repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
hzwer/ECCV2022-RIFE
computer-vision
221
About LiteFlowNet's pre-trained model as the overpowered teacher in the leakage distillation
您好,有一个问题想要请教一下您:如何在将LiteFlowNet的预训练模型作为overpowered teacher添加到代码中?我没有在代码中找到对LiteFlowNet预训练模型的调用。
closed
2021-12-11T08:50:41Z
2021-12-17T11:57:51Z
https://github.com/hzwer/ECCV2022-RIFE/issues/221
[]
Heroandzhang
4
huggingface/diffusers
pytorch
10,972
Loading LoRA weights fails for OneTrainer Flux LoRAs
### Describe the bug Loading [OneTrainer](https://github.com/Nerogar/OneTrainer) style LoRAs, using diffusers commit #[dcd77ce22273708294b7b9c2f7f0a4e45d7a9f33](https://github.com/huggingface/diffusers/commit/dcd77ce22273708294b7b9c2f7f0a4e45d7a9f33), fails with error: ``` Traceback (most recent call last): File "/+DEV/diffusers-edge/src/diffusers/loaders/lora_pipeline.py", line 1527, in load_lora_weights state_dict, network_alphas = self.lora_state_dict( File "/+DEVTOOL/miniconda3/envs/flux/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/+DEV/diffusers-edge/src/diffusers/loaders/lora_pipeline.py", line 1450, in lora_state_dict state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict) File "/+DEV/diffusers-edge/src/diffusers/loaders/lora_conversion_utils.py", line 687, in _convert_kohya_flux_lora_to_diffusers return _convert_mixture_state_dict_to_diffusers(state_dict) File "/+DEV/diffusers-edge/src/diffusers/loaders/lora_conversion_utils.py", line 659, in _convert_mixture_state_dict_to_diffusers if remaining_all_unet: UnboundLocalError: local variable 'remaining_all_unet' referenced before assignment ``` Basic OneTrainer LoRA structure: ``` "onetrainer": { "transformer_name": "lora_transformer_", "double_block_name": "transformer_blocks_", "single_block_name": "single_transformer_blocks_", "double_module_names": ( "_attn_to_out_0", ("_attn_to_q", "_attn_to_k", "_attn_to_v"), "_ff_net_0_proj", "_ff_net_2", "_norm1_linear", "_attn_to_add_out", ("_attn_add_q_proj", "_attn_add_k_proj", "_attn_add_v_proj"), "_ff_context_net_0_proj", "_ff_context_net_2", "_norm1_context_linear" ), "single_module_names": ( ("_attn_to_q", "_attn_to_k", "_attn_to_v", "_proj_mlp"), "_proj_out", "_norm_linear", ), "param_names": (".lora_down.weight", ".lora_up.weight", ".alpha"), "dora_param_name": ".dora_scale", "text_encoder_names": ("lora_te1_", "lora_te2_"), "unique_meta": ("ot_branch", "ot_revision", "ot_config"), "comment": "kohya-diffusers mix-ish, supports modelspec, yay" }, ``` Example LoRAs: https://civitai.com/models/767016?modelVersionId=857899 https://civitai.com/models/794095?modelVersionId=887953 https://civitai.com/models/754969?modelVersionId=884632 https://civitai.com/models/991928?modelVersionId=1111315 https://civitai.com/models/825919?modelVersionId=923640 https://civitai.com/models/1226276?modelVersionId=1381683 Somewhat related: https://github.com/huggingface/diffusers/issues/10954 ### Reproduction ``` from pathlib import Path import torch from diffusers import FluxTransformer2DModel, TorchAoConfig, FluxPipeline from transformers import T5EncoderModel repo_id = "black-forest-labs/FLUX.1-dev" dtype = torch.bfloat16 quantization_config = TorchAoConfig("int8_weight_only") transformer = FluxTransformer2DModel.from_pretrained( repo_id, subfolder="transformer", quantization_config=quantization_config, torch_dtype=dtype, ) text_encoder_2 = T5EncoderModel.from_pretrained( repo_id, subfolder="text_encoder_2", quantization_config=quantization_config, torch_dtype=dtype, ) pipe = FluxPipeline.from_pretrained( repo_id, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, ) lora_path = Path("/-LoRAs/Flux/charcoal3000.safetensors") pipe.load_lora_weights(lora_path, adapter_name=lora_path.stem) ``` ### Logs ```shell ``` ### System Info diffusers dcd77ce22273708294b7b9c2f7f0a4e45d7a9f33, Linux like everyone, and python3.10 ### Who can help? Calling LoRA ambassador Mr. @sayakpaul
closed
2025-03-05T13:07:40Z
2025-03-06T08:33:34Z
https://github.com/huggingface/diffusers/issues/10972
[ "bug" ]
spezialspezial
2
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,635
Hello,
谢谢
closed
2024-03-13T09:02:26Z
2024-03-21T00:30:07Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1635
[]
czh886
1
modin-project/modin
data-science
6,712
Copy `_shape_hint` in `query_complier.copy` function
closed
2023-11-06T18:02:39Z
2023-11-07T09:46:00Z
https://github.com/modin-project/modin/issues/6712
[ "Performance 🚀" ]
anmyachev
0
graphql-python/gql
graphql
207
gql tests are failing with graphql-core 3.1.5 (cosmetic)
With graphql-core version 3.1.5: * [print_ast() break arguments over multiple lines ](https://github.com/graphql-python/graphql-core/commit/ae923bb15ce58c7059e7e9f352e079ba8b23d3f9) * [the check for the source argument was changed](https://github.com/graphql-python/graphql-core/commit/a9ae0d90fc25565dada6e363464ddc2f8eb712b3) Some gql tests are failing now because of this. Calling gql with an int instead of a string will generate a TypeError with `object of type 'int' has no len() `instead of `body must be a string`
closed
2021-05-11T11:29:52Z
2021-05-22T21:41:45Z
https://github.com/graphql-python/gql/issues/207
[ "type: tests" ]
leszekhanusz
0
Lightning-AI/LitServe
fastapi
366
Info route
<!-- ⚠️ BEFORE SUBMITTING, READ: We're excited for your request! However, here are things we are not interested in: - Decorators. - Doing the same thing in multiple ways. - Adding more layers of abstraction... tree-depth should be 1 at most. - Features that over-engineer or complicate the code internals. - Linters, and crud that complicates projects. --> ---- ## 🚀 Feature <!-- A clear and concise description of the feature proposal --> Add a `/info` route that returns - Litserver configuration - Model metadata for example: ``` { "model": { "name": "my-awesome-model", "version": "v1.1.0" }, "litserver": { "num_workers": 2, "devices": ["cpu"], "workers_per_device": 2, "max_batch_size": 4, "batch_timeout": "100ms" } } ``` ### Motivation <!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too... --> It is useful to have a fast way to investigate server and loaded model configuration, for example a backend could call this api to show in a dedicated UI what model is currently deployed in production. ### Pitch <!-- A clear and concise description of what you want to happen. --> Model metadata will be passed to `LitServer` class as a custom JSON serializable object: ``` server = ls.LitServer(ExampleLitAPI(), model_metadata={"name": "my-awesome-model", "version": "v1.1.0"}) ``` then in the method `register_endpoint` the route will be added to the fastapi app.
closed
2024-11-21T10:29:09Z
2024-11-27T17:31:26Z
https://github.com/Lightning-AI/LitServe/issues/366
[ "enhancement" ]
lorenzomassimiani
2
amdegroot/ssd.pytorch
computer-vision
78
in config.py, did min_sizes and max_sizes mean scale?
Nice work, thanks very much. But I have a little question: ```python 'min_sizes' : [30, 60, 111, 162, 213, 264], 'max_sizes' : [60, 111, 162, 213, 264, 315], ``` Did this mean the scale of default boxes in ssd? Why did you set in this way?why is it different with 0.2-0.95 in the original caffe implementation?
open
2017-11-24T12:37:34Z
2019-06-12T11:25:24Z
https://github.com/amdegroot/ssd.pytorch/issues/78
[]
squirrel16
5
ultralytics/ultralytics
computer-vision
19,232
I found that training on dual GPU will load pre training weights, while in single GPU mode it seems that pretraining weights will not be loaded
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question ### question1: 1. dual GPU mode (device) ![Image](https://github.com/user-attachments/assets/48e128ee-3271-4ee0-ba6b-7d68b62de96b) My training script is as follows: ``` from ultralytics import YOLO model = YOLO("yolo11x-cls.yaml") results = model.train(data=r"/home/ps/train/YK/task/datasets/google-gt4/YOLO-classify/dataset1/20250120-new_jitai/", epochs=3000, imgsz=640, batch=4, workers=8, patience=800, task='classify', pretrained=r"/home/ps/train/YK/task/ultralytics/runs/classify/train26/weights/best.pt", seed=6, cos_lr=True, device="0,1", augment=True, ) ``` 2. single GPU mode (No logs similar to 'Transfer from pretrained weights' have appeared) My training script is as follows: ``` from ultralytics import YOLO model = YOLO("yolo11x-cls.yaml") results = model.train(data=r"/home/ps/train/YK/task/datasets/google-gt4/YOLO-classify/dataset1/20250120-new_jitai/", epochs=3000, imgsz=640, batch=4, workers=8, patience=800, task='classify', pretrained=r"/home/ps/train/YK/task/ultralytics/runs/classify/train26/weights/best.pt", seed=6, cos_lr=True, device="1", augment=True, ) ``` ### question2: Debugging seems to be limited in dual GPU mode, Debugging seems to be limited in dual GPU mode, for example, if the following breakpoint is inserted in the _do_train function of BaseTrainer (as below), it cannot be debugged here, but single GPU mode can be debugged here, Breakpoint position ![Image](https://github.com/user-attachments/assets/40d5d23b-c816-4c30-b55e-2c8b479743b5) I believe this is due to the conditional judgment of the variable world_size ![Image](https://github.com/user-attachments/assets/c564573b-0367-45b1-b8fa-430799ef5be6) ### Additional _No response_
closed
2025-02-13T11:43:01Z
2025-02-13T11:45:51Z
https://github.com/ultralytics/ultralytics/issues/19232
[ "question", "classify" ]
yuan-kai-design
1
mckinsey/vizro
data-visualization
681
Setting a default columnSize value for dash_ag_grid
Reference link: https://dash.plotly.com/dash-ag-grid/column-sizing#size-to-fit-and-responsive-size-to-fit Should Vizro set `columnSize="responsiveSizeToFit"` for the `dash_ag_grid` figure function by default?
open
2024-09-04T15:01:27Z
2024-09-23T10:08:00Z
https://github.com/mckinsey/vizro/issues/681
[]
petar-qb
3
huggingface/transformers
deep-learning
36,836
GOT-OCR2 docs indicate model can produce markdown, but it only produces LaTeX.
Stated [here](https://huggingface.co/docs/transformers/en/model_doc/got_ocr2#formatted-text-inference) Returning formatted text is toggled via the `format` boolean: ```python inputs = processor(image, return_tensors="pt", format=True).to(device) ``` It only returns LaTeX. Can the model somehow return markdown or are the docs mistaken?
open
2025-03-19T21:14:46Z
2025-03-20T12:40:46Z
https://github.com/huggingface/transformers/issues/36836
[]
piercelamb
1
psf/black
python
4,476
Report error when processing folders on the command line
<!-- Please make sure that the bug is not already fixed either in newer versions or the current development version. To confirm this, you have three options: 1. Update Black's version if a newer release exists: `pip install -U black` 2. Use the online formatter at <https://black.vercel.app/?version=main>, which will use the latest main branch. Note that the online formatter currently runs on an older version of Python and may not support newer syntax, such as the extended f-string syntax added in Python 3.12. 3. Or run _Black_ on your machine: - create a new virtualenv (make sure it's the same Python version); - clone this repository; - run `pip install -e .[d]`; - run `pip install -r test_requirements.txt` - make sure it's sane by running `python -m pytest`; and - run `black` like you did last time. --> **Describe the bug** <!-- A clear and concise description of what the bug is. --> Error when formatting a folder with multiple files using the command line **To Reproduce** <!-- Minimal steps to reproduce the behavior with source code and Black's configuration. --> For example: Create a new folder ```src``` and create 2 empty files in ```src``` ```shell mkdir src type nul > ./src/t1.py type nul > ./src/t2.py black ./src ``` The resulting error is: ```python Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Scripts\black.exe\__main__.py", line 7, in <module> File "src\black\__init__.py", line 1588, in patched_main File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Lib\site-packages\click\core.py", line 1157, in __call__ return self.main(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Lib\site-packages\click\core.py", line 1078, in main rv = self.invoke(ctx) ^^^^^^^^^^^^^^^^ File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Lib\site-packages\click\core.py", line 1434, in invoke return ctx.invoke(self.callback, **ctx.params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Lib\site-packages\click\core.py", line 783, in invoke return __callback(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Lib\site-packages\click\decorators.py", line 33, in new_func return f(get_current_context(), *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "src\black\__init__.py", line 711, in main File "C:\Users\root\AppData\Local\pypoetry\Cache\virtualenvs\test-3OFd-K4v-py3.12\Lib\site-packages\black\concurrency.py", line 98, in reformat_many loop = asyncio.new_event_loop() ^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\USER_PROGRAMS\python\Lib\asyncio\events.py", line 823, in new_event_loop return get_event_loop_policy().new_event_loop() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\USER_PROGRAMS\python\Lib\asyncio\events.py", line 720, in new_event_loop return self._loop_factory() ^^^^^^^^^^^^^^^^^^^^ File "C:\USER_PROGRAMS\python\Lib\asyncio\windows_events.py", line 316, in __init__ super().__init__(proactor) File "C:\USER_PROGRAMS\python\Lib\asyncio\proactor_events.py", line 640, in __init__ self._make_self_pipe() File "C:\USER_PROGRAMS\python\Lib\asyncio\proactor_events.py", line 787, in _make_self_pipe self._ssock, self._csock = socket.socketpair() ^^^^^^^^^^^^^^^^^^^ File "C:\USER_PROGRAMS\python\Lib\socket.py", line 642, in _fallback_socketpair raise ConnectionError("Unexpected peer connection") ConnectionError: Unexpected peer connection Exception ignored in: <function BaseEventLoop.__del__ at 0x0000000003B8B380> Traceback (most recent call last): File "C:\USER_PROGRAMS\python\Lib\asyncio\base_events.py", line 728, in __del__ File "C:\USER_PROGRAMS\python\Lib\asyncio\proactor_events.py", line 697, in close File "C:\USER_PROGRAMS\python\Lib\asyncio\proactor_events.py", line 779, in _close_self_pipe AttributeError: 'ProactorEventLoop' object has no attribute '_ssock' ``` **Expected behavior** It should not report any errors. <!-- A clear and concise description of what you expected to happen. --> **Environment** <!-- Please complete the following information: --> - Black version: 24.10.0 - OS and Python version: Windows11 23H2/ Python 3.12.6 **Additional context** <!-- Add any other context about the problem here. -->
closed
2024-10-10T15:40:16Z
2024-10-10T15:56:45Z
https://github.com/psf/black/issues/4476
[ "T: bug" ]
wevsty
2
skypilot-org/skypilot
data-science
4,506
[bug] Task name is required when running `sky launch --docker`
<!-- Describe the bug report / feature request here --> The documentation at https://docs.skypilot.co/en/latest/reference/yaml-spec.html#task-yaml states that the task name is optional; however, using the localdocker backend will result in an error if it is not specified. ```yaml # Task name (optional), used for display purposes. # name: my-task resources: # Optional; if left out, automatically pick the cheapest cloud. cloud: kubernetes # Working directory (optional) containing the project codebase. # Its contents are synced to ~/sky_workdir/ on the cluster. workdir: . # Typical use: pip install -r requirements.txt # Invoked under the workdir (i.e., can use its files). setup: | echo "Running setup." # Typical use: make use of resources, such as running training. # Invoked under the workdir (i.e., can use its files). run: | echo "Hello, SkyPilot!" conda env list ``` ``` (sky) ➜ hello-sky git:(f0ebf13b) ✗ sky launch ./hello-world.yaml --docker Task from YAML spec: ./hello-world.yaml Considered resources (1 node): --------------------------------------------------------------------------------------------- CLOUD INSTANCE vCPUs Mem(GB) ACCELERATORS REGION/ZONE COST ($) CHOSEN --------------------------------------------------------------------------------------------- Kubernetes 2CPU--2GB 2 2 - xxxxxxx 0.00 ✔ --------------------------------------------------------------------------------------------- Launching a new cluster 'sky-4242-gcgg'. Proceed? [Y/n]: y Traceback (most recent call last): File "/home/gcgg/applications/miniconda3/bin/sky", line 33, in <module> sys.exit(load_entry_point('skypilot', 'console_scripts', 'sky')()) File "/home/gcgg/applications/miniconda3/lib/python3.8/site-packages/click/core.py", line 1137, in __call__ return self.main(*args, **kwargs) File "/home/gcgg/applications/miniconda3/lib/python3.8/site-packages/click/core.py", line 1062, in main rv = self.invoke(ctx) File "/home/gcgg/code/skypilot/sky/utils/common_utils.py", line 366, in _record return f(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/cli.py", line 838, in invoke return super().invoke(ctx) File "/home/gcgg/applications/miniconda3/lib/python3.8/site-packages/click/core.py", line 1668, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File "/home/gcgg/applications/miniconda3/lib/python3.8/site-packages/click/core.py", line 1404, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/gcgg/applications/miniconda3/lib/python3.8/site-packages/click/core.py", line 763, in invoke return __callback(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/cli.py", line 1159, in launch _launch_with_confirm(task, File "/home/gcgg/code/skypilot/sky/cli.py", line 628, in _launch_with_confirm sky.launch( File "/home/gcgg/code/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/execution.py", line 529, in launch return _execute( File "/home/gcgg/code/skypilot/sky/execution.py", line 302, in _execute handle = backend.provision( File "/home/gcgg/code/skypilot/sky/utils/common_utils.py", line 386, in _record return f(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/utils/common_utils.py", line 366, in _record return f(*args, **kwargs) File "/home/gcgg/code/skypilot/sky/backends/backend.py", line 84, in provision return self._provision(task, to_provision, dryrun, stream_logs, File "/home/gcgg/code/skypilot/sky/backends/local_docker_backend.py", line 149, in _provision assert task.name is not None, ('Task name cannot be None - have you ' AssertionError: Task name cannot be None - have you specified a task name? ``` <!-- If relevant, fill in versioning info to help us troubleshoot --> _Version & Commit info:_ * `sky -v`: PLEASE_FILL_IN * `sky -c`: PLEASE_FILL_IN
closed
2024-12-25T14:03:33Z
2024-12-26T00:15:09Z
https://github.com/skypilot-org/skypilot/issues/4506
[]
gaocegege
2
MaartenGr/BERTopic
nlp
1,897
Home page get_topic_info() function not understood
![QQ截图20240331180918](https://github.com/MaartenGr/BERTopic/assets/64578267/fa92df3d-88ca-4fa7-999d-c68e290cfa49) ![QQ截图20240331180926](https://github.com/MaartenGr/BERTopic/assets/64578267/04f3fbb6-8b78-49c0-8829-21130da115b5) Why don't the two functions get the same topic name with the same label? In fact I think the first picture is out of order, the name of the topic labeled 0 should not be 0_... What?
open
2024-03-31T10:14:58Z
2024-04-03T08:11:23Z
https://github.com/MaartenGr/BERTopic/issues/1897
[]
EricIrving-chs
5
dmlc/gluon-nlp
numpy
1,552
Operator npx.broadcast_like
## Description Currently, pr #1551 and pr #1545 are blocked by operator npx.broadcast_like. This will be fixed in https://github.com/apache/incubator-mxnet/pull/20169
closed
2021-04-15T04:26:31Z
2021-06-03T17:44:45Z
https://github.com/dmlc/gluon-nlp/issues/1552
[ "bug" ]
barry-jin
3
cvat-ai/cvat
computer-vision
8,576
Grafana is not restarting as other containers (using docker)
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce 1. Install and start cvat on a new VM using docker (not Kubernetes) 2. On CVAT UI, go to "Analytics" tab (it's working) 3. Reboot VM 4. On CVAT UI, try to go to "Analytics" tab (it's not working) 5. Check if grafana container is running. It's not running. ### Expected Behavior Analytics tab is working, and Grafana container is restarted with other containers. ### Possible Solution Use docker restart policy. I'm working on it in a PR. ### Context _No response_ ### Environment ```Markdown - CVAT v2.21.1 - Docker version 27.3.1 - Docker used (not Kubernetes) - Linux ```
closed
2024-10-22T09:02:56Z
2024-10-22T11:27:30Z
https://github.com/cvat-ai/cvat/issues/8576
[ "bug" ]
Gui-U
0
huggingface/datasets
pytorch
6,810
Allow deleting a subset/config from a no-script dataset
As proposed by @BramVanroy, it would be neat to have this functionality through the API.
closed
2024-04-15T07:53:26Z
2025-01-11T18:40:40Z
https://github.com/huggingface/datasets/issues/6810
[ "enhancement" ]
albertvillanova
3
ivy-llc/ivy
pytorch
28,717
Fix Frontend Failing Test: tensorflow - logic.paddle.equal_all
To-do List: https://github.com/unifyai/ivy/issues/27499
closed
2024-04-01T13:15:46Z
2024-04-09T04:31:30Z
https://github.com/ivy-llc/ivy/issues/28717
[ "Sub Task" ]
ZJay07
0
pytest-dev/pytest-mock
pytest
123
Patches not stopped between tests.
