off sensor 2018-07-10 17:06:08,668 - mycodo.output - WARNING - Cannot turn off Output with ID 0. It doesn't exist 2018-07-10 17:06:11,672 - mycodo.inputs.dht22_3 - INFO - Turning on sensor 2018-07-10 17:06:11,678 - mycodo.output - WARNING - Cannot turn on Output with ID 0. It doesn't exist 2018-07-10 17:06:18,926 - mycodo.input_d477bba3 - ERROR - StopIteration raised. Possibly could not read input. Ensure it's connected properly and detected. **from mycodo.log** 2018-07-09 06:26:36,494 - mycodo.output - WARNING - Cannot turn on Output with ID 0. It doesn't exist 2018-07-09 06:26:38,500 - mycodo.inputs.dht22_3 - ERROR - Could not initialize sensor. Check if it's connected properly and pigpiod is running. Error: unpack requires a bytes object of length 16 2018-07-09 06:17:21,688 - mycodo.daemon - INFO - Mycodo daemon v6.1.4 starting **syslog** Jul 10 18:24:27 easygrow systemd[1]: Reloading. Jul 10 18:24:28 easygrow systemd[1]: Stopping pigpiod service (low latency)... Jul 10 18:24:28 easygrow systemd[1]: Stopped pigpiod service (low latency). Jul 10 18:24:28 easygrow systemd[1]: Starting pigpiod service (low latency)... Jul 10 18:24:28 easygrow systemd[1]: Started pigpiod service (low latency). Jul 10 18:24:28 easygrow pigpiod[30721]: 2018-07-10 18:24:28 initInitialise: bind to port 8888 failed (Address already in use) Jul 10 18:24:28 easygrow pigpiod[30721]: Can't initialise pigpio library Jul 10 18:24:28 easygrow systemd[1]: pigpiod_low.service: Main process exited, code=exited, status=1/FAILURE Jul 10 18:24:28 easygrow killall[30727]: pigpiod: Kein Prozess gefunden Jul 10 18:24:28 easygrow systemd[1]: pigpiod_low.service: Control process exited, code=exited status=1 Jul 10 18:24:28 easygrow systemd[1]: pigpiod_low.service: Unit entered failed state. Jul 10 18:24:28 easygrow systemd[1]: pigpiod_low.service: Failed with result 'exit-code'. Could you please help me please !
closed
2018-07-10T15:32:01Z
2018-10-13T14:47:37Z
https://github.com/kizniche/Mycodo/issues/501
[]
pmunz75
5
gradio-app/gradio
data-visualization
9,876
Parameter passing of button.click()
### Describe the bug When using `button.click(fn=..., inputs=[],...)`, if the input parameter is a button component, the type of the component will change after being passed to the fn target function. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr def setup_feedback_buttons(like_btn: gr.Button, dislike_btn: gr.Button): print(f"Before setting visible: like_btn.visible = {like_btn.visible}, dislike_btn.visible = {dislike_btn.visible}") like_btn.visible = True dislike_btn.visible = True with gr.Blocks() as demo: like_btn = gr.Button("Like", visible=False) dislike_btn = gr.Button("Dislike", visible=False) submit_btn = gr.Button("Submit") submit_btn.click(fn=setup_feedback_buttons, inputs=[like_btn, dislike_btn], outputs=None) demo.launch(debug=True) ``` ### Screenshot _No response_ ### Logs ```shell Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/gradio/queueing.py", line 536, in process_events response = await route_utils.call_process_api( File "/usr/local/lib/python3.10/dist-packages/gradio/route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( File "/usr/local/lib/python3.10/dist-packages/gradio/blocks.py", line 1935, in process_api result = await self.call_function( File "/usr/local/lib/python3.10/dist-packages/gradio/blocks.py", line 1520, in call_function prediction = await anyio.to_thread.run_sync( # type: ignore File "/usr/local/lib/python3.10/dist-packages/anyio/to_thread.py", line 33, in run_sync return await get_asynclib().run_sync_in_worker_thread( File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 877, in run_sync_in_worker_thread return await future File "/usr/local/lib/python3.10/dist-packages/anyio/_backends/_asyncio.py", line 807, in run result = context.run(func, *args) File "/usr/local/lib/python3.10/dist-packages/gradio/utils.py", line 826, in wrapper response = f(*args, **kwargs) File "<ipython-input-4-ce9f8f625052>", line 4, in setup_feedback_buttons print(f"Before setting visible: like_btn.visible = {like_btn.visible}, dislike_btn.visible = {dislike_btn.visible}") AttributeError: 'str' object has no attribute 'visible' ``` ### System Info ```shell Package Version ------------------ ----------- aiofiles 23.2.1 annotated-types 0.7.0 anyio 4.6.2.post1 Brotli 1.1.0 certifi 2024.8.30 cffi 1.17.1 charset-normalizer 3.4.0 click 8.1.7 colorama 0.4.6 contourpy 1.3.0 cycler 0.12.1 dnspython 2.7.0 email_validator 2.2.0 exceptiongroup 1.2.2 fastapi 0.115.4 fastapi-cli 0.0.5 ffmpy 0.3.0 filelock 3.16.1 fonttools 4.54.1 fsspec 2024.10.0 gradio 5.1.0 gradio_client 1.4.0 h11 0.14.0 h2 4.1.0 hpack 4.0.0 httpcore 1.0.6 httptools 0.6.1 httpx 0.27.2 huggingface_hub 0.26.2 hyperframe 6.0.1 idna 3.10 Jinja2 3.1.4 kiwisolver 1.4.7 markdown-it-py 3.0.0 MarkupSafe 2.1.5 matplotlib 3.9.2 mdurl 0.1.2 numpy 2.1.2 orjson 3.10.10 packaging 24.1 pandas 2.2.3 pillow 10.2.0 pip 24.3.1 pycparser 2.22 pydantic 2.0.3 pydantic_core 2.3.0 pydub 0.25.1 Pygments 2.18.0 pyparsing 3.2.0 PySocks 1.7.1 python-dateutil 2.9.0 python-dotenv 1.0.1 python-multipart 0.0.16 pytz 2024.1 PyYAML 6.0.2 requests 2.32.3 rich 13.9.3 ruff 0.7.1 semantic-version 2.10.0 setuptools 75.1.0 shellingham 1.5.4 six 1.16.0 sniffio 1.3.1 starlette 0.41.2 tomlkit 0.12.0 tqdm 4.66.6 typer 0.12.5 typer-slim 0.12.5 typing_extensions 4.12.2 tzdata 2024.2 unicodedata2 15.1.0 urllib3 2.2.3 uvicorn 0.32.0 uvloop 0.21.0 watchfiles 0.24.0 websockets 12.0 wheel 0.44.0 zstandard 0.23.0 I tried using multiple different versions of python(3.10,3.11,3.12,3.13) and gradio(4.44,4.44.1,5.4) on Ubuntu 18.04 and Ubuntu 22.04, and all got the same error ``` ### Severity I can work around it
closed
2024-10-31T08:29:56Z
2024-11-01T01:43:12Z
https://github.com/gradio-app/gradio/issues/9876
[ "bug" ]
Semper4u
3
tqdm/tqdm
pandas
953
Provide a default computer unit handling (IEEE1541)
``` 4.45.0 3.7.5 (default, Oct 31 2019, 15:18:51) [MSC v.1916 64 bit (AMD64)] win32 ## (but its a win10 x64 machine) ``` In the issue https://github.com/tqdm/tqdm/issues/952 I gave the following use case: with TQDM 4.45.0, when I write some downloading code, I try to use IEEE1541 units. So, I wrote this: ``` with tqdm(total=total_size, unit_scale=True, unit_divisor=1024, unit="iB") as pbar, open(file_path, "wb") as f: pbar.set_description("Download {}".format(file_data["full_url"])) def cb(data): l = len(data) pbar.update(l) f.write(data) ``` We could define a `unit_scale="binary"` or `unit_scale="IEEE_1541"` that would treat all counters as in `iB` and adapt the accordingly `unit`, `unit divisor` and of course the K/M/G/... scale prefixes. I believe this approach could echo with other issues such as https://github.com/tqdm/tqdm/issues/825 ; https://github.com/tqdm/tqdm/issues/807 ; https://github.com/tqdm/tqdm/issues/646 ; and I'm pretty sure an issue exists concerning iterations over streams with sizes not multiple of the scaling factor but can't find it anymore.
open
2020-04-28T16:44:09Z
2020-10-27T18:38:44Z
https://github.com/tqdm/tqdm/issues/953
[ "p4-enhancement-future 🧨" ]
LoneWanderer-GH
3
ydataai/ydata-profiling
jupyter
995
cannot import name 'soft_unicode' from 'markupsafe'
### Current Behaviour Used colab with 3.2.0 ``` !pip install pandas-profiling==3.2.0 import numpy as np import pandas as pd from pandas_profiling import ProfileReport df = pd.DataFrame(np.random.rand(100, 5), columns=["a", "b", "c", "d", "e"]) ``` it shows ImportError: cannot import name 'soft_unicode' from 'markupsafe' (/usr/local/lib/python3.7/dist-packages/markupsafe/__init__.py) ### Expected Behaviour no error ### Data Description None ### Code that reproduces the bug ```Python !pip install pandas-profiling==3.2.0 import numpy as np import pandas as pd from pandas_profiling import ProfileReport df = pd.DataFrame(np.random.rand(100, 5), columns=["a", "b", "c", "d", "e"]) ``` ### pandas-profiling version 2.3.0 ### Dependencies ```Text markupsafe==2.0.1 ``` ### OS Mac ### Checklist - [X] There is not yet another bug report for this issue in the [issue tracker](https://github.com/ydataai/pandas-profiling/issues) - [X] The problem is reproducible from this bug report. [This guide](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) can help to craft a minimal bug report. - [X] The issue has not been resolved by the entries listed under [Common Issues](https://pandas-profiling.ydata.ai/docs/master/pages/support_contrib/common_issues.html).
