repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
huggingface/datasets
nlp
6,728
Issue Downloading Certain Datasets After Setting Custom `HF_ENDPOINT`
### Describe the bug This bug is triggered under the following conditions: - datasets repo ids without organization names trigger errors, such as `bookcorpus`, `gsm8k`, `wikipedia`, rather than in the form of `A/B`. - If `HF_ENDPOINT` is set and the hostname is not in the form of `(hub-ci.)?huggingface.co`. - This issue occurs with `datasets>2.15.0` or `huggingface-hub>0.19.4`. For example, using the latest versions: `datasets==2.18.0` and `huggingface-hub==0.21.4`, ### Steps to reproduce the bug the issue can be reproduced with the following code: 1. install specific datasets and huggingface_hub. ```bash pip install datasets==2.18.0 pip install huggingface_hub==0.21.4 ``` 2. execute python code. ```Python import os os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' from datasets import load_dataset bookcorpus = load_dataset('bookcorpus', split='train') ``` console output: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 2228, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 1879, in dataset_module_factory raise e1 from None File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 1830, in dataset_module_factory with fs.open(f"datasets/{path}/{filename}", "r", encoding="utf-8") as f: File "/home/padeoe/.local/lib/python3.10/site-packages/fsspec/spec.py", line 1295, in open self.open( File "/home/padeoe/.local/lib/python3.10/site-packages/fsspec/spec.py", line 1307, in open f = self._open( File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 228, in _open return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 615, in __init__ self.resolved_path = fs.resolve_path(path, revision=revision) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 180, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 117, in _repo_and_revision_exist self._api.repo_info(repo_id, revision=revision, repo_type=repo_type) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2413, in repo_info return method( File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2286, in dataset_info hf_raise_for_status(r) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 362, in hf_raise_for_status raise HfHubHTTPError(str(e), response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: 401 Client Error: Unauthorized for url: https://hf-mirror.com/api/datasets/bookcorpus/bookcorpus.py (Request ID: Root=1-65ee8659-5ab10eec5960c63e71f2bb58;b00bdbea-fd6e-4a74-8fe0-bc4682ae090e) ``` ### Expected behavior The dataset was downloaded correctly without any errors. ### Environment info datasets==2.18.0 huggingface-hub==0.21.4
closed
2024-03-11T09:06:38Z
2024-03-15T14:52:07Z
https://github.com/huggingface/datasets/issues/6728
[]
padeoe
3
home-assistant/core
python
140,688
Webdav Integration for backup does not work
### The problem Backup with remote storage via webDAV integration does not work. ### What version of Home Assistant Core has the issue? core-2025.3.3 ### What was the last working version of Home Assistant Core? core-2025.3.3 ### What type of installation are you running? Home Assistant OS ### Integration causing the issue Webdav ### Link to integration documentation on our website https://www.home-assistant.io/integrations/webdav ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt Logger: homeassistant.components.backup Quelle: components/backup/manager.py:1073 Integration: Backup (Dokumentation, Probleme) Erstmals aufgetreten: 05:29:21 (3 Vorkommnisse) Zuletzt protokolliert: 21:13:32 Backup agents ['webdav.01JNP54QC3DEYPN79AAFSMQMYQ'] are not available, will backupp to ['hassio.local'] ``` ### Additional information _No response_
closed
2025-03-15T20:46:17Z
2025-03-15T23:25:12Z
https://github.com/home-assistant/core/issues/140688
[ "needs-more-information", "integration: webdav" ]
holger-tangermann
7
AntonOsika/gpt-engineer
python
182
Doesn't quite work right on windows: tries to run .sh file
``` Do you want to execute this code? If yes, press enter. Otherwise, type "no" Executing the code... run.sh: /mnt/c/Users/jeff/.pyenv/pyenv-win/shims/pip: /bin/sh^M: bad interpreter: No such file or directory run.sh: line 2: $'\r': command not found run.sh: line 3: syntax error near unexpected token `<' 'un.sh: line 3: `python main.py <file_path> <column_name> <output_file_path> ``` I even told it in the prompt: this is running on windows. Do not give me shell commands that windows cannot execute. Yet is still generated run.sh and tried to run it.
closed
2023-06-19T02:47:53Z
2023-06-21T13:12:19Z
https://github.com/AntonOsika/gpt-engineer/issues/182
[]
YEM-1
7
huggingface/peft
pytorch
1,452
peft/utils/save_and_load.py try to connect to the hub even when HF_HUB_OFFLINE=1
### System Info peft 0.8.2 axolotl v0.4.0 export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 export HF_HUB_OFFLINE=1 ### Who can help? _No response_ ### Information - [X] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [X] My own task or dataset (give details below) ### Reproduction When I am FT my models on a GPU offline using lora and peft with axolotl library, I get an error from peft/utils/save_and_load.py", line 146, in get_peft_model_state_dict has_remote_config = file_exists(model_id, "config.json") The function try to connect to the HUB before saving the checkpoint locally, which make crash the run and lose the FT model. Here is the full error message: ``` Traceback (most recent call last): File "/gpfslocalsup/pub/anaconda-py3/2021.05/envs/python-3.9.12/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/gpfslocalsup/pub/anaconda-py3/2021.05/envs/python-3.9.12/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/gpfsdswork/projects/rech/vqt/ule33dt/axolotl/src/axolotl/cli/train.py", line 59, in <module> fire.Fire(do_cli) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/fire/core.py", line 141, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/fire/core.py", line 475, in _Fire component, remaining_args = _CallAndUpdateTrace( File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/fire/core.py", line 691, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "/gpfsdswork/projects/rech/vqt/ule33dt/axolotl/src/axolotl/cli/train.py", line 35, in do_cli return do_train(parsed_cfg, parsed_cli_args) File "/gpfsdswork/projects/rech/vqt/ule33dt/axolotl/src/axolotl/cli/train.py", line 55, in do_train return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) File "/gpfsdswork/projects/rech/vqt/ule33dt/axolotl/src/axolotl/train.py", line 163, in train trainer.train(resume_from_checkpoint=resume_from_checkpoint) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/transformers/trainer.py", line 1561, in train return inner_training_loop( File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/transformers/trainer.py", line 1968, in _inner_training_loop self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/transformers/trainer.py", line 2340, in _maybe_log_save_evaluate self._save_checkpoint(model, trial, metrics=metrics) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/transformers/trainer.py", line 2416, in _save_checkpoint self.save_model(staging_output_dir, _internal_call=True) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/transformers/trainer.py", line 2927, in save_model self._save(output_dir) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/transformers/trainer.py", line 2999, in _save self.model.save_pretrained( File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/peft/peft_model.py", line 216, in save_pretrained output_state_dict = get_peft_model_state_dict( File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/peft/utils/save_and_load.py", line 146, in get_peft_model_state_dict has_remote_config = file_exists(model_id, "config.json") File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2386, in file_exists get_hf_file_metadata(url, token=token) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/file_download.py", line 1631, in get_hf_file_metadata r = _request_wrapper( File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/file_download.py", line 385, in _request_wrapper response = _request_wrapper( File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/file_download.py", line 408, in _request_wrapper response = get_session().request(method=method, url=url, **params) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/linkhome/rech/genrqo01/ule33dt/.local/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 78, in send raise OfflineModeIsEnabled( huggingface_hub.utils._http.OfflineModeIsEnabled: Cannot reach https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json: offline mode is enabled. To disable it, please unset the `HF_HUB_OFFLINE` environment variable. ``` I manage to fix the bug by commenting those lines in save_and_load.py: ``` if model_id is not None: try: has_remote_config = file_exists(model_id, "config.json") except (HFValidationError, EntryNotFoundError): warnings.warn( f"Could not find a config file in {model_id} - will assume that the vocabulary was not modified." ) has_remote_config = False ``` ### Expected behavior It seems that `file_exists(model_id, "config.json")` should not call the hub when the variable 'export `HF_HUB_OFFLINE=1` is set
closed
2024-02-09T18:59:45Z
2024-02-12T13:41:37Z
https://github.com/huggingface/peft/issues/1452
[]
LsTam91
1
ultralytics/ultralytics
pytorch
19,105
Impossible to use custom YOLOv8 when loading model
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component _No response_ ### Bug I tried to use my own train model for inference but instead of that I download and use a new yolov8n.pt Here is the output: Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to 'yolov8n.pt'... 100%|██████████| 6.23M/6.23M [00:00<00:00, 42.9MB/s] ### Environment Ultralytics YOLOv8.0.239 🚀 Python-3.10.16 torch-2.4.0+cu121 CPU (13th Gen Intel Core(TM) i7-1365U) Setup complete ✅ (12 CPUs, 15.5 GB RAM, 299.9/1006.9 GB disk) OS Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.39 Environment Linux Python 3.10.16 Install git RAM 15.45 GB CPU 13th Gen Intel Core(TM) i7-1365U CUDA None matplotlib ✅ 3.8.4>=3.3.0 numpy ✅ 1.24.3>=1.22.2 opencv-python ✅ 4.10.0.84>=4.6.0 pillow ✅ 10.4.0>=7.1.2 pyyaml ✅ 6.0.2>=5.3.1 requests ✅ 2.32.3>=2.23.0 scipy ✅ 1.11.4>=1.4.1 torch ✅ 2.4.0>=1.8.0 torchvision ✅ 0.19.0>=0.9.0 tqdm ✅ 4.67.1>=4.64.0 psutil ✅ 6.1.1 py-cpuinfo ✅ 9.0.0 thop ✅ 0.1.1-2209072238>=0.1.1 pandas ✅ 2.0.3>=1.1.4 seaborn ✅ 0.13.2>=0.11.0 hub-sdk ✅ 0.0.18>=0.0.2 ### Minimal Reproducible Example from ultralyticsplus import YOLO model = YOLO("path/to/best.pt") ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2025-02-06T16:10:50Z
2025-02-06T17:22:03Z
https://github.com/ultralytics/ultralytics/issues/19105
[]
nlsferrara
2
biolab/orange3
data-visualization
6,809
do you have any examples that use Orange3 for brain image analysis and network analysis?
<!-- Thanks for taking the time to submit a feature request! For the best chance at our team considering your request, please answer the following questions to the best of your ability. --> **What's your use case?** <!-- In other words, what's your pain point? --> <!-- Is your request related to a problem, or perhaps a frustration? --> <!-- Tell us the story that led you to write this request. --> Use Orange3 for brain image analysis and network analysis **What's your proposed solution?** <!-- Be specific, clear, and concise. --> I want to learn how to use Orange3 for brain image analysis and network analysis **Are there any alternative solutions?** There are many alternatives, but I like the simplicity of Oranges, and I want to follow examples if someone has already done so
closed
2024-05-21T17:09:38Z
2024-06-06T15:53:35Z
https://github.com/biolab/orange3/issues/6809
[]
cosmosanalytics
1
iperov/DeepFaceLab
deep-learning
5,463
Wont use GPU
I have a Geforce RTX 2060 and it wont work with quick train 96 any way to fix?
open
2022-01-18T17:16:20Z
2023-06-08T23:18:36Z
https://github.com/iperov/DeepFaceLab/issues/5463
[]
YGT72
5
proplot-dev/proplot
matplotlib
309
Latest proplot version incompatible with matplotlib 3.5
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> ### Description I think v0.9.5 might be incompatible with matplotlib 3.5.0. I installed from conda-forge so we can repin. ### Steps to reproduce A "[Minimal, Complete and Verifiable Example](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports)" will make it much easier for maintainers to help you. ```python # your code here # we should be able to copy-paste this into python and exactly reproduce your bug fig, axs = pplt.subplots(nrows=3, ncols=3) ``` **Expected behavior**: [What you expected to happen] A plot without a traceback? **Actual behavior**: [What actually happened] An error. ``` >>> import proplot as pplt /Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/__init__.py:71: ProplotWarning: Rebuilding font cache. This usually happens after installing or updating proplot. register_fonts(default=True) >>> fig, axs = pplt.subplots(nrows=3, ncols=3) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/ui.py", line 192, in subplots axs = fig.add_subplots(*args, **kwsubs) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/figure.py", line 1362, in add_subplots axs[idx] = self.add_subplot(ss, **kw) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/figure.py", line 1248, in add_subplot ax = super().add_subplot(ss, _subplot_spec=ss, **kwargs) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/matplotlib/figure.py", line 772, in add_subplot ax = subplot_class_factory(projection_class)(self, *args, **pkw) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/matplotlib/axes/_subplots.py", line 34, in __init__ self._axes_class.__init__(self, fig, [0, 0, 1, 1], **kwargs) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/axes/cartesian.py", line 338, in __init__ super().__init__(*args, **kwargs) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/axes/plot.py", line 1260, in __init__ super().__init__(*args, **kwargs) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/axes/base.py", line 783, in __init__ self._auto_share() File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/axes/base.py", line 1777, in _auto_share child._sharey_setup(parent) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/axes/cartesian.py", line 605, in _sharey_setup self._sharey_limits(sharey) File "/Users/beckermr/miniconda3/envs/test-pp/lib/python3.10/site-packages/proplot/axes/cartesian.py", line 548, in _sharey_limits self._shared_y_axes.join(self, sharey) # share limit/scale changes AttributeError: 'CartesianAxesSubplot' object has no attribute '_shared_y_axes'. Did you mean: '_shared_axes'? ``` ### Equivalent steps in matplotlib Please try to make sure this bug is related to a proplot-specific feature. If you're not sure, try to replicate it with the [native matplotlib API](https://matplotlib.org/3.1.1/api/index.html). Matplotlib bugs belong on the [matplotlib github page](https://github.com/matplotlib/matplotlib). ```python # your code here, if applicable import matplotlib.pyplot as plt ``` ### Proplot version Paste the results of `import matplotlib; print(matplotlib.__version__); import proplot; print(proplot.version)`here. ``` >>> import matplotlib; print(matplotlib.__version__); import proplot; print(proplot.version) 3.5.0 0.9.5 ```
closed
2021-12-10T21:29:15Z
2023-03-03T12:57:40Z
https://github.com/proplot-dev/proplot/issues/309
[ "bug", "dependencies" ]
beckermr
7
huggingface/pytorch-image-models
pytorch
1,497
[DOC] Add Link to the recipe for each model
Adding the recipe used to train each model would be a step forward in the documentation.
closed
2022-10-16T10:49:03Z
2024-08-20T19:29:23Z
https://github.com/huggingface/pytorch-image-models/issues/1497
[ "enhancement" ]
mjack3
1
BeanieODM/beanie
pydantic
187
Validation error when getting the doc and it's linked document is deleted.
