repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ipython/ipython
jupyter
14,184
Tab complete for class __call__ not working
<!-- This is the repository for IPython command line, if you can try to make sure this question/bug/feature belong here and not on one of the Jupyter repositories. If it's a generic Python/Jupyter question, try other forums or discourse.jupyter.org. If you are unsure, it's ok to post here, though, there are few maintainer so you might not get a fast response. --> If I make the following two files: ```python # t.py class MyClass: def my_method(self) -> None: print('this is my method') def foo() -> MyClass: return MyClass() ``` and ```python # f.py class MyClass: def my_method(self) -> None: print('this is my method') class Foo: def __call__(self) -> MyClass: return MyClass() foo = Foo() ``` then `foo().my_method()` works for both But - I only get the auto-complete suggestion for the first one: `ipython -i t.py`: ![Screenshot 2023-09-30 102929](https://github.com/ipython/ipython/assets/33491632/9d2cc19b-f899-410f-bbd5-4333b0ce5ad5) `ipython -i f.py`: ![Screenshot 2023-09-30 102832](https://github.com/ipython/ipython/assets/33491632/d29cadab-b4c8-4bc4-9dfb-fe7cf0f8e0d0) Shouldn't both autocomplete to the method available in `MyClass`? For reference, this came up here https://github.com/pola-rs/polars/issues/11433
closed
2023-09-30T09:31:52Z
2023-10-01T17:20:31Z
https://github.com/ipython/ipython/issues/14184
[ "tab-completion" ]
MarcoGorelli
3
graphistry/pygraphistry
jupyter
549
[BUG] categorical color encoding does not allow two values to have the same color
**Describe the bug** If I use a categorical color encoding and try to set two values to have the same color, only one of the them uses the color, the other gets set to the default color **To Reproduce** ``` import datetime import pandas as pd import numpy as np import graphistry import math graphistry.register(api=3, personal_key_id='', personal_key_secret='', server='...') num_recs=353 num_edges=787 ndf = pd.DataFrame({'ID' : range(num_recs), 'tier' : np.random.randint(1,9,num_recs), 'FL_risk_exposure' : np.random.randint(0,100,num_recs), 'risk_level' : [np.random.choice(['no_risk', 'high_risk', 'med_risk']) for i in range(num_recs)], 'flagged_company' : [np.random.choice(['Yes', 'No']) for i in range(num_recs)], 'rating' : np.random.randint(0,10,num_recs)}) edf = pd.DataFrame({'source' : np.random.choice(10,num_edges), 'target' : np.random.choice(10,num_edges)}) tier2len = ndf.tier.value_counts().to_dict() ndf['x'] = ndf.apply(lambda row: (row['tier']) * math.cos(2*math.pi * row['ID']/tier2len[row['tier']] ), axis=1) ndf['y'] = ndf.apply(lambda row: (row['tier']) * math.sin(2*math.pi * row['ID']/tier2len[row['tier']]), axis=1) g3 = (graphistry.addStyle(bg={'color': '#F2F7F8'}) .nodes(ndf, 'ID') .edges(edf, 'source', 'target') .settings(url_params={'play': 0,'pointSize': .3,'edgeOpacity': .1}, height=800) .encode_axis([ {'r': 1, 'space': True, "label": "Tier 1"}, {'r': 2, 'space': True, "label": "Tier 2"}, {'r': 3, 'space': True, "label": "Tier 3"}, {'r': 4, 'space': True, "label": "Tier 4"}, {'r': 5, 'space': True, "label": "Tier 5"}, {'r': 6, 'space': True, "label": "Tier 6"}, {'r': 7, 'space': True, "label": "Tier 7"}, {'r': 8, 'space': True, "label": "Tier 8"}, {'r': 9, 'space': True, "label": "Tier 9"}]) .encode_point_color('risk_level', as_categorical=True, categorical_mapping={ # 'no_risk' : 'black', 'high_risk' : 'red', 'med_risk' : 'red'}, default_mapping='black') ) g3.plot() ``` **Expected behavior** expect med_risk to be red, but it is showing black **Screenshots** ![image](https://github.com/graphistry/pygraphistry/assets/11410059/838bc828-3724-4c34-8be8-0cec87845a8b) pygraphistry `v0.33.2`
open
2024-02-28T17:35:01Z
2024-03-01T22:14:16Z
https://github.com/graphistry/pygraphistry/issues/549
[ "bug", "customer" ]
DataBoyTX
2
dmlc/gluon-nlp
numpy
690
[MXNet] - [BERT]
There is a problem with a custom BERT model training with the later version of MXNet 1.5.0 (observed with cu90). mlm_loss stops around 7.2X and nsp_acc stopps around 54. The last mxnet-cu90 version is still viable is 1.5.0b20190425. 1.5.0b20190426 onward has this issue. Thus, you cannot train a custom BERT model with the latest version of MXNet now. I assume there was a change in optimization between April 25th and 26th. I used the latest version of gluonnlp for the following test. I think it is not the problem with gluonnlp (0.6.0). (i.e. pip install https://github.com/dmlc/gluon-nlp/tarball/master ) With mxnet-cu90==1.5.0b20190425 (This is working) ```bash (mxnet_p36_updated_4) sh-4.2$ python run_pretraining.py --gpus 0,1,2,3,4,5,6,7 --batch_size 8 --lr 1e-3 --data "out_mcg_test-big/part-001.npz" @--warmup_ratio 0.01 --num_steps 1000000 --log_interval=250 --data_eval "out_mcg_test-big/part-001.npz" --batch_size_eval 8 --ckpt_dir ckpt --ckpt_interval 25000 --accumulate 4 --num_buckets 10 --dtype float16 INFO:root:Namespace(accumulate=4, batch_size=8, batch_size_eval=8, by_token=False, ckpt_dir='ckpt', ckpt_interval=25000, data='out_mcg_test-big/part-001.npz', data_eval='out_mcg_test-big/part-001.npz', dataset_name='book_corpus_wiki_en_uncased',dtype='float16', eval_only=False, gpus='0,1,2,3,4,5,6,7', kvstore='device', log_interval=250, lr=0.001, model='bert_12_768_12', num_buckets=10, num_steps=1000000, pretrained=False, profile=False, seed=0, start_step=0, verbose=False, warmup_ratio=0.01) INFO:root:Using training data at out_mcg_test-big/part-001.npz [20:42:24] src/kvstore/././comm_tree.h:356: only 32 out of 56 GPU pairs are enabled direct access. It may affect the performance. You can set MXNET_ENABLE_GPU_P2P=0 to turn it off [20:42:24] src/kvstore/././comm_tree.h:365: .vvvv... [20:42:24] src/kvstore/././comm_tree.h:365: v.vv.v.. [20:42:24] src/kvstore/././comm_tree.h:365: vv.v..v. [20:42:24] src/kvstore/././comm_tree.h:365: vvv....v ... [20:42:24] src/kvstore/./././gpu_topology.h:216: cudaDeviceGetP2PAttribute incorrect. Falling back to cudaDeviceEnablePeerAccess for topology detection [20:42:24] src/kvstore/././comm_tree.h:380: Using Kernighan-Lin to generate trees [20:42:24] src/kvstore/././comm_tree.h:391: Using Tree [20:42:25] src/kvstore/././comm_tree.h:488: Size 2 occurs 1 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 768 occurs 114 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 1536 occurs 2 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 3072 occurs 12 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 30522 occurs 1 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 393216 occurs 1 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 589824 occurs 50 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 2359296 occurs 24 times [20:42:25] src/kvstore/././comm_tree.h:488: Size 23440896 occurs 1 times INFO:root:[step 249] mlm_loss=8.02087 mlm_acc=6.88167 nsp_loss=0.69021 nsp_acc=53.343 throughput=24.2K tks/s lr=0.0000249 time=315.28 INFO:root:[step 499] mlm_loss=6.85134 mlm_acc=11.51758 nsp_loss=0.65648 nsp_acc=60.298 throughput=57.7K tks/s lr=0.0000499 time=133.49 INFO:root:[step 749] mlm_loss=6.60548 mlm_acc=13.98383 nsp_loss=0.58539 nsp_acc=67.169 throughput=57.7K tks/s lr=0.0000749 time=133.54 ``` With mxnet-cu90==1.5.0b20190426 (This is not working) ```bash #(Same)# INFO:root:[step 249] mlm_loss=nan mlm_acc=4.56305 nsp_loss=nan nsp_acc=54.454 throughput=23.7K tks/s lr=0.0000249 time=321.78 INFO:root:[step 499] mlm_loss=7.27492 mlm_acc=5.76089 nsp_loss=0.68847 nsp_acc=54.719 throughput=57.4K tks/s lr=0.0000499 time=134.22 INFO:root:[step 749] mlm_loss=7.26470 mlm_acc=5.82224 nsp_loss=0.68894 nsp_acc=54.428 throughput=57.3K tks/s lr=0.0000749 time=134.40 ```
closed
2019-05-02T21:48:45Z
2019-05-11T07:36:14Z
https://github.com/dmlc/gluon-nlp/issues/690
[ "bug" ]
araitats
9
CorentinJ/Real-Time-Voice-Cloning
deep-learning
736
Issue running: python demo_toolbox.py
Hello, I have satisfied all of my requirements and when I try to run the command `python demo_toolbox.py` I get an output that looks something like this: `ModuleNotFoundError: No module named 'torch'` I believe this is saying I don't have PyTorch. However, I installed PyTorch a few months ago and have been using programs requiring it since. When I first installed PyTorch I used this command: `conda install --yes -c PyTorch pytorch=1.7.1 torchvision cudatoolkit=11.0` I am doing this all on PowerShell on Windows 10. Additionally, I am running python 3.6.8 Any thoughts would be great.
closed
2021-04-14T06:41:44Z
2021-04-20T02:56:32Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/736
[]
alexp-12
2
proplot-dev/proplot
data-visualization
422
Hide datetime minorticks?
This is a minor issue, but I don't think the default behavior of datetime minorticks is pretty and publication-quality as shown in the example from the proplot homepage. Since we always need to modify or hide these minorticks, can we hide them by default or make them prettier? ![Screen Shot 2023-05-01 at 10 04 36 AM](https://user-images.githubusercontent.com/61028484/235483993-20ee9f09-cc62-479c-900e-2304e51e71d0.png)
open
2023-05-01T16:11:07Z
2023-05-01T16:47:30Z
https://github.com/proplot-dev/proplot/issues/422
[ "enhancement" ]
kinyatoride
0
NullArray/AutoSploit
automation
1,161
Unhandled Exception (f938320af)
Autosploit version: `2.2.3` OS information: `Linux-4.4.189~EviraPure-Miui-V1.7-armv8l-with-libc` Running context: `/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/autosploit.py` Error meesage: `[Errno 2] No such file or directory: '?'` Error traceback: ``` Traceback (most recent call): File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/autosploit/main.py", line 123, in main terminal.terminal_main_display(loaded_exploits) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/term/terminal.py", line 331, in terminal_main_display self.custom_host_list(loaded_mods) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/term/terminal.py", line 277, in custom_host_list self.exploit_gathered_hosts(mods, hosts=provided_host_file) File "/data/data/com.thecrackertechnology.andrax/ANDRAX/AutoSploit/lib/term/terminal.py", line 217, in exploit_gathered_hosts host_file = open(hosts).readlines() IOError: [Errno 2] No such file or directory: '?' ``` Metasploit launched: `True`
closed
2019-09-03T19:46:32Z
2019-09-03T21:40:15Z
https://github.com/NullArray/AutoSploit/issues/1161
[]
AutosploitReporter
0
anselal/antminer-monitor
dash
152
Get Hardware Error Rate from summary instead of stats
Some Antminer models like the E3 and S17 do not return the `Hardware Error Rate` in the stats but only in the summary. To fix this swap lines https://github.com/anselal/antminer-monitor/blob/dee617db435d30c8cf75d2331baaee6873a8609c/antminermonitor/blueprints/asicminer/asic_antminer.py#L124-L125 with https://github.com/anselal/antminer-monitor/blob/dee617db435d30c8cf75d2331baaee6873a8609c/antminermonitor/blueprints/asicminer/asic_antminer.py#L127-L130
closed
2019-12-13T13:35:25Z
2019-12-18T21:28:15Z
https://github.com/anselal/antminer-monitor/issues/152
[ ":bug: bug" ]
anselal
0
microsoft/unilm
nlp
1,256
[Vlmo] ERROR -IndexError: list index out of range
➜ TRANSFORMERS_OFFLINE=1 python run.py with data_root=/home/ubuntu/Zuolab/unilm/vlmo/data/data_arrows_root/ num_gpus=1 num_nodes=1 task_mlm_itm_itc_base whole_word_masking=True step200k per_gpu_batchsize=8 load_path=$INIT_CKPT log_dir=./out/ WARNING - VLMo - No observers have been added to this run INFO - VLMo - Running command 'main' INFO - VLMo - Started Global seed set to 1 drop path rate: 0.1 window_size: (14, 14) Load ckpt from: /home/ubuntu/Zuolab/unilm/vlmo/1_My_Vlmo/pth/vlmo_base_patch16_224_stage2.pt Read state dict from ckpt. relative_position_bias_table = torch.Size([1126, 144]) relative_position_index = torch.Size([197, 197]) text_relative_position_index = torch.Size([196, 196]) text_imag_relative_position_index = torch.Size([393, 393]) text_embeddings.position_ids = torch.Size([1, 196]) text_embeddings.word_embeddings.weight = torch.Size([30522, 768]) text_embeddings.position_embeddings.weight = torch.Size([196, 768]) text_embeddings.token_type_embeddings.weight = torch.Size([2, 768]) text_embeddings.LayerNorm.weight = torch.Size([768]) text_embeddings.LayerNorm.bias = torch.Size([768]) token_type_embeddings.weight = torch.Size([2, 768]) transformer.cls_token = torch.Size([1, 1, 768]) transformer.patch_embed.proj.weight = torch.Size([768, 3, 16, 16]) transformer.patch_embed.proj.bias = torch.Size([768]) transformer.blocks.0.gamma_1 = torch.Size([768]) transformer.blocks.0.gamma_2 = torch.Size([768]) transformer.blocks.0.norm1.weight = torch.Size([768]) transformer.blocks.0.norm1.bias = torch.Size([768]) transformer.blocks.0.attn.q_bias = torch.Size([768]) transformer.blocks.0.attn.v_bias = torch.Size([768]) transformer.blocks.0.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.0.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.0.attn.proj.bias = torch.Size([768]) transformer.blocks.0.norm2_text.weight = torch.Size([768]) transformer.blocks.0.norm2_text.bias = torch.Size([768]) transformer.blocks.0.norm2_imag.weight = torch.Size([768]) transformer.blocks.0.norm2_imag.bias = torch.Size([768]) transformer.blocks.0.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.0.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.0.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.0.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.0.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.0.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.0.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.0.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.1.gamma_1 = torch.Size([768]) transformer.blocks.1.gamma_2 = torch.Size([768]) transformer.blocks.1.norm1.weight = torch.Size([768]) transformer.blocks.1.norm1.bias = torch.Size([768]) transformer.blocks.1.attn.q_bias = torch.Size([768]) transformer.blocks.1.attn.v_bias = torch.Size([768]) transformer.blocks.1.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.1.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.1.attn.proj.bias = torch.Size([768]) transformer.blocks.1.norm2_text.weight = torch.Size([768]) transformer.blocks.1.norm2_text.bias = torch.Size([768]) transformer.blocks.1.norm2_imag.weight = torch.Size([768]) transformer.blocks.1.norm2_imag.bias = torch.Size([768]) transformer.blocks.1.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.1.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.1.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.1.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.1.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.1.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.1.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.1.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.2.gamma_1 = torch.Size([768]) transformer.blocks.2.gamma_2 = torch.Size([768]) transformer.blocks.2.norm1.weight = torch.Size([768]) transformer.blocks.2.norm1.bias = torch.Size([768]) transformer.blocks.2.attn.q_bias = torch.Size([768]) transformer.blocks.2.attn.v_bias = torch.Size([768]) transformer.blocks.2.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.2.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.2.attn.proj.bias = torch.Size([768]) transformer.blocks.2.norm2_text.weight = torch.Size([768]) transformer.blocks.2.norm2_text.bias = torch.Size([768]) transformer.blocks.2.norm2_imag.weight = torch.Size([768]) transformer.blocks.2.norm2_imag.bias = torch.Size([768]) transformer.blocks.2.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.2.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.2.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.2.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.2.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.2.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.2.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.2.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.3.gamma_1 = torch.Size([768]) transformer.blocks.3.gamma_2 = torch.Size([768]) transformer.blocks.3.norm1.weight = torch.Size([768]) transformer.blocks.3.norm1.bias = torch.Size([768]) transformer.blocks.3.attn.q_bias = torch.Size([768]) transformer.blocks.3.attn.v_bias = torch.Size([768]) transformer.blocks.3.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.3.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.3.attn.proj.bias = torch.Size([768]) transformer.blocks.3.norm2_text.weight = torch.Size([768]) transformer.blocks.3.norm2_text.bias = torch.Size([768]) transformer.blocks.3.norm2_imag.weight = torch.Size([768]) transformer.blocks.3.norm2_imag.bias = torch.Size([768]) transformer.blocks.3.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.3.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.3.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.3.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.3.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.3.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.3.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.3.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.4.gamma_1 = torch.Size([768]) transformer.blocks.4.gamma_2 = torch.Size([768]) transformer.blocks.4.norm1.weight = torch.Size([768]) transformer.blocks.4.norm1.bias = torch.Size([768]) transformer.blocks.4.attn.q_bias = torch.Size([768]) transformer.blocks.4.attn.v_bias = torch.Size([768]) transformer.blocks.4.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.4.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.4.attn.proj.bias = torch.Size([768]) transformer.blocks.4.norm2_text.weight = torch.Size([768]) transformer.blocks.4.norm2_text.bias = torch.Size([768]) transformer.blocks.4.norm2_imag.weight = torch.Size([768]) transformer.blocks.4.norm2_imag.bias = torch.Size([768]) transformer.blocks.4.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.4.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.4.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.4.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.4.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.4.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.4.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.4.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.5.gamma_1 = torch.Size([768]) transformer.blocks.5.gamma_2 = torch.Size([768]) transformer.blocks.5.norm1.weight = torch.Size([768]) transformer.blocks.5.norm1.bias = torch.Size([768]) transformer.blocks.5.attn.q_bias = torch.Size([768]) transformer.blocks.5.attn.v_bias = torch.Size([768]) transformer.blocks.5.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.5.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.5.attn.proj.bias = torch.Size([768]) transformer.blocks.5.norm2_text.weight = torch.Size([768]) transformer.blocks.5.norm2_text.bias = torch.Size([768]) transformer.blocks.5.norm2_imag.weight = torch.Size([768]) transformer.blocks.5.norm2_imag.bias = torch.Size([768]) transformer.blocks.5.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.5.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.5.