closed
2022-06-03T16:18:44Z
2022-09-30T18:39:05Z
https://github.com/ydataai/ydata-profiling/issues/995
[ "bug 🐛", "code quality 📈" ]
DaiZack
4
explosion/spaCy
machine-learning
13,533
[W030] Some entities could not be aligned in the text
Hi! I tried training a custom Named Entity Recognition model using spaCy, but despite multiple trials, I get a warning telling me that there are misaligned entities in the training data that I had created. ``` import spacy from spacy.training import Example import random nlp=spacy.load('en_core_web_sm') training_data=[ ("Hello from India", {""entities"": [(11, 15, ""GPE"")]}) ] other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner'] nlp.disable_pipes(*other_pipes) optimizer=nlp.create_optimizer() losses={} for i in range(10): #10 is the epoch value random.shuffle(training_data) for text, annotation in training_data: doc = nlp.make_doc(text) example = Example.from_dict(doc, annotation) nlp.update([example], sgd = optimizer, losses=losses) ``` And the error generated is this. : ``` Warning (from warnings module): File "/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py", line 141 warnings.warn( UserWarning: [W030] Some entities could not be aligned in the text "Hello from India" with entities "[(11, 15, 'GPE')]". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. ``` The entity "India" starts from index 11 and ends at 15, yet spaCy doesn't recognise that it's a token. Any help is appreciated. * Operating System: MacOS Ventura * Python Version Used: 3.9 * spaCy Version Used: 3.1.0
closed
2024-06-19T07:08:40Z
2024-06-19T09:15:37Z
https://github.com/explosion/spaCy/issues/13533
[ "usage" ]
NitGS
1
plotly/dash-table
dash
387
Incorrect Filtering of Numeric Data with Decimal Points
Hello, I have a pandas dataframe of data that I am displaying in a data-table with filtering enabled. Filtering seems to work okay on numeric columns that are whole numbers, but when I try to filter decimal point numbers it seems to ignore the values after the decimal. ex - `eq num(1.5)` filters to rows with column value equal to 1 `> num(0.5)` filters to all rows with column value greater than 0 I checked this on both Vivaldi and Firefox. Here's code for an example. ``` import dash import dash_table import dash_html_components as html import pandas as pd import numpy as np drain = [0,0.2,0.6,1,1.5] gate = [0,0.2,0.6,1,1.5] drive = [0,0.2,0.6,1,1.5] df = pd.DataFrame({ 'Drain Bias': np.round(pd.to_numeric(drain), 3), 'Gate Bias': np.round(pd.to_numeric(gate), 3), 'Drive Bias': np.round(pd.to_numeric(drive), 3) }) df.info() external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div(children=[ dash_table.DataTable( id='device-table', css=[{ 'selector': '.dash-cell div.dash-cell-value', 'rule': 'display: inline; white-space: inherit; overflow: inherit; text-overflow: inherit;' }], columns=[{"name": i, "id": i} for i in df.columns], data=df.to_dict("rows"), filtering=True, editable=False, sorting=True, sorting_type="multi", row_selectable="multi", selected_rows=[], n_fixed_rows=2, style_cell={'width': '80px'}, style_table={ 'maxHeight': '300', 'overflowY': 'scroll' }, ), ]) if __name__ == '__main__': app.run_server(debug=True) ```
closed
2019-02-27T14:05:17Z
2019-02-27T17:29:06Z
https://github.com/plotly/dash-table/issues/387
[ "dash-type-bug" ]
JAnderson419
1
strawberry-graphql/strawberry
django
3,264
Incongruity with the `Context` type across the library.
I'm developing an app using Django + Strawberry + Channels. Until the introduction of Channels and related logic to manage subscriptions, I used a custom decorator to populate the `info.context` object of some selected queries and mutations with some extra stuff. To be clear, something like this: ```py from functools import wraps def my_decorator(funct): @wraps(funct) def my_wrapper(info, *args, **kwargs): info.context.my_property = get_some_extra_property() return funct(info, *args, **kwargs) return my_wrapper ``` It has always worked fine since the `context` is a [`StrawberryDjangoContext`](https://github.com/strawberry-graphql/strawberry/blob/a90dea2a3053e857aa2adf685d5c4f5d39c527c4/strawberry/django/context.py#L10-L22) dataclass object. --- Now... After introducing support for subscriptions, I ran into an exception: it seems that the `context` instantiated by [`GraphQLView`](https://github.com/strawberry-graphql/strawberry/blob/a90dea2a3053e857aa2adf685d5c4f5d39c527c4/strawberry/django/views.py#L198-L199) is actually different from the one instantiated by [`GraphQLHTTPConsumer`](https://github.com/strawberry-graphql/strawberry/blob/main/strawberry/channels/handlers/http_handler.py#L239-L245)... Even though they both only expose 2 properties: `request` & `response`. The second one -unlike the first one- instantiates a simple `dict` and this led the application to raise a: ``` AttributeError: 'dict' object has no attribute 'my_property'. ``` --- To be honest, I've already fixed my application so that's ok but this difference triggers my OCDs, IMHO isn't really a good thing for a library and it creates user confusion and that's why I opened this Issue. Make your own consideration and choose whatever approach you like... It's just a simple report.
open
2023-11-29T22:54:54Z
2025-03-20T15:56:29Z
https://github.com/strawberry-graphql/strawberry/issues/3264
[]
Byloth
2
tqdm/tqdm
pandas
786
Suggestion: optionally redirect console logging to tqdm.write
This is somewhat related to #296, which is about stdout and stderr. I believe the proposed example to redirect stdout and stderr doesn't work with logging, because it will already have saved the reference to stdout and stderr. This seems to be a common "problem" with many related snippets. Rather than copy and pasting an example, it might be worth to have an option include with `tqdm`? Here is one possible solution: ```python import logging import sys from contextlib import contextmanager from typing import List from tqdm import tqdm class TqdmLoggingHandler(logging.StreamHandler): def emit(self, record): try: msg = self.format(record) tqdm.write(msg) self.flush() except (KeyboardInterrupt, SystemExit): raise except: # noqa pylint: disable=bare-except self.handleError(record) def _is_console_logging_handler(handler: logging.Handler) -> bool: return isinstance(handler, logging.StreamHandler) and handler.stream in {sys.stdout, sys.stderr} def _get_console_formatter(handlers: List[logging.Handler]) -> logging.Formatter: for handler in handlers: if _is_console_logging_handler(handler): return handler.formatter return None @contextmanager def redirect_logging_to_tqdm(logger: logging.Logger = None): if logger is None: logger = logging.root tqdm_handler = TqdmLoggingHandler() original_handlers = logger.handlers tqdm_handler.setFormatter(_get_console_formatter(original_handlers)) try: logger.handlers = [ handler for handler in logger.handlers if not _is_console_logging_handler(handler) ] + [tqdm_handler] yield finally: logger.handlers = original_handlers @contextmanager def tqdm_with_logging_redirect(*args, logger: logging.Logger = None, **kwargs): with tqdm(*args, **kwargs) as pbar: with redirect_logging_to_tqdm(logger=logger): yield pbar ``` And it could be used like this: ```python import logging from <source package> import tqdm_with_logging_redirect LOGGER = logging.getLogger(__name__) if __name__ == '__main__': logging.basicConfig(level='INFO') file_list = ['file1', 'file2'] with tqdm_with_logging_redirect(total=len(file_list)) as pbar: # logging to the console is now redirected to tqdm for filename in file_list: LOGGER.info('processing file: %s', filename) pbar.update(1) # logging is now restored ``` This is just an example. (I could also provide tests for the above implementation if it's of any use)
closed
2019-08-02T14:39:49Z
2021-04-06T00:21:40Z
https://github.com/tqdm/tqdm/issues/786
[ "p3-enhancement 🔥", "submodule ⊂", "to-merge ↰", "c1-quick 🕐" ]
de-code
4
matterport/Mask_RCNN
tensorflow
2,677
OSError: Unable to open file
Hi I'm unable to run training session. I'm using tensor flow 2.3 and modified model.py, utils.py and other files from some available accordingly. Any help would be highly appreciated '' '' '' OSError Traceback (most recent call last) <ipython-input-15-ce3d0a98ce21> in <module> 10 model.load_weights('Users/20013819/Documents/boundary detection/Mask_RCNN/mask_rcnn_coco.h5', by_name=True, 11 exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", ---> 12 "mrcnn_bbox", "mrcnn_mask"]) 13 elif init_with == "last": 14 # Load the last model you trained and continue training ~\Documents\boundary detection\Mask_RCNN\mrcnn\model.py in load_weights(self, filepath, by_name, exclude) 2113 if h5py is None: 2114 raise ImportError('`load_weights` requires h5py.') -> 2115 with h5py.File(filepath, mode='r') as f: 2116 if 'layer_names' not in f.attrs and 'model_weights' in f: 2117 f = f['model_weights'] c:\users\20013819\anaconda3\envs\tensorflow\lib\site-packages\h5py\_hl\files.py in __init__(self, name, mode, driver, libver, userblock_size, swmr, rdcc_nslots, rdcc_nbytes, rdcc_w0, track_order, **kwds) 406 fid = make_fid(name, mode, userblock_size, 407 fapl, fcpl=make_fcpl(track_order=track_order), --> 408 swmr=swmr) 409 410 if isinstance(libver, tuple): c:\users\20013819\anaconda3\envs\tensorflow\lib\site-packages\h5py\_hl\files.py in make_fid(name, mode, userblock_size, fapl, fcpl, swmr) 171 if swmr and swmr_support: 172 flags |= h5f.ACC_SWMR_READ --> 173 fid = h5f.open(name, flags, fapl=fapl) 174 elif mode == 'r+': 175 fid = h5f.open(name, h5f.ACC_RDWR, fapl=fapl) h5py\_objects.pyx in h5py._objects.with_phil.wrapper() h5py\_objects.pyx in h5py._objects.with_phil.wrapper() h5py\h5f.pyx in h5py.h5f.open() OSError: Unable to open file (unable to open file: name = 'Users/20013819/Documents/boundary detection/Mask_RCNN/mask_rcnn_coco.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0) '' '' ''
closed
2021-08-23T05:47:04Z
2021-08-23T11:29:54Z
https://github.com/matterport/Mask_RCNN/issues/2677
[]
chhigansharma
2
ray-project/ray
data-science
51,387
[Train] Add support for NeMo Megatron strategy with lightning
### Description Similar to the [deepspeed lightning strategy with ray](https://docs.ray.io/en/latest/train/api/doc/ray.train.lightning.RayDeepSpeedStrategy.html#ray.train.lightning.RayDeepSpeedStrategy) I would like to integrate with the NeMo framework to use ray to manage feeding data to and orchestrating MegatronStrategy training with NeMo. ### Use case Support TP/PP/CP parallelism techniques using [MegatronStrategy in Nemo](https://docs.nvidia.com/nemo-framework/user-guide/24.09/nemo-2.0/features/megatron.html#megatronstrategy).
open
2025-03-14T21:52:34Z
2025-03-18T17:12:06Z
https://github.com/ray-project/ray/issues/51387
[ "enhancement", "triage", "train" ]
sam-h-bean
0
onnx/onnx
tensorflow
6,302
a) Feature Request: Function sample_dirichlet, b) State of probabilistic model support?
