repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
sinaptik-ai/pandas-ai
pandas
768
Huggingface Interface Endpoints
Hi, I wanted to ask if it was possible to use Huggingface Interface Endpoints and if so where to set the token. Can you give me details? Thanks
closed
2023-11-21T15:26:18Z
2024-06-01T00:20:54Z
https://github.com/sinaptik-ai/pandas-ai/issues/768
[]
emanueleparini
11
AirtestProject/Airtest
automation
825
启动pocoserver 的时候总是报多线程错误
mkdir: cannot create directory ‘upload.dir’: File exists [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb devices [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb devices [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 get-state [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 wait-for-device [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell getprop ro.build.version.sdk [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:09:41][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:09:41][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:09:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:09:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:12898 tcp:10080 [06:09:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:13828 tcp:10081 [06:09:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:09:52][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:09:53][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:09:53][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:09:55][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:09:55][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:09:56][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:09:56][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:09:56][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:09:56][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:13265 tcp:10080 [06:09:56][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:17922 tcp:10081 [06:09:56][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:09:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:09:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:09:57][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:09:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:09:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:12742 tcp:10080 [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:17504 tcp:10081 [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb devices [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb devices [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 get-state [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 wait-for-device [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell getprop ro.build.version.sdk [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ls /data/local/tmp/minicap [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ls /data/local/tmp/minicap.so [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell LD_LIBRARY_PATH=/data/local/tmp /data/local/tmp/minicap -v 2>&1 [06:09:58][DEBUG]<airtest.core.android.minicap> version:6 [06:09:58][DEBUG]<airtest.core.android.minicap> skip install minicap [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell LD_LIBRARY_PATH=/data/local/tmp /data/local/tmp/minicap -i [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys window displays [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:09:58][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:09:58][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:18175 tcp:10080 [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:16158 tcp:10081 [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:09:59][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:09:59][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:00][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:00][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:11733 tcp:10080 [06:10:00][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:15851 tcp:10081 [06:10:00][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:00][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:01][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:01][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:01][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:01][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:02][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:16582 tcp:10080 [06:10:02][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:17340 tcp:10081 [06:10:02][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:02][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:02][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:02][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:02][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:17407 tcp:10080 [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:12454 tcp:10081 [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:03][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:03][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:19738 tcp:10080 [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:15541 tcp:10081 [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:04][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:04][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:05][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:05][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:18388 tcp:10080 [06:10:05][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:16008 tcp:10081 [06:10:05][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:06][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:06][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:06][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:06][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:06][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:13382 tcp:10080 [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:11402 tcp:10081 [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:07][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:07][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:08][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:12188 tcp:10080 [06:10:08][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:11535 tcp:10081 [06:10:08][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:08][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:08][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:08][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:08][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:11247 tcp:10080 [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --no-rebind tcp:17129 tcp:10081 [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell netcfg [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ifconfig [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top [06:10:09][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys package com.netease.nie.yosemite [06:10:10][INFO]<airtest.core.android.yosemite> local version code is 300, installed version code is 300 [06:10:10][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell settings get secure default_input_method [06:10:10][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ime list -a [06:10:10][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell ps [06:10:21][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:21][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:21][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:21][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:22][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:22][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:22][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:22][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:22][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner Exception in thread Thread-1: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=21> [06:10:31][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:31][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:31][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:31][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:31][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:31][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:32][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:33][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:34][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:34][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:34][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:35][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:35][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:35][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:35][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner Exception in thread Thread-6: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=27> Exception in thread Thread-2: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=29> Exception in thread Thread-3: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=33> [06:10:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:42][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:43][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:43][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:44][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am force-stop com.netease.open.pocoservice [06:10:44][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner [06:10:44][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am start -n com.netease.open.pocoservice/.TestActivity [06:10:45][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell am instrument -w -e debug false -e class com.netease.open.pocoservice.InstrumentedTestAsLauncher com.netease.open.pocoservice.test/android.support.test.runner.AndroidJUnitRunner Exception in thread Thread-9: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=11> Exception in thread Thread-10: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=13> Exception in thread Thread-8: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=21> Exception in thread Thread-4: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=18> Exception in thread Thread-5: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=25> Exception in thread Thread-7: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=23> Exception in thread Thread-11: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=26> Exception in thread Thread-12: Traceback (most recent call last): File "/usr/lib/python3.6/threading.py", line 916, in _bootstrap_inner self.run() File "/usr/lib/python3.6/threading.py", line 864, in run self._target(*self._args, **self._kwargs) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 208, in loop stdout, stderr = self._instrument_proc.communicate() File "/usr/lib/python3.6/subprocess.py", line 863, in communicate stdout, stderr = self._communicate(input, endtime, timeout) File "/usr/lib/python3.6/subprocess.py", line 1525, in _communicate selector.register(self.stdout, selectors.EVENT_READ) File "/usr/lib/python3.6/selectors.py", line 351, in register key = super().register(fileobj, events, data) File "/usr/lib/python3.6/selectors.py", line 237, in register key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) File "/usr/lib/python3.6/selectors.py", line 224, in _fileobj_lookup return _fileobj_to_fd(fileobj) File "/usr/lib/python3.6/selectors.py", line 39, in _fileobj_to_fd "{!r}".format(fileobj)) from None ValueError: Invalid file object: <_io.BufferedReader name=28> [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 shell dumpsys activity top /home/test_user /home/test_user/android/api/report / /home/test_user/android /home /home/test_user/android/common python log /home/test_user/upload.dir/zxg.log /home/test_user/upload.dir/zxg.log [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. /home /home/test_user/android/api /home/test_user /home/test_user/android/api/report /home /home/test_user/android/conf /home/test_user /home/test_user/android/api/login /home /home/test_user/android/portfolio_page [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. /home/test_user /home/test_user/android/api/base [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] background daemon started. [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'\ncom.netease.open.pocoservice.InstrumentedTestAsLauncher:INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService [pocoservice.apk] stdout: b'INSTRUMENTATION_RESULT: shortMsg=Process crashed.\nINSTRUMENTATION_CODE: 0\n' [pocoservice.apk] stderr: b'' [pocoservice.apk] retrying instrumentation PocoService Traceback (most recent call last): File "android/api/report/test_report_runner_bvt_portfolio.py", line 10, in <module> from android.api.base.test_portfolio_bvt import TestPortfolioBvt File "/home/test_user/android/api/base/test_portfolio_bvt.py", line 17, in <module> poco = AndroidUiautomationPoco(use_airtest_input=False, screenshot_each_action=False, using_proxy=False) File "/usr/local/lib/python3.6/dist-packages/poco/drivers/android/uiautomation.py", line 179, in __init__ raise RuntimeError("unable to launch AndroidUiautomationPoco") RuntimeError: unable to launch AndroidUiautomationPoco [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:12898 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:13828 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:13265 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:17922 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:12742 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:17504 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:18175 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:16158 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:11733 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:15851 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:16582 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:17340 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:17407 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:12454 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:19738 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:15541 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:18388 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:16008 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:13382 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:11402 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:12188 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:11535 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:11247 [06:10:57][DEBUG]<airtest.core.android.adb> /usr/local/lib/python3.6/dist-packages/airtest/core/android/static/adb/linux/adb -s localhost:6969 forward --remove tcp:17129