Hi, My patches seem to be leeking from one test to the other. Can you suggest why this is? Tests below: ```python import asyncio import logging import sys import time import pytest import websockets from asynctest import CoroutineMock, MagicMock from pyskyq.status import Status from .asynccontextmanagermock import AsyncContextManagerMock from .mock_constants import WS_STATUS_MOCK logformat = "[%(asctime)s] %(levelname)s:%(name)s:%(message)s" logging.basicConfig(level=logging.WARNING, stream=sys.stdout, format=logformat) # datefmt="%Y-%m-%d %H:%M:%S" # THIS TEST WORKS FINE def test_status(mocker): a = mocker.patch('websockets.connect', new_callable=AsyncContextManagerMock) a.return_value.__aenter__.return_value.recv = CoroutineMock(return_value=WS_STATUS_MOCK) stat = Status('some_host') stat.create_event_listener() time.sleep(1) # allow time for awaiting, etc. assert stat.standby is True mocker.stopall() def wait_beyond_timeout_then_serve_json(): time.sleep(3) raise websockets.exceptions.ConnectionClosed #return WS_STATUS_MOCK # THIS TEST HAS THE MOCK FROM THE PREVIOUS TEST STILL IN PLACE def test_status_timeout(mocker): mocker.stopall() b = mocker.patch('websockets.connect', new_callable=AsyncContextManagerMock) b.return_value.__aenter__.return_value.recv = CoroutineMock(side_effect=wait_beyond_timeout_then_serve_json) b.start() stat = Status('timeout_host', ws_timeout=2) logging.getLogger().setLevel(logging.DEBUG) time.sleep(1) with pytest.raises(asyncio.TimeoutError): stat.create_event_listener() b.stop() ```
closed
2018-09-29T15:47:40Z
2018-10-13T11:57:20Z
https://github.com/pytest-dev/pytest-mock/issues/123
[ "question" ]
bradwood
6
keras-team/keras
python
20,574
MeanIoU differ from custom IOU metrics implementation
Hi, am running a segmentation training process and am using the following function as IoU Custom metrics: ``` @keras.saving.register_keras_serializable(package="glass_segm", name="custom_iou_metric") def custom_iou_metric(y_true, y_pred, num_classes=3): y_pred = tf.argmax(y_pred, axis=-1) y_true = tf.cast(tf.reshape(y_true, [-1]), tf.int32) y_pred = tf.cast(tf.reshape(y_pred, [-1]), tf.int32) iou = tf.constant(0.0) for i in range(num_classes): true_mask = tf.cast(tf.equal(y_true, i), tf.float32) pred_mask = tf.cast(tf.equal(y_pred, i), tf.float32) intersection = tf.reduce_sum(true_mask * pred_mask) union = tf.reduce_sum(true_mask) + tf.reduce_sum(pred_mask) - intersection class_iou = tf.cond( tf.equal(union, 0), lambda: tf.constant(1.0), lambda: intersection / union ) iou += class_iou iou /= tf.cast(num_classes, tf.float32) return iou ``` I was expecting that your MeanIoU would be the IoU mean across the classes and **also** the mean all the training and validation set batches, but it does not seem like that. example: given this: ``` y_pred = np.array([[[0.8, 0.1, 0.1], [0.7, 0.2, 0.1], [0.1, 0.7, 0.2], [0.2, 0.6, 0.2]], [[0.6, 0.3, 0.1], [0.7, 0.2, 0.1], [0.2, 0.5, 0.3], [0.3, 0.4, 0.3]], [[0.7, 0.2, 0.1], [0.3, 0.6, 0.1], [0.4, 0.4, 0.2], [0.3, 0.3, 0.4]], [[0.5, 0.4, 0.1], [0.3, 0.5, 0.2], [0.3, 0.3, 0.4], [0.4, 0.5, 0.1]]] ) y_true = np.array([[0, 0, 2, 1], [1, 0, 1, 2], [1, 2, 2, 0], [1, 2, 0, 0]] ) ``` If I run: ``` m = keras.metrics.MeanIoU(num_classes=3,sparse_y_pred=False) for i in range(1): y_true[0][0] = i % 2 y_true[1][0] = i % 2 m.update_state(y_true, y_pred) m.result() ``` and then: ``` import numpy as np ll = [] for i in range(1): y_true[0][0] = i % 2 y_true[1][0] = i % 2 ll.append(custom_iou_metric(y_true,y_pred)) np.mean(ll) ``` the result is the same. But If I increase the range they diverge a bit. What is the intuition behind summing confusion matrixes as you do? That is not exactly the average. In my example, if you increase the range they diverge but not that much, but I see big differences during training: ``` model.compile( optimizer=optimizer, loss=focal_loss(), metrics=[ "accuracy", custom_iou_metric, keras.metrics.MeanIoU(num_classes=3,sparse_y_pred=False) ], ) ``` I am using a custom data generator, if that matters. Thanks for the clarificaitons
closed
2024-12-01T17:26:27Z
2024-12-10T09:52:54Z
https://github.com/keras-team/keras/issues/20574
[ "type:Bug" ]
edge7
12
ymcui/Chinese-LLaMA-Alpaca
nlp
859
添加词表
### 提交前必须检查以下项目 - [X] 请确保使用的是仓库最新代码(git pull),一些问题已被解决和修复。 - [X] 由于相关依赖频繁更新,请确保按照[Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki)中的相关步骤执行 - [X] 我已阅读[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案 - [X] 第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)、[LlamaChat](https://github.com/alexrozanski/LlamaChat)等,同时建议到对应的项目中查找解决方案 - [X] 模型正确性检查:务必检查模型的[SHA256.md](https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/SHA256.md),模型不对的情况下无法保证效果和正常运行 ### 问题类型 None ### 基础模型 None ### 操作系统 None ### 详细描述问题 你好,我使用llama2的词表为32000,扩充后自己的词表为49013,但是微调的时候报错ValueError: Trying to set a tensor of shape torch.Size([32000, 4096]) in "weight" (which has shape torch.Size([49013, 4096])), this look incorrect. 请问这个怎么解决 ### 依赖情况(代码类问题务必提供) _No response_ ### 运行日志或截图 _No response_
closed
2023-10-24T01:33:04Z
2023-11-13T22:02:12Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/859
[ "stale" ]
clclclaiggg
6
openapi-generators/openapi-python-client
fastapi
651
Why required: [] generates an error
```json { ... "components": { "schemas": { "ABC": { "required": [], ... }, ... } } } ``` this generates an error: ``` components -> schemas -> ABC -> required ensure this value has at least 1 items (type=value_error.list.min_items; limit_value=1) ``` `"required": null` do not generates an error expected: - required not set - required = null - required = [] are the same and not generates an error
closed
2022-08-11T02:52:56Z
2024-10-27T18:52:24Z
https://github.com/openapi-generators/openapi-python-client/issues/651
[ "🐞bug" ]
erdnax123
3
HumanSignal/labelImg
deep-learning
143
Can you tell me how to modify your code?
Hello ! I need to save other attributes as person wear glasser or not , I have append these attributes with QCheckBox.Can you tell me how to save these attributes ,I donot know how to append thess checks in shapes. Thank you for your help ! ![ds8s5h6icgtt j rp2 tly](https://user-images.githubusercontent.com/14848079/29163807-2e830ad8-7df0-11e7-83eb-dd74cd9bbe55.png)
open
2017-08-10T09:20:23Z
2017-11-28T07:31:58Z
https://github.com/HumanSignal/labelImg/issues/143
[]
shiwenhao
3
yt-dlp/yt-dlp
python
11,847
Metadata embedding being very slow
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm asking a question and **not** reporting a bug or requesting a feature - [X] I've looked through the [README](https://github.com/yt-dlp/yt-dlp#readme) - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar questions **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) ### Please make sure the question is worded well enough to be understood Is it normal for --embed-metadata to take multiple minutes? I have tried it with just that option, but it always takes a long time. I did check CPU usage, but it's very minimal, so that most likely isn't the issue. ### Provide verbose output that clearly demonstrates the problem - [ ] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [ ] If using API, add `'verbose': True` to `YoutubeDL` params instead - [ ] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output _No response_
closed
2024-12-17T19:52:45Z
2024-12-18T03:55:41Z
https://github.com/yt-dlp/yt-dlp/issues/11847
[ "question" ]
kenbaird13
5
inducer/pudb
pytest
205
Support for pyc files
I found this issue in the mailing list: https://lists.tiker.net/pipermail/pudb/2015-August/000247.html Are there any plans to be able to inspect the .py files that were used to compile the .pyc files? Is there any workaround? Thanks.
open
2016-10-28T19:19:24Z
2016-10-28T20:08:08Z
https://github.com/inducer/pudb/issues/205
[]
ghost
1
jina-ai/serve
deep-learning
6,109
How to import logic from other modules in executor.py ?
**Describe your proposal/problem** Cannot import my custom logic from other modules in executor.py. Here's my executor.py: ``` from jina import Executor, requests from docarray import DocList from docarray.documents import TextDoc from fake_agent import predict class MyExecutor(Executor): @requests(on='/prompt') def promt(self, docs: DocList[TextDoc], **kwargs) -> DocList[TextDoc]: print(docs.text) docs.text = [predict(a) for a in docs.text] # docs[1].text = 'goodbye, world!' return docs ``` This is the project structure: ``` Project | client.py | deployment.yml | tree.txt | +---executor1 | | config.yml | | executor.py | | fake_agent.py | | requirements.txt | | | \---__pycache__ | | executor.cpython-39.pyc | \---__pycache__ | client.cpython-39.pyc ``` I'm serving the executor using `jina deployment --uses deployment.yml` But I'm getting ImportError: ``` ImportError('can not import module from C:\\Users\\Lenovo\\Desktop\\jina-exp\\executor1\\executor.py') during 'WorkerRuntime' initialization add "--quiet-error" to suppress the exception details Traceback (most recent call last): File "C:\programs\anaconda\envs\jina_llm\lib\site-packages\jina\importer.py", line 149, in _path_import spec.loader.exec_module(module) File "<frozen importlib._bootstrap_external>", line 790, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "C:\Users\Lenovo\Desktop\jina-exp\executor1\executor.py", line 4, in <module> from fake_agent import predict ModuleNotFoundError: No module named 'fake_agent' ``` which eventually is causing ``` jina.excepts.RuntimeFailToStart ``` What am I doing wrong? Please guide me to appropriate docs or issues regarding this if exists. --- <!-- Optional, but really help us locate the problem faster --> **Environment** <!-- Run `jina --version-full` and copy paste the output here --> - jina 3.22.4 - docarray 0.39.1 - jcloud 0.3 - jina-hubble-sdk 0.39.0 - jina-proto 0.1.27 - protobuf 4.25.0 - proto-backend upb - grpcio 1.47.5 - pyyaml 6.0.1 - python 3.9.0 - platform Windows - platform-release 10 - platform-version 10.0.19041 - architecture AMD64 - processor Intel64 Family 6 Model 165 Stepping 2, GenuineIntel - uid 273085306477006 - session-id be030012-83e9-11ee-bc64-f85ea0af99ce - uptime 2023-11-16T00:34:02.782899 - ci-vendor (unset) - internal False * JINA_DEFAULT_HOST (unset) * JINA_DEFAULT_TIMEOUT_CTRL (unset) * JINA_DEPLOYMENT_NAME (unset) * JINA_DISABLE_UVLOOP (unset) * JINA_EARLY_STOP (unset) * JINA_FULL_CLI (unset) * JINA_GATEWAY_IMAGE (unset) * JINA_GRPC_RECV_BYTES (unset) * JINA_GRPC_SEND_BYTES (unset) * JINA_HUB_NO_IMAGE_REBUILD (unset) * JINA_LOG_CONFIG (unset) * JINA_LOG_LEVEL (unset) * JINA_LOG_NO_COLOR (unset) * JINA_MP_START_METHOD (unset) * JINA_OPTOUT_TELEMETRY (unset) * JINA_RANDOM_PORT_MAX (unset) * JINA_RANDOM_PORT_MIN (unset) * JINA_LOCKS_ROOT (unset) * JINA_K8S_ACCESS_MODES (unset) * JINA_K8S_STORAGE_CLASS_NAME (unset) * JINA_K8S_STORAGE_CAPACITY (unset) * JINA_STREAMER_ARGS (unset)
closed
2023-11-15T19:20:49Z
2023-11-16T07:11:05Z
https://github.com/jina-ai/serve/issues/6109
[]
that-rahul-guy
2
laurentS/slowapi
fastapi
2
Limit rate issue
I've tested limit rate locally and it works fine. After I deployed application on AWS, rates did't work at all until I set redis as storage. But even with redis, rate limit seems to be broken. Limit is exceeded after ~10th attempt, and I've set limit to 5. I've checked redis value for the key inserted by limiter, and I think it did not count every attempt. I'm using FastAPI 0.45.0 and slowapi 0.1.1
closed
2020-04-23T12:32:22Z
2020-05-26T15:38:41Z
https://github.com/laurentS/slowapi/issues/2
[]
ghost
12
ageitgey/face_recognition
machine-learning
1,022
face verification
* face_recognition version: 1.2.3 * Python version:3.6 * Operating System: centos7 ### Description This work is very helpful to check if two images come from the same person. But my case is I have a pool of faces of same person. How can I improve the accuracy by comparing my probe image with the pool rather than random chosen one? Can I get one embedding with a pool of same person face images?
closed
2020-01-10T03:18:50Z
2021-08-09T10:27:02Z
https://github.com/ageitgey/face_recognition/issues/1022
[]
flyingmrwang
7
wkentaro/labelme
deep-learning
807
[QUESTION]
I have this in Python and it works fine. subprocess.Popen(['labelme_json_to_dataset', json_path, '-o', out_path], stdout = subprocess.PIPE) There is a way to run labelme_json_to_dataset from C#?
closed
2020-11-30T22:33:02Z
2020-12-07T10:43:56Z
https://github.com/wkentaro/labelme/issues/807
[ "issue::bug" ]
Dzsepetto
1
thtrieu/darkflow
tensorflow
357
Color change after 'resize_input' function
The 'resize_input' function in darkflow/net/yolo/predict.py, there is one line 'imsz = imsz[:,:,::-1]'. It seems like the image loses 'red' color after this line. Anyone could answer why it is required to remove 'red' color from the image?
open
2017-07-27T04:20:42Z
2017-07-27T04:20:42Z
https://github.com/thtrieu/darkflow/issues/357
[]
nuitvolgit
0
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,434
[Bug]: pytorch rocm 6.0 with 7600xt = HSA_STATUS_ERROR_INVALID_ISA
### Checklist - [X] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? I have 7600xt now, and some error coming out. the error occur while start the stalbe diffusion webui 1.8.0 with pytorch 2.1.2 rocm 6.0. it is same with pytorch 2.4.0 rocm 6.0 even pytorch 2.3.0 the error is ` rocdevice.cpp :2728: 0225198107 us: [pid:4807 tid:0x7d4fc8fff640] Callback: Queue 0x7d4de2e00000 aborting with error : HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid. code: 0x100f ` but it is fine with pytorch 2.2.0 with rocm 5.7 of course, I have setting with export HSA_OVERRIDE_GFX_VERSION=11.0.0 ### Steps to reproduce the problem with 7600xt or 7600 install rocm and pytorch with rocm 6.0 at python venv environement. and run `HSA_OVERRIDE_GFX_VERSION=11.0.0 webui.sh` ### What should have happened? please support rx 7600xt pytorch rocm 6 version ### What browsers do you use to access the UI ? Mozilla Firefox ### Sysinfo I will upload the sysinfo But now I can upload rocminfo now ===================== HSA System Attributes ===================== Runtime Version: 1.1 System Timestamp Freq.: 1000.000000MHz Sig. Max Wait Duration: 18446744073709551615 (0xFFFFFFFFFFFFFFFF) (timestamp count) Machine Model: LARGE System Endianness: LITTLE Mwaitx: DISABLED DMAbuf Support: YES ========== HSA Agents ========== ******* Agent 1 ******* Name: AMD Ryzen 5 5600 6-Core Processor Uuid: CPU-XX Marketing Name: AMD Ryzen 5 5600 6-Core Processor Vendor Name: CPU Feature: None specified Profile: FULL_PROFILE Float Round Mode: NEAR Max Queue Number: 0(0x0) Queue Min Size: 0(0x0) Queue Max Size: 0(0x0) Queue Type: MULTI Node: 0 Device Type: CPU Cache Info: L1: 32768(0x8000) KB Chip ID: 0(0x0) ASIC Revision: 0(0x0) Cacheline Size: 64(0x40) Max Clock Freq. (MHz): 3500 BDFID: 0 Internal Node ID: 0 Compute Unit: 12 SIMDs per CU: 0 Shader Engines: 0 Shader Arrs. per Eng.: 0 WatchPts on Addr. Ranges:1 Features: None Pool Info: Pool 1 Segment: GLOBAL; FLAGS: FINE GRAINED Size: 32775240(0x1f41c48) KB Allocatable: TRUE Alloc Granule: 4KB Alloc Alignment: 4KB Accessible by all: TRUE Pool 2 Segment: GLOBAL; FLAGS: KERNARG, FINE GRAINED Size: 32775240(0x1f41c48) KB Allocatable: TRUE Alloc Granule: 4KB Alloc Alignment: 4KB Accessible by all: TRUE Pool 3 Segment: GLOBAL; FLAGS: COARSE GRAINED Size: 32775240(0x1f41c48) KB Allocatable: TRUE Alloc Granule: 4KB Alloc Alignment: 4KB Accessible by all: TRUE ISA Info: ******* Agent 2 ******* Name: gfx1102 Uuid: GPU-XX Marketing Name: AMD Radeon™ RX 7600 XT Vendor Name: AMD Feature: KERNEL_DISPATCH Profile: BASE_PROFILE Float Round Mode: NEAR Max Queue Number: 128(0x80) Queue Min Size: 64(0x40) Queue Max Size: 131072(0x20000) Queue Type: MULTI Node: 1 Device Type: GPU Cache Info: L1: 32(0x20) KB L2: 2048(0x800) KB Chip ID: 29824(0x7480) ASIC Revision: 0(0x0) Cacheline Size: 64(0x40) Max Clock Freq. (MHz): 2539 BDFID: 10240 Internal Node ID: 1 Compute Unit: 32 SIMDs per CU: 2 Shader Engines: 2 Shader Arrs. per Eng.: 2 WatchPts on Addr. Ranges:4 Coherent Host Access: FALSE Features: KERNEL_DISPATCH Fast F16 Operation: TRUE Wavefront Size: 32(0x20) Workgroup Max Size: 1024(0x400) Workgroup Max Size per Dimension: x 1024(0x400) y 1024(0x400) z 1024(0x400) Max Waves Per CU: 32(0x20) Max Work-item Per CU: 1024(0x400) Grid Max Size: 4294967295(0xffffffff) Grid Max Size per Dimension: x 4294967295(0xffffffff) y 4294967295(0xffffffff) z 4294967295(0xffffffff) Max fbarriers/Workgrp: 32 Packet Processor uCode:: 52 SDMA engine uCode:: 16 IOMMU Support:: None Pool Info: Pool 1 Segment: GLOBAL; FLAGS: COARSE GRAINED Size: 16760832(0xffc000) KB Allocatable: TRUE Alloc Granule: 4KB Alloc Alignment: 4KB Accessible by all: FALSE Pool 2 Segment: GLOBAL; FLAGS: EXTENDED FINE GRAINED Size: 16760832(0xffc000) KB Allocatable: TRUE Alloc Granule: 4KB Alloc Alignment: 4KB Accessible by all: FALSE Pool 3 Segment: GROUP Size: 64(0x40) KB Allocatable: FALSE Alloc Granule: 0KB Alloc Alignment: 0KB Accessible by all: FALSE ISA Info: ISA 1 Name: amdgcn-amd-amdhsa--gfx1102 Machine Models: HSA_MACHINE_MODEL_LARGE Profiles: HSA_PROFILE_BASE Default Rounding Mode: NEAR Default Rounding Mode: NEAR Fast f16: TRUE Workgroup Max Size: 1024(0x400) Workgroup Max Size per Dimension: x 1024(0x400) y 1024(0x400) z 1024(0x400) Grid Max Size: 4294967295(0xffffffff) Grid Max Size per Dimension: x 4294967295(0xffffffff) y 4294967295(0xffffffff) z 4294967295(0xffffffff) FBarrier Max Size: 32 *** Done *** ### Console logs ```Shell no module 'xformers'. Processing without... no module 'xformers'. Processing without... No module 'xformers'. Proceeding without it. Loading weights [6ce0161689] from /stable_diffusion/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.safetensors Running on local URL: http://127.0.0.1:7860 To create a public link, set `share=True` in `launch()`. Creating model from config: /stable_diffusion/stable-diffusion-webui/configs/v1-inference.yaml Startup time: 11.0s (prepare environment: 3.4s, import torch: 4.0s, import gradio: 0.8s, setup paths: 1.1s, other imports: 0.5s, load scripts: 0.2s, create ui: 0.4s, gradio launch: 0.6s). Applying attention optimization: Doggettx... done. Model loaded in 13.5s (load weights from disk: 0.8s, create model: 0.3s, apply weights to model: 11.8s, calculate empty prompt: 0.4s). :0:rocdevice.cpp :2728: 0960471930 us: [pid:7379 tid:0x7932b7dff640] Callback: Queue 0x793124600000 aborting with error : HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid. code: 0x100f ./webui.sh: 292: 7379 (core dumped) "${python_cmd}" -u "${LAUNCH_SCRIPT}" "$@" ``` ### Additional information _No response_
closed
2024-04-03T03:59:29Z
2025-02-24T14:28:38Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15434
[ "bug-report" ]
neem693
15
zwczou/weixin-python
flask
54
python3中没有basestring
环境:python3.7 微信消息推送出现 `NameError: name 'basestring' is not defined` 我目前解决方案是在msg.py 内添加了一行 ```python3 basestring = (str, bytes) ```
closed
2019-10-19T11:51:15Z
2019-10-20T09:51:53Z
https://github.com/zwczou/weixin-python/issues/54
[]
vaakian
2
modelscope/modelscope
nlp
838
Qwen1.5自我认知微调 官方教程运行报错ValueError: malformed node
运行报错 [Qwen1.5自我认知微调 官方教程 ](https://modelscope.cn/docs/Qwen1.5%E5%85%A8%E6%B5%81%E7%A8%8B%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5) ValueError: malformed node or string ![image.png](https://ucc.alicdn.com/pic/developer-ecology/p5al3zuywsdkm_8f6da23790b848289cc6131644653185.png) ![image.png](https://ucc.alicdn.com/pic/developer-ecology/p5al3zuywsdkm_a4d7097b57db4476854bfd203708b676.png) 感觉是json数据格式的问题
closed
2024-04-22T10:42:29Z
2024-05-29T01:51:11Z
https://github.com/modelscope/modelscope/issues/838
[ "Stale" ]
alexhmyang
4
mckinsey/vizro
data-visualization
175
How do I get Vizro to run in a Google Colab Notebook?