I am very interested in converting DeepLearning models, that contain the PowerSpherical function (https://github.com/andife/power_spherical) to ONNX. Currently this fails because of the Dirichlet function (https://github.com/pytorch/pytorch/issues/116336). After my research, I came across https://github.com/onnx/onnxmltools/issues/549, among others and wondered whether it would be useful to have gamma, dirichlet, beta available in general? For this reason, the question arises as to what the current state of probabilistic model support looks like? Dirichlet is available in pytorch: https://pytorch.org/docs/stable/distributions.html#dirichlet tensorflow: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/distributions/dirichlet_multinomial.py Would it be a suitable direction, e.g. to create a sample Dirichlet method as an Onnx function based on RandomUniform (https://onnx.ai/onnx/operators/onnx__RandomUniform.html#l-onnx-doc-randomuniform)?
open
2024-08-17T04:38:43Z
2024-09-30T21:38:34Z
https://github.com/onnx/onnx/issues/6302
[]
andife
6
yezz123/authx
pydantic
626
🐛 Investigate TypeError: `coroutine` object is not callable
https://github.com/yezz123/authx/actions/runs/9650681836/job/26616841558?pr=625
closed
2024-06-24T18:47:04Z
2024-06-30T15:05:39Z
https://github.com/yezz123/authx/issues/626
[ "bug" ]
yezz123
0
python-gitlab/python-gitlab
api
2,485
Documentation wrong on page for "badges"
## Description of the problem, including code/CLI snippet Documentation seems to be wrong here: https://python-gitlab.readthedocs.io/en/stable/gl_objects/badges.html#examples -> "Update a badge" ## Expected Behavior Update a badge: badge.image_url = new_image_url badge.link_url = new_link_url badge.save() ## Actual Behavior Update a badge: badge.image_link = new_link badge.save() ## Specifications - python-gitlab version: documentation issue only - API version you are using: documentation issue only - Gitlab server version: documentation issue only
closed
2023-02-08T19:00:37Z
2024-02-12T01:12:14Z
https://github.com/python-gitlab/python-gitlab/issues/2485
[ "docs", "good first issue" ]
stuff2use
3
custom-components/pyscript
jupyter
46
Feature Request: access to sunset/sunrise in function
This works, but it's complicated to write and follow: ```python @state_trigger('binary_sensor.dark == "on"') @time_active("range(sunrise - 120min, sunset + 120min)") def turn_on_dark(): turn_on() @state_trigger('binary_sensor.downstairs_occupied == "on" and binary_sensor.dark == "on"') def turn_on_occupied(): turn_on() @state_trigger('binary_sensor.downstairs_occupied == "off"') @time_active("range(sunset + 120min, sunrise - 120min)") def turn_off_notoccupied(): turn_off() @state_trigger('binary_sensor.dark == "off"') def turn_off_notdark(): turn_off() @time_trigger('startup') @state_active('binary_sensor.dark == "on"') @time_active("range(sunrise - 120min, sunset + 120min)") def turn_on_startup_dark(): turn_on() @time_trigger('startup') @state_active('binary_sensor.downstairs_occupied == "on" and binary_sensor.dark == "on"') def turn_on_startup_occupied(): turn_on() @time_trigger('startup') @state_active('binary_sensor.downstairs_occupied == "off"') @time_active("range(sunset + 120min, sunrise - 120min)") def turn_off_startup_notoccupied(): turn_off() @time_trigger('startup') @state_active('binary_sensor.dark == "off"') def turn_off_startup_notdark(): turn_off() ``` I would prefer this: ```python import datetime @time_trigger('startup') @state_trigger('True or binary_sensor.dark or binary_sensor.downstairs_occupied') def set_lights(): today = datetime.datetime.today() start_time = today.replace(hour=5, minute=0) # would like sunrise - 120min end_time = today.replace(hour=22, minute=0) # would like sunset + 120min if binary_sensor.dark == "off": turn_off() return if start_time < datetime.datetime.now() < end_time: turn_on() return if binary_sensor.downstairs_occupied == "on": turn_on() return turn_off() ``` However, as you can see in the code comments, there's not an easy way to get to sunrise/sunset offsets.
closed
2020-10-16T11:34:32Z
2023-04-10T07:40:06Z
https://github.com/custom-components/pyscript/issues/46
[]
dlashua
8
sigmavirus24/github3.py
rest-api
723
multiple test failures on develop branch
I'm at a bit of a loss as to why the unit tests are working under travis as I'm unable to to get a clean run locally. Eg.: ``` [develop] ~/github/github3.py $ virtualenv venv New python executable in /home/jhoblitt/github/github3.py/venv/bin/python2 Also creating executable in /home/jhoblitt/github/github3.py/venv/bin/python Installing setuptools, pip, wheel...done. [develop] ~/github/github3.py $ . venv/bin/activate [develop] ~/github/github3.py $ export TRAVIS_GH3="True" [develop] ~/github/github3.py $ export TOXENV=py27 [develop] ~/github/github3.py $ export REQUESTS_VERSION="===2.0.1" [develop] ~/github/github3.py $ python --version Python 2.7.13 [develop] ~/github/github3.py $ pip install tox Collecting tox Using cached tox-2.7.0-py2.py3-none-any.whl Collecting virtualenv>=1.11.2; python_version != "3.2" (from tox) Using cached virtualenv-15.1.0-py2.py3-none-any.whl Collecting pluggy<1.0,>=0.3.0 (from tox) Using cached pluggy-0.4.0-py2.py3-none-any.whl Collecting py>=1.4.17 (from tox) Using cached py-1.4.34-py2.py3-none-any.whl Installing collected packages: virtualenv, pluggy, py, tox Successfully installed pluggy-0.4.0 py-1.4.34 tox-2.7.0 virtualenv-15.1.0 [develop] ~/github/github3.py $ tox GLOB sdist-make: /home/jhoblitt/github/github3.py/setup.py py27 inst-nodeps: /home/jhoblitt/github/github3.py/.tox/dist/github3.py-1.0.0a4.zip py27 installed: betamax==0.8.0,betamax-matchers==0.4.0,github3.py==1.0.0a4,linecache2==1.0.0,mock==1.0.1,py==1.4.34,pytest==3.1.3,requests==2.0.1,requests-toolbelt==0.8.0,six==1.10.0,traceback2==1.4.0,unittest2==1.1.0,uritemplate==3.0.0 py27 runtests: PYTHONHASHSEED='1147969665' py27 runtests: commands[0] | py.test .................................................................................................................X................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................x........................................................................................................................................................................................................................................................F...................s.sF....E..FF.F...........EEEEEEEEEEEF.... ================================================================================== ERRORS =================================================================================== ______________________________________________________________________ ERROR at setup of test_findable ______________________________________________________________________ def setup_module(): > build_wheel() venv/lib/python2.7/site-packages/wheel/test/test_basic.py:33: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ venv/lib/python2.7/site-packages/wheel/test/test_basic.py:44: in build_wheel exec(compile(open('setup.py').read(), 'setup.py', 'exec')) setup.py:26: in <module> kwargs['tests_require'] = ['betamax >=0.2.0', 'pytest', _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ attrs = {'author': 'Illustrious Author', 'author_email': 'illustrious@example.org', 'description': 'Another testing distribution ☃', 'entry_points': {'console_scripts': ['complex-dist=complexdist:main', 'complex-dist2=complexdist:main']}, ...} klass = <class setuptools.dist.Distribution at 0x7f8c38ce0e20>, dist = <setuptools.dist.Distribution instance at 0x7f8c361e9050>, ok = 1 exc = IOError(2, 'No such file or directory') def setup(**attrs): """The gateway to the Distutils: do everything your setup script needs to do, in a highly flexible and user-driven way. Briefly: create a Distribution instance; find and parse config files; parse the command line; run each Distutils command found there, customized by the options supplied to 'setup()' (as keyword arguments), in config files, and on the command line. The Distribution instance might be an instance of a class supplied via the 'distclass' keyword argument to 'setup'; if no such class is supplied, then the Distribution class (in dist.py) is instantiated. All other arguments to 'setup' (except for 'cmdclass') are used to set attributes of the Distribution instance. The 'cmdclass' argument, if supplied, is a dictionary mapping command names to command classes. Each command encountered on the command line will be turned into a command class, which is in turn instantiated; any class found in 'cmdclass' is used in place of the default, which is (for command 'foo_bar') class 'foo_bar' in module 'distutils.command.foo_bar'. The command class must provide a 'user_options' attribute which is a list of option specifiers for 'distutils.fancy_getopt'. Any command-line options between the current and the next command are used to set attributes of the current command object. When the entire command-line has been successfully parsed, calls the 'run()' method on each command object in turn. This method will be driven entirely by the Distribution object (which each command object has a reference to, thanks to its constructor), and the command-specific options that became attributes of each command object. """ global _setup_stop_after, _setup_distribution # Determine the distribution class -- either caller-supplied or # our Distribution (see below). klass = attrs.get('distclass') if klass: del attrs['distclass'] else: klass = Distribution if 'script_name' not in attrs: attrs['script_name'] = os.path.basename(sys.argv[0]) if 'script_args' not in attrs: attrs['script_args'] = sys.argv[1:] # Create the Distribution instance, using the remaining arguments # (ie. everything except distclass) to initialize it try: _setup_distribution = dist = klass(attrs) except DistutilsSetupError, msg: if 'name' in attrs: raise SystemExit, "error in %s setup command: %s" % \ (attrs['name'], msg) else: raise SystemExit, "error in setup command: %s" % msg if _setup_stop_after == "init": return dist # Find and parse the config file(s): they will override options from # the setup script, but be overridden by the command