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.5.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.5.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.5.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.5.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.5.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.6.gamma_1 = torch.Size([768]) transformer.blocks.6.gamma_2 = torch.Size([768]) transformer.blocks.6.norm1.weight = torch.Size([768]) transformer.blocks.6.norm1.bias = torch.Size([768]) transformer.blocks.6.attn.q_bias = torch.Size([768]) transformer.blocks.6.attn.v_bias = torch.Size([768]) transformer.blocks.6.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.6.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.6.attn.proj.bias = torch.Size([768]) transformer.blocks.6.norm2_text.weight = torch.Size([768]) transformer.blocks.6.norm2_text.bias = torch.Size([768]) transformer.blocks.6.norm2_imag.weight = torch.Size([768]) transformer.blocks.6.norm2_imag.bias = torch.Size([768]) transformer.blocks.6.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.6.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.6.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.6.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.6.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.6.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.6.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.6.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.7.gamma_1 = torch.Size([768]) transformer.blocks.7.gamma_2 = torch.Size([768]) transformer.blocks.7.norm1.weight = torch.Size([768]) transformer.blocks.7.norm1.bias = torch.Size([768]) transformer.blocks.7.attn.q_bias = torch.Size([768]) transformer.blocks.7.attn.v_bias = torch.Size([768]) transformer.blocks.7.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.7.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.7.attn.proj.bias = torch.Size([768]) transformer.blocks.7.norm2_text.weight = torch.Size([768]) transformer.blocks.7.norm2_text.bias = torch.Size([768]) transformer.blocks.7.norm2_imag.weight = torch.Size([768]) transformer.blocks.7.norm2_imag.bias = torch.Size([768]) transformer.blocks.7.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.7.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.7.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.7.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.7.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.7.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.7.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.7.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.8.gamma_1 = torch.Size([768]) transformer.blocks.8.gamma_2 = torch.Size([768]) transformer.blocks.8.norm1.weight = torch.Size([768]) transformer.blocks.8.norm1.bias = torch.Size([768]) transformer.blocks.8.attn.q_bias = torch.Size([768]) transformer.blocks.8.attn.v_bias = torch.Size([768]) transformer.blocks.8.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.8.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.8.attn.proj.bias = torch.Size([768]) transformer.blocks.8.norm2_text.weight = torch.Size([768]) transformer.blocks.8.norm2_text.bias = torch.Size([768]) transformer.blocks.8.norm2_imag.weight = torch.Size([768]) transformer.blocks.8.norm2_imag.bias = torch.Size([768]) transformer.blocks.8.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.8.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.8.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.8.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.8.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.8.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.8.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.8.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.9.gamma_1 = torch.Size([768]) transformer.blocks.9.gamma_2 = torch.Size([768]) transformer.blocks.9.norm1.weight = torch.Size([768]) transformer.blocks.9.norm1.bias = torch.Size([768]) transformer.blocks.9.attn.q_bias = torch.Size([768]) transformer.blocks.9.attn.v_bias = torch.Size([768]) transformer.blocks.9.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.9.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.9.attn.proj.bias = torch.Size([768]) transformer.blocks.9.norm2_text.weight = torch.Size([768]) transformer.blocks.9.norm2_text.bias = torch.Size([768]) transformer.blocks.9.norm2_imag.weight = torch.Size([768]) transformer.blocks.9.norm2_imag.bias = torch.Size([768]) transformer.blocks.9.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.9.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.9.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.9.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.9.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.9.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.9.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.9.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.10.gamma_1 = torch.Size([768]) transformer.blocks.10.gamma_2 = torch.Size([768]) transformer.blocks.10.norm1.weight = torch.Size([768]) transformer.blocks.10.norm1.bias = torch.Size([768]) transformer.blocks.10.attn.q_bias = torch.Size([768]) transformer.blocks.10.attn.v_bias = torch.Size([768]) transformer.blocks.10.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.10.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.10.attn.proj.bias = torch.Size([768]) transformer.blocks.10.norm2_text.weight = torch.Size([768]) transformer.blocks.10.norm2_text.bias = torch.Size([768]) transformer.blocks.10.norm2_imag.weight = torch.Size([768]) transformer.blocks.10.norm2_imag.bias = torch.Size([768]) transformer.blocks.10.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.10.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.10.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.10.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.10.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.10.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.10.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.10.mlp_imag.fc2.bias = torch.Size([768]) transformer.blocks.11.gamma_1 = torch.Size([768]) transformer.blocks.11.gamma_2 = torch.Size([768]) transformer.blocks.11.norm1.weight = torch.Size([768]) transformer.blocks.11.norm1.bias = torch.Size([768]) transformer.blocks.11.attn.q_bias = torch.Size([768]) transformer.blocks.11.attn.v_bias = torch.Size([768]) transformer.blocks.11.attn.qkv.weight = torch.Size([2304, 768]) transformer.blocks.11.attn.proj.weight = torch.Size([768, 768]) transformer.blocks.11.attn.proj.bias = torch.Size([768]) transformer.blocks.11.norm2_text.weight = torch.Size([768]) transformer.blocks.11.norm2_text.bias = torch.Size([768]) transformer.blocks.11.norm2_imag.weight = torch.Size([768]) transformer.blocks.11.norm2_imag.bias = torch.Size([768]) transformer.blocks.11.mlp_text.fc1.weight = torch.Size([3072, 768]) transformer.blocks.11.mlp_text.fc1.bias = torch.Size([3072]) transformer.blocks.11.mlp_text.fc2.weight = torch.Size([768, 3072]) transformer.blocks.11.mlp_text.fc2.bias = torch.Size([768]) transformer.blocks.11.mlp_imag.fc1.weight = torch.Size([3072, 768]) transformer.blocks.11.mlp_imag.fc1.bias = torch.Size([3072]) transformer.blocks.11.mlp_imag.fc2.weight = torch.Size([768, 3072]) transformer.blocks.11.mlp_imag.fc2.bias = torch.Size([768]) transformer.norm.weight = torch.Size([768]) transformer.norm.bias = torch.Size([768]) pooler.dense.weight = torch.Size([768, 768]) pooler.dense.bias = torch.Size([768]) mlm_score.bias = torch.Size([30522]) mlm_score.transform.dense.weight = torch.Size([768, 768]) mlm_score.transform.dense.bias = torch.Size([768]) mlm_score.transform.LayerNorm.weight = torch.Size([768]) mlm_score.transform.LayerNorm.bias = torch.Size([768]) mlm_score.decoder.weight = torch.Size([30522, 768]) {'itm': 1, 'itc': 1, 'mlm': 1, 'textmlm': 0, 'vqa': 0, 'nlvr2': 0, 'irtr': 0} text position_embeddings size: torch.Size([40, 768]) missing_keys: ['logit_scale', 'logit_vl_scale', 'transformer.blocks.10.mlp_vl.fc1.weight', 'transformer.blocks.10.mlp_vl.fc1.bias', 'transformer.blocks.10.mlp_vl.fc2.weight', 'transformer.blocks.10.mlp_vl.fc2.bias', 'transformer.blocks.10.norm2_vl.weight', 'transformer.blocks.10.norm2_vl.bias', 'transformer.blocks.11.mlp_vl.fc1.weight', 'transformer.blocks.11.mlp_vl.fc1.bias', 'transformer.blocks.11.mlp_vl.fc2.weight', 'transformer.blocks.11.mlp_vl.fc2.bias', 'transformer.blocks.11.norm2_vl.weight', 'transformer.blocks.11.norm2_vl.bias', 'itm_score.fc.weight', 'itm_score.fc.bias', 'itc_text_proj.fc.weight', 'itc_image_proj.fc.weight', 'itc_vl_text_proj.fc.weight', 'itc_vl_image_proj.fc.weight'] unexpected_keys: [] grad_steps: 128 resume_ckpt: None ClusterPlugin: using Lightning Cluster Environment plugin_list: [<pytorch_lightning.plugins.environments.lightning_environment.LightningEnvironment object at 0x7ff4a2652cd0>] [W Context.cpp:70] Warning: torch.use_deterministic_algorithms is in beta, and its design and functionality may change in the future. (function operator()) Using 16bit native Automatic Mixed Precision (AMP) GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs /home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/logger_connector/logger_connector.py:59: LightningDeprecationWarning: Setting `Trainer(flush_logs_every_n_steps=10)` is deprecated in v1.5 and will be removed in v1.7. Please configure flushing in the logger instead. rank_zero_deprecation( Global seed set to 1 initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1 INFO - root - Added key: store_based_barrier_key:1 to store for rank: 0 ---------------------------------------------------------------------------------------------------- distributed_backend=nccl All distributed processes registered. Starting with 1 processes ---------------------------------------------------------------------------------------------------- /home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/torchvision/transforms/transforms.py:803: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( /home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/torchvision/transforms/transforms.py:257: UserWarning: Argument interpolation should be of type InterpolationMode instead of int. Please, use InterpolationMode enum. warnings.warn( ERROR - VLMo - Failed after 0:00:05! Traceback (most recent call last): File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/experiment.py", line 312, in run_commandline return self.run( File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/experiment.py", line 276, in run run() File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/run.py", line 238, in __call__ self.result = self.main_function(*args) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/config/captured_function.py", line 42, in captured_function result = wrapped(*args, **kwargs) File "run.py", line 166, in main trainer.fit(model, datamodule=dm) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 737, in fit self._call_and_handle_interrupt( File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 682, in _call_and_handle_interrupt return trainer_fn(*args, **kwargs) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 772, in _fit_impl self._run(model, ckpt_path=ckpt_path) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1134, in _run self._call_setup_hook() # allow user to setup lightning_module in accelerator environment File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1434, in _call_setup_hook self.datamodule.setup(stage=fn) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/core/datamodule.py", line 474, in wrapped_fn fn(*args, **kwargs) File "/home/ubuntu/Zuolab/unilm/vlmo/vlmo/datamodules/multitask_datamodule.py", line 34, in setup dm.setup(stage) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/pytorch_lightning/core/datamodule.py", line 474, in wrapped_fn fn(*args, **kwargs) File "/home/ubuntu/Zuolab/unilm/vlmo/vlmo/datamodules/datamodule_base.py", line 150, in setup self.set_train_dataset() File "/home/ubuntu/Zuolab/unilm/vlmo/vlmo/datamodules/datamodule_base.py", line 77, in set_train_dataset self.train_dataset = self.dataset_cls( File "/home/ubuntu/Zuolab/unilm/vlmo/vlmo/datasets/vg_caption_dataset.py", line 15, in __init__ super().__init__(*args, **kwargs, names=names, text_column_name="caption") File "/home/ubuntu/Zuolab/unilm/vlmo/vlmo/datasets/base_dataset.py", line 53, in __init__ self.table_names += [name] * len(tables[i]) IndexError: list index out of range During handling of the above exception, another exception occurred: Traceback (most recent call last): File "run.py", line 69, in <module> def main(_config): File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/experiment.py", line 190, in automain self.run_commandline() File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/experiment.py", line 347, in run_commandline print_filtered_stacktrace() File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/utils.py", line 493, in print_filtered_stacktrace print(format_filtered_stacktrace(filter_traceback), file=sys.stderr) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/utils.py", line 528, in format_filtered_stacktrace return "".join(filtered_traceback_format(tb_exception)) File "/home/ubuntu/miniconda3/envs/vlmo/lib/python3.8/site-packages/sacred/utils.py", line 568, in filtered_traceback_format current_tb = tb_exception.exc_traceback AttributeError: 'TracebackException' object has no attribute 'exc_traceback' my data: data_arrows_root ├── coco_caption_karpathy_restval.arrow ├── coco_caption_karpathy_test.arrow ├── coco_caption_karpathy_train.arrow └── coco_caption_karpathy_val.arrow checkpoint: pth └── vlmo_base_patch16_224_stage2.pt
closed
2023-08-17T08:37:38Z
2023-08-30T10:11:07Z
https://github.com/microsoft/unilm/issues/1256
[]
CHB-learner
1
QingdaoU/OnlineJudge
django
237
中文翻译错误 && 后台用户无法使用TFA登录
1、后天用户管理,点击某一用户,“是否可见”应改为“是否拉黑” 2、开启TFA的用户,无法在后台登录页面登录,因为页面没有配置TFA输入框
open
2019-04-03T10:50:19Z
2019-04-03T11:05:20Z
https://github.com/QingdaoU/OnlineJudge/issues/237
[]
AndyShaw2048
1
deedy5/primp
web-scraping
20
cookies argument for requests
For example in the requests library: ```py import requests cookies = { "key": "value" } response = requests.get("https://example.com", cookies=cookies) ```
closed
2024-07-12T19:38:32Z
2024-07-15T19:47:20Z
https://github.com/deedy5/primp/issues/20
[]
Mouad-scriptz
1
nschloe/tikzplotlib
matplotlib
208
No support for the contourf plots?
I tried very hard to make contourf plots work with this package. But, it seems that it is not supported at the moment? It is pity because this is such an excellent tool. Can you please give me a hint how can I implement it? What document should I refer to do so? I have found out the pgfplot syntax for contourf plots, but I don't know where/how should I add it. I have already made tons of (line & image) plots. Now, if I can't make contourf plots with this tool, I would need to re-do all my plots to be consistent in the work. Thanks!
closed
2017-10-24T19:50:47Z
2019-03-17T14:34:36Z
https://github.com/nschloe/tikzplotlib/issues/208
[]
vineetsoni
2
autokey/autokey
automation
294
daemon is killed when GUI closed
## Classification: Usability ## Reproducibility: Always ## Version AutoKey version: autokey-gtk 0.95.6 Used GUI (Gtk, Qt, or both): gtk Installed via: (PPA, pip3, …). sporkwitch PPA Linux Distribution: ubu 18.04 ## Summary AK ist launched at system boot. That starts the daemon, but leaves the GUI closed. When I manually open the GUI, do some editing and close the GUI, the daemon is killed - no more expanding happens. This is unexpected - I'd expect the daemon to continue working. If it needs a relaunch, I'd like AK to do that automatically. Summary of the problem. Not a problem - just a bit of convenience. ## Steps to Reproduce (if applicable) see above.
closed
2019-07-05T06:41:46Z
2019-07-10T13:07:02Z
https://github.com/autokey/autokey/issues/294
[]
herrdeh
7
robotframework/robotframework
automation
5,322
Expand Button Displays + Sign for Failed or Skipped Tests in Report - log.html
Description: When a test is marked as FAILED or SKIPPED, the expand button in the generated log.html report always displays the + sign, regardless of whether the user has clicked it to expand or not. This behavior is inconsistent and can lead to confusion, as the button should toggle between + (collapsed) and - (expanded) correctly. Steps to Reproduce: Run a test suite with tests that result in FAILED or SKIPPED status. Open the generated log.html report. Expand a failed or skipped test. Notice that the expand button remains as + even when expanded. Expected Behavior: The expand button should display - when the test is expanded and toggle back to + when collapsed.
open
2025-01-22T17:11:01Z
2025-02-20T05:27:10Z
https://github.com/robotframework/robotframework/issues/5322
[]
jyoti-arora1991
2
apache/airflow
data-science
47,450
All dagruns are listed to be cleared while clearing a specific dagrun (Intermittent issue)
### Apache Airflow version 3.0.0b1 ### If "Other Airflow 2 version" selected, which one? _No response_ ### What happened? Lets say, for a DAG, many dagruns are available and user wants to clear a specific dagrun. When user selects a dagrun and click on 'Clear Run' button, all dagruns tasks are listed to be cleared and if user clicks on confirm button then all the dagruns are cleared. <img width="1598" alt="Image" src="https://github.com/user-attachments/assets/90ead14a-4cd2-414a-8d86-f817d30f6ea3" /> https://github.com/user-attachments/assets/f46ce29b-c7a0-49a4-ba48-9c490705d146 ### What you think should happen instead? Only tasks specific to a dagrun should be listed to be cleared when clearing a dagrun. ### How to reproduce On AF3 UI: 1. Create multiple dagruns for a DAG. 2. Select a dagrun and try to clear the dagrun. 3. Notice tasks listed on the clear dagrun model has all dagruns tasks. ### Operating System Linux ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details _No response_ ### Anything else? _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
closed
2025-03-06T13:48:45Z
2025-03-18T16:12:26Z
https://github.com/apache/airflow/issues/47450
[ "kind:bug", "priority:high", "area:core", "area:UI", "affected_version:3.0.0beta" ]
atul-astronomer
11
giotto-ai/giotto-tda
scikit-learn
100
Diffusion module
Create a new module implementing diffusion on simplicial complexes via the Hodge Laplacian operator.
closed
2019-11-27T11:00:54Z
2019-12-19T14:41:49Z
https://github.com/giotto-ai/giotto-tda/issues/100
[]
giotto-learn
2
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,251
Cant find views folder
Hello, unfortunately I cannot find the footer and header.html in File Zilla after the installation. How can I access it? Unfortunately, I don't have that much knowledge about this topic. Thanks in advance.
closed
2022-07-20T13:35:47Z
2022-08-02T11:50:09Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3251
[]
JimpoTEDY
9
huggingface/transformers
pytorch
36,576
Some methods in TrainerControl seem not to be utilized.