### Question Im using a Google Colab Notebook due to my need to access a BigQuery instance in which I dont have access to other than via login with a google account. Im not so sure how to make it work. Using the following snippet doesnt work as expected Vizro().build(dashboard=dashboard).run() ### Code/Examples _No response_ ### Other information _No response_ ### vizro version _No response_ ### Python version _No response_ ### OS _No response_ ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
closed
2023-11-16T12:40:02Z
2024-10-30T13:17:07Z
https://github.com/mckinsey/vizro/issues/175
[ "General Question :question:" ]
gbabeleda
5
Anjok07/ultimatevocalremovergui
pytorch
1,098
bugg
I cant procesing this music whyy pls fix it
open
2024-01-10T15:10:57Z
2024-01-11T18:30:16Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1098
[]
Plsdonthackmy
1
netbox-community/netbox
django
18,328
'GenericRel' object has no attribute 'verbose_name' error when trying to search something on Netbox
### Deployment Type Self-hosted ### Triage priority N/A ### NetBox Version v4.2.0 ### Python Version 3.10 ### Steps to Reproduce 1. Upgrade Netbox 2. Connect as a user 3. Try to search something (like an IP adress) on the search bar ### Expected Behavior Not having the issue below ### Observed Behavior This error occurs when you try to search for something using the search bar: ``` <class 'AttributeError'> 'GenericRel' object has no attribute 'verbose_name' Version Python: 3.10.12 Version NetBox: 4.2.0 Plug-ins: None installed ``` Screenshot of the error : ![image](https://github.com/user-attachments/assets/11cbe642-0e51-4bc1-b5d3-2bd86641aec4)
closed
2025-01-07T15:24:37Z
2025-01-07T15:30:19Z
https://github.com/netbox-community/netbox/issues/18328
[ "type: bug", "status: duplicate" ]
TheGuardianLight
1
jupyterhub/repo2docker
jupyter
1,041
Current RStudio version does not support R 4.1.0 graphics engine
### Bug description [RStudio v1.2.5001](https://github.com/jupyterhub/repo2docker/blob/81e1e39/repo2docker/buildpacks/_r_base.py#L7-L10) does not support the R graphics engine v14 that comes with R v4.1.0 ("Camp Pontanezen") (see [release notes](https://stat.ethz.ch/pipermail/r-announce/2021/000670.html)). #### Expected behaviour No warning message. #### Actual behaviour ``` Warning message: R graphics engine version 14 is not supported by this version of RStudio. The Plots tab will be disabled until a newer version of RStudio is installed. ``` ### How to reproduce 1. [![Binder](https://mybinder.org/badge.svg)](https://gke.mybinder.org/v2/gl/fkohrt%2FRMarkdown-sandbox/f5d8582b?urlpath=rstudio) ([source repo](https://gitlab.com/fkohrt/RMarkdown-sandbox/-/tree/f5d8582b)) 2. Enter `R.version.string` (leading `R version 4.1.0 (2021-05-18)`) 3. Get warning message ### Your personal set up Using `mybinder.org`. ### Related information See also rstudio/rstudio#8383.
closed
2021-05-21T11:04:43Z
2022-01-25T18:03:07Z
https://github.com/jupyterhub/repo2docker/issues/1041
[]
fkohrt
12
Evil0ctal/Douyin_TikTok_Download_API
fastapi
270
获取抖音视频数据失败!原因:SyntaxError: 缺少 ';'
安装解析库:pip install douyin-tiktok-scraper 使用示例代码,Win10 本地测试运行成功,同样的脚本放到 Windows Server 2019 以及 Windows Server 2008 报错: 正在获取抖音视频数据... 获取抖音视频数据失败!原因:SyntaxError: 缺少 ';' Win10的Python版本为:Python 3.11.0 pip安装包版本:Successfully installed Brotli-1.1.0 PyExecJS-1.5.1 douyin-tiktok-scraper-1.2.8 orjson-3.9.7 Windows Server 2019 的Python版本:Python 3.11.3 pip安装包版本:Successfully installed douyin_tiktok_scraper-1.2.8 在Windows Server 2019也尝试换过Python3.8 也是报:获取抖音视频数据失败!原因:SyntaxError: 缺少 ';' 以及在Windows Server 2008 运行也报错:获取抖音视频数据失败!原因:SyntaxError: 缺少 ';' ![39424](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/33460342/bd7913cc-1c42-484d-8388-9480b9911157) ![1088](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/33460342/997fac79-ab4d-45af-8e92-d31bf28ebf16)
closed
2023-09-11T15:41:22Z
2023-09-12T01:47:38Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/270
[ "BUG" ]
shimxx
1
chainer/chainer
numpy
8,210
Apply pairwise parameterization selectively in tests
#8164 applied pairwise parameterization in tests unconditionally in `chainer_tests` and `chainerx_tests`, but I think it's too dangerous. Some tests might be designed carefully in a way that omitting some of their combination would lead to degradation of the tests. Ideally we should apply pairwise testing only selectively in those tests that are * taking large amount of time, and * their parameterization are not easily reduced by hand. We should also provide a method to switch whether to enable pairwise parameterization, and only enable it in Travis CI (otherwise we don't have timeout issue). However it would take too much time to check existing tests manually. We have an immediate timeout issue in Travis CI. So I suggest at first adding a method to switch the mode as mentioned above. Initially choices would be "always" and "never" (default), and later we would add another mode "selective" (or whatever name) in which mode pairwise parameterization would be applied only in designated tests.
closed
2019-10-01T14:11:22Z
2020-02-05T07:39:44Z
https://github.com/chainer/chainer/issues/8210
[ "cat:test", "stale", "prio:low" ]
niboshi
2
huggingface/peft
pytorch
1,988
TypeError: WhisperForConditionalGeneration.forward() got an unexpected keyword argument 'input_ids'
### System Info peft version = '0.12.0' transformers version = '4.41.2' accelerate version = '0.30.1' bitsandbytes version = '0.43.3' pytorch version = '2.1.2' ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [X] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction import torch from transformers import WhisperForConditionalGeneration from peft import get_peft_model, LoraConfig, TaskType, prepare_model_for_kbit_training bnb_config = BitsAndBytesConfig(load_in_8bit=True) whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", quantization_config = bnb_config, device_map='auto') quantized_model = prepare_model_for_kbit_training(whisper_model ) peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, target_modules=["q_proj", "v_proj"], r=32, lora_alpha=64, lora_dropout=0.1) final_model = get_peft_model(quantized_model , peft_config) final_model(torch.zeros([1, 80, 3000])) # torch.zeros is just used as a dummy input ### Expected behavior This TypeError that appears to be caused by recent changes in the peft library. I found similar codes run fine but whenever I try to run the same code it rises this Error. A potential workaround is to create a custom WhisperForConditionGeneration subclass, modifying the forward method to accept "input_ids" and rename it to "input_features" inside the body of forward method. However, this solution seems inefficient.
closed
2024-08-02T17:48:46Z
2025-03-11T15:50:14Z
https://github.com/huggingface/peft/issues/1988
[]
YOUSEFNANIS
6
OFA-Sys/Chinese-CLIP
nlp
35
基于提供的权重,无法复现clip_cn_vit-b-16结果
1. 使用你们提供的数据集(Flickr30k-CN)及pretrain权重,运行代码,无法得到预期结果。 {"score": 74.3, "mean_recall": 74.3, "r1": 54.42, "r5": 80.82000000000001, "r10": 87.66000000000001}} <img width="434" alt="image" src="https://user-images.githubusercontent.com/19340566/209259689-5d4f7b4f-715c-4a4b-a1ea-1f7ad610a7b0.png"> <img width="1920" alt="image" src="https://user-images.githubusercontent.com/19340566/209259632-e1465c76-af4d-4587-bb7d-a4eaf2bd4f6e.png"> 启动脚本为: <img width="640" alt="image" src="https://user-images.githubusercontent.com/19340566/209259764-dcb4b5df-b2ff-479d-a225-145094c5af13.png"> 是不是某个超参不对?
closed
2022-12-23T02:37:36Z
2022-12-23T02:48:27Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/35
[]
Maycbj
2
nl8590687/ASRT_SpeechRecognition
tensorflow
191
训练报错,specified in either feed_devices or fetch_devices was not found in the Graph
![image](https://user-images.githubusercontent.com/42256557/82965352-757d2e80-9ffa-11ea-8dc1-abe3158d17a2.png) 2020-05-27 01:02:04.419862: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10869 MB memory) -> physical GPU (device: 0, name: Tesla K80, pci bus id: 0001:00:00.0, compute capability: 3.7) Traceback (most recent call last): File "train_mspeech.py", line 48, in <module> ms.TrainModel(datapath, epoch = 50, batch_size = 16, save_step = 500) File "/root/ASRT_SpeechRecognition/SpeechModel251.py", line 187, in TrainModel self.TestModel(self.datapath, str_dataset='train', data_count = 4) File "/root/ASRT_SpeechRecognition/SpeechModel251.py", line 250, in TestModel pre = self.Predict(data_input, data_input.shape[0] // 8) File "/root/ASRT_SpeechRecognition/SpeechModel251.py", line 305, in Predict base_pred = self.base_model.predict(x = x_in) File "/anaconda/envs/python36/lib/python3.6/site-packages/keras/engine/training.py", line 1462, in predict callbacks=callbacks) File "/anaconda/envs/python36/lib/python3.6/site-packages/keras/engine/training_arrays.py", line 324, in predict_loop batch_outs = f(ins_batch) File "/anaconda/envs/python36/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py", line 3473, in __call__ self._make_callable(feed_arrays, feed_symbols, symbol_vals, session) File "/anaconda/envs/python36/lib/python3.6/site-packages/tensorflow_core/python/keras/backend.py", line 3410, in _make_callable callable_fn = session._make_callable_from_options(callable_opts) File "/anaconda/envs/python36/lib/python3.6/site-packages/tensorflow_core/python/client/session.py", line 1505, in _make_callable_from_options return BaseSession._Callable(self, callable_options) File "/anaconda/envs/python36/lib/python3.6/site-packages/tensorflow_core/python/client/session.py", line 1460, in __init__ session._session, options_ptr) tensorflow.python.framework.errors_impl.InvalidArgumentError: Tensor the_input:0, specified in either feed_devices or fetch_devices was not found in the Graph
closed
2020-05-27T01:15:55Z
2020-05-27T04:22:35Z
https://github.com/nl8590687/ASRT_SpeechRecognition/issues/191
[]
JIANG3330
1
microsoft/unilm
nlp
1,261
DeltaLm: the model contains only the weights, where is model's config?
I am trying to use the model for inference using fairseq like: import torch from deltalm.models.deltalm import DeltaLMModel model = DeltaLMModel.from_pretrained( model_dir, checkpoint_file=model_name, bpe='sentencepiece', sentencepiece_model=spm) and I get this error : RuntimeError: Neither args nor cfg exist in state keys = dict_keys(['weights']) the deltalm-base.pt contains only the model's weights. how can I use the model properly for inference ?
open
2023-08-21T04:31:02Z
2023-08-27T03:39:10Z
https://github.com/microsoft/unilm/issues/1261
[]
Khaled-Elsaka
2
modin-project/modin
data-science
6,767
Provide the ability to use experimental functionality when experimental mode is not enabled globally via an environment variable.
Example where it can be useful: ```python import modin.pandas as pd df = pd.DataFrame([1,2,3,4]) # [some code] with modin.utils.enable_exp_mode(): # this import has side effects that will need to be removed when leaving the context # for example: # 1. `IsExperimental.put(True)` # 2. `setattr(DataFrame, "to_pickle_distributed", to_pickle_distributed)` # 3. Modification of internal factory and IO classes from modin.experimental.pandas import read_pickle_distributed, to_pickle_distributed to_pickle_distributed(df, "test_file*.pkl") # [some code] new_df = read_pickle_distributed("test_file*.pkl") ```
closed
2023-11-23T16:07:58Z
2023-12-08T16:31:15Z
https://github.com/modin-project/modin/issues/6767
[ "new feature/request 💬", "P1" ]
anmyachev
0
graphql-python/graphene-django
django
1,000
v2.11.0: "lookup_required" with django_filters.LookupChoiceFilter()
v2.11.0 seems to have a problem with `django_filters.LookupChoiceFilter()` in a `django_filters.FilterSet` class. A valid filter value in query will result in a `ValidationError: ['{"FooBar": [{"message": "Select a lookup.", "code": "lookup_required"}]}']` I updated graphene-django from v2.10.1 to v2.11.0 in our project. This breaks existing tests. This happens with django-filter v2.3.0 and v2.2
open
2020-07-07T08:40:06Z
2020-07-07T08:40:06Z
https://github.com/graphql-python/graphene-django/issues/1000
[]
jedie
0
streamlit/streamlit
machine-learning
10,160
Expose OAuth errors during `st.login`
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary We're soon launching native authentication in Streamlit (see #8518). One thing we left out for now is handling errors that appear during the OAuth flow. It would be great to either handle them automatically (e.g. by showing a dialog or toast) or exposing them programmatically. ### Why? These errors should be very rare in Streamlit because many errors are handled directly in the OAuth flow by the identity provider and [most possible errors that are propagated back to the app](https://www.oauth.com/oauth2-servers/server-side-apps/possible-errors/) are due to a) wrong configuration (which we usually catch before even initiating the OAuth flow), b) wrong implementation (which we control), or c) the server of the identity provider being down (which shouldn't happen often for the major providers). But errors can still happen – the most prominent example we found during testing is when the user clicks "Cancel" on the consent screen shown when logging in for the first time. And there might be others we didn't think about yet. ### How? Two possible ways: 1. Automatically show a dialog or toast with the error code and potentially error description and error URI. Note that OAuth recommends showing a custom error message to the user instead of showing the error code and error description directly. But I think in our case (where these errors are very rare), it might be fine to just show that and not require the developer to implement it themselves. We should probably have a parameter on `st.login` to disable this automatic notification in case the developer wants to handle the error themselves (see 2). 2. Expose the error details programmatically. One way would be to put it into `st.user` as keys `error`, `error_description` (optional), and `error_uri` (optional). In that case, we should automatically clear these items on the next rerun, otherwise it becomes very hard to only show the error when it happens. Another possible approach would be to have an `on_error` callback on `st.login`. But a) we'd need to pass the error details to this callback, which would make it work a bit differently than our callbacks (currently) work and b) it's a bit more cumbersome to work with this in practice because you often have to stick the error message into `st.session_state` if you want to show it somewhere within the app. ### Additional Context _No response_
open
2025-01-10T23:32:58Z
2025-01-10T23:33:46Z
https://github.com/streamlit/streamlit/issues/10160
[ "type:enhancement", "feature:st.user", "feature:st.login" ]
jrieke
1
ipython/ipython
jupyter
14,489
Do not use mixed units in timeit output
<!-- This is the repository for IPython command line, if you can try to make sure this question/bug/feature belong here and not on one of the Jupyter repositories. If it's a generic Python/Jupyter question, try other forums or discourse.jupyter.org. If you are unsure, it's ok to post here, though, there are few maintainer so you might not get a fast response. --> Timeit reports mean and std dev in different units in some cases, e.g. the mean is in a different order of magnitude from the std. ``` In [1]: from time import sleep In [2]: %timeit sleep(0.001) 1.08 ms ± 11.4 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each) ``` This is pretty hard to parse and violates best practices of reporting value and uncertainty in the same units. The preferred output would be: ``` In [1]: from time import sleep In [2]: %timeit sleep(0.001) 1.080 ± 0.011 ms per loop (mean ± std. dev. of 7 runs, 1,000 loops each) ```
open
2024-07-25T09:29:21Z
2024-10-16T02:04:51Z
https://github.com/ipython/ipython/issues/14489
[]
maxnoe
3
matterport/Mask_RCNN
tensorflow
2,623
Training for grayscale input | All layers training getting stopped
I am actually trying to run one experiment with grayscale input and for that I have already made required changes. The problem I am getting is that the code is able to run training for head epochs but it stopped for all layers training like after printing the layers' names there's no output related to anything, there's no error and gpu memory getting freed which means experiment is getting stopped when all layers training starts. I am not able to understand what is causing that? And how can I fix that? Let me know if I need to share anything to make my doubts more clear. Any help would be really appreciated. Thanks!
open
2021-07-06T18:02:17Z
2021-07-06T18:02:17Z
https://github.com/matterport/Mask_RCNN/issues/2623
[]
Dartum08
0
rgerum/pylustrator
matplotlib
17
Missing community guidelines
As part of the JOSS review I could not find the community guide lines for contributing. The docs do say how to report bugs (although the text refers to bitbucket but links to github!).
closed
2020-02-04T01:51:24Z
2020-02-04T08:51:43Z
https://github.com/rgerum/pylustrator/issues/17
[]
tacaswell
1
ivy-llc/ivy
numpy
28,334
Fix Frontend Failing Test: tensorflow - math.tensorflow.math.is_strictly_increasing
To-do List: https://github.com/unifyai/ivy/issues/27499
closed
2024-02-19T17:27:12Z
2024-02-20T09:26:02Z
https://github.com/ivy-llc/ivy/issues/28334
[ "Sub Task" ]
Sai-Suraj-27
0
Johnserf-Seed/TikTokDownload
api
291
直接运行 example.py 报错
[ 💻 ]:Windows平台 [ 🗻 ]:获取最新版本号中! [ 🚩 ]:目前 13043 版本已是最新 [ 警告 ]:未检测到命令,将使用配置文件进行批量下载! [ 提示 ]:读取本地配置完成! [ 提示 ]:为您下载多个视频! [ 提示 ]:用户的sec_id=MS4wLjABAAAA3nckmLU8MKXB4Aao7ZOOLaHIRCJG5AzKMDRh_6WMkU4 [ 提示 ]:获取用户昵称失败! 请检查是否发布过作品,发布后请重新运行本程序! [2023-01-19 20:25:29,460] - Log.py] - ERROR: [ 提示 ]:获取用户昵称失败! 请检查是否发布过作品,发布后请重新运行本程序! [2023-01-19 20:25:29,460] - Log.py] - ERROR: list index out of range
closed
2023-01-19T12:27:32Z
2023-01-22T09:06:22Z
https://github.com/Johnserf-Seed/TikTokDownload/issues/291
[ "故障(bug)", "额外求助(help wanted)", "无效(invalid)" ]
liu-runsen
2
microsoft/nni
pytorch
5,663
Does the trail_command in config file support the spaceholder?