line. dist.parse_config_files() if DEBUG: print "options (after parsing config files):" dist.dump_option_dicts() if _setup_stop_after == "config": return dist # Parse the command line and override config files; any # command-line errors are the end user's fault, so turn them into # SystemExit to suppress tracebacks. try: ok = dist.parse_command_line() except DistutilsArgError, msg: raise SystemExit, gen_usage(dist.script_name) + "\nerror: %s" % msg if DEBUG: print "options (after parsing command line):" dist.dump_option_dicts() if _setup_stop_after == "commandline": return dist # And finally, run all the commands found on the command line. if ok: try: dist.run_commands() except KeyboardInterrupt: raise SystemExit, "interrupted" except (IOError, os.error), exc: if DEBUG: sys.stderr.write("error: %s\n" % (exc,)) raise else: > raise SystemExit, "error: %s" % (exc,) E SystemExit: error: [Errno 2] No such file or directory: 'build/lib/complexdist/__init__.py' /usr/lib64/python2.7/distutils/core.py:159: SystemExit --------------------------------------------------------------------------- Captured stdout setup --------------------------------------------------------------------------- running bdist_wheel running build running build_py copying complexdist/__init__.py -> build/lib/complexdist ____________________________________________________________________ ERROR at setup of test_default_tag _____________________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 47 def test_default_tag(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:47 ____________________________________________________________________ ERROR at setup of test_explicit_tag ____________________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 57 def test_explicit_tag(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:57 ___________________________________________________________________ ERROR at setup of test_universal_tag ____________________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 68 def test_universal_tag(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:68 ____________________________________________________________ ERROR at setup of test_universal_beats_explicit_tag ____________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 79 def test_universal_beats_explicit_tag(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:79 _______________________________________________________________ ERROR at setup of test_universal_in_setup_cfg _______________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 90 def test_universal_in_setup_cfg(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:90 _______________________________________________________________ ERROR at setup of test_pythontag_in_setup_cfg _______________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 102 def test_pythontag_in_setup_cfg(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:102 _________________________________________________________ ERROR at setup of test_legacy_wheel_section_in_setup_cfg __________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 114 def test_legacy_wheel_section_in_setup_cfg(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:114 __________________________________________________________________ ERROR at setup of test_plat_name_purepy __________________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 126 def test_plat_name_purepy(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:126 ___________________________________________________________________ ERROR at setup of test_plat_name_ext ____________________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 137 def test_plat_name_ext(temp_ext_pkg): E fixture 'temp_ext_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:137 ____________________________________________________________ ERROR at setup of test_plat_name_purepy_in_setupcfg ____________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 151 def test_plat_name_purepy_in_setupcfg(temp_pkg): E fixture 'temp_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:151 _____________________________________________________________ ERROR at setup of test_plat_name_ext_in_setupcfg ______________________________________________________________ file /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py, line 163 def test_plat_name_ext_in_setupcfg(temp_ext_pkg): E fixture 'temp_ext_pkg' not found > available fixtures: betamax_parametrized_recorder, betamax_parametrized_session, betamax_recorder, betamax_session, cache, capfd, capsys, doctest_namespace, monkeypatch, pytestconfig, record_xml_property, recwarn, tmpdir, tmpdir_factory > use 'pytest --fixtures [testpath]' for help on them. /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/test_tagopt.py:163 ================================================================================= FAILURES ================================================================================== ________________________________________________________________________________ test_pydist ________________________________________________________________________________ def test_pydist(): """Make sure pydist.json exists and validates against our schema.""" # XXX this test may need manual cleanup of older wheels > import jsonschema E ImportError: No module named jsonschema venv/lib/python2.7/site-packages/wheel/test/test_basic.py:117: ImportError ________________________________________________________________________________ test_keygen ________________________________________________________________________________ def test_keygen(): def get_keyring(): WheelKeys, keyring = tool.get_keyring() class WheelKeysTest(WheelKeys): def save(self): pass class keyringTest: @classmethod def get_keyring(cls): class keyringTest2: pw = None def set_password(self, a, b, c): self.pw = c def get_password(self, a, b): return self.pw return keyringTest2() return WheelKeysTest, keyringTest > tool.keygen(get_keyring=get_keyring) venv/lib/python2.7/site-packages/wheel/test/test_tool.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ venv/lib/python2.7/site-packages/wheel/tool/__init__.py:39: in keygen WheelKeys, keyring = get_keyring() venv/lib/python2.7/site-packages/wheel/test/test_tool.py:5: in get_keyring WheelKeys, keyring = tool.get_keyring() _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ def get_keyring(): try: from ..signatures import keys import keyring assert keyring.get_keyring().priority except (ImportError, AssertionError): > raise WheelError("Install wheel[signatures] (requires keyring, keyrings.alt, pyxdg) for signatures.") E WheelError: Install wheel[signatures] (requires keyring, keyrings.alt, pyxdg) for signatures. venv/lib/python2.7/site-packages/wheel/tool/__init__.py:34: WheelError _____________________________________________________________________________ test_convert_egg ______________________________________________________________________________ def test_convert_egg(): base = pkg_resources.resource_filename('wheel.test', '') for dist in test_distributions: distdir = os.path.join(base, dist, 'dist') > eggs = [e for e in os.listdir(distdir) if e.endswith('.egg')] E OSError: [Errno 2] No such file or directory: '/home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/complex-dist/dist' venv/lib/python2.7/site-packages/wheel/test/test_basic.py:88: OSError ________________________________________________________________________________ test_unpack ________________________________________________________________________________ def test_unpack(): """ Make sure 'wheel unpack' works. This also verifies the integrity of our testing wheel files. """ for dist in test_distributions: distdir = pkg_resources.resource_filename('wheel.test', os.path.join(dist, 'dist')) > for wheelfile in (w for w in os.listdir(distdir) if w.endswith('.whl')): E OSError: [Errno 2] No such file or directory: '/home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/test/complex-dist/dist' venv/lib/python2.7/site-packages/wheel/test/test_basic.py:99: OSError ________________________________________________________________________________ test_pydist ________________________________________________________________________________ def test_pydist(): """Make sure pydist.json exists and validates against our schema.""" # XXX this test may need manual cleanup of older wheels > import jsonschema E ImportError: No module named jsonschema venv/lib/python2.7/site-packages/wheel/test/test_basic.py:117: ImportError ________________________________________________________________________________ test_keygen ________________________________________________________________________________ def test_keygen(): def get_keyring(): WheelKeys, keyring = tool.get_keyring() class WheelKeysTest(WheelKeys): def save(self): pass class keyringTest: @classmethod def get_keyring(cls): class keyringTest2: pw = None def set_password(self, a, b, c): self.pw = c def get_password(self, a, b): return self.pw return keyringTest2() return WheelKeysTest, keyringTest > tool.keygen(get_keyring=get_keyring) venv/lib/python2.7/site-packages/wheel/test/test_tool.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ venv/lib/python2.7/site-packages/wheel/tool/__init__.py:39: in keygen WheelKeys, keyring = get_keyring() venv/lib/python2.7/site-packages/wheel/test/test_tool.py:5: in get_keyring WheelKeys, keyring = tool.get_keyring() _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ def get_keyring(): try: from ..signatures import keys import keyring assert keyring.get_keyring().priority except (ImportError, AssertionError): > raise WheelError("Install wheel[signatures] (requires keyring, keyrings.alt, pyxdg) for signatures.") E WheelError: Install wheel[signatures] (requires keyring, keyrings.alt, pyxdg) for signatures. venv/lib/python2.7/site-packages/wheel/tool/__init__.py:34: WheelError ============================================================================= warnings summary ============================================================================== venv/lib/python2.7/site-packages/wheel/test/test_signatures.py::test_ed25519py /home/jhoblitt/github/github3.py/venv/lib/python2.7/site-packages/wheel/signatures/ed25519py.py:24: RuntimeWarning: ed25519ll should choose random seed. RuntimeWarning) -- Docs: http://doc.pytest.org/en/latest/warnings.html 6 failed, 1059 passed, 2 skipped, 1 xfailed, 1 xpassed, 1 warnings, 12 error in 10.34 seconds ERROR: InvocationError: '/home/jhoblitt/github/github3.py/.tox/py27/bin/py.test' __________________________________________________________________________________ summary __________________________________________________________________________________ ERROR: py27: commands failed ```