Looking at the callback code has caused me a great deal of confusion. It seems that this function has never been used. I'm not sure if I've missed something. https://github.com/huggingface/transformers/blob/6966fa190172b48b2fb46fe4552a13b943e692cf/src/transformers/trainer_callback.py#L275
closed
2025-03-06T07:19:53Z
2025-03-13T16:21:17Z
https://github.com/huggingface/transformers/issues/36576
[]
mst272
2
scikit-learn/scikit-learn
machine-learning
30,151
Segmentation fault in sklearn.metrics.pairwise_distances with OpenBLAS 0.3.28 (only pthreads variant)
``` mamba create -n testenv scikit-learn python=3.12 libopenblas=0.3.28 -y conda activate testenv PYTHONFAULTHANDLER=1 python /tmp/test_openblas.py ``` ```py # /tmp/test_openblas.py import numpy as np from joblib import Parallel, delayed from threadpoolctl import threadpool_limits from sklearn.metrics.pairwise import pairwise_distances X = np.ones((1000, 10)) def blas_threaded_func(i): X.T @ X # Needs to be there and before Parallel threadpool_limits(10) Parallel(n_jobs=2)(delayed(blas_threaded_func)(i) for i in range(10)) for _ in range(10): distances = pairwise_distances(X, metric="l2", n_jobs=2) ``` This happens with OpenBLAS 0.3.28 but not 0.3.27. Setting the `OPENBLAS_NUM_THREADS` or `OMP_NUM_THREADS` environment variable also make the issue disappear. This is somewhat reminiscent of https://github.com/scipy/scipy/issues/21479 so there may be something in OpenBLAS 0.3.28 [^1] that doesn't like `threapool_limits` followed by `Parallel`? No idea how to test this hypothesis ... this could well be OS-dependent since https://github.com/scipy/scipy/issues/21479 only happens on Linux. [^1]: OpenBLAS 0.3.28 is used in numpy development wheel and OpenBLAS 0.3.27 is used in numpy latest release 2.1.2 at the time of writing <details> <summary>Python traceback</summary> ``` Fatal Python error: Segmentation fault Thread 0x00007c7907e006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/pool.py", line 579 in _handle_results File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1012 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c790d2006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/pool.py", line 531 in _handle_tasks File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1012 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c790dc006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/selectors.py", line 415 in select File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/connection.py", line 1136 in wait File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/pool.py", line 502 in _wait_for_updates File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/pool.py", line 522 in _handle_workers File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1012 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c79146006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/extmath.py", line 205 in safe_sparse_dot File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 407 in _euclidean_distances File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 372 in euclidean_distances File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/_param_validation.py", line 186 in wrapper File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 1881 in _dist_wrapper File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/parallel.py", line 136 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/parallel.py", line 598 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/_utils.py", line 72 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/pool.py", line 125 in worker File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1012 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c7913c006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/extmath.py", line 205 in safe_sparse_dot File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 407 in _euclidean_distances File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 372 in euclidean_distances File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/_param_validation.py", line 186 in wrapper File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 1881 in _dist_wrapper File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/parallel.py", line 136 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/parallel.py", line 598 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/_utils.py", line 72 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/pool.py", line 125 in worker File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1012 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c79132006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 355 in wait File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/externals/loky/backend/queues.py", line 147 in _feed File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1012 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c79128006c0 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/selectors.py", line 415 in select File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/multiprocessing/connection.py", line 1136 in wait File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/externals/loky/process_executor.py", line 654 in wait_result_broken_or_wakeup File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/externals/loky/process_executor.py", line 596 in run File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1075 in _bootstrap_inner File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/threading.py", line 1032 in _bootstrap Thread 0x00007c797c527480 (most recent call first): File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/parallel.py", line 1762 in _retrieve File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/parallel.py", line 1650 in _get_outputs File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/joblib/parallel.py", line 2007 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/parallel.py", line 74 in __call__ File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 1898 in _parallel_pairwise File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/metrics/pairwise.py", line 2375 in pairwise_distances File "/home/lesteve/micromamba/envs/testenv/lib/python3.12/site-packages/sklearn/utils/_param_validation.py", line 213 in wrapper File "/tmp/test_openblas.py", line 21 in <module> ``` </details> <details> <summary>Version info</summary> ``` System: python: 3.12.7 | packaged by conda-forge | (main, Oct 4 2024, 16:05:46) [GCC 13.3.0] executable: /home/lesteve/micromamba/envs/testenv/bin/python machine: Linux-6.10.10-arch1-1-x86_64-with-glibc2.40 Python dependencies: sklearn: 1.5.2 pip: 24.2 setuptools: 75.1.0 numpy: 2.1.2 scipy: 1.14.1 Cython: None pandas: None matplotlib: None joblib: 1.4.2 threadpoolctl: 3.5.0 Built with OpenMP: True threadpoolctl info: user_api: blas internal_api: openblas num_threads: 12 prefix: libopenblas filepath: /home/lesteve/micromamba/envs/testenv/lib/libopenblasp-r0.3.28.so version: 0.3.28 threading_layer: pthreads architecture: Haswell user_api: openmp internal_api: openmp num_threads: 12 prefix: libgomp filepath: /home/lesteve/micromamba/envs/testenv/lib/libgomp.so.1.0.0 version: None ``` </details> <details> <summary>mamba list output</summary> ``` ❯ mamba list List of packages in environment: "/home/lesteve/micromamba/envs/testenv" Name Version Build Channel ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── _libgcc_mutex 0.1 conda_forge conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 _openmp_mutex 4.5 2_gnu conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 bzip2 1.0.8 h4bc722e_7 conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda ca-certificates 2024.8.30 hbcca054_0 conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda joblib 1.4.2 pyhd8ed1ab_0 conda-forge/noarch/joblib-1.4.2-pyhd8ed1ab_0.conda ld_impl_linux-64 2.43 h712a8e2_2 conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda libblas 3.9.0 25_linux64_openblas conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda libcblas 3.9.0 25_linux64_openblas conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda libexpat 2.6.3 h5888daf_0 conda-forge/linux-64/libexpat-2.6.3-h5888daf_0.conda libffi 3.4.2 h7f98852_5 conda-forge/linux-64/libffi-3.4.2-h7f98852_5.tar.bz2 libgcc 14.2.0 h77fa898_1 conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda libgcc-ng 14.2.0 h69a702a_1 conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda libgfortran 14.2.0 h69a702a_1 conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda libgfortran-ng 14.2.0 h69a702a_1 conda-forge/linux-64/libgfortran-ng-14.2.0-h69a702a_1.conda libgfortran5 14.2.0 hd5240d6_1 conda-forge/linux-64/libgfortran5-14.2.0-hd5240d6_1.conda libgomp 14.2.0 h77fa898_1 conda-forge/linux-64/libgomp-14.2.0-h77fa898_1.conda liblapack 3.9.0 25_linux64_openblas conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda libnsl 2.0.1 hd590300_0 conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda libopenblas 0.3.28 pthreads_h94d23a6_0 conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_0.conda libsqlite 3.47.0 hadc24fc_0 conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_0.conda libstdcxx 14.2.0 hc0a3c3a_1 conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda libuuid 2.38.1 h0b41bf4_0 conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda libxcrypt 4.4.36 hd590300_1 conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda libzlib 1.3.1 hb9d3cd8_2 conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda ncurses 6.5 he02047a_1 conda-forge/linux-64/ncurses-6.5-he02047a_1.conda numpy 2.1.2 py312h58c1407_0 conda-forge/linux-64/numpy-2.1.2-py312h58c1407_0.conda openssl 3.3.2 hb9d3cd8_0 conda-forge/linux-64/openssl-3.3.2-hb9d3cd8_0.conda pip 24.2 pyh8b19718_1 conda-forge/noarch/pip-24.2-pyh8b19718_1.conda python 3.12.7 hc5c86c4_0_cpython conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda python_abi 3.12 5_cp312 conda-forge/linux-64/python_abi-3.12-5_cp312.conda readline 8.2 h8228510_1 conda-forge/linux-64/readline-8.2-h8228510_1.conda scikit-learn 1.5.2 py312h7a48858_1 conda-forge/linux-64/scikit-learn-1.5.2-py312h7a48858_1.conda scipy 1.14.1 py312h62794b6_1 conda-forge/linux-64/scipy-1.14.1-py312h62794b6_1.conda setuptools 75.1.0 pyhd8ed1ab_0 conda-forge/noarch/setuptools-75.1.0-pyhd8ed1ab_0.conda threadpoolctl 3.5.0 pyhc1e730c_0 conda-forge/noarch/threadpoolctl-3.5.0-pyhc1e730c_0.conda tk 8.6.13 noxft_h4845f30_101 conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda tzdata 2024b hc8b5060_0 conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda wheel 0.44.0 pyhd8ed1ab_0 conda-forge/noarch/wheel-0.44.0-pyhd8ed1ab_0.conda xz 5.2.6 h166bdaf_0 conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 ``` </details> I saw this segmentation fault locally when running the scikit-learn tests: ``` pytest --pyargs sklearn.metrics.tests ``` which can be reduced a bit more: ``` pytest --pyargs sklearn.metrics.tests.test_classification sklearn.metrics.tests.test_pairwise -k 'classification and nan_valid and scoring0 or test_parallel_pairwise_distances_diagonal and float64' -v ``` If I had to guess the reason that it has not been seen in the CI is that it doesn't test advanced parallelism very thoroughly: in most CI builds there are 2 cores and pytest-xdist is used so neither BLAS nor OpenMP parallelism. We have a CI build without pytest-xdist but since we have two cores, we probably only use BLAS parallelism or OpenMP parallelism, not both at the same time.
closed
2024-10-25T08:39:46Z
2024-11-25T16:32:15Z
https://github.com/scikit-learn/scikit-learn/issues/30151
[ "Bug" ]
lesteve
13
ckan/ckan
api
7,592
Error while deleting a package with an extra field
## CKAN version 2.10 ## Describe the bug When deleting a package with an extra field, the following exception is traced: ``` ckan | 2023-05-16 13:05:12,630 ERROR [ckan.model.modification] ckan | Traceback (most recent call last): ckan | File "/srv/app/src/ckan/ckan/model/modification.py", line 71, in notify ckan | observer.notify(entity, operation) ckan | File "/srv/app/src/ckan/ckan/lib/search/__init__.py", line 167, in notify ckan | logic.get_action('package_show')(cast( ckan | File "/srv/app/src/ckan/ckan/logic/__init__.py", line 551, in wrapped ckan | result = _action(context, data_dict, **kw) ckan | File "/srv/app/src/ckan/ckan/logic/action/get.py", line 1018, in package_show ckan | raise NotFound ckan | ckan.logic.NotFound ``` ### Steps to reproduce Create a schema with an extra field on a package. Create an instance of this package, then delete it. After the call of the deletion we have no changed nor new objects. <img width="461" alt="image" src="https://github.com/ckan/ckan/assets/338699/b01c3cd5-b6a0-40b7-8b16-f074695719f5"> But right after in `modification.py` L58, ckan is going through all deleted object to notify a 'change' on their related packages <img width="640" alt="image" src="https://github.com/ckan/ckan/assets/338699/9abdd70a-0906-4c9a-bcae-cc6c99a15ee7"> But in this case the related package is the one that has been deleted <img width="1191" alt="image" src="https://github.com/ckan/ckan/assets/338699/ac87ca50-60c6-44d6-87ab-9d68ae7cf39e"> ### Expected behavior Do not trace exception as the deletion is done. Do not notifiy a package as changed when it is already deleted. ### Additional details
open
2023-05-16T14:56:10Z
2025-03-11T13:25:45Z
https://github.com/ckan/ckan/issues/7592
[]
pkernevez
1
chaoss/augur
data-visualization
2,942
Gitlab - repo_info data population
Right now repo_info is not populating for gitlab. Further investigation needed
open
2024-10-21T15:52:57Z
2024-11-04T15:57:19Z
https://github.com/chaoss/augur/issues/2942
[]
cdolfi
0
christabor/flask_jsondash
plotly
63
Use c3.load to reload data instead of re-generating in c3js
For performance and transition animations.
closed
2016-10-24T18:50:48Z
2017-07-11T17:34:10Z
https://github.com/christabor/flask_jsondash/issues/63
[ "enhancement", "performance" ]
christabor
2
graphql-python/graphene-django
graphql
488
Mutations + Django Forms + Additional arguments passed to form
Hello, I was quite happy to learn that this lib has added the ability to integrate with existing Django forms. That being said, our use case requires us to alter the options in the forms dynamically. In general we accomplish this in one of two ways: ```python def make_UserForm(tenant): class UserForm(forms.Form): user = forms.ModelChoiceField( User.objects.filter(profile__tenant=tenant), ) return UserForm ``` Or ```python class UserForm(forms.Form): user = forms.ModelChoiceField(User.objects.none()) def __init__(self, tenant, *args, **kwargs): super(UserForm, self).__init__(*args, **kwargs) self.fields['user'].queryset = User.objects.filter(profile__tenant=tenant) ``` Both cases are simplified examples, but they get the point across. In order to use these types of forms, we need access to either returning a Form class or updating what arguments get passed to the form. I see that we have access to `get_form` and `get_for_kwargs`. So we could very easily override one or both of those methods to accomplish this goal. However, I am not certain if that is the ideal way to handle this. Or if that is the stance this lib would want to take. Neither `get_form` or `get_form_kwargs` are underscored, so theoretically, I could see overriding those to be the correct answer. That being said, overriding `get_form` requires remembering to call `get_form_kwargs` manually. To me, it would make more sense to only use the second example above and override `get_for_kwargs`. However, I believe there is a third option. We could make a new method called `get_additional_form_kwargs` that always returns an empty dict that `get_form_kwargs` calls: `return kwargs.update(cls.get_additional_form_kwargs(root, info, **input))`. If we did something like this, I would pitch renaming `get_form` and `get_form_kwargs` to lead with an underscore so it's known these are "private" methods. At which point we could rename the new method `get_addtional_form_kwargs` to `get_form_kwargs`. Maybe. I am happy to make a PR to implement any part of this. I'm also open to being told that I'm missing something obvious and all of this is moot.
closed
2018-08-03T16:49:11Z
2019-06-18T12:09:19Z
https://github.com/graphql-python/graphene-django/issues/488
[ "wontfix" ]
jlward
1
ageitgey/face_recognition
python
635
To make importing images in 'facerec_from_webcam_faster.py' easier by only providing the known_pictures folder path
* face_recognition version:1.2.3 * Python version:2.7 * Operating System:Fedora 27 ### Description In Examples of face_recognition the code 'facerec_from_webcam_faster.py' works fine, but I wanted to make import the images easier, Now in the above code instead of manually writing the name and path of each image, I intend to create a function that would only take the folder path of the known images with image name as their original name, the function should be able to generate the face encoding of each image and would be able to create two lists with face encodings and face names respectively. Any help would be appreciated. ### What I Did ``` Paste the command(s) you ran and the output. If there was a crash, please include the traceback here. ```
open
2018-09-29T19:04:54Z
2018-10-12T09:37:35Z
https://github.com/ageitgey/face_recognition/issues/635
[]
sid-star
3
great-expectations/great_expectations
data-science
10,410
[BUG] Exception during validation of ExpectColumnValuesToNotBeNull
**Describe the bug** I am using a spark/pandas dataframe. The dataframe has multiple columns and I am using one of them as a parameter for this expectation. If I use a column which has no null values then there is no exception and I get the expected result. Now when I pass some other column (also does not have any null value) or some columns which have nulls, I see exceptions. **To Reproduce** **Traceback:** "exception_info": { "exception_traceback": "Traceback (most recent call last):\n File \"/local_disk0/.ephemeral_nfs/envs/pythonEnv-6e39b63e-ade0-4e51-94c2-99c6cf2319a5/lib/python3.9/site-packages/great_expectations/validator/validator.py\", line 648, in graph_validate\n result = expectation.metrics_validate(\n File \"/local_disk0/.ephemeral_nfs/envs/pythonEnv-6e39b63e-ade0-4e51-94c2-99c6cf2319a5/lib/python3.9/site-packages/great_expectations/expectations/expectation.py\", line 1081, in metrics_validate\n _validate_dependencies_against_available_metrics(\n File \"/local_disk0/.ephemeral_nfs/envs/pythonEnv-6e39b63e-ade0-4e51-94c2-99c6cf2319a5/lib/python3.9/site-packages/great_expectations/expectations/expectation.py\", line 2773, in _validate_dependencies_against_available_metrics\n raise InvalidExpectationConfigurationError( # noqa: TRY003\ngreat_expectations.exceptions.exceptions.InvalidExpectationConfigurationError: Metric ('column_values.nonnull.unexpected_count', '657e384d8614677fff7d7be97ee019fe', ()) is not available for validation of configuration. Please check your configuration.\n", "exception_message": "Metric ('column_values.nonnull.unexpected_count', '657e384d8614677fff7d7be97ee019fe', ()) is not available for validation of configuration. Please check your configuration.", "raised_exception": true **Environment (please complete the following information):** - Databricks runtime 12.2 LTS - GX version 1.0.4
open
2024-09-17T15:31:41Z
2024-11-19T06:52:19Z
https://github.com/great-expectations/great_expectations/issues/10410
[ "bug" ]
Utkarsh-Krishna
13
skypilot-org/skypilot
data-science
4,702
Add us-east-3 region support to Lambda Labs
At the moment, a GH200 can't be launched in Lambda Labs in the us-east-3 region via SkyPilot: ``` $ sky launch -c test_gh200 --region=us-east-3 test_docker.yaml Task from YAML spec: test_docker.yaml ValueError: Invalid (region 'us-east-3', zone None) for cloud Lambda. Details: Invalid region 'us-east-3' List of supported lambda regions: 'asia-northeast-1, asia-northeast-2, asia-south-1, europe-central-1, europe-south-1, me-west-1, us-east-1, us-east-2, us-midwest-1, us-south-1, us-south-2, us-south-3, us-west-1, us-west-2, us-west-3' ``` It may need to be added to the region list here: https://github.com/skypilot-org/skypilot/blob/1fe3fab0e7a3242f32039d55b456603350dc4196/sky/clouds/service_catalog/data_fetchers/fetch_lambda_cloud.py#L21-L38 <img width="596" alt="Image" src="https://github.com/user-attachments/assets/8147793c-3ed0-4c48-9369-eb9cfd5009a5" />
closed
2025-02-12T20:12:25Z
2025-02-12T21:31:33Z
https://github.com/skypilot-org/skypilot/issues/4702
[]
ajayjain
3
alteryx/featuretools
data-science
1,944
Remove excessive lint checking in all python version (just do 3.10)
- We should not do excessive lint checking in all python versions. - We are moving to using black soon, and the main developer [suggested](https://github.com/psf/black/issues/2383#issuecomment-882729863) only using 3.10
closed
2022-03-10T18:04:19Z
2022-03-10T18:58:39Z
https://github.com/alteryx/featuretools/issues/1944
[]
gsheni
0
vitalik/django-ninja
pydantic
497
Two endpoints with the same url, but different method throws METHOD NOT ALLOWED
Hi! I was implementing two endpoints that have the same url, but it changes in the query parameters, and they have different access methods, and in the second one it is responding with a status 405 and METHOD NOT ALLOWED. Although it is true that typing the variables in the url solves the problem, the following question arises, can't there really be two endpoints with the same url but with different methods? For example: @api.get('/user/{userid}', tags=['users']) def get_user_userid(request, userid: int): return "OK GET" @api.put('/user/{userid}', tags=['users']) def put_user_userid(request, userid: int) return "OK PUT" The result of querying PUT /user/1 is a 405 METHOD NOT ALLOWED. Changing the url of the PUT method to /user/{str:userid} does get the response I expect.
closed
2022-07-05T08:28:43Z
2024-01-14T19:28:50Z
https://github.com/vitalik/django-ninja/issues/497
[]
JFeldaca
6
ultralytics/yolov5
deep-learning
12,859
Why is background FP so high?
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question I am using my customized data set, and the training result background FP is very high. The following are the relevant training results. What problem did I encounter? ![confusion_matrix (5)](https://github.com/ultralytics/yolov5/assets/91875482/36c92eb6-a82d-4150-b761-f3dcbf1038d4) ![results (5)](https://github.com/ultralytics/yolov5/assets/91875482/2f3c4c27-2a7b-462a-a524-0bf3a1badd9b) ### Additional _No response_
closed
2024-03-28T05:04:19Z
2024-11-07T14:57:21Z
https://github.com/ultralytics/yolov5/issues/12859
[ "question", "Stale" ]
a41497254
6
elliotgao2/toapi
api
124
Flask logging error
python 3.7 toapi 2.1.1 ``` Traceback (most recent call last): File "main.py", line 5, in <module> api = Api() File "/usr/local/lib/python3.7/site-packages/toapi/api.py", line 24, in __init__ self.__init_server() File "/usr/local/lib/python3.7/site-packages/toapi/api.py", line 27, in __init_server self.app.logger.setLevel(logging.ERROR) AttributeError: module 'flask.logging' has no attribute 'ERROR' ```
closed
2018-07-14T14:18:22Z
2018-08-06T14:26:55Z
https://github.com/elliotgao2/toapi/issues/124
[]
tmshv
2
pydantic/pydantic-ai
pydantic
603
PydanticAI doesn't return None but raw VertexAI code does
So just using VertexAI libraries I can have the option to get back null values. However, when writing the equivalent code using pydanticAI I never get back null values: **Using vertex libraries:** ```py from vertexai.generative_models import GenerativeModel, GenerationConfig response_schema = { "type": "object", "properties": { "age": { "type": "INTEGER", "nullable": True } } } generation_config = GenerationConfig( response_mime_type="application/json", response_schema=response_schema ) model = GenerativeModel("gemini-1.5-flash") result = model.generate_content( "The man was very old. what is the age of the old man?", generation_config=generation_config ) print(result.candidates[0].content.parts[0].text) # "{\"age\": null}" ``` **Using pydanticAI:** ```py from pydantic_ai import Agent from pydantic import BaseModel from pydantic_ai.models.vertexai import VertexAIModel class AgeModel(BaseModel): age: int | None = None gemini_model = VertexAIModel('gemini-1.5-flash') prompt = "The man was very old. what is the age of the old man?" agent = Agent(gemini_model, result_type=AgeModel) age = agent.run_sync(prompt) print(age.data) # age=100 ```
closed
2025-01-03T09:41:48Z
2025-01-06T16:48:16Z
https://github.com/pydantic/pydantic-ai/issues/603
[ "bug" ]
DataMonsterBoy
1
encode/uvicorn
asyncio
2,166
`--reload-include` doesn't work with hidden files e.g. `--reload-include .env`
### Initial Checks - [X] I confirm this was discussed, and the maintainers suggest I open an issue. - [X] I'm aware that if I created this issue without a discussion, it may be closed without a response. ### Discussion Link ```Text https://github.com/encode/uvicorn/discussions/1705 ``` ### Description The `--reload-include` CLI flag doesn't work when specifying a hidden file directly e.g. ```sh uvicorn src.main:app --reload --reload-include .env ``` ### Example Code _No response_ ### Python, Uvicorn & OS Version ```Text Running uvicorn 0.23.2 with CPython 3.11.5 on Darwin ``` <!-- POLAR PLEDGE BADGE START --> > [!IMPORTANT] > - We're using [Polar.sh](https://polar.sh/encode) so you can upvote and help fund this issue. > - We receive the funding once the issue is completed & confirmed by you. > - Thank you in advance for helping prioritize & fund our backlog. <a href="https://polar.sh/encode/uvicorn/issues/2166"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://polar.sh/api/github/encode/uvicorn/issues/2166/pledge.svg?darkmode=1"> <img alt="Fund with Polar" src="https://polar.sh/api/github/encode/uvicorn/issues/2166/pledge.svg"> </picture> </a> <!-- POLAR PLEDGE BADGE END -->
closed
2023-11-29T15:49:24Z
2024-02-10T14:33:45Z
https://github.com/encode/uvicorn/issues/2166
[]
michaeloliverx
1
newpanjing/simpleui
django
94
浏览器刷新后无法滑动到底部
**bug描述** 浏览器刷新后无法滑动到底部 **重现步骤** 1. 刷新浏览器 2. 划动无法到最底部
closed
2019-06-19T03:43:01Z
2019-07-09T05:48:30Z
https://github.com/newpanjing/simpleui/issues/94
[ "bug" ]
JohnYan2017
1
aiortc/aiortc
asyncio
500
Allow MediaPlayer to be closed on application shutdown
Add a `stop()` function to the MediaPlayer so that an application can shutdown cleanly. This is also the case for the `webcam` example. This will only properly close if a peer connection was opened at least once. I already wrote a stop function so I could do a PR
closed
2021-03-09T09:00:45Z
2022-03-22T02:39:54Z
https://github.com/aiortc/aiortc/issues/500
[ "stale" ]
paulhobbel
5
marcomusy/vedo
numpy
1,115
Intersection between watertight mesh and plane mesh
I am using `cut_with_mesh` to obtain the part of a plane mesh that is inside another mesh. What I am using now: ```python mesh = trimesh2vedo(plane_mesh).cut_with_mesh(trimesh2vedo(mesh)) ``` It looks like this: ![Screenshot 2024-05-13 124225](https://github.com/marcomusy/vedo/assets/5764407/6c6e83c8-6128-4f24-93d8-ee4a7e989eb4) Right now it is crashing silently and I do not know why. I am using the right function to do this?