I get a problem,I try to run my program with NNI Command "nnictl create --config config.yml --port 60001 --timestamp 88",and the trail-command in config.yml is "python framework.py --timestrap %timestrap%".
open
2023-08-16T03:00:36Z
2023-08-16T03:00:36Z
https://github.com/microsoft/nni/issues/5663
[]
Nnnaqooooo
0
sebp/scikit-survival
scikit-learn
307
LASSO Cox differences between packages
I have a list of genes and I have performed a Penalized Cox Model LASSO (cox_lasso = CoxnetSurvivalAnalysis(l1_ratio=1.0, alpha_min_ratio=0.01) to select the most useful prognostic genes to be included later in a multivariate Cox regression to generate a risk score. I have also used the R package glmnet (with the parameter family = "cox"), to perform LASSO but the list of genes I have obtained is different from the one I have obtained from this package. What are the differences between the two LASSO models? Which one is best for what I want to do? Thanks in advance.
closed
2022-09-20T21:07:04Z
2022-09-21T15:22:19Z
https://github.com/sebp/scikit-survival/issues/307
[]
alberto-mora
0
qubvel-org/segmentation_models.pytorch
computer-vision
782
smp.utils module is deprecated
I am following the example [cars segmentation](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb) In order to train my custom data, I have written a train.py ` if __name__ == '__main__': ENCODER = 'resnet34' ENCODER_WEIGHTS = 'imagenet' CLASSES = ['object'] ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation DEVICE = 'cuda' # create segmentation model with pretrained encoder model = smp.UnetPlusPlus( encoder_name=ENCODER, encoder_weights=ENCODER_WEIGHTS, classes=len(CLASSES), activation=ACTIVATION, ) preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS) DATA_DIR = 'data/MGD/' x_train_dir = os.path.join(DATA_DIR, 'train') y_train_dir = os.path.join(DATA_DIR, 'trainannot') x_valid_dir = os.path.join(DATA_DIR, 'val') y_valid_dir = os.path.join(DATA_DIR, 'valannot') train_dataset = Dataset( x_train_dir, y_train_dir, augmentation=get_training_augmentation(), preprocessing=get_preprocessing(preprocessing_fn), classes=CLASSES, ) valid_dataset = Dataset( x_valid_dir, y_valid_dir, augmentation=get_validation_augmentation(), preprocessing=get_preprocessing(preprocessing_fn), classes=CLASSES, ) train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True) valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False) loss = smp.utils.losses.DiceLoss() metrics = [ smp.utils.metrics.IoU(threshold=0.5), ] optimizer = torch.optim.Adam([ dict(params=model.parameters(), lr=0.0001), ]) train_epoch = smp_utils.train.TrainEpoch( model, loss=loss, metrics=metrics, optimizer=optimizer, device=DEVICE, verbose=True, ) valid_epoch = smp.utils.train.ValidEpoch( model, loss=loss, metrics=metrics, device=DEVICE, verbose=True, ) # train model for 40 epochs max_score = 0 for i in range(0, 40): print('\nEpoch: {}'.format(i)) train_logs = train_epoch.run(train_loader) # valid_logs = valid_epoch.run(valid_loader) # do something (save model, change lr, etc.) if max_score < train_logs['iou_score']: max_score = train_logs['iou_score'] torch.save(model, 'checkpoints/best_model.pth') print('Model saved!') if i == 25: optimizer.param_groups[0]['lr'] = 1e-5 print('Decrease decoder learning rate to 1e-5!') ` However,it shows smp.utils module is deprecated. ![1686623606923](https://github.com/qubvel/segmentation_models.pytorch/assets/40727425/6f74eef2-4cc5-4efc-b142-7d1d6fa8b1c1) ![1686623641702](https://github.com/qubvel/segmentation_models.pytorch/assets/40727425/88ad01d9-74eb-46d1-b4c8-b00618b845f5) How to use the latest module to avoid this warning?Maybe you can update the jupyter notebook. Thank you for your attention.
closed
2023-06-13T02:40:48Z
2023-10-02T01:49:15Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/782
[ "Stale" ]
ningmenghongcha
5
ipython/ipython
data-science
14,157
Magics with toplevel await
Hi, It would be nice to be able to use top level await with magics, specifically `%time` and `%%time`. For example: ``` async def foo(): return 'bar' # This works await foo() # This fails with SyntaxError: 'await' outside function %time await foo() ```
closed
2023-09-07T22:12:03Z
2023-12-27T13:00:05Z
https://github.com/ipython/ipython/issues/14157
[]
mlucool
6
sunscrapers/djoser
rest-api
813
serializer for /users/me/ PATCH
Based on the [docs](https://djoser.readthedocs.io/en/latest/base_endpoints.html#user), we can make a `PATCH` request to `/users/me/` by giving `{{ User.FIELDS_TO_UPDATE }}`. I have `FIELDS_TO_UPDATE` defined in my custom user model: ```python class CustomUser(AbstractBaseUser): email = models.EmailField( verbose_name="email address", max_length=255, unique=True, ) first_name = models.CharField(max_length=150) last_name = models.CharField(max_length=150) # ... objects = CustomUserManager() USERNAME_FIELD = "email" REQUIRED_FIELDS = ["first_name", "last_name"] FIELDS_TO_UPDATE = ["first_name", "last_name"] ``` i have also set the `serilizers` like this: ```python DJOSER = { # ... "SERIALIZERS": { "current_user": "customauth.serializers.UserSerializer", "user": "customauth.serializers.UserSerializer", "user_update": "customauth.serializers.UserSerializer", }, ``` ```python class UserSerializer(BaseUserSerializer): class Meta(BaseUserSerializer.Meta): fields = ["id", "first_name", "last_name", "email"] ``` but serializer for `PATCH` request on `/users/me/` is not working properly and not showing `HTML form`. But for `PUT` it shows `HTML form` with `REQUIRED_FIELDS`. `PATCH`: ![chrome_sOlUvbE6h4](https://github.com/sunscrapers/djoser/assets/158845062/d5af3432-9053-4f73-b4c4-75af7c158c03) `PUT`: ![chrome_uwRiHdosLt](https://github.com/sunscrapers/djoser/assets/158845062/4d8a819d-c661-4112-99f2-7ee181c1882d) - Is there a serializer that needs to be set for [SERIALIZERS](https://djoser.readthedocs.io/en/latest/settings.html#serializers) setting in `settings.py` to enable `HTML form` in `/users/me/` when using `PATCH`? - How should i set `FIELDS_TO_UPDATE`?
closed
2024-04-12T14:22:07Z
2024-04-13T10:45:51Z
https://github.com/sunscrapers/djoser/issues/813
[]
andypal333
1
exaloop/codon
numpy
642
Unable to get Fast API working
See here: I tried to get fast api working with codon. I like the idea of getting quite a bit of speed out of python. https://github.com/fastapi/fastapi/discussions/10096 This is probably user error but I was not able to get their sample hello world running with codon. It might be a dependency issue? Here is the simpliest code I could come up with: ``` from python import fastapi as fast from typing import Union #from fastapi import FastAPI app = fast.FastAPI() @app.get("/") def read_root(): return {"Hello": "World"} ``` I also tried without the decorator with the same error below: ```python from python import fastapi as fast from typing import Union app = fast.FastAPI() def read_root(request): return {"Hello": "World"} app.router.add_api_route("/", read_root, methods=["GET"]) ``` Error: ``` codon run main.py PyError: ((), ()) is not a callable object Raised from: pyobj.exc_check:0 /root/.codon/lib/codon/stdlib/internal/python.codon:1198:13 Backtrace: [0x7f37143126b7] pyobj.exc_check:0.882 at /root/.codon/lib/codon/stdlib/internal/python.codon:1198:13 [0x7f37143126f0] pyobj.exc_wrap:0[Ptr[byte],Ptr[byte]].883 at /root/.codon/lib/codon/stdlib/internal/python.codon:1201:9 [0x7f3714313a60] pyobj:pyobj.__call__:0[pyobj,Tuple[Partial.N.read_root:0[read_root:0,Tuple,KwTuple.N0]],KwTuple.N0].1033 at /root/.codon/lib/codon/stdlib/internal/python.codon:1225:68 [0x7f37143153d2] main.0 at /workspace/fast-api/main.py:11:1 Aborted ``` I made sure `export CODON_PYTHON=/usr/lib/python3.12/config-3.12-x86_64-linux-gnu/libpython3.12.so` is populated and other codon examples from the main site works on the machine. Im using ubuntu:latest docker container but was able to reproduce on a bare metal ubuntu machine as well. Any ideas?
open
2025-03-20T16:39:54Z
2025-03-21T16:27:49Z
https://github.com/exaloop/codon/issues/642
[]
michaelachrisco
1
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,365
[Bug]: protobuf==3.20.0 requirement breaks several extensions and offline mode
### Checklist - [ ] The issue exists after disabling all extensions - [ ] The issue exists on a clean installation of webui - [X] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? If you install any of those extensions (or had those installed prior to last stable WebUI-Update) : adetailer sd-webui-controlnet stable-diffusion-webui-wd14-tagger WebUI wont be able to start offline, since those extensions will download and install protobuf > 3.20.0 (currently "protobuf 4.25.4"). Uninstalling protobuf 4.25.4 and installing protobuf 3.20.0, will break the extensions mentioned above. (Looks like mediapipe, which is required for all above extentions, causes this compatibility problem) ``` python -m pip check mediapipe 0.10.14 has requirement protobuf<5,>=4.25.3, but you have protobuf 3.20.0. onnx 1.16.1 has requirement protobuf>=3.20.2, but you have protobuf 3.20.0. tensorflow-intel 2.17.0 has requirement protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 3.20.0. ``` When those extensions (and so the protobuf 4.25.4 is installed), the WebUI will not run in offline mode. However with internet access, on every run is "Installing requirements" is displayed and webui starts. When run in offline mode WebUI tries every time to download protobuf==3.20.0, fails and will not start: ``` venv "E:\WebUI\stable-diffusion-webui\venv\Scripts\Python.exe" Python 3.10.10 (tags/v3.10.10:aad5f6a, Feb 7 2023, 17:20:36) [MSC v.1929 64 bit (AMD64)] Version: v1.10.1 Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2 Installing requirements Traceback (most recent call last): File "E:\WebUI\stable-diffusion-webui\launch.py", line 48, in <module> main() File "E:\WebUI\stable-diffusion-webui\launch.py", line 39, in main prepare_environment() File "E:\WebUI\stable-diffusion-webui\modules\launch_utils.py", line 423, in prepare_environment run_pip(f"install -r \"{requirements_file}\"", "requirements") File "E:\WebUI\stable-diffusion-webui\modules\launch_utils.py", line 144, in run_pip return run(f'"{python}" -m pip {command} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}", live=live) File "E:\WebUI\stable-diffusion-webui\modules\launch_utils.py", line 116, in run raise RuntimeError("\n".join(error_bits)) RuntimeError: Couldn't install requirements. Command: "E:\WebUI\stable-diffusion-webui\venv\Scripts\python.exe" -m pip install -r "requirements_versions.txt" --prefer-binary Error code: 1 stdout: Requirement already satisfied: setuptools==69.5.1 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 1)) (69.5.1) Requirement already satisfied: GitPython==3.1.32 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 2)) (3.1.32) Requirement already satisfied: Pillow==9.5.0 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 3)) (9.5.0) Requirement already satisfied: accelerate==0.21.0 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 4)) (0.21.0) Requirement already satisfied: blendmodes==2022 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 5)) (2022) Requirement already satisfied: clean-fid==0.1.35 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 6)) (0.1.35) Requirement already satisfied: diskcache==5.6.3 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 7)) (5.6.3) Requirement already satisfied: einops==0.4.1 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 8)) (0.4.1) Requirement already satisfied: facexlib==0.3.0 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 9)) (0.3.0) Requirement already satisfied: fastapi==0.94.0 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 10)) (0.94.0) Requirement already satisfied: gradio==3.41.2 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 11)) (3.41.2) Requirement already satisfied: httpcore==0.15 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 12)) (0.15.0) Requirement already satisfied: inflection==0.5.1 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 13)) (0.5.1) Requirement already satisfied: jsonmerge==1.8.0 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 14)) (1.8.0) Requirement already satisfied: kornia==0.6.7 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 15)) (0.6.7) Requirement already satisfied: lark==1.1.2 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 16)) (1.1.2) Requirement already satisfied: numpy==1.26.2 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 17)) (1.26.2) Requirement already satisfied: omegaconf==2.2.3 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 18)) (2.2.3) Requirement already satisfied: open-clip-torch==2.20.0 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 19)) (2.20.0) Requirement already satisfied: piexif==1.1.3 in E:\WebUI\stable-diffusion-webui\venv\lib\site-packages (from -r requirements_versions.txt (line 20)) (1.1.3) stderr: WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<pip._vendor.urllib3.connection.HTTPSConnection object at 0x000001767A88C160>: Failed to establish a new connection: [WinError 10013] An attempt was made to access a socket in a way forbidden by its access permissions')': /simple/protobuf/ WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<pip._vendor.urllib3.connection.HTTPSConnection object at 0x000001767A88C490>: Failed to establish a new connection: [WinError 10013] An attempt was made to access a socket in a way forbidden by its access permissions')': /simple/protobuf/ WARNING: Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<pip._vendor.urllib3.connection.HTTPSConnection object at 0x000001767A88C640>: Failed to establish a new connection: [WinError 10013] An attempt was made to access a socket in a way forbidden by its access permissions')': /simple/protobuf/ WARNING: Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<pip._vendor.urllib3.connection.HTTPSConnection object at 0x000001767A88C7F0>: Failed to establish a new connection: [WinError 10013] An attempt was made to access a socket in a way forbidden by its access permissions')': /simple/protobuf/ WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<pip._vendor.urllib3.connection.HTTPSConnection object at 0x000001767A88C9A0>: Failed to establish a new connection: [WinError 10013] An attempt was made to access a socket in a way forbidden by its access permissions')': /simple/protobuf/ ERROR: Could not find a version that satisfies the requirement protobuf==3.20.0 (from versions: none) ERROR: No matching distribution found for protobuf==3.20.0 ``` currently i had to uninstall all above extentions and do: ``` pip uninstall -y protobuf mediapipe onnxruntime onnxruntime-gpu open-clip-torch tensorboard open-clip-torch tensorflow-intel onnx insightface tensorflow open-clip-torch ``` After that webui will need to download its reqs again, but the offline mode will work after installing those ### Steps to reproduce the problem 1. Install any of the extentions above 2. start webui online so it could download the reqs 3. close webui 4. start webui offline 5. webui wont start ### What should have happened? webui should be able to start offline with following extentions: adetailer sd-webui-controlnet stable-diffusion-webui-wd14-tagger ### What browsers do you use to access the UI ? Mozilla Firefox ### Sysinfo ``` { "Platform": "Windows-10-10.0.19045-SP0", "Python": "3.10.10", "Version": "v1.10.1", "Commit": "82a973c04367123ae98bd9abdf80d9eda9b910e2", "Git status": "On branch master\nYour branch is up to date with 'origin/master'.\n\nUntracked files:\n (use \"git add <file>...\" to include in what will be committed)\n\t-extensions-break-webui/\n\txSTARTME.bat\n\tGitBash.bat\n\tztestTorch.py\n\nnothing added to commit but untracked files present (use \"git add\" to track)", "Script path": "E:\\WebUI\\stable-diffusion-webui", "Data path": "E:\\WebUI\\stable-diffusion-webui", "Extensions dir": "E:\\WebUI\\stable-diffusion-webui\\extensions", "Checksum": "d43551809fb043246971204f163c2a4208e5c7321330b2423569f924d7b70354", "Commandline": [ "launch.py", "--no-half-vae", "--opt-sdp-no-mem-attention", "--opt-channelslast", "--theme", "dark", "--ckpt-dir", "E:\\WebUI\\RES\\model", "--embeddings-dir", "E:\\WebUI\\RES\\embedding", "--hypernetwork-dir", "E:\\WebUI\\RES\\hypernetwork", "--lora-dir", "E:\\WebUI\\RES\\lora", "--vae-dir", "E:\\WebUI\\RES\\vae", "--bsrgan-models-path", "E:\\WebUI\\RES\\upscalers\\BSRGAN", "--codeformer-models-path", "E:\\WebUI\\RES\\upscalers\\Codeformer", "--esrgan-models-path", "E:\\WebUI\\RES\\upscalers\\ESRGAN", "--gfpgan-models-path", "E:\\WebUI\\RES\\upscalers\\GFPGAN", "--ldsr-models-path", "E:\\WebUI\\RES\\upscalers\\LDSR", "--realesrgan-models-path", "E:\\WebUI\\RES\\upscalers\\RealESRGAN", "--scunet-models-path", "E:\\WebUI\\RES\\upscalers\\ScuNET", "--swinir-models-path", "E:\\WebUI\\RES\\upscalers\\SwinIR", "--dat-models-path", "E:\\WebUI\\RES\\upscalers\\DAT" ], "Torch env info": { "torch_version": "2.1.2+cu121", "is_debug_build": "False", "cuda_compiled_version": "12.1", "gcc_version": null, "clang_version": null, "cmake_version": null, "os": "Microsoft Windows 10 Pro", "libc_version": "N/A", "python_version": "3.10.10 (tags/v3.10.10:aad5f6a, Feb 7 2023, 17:20:36) [MSC v.1929 64 bit (AMD64)] (64-bit runtime)", "python_platform": "Windows-10-10.0.19045-SP0", "is_cuda_available": "True", "cuda_runtime_version": null, "cuda_module_loading": "LAZY", "nvidia_driver_version": "556.12", "nvidia_gpu_models": "GPU 0: NVIDIA GeForce RTX 3090 Ti", "cudnn_version": null, "pip_version": "pip3", "pip_packages": [ "numpy==1.26.2", "open-clip-torch==2.20.0", "pytorch-lightning==1.9.4", "torch==2.1.2+cu121", "torchdiffeq==0.2.3", "torchmetrics==1.4.0.post0", "torchsde==0.2.6", "torchvision==0.16.2+cu121" ], "conda_packages": null, "hip_compiled_version": "N/A", "hip_runtime_version": "N/A", "miopen_runtime_version": "N/A", "caching_allocator_config": "", "is_xnnpack_available": "True", "cpu_info": [ "Architecture=9", "CurrentClockSpeed=3501", "DeviceID=CPU0", "Family=107", "L2CacheSize=8192", "L2CacheSpeed=", "Manufacturer=AuthenticAMD", "MaxClockSpeed=3501", "Name=AMD Ryzen 9 3950X 16-Core Processor ", "ProcessorType=3", "Revision=28928" ] }, "Exceptions": [], "CPU": { "model": "AMD64 Family 23 Model 113 Stepping 0, AuthenticAMD", "count logical": 32, "count physical": 16 }, "RAM": { "total": "64GB", "used": "23GB", "free": "41GB" }, "Extensions": [ { "name": "a1111-sd-webui-tagcomplete", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\a1111-sd-webui-tagcomplete", "commit": "1c6bba2a3d0a8d2dec0c180873e5090dee654ada", "branch": "main", "remote": "https://github.com/DominikDoom/a1111-sd-webui-tagcomplete" }, { "name": "adetailer", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\adetailer", "commit": "25e7509fe018de8aa063a5f1902598f5eda0c06c", "branch": "main", "remote": "https://github.com/Bing-su/adetailer.git" }, { "name": "diffusion-noise-alternatives-webui", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\diffusion-noise-alternatives-webui", "commit": "7a3f0a6c6c25be46590dc66e67801322fb59ad9f", "branch": "main", "remote": "https://github.com/Seshelle/diffusion-noise-alternatives-webui" }, { "name": "sd-webui-controlnet", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-controlnet", "commit": "56cec5b2958edf3b1807b7e7b2b1b5186dbd2f81", "branch": "main", "remote": "https://github.com/Mikubill/sd-webui-controlnet" }, { "name": "sd-webui-freeu", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-freeu", "commit": "c618bb7f269c8428f4b6cc47fcac67084e050d19", "branch": "main", "remote": "https://github.com/ljleb/sd-webui-freeu" }, { "name": "sd-webui-vectorscope-cc", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-vectorscope-cc", "commit": "54720821c873d58c8898eeed8a9bb42f04d0249d", "branch": "main", "remote": "https://github.com/Haoming02/sd-webui-vectorscope-cc" }, { "name": "sdweb-merge-block-weighted-gui", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sdweb-merge-block-weighted-gui", "commit": "8a62a753e791a75273863dd04958753f0df7532f", "branch": "master", "remote": "https://github.com/bbc-mc/sdweb-merge-block-weighted-gui.git" }, { "name": "stable-diffusion-webui-wd14-tagger", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\stable-diffusion-webui-wd14-tagger", "commit": "f4b56ef07bc3c9c1a59f7d67fbf8479ffab2ab68", "branch": "master", "remote": "https://github.com/67372a/stable-diffusion-webui-wd14-tagger" } ], "Inactive extensions": [ { "name": "sd-webui-aspect-ratio-helper", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-aspect-ratio-helper", "commit": "99fcf9b0a4e3f8c8cac07b12d17b66f12297b828", "branch": "main", "remote": "https://github.com/thomasasfk/sd-webui-aspect-ratio-helper.git" }, { "name": "sd-webui-model-converter", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-model-converter", "commit": "e5488193d255a37216a31b9b99dd11a85dfd2ad9", "branch": "main", "remote": "https://github.com/Akegarasu/sd-webui-model-converter.git" }, { "name": "stable-diffusion-webui-daam", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\stable-diffusion-webui-daam", "commit": "0906c850fb70d7e4b296f9449763d48fa8d1e687", "branch": "master", "remote": "https://github.com/toriato/stable-diffusion-webui-daam.git" }, { "name": "stable-diffusion-webui-tokenizer", "path": "E:\\WebUI\\stable-diffusion-webui\\extensions\\stable-diffusion-webui-tokenizer", "commit": "ac6d541c7032e9f9c69c8ead2ed201302b06a4fe", "branch": "master", "remote": "https://github.com/AUTOMATIC1111/stable-diffusion-webui-tokenizer.git" } ], "Environment": { "COMMANDLINE_ARGS": " --no-half-vae --opt-sdp-no-mem-attention --opt-channelslast --theme dark --ckpt-dir \"E:\\WebUI\\RES\\model\" --embeddings-dir \"E:\\WebUI\\RES\\embedding\" --hypernetwork-dir \"E:\\WebUI\\RES\\hypernetwork\" --lora-dir \"E:\\WebUI\\RES\\lora\" --vae-dir \"E:\\WebUI\\RES\\vae\" --bsrgan-models-path \"E:\\WebUI\\RES\\upscalers\\BSRGAN\" --codeformer-models-path \"E:\\WebUI\\RES\\upscalers\\Codeformer\" --esrgan-models-path \"E:\\WebUI\\RES\\upscalers\\ESRGAN\" --gfpgan-models-path \"E:\\WebUI\\RES\\upscalers\\GFPGAN\" --ldsr-models-path \"E:\\WebUI\\RES\\upscalers\\LDSR\" --realesrgan-models-path \"E:\\WebUI\\RES\\upscalers\\RealESRGAN\" --scunet-models-path \"E:\\WebUI\\RES\\upscalers\\ScuNET\" --swinir-models-path \"E:\\WebUI\\RES\\upscalers\\SwinIR\" --dat-models-path \"E:\\WebUI\\RES\\upscalers\\DAT\"", "GRADIO_ANALYTICS_ENABLED": "False" }, "Config": { "samples_save": false, "samples_format": "jpg", "samples_filename_pattern": "[datetime<%Y%m%d_%H%M%S>]", "save_images_add_number": false, "grid_save": true, "grid_format": "jpg", "grid_extended_filename": true, "grid_only_if_multiple": true, "grid_prevent_empty_spots": false, "n_rows": -1, "enable_pnginfo": true, "save_txt": false, "save_images_before_face_restoration": false, "save_images_before_highres_fix": false, "save_images_before_color_correction": false, "jpeg_quality": 95, "export_for_4chan": true, "use_original_name_batch": true, "use_upscaler_name_as_suffix": false, "save_selected_only": true, "do_not_add_watermark": true, "temp_dir": "T:/Temp", "clean_temp_dir_at_start": true, "outdir_samples": "", "outdir_txt2img_samples": "T:\\_SD_GENS\\txt2img-images", "outdir_img2img_samples": "T:\\_SD_GENS\\img2img-images", "outdir_extras_samples": "T:\\_SD_GENS\\extras-images", "outdir_grids": "", "outdir_txt2img_grids": "E:\\WebUI\\RES\\img\\SD-out\\_SD_GENS\\x\\txt2img-grids", "outdir_img2img_grids": "E:\\WebUI\\RES\\img\\SD-out\\_SD_GENS\\x\\img2img-grids", "outdir_save": "E:\\WebUI\\RES\\img\\SD-out\\_SD_GENS", "save_to_dirs": true, "grid_save_to_dirs": true, "use_save_to_dirs_for_ui": false, "directories_filename_pattern": "W[width]xH[height]", "directories_max_prompt_words": 8, "ESRGAN_tile": 192, "ESRGAN_tile_overlap": 8, "realesrgan_enabled_models": [ "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B", "R-ESRGAN General 4xV3", "R-ESRGAN General WDN 4xV3", "R-ESRGAN AnimeVideo", "R-ESRGAN 2x+" ], "upscaler_for_img2img": "ESRGAN_4x", "face_restoration_model": "CodeFormer", "code_former_weight": 0.5, "face_restoration_unload": false, "show_warnings": false, "memmon_poll_rate": 8, "samples_log_stdout": false, "multiple_tqdm": true, "print_hypernet_extra": false, "unload_models_when_training": false, "pin_memory": false, "save_optimizer_state": false, "save_training_settings_to_txt": true, "dataset_filename_word_regex": "", "dataset_filename_join_string": " ", "training_image_repeats_per_epoch": 1, "training_write_csv_every": 500, "training_xattention_optimizations": false, "training_enable_tensorboard": false, "training_tensorboard_save_images": false, "training_tensorboard_flush_every": 120, "sd_model_checkpoint": "XXXXXXXXXXXXXXX-CUT-XXXXXXXXXXXXXXXXXXXXX", "sd_checkpoint_cache": 0, "sd_vae_checkpoint_cache": 0, "sd_vae": "sdxl_vae.safetensors", "sd_vae_as_default": true, "inpainting_mask_weight": 1.0, "initial_noise_multiplier": 1.0, "img2img_color_correction": false, "img2img_fix_steps": false, "img2img_background_color": "#ffffff", "enable_quantization": false, "enable_emphasis": true, "enable_batch_seeds": true, "comma_padding_backtrack": 20, "CLIP_stop_at_last_layers": 1, "upcast_attn": true, "use_old_emphasis_implementation": false, "use_old_karras_scheduler_sigmas": false, "use_old_hires_fix_width_height": false, "interrogate_keep_models_in_memory": false, "interrogate_return_ranks": false, "interrogate_clip_num_beams": 1, "interrogate_clip_min_length": 24, "interrogate_clip_max_length": 48, "interrogate_clip_dict_limit": 1500, "interrogate_clip_skip_categories": [], "interrogate_deepbooru_score_threshold": 0.5, "deepbooru_sort_alpha": true, "deepbooru_use_spaces": true, "deepbooru_escape": true, "deepbooru_filter_tags": "", "extra_networks_default_view": "cards", "extra_networks_default_multiplier": 0.8, "sd_hypernetwork": "None", "return_grid": true, "do_not_show_images": false, "add_model_hash_to_info": true, "add_model_name_to_info": true, "disable_weights_auto_swap": false, "send_seed": true, "send_size": true, "font": "", "js_modal_lightbox": true, "js_modal_lightbox_initially_zoomed": true, "show_progress_in_title": true, "samplers_in_dropdown": true, "dimensions_and_batch_together": true, "keyedit_precision_attention": 0.1, "keyedit_precision_extra": 0.05, "quicksettings": "sd_model_checkpoint,CLIP_stop_at_last_layers,eta_noise_seed_delta,sd_vae,extra_networks_default_multiplier,lora_apply_to_outputs", "ui_reorder": "override_settings, inpaint, sampler, checkboxes, hires_fix, dimensions, cfg, seed, batch, scripts", "ui_extra_networks_tab_reorder": "", "localization": "None", "show_progressbar": true, "live_previews_enable": true, "show_progress_grid": true, "show_progress_every_n_steps": 10, "show_progress_type": "Full", "live_preview_content": "Combined", "live_preview_refresh_period": 1000, "hide_samplers": [], "eta_ddim": 0.0, "eta_ancestral": 1.0, "ddim_discretize": "uniform", "s_churn": 0.0, "s_tmin": 0.0, "s_noise": 1.0, "eta_noise_seed_delta": 31337, "always_discard_next_to_last_sigma": false, "postprocessing_enable_in_main_ui": [], "postprocessing_operation_order": [], "upscaling_max_images_in_cache": 5, "disabled_extensions": [ "openpose-editor", "sd-webui-aspect-ratio-helper", "sd-webui-model-converter", "stable-diffusion-webui-daam", "stable-diffusion-webui-tokenizer", "ultimate-upscale-for-automatic1111" ], "sd_checkpoint_hash": "45a5febab2aac097e4af608a3ed2a23d3c34b547144a8872f6f9a06616c1a2a8", "ldsr_steps": 100, "ldsr_cached": false, "SWIN_tile": 192, "SWIN_tile_overlap": 8, "sd_lora": "None", "lora_apply_to_outputs": false, "tac_tagFile": "danbooru.csv", "tac_active": true, "tac_activeIn.txt2img": true, "tac_activeIn.img2img": true, "tac_activeIn.negativePrompts": true, "tac_activeIn.thirdParty": true, "tac_activeIn.modelList": "", "tac_activeIn.modelListMode": "Blacklist", "tac_maxResults": 30.0, "tac_showAllResults": true, "tac_resultStepLength": 100.0, "tac_delayTime": 100.0, "tac_useWildcards": true, "tac_useEmbeddings": true, "tac_useHypernetworks": true, "tac_useLoras": true, "tac_showWikiLinks": true, "tac_replaceUnderscores": true, "tac_escapeParentheses": true, "tac_appendComma": true, "tac_alias.searchByAlias": true, "tac_alias.onlyShowAlias": false, "tac_translation.translationFile": "None", "tac_translation.oldFormat": false, "tac_translation.searchByTranslation": true, "tac_extra.extraFile": "None", "tac_extra.onlyAliasExtraFile": false, "additional_networks_sort_models_by": "path name", "additional_networks_reverse_sort_order": false, "additional_networks_model_name_filter": "", "additional_networks_xy_grid_model_metadata": "", "additional_networks_hash_thread_count": 1.0, "additional_networks_back_up_model_when_saving": true, "additional_networks_show_only_safetensors": false, "additional_networks_show_only_models_with_metadata": "disabled", "additional_networks_max_top_tags": 20.0, "images_history_preload": false, "images_record_paths": true, "images_delete_message": true, "images_history_page_columns": 6.0, "images_history_page_rows": 6.0, "images_history_pages_perload": 20.0, "promptgen_names": "AUTOMATIC/promptgen-lexart, AUTOMATIC/promptgen-majinai-safe, AUTOMATIC/promptgen-majinai-unsafe", "promptgen_device": "gpu", "tac_extra.addMode": "Insert before", "additional_networks_max_dataset_folders": 20.0, "control_net_model_config": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-controlnet\\models\\cldm_v15.yaml", "control_net_models_path": "", "control_net_control_transfer": false, "control_net_no_detectmap": false, "control_net_only_midctrl_hires": true, "control_net_allow_script_control": false, "img_downscale_threshold": 4.0, "target_side_length": 4000.0, "no_dpmpp_sde_batch_determinism": false, "control_net_model_adapter_config": "E:\\WebUI\\stable-diffusion-webui\\extensions\\sd-webui-controlnet\\models\\sketch_adapter_v14.yaml", "control_net_detectedmap_dir": "E:\\WebUI\\RES\\img\\SD-out\\_SD_GENS\\detected_maps", "control_net_detectmap_autosaving": false, "control_net_skip_img2img_processing": false, "control_net_only_mid_control": false, "control_net_max_models_num": 3, "control_net_model_cache_size": 2, "control_net_monocular_depth_optim": false, "control_net_cfg_based_guidance": false, "tac_slidingPopup": true, "webp_lossless": false, "img_max_size_mp": 200.0, "extra_networks_add_text_separator": " ", "hidden_tabs": [], "uni_pc_variant": "bh1", "uni_pc_skip_type": "time_uniform", "uni_pc_order": 3, "uni_pc_lower_order_final": true, "control_net_sync_field_args": false, "arh_expand_by_default": false, "arh_ui_component_order_key": "MaxDimensionScaler, PredefinedAspectRatioButtons, PredefinedPercentageButtons", "arh_show_max_width_or_height": true, "arh_max_width_or_height": 1728, "arh_show_predefined_aspect_ratios": true, "arh_predefined_aspect_ratio_use_max_dim": false, "arh_predefined_aspect_ratios": "1:1, 2:3, 3:5 , 4:3, 16:9, 9:16, 21:9", "arh_show_predefined_percentages": true, "arh_predefined_percentages": "25, 50, 75, 125, 150, 175, 200", "arh_predefined_percentages_display_key": "Incremental/decremental percentage (-50%, +50%)", "save_mask": false, "save_mask_composite": false, "extra_networks_card_width": 0.0, "extra_networks_card_height": 0.0, "return_mask": false, "return_mask_composite": false, "arh_javascript_aspect_ratio_show": false, "arh_javascript_aspect_ratio": "1:1, 3:2, 4:3, 5:4, 16:9, 1.85:1, 2.35:1, 2.39:1, 2.40:1, 21:9, 1.375:1, 1.66:1, 1.75:1", "arh_hide_accordion_by_default": false, "disable_all_extensions": "none", "tac_useLycos": true, "tac_keymap": "{\n \"MoveUp\": \"ArrowUp\",\n \"MoveDown\": \"ArrowDown\",\n \"JumpUp\": \"PageUp\",\n \"JumpDown\": \"PageDown\",\n \"JumpToStart\": \"Home\",\n \"JumpToEnd\": \"End\",\n \"ChooseSelected\": \"Enter\",\n \"ChooseFirstOrSelected\": \"Tab\",\n \"Close\": \"Escape\"\n}", "tac_colormap": "{\n \"danbooru\": {\n \"-1\": [\"red\", \"maroon\"],\n \"0\": [\"lightblue\", \"dodgerblue\"],\n \"1\": [\"indianred\", \"firebrick\"],\n \"3\": [\"violet\", \"darkorchid\"],\n \"4\": [\"lightgreen\", \"darkgreen\"],\n \"5\": [\"orange\", \"darkorange\"]\n },\n \"e621\": {\n \"-1\": [\"red\", \"maroon\"],\n \"0\": [\"lightblue\", \"dodgerblue\"],\n \"1\": [\"gold\", \"goldenrod\"],\n \"3\": [\"violet\", \"darkorchid\"],\n \"4\": [\"lightgreen\", \"darkgreen\"],\n \"5\": [\"tomato\", \"darksalmon\"],\n \"6\": [\"red\", \"maroon\"],\n \"7\": [\"whitesmoke\", \"black\"],\n \"8\": [\"seagreen\", \"darkseagreen\"]\n }\n}", "arh_ui_javascript_selection_method": "Aspect Ratios Dropdown", "control_net_modules_path": "", "control_net_high_res_only_mid": false, "restore_config_state_file": "", "save_init_img": false, "outdir_init_images": "E:\\WebUI\\RES\\img\\SD-out\\_SD_GENS\\init-images", "SCUNET_tile": 256, "SCUNET_tile_overlap": 8, "randn_source": "GPU", "dont_fix_second_order_samplers_schedule": false, "sd_lyco": "None", "keyedit_delimiters": ".,\\/!?%^*;:{}=`~()", "gradio_theme": "Default", "s_min_uncond": 0, "controlnet_show_batch_images_in_ui": false, "controlnet_increment_seed_during_batch": false, "quicksettings_list": [ "sd_model_checkpoint", "CLIP_stop_at_last_layers", "eta_noise_seed_delta", "sd_vae", "extra_networks_default_multiplier", "lora_apply_to_outputs", "token_merging_ratio", "token_merging_ratio_hr", "img2img_extra_noise" ], "lora_functional": false, "lora_preferred_name": "Filename", "js_modal_lightbox_gamepad": true, "js_modal_lightbox_gamepad_repeat": 250.0, "add_version_to_infotext": true, "tac_translation.liveTranslation": false, "tac_chantFile": "demo-chants.json", "ad_max_models": 4, "ad_save_previews": false, "ad_save_images_before": false, "ad_only_seleted_scripts": true, "ad_script_names": "dynamic_prompting,dynamic_thresholding,wildcards,wildcard_recursive", "ad_bbox_sortby": "None", "list_hidden_files": true, "cross_attention_optimization": "Automatic", "token_merging_ratio": 0, "token_merging_ratio_img2img": 0, "token_merging_ratio_hr": 0, "extra_networks_show_hidden_directories": true, "extra_networks_hidden_models": "When searched", "lora_add_hashes_to_infotext": true, "img2img_editor_height": 720, "ui_tab_order": [], "hires_fix_show_sampler": false, "hires_fix_show_prompts": true, "live_previews_image_format": "jpeg", "tac_refreshTempFiles": "Refresh TAC temp files", "controlnet_disable_control_type": false, "tac_wildcardCompletionMode": "To next folder level", "arh_show_min_width_or_height": false, "arh_min_width_or_height": 1024, "controlnet_disable_openpose_edit": false, "ui_reorder_list": [ "override_settings" ], "grid_zip_filename_pattern": "", "sd_unet": "Automatic", "pad_cond_uncond": false, "experimental_persistent_cond_cache": false, "hires_fix_use_firstpass_conds": false, "disable_token_counters": false, "extra_options": [], "extra_options_accordion": false, "infotext_styles": "Apply if any", "k_sched_type": "Automatic", "sigma_min": 0.0, "sigma_max": 0.0, "rho": 0.0, "canvas_hotkey_zoom": "Alt", "canvas_hotkey_adjust": "Ctrl", "canvas_hotkey_move": "F", "canvas_hotkey_fullscreen": "S", "canvas_hotkey_reset": "R", "canvas_hotkey_overlap": "O", "canvas_show_tooltip": true, "canvas_disabled_functions": [ "Overlap" ], "tac_appendSpace": true, "tac_alwaysSpaceAtEnd": true, "tac_modelKeywordCompletion": "Never", "control_net_inpaint_blur_sigma": 7, "grid_text_active_color": "#000000", "grid_text_inactive_color": "#999999", "grid_background_color": "#ffffff", "disable_mmap_load_safetensors": false, "auto_vae_precision": true, "sdxl_crop_top": 0.0, "sdxl_crop_left": 0.0, "sdxl_refiner_low_aesthetic_score": 2.5, "sdxl_refiner_high_aesthetic_score": 6.0, "extra_networks_card_text_scale": 1, "extra_networks_card_show_desc": true, "textual_inversion_print_at_load": false, "textual_inversion_add_hashes_to_infotext": true, "lora_show_all": true, "lora_hide_unknown_for_versions": [], "keyedit_move": true, "add_user_name_to_info": false, "canvas_blur_prompt": false, "control_net_no_high_res_fix": false, "tac_sortWildcardResults": true, "tac_showExtraNetworkPreviews": true, "controlnet_ignore_noninpaint_mask": false, "sd_vae_overrides_per_model_preferences": false, "save_incomplete_images": false, "face_restoration": false, "auto_launch_browser": "Disable", "show_gradio_deprecation_warnings": true, "hide_ldm_prints": true, "api_enable_requests": true, "api_forbid_local_requests": true, "api_useragent": "", "sd_checkpoints_limit": 2, "sd_checkpoints_keep_in_cpu": true, "tiling": false, "hires_fix_refiner_pass": "second pass", "sd_vae_encode_method": "Full", "sd_vae_decode_method": "Full", "img2img_extra_noise": 0.03, "img2img_sketch_default_brush_color": "#ffffff", "img2img_inpaint_mask_brush_color": "#ffffff", "img2img_inpaint_sketch_default_brush_color": "#ffffff", "persistent_cond_cache": true, "batch_cond_uncond": true, "use_old_scheduling": false, "lora_in_memory_limit": 0, "gradio_themes_cache": true, "gallery_height": "", "extra_options_txt2img": [], "extra_options_img2img": [], "extra_options_cols": 1, "live_preview_allow_lowvram_full": false, "live_preview_fast_interrupt": true, "s_tmax": 0, "sgm_noise_multiplier": false, "canvas_auto_expand": true, "tagger_out_filename_fmt": "[name].