closed
2017-08-01T16:17:07Z
2017-08-01T16:22:16Z
https://github.com/sigmavirus24/github3.py/issues/723
[]
jhoblitt
1
vaexio/vaex
data-science
2,383
[BUG-REPORT] AssertionError while performing math operation on shifted columns
**Description** Let's say I want to calculate something on a column and its shifted values (Lags or Leads). The basic one can be df.A - 2*df.A_shifted. It can easily be done in pandas: `df.A - df.A.shift(1)`. However, VAEX throws an exception saying ` AssertionError:`. Below is the code I used: ``` df = pd.DataFrame(data={'A': [1,2,3],'B':[4,5,6]}) dfv = vaex.from_pandas(df) ``` Pandas: ``` print(df.A - 2 * df.A.shift(1)) output: 0 NaN 1 0.0 2 -1.0 Name: A, dtype: float64 ``` Vaex: ``` print((dfv.A - 2 * dfv.shift(1, 'A', fill_value=0).A).to_pandas_series()) output: AssertionError: --------------------------------------------------------------------------- AssertionError Traceback (most recent call last) Cell In[34], line 1 ----> 1 (dfv.A - 2 * dfv.shift(1, 'A', fill_value=0).A).to_pandas_series() File ~\miniconda3\envs\py38\lib\site-packages\vaex\expression.py:139, in Meta.__new__.<locals>.wrap.<locals>.f(a, b) 137 else: 138 if isinstance(b, Expression): --> 139 assert b.ds == a.ds 140 b = b.expression 141 elif isinstance(b, (np.timedelta64)): AssertionError: ``` Initially, I thought vaex fails to do operation on `nan` values so I used `fill_value=0` to make sure nothing fancy is required. Certainly something is wrong because I can do calc using both `A` and `B` columns. ``` print((dfv.A - dfv.B).to_pandas_series()) output: 0 -3 1 -3 2 -3 dtype: int64 ``` **Software information** - Vaex version (`import vaex; vaex.__version__)`: ``` {'vaex': '4.16.0', 'vaex-core': '4.16.1', 'vaex-viz': '0.5.4', 'vaex-hdf5': '0.14.1', 'vaex-server': '0.8.1', 'vaex-astro': '0.9.3', 'vaex-jupyter': '0.8.1', 'vaex-ml': '0.18.1'} ``` - Vaex was installed via: pip / conda-forge / from source : `via pip` - OS: Windows 11 (Python 3.8)
open
2023-07-11T11:08:42Z
2023-07-11T11:08:42Z
https://github.com/vaexio/vaex/issues/2383
[]
msat59
0
ageitgey/face_recognition
machine-learning
781
ValueError: operands could not be broadcast together with shapes (2,0) (128,)
open
2019-03-23T17:30:24Z
2019-06-20T10:17:52Z
https://github.com/ageitgey/face_recognition/issues/781
[]
Profiiii
1
strawberry-graphql/strawberry-django
graphql
658
Implementing Object Level Permissions
<!--- Provide a general summary of the changes you want in the title above. --> <!--- This template is entirely optional and can be removed, but is here to help both you and us. --> <!--- Anything on lines wrapped in comments like these will not show up in the final text. --> ## Feature Request Type - [ ] Core functionality - [ ] Alteration (enhancement/optimization) of existing feature(s) - [x] New behavior ## Description Is there a way to implement Object Level Permissions? Something similar to what we have on Django Rest Framework. This would enable us to determine if a user has access to a particular object or model instance This would be a great help in a multi-tenancy system where some users would have the same permissions but would only be able to access certain model objects
open
2024-11-15T03:51:50Z
2025-03-20T15:57:40Z
https://github.com/strawberry-graphql/strawberry-django/issues/658
[]
moluwole
2
serengil/deepface
machine-learning
1,015
Exclude Jupyter Notebooks from GitHub Programming Language Stats
GitHub's programming language statistics include Jupyter Notebooks, which may skew the results for repositories that heavily use them. This issue is created to address the need for excluding Jupyter Notebooks from the language statistics calculation. ### Proposed Solution To exclude Jupyter Notebooks from language stats, we can utilize GitHub's Linguist tool by adding a `.gitattributes` file to the repository root with the following content: ```gitattributes # .gitattributes *.ipynb linguist-vendored
closed
2024-02-09T10:50:30Z
2024-02-10T18:27:13Z
https://github.com/serengil/deepface/issues/1015
[ "enhancement" ]
serengil
1
streamlit/streamlit
python
10,879
Skills Vs Pay, Titles/Radio Buttons Wont Stay Stuck and Always Reset...
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [x] I added a very descriptive title to this issue. - [x] I have provided sufficient information below to help reproduce this issue. ### Summary Hey, Apologies if this is confusing or oblivious at all. Im using the datanerd.tech site to go through and verify some data and trends and what not. Unfortunately Ive noticed that at the 'Skills Vs Pay' page that it will stay stuck on Job Title and Country Select All, Data Skills Top 10 and Timeframe as all time. If you ever select anything for this and try to load with the selected choices, it will load/buffer but then simply reset and go back to the original choices you get when loading the page-so you basically cant use the page at all. Not 100% sure whats going on either. ### Reproducible Code Example ```Python ``` ### Steps To Reproduce 1. Go to Skills versus Pay 2. Click any of the buttons to filter specifically 3. It simply buffers/loads, but then will completely reset and not give any specific/correct data per what you tried to select, etc. ### Expected Behavior Show the data/numbers and not reset... ### Current Behavior It simply reloads and completely resets and never loads the information properly. ### Is this a regression? - [ ] Yes, this used to work in a previous version. ### Debug info Windows 11, 64 bit. Chrome. ### Additional Information <img width="881" alt="Image" src="https://github.com/user-attachments/assets/fe5af1ca-4af9-4db0-aff7-b869be6e76f5" />
open
2025-03-23T15:41:25Z
2025-03-23T15:41:35Z
https://github.com/streamlit/streamlit/issues/10879
[ "type:bug", "status:needs-triage" ]
ipsaphoenix
1
deepset-ai/haystack
pytorch
8,118
docs: clean up docstrings of OpenAIChatGenerator
closed
2024-07-30T07:36:22Z
2024-07-31T07:45:16Z
https://github.com/deepset-ai/haystack/issues/8118
[]
agnieszka-m
0
praw-dev/praw
api
1,447
Revert commit 698b103514932424a222edfadd6ea735db76e954
Per #1444 , those \`\`"..."\`\` should not have been removed.
closed
2020-04-27T11:57:34Z
2020-04-27T21:25:49Z
https://github.com/praw-dev/praw/issues/1447
[ "Bug", "Documentation" ]
PythonCoderAS
0
flasgger/flasgger
rest-api
122
schema validation abort directly
schema validation abort directly ` try: jsonschema.validate(data, main_def) except ValidationError as e: abort(Response(str(e), status=400)) ` should add option to only raise an exception and let the caller to handle it
closed
2017-06-25T11:33:33Z
2017-10-28T20:25:13Z
https://github.com/flasgger/flasgger/issues/122
[ "enhancement" ]
ghost
5
jofpin/trape
flask
284
ERROR: cannot import name json
I have error: cannot import name json, after I wrote python2 trape.py -h
open
2020-12-25T13:52:42Z
2021-01-31T12:08:28Z
https://github.com/jofpin/trape/issues/284
[]
Gestohlener
1
blacklanternsecurity/bbot
automation
2,137
Include IP, routing table in initial SCAN event
In order to correlate scan activity back to a specific agent / IP, we should include network interface information in the initial scan event. @aconite33 @kerrymilan
open
2025-01-07T16:03:23Z
2025-02-06T00:02:28Z
https://github.com/blacklanternsecurity/bbot/issues/2137
[ "enhancement" ]
TheTechromancer
0
betodealmeida/shillelagh
sqlalchemy
214
Potential Issue with exact on Fields
The docs indicate that `exact=True` means no post filtering is needed: https://github.com/betodealmeida/shillelagh/blob/97197bd564e96a23c5587be5c9e315f7c0e693ea/src/shillelagh/fields.py#L121-L125 however that value seems to be passed to apsw: https://github.com/betodealmeida/shillelagh/blob/14579e4b8c3159adc4076b36638d13f00dc70609/src/shillelagh/backends/apsw/vt.py#L305 and the docs for that indicate that `False` means sqlalachemy won't do any double checking : https://github.com/betodealmeida/shillelagh/blob/14579e4b8c3159adc4076b36638d13f00dc70609/src/shillelagh/typing.py#L16-L17 (also consistent with [the apsw docs page](https://rogerbinns.github.io/apsw/vtable.html#apsw.VTTable.BestIndex)) Am I misunderstanding something here?
closed
2022-03-28T17:11:49Z
2022-03-30T15:37:28Z
https://github.com/betodealmeida/shillelagh/issues/214
[ "bug" ]
cancan101
3
Miserlou/Zappa
django
1,914
Passing non JSON serializable object to task throws cryptic error
Passing non JSON serializable object to task throws cryptic error and doesnt throw error when running locally. ## Context I've recently noticed this when passing a Django model instance as a param to a task. The task ran fine when I was running the code locally but it failed when I deployed to lambda. ## Expected Behavior I expected the task to run. ## Actual Behavior My code threw: `Object of type '<type>' is not JSON serializable`. ## Possible Fix It would be nice if this was caught straight away when running locally. Maybe we can add an assertion in the decorator? ## Steps to Reproduce 1. Create a task using the `@task` decorator which has a non JSON serializable parameter 2. Deploy to lambda 3. Run some code that triggers the task ## Your Environment ``` python 3.6 lambda-packages 0.20.0 zappa 0.48.2 ```
open
2019-08-06T10:26:09Z
2019-08-06T10:26:09Z
https://github.com/Miserlou/Zappa/issues/1914
[]
stan-sack
0
miguelgrinberg/flasky
flask
327
can flask as a server and node.js as a web ?
i know ,node.js is a server frame,but i need it as a web ,can flask as a server and node.js as a web ? thanks
closed
2018-01-02T07:57:03Z
2018-10-14T22:22:50Z
https://github.com/miguelgrinberg/flasky/issues/327
[ "question" ]
744216212
1
microsoft/nni
pytorch
5,773
Which framework to use for Neural Architecture Search: NNI or Archai?