I have looked on the docs and according to [docs](https://roman-right.github.io/beanie/tutorial/relations/) "If a direct link is referred to a non-existent document, after the fetching it will stay the object of the Link class." But in my case it's raising ValidationError when the Linked document is deleted. Here is a sample of my code.\ `class User(Document): id: int invited_by: typing.Union[Link["User"], None] = None` `async def test_sth(db: UsersDB): user1 = User(id=12) await user1.insert() user2 = User(id=123, invited_by=user1) await user2.insert() await user1.delete() await User.find_one(User.id == int(12), fetch_links=True) ` and it raises the following error. I don't know what I'm doing wrong or if there is a problem with my code. ` E pydantic.error_wrappers.ValidationError: 1 validation error for User E invited_by E value is not a valid dict (type=type_error.dict) pydantic/main.py:331: ValidationError `
closed
2022-01-16T19:23:53Z
2023-05-23T18:40:31Z
https://github.com/BeanieODM/beanie/issues/187
[ "bug" ]
runetech0
3
graphql-python/graphene-mongo
graphql
180
Switch Mongoengine DB at run time
I have a requirement where each client's data is stored in a different DB. The schema is the same for all clients in this case. So I need to switch_db while the query is being processed. Is there any way to configure graphQL to select DB to be used?
open
2021-07-12T03:54:33Z
2021-07-12T03:54:33Z
https://github.com/graphql-python/graphene-mongo/issues/180
[]
harsh04
0
encode/databases
sqlalchemy
221
"asyncpg.exceptions.PostgresSyntaxError" While using sqlalchemy is_(None) method in query
Hai friends, I am using `sqlalchemy core + databases` for building and executing query in my project.\ My steps to build the query is like ```python from sqlalchemy import * from databases import Database url = 'postgresql://username:password@localhost:5432/db_name' meta = MetaData() eng = create_engine(url, echo=True) database = Database(url) my_user_table = Table("my_user_table", meta, Column("name", String), Column("age", Integer)) meta.create_all(eng) async def run(): await database.connect() query = my_user_table.update().values({"name": bindparam("name_value")}).where(my_user_table.c.age.is_(bindparam("null_value"))) values = {"name_value": "foo", "null_value": None} text_query = text(str(query)) final_query = text_query.bindparams(**values) result = await database.fetch_all(query=final_query) await database.disconnect() print(result) import asyncio asyncio.run(run()) ``` But this throws an error ``` File "/Users/env_file/lib/python3.8/site-packages/databases/core.py", line 218, in fetch_all return await self._connection.fetch_all(self._build_query(query, values)) File "/Users/env_file/lib/python3.8/site-packages/databases/backends/postgres.py", line 144, in fetch_all rows = await self._connection.fetch(query, *args) File "/Users/env_file/lib/python3.8/site-packages/asyncpg/connection.py", line 420, in fetch return await self._execute(query, args, 0, timeout) File "/Users/env_file/lib/python3.8/site-packages/asyncpg/connection.py", line 1402, in _execute result, _ = await self.__execute( File "/Users/env_file/lib/python3.8/site-packages/asyncpg/connection.py", line 1411, in __execute return await self._do_execute(query, executor, timeout) File "/Users/env_file/lib/python3.8/site-packages/asyncpg/connection.py", line 1423, in _do_execute stmt = await self._get_statement(query, None) File "/Users/env_file/lib/python3.8/site-packages/asyncpg/connection.py", line 328, in _get_statement statement = await self._protocol.prepare(stmt_name, query, timeout) File "asyncpg/protocol/protocol.pyx", line 163, in prepare asyncpg.exceptions.PostgresSyntaxError: syntax error at or near "$2" ``` Nb: It's not because of the value `None`, I tried the query by replacing other values but the same error.
open
2020-06-16T15:47:20Z
2021-07-21T14:03:44Z
https://github.com/encode/databases/issues/221
[]
balukrishnans
1
mckinsey/vizro
data-visualization
459
Relationship analysis chart in demo has no flexibility in Y axis
### Description If we look at [relationship analysis page of the demo UI](https://vizro.mckinsey.com/relationship-analysis), it provides explicit controls of what variables to put on axis: <img width="243" alt="Screenshot 2024-05-06 at 9 58 43 PM" src="https://github.com/mckinsey/vizro/assets/102987839/9dda54f5-d985-4d13-9a2e-28c3cc2d2b25"> Those selectors are not created automatically on the `plotly` size - they are [part of Vizro source code](https://github.com/mckinsey/vizro/blob/6484827364337e418b0539bda2abdff54bdb7967/vizro-core/examples/demo/app.py#L295-L314). So on one hand there's flexibility in selecting variables to put on axis, but on the other hand, [the range for Y axis is hard-coded](https://github.com/mckinsey/vizro/blob/6484827364337e418b0539bda2abdff54bdb7967/vizro-core/examples/demo/app.py#L134). This in fact makes the chart empty for all Y axis options except for `life_expectancy`, which is where those limits are coming from. What this leads to is that if a user makes the simplest adjustment, like flip X and Y axis, the chart becomes empty: <img width="1440" alt="Screenshot 2024-05-06 at 10 01 52 PM" src="https://github.com/mckinsey/vizro/assets/102987839/0848b991-3e27-4d6a-976d-6c26f1552808"> Because the range for Y axis is hard coded to be representative of `life_expectancy` values. ### Expected behavior The page should either not provide those controls, or make them functional so that the chart works with any combination of those without hard coded ranges for any. ### Which package? vizro ### Package version 0.1.16 ### Python version 3.12 ### OS MacOS ### How to Reproduce Added in the description. ### Output Added in the description. ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
closed
2024-05-06T20:04:00Z
2024-06-04T13:11:17Z
https://github.com/mckinsey/vizro/issues/459
[]
yury-fedotov
10
skypilot-org/skypilot
data-science
4,922
[API server] Helm warning: annotation "kubernetes.io/ingress.class" is deprecated
``` W0310 23:08:14.543122 97112 warnings.go:70] annotation "kubernetes.io/ingress.class" is deprecated, please use 'spec.ingressClassName' instead NAME: skypilot ``` We can choose the field to set based on the server version
open
2025-03-10T15:16:26Z
2025-03-10T15:16:32Z
https://github.com/skypilot-org/skypilot/issues/4922
[ "good first issue", "good starter issues" ]
aylei
0
miguelgrinberg/python-socketio
asyncio
1,077
keep trying to reconnect
**Describe the bug** Analyze the log of PING pong, the connection has been successful, but it is constantly trying to reconnect, check the traceback, socketio.exceptions.ConnectionError: Already connected **To Reproduce** Please fill the following code example: Socket.IO server version: `4.1.z` *Server* ```js const { setupWorker } = require("@socket.io/sticky"); const crypto = require("crypto"); const randomId = () => crypto.randomBytes(8).toString("hex"); const { RedisSessionStore } = require("./sessionStore"); const sessionStore = new RedisSessionStore(redisClient, redisClient1); const { RedisMessageStore } = require("./messageStore"); const messageStore = new RedisMessageStore(redisClient); io.use(async (socket, next) => { const sessionID = socket.handshake.auth.sessionID; if (sessionID) { const session = await sessionStore.findSession(sessionID); if (session) { socket.sessionID = sessionID; socket.userID = session.userID; socket.username = session.username; return next(); } } const auth_info = socket.handshake.auth.auth_info; if (auth_info == 'admin'){ socket.userID = -1 socket.username = 'admin'; socket.room_code = 'admin_-1' return next(); } console.log(auth_info,33, auth_info == 'admin') if (!auth_info) { return next(new Error("invalid auth_info")); } socket.sessionID = randomId(); // socket.userID = randomId(); user_info = await sessionStore.findUserIdForToken(auth_info); console.log(user_info, auth_info) if (!user_info){ console.log(64) return next(new Error("invalid auth_info not found")); } const [uid, source] = user_info socket.userID = uid socket.username = source; socket.room_code = source + '_' + uid next(); }); io.on("connection", async (socket) => { // persist session sessionStore.saveSession(socket.sessionID, { userID: socket.userID, username: socket.username, connected: true, }); ``` Socket.IO client version: python-socketio 5.7.2 *Client* ```python import socketio sio = socketio.Client(logger=True, engineio_logger=True) @sio.event def connect(): print('连接成功') @sio.event def connect_error(data): print(14, data) # exit() @sio.event def disconnect(): print('断开连接了') @sio.on('private message') def private_message(data): print(22, data) @sio.event def hello(a, b, c): print(a, b, c) @sio.on('*') def catch_all(event, data): print(11, event,data, 28) if __name__ == '__main__': sio.connect('https://ws.xxxx.com', auth={'auth_info': 'admin'}, wait_timeout=10) sio.emit('private message', {'body': '1213123', 'to': 'cx_67506'}) sio.wait() ``` **code** ``` def _handle_reconnect(self): if self._reconnect_abort is None: # pragma: no cover self._reconnect_abort = self.eio.create_event() self._reconnect_abort.clear() reconnecting_clients.append(self) attempt_count = 0 current_delay = self.reconnection_delay while True: delay = current_delay current_delay *= 2 if delay > self.reconnection_delay_max: delay = self.reconnection_delay_max delay += self.randomization_factor * (2 * random.random() - 1) self.logger.info( 'Connection failed, new attempt in {:.02f} seconds'.format( delay)) if self._reconnect_abort.wait(delay): self.logger.info('Reconnect task aborted') break attempt_count += 1 try: self.connect(self.connection_url, headers=self.connection_headers, auth=self.connection_auth, transports=self.connection_transports, namespaces=self.connection_namespaces, socketio_path=self.socketio_path) except (exceptions.ConnectionError, ValueError): # traceback.print_exc() pass else: self.logger.info('Reconnection successful') self._reconnect_task = None break if self.reconnection_attempts and \ attempt_count >= self.reconnection_attempts: self.logger.info( 'Maximum reconnection attempts reached, giving up') break reconnecting_clients.remove(self) ``` **log** **Connection failed, new attempt in 5.49 seconds** Traceback (most recent call last): File "/Users/dai/Dev/aiguo_python/ven3a-socketio/lib/python3.10/site-packages/socketio/client.py", line 661, in _handle_reconnect self.connect(self.connection_url, File "/Users/dai/Dev/aiguo_python/ven3a-socketio/lib/python3.10/site-packages/socketio/client.py", line 307, in connect raise exceptions.ConnectionError('Already connected') socketio.exceptions.ConnectionError: Already connected **Connection failed, new attempt in 5.21 seconds** Traceback (most recent call last): File "/Users/dai/Dev/aiguo_python/ven3a-socketio/lib/python3.10/site-packages/socketio/client.py", line 661, in _handle_reconnect self.connect(self.connection_url, File "/Users/dai/Dev/aiguo_python/ven3a-socketio/lib/python3.10/site-packages/socketio/client.py", line 307, in connect raise exceptions.ConnectionError('Already connected') socketio.exceptions.ConnectionError: Already connected **Connection failed, new attempt in 5.34 seconds** Traceback (most recent call last): File "/Users/dai/Dev/aiguo_python/ven3a-socketio/lib/python3.10/site-packages/socketio/client.py", line 661, in _handle_reconnect self.connect(self.connection_url, File "/Users/dai/Dev/aiguo_python/ven3a-socketio/lib/python3.10/site-packages/socketio/client.py", line 307, in connect raise exceptions.ConnectionError('Already connected') **socketio.exceptions.ConnectionError: Already connected** **log2** ``` WebSocket upgrade was successful Received packet MESSAGE data 0{"sid":"gvr4xtgkcIBMFnAzAAAP"} Namespace / is connected 连接成功 Reconnection successful Reconnection successful Connection failed, new attempt in 4.22 seconds Connection failed, new attempt in 4.12 seconds Connection failed, new attempt in 5.02 seconds Connection failed, new attempt in 5.34 seconds Connection failed, new attempt in 5.02 seconds Connection failed, new attempt in 5.21 seconds Connection failed, new attempt in 4.81 seconds Connection failed, new attempt in 5.21 seconds Connection failed, new attempt in 4.70 seconds Connection failed, new attempt in 5.24 seconds Connection failed, new attempt in 5.39 seconds Received packet PING data Sending packet PONG data Connection failed, new attempt in 5.17 seconds Connection failed, new attempt in 5.15 seconds Connection failed, new attempt in 5.46 seconds Connection failed, new attempt in 5.06 seconds Connection failed, new attempt in 4.51 seconds Connection failed, new attempt in 4.81 seconds Connection failed, new attempt in 5.16 seconds ``` **Platform:** + client - Device: mac pro - OS: macos + server - Device: pc - OS: ubuntu20.04 **Additional context** Add any other context about the problem here.
closed
2022-10-27T07:24:18Z
2024-01-04T20:08:11Z
https://github.com/miguelgrinberg/python-socketio/issues/1077
[ "question" ]
dly667
9
s3rius/FastAPI-template
fastapi
199
PEP 604 Optional[]
Python 3.10+ introduces the | union operator into type hinting, see [PEP 604](https://www.python.org/dev/peps/pep-0604/). Instead of Union[str, int] you can write str | int. In line with other type-hinted languages, the preferred (and more concise) way to denote an optional argument in Python 3.10 and up, is now Type | None, e.g. str | None or list | None. I'm sure many people use version 3.10 and higher. Also, the List type changes to list I suggest you bring the code to PEP 604 or make an option during installation
open
2023-12-13T08:58:02Z
2023-12-15T14:05:27Z
https://github.com/s3rius/FastAPI-template/issues/199
[]
Spirit412
3
graphql-python/graphene-sqlalchemy
graphql
152
Serializing native Python enums does not work
Currently using SQL enums works well, unless you use a `enum.Enum` as base for the enum. For example using this model: ```python class Hairkind(enum.Enum): LONG = 'long' SHORT = 'short' class Pet(Base): __tablename__ = 'pets' id = Column(Integer(), primary_key=True) hair_kind = Column(Enum(Hairkind, name='hair_kind'), nullable=False) ``` will fail badly if you try to query the hairKind field: ``` File "lib/python3.7/site-packages/graphql/execution/executor.py", line 622, in complete_leaf_value path=path, graphql.error.base.GraphQLError: Expected a value of type "hair_kind" but received: Hairkind.LONG ```
closed
2018-07-31T12:47:07Z
2023-02-25T06:58:33Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/152
[]
wichert
6
microsoft/unilm
nlp
712
Isn't LayoutXLM-large is the public model?
Hi, Thank you for sharing your work. I'm using the layoutxlm-base model. I wanna check the layoutxlm-large too, but I can't find the models in huggingface. Can't I try the model?
closed
2022-05-11T09:05:47Z
2022-05-13T00:17:49Z
https://github.com/microsoft/unilm/issues/712
[]
yellowjs0304
2
flaskbb/flaskbb
flask
548
pip install -r requirements.txt doesn't work
Last output of `pip install -r requirements.txt` ``` Collecting Mako==1.0.7 Using cached Mako-1.0.7.tar.gz (564 kB) Collecting MarkupSafe==1.0 Using cached MarkupSafe-1.0.tar.gz (14 kB) ERROR: Command errored out with exit status 1: command: /home/<user>/flaskbb/.venv/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-vducm9fe/MarkupSafe/setup.py'"'"'; __file__='"'"'/tmp/pip-install-vducm9fe/MarkupSafe/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-install-vducm9fe/MarkupSafe/pip-egg-info cwd: /tmp/pip-install-vducm9fe/MarkupSafe/ Complete output (5 lines): Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-install-vducm9fe/MarkupSafe/setup.py", line 6, in <module> from setuptools import setup, Extension, Feature ImportError: cannot import name 'Feature' ---------------------------------------- ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ``` and with `--log log.log` ``` 2020-04-17T21:41:07,974 Found link https://files.pythonhosted.org/packages/e0/bf/acc45baeb2d7333ed724c30af188640d9cb0be4b28533edfc3e2ae5aad72/MarkupSafe-2.0.0a1.tar.gz#sha256=beac28ed60c8e838301226a7a85841d0af2068eba2dcb1a58c2d32d6c05e440e (from https://pypi.org/simple/markupsafe/) (requires-python:>=3.6), version: 2.0.0a1 2020-04-17T21:41:07,977 Given no hashes to check 1 links for project 'MarkupSafe': discarding no candidates 2020-04-17T21:41:07,984 Using version 1.0 (newest of versions: 1.0) 2020-04-17T21:41:07,994 Collecting MarkupSafe==1.0 2020-04-17T21:41:07,995 Created temporary directory: /tmp/pip-unpack-gqwjpz49 2020-04-17T21:41:08,009 Using cached MarkupSafe-1.0.tar.gz (14 kB) 2020-04-17T21:41:08,032 Added MarkupSafe==1.0 from https://files.pythonhosted.org/packages/4d/de/32d741db316d8fdb7680822dd37001ef7a448255de9699ab4bfcbdf4172b/MarkupSafe-1.0.tar.gz#sha256=a6be69091dac236ea9c6bc7d012beab42010fa914c459791d627dad4910eb665 (from -r requirements.txt (line 35)) to build tracker '/tmp/pip-req-tracker-ev_qmg96' 2020-04-17T21:41:08,032 Running setup.py (path:/tmp/pip-install-pom40nr4/MarkupSafe/setup.py) egg_info for package MarkupSafe 2020-04-17T21:41:08,032 Running command python setup.py egg_info 2020-04-17T21:41:08,573 Traceback (most recent call last): 2020-04-17T21:41:08,574 File "<string>", line 1, in <module> 2020-04-17T21:41:08,574 File "/tmp/pip-install-pom40nr4/MarkupSafe/setup.py", line 6, in <module> 2020-04-17T21:41:08,574 from setuptools import setup, Extension, Feature 2020-04-17T21:41:08,574 ImportError: cannot import name 'Feature' 2020-04-17T21:41:08,627 Cleaning up... 2020-04-17T21:41:08,628 Removing source in /tmp/pip-install-pom40nr4/alembic 2020-04-17T21:41:08,650 Removing source in /tmp/pip-install-pom40nr4/Flask-Limiter 2020-04-17T21:41:08,656 Removing source in /tmp/pip-install-pom40nr4/flask-whooshee 2020-04-17T21:41:08,659 Removing source in /tmp/pip-install-pom40nr4/itsdangerous 2020-04-17T21:41:08,666 Removing source in /tmp/pip-install-pom40nr4/Mako 2020-04-17T21:41:08,684 Removing source in /tmp/pip-install-pom40nr4/MarkupSafe 2020-04-17T21:41:08,844 Removed MarkupSafe==1.0 from https://files.pythonhosted.org/packages/4d/de/32d741db316d8fdb7680822dd37001ef7a448255de9699ab4bfcbdf4172b/MarkupSafe-1.0.tar.gz#sha256=a6be69091dac236ea9c6bc7d012beab42010fa914c459791d627dad4910eb665 (from -r requirements.txt (line 35)) from build tracker '/tmp/pip-req-tracker-ev_qmg96' 2020-04-17T21:41:08,844 Removed build tracker: '/tmp/pip-req-tracker-ev_qmg96' 2020-04-17T21:41:08,848 ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. 2020-04-17T21:41:08,849 Exception information: 2020-04-17T21:41:08,849 Traceback (most recent call last): 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/cli/base_command.py", line 186, in _main 2020-04-17T21:41:08,849 status = self.run(options, args) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/commands/install.py", line 331, in run 2020-04-17T21:41:08,849 resolver.resolve(requirement_set) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/legacy_resolve.py", line 177, in resolve 2020-04-17T21:41:08,849 discovered_reqs.extend(self._resolve_one(requirement_set, req)) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/legacy_resolve.py", line 333, in _resolve_one 2020-04-17T21:41:08,849 abstract_dist = self._get_abstract_dist_for(req_to_install) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/legacy_resolve.py", line 282, in _get_abstract_dist_for 2020-04-17T21:41:08,849 abstract_dist = self.preparer.prepare_linked_requirement(req) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/operations/prepare.py", line 516, in prepare_linked_requirement 2020-04-17T21:41:08,849 req, self.req_tracker, self.finder, self.build_isolation, 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/operations/prepare.py", line 95, in _get_prepared_distribution 2020-04-17T21:41:08,849 abstract_dist.prepare_distribution_metadata(finder, build_isolation) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/distributions/sdist.py", line 40, in prepare_distribution_metadata 2020-04-17T21:41:08,849 self.req.prepare_metadata() 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/req/req_install.py", line 564, in prepare_metadata 2020-04-17T21:41:08,849 self.metadata_directory = self._generate_metadata() 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/req/req_install.py", line 544, in _generate_metadata 2020-04-17T21:41:08,849 details=self.name or "from {}".format(self.link) 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/operations/build/metadata_legacy.py", line 118, in generate_metadata 2020-04-17T21:41:08,849 command_desc='python setup.py egg_info', 2020-04-17T21:41:08,849 File "/home/<user>/flaskbb/.venv/lib/python3.6/site-packages/pip/_internal/utils/subprocess.py", line 242, in call_subprocess 2020-04-17T21:41:08,849 raise InstallationError(exc_msg) 2020-04-17T21:41:08,849 pip._internal.exceptions.InstallationError: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ``` Output of `python setup.py egg_info` and result code: ``` (.venv) <user>@hosty:~/flaskbb$ python setup.py egg_info running egg_info writing FlaskBB.egg-info/PKG-INFO writing dependency_links to FlaskBB.egg-info/dependency_links.txt writing entry points to FlaskBB.egg-info/entry_points.txt writing requirements to FlaskBB.egg-info/requires.txt writing top-level names to FlaskBB.egg-info/top_level.txt reading manifest file 'FlaskBB.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no files found matching 'pytest.ini' no previously-included directories found matching 'flaskbb/themes/*/node_modules' no previously-included directories found matching 'flaskbb/themes/*/.sass-cache' warning: no previously-included files matching '__pycache__' found anywhere in distribution warning: no previously-included files matching '*.sw[a-z]' found anywhere in distribution writing manifest file 'FlaskBB.egg-info/SOURCES.txt' (.venv) <user>@hosty:~/flaskbb$ echo $? 0 ```
closed
2020-04-17T19:44:40Z
2020-06-04T18:29:32Z
https://github.com/flaskbb/flaskbb/issues/548
[]
trick2011
4
pydantic/pydantic-ai
pydantic
846
ollama_example.py not working from docs
openai.OpenAIError: The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable
closed
2025-02-04T05:35:14Z
2025-02-04T18:11:48Z
https://github.com/pydantic/pydantic-ai/issues/846
[]
saipr0
2
cle-b/httpdbg
rest-api
155
Feature Request: Counter for List of Requests
Just learned about httpdbg and have been enjoying using it. This is a small suggestion, but it would be nice to have a counter in the UI displaying the number of recorded requests. Thanks for the great tool!