open
2020-11-05T03:02:31Z
2020-11-05T03:02:31Z
https://github.com/AirtestProject/Airtest/issues/825
[]
xiaojunliu19
0
nolar/kopf
asyncio
682
Kopf requires aiohttp>=3
## Long story short When I install kopf, I get aiohttp 2.x.x which does not support the ssl kwarg in the aiohttp.TCPConnector constructor. According to the docs this kwarg is introduced in aiohttp version 3.0, so maybe kopf should require this a a minimal version. My workaround was to specify aiohttp 3.7.3 manually in my pyproject.toml. Source: search for 'TCPConnector' or 'param ssl' on [this page](https://docs.aiohttp.org/en/stable/client_reference.html), then see the ssl parameter, it states "New in version 3.0" my traceback: <details><summary>kopf run operator.py </summary> ``` /Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/reactor/running.py:157: FutureWarning: Absence of either namespaces or cluster-wide flag will become an error soon. For now, switching to the cluster-wide mode for backward compatibility. warnings.warn("Absence of either namespaces or cluster-wide flag will become an error soon." [2021-02-13 23:13:21,776] kopf.reactor.activit [INFO ] Initial authentication has been initiated. [2021-02-13 23:13:21,786] kopf.activities.auth [INFO ] Activity 'login_via_client' succeeded. [2021-02-13 23:13:21,786] kopf.reactor.activit [INFO ] Initial authentication has finished. [2021-02-13 23:13:21,789] kopf.reactor.running [ERROR ] Resource observer has failed: __init__() got an unexpected keyword argument 'ssl' Traceback (most recent call last): File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/utilities/aiotasks.py", line 69, in guard await coro File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/reactor/observation.py", line 104, in resource_observer resources = await scanning.scan_resources(groups=group_filter) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/clients/auth.py", line 42, in wrapper async for key, info, context in vault.extended(APIContext, 'contexts'): File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/structs/credentials.py", line 164, in extended item.caches[purpose] = factory(item.info) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/clients/auth.py", line 183, in __init__ connector=aiohttp.TCPConnector( TypeError: __init__() got an unexpected keyword argument 'ssl' Traceback (most recent call last): File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/bin/kopf", line 8, in <module> sys.exit(main()) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/core.py", line 829, in __call__ return self.main(*args, **kwargs) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/core.py", line 782, in main rv = self.invoke(ctx) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/core.py", line 1259, in invoke return _process_result(sub_ctx.command.invoke(sub_ctx)) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/core.py", line 1066, in invoke return ctx.invoke(self.callback, **ctx.params) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/core.py", line 610, in invoke return callback(*args, **kwargs) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/cli.py", line 50, in wrapper return fn(*args, **kwargs) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/decorators.py", line 73, in new_func return ctx.invoke(f, obj, *args, **kwargs) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/click/core.py", line 610, in invoke return callback(*args, **kwargs) File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/cli.py", line 97, in run return running.run( File "/Users/dino/Library/Caches/pypoetry/virtualenvs/deployment-operator-46HapXxc-py3.9/lib/python3.9/site-packages/kopf/reactor/running.py", line 47, in run ``` </details> ## Environment <!-- The following commands can help: `kopf --version` or `pip show kopf` `kubectl version` `python --version` --> * Kopf version: kopf, version 1.29.2 * Kubernetes version: doesnt matter * Python version: 3.9.1 * OS/platform: macOs big sur 11.1 <details><summary>Python packages installed</summary> ``` aiohttp @ file:///Users/dino/Library/Caches/pypoetry/artifacts/41/0f/23/7a69d935a278f7e9ae829d0ff2c9b669b96713f4eed57f6b64466634c5/aiohttp-3.7.3.tar.gz aiojobs @ file:///Users/dino/Library/Caches/pypoetry/artifacts/98/2c/2d/fbec70db545b5331949364846b7ac86cca4db40b91730da294b2f9ec50/aiojobs-0.3.0-py3-none-any.whl astroid @ file:///Users/dino/Library/Caches/pypoetry/artifacts/34/e0/99/2edbd67ade70c8c00b3e1ab5559e9ed5efc5470f97256888886f6d312a/astroid-2.4.2-py3-none-any.whl async-timeout @ file:///Users/dino/Library/Caches/pypoetry/artifacts/e1/e7/dc/347dacf16e20e4b15a992103281583f3a03db422172dec1c5f08d68c07/async_timeout-3.0.1-py3-none-any.whl attrs @ file:///Users/dino/Library/Caches/pypoetry/artifacts/f9/48/82/553e4bef24d3b294c0c18f27a7853f3ed151508efd144cb7ea37db1c48/attrs-20.3.0-py2.py3-none-any.whl cachetools @ file:///Users/dino/Library/Caches/pypoetry/artifacts/6f/e8/07/77a8a35bf67f89350dc9cf391674b48c6f880833c4c46a9309228d0546/cachetools-4.2.1-py3-none-any.whl certifi @ file:///Users/dino/Library/Caches/pypoetry/artifacts/d8/df/24/ed696681f34f8916b0aef99138db9a94e37d54684b9829af34a7fd4e39/certifi-2020.12.5-py2.py3-none-any.whl chardet @ file:///Users/dino/Library/Caches/pypoetry/artifacts/8f/6f/1c/8085d730ad63c462222af30d0d01c4bd0caca5287e40b63c1fe8f529b7/chardet-3.0.4-py2.py3-none-any.whl click @ file:///Users/dino/Library/Caches/pypoetry/artifacts/e2/79/34/a23e9d2f683ed66be11ec3bd760dec3a2fe228cfdedf2071bcf0531b06/click-7.1.2-py2.py3-none-any.whl google-auth @ file:///Users/dino/Library/Caches/pypoetry/artifacts/83/9f/60/33b898f8f35d337ff96f05454a752e14a79afeaf22d58da8687103dcff/google_auth-1.26.1-py2.py3-none-any.whl idna @ file:///Users/dino/Library/Caches/pypoetry/artifacts/ef/7f/a9/19cc0b8760bdf6f696290c06532496f8bb29fbdaad044f852fed00ec82/idna-2.10-py2.py3-none-any.whl iso8601 @ file:///Users/dino/Library/Caches/pypoetry/artifacts/d4/71/89/7658ef5c51dadec6c208c5b1ebdeeae0ef36ac56402685529704588aed/iso8601-0.1.14-py2.py3-none-any.whl isort @ file:///Users/dino/Library/Caches/pypoetry/artifacts/13/0e/9d/0ac87b4f86576f57416f5d21432dec16c02955743e7afe51afe253a24b/isort-5.7.0-py3-none-any.whl kopf @ file:///Users/dino/Library/Caches/pypoetry/artifacts/ec/55/f6/35d79e4b88276a813dd5dec4d45604a2cf668bee0b4c3779fcd9b0eba5/kopf-1.29.2-py3-none-any.whl kubernetes @ file:///Users/dino/Library/Caches/pypoetry/artifacts/c9/8b/5a/78ad793efb1c9385d86052d66cc892d11f33d38cff30bbfd2435ddc868/kubernetes-12.0.1-py2.py3-none-any.whl lazy-object-proxy @ file:///Users/dino/Library/Caches/pypoetry/artifacts/18/04/70/fa7b9e82b3409e05c268ba4038442836717cc0255979a9e8cfff1a415f/lazy-object-proxy-1.4.3.tar.gz mccabe @ file:///Users/dino/Library/Caches/pypoetry/artifacts/96/5e/5f/21ae5296697ca7f94de4da6e21d4936d74029c352a35202e4c339a4253/mccabe-0.6.1-py2.py3-none-any.whl multidict @ file:///Users/dino/Library/Caches/pypoetry/artifacts/67/72/75/4f22882a49c8f1595c644f316e1bbebbb8f4bbc8bf2de538f928cea588/multidict-5.1.0.tar.gz oauthlib @ file:///Users/dino/Library/Caches/pypoetry/artifacts/cd/73/ce/de02d263260699199b7d71249cfb85d546e2d53bbf3a508267e87b233e/oauthlib-3.1.0-py2.py3-none-any.whl pip==20.2.2 pyasn1 @ file:///Users/dino/Library/Caches/pypoetry/artifacts/7b/3a/54/42ce43b579bda01b9d79022fb733811594441e7a32e9f9a5a98f672bdc/pyasn1-0.4.8-py2.py3-none-any.whl pyasn1-modules @ file:///Users/dino/Library/Caches/pypoetry/artifacts/dd/b8/4f/b56433e0354274a31074995e01b8671751e9f0ed0001f5254e5b03a54f/pyasn1_modules-0.2.8-py2.py3-none-any.whl pylint @ file:///Users/dino/Library/Caches/pypoetry/artifacts/f5/28/9c/9c127841963caba0fa5310c92162143da8ad0b19de264fb03c7b25d79d/pylint-2.6.0-py3-none-any.whl python-dateutil @ file:///Users/dino/Library/Caches/pypoetry/artifacts/93/67/cf/49f56d9e954addcfc50e5ffc9faee013c2eb00c6d77d56c6a22cb33b54/python_dateutil-2.8.1-py2.py3-none-any.whl python-json-logger @ file:///Users/dino/Library/Caches/pypoetry/artifacts/6c/b2/9e/87d24622c6d60716f59f27298a0458888858784bc2ea70a34400f70ce6/python-json-logger-2.0.1.tar.gz PyYAML @ file:///Users/dino/Library/Caches/pypoetry/artifacts/4a/f4/03/07b8639f883fbaa6f6c0c9af133435a163e11ddcb00ebab6ec3daa09df/PyYAML-5.4.1.tar.gz requests @ file:///Users/dino/Library/Caches/pypoetry/artifacts/22/0a/9d/0df883fbffbb406d0cddbb35e881e4ac6bfb8f0dee8733056b6a054bf7/requests-2.25.1-py2.py3-none-any.whl requests-oauthlib @ file:///Users/dino/Library/Caches/pypoetry/artifacts/11/f5/eb/81a5da1da15ae0d7c5c1cc43f729856e59f8a0f09c77051ed1841bd01d/requests_oauthlib-1.3.0-py2.py3-none-any.whl rope @ file:///Users/dino/Library/Caches/pypoetry/artifacts/e9/fd/6c/b743a9ad0e91e4ddcfdef121030235cd39345a1bd7761143da136fabd6/rope-0.18.0.tar.gz rsa @ file:///Users/dino/Library/Caches/pypoetry/artifacts/ec/f9/78/8f0a5b86843da4022adb0c5a82223fd59c82e0e973b9150b847207c8a5/rsa-4.7-py3-none-any.whl setuptools==51.2.0 six @ file:///Users/dino/Library/Caches/pypoetry/artifacts/dd/1c/65/ad0dea11136f5a869f072890a0eea955aa8fc35b90c85c55249fd3abfe/six-1.15.0-py2.py3-none-any.whl toml @ file:///Users/dino/Library/Caches/pypoetry/artifacts/6b/6a/c9/53b19f7870a77d855e8b05ecdc98193944e5d246dafe11bbcad850ecba/toml-0.10.2-py2.py3-none-any.whl typing-extensions @ file:///Users/dino/Library/Caches/pypoetry/artifacts/ab/c3/72/446cb2c521f10fc837619e8a7c68ed3c3bd74859bd625b7d74f38a159b/typing_extensions-3.7.4.3-py3-none-any.whl urllib3 @ file:///Users/dino/Library/Caches/pypoetry/artifacts/3d/49/75/4245c9a53c80e9d437e00720b38959ccd850e173b62242bcea85c1b100/urllib3-1.26.3-py2.py3-none-any.whl websocket-client @ file:///Users/dino/Library/Caches/pypoetry/artifacts/83/d9/33/524e1bb12489c6d0573175851ad9e59b936282ac76e7a2c4f0308e1406/websocket_client-0.57.0-py2.py3-none-any.whl wheel==0.36.2 wrapt @ file:///Users/dino/Library/Caches/pypoetry/artifacts/6c/e2/d9/2c022794d212a87320efa16fd1b05654bf6656b6cf0510c072845ecc95/wrapt-1.12.1.tar.gz yapf @ file:///Users/dino/Library/Caches/pypoetry/artifacts/d4/79/c0/d3be7c7004716c6ab7c5177f8d59ec4d28e9152f045368536bcdd1b8a9/yapf-0.30.0-py2.py3-none-any.whl yarl @ file:///Users/dino/Library/Caches/pypoetry/artifacts/4a/2e/96/4e7dccdaca47b59e170425a689c820c9b76a11f8ac97501563cc294741/yarl-1.6.3.tar.gz ``` </details>
open
2021-02-13T22:36:46Z
2021-02-13T22:36:46Z
https://github.com/nolar/kopf/issues/682
[ "bug" ]
dhensen
0
thtrieu/darkflow
tensorflow
1,058
Installation problem: env: python\r No such file or directory
I am using Mac. I git cloned the repository and installed using 'pip3 install .' However whenever I run 'flow' or './flow', there is an error message: "env: python\r: No such file or directory" Any clues on how to solve this?
open
2019-07-09T07:08:18Z
2019-07-09T07:08:18Z
https://github.com/thtrieu/darkflow/issues/1058
[]
sleung852
0
chiphuyen/stanford-tensorflow-tutorials
nlp
148
huber loss equation in eager execution
Hi, I was going through the assignments and realised that the huber loss equation was multiplied by two here: https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/51e53daaa2a32cfe7a1966f060b28dbbd081791c/examples/04_linreg_eager.py#L43 Any reason for that?
open
2019-09-29T15:14:54Z
2019-09-29T15:14:54Z
https://github.com/chiphuyen/stanford-tensorflow-tutorials/issues/148
[]
fsilavong
0
ExpDev07/coronavirus-tracker-api
fastapi
307
Question
Maybe this is just me being stupid but why is it that upon using the API for total recovered it actively pops up as 0 almost as though its not in total time?
closed
2020-04-29T10:55:06Z
2020-04-29T11:30:10Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/307
[ "bug", "duplicate" ]
IfYouWouldStop
1
recommenders-team/recommenders
machine-learning
1,670
[ASK] The docstring explanation for `LibffmConverter`
### Description Hello Dev Team, In the docstring of `LibffmConverter`: https://github.com/microsoft/recommenders/blob/fe215e9babf8f7caba025a83059445362cff0006/recommenders/datasets/pandas_df_utils.py#L112 I'm wondering if this line would be the following one instead: ``` i.e. `<field_index>:<field_feature_index>:1` or `<field_index>:<field_feature_index>:<field_feature_value>` ``` Since according to: https://github.com/microsoft/recommenders/blob/fe215e9babf8f7caba025a83059445362cff0006/recommenders/datasets/pandas_df_utils.py#L225 The returned value is in form of `<field_index>:<field_feature_index>:<field_feature_value>` instead of `<field_index>:<field_index>:<field_feature_value>`. A PR https://github.com/microsoft/recommenders/pull/1669 has been made to fix this typo if applicable. Thank you very much.
closed
2022-03-11T00:09:05Z
2022-05-06T08:05:29Z
https://github.com/recommenders-team/recommenders/issues/1670
[ "help wanted" ]
Tony-Feng
2
davidsandberg/facenet
computer-vision
747
No such file or directory: data/pairs.txt
I was a bignner of facenet and when i done the 6th step: Run the test of Validate on LFW. it came out a warnning that: No such file or directory: data/pairs.txt how to solve it?
open
2018-05-15T13:05:00Z
2018-05-29T13:02:37Z
https://github.com/davidsandberg/facenet/issues/747
[]
tangdouzi
1
vi3k6i5/flashtext
nlp
120
Chinese and Arabic words
I tried to train the flashtext model with the words from the language Chinese and Arabic. After I train in the keyword_processor the Chinese word : '早上好' is converted to '"早业好"' I want to know , what is that you are using to convert '早上好' into '早业好'. I want to train the flashtext to extract the keywords for multiple languages. Please , let me know the solution . Thank you.