Hello, I have been exploring the open source framework for NAS and came across NNI and Archai. How these two frameworks are different? As both are part of Microsoft research group so a clarification would be really helpful. Additionally, I would appreciate guidance on which framework would be more suitable for me as a user / researcher. Archai Github: https://github.com/microsoft/archai Documentation: https://microsoft.github.io/archai/index.html# Any feedback would be highly appreciated. Thank you!
open
2024-04-23T15:15:10Z
2024-04-23T15:15:10Z
https://github.com/microsoft/nni/issues/5773
[]
mkumar73
0
PeterL1n/BackgroundMattingV2
computer-vision
79
question about the fourth output of basenet:hidden
What can it do? Why design this output?
closed
2021-03-22T02:40:01Z
2021-03-22T02:44:27Z
https://github.com/PeterL1n/BackgroundMattingV2/issues/79
[]
nostayup
1
deepset-ai/haystack
machine-learning
8,035
`OpenAPITool` fails to handle OpenAPI specs with `servers` under `paths` and missing `operationId`
### Bug Report **Describe the bug** When using the `OpenAPITool` with a specific OpenAPI YAML specification, the tool fails to process the request properly. The issue arises due to the `servers` field being under the `paths` section and the absence of an `operationId` on the forecast path, which the tool does not handle correctly. **Error message** N/A (No explicit error message was thrown; the tool simply fails to process the request as expected). **Expected behavior** The `OpenAPITool` should handle the OpenAPI YAML specification correctly, even when the `servers` field is under the `paths` section and there is no `operationId` on the forecast path. The tool should be able to generate and process the request successfully. **Additional context** - Document types: OpenAPI YAML specification - Preprocessing steps: N/A - Settings of reader: N/A **To Reproduce** Steps to reproduce the behavior: 1. Use the following code with the provided OpenAPI YAML specification URL: ```python from haystack.dataclasses import ChatMessage from haystack_experimental.components.tools.openapi import OpenAPITool, LLMProvider from haystack.utils import Secret # Using the problematic OpenAPI YAML specification tool = OpenAPITool(generator_api=LLMProvider.OPENAI, generator_api_params={"model":"gpt-3.5-turbo"}, spec="https://raw.githubusercontent.com/open-meteo/open-meteo/main/openapi.yml") results = tool.run(messages=[ChatMessage.from_user("weather forecast for latitude 52.52 and longitude 13.41")]) print(results) ``` 2. Observe that the tool fails to process the request properly. 3. Modify the code to use a different OpenAPI YAML specification that does not have the `servers` field under the `paths` section and includes an `operationId` on the forecast path: ```python from haystack.dataclasses import ChatMessage from haystack_experimental.components.tools.openapi import OpenAPITool, LLMProvider from haystack.utils import Secret tool = OpenAPITool(generator_api=LLMProvider.OPENAI, generator_api_params={"model":"gpt-3.5-turbo"}, spec="https://gist.githubusercontent.com/vblagoje/a241b63755e19a20c8bc7e8ea0724aba/raw/e8fe5b66a16b7bf4fadb9551788dd71433af1d58/meteo-openapi.yaml") results = tool.run(messages=[ChatMessage.from_user("weather forecast for latitude 52.52 and longitude 13.41 and set hourly=temperature_2m")]) print(results) ``` 4. Observe that the tool processes the request successfully. The issue seems to be with how the `OpenAPITool` handles certain structures in the OpenAPI YAML specification.
closed
2024-07-17T07:11:19Z
2024-07-18T15:57:31Z
https://github.com/deepset-ai/haystack/issues/8035
[]
vblagoje
0
deepspeedai/DeepSpeed
deep-learning
5,945
nv-nightly CI test failure
The Nightly CI for https://github.com/microsoft/DeepSpeed/actions/runs/10499491789 failed.
closed
2024-08-15T01:41:43Z
2024-08-22T18:50:00Z
https://github.com/deepspeedai/DeepSpeed/issues/5945
[ "ci-failure" ]
github-actions[bot]
1
pyro-ppl/numpyro
numpy
1,010
HMM forward algorithm - 20x difference in performance between two comparable approaches
This issue links to the following thread: https://forum.pyro.ai/t/intuition-for-the-difference-between-the-two-hmm-tutorials-forward-algo-vs-marginalization/2775 The following two tutorials for HMMs cover two alternative solutions via the forward algorithm (one explicit, one implicit): 1. [HMM Example semi-supervised](http://num.pyro.ai/en/latest/examples/hmm.html) 2. [Enumating HMM](http://num.pyro.ai/en/latest/examples/hmm_enum.html) **Context**: - Using simulate_data function from [1] with the following parameters: > args = parser.parse_args("-n 2000 --num-words 10 --num-categories 3 --num-supervised 0 --num-unsupervised 2000".split(’ ')) In other words, 1 series of 2000 observed "words" with transmission matrix 3x3 and emission matrix 3x10 (unsupervised = categories are unknown) - Estimate model_1 on `unsupervised_words` from [1] without any changes - Adjust model_1 from [2] to solve the same task (output categorical dist + align shapes), vis. `model_1_alt` below def model_1_alt(unsupervised_words): num_categories=args.num_categories num_words=args.num_words emission_prior=jnp.repeat(0.1, num_words) transition_prior = jnp.ones(num_categories) probs_x = numpyro.sample( "probs_x", dist.Dirichlet( jnp.broadcast_to(transition_prior, (num_categories, num_categories))).to_event(1) ) probs_y = numpyro.sample( "probs_y",dist.Dirichlet( jnp.broadcast_to(emission_prior, (num_categories, num_words))).to_event(1) ) def transition_fn(carry, y): x_prev = carry x = numpyro.sample("x", dist.Categorical(probs_x[x_prev])) y = numpyro.sample("y", dist.Categorical(probs_y[x]), obs=y) return x, None x_init = 0 scan(transition_fn, (x_init, 0), unsupervised_words) **Expected behaviour**: Both approaches would achieve similar results within comparable time (eg, +-100%) due to slightly different computations **Actual behaviour**: Approach with model_1 from [1] runs c. 20x faster than model_1_alt based on [2] (130s vs 2,700s, respectively; time measures the whole fitting procedure) **Setup**: - Seeds: Simulation done with random.PRNGKey(1); mcmc is done with random.PRNGKey(2) - ran on CPU on AWS EC2 m5.xlarge - Python (3.7.8), Numpyro installed from master (0.6.0), Jax (0.2.12)
closed
2021-04-14T21:15:35Z
2021-04-28T18:22:25Z
https://github.com/pyro-ppl/numpyro/issues/1010
[ "question" ]
svilupp
2
tflearn/tflearn
data-science
214
Thread-specifc models in reinforcement Learning example
In the [reinforcement learning example](https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py), the note described that this example implemented the 1-step Q-learning algorithm from [this paper](http://arxiv.org/pdf/1602.01783v1.pdf). However, I found that the model does not maintain thread-specific parameters for each of the parallel threads. Does it means that the model is a simplification of the original asynchronous 1-step Q-learning model?
closed
2016-07-21T00:19:27Z
2016-07-22T02:17:11Z
https://github.com/tflearn/tflearn/issues/214
[]
yukezhu
2
autogluon/autogluon
data-science
4,573
[BUG]Why can't we just specify the distributed operation of 'gloo' in hyperparameters
['ddp', 'ddp_spawn', 'ddp_fork', 'ddp_notebook', 'ddp_find_unused_parameters_false', 'ddp_find_unused_parameters_true', 'ddp_spawn_find_unused_parameters_false', 'ddp_spawn_find_unused_parameters_true', 'ddp_fork_find_unused_parameters_false', 'ddp_fork_find_unused_parameters_true', 'ddp_notebook_find_unused_parameters_false', 'ddp_notebook_find_unused_parameters_true', 'deepspeed', 'deepspeed_stage_1', 'deepspeed_stage_2', 'deepspeed_stage_2_offload', 'deepspeed_stage_3', 'deepspeed_stage_3_offload', 'deepspeed_stage_3_offload_nvme', 'fsdp', 'fsdp_cpu_offload', 'single_device', 'single_xla', 'xla_debug', 'xla', 'single_tpu'] Why can I only configure the following distributed model? This makes windows users very sad, especially with highly encapsulated classes like MultiModalPredictor, modification is out of the question!
open
2024-10-23T14:58:55Z
2024-10-23T14:58:55Z
https://github.com/autogluon/autogluon/issues/4573
[ "bug: unconfirmed", "Needs Triage" ]
Ultraman6
0
kymatio/kymatio
numpy
454
On output of 3D scattering
According to the following comment in #158, for a 3D input of size (B, M, N, O), the outputs , based on the method, would have the following dimensions: > The 3D version returns different outputs for different versions. > > - "standard" would return `(B, P, M/2**J, N/2**J, O/2**J)` > - "integral" would return `(B, P, 1, 1, 1)` (or `(B, P)` not sure) > - "local" would return `(B, P, 1)` > > The reason for "integral" is practically dimensionality reduction (among others) because 3D is typically large. For "local" you have to ask @louity to be certain but I think it's to identify interesting regions in the moduli (e.g. midpoints between bonded atoms in quantum chemistry) > > _Originally posted by @gexarcha in https://github.com/kymatio/kymatio/issues/158#issuecomment-440062949_ Now I have 2 issues: 1. for an input data with size `torch.Size([1, 128, 128, 128])`, using standard method, I get an output of size `torch.Size([1, 10, 5, 16, 16, 16])` for a scattering with `J = 3` and `L = 4`. This does not follow `(B, P, M/2**J, N/2**J, O/2**J)` that was mentioned earlier, but looks like `(B, ?, ?, M/2**J, N/2**J, O/2**J)`. I was wondering how to compute values for the dimensions marked by `?`. 2. Again, as mentioned in another comment in https://github.com/kymatio/kymatio/issues/158#issuecomment-441827979 and implemented in `scattering3d_qm7`, zeroth order coefficients are computed using `compute_integrals`. However, the example implemented in `compute_speed.py` does not use `compute_integrals`. I was wondering which one is correct, to use or not to use `compute_integrals`? Thanks!