closed
2024-05-13T10:43:29Z
2024-05-14T18:15:28Z
https://github.com/marcomusy/vedo/issues/1115
[]
omaralvarez
8
huggingface/transformers
pytorch
36,941
Add param_to_hook_all_reduce parameter in HF Trainer
### Feature request PyTorch DistributedDataParallel has `param_to_hook_all_reduce` option which is missing in trainer.py. This is needed to overlap gradient synchronization with backward pass https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html ### Motivation This will make Multi node DDP training more efficient ### Your contribution Maybe
open
2025-03-24T18:00:06Z
2025-03-24T18:00:06Z
https://github.com/huggingface/transformers/issues/36941
[ "Feature request" ]
awsankur
0
mwaskom/seaborn
pandas
3,575
scatterplot bug in 0.13.0
Hello and first off, major thanks to @mwaskom for this incredible package. I report this bug as a developer of [Pyleoclim](https://github.com/LinkedEarth/Pyleoclim_util), which has seaborn as a dependency. In upgrading to Python 3.11, we also upgraded to seaborn 0.13.0, and [this docstring example](https://pyleoclim-util.readthedocs.io/en/latest/core/api.html#pyleoclim.core.geoseries.GeoSeries.map_neighbors) starting giving us grief. Specifically: ``` Traceback (most recent call last): Cell In[3], line 17 gs.map_neighbors(mgs, radius=4000) File ~/Documents/GitHub/Pyleoclim_util/pyleoclim/core/geoseries.py:446 in map_neighbors fig, ax_d = mapping.scatter_map(neighborhood, fig=fig, gs_slot=gridspec_slot, hue=hue, size=size, marker=marker, projection=projection, File ~/Documents/GitHub/Pyleoclim_util/pyleoclim/utils/mapping.py:1205 in scatter_map _, ax_d = plot_scatter(df=df, x=x, y=y, hue_var=hue, size_var=size, marker_var=marker, ax_d=ax_d, proj=None, edgecolor=edgecolor, File ~/Documents/GitHub/Pyleoclim_util/pyleoclim/utils/mapping.py:946 in plot_scatter sns.scatterplot(data=hue_data, x=x, y=y, hue=hue_var, size=size_var,transform=transform, #change to transform=scatter_kwargs['transform'] File ~/opt/miniconda3/envs/pyleo/lib/python3.11/site-packages/seaborn/relational.py:624 in scatterplot p.plot(ax, kwargs) File ~/opt/miniconda3/envs/pyleo/lib/python3.11/site-packages/seaborn/relational.py:458 in plot self.add_legend_data(ax, _scatter_legend_artist, kws, attrs) File ~/opt/miniconda3/envs/pyleo/lib/python3.11/site-packages/seaborn/_base.py:1270 in add_legend_data artist = func(label=label, **{"color": ".2", **common_kws, **level_kws}) File ~/opt/miniconda3/envs/pyleo/lib/python3.11/site-packages/seaborn/utils.py:922 in _scatter_legend_artist if edgecolor == "face": ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() ``` The problem goes away if I revert to seaborn 0.12.2, keeping all other packages the same. My environment.yml is copied to help troubleshoot. It seems that it the fix could be a minor change in `_scatter_legend_artist` but I don't have a good sense of the ramifications. Best, J.E.G. -- name: pyleo channels: - defaults dependencies: - alabaster=0.7.12=pyhd3eb1b0_0 - appnope=0.1.2=py311hecd8cb5_1001 - asttokens=2.0.5=pyhd3eb1b0_0 - babel=2.11.0=py311hecd8cb5_0 - backcall=0.2.0=pyhd3eb1b0_0 - brotli-python=1.0.9=py311hcec6c5f_7 - bzip2=1.0.8=h1de35cc_0 - ca-certificates=2023.08.22=hecd8cb5_0 - certifi=2023.11.17=py311hecd8cb5_0 - cffi=1.16.0=py311h6c40b1e_0 - cloudpickle=2.2.1=py311hecd8cb5_0 - colorama=0.4.6=py311hecd8cb5_0 - cryptography=41.0.3=py311h30e54ef_0 - debugpy=1.6.7=py311hcec6c5f_0 - decorator=5.1.1=pyhd3eb1b0_0 - docutils=0.18.1=py311hecd8cb5_3 - executing=0.8.3=pyhd3eb1b0_0 - idna=3.4=py311hecd8cb5_0 - imagesize=1.4.1=py311hecd8cb5_0 - ipykernel=6.25.0=py311h85bffb1_0 - ipython=8.15.0=py311hecd8cb5_0 - jedi=0.18.1=py311hecd8cb5_1 - jinja2=3.1.2=py311hecd8cb5_0 - jupyter_client=8.6.0=py311hecd8cb5_0 - jupyter_core=5.5.0=py311hecd8cb5_0 - libcxx=14.0.6=h9765a3e_0 - libffi=3.4.4=hecd8cb5_0 - libsodium=1.0.18=h1de35cc_0 - markupsafe=2.1.1=py311h6c40b1e_0 - matplotlib-inline=0.1.6=py311hecd8cb5_0 - ncurses=6.4=hcec6c5f_0 - nest-asyncio=1.5.6=py311hecd8cb5_0 - openssl=3.0.12=hca72f7f_0 - parso=0.8.3=pyhd3eb1b0_0 - pexpect=4.8.0=pyhd3eb1b0_3 - pickleshare=0.7.5=pyhd3eb1b0_1003 - pip=23.3=py311hecd8cb5_0 - platformdirs=3.10.0=py311hecd8cb5_0 - prompt-toolkit=3.0.36=py311hecd8cb5_0 - psutil=5.9.0=py311h6c40b1e_0 - ptyprocess=0.7.0=pyhd3eb1b0_2 - pure_eval=0.2.2=pyhd3eb1b0_0 - pycparser=2.21=pyhd3eb1b0_0 - pygments=2.15.1=py311hecd8cb5_1 - pyopenssl=23.2.0=py311hecd8cb5_0 - pysocks=1.7.1=py311hecd8cb5_0 - python=3.11.5=hf27a42d_0 - python-dateutil=2.8.2=pyhd3eb1b0_0 - pytz=2023.3.post1=py311hecd8cb5_0 - pyzmq=25.1.0=py311hcec6c5f_0 - readline=8.2=hca72f7f_0 - requests=2.31.0=py311hecd8cb5_0 - setuptools=68.0.0=py311hecd8cb5_0 - six=1.16.0=pyhd3eb1b0_1 - snowballstemmer=2.2.0=pyhd3eb1b0_0 - sphinx=5.0.2=py311hecd8cb5_0 - sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0 - sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0 - sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0 - sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0 - sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0 - sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0 - spyder-kernels=2.4.4=py311hecd8cb5_0 - sqlite=3.41.2=h6c40b1e_0 - stack_data=0.2.0=pyhd3eb1b0_0 - tk=8.6.12=h5d9f67b_0 - tornado=6.3.3=py311h6c40b1e_0 - traitlets=5.7.1=py311hecd8cb5_0 - wcwidth=0.2.5=pyhd3eb1b0_0 - wheel=0.41.2=py311hecd8cb5_0 - wurlitzer=3.0.2=py311hecd8cb5_0 - xz=5.4.2=h6c40b1e_0 - zeromq=4.3.4=h23ab428_0 - zlib=1.2.13=h4dc903c_0 - pip: - attrs==23.1.0 - bagit==1.8.1 - beautifulsoup4==4.12.2 - bibtexparser==1.4.1 - bleach==6.1.0 - cartopy==0.22.0 - chardet==5.2.0 - charset-normalizer==3.3.2 - comm==0.2.0 - contourpy==1.2.0 - cycler==0.12.1 - defusedxml==0.7.1 - demjson3==3.0.6 - dill==0.3.7 - doi2bib==0.4.0 - fastjsonschema==2.19.0 - fonttools==4.44.3 - future==0.18.3 - ipywidgets==8.1.1 - isodate==0.6.1 - joblib==1.3.2 - jsonschema==4.20.0 - jsonschema-specifications==2023.11.1 - jupyter-sphinx==0.4.0 - jupyterlab-pygments==0.2.2 - jupyterlab-widgets==3.0.9 - kiwisolver==1.4.5 - kneed==0.8.5 - latexcodec==2.0.1 - lipd==0.2.8.8 - llvmlite==0.41.1 - matplotlib==3.8.2 - mistune==3.0.2 - multiprocess==0.70.15 - nbclient==0.9.0 - nbconvert==7.11.0 - nbformat==5.9.2 - nbsphinx==0.9.3 - nitime==0.10.2 - numba==0.58.1 - numpy==1.23.5 - numpydoc==1.6.0 - packaging==23.2 - pandas==2.1.3 - pandocfilters==1.5.0 - pathos==0.3.1 - patsy==0.5.3 - pillow==10.1.0 - ply==3.11 - pox==0.3.3 - ppft==1.7.6.7 - pybtex==0.24.0 - pyhht==0.1.0 - pylipd==1.3.6 - pyparsing==3.1.1 - pyproj==3.6.1 - pyshp==2.3.1 - pyyaml==6.0.1 - rdflib==7.0.0 - readthedocs-sphinx-search==0.3.1 - referencing==0.31.0 - rpds-py==0.13.0 - scikit-learn==1.3.2 - scipy==1.11.3 - seaborn==0.12.2 - shapely==2.0.2 - sip==6.7.12 - soupsieve==2.5 - sphinx-copybutton==0.5.2 - sphinx-rtd-theme==1.3.0 - sphinxcontrib-jquery==4.1 - statsmodels==0.14.0 - tabulate==0.9.0 - tftb==0.1.4 - threadpoolctl==3.2.0 - tinycss2==1.2.1 - tqdm==4.66.1 - tzdata==2023.3 - unidecode==1.3.7 - urllib3==2.1.0 - webencodings==0.5.1 - wget==3.2 - widgetsnbextension==4.0.9 - xlrd==2.0.1
open
2023-11-29T02:45:56Z
2023-11-30T15:23:29Z
https://github.com/mwaskom/seaborn/issues/3575
[ "mod:relational", "needs-reprex" ]
CommonClimate
2
iMerica/dj-rest-auth
rest-api
562
Why does the registration functionality depend on allauth?
It's kind of strange to me that to enable registration I have to install allauth. It's especially strange that I need to include the `allauth.socialaccount` app, even when I am not planning to ever support social logins. Is this something that could be made optional?
open
2023-10-25T14:17:12Z
2024-01-06T15:21:52Z
https://github.com/iMerica/dj-rest-auth/issues/562
[]
kevinrenskers
2
plotly/dash
flask
2,850
Dropdown changes in Dash 2.17 causing page loading issues in Dash docs
Our docs tests test different paths: https://github.com/plotly/ddk-dash-docs/blob/main/tests/integration/test_bad_paths.py With Dash 2.17, some of these tests fail because the page never loads The page ends up stuck in a state like this ![image](https://github.com/plotly/dash/assets/12749831/12babe0a-d252-4fd1-b9ee-d593659c34a2) Seems to be happening on page where the dropdown is updated based on the URL and vice versa. Seems to work without this change: https://github.com/plotly/dash/pull/2816 To recreate: Run the /ddk-dash-docs tests using Dash 2.17
closed
2024-05-06T18:54:50Z
2024-05-14T15:01:53Z
https://github.com/plotly/dash/issues/2850
[ "bug" ]
LiamConnors
0
plotly/dash
plotly
2,470
Provide Input Patch-Like Behavior
**Is your feature request related to a problem? Please describe.** With the introduction of the `Patch` component for outputs, I was thinking that it would be pretty useful as well to be able to configure Patch-like features for inputs as well. Right now, if any key of the `dcc.Graph` figure attribute changes, then a callback would be triggered, and all of the associated data would be sent across the network. **Describe the solution you'd like** Instead, it might be nice if we could get a bit more granular in specifying the keys within a figure or store's data configuration. I.e. Fire this callback if the actual data coordinates of the figure changes, but don't fire the callback if the user changes the color of the title. **Describe alternatives you've considered** I'm not actually sure how you would go about checking which underlying key of an attribute fired in a callback with the current implementation of Dash. Perhaps some sort of `Store` component that holds the previous figure state? (Not an urgent request - just a nice-to-have down the line as partial updates start to receive first-class treatment and Dash applications start to process larger data sets).
open
2023-03-20T16:25:52Z
2024-08-13T19:29:21Z
https://github.com/plotly/dash/issues/2470
[ "feature", "P3" ]
milind
0
roboflow/supervision
machine-learning
1,243
Request: PolygonZone determination using object recognition
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Description I am currently using supervision in my thesis to analyse driving behavior in different videos and its super useful. But the PolygonZone array must be determined manually for each video. Would it be possible to (semi-) automate this process with object recognition? By specifying an object that can be found in several places in a frame, the feature would then return the coordinates of the object from the frame and append them to an array. ### Use case It would be very useful, for example, when determining the polygon zone, which is created on the basis of delineators. In this way, a road section can be recognized directly without having to enter an array manually. ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-05-29T12:20:02Z
2024-05-29T12:44:24Z
https://github.com/roboflow/supervision/issues/1243
[ "enhancement" ]
pasionline
1
pandas-dev/pandas
python
60,364
DOC: Add missing links to optional dependencies in getting_started/install.html
### Pandas version checks - [X] I have checked that the issue still exists on the latest versions of the docs on `main` [here](https://pandas.pydata.org/docs/dev/) ### Location of the documentation https://pandas.pydata.org/docs/getting_started/install.html ### Documentation problem On the “Installation” page, links are provided to the GitHub pages for the required dependencies and some of the optional dependencies, but the optional dependencies in the tables from “Visualization” onward do not link to the GitHub pages of the projects. Links are provided to the optional HTML-related dependencies are present, but not in the dependency table. ### Suggested fix for documentation Add links to the library names which link to their respective repositories to make the page more consistent.
closed
2024-11-19T20:05:36Z
2024-12-02T19:09:40Z
https://github.com/pandas-dev/pandas/issues/60364
[ "Build", "Docs" ]
bluestarunderscore
8
yzhao062/pyod
data-science
416
Meaning of Contamination in SUOD
Hello, Thanks for the excellent work with PyOD! I am using SUOD to create an ensemble of 6 models (3 ABOD, 3 INNE). Each of these instances has their own (different) contamination value. However, the SUOD object itself has a separate contamination parameter. What is the effect of/interaction between the contamination parameter on the SUOD object and the constituent outlier detectors (which could have their own individual contamination settings)? On a side note, it is my understanding that each of these 6 models learns (in) a different subspace, since (different) random projections are used per instance. Is this correct? Thanks!
closed
2022-06-23T17:53:05Z
2022-06-27T20:01:28Z
https://github.com/yzhao062/pyod/issues/416
[]
madarax64
6
miguelgrinberg/Flask-SocketIO
flask
1,544
How to handle Bad request type?
``How do I handle code 400, message Bad HTTP/0.9 request type ('<?xml')?? **Logs** I am trying to connect to a particular device based on sockets. All I am getting is this error 400 error. Is there anything like .recv() or something? ``` from flask import Flask, render_template from flask_socketio import SocketIO, emit app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app) @socketio.on('message') def handle_message(data): print('received message: ' + data) @socketio.event def my_event(message): emit('my response', {'data': 'got it!'}) if __name__ == '__main__': socketio.run(app, host='0.0.0.0', port=3030) ```
closed
2021-05-08T16:20:06Z
2021-05-10T13:04:19Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1544
[ "question" ]
bansalnaman15
11
BeanieODM/beanie
pydantic
487
[BUG] how return id instead of _id in fastapi web
![image](https://user-images.githubusercontent.com/6077601/218399072-6e4a551f-8d28-408b-9814-5f0f91e4e75c.png)
closed
2023-02-13T07:43:52Z
2023-03-31T02:25:45Z
https://github.com/BeanieODM/beanie/issues/487
[ "Stale" ]
linpan
6
python-gino/gino
sqlalchemy
48
The URL of documention is error.