[output_extension]", "tagger_count_threshold": 100, "tagger_batch_recursive": true, "tagger_auto_serde_json": true, "tagger_store_images": false, "tagger_weighted_tags_files": false, "tagger_verbose": false, "tagger_repl_us": true, "tagger_repl_us_excl": "0_0, (o)_(o), +_+, +_-, ._., <o>_<o>, <|>_<|>, =_=, >_<, 3_3, 6_9, >_o, @_@, ^_^, o_o, u_u, x_x, |_|, ||_||", "tagger_escape": false, "tagger_batch_size": 1024.0, "tagger_hf_cache_dir": "E:\\WebUI\\stable-diffusion-webui\\models\\interrogators", "tac_includeEmbeddingsInNormalResults": false, "tac_modelKeywordLocation": "Start of prompt", "control_net_unit_count": 3, "tac_modelSortOrder": "Name", "ad_extra_models_dir": "", "ad_same_seed_for_each_tap": false, "hypertile_enable_unet": false, "hypertile_enable_unet_secondpass": false, "hypertile_max_depth_unet": 3, "hypertile_max_tile_unet": 256, "hypertile_swap_size_unet": 3, "hypertile_enable_vae": false, "hypertile_max_depth_vae": 3, "hypertile_max_tile_vae": 128, "hypertile_swap_size_vae": 3, "tac_wildcardExclusionList": "", "tac_skipWildcardRefresh": false, "save_images_replace_action": "Replace", "notification_audio": true, "notification_volume": 100, "extra_networks_dir_button_function": false, "extra_networks_card_order_field": "Path", "extra_networks_card_order": "Ascending", "img2img_batch_show_results_limit": 32, "add_vae_name_to_info": true, "add_vae_hash_to_info": true, "infotext_skip_pasting": [], "js_live_preview_in_modal_lightbox": false, "keyedit_delimiters_whitespace": [ "Tab", "Carriage Return", "Line Feed" ], "compact_prompt_box": false, "sd_checkpoint_dropdown_use_short": false, "txt2img_settings_accordion": false, "img2img_settings_accordion": false, "enable_console_prompts": false, "dump_stacks_on_signal": false, "postprocessing_existing_caption_action": "Ignore", "tac_useLoraPrefixForLycos": true, "controlnet_crop_upscale_script_only": false, "controlnet_disable_photopea_edit": false, "controlnet_photopea_warning": true, "controlnet_clip_detector_on_cpu": false, "tac_useStyleVars": false, "SWIN_torch_compile": false, "tac_frequencySort": true, "tac_frequencyFunction": "Logarithmic (weak)", "tac_frequencyMinCount": 3, "tac_frequencyMaxAge": 30, "tac_frequencyRecommendCap": 10, "tac_frequencyIncludeAlias": false, "cc_metadata": true, "auto_backcompat": true, "use_downcasted_alpha_bar": true, "refiner_switch_by_sample_steps": false, "extra_networks_card_description_is_html": false, "extra_networks_tree_view_style": "Dirs", "extra_networks_tree_view_default_enabled": true, "extra_networks_tree_view_default_width": 180.0, "lora_not_found_warning_console": false, "lora_not_found_gradio_warning": false, "pad_cond_uncond_v0": false, "fp8_storage": "Disable", "cache_fp16_weight": false, "sd_noise_schedule": "Default", "emphasis": "Original", "enable_prompt_comments": true, "auto_vae_precision_bfloat16": false, "overlay_inpaint": true, "sd_webui_modal_lightbox_icon_opacity": 1, "sd_webui_modal_lightbox_toolbar_opacity": 0.9, "open_dir_button_choice": "Subdirectory", "include_styles_into_token_counters": true, "interrupt_after_current": true, "enable_reloading_ui_scripts": false, "prioritized_callbacks_app_started": [], "prioritized_callbacks_model_loaded": [], "prioritized_callbacks_ui_tabs": [], "prioritized_callbacks_ui_settings": [], "prioritized_callbacks_after_component": [], "prioritized_callbacks_infotext_pasted": [], "prioritized_callbacks_script_unloaded": [], "prioritized_callbacks_before_ui": [], "prioritized_callbacks_on_reload": [], "prioritized_callbacks_list_optimizers": [], "prioritized_callbacks_before_token_counter": [], "prioritized_callbacks_script_before_process": [], "prioritized_callbacks_script_process": [], "prioritized_callbacks_script_before_process_batch": [], "prioritized_callbacks_script_postprocess": [], "prioritized_callbacks_script_postprocess_batch": [], "prioritized_callbacks_script_post_sample": [], "prioritized_callbacks_script_on_mask_blend": [], "prioritized_callbacks_script_postprocess_image": [], "prioritized_callbacks_script_postprocess_maskoverlay": [], "enable_upscale_progressbar": true, "postprocessing_disable_in_extras": [], "dat_enabled_models": [ "DAT x2", "DAT x3", "DAT x4" ], "DAT_tile": 192, "DAT_tile_overlap": 8, "set_scale_by_when_changing_upscaler": false, "canvas_hotkey_shrink_brush": "Q", "canvas_hotkey_grow_brush": "W", "controlnet_control_type_dropdown": false, "disable_mean_in_calclate_cond": false, "freeu_png_info_auto_enable": true, "prioritized_callbacks_cfg_after_cfg": [], "prioritized_callbacks_script_process_batch": [], "ad_same_seed_for_each_tab": false, "save_write_log_csv": true, "lora_bundled_ti_to_infotext": true, "s_min_uncond_all": false, "skip_early_cond": 0, "beta_dist_alpha": 0.6, "beta_dist_beta": 0.6, "sdxl_clip_l_skip": false, "sd3_enable_t5": false, "prevent_screen_sleep_during_generation": true, "profiling_enable": false, "profiling_activities": [ "CPU" ], "profiling_record_shapes": true, "profiling_profile_memory": true, "profiling_with_stack": true, "profiling_filename": "trace.json", "ad_only_selected_scripts": true }, "Startup": { "total": 35.55865979194641, "records": { "initial startup": 0.01500391960144043, "prepare environment/checks": 0.005001544952392578, "prepare environment/git version info": 0.03400874137878418, "prepare environment/torch GPU test": 1.746356725692749, "prepare environment/clone repositores": 0.10702705383300781, "prepare environment/install requirements": 9.278183221817017, "prepare environment/run extensions installers/a1111-sd-webui-tagcomplete": 0.0, "prepare environment/run extensions installers/adetailer": 0.11202836036682129, "prepare environment/run extensions installers/diffusion-noise-alternatives-webui": 0.0, "prepare environment/run extensions installers/sd-webui-controlnet": 0.11703181266784668, "prepare environment/run extensions installers/sd-webui-freeu": 0.0, "prepare environment/run extensions installers/sd-webui-vectorscope-cc": 0.0, "prepare environment/run extensions installers/sdweb-merge-block-weighted-gui": 0.0, "prepare environment/run extensions installers/stable-diffusion-webui-wd14-tagger": 2.7473819255828857, "prepare environment/run extensions installers": 2.9764420986175537, "prepare environment": 14.147019386291504, "launcher": 0.0010001659393310547, "import torch": 2.7877724170684814, "import gradio": 0.669173002243042, "setup paths": 2.5366580486297607, "import ldm": 0.0040013790130615234, "import sgm": 0.0, "initialize shared": 0.2037980556488037, "other imports": 0.41710829734802246, "opts onchange": 0.0010001659393310547, "setup SD model": 0.0, "setup codeformer": 0.0009999275207519531, "setup gfpgan": 0.007001638412475586, "set samplers": 0.0, "list extensions": 0.0020008087158203125, "restore config state file": 0.0, "list SD models": 0.18398213386535645, "list localizations": 0.0, "load scripts/custom_code.py": 0.005001544952392578, "load scripts/img2imgalt.py": 0.0010004043579101562, "load scripts/loopback.py": 0.0, "load scripts/outpainting_mk_2.py": 0.0, "load scripts/poor_mans_outpainting.py": 0.0, "load scripts/postprocessing_codeformer.py": 0.0, "load scripts/postprocessing_gfpgan.py": 0.0009999275207519531, "load scripts/postprocessing_upscale.py": 0.0, "load scripts/prompt_matrix.py": 0.0, "load scripts/prompts_from_file.py": 0.0, "load scripts/sd_upscale.py": 0.0, "load scripts/xyz_grid.py": 0.002000570297241211, "load scripts/ldsr_model.py": 0.9752531051635742, "load scripts/lora_script.py": 4.5637688636779785, "load scripts/scunet_model.py": 0.031008005142211914, "load scripts/swinir_model.py": 0.028007030487060547, "load scripts/hotkey_config.py": 0.0, "load scripts/extra_options_section.py": 0.0010004043579101562, "load scripts/hypertile_script.py": 0.05801534652709961, "load scripts/postprocessing_autosized_crop.py": 0.0, "load scripts/postprocessing_caption.py": 0.0, "load scripts/postprocessing_create_flipped_copies.py": 0.0010004043579101562, "load scripts/postprocessing_focal_crop.py": 0.0009996891021728516, "load scripts/postprocessing_split_oversized.py": 0.0, "load scripts/soft_inpainting.py": 0.0, "load scripts/model_keyword_support.py": 0.0030012130737304688, "load scripts/shared_paths.py": 0.0, "load scripts/tag_autocomplete_helper.py": 0.785203218460083, "load scripts/tag_frequency_db.py": 0.0010001659393310547, "load scripts/!adetailer.py": 0.5280201435089111, "load scripts/Alternate Noise.py": 0.0009992122650146484, "load scripts/adapter.py": 0.0, "load scripts/api.py": 0.20205354690551758, "load scripts/batch_hijack.py": 0.0, "load scripts/cldm.py": 0.002000570297241211, "load scripts/controlnet.py": 0.5245223045349121, "load scripts/controlnet_diffusers.py": 0.0, "load scripts/controlnet_lllite.py": 0.0, "load scripts/controlnet_lora.py": 0.0, "load scripts/controlnet_model_guess.py": 0.0010001659393310547, "load scripts/controlnet_sparsectrl.py": 0.0, "load scripts/controlnet_version.py": 0.0, "load scripts/enums.py": 0.0010001659393310547, "load scripts/external_code.py": 0.0, "load scripts/global_state.py": 0.0010001659393310547, "load scripts/hook.py": 0.0, "load scripts/infotext.py": 0.0, "load scripts/logging.py": 0.0010004043579101562, "load scripts/lvminthin.py": 0.0, "load scripts/movie2movie.py": 0.0, "load scripts/supported_preprocessor.py": 0.0010001659393310547, "load scripts/utils.py": 0.0010004043579101562, "load scripts/xyz_grid_support.py": 0.0, "load scripts/freeu.py": 0.10002660751342773, "load scripts/cc.py": 0.0029997825622558594, "load scripts/cc_callback.py": 0.03901100158691406, "load scripts/cc_colorpicker.py": 0.0, "load scripts/cc_const.py": 0.0, "load scripts/cc_hdr.py": 0.0, "load scripts/cc_scaling.py": 0.0, "load scripts/cc_settings.py": 0.03200817108154297, "load scripts/cc_style.py": 0.0, "load scripts/cc_xyz.py": 0.0, "load scripts/merge_block_weighted_extension.py": 0.040009498596191406, "load scripts/tagger.py": 0.10702824592590332, "load scripts/comments.py": 0.03300881385803223, "load scripts/refiner.py": 0.0010004043579101562, "load scripts/sampler.py": 0.0, "load scripts/seed.py": 0.0, "load scripts": 8.075949668884277, "load upscalers": 0.00600123405456543, "refresh VAE": 0.3540916442871094, "refresh textual inversion templates": 0.0, "scripts list_optimizers": 0.0010001659393310547, "scripts list_unets": 0.0, "reload hypernetworks": 0.0010023117065429688, "initialize extra networks": 0.010001420974731445, "cleanup temp dir": 0.0010004043579101562, "scripts before_ui_callback": 0.0010004043579101562, "create ui": 5.570947885513306, "gradio launch": 0.5461413860321045, "add APIs": 0.006002187728881836, "app_started_callback/lora_script.py": 0.0009999275207519531, "app_started_callback/tag_autocomplete_helper.py": 0.0030007362365722656, "app_started_callback/!adetailer.py": 0.0, "app_started_callback/api.py": 0.003000497817993164, "app_started_callback/tagger.py": 0.002000570297241211, "app_started_callback": 0.009001731872558594 } }, "Packages": [ "absl-py==2.1.0", "accelerate==0.21.0", "addict==2.4.0", "aenum==3.1.15", "aiofiles==23.2.1", "aiohttp==3.9.5", "aiosignal==1.3.1", "albumentations==1.4.3", "altair==5.3.0", "antlr4-python3-runtime==4.9.3", "anyio==3.7.1", "astunparse==1.6.3", "async-timeout==4.0.3", "attrs==23.2.0", "beautifulsoup4==4.12.3", "blendmodes==2022", "certifi==2024.7.4", "cffi==1.16.0", "chardet==5.2.0", "charset-normalizer==3.3.2", "clean-fid==0.1.35", "click==8.1.7", "clip @ https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip#sha256=b5842c25da441d6c581b53a5c60e0c2127ebafe0f746f8e15561a006c6c3be6a", "colorama==0.4.6", "coloredlogs==15.0.1", "colorlog==6.8.2", "contourpy==1.2.1", "controlnet-aux==0.0.9", "cssselect2==0.7.0", "cycler==0.12.1", "Cython==3.0.10", "deepdanbooru==1.0.3", "deprecation==2.1.0", "depth_anything @ https://github.com/huchenlei/Depth-Anything/releases/download/v1.0.0/depth_anything-2024.1.22.0-py2.py3-none-any.whl#sha256=26c1d38b8c3c306b4a2197d725a4b989ff65f7ebcf4fb5a96a1b6db7fbd56780", "depth_anything_v2 @ https://github.com/MackinationsAi/UDAV2-ControlNet/releases/download/v1.0.0/depth_anything_v2-2024.7.1.0-py2.py3-none-any.whl#sha256=6848128867d1f7c7519d88df0f88bfab89100dc5225259c4d7cb90325c308c9f", "diskcache==5.6.3", "dsine @ https://github.com/sdbds/DSINE/releases/download/1.0.2/dsine-2024.3.23-py3-none-any.whl#sha256=b9ea3bacce09f9b3f7fb4fa12471da7e465b2f9a60412711105a9238db280442", "easydict==1.13", "einops==0.4.1", "exceptiongroup==1.2.2", "facexlib==0.3.0", "fastapi==0.94.0", "ffmpy==0.3.3", "filelock==3.15.4", "filterpy==1.4.5", "flatbuffers==24.3.25", "fonttools==4.53.1", "frozenlist==1.4.1", "fsspec==2024.6.1", "ftfy==6.2.0", "fvcore==0.1.5.post20221221", "gast==0.6.0", "gdown==5.2.0", "geffnet==1.0.2", "gitdb==4.0.11", "GitPython==3.1.32", "glob2==0.5", "google-pasta==0.2.0", "gradio==3.41.2", "gradio_client==0.5.0", "grpcio==1.65.1", "h11==0.12.0", "h5py==3.11.0", "handrefinerportable @ https://github.com/huchenlei/HandRefinerPortable/releases/download/v1.0.1/handrefinerportable-2024.2.12.0-py2.py3-none-any.whl#sha256=1e6c702905919f4c49bcb2db7b20d334e8458a7555cd57630600584ec38ca6a9", "httpcore==0.15.0", "httpx==0.24.1", "huggingface-hub==0.24.3", "humanfriendly==10.0", "idna==3.7", "imageio==2.34.2", "importlib_metadata==8.2.0", "importlib_resources==6.4.0", "inflection==0.5.1", "insightface @ https://github.com/Gourieff/Assets/raw/main/Insightface/insightface-0.7.3-cp310-cp310-win_amd64.whl#sha256=47aa0571b2aadd8545d4bc7615dfbc374c10180c283b7ac65058fcb41ed4df86", "iopath==0.1.9", "jax==0.4.31", "jaxlib==0.4.31", "Jinja2==3.1.4", "joblib==1.4.2", "jsonmerge==1.8.0", "jsonschema==4.23.0", "jsonschema-specifications==2023.12.1", "keras==3.4.1", "kiwisolver==1.4.5", "kornia==0.6.7", "lark==1.1.2", "lazy_loader==0.4", "libclang==18.1.1", "lightning-utilities==0.11.6", "llvmlite==0.43.0", "lxml==5.2.2", "manifold3d==2.5.1", "Markdown==3.6", "markdown-it-py==3.0.0", "MarkupSafe==2.1.5", "matplotlib==3.9.1", "mdurl==0.1.2", "mediapipe==0.10.14", "ml-dtypes==0.4.0", "mpmath==1.3.0", "multidict==6.0.5", "namex==0.0.8", "networkx==3.3", "numba==0.60.0", "numpy==1.26.2", "omegaconf==2.2.3", "onnx==1.16.2", "onnxruntime==1.18.1", "open-clip-torch==2.20.0", "opencv-contrib-python==4.10.0.84", "opencv-python==4.10.0.84", "opencv-python-headless==4.10.0.84", "opt-einsum==3.3.0", "optree==0.12.1", "orjson==3.10.6", "packaging==24.1", "pandas==2.2.2", "piexif==1.1.3", "Pillow==9.5.0", "pillow-avif-plugin==1.4.3", "pip==24.2", "platformdirs==4.2.2", "portalocker==2.10.1", "prettytable==3.10.2", "protobuf==4.25.4", "psutil==5.9.5", "py-cpuinfo==9.0.0", "pycollada==0.8", "pycparser==2.22", "pydantic==1.10.17", "pydub==0.25.1", "Pygments==2.18.0", "pyparsing==3.1.2", "pyreadline3==3.4.1", "PySocks==1.7.1", "python-dateutil==2.9.0.post0", "python-multipart==0.0.9", "pytorch-lightning==1.9.4", "pytz==2024.1", "PyWavelets==1.6.0", "pywin32==306", "PyYAML==6.0.1", "referencing==0.35.1", "regex==2024.7.24", "reportlab==4.2.2", "requests==2.32.3", "resize-right==0.0.2", "rich==13.7.1", "rpds-py==0.19.1", "Rtree==1.3.0", "safetensors==0.4.2", "scikit-image==0.21.0", "scikit-learn==1.5.1", "scipy==1.14.0", "seaborn==0.13.2", "semantic-version==2.10.0", "sentencepiece==0.2.0", "setuptools==69.5.1", "shapely==2.0.5", "six==1.16.0", "smmap==5.0.1", "sniffio==1.3.1", "sounddevice==0.4.7", "soupsieve==2.5", "spandrel==0.3.4", "spandrel_extra_arches==0.1.1", "starlette==0.26.1", "svg.path==6.3", "svglib==1.5.1", "sympy==1.13.1", "tabulate==0.9.0", "tensorboard==2.17.0", "tensorboard-data-server==0.7.2", "tensorflow==2.17.0", "tensorflow-intel==2.17.0", "tensorflow-io-gcs-filesystem==0.31.0", "termcolor==2.4.0", "threadpoolctl==3.5.0", "tifffile==2024.7.24", "timm==0.6.7", "tinycss2==1.3.0", "tokenizers==0.13.3", "tomesd==0.1.3", "tomli==2.0.1", "toolz==0.12.1", "torch==2.1.2+cu121", "torchdiffeq==0.2.3", "torchmetrics==1.4.0.post0", "torchsde==0.2.6", "torchvision==0.16.2+cu121", "tqdm==4.66.4", "trampoline==0.1.2", "transformers==4.30.2", "trimesh==4.4.3", "typing_extensions==4.12.2", "tzdata==2024.1", "ultralytics==8.2.70", "ultralytics-thop==2.0.0", "urllib3==2.2.2", "uvicorn==0.30.3", "vhacdx==0.0.8.post1", "wcwidth==0.2.13", "webencodings==0.5.1", "websockets==11.0.3", "Werkzeug==3.0.3", "wheel==0.43.0", "wrapt==1.16.0", "xatlas==0.0.9", "xxhash==3.4.1", "yacs==0.1.8", "yapf==0.40.2", "yarl==1.9.4", "zipp==3.19.2" ] } ``` ### Console logs ```Shell see above ``` ### Additional information _No response_
open
2024-08-11T09:24:02Z
2024-11-26T21:20:27Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16365
[ "bug-report" ]
neojam
9
gradio-app/gradio
data-visualization
9,923
ChatInterface Appears Squished in Gradio Blocks
### Describe the bug I am experiencing an issue with the ChatInterface component within a Blocks layout in Gradio. The problem manifests as the chat interface appearing squished, not filling the height of the window as expected. Only a minimal portion of the chat content is visible, impacting usability. Here's my repo: https://github.com/dino1729/LLM_QA_Bot.git azure_gradioui.py I have the app organized as follows: Overall Structure : Framework : The application uses Gradio's Blocks component to manage the overall user interface design. Tabs : The application is divided into multiple tabs, each hosting distinct functionalities. Several of these tabs contain ChatInterface components. ChatInterface Components : Features : All chat interfaces feature custom titles, descriptions, and functions to process user input. Each has a submit button for sending input and predefined examples for ease of testing. The attribute fill_height=True is applied to ensure they dynamically use the full height of their parent containers. Problem Description : Universal Issue : All ChatInterface instances across different tabs exhibit the issue of appearing squished. Symptom : Regardless of the specific function or tab they are in, the chat interfaces do not expand to fill the available vertical space, resulting in content visibility issues. Styling and Layout : Consistency : There are no extensive custom CSS rules applied. The app is designed with standard Gradio styling, ensuring that layout handling should remain consistent across components. Visual Design : The layout is intended to be user-friendly, with flexible and adaptive display suited to various screen sizes. Development Environment : Updates : All components are updated to use the latest stable version of Gradio, ensuring compatibility and bug fixes are considered. Testing : Cross-browser testing performed to rule out issues specific to one browser or platform setup. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction Steps to Reproduce Create a Gradio app using the Blocks layout. Add a ChatInterface component inside a tab with the attribute fill_height=True. Launch the app. Observe that the ChatInterface does not expand to fill the available vertical space. ``` import gradio as gr def query_memorypalace_stream(input): # function logic return input with gr.Blocks() as demo: with gr.Tab(label="Memory Palace"): memory_palace_chat = gr.ChatInterface( title="Memory Palace Chat", description="Ask a question to generate a summary or lesson learned based on the search results from the memory palace.", fn=query_memorypalace_stream, submit_btn="Ask", examples=["Example question 1", "Example question 2"], fill_height=True ) memory_palace_chat.style(height="100%") demo.launch() ``` ### Screenshot <img width="745" alt="image" src="https://github.com/user-attachments/assets/6d190275-43cd-45e0-b481-bb915d4acee6"> ### Logs _No response_ ### System Info ```shell Gradio 5.5.0 Python 3.11.4 ``` ### Severity Blocking usage of gradio
closed
2024-11-09T22:45:03Z
2025-01-17T22:54:25Z
https://github.com/gradio-app/gradio/issues/9923
[ "bug" ]
dino1729
4
timkpaine/lantern
plotly
176
double check matplotlib bar widths
open
2018-10-10T15:49:55Z