closed
2019-11-21T01:57:35Z
2022-06-20T20:17:50Z
https://github.com/kymatio/kymatio/issues/454
[]
nshervt
9
cupy/cupy
numpy
8,973
Use of cp.pad causes significant performance degradation in downstream code compared to np.pad
### Description When padding arrays directly on the GPU using `cp.pad`, I observed significantly slower performance in _subsequent_ code compared to padding on the CPU using `np.pad` and then transferring the data to the GPU with `cp.asarray`. CuPy is awesome! Any help would be greatly appreciated! 😁 **What Happened:** Padding an image using `cp.pad` resulted in slower execution times for subsequent GPU operations. The performance degradation was consistently observed across several functions (`correlation_fft`, `correlation_mul`, and `memory_test`) that I have included for convenience. **Expected Behavior:** Ideally `cp.pad` should provide performance comparable to or better than the CPU padding approach (given that data transfer is generally expensive). If the above is not possible, then a ⚠️ warning note should be present in the documentation. Additionally, I would have expected ` cp.ascontiguousarray` to fix it, but it seems to have no effect. **Performance Results:** ``` memory_test - cp.pad is 1.43x slower correlation_mul - cp.pad is 1.70x slower correlation_fft - cp.pad is 5.16x slower ``` ### To Reproduce ```py import numpy as np import cupy as cp import time def correlation_fft(template, image): fft_shape = (image.shape[0] + template.shape[0] - 1, image.shape[1] + template.shape[1] - 1) template_fft = cp.fft.rfft2(template, s=fft_shape) image_fft = cp.fft.rfft2(image, s=fft_shape) result = template_fft * cp.conj(image_fft) return cp.fft.irfft2(result) def correlation_mul(template, image): crop_image = image[:template.shape[0], :template.shape[1]] return template * crop_image def memory_test(template, image): """Just sum the template multiple times to test memory bandwidth""" result = template for _ in range(10): result = result + template return result def benchmark(func, image, template, n_iter=10): """Benchmark a function by running it n_iter times""" times = [] for _ in range(n_iter): start = time.perf_counter() func(template, image) cp.cuda.Stream.null.synchronize() times.append(time.perf_counter() - start) return np.mean(times), np.std(times) # Create sample data with your dimensions template_shape = (191, 204) image_shape = (545, 768) template_padding = ((44, 45), (38, 38)) # Create random data cpu_image = np.random.random(image_shape).astype(np.float32) gpu_image = cp.asarray(cpu_image) cpu_template = np.random.random(template_shape).astype(np.float32) gpu_template = cp.asarray(cpu_template) # Test 1: Pad on GPU padded_template_gpu = cp.pad(gpu_template, template_padding, mode='constant') padded_template_gpu = cp.ascontiguousarray(padded_template_gpu) # Ensure the memory is contiguous HAS NO EFFECT mean_gpu, std_gpu = benchmark(memory_test, gpu_image, padded_template_gpu, 10) print(f"memory_test time when pad done on GPU (cp.pad): {mean_gpu:.6f} ± {std_gpu:.6f} seconds") # Test 2: Pad on CPU padded_template_cpu = np.pad(cpu_template, template_padding, mode='constant') padded_template_cpu_to_gpu = cp.asarray(padded_template_cpu) mean_cpu, std_cpu = benchmark(memory_test, gpu_image, padded_template_cpu_to_gpu, 10) print(f"memory_test time when pad done on CPU (np.pad): {mean_cpu:.6f} ± {std_cpu:.6f} seconds") # Results. print(f"\nRatio (GPU vs CPU): GPU is {mean_gpu/mean_cpu:.2f}x slower") # Verify results are similar cp.testing.assert_allclose( correlation_fft(padded_template_gpu, gpu_image), correlation_fft(padded_template_cpu_to_gpu, gpu_image), rtol=1e-5 ) ``` ### Installation Wheel (`pip install cupy-***`) ### Environment ``` OS : Windows-10-10.0.26100-SP0 Python Version : 3.11.9 CuPy Version : 13.3.0 CuPy Platform : NVIDIA CUDA NumPy Version : 2.1.3 SciPy Version : 1.14.1 Cython Build Version : 0.29.36 Cython Runtime Version : None CUDA Root : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6 nvcc PATH : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6\bin\nvcc.EXE CUDA Build Version : 12060 CUDA Driver Version : 12060 CUDA Runtime Version : 12060 (linked to CuPy) / 12060 (locally installed) CUDA Extra Include Dirs : [] cuBLAS Version : 120604 cuFFT Version : 11300 cuRAND Version : 10307 cuSOLVER Version : (11, 7, 1) cuSPARSE Version : 12504 NVRTC Version : (12, 6) Thrust Version : 200600 CUB Build Version : 200600 Jitify Build Version : 1a0ca0e cuDNN Build Version : None cuDNN Version : None NCCL Build Version : None NCCL Runtime Version : None cuTENSOR Version : None cuSPARSELt Build Version : None Device 0 Name : NVIDIA GeForce RTX 4090 Laptop GPU Device 0 Compute Capability : 89 Device 0 PCI Bus ID : 0000:01:00.0 ``` Also tested on an AMD Threadripper machine with a 4070. ### Additional Information _No response_
open
2025-02-20T17:15:58Z
2025-02-26T19:44:10Z
https://github.com/cupy/cupy/issues/8973
[ "issue-checked" ]
JohnHardy
4
postmanlabs/httpbin
api
100
port to python 3
it's time.
closed
2013-06-14T20:09:29Z
2018-04-26T17:50:59Z
https://github.com/postmanlabs/httpbin/issues/100
[]
kennethreitz
6
ultralytics/yolov5
deep-learning
12,674
KeyError: 'train'
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question Transferred 308/362 items from yolov5\weights\yolov5s.pt Traceback (most recent call last): File "yolov5/train.py", line 542, in <module> train(hyp, opt, device, tb_writer) File "yolov5/train.py", line 100, in train train_path = data_dict['train'] KeyError: 'train' ### Additional _No response_
closed
2024-01-27T10:18:24Z
2024-10-20T19:38:19Z
https://github.com/ultralytics/yolov5/issues/12674
[ "question", "Stale" ]
2ljz
3
CorentinJ/Real-Time-Voice-Cloning
tensorflow
725
Loss of Tacotron
May I ask what actually is the loss while training the synthesizers. For the new Pytorch repo, as mentioned in #653 , the loss is the sum of: 1. L1 loss +L2 loss of decoder output 2. L2 loss of Mel spectrogram after Post-Net 3. Cross entropy of Stop Token I can also see it in the code: ` # Backward pass ` ` m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels) ` ` m2_loss = F.mse_loss(m2_hat, mels) ` ` stop_loss = F.binary_cross_entropy(stop_pred, stop) ` ` loss = m1_loss + m2_loss + stop_loss ` However, what is the loss in the old Tensorflow repo? In the original paper it simply mentioned "We extend [15] by augmenting the L2 loss on the predicted spectrogram with an additional L1 loss. " The RTVC thesis it is stated that "The loss function is the L2 loss between the predicted and ground truth mel spectrograms. " In the code there are some items related to loss including eval_losses, before_losses, after_losses, stop_token_losses, linear_losses, linear_loss Are they related to the loss? Or did I miss the lines about the loss?