closed
2024-10-31T00:48:49Z
2024-11-01T17:50:41Z
https://github.com/cle-b/httpdbg/issues/155
[]
erikcw
2
sunscrapers/djoser
rest-api
306
Allow optional user fields to be set on registration
It would be very helpful if optional user fields like `first_name` and `last_name` could be set in `POST /users/`. The available fields would depend on the serializer being used.
closed
2018-09-14T23:09:47Z
2019-01-18T17:48:30Z
https://github.com/sunscrapers/djoser/issues/306
[]
ferndot
2
axnsan12/drf-yasg
rest-api
260
Detect ChoiceField type based on choices
### Background According to DRF documentation and source code, `ChoiceField` class supports different values types. `ChoiceFieldInspector` considers ChoiceField to be of string type in all cases (except ModelSerializer case). ### Goal Detect field type based on provided choices types. When all choices are integers, set swagger type to "integer", otherwise use "string". ### Open questions 1. Are there any other types which can be automatically inferred?
closed
2018-12-04T08:15:45Z
2018-12-07T12:11:14Z
https://github.com/axnsan12/drf-yasg/issues/260
[]
mofr
5
RobertCraigie/prisma-client-py
pydantic
107
Add support for the Unsupported type
## Problem <!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] --> Prisma supports an `Unsupported` type that means types that Prisma does not support yet can still be represented in the schema. We should support it too. [https://www.prisma.io/docs/reference/api-reference/prisma-schema-reference#unsupported](https://www.prisma.io/docs/reference/api-reference/prisma-schema-reference#unsupported) ## Suggested solution <!-- A clear and concise description of what you want to happen. --> As fields of this type are not actually supported in the Client, what we have to do is limit what actions are available in certain situations. E.g. if a model contains a required `Unsupported` field then `create()` and `update()` are not available
open
2021-11-08T00:16:59Z
2022-02-01T15:38:21Z
https://github.com/RobertCraigie/prisma-client-py/issues/107
[ "topic: types", "kind/feature", "level/advanced", "priority/low" ]
RobertCraigie
0
modin-project/modin
data-science
7,249
how to take down ray and put up again in local mode
My program has memory risk, and part of it seems to come from memory leak (idling ray workers holding a big chunk of memory). I have a for loop to independently run chunks of csv file on a series of tasks, I wish to kill ray after each iteration to release memory, and let Modin to put it up again with fresh ray workers. However, my code is the following: ```py import pandas for df_ in pandas.read_csv('xxx.csv', chunk=5000): df_.to_csv(xxx) run_my_tasks(xxx) # Modin will initialize ray in first iteration ray.shutdown() ``` however, I got below error: ``` File "/home/.../lib/python3.9/site-packages/modin/core/execution/ray/common/deferred_execution.py", line 309, in _deconstruct_chain output[out_pos] = out_pos IndexError: list assignment index out of range ```
closed
2024-05-09T09:06:03Z
2024-06-15T21:00:33Z
https://github.com/modin-project/modin/issues/7249
[ "new feature/request 💬" ]
SiRumCz
14
iMerica/dj-rest-auth
rest-api
499
Not getting `id_token` in response: Apple authentication.
I am using 3.0.0 and now I am confused about `id_token` for apple authentication. This [issue](https://github.com/iMerica/dj-rest-auth/issues/201#issue-774050426) says to use both `access_token` and `id_token` for login. When I hit the [authorisation url](https://developer.apple.com/documentation/sign_in_with_apple/request_an_authorization_to_the_sign_in_with_apple_server) with the required params, I am getting only `code`. When I use this code for login in API then I get logged in successfully for the first time and I get `access_token` and `refresh_token`. There is no trace of `id_token`. What am I missing here?
open
2023-03-30T01:03:34Z
2023-05-04T05:19:08Z
https://github.com/iMerica/dj-rest-auth/issues/499
[]
haccks
1
jupyter/nbviewer
jupyter
673
Error 503: GitHub API rate limit exceeded. Try again soon.
I am getting this error on a few notebooks, but I can't imagine that I have reached any traffic limits [http://nbviewer.jupyter.org/github/MaayanLab/single_cell_RNAseq_Visualization/blob/master/Single%20Cell%20RNAseq%20Visualization%20Example.ipynb](http://nbviewer.jupyter.org/github/MaayanLab/single_cell_RNAseq_Visualization/blob/master/Single%20Cell%20RNAseq%20Visualization%20Example.ipynb) [https://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/DataFrame_Example.ipynb](https://nbviewer.jupyter.org/github/MaayanLab/clustergrammer-widget/blob/master/DataFrame_Example.ipynb) It also seems to be a general issue with nbviewer since I can't reach this notebook also (linked from the front page) [http://nbviewer.jupyter.org/github/ipython/ipython/blob/4.0.x/examples/IPython%20Kernel/Cell%20Magics.ipynb](http://nbviewer.jupyter.org/github/ipython/ipython/blob/4.0.x/examples/IPython%20Kernel/Cell%20Magics.ipynb)
closed
2017-02-22T15:50:40Z
2019-10-07T17:37:41Z
https://github.com/jupyter/nbviewer/issues/673
[]
cornhundred
10
plotly/dash-bio
dash
422
dash bio installation error in R
**Description of the bug** Error when installing dash-bio in R, problem with dashHtmlComponents. **To Reproduce** ``` > remotes::install_github("plotly/dash-bio") Downloading GitHub repo plotly/dash-bio@master ✔ checking for file ‘/tmp/Rtmp3t2YC5/remotes1be9102a356f/plotly-dash-bio-447ebbe/DESCRIPTION’ ... ─ preparing ‘dashBio’: ✔ checking DESCRIPTION meta-information ... ─ cleaning src ─ checking for LF line-endings in source and make files and shell scripts ─ checking for empty or unneeded directories Removed empty directory ‘dashBio/src’ Removed empty directory ‘dashBio/tests’ ─ looking to see if a ‘data/datalist’ file should be added ─ building ‘dashBio_0.1.2.tar.gz’ Installing package into ‘/home/ediman/R/x86_64-pc-linux-gnu-library/3.6’ (as ‘lib’ is unspecified) * installing *source* package ‘dashBio’ ... ** using staged installation ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading Error in loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]) : namespace ‘dashHtmlComponents’ 1.0.1 is being loaded, but == 1.0.0 is required Calls: <Anonymous> ... namespaceImport -> loadNamespace -> namespaceImport -> loadNamespace Execution halted ERROR: lazy loading failed for package ‘dashBio’ ``` **Expected behavior** Installation success. **Session Info** ``` R version 3.6.1 (2019-07-05) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 18.04.3 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3 LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats graphics grDevices utils datasets methods base loaded via a namespace (and not attached): [1] Rcpp_1.0.2 rstudioapi_0.10 magrittr_1.5 usethis_1.5.1 devtools_2.2.1 pkgload_1.0.2 [7] R6_2.4.0 rlang_0.4.0 tools_3.6.1 pkgbuild_1.0.5 sessioninfo_1.1.1 cli_1.1.0 [13] withr_2.1.2 ellipsis_0.3.0 remotes_2.1.0 yaml_2.2.0 assertthat_0.2.1 digest_0.6.21 [19] rprojroot_1.3-2 crayon_1.3.4 processx_3.4.1 callr_3.3.1 fs_1.3.1 ps_1.3.0 [25] curl_4.2 testthat_2.2.1 memoise_1.1.0 glue_1.3.1.9000 compiler_3.6.1 desc_1.2.0 [31] backports_1.1.4 prettyunits_1.0.2 ```
closed
2019-10-01T14:55:42Z
2019-10-01T17:18:31Z
https://github.com/plotly/dash-bio/issues/422
[]
Ebedthan
3
keras-team/keras
machine-learning
20,432
TorchModuleWrapper object has no attribute 'train' (Keras3)
**Description** I am trying to integrate a `torch.nn.Module` together with Keras Layers in my neural architecture using the `TorchModuleWrapper` layer. For this, I tried to reproduce the example reported in the [documentation](https://keras.io/api/layers/backend_specific_layers/torch_module_wrapper/). To make the code run, I have to first change the import from `from keras.src.layers import TorchModuleWrapper` to `from keras.layers import TorchModuleWrapper`. **Actual Behavior** I obtain an `AttributeError` when the line `print("# Output shape", model(torch.ones(1, 1, 28, 28).to("cpu")).shape)` (using the cpu rather than gpu as the example shows) is executed: ``` 24 def call(self, inputs): ---> 25 x = F.relu(self.conv1(inputs)) 26 x = self.pool(x) 27 x = F.relu(self.conv2(x)) AttributeError: Exception encountered when calling TorchModuleWrapper.call(). 'TorchModuleWrapper' object has no attribute 'train' Arguments received by TorchModuleWrapper.call(): • args=('tf.Tensor(shape=(1, 1, 28, 28), dtype=float32)',) • training=None • kwargs=<class 'inspect._empty'> ``` **Steps to Reproduce** 1. Copy the code in the documentation 2. Change the import as explained above 3. Execute the code **Environment** - keras v3.6.0 - torch v2.5.1 - python 3.10.15 Thank you in advance for any help!
closed
2024-10-31T13:04:18Z
2024-11-01T07:40:06Z
https://github.com/keras-team/keras/issues/20432
[]
MicheleCattaneo
4
chiphuyen/stanford-tensorflow-tutorials
nlp
143
How to change the output of style_transfer?
After running the code successfully it cut off the image which wasn't desired.How to change the scale on which i want to do style transfer.I used different images as input. I am working on ubuntu 18.04
open
2019-03-08T14:16:55Z
2019-03-08T16:41:01Z
https://github.com/chiphuyen/stanford-tensorflow-tutorials/issues/143
[]
ghost
0
ultralytics/ultralytics
machine-learning
19,099
How to deploy YOLO11 detection model on CVAT nuclio?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Any sample .yaml I can follow? ### Additional _No response_
open
2025-02-06T11:18:43Z
2025-02-06T14:07:29Z
https://github.com/ultralytics/ultralytics/issues/19099
[ "question", "detect" ]
patricklau12
4
ARM-DOE/pyart
data-visualization
1,245
plot_ppi_map with lat/lon
I have some code that I've been using successfully on a Debian 10 machine running pyart v1.11.2. I've tried running it on a Debian 11 machine running pyart v1.12.5 and I get plots but no lat/lon information. See my code and two attached images. Can you explain what I might be missing? `import os import sys import matplotlib.pyplot as plt import pyart import numpy as np from datetime import datetime import cartopy.crs as ccrs import warnings warnings.filterwarnings("ignore") fname = "/home/disk/monsoon/precip/cfradial/spol_ncar/cfradial/rate/sur/20220607/cfrad.20220607_042450.162_to_20220607_043052.364_SPOL_SUR.nc" outdir_base = '/home/disk/monsoon/precip/radar/spol_test' # get date and time from filename filename = os.path.basename(fname) (prefix,start,junk,junk,junk) = filename.split('.') start_obj = datetime. strptime(start, '%Y%m%d_%H%M%S') start_str = start_obj.strftime('%Y/%m/%d %H:%M:%S') datetime_str = start_obj.strftime('%Y%m%d%H%M%S') date = start_obj.strftime('%Y%m%d') # create outdir if necessary outdir = outdir_base+'/'+date if not os.path.exists(outdir): os.makedirs(outdir) # read input file & get elevation angles radar = pyart.io.read(fname) radar.scan_type = 'sur' els = radar.fixed_angle['data'] # get lowest elevation angle index = 0 angle = round(els[index],1) print('lowest angle =',angle) # check to see if image already exists file_out = 'research.Radar_SPOL.'+datetime_str+'.ppim_rrate_'+str(angle).replace('.','')+'.png' if not os.path.isfile(outdir+'/'+file_out): # remove transition angle flags subset = radar.extract_sweeps([index]) trans = subset.antenna_transition["data"] trans[:] = 0 subset.antenna_transition["data"] = trans # create display # use 'subset' instead of 'radar' to define display # then sweep will be 0 for all plots since subset contains only one sweep display = pyart.graph.RadarMapDisplay(subset) fig = plt.figure(figsize=(12, 4.5)) fig.tight_layout() fig.suptitle('SPOL Rain Rates '+start_str+' UTC PPI '+str(angle)+' deg', fontsize=18) ax = fig.add_subplot(121, projection=ccrs.PlateCarree()) display.plot_ppi_map('RATE_HYBRID', sweep=0, ax=ax, title='', vmin=0,vmax=50, width=400000, height=400000, colorbar_label='RATE_HYBRID (mm/hr)', cmap='pyart_HomeyerRainbow', lat_lines = np.arange(22,27,.5), lon_lines = np.arange(118, 123,1), #axislabels=('', 'Distance from radar (km)'), resolution = '10m') ax = fig.add_subplot(122, projection=ccrs.PlateCarree()) display.plot_ppi_map('RATE_PID', sweep=0, ax=ax, title='', vmin=0,vmax=50, width=400000, height=400000, colorbar_label='RATE_PID (mm/hr)', #cmap='pyart_Carbone42', cmap='pyart_HomeyerRainbow', lat_lines = np.arange(22,27,.5), lon_lines = np.arange(118, 123,1), #axislabels=('', 'Distance from radar (km)'), resolution = '10m') # save plot plt.savefig(outdir+'/'+file_out) ` ![research Radar_SPOL 20220607042450 ppim_rrate_05_oldPyart](https://user-images.githubusercontent.com/5193622/185243092-35d72fd0-3ec8-44a5-999a-6e8698535019.png) ![research Radar_SPOL 20220607042450 ppim_rrate_05_newPyart](https://user-images.githubusercontent.com/5193622/185243148-15d55906-deed-48f6-9379-73a2ef3f0d2c.png)
closed
2022-08-17T21:07:02Z
2024-05-14T18:55:02Z
https://github.com/ARM-DOE/pyart/issues/1245
[ "Question", "component: pyart.graph" ]
srbrodzik
27
strawberry-graphql/strawberry
django
3,158
Default values for scalar arguments passed as string
When declaring an optional argument with a scalar type, its default value is passed as a string in the resulting schema. This makes Strawberry-declared schemas incompatible with externally connected GraphQL consumers with strict schema checkers, such as Hasura. The following code: ```python from typing import Optional import strawberry @strawberry.type class Query: @strawberry.field def example(self, baz: int, foo: int | None = None , bar: int = 10 ) -> None: return None schema = strawberry.Schema(query=Query) ``` produces the following default values in the schema: ``` ... "defaultValue": null ... "defaultValue": "null" ... "defaultValue": "10" ``` <details> <summary> Schema inspection </summary> ```graphql { "data": { "__schema": { "queryType": { "name": "Query" }, "mutationType": null, "types": [ { "kind": "OBJECT", "name": "Query", "description": null, "fields": [ { "name": "example", "description": null, "args": [ { "name": "baz", "description": null, "type": { "kind": "NON_NULL", "name": null, "ofType": { "kind": "SCALAR", "name": "Int", "ofType": null } }, "defaultValue": null }, { "name": "foo", "description": null, "type": { "kind": "SCALAR", "name": "Int", "ofType": null }, "defaultValue": "null" }, { "name": "bar", "description": null, "type": { "kind": "NON_NULL", "name": null, "ofType": { "kind": "SCALAR", "name": "Int", "ofType": null } }, "defaultValue": "10" } ``` </details> ## System Information Python 3.11 Ubuntu 22.10 Strawberry version: 0.209.2
closed
2023-10-18T09:52:49Z
2025-03-20T15:56:26Z
https://github.com/strawberry-graphql/strawberry/issues/3158
[ "bug" ]
ichorid
7
joke2k/django-environ
django
548
ReadTheDocs build is broken
https://app.readthedocs.org/projects/django-environ/?utm_source=django-environ&utm_content=flyout As a result the updates for v.0.12.0 have not been uploaded to ReadTheDocs
closed
2025-01-15T21:18:52Z
2025-01-16T22:15:58Z
https://github.com/joke2k/django-environ/issues/548
[]
dgilmanAIDENTIFIED
2
donnemartin/system-design-primer
python
203
DNS layer to elect loadbalancer health
How about to dns layer work as service discovery? Wich load balaner must be elect ? Load balancer network may cuase problem or even might be any problem such as any layer of system. ![Simple one](https://i.stack.imgur.com/RhjJp.png "Simple one") DNS layer can work via simple mechanism to figure it out wich load load balancer ip resolve that client connect to it. The simple line between client and load balancer is more complicated.
open
2018-08-19T19:42:11Z
2020-01-18T21:01:23Z
https://github.com/donnemartin/system-design-primer/issues/203
[ "needs-review" ]
mhf-ir
2
wkentaro/labelme
computer-vision
1,029
rectangle mouse line cross
rectangle I want the mouse to show a cross Convenient for me to locate <img width="408" alt="微信截图_20220602200358" src="https://user-images.githubusercontent.com/6490927/171625270-8646ab55-a5d3-44df-a935-279a72cb156a.png">
closed
2022-06-02T12:05:15Z
2022-06-25T04:09:24Z
https://github.com/wkentaro/labelme/issues/1029
[]
monkeycc
0
MycroftAI/mycroft-core
nlp
2,511
Unable to install on latest Ubuntu
Hello! Thanks for your time :-) ## software, hardware and version * master pull of the mycroft-core codebase ## steps that we can use to replicate the Issue For example: 1. Clone the repo to a machine running the latest version of ubuntu 2. Try to install/run the program with `dev_setup.sh` or `start-microft.sh` 3. Wait for a while during compilation, which ultimately fails ## Be as specific as possible about the expected condition, and the deviation from expected condition. I expect the application to be able to build and start, but it's failing to do so. ## Provide log files or other output to help us see the error When it finally fails, the last thing I get is: ``` CC src/audio/libttsmimic_la-auclient.lo CC src/audio/libttsmimic_la-au_command.lo CC src/audio/libttsmimic_la-audio.lo CC src/audio/libttsmimic_la-au_none.lo CCLD libttsmimic.la CCLD libttsmimic_lang_usenglish.la CCLD libttsmimic_lang_cmu_grapheme_lang.la CCLD libttsmimic_lang_cmu_indic_lang.la CCLD libttsmimic_lang_cmulex.la CCLD libttsmimic_lang_cmu_grapheme_lex.la CCLD libttsmimic_lang_cmu_us_kal.la CCLD libttsmimic_lang_cmu_time_awb.la CCLD libttsmimic_lang_cmu_us_kal16.la CCLD libttsmimic_lang_cmu_us_awb.la CCLD libttsmimic_lang_cmu_us_rms.la CCLD libttsmimic_lang_cmu_us_slt.la CCLD compile_regexes /usr/bin/ld: warning: libicui18n.so.64, needed by ./.libs/libttsmimic.so, not found (try using -rpath or -rpath-link) /usr/bin/ld: warning: libicuuc.so.64, needed by ./.libs/libttsmimic.so, not found (try using -rpath or -rpath-link) /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params_any' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params_sizeof' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params_set_channels' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_drop' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_writei' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `utext_openUTF8_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_close' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `u_errorName_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_state' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `ucasemap_utf8ToLower_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_drain' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_config_update_free_global' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `ucasemap_open_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `ucasemap_utf8ToUpper_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params_set_format' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `uregex_close_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `uregex_setUText_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `uregex_matches_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_delay' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_strerror' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `uregex_openC_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params_set_access' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_wait' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_open' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_hw_params_set_rate' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_resume' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `snd_pcm_prepare' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `ucasemap_close_64' /usr/bin/ld: ./.libs/libttsmimic.so: undefined reference to `uregex_reset_64' collect2: error: ld returned 1 exit status make[1]: *** [Makefile:2705: compile_regexes] Error 1 make[1]: *** Waiting for unfinished jobs.... ``` Thanks for your time!
closed
2020-03-24T21:03:53Z
2020-04-27T08:54:34Z
https://github.com/MycroftAI/mycroft-core/issues/2511
[]
metasoarous
8
feder-cr/Jobs_Applier_AI_Agent_AIHawk
automation
967
[FEATURE]: add undetected - chrome driver
### Feature summary adding undetected - chrome driver ### Feature description https://github.com/ultrafunkamsterdam/undetected-chromedriver ### Motivation _No response_ ### Alternatives considered _No response_ ### Additional context _No response_
closed
2024-11-28T16:02:20Z
2024-12-01T15:07:48Z
https://github.com/feder-cr/Jobs_Applier_AI_Agent_AIHawk/issues/967
[ "enhancement", "hotfix needed" ]
surapuramakhil
2
HIT-SCIR/ltp
nlp
435
dlopen: cannot load any more object with static TLS
python 3.6.3 ltp 4.0.9 GCC 4.8.4 Traceback (most recent call last): File "pre_app.py", line 39, in <module> from wenlp.sentence_analyser import process_long_sentence,sub_pre_comma,del_nonsense,change_negative_is_positive File "/data/welab/nlp/speech_bot_venv/venv/lib/python3.6/site-packages/webot_nlp-1.0-py3.6.egg/wenlp/sentence_analyser.py", line 4, in <module> from ltp import LTP File "/data/welab/nlp/speech_bot_venv/venv/lib/python3.6/site-packages/ltp/__init__.py", line 7, in <module> from .data import Dataset File "/data/welab/nlp/speech_bot_venv/venv/lib/python3.6/site-packages/ltp/data/__init__.py", line 5, in <module> from .vocab import Vocab File "/data/welab/nlp/speech_bot_venv/venv/lib/python3.6/site-packages/ltp/data/vocab.py", line 9, in <module> import torch File "/data/welab/nlp/speech_bot_venv/venv/lib/python3.6/site-packages/torch/__init__.py", line 188, in <module> _load_global_deps() File "/data/welab/nlp/speech_bot_venv/venv/lib/python3.6/site-packages/torch/__init__.py", line 141, in _load_global_deps ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL) File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__ self._handle = _dlopen(self._name, mode) OSError: dlopen: cannot load any more object with static TLS
closed
2020-11-10T01:24:59Z
2020-11-16T01:55:54Z
https://github.com/HIT-SCIR/ltp/issues/435
[]
liuchenbaidu
1
roboflow/supervision
machine-learning
1,281
Machine vision
closed
2024-06-13T19:07:39Z
2024-06-14T13:12:04Z
https://github.com/roboflow/supervision/issues/1281
[]
Romu10
0
pydantic/FastUI
pydantic
339
FastUI provides raw json object instead of rendered interface
First of all, congratulations for this outstanding framework, you rock! I wrote the small app, below, on a file `main.py` with routes `/users` and `/users/{id}`. For some reason I do not know why is my app displaying "Request Error: Response not valid JSON" when I hit endpoint `/` and the raw json on available routes instead of rendered content. Thanks for any help provided. ``` from datetime import date from typing import Optional from faker import Faker from fastapi import FastAPI, HTTPException, Query from fastapi.responses import HTMLResponse from fastui import FastUI, AnyComponent, prebuilt_html, components as c from fastui.components.display import DisplayMode, DisplayLookup from fastui.events import GoToEvent from pydantic import BaseModel, Field # Determine the range of page numbers to display dynamically MAX_VISIBLE_PAGES = 5 app = FastAPI() # Initialize Faker library fake = Faker() class UserCursor(BaseModel): id: int prev_id: Optional[int] = None next_id: Optional[int] = None class UserDetail(BaseModel): id: int name: str dob: date = Field(title='Date of Birth') email: str phone: str address: str city: str state: str country: str zip_code: str def page_indexation( total_elems: int, limit: int, offset: int, num_visible_pages: int ): # Calculate total number of pages total_pages = (total_elems + limit - 1) // limit # Calculate current page number current_page = (offset // limit) + 1 # Determine start and end page numbers if total_elems <= num_visible_pages: start_page = 1 end_page = total_pages elif current_page <= num_visible_pages // 2 + 1: start_page = 1 end_page = num_visible_pages elif current_page >= total_pages - num_visible_pages // 2: start_page = total_pages - num_visible_pages + 1 end_page = total_pages else: start_page = current_page - num_visible_pages // 2 end_page = current_page + num_visible_pages // 2 return start_page, end_page, total_pages def generate_pagination_buttons( total_elements: int, limit: int, offset: int, num_visible_pages: int ): start_page, end_page, total_pages = page_indexation( total_elems=total_elements, limit=limit, offset=offset, num_visible_pages=num_visible_pages ) # Generate page number links/buttons page_buttons = [] # Function to add page link/button def add_page_button(page_number: int, url: str): page_number=str(page_number).rjust(len(str(total_pages)), ' ') page_buttons.append( c.Button( text=page_number, on_click=GoToEvent(url=url), class_name="page-button" ) ) # Function to add ellipsis link/button def add_ellipsis_button(url: str): page_buttons.append( c.Button( text='...', on_click=GoToEvent(url=url), class_name="ellipsis-button" ) ) # Add ellipsis and first page link if necessary if start_page > 1: add_page_button(1, f'/?offset=0&limit={limit}') if start_page > 2: add_ellipsis_button( f'/?offset={max(offset - num_visible_pages * limit, 0)}&limit={limit}' ) # Add page links/buttons for the visible range for p in range(start_page, end_page + 1): add_page_button(p, f'/?offset={(p - 1) * limit}&limit={limit}') # Add ellipsis and last page link if necessary if end_page < total_pages: if end_page < total_pages - 1: add_ellipsis_button(f'/?offset={(end_page + 2) * limit}&limit={limit}') add_page_button(total_pages, f'/?offset={(total_pages - 1) * limit}&limit={limit}') return page_buttons # Given a model, generate a DisplayLookup for each field with respective # type and title. Provide on_click event mapping to the URL for desired fields def generate_display_lookups( model: BaseModel, on_click: dict[str, str] = {} ) -> list[DisplayLookup]: lookups = [] for field in model.__fields__.keys(): title = model.__fields__[field].title if model.__fields__[field].annotation == date: mode = DisplayMode.date lookup = DisplayLookup(field=field, title=title, mode=mode) else: lookup = DisplayLookup(field=field, title=title) if field in on_click: lookup.on_click = GoToEvent(url=on_click[field]) lookups.append(lookup) return lookups # Generate random users # Number of random users to generate def generate_users(n: int) -> list[UserDetail]: users = [] users_cursor = {} for i in range(n): user = UserDetail( id=i, name=fake.name(), dob=fake.date_of_birth(minimum_age=18, maximum_age=80), email=fake.email(), phone=fake.phone_number(), address=fake.street_address(), city=fake.city(), state=fake.state(), country=fake.country(), zip_code=fake.zipcode() ) users.append(user) id_ = user.id users_cursor[id_] = UserCursor(id=id_) # Set up the doubly linked list if i == 0: users_cursor[id_].prev_id = users[len(users) - 1].id if i > 0: users_cursor[id_].prev_id = users[i-1].id if i < len(users) - 1: users_cursor[id_].next_id = users[i+1].id if i == len(users) - 1: users_cursor[id_].next_id = users[0].id return users, users_cursor def users_lookup() -> dict[int, UserDetail]: users, _ = generate_users(100) return {user.id: user for user in users} def users_cursor_lookup() -> dict[int, UserCursor]: _, users_cursor = generate_users(100) return users_cursor def users_list() -> list[UserDetail]: return list(users_lookup().values()) users = users_list() users_cursor = users_cursor_lookup() # Endpoint for users table with pagination @app.get("/users", response_model=FastUI, response_model_exclude_none=True) def users_table( limit: Optional[int] = Query(10, ge=1, le=len(users)), offset: int = Query(0, ge=0) ) -> list[AnyComponent]: """ Show a table of users with pagination. """ # Paginate users based on limit and offset paginated_users = users[offset:offset + limit] page_buttons=generate_pagination_buttons( total_elements=len(users), limit=limit, offset=offset, num_visible_pages=MAX_VISIBLE_PAGES ) user_lookup_list=generate_display_lookups( UserDetail, on_click={'name': '/users/{id}'} ) table_msg=f"Displaying users {offset + 1} to {min(offset + limit, len(users))} of {len(users)}" components_ = [ c.Heading(text='Users', level=2), c.Table(data=paginated_users, columns=user_lookup_list), c.Text(text=table_msg), c.Div(components=page_buttons, class_name="pagination") ] pages_ = [ c.Page(components=components_), ] return pages_ @app.get("/users/{user_id}/", response_model=FastUI, response_model_exclude_none=True) def user_profile(user_id: int) -> list[AnyComponent]: """ User profile page, the frontend will fetch this when the user visits `/user/{id}/`. """ try: user_cursor = next(u for u in users_cursor.values() if u.id == user_id) except StopIteration: raise HTTPException(status_code=404, detail="User not found") user = users_lookup()[user_id] components_ = [ c.Button(text='< Back to Users', on_click=GoToEvent(url='/')), c.Heading(text=user.name, level=2), c.Details(data=user), ] # Add the "Previous" button if there is a previous user if user_cursor.prev_id: button=c.Button( text='<< Previous', on_click=GoToEvent(url=f'/users/{user_cursor.prev_id}/') ) components_.append(button) # Add the "Next" button if there is a next user if user_cursor.next_id: button=c.Button( text='Next >>', on_click=GoToEvent(url=f'/users/{user_cursor.next_id}/') ) components_.append(button) page_ = c.Page(components=components_) return [ page_ ] # HTML landing page @app.get('/{path:path}') async def html_landing() -> HTMLResponse: """ Simple HTML page which serves the React app, comes last as it matches all paths. """ print(HTMLResponse(prebuilt_html(title='FastUI Demo'))) return HTMLResponse(prebuilt_html(title='FastUI Demo')) ```
closed
2024-07-13T19:55:31Z
2024-07-14T16:05:40Z
https://github.com/pydantic/FastUI/issues/339
[]
brunolnetto
3
ultralytics/ultralytics
pytorch
19,476
YOLOv10 or YOLO11 Pruning, Masking and Fine-Tuning
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hello, I have a question. After pruning, I wanna fine-tuning with the trainer and apply masked to not let the weight update to update my prune weight. I applied this code, but it seems the mAP is too poor. Is there something wrong with my applied code? Looking forward your suggestions! def create_pruning_mask(self): """Recreate the pruning mask based on the zero weights in the model.""" masks = {} for name, module in self.model.named_modules(): if isinstance(module, torch.nn.Conv2d): # Create a mask where weights are non-zero mask = (torch.abs(module.weight) > 1e-6).float() masks[name] = mask return masks def apply_pruned_mask(self): """Apply the masks to block gradients of pruned weights during training.""" for name, module in self.model.named_modules(): if isinstance(module, torch.nn.Conv2d) and name in self.masks: if module.weight.grad is not None: mask = self.masks[name].to(module.weight.device) if mask.size() != module.weight.grad.size(): raise ValueError(f"Mask and gradient size mismatch in layer {name}: " f"mask {mask.size()}, grad {module.weight.grad.size()}") module.weight.grad *= mask def optimizer_step(self): """Perform a single step of the training optimizer with gradient clipping and EMA update.""" self.scaler.unscale_(self.optimizer) # unscale gradients self.apply_pruned_mask() # Apply pruning mask torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() if self.ema: self.ema.update(self.model) ### Additional _No response_
open
2025-02-28T08:23:13Z
2025-03-03T02:00:36Z
https://github.com/ultralytics/ultralytics/issues/19476
[ "enhancement", "question" ]
Thaising-Taing
6
viewflow/viewflow
django
33
Separate declarative and state code
closed
2014-04-09T10:17:04Z
2014-05-01T09:58:12Z
https://github.com/viewflow/viewflow/issues/33
[ "request/enhancement" ]
kmmbvnr
2
deepspeedai/DeepSpeed
machine-learning
6,838
nv-ds-chat CI test failure
The Nightly CI for https://github.com/microsoft/DeepSpeed/actions/runs/12226557524 failed.
closed
2024-12-09T00:21:33Z
2024-12-11T00:08:34Z
https://github.com/deepspeedai/DeepSpeed/issues/6838
[ "ci-failure" ]
github-actions[bot]
0
quantmind/pulsar
asyncio
283
HTTP Tunneling
* **pulsar version**: 2.0 * **python version**: 3.5+ * **platform**: any ## Description With pulsar 2.0, the HTTP tunnel does not work across different event loops. Since we use the uvloop as almost the default loop we need to find an implementation that works properly. In the mean time SSL tunneling (ssl behind a proxy) is not supported ## Expected behaviour To work ## Actual behaviour It doesn't work, the handshake does not happen. ## Steps to reproduce The ``http.tunnel`` tests are switched off in CI, but they can still be run on local machine with the following command ``` python setup.py test -f http.tunnel ```
closed
2017-11-14T22:29:07Z
2017-11-16T21:21:37Z
https://github.com/quantmind/pulsar/issues/283
[ "http", "bug" ]
lsbardel
0
man-group/arctic
pandas
662
VersionStore static method is_serializable
#### Arctic Version ``` 1.72.0 ``` #### Arctic Store ``` VersionStore ``` #### Description of problem and/or code sample that reproduces the issue Following up the change where "can_write_type" static methods were added to all VersionStore handlers: https://github.com/manahl/arctic/pull/622 we can now have an "check_serializable(data)" static method in VersionStore which us used to answer the questions: - detect the handler based on the type of the supplied 'data', which should be used to write the data - verify if this handler can_write() is True the data User may use "check_serializable(data)" to debug fallback-to-pickling issues, and experiment with serialization, as they try to cleanse their data from objects etc.
open
2018-11-20T11:09:49Z
2018-11-20T11:13:26Z
https://github.com/man-group/arctic/issues/662
[ "enhancement", "feature" ]
dimosped
0
plotly/dash
data-visualization
2,891
[Feature Request] tabIndex of Div should also accept number type
In the origin React, parameter `tabIndex` could accept number type: ![image](https://github.com/plotly/dash/assets/49147660/d23f2603-be1e-4109-a09e-8ab0688200e5) It would be better to add number type support for `tabIndex`: ![image](https://github.com/plotly/dash/assets/49147660/bae3d973-6a7e-4b10-81ab-2e4193e23932)
closed
2024-06-18T06:42:16Z
2024-06-21T14:26:02Z
https://github.com/plotly/dash/issues/2891
[ "good first issue" ]
CNFeffery
2
PaddlePaddle/ERNIE
nlp
326
CUDA_VISIBLE_DEVICES=0,1,2,3设置多卡跑run_sequence_labeling.py跑不起来,代码有bug
CUDA_VISIBLE_DEVICES=0,1,2,3设置多卡跑run_sequence_labeling.py跑不起来,代码有bug
closed
2019-09-18T08:05:38Z
2020-05-28T10:52:38Z
https://github.com/PaddlePaddle/ERNIE/issues/326
[ "wontfix" ]
hitwangshuai
2
apache/airflow
data-science
47,614
Databricks Operator set it owns task_key in depends_on instead of parent task key
### Apache Airflow Provider(s) databricks ### Versions of Apache Airflow Providers apache-airflow-providers-databricks==7.2.0 ### Apache Airflow version 2.10.5 ### Operating System Debian Bookworm ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### What happened When DatabricksWorkflowTaskGroup contains at least one task that has a child task, launch task generates wrong json payload. Tasks with parents are setting it owns task_key in depends_on field. ### What you think should happen instead Tasks with parent/s should set parent task_key instead of it owns task_key ### How to reproduce Create DatabricksWorkflowTaskGroup. Then add a task_A >> task_B, Task_B will add it's owns task_key in "depends_on" field instead of task_A task_key ### Anything else I think the issue is located in file [airflow/providers/databricks/operators/databricks.py.py](https://github.com/apache/airflow/blob/providers-databricks/7.2.0/providers/databricks/src/airflow/providers/databricks/operators/databricks.py) The first time _generated_databricks_task_key is executed, even if task_id is provided or not, self._databricks_task_key will be set. It means no matter how many times "_generate_databricks_task_key", even passing differents task_id param, is called, it always will return the same value, the one returned in the first call. ``` def _generate_databricks_task_key(self, task_id: str | None = None) -> str: """Create a databricks task key using the hash of dag_id and task_id.""" if not self._databricks_task_key or len(self._databricks_task_key) > 100: self.log.info( "databricks_task_key has not be provided or the provided one exceeds 100 characters and will be truncated by the Databricks API. This will cause failure when trying to monitor the task. A task_key will be generated using the hash value of dag_id+task_id" ) task_id = task_id or self.task_id task_key = f"{self.dag_id}__{task_id}".encode() self._databricks_task_key = hashlib.md5(task_key).hexdigest() self.log.info("Generated databricks task_key: %s", self._databricks_task_key) return self._databricks_task_key ``` If we check block of code that converts a task into databricks_task, is setting "task_key" with self.databricks_task_key. At this point if _generate_databricks_task_key is called again, with or without task_id param, it will return always the same value due self._databricks_task_key is not "None" anymore. ``` def _convert_to_databricks_workflow_task( self, relevant_upstreams: list[BaseOperator], context: Context | None = None ) -> dict[str, object]: """Convert the operator to a Databricks workflow task that can be a task in a workflow.""" base_task_json = self._get_task_base_json() result = { "task_key": self.databricks_task_key, "depends_on": [ {"task_key": self._generate_databricks_task_key(task_id)} for task_id in self.upstream_task_ids if task_id in relevant_upstreams ], **base_task_json, } if self.existing_cluster_id and self.job_cluster_key: raise ValueError( "Both existing_cluster_id and job_cluster_key are set. Only one can be set per task." ) if self.existing_cluster_id: result["existing_cluster_id"] = self.existing_cluster_id elif self.job_cluster_key: result["job_cluster_key"] = self.job_cluster_key return result ``` ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [x] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
open
2025-03-11T13:20:57Z
2025-03-24T02:01:18Z
https://github.com/apache/airflow/issues/47614
[ "kind:bug", "area:providers", "provider:databricks" ]
pacmora
1
KevinMusgrave/pytorch-metric-learning
computer-vision
378
[Question] How use intra_var_miner for multiclass
Firstly, thank you for your great package and modules. It works very fine, well documented. Nevertheless, I struggle to determine what kind of loss I can use for binary or multiclass. For example, I'm trying to create a kind of "anomaly" detector through metric learning. In the ideal world, in the embedding space I would like "correct" events as cluster and the anomaly for from them. I have 3 classes : - class A, - class B and - class other/anomaly. 2 kinds of correct event (but different, and I want discriminate them) and many anomalies, I tried to define a multi loss in this way and I got good results but not perfect. Ideally, in the space embedding, I just want 2 clusters (A and B) but no constrains about other/anomaly because it could be the rest of the world. So I tried to used IntraPairVarianceLoss only on positives. Not sure it works here. In binary classification, I understand "pos_margin" and "neg_margin" for the miner, but when we want the constraint only on some classes (and not all of them)?? Also, is it very coherent to use TripletMargin with Arcface? I works quite fine, but I'm not confident. I'm looking for some "intuition" about how to use loss that I understand very well for binary classification (and works very well) but for multiclass. ``` # MINERS miner = miners.TripletMarginMiner( margin=triplet_miner_margin, type_of_triplets='all', distance = CosineSimilarity(), ) # maybe not relevant in multiclass, but seems to work fine intra_var_miner = miners.PairMarginMiner( pos_margin=1., neg_margin=1., distance=CosineSimilarity()) # I would like a minimum of intra_variance but only for my "correct" class. angular_miner = miners.AngularMiner(angle=20) # works well in multiclass. # REDUCER reducer = reducers.AvgNonZeroReducer() # LOSSES var_loss = losses.IntraPairVarianceLoss(reducer=reducer) arcface_loss = losses.ArcFaceLoss(3, embedding_size, margin=28.6, scale=64, reducer=reducer) main_loss = losses.TripletMarginLoss( margin=triplet_loss_margin, distance = CosineSimilarity(), embedding_regularizer = regularizers.LpRegularizer(), reducer=reducer, ) loss_func = losses.MultipleLosses( [main_loss, var_loss, arcface_loss], miners=[miner, intra_var_miner, None], # weights=multiple_loss_weights ) ```
closed
2021-11-04T16:49:55Z
2021-11-16T11:05:40Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/378
[ "question" ]
cfrancois7
5
holoviz/panel
plotly
7,554
Perspective pane collapses rows when updating data
#### ALL software version info panel 1.5.4 Windows, MacOS, Chrome, Edge #### Description of expected behavior and the observed behavior There appears to be a bug with the perspective pane automatically collapsing the hierarchy when the underlying data object is updated - **this only seems to happen _after_ clicking to expand or collapse a row**. This makes it pretty annoying and difficult to use when a periodic callback is used to refresh the data. I'd expect the depth of the hierarchy to be retained to whatever is currently visible. #### Complete, minimal, self-contained example code that reproduces the issue ```python import pandas as pd import numpy as np import panel as pn pn.extension('perspective') def get_data(n=100): return pd.DataFrame({'x': np.random.choice(['A', 'B'], size=n), 'y': np.random.choice(['C', 'D'], size=n), 'z': np.random.normal(size=n)}) table = pn.pane.Perspective(get_data(), group_by=['x', 'y'], sizing_mode='stretch_both') def update_data(): table.object = get_data() pn.state.add_periodic_callback(update_data) pn.Row(table, sizing_mode='stretch_width', height=1000) ``` ![Image](https://github.com/user-attachments/assets/75f5e909-7e39-4e59-8751-db7e6ab9d538) **After collapsing "A", the rest of the levels will collapse and will get stuck** ![Image](https://github.com/user-attachments/assets/d5fadecd-175d-47a7-a9e4-d7014d0245cd)
open
2024-12-16T23:33:25Z
2025-01-20T21:35:52Z
https://github.com/holoviz/panel/issues/7554
[]
rob-tay
0
akfamily/akshare
data-science
5,415
关于AKShare的接口get_futures_daily在条件market='INE'时获取2018年3月以前的数据出错问题
**当前使用Python 3.13.0,AKShare版本为1.15.45,AKTools版本为0.0.89,运行环境为64位的Windows 10 终端下执行:** >python >>> import akshare as ak >>> df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='DCE') >>> df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='CFFEX') >>> df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='SHFE') >>> df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='GFEX') >>> df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='CZCE') >>> **上述执行后都能正常返回数据,但执行以下条件就出错,而且不但是2018年3月份,目前试到2018年2月份的数据也获取出错:** >>> df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='INE') Traceback (most recent call last): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python313\Lib\site-packages\pandas\core\indexes\base.py", line 3805, in get_loc return self._engine.get_loc(casted_key) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^ File "index.pyx", line 167, in pandas._libs.index.IndexEngine.get_loc File "index.pyx", line 196, in pandas._libs.index.IndexEngine.get_loc File "pandas\\_libs\\hashtable_class_helper.pxi", line 7081, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\\_libs\\hashtable_class_helper.pxi", line 7089, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 'PRODUCTGROUPID' **由于上送不了截图,只能贴部分出错信息上来,不知何故,在python环境里也无法正常获取 df = ak.get_futures_daily(start_date='20180301', end_date='20180331', market='INE')的数据,不止这个日期,2017年的数据都获取出错,但目前看到是条件为market='INE'的情况下。这种情况能修复处理吗?先感谢!**
closed
2024-12-12T12:17:38Z
2024-12-14T09:00:38Z
https://github.com/akfamily/akshare/issues/5415
[]
dahong38
3
svc-develop-team/so-vits-svc
pytorch
55
epch 到10000停止了,但是推理时有很严重的噪音
到10000后训练就停止,推理时还会有严重的噪音,但可以隐约听到说话声音了 是否需要把配置文件中的"epochs": 10000, 调高让他接着练呢?还是说有哪一步可能做错了呢? 我确实没有使用Pre-trained model files: G_0.pth D_0.pth, 不知道是否和这个有关呢?
closed
2023-03-19T01:14:32Z
2023-03-31T07:14:03Z
https://github.com/svc-develop-team/so-vits-svc/issues/55
[]
Max-Liu
7
Aeternalis-Ingenium/FastAPI-Backend-Template
sqlalchemy
30
TypeError: MultiHostUrl.__new__() got an unexpected keyword argument 'scheme'
backend_app | File "/usr/backend/src/api/dependencies/session.py", line 11, in <module> backend_app | from src.repository.database import async_db backend_app | File "/usr/backend/src/repository/database.py", line 43, in <module> backend_app | async_db: AsyncDatabase = AsyncDatabase() backend_app | ^^^^^^^^^^^^^^^ backend_app | File "/usr/backend/src/repository/database.py", line 15, in __init__ backend_app | self.postgres_uri: pydantic.PostgresDsn = pydantic.PostgresDsn( backend_app | ^^^^^^^^^^^^^^^^^^^^^ backend_app | File "/usr/local/lib/python3.12/typing.py", line 1133, in __call__ backend_app | result = self.__origin__(*args, **kwargs) backend_app | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ backend_app | TypeError: MultiHostUrl.__new__() got an unexpected keyword argument 'scheme'
open
2023-11-28T11:29:43Z
2024-11-12T10:25:00Z
https://github.com/Aeternalis-Ingenium/FastAPI-Backend-Template/issues/30
[]
eshpilevskiy
1
tortoise/tortoise-orm
asyncio
994
how to use tortoise-orm in django3
Django3 does not support asynchronous ORM, how can I use tortoise-orm in django3, I can't find an example of that. Thanks!
open
2021-11-30T10:03:22Z
2021-11-30T10:20:39Z
https://github.com/tortoise/tortoise-orm/issues/994
[]
lastshusheng
2
Evil0ctal/Douyin_TikTok_Download_API
api
210
部署问题
在docker部署的时候,发生错误,以下都是docker报的错误和一些配置截图,求大佬解答 ![image](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/105832208/0fc6f3e9-a96f-4576-9680-9ed0104e8bcd) ![image](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/105832208/72e86fcc-5491-454b-8a28-9d95d9c1ffd9) ![image](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/105832208/aa96973a-49cb-4f5f-880d-16ee8eee2682) ![image](https://github.com/Evil0ctal/Douyin_TikTok_Download_API/assets/105832208/0055e270-2fef-4a19-bc86-d0a8d551c442)
closed
2023-06-08T03:08:52Z
2024-03-26T00:00:46Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/210
[ "BUG", "enhancement" ]
TheShyzzcy
5
horovod/horovod
machine-learning
3,189
Horovod Timeline & Scalability
**Environment:** 1. Framework: (TensorFlow, Keras) 2. Framework version: Tensorflow-gpu 2.1.0 / Keras 2.3.1 3. Horovod version: 0.21.3 4. MPI version: OpenMPI 4.1.1 / MPI API 3.1.0 5. CUDA version: 10.1 6. NCCL version: 2.5.7.1 7. Python version: 3.7 8. Spark / PySpark version: 9. Ray version: 10. OS and version: Ubuntu 16.04 11. GCC version: 7.3.0 12. CMake version: 3.16.5 **Checklist:** 1. Did you search issues to find if somebody asked this question before? Yes 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? Yes 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? Yes 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? Yes **Question:** Hi, I'm using Horovod for scaling some deep learning project with two servers. (Server1 has three 1080Ti GPUs and Server2 has two 1080Ti GPUs) This is performance measurement results of [my code](https://github.com/SHEELE41/Benchmarks/blob/03e5505cf77f690c60959d902d6a38a3dabde535/Pilot1/P1B2/p1b2_baseline_keras2.py). ![image](https://user-images.githubusercontent.com/24821303/135569863-5a83a97f-b4d7-4b7d-901e-508569e4bbee.png) np 1-3 means that the number of GPUs was used only on Server1(Single Node, Multi-GPU), and distributed-np2~5 means that the number of GPUs was used including Server1 and Server2(Multi-Node, Multi-GPU). I used Infiniband for Node to Node Communication. As shown in table, total runtime doesn't decrease proportionately when increasing number of workers and I already know that this is mostly due to constant data loading times. I increased the number of epochs to decrease data loading time rate in total time, but still showed low improvement rate. ![image](https://user-images.githubusercontent.com/24821303/135572383-c5e65826-3761-418b-85fa-d6ec47bd2f61.png) I thought Remainder Time (Total - Data Loading - Horovod communication) is same with GPU computation time and it looks to decrease well (1 / GPUs). So, I have three questions. 1. I saw that each case has same number(8) of allreduce panes regardless of number of GPUs at Horovod timeline. Is not number of panes determined by number of GPUs? Then what determines it? (I've got same number of panes at tensorflow2_keras_mnist.py) ![image](https://user-images.githubusercontent.com/24821303/135575169-e04156e4-c00e-484d-8909-d256a9d4fe6d.png) 2. Each pane has different total allreduce time and ALLREDUCE looks like wrapping all of sub works (NCCL_ALLREDUCE, QUEUE, MEMCPY_IN_FUSION_BUFFER, etc... ). So I estimated total allreduce time by getting Total Wall Duration time of first row in HorovodAllreduce_grads_0 pane (biggest total allreduce time, not HorovodAllreduce_grads_x_0). Is it right way to estimate Horovod communication time? ![image](https://user-images.githubusercontent.com/24821303/135575963-b3c4085a-3f90-49ac-9673-b345131f3f12.png) ![image](https://user-images.githubusercontent.com/24821303/135577080-b6d6f814-e720-4696-a7e1-b5a08c1f28fa.png) 3. How can I reduce horovod communication time? I'm not sure I use Horovod in the right way. Thanks for reading.
closed
2021-10-01T09:55:26Z
2022-12-02T17:10:42Z
https://github.com/horovod/horovod/issues/3189
[ "wontfix" ]
SHEELE41
2
healthchecks/healthchecks
django
939
Truncate beginning of long request bodies instead of the end
I've started making use of the [feature to send log data to healthchecks](https://healthchecks.io/docs/attaching_logs/). I like that I get a truncated copy of the logs in my notification provider. Under most circumstances I can imagine, an error in the script would show up at the end, and typically this error is truncated away. I'm proposing a change to the truncating logic [here](https://github.com/healthchecks/healthchecks/blob/master/hc/api/transports.py#L70), something like this: ``` if body and maxlen and len(body) > maxlen: body = body[-maxlen:] + "\n[truncated]" ``` but I wanted to get feedback first before spending time on this change. This would ensure that the end of the log message is included in the notification, and the beginning of the log message is omitted.
open
2024-01-08T00:22:40Z
2024-04-11T17:41:29Z
https://github.com/healthchecks/healthchecks/issues/939
[]
StevenMassaro
5
ludwig-ai/ludwig
computer-vision
3,218
[FR] Allow users to set the unmarshalling mode as RAISE for BaseConfig
**Is your feature request related to a problem? Please describe.** Currently, when loading the user config, Ludwig allows unknown attributes to be set. There is a TODO item in the code at `ludwig/schema/utils.py:161` ``` unknown = INCLUDE # TODO: Change to RAISE and update descriptions once we want to enforce strict schemas. ``` Since changing this to RAISE by default might impact lots of users I still believe there's value in having this set up as RAISE. That being said it'd be great if users can overwrite this default via an environment variable. **Describe the use case** Allow users to enforce the schema on their config. **Describe the solution you'd like** The ability to overwrite the default behaviour of INCLDUE **Describe alternatives you've considered** I've tried monkeypatching ludwig. Although it's easily doable for a local environment, it becomes harder when sharing the monkeypatch with a team that runs everything in AWS Sagemaker. **Additional context** --
closed
2023-03-07T13:14:49Z
2023-03-17T21:12:20Z
https://github.com/ludwig-ai/ludwig/issues/3218
[ "feature" ]
dragosmc
5
xinntao/Real-ESRGAN
pytorch
747
The OST dataset has many sub folders, have all the images been used for training?
closed
2024-02-07T01:21:00Z
2024-02-08T01:54:51Z
https://github.com/xinntao/Real-ESRGAN/issues/747
[]
Note-Liu
0
PaddlePaddle/models
computer-vision
5,254
PaddleCV模型库下的3D检测里的M3D-RPN模型文档有问题
这个目录下的文档 快速开始目录下的cd M3D-RPN后 运行ln -s /path/to/kitti dataset/kitti提示: ln:failed to create symbolic link "dataset/kitti":没有这个目录 另外:本模型是在1.8下开发的,什么时候能提供个2.0的版本呢
open
2021-02-01T03:26:28Z
2024-02-26T05:09:17Z
https://github.com/PaddlePaddle/models/issues/5254
[]
Sqhttwl
2
plotly/dash
jupyter
3,208
Add support for retrieving `HTMLElement` by Dash component ID in clientside callbacks.
This has been [discussed on the forum](https://community.plotly.com/t/how-to-use-document-queryselector-with-non-string-ids-in-clientside-callback/91146). A feature request seems more appropriate. **Is your feature request related to a problem? Please describe.** When using clientside callbacks and pattern matching, the idiomatic for getting access to third party javascript objects seems to be (an example from ag Grid) : ```{python} clientside_callback( """ (grid_id, html_id, ...) => { // works const gridApi = dash_ag_grid.getApi(id); // doesn't work const el = document.querySelector(`div#{html_id}`); } """, Output(MATCH, "id"), Input({"type": "ag-grid", "index": MATCH}, "id"), Input({"type": "html-element", "index": MATCH}, "id"), # ... any other inputs that would be used here to trigger this behavior ) ``` **Describe the solution you'd like** I would like Dash to expose a method like `dash_clientside.get_element_by_id(id: String | Object<String, String | _WildCard>): HTMLElement` which takes advantage of dash internals correctly to replicate this use case. **Describe alternatives you've considered** There is a [forum post](https://community.plotly.com/t/adding-component-via-clientside-callbacks/76535/5?u=ctdunc) describing an implementation of `stringifyId` that can query HTMLElements using `document.querySelector`. However, even the author [acknowledges](https://community.plotly.com/t/how-to-use-document-queryselector-with-non-string-ids-in-clientside-callback/91146/2?u=ctdunc) that the behavior may not be consistent, and runtime checks are necessary to ensure correctness. Plus, if Dash ever changes how object IDs are serialized for use in the DOM, any projects depending on this solution will break in unexpected ways.
open
2025-03-11T12:59:20Z
2025-03-11T13:58:18Z
https://github.com/plotly/dash/issues/3208
[ "feature", "P2" ]
ctdunc
1
InstaPy/InstaPy
automation
6,241
Already unfollowed 'username'! or a private user that rejected your req
<!-- Did you know that we have a Discord channel ? Join us: https://discord.gg/FDETsht --> <!-- Is this a Feature Request ? Please, check out our Wiki first https://github.com/timgrossmann/InstaPy/wiki --> ## Expected Behavior ## Current Behavior ``` INFO [2021-06-19 17:23:14] [my.account] Ongoing Unfollow [1/426]: now unfollowing 'b'carmen_802020''... INFO [2021-06-19 17:23:17] [my.account] --> Already unfollowed 'carmen_802020'! or a private user that rejected your req INFO [2021-06-19 17:23:20] [my.account] Ongoing Unfollow [1/426]: now unfollowing 'b'_sofiabajusova_''... INFO [2021-06-19 17:23:23] [my.account] --> Already unfollowed '_sofiabajusova_'! or a private user that rejected your req INFO [2021-06-19 17:23:27] [my.account] Ongoing Unfollow [1/426]: now unfollowing 'b'petr.sakha777''... INFO [2021-06-19 17:23:31] [my.account] --> Already unfollowed 'petr.sakha777'! or a private user that rejected your req INFO [2021-06-19 17:23:35] [my.account] Ongoing Unfollow [1/426]: now unfollowing 'b'smirnovindokitaiskii''... INFO [2021-06-19 17:23:38] [my.account] --> Already unfollowed 'smirnovindokitaiskii'! or a private user that rejected your req INFO [2021-06-19 17:23:41] [my.account] Ongoing Unfollow [1/426]: now unfollowing 'b'mychailo_jatzkiv''... ``` But i'm still following them ................................................. Tr1pke@mylinuxbox:~$ ## Possible Solution (optional) unfollow no matter what ## InstaPy configuration Normal config
open
2021-06-19T15:25:31Z
2021-07-21T00:19:18Z
https://github.com/InstaPy/InstaPy/issues/6241
[ "wontfix" ]
Tr1pke
1
vaexio/vaex
data-science
1,229
[BUG-REPORT] Columns with spaces throw error with from_dict
Description There seems to be a problem with columns that have spaces in them. I provided an example below that clearly demonstrates it. df_pd = {} df_pd['A'] = [0] df_pd['SHORT VOLUME'] = ['4563'] df_pd['SHORT_VOLUME'] = ['4563'] df = vaex.from_dict(df_pd) display(df) Result: image What I would expect: Both "short volume columns" would have values in them. Let me know if you have any questions Software information Vaex version v4.0.0-alpha.13 Vaex was installed via: pip OS: Mac OSX
open
2021-02-25T15:41:53Z
2021-03-09T23:52:43Z
https://github.com/vaexio/vaex/issues/1229
[ "priority: high" ]
foooooooooooooooobar
3
StackStorm/st2
automation
5,908
Keystore RBAC Configuration Issues
## SUMMARY Changes to the RBAC to incorporate the keystore items has created various issues with the config that cannot be corrected aside from assigning users "admin" roles. First, actions/workflows that are grant permission to a user by RBAC role config to DO NOT apply to keystore operations that are executed within it. This includes any internal client functions coded in an action or any tasks that call keystore actions within the workflow. Second, there is no way to configure RBAC to work around this limitation as none of the keystore operations are available to be configured in the global RBAC context and can only be applied to individual keys that are known by name which does not allow for the creation of any new system-level keys (as the name/resource ID is not known until the action is run). As a result, you cannot even work around the issue by creating a config that would allow a user to have "Admin" access to keystore items, but limit their ability to execute actions within the system. Ideally, RBAC would be updated to allow ALL of the keystore operations https://github.com/StackStorm/st2/blob/606f42f41ca4fd2ed69da43d6ea124a76ad826a2/st2common/st2common/rbac/types.py#L369 to be defined globally. https://github.com/StackStorm/st2/blob/606f42f41ca4fd2ed69da43d6ea124a76ad826a2/st2common/st2common/rbac/types.py#L437 Along with the global config options, the RBAC config should incorporate the ability to define keystore resource IDs using a regex filter so it could allow for very granular access to specific (or groups of specific items) in the keystore for each different operation on a per user/role basis. ### STACKSTORM VERSION 3.7 and greater with RBAC enabled ##### OS, environment, install method Centos 8/Rocky Linux ## Steps to reproduce the problem Create an RBAC config that allows a user to perform an action that includes the reading or writing of any keystore item and run the workflow as that user. ## Expected Results Action permission should allow the workflow to be executed. ## Actual Results Workflow fails at task/action that attempts to perform the keystore action.
open
2023-02-20T16:39:28Z
2023-02-20T20:07:00Z
https://github.com/StackStorm/st2/issues/5908
[]
jamesdreid
2
vitalik/django-ninja
rest-api
1,290
[BUG] JWTAuth() is inconsistent with django authentication?
``` @api.get( path="/hello-user", response=UserSchema, auth=[JWTAuth()] ) def hello_user(request): return request.user >>> "GET - hello_user /api/hello-user" Unauthorized: /api/hello-user ``` When disabling auth ``` @api.get( path="/hello-user", response=UserSchema, # auth=[JWTAuth()] ) def hello_user(request): return request.user >>> "GET - hello_user /api/hello-user" [02/Sep/2024 16:50:14] "GET /api/hello-user HTTP/1.1" 200 113 {"username": "neldivad", "is_authenticated": true, "email": "neldivad@gmail.com"} # ??? Django says I'm authenticated by Ninja disagrees ??? ``` This decorator is so frustrating to use. Different apps gets authenticated and sometimes it doesn't. I tried logging out and logging in from admin page. Tried different browser, Tried incognito. This JWT auth is the one that has been giving me a huge issue.
open
2024-09-02T08:53:50Z
2024-09-21T06:03:49Z
https://github.com/vitalik/django-ninja/issues/1290
[]
neldivad
1
httpie/cli
rest-api
960
Convert Httpie to other http requests
Excuse me, how can I convert Httpie to other http requests, such as cURL etc..
closed
2020-08-20T06:04:06Z
2020-08-20T12:11:46Z
https://github.com/httpie/cli/issues/960
[]
wnjustdoit
1
aminalaee/sqladmin
asyncio
875
Add RichTextField to any field, control in ModelView
### Checklist - [x] There are no similar issues or pull requests for this yet. ### Is your feature related to a problem? Please describe. The current solution for CKEditor is not suitable (or reusable) if I have a model with two fields that requires CKEditor. Or any other model, that have different field name, not `content`. For each case, I need to add separate `edit_template.html` file, in order to control it for each case. ### Describe the solution you would like. I would like to control it on the code, like ```python class PostAdmin(ModelView, model=Post): rich_fields = {'content'} ``` ### Describe alternatives you considered _No response_ ### Additional context _No response_
open
2025-01-24T13:20:50Z
2025-01-24T13:20:50Z
https://github.com/aminalaee/sqladmin/issues/875
[]
mmzeynalli
0
jupyter-book/jupyter-book
jupyter
1,787
Convert admonitions to html when launching notebook
### Context Problem: a note/tip/admonition is not rendered properly when the notebook is opened with Binder/Colab/... ### Proposal Automatically convert note/tip/admonition to HTML standalone in the notebook (with the corresponding <style>). ### Tasks and updates I can try to do it, but I am not sure on the feasibility and would appreciate guidance.
closed
2022-07-21T16:30:58Z
2022-07-22T17:36:04Z
https://github.com/jupyter-book/jupyter-book/issues/1787
[ "enhancement" ]
fortierq
0
polakowo/vectorbt
data-visualization
394
Having trouble implementing backtesting, pf.stat(),pf.order.records_readable can't generate the result
Hi, I encounter some problem while running my strategy,these are the correct result. It works fine yesterday ![螢幕擷取畫面 2022-02-23 194322](https://user-images.githubusercontent.com/28654015/155313495-f97cf43e-a39b-40b3-8f42-3e954a25abac.jpg) ![螢幕擷取畫面 2022-02-23 194344](https://user-images.githubusercontent.com/28654015/155313499-baa2cc0a-cf89-422f-afc4-43ae2456f11e.jpg) But today, I try to run the same code again some errors happens pf.order.records_readable ->'portfolio' object has no attribute 'order' portfolio.stats() ->unsupported operand type(s) for *: 'int' and 'NoneType' ![螢幕擷取畫面 2022-02-23 201138](https://user-images.githubusercontent.com/28654015/155317224-0ce8a612-cb9f-4bc2-aa13-fad55381a442.jpg) ![螢幕擷取畫面 2022-02-23 201155](https://user-images.githubusercontent.com/28654015/155317228-a6cb50ef-187a-47b4-abc5-12c736810490.jpg) also, init_cash =100 <- this function has been removed? Thanks
closed
2022-02-23T12:24:04Z
2022-03-01T15:26:56Z
https://github.com/polakowo/vectorbt/issues/394
[]
npc945702
2
InstaPy/InstaPy
automation
6,211
session.like_by_tags Instapy Crash
<!-- Did you know that we have a Discord channel ? Join us: https://discord.gg/FDETsht --> <!-- Is this a Feature Request ? Please, check out our Wiki first https://github.com/timgrossmann/InstaPy/wiki --> ## Expected Behavior No Instapy Crash ## Current Behavior Follow by tag, Session abort ## Possible Solution (optional) ## InstaPy configuration During Session abort. I get this message: Traceback (most recent call last): File "C:\Users\XXXX\Desktop\Instapy\V1.py", line 68, in session.like_by_tags(like_tags, amount=random.randint(9, 13)) File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\instapy\instapy.py", line 2081, in like_by_tags follow_state, msg = follow_user( File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\instapy\unfollow_util.py", line 557, in follow_user follow_state, msg = verify_action( File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\instapy\unfollow_util.py", line 1560, in verify_action button.click() File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\selenium\webdriver\remote\webelement.py", line 80, in click self._execute(Command.CLICK_ELEMENT) File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\selenium\webdriver\remote\webelement.py", line 633, in _execute return self._parent.execute(command, params) File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 321, in execute self.error_handler.check_response(response) File "C:\Users\XXXX\AppData\Local\Programs\Python\Python39\lib\site-packages\selenium\webdriver\remote\errorhandler.py", line 242, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.ElementClickInterceptedException: Message: Element is not clickable at point (225,128) because another element obscures it
open
2021-06-03T13:12:07Z
2021-07-21T00:19:38Z
https://github.com/InstaPy/InstaPy/issues/6211
[ "wontfix" ]
RainbowTob
1
skypilot-org/skypilot
data-science
4,765
[Reservations] Automatic purchases of reservations on clouds
A user reported that they want a way that Skypilot automatically purchases AWS capcity blocks, and use it for the jobs to run, so they don't have to do the manual process of purchasing and using it in `sky launch`.
open
2025-02-20T01:27:37Z
2025-02-20T01:27:37Z
https://github.com/skypilot-org/skypilot/issues/4765
[]
Michaelvll
0
Esri/arcgis-python-api
jupyter
1,385
AGOLAdminManager history method fails if data_format parameter is df or raw
**Describe the bug** Using the AGOLAdminManager history method to query the AGOL history API will fail with a JSONDecodeError when the data_format paramter is set to 'raw' or to 'df.' It only works if data_format is set to 'csv.' **To Reproduce** Steps to reproduce the behavior: ```python from arcgis.gis import GIS from datetime import datetime gis = GIS(agol_url, agol_username, agol_pw) starttime = datetime(2022,11,10,19,0) endtime = datetime(2022,11,10,23,59) df=gis.admin.history(starttime, endtime, num=10000, all_events=True, data_format="df") ``` error: ```python --------------------------------------------------------------------------- JSONDecodeError Traceback (most recent call last) ~\AppData\Local\ESRI\conda\envs\eim2\lib\site-packages\requests\models.py in json(self, **kwargs) 909 try: --> 910 return complexjson.loads(self.text, **kwargs) 911 except JSONDecodeError as e: ~\AppData\Local\ESRI\conda\envs\eim2\lib\json\__init__.py in loads(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw) 345 parse_constant is None and object_pairs_hook is None and not kw): --> 346 return _default_decoder.decode(s) 347 if cls is None: ~\AppData\Local\ESRI\conda\envs\eim2\lib\json\decoder.py in decode(self, s, _w) 336 """ --> 337 obj, end = self.raw_decode(s, idx=_w(s, 0).end()) 338 end = _w(s, end).end() ~\AppData\Local\ESRI\conda\envs\eim2\lib\json\decoder.py in raw_decode(self, s, idx) 354 except StopIteration as err: --> 355 raise JSONDecodeError("Expecting value", s, err.value) from None 356 return obj, end JSONDecodeError: Expecting value: line 1 column 1 (char 0) During handling of the above exception, another exception occurred: JSONDecodeError Traceback (most recent call last) ~\AppData\Local\ESRI\conda\envs\eim2\lib\site-packages\arcgis\gis\_impl\_con\_connection.py in _handle_response(self, resp, file_name, out_path, try_json, force_bytes, ignore_error_key) 884 try: --> 885 data = resp.json() 886 except JSONDecodeError: ~\AppData\Local\ESRI\conda\envs\eim2\lib\site-packages\requests\models.py in json(self, **kwargs) 916 else: --> 917 raise RequestsJSONDecodeError(e.msg, e.doc, e.pos) 918 JSONDecodeError: [Errno Expecting value] <html> <head><title>404 Not Found</title></head> <body> <center><h1>404 Not Found</h1></center> <hr><center>nginx</center> </body> </html> : 0 During handling of the above exception, another exception occurred: Exception Traceback (most recent call last) <ipython-input-148-0c40d9041638> in <module> ----> 1 sdf=gis.admin.history(starttime, endtime, all_events=True, data_format="df") ~\AppData\Local\ESRI\conda\envs\eim2\lib\site-packages\arcgis\gis\admin\agoladmin.py in history(self, start_date, to_date, num, all_events, event_ids, event_types, actors, owners, actions, ips, sort_order, data_format, save_folder) 417 data = [] 418 --> 419 res = self._gis._con.post(url, params) 420 data.extend(res["items"]) 421 while len(res["items"]) > 0 and res["nextKey"]: ~\AppData\Local\ESRI\conda\envs\eim2\lib\site-packages\arcgis\gis\_impl\_con\_connection.py in post(self, path, params, files, **kwargs) 1405 if return_raw_response: 1406 return resp -> 1407 return self._handle_response( 1408 resp=resp, 1409 out_path=out_path, ~\AppData\Local\ESRI\conda\envs\eim2\lib\site-packages\arcgis\gis\_impl\_con\_connection.py in _handle_response(self, resp, file_name, out_path, try_json, force_bytes, ignore_error_key) 886 except JSONDecodeError: 887 if resp.text: --> 888 raise Exception(resp.text) 889 else: 890 raise Exception: <html> <head><title>404 Not Found</title></head> <body> <center><h1>404 Not Found</h1></center> <hr><center>nginx</center> </body> </html> ``` **Screenshots** If applicable, add screenshots to help explain your problem. **Expected behavior** Should expect to have a data frame returned with the data **Platform (please complete the following information):** - OS: [Windows] - Browser [Chrome] - Python API Version [2.0.1] **Additional context** Add any other context about the problem here, attachments etc.
closed
2022-11-14T17:28:27Z
2022-11-17T16:22:05Z
https://github.com/Esri/arcgis-python-api/issues/1385
[ "bug" ]
crackernutter
4
miguelgrinberg/python-socketio
asyncio
680
socketio.exceptions.ConnectionError: Connection error
Hii, I have checked the compatibility versions and everything mentioned in the previous issues, but I am still facing this error.. Here I have the correct version: ![Screenshot 2021-05-06 at 3 05 48 PM](https://user-images.githubusercontent.com/43466752/117276517-9aba2400-ae7c-11eb-89f0-d6ae94980b9e.png)
closed
2021-05-06T09:36:22Z
2021-06-27T19:45:28Z
https://github.com/miguelgrinberg/python-socketio/issues/680
[ "question" ]
yathartharora
1
Miserlou/Zappa
flask
1,533
NameError: name 'LAMBDA_CLIENT' is not defined
## Context Python 3.6 I'm trying to run async tasks with Zappa. The details of my environment are probably causing the issue, but my problem is more with the absence of error messages. ## Expected Behavior If `boto3` can't initialize a session, I would expect to get a clear error about it. ## Actual Behavior When `boto3` can't initialize, I get the following error: ``` NameError: name 'LAMBDA_CLIENT' is not defined File "flask/app.py", line 2292, in wsgi_app response = self.full_dispatch_request() File "flask/app.py", line 1815, in full_dispatch_request rv = self.handle_user_exception(e) File "flask/app.py", line 1718, in handle_user_exception reraise(exc_type, exc_value, tb) File "flask/_compat.py", line 35, in reraise raise value File "flask/app.py", line 1813, in full_dispatch_request rv = self.dispatch_request() File "flask/app.py", line 1799, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "api/handler/health.py", line 39, in run_task_exception health.get_exception() File "zappa/async.py", line 424, in _run_async capture_response=capture_response).send(task_path, args, kwargs) File "zappa/async.py", line 137, in __init__ self.client = LAMBDA_CLIENT ``` ## Possible Fix The issue is coming from https://github.com/Miserlou/Zappa/blob/master/zappa/async.py#L105-L115: ```python # Declare these here so they're kept warm. try: aws_session = boto3.Session() LAMBDA_CLIENT = aws_session.client('lambda') SNS_CLIENT = aws_session.client('sns') STS_CLIENT = aws_session.client('sts') DYNAMODB_CLIENT = aws_session.client('dynamodb') except botocore.exceptions.NoRegionError as e: # pragma: no cover # This can happen while testing on Travis, but it's taken care of # during class initialization. pass ... class LambdaAsyncResponse(object): """ Base Response Dispatcher class Can be used directly or subclassed if the method to send the message is changed. """ def __init__(self, lambda_function_name=None, aws_region=None, capture_response=False, **kwargs): """ """ if kwargs.get('boto_session'): self.client = kwargs.get('boto_session').client('lambda') else: # pragma: no cover self.client = LAMBDA_CLIENT ``` In this code, we try to initialize a `LAMBDA_CLIENT`, and if we fail, we just don't define the name without giving any error to the user. Then, in `LambdaAsyncResponse.__init__`, we will try to find the client in the kwargs, reverting to `LAMBDA_CLIENT` (which might not exist). There are multiple possible fixes: 1. Always try to create a `boto3` client - the user would have to disable tasks by themselves. 2. Log an error when boto3 initialization fails. 3. Initialize a client inside `__init__` (probably the best one?). ## Steps to Reproduce I'm not sure this is relevant for this issue - the code could be improved IMO. ## Your Environment Same.
open
2018-06-14T13:21:21Z
2019-03-21T21:50:52Z
https://github.com/Miserlou/Zappa/issues/1533
[]
charlax
3
PedroBern/django-graphql-auth
graphql
64
[Error!]: Invalid Token in verifyAccount Mutation
# Prerequisites * [x] Is it a bug? * [ ] Is it a new feature? * [ ] Is it a a question? * [x] Can you reproduce the problem? * [x] Are you running the latest version? * [ ] Did you check for similar issues? * [ ] Did you perform a cursory search? For more information, see the [CONTRIBUTING](https://github.com/PedroBern/django-graphql-auth/blob/master/CONTRIBUTING.md) guide. # Description VerifyAccount Mutation doesn't works I've followed the [installation](https://django-graphql-auth.readthedocs.io/en/latest/installation/) instructions and checked the [Quickstart](https://github.com/PedroBern/django-graphql-auth/tree/master/quickstart) project to see if I've done anything wrong. The verifyAccount mutation fails. It throws me the error of: Invalid token ![Issue Video](https://media.giphy.com/media/QYRyI388dzSr7xgo0v/giphy.gif) Oooh... the gif is too small... Here the process: 1. Register <img width="1680" alt="register" src="https://user-images.githubusercontent.com/1699198/92314635-19825880-efa0-11ea-9481-78e464738e56.png"> 2. VerifyToken <img width="1680" alt="verifyToken" src="https://user-images.githubusercontent.com/1699198/92314648-374fbd80-efa0-11ea-99c4-9e8ae247b4e7.png"> 3. VerifyAccount <img width="1680" alt="verifyAccount" src="https://user-images.githubusercontent.com/1699198/92314651-3f0f6200-efa0-11ea-9f7a-f3aba0ecaad5.png">
closed
2020-09-05T22:45:22Z
2022-03-29T13:19:20Z
https://github.com/PedroBern/django-graphql-auth/issues/64
[]
nietzscheson
5
PokeAPI/pokeapi
graphql
904
Missing data for distortion world location areas
Hi ! There is no data for `areas` when calling the API on `https://pokeapi.co/api/v2/location/distortion-world/`. This implies that `giratina-origin` doesn't have any encounter data. Steps to Reproduce: 1. Go to `https://pokeapi.co/api/v2/location/distortion-world` and see the empty `areas` array 2. Go to `https://pokeapi.co/api/v2/pokemon/giratina-origin/encounters/`, there is no data provided
closed
2023-07-17T13:58:49Z
2023-07-17T21:47:05Z
https://github.com/PokeAPI/pokeapi/issues/904
[]
truite-codeuse
4
tensorlayer/TensorLayer
tensorflow
525
tensorlayer output
Is there a function to return the probability of the outputs? I searched utils.py and couldn't find what I wanted.
closed
2018-04-23T12:45:51Z
2018-04-26T10:16:18Z
https://github.com/tensorlayer/TensorLayer/issues/525
[]
kodayu
1
cleanlab/cleanlab
data-science
773
Add support for detecting label errors in Instance Segmentation data
Many users have requested this functionality. For now, you should be able to use the existing code for semantic segmentation label error detection by converting your instance segmentation labels & predictions into semantic segmentation labels & predictions. That approach may not capture all possible types of label errors, but I'd guess it will work decently. If you contribute a new method specifically for instance segmentation, it should definitely work better than simply converting the labels/predictions into semantic segmentation and running existing cleanlab code.
open
2023-07-13T22:45:20Z
2024-09-03T02:30:23Z
https://github.com/cleanlab/cleanlab/issues/773
[ "enhancement", "help-wanted" ]
jwmueller
7
amdegroot/ssd.pytorch
computer-vision
455
how can we train on custom VOC dataset??
I want to train on custom dataset with VOC format
open
2020-01-06T14:08:15Z
2021-11-16T12:27:34Z
https://github.com/amdegroot/ssd.pytorch/issues/455
[]
ayaelalfy
6
RasaHQ/rasa
machine-learning
13,114
How to Handle Out of Context Messeges and Unclear Messges in Chat
Your input -> hello Hey there! What's your name? Your input -> my name is john In which city do you live? Your input -> im from new york Can i get your phone number? Your input -> 0123456789 Hey vishwa,New York is a very beautifull place. Your phone number is 0123456789 Your input -> quit Your input -> what is chat gpt I'm here to assist with any questions related to forms. If you need help with our services, features, or how to fill out a form, feel free to ask! Your input -> sdas Your input -> i have some issues : 1 Out of Context what is chat gpt or what is world these are out of context messages for these i need to respons like this "I'm here to assist with any questions related to forms. If you need help with our services, features, or how to fill out a form, feel free to ask!" becuse user can ask differnet questions this bot will only focus on form filling. 2 Unclear sdas,asdw and in intent example if i give a something not difine in it there then say "Sorry, I didn't understand that. Can you rephrase?" ex there is example like this my name is [Jhon] (name) but i give a prompt like this my name is new york. for that i need to say i cant understand can you rephrase like that . and this is not only for name and i need a solution without hardcording how to do this what is the best way use in rasa. how to get a solution for both senarios.
open
2025-03-18T18:14:29Z
2025-03-18T18:14:29Z
https://github.com/RasaHQ/rasa/issues/13114
[]
Vishwa-ud
0
xzkostyan/clickhouse-sqlalchemy
sqlalchemy
274
Bug in _reflect_table() support for alembic versions < 1.11.0
**Describe the bug** Versions of alembic lower than 1.11.0 will fail with syntax error when trying to produce a migration script. ![Screenshot from 2023-11-09 00-08-25](https://github.com/xzkostyan/clickhouse-sqlalchemy/assets/24431674/2de04b1a-2009-4057-b8c2-b11463ac9864) ``` migration = produce_migrations(mig_ctx, metadata) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/alembic/autogenerate/api.py", line 164, in produce_migrations compare._populate_migration_script(autogen_context, migration_script) File "/usr/local/lib/python3.11/site-packages/alembic/autogenerate/compare.py", line 55, in _populate_migration_script _produce_net_changes(autogen_context, upgrade_ops) File "/usr/local/lib/python3.11/site-packages/alembic/autogenerate/compare.py", line 89, in _produce_net_changes comparators.dispatch("schema", autogen_context.dialect.name)( File "/usr/local/lib/python3.11/site-packages/alembic/util/langhelpers.py", line 267, in go fn(*arg, **kw) File "/usr/local/lib/python3.11/site-packages/clickhouse_sqlalchemy/alembic/comparators.py", line 130, in compare_mat_view _reflect_table(inspector, table) File "/usr/local/lib/python3.11/site-packages/clickhouse_sqlalchemy/alembic/comparators.py", line 41, in _reflect_table return _alembic_reflect_table(inspector, table) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: _reflect_table() missing 1 required positional argument: 'include_cols' ``` **To Reproduce** ```python from alembic.autogenerate import produce_migrations con = "some-db-con" mig_ctx = MigrationContext.configure(con) migration = produce_migrations(mig_ctxt, metadata) ``` **Expected behavior** The [_reflect_table()](https://github.com/xzkostyan/clickhouse-sqlalchemy/blob/master/clickhouse_sqlalchemy/alembic/comparators.py#L37) should have an extra parameter `insert_cols` with it's default as `None` and should be passed to `_alembic_reflect_table` when the alembic version is < 1.11.0 **Versions** clickhouse_sqlalchemy >= 0.25 alembic == 1.8.1 python == 3.11.6 - Version of package with the problem. - python == 3.11.6
closed
2023-11-08T23:29:44Z
2024-03-25T07:22:19Z
https://github.com/xzkostyan/clickhouse-sqlalchemy/issues/274
[]
DicksonChi
0
InstaPy/InstaPy
automation
6,177
Only Like Posts if Their Authors Belong to a Set of Users
I was hoping to write a bot that likes posts only by certain users. I noticed there's a function `session.set_ignore_users()` that ignores any user in a given list, and I am wondering if there is a function that behaves in a reversed way, i.e. it ignores any other users not specified by a given list. Thanks in advance.
closed
2021-05-10T04:36:12Z
2021-06-26T19:00:11Z
https://github.com/InstaPy/InstaPy/issues/6177
[ "wontfix" ]
georgezywang
2
dsdanielpark/Bard-API
nlp
14
How to get BARD_API_KEY ?
I saw the usage, but idk how to get my BARD_API_KEY ?
closed
2023-05-17T18:10:30Z
2023-05-17T18:51:58Z
https://github.com/dsdanielpark/Bard-API/issues/14
[]
SKbarbon
1
koaning/scikit-lego
scikit-learn
187
[DOCS] duplicate images in docs
We now have an issue that is similar to [this](https://github.com/spatialaudio/nbsphinx/issues/162) one. Certain images get overwritten. From console; ``` reading sources... [100%] preprocessing /Users/vincent/Development/scikit-lego/doc/preprocessing.ipynb:102: WARNING: Duplicate substitution definition name: "image0". /Users/vincent/Development/scikit-lego/doc/preprocessing.ipynb:153: WARNING: Duplicate substitution definition name: "image0". ```
closed
2019-09-08T19:35:50Z
2019-09-19T07:00:49Z
https://github.com/koaning/scikit-lego/issues/187
[ "documentation" ]
koaning
3
deepset-ai/haystack
pytorch
8,925
Remove the note "Looking for documentation for Haystack 1.x? Visit the..." from documentation pages
closed
2025-02-25T10:53:16Z
2025-02-26T14:21:58Z
https://github.com/deepset-ai/haystack/issues/8925
[ "P1" ]
julian-risch
0
sqlalchemy/alembic
sqlalchemy
1,090
Migration generated always set enum nullable to true
**Describe the bug** I have a field with enum type and I want to set nullable to False, however, the migration generated is always set nullable to True **Expected behavior** If the field contains nullable = False, migration generated should set nullable = False **To Reproduce** ```py import enum from sqlmodel import SQLModel, Field, UniqueConstraint, Column, Enum class Contract_Status(str, enum.Enum): CREATED = "Created" COMPLETED = "Completed" DEPOSITED = "Deposited" CANCELLED = "Cancelled" class Contract(SQLModel, table = True): __table_args__ = (UniqueConstraint("ctrt_id"),) ctrt_id: str = Field(primary_key = True, nullable = False) status: Contract_Status = Field(sa_column = Column(Enum(Contract_Status, values_callable = lambda enum: [e.value for e in enum])), nullable = False) ``` **Error** ``` def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_table('contract', sa.Column('status', sa.Enum('Created', 'Completed', 'Deposited', 'Cancelled', name='contract_status'), nullable=True), sa.Column('ctrt_id', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint('ctrt_id'), sa.UniqueConstraint('ctrt_id') ) # ### end Alembic commands ### ``` **Versions.** - OS: MacOS Monterey 12.6 (Intel Processor) - Python: 3.10.5 - Alembic: 1.8.1 - SQLAlchemy: 1.4.40 - Database: MySQL 8.0.29 - SQLModel: 0.0.8
closed
2022-09-23T04:51:44Z
2022-10-09T14:25:56Z
https://github.com/sqlalchemy/alembic/issues/1090
[ "awaiting info", "cant reproduce" ]
yixiongngvsys
3
christabor/flask_jsondash
flask
5
Remove jquery, bootstrap, etc.. from blueprint, put into requirements and example app.
The user will likely have them in their main app.
closed
2016-05-02T19:52:03Z
2016-05-03T18:24:08Z
https://github.com/christabor/flask_jsondash/issues/5
[]
christabor
0
flairNLP/flair
nlp
2,683
Wrong Detection - person entity
**Describe the bug** For any person entity, the prediction are added along with "hey" Eg: "Hey Karthick" **To Reproduce** Model name - ner-english-fast, ner-english Steps to reproduce the behavior (e.g. which model did you train? what parameters did you use? etc.). **Expected behavior** Eg: "Hey Karthick" Predicitons from model: Hey Karthick PER Expected predictions: Karthick PER **Additional context** Add any other context about the problem here. <img width="701" alt="Screenshot 2022-03-21 at 1 47 22 PM" src="https://user-images.githubusercontent.com/55129453/159224981-41008757-4646-42b4-9814-029fdb235e85.png">
closed
2022-03-21T08:22:26Z
2022-09-09T02:02:36Z
https://github.com/flairNLP/flair/issues/2683
[ "bug", "wontfix" ]
karthicknarasimhan98
1
autogluon/autogluon
scikit-learn
3,944
Ray error when using preset `good_quality`
### Discussed in https://github.com/autogluon/autogluon/discussions/3943 <div type='discussions-op-text'> <sup>Originally posted by **ArijitSinghEDA** February 22, 2024</sup> I am using the preset `good_quality` in my `TabularPredictor`, but it gives the following error: ``` 2024-02-22 13:57:06,461 WARNING worker.py:1729 -- Failed to set SIGTERM handler, processes mightnot be cleaned up properly on exit. 2024-02-22 13:57:32,647 ERROR services.py:1207 -- Failed to start the dashboard 2024-02-22 13:57:32,648 ERROR services.py:1232 -- Error should be written to 'dashboard.log' or 'dashboard.err'. We are printing the last 20 lines for you. See 'https://docs.ray.io/en/master/ray-observability/ray-logging.html#logging-directory-structure' to find where the log file is. 2024-02-22 13:57:32,648 ERROR services.py:1242 -- Couldn't read dashboard.log file. Error: [Errno 2] No such file or directory: '/tmp/ray/session_2024-02-22_13-57-06_577198_21267/logs/dashboard.log'. It means the dashboard is broken even before it initializes the logger (mostly dependency issues). Reading the dashboard.err file which contains stdout/stderr. 2024-02-22 13:57:32,648 ERROR services.py:1276 -- Failed to read dashboard.err file: cannot mmap an empty file. It is unexpected. Please report an issue to Ray github. https://github.com/ray-project/ray/issues [2024-02-22 13:58:03,776 E 21267 21372] core_worker.cc:201: Failed to register worker 01000000ffffffffffffffffffffffffffffffffffffffffffffffff to Raylet. IOError: [RayletClient] Unable to register worker with raylet. No such file or directory ``` Versions Used: Autogluon: 0.8.3 Ray: 2.6.3 grpcio: 1.58.0</div> *EDIT* It is an issue with Ray
closed
2024-02-22T08:32:39Z
2024-02-22T08:58:10Z
https://github.com/autogluon/autogluon/issues/3944
[]
ArijitSinghEDA
0
zalandoresearch/fashion-mnist
computer-vision
21
Adding Japanese README translation
I found a Japanese translation of README.md on http://tensorflow.classcat.com/category/fashion-mnist/ Seems pretty complete to me. I sent a email to the website and asking for the permission to use it as official README-jp.md. Still waiting their reply.
closed
2017-08-28T14:45:28Z
2017-08-29T09:02:47Z
https://github.com/zalandoresearch/fashion-mnist/issues/21
[]
hanxiao
0
zihangdai/xlnet
nlp
57
Has the data been split into segments for pretraining
The paper says > During the pretraining phase, following BERT, we randomly sample two segments (either from the same context or not) and treat the concatenation of two segments as one sequence to perform permutation language modeling. I don't really get this, if there is no next sentence prediction what is the point of concatenating segments that do not belong to the same context? Won't that degrade the performance of the model? What is the objective behind using two segments (both from the same context and not)?
closed
2019-06-25T23:12:02Z
2019-07-07T20:14:04Z
https://github.com/zihangdai/xlnet/issues/57
[]
rakshanda22
3
katanaml/sparrow
computer-vision
1
How to save the predicted output from LayoutLM or LayoutLMv2 ?
I trained LayoutLM for my dataset and I am getting predictions at the word level like in the image "ALVARO FRANCISCO MONTOYA" is true labeled as "party_name_1" but while prediction "ALVARO " is tagged as "party_name_1", "FRANCISCO" is tagged as "party_name_1", "MONTOYA" is tagged as "party_name_1". In short, i am getting prediction for each word but how to save these prediction as one predicted output like "ALVARO FRANCISCO MONTOYA" as "party_name_1". How to save this as a single output? Any help would be greatful. Below image is the predicted output image from LayoutLM. ![download (2) (2)](https://user-images.githubusercontent.com/49562460/160383498-67cccc0d-fb51-4153-bfcd-bd91bc7c7a02.png)
closed
2022-03-31T11:05:15Z
2022-03-31T15:55:52Z
https://github.com/katanaml/sparrow/issues/1
[]
karndeepsingh
3
blacklanternsecurity/bbot
automation
1,815
Excavate IPv6 URLs
We should have a test for excavating IPv6 URLs. originally suggested by @colin-stubbs
open
2024-10-02T18:38:46Z
2025-02-28T15:02:40Z
https://github.com/blacklanternsecurity/bbot/issues/1815
[ "enhancement" ]
TheTechromancer
0
onnx/onnx
tensorflow
5,885
[Feature request] Provide a means to convert to numpy array without byteswapping
### System information ONNX 1.15 ### What is the problem that this feature solves? Issue onnx/tensorflow-onnx#1902 in tf2onnx occurs on big endian systems, and it is my observation that attributes which end up converting to integers are incorrectly byteswapped because the original data resided within a tensor. If `numpy_helper.to_array()` could be updated to optionally not perform byteswapping, then that could help solve this issue. ### Alternatives considered As an alternative, additional logic could be added in tf2onnx to perform byteswapping on the data again, but this seems excessive. ### Describe the feature I believe this feature is necessary to improve support for big endian systems. ### Will this influence the current api (Y/N)? _No response_ ### Feature Area converters ### Are you willing to contribute it (Y/N) Yes ### Notes _No response_
closed
2024-01-31T20:58:56Z
2024-02-02T16:52:35Z
https://github.com/onnx/onnx/issues/5885
[ "topic: enhancement" ]
tehbone
4
mirumee/ariadne
graphql
121
Support content type "application/graphql"
> If the "application/graphql" Content-Type header is present, treat the HTTP POST body contents as the GraphQL query string.
closed
2019-03-26T19:07:04Z
2024-04-03T09:15:39Z
https://github.com/mirumee/ariadne/issues/121
[]
rafalp
3
aleju/imgaug
machine-learning
102
Background Image Processing Hangs If Ungraceful Exit
A process using background image processing will hang if runtime is terminated before background image processing is complete. ### System: - Operating System: Ubuntu 16.04 - Python: 2.7.12 - imgaug: 0.2.5 ### Code to Reproduce ```python import imgaug as ia import numpy as np def batch_generator(): for i in range(10000): batch = ia.Batch(images=np.zeros((10,3,255,255))) yield batch bg_loader = ia.BatchLoader(batch_generator) bg_augmenter = ia.BackgroundAugmenter(bg_loader, ia.augmenters.Noop()) bg_augmenter.get_batch() bg_augmenter.terminate() bg_loader.terminate() ```` ### Expected Result Code exits gracefully and you go on with your life ### Actual Result Parent process becomes zombie process and requires manual termination via PID ### Proposed solution The queues owned by BatchLoader and BackgroundAugmenter should be closed in their respective terminate() calls.
closed
2018-03-07T16:15:56Z
2018-03-08T19:20:27Z
https://github.com/aleju/imgaug/issues/102
[]
AustinDoolittle
2
dmlc/gluon-nlp
numpy
724
PrefetcherIter with worker_type='process' may hang
I noticed that using PrefetcherIter with worker_type='process' may leave the prefetching process hang. Specifically, if I do ``` kill $PARENT_PID ``` I will observe that the parent process exits, and that child process still runs. And the child process runs till https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/data/stream.py#L265-L271 and block there because the parent never calls `__next__`. I'm a bit confused because the process is already marked as daemon=True, but it does not exit.
closed
2019-05-23T06:46:27Z
2020-10-15T20:16:10Z
https://github.com/dmlc/gluon-nlp/issues/724
[ "bug" ]
eric-haibin-lin
5
erdewit/ib_insync
asyncio
314
QEventDispatcherWin32::wakeUp: Failed to post a message (Not enough quota is available to process this command.)
I am working with a pyqt5 application with ib_insync. I am loading a set of open orders and showing them in a table one I press the connect button. Worked fine so far. I increased the number of open orders to around 50-60. Now, once I press the connect button, I get an endless stdout of messages with the text: `QEventDispatcherWin32::wakeUp: Failed to post a message (Not enough quota is available to process this command.)` I have found no info on this. It seems that the "not enough quota" happens to some people while trying to copy large amounts of data from a local network, but not related to Qt5. Is it possible that Qt is getting saturated by the amount of ib_insync events (or the amount of data received through them), and hence it has not enough quota to update the GUI?
closed
2020-11-09T13:55:13Z
2020-11-11T20:31:37Z
https://github.com/erdewit/ib_insync/issues/314
[]
romanrdgz
1
miguelgrinberg/Flask-SocketIO
flask
1,131
Socket.io not establishing connection with load balancer : timeout error
**Your question** Hi Miguel, We are in the process of moving our cloud instance from Linode to Google Cloud Platform. Our entire web app uses socket.io for most frontend behavior. When we hit the domain on the GCP instance we are experiencing extremely slow speeds. In addition we are experiencing a server disconnect every 3-5 seconds. When we looked at the web server logs we saw the following: **Logs** A 2019-12-18T22:27:08.305600469Z [2019-12-18 22:27:08,304] ERROR in kombu_manager: Sleeping 32.0s A 2019-12-18T22:27:08.305685444Z Traceback (most recent call last): A 2019-12-18T22:27:08.305692804Z File "/usr/local/lib/python3.5/dist-packages/kombu/utils/functional.py", line 332, in retry_over_time A 2019-12-18T22:27:08.305698205Z return fun(*args, **kwargs) A 2019-12-18T22:27:08.305702737Z File "/usr/local/lib/python3.5/dist-packages/kombu/connection.py", line 261, in connect A 2019-12-18T22:27:08.305707322Z return self.connection A 2019-12-18T22:27:08.305711636Z File "/usr/local/lib/python3.5/dist-packages/kombu/connection.py", line 802, in connection A 2019-12-18T22:27:08.305716109Z self._connection = self._establish_connection() A 2019-12-18T22:27:08.305736993Z File "/usr/local/lib/python3.5/dist-packages/kombu/connection.py", line 757, in _establish_connection A 2019-12-18T22:27:08.305741614Z conn = self.transport.establish_connection() A 2019-12-18T22:27:08.305745468Z File "/usr/local/lib/python3.5/dist-packages/kombu/transport/pyamqp.py", line 130, in establish_connection A 2019-12-18T22:27:08.305749625Z conn.connect() A 2019-12-18T22:27:08.305753414Z File "/usr/local/lib/python3.5/dist-packages/amqp/connection.py", line 294, in connect A 2019-12-18T22:27:08.305757408Z self.transport.connect() A 2019-12-18T22:27:08.305761307Z File "/usr/local/lib/python3.5/dist-packages/amqp/transport.py", line 120, in connect A 2019-12-18T22:27:08.305765180Z self._connect(self.host, self.port, self.connect_timeout) A 2019-12-18T22:27:08.305769048Z File "/usr/local/lib/python3.5/dist-packages/amqp/transport.py", line 161, in _connect A 2019-12-18T22:27:08.305773031Z self.sock.connect(sa) A 2019-12-18T22:27:08.305776680Z File "/usr/local/lib/python3.5/dist-packages/eventlet/greenio/base.py", line 261, in connect A 2019-12-18T22:27:08.305780599Z self._trampoline(fd, write=True, timeout=timeout, timeout_exc=_timeout_exc) A 2019-12-18T22:27:08.305784455Z File "/usr/local/lib/python3.5/dist-packages/eventlet/greenio/base.py", line 208, in _trampoline A 2019-12-18T22:27:08.305788491Z mark_as_closed=self._mark_as_closed) A 2019-12-18T22:27:08.305792209Z File "/usr/local/lib/python3.5/dist-packages/eventlet/hubs/__init__.py", line 164, in trampoline A 2019-12-18T22:27:08.305796128Z return hub.switch() A 2019-12-18T22:27:08.305799746Z File "/usr/local/lib/python3.5/dist-packages/eventlet/hubs/hub.py", line 297, in switch A 2019-12-18T22:27:08.305803719Z return self.greenlet.switch() A 2019-12-18T22:27:08.310863763Z socket.timeout: timed out **GCP architecture** We are setup using RabbitMQ as the broker and then Redis as in-memory storage. Prior to setting up the load balancer, when we setup a single web server we had no problems and everything worked fine. When we setup the load balancer on top of a single web server, that is when the problems began occuring.
closed
2019-12-18T22:42:45Z
2020-06-30T22:52:00Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1131
[ "question" ]
jtopel
3