2019-10-03T02:09:32Z
https://github.com/timkpaine/lantern/issues/176
[ "bug", "matplotlib/seaborn", "backlog" ]
timkpaine
0
ultralytics/ultralytics
computer-vision
19,642
xywhr in OBB result have changed
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Predict ### Bug Recently I updated my environment to the latest version of ultralytics and found that the xywhr result for the OBB task is somehow broken. I was using it to get the centre position of each detection, the width and height and the rotation. Before the update I always had the width as the largest dimension and the height as the smaller, and the rotation relative to the width. After the update, I found that sometimes the width is the smaller dimension and the height is the larger one, so the rotation is also skewed by 90 degrees. Going back to older version fix the problem. ### Environment Ultralytics 8.3.87 🚀 Python-3.12.7 torch-2.6.0+cpu CPU (Intel Core(TM) i7-10850H 2.70GHz) Setup complete ✅ (12 CPUs, 31.7 GB RAM, 609.9/952.5 GB disk) OS Windows-11-10.0.22631-SP0 Environment Windows Python 3.12.7 Install git Path C:\Users\my_user\Desktop\yolo_test\.venv\Lib\site-packages\ultralytics RAM 31.73 GB Disk 609.9/952.5 GB CPU Intel Core(TM) i7-10850H 2.70GHz CPU count 12 GPU None GPU count None CUDA None numpy ✅ 2.1.1<=2.1.1,>=1.23.0 matplotlib ✅ 3.10.1>=3.3.0 opencv-python ✅ 4.11.0.86>=4.6.0 pillow ✅ 11.1.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.15.2>=1.4.1 torch ✅ 2.6.0>=1.8.0 torch ✅ 2.6.0!=2.4.0,>=1.8.0; sys_platform == "win32" torchvision ✅ 0.21.0>=0.9.0 tqdm ✅ 4.67.1>=4.64.0 psutil ✅ 7.0.0 py-cpuinfo ✅ 9.0.0 pandas ✅ 2.2.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 ultralytics-thop ✅ 2.0.14>=2.0.0 ### Minimal Reproducible Example Input image ![Image](https://github.com/user-attachments/assets/7c378fa6-7015-4cff-8c2c-e52420ed5fce) # Ultralitics 8.3.87 With ultralytics package version 8.3.87 run this code: ``` from pathlib import Path import torch from ultralytics import YOLO model_file = Path("yolo11x-obb.pt") model = YOLO(model_file, task="OBB") img = Path("./images/P0006.png") results = model.predict( source=img, conf=0.8, imgsz=640, device=torch.cuda.current_device() if torch.cuda.device_count() > 0 else "CPU", ) for res in results: for i, pts in enumerate(res.obb): if int(pts.xywhr[0][2]) < int(pts.xywhr[0][3]): print( f"{i})\tcenter x {int(pts.xywhr[0][0])}\tcenter y {int(pts.xywhr[0][1])}\twidth {int(pts.xywhr[0][2])}\theight {int(pts.xywhr[0][3])}\trotation {pts.xywhr[0][4]}" ) ``` ## Output: ``` # 3) center x 322 center y 796 width 24 height 104 rotation 0.7707133889198303 # 9) center x 329 center y 428 width 25 height 96 rotation 0.8094407916069031 # 11) center x 325 center y 470 width 24 height 95 rotation 0.8357727527618408 # 12) center x 324 center y 835 width 25 height 96 rotation 0.7769593000411987 # 16) center x 329 center y 387 width 26 height 96 rotation 0.7910935282707214 # 17) center x 586 center y 361 width 24 height 102 rotation 0.8455972075462341 # 19) center x 582 center y 1246 width 24 height 93 rotation 0.8130463361740112 # 20) center x 332 center y 345 width 25 height 95 rotation 0.8040628433227539 # 21) center x 593 center y 394 width 25 height 104 rotation 0.8151286244392395 # 22) center x 575 center y 1212 width 24 height 101 rotation 0.808992326259613 # 23) center x 325 center y 674 width 24 height 96 rotation 0.8091808557510376 # 24) center x 592 center y 673 width 25 height 102 rotation 0.8232788443565369 # 25) center x 591 center y 798 width 25 height 104 rotation 0.8026906847953796 # 35) center x 321 center y 878 width 25 height 93 rotation 0.787294864654541 # 40) center x 585 center y 763 width 24 height 103 rotation 0.7789315581321716 # 41) center x 590 center y 839 width 25 height 102 rotation 0.8089277148246765 # 44) center x 318 center y 920 width 26 height 103 rotation 0.8125594854354858 # 47) center x 592 center y 435 width 24 height 101 rotation 0.8140760660171509 # 50) center x 325 center y 512 width 25 height 100 rotation 0.8281809091567993 # 51) center x 312 center y 964 width 25 height 97 rotation 0.7953415513038635 # 54) center x 333 center y 1306 width 24 height 99 rotation 0.854654848575592 # 55) center x 317 center y 758 width 25 height 101 rotation 0.7970958948135376 # 60) center x 318 center y 1119 width 25 height 104 rotation 0.8262746930122375 # 66) center x 329 center y 708 width 24 height 94 rotation 0.8186021447181702 # 68) center x 316 center y 1160 width 24 height 102 rotation 0.8195444345474243 # 69) center x 583 center y 1286 width 24 height 100 rotation 0.8252146244049072 # 77) center x 585 center y 722 width 24 height 103 rotation 0.7846349477767944 # 79) center x 315 center y 1200 width 24 height 101 rotation 0.8189680576324463 # 81) center x 147 center y 1238 width 21 height 58 rotation 1.5592427253723145 # 82) center x 857 center y 1059 width 22 height 58 rotation 1.5689480304718018 # 84) center x 312 center y 1282 width 24 height 98 rotation 0.8073341846466064 # 88) center x 316 center y 1240 width 24 height 99 rotation 0.802503764629364 # 89) center x 313 center y 1004 width 26 height 105 rotation 0.8169794082641602 # 90) center x 582 center y 1163 width 23 height 98 rotation 0.8214647173881531 # 91) center x 148 center y 1295 width 22 height 60 rotation 1.564757227897644 # 92) center x 850 center y 1001 width 21 height 52 rotation 1.564372181892395 # 95) center x 588 center y 881 width 26 height 103 rotation 0.7998103499412537 # 96) center x 586 center y 1041 width 24 height 103 rotation 0.8159875273704529 # 98) center x 853 center y 1029 width 23 height 60 rotation 1.5595061779022217 # 100) center x 587 center y 959 width 25 height 103 rotation 0.8381613492965698 # 103) center x 583 center y 1084 width 23 height 101 rotation 0.8027064204216003 # 107) center x 603 center y 1310 width 24 height 101 rotation 0.8306283354759216 # 108) center x 589 center y 920 width 26 height 104 rotation 0.8245478272438049 # 109) center x 586 center y 1001 width 24 height 101 rotation 0.8359718322753906 # 110) center x 319 center y 1038 width 24 height 102 rotation 0.8157163858413696 # 113) center x 161 center y 364 width 22 height 66 rotation 1.5607739686965942 # 114) center x 851 center y 1088 width 22 height 61 rotation 1.5662956237792969 # 115) center x 581 center y 1124 width 23 height 101 rotation 0.8175578713417053 # 116) center x 316 center y 1080 width 25 height 103 rotation 0.8084856271743774 ``` # Ultralitics 8.3.32 ## yolo checks Ultralytics 8.3.32 🚀 Python-3.12.7 torch-2.6.0+cpu CPU (Intel Core(TM) i7-10850H 2.70GHz) Setup complete ✅ (12 CPUs, 31.7 GB RAM, 613.0/952.5 GB disk) OS Windows-11-10.0.22631-SP0 Environment Windows Python 3.12.7 Install git RAM 31.73 GB Disk 613.0/952.5 GB CPU Intel Core(TM) i7-10850H 2.70GHz CPU count 12 GPU None GPU count None CUDA None numpy ✅ 2.1.1>=1.23.0 matplotlib ✅ 3.10.1>=3.3.0 opencv-python ✅ 4.11.0.86>=4.6.0 pillow ✅ 11.1.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.15.2>=1.4.1 torch ✅ 2.6.0>=1.8.0 torchvision ✅ 0.21.0>=0.9.0 tqdm ✅ 4.67.1>=4.64.0 psutil ✅ 7.0.0 py-cpuinfo ✅ 9.0.0 pandas ✅ 2.2.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 ultralytics-thop ✅ 2.0.14>=2.0.0 numpy ✅ 2.1.1<2.0.0; sys_platform == "darwin" torch ✅ 2.6.0!=2.4.0,>=1.8.0; sys_platform == "win32" Running same code as above no output, so no results with width < height as expected. ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2025-03-11T14:21:07Z
2025-03-15T13:03:36Z
https://github.com/ultralytics/ultralytics/issues/19642
[ "bug", "OBB" ]
MarcelloCuoghi
7
TencentARC/GFPGAN
deep-learning
511
Kushwaha
open
2024-02-10T14:18:14Z
2024-02-10T14:18:14Z
https://github.com/TencentARC/GFPGAN/issues/511
[]
Vishvajeet9170
0
roboflow/supervision
pytorch
1,450
Custom Symbol Annotators
### Search before asking - [x] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Description A way to add custom symbols of annotators onto the image. Or possibly even other images. ### Use case I want to be able to annotator multiple classes of objects with different symbols, like Xs and Os. ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-08-15T02:16:08Z
2024-08-27T10:54:43Z
https://github.com/roboflow/supervision/issues/1450
[ "enhancement" ]
mhsmathew
2
pyppeteer/pyppeteer
automation
445
I am not able to connect to Bright Data's Scraping Browser.(their new proxy-zone)
(CJ_test) kirancj@Home AcceptTransfer % python3 original_at.py Traceback (most recent call last): File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/encodings/idna.py", line 165, in encode raise UnicodeError("label empty or too long") UnicodeError: label empty or too long The above exception was the direct cause of the following exception: Traceback (most recent call last): File "original_at.py", line 27, in <module> asyncio.get_event_loop().run_until_complete(connect_to_scraping_browser()) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete return future.result() File "original_at.py", line 21, in connect_to_scraping_browser browser = await pyppeteer.connect({ File "/Users/kirancj/.local/share/virtualenvs/CJ_test-RO4vW2LI/lib/python3.8/site-packages/pyppeteer/launcher.py", line 350, in connect browserWSEndpoint = get_ws_endpoint(browserURL) File "/Users/kirancj/.local/share/virtualenvs/CJ_test-RO4vW2LI/lib/python3.8/site-packages/pyppeteer/launcher.py", line 229, in get_ws_endpoint with urlopen(url) as f: File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/urllib/request.py", line 222, in urlopen return opener.open(url, data, timeout) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/urllib/request.py", line 525, in open response = self._open(req, data) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/urllib/request.py", line 542, in _open result = self._call_chain(self.handle_open, protocol, protocol + File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/urllib/request.py", line 502, in _call_chain result = func(*args) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/urllib/request.py", line 1383, in http_open return self.do_open(http.client.HTTPConnection, req) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/urllib/request.py", line 1354, in do_open h.request(req.get_method(), req.selector, req.data, headers, File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/http/client.py", line 1252, in request self._send_request(method, url, body, headers, encode_chunked) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/http/client.py", line 1298, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/http/client.py", line 1247, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/http/client.py", line 1007, in _send_output self.send(msg) File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/http/client.py", line 947, in send self.connect() File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/http/client.py", line 918, in connect self.sock = self._create_connection( File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/socket.py", line 787, in create_connection for res in getaddrinfo(host, port, 0, SOCK_STREAM): File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/socket.py", line 918, in getaddrinfo for res in _socket.getaddrinfo(host, port, family, type, proto, flags): UnicodeError: encoding with 'idna' codec failed (UnicodeError: label empty or too long)
closed
2023-07-12T10:30:26Z
2024-02-09T06:00:27Z
https://github.com/pyppeteer/pyppeteer/issues/445
[]
kiran-cj
0
OWASP/Nettacker
automation
119
Security issue (try, except, pass)
Hello, We've used many try, except, pass in our code and after I read the project review from codacy, I've to notice that it's a low-risk [security issue](https://docs.openstack.org/bandit/latest/plugins/b110_try_except_pass.html). Regards.
closed
2018-04-23T19:45:59Z
2021-02-02T20:23:34Z
https://github.com/OWASP/Nettacker/issues/119
[ "enhancement", "possible bug" ]
Ali-Razmjoo
3
microsoft/qlib
machine-learning
1,789
Can we directly use the backtest function of qlib with our predictions?
I already have my prediction results, and I would like to use Qlib's backtest function, I wonder if it's easy to implement, cause Qlib apparently has its own data format and file format to save the results.
closed
2024-05-21T03:33:24Z
2024-05-24T05:43:44Z
https://github.com/microsoft/qlib/issues/1789
[ "question" ]
TompaBay
0
plotly/dash
data-science
2,667
Dropdown reordering options by value on search
dash 2.14.0, 2.9.2 Windows 10 Chrome 118.0.5993.71 **Description** When entering a `search_value` in `dcc.Dropdown`, the matching options are ordered by _value_, ignoring the original option order. This behavior only happens when the option values are integers or integer-like strings (i.e. 3 or "3" or 3.0 but not "03" or 3.1). **Expected behavior** The original order of the dropdown options should be preserved when searching. **Example** Searching "*" in the dropdown below returns all three results, but the options are reordered by ascending value. ```python from dash import Dash, html, dcc app = Dash( name=__name__, ) my_options = [ {"label": "three *", "value": 3}, {"label": "two *", "value": 2}, {"label": "one *", "value": 1}, ] app.layout = html.Div( [ dcc.Dropdown( id="my-dropdown", options=my_options, searchable=True, ), ] ) ``` ![Dropdown_Search_Order](https://github.com/plotly/dash/assets/56934645/750f5cf3-872b-41d9-9994-39b615d1625b) **Attempted fixes** I expected Dynamic Dropdowns to give control over custom search behavior. However, even when a particular order of options is specified, the matching options are re-ordered by ascending value. ```python # This callback should overwrite the built-in search behavior. # Instead, the filtered options are sorted by ascending value. @app.callback( Output("my-dropdown", "options"), Input("my-dropdown", "search_value"), ) def custom_search_sort(search_value): if not search_value: raise PreventUpdate return [o for o in my_options if search_value in str(o)] ```
open
2023-10-18T20:02:10Z
2024-08-13T19:41:22Z
https://github.com/plotly/dash/issues/2667
[ "bug", "P3" ]
TGeary
0
keras-team/keras
machine-learning
20,058
"No gradients provided for any variable." when variable uses an integer data type
When using an integer data type for a trainable variable, training will always throw a "No gradients provided for any variable." `ValueError`. Here is a very simple example to reproduce the issue: ```python import keras import tensorflow as tf import numpy as np variable_dtype = tf.int32 # variable_dtype = tf.float32 # Uncommenting this fixes the issue class BugTestLayer(keras.layers.Layer): # Layer is just y = self.var * x def build(self, input_shape): self.var = self.add_variable( (1,), initializer="zeros", dtype=variable_dtype) def call(self, input): return input * self.var input_layer = keras.Input((1,), dtype=tf.int32) test_layer = BugTestLayer() output = test_layer(input_layer) model = keras.Model(inputs=[input_layer], outputs=[output]) values = np.array([[i] for i in range(1000)]) model.compile( loss=[keras.losses.MeanSquaredError()], optimizer=keras.optimizers.RMSprop(), metrics=[keras.metrics.MeanSquaredError()], ) # This will always raise a `ValueError: No gradients provided for any variable.` # when using an integer type history = model.fit(values, values, batch_size=1, epochs=2) ``` Unfortunately this error message is vague enough that the root of the issue is unclear. The full error message is: ```console --------------------------------------------------------------------------- ValueError Traceback (most recent call last) File /workspaces/a8d3c9dff26b642ae4afaf1584a676512f9b8e8ce73bdaa449ed5ed373627eb7/test_bug.py:14 3 values = np.array([ 4 [i] 5 for i in range(1000) 6 ]) 8 model.compile( 9 loss=[keras.losses.MeanSquaredError()], 10 optimizer=keras.optimizers.RMSprop(), 11 metrics=[keras.metrics.MeanSquaredError()], 12 ) ---> 14 history = model.fit(values, values, batch_size=1, epochs=2) File ~/.local/lib/python3.12/site-packages/keras/src/utils/traceback_utils.py:122, in filter_traceback.<locals>.error_handler(*args, **kwargs) 119 filtered_tb = _process_traceback_frames(e.__traceback__) 120 # To get the full stack trace, call: 121 # `keras.config.disable_traceback_filtering()` --> 122 raise e.with_traceback(filtered_tb) from None 123 finally: 124 del filtered_tb File ~/.local/lib/python3.12/site-packages/keras/src/optimizers/base_optimizer.py:662, in BaseOptimizer._filter_empty_gradients(self, grads, vars) 659 missing_grad_vars.append(v.name) 661 if not filtered_grads: --> 662 raise ValueError("No gradients provided for any variable.") 663 if missing_grad_vars: 664 warnings.warn( 665 "Gradients do not exist for variables " 666 f"{list(reversed(missing_grad_vars))} when minimizing the loss." 667 " If using `model.compile()`, did you forget to provide a " 668 "`loss` argument?" 669 ) ValueError: No gradients provided for any variable. ``` If it helps, here is what the model looks like: ![image](https://github.com/user-attachments/assets/796ed797-a154-4f2f-b509-40d6afb65500) Full disclosure: I'm not certain if this is a Keras bug or a Tensorflow bug. If this is suspected to be a Tensorflow bug, let me know and I'll file an issue there instead.
closed
2024-07-29T05:39:48Z
2024-08-28T04:48:49Z
https://github.com/keras-team/keras/issues/20058
[ "type:support" ]
solidDoWant
9
akurgat/automating-technical-analysis
plotly
7
I am getting the following error in the system
File "/home/appuser/venv/lib/python3.9/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 564, in _run_script exec(code, module.__dict__) File "/app/automating-technical-analysis/Trade.py", line 9, in <module> data_update() File "/app/automating-technical-analysis/app/data_sourcing.py", line 26, in data_update update_market_data() File "/app/automating-technical-analysis/app/update_market_data.py", line 9, in update_market_data df_binance = pd.DataFrame(data['symbols'])[pd.DataFrame(data['symbols'])['status'] == 'TRADING'][['symbol', 'baseAsset', 'quoteAsset']]
closed
2023-01-22T11:36:32Z
2023-01-22T12:12:35Z
https://github.com/akurgat/automating-technical-analysis/issues/7
[]
tempest298
1
lepture/authlib
django
609
JWTBearerTokenValidator don't send parameters now and leeway to claim.validate
```python # authlib\oauth2\rfc7523\validator.py class JWTBearerTokenValidator: def authenticate_token(self, token_string): try: claims = jwt.decode( ... ) claims.validate() return claims except JoseError as error: ... ``` But: ```python # authlib\jose\rfc7519\claims.py class JWTClaims(BaseClaims): ... def validate(self, now=None, leeway=0): ... ``` I see the solution in: ```python def authenticate_token(self, token_string, now=None, leeway=0): ... claims.validate(now, leeway) ... ``` The bug appears in testing phase.
open
2023-12-21T07:58:03Z
2025-02-20T20:15:21Z
https://github.com/lepture/authlib/issues/609
[ "bug", "good first issue", "jose" ]
danilovmy
0
qubvel-org/segmentation_models.pytorch
computer-vision
210
How to continue the train of the existing model and How to interpret accuracy of model on test dataset?