closed
2021-04-05T14:04:40Z
2021-04-11T06:25:59Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/725
[]
chankl3579
2
nicodv/kmodes
scikit-learn
53
kmodes package dependencies
Is it possible to install kmodes with following latest packages numpy 1.13.1 scipy 0.19.1 scikit-learn 0.19.0
closed
2017-09-07T06:33:27Z
2017-09-07T18:17:14Z
https://github.com/nicodv/kmodes/issues/53
[ "question" ]
musharif
1
gradio-app/gradio
data-science
10,601
change event doesn't be detected when value is component in gr.Dataframe
### Describe the bug I have a seven columns' dataframe, and the final column is html style selection component. When I select the value in such column, change event cannot be detected. ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction ```python import gradio as gr def __correct__(row): return """<select> <option value='0' selected>Unknown</option> <option value='1'>NASR</option> <option value='2'>Microsoft</option> <option value='3'>Reference</option> </select>""" def load_file(src_full_path_name): df = pd.read_csv(src_full_path_name) df['Correct'] = df['Correct'].apply(__correct__) return gr.Dataframe(value=df, type="pandas", datatype='html', max_height=750, interactive=True, show_label=False, render=True, visible=True, label='table') def capture_edited_data(dataframe): if len(dataframe) == 0: return gr.update() # This is not be called, when I select different values with gr.Blocks() as demo: source_file = gr.Dropdown(label="Choose one File", multiselect=False, elem_id='source_file') load_btn = gr.Button("Load", elem_id="load_btn", interactive=True) table_output = gr.Dataframe(row_count=1, col_count=7, label="table", show_label=False) table_output.change(fn=capture_edited_data, inputs=table_output, outputs=[]) load_btn.click(fn=load_file, inputs=[source_file], outputs=[table_output]) if __name__ == '__main__': demo.launch(server_name='localhost', server_port=54321, share=False, debug=True) ``` ### Screenshot _No response_ ### Logs ```shell ``` ### System Info ```shell aiofiles==23.2.1 annotated-types==0.7.0 anyio==4.8.0 certifi==2024.12.14 charset-normalizer==3.4.1 click==8.1.8 dohq-artifactory==1.0.0 exceptiongroup==1.2.2 fastapi==0.115.6 ffmpy==0.5.0 filelock==3.17.0 fsspec==2024.12.0 gradio==5.12.0 gradio_client==1.5.4 h11==0.14.0 httpcore==1.0.7 httpx==0.28.1 huggingface-hub==0.27.1 idna==3.10 Jinja2==3.1.5 markdown-it-py==3.0.0 MarkupSafe==2.1.5 mdurl==0.1.2 numpy==2.2.2 orjson==3.10.15 packaging==24.2 pandas==2.2.3 pillow==11.1.0 pip==24.3.1 pydantic==2.10.5 pydantic_core==2.27.2 pydub==0.25.1 Pygments==2.19.1 PyJWT==2.10.1 python-dateutil==2.9.0.post0 python-multipart==0.0.20 pytz==2024.2 PyYAML==6.0.2 requests==2.32.3 rich==13.9.4 ruff==0.9.2 safehttpx==0.1.6 semantic-version==2.10.0 setuptools==73.0.1 shellingham==1.5.4 six==1.17.0 sniffio==1.3.1 starlette==0.41.3 tomlkit==0.13.2 tqdm==4.67.1 typer==0.15.1 typing_extensions==4.12.2 tzdata==2025.1 urllib3==2.3.0 uvicorn==0.34.0 websockets==14.2 wheel==0.44.0 ``` ### Severity Blocking usage of gradio
closed
2025-02-17T04:14:08Z
2025-03-04T19:16:16Z
https://github.com/gradio-app/gradio/issues/10601
[ "bug", "💾 Dataframe" ]
Yb2S3Man
1
dask/dask
numpy
10,842
`make_meta` over a Dask Dataframe returns a reference, not a new object
**Describe the issue**: Reading the documentation of [`make_meta`](https://docs.dask.org/en/stable/generated/dask.dataframe.utils.make_meta.html) it states that > This method creates meta-data based on the type of x so my understanding is that a new object is returned. However, one can check that when running `make_meta` over a Dask Dataframe a reference to the dataframe meta is returned. Thus, if any change is made to the returned meta, the meta of the Dataframe is modified as well. **Minimal Complete Verifiable Example**: ```python import dask.dataframe as dd import pandas as pd df = pd.DataFrame({ "col1": [1, 2, 3], "col2": [4, 5, 6], }) df = dd.from_pandas(df, npartitions=2) print(df.columns) # returns Index(['col1', 'col2'], dtype='object') from dask.dataframe.utils import make_meta meta = make_meta(df) meta["flag"] = pd.Series([], dtype="bool") print(df.columns) # returns Index(['col1', 'col2', 'flag'], dtype='object') ``` **Anything else we need to know?**: In my experience `make_meta` is very useful to obtain the current meta of a Dataframe and then update it with the necessary changes to provide appropriate meta information to methods such as `map_partitions` or `assign`, so that Dask knows how you intend to change the structure of the Dataframe. But since `make_meta` returns a reference it seems we are forced to make changes to a copy of this meta object, which is inconvenient. Is there any design reason for returning a reference instead of a copy? **Environment**: - Dask version: 2024.1.0 - Python version: 3.12.1 - Operating System: Ubuntu 22.04.3 LTS - Install method (conda, pip, source): pip
open
2024-01-22T09:08:36Z
2024-01-22T09:08:47Z
https://github.com/dask/dask/issues/10842
[ "needs triage" ]
albarji
0
encode/httpx
asyncio
2,286
Setting Cookies on request
Hello, i can't find the correct way to set all needed cookies. This is the cookie tab from the response: ![grafik](https://user-images.githubusercontent.com/94435104/176787859-2a72b2d1-6a01-47e4-8427-084fa8d6c8c0.png) Now i want to use client and tried a lot of different things to set the cookies but none of them solved it. Here is the current code: ```py data1 = {"deviceId": "", "userName": username, "password": password} cookies = httpx.Cookies() resp1 = httpx.post("https://api.fedex.com/user/v4/login", headers=headers, json=data1, follow_redirects=True) try: with httpx.Client(proxies=proxy_auth if proxy_type != "" else None) as client: client.cookies.set(name="FedEx-Secure-Login-Cookie", value="true", domain="https://fedex.com/secure-login/") client.cookies.set(name="_abck", value=resp1.cookies.get("_abck"), domain="https://edex.com/secure-login/") client.cookies.set(name="expires", value=resp1.cookies.get("expires"), domain="https://edex.com/secure-login/") resp2 = client.post("https://api.fedex.com/user/v4/login", headers=headers, json=data1, follow_redirects=True) except httpx.ProxyError: with httpx.Client(proxies=None) as client: resp2 = client.post("https://api.fedex.com/user/v4/login", headers=headers, json=data1, follow_redirects=True) set_cookie = f"siteDC=edc; xacc=DE; fdx_cbid=30207856121656437730110340266011; fdx_locale=de_DE; fdx_redirect=de-de; cc_path=de; isTablet=false; isMobile=false; isWireless=false; aemserver=PROD-P-dotcom-p0008480.prod.cloud.fedex.com; _abck={resp1.cookies.get('_abck')}; ADRUM=s=1656441915426&r=https%3A%2F%2Fwww.fedex.com%2Fsecure-login%2F%3F-1854754532; s_invisit=true; gpv_pageName=fedex/apps/wlgn/login-credentials; mboxEdgeCluster=37" headers["Cookie"] = set_cookie print(resp1.cookies) print(cookies.set(name="FedEx-Secure-Login-Cookie", value="true")) print(cookies.set(name="_abck", value=resp1.cookies.get("_abck"), domain="https://edex.com/secure-login/")) print(cookies.get("FedEx-Secure-Login-Cookie")) print("-----------------------------------------------------") print(resp2.text) # print(resp2.json()["errors"][0]["code"]) ``` The error i'm seening every time: ``` <Cookies[<Cookie _abck=9D653246B520E9AEF2535C75C976823E~-1~YAAQFuZlX7wNOo6BAQAAoPWrtghDDCi7c261ywX9SyxVtDo91R0pgBQnSUW6flrVg8KOrg5fkuJaFeczho1eCwDtPKn3eOsOarydFUK4F6UE00/fUEITlzn0kTf/Jiuny1j7+jULCNUR5QetwGseKivnipCbwQbpKZePNd1aURkM0PrjMOjaJjgGDl6SU6hDhWaBiRYNboIlBSz1bX60dKKZfUFTjXMAfmARuk1kVTYGt4bsIt/Fs7TEAFB20qhwj/rU5qEjkdrAMLoJ8uMSL5N5i8zi6t36qevc9U3G8+iG9d8fjvIh8HHJ5MyIwjy1qsJcn+8YYwTZnaQtK+paNhyly0CnCQ62UdsaS33hBEuhKqY9//Qu7yNrVi0=~-1~-1~-1 for .fedex.com />, <Cookie bm_sz=118A0D88115C5E503300B088C49F1D00~YAAQFuZlX70NOo6BAQAAoPWrthBks2eyNDxhigIZtL7o/c+a0YDQOAGUre1B4x2Z0tnW5r8SFalRRg0cs05N1umnjBjImwpcA2Z6/vHU96P96RTT+01ZCVzypgGKelWNlQENBpkt8vQH1HTVjR8Nh+PL9Pu+mtB5cEn/WGcoIKIrLEUfRzHachJ9VZ66EZ/9JMWCIPAPWkXxPwwiZEn5jHfJsvnCi8qMHw8xl4M7y9KR42JzK0HDk85CyB82hHrMdTk1k6Xu+7db7LG+O3/XXrGQG6alX2Nrgukz+0zNjqf4Fg==~4273478~4404549 for .fedex.com />]> None None true ----------------------------------------------------- <HTML><HEAD> <TITLE>Access Denied</TITLE> </HEAD><BODY> <H1>Access Denied</H1> You don't have permission to access "http&#58;&#47;&#47;api&#46;fedex&#46;com&#47;user&#47;v4&#47;login" on this server.<P> Reference&#32;&#35;18&#46;16e6655f&#46;1656627131&#46;2679623b </BODY> </HTML> ``` This error is cookie releated because when i manually enter the correct cookie in the request header, everything works fine.
closed
2022-06-30T22:18:51Z
2022-07-01T08:08:06Z
https://github.com/encode/httpx/issues/2286
[]
FuckingToasters
0
gunthercox/ChatterBot
machine-learning
1,582
AttributeError: module 'chatterbot.logic' has no attribute 'UnitConversion'
While running the following example from the Git Example page, ``` Python from chatterbot import ChatBot bot = ChatBot( 'Unit Converter', logic_adapters=[ 'chatterbot.logic.UnitConversion', ] ) questions = [ 'How many meters are in a kilometer?', 'How many meters are in one inch?', '0 celsius to fahrenheit', 'one hour is how many minutes ?' ] # Prints the convertion given the specific question for question in questions: response = bot.get_response(question) print(question + ' - Response: ' + response.text) ``` I get following error ``` AttributeError: module 'chatterbot.logic' has no attribute 'UnitConversion' ``` I checked the chatterbot/logic/__init__.py and its content are as follows ``` __all__ = ( 'UnitConversion', 'LogicAdapter', 'BestMatch', 'MathematicalEvaluation', 'SpecificResponseAdapter', 'TimeLogicAdapter', ``` My chatterbot version is 1.0.0a4.. Please let me know how to resolve this error.
closed
2019-01-23T08:50:21Z
2019-11-21T09:23:17Z
https://github.com/gunthercox/ChatterBot/issues/1582
[]
sarangjain40
2
stanfordnlp/stanza
nlp
986
AttributeError: 'NoneType' object has no attribute 'enum_types_by_name'
I got this error while running stanza import stanza from stanza.pipeline.core import Pipeline from stanza.pipeline.constituency_processor import ConstituencyProcessor import stanza.models.constituency.trainer as trainer from stanza.server.parser_eval import EvaluateParser from stanza.protobuf import to_text from stanza.pipeline.core import Pipeline from stanza.pipeline.constituency_processor import ConstituencyProcessor mport stanza.models.constituency.trainer as trainer from stanza.server.parser_eval import EvaluateParser from stanza.protobuf import to_text AttributeError: 'NoneType' object has no attribute 'enum_types_by_name'
closed
2022-03-31T16:50:17Z
2022-06-07T19:28:40Z
https://github.com/stanfordnlp/stanza/issues/986
[ "question" ]
mennatallah644
4