closed
2020-12-19T14:38:25Z
2020-12-21T05:24:46Z
https://github.com/vi3k6i5/flashtext/issues/120
[]
RohanNayaks
0
oegedijk/explainerdashboard
plotly
73
Issue with shap='deep' using tensorflow
Hello, I tried the following scenario using an ANN with the latest Tensorflow and the shap='deep (https://github.com/aprimera/explainerdashboard). However I get the following error: Traceback (most recent call last): File "explainer.py", line 92, in <module> shap='deep', File "C:\ProgramData\Anaconda3\lib\site-packages\explainerdashboard\explainers.py", line 1727, in __init__ _ = self.shap_explainer File "C:\ProgramData\Anaconda3\lib\site-packages\explainerdashboard\explainers.py", line 1790, in shap_explainer self._shap_explainer = shap.DeepExplainer(self.model, self.X_background) File "C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\__init__.py", line 84, in __init__ self.explainer = TFDeep(model, data, session, learning_phase_flags) File "C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\deep_tf.py", line 131, in __init__ self.graph = _get_graph(self) File "C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\tf_utils.py", line 46, in _get_graph return explainer.model_output.graph AttributeError: 'KerasTensor' object has no attribute 'graph' After downgrading tensorflow I am getting more errors: Traceback (most recent call last): File "explainer.py", line 92, in <module> shap='deep', File "C:\ProgramData\Anaconda3\lib\site-packages\explainerdashboard\explainers.py", line 1727, in __init__ _ = self.shap_explainer File "C:\ProgramData\Anaconda3\lib\site-packages\explainerdashboard\explainers.py", line 1790, in shap_explainer self._shap_explainer = shap.DeepExplainer(self.model, self.X_background) File "C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\__init__.py", line 84, in __init__ self.explainer = TFDeep(model, data, session, learning_phase_flags) File "C:\ProgramData\Anaconda3\lib\site-packages\shap\explainers\_deep\deep_tf.py", line 158, in __init__ self.expected_value = tf.reduce_mean(self.model(self.data), 0) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\base_layer.py", line 985, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\sequential.py", line 372, in call return super(Sequential, self).call(inputs, training=training, mask=mask) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\functional.py", line 386, in call inputs, training=training, mask=mask) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\functional.py", line 508, in _run_internal_graph outputs = node.layer(*args, **kwargs) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\engine\base_layer.py", line 985, in __call__ outputs = call_fn(inputs, *args, **kwargs) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\layers\core.py", line 1198, in call dtype=self._compute_dtype_object) File "C:\Users\prime\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\keras\layers\ops\core.py", line 45, in dense if inputs.dtype.base_dtype != dtype.base_dtype: File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py", line 4372, in __getattr__ return object.__getattribute__(self, name) AttributeError: 'DataFrame' object has no attribute 'dtype' Please do you have any idea what could be causing the issue or potential workarounds? Thanks!
closed
2021-01-27T09:50:08Z
2021-06-27T20:04:08Z
https://github.com/oegedijk/explainerdashboard/issues/73
[]
aprimera
2
widgetti/solara
flask
966
Error with pytest-playwright 0.6
Minimal reproducer: ``` python -m venv clean source clean/bin/activate pip install solara[pytest] ``` then create ``test.py`` with: ```python def test_basic(page_session): pass ``` And run the tests with: ``` pytest test.py ``` this fails with: ``` @pytest.fixture(scope="session") def context_session( browser: "playwright.sync_api.Browser", browser_context_args: Dict, pytestconfig: Any, request: pytest.FixtureRequest, ) -> Generator["playwright.sync_api.BrowserContext", None, None]: from playwright.sync_api import Error, Page > from pytest_playwright.pytest_playwright import _build_artifact_test_folder E ImportError: cannot import name '_build_artifact_test_folder' from 'pytest_playwright.pytest_playwright' (/home/tom/tmp/debug/clean/lib/python3.11/site-packages/pytest_playwright/pytest_playwright.py) clean/lib/python3.11/site-packages/solara/test/pytest_plugin.py:66: ImportError ``` Downgrading to pytest-playwright 0.5 fixes this. It looks like some private API was removed?
closed
2025-01-10T12:59:56Z
2025-01-16T10:08:00Z
https://github.com/widgetti/solara/issues/966
[]
astrofrog
1
modelscope/data-juicer
data-visualization
487
Checkpointer support for Ray-Mode
### Search before continuing 先搜索,再继续 - [X] I have searched the Data-Juicer issues and found no similar feature requests. 我已经搜索了 Data-Juicer 的 issue 列表但是没有发现类似的功能需求。 ### Description 描述 Currently, the [dj_ckpt_manager](https://github.com/modelscope/data-juicer/blob/main/data_juicer/utils/ckpt_utils.py#L7) and [executor](https://github.com/modelscope/data-juicer/blob/main/data_juicer/core/executor.py) only support the HF dataset. They essentially performs three actions: 1. Tracks and saves the executed operation list from OP_1 to OP_i. 2. Saves the processed dataset \( D_{op_i} \). 3. Checks and loads \( D_{op_i} \) when the feature is enabled during re-processing. It would be straightforward to extend this feature into [ray_executor](https://github.com/modelscope/data-juicer/blob/main/data_juicer/core/ray_executor.py). For step 2 and 3, we can implement a few new interfaces for snapshotting Ray Data [states](https://docs.ray.io/en/latest/data/saving-data.html) and using [persistent storage](https://docs.ray.io/en/latest/data/api/dataset.html#i-o-and-conversion). ### Use case 使用场景 _No response_ ### Additional 额外信息 _No response_ ### Are you willing to submit a PR for this feature? 您是否乐意为此功能提交一个 PR? - [X] Yes I'd like to help by submitting a PR! 是的!我愿意提供帮助并提交一个PR!
open
2024-11-12T11:59:27Z
2024-11-14T06:52:27Z
https://github.com/modelscope/data-juicer/issues/487
[ "enhancement" ]
yxdyc
1
amisadmin/fastapi-amis-admin
sqlalchemy
149
Setup id at runtime?
educate event system in amis, but this require id, I do: ```python class TriggerAdminPage(admin.ModelAdmin): . . . async def get_form_item( self, request: Request, modelfield: ModelField, action: CrudEnum ) -> Union[FormItem, SchemaNode, None]: item = await super().get_form_item(request, modelfield, action) if item.name == Trigger.event.key: # noqa item.id = item.name # just field name ``` but why just not assign a name at runtime? are there any reasons?
closed
2023-12-12T22:06:35Z
2023-12-20T12:59:34Z
https://github.com/amisadmin/fastapi-amis-admin/issues/149
[]
MatsiukMykola
6
falconry/falcon
api
2,310
Finalize `cibuildwheel` tooling
The cibuildwheel gate is almost ready to rock 🤘. However, minor cleanup is still needed before we can get 4.0.0a1 out the door in one click: - [x] ~~Disable or remove the old wheels workflow~~ :arrow_right: deferred to #2311. - [x] Publish at least `sdist` to the release page (do we really need to also upload all binaries like now?). - [x] Make sure `sdist` is uploaded first in a separate step, otherwise `PyPI` and `pip` get confused by a release without `sdist` in the interim period. - [x] Clean up and adapt the script(s) to check the built wheels.
closed
2024-08-28T21:33:28Z
2024-08-30T10:37:08Z
https://github.com/falconry/falcon/issues/2310
[ "maintenance" ]
vytas7
0
scikit-learn/scikit-learn
machine-learning
30,935
The default token pattern in CountVectorizer breaks Indic sentences into non-sensical tokens
### Describe the bug The default `token_pattern` in `CountVectorizer` is `r"(?u)\b\w\w+\b"` which tokenizes Indic texts in a wrong way - breaks whitespace tokenized words into multiple chunks and even omits several valid characters. The resulting vocabulary doesn't make any sense ! Is this the expected behaviour? Sample code is pasted in the sections below ### Steps/Code to Reproduce ``` import sklearn from sklearn.feature_extraction.text import CountVectorizer tel = ["ప్రధానమంత్రిని కలుసుకున్నారు"] hin = ["आधुनिक मानक हिन्दी"] eng = ["They met the Prime Minister"] cvect = CountVectorizer( ngram_range=(1, 1), max_features=None, min_df=1, strip_accents=None, ) cvect.fit(tel + hin + eng) print(cvect.vocabulary_) ``` ### Expected Results ``` {'ప్రధానమంత్రిని': 9, 'కలుసుకున్నారు': 8, 'आधुनिक': 5, 'मानक': 6, 'हिन्दी': 7, 'they': 4, 'met': 0, 'the': 3, 'prime': 2, 'minister': 1} ``` ### Actual Results ``` {'రధ': 9, 'నమ': 8, 'కల': 7, 'आध': 5, 'नक': 6, 'they': 4, 'met': 0, 'the': 3, 'prime': 2, 'minister': 1} ``` ### Versions ``` System: python: 3.11.10 (main, Oct 3 2024, 07:29:13) [GCC 11.2.0] executable: miniconda3/envs/lolm/bin/python machine: Linux-6.1.0-25-amd64-x86_64-with-glibc2.36 Python dependencies: sklearn: 1.5.2 pip: 24.2 setuptools: 75.1.0 numpy: 1.26.0 scipy: 1.14.1 Cython: None pandas: 2.2.3 matplotlib: 3.9.2 joblib: 1.4.2 threadpoolctl: 3.5.0 Built with OpenMP: True threadpoolctl info: user_api: blas internal_api: mkl num_threads: 1 prefix: libmkl_rt filepath: miniconda3/envs/lolm/lib/libmkl_rt.so.2 version: 2023.1-Product threading_layer: gnu user_api: openmp internal_api: openmp num_threads: 1 prefix: libgomp filepath: miniconda3/envs/lolm/lib/libgomp.so.1.0.0 version: None ```
open
2025-03-03T13:55:23Z
2025-03-06T11:49:56Z
https://github.com/scikit-learn/scikit-learn/issues/30935
[ "Bug" ]
skesiraju
3
deepfakes/faceswap
machine-learning
1,227
Training mode error with Dlight faxeswap gui ubuntu 22.04
**Describe the bug** Error when start training with Dlight Setting Faceswap backend to NVIDIA 05/29/2022 21:10:09 INFO Log level set to: INFO 05/29/2022 21:10:10 INFO Model A Directory: '/home/cedric/LAB/faceswap/workspace/faceAdst' (1305 images) 05/29/2022 21:10:10 INFO Model B Directory: '/home/cedric/LAB/faceswap/workspace/faceBsrc' (596 images) 05/29/2022 21:10:10 INFO Training data directory: /home/cedric/LAB/faceswap/workspace/modelAB 05/29/2022 21:10:10 INFO =================================================== 05/29/2022 21:10:10 INFO Starting 05/29/2022 21:10:10 INFO =================================================== 05/29/2022 21:10:11 INFO Loading data, this may take a while... 05/29/2022 21:10:11 INFO Loading Model from Dlight plugin... 05/29/2022 21:10:11 INFO No existing state file found. Generating. 05/29/2022 21:10:11 INFO Enabling Mixed Precision Training. 05/29/2022 21:10:11 INFO Mixed precision compatibility check (mixed_float16): OK\nYour GPU will likely run quickly with dtype policy mixed_float16 as it has compute capability of at least 7.0. Your GPU: NVIDIA GeForce RTX 3060 Laptop GPU, compute capability 8.6 05/29/2022 21:10:12 INFO Loading Trainer from Original plugin... 05/29/2022 21:10:36 INFO [Saved models] - Average loss since last save: face_a: 0.16586, face_b: 0.20392 Exception in Tkinter callback Traceback (most recent call last): File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/tkinter/__init__.py", line 1892, in __call__ return self.func(*args) File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/tkinter/__init__.py", line 814, in callit func(*args) File "/home/cedric/LAB/faceswap/lib/gui/display_graph.py", line 364, in refresh self._calcs = self._thread.get_result() # Terminate the LongRunningTask object File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1263, in get_result raise self.err[1].with_traceback(self.err[2]) File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1234, in run retval = self._target(*self._args, **self._kwargs) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 565, in refresh self._get_raw() File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 628, in _get_raw loss_dict = _SESSION.get_loss(self._session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 174, in get_loss loss_dict = self._tb_logs.get_loss(session_id=session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 489, in get_loss self._check_cache(idx) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 463, in _check_cache self._cache_data(session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 448, in _cache_data iterator = self._training_iterator if live_data else tf.compat.v1.io.tf_record_iterator( File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py", line 344, in new_func return func(*args, **kwargs) File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/lib/io/tf_record.py", line 167, in tf_record_iterator return _pywrap_record_io.RecordIterator(path, compression_type) TypeError: __init__(): incompatible constructor arguments. The following argument types are supported: 1. tensorflow.python.lib.io._pywrap_record_io.RecordIterator(arg0: str, arg1: str) Invoked with: None, '' 05/29/2022 21:10:57 CRITICAL Error caught! Exiting... 05/29/2022 21:10:57 ERROR Caught exception in thread: '_training_0' 05/29/2022 21:10:57 ERROR You do not have enough GPU memory available to train the selected model at the selected settings. You can try a number of things: 05/29/2022 21:10:57 ERROR 1) Close any other application that is using your GPU (web browsers are particularly bad for this). 05/29/2022 21:10:57 ERROR 2) Lower the batchsize (the amount of images fed into the model each iteration). 05/29/2022 21:10:57 ERROR 3) Try enabling 'Mixed Precision' training. 05/29/2022 21:10:57 ERROR 4) Use a more lightweight model, or select the model's 'LowMem' option (in config) if it has one. Process exited. Exception in Tkinter callback Traceback (most recent call last): File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/tkinter/__init__.py", line 1892, in __call__ return self.func(*args) File "/home/cedric/LAB/faceswap/lib/gui/display_graph.py", line 364, in refresh self._calcs = self._thread.get_result() # Terminate the LongRunningTask object File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1263, in get_result raise self.err[1].with_traceback(self.err[2]) File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1234, in run retval = self._target(*self._args, **self._kwargs) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 565, in refresh self._get_raw() File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 628, in _get_raw loss_dict = _SESSION.get_loss(self._session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 174, in get_loss loss_dict = self._tb_logs.get_loss(session_id=session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 489, in get_loss self._check_cache(idx) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 463, in _check_cache self._cache_data(session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 448, in _cache_data iterator = self._training_iterator if live_data else tf.compat.v1.io.tf_record_iterator( File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py", line 344, in new_func return func(*args, **kwargs) File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/lib/io/tf_record.py", line 167, in tf_record_iterator return _pywrap_record_io.RecordIterator(path, compression_type) TypeError: __init__(): incompatible constructor arguments. The following argument types are supported: 1. tensorflow.python.lib.io._pywrap_record_io.RecordIterator(arg0: str, arg1: str) Invoked with: None, '' Exception in Tkinter callback Traceback (most recent call last): File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/tkinter/__init__.py", line 1892, in __call__ return self.func(*args) File "/home/cedric/LAB/faceswap/lib/gui/display_graph.py", line 364, in refresh self._calcs = self._thread.get_result() # Terminate the LongRunningTask object File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1263, in get_result raise self.err[1].with_traceback(self.err[2]) File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1234, in run retval = self._target(*self._args, **self._kwargs) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 565, in refresh self._get_raw() File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 628, in _get_raw loss_dict = _SESSION.get_loss(self._session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 174, in get_loss loss_dict = self._tb_logs.get_loss(session_id=session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 489, in get_loss self._check_cache(idx) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 463, in _check_cache self._cache_data(session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 448, in _cache_data iterator = self._training_iterator if live_data else tf.compat.v1.io.tf_record_iterator( File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py", line 344, in new_func return func(*args, **kwargs) File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/lib/io/tf_record.py", line 167, in tf_record_iterator return _pywrap_record_io.RecordIterator(path, compression_type) TypeError: __init__(): incompatible constructor arguments. The following argument types are supported: 1. tensorflow.python.lib.io._pywrap_record_io.RecordIterator(arg0: str, arg1: str) Invoked with: None, '' Exception in Tkinter callback Traceback (most recent call last): File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/tkinter/__init__.py", line 1892, in __call__ return self.func(*args) File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/tkinter/__init__.py", line 814, in callit func(*args) File "/home/cedric/LAB/faceswap/lib/gui/display_graph.py", line 364, in refresh self._calcs = self._thread.get_result() # Terminate the LongRunningTask object File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1263, in get_result raise self.err[1].with_traceback(self.err[2]) File "/home/cedric/LAB/faceswap/lib/gui/utils.py", line 1234, in run retval = self._target(*self._args, **self._kwargs) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 565, in refresh self._get_raw() File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 628, in _get_raw loss_dict = _SESSION.get_loss(self._session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/stats.py", line 174, in get_loss loss_dict = self._tb_logs.get_loss(session_id=session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 489, in get_loss self._check_cache(idx) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 463, in _check_cache self._cache_data(session_id) File "/home/cedric/LAB/faceswap/lib/gui/analysis/event_reader.py", line 448, in _cache_data iterator = self._training_iterator if live_data else tf.compat.v1.io.tf_record_iterator( File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py", line 344, in new_func return func(*args, **kwargs) File "/home/cedric/anaconda3/envs/faceswap/lib/python3.9/site-packages/tensorflow/python/lib/io/tf_record.py", line 167, in tf_record_iterator return _pywrap_record_io.RecordIterator(path, compression_type) TypeError: __init__(): incompatible constructor arguments. The following argument types are supported: 1. tensorflow.python.lib.io._pywrap_record_io.RecordIterator(arg0: str, arg1: str) Invoked with: None, '' **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: ubuntu 22.04 - Python Version 3.9 - Conda Version Latest **Crash Report** 05/29/2022 21:10:09 MainProcess MainThread logger log_setup INFO Log level set to: INFO 05/29/2022 21:10:10 MainProcess MainThread train _get_images INFO Model A Directory: '/home/cedric/LAB/faceswap/workspace/faceAdst' (1305 images) 05/29/2022 21:10:10 MainProcess MainThread train _get_images INFO Model B Directory: '/home/cedric/LAB/faceswap/workspace/faceBsrc' (596 images) 05/29/2022 21:10:10 MainProcess MainThread train process INFO Training data directory: /home/cedric/LAB/faceswap/workspace/modelAB 05/29/2022 21:10:10 MainProcess MainThread train _monitor INFO =================================================== 05/29/2022 21:10:10 MainProcess MainThread train _monitor INFO Starting 05/29/2022 21:10:10 MainProcess MainThread train _monitor INFO =================================================== 05/29/2022 21:10:11 MainProcess _training_0 train _training INFO Loading data, this may take a while... 05/29/2022 21:10:11 MainProcess _training_0 plugin_loader _import INFO Loading Model from Dlight plugin... 05/29/2022 21:10:11 MainProcess _training_0 _base _load INFO No existing state file found. Generating. 05/29/2022 21:10:11 MainProcess _training_0 _base _set_keras_mixed_precision INFO Enabling Mixed Precision Training. 05/29/2022 21:10:11 MainProcess _training_0 device_compatibility_check _log_device_compatibility_check INFO Mixed precision compatibility check (mixed_float16): OK\nYour GPU will likely run quickly with dtype policy mixed_float16 as it has compute capability of at least 7.0. Your GPU: NVIDIA GeForce RTX 3060 Laptop GPU, compute capability 8.6 05/29/2022 21:10:12 MainProcess _training_0 plugin_loader _import INFO Loading Trainer from Original plugin... 05/29/2022 21:10:36 MainProcess _training_0 _base _save INFO [Saved models] - Average loss since last save: face_a: 0.16586, face_b: 0.20392 05/29/2022 21:10:57 MainProcess MainThread train _end_thread CRITICAL Error caught! Exiting... 05/29/2022 21:10:57 MainProcess MainThread multithreading join ERROR Caught exception in thread: '_training_0' 05/29/2022 21:10:57 MainProcess MainThread launcher execute_script ERROR You do not have enough GPU memory available to train the selected model at the selected settings. You can try a number of things: 05/29/2022 21:10:57 MainProcess MainThread launcher execute_script ERROR 1) Close any other application that is using your GPU (web browsers are particularly bad for this). 05/29/2022 21:10:57 MainProcess MainThread launcher execute_script ERROR 2) Lower the batchsize (the amount of images fed into the model each iteration). 05/29/2022 21:10:57 MainProcess MainThread launcher execute_script ERROR 3) Try enabling 'Mixed Precision' training. 05/29/2022 21:10:57 MainProcess MainThread launcher execute_script ERROR 4) Use a more lightweight model, or select the model's 'LowMem' option (in config) if it has one.
closed
2022-05-29T19:18:06Z
2022-05-29T21:32:29Z
https://github.com/deepfakes/faceswap/issues/1227
[]
gravitydeep
1
ets-labs/python-dependency-injector
asyncio
805
can't install on Macbook M2 apple silicon
**python version** : 3.10.14 **OS: macOS** : 14.4.1 **dependency-injector**: 4.41.0 i want to install this library on my machine but i am getting this error ```bash (venv) ➜ microservices git:(main) ✗ pip install dependency-injector Collecting dependency-injector Downloading dependency-injector-4.41.0.tar.gz (913 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 913.2/913.2 kB 392.8 kB/s eta 0:00:00 Preparing metadata (setup.py) ... done Requirement already satisfied: six<=1.16.0,>=1.7.0 in ./venv/lib/python3.10/site-packages (from dependency-injector) (1.16.0) Installing collected packages: dependency-injector DEPRECATION: dependency-injector is being installed using the legacy 'setup.py install' method, because it does not have a 'pyproject.toml' and the 'wheel' package is not installed. pip 23.1 will enforce this behaviour change. A possible replacement is to enable the '--use-pep517' option. Discussion can be found at https://github.com/pypa/pip/issues/8559 Running setup.py install for dependency-injector ... error error: subprocess-exited-with-error × Running setup.py install for dependency-injector did not run successfully. │ exit code: 1 ╰─> [34 lines of output] running install /Users/ali/aban-tether/microservices/venv/lib/python3.10/site-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. running build running build_py creating build creating build/lib.macosx-11.0-arm64-cpython-310 creating build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/__init__.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/resources.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/errors.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/schema.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/wiring.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector creating build/lib.macosx-11.0-arm64-cpython-310/dependency_injector/ext copying src/dependency_injector/ext/aiohttp.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector/ext copying src/dependency_injector/ext/flask.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector/ext copying src/dependency_injector/ext/__init__.py -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector/ext copying src/dependency_injector/providers.pxd -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/containers.pxd -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/containers.pyi -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/__init__.pyi -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/providers.pyi -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector copying src/dependency_injector/py.typed -> build/lib.macosx-11.0-arm64-cpython-310/dependency_injector running build_ext building 'dependency_injector.containers' extension creating build/temp.macosx-11.0-arm64-cpython-310 creating build/temp.macosx-11.0-arm64-cpython-310/src creating build/temp.macosx-11.0-arm64-cpython-310/src/dependency_injector clang -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -g -fwrapv -O3 -Wall -arch arm64 -mmacosx-version-min=11.0 -Wno-nullability-completeness -Wno-expansion-to-defined -Wno-undef-prefix -fPIC -Werror=unguarded-availability-new -DCYTHON_CLINE_IN_TRACEBACK=0 -I/Users/ali/aban-tether/microservices/venv/include -I/install/include/python3.10 -c src/dependency_injector/containers.c -o build/temp.macosx-11.0-arm64-cpython-310/src/dependency_injector/containers.o -O2 src/dependency_injector/containers.c:6:10: fatal error: 'Python.h' file not found #include "Python.h" ^~~~~~~~~~ 1 error generated. error: command '/usr/bin/clang' failed with exit code 1 [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: legacy-install-failure × Encountered error while trying to install package. ╰─> dependency-injector note: This is an issue with the package mentioned above, not pip. hint: See above for output from the failure. ```
closed
2024-07-26T08:49:30Z
2024-12-10T14:03:31Z
https://github.com/ets-labs/python-dependency-injector/issues/805
[ "bug" ]
alm0ra
3
labmlai/annotated_deep_learning_paper_implementations
pytorch
263
LORA
An implementation of LORA and other tuning techniques would be nice.
open
2024-07-13T17:29:05Z
2024-07-31T13:42:12Z
https://github.com/labmlai/annotated_deep_learning_paper_implementations/issues/263
[]
erlebach
2
modoboa/modoboa
django
2,474
Installation on Rocky Linux not possible
Installer says: Traceback (most recent call last): File "./run.py", line 13, in <module> from modoboa_installer import package File "/root/modoboa-installer/modoboa_installer/package.py", line 121, in <module> backend = get_backend() File "/root/modoboa-installer/modoboa_installer/package.py", line 117, in get_backend "Sorry, this distribution is not supported yet.") NotImplementedError: Sorry, this distribution is not supported yet. Why? Rocky Linux is 100% compatible to CentOS/RHEL.
closed
2022-03-11T07:53:13Z
2022-03-25T08:15:01Z
https://github.com/modoboa/modoboa/issues/2474
[]
42deluxe
1
autogluon/autogluon
data-science
4,186
NeuralNetTorch Hyperparameter Tuning Fails with URI Scheme Error in PyArrow
Bug Report Checklist <!-- Please ensure at least one of the following to help the developers troubleshoot the problem: --> [V] I provided code that demonstrates a minimal reproducible example. <!-- Ideal, especially via source install --> [X] I confirmed bug exists on the latest mainline of AutoGluon via source install. <!-- Preferred --> [V] I confirmed bug exists on the latest stable version of AutoGluon. <!-- Unnecessary if prior items are checked --> Describe the bug <!-- A clear and concise description of what the bug is. --> When attempting to run hyperparameter tuning with NN_TORCH as the model on a TabularDataset, an exception is thrown related to URI handling by pyarrow library. The error message indicates an "ArrowInvalid: URI has empty scheme". Expected behavior <!-- A clear and concise description of what you expected to happen. --> The training should proceed without errors, and the model should handle the URI scheme appropriately or provide more specific guidance on expected URI formats. To Reproduce <!-- A minimal script to reproduce the issue. Links to Colab notebooks or similar tools are encouraged. If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com. In short, we are going to copy-paste your code to run it and we expect to get the same result as you. --> Install a fresh environment with Python 3.10 and AutoGluon 1.1.0 Run the following script: ``` from autogluon.tabular import TabularDataset, TabularPredictor data_url = 'https://raw.githubusercontent.com/mli/ag-docs/main/knot_theory/' train_data = TabularDataset(f'{data_url}train.csv') label = 'signature' hp_args = {"num_trials": 3, "scheduler": "local", "searcher": "random"} fit_args = {"hyperparameter_tune_kwargs": hp_args, "included_model_types": ["NN_TORCH"]} predictor = TabularPredictor(label=label).fit(train_data, **fit_args) ``` Screenshots / Logs <!-- If applicable, add screenshots or logs to help explain your problem. --> Logs from the error: `pyarrow.lib.ArrowInvalid: URI has empty scheme: 'AutogluonModels/ag-20240509_084509/models` Installed Versions <!-- Please run the following code snippet: --> <details> INSTALLED VERSIONS ------------------ date : 2024-05-09 time : 08:47:49.707205 python : 3.10.14.final.0 OS : Linux OS-release : 5.15.0-1040-azure Version : #47~20.04.1-Ubuntu SMP Fri Jun 2 21:38:08 UTC 2023 machine : x86_64 processor : x86_64 num_cores : 16 cpu_ram_mb : 128812.6796875 cuda version : None num_gpus : 0 gpu_ram_mb : [] avail_disk_size_mb : 4284286 accelerate : 0.21.0 autogluon : 1.1.0 autogluon.common : 1.1.0 autogluon.core : 1.1.0 autogluon.features : 1.1.0 autogluon.multimodal : 1.1.0 autogluon.tabular : 1.1.0 autogluon.timeseries : 1.1.0 boto3 : 1.34.101 catboost : 1.2.5 defusedxml : 0.7.1 evaluate : 0.4.2 fastai : 2.7.15 gluonts : 0.14.3 hyperopt : 0.2.7 imodels : None jinja2 : 3.1.4 joblib : 1.4.2 jsonschema : 4.21.1 lightgbm : 4.3.0 lightning : 2.1.4 matplotlib : 3.8.4 mlforecast : 0.10.0 networkx : 3.3 nlpaug : 1.1.11 nltk : 3.8.1 nptyping : 2.4.1 numpy : 1.26.4 nvidia-ml-py3 : 7.352.0 omegaconf : 2.2.3 onnxruntime-gpu : None openmim : 0.3.9 optimum : 1.18.1 optimum-intel : None orjson : 3.10.3 pandas : 2.2.2 pdf2image : 1.17.0 Pillow : 10.3.0 psutil : 5.9.8 pytesseract : 0.3.10 pytorch-lightning : 2.1.4 pytorch-metric-learning: 2.3.0 ray : 2.10.0 requests : 2.28.2 scikit-image : 0.20.0 scikit-learn : 1.4.0 scikit-learn-intelex : None scipy : 1.12.0 seqeval : 1.2.2 setuptools : 60.2.0 skl2onnx : None statsforecast : 1.4.0 tabpfn : None tensorboard : 2.16.2 text-unidecode : 1.3 timm : 0.9.16 torch : 2.1.2 torchmetrics : 1.2.1 torchvision : 0.16.2 tqdm : 4.65.2 transformers : 4.38.2 utilsforecast : 0.0.10 vowpalwabbit : None xgboost : 2.0.3 </details>
closed
2024-05-09T08:54:45Z
2024-05-28T19:57:54Z
https://github.com/autogluon/autogluon/issues/4186
[ "bug", "module: tabular" ]
giladrubin1
1
AUTOMATIC1111/stable-diffusion-webui
deep-learning
15,523
[Bug]: Webui Infotext settings not working correctly
### What happened? I added options in settings to remove all adetailer infotext to have a simple and clean infotext but adetailer info continue to be saved in infotext. I don't know if this bug is limited to adetailer or exist in all extensions. ### Steps to reproduce the problem Add what you don't want in infotext like image below ![Screenshot 2024-04-15 at 10-08-48 Stable Diffusion](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/39129290/1f4b645a-dec8-45dc-92f4-61ab55c928c8) ### What should have happened? The adetailer (and others) info must no be inserted in infotext if they have been added to exclusion fields. Webui v1.8
open
2024-04-15T08:12:25Z
2024-04-15T08:24:36Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15523
[ "bug-report" ]
ema7569
0
developmentseed/lonboard
data-visualization
282
Warn on more than 255 (256?) layers
deck picking will stop after 255 layers. Note that each parquet chunk is rendered as one layer. I hit this when testing rendering all of california msft buildings! 11M buildings
open
2023-12-01T22:12:09Z
2024-03-14T01:12:51Z
https://github.com/developmentseed/lonboard/issues/282
[]
kylebarron
2
huggingface/transformers
machine-learning
36,295
[Bugs] RuntimeError: No CUDA GPUs are available in transformers v4.48.0 or above when running Ray RLHF example
### System Info - `transformers` version: 4.48.0 - Platform: Linux-3.10.0-1127.el7.x86_64-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.27.1 - Safetensors version: 0.5.2 - Accelerate version: 1.0.1 - Accelerate config: not found - PyTorch version (GPU?): 2.5.1+cu124 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: Yes - Using GPU in script?: Yes - GPU type: NVIDIA A800-SXM4-80GB ### Who can help? @ArthurZucker ### Information - [x] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [x] My own task or dataset (give details below) ### Reproduction Hi for all! I failed to run the vLLM project RLHF example script. The code is exactly same as the vLLM docs page: https://docs.vllm.ai/en/latest/getting_started/examples/rlhf.html The error messages are: ``` (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] Error executing method 'init_device'. This might cause deadlock in distributed execution. (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] Traceback (most recent call last): (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 566, in execute_method (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] return run_method(target, method, args, kwargs) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 2220, in run_method (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] return func(*args, **kwargs) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker.py", line 155, in init_device (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] torch.cuda.set_device(self.device) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 478, in set_device (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] torch._C._cuda_setDevice(device) (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 319, in _lazy_init (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] torch._C._cuda_init() (MyLLM pid=70946) ERROR 02-20 15:38:34 worker_base.py:574] RuntimeError: No CUDA GPUs are available (MyLLM pid=70946) Exception raised in creation task: The actor died because of an error raised in its creation task, ray::MyLLM.__init__() (pid=70946, ip=11.163.37.230, actor_id=202b48118215566c51057a0101000000, repr=<test_ray_vllm_rlhf.MyLLM object at 0x7fb7453669b0>) (MyLLM pid=70946) File "/data/cfs/workspace/test_ray_vllm_rlhf.py", line 96, in __init__ (MyLLM pid=70946) super().__init__(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 1051, in inner (MyLLM pid=70946) return fn(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 242, in __init__ (MyLLM pid=70946) self.llm_engine = self.engine_class.from_engine_args( (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 484, in from_engine_args (MyLLM pid=70946) engine = cls( (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 273, in __init__ (MyLLM pid=70946) self.model_executor = executor_class(vllm_config=vllm_config, ) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 262, in __init__ (MyLLM pid=70946) super().__init__(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 51, in __init__ (MyLLM pid=70946) self._init_executor() (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/ray_distributed_executor.py", line 90, in _init_executor (MyLLM pid=70946) self._init_workers_ray(placement_group) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/ray_distributed_executor.py", line 355, in _init_workers_ray (MyLLM pid=70946) self._run_workers("init_device") (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/executor/ray_distributed_executor.py", line 476, in _run_workers (MyLLM pid=70946) self.driver_worker.execute_method(sent_method, *args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 575, in execute_method (MyLLM pid=70946) raise e (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 566, in execute_method (MyLLM pid=70946) return run_method(target, method, args, kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/utils.py", line 2220, in run_method (MyLLM pid=70946) return func(*args, **kwargs) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/worker/worker.py", line 155, in init_device (MyLLM pid=70946) torch.cuda.set_device(self.device) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 478, in set_device (MyLLM pid=70946) torch._C._cuda_setDevice(device) (MyLLM pid=70946) File "/usr/local/miniconda3/lib/python3.10/site-packages/torch/cuda/__init__.py", line 319, in _lazy_init (MyLLM pid=70946) torch._C._cuda_init() (MyLLM pid=70946) RuntimeError: No CUDA GPUs are available ``` I found in transformers==4.47.1 the script could run normally. However when I tried transformers==4.48.0, 4.48.1 and 4.49.0 I got the error messages above. Then I checked pip envs with `pip list` and found only transformers versions are different. I've tried to change vllm version between 0.7.0 and 0.7.2, the behavior is the same. Related Ray issues: * https://github.com/vllm-project/vllm/issues/13597 * https://github.com/vllm-project/vllm/issues/13230 ### Expected behavior The script runs normally.
open
2025-02-20T07:58:49Z
2025-03-22T08:03:03Z
https://github.com/huggingface/transformers/issues/36295
[ "bug" ]
ArthurinRUC
3
littlecodersh/ItChat
api
786
可能不是issue
您好,使用您的itchat正在学习python,程序非常棒,调用很多,需要一个个去尝试,按照文档注册了一个真的isAt的tuling机器人反馈,但是经常会收到UnboundLocalError的报错,不是很明白是哪里有问题导致,忘能指导一下,谢谢 以下是demo.py ``` @itchat.msg_register def tuling_reply(msg): defaultReply = 'I received: ' + msg['Text'] reply = get_response(msg['Text']) return reply or defaultReply @itchat.msg_register(TEXT, isGroupChat=True) def groupchat_reply(msg): if msg['isAt']: defaultReply = 'I received: ' + msg['Text'] reply = get_response(msg['Text']) return reply or defaultReply ``` 以下是错误提示的标准输出 ``` Traceback (most recent call last): File "/usr/lib/python2.7/site-packages/itchat/components/register.py", line 66, in configured_reply r = replyFn(msg) File "demo.py", line 36, in groupchat_reply return reply or defaultReply UnboundLocalError: local variable 'reply' referenced before assignment ```
open
2019-01-24T10:21:11Z
2019-06-20T19:35:14Z
https://github.com/littlecodersh/ItChat/issues/786
[]
rilyuuj
2
collerek/ormar
pydantic
295
ManyToMany Relations generate a warning about a table having no fields
**Describe the bug** When using an M2M field between two tables, Ormar produces a warning that the generated join table has no fields. The exact warning shown below was produced using the example from the [Many To Many docs](https://collerek.github.io/ormar/relations/many-to-many/). ``` WARNING:root:Table posts_categorys had no fields so auto Integer primary key named `id` created. ``` **To Reproduce** Steps to reproduce the behavior: 1. Go to https://github.com/etimberg/ormar-test-cases/tree/m2m-warning 2. Clone the repo, check out the `m2m-warning` branch, and follow the readme to start postgres 3. Run `python reproduce.py` in your terminal 4. See a warning **Expected behavior** M2M fields should not generate a warning about a table missing columns **Versions (please complete the following information):** - Database backend used: postgresql - Python version: 3.9.6 - `ormar` version: 0.10.15 - `pydantic` version: 1.8.2 **Additional context** This problem can be mitigated by explicitly modelling the the join table and using `through` on the `ManyToMany` field.
closed
2021-08-02T16:06:31Z
2021-08-06T14:12:05Z
https://github.com/collerek/ormar/issues/295
[ "bug" ]
etimberg
2
jupyter/nbviewer
jupyter
506
Restore Scrolling Slides. Again.
It's #433, #439 all over again. My selective memory prevents me from noticing non-scrolling slides as a bug. This somehow got broken again likely when we moved over to jupyter with #493. See [this comment](https://github.com/jupyter/nbviewer/issues/466#issuecomment-142063405)
closed
2015-09-21T19:33:15Z
2015-10-18T05:29:29Z
https://github.com/jupyter/nbviewer/issues/506
[]
bollwyvl
3
google-research/bert
tensorflow
439
Clarification of document for BookCorpus
"We treat every Wikipedia article as a single document." was confirmed by @jacobdevlin-google at https://github.com/google-research/bert/issues/39 However, it is still unclear for BookCorpus. I found similar question around (https://github.com/google-research/bert/issues/155#issuecomment-448119175) but there is likely no answer yet. So, please confirm which part of a book was treated as a document in the origin paper. Is a whole book, or every chapter, or every paragraph treated as a document?
open
2019-02-15T09:15:29Z
2019-02-15T09:15:29Z
https://github.com/google-research/bert/issues/439
[]
yoquankara
0
Miserlou/Zappa
flask
1,348
Automatically create Lambda and ApiGateway Cloudwatch alarms (Using a config?)
Lambda and ApiGateway have a lot of alarms that can be configured. For production Lambdas it is required (at least in our org) to have some basic alarms such as on Lambda timeouts, ApiGateway 4xx and 5xx and Lambda errors. Automating this using Zappa makes a lot of sense to me, although there are a lot of way to configure Cloudwatch alarms to this might add a lot of configurations to Zappa. This should be controlled with a config that is off by default (because not every Lambda is prod and not every org cares), and specific configuration values can be set in the config with sane values that can be overridden. There are a few things that can be customized: 1. Alarm type - Api Gateway: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/api-gateway-metrics-dimensions.html Lambda: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/lam-metricscollected.html I'd choose a subset that makes sense to be default (for example Lambda errors, timeouts, AG 4xx 5xx). 2. Alarms threshold - per alarm (for example, our 5xx threshold is 1, we want to have an alarm for each Lambda server failure). 3. Alarm metrics - per alarm (for example, 5xx metric is maximum). 4. Alarm time period - per alarm (we usually set it to having the alarm over two 5 minutes periods). Does this make sense for zappa?
open
2018-01-11T13:10:49Z
2018-05-23T09:53:25Z
https://github.com/Miserlou/Zappa/issues/1348
[ "feature-request", "low-priority" ]
Sveder
4
pydantic/pydantic-settings
pydantic
191
Add support for reading configuration from .json files
I was wondering if it would be possible to read the data from `.json` file similarly like from Dotenv (.env) files. It would be beneficial - as you don't need to write your own logic on how to read the file and pass it to the **Settings** object. I would expect it in the way that you define your Settings class (inherit from BaseSettings pydantic class). But instead of providing .env file you provide a some_config.json file. with Dotenv ``` from pydantic_settings import BaseSettings, SettingsConfigDict class Settings(BaseSettings): model_config = SettingsConfigDict( env_file=('.env', '.env.prod') ) ``` new feature - with json ``` from pydantic_settings import BaseSettings, SettingsConfigDict class Settings(BaseSettings): model_config = SettingsConfigDict( json_file='configuration.json' ) ``` And in the background Pydantic would go through json file and validate it versus attributes and types defined in Settings class. Is it doable and does it make sense?
closed
2023-11-21T12:01:23Z
2023-11-23T19:12:32Z
https://github.com/pydantic/pydantic-settings/issues/191
[ "unconfirmed" ]
JakubPluta
2
MagicStack/asyncpg
asyncio
352
Is it possible to specify multi hosts dsn for connection pool?
Is it possible to connect to several hosts (one master and replicas) from ConnectionPool (interface like libpq provides)? I mean the following: https://www.postgresql.org/docs/current/static/libpq-connect.html ``` # Read sessions postgresql://host1:123,host2:456/somedb?target_session_attrs=any # Read-write sessions postgresql://host1:123,host2:456/somedb?target_session_attrs=read-write ``` I enumerate all postgresql hosts and in target_session_attrs parameter specify `read-write` if i need master. Or i should create separate connection pools for master & replicas servers? How that functionality (switching between hosts depending on target_session_attrs attrs, re-connecting on master switch) can be implemented in asyncpg?
open
2018-08-29T10:22:13Z
2025-03-06T10:44:36Z
https://github.com/MagicStack/asyncpg/issues/352
[]
alvassin
19
tensorly/tensorly
numpy
124
Non_Negative_Parafac non-start error
I'm using the non_negative_parafac function to decompose 3way data tensors of Mass Spectrometry data with approximate dimensions of (15x40x7000). The function usually works just fine, but for certain numbers of factors (~13) for certain data tensors, I get an error where the iterations never begin, so I see nothing but the "thinking" asterisk in a Jupyter notebook. I'm running multiple decompositions of each data tensor to see which number of factors provides the best data, so this kind of silent error is a killer for what I'm doing. This is my first issue post and I can't guess what you'll need, so please let me know what other information you would like to see and I'll provide it asap. Thanks for any help! www.rocklinlab.org
closed
2019-08-02T21:07:05Z
2019-08-06T16:26:18Z
https://github.com/tensorly/tensorly/issues/124
[]
WesLudwig
2
pydata/pandas-datareader
pandas
817
Simple question about documentation
Why isn't the yahoo finance API listed in the Data Readers [list](https://pandas-datareader.readthedocs.io/en/latest/readers/index.html), but it is available as get_data_yahoo()? Will the get_data_yahoo() function be deprecated in future versions?
closed
2020-08-26T18:10:43Z
2021-07-13T10:24:48Z
https://github.com/pydata/pandas-datareader/issues/817
[ "Good First Issue" ]
Psychotechnopath
3
BayesWitnesses/m2cgen
scikit-learn
187
Code generated for XGBoost models return error scores when feature input include zero which result in xgboost "missing"
I’m try using m2cgen to generate js code for XGBoost model,but find that if the feature input include zero,the result which calculate by generated js has a big difference with the result which predicted by model. For example, if the feature input is [0.4444,0.55555,0.3545,0.22333],the result which calculate by generated js equals the result which predicted by model,but if the feature input is [0.4444,0,0,0.22333],the result which calculate by generated js will be very different from the result which predicted by model,maybe one result is 0.22 ,the other one result is 0.04。After we validate by demo,we find that m2cgen not process “missing” condition. when xgboost result in “missing”, m2cgen will process it as “yes”
closed
2020-03-27T12:08:07Z
2020-04-07T16:49:44Z
https://github.com/BayesWitnesses/m2cgen/issues/187
[]
crystaldan
2
davidteather/TikTok-Api
api
212
[Errno 12] Cannot Allocate Memory
Hi. I wanted to get trending tiktok videos on a shared python host. but it couldn't because of memory allocation problem. As soon as it starts the program I get the error.I wanted to know how to handle it. ``` from TikTokApi import TikTokApi apt = TikTokApi() . . . whlie trendings >0: tr = api.trending(count=trendings, proxy=None) . . . ``` some parts of the code were not important. I am just running the above code in a loop. ``` Traceback (most recent call last): File "tik.py", line 87, in <module> update_trends(trendings=trendings, con=con, cur=cur) File "tik.py", line 25, in update_trends tr = api.trending(count=trendings, proxy=None) File "~/venv/3.7/lib/python3.7/site-packages/TikTokApi/tiktok.py", line 89, in trending b = browser(api_url, language=language, proxy=proxy) File "~/venv/3.7/lib/python3.7/site-packages/TikTokApi/browser.py", line 57, in __init__ loop.run_until_complete(self.start()) File "/opt/alt/python37/lib64/python3.7/asyncio/base_events.py", line 584, in run_until_complete return future.result() File "~/venv/3.7/lib/python3.7/site-packages/TikTokApi/browser.py", line 60, in start self.browser = await pyppeteer.launch(self.options) File "~/venv/3.7/lib/python3.7/site-packages/pyppeteer/launcher.py", line 305, in launch return await Launcher(options, **kwargs).launch() File "~/venv/3.7/lib/python3.7/site-packages/pyppeteer/launcher.py", line 147, in launch self.cmd, **options, ) File "/opt/alt/python37/lib64/python3.7/subprocess.py", line 775, in __init__ restore_signals, start_new_session) File "/opt/alt/python37/lib64/python3.7/subprocess.py", line 1453, in _execute_child restore_signals, start_new_session, preexec_fn) OSError: [Errno 12] Cannot allocate memory ``` **Desktop (please complete the following information):** - OS: Linux [kernel verison: 3.10.0-962.3.2.lve1.5.38.el7.x86_64] - TikTokApi Version 3.3.7 - Pyppeteer Version 0.2.2 - Python Version 3.7 I will be thankful if this issue solves ASAP.
closed
2020-08-11T12:45:10Z
2020-08-24T19:19:48Z
https://github.com/davidteather/TikTok-Api/issues/212
[ "bug" ]
hamedwaezi01-zz
3
Kanaries/pygwalker
plotly
577
It is possible to run pygwalker from Pycharm???
Hi, Can I use pygwalker from Pycharm or is mandatory to be in a notebook? Thanks!
closed
2024-06-12T10:09:37Z
2025-03-04T09:25:42Z
https://github.com/Kanaries/pygwalker/issues/577
[ "enhancement", "P2" ]
ihouses
3
jmcarpenter2/swifter
pandas
2
Error when import library
When I try to import swifter as: `import swifter` I got this kind of error: `File "/home/lap00379/venv/local/lib/python2.7/site-packages/swifter/swifter.py", line 27 apply(myfunc, *args, **kwargs, axis=1, meta=meta).compute(get=get) ^ SyntaxError: invalid syntax` I'm using Ubuntu 16.04 and Python 2.7
closed
2018-05-09T06:26:43Z
2018-11-14T14:08:36Z
https://github.com/jmcarpenter2/swifter/issues/2
[]
Tranquangdai
3
Yorko/mlcourse.ai
matplotlib
22
Решение вопроса 5.11 не стабильно
Даже при выставленных random_state параметрах, best_score лучшей модели отличается от вариантов в ответах. Подтверждено запуском несколькими участниками. Возможно влияют конкретные версии пакетов на расчеты. Могу приложить ipynb, на котором воспроизводится.
closed
2017-04-03T08:43:37Z
2017-04-03T08:52:22Z
https://github.com/Yorko/mlcourse.ai/issues/22
[]
coodix
2
LAION-AI/Open-Assistant
machine-learning
3,009
Backend support for moderator message search functionality
For data collection
closed
2023-05-02T08:40:52Z
2023-05-26T21:28:47Z
https://github.com/LAION-AI/Open-Assistant/issues/3009
[ "backend" ]
olliestanley
0
plotly/dash-component-boilerplate
dash
2
Warning, 'label' is marked as required but its value is undefined.
I got this warning, and to fix it I added 'label' and 'id' keys to the App's initial `state`.
open
2018-08-12T19:26:38Z
2018-08-12T19:26:38Z
https://github.com/plotly/dash-component-boilerplate/issues/2
[]
zackstout
0
nolar/kopf
asyncio
403
[archival placeholder]
This is a placeholder for later issues/prs archival. It is needed now to reserve the initial issue numbers before going with actual development (PRs), so that later these placeholders could be populated with actual archived issues & prs with proper intra-repo cross-linking preserved.
closed
2020-08-18T20:05:43Z
2020-08-18T20:05:44Z
https://github.com/nolar/kopf/issues/403
[ "archive" ]
kopf-archiver[bot]
0
xlwings/xlwings
automation
2,111
Trying to mass assign using multiple ranges
#### OS (e.g. Windows 10 or macOS Sierra) Windows 11 #### Versions of xlwings, Excel and Python (e.g. 0.11.8, Office 365, Python 3.7) xlwings 0.28.5 python 3.11 Excel 2021 pro #### Describe your issue (incl. Traceback!) I'm trying to mass assign multiple ranges but when trying to use value I'm only getting the first range I'm trying to mass assign instead of doing it one by one but it looks like I need to go range by range which takes me 4 seconds to assign 32 values. Is it possible to mass assign multiple ranges? I've seen https://stackoverflow.com/questions/46735285/xlwings-selecting-non-adjacent-columns example fir selecting multiple ranges which works but value doesn't return all the values #### Include a minimal code sample to reproduce the issue (and attach a sample workbook if required!) ```python range = "A10:A11,B14:B15" sheet= wb.sheets['Sheet'] sheet.range(range ).value = [1,2,3,4] Sets A10,A11,A12,A13 ```
closed
2022-12-03T10:28:11Z
2023-01-18T19:23:04Z
https://github.com/xlwings/xlwings/issues/2111
[]
farinidan
1
fastapi/sqlmodel
fastapi
313
How to Initialise & Populate a Postgres Database with Circular ForeignKeys?
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python # Imports from typing import Optional, List from sqlmodel import Session, Field, SQLModel, Relationship, create_engine import uuid as uuid_pkg # Defining schemas class Person(SQLModel, table=True): person_id: uuid_pkg.UUID = Field(default_factory=uuid_pkg.uuid4, primary_key=True, index=True, nullable=True) first_names: str last_name: str mailing_property_id: uuid_pkg.UUID = Field(foreign_key='property.property_id') customer: Optional['Customer'] = Relationship(back_populates='lead_person') mailing_property: Optional['Property'] = Relationship(back_populates='person') class Customer(SQLModel, table=True): customer_id: uuid_pkg.UUID = Field(default_factory=uuid_pkg.uuid4, primary_key=True, index=True, nullable=True) lead_person_id: uuid_pkg.UUID = Field(foreign_key='person.person_id') contract_type: str lead_person: Optional['Person'] = Relationship(back_populates='customer') contracted_properties: Optional[List['Property']] = Relationship(back_populates='occupant_customer') class Property(SQLModel, table=True): property_id: uuid_pkg.UUID = Field(default_factory=uuid_pkg.uuid4, primary_key=True, index=True, nullable=True) occupant_customer_id: uuid_pkg.UUID = Field(foreign_key='customer.customer_id') address: str person: Optional['Person'] = Relationship(back_populates='mailing_property') occupant_customer: Optional['Customer'] = Relationship(back_populates='contracted_properties') # Initialising the database engine = create_engine(f'postgresql://{DB_USERNAME}:{DB_PASSWORD}@{DB_URL}:{DB_PORT}/{DB_NAME}') SQLModel.metadata.create_all(engine) # Defining the database entries john = Person( person_id = 'eb7a0f5d-e09b-4b36-8e15-e9541ea7bd6e', first_names = 'John', last_name = 'Smith', mailing_property_id = '4d6aed8d-d1a2-4152-ae4b-662baddcbef4' ) johns_lettings = Customer( customer_id = 'cb58199b-d7cf-4d94-a4ba-e7bb32f1cda4', lead_person_id = 'eb7a0f5d-e09b-4b36-8e15-e9541ea7bd6e', contract_type = 'Landlord Premium' ) johns_property_1 = Property( property_id = '4d6aed8d-d1a2-4152-ae4b-662baddcbef4', occupant_customer_id = 'cb58199b-d7cf-4d94-a4ba-e7bb32f1cda4', address = '123 High Street' ) johns_property_2 = Property( property_id = '2ac15ac9-9ab3-4a7c-80ad-961dd565ab0a', occupant_customer_id = 'cb58199b-d7cf-4d94-a4ba-e7bb32f1cda4', address = '456 High Street' ) # Committing the database entries with Session(engine) as session: session.add(john) session.add(johns_lettings) session.add(johns_property_1) session.add(johns_property_2) session.commit() ``` ### Description Goal: To model the back-end database for a cleaning company. Specifically, trying to model a system where customers can have multiple properties that need to be cleaned and each customer has a single lead person who has a single mailing property (to contact them at). Ideally, I want to be able to use a single table for the mailing properties and cleaning properties (as in most instances they will be the same). Constraints: * Customers can be either individual people or organisations * A lead person must be identifiable for each customer * Each person must be matched to a property (so that their mailing address can be identified) * A single customer can have multiple properties attached to them (e.g. for a landlord that includes cleaning as part of the rent) The issue is that the foreign keys have a circular dependency. * Customer -> Person based on the `lead_person_id` * Person -> Property based on the `mailing_property_id` * Property -> Customer based on the `occupant_customer_id` ![image](https://user-images.githubusercontent.com/29051639/165068778-f26f767a-7974-407a-b652-656847850cc7.png) Running the code written above results in: ``` ForeignKeyViolation: insert or update on table "customer" violates foreign key constraint "customer_lead_person_id_fkey" DETAIL: Key (lead_person_id)=(eb7a0f5d-e09b-4b36-8e15-e9541ea7bd6e) is not present in table "person". ``` This issue is specific to Postgres, which unlike SQLite (used in the docs) imposes constraints on foreign keys when data is being added. I.e. replacing `engine = create_engine(f'postgresql://{DB_USERNAME}:{DB_PASSWORD}@{DB_URL}:{DB_PORT}/{DB_NAME}')` with `engine = create_engine('sqlite:///test.db')` will let the database be initialised without causing an error - however my use-case is with a Postgres DB. <br> Attempted Solutions: * Used link tables between customers/people and properties/customers - no luck * Used `Session.exec` with [this code from SO](https://stackoverflow.com/a/48204024/8035710) to temporarily remove foreign key constraints then add them back on - no luck * Used primary joins instead of foreign keys as described in [this SQLModel Issue](https://github.com/tiangolo/sqlmodel/issues/10#issuecomment-1002835506) - no luck ### Operating System macOS ### Operating System Details Using an M1 Mac but have replicated the issue on ubuntu as well ### SQLModel Version 0.0.6 ### Python Version 3.10.4 ### Additional Context _No response_
open
2022-04-25T10:16:57Z
2022-08-17T03:55:54Z
https://github.com/fastapi/sqlmodel/issues/313
[ "question" ]
AyrtonB
2
davidsandberg/facenet
tensorflow
843
AttributeError: module 'facenet' has no attribute 'store_revision_info'
hi, I run C:\Users\shend\Anaconda3>python c:\facenet\src\align\align_dataset_mtcnn.py c:\lfw c:\imagenes but a I have this error: Traceback (most recent call last): File "c:\facenet\src\align\align_dataset_mtcnn.py", line 160, in <module> main(parse_arguments(sys.argv[1:])) File "c:\facenet\src\align\align_dataset_mtcnn.py", line 47, in main facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) AttributeError: module 'facenet' has no attribute 'store_revision_info' what's wrong with de facenet code?
open
2018-08-08T23:18:42Z
2019-02-13T14:37:13Z
https://github.com/davidsandberg/facenet/issues/843
[]
shendrysu
2
kaliiiiiiiiii/Selenium-Driverless
web-scraping
89
how to get driver pid
`driver.service.process.pid` is not working Can you tell me how to get PID of the driver?
closed
2023-10-19T08:59:33Z
2023-10-19T09:59:28Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/89
[]
gouravkumar99
0
ymcui/Chinese-LLaMA-Alpaca
nlp
499
指令精调后出现胡言乱语和好多感叹号
### 详细描述问题 ![image](https://github.com/ymcui/Chinese-LLaMA-Alpaca/assets/20834883/ccb7c6a4-acca-406e-965a-fdfde4d53cdd) 训练脚本 lr=1e-4 lora_rank=8 lora_alpha=32 lora_trainable="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj" modules_to_save="embed_tokens,lm_head" lora_dropout=0.05 pretrained_model="/alidata1/admin/LLaMA/modules/llama-7b-hf" chinese_tokenizer_path="/alidata1/admin/LLaMA/modules/chinese-llama-lora-7b" dataset_dir="/alidata1/admin/LLaMA/datasets" per_device_train_batch_size=1 per_device_eval_batch_size=1 training_steps=100 gradient_accumulation_steps=1 output_dir="/alidata1/admin/LLaMA/Chinese-LLaMA-Alpaca/scripts/insure/sft_lora_model" validation_file=./insure_validation/insure.json deepspeed_config_file=ds_zero2_no_offload.json torchrun --nnodes 1 --nproc_per_node 1 run_clm_sft_with_peft.py \ --deepspeed ${deepspeed_config_file} \ --model_name_or_path ${pretrained_model} \ --tokenizer_name_or_path ${chinese_tokenizer_path} \ --dataset_dir ${dataset_dir} \ --validation_split_percentage 0.001 \ --per_device_train_batch_size ${per_device_train_batch_size} \ --per_device_eval_batch_size ${per_device_eval_batch_size} \ --do_train \ --do_eval \ --seed $RANDOM \ --fp16 \ --max_steps ${training_steps} \ --lr_scheduler_type cosine \ --learning_rate ${lr} \ --warmup_ratio 0.03 \ --weight_decay 0 \ --logging_strategy steps \ --logging_steps 10 \ --save_strategy steps \ --save_total_limit 3 \ --evaluation_strategy steps \ --eval_steps 250 \ --save_steps 500 \ --gradient_accumulation_steps ${gradient_accumulation_steps} \ --preprocessing_num_workers 8 \ --max_seq_length 500 \ --output_dir ${output_dir} \ --overwrite_output_dir \ --ddp_timeout 30000 \ --logging_first_step True \ --lora_rank ${lora_rank} \ --lora_alpha ${lora_alpha} \ --trainable ${lora_trainable} \ --lora_dropout ${lora_dropout} \ --torch_dtype float16 \ --validation_file ${validation_file} \ --ddp_find_unused_parameters False 数据集(数据量在500条左右): [ .... { "instruction": "有安装起搏器能投保众安尊享e生2023版中端医疗险吗", "input": "", "output": "心脏起搏器的安装是在局部麻醉下进行的,手术全程中患者意识都是清楚的。一般选择锁骨下静脉为穿刺点,建立静脉通路,将起搏器的导线置入心腔内。 如果是双腔起搏器,则一根电极置入右心耳,另一根电极置入右心室,从X线下判断电极的植入位置。然后将起搏器的电极与起搏器相连接,最后在胸部切开皮肤,制作囊袋,将起搏器埋入其中后将皮肤缝合。\n\n被保险人既往症如有安装起搏器,无法投保众安尊享e生2023版中端医疗险。" } ..... ] 训练结束后 mv /alidata1/admin/LLaMA/Chinese-LLaMA-Alpaca/scripts/insure/sft_lora_model/pytorch_model.bin /alidata1/admin/LLaMA/Chinese-LLaMA-Alpaca/scripts/lora_model/adapter_model.bin cp /alidata1/admin/LLaMA/modules/chinese-llama-plus-lora-7b/*token* lora_model/ cp /alidata1/admin/LLaMA/modules/chinese-llama-plus-lora-7b/adapter_config.json lora_model/ 合并数据 python /alidata1/admin/LLaMA/Chinese-LLaMA-Alpaca/scripts/merge_llama_with_chinese_lora.py \ --base_model /alidata1/admin/LLaMA/modules/llama-7b-hf \ --lora_model /alidata1/admin/LLaMA/modules/chinese-llama-plus-lora-7b,/alidata1/admin/LLaMA/modules/chinese-alpaca-plus-lora-7b,/alidata1/admin/LLaMA/Chinese-LLaMA-Alpaca/scripts/lora_model \ --output_type huggingface \ --output_dir /alidata1/admin/LLaMA/lora/ 启动合并后的lora python3 server.py --model lora --listen --api --chat --auto-devices 帮忙分析下是什么原因,训练后不能正常回答
closed
2023-06-02T11:45:08Z
2023-06-19T22:02:34Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/499
[ "stale" ]
alanbeen
9
ultralytics/yolov5
pytorch
13,144
How to increase FPS camera capture inside the Raspberry Pi 4B 8GB with best.onnx model
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. ### YOLOv5 Component Detection ### Bug Hi, i am currently trying to make traffic sign detection and recognition by using the YOLOv5 Pytorch with Yolov5s model. I am using detect.py file to run the model and the FPS i get is only 1 FPS. The dataset contain around 2K images with 200 epochs. I run the code with: python detect.py --weights best.onnx --img 640 --conf 0.7 --source 0 Is there any modify to the code so that i can get more than 4FPS? ### Environment -Raspberry Pi 4B with 8GB Ram -Webcam -Model best.onnx -Train using Yolov5 Pytorch ### Minimal Reproducible Example _No response_ ### Additional _No response_ ### Are you willing to submit a PR? - [X] Yes I'd like to help by submitting a PR!
open
2024-06-27T21:16:08Z
2024-10-20T19:49:02Z
https://github.com/ultralytics/yolov5/issues/13144
[ "bug", "Stale" ]
Killuagg
13
tensorpack/tensorpack
tensorflow
1,086
The actual usage of the quantized DoReFa weights
Previously response to a closed topic so post a new issue. I am wondering if there are any float tensors in the actual dorefa quantized network. Once the quantized weights are trained, we could either fixed-point them with the activation values and do fixed-point calculations or only do the fixed-point convolution in the convolution layers and perform the float-to-fixed-point conversions. The 2nd method seems unreasonable to convert the format so frequently but the 1st method might introduce the extra error caused by fixed-point. I have tried w4a4 and the error from fixed-point degraded the result a lot more compared to fixed-point w8a8. I am not sure what is the correct way to actually use the quantized weights. The ulp seemed to apply the 2nd method. Does that mean the time cost of the format conversion is neglectable?
closed
2019-02-19T12:22:53Z
2019-03-01T21:51:35Z
https://github.com/tensorpack/tensorpack/issues/1086
[ "examples" ]
asjmasjm
14
davidsandberg/facenet
computer-vision
347
How to debug the two models,20170511-185253 and 20170512-110547??
As the title, how to debug these two models, it is difficult for me to understand the meaning of the downloaded model? What is the process? Thx
closed
2017-06-22T08:22:02Z
2017-07-15T15:25:30Z
https://github.com/davidsandberg/facenet/issues/347
[]
YjDai
2
keras-team/autokeras
tensorflow
1,215
"checkpoint not found" error in the "structured_data_classification" example
### Bug Description I was trying to run the "structured_data_classification" example with the newly released version 1.0.3, but encountered this "checkpoint not found" error ### Bug Reproduction Code for reproducing the bug: train_file_path = "data/train.csv" test_file_path = "data/eval.csv" x_train_df = pd.read_csv(train_file_path) print(type(x_train_df)) # pandas.DataFrame y_train_df = x_train_df.pop('survived') print(type(y_train_df)) # pandas.Series \# Preparing testing data. x_test_df = pd.read_csv(test_file_path) y_test_df = x_test_df.pop('survived') \# It tries 3 different models. clf = ak.StructuredDataClassifier( overwrite=True, max_trials=3, seed=66, project_name='song4', directory='akeras_models/' ) \# Feed the structured data classifier with training data. clf.fit(x_train_df, y_train_df) # , epochs=10) \# Predict with the best model. predicted_y = clf.predict(x_test_df) \# Evaluate the best model with testing data. print(clf.evaluate(x_test_df, y_test_df)) Data used by the code: ### Expected Behavior 2020-06-26 11:26:29.720935: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2020-06-26 11:26:29.720955: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303) 2020-06-26 11:26:29.720970: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (Super-AI): /proc/driver/nvidia/version does not exist 2020-06-26 11:26:29.721125: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 2020-06-26 11:26:29.752555: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2900230000 Hz 2020-06-26 11:26:29.758760: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7f82d4000b20 initialized for platform Host (this does not guarantee that XLA will be used). Devices: 2020-06-26 11:26:29.758785: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version [Starting new trial] Epoch 1/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7875 - accuracy: 0.5016/16 [==============================] - 0s 11ms/step - loss: 0.7533 - accuracy: 0.5977 - val_loss: 0.6331 - val_accuracy: 0.7043 Epoch 2/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7675 - accuracy: 0.6516/16 [==============================] - 0s 3ms/step - loss: 0.6475 - accuracy: 0.6855 - val_loss: 0.7478 - val_accuracy: 0.4261 Epoch 3/1000 1/16 [>.............................] - ETA: 0s - loss: 0.8791 - accuracy: 0.5016/16 [==============================] - 0s 3ms/step - loss: 0.6380 - accuracy: 0.6914 - val_loss: 0.8299 - val_accuracy: 0.3304 Epoch 4/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7965 - accuracy: 0.6816/16 [==============================] - 0s 3ms/step - loss: 0.6334 - accuracy: 0.7285 - val_loss: 0.8162 - val_accuracy: 0.3565 Epoch 5/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6657 - accuracy: 0.6516/16 [==============================] - 0s 3ms/step - loss: 0.5991 - accuracy: 0.7344 - val_loss: 0.7410 - val_accuracy: 0.3913 Epoch 6/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6547 - accuracy: 0.6516/16 [==============================] - 0s 3ms/step - loss: 0.5796 - accuracy: 0.7285 - val_loss: 0.7873 - val_accuracy: 0.3826 Epoch 7/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5260 - accuracy: 0.7516/16 [==============================] - 0s 3ms/step - loss: 0.5761 - accuracy: 0.7266 - val_loss: 0.8332 - val_accuracy: 0.3652 Epoch 8/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7437 - accuracy: 0.6816/16 [==============================] - 0s 3ms/step - loss: 0.5543 - accuracy: 0.7500 - val_loss: 0.7986 - val_accuracy: 0.4000 Epoch 9/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4914 - accuracy: 0.7516/16 [==============================] - 0s 3ms/step - loss: 0.5277 - accuracy: 0.7734 - val_loss: 0.7369 - val_accuracy: 0.4087 Epoch 10/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6530 - accuracy: 0.7116/16 [==============================] - 0s 3ms/step - loss: 0.5629 - accuracy: 0.7520 - val_loss: 0.6682 - val_accuracy: 0.5391 Epoch 11/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5999 - accuracy: 0.7816/16 [==============================] - 0s 3ms/step - loss: 0.5369 - accuracy: 0.7676 - val_loss: 0.7082 - val_accuracy: 0.5478 [Trial complete] [Trial summary] |-Trial ID: f3e9fec44a0956276a01421772bcb618 |-Score: 0.7043478488922119 |-Best step: 0 > Hyperparameters: |-classification_head_1/dropout_rate: 0 |-optimizer: adam |-structured_data_block_1/dense_block_1/dropout_rate: 0.5 |-structured_data_block_1/dense_block_1/num_layers: 1 |-structured_data_block_1/dense_block_1/units_0: 512 |-structured_data_block_1/dense_block_1/units_1: 16 |-structured_data_block_1/dense_block_1/use_batchnorm: True [Starting new trial] Epoch 1/1000 1/16 [>.............................] - ETA: 0s - loss: 0.9774 - accuracy: 0.5016/16 [==============================] - 0s 10ms/step - loss: 0.8073 - accuracy: 0.5391 - val_loss: 1.0624 - val_accuracy: 0.4870 Epoch 2/1000 1/16 [>.............................] - ETA: 0s - loss: 0.9896 - accuracy: 0.4316/16 [==============================] - 0s 5ms/step - loss: 0.6816 - accuracy: 0.6426 - val_loss: 0.6217 - val_accuracy: 0.7130 Epoch 3/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6186 - accuracy: 0.6816/16 [==============================] - 0s 5ms/step - loss: 0.5884 - accuracy: 0.7207 - val_loss: 0.6258 - val_accuracy: 0.7043 Epoch 4/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6960 - accuracy: 0.5616/16 [==============================] - 0s 4ms/step - loss: 0.5688 - accuracy: 0.7266 - val_loss: 0.6487 - val_accuracy: 0.6522 Epoch 5/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4751 - accuracy: 0.7516/16 [==============================] - 0s 4ms/step - loss: 0.5353 - accuracy: 0.7422 - val_loss: 0.7280 - val_accuracy: 0.4087 Epoch 6/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6062 - accuracy: 0.5616/16 [==============================] - 0s 5ms/step - loss: 0.5268 - accuracy: 0.7461 - val_loss: 0.7232 - val_accuracy: 0.6348 Epoch 7/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4782 - accuracy: 0.6516/16 [==============================] - 0s 5ms/step - loss: 0.5273 - accuracy: 0.7559 - val_loss: 0.6015 - val_accuracy: 0.7130 Epoch 8/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4447 - accuracy: 0.8116/16 [==============================] - 0s 4ms/step - loss: 0.5104 - accuracy: 0.7676 - val_loss: 0.6554 - val_accuracy: 0.6435 Epoch 9/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4685 - accuracy: 0.8716/16 [==============================] - 0s 4ms/step - loss: 0.5135 - accuracy: 0.7812 - val_loss: 0.5953 - val_accuracy: 0.7391 Epoch 10/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4235 - accuracy: 0.8716/16 [==============================] - 0s 4ms/step - loss: 0.4754 - accuracy: 0.7871 - val_loss: 0.6090 - val_accuracy: 0.7130 Epoch 11/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7253 - accuracy: 0.7816/16 [==============================] - 0s 4ms/step - loss: 0.4961 - accuracy: 0.7734 - val_loss: 0.5601 - val_accuracy: 0.7391 Epoch 12/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4596 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.4459 - accuracy: 0.8008 - val_loss: 0.5370 - val_accuracy: 0.7826 Epoch 13/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5129 - accuracy: 0.7816/16 [==============================] - 0s 5ms/step - loss: 0.4602 - accuracy: 0.8066 - val_loss: 0.4664 - val_accuracy: 0.8087 Epoch 14/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4598 - accuracy: 0.8116/16 [==============================] - 0s 4ms/step - loss: 0.4366 - accuracy: 0.8281 - val_loss: 0.4810 - val_accuracy: 0.7913 Epoch 15/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6860 - accuracy: 0.7816/16 [==============================] - 0s 4ms/step - loss: 0.4841 - accuracy: 0.8027 - val_loss: 0.4353 - val_accuracy: 0.8174 Epoch 16/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4164 - accuracy: 0.7816/16 [==============================] - 0s 5ms/step - loss: 0.4539 - accuracy: 0.8086 - val_loss: 0.4668 - val_accuracy: 0.7913 Epoch 17/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5218 - accuracy: 0.6816/16 [==============================] - 0s 5ms/step - loss: 0.4484 - accuracy: 0.7910 - val_loss: 0.4026 - val_accuracy: 0.8174 Epoch 18/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4353 - accuracy: 0.8716/16 [==============================] - 0s 4ms/step - loss: 0.4409 - accuracy: 0.7969 - val_loss: 0.4444 - val_accuracy: 0.8087 Epoch 19/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5144 - accuracy: 0.6516/16 [==============================] - 0s 5ms/step - loss: 0.4730 - accuracy: 0.7754 - val_loss: 0.4585 - val_accuracy: 0.8087 Epoch 20/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4510 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.4625 - accuracy: 0.7969 - val_loss: 0.4528 - val_accuracy: 0.8435 Epoch 21/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5078 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.4495 - accuracy: 0.7910 - val_loss: 0.4037 - val_accuracy: 0.8348 Epoch 22/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4735 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.4015 - accuracy: 0.8242 - val_loss: 0.4102 - val_accuracy: 0.8087