老铁,更新一下文档地址吧~ 非常感谢 ^_^
closed
2017-09-01T04:31:21Z
2017-09-01T08:54:33Z
https://github.com/python-gino/gino/issues/48
[ "duplicate" ]
zjxubinbin
6
SciTools/cartopy
matplotlib
2,093
Problem with annotation in image
### Description Hello, I encountered a problem where text will not be cut off properly in cartopy at the edge of the figure. This is a simplyfied version of the problem, but it should be obvious what is going wrong. You can clearly see that the higher numbers (90+) are still displayed, even though they are outside of the image. This is a problem coming from the projection. I encounter the same problem in my "real" code where I have river names on a map. The problem also happens when you zoom in and it display text that is outside of the figure. ![Figure_1](https://user-images.githubusercontent.com/62934678/194354031-8a1836cb-6ed1-4519-b466-f2a57ee8794b.png) #### Code to reproduce ``` import matplotlib.pyplot as plt import numpy as np import cartopy.crs as ccrs if __name__ == '__main__': x = np.arange(100) fig = plt.figure() ax = plt.axes(projection=ccrs.PlateCarree()) scatter_plot=plt.scatter(x, x) for item in x: plt.annotate(str(item), (item, item)) plt.show() ``` #### Traceback There is no error message. Problem is purely optical. ### Operating system Windows 10 ### Cartopy version 0.21.0 ### conda list ``` # Name Version Build Channel adjusttext 0.7.3.1 py_1 conda-forge arrow-cpp 9.0.0 py39h07ee6b1_6_cpu conda-forge asciitree 0.3.3 py_2 conda-forge aws-c-cal 0.5.11 he19cf47_0 conda-forge aws-c-common 0.6.2 h8ffe710_0 conda-forge aws-c-event-stream 0.2.7 h70e1b0c_13 conda-forge aws-c-io 0.10.5 h2fe331c_0 conda-forge aws-checksums 0.1.11 h1e232aa_7 conda-forge aws-sdk-cpp 1.8.186 hb0612c5_3 conda-forge brotli 1.0.9 h8ffe710_7 conda-forge brotli-bin 1.0.9 h8ffe710_7 conda-forge brotlipy 0.7.0 py39hb82d6ee_1004 conda-forge bzip2 1.0.8 h8ffe710_4 conda-forge c-ares 1.18.1 h8ffe710_0 conda-forge ca-certificates 2022.9.24 h5b45459_0 conda-forge cartopy 0.21.0 py39h4915f10_0 conda-forge certifi 2022.9.24 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py39h0878f49_0 conda-forge cftime 1.6.2 py39hc266a54_0 conda-forge charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge colorama 0.4.5 pyhd8ed1ab_0 conda-forge conda 22.9.0 py39hcbf5309_1 conda-forge conda-package-handling 1.9.0 py39h09fa780_0 conda-forge console_shortcut 0.1.1 4 contourpy 1.0.5 py39h1f6ef14_0 conda-forge cryptography 38.0.1 py39h58e9bdb_0 conda-forge curl 7.85.0 heaf79c2_0 conda-forge cycler 0.11.0 pyhd8ed1ab_0 conda-forge entrypoints 0.4 pyhd8ed1ab_0 conda-forge eofs 1.4.0 py_0 conda-forge fasteners 0.17.3 pyhd8ed1ab_0 conda-forge fonttools 4.37.4 py39ha55989b_0 conda-forge freetype 2.12.1 h546665d_0 conda-forge geos 3.11.0 h39d44d4_0 conda-forge gettext 0.19.8.1 h5728263_1009 conda-forge gflags 2.2.2 ha925a31_1004 conda-forge glib 2.74.0 h12be248_0 conda-forge glib-tools 2.74.0 h12be248_0 conda-forge glog 0.6.0 h4797de2_0 conda-forge grpc-cpp 1.47.1 h535cfc9_6 conda-forge gst-plugins-base 1.20.3 h001b923_2 conda-forge gstreamer 1.20.3 h6b5321d_2 conda-forge hdf4 4.2.15 h0e5069d_4 conda-forge hdf5 1.12.2 nompi_h2a0e4a3_100 conda-forge icu 70.1 h0e60522_0 conda-forge idna 3.4 pyhd8ed1ab_0 conda-forge imageio 2.22.0 pyhfa7a67d_0 conda-forge intel-openmp 2022.1.0 h57928b3_3787 conda-forge joblib 1.2.0 pyhd8ed1ab_0 conda-forge jpeg 9e h8ffe710_2 conda-forge kiwisolver 1.4.4 py39h2e07f2f_0 conda-forge krb5 1.19.3 h1176d77_0 conda-forge lcms2 2.12 h2a16943_0 conda-forge lerc 4.0.0 h63175ca_0 conda-forge libabseil 20220623.0 cxx17_h1a56200_4 conda-forge libblas 3.9.0 16_win64_mkl conda-forge libbrotlicommon 1.0.9 h8ffe710_7 conda-forge libbrotlidec 1.0.9 h8ffe710_7 conda-forge libbrotlienc 1.0.9 h8ffe710_7 conda-forge libcblas 3.9.0 16_win64_mkl conda-forge libclang 14.0.6 default_h77d9078_0 conda-forge libclang13 14.0.6 default_h77d9078_0 conda-forge libcrc32c 1.1.2 h0e60522_0 conda-forge libcurl 7.85.0 heaf79c2_0 conda-forge libdeflate 1.14 hcfcfb64_0 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libglib 2.74.0 h79619a9_0 conda-forge libgoogle-cloud 2.2.0 hc8dde07_1 conda-forge libiconv 1.17 h8ffe710_0 conda-forge liblapack 3.9.0 16_win64_mkl conda-forge libnetcdf 4.8.1 nompi_h85765be_104 conda-forge libogg 1.3.4 h8ffe710_1 conda-forge libpng 1.6.38 h19919ed_0 conda-forge libprotobuf 3.21.7 h12be248_0 conda-forge libsqlite 3.39.4 hcfcfb64_0 conda-forge libssh2 1.10.0 h680486a_3 conda-forge libthrift 0.16.0 h9f558f2_2 conda-forge libtiff 4.4.0 h8e97e67_4 conda-forge libutf8proc 2.7.0 hcb41399_0 conda-forge libvorbis 1.3.7 h0e60522_0 conda-forge libwebp-base 1.2.4 h8ffe710_0 conda-forge libxcb 1.13 hcd874cb_1004 conda-forge libzip 1.9.2 hfed4ece_1 conda-forge libzlib 1.2.12 hcfcfb64_4 conda-forge lz4-c 1.9.3 h8ffe710_1 conda-forge m2w64-gcc-libgfortran 5.3.0 6 conda-forge m2w64-gcc-libs 5.3.0 7 conda-forge m2w64-gcc-libs-core 5.3.0 7 conda-forge m2w64-gmp 6.1.0 2 conda-forge m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge matplotlib 3.6.0 py39hcbf5309_0 conda-forge matplotlib-base 3.6.0 py39haf65ace_0 conda-forge menuinst 1.4.19 py39hcbf5309_0 conda-forge mkl 2022.1.0 h6a75c08_874 conda-forge mplcursors 0.5.1 pyhd8ed1ab_0 conda-forge mpldatacursor 0.7.1 pyhd8ed1ab_0 conda-forge msgpack-python 1.0.4 py39h2e07f2f_0 conda-forge msys2-conda-epoch 20160418 1 conda-forge munkres 1.1.4 pyh9f0ad1d_0 conda-forge netcdf4 1.6.1 nompi_py39h34fa13a_100 conda-forge numcodecs 0.10.2 py39h415ef7b_0 conda-forge numpy 1.23.3 py39h9061af7_0 conda-forge openjpeg 2.5.0 hc9384bd_1 conda-forge openssl 1.1.1q h8ffe710_0 conda-forge packaging 21.3 pyhd8ed1ab_0 conda-forge pandas 1.5.0 py39h2ba5b7c_0 conda-forge parquet-cpp 1.5.1 2 conda-forge pcre2 10.37 hdfff0fc_1 conda-forge pillow 9.2.0 py39hcef8f5f_2 conda-forge pip 22.2.2 pyhd8ed1ab_0 conda-forge plotly 5.10.0 pyhd8ed1ab_0 conda-forge ply 3.11 py_1 conda-forge powershell_shortcut 0.0.1 3 proj 9.1.0 h3863b3b_0 conda-forge pthread-stubs 0.4 hcd874cb_1001 conda-forge pyarrow 9.0.0 py39h2c50fde_6_cpu conda-forge pycosat 0.6.3 py39hb82d6ee_1010 conda-forge pycparser 2.21 pyhd8ed1ab_0 conda-forge pyopenssl 22.0.0 pyhd8ed1ab_1 conda-forge pyparsing 3.0.9 pyhd8ed1ab_0 conda-forge pyproj 3.4.0 py39haa55e60_1 conda-forge pyqt 5.15.7 py39hb08f45d_0 conda-forge pyqt5-sip 12.11.0 py39h415ef7b_0 conda-forge pyshp 2.3.1 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 pyh0701188_6 conda-forge python 3.9.13 h9a09f29_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python_abi 3.9 2_cp39 conda-forge pytz 2022.4 pyhd8ed1ab_0 conda-forge qt-main 5.15.6 hf0cf448_0 conda-forge re2 2022.06.01 h0e60522_0 conda-forge requests 2.28.1 pyhd8ed1ab_1 conda-forge ruamel_yaml 0.15.80 py39hb82d6ee_1007 conda-forge scipy 1.9.1 py39h316f440_0 conda-forge setuptools 65.4.1 pyhd8ed1ab_0 conda-forge shapely 1.8.4 py39he0923fe_0 conda-forge sip 6.6.2 py39h415ef7b_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge snappy 1.1.9 h82413e6_1 conda-forge sqlite 3.39.4 hcfcfb64_0 conda-forge tbb 2021.6.0 h91493d7_0 conda-forge tenacity 8.1.0 pyhd8ed1ab_0 conda-forge tk 8.6.12 h8ffe710_0 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge toolz 0.12.0 pyhd8ed1ab_0 conda-forge tornado 6.2 py39hb82d6ee_0 conda-forge tqdm 4.64.1 pyhd8ed1ab_0 conda-forge typing-extensions 4.3.0 hd8ed1ab_0 conda-forge typing_extensions 4.3.0 pyha770c72_0 conda-forge tzdata 2022d h191b570_0 conda-forge ucrt 10.0.20348.0 h57928b3_0 conda-forge unicodedata2 14.0.0 py39hb82d6ee_1 conda-forge urllib3 1.26.11 pyhd8ed1ab_0 conda-forge vc 14.2 hac3ee0b_8 conda-forge vs2015_runtime 14.29.30139 h890b9b1_8 conda-forge wheel 0.37.1 pyhd8ed1ab_0 conda-forge win_inet_pton 1.1.0 py39hcbf5309_4 conda-forge xarray 2022.9.0 pyhd8ed1ab_0 conda-forge xorg-libxau 1.0.9 hcd874cb_0 conda-forge xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge xz 5.2.6 h8d14728_0 conda-forge yaml 0.2.5 h8ffe710_2 conda-forge zarr 2.13.2 pyhd8ed1ab_1 conda-forge zlib 1.2.12 hcfcfb64_4 conda-forge zstd 1.5.2 h7755175_4 conda-forge ``` </details>
open
2022-10-06T15:29:13Z
2022-10-15T21:11:20Z
https://github.com/SciTools/cartopy/issues/2093
[]
HelixPiano
5
sloria/TextBlob
nlp
396
Error in translation and detect_language
Hi, When calling for the functions detect_language & translate are not working. After a couple of pushes, I receive a HTTP 404 error unfortunately. I'm quite unsure what the issue might be. I don't if Google updated their criteria regarding API's but @sloria could you have a look at this? I'm happy to help.
closed
2021-09-14T09:56:18Z
2021-09-14T12:59:55Z
https://github.com/sloria/TextBlob/issues/396
[]
DennisvDijk
2
autogluon/autogluon
data-science
4,578
[BUG] TabularPredictor fit method with an (hyper)parameter `learning_curves` crashes
**Bug Report Checklist** - [ ] I provided code that demonstrates a minimal reproducible example. <!-- Ideal, especially via source install --> - [ ] I confirmed bug exists on the latest mainline of AutoGluon via source install. <!-- Preferred --> - [x ] I confirmed bug exists on the latest stable version of AutoGluon. <!-- Unnecessary if prior items are checked --> **Describe the bug** Hello, I am trying to get the learning curves out of the tabular predictor after fitting. but I could not manag to have the TabularPredictor method `fit` to run with the `learning_curves` as hyperparameter either as `True` or as a dictionary. It does crash **Expected behavior** Fit method to run properly and after, to be able to call learning_curves() from the predictor. And if I actually made a mistake with the parameters, a better error message. **To Reproduce** ```python import autogluon.tabular train_data = autogluon.tabular.TabularDataset(data=train_data_file_path) predictor = autogluon.tabular.TabularPredictor( label='TARGET', eval_metric='roc_auc', path = c.model_folder_path, ) predictor.fit( train_data=train_data, presets=[ 'optimize_for_deployment', # will prune not so important sub models 'medium_quality' # will speed up training # 'interpretable', # will crash ], time_limit=60*45, # seconds hyperparameters={ 'learning_curves':{ 'metrics': 'roc_auc', 'use_error':False, }, }, ) ``` **Screenshots / Logs** error message: <details> ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[12], line 35 33 utils.delete_empty_folder(c.model_folder_path) 34 assert not os.path.exists(c.model_folder_path) ---> 35 raise(error) Cell In[12], line 10 5 predictor = autogluon.tabular.TabularPredictor( 6 label='TARGET', 7 eval_metric='roc_auc', 8 path = c.model_folder_path, 9 ) ---> 10 predictor.fit( 11 train_data=train_data, 12 presets=[ 13 'optimize_for_deployment', # will prune not so important sub models 14 'medium_quality' # will speed up training 15 # 'interpretable', # will crash 16 ], 17 time_limit=60*45, # seconds 18 hyperparameters={ 19 'learning_curves':{ 20 'metrics': 'roc_auc', 21 'use_error':False, 22 }, 23 }, 24 # learning_curves=True, 25 ) 26 assert predictor.path == c.model_folder_path 27 print(f"{predictor.predictor_file_name = }") File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/core/utils/decorators.py:31](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/core/utils/decorators.py#line=30), in unpack.<locals>._unpack_inner.<locals>._call(*args, **kwargs) 28 @functools.wraps(f) 29 def _call(*args, **kwargs): 30 gargs, gkwargs = g(*other_args, *args, **kwargs) ---> 31 return f(*gargs, **gkwargs) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py:1167](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py#line=1166), in TabularPredictor.fit(self, train_data, tuning_data, time_limit, presets, hyperparameters, feature_metadata, infer_limit, infer_limit_batch_size, fit_weighted_ensemble, fit_full_last_level_weighted_ensemble, full_weighted_ensemble_additionally, dynamic_stacking, calibrate_decision_threshold, num_cpus, num_gpus, **kwargs) 1164 ag_fit_kwargs["num_stack_levels"] = num_stack_levels 1165 ag_fit_kwargs["time_limit"] = time_limit -> 1167 self._fit(ag_fit_kwargs=ag_fit_kwargs, ag_post_fit_kwargs=ag_post_fit_kwargs) 1169 return self File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py:1173](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py#line=1172), in TabularPredictor._fit(self, ag_fit_kwargs, ag_post_fit_kwargs) 1171 def _fit(self, ag_fit_kwargs: dict, ag_post_fit_kwargs: dict): 1172 self.save(silent=True) # Save predictor to disk to enable prediction and training after interrupt -> 1173 self._learner.fit(**ag_fit_kwargs) 1174 self._set_post_fit_vars() 1175 self._post_fit(**ag_post_fit_kwargs) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/abstract_learner.py:159](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/abstract_learner.py#line=158), in AbstractTabularLearner.fit(self, X, X_val, **kwargs) 157 raise AssertionError("Learner is already fit.") 158 self._validate_fit_input(X=X, X_val=X_val, **kwargs) --> 159 return self._fit(X=X, X_val=X_val, **kwargs) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/default_learner.py:122](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/default_learner.py#line=121), in DefaultLearner._fit(self, X, X_val, X_unlabeled, holdout_frac, num_bag_folds, num_bag_sets, time_limit, infer_limit, infer_limit_batch_size, verbosity, **trainer_fit_kwargs) 119 self.eval_metric = trainer.eval_metric 121 self.save() --> 122 trainer.fit( 123 X=X, 124 y=y, 125 X_val=X_val, 126 y_val=y_val, 127 X_unlabeled=X_unlabeled, 128 holdout_frac=holdout_frac, 129 time_limit=time_limit_trainer, 130 infer_limit=infer_limit, 131 infer_limit_batch_size=infer_limit_batch_size, 132 groups=groups, 133 **trainer_fit_kwargs, 134 ) 135 self.save_trainer(trainer=trainer) 136 time_end = time.time() File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py:125](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py#line=124), in AutoTrainer.fit(self, X, y, hyperparameters, X_val, y_val, X_unlabeled, holdout_frac, num_stack_levels, core_kwargs, aux_kwargs, time_limit, infer_limit, infer_limit_batch_size, use_bag_holdout, groups, **kwargs) 122 log_str += "}" 123 logger.log(20, log_str) --> 125 self._train_multi_and_ensemble( 126 X=X, 127 y=y, 128 X_val=X_val, 129 y_val=y_val, 130 X_unlabeled=X_unlabeled, 131 hyperparameters=hyperparameters, 132 num_stack_levels=num_stack_levels, 133 time_limit=time_limit, 134 core_kwargs=core_kwargs, 135 aux_kwargs=aux_kwargs, 136 infer_limit=infer_limit, 137 infer_limit_batch_size=infer_limit_batch_size, 138 groups=groups, 139 ) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py:2589](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py#line=2588), in AbstractTrainer._train_multi_and_ensemble(self, X, y, X_val, y_val, hyperparameters, X_unlabeled, num_stack_levels, time_limit, groups, **kwargs) 2587 self._num_rows_val = len(X_val) 2588 self._num_cols_train = len(list(X.columns)) -> 2589 model_names_fit = self.train_multi_levels( 2590 X, 2591 y, 2592 hyperparameters=hyperparameters, 2593 X_val=X_val, 2594 y_val=y_val, 2595 X_unlabeled=X_unlabeled, 2596 level_start=1, 2597 level_end=num_stack_levels + 1, 2598 time_limit=time_limit, 2599 **kwargs, 2600 ) 2601 if len(self.get_model_names()) == 0: 2602 # TODO v1.0: Add toggle to raise exception if no models trained 2603 logger.log(30, "Warning: AutoGluon did not successfully train any models") File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py:452](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py#line=451), in AbstractTrainer.train_multi_levels(self, X, y, hyperparameters, X_val, y_val, X_unlabeled, base_model_names, core_kwargs, aux_kwargs, level_start, level_end, time_limit, name_suffix, relative_stack, level_time_modifier, infer_limit, infer_limit_batch_size) 450 core_kwargs_level["time_limit"] = core_kwargs_level.get("time_limit", time_limit_core) 451 aux_kwargs_level["time_limit"] = aux_kwargs_level.get("time_limit", time_limit_aux) --> 452 base_model_names, aux_models = self.stack_new_level( 453 X=X, 454 y=y, 455 X_val=X_val, 456 y_val=y_val, 457 X_unlabeled=X_unlabeled, 458 models=hyperparameters, 459 level=level, 460 base_model_names=base_model_names, 461 core_kwargs=core_kwargs_level, 462 aux_kwargs=aux_kwargs_level, 463 name_suffix=name_suffix, 464 infer_limit=infer_limit, 465 infer_limit_batch_size=infer_limit_batch_size, 466 full_weighted_ensemble=full_weighted_ensemble, 467 additional_full_weighted_ensemble=additional_full_weighted_ensemble, 468 ) 469 model_names_fit += base_model_names + aux_models 470 if self.model_best is None and len(model_names_fit) != 0: File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py:600](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py#line=599), in AbstractTrainer.stack_new_level(self, X, y, models, X_val, y_val, X_unlabeled, level, base_model_names, core_kwargs, aux_kwargs, name_suffix, infer_limit, infer_limit_batch_size, full_weighted_ensemble, additional_full_weighted_ensemble) 598 core_kwargs["name_suffix"] = core_kwargs.get("name_suffix", "") + name_suffix 599 aux_kwargs["name_suffix"] = aux_kwargs.get("name_suffix", "") + name_suffix --> 600 core_models = self.stack_new_level_core( 601 X=X, 602 y=y, 603 X_val=X_val, 604 y_val=y_val, 605 X_unlabeled=X_unlabeled, 606 models=models, 607 level=level, 608 infer_limit=infer_limit, 609 infer_limit_batch_size=infer_limit_batch_size, 610 base_model_names=base_model_names, 611 **core_kwargs, 612 ) 614 aux_models = [] 615 if full_weighted_ensemble: File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py:706](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/core/trainer/abstract_trainer.py#line=705), in AbstractTrainer.stack_new_level_core(self, X, y, models, X_val, y_val, X_unlabeled, level, base_model_names, stack_name, ag_args, ag_args_fit, ag_args_ensemble, included_model_types, excluded_model_types, ensemble_type, name_suffix, get_models_func, refit_full, infer_limit, infer_limit_batch_size, **kwargs) 693 ensemble_kwargs = { 694 "base_model_names": base_model_names, 695 "base_model_paths_dict": base_model_paths, 696 "base_model_types_dict": base_model_types, 697 "random_state": level + self.random_state, 698 } 699 get_models_kwargs.update( 700 dict( 701 ag_args_ensemble=ag_args_ensemble, (...) 704 ) 705 ) --> 706 models, model_args_fit = get_models_func(hyperparameters=models, **get_models_kwargs) 707 if model_args_fit: 708 hyperparameter_tune_kwargs = { 709 model_name: model_args_fit[model_name]["hyperparameter_tune_kwargs"] 710 for model_name in model_args_fit 711 if "hyperparameter_tune_kwargs" in model_args_fit[model_name] 712 } File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py:31](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py#line=30), in AutoTrainer.construct_model_templates(self, hyperparameters, **kwargs) 28 ag_args_fit = ag_args_fit.copy() 29 ag_args_fit["quantile_levels"] = quantile_levels ---> 31 return get_preset_models( 32 path=path, 33 problem_type=problem_type, 34 eval_metric=eval_metric, 35 hyperparameters=hyperparameters, 36 ag_args_fit=ag_args_fit, 37 invalid_model_names=invalid_model_names, 38 silent=silent, 39 **kwargs, 40 ) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/model_presets/presets.py:246](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/model_presets/presets.py#line=245), in get_preset_models(path, problem_type, eval_metric, hyperparameters, level, ensemble_type, ensemble_kwargs, ag_args_fit, ag_args, ag_args_ensemble, name_suffix, default_priorities, invalid_model_names, included_model_types, excluded_model_types, hyperparameter_preprocess_func, hyperparameter_preprocess_kwargs, silent) 244 model_cfgs_to_process.append(model_cfg) 245 for model_cfg in model_cfgs_to_process: --> 246 model_cfg = clean_model_cfg( 247 model_cfg=model_cfg, 248 model_type=model_type, 249 ag_args=ag_args, 250 ag_args_ensemble=ag_args_ensemble, 251 ag_args_fit=ag_args_fit, 252 problem_type=problem_type, 253 ) 254 model_cfg[AG_ARGS]["priority"] = model_cfg[AG_ARGS].get("priority", default_priorities.get(model_type, DEFAULT_CUSTOM_MODEL_PRIORITY)) 255 model_priority = model_cfg[AG_ARGS]["priority"] File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/model_presets/presets.py:302](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/model_presets/presets.py#line=301), in clean_model_cfg(model_cfg, model_type, ag_args, ag_args_ensemble, ag_args_fit, problem_type) 300 model_type = model_cfg[AG_ARGS]["model_type"] 301 if not inspect.isclass(model_type): --> 302 model_type = MODEL_TYPES[model_type] 303 elif not issubclass(model_type, AbstractModel): 304 logger.warning( 305 f"Warning: Custom model type {model_type} does not inherit from {AbstractModel}. This may lead to instability. Consider wrapping {model_type} with an implementation of {AbstractModel}!" 306 ) KeyError: 'learning_curves' ``` </details> **Installed Versions** <!-- Please run the following code snippet: --> <details> ```python INSTALLED VERSIONS ------------------ date : 2024-10-24 time : 18:17:04.029570 python : 3.11.10.final.0 OS : Linux OS-release : 6.11.1-arch1-1 Version : #1 SMP PREEMPT_DYNAMIC Mon, 30 Sep 2024 23:49:50 +0000 machine : x86_64 processor : num_cores : 8 cpu_ram_mb : 7781.19921875 cuda version : None num_gpus : 0 gpu_ram_mb : [] avail_disk_size_mb : 12036 autogluon : None autogluon.common : 1.1.1 autogluon.core : 1.1.1 autogluon.features : 1.1.1 autogluon.tabular : 1.1.1 boto3 : 1.35.47 catboost : 1.2.7 fastai : 2.7.17 hyperopt : 0.2.7 imodels : None lightgbm : 4.3.0 matplotlib : 3.9.2 networkx : 3.4.2 numpy : 1.26.4 onnx : None onnxruntime : None onnxruntime-gpu : None pandas : 2.1.4 psutil : 5.9.8 pyarrow : 15.0.0 ray : 2.24.0 requests : 2.32.3 scikit-learn : 1.4.0 scikit-learn-intelex: None scipy : 1.12.0 setuptools : 75.1.0 skl2onnx : None tabpfn : None torch : 2.1.2 tqdm : 4.66.5 vowpalwabbit : None xgboost : 2.1.1 ``` </details> **I also tried with ** ```python predictor.fit( train_data=train_data, presets=[ 'optimize_for_deployment', # will prune not so important sub models 'medium_quality' # will speed up training # 'interpretable', # will crash ], time_limit=60*45, # seconds hyperparameters={ 'learning_curves':True, }, ) ``` but it crashed it seems that the "hyperparamter flag" 'learning_curves':True is not handled despite being mentionned in documentation <details> ```python --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[17], line 6 1 predictor = autogluon.tabular.TabularPredictor( 2 label='TARGET', 3 eval_metric='roc_auc', 4 path = c.model_folder_path, 5 ) ----> 6 predictor.fit( 7 train_data=train_data, 8 presets=[ 9 'optimize_for_deployment', # will prune not so important sub models 10 'medium_quality' # will speed up training 11 # 'interpretable', # will crash 12 ], 13 time_limit=60*45, # seconds 14 hyperparameters={ 15 'learning_curves':True, 16 }, 17 ) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/core/utils/decorators.py:31](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/core/utils/decorators.py#line=30), in unpack.<locals>._unpack_inner.<locals>._call(*args, **kwargs) 28 @functools.wraps(f) 29 def _call(*args, **kwargs): 30 gargs, gkwargs = g(*other_args, *args, **kwargs) ---> 31 return f(*gargs, **gkwargs) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py:1167](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py#line=1166), in TabularPredictor.fit(self, train_data, tuning_data, time_limit, presets, hyperparameters, feature_metadata, infer_limit, infer_limit_batch_size, fit_weighted_ensemble, fit_full_last_level_weighted_ensemble, full_weighted_ensemble_additionally, dynamic_stacking, calibrate_decision_threshold, num_cpus, num_gpus, **kwargs) 1164 ag_fit_kwargs["num_stack_levels"] = num_stack_levels 1165 ag_fit_kwargs["time_limit"] = time_limit -> 1167 self._fit(ag_fit_kwargs=ag_fit_kwargs, ag_post_fit_kwargs=ag_post_fit_kwargs) 1169 return self File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py:1173](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/predictor/predictor.py#line=1172), in TabularPredictor._fit(self, ag_fit_kwargs, ag_post_fit_kwargs) 1171 def _fit(self, ag_fit_kwargs: dict, ag_post_fit_kwargs: dict): 1172 self.save(silent=True) # Save predictor to disk to enable prediction and training after interrupt -> 1173 self._learner.fit(**ag_fit_kwargs) 1174 self._set_post_fit_vars() 1175 self._post_fit(**ag_post_fit_kwargs) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/abstract_learner.py:159](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/abstract_learner.py#line=158), in AbstractTabularLearner.fit(self, X, X_val, **kwargs) 157 raise AssertionError("Learner is already fit.") 158 self._validate_fit_input(X=X, X_val=X_val, **kwargs) --> 159 return self._fit(X=X, X_val=X_val, **kwargs) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/default_learner.py:122](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/learner/default_learner.py#line=121), in DefaultLearner._fit(self, X, X_val, X_unlabeled, holdout_frac, num_bag_folds, num_bag_sets, time_limit, infer_limit, infer_limit_batch_size, verbosity, **trainer_fit_kwargs) 119 self.eval_metric = trainer.eval_metric 121 self.save() --> 122 trainer.fit( 123 X=X, 124 y=y, 125 X_val=X_val, 126 y_val=y_val, 127 X_unlabeled=X_unlabeled, 128 holdout_frac=holdout_frac, 129 time_limit=time_limit_trainer, 130 infer_limit=infer_limit, 131 infer_limit_batch_size=infer_limit_batch_size, 132 groups=groups, 133 **trainer_fit_kwargs, 134 ) 135 self.save_trainer(trainer=trainer) 136 time_end = time.time() File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py:108](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py#line=107), in AutoTrainer.fit(self, X, y, hyperparameters, X_val, y_val, X_unlabeled, holdout_frac, num_stack_levels, core_kwargs, aux_kwargs, time_limit, infer_limit, infer_limit_batch_size, use_bag_holdout, groups, **kwargs) 97 raise AssertionError( 98 "X_val, y_val is not None, but bagged mode was specified. " 99 "If calling from `TabularPredictor.fit()`, `tuning_data` should be None.\n" (...) 104 "\tpredictor.fit(..., tuning_data=tuning_data, use_bag_holdout=True)" 105 ) 107 # Log the hyperparameters dictionary so it easy to edit if the user wants. --> 108 n_configs = sum([len(hyperparameters[k]) for k in hyperparameters.keys()]) 109 extra_log_str = "" 110 display_all = (n_configs < 20) or (self.verbosity >= 3) File [~/kood/credit-scoring/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py:108](http://localhost:8888/lab/tree/envs/credit/lib/python3.11/site-packages/autogluon/tabular/trainer/auto_trainer.py#line=107), in <listcomp>(.0) 97 raise AssertionError( 98 "X_val, y_val is not None, but bagged mode was specified. " 99 "If calling from `TabularPredictor.fit()`, `tuning_data` should be None.\n" (...) 104 "\tpredictor.fit(..., tuning_data=tuning_data, use_bag_holdout=True)" 105 ) 107 # Log the hyperparameters dictionary so it easy to edit if the user wants. --> 108 n_configs = sum([len(hyperparameters[k]) for k in hyperparameters.keys()]) 109 extra_log_str = "" 110 display_all = (n_configs < 20) or (self.verbosity >= 3) TypeError: object of type 'bool' has no len() ``` </details>
closed
2024-10-24T15:30:43Z
2024-10-25T19:43:44Z
https://github.com/autogluon/autogluon/issues/4578
[ "bug: unconfirmed", "Needs Triage" ]
g-ameline
3
tqdm/tqdm
pandas
1,483
img.tqdm.ml links broken
- [ ] I have marked all applicable categories: + [ ] exception-raising bug + [ ] visual output bug - [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates - [ ] I have mentioned version numbers, operating system and environment, where applicable: ```python import tqdm, sys print(tqdm.__version__, sys.version, sys.platform) ``` [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q= The README contains several image links that point to https://img.tqdm.ml, e.g. the beautiful "walkthrough" animation: https://img.tqdm.ml/tqdm.gif At the time of writing, this server is not accessible - I can't even find any current DNS records for it. Has the server been moved to a different address, and the README needs an update?
closed
2023-07-20T11:17:06Z
2023-08-09T11:21:29Z
https://github.com/tqdm/tqdm/issues/1483
[ "p0-bug-critical ☢", "question/docs ‽" ]
DFEvans
1
mwaskom/seaborn
pandas
3,131
Add flag to jointplot: perform "copula like" plot by using empirical probability integral transform on X and Y variables
As far as I understand, performing a jointplot for looking at the relation between 2 random variables can be a bit deceptive depending on the context, as the 2D density plot obtained is then a mixture of the effect of the marginal distributions and the effect of the relation between the variables. A way to get a more clear / unbiased view of the relation between 2 variables can be to apply the probability integral transform (PIT) on the 2 variables to compare, so that they have both uniform distribution on [0, 1]. This way, performing a jointplot of the PIT-transformed variables really only shows the effect of the relation between these, and takes away the effect of the marginal distributions on how the plot looks like. As far as I understand, this is the core idea behind the copula approach. I do not think that there is a way to get this out of the box with the ```joinplot``` command at the moment? Would it be of interest to provide a parameter flag to the ```joinplot``` command, for example ```probability_integral_transform=False``` (by default ```False``` to not change the current behavior), in order to provide a turn key approach for this?
closed
2022-11-08T21:00:38Z
2022-11-18T23:39:31Z
https://github.com/mwaskom/seaborn/issues/3131
[]
jerabaul29
4
Kludex/mangum
fastapi
319
VPC Lattice event support
VPC Lattice is a fairly new AWS Service (see, e.g.: https://aws.amazon.com/blogs/aws/introducing-vpc-lattice-simplify-networking-for-service-to-service-communication-preview/) for easier communication between VPC resources. As a VPC Service will create a new type of event, it's not working if the Lattice Target Group targets (e.g. a lambda function) that are running mangum. For event structures see: https://docs.aws.amazon.com/lambda/latest/dg/services-vpc-lattice.html#vpc-lattice-receiving-events Would it be possible to add support for these events in mangum as well?
open
2024-03-01T11:38:16Z
2024-03-01T11:39:49Z
https://github.com/Kludex/mangum/issues/319
[]
michal-sa
0
Netflix/metaflow
data-science
1,443
@retry that retries only system errors
To handle interrupted spot instances and other system-level exceptions, we need a version of `@retry` that lets non-retrieable user errors go through. The example below does the trick for locally scheduled runs but not on production runs on Argo/SFN/Airflow: ``` import sys import time import traceback from functools import wraps from metaflow import FlowSpec, step, retry from metaflow.exception import METAFLOW_EXIT_DISALLOW_RETRY def platform_retry(f): @wraps(f) def wrapper(self): try: f(self) except: traceback.print_exc() sys.exit(METAFLOW_EXIT_DISALLOW_RETRY) return retry(wrapper) class PlatformRetryFlow(FlowSpec): @platform_retry @step def start(self): time.sleep(10) print('fail', 1 / 0) self.next(self.end) @platform_retry @step def end(self): print("done!") if __name__ == '__main__': PlatformRetryFlow() ``` We could implement the pattern e.g. as an option in `@retry`, e.g. `@retry(only_system=True)`
open
2023-06-08T15:35:14Z
2023-06-08T15:35:14Z
https://github.com/Netflix/metaflow/issues/1443
[ "enhancement" ]
tuulos
0
python-gino/gino
asyncio
349
Trying to close already closed BindContext
* GINO version: 0.7.5 * Python version: 3.6.6 * asyncpg version: 0.17.0 * aiocontextvars version: 0.1.2 * PostgreSQL version: postgres:10.3-alpine ### Description When i run tests, then gino trying to close already closed bind ``` test/integration/test_add_extra_number_segment.py:26 (test_unable_find_route) def finalizer(): """Yield again, to finalize.""" async def async_finalizer(): try: await gen_obj.__anext__() except StopAsyncIteration: pass else: msg = "Async generator fixture didn't stop." msg += "Yield only once." raise ValueError(msg) > loop.run_until_complete(async_finalizer()) ../../../venv/wisdom6/lib/python3.6/site-packages/pytest_asyncio/plugin.py:94: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/base_events.py:468: in run_until_complete return future.result() ../../../venv/wisdom6/lib/python3.6/site-packages/pytest_asyncio/plugin.py:86: in async_finalizer await gen_obj.__anext__() conftest.py:23: in app yield client _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <gino.api._BindContext object at 0x10ae6b6d8>, exc_type = None exc_val = None, exc_tb = None async def __aexit__(self, exc_type, exc_val, exc_tb): > await self._args[0].pop_bind().close() E AttributeError: 'NoneType' object has no attribute 'close' ../../../venv/wisdom6/lib/python3.6/site-packages/gino/api.py:183: AttributeError ``` But i'm not able to make script which will reproduce this error. Below is code which will fix this error. If you would like i can make a PR with this change ### What I Did Change from: ``` class _BindContext: async def __aexit__(self, exc_type, exc_val, exc_tb): await self._args[0].pop_bind().close() ``` to: ``` class _BindContext: async def __aexit__(self, exc_type, exc_val, exc_tb): bind_to_close = self._args[0].pop_bind() if bind_to_close: await bind_to_close.close() ```
closed
2018-09-26T13:09:38Z
2018-09-27T02:55:05Z
https://github.com/python-gino/gino/issues/349
[]
patriczek
5
Kanaries/pygwalker
matplotlib
531
Use Streamlit's officially recommended method to render Pygwalker UI
**Use Streamlit's officially recommended method to render Pygwalker UI, so the following changes have been made:** #### 1.Temporary delete the Exploer button under pure chart Under the new rendering method, Pygwalker needs to complete the Request-Response communication through rerun, and retun will lose the state of modal. old: ![image](https://github.com/Kanaries/pygwalker/assets/28337703/0d21e797-b72c-4eff-8dc1-aa35e2fcc4d1) new: ![image](https://github.com/Kanaries/pygwalker/assets/28337703/75e90e27-06ab-4b7f-8458-cb0db092547e) #### 2. Modify the parameters of the rendering method The new API will delete width, height, scrolling parameters, and when the user needs to render the same component multiple times, different keys need to be used, which will be consistent with the parameters of the official streamlit component. old: ```python def viewer( self, width: Optional[int] = None, height: int = 1010, scrolling: bool = False, ) -> "DeltaGenerator": """Render filter renderer UI""" pass def explorer( self, width: Optional[int] = None, height: int = 1010, scrolling: bool = False, default_tab: Literal["data", "vis"] = "vis" ) -> "DeltaGenerator": """Render explore UI(it can drag and drop fields)""" pass def chart( self, index: int, width: Optional[int] = None, height: Optional[int] = None, scrolling: bool = False, pre_filters: Optional[List[PreFilter]] = None, ) -> "DeltaGenerator": pass ``` new: ```python def viewer( self, *, key: str = "viewer", size: Optional[Tuple[int, int]] = None ): """Render filter renderer UI""" pass def explorer( self, *, key: str = "explorer", default_tab: Literal["data", "vis"] = "vis" ): """Render explore UI(it can drag and drop fields)""" pass def chart( self, index: int, *, key: str = "chart", size: Optional[Tuple[int, int]] = None, pre_filters: Optional[List[PreFilter]] = None, ): pass ``` beta version: `pip install pygwalker==0.4.9a3`
closed
2024-04-18T06:23:41Z
2025-02-26T02:15:53Z
https://github.com/Kanaries/pygwalker/issues/531
[ "proposal" ]
longxiaofei
0
pydantic/FastUI
pydantic
36
Tailwind, Bootstrap and other CSS framework support.
We don't need more built-in framework support. We can make a base component and others will override to use any CSS frameworks. We can't support every frameworks behaviour but the most popular ones.
closed
2023-12-01T19:22:54Z
2024-03-12T08:46:11Z
https://github.com/pydantic/FastUI/issues/36
[]
Almas-Ali
5
man-group/arctic
pandas
473
Usage discussion: VersionStore vs TickStore, allowed options for VersionStore.write..
First of all - my thanks to the maintainers. This library is exactly what I was looking for and looks very promising. I've been having a bit of trouble figuring how to optimally use `arctic` though. I've been following the examples in /howto which are... sparse. Is there somewhere else I might find examples or docs? Now, some dumb questions about `VersionStore` and `TickStore`: - I've noticed that every time I write to a `VersionStore`, an entirely new version is created. Are finer-grained options for versioning available? For instance, I would like to write streaming updates to a single version, only incrementing version when manually specified. I tried just passing `version=1` to `lib.write`, but this doesn't seem to be supported. - In what scenarios might one want to use `VersionStore` vs `TickStore`? It's not clear to me what the differences are from the README or the code. - My current use case is primarily as a database for streams - for this use case `TickStore` is recommended? Is there a reason one might want to use `VersionStore` for this? - ~~Is `TickStore` appropriate for data which may have more than row for each timestamp (event data)?~~ Nope, not allowed by `TickStore` Thanks in advance for your help and patience!
closed
2017-12-20T02:06:55Z
2019-04-03T21:33:22Z
https://github.com/man-group/arctic/issues/473
[]
rueberger
19
MaartenGr/BERTopic
nlp
1,383
Expired link contained in the document page
Hello. I found a expired link in the documentation. The link included in the tips in section 4 Bag-of-words of the algorithm on the documentation page has expired. page containing expired link: https://maartengr.github.io/BERTopic/algorithm/algorithm.html#3-cluster-documents expired link: https://maartengr.github.io/BERTopic/getting_started/countvectorizer/countvectorizer.html
closed
2023-07-02T07:24:33Z
2023-09-27T09:09:40Z
https://github.com/MaartenGr/BERTopic/issues/1383
[]
burugaria7
3
yinkaisheng/Python-UIAutomation-for-Windows
automation
258
希望可以对UIAumation的事件进行支持
1. 微软的UIAumation是支持监听某些事件的,如某个控件被聚焦,但现在python没有实现,希望将来可以实现。 2. 还希望可以支持异步编程,因为从3.8的python之后,asyncio库已经很成熟,使用也很方便,希望可以把所有的函数都改成async的,因为在代码里面我发现有很多的地方有time.sleep(),这个函数是很糟糕的,会让整个线程睡眠,导致所有的函数都无法运行,使用了异步方法的话就不会,因为使用await asyncio.sleep()的睡眠仅仅会睡眠当前的异步函数,别的函数仍然可以继续运行,这样是非常高性能的。
open
2023-09-20T19:56:13Z
2023-09-28T04:13:17Z
https://github.com/yinkaisheng/Python-UIAutomation-for-Windows/issues/258
[]
mzdk100
1
AutoGPTQ/AutoGPTQ
nlp
365
[BUG]
**Describe the bug** error: subprocess-exited-with-error !git clone https://github.com/PanQiWei/AutoGPTQ # !cd AutoGPTQ !pip3 install . Please teach me.
closed
2023-10-07T17:08:02Z
2023-10-25T16:16:19Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/365
[ "bug" ]
MotoyaTakashi
2
home-assistant/core
python
141,272
Unable to add location to a local calendar event
### The problem Even though the documentation specifies that you can automate on the location attribute there is no way to add location to an event when creating a new one. Would be nice if there was a field to enter this information when creating/editing a local calendar event ### What version of Home Assistant Core has the issue? 2025.3.0 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue Local Calendar ### Link to integration documentation on our website https://www.home-assistant.io/integrations/local_calendar/ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
closed
2025-03-24T10:52:47Z
2025-03-24T14:23:04Z
https://github.com/home-assistant/core/issues/141272
[ "integration: local_calendar" ]
martinsheldon
2
huggingface/datasets
numpy
7,247
Adding column with dict struction when mapping lead to wrong order
### Describe the bug in `map()` function, I want to add a new column with a dict structure. ``` def map_fn(example): example['text'] = {'user': ..., 'assistant': ...} return example ``` However this leads to a wrong order `{'assistant':..., 'user':...}` in the dataset. Thus I can't concatenate two datasets due to the different feature structures. [Here](https://colab.research.google.com/drive/1zeaWq9Ith4DKWP_EiBNyLfc8S8I68LyY?usp=sharing) is a minimal reproducible example This seems an issue in low level pyarrow library instead of datasets, however, I think datasets should allow concatenate two datasets actually in the same structure. ### Steps to reproduce the bug [Here](https://colab.research.google.com/drive/1zeaWq9Ith4DKWP_EiBNyLfc8S8I68LyY?usp=sharing) is a minimal reproducible example ### Expected behavior two datasets could be concatenated. ### Environment info N/A
open
2024-10-22T18:55:11Z
2024-10-22T18:55:23Z
https://github.com/huggingface/datasets/issues/7247
[]
chchch0109
0
suitenumerique/docs
django
323
Receive email notification in my language
## Bug Report **Problematic behavior** Even though my interface is in french I'm receiving notification emails in english. Right the emails are sent in the language setting the sender using on the app. It should be the opposite.
closed
2024-10-11T10:08:12Z
2025-03-05T13:29:25Z
https://github.com/suitenumerique/docs/issues/323
[ "bug", "backend", "i18n" ]
virgile-dev
8
kiwicom/pytest-recording
pytest
83
[BUG] having this plugin enabled breaks Intellij Idea failed test reports
Ok, so this was a weird one to debug... Simply having the `pytest-recording` plugin enabled breaks [Intellij Idea](https://www.jetbrains.com/idea/) pytest [failed test reports](https://www.jetbrains.com/help/idea/product-tests.html) in some specific test cases ([here is an example](https://github.com/CarloDePieri/pytest-recording-idea-issue/blob/main/tests/test_issue.py)): - a test cassette is being recorded via plain `vcrpy` syntax or via `pytest-recording` decorator; - two (or more) network calls are being executed and recorded: the first one succeeds, the second fails and then an error is raised by `requests`' `raise_for_status()` method. Instead of reporting the correct stack trace and main error, Idea reports there has been a failed string comparison involving url paths. My guess is that `pytest-recording` breaks something Idea's test runner relies on to generate errors messages, because: - pytest output in the terminal is consistent and correct with or without the plugin installed; - disabling the `pytest-recording` plugin in Idea ui by adding `-p no:recording` as additional argument restore the correct error message; - removing the plugin also restore the correct error message. ### How to reproduce the issue Checkout the minimal test repo with `git clone https://github.com/CarloDePieri/pytest-recording-idea-issue`. Create a virtualenv and install all dependencies there: ``` cd pytest-recording-idea-issue python -m venv .venv source .venv/bin/activate pip install -r requirements.txt ``` IMPORTANT: - this DOES NOT install `pytest-recording`; - the test we are going to launch DOES NOT use this plugin decorator, but plain `vcrpy`. Then: - import the folder into Idea as a new project; - add the created virtualenv as a python sdk for the project; - run the test from the Idea ui: observe that the test fails with the **correct** error message reporting a 404; - manually install `pytest-recording` with `pip install pytest-recording` in the venv; - relaunch the test from the Idea ui: the error message is now **completely off track**: it reports a difference between expected and actual values `'/api/users/23' != '/api/users/2'`. #### Under the hood Idea uses [this test runner](https://github.com/JetBrains/intellij-community/blob/09da58dedb5b39278df01c5dee01af19752d063d/python/helpers/pycharm/_jb_pytest_runner.py) to launch pytest tests and generate the report message. Launching the script directly in the terminal shows indeed the wrong error message when `pytest-recording` is installed. #### Installed software versions ``` python: 3.10.4 pytest: 7.1.2 pytest-recording: 0.12.0 vcrpy: 4.1.1 requests: 2.27.1 Idea Ultimate: Build #IU-221.5591.52, built on May 10, 2022 os: arch linux ```
open
2022-05-17T10:21:19Z
2022-05-17T10:21:52Z
https://github.com/kiwicom/pytest-recording/issues/83
[ "Status: Review Needed", "Type: Bug" ]
CarloDePieri
0
hbldh/bleak
asyncio
462
No devices discovered on Windows
* bleak version: 0.9.0, 0.9.1, 0.10.0 * Python version: 3.9 * Operating System: Win10 ### Description I'm running the [scanning example](https://bleak.readthedocs.io/en/latest/scanning.html) on a Windows machine. However, it does not discover any devices. ### What I Did Installed bleak with `pip install bleak`. Running the example from both VSCode and command prompt. (Different command to enable logging) I've tried with `$env:BLEAK_LOGGING=1` and also `logging.basicConfig(level=logging.DEBUG)` but I don't see any logging. The only output is `DEBUG:asyncio:Using proactor: IocpProactor` It runs on another machine, so I'm thinking there is something related to the installation? Unfortunately, I did not do the installation on the other machine. Any help would be greatly appreciated.
closed
2021-02-24T13:47:14Z
2021-02-24T15:46:37Z
https://github.com/hbldh/bleak/issues/462
[]
0ge
0
deezer/spleeter
tensorflow
925
[Discussion] Whether to support cuda12?
I want to be able to use the same environment with whisperx and gradio, but when installing in the cuda12 environment, the following error message is displayed: ``` tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found ``` And some versions of the packages are not compatible. Does anyone know how to run spleeter in cuda12? I tried to install three software packages at the same time in python3.8, but there is still an error. My environement: OS: ubuntu 22.04 python: 3.10.7 cuda: 12.1 cudnn: 8
open
2025-01-23T01:44:34Z
2025-01-23T01:50:10Z
https://github.com/deezer/spleeter/issues/925
[ "question" ]
aef5748
0
torchbox/wagtail-grapple
graphql
204
`RichTextField` returns internal markup while `RichTextBlock` returns browser-ready HTML
First, a hat tip to all the developers working on this project; thank you for all you have done. I encountered this one today. The issue can be described thus: ```python class ExamplePage(HeadlessPreviewMixin, Page): body = RichTextField() stream_body = StreamField([ ('paragraph', RichTextBlock()), ... ]) graphql_fields = [ GraphQLString("body"), GraphQLStreamfield("stream_body"), ] ``` In the result of my GraphQL query for the `ExamplePage` object described above, the `body` field will be in Wagtail's [Rich Text Internals](https://docs.wagtail.io/en/stable/extending/rich_text_internals.html#rich-text-internals) format, which allows the Gatsby client to interpolate objects like images correctly. This is good! Unfortunately, the `stream_body` field is returned in browser-ready HTML, which is not so good, at least for my purposes — ideally I'd like the resolver to return the actual `raw_value` for `RichText` objects as the property name suggests. The current implementation returns what I would describe as a rendered or interpolated value. I'm not sure what the expected behaviour _should_ be, but I was able to patch the issue trivially by adding an additional condition to `types.streamfield.StreamFieldInterface.resolve_raw_value()` as follows: ```python def resolve_raw_value(self, info, **kwargs): if isinstance(self, blocks.StructValue): # This is the value for a nested StructBlock defined via GraphQLStreamfield return serialize_struct_obj(self) elif isinstance(self.value, dict): return serialize_struct_obj(self.value) # per https://docs.wagtail.io/en/stable/extending/rich_text_internals.html#data-format # RichTextBlock.value is converted to browser HTML; this change returns the "internal source" # so we can parse and mark-up client-side using the same logic as for `RichTextField` elif isinstance(self.value, RichText): return self.value.source return self.value ``` I'm not sure if this is the desired behaviour or not, but this would amount to a breaking change if existing code expects to carry forward the current, heterogeneous rendering approach between these two similar objects. Can anyone from the project chime in? I'd be happy to submit a PR with the code above if the maintainers consider this a defect.
closed
2021-11-13T00:06:08Z
2022-08-19T16:37:54Z
https://github.com/torchbox/wagtail-grapple/issues/204
[]
isolationism
2
localstack/localstack
python
11,840
bug: DistributedMap Step Misinterprets Input Structure in LocalStack
### Is there an existing issue for this? - [X] I have searched the existing issues ### Current Behavior I’ve encountered a discrepancy between AWS Step Functions behavior and LocalStack behavior when using a DistributedMap step in a State Machine. In AWS, the DistributedMap correctly accesses fields from the initial context input. However, in LocalStack, the DistributedMap appears to restrict its accessible fields solely to the items specified in itemsPath, leading to a failure when referencing fields outside of values. For instance, in the following implementation: ```ts const initialStep = new Pass(this, 'Initial step', { parameters: { bucket: 'test-bucket', values: ['1', '2', '3'] }, resultPath: '$.content' }); const mapStep = new DistributedMap(this, 'Map step', { itemsPath: '$.content.values', itemSelector: { bucketName: JsonPath.stringAt('$.content.bucket'), value: JsonPath.numberAt('$$.Map.Item.Value') }, resultPath: JsonPath.DISCARD }).itemProcessor(endStep); ``` The DistributedMap step should have access to $.content.bucket as well as each item in values. In LocalStack, when running the above configuration, the DistributedMap only processes values directly without access to $.content.bucket. As a result, trying to access bucket in itemSelector fails with an error: ```plaintext 2024-11-13T13:28:56.932 ERROR --- [-1398 (eval)] l.s.s.a.c.eval_component : Exception=FailureEventException, Error=States.Runtime, Details={"taskFailedEventDetails": {"error": "States.Runtime", "cause": "The JSONPath $.content.bucket specified for the field bucketName.$ could not be found in the input [\"1\", \"2\", \"3\"]"}} at '(ItemSelector| {'payload_tmpl': (PayloadTmpl| {'payload_bindings': [(PayloadBindingPath| {'field': 'bucketName', 'path': '$.content.bucket'}, (PayloadBindingPathContextObj| {'field': 'value', 'path_context_obj': '$.Map.Item.Value'}]}}' ``` ### Expected Behavior The distributedMap step must have access to input fields. ### How are you starting LocalStack? With the `localstack` script ### Steps To Reproduce 1. Launch LocalStack with the client. 2. Deploy and execute the Step Function. ### Environment ```markdown - OS: macOS sonoma 14.7 - LocalStack version: 3.8.1 ``` ### Anything else? Even though an error occurs, the execution of the Step Function still returns `"status": "SUCCEEDED"`.
closed
2024-11-13T14:50:49Z
2024-11-19T15:41:11Z
https://github.com/localstack/localstack/issues/11840
[ "type: bug", "status: resolved/fixed", "aws:stepfunctions" ]
gerson24
3
cvat-ai/cvat
pytorch
8,842
Flickering in 3D play functionality
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce The issue arise while in annotation-view for 3d tasks. The issue happens on a self-hosted CVAT instance. ISSUE: When clicking on the play button, a gray screen is shown to indicate that a frame is getting loaded. The time spent on a frame is smaller than the time on the gray screen. This makes the video functionality unusable. See video. https://github.com/user-attachments/assets/7b52cfad-d33b-403a-94cd-770df413c813 ### Expected Behavior _No response_ ### Possible Solution A good fix could be to just avoid showing the gray screen in between frames (and hold the previous frame instead). This will make the video functionality usable, even in case of very long loading time (will just result in a slower frames-per-second). When navigating between frames with the next/previous buttons though I think it would be better to maintain the loading gray screen to distinguish between a frame and the next (in a video sequence they will be very similar). ### Context This issue affect the ability to review the annotation, as reviewers need to navigate through the video. In addition, without the play functionality, it would not be possible to review that the labels are smooth in time (across different frames) ### Environment - ubuntu 20.04 - CVAT v2.23.1
open
2024-12-18T14:26:03Z
2025-01-15T12:59:52Z
https://github.com/cvat-ai/cvat/issues/8842
[ "ui/ux" ]
alessandrocennamo
0
fugue-project/fugue
pandas
357
[FEATURE] Map type support
Fugue needs to support Map type. Map type is in the form of <key_type, value_type> and the data is in the form of a list of key-value tuples or just a dict. The construction of map type data is very different between different backends, for example duckdb will use (list_of_keys, list_of_values), spark only accepts dict, and pyarrow only accepts a list of tuples. So the purpose of Map type support is when the data type appears in an input dataframe or intermediate results, Fugue will be able to carry it without throwing NotImplementedError.
closed
2022-09-11T05:41:25Z
2022-10-03T03:35:17Z
https://github.com/fugue-project/fugue/issues/357
[ "enhancement", "spark", "core feature", "pandas", "dask", "duckdb", "ray" ]
goodwanghan
1
pennersr/django-allauth
django
3,413
Documentation has a different version to the deployed
When I add this to middleware section _allauth.account.middleware.AccountMiddleware_ it returns this response in the terminal. ![image](https://github.com/pennersr/django-allauth/assets/40710670/878e7f44-3762-469c-ba95-6eeb30b4fc58)
closed
2023-09-04T02:40:41Z
2023-09-04T05:47:44Z
https://github.com/pennersr/django-allauth/issues/3413
[]
RadySonabu
1
saleor/saleor
graphql
17,468
Bug: user query is case sensitive for the email field
### What are you trying to achieve? My backend needs to query users by email (with manager permissions). I started running into issues and then realised that the [`user`](https://docs.saleor.io/api-reference/users/queries/user) query is case-sensitive. ### Steps to reproduce the problem To reproduce this, sign up a user with an email containing uppercase letters. Then run a query like: ``` query { user(email: "...") { email id } } ``` where `...` should be replaced by a all lowercase email. This return with `user` set to `null`. ### What did you expect to happen? I expected the lowercase email to match and return the user. ### Logs _No response_ ### Environment Saleor version: dashboard v3.20.30, core v3.20.75 OS and version: NA
open
2025-03-10T14:41:24Z
2025-03-10T14:42:00Z
https://github.com/saleor/saleor/issues/17468
[ "bug", "triage" ]
rizo
1
mlflow/mlflow
machine-learning
14,843
[FR] Support runs:/ and models:/ for scoring
### Willingness to contribute Yes. I would be willing to contribute this feature with guidance from the MLflow community. ### Proposal Summary On this [PR discussion](https://github.com/mlflow/mlflow/pull/9538#discussion_r1318088799) the possibility to use runs:/ and models:/ for scoring has been proposed but it was decided to proceed with the PR without this feature. Is there any plan to add this feature in the coming future? Imho this would enhance the testing possibilities by a lot withing mlflow. ### Motivation > #### What is the use case for this feature? > #### Why is this use case valuable to support for MLflow users in general? > #### Why is this use case valuable to support for your project(s) or organization? > #### Why is it currently difficult to achieve this use case? ### Details _No response_ ### What component(s) does this bug affect? - [ ] `area/artifacts`: Artifact stores and artifact logging - [ ] `area/build`: Build and test infrastructure for MLflow - [ ] `area/deployments`: MLflow Deployments client APIs, server, and third-party Deployments integrations - [ ] `area/docs`: MLflow documentation pages - [ ] `area/examples`: Example code - [ ] `area/model-registry`: Model Registry service, APIs, and the fluent client calls for Model Registry - [ ] `area/models`: MLmodel format, model serialization/deserialization, flavors - [ ] `area/recipes`: Recipes, Recipe APIs, Recipe configs, Recipe Templates - [ ] `area/projects`: MLproject format, project running backends - [ ] `area/scoring`: MLflow Model server, model deployment tools, Spark UDFs - [ ] `area/server-infra`: MLflow Tracking server backend - [ ] `area/tracking`: Tracking Service, tracking client APIs, autologging ### What interface(s) does this bug affect? - [ ] `area/uiux`: Front-end, user experience, plotting, JavaScript, JavaScript dev server - [ ] `area/docker`: Docker use across MLflow's components, such as MLflow Projects and MLflow Models - [ ] `area/sqlalchemy`: Use of SQLAlchemy in the Tracking Service or Model Registry - [ ] `area/windows`: Windows support ### What language(s) does this bug affect? - [ ] `language/r`: R APIs and clients - [ ] `language/java`: Java APIs and clients - [ ] `language/new`: Proposals for new client languages ### What integration(s) does this bug affect? - [ ] `integrations/azure`: Azure and Azure ML integrations - [ ] `integrations/sagemaker`: SageMaker integrations - [ ] `integrations/databricks`: Databricks integrations
open
2025-03-04T20:25:30Z
2025-03-05T11:58:33Z
https://github.com/mlflow/mlflow/issues/14843
[ "enhancement" ]
f2cf2e10
2
wkentaro/labelme
computer-vision
615
--flags or --labels for text file displayed as name of text file instead of list in text file
I am trying to open labelme with labels or flags. By using labelme --flags flags.txt, labelme should open and show the list in the flags.txt under the flags but instead it displays the name of the text file which is 'flags.txt'. Below is an example: I have a text file named flags.txt and it contains a list of fruits line after line. When I run the labelme --flags flags.txt the list of fruits should appear under the flags. But it shows 'flags.txt' instead. I am not sure how to solve this.
open
2020-03-04T08:24:40Z
2024-12-30T12:47:58Z
https://github.com/wkentaro/labelme/issues/615
[ "issue::bug" ]
Khuzai
4
errbotio/errbot
automation
873
Implement connection to Lets Chat server
closed
2016-10-15T08:41:00Z
2019-01-05T17:15:11Z
https://github.com/errbotio/errbot/issues/873
[ "backend: Common" ]
ibiBgOR
3
widgetti/solara
fastapi
114
Solara as desktop app
Started https://github.com/widgetti/solara/discussions/100 and also asked about on Discord. I'm opening this to collect interest. What I can see happening is a pyinstaller + https://pypi.org/project/pywebview/ in CI to test if it is possible to make a desktop-like application and because in CI it will always be stable. But users will still have to build the custom apps themselves if they need particular python packages.
open
2023-05-24T20:02:59Z
2023-05-25T12:07:34Z
https://github.com/widgetti/solara/issues/114
[]
maartenbreddels
2
ionelmc/pytest-benchmark
pytest
66
asyncio support
are there any plans on adding support for benchmarking coroutines?
open
2017-01-23T22:27:31Z
2024-04-16T07:08:45Z
https://github.com/ionelmc/pytest-benchmark/issues/66
[]
argaen
16
pytorch/pytorch
machine-learning
149,527
GHA request labels should represent independent fleet of runners
Currently we identified that a few runners are provided by multiple vendors/organizations and use the same label. * linux.s390x * linux.idc.xpu * linux.rocm.gpu.2 * macos-m2-15 (and mac label standards) We need to identify the labels that are reused across fleets and define a new standard that better reflect where the runners are hosted. The reasoning for this is related to the SLO agreement and the monitoring tooling that is available to us is based on the label requested by jobs. AFAIK this limitation comes from GH side that only reports the requested label for a job in its job API. We can automate the distribution of load across multiple organizations/providers/fleets by using experiment and runner determinator.
open
2025-03-19T16:34:42Z
2025-03-20T16:52:22Z
https://github.com/pytorch/pytorch/issues/149527
[ "module: ci", "triaged", "enhancement", "needs design" ]
jeanschmidt
3
apache/airflow
automation
47,582
Not able to authenticate FastAPI while requesting endpoints from the docs page
### Apache Airflow version 3.0.0b2 ### If "Other Airflow 2 version" selected, which one? _No response_ ### What happened? Not able to authenticate FastAPI docs page (http://localhost:28080/docs) ![Image](https://github.com/user-attachments/assets/22ba5207-e486-431a-b2c4-423272211a9a) ### What you think should happen instead? User should be able to authenticate and execute API's ### How to reproduce Open RestAPI docs page from AF3 UI and try to authorise by giving creds admin/admin ### Operating System Linux ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details _No response_ ### Anything else? _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
open
2025-03-10T17:48:20Z
2025-03-18T07:46:22Z
https://github.com/apache/airflow/issues/47582
[ "kind:bug", "area:API", "priority:low", "area:auth", "area:core", "affected_version:3.0.0beta" ]
atul-astronomer
8
supabase/supabase-py
flask
1,071
Supabase not working in gradio python space
Supabase not working in gradio python space in Hugging face Error log: ``` Exit code: 1. Reason: Traceback (most recent call last): File "/home/user/app/app.py", line 9, in <module> create_client(supabase_key=key, supabase_url=url) File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 335, in create_client return SyncClient.create( File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 102, in create client = cls(supabase_url, supabase_key, options) File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 58, in __init__ raise SupabaseException("Invalid URL") supabase._sync.client.SupabaseException: Invalid URL ``` ``` ===== Application Startup at 2024-12-16 17:28:42 ===== Traceback (most recent call last): File "/home/user/app/app.py", line 9, in <module> create_client(supabase_key=key, supabase_url=url) File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 335, in create_client return SyncClient.create( File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 102, in create client = cls(supabase_url, supabase_key, options) File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 58, in __init__ raise SupabaseException("Invalid URL") supabase._sync.client.SupabaseException: Invalid URL Traceback (most recent call last): File "/home/user/app/app.py", line 9, in <module> create_client(supabase_key=key, supabase_url=url) File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 335, in create_client return SyncClient.create( File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 102, in create client = cls(supabase_url, supabase_key, options) File "/usr/local/lib/python3.10/site-packages/supabase/_sync/client.py", line 58, in __init__ raise SupabaseException("Invalid URL") supabase._sync.client.SupabaseException: Invalid URL ```
closed
2024-12-16T17:36:55Z
2025-03-18T18:57:49Z
https://github.com/supabase/supabase-py/issues/1071
[ "bug" ]
UNNAMMEDUSER
6
FujiwaraChoki/MoneyPrinter
automation
62
[BUG] CleintConnectorCertificateError
**Describe the bug** 127.0.0.1 - - [07/Feb/2024 21:15:26] "POST /api/generate HTTP/1.1" 200 - 127.0.0.1 - - [07/Feb/2024 21:16:48] "OPTIONS /api/generate HTTP/1.1" 200 - [+] Cleaned ../temp/ directory [+] Cleaned ../subtitles/ directory [Video to be generated] Subject: test ``` FreeGpt: ClientConnectorCertificateError: Cannot connect to host s.aifree.site:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] You: ClientConnectorCertificateError: Cannot connect to host you.com:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] ChatgptDemoAi: ClientConnectorCertificateError: Cannot connect to host chat.chatgptdemo.ai:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] FakeGpt: ClientConnectorCertificateError: Cannot connect to host chat-shared2.zhile.io:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] ChatgptNext: ClientConnectorCertificateError: Cannot connect to host chat.fstha.com:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] Chatgpt4Online: URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)> ChatgptDemo: ClientConnectorCertificateError: Cannot connect to host chat.chatgptdemo.net:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] Gpt6: ClientConnectorCertificateError: Cannot connect to host seahorse-app-d29hu.ondigitalocean.app:443 ssl:True [SSLCertVerificationError: (1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1131)')] GeekGpt: HTTPError: 521 Server Error: for url: https://ai.fakeopen.com/v1/chat/completions ``` **Expected behavior** Expected an option to disable ssl or perhaps guidance on how to handle. **Desktop (please complete the following information):** - OSX - Python 3.8.10 - PIp 24 **Additional context** Add any other context about the problem here.
closed
2024-02-08T03:22:18Z
2024-02-09T17:36:01Z
https://github.com/FujiwaraChoki/MoneyPrinter/issues/62
[]
thebetterjort
3
vaexio/vaex
data-science
2,126
[BUG-REPORT] setup uses hardcoded name for python
Setup.py currently uses ` os.system('python -m pip install --upgrade .')` but this should be ` os.system(f'{sys.executable} -m pip install --upgrade .')` Using just 'python' can create problems when several pythons are installed, e.g. python3.10 and python3.9 and the default system python is linked to python3.10. In this case one can start the install using `python3.9 -m pip install .`, but python3.10 will be called from within setup.py. Happy to supply a pull request for this (I only found 3 locations where this should be changed in the top setup.py file)
closed
2022-07-24T17:53:58Z
2022-08-08T22:44:58Z
https://github.com/vaexio/vaex/issues/2126
[]
arunpersaud
1
quantumlib/Cirq
api
6,800
Replace check/tool scripts with a direct tool invocation as feasible
**Description of the issue** Some of the `check/SomeTool` scripts such as [check/mypy](https://github.com/quantumlib/Cirq/blob/9e2162215fea2acadca7125114958370ef12892a/check/mypy) or [check/pylint](https://github.com/quantumlib/Cirq/blob/9e2162215fea2acadca7125114958370ef12892a/check/pylint) effectively run the tool with a custom configuration file. They can be eliminated if we move tool settings to pyproject.toml and just use standard tool execution instead. This will also make it easier to run SomeTool on a specific file or with extra options as there would be no need to figure if the check/ scripts passes extra options or not. **Cirq version** 1.5.0.dev at 9e2162215fea2acadca7125114958370ef12892a
closed
2024-11-18T23:04:24Z
2025-02-06T15:36:14Z
https://github.com/quantumlib/Cirq/issues/6800
[ "no QC knowledge needed", "kind/health", "triage/accepted", "area/dev", "area/mypy", "area/checks", "area/pylint" ]
pavoljuhas
0
praw-dev/praw
api
1,439
Implement endpoints for rule creation. deletion, and modification
**Describe the solution you'd like** To programmatically define rules for a subreddit, IMO the clearest option is to implement `SubredditWidgetsModeration.add_rules_widget`. [Several related methods](https://praw.readthedocs.io/en/v7.0.0/code_overview/other/subredditwidgetsmoderation.html) are supported, including: - add_button_widget - add_calendar - add_community_list - add_custom_widget - add_image_widget - add_menu - add_post_flair_widget - add_text_area **Describe alternatives you've considered** I can use another widget to broadcast rules for a subreddit, but AFAIK only rules defined in the rules widget can be used to report specific rule violations.
closed
2020-04-26T15:38:27Z
2020-04-29T19:45:42Z
https://github.com/praw-dev/praw/issues/1439
[ "Feature" ]
vogt4nick
3
lukas-blecher/LaTeX-OCR
pytorch
241
Latexocr generate completely off result
The pix2tex command line tool works really well for me, generating high quality results most of the time. But the GUI by calling latexocr gives completely random results. E.g. when pix2tex generate $E=m c^{2}$ the GUI generate $\scriptstyle{\hat{s e}}_{k\in G a l}^{a=1,10}$ Environment: macOS 12.6.3, Python 3.7.7, PyQt5 PS, can you add option in pix2tex command line to automatically bracket with $$? Thanks!
open
2023-02-17T15:19:34Z
2024-03-21T20:14:40Z
https://github.com/lukas-blecher/LaTeX-OCR/issues/241
[ "gui", "macOS" ]
shrninepoints
4
abhiTronix/vidgear
dash
151
why to used vidgear?do u give me a simple examples instead of opencv?
I already read the introducation of vidgear. and I noticed multi-thread and something in it.but ,I can't understand the differents with opencv lib. If I have two cameras,how to use vidgear?anything like opencv ? could u give me some multi threads simple?
closed
2020-07-27T07:43:35Z
2020-07-27T08:44:05Z
https://github.com/abhiTronix/vidgear/issues/151
[ "INVALID :stop_sign:", "QUESTION :question:", "ANSWERED IN DOCS :book:" ]
tms2003
1
laughingman7743/PyAthena
sqlalchemy
512
Okta authentication support
I'm curious if `pyathena` supports Oka authentication as desribed here: https://docs.aws.amazon.com/athena/latest/ug/jdbc-v3-driver-okta-credentials.html If not, do you have any plan to support this?
closed
2024-02-09T08:37:25Z
2024-02-09T13:09:37Z
https://github.com/laughingman7743/PyAthena/issues/512
[]
jinserk
1
allenai/allennlp
nlp
5,171
No module named 'allennlp.data.tokenizers.word_splitter'
I'm using python 3.7 in google colab. I install allennlp=2.4.0 and allennlp-models. When I run my code: from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter I get this error: ModuleNotFoundError: No module named 'allennlp.data.tokenizers.word_splitter' help me please.
closed
2021-04-30T17:11:44Z
2021-05-17T16:10:36Z
https://github.com/allenai/allennlp/issues/5171
[ "question", "stale" ]
mitra8814
2
codertimo/BERT-pytorch
nlp
86
In Next Sentence Prediction task,the original code may choose the same line when you try to use the negative sample
```bash def get_random_line(self): ... return self.lines[random.randrange(len(self.lines))][1] ... ``` it should be changed to the following: ```bash def get_random_line(self,index): ... tmp = random.randrange(len(self.lines)) while(tmp == index): tmp = random.randrange(len(self.lines)) return self.lines[random.randrange(len(self.lines))][1] ... ```
open
2020-12-07T05:46:51Z
2020-12-07T05:55:49Z
https://github.com/codertimo/BERT-pytorch/issues/86
[]
Emir-Liu
0
dask/dask
scikit-learn
11,566
Should `dask.persist` raise on non-persistable objects?
# Problem Until [recently](https://github.com/dask/distributed/issues/8948), `dask.persist()` supported both persistable Dask collections and ordinary Python objects as inputs. The Dask collections would be persisted (as expected) while the Python objects would be handled transparently and returned as-is in the output. To the best of my knowledge, this behavior is not documented anywhere, and there is only a single test for this (`test_distributed.py::test_persist_nested`). To me, this behavior seems odd: I would argue that it's reasonable for a user to expect that `dask.persist(some_large_pandas_dataframe)` actually persists that large object on a `distributed` cluster to make it available. It would also hide user errors where the user intends to persist a collection but instead persists `Future`s, e.g., by calling `persist(df.compute())` instead of `persist(df)`. # Possible solution Instead of fixing this undocumented behavior, I suggest that `persist` should raise on inputs that are no persistable Dask collection. This clarifies the intended and supported behavior, limits the amount of hidden magic, and allows us to raise meaningful errors on anti-patterns like persisting `Future`s. # Caveat This would break current undocumented Dask behavior, and it's unclear how much users or downstream libraries rely on this.
open
2024-11-25T18:20:34Z
2025-02-24T02:01:27Z
https://github.com/dask/dask/issues/11566
[ "needs attention", "needs triage" ]
hendrikmakait
3
piskvorky/gensim
data-science
2,693
Number of Sentences in corpusfile don't match trained sentences.
#### Problem description I'm training a fasttext model (CBOW) over a corpus, for instance `enwik8`. The number of sentences trained (or example_count as referred in log methods) on doesn't equal the number of sentences in the file (`wc -l` or `len(f.readlines())`, referred as `expected_count` or `total_examples` ). Why is this happening? Also, in the method [here](https://github.com/RaRe-Technologies/gensim/blob/e391f0c25599c751e127dde925e062c7132e4737/gensim/models/base_any2vec.py#L1301), this warning has been suppressed for corpus mode. ### Versions ```python Linux-4.4.0-1096-aws-x86_64-with-debian-stretch-sid Python 3.7.5 (default, Oct 25 2019, 15:51:11) [GCC 7.3.0] NumPy 1.17.2 SciPy 1.3.1 gensim 3.8.1 FAST_VERSION 1 ```
open
2019-12-02T10:11:29Z
2019-12-02T13:48:13Z
https://github.com/piskvorky/gensim/issues/2693
[]
tshrjn
1
yeongpin/cursor-free-vip
automation
155
重置机器码后 换新邮箱 依然无法使用
使用curso0.46.8
closed
2025-03-07T07:42:10Z
2025-03-10T06:03:16Z
https://github.com/yeongpin/cursor-free-vip/issues/155
[]
ycsxd
2
3b1b/manim
python
1,137
Add another good tutorial resource to README
I found this really extensive tutorial/example resource for manim and I think it should be listed in the Walkthough section of the README.md [Elteoremadebeethoven/AnimationsWithManim](https://github.com/Elteoremadebeethoven/AnimationsWithManim)
closed
2020-06-16T04:14:34Z
2021-02-10T06:36:07Z
https://github.com/3b1b/manim/issues/1137
[]
zyansheep
0
aiortc/aiortc
asyncio
725
janus example bogusly calls webcam.py
Recent git commit 713fb64 introduced option `--play-without-decoding` to example script `janus.py`, and added an example commandline to `examples/janus/README.rst`. ...but that commandline calls `webcam.py` (not `janus-py`).
closed
2022-05-26T12:58:14Z
2022-06-16T14:40:35Z
https://github.com/aiortc/aiortc/issues/725
[]
jonassmedegaard
2
MaxHalford/prince
scikit-learn
56
Is there a way to transform new data after fitting with FAMD?
Hello, I just discovered this package and it seems very interesting. I was wondering is there a way to apply the transform function to new unseen data after calling FAMD fit? Analogous to how PCA works in sklearn. When I try to do this I get an error: X) 102 X = self.scaler_.transform(X) 103 --> 104 return pd.DataFrame(data=X.dot(self.V_.T), index=index) 105 106 def row_standard_coordinates(self, X): ValueError: shapes (2,20) and (49,2) not aligned: 20 (dim 1) != 49 (dim 0) Basically it looks like it doesn't understand there are a different number of "training examples" as opposed to when the fit occurred. Cheers, Kuhan
closed
2019-03-14T16:02:29Z
2021-07-27T15:08:45Z
https://github.com/MaxHalford/prince/issues/56
[]
kuhanw
12
ShishirPatil/gorilla
api
77
[feature] Run gorilla locally without GPUs 🦍
Today, Gorilla end-points run on UC Berkeley hosted servers 🐻 When you try our colab, or our chat completion API, or the CLI tool, it hits our GPUs for inference. A popular ask among our users is to run Gorilla locally on Macbooks/Linux/WSL. **Describe the solution you'd like:** Have the model(s) running locally on MPS/CPU/GPU and listening to a port. All the current gorilla end-points can then just hit `localhost` to get the response to any given prompt. **Additional context:** Here is an application that would immediately use it: https://github.com/gorilla-llm/gorilla-cli Given, we have LLaMA models, these should be plug-and-play: [ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp) and [karpathy/llama2.c](https://github.com/karpathy/llama2.c) Also relevant: https://huggingface.co/TheBloke/gorilla-7B-GPTQ Update 1: If you happen to have an RTX, or V100 or A100 or H100, you can use Gorilla today without any latency hit. The goal of this enhancement is to help those who may not have access to and greatest GPUs.
closed
2023-08-01T09:12:05Z
2024-02-04T08:34:53Z
https://github.com/ShishirPatil/gorilla/issues/77
[ "enhancement" ]
ShishirPatil
11
skforecast/skforecast
scikit-learn
165
Closed Issue
closed
2022-06-13T03:15:41Z
2022-06-20T09:17:00Z
https://github.com/skforecast/skforecast/issues/165
[ "invalid" ]
hdattada
1
axnsan12/drf-yasg
rest-api
813
`ImportError: Module "drf_yasg.generators" does not define a "OpenAPISchemaGenerator" attribute/class` after upgrading DRF==3.14.0
# Bug Report ## Description After update Django Rest Framework to 3.14.0, Django did not start, because drf-yasg raise exception `ImportError: Could not import 'drf_yasg.generators.OpenAPISchemaGenerator' for API setting 'DEFAULT_GENERATOR_CLASS'. ` Reverting to drf==3.13.1 resolves the issue. ## Is this a regression? Not sure, there was a similar issue here: https://github.com/axnsan12/drf-yasg/issues/641 ## Minimal Reproduction ```python # settings.py INSTALLED_APPS = [ ... "drf_yasg", ] SWAGGER_SETTINGS = { "SECURITY_DEFINITIONS": { "Bearer": { "type": "apiKey", "in": "header", "name": "Authorization", "template": "Bearer {apiKey}", }, }, "DEFAULT_FIELD_INSPECTORS": [ "drf_yasg.inspectors.CamelCaseJSONFilter", "drf_yasg.inspectors.InlineSerializerInspector", "drf_yasg.inspectors.RelatedFieldInspector", "drf_yasg.inspectors.ChoiceFieldInspector", "drf_yasg.inspectors.FileFieldInspector", "drf_yasg.inspectors.DictFieldInspector", "drf_yasg.inspectors.SimpleFieldInspector", "drf_yasg.inspectors.StringDefaultFieldInspector", ], } ``` ```python # urls.py from drf_yasg import openapi from drf_yasg.views import get_schema_view from rest_framework import permissions schema_view = get_schema_view( openapi.Info( title="My API", default_version="v1", description="My API", terms_of_service="https://www.google.com/policies/terms/", contact=openapi.Contact(email="leohakim@gmail.com"), license=openapi.License(name="BSD License"), ), public=True, permission_classes=(permissions.AllowAny,), ) ``` ## Stack trace / Error message ```code File "/usr/local/lib/python3.9/site-packages/drf_yasg/views.py", line 67, in get_schema_view _generator_class = generator_class or swagger_settings.DEFAULT_GENERATOR_CLASS File "/usr/local/lib/python3.9/site-packages/drf_yasg/app_settings.py", line 122, in __getattr__ val = perform_import(val, attr) File "/usr/local/lib/python3.9/site-packages/rest_framework/settings.py", line 166, in perform_import return import_from_string(val, setting_name) File "/usr/local/lib/python3.9/site-packages/rest_framework/settings.py", line 180, in import_from_string raise ImportError(msg) ImportError: Could not import 'drf_yasg.generators.OpenAPISchemaGenerator' for API setting 'DEFAULT_GENERATOR_CLASS'. ImportError: Module "drf_yasg.generators" does not define a "OpenAPISchemaGenerator" attribute/class. ``` ## Your Environment ```code drf-yasg=1.21.3 djangorestframework=3.14.0 django=4.1.1 ```
closed
2022-09-23T11:50:21Z
2023-10-06T09:52:16Z
https://github.com/axnsan12/drf-yasg/issues/813
[]
chrismaille
0
noirbizarre/flask-restplus
flask
541
Can it declare more than one model?
I declare 2 models like this ``` fields = api.model('MyModel', { 'id_siswa': fields.String(), 'nama_siswa': fields.String(), 'kelas': fields.String(), 'hasil': fields.List(fields.Integer), 'id_penilai': fields.String(), 'nama_penilai':fields.String(), }) indicators = api.model('ModelIndikator', { 'sikap_spritual': fields.String(), 'sikap_sosial': fields.String(), }) ``` with @api.doc() but get error `Traceback (most recent call last): File "app.py", line 40, in <module> 'sikap_spritual': fields.String(), AttributeError: 'Model' object has no attribute 'String'`
closed
2018-10-18T09:53:19Z
2018-10-19T03:24:49Z
https://github.com/noirbizarre/flask-restplus/issues/541
[]
kafey
2
plotly/plotly.py
plotly
4,118
Gibberish / malformed / strange negative y-axis values
```python #!/usr/bin/env python3 """Test negative bug.""" from plotly.subplots import make_subplots fig = make_subplots(rows=1, cols=1) fig.add_bar(x=[1, 2, 3], y=[-4, 5, -6], row=1, col=1) fig.update_layout(height=400, width=500, showlegend=True) with open('web/negative.html', 'w', encoding='utf-8') as index_file: index_file.write(fig.to_html(full_html=False)) ``` This results in: ![neg](https://user-images.githubusercontent.com/31250800/226539050-24bbeaa0-32f7-4d76-b6f8-5048d4021f75.jpg) When I change to `full_html=True`, it works properly: ![pos](https://user-images.githubusercontent.com/31250800/226539122-1e677043-725b-41fd-95ea-fd5f68116eee.jpg) This seems to be a recent bug because it worked fine before I upgraded Plotly. I’m using this version from conda-forge: `plotly 5.13.1 pyhd8ed1ab_0 conda-forge` More details on this issue: https://community.plotly.com/t/gibberish-malformed-negative-y-axis-values-in-plotly-charts-in-python/71924/1
closed
2023-03-21T07:13:05Z
2024-03-27T14:40:24Z
https://github.com/plotly/plotly.py/issues/4118
[]
valankar
6
fbdesignpro/sweetviz
data-visualization
17
Larger feature visualization on right is hidden
Appreciate the effort for this library and I see the potential!. Tried out at work and when the html displayed the charts for features are partially hidden. Thought that I could scroll over to see them but no horizontal scroll bar was available.
closed
2020-07-07T20:04:07Z
2020-07-24T02:35:11Z
https://github.com/fbdesignpro/sweetviz/issues/17
[ "bug" ]
JohnDeJesus22
6