Hi, I've trained model with custom dataset following example tutorial. Results are very good. I have two question in this stage. I get following result when evaluate on test set. So should I interpret the success of the model as 98%? If not is there any way to get calculate accuracy of it? ![image](https://user-images.githubusercontent.com/10474206/82250349-f467cc80-9953-11ea-9d1c-03c313fbac78.png) And if i want to continue training from last saved best model what should i do?
closed
2020-05-18T19:11:01Z
2020-05-20T02:40:56Z
https://github.com/qubvel-org/segmentation_models.pytorch/issues/210
[]
talatccan
4
skypilot-org/skypilot
data-science
4,350
[AWS] Not robust identity checking
<!-- Describe the bug report / feature request here --> I create a `~/.aws/credentials` with a wrong key file, and I log in with `aws sso` with `AWS_PROFILE` env var set. The AWS CLIs picks up the SSO credentials correctly with `aws configure list` and `aws sts get-caller-identity`, but `sky check aws` shows ``` Details: `aws sts get-caller-identity` failed with error: [botocore.exceptions.ClientError] An error occurred (SignatureDoesNotMatch) when calling the GetCallerIdentity operation: The request signature we calculated does not match the signature you provided. Check your AWS Secret Access Key and signing method. Consult the service documentation for details.. ```
closed
2024-11-13T21:34:06Z
2024-12-19T09:31:33Z
https://github.com/skypilot-org/skypilot/issues/4350
[]
Michaelvll
1
lorien/grab
web-scraping
72
Хранение cookies с разделением по доменам
В текущей версии grab куки хранятся в виде dict вида имя=>значение. Пожалуйста, реализуйте хранение куков, более приближенную к модели браузера, с сохранением информации о папке, домене и т.д. ``` javascript { "domain": ".github.com", "expirationDate": 1476761637, "hostOnly": false, "httpOnly": false, "name": "_ga", "path": "/", "secure": false, "session": false, "storeId": "0", "value": "GA1.2.123456.78910", "id": 1 } ``` Столкнулся с хитрым сайтом на Битриксе, который не отдает контент, если метод обработки куков отличается от браузерного (это наиболее вероятная причина, скажите механизм защиты, если кто знает :) ). // English version Current grab saves cookies using python dict with structure like name => value. Please, implement cookie storage, which is alike browser model. I.e. with info about path, domain, etc. P.S. I'v faced with complicated site based on Bitrix, which didn't gave me content if cookie handling is differs from browser's cookie-storage model (is it a real reasщт, maybe anybody may share details of this protection :) ). Заранее спасибо / Thanks a lot
closed
2014-10-19T03:49:53Z
2014-10-20T08:51:03Z
https://github.com/lorien/grab/issues/72
[]
userlond
2
sanic-org/sanic
asyncio
2,348
RFC: Multi-application serve
## Background Running multiple applications has been possible in Sanic for a long time. It does, however, take a pretty decent understanding of the operation of the Sanic server to do it properly. Things to consider include: - loop management - listener execution - startup time optimizations - multi-worker and auto-reload multiprocessing - cross-platform support issues (looking at you Windows) Over the course of the last six months in particular, I have seen a noticeable rise in the number of support queries where people are trying to do this. Whether it is to have a HTTP >> HTTPS proxy, web server plus chatbot, or serve multiple routes on different host/port configurations, the point is that there is a definite rise in the number of people looking to run multiple Sanic applications side-by-side. With the efforts we have taken to make sure that multiple applications can co-exist, it seems only natural that we provide a first-class API for running them. ## Proposed solution We create a _new_ high-level API that can easily handle this. First, we create a method with an **identical** signature to `app.run`. Its job is to do everything that `app.run` would do, cache the `server_settings` for later usage, and stop at the point where it starts the loop. ```python app1 = Sanic("ApplicationOne") app2 = Sanic("ApplicationTwo") app1.prepare(port=7777) app2.prepare(unix="/path/to/sock") ``` Second, there is a single class method that runs the loop and executes the server(s). ```python Sanic.serve() ``` The first application defined in the application registry becomes the "primary." That application is run normally as would otherwise happen with `app.run`. Any other applications in the registry that have been "prepared" will be setup using `create_server` such that all of their lifecycle events are properly run.
closed
2022-01-02T20:40:50Z
2022-01-16T10:03:31Z
https://github.com/sanic-org/sanic/issues/2348
[ "RFC" ]
ahopkins
6
iperov/DeepFaceLab
machine-learning
5,496
AMP model on CPU
Models arch AMP do not run on CPU (station w/o GPU or with param `--cpu-only`). Tested on Windows 10 / Ubuntu 20.04LTS Tensorflow 2.4, 2.7.1 Python 3.7.11, 3.9.7 Latest DFL version.
open
2022-03-19T10:32:18Z
2023-06-08T23:18:47Z
https://github.com/iperov/DeepFaceLab/issues/5496
[]
andyst75
1
TracecatHQ/tracecat
pydantic
108
[v0] Case management
closed
2024-04-29T18:09:07Z
2024-04-29T18:10:02Z
https://github.com/TracecatHQ/tracecat/issues/108
[ "enhancement", "frontend" ]
daryllimyt
1
chatanywhere/GPT_API_free
api
60
能不能新增別的付款方式,國外的用戶用不了支付寶
如題, 能不能開個掏寶店家 或是串stripe金流?
closed
2023-07-17T03:17:00Z
2023-08-03T02:06:22Z
https://github.com/chatanywhere/GPT_API_free/issues/60
[]
ooiplh20
1
open-mmlab/mmdetection
pytorch
11,972
'DetDataSample' object has no attribute 'text' when finetune on grounding task
I try to train flickr30 dataset, but always got DetDataSample' object has no attribute 'text' . my training script is `./tools/dist_train.sh configs/mm_grounding_dino/grounding_dino_swin-t_pretrain_obj365_goldg.py 1` and in the grounding_dino_swin-t_pretrain_obj365_goldg.py, i just use flickr30 as the train dataset.
closed
2024-09-25T06:32:49Z
2024-09-25T06:40:11Z
https://github.com/open-mmlab/mmdetection/issues/11972
[]
xingmimfl
0
strawberry-graphql/strawberry
graphql
3,129
relay.node on subtype needs initialization
<!-- Provide a general summary of the bug in the title above. --> Consider the code ```python @strawberry.type class Sub: node: relay.Node = relay.node() nodes: list[relay.Node] = relay.node() @strawberry.type class Query: @strawberry.field @staticmethod def sub(): return Sub schema = Schema(query=Query) ``` This code should work but doesn't, it requires an initialization for node Note there is a workaround (initialization with None or empty list, or (I think whatever)) ``` python ... @strawberry.field @staticmethod def sub(): return Sub(node=None, nodes=None) ``` ## Describe the Bug <!-- A clear and concise description of what the bug is. --> ## System Information - Operating system: - Strawberry version (if applicable): since strawberry-django-plus times after a rewrite, there is a bugreport in the old repo ## Additional Context <!-- Add any other relevant information about the problem here. -->
open
2023-10-02T13:04:02Z
2025-03-20T15:56:24Z
https://github.com/strawberry-graphql/strawberry/issues/3129
[ "bug" ]
devkral
1
NVlabs/neuralangelo
computer-vision
125
switch to analytic gradients after delta is small enough?
would this bring any performance degradation? or may speed up training a bit?
closed
2023-09-25T08:25:38Z
2023-09-26T04:50:17Z
https://github.com/NVlabs/neuralangelo/issues/125
[]
blacksino
1
recommenders-team/recommenders
deep-learning
1,381
[FEATURE] New versioning
### Description <!--- Describe your expected feature in detail --> We are going to change the versioning name -> https://github.com/microsoft/recommenders/tags | Original | Proposal | |----------|-----------| | 2021.2 | 0.5.0 | | 2020.8 | 0.4.0 | | 2019.09 | 0.3.1 | | 2019.06 | 0.3.0 | | 2019.02 | 0.2.0 | | 0.1.1 | 0.1.1 | | 0.1.0 | 0.1.0 | The proposal is based on the delta I see between versions, for example between 0.2.0 and 0.3.0 there is a higher delta between 0.3.0 and 0.3.1. Feel free to add other options ### Expected behavior with the suggested feature <!--- For example: --> <!--- *Adding algorithm xxx will help people understand more about xxx use case scenarios. --> ### Other Comments
closed
2021-04-22T13:49:28Z
2021-05-04T12:12:31Z
https://github.com/recommenders-team/recommenders/issues/1381
[ "enhancement" ]
miguelgfierro
0
lyhue1991/eat_tensorflow2_in_30_days
tensorflow
33
3-2在GPU上运行会报错,查了一下发现有人在CPU下可以运行
会报错如下 `` (0) Internal: No unary variant device copy function found for direction: 1 and Variant type_index: class tensorflow::data::`anonymous namespace'::DatasetVariantWrapper [[{{node while_input_4/_12}}]] (1) Internal: No unary variant device copy function found for direction: 1 and Variant type_index: class tensorflow::data::`anonymous namespace'::DatasetVariantWrapper [[{{node while_input_4/_12}}]] [[Func/while/body/_1/input/_60/_20]]``
closed
2020-04-23T06:27:33Z
2020-04-24T03:00:25Z
https://github.com/lyhue1991/eat_tensorflow2_in_30_days/issues/33
[]
since2016
2
charlesq34/pointnet
tensorflow
165
about the dataset
hi,I'm very glad to see the excellent paper. It's very great. But I have some questions about this paper. Does it belong to Supervised classification and unsupervised classification?
open
2019-03-10T02:46:06Z
2019-05-21T19:58:53Z
https://github.com/charlesq34/pointnet/issues/165
[]
zhonghuajiuzhou12138
1
satwikkansal/wtfpython
python
370
Add translation for Farsi
Expected time to finish: 3 weeks. I'll start working on it from ASAP after confirmation.
open
2025-02-22T20:00:21Z
2025-02-28T10:18:50Z
https://github.com/satwikkansal/wtfpython/issues/370
[]
Alavi1412
10
allenai/allennlp
data-science
5,495
Updating model for Coreference Resolution
I noticed a new SoTA on Ontonotes 5.0 Coreference task on [paperswithcode](https://paperswithcode.com/paper/word-level-coreference-resolution#code) The author provides the model (.pt) file in [their git repo](https://github.com/vdobrovolskii/wl-coref#preparation) and claims it to be faster (since it uses RoBERTa) while having an improvement on avg F1 score over SpanBERT. What would be the steps to use this checkpoint in the AllenNLP Predictor?
closed
2021-12-06T05:26:48Z
2022-01-06T15:57:46Z
https://github.com/allenai/allennlp/issues/5495
[ "question" ]
aakashb95
2
approximatelabs/sketch
pandas
10
Wrong result for query "Get the top 5 grossing states" in sample colab
According to data total value for every row should be calculated as Price Each * Quantity Ordered. In sample colab library summarizes prices but doesn't take in account quantity.
closed
2023-01-27T08:34:38Z
2023-01-27T22:08:53Z
https://github.com/approximatelabs/sketch/issues/10
[]
lukyanenkomax
1
streamlit/streamlit
streamlit
10,022
Setting max duration configuration parameter for st.audio_input()
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [X] I added a descriptive title and summary to this issue. ### Summary The st.audio_input() is a great new addition to the Streamlit library, however it is missing a critical element. One cannot set a maximum recording duration for the recording. In its present form, it is very easy for a user to start recording but forget to stop, which would result in the buffer (memory or disk) filling up unbounded. Can you please add a configuration parameter for maximum recording duration to st.audio_input()? ### Why? It is problematic when the audio buffer starts filling up when the user forgets to stop recording. This can crash the computer if left unattended. ### How? Add a new configuration parameter, max_duration, to the st.audio_input() API. Once the recording exceeds this duration, it will automatically stop regardless of whether the user has pressed the stop button. ### Additional Context The present API call is st.audio_input(label, *, key=None, help=None, on_change=None, args=None, kwargs=None, disabled=False, label_visibility="visible"), which lack a parameter for max recording duration.
open
2024-12-13T23:34:50Z
2024-12-16T21:03:21Z
https://github.com/streamlit/streamlit/issues/10022
[ "type:enhancement", "feature:st.audio_input" ]
iscoyd
3
chezou/tabula-py
pandas
42
wrapper.py and tabula jar are missing
# Summary of your issue I can import the library tabula, but the functions are still inaccessible. I checked the directory \site-packages\tabula. The wrapper.py and tabula jar file are missing. # Environment Write and check your environment. - [x] `python --version`: Python 3.6.1 :: Anaconda 4.4.0 (64-bit) - [x] `java -version`: java version "1.8.0_131" - [x] OS and it's version: Windows 10 64 bit - [ ] Your PDF URL: # What did you do when you faced the problem? I tried to manually place them in the directory and run again. But it still doesn't work. ## Example code: ``` df = tb.read_pdf("D:\\pdf table extract\\clarkfilterdcccrossref.pdf") ``` ## Output: ``` AttributeError Traceback (most recent call last) <ipython-input-2-df8599025f3b> in <module>() 1 #df = pd.DataFrame() ----> 2 df = tb.read_pdf("D:\\pdf table extract\\clarkfilterdcccrossref.pdf") 3 tb.convert_into("D:\\pdf table extract\\clarkfilterdcccrossref.pdf","output.csv",output_format="csv") AttributeError: module 'tabula' has no attribute 'read_pdf' ``` ## What did you intend to be? Read the pdf file.
closed
2017-07-11T11:44:44Z
2017-07-27T02:37:02Z
https://github.com/chezou/tabula-py/issues/42
[]
Wind1002
2
iperov/DeepFaceLab
machine-learning
931
PC Stability
Hello. its me again, I am a little but concern about my PC. My PC configurations are:- MODEL:- HP Pavailion 15 PROCESSOR:- Intel(R) Core i7-9750H @ 2.60 GHz RAM:- 8 GB DDR4 GRAPHICS CARD:- 4 GB NVIDIA GEFORCE GTX 1650 OPERATING SYSTEM:- Windows 10 x64 bit. I am using SAEHD for training I mean the GPU for training. The problem is that whenever I am running the Trainer Module[(5.XSeg) train.bat]:- 1. My LAPTOP's temperature is somewhat rising a little bit after sometime. Say after 1 hour or so.! Is this fine? 2. The trainer module is taking near about 17 hours to mask "266 segmented" images is this normal? cause my fan speed is rising exponentially. Please Help.
open
2020-10-29T08:09:45Z
2023-06-08T21:22:01Z
https://github.com/iperov/DeepFaceLab/issues/931
[]
Aeranstorm
2
tensorflow/tensor2tensor
machine-learning
1,639
Decoder outputs blank lines for translation
### Description Using transformer model with transformer_base_single_gpu for En-De machine translation. For certain inputs, the decoder output is <EOS> <PAD> <PAD> .. .. (essentially a blank line) for certain translations. Tried to check the softmax output at the decoder end for the probabilities. I am unable to find the code for the same. Any help is appreciated. ### Environment information ``` OS: Linux $ pip freeze | grep tensor mesh-tensorflow==0.0.5 tensor2tensor==1.13.4 tensorboard==1.14.0 tensorflow==1.13.1 tensorflow-datasets==1.0.2 tensorflow-estimator==1.14.0 tensorflow-gpu==1.14.0 tensorflow-metadata==0.14.0 tensorflow-probability==0.7.0 $ python -V Python 3.7.3 ``` ### For bugs: reproduction and error logs Blank line as inference output. in log_decode_results inputs= [[ 862] [ 34] [ 9] [ 540] [ 4802] [ 36] [ 939] [ 570] [13646] [ 3808] [ 15] [14945] [ 2773] [ 10] [ 1583] [ 180] [13646] [21722] [ 8219] [13332] [ 41] [11789] [ 101] [ 1]] outputs= [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ``` # Steps to reproduce: t2t-trainer --data_dir=$DATA_DIR --output_dir=$OUTPUT_DIR --problem=translate_ende_wmt32k --model=transformer --hparams_set=transformer_big_single_gpu --hparams="batch_size=4096,max_length=150" t2t-decoder --data_dir=$DATA_DIR --output_dir=$OUTPUT_DIR --problem=translate_ende_wmt32k --model=transformer --hparams_set=transformer_big_single_gpu --hparams="batch_size=4096, max_length=150" --decode_hparams="beam_size=4,alpha=0.6" --decode_from_file=$FILE_TO_DECODE --decode_to_file=$DECODED_FILE ``` ``` # Error logs: ... ```
open
2019-07-23T18:04:02Z
2019-07-23T18:04:02Z
https://github.com/tensorflow/tensor2tensor/issues/1639
[]
minump
0
jmcarpenter2/swifter
pandas
155
No time gain
I have a data frame with 20k rows and I am applying a non-vectorizable function on each row. However, there is not benefit gained since it is fall back to normal pandas apply with a single process. ```python ret = df.swifter.set_npartitions(npartitions=2).set_dask_threshold(dask_threshold=0.01).allow_dask_on_strings(enable=True).apply(lambda Y: interpol_row(Y.to_frame().T, meas_columns), axis=1) ``` What should I do and how can I use this library to benefit? The calculation took 10 mins which is costly
closed
2021-06-24T09:42:04Z
2022-07-07T17:14:16Z
https://github.com/jmcarpenter2/swifter/issues/155
[]
quancore
3
QingdaoU/OnlineJudge
django
101
使用nginx反向代理的时候静态资源会报404错误
在提交issue之前请 - 认真阅读文档 https://github.com/QingdaoU/OnlineJudge/wiki - 搜索和查看历史issues 然后提交issue请写清楚下列事项 - 进行什么操作的时候遇到了什么问题 - 错误提示是什么,如果看不到错误提示,请去log文件夹查看。大段的错误提示请包在代码块标记里面。 - 你尝试修复问题的操作 - 页面问题请写清浏览器版本,尽量有截图
closed
2017-12-07T08:15:17Z
2017-12-07T11:22:33Z
https://github.com/QingdaoU/OnlineJudge/issues/101
[]
starfire-lzd
0
chezou/tabula-py
pandas
242
how to read large table spread on multiple pages
Iam using tabula_py to read tables on a pdf. Some are big. I have a lot of cases where a table is on more than one page. Isuue is tabula_py is treating as new table for each page, instead of reading as one large table.
closed
2020-06-12T18:15:12Z
2020-06-12T18:15:27Z
https://github.com/chezou/tabula-py/issues/242
[]
idea1002
1
deezer/spleeter
tensorflow
767
[Discussion] Help Docker on Synology
Hello, Could someone please explain me how to set up and use Spleeter under Synology Docker ? Add image => ok Add volume => ok Add env MODEL_DIRECTORY, AUDIO_OUT, AUDIO_IN => ok On start => error : ``` spleeter: error: the following arguments are required: command ``` Thanks
open
2022-05-23T20:36:49Z
2022-05-31T07:58:10Z
https://github.com/deezer/spleeter/issues/767
[ "question" ]
Silbad
1
BeanieODM/beanie
asyncio
644
[BUG] get_settings() does not return the inherited settings
**Describe the bug** When inheriting settings from a common class, get_settings() does not return the inherited settings. **To Reproduce** ``` from beanie import Document, init_beanie from motor.motor_asyncio import AsyncIOMotorClient import asyncio import datetime class GlobalSettings(Document): class Settings: bson_encoders = { datetime.datetime: lambda x: x, datetime.date: lambda x: datetime.datetime.combine(x, datetime.time.min), } class MyDates(GlobalSettings): d: datetime.date dt: datetime.datetime class Settings(GlobalSettings.Settings): name = 'mydates' async def example(): client = AsyncIOMotorClient("mongodb://localhost:27019/my_database") await init_beanie(database=client.get_database(), document_models=[MyDates]) doc = MyDates(d=datetime.date.today(), dt=datetime.datetime.now()) print(doc.Settings.bson_encoders) print(doc.get_settings().bson_encoders) if __name__ == "__main__": asyncio.run(example()) ``` **Expected behavior** doc.get_settings().bson_encoders (in this case) should return the same as doc.Settings.bson_encoder, i.e. the values from the inherited class. **Additional context** If ``` class Settings(GlobalSettings.Settings): name = 'mydates' ``` is removed, get_settings() works as expected.
closed
2023-08-07T13:06:04Z
2023-08-22T10:09:04Z
https://github.com/BeanieODM/beanie/issues/644
[]
piercsi
4
sherlock-project/sherlock
python
2,149
Watson
### Description I created a GUI Assistant For Sherlock: [Watson](https://github.com/tf7software/Watson)
open
2024-06-02T03:51:13Z
2024-06-02T03:53:49Z
https://github.com/sherlock-project/sherlock/issues/2149
[ "enhancement" ]
tf7software
1
scikit-optimize/scikit-optimize
scikit-learn
750
Callback with Optimizer()
Hi, could one add a callback in the Optimizer() function for the Optimizer to be saved? (and loaded afterwards)? Usecase We have a set of 3 weights for a model which need to be optimized and all we do is measure the Click Through Rate, which has to be maximized. SInce we don't know the function of the CTR we use Optimizer instead of gp_minimize. We have to wait one day for the CTR to be measured and therefore would like to save and load our optimizer.
closed
2019-03-06T13:37:13Z
2019-04-21T18:33:28Z
https://github.com/scikit-optimize/scikit-optimize/issues/750
[]
RakiP
3
roboflow/supervision
machine-learning
1,440
Invalid validations on KeyPoints class?
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar bug report. ### Bug I'm trying to use the KeyPoints class, with my xy data as [ [x1,y1], [x2,y1], .... ] Based on the information in the docs string this seems to be input needed. However, I run into an error. ``` ValueError: xy must be a 2D np.ndarray with shape ((68, 2),), but got shape (68, 2) ``` ![image](https://github.com/user-attachments/assets/6a7c65e1-78c0-4fdc-8c04-e152a20a3f3d) The validation for the shape check does not seems to be consistent. Either that or I may be doing something wrong ![image](https://github.com/user-attachments/assets/6e3f2b97-9510-4203-ae2c-feb0c4c9c5ef) ### Environment Supervision: 0.22.0 Python: 3.10 ### Minimal Reproducible Example ```python sv.KeyPoints(xy=np.array([[1,3], [1,3], [1,3]])) ``` ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2024-08-10T23:46:39Z
2024-08-27T11:07:05Z
https://github.com/roboflow/supervision/issues/1440
[ "bug" ]
Chappie74
7
yinkaisheng/Python-UIAutomation-for-Windows
automation
237
EditContral 把IsReadOnly设置为False
我该怎么写才能把EditContral 把IsReadOnly设置为False ,然后setValue
open
2023-02-15T10:12:19Z
2023-03-18T13:31:24Z
https://github.com/yinkaisheng/Python-UIAutomation-for-Windows/issues/237
[]
liyu133
1
3b1b/manim
python
1,121
Cannot set different color in specific Tex forms.
Let's say I have: ``` p_calc = TexMobject("p","=",r"\frac{n}{q}") p_calc.set_color_by_tex_to_color_map({ "n": RED, "p": BLUE, "q": GREEN }) ``` which `p_calc ` is `p=n/q`. I want p to be blue colored,n red colored and q green colored. I have tried different methods,even `\frac{{\color{Red} a}}{b}` but still it changes all `n/q` to color green or is not acceptable.
closed
2020-06-02T05:03:36Z
2020-06-03T05:15:22Z
https://github.com/3b1b/manim/issues/1121
[]
JimChr-R4GN4R
3
stanfordnlp/stanza
nlp
1,223
[QUESTION] How do declare an empty stanza.models.common.doc.Document
In my code I use a Stanza pipeline twice on two sections of an input document, imagine a TITLE and a BODY sections. I normally insert the resulting Stanza Document in a MongoDB document. It can happen that either the TITLE or the BODY sections are missing and therefore the corresponding Documents are too. To avoid complicating the MongoDB insert I'd like to simply insert an empty Stanza Document So imagine I use: ``` if titletext != "": titlestanzadoc = do_stanza_nlp( input_text=titletext, nlpipe=nlpipe ) else: titlestanzadoc = ????????????? ``` How would I create the empty Doc object? Thanks a lot PS This seems an overkill, right? stanzadoc = nlp("")
closed
2023-03-22T16:38:00Z
2023-03-22T16:58:33Z
https://github.com/stanfordnlp/stanza/issues/1223
[ "question" ]
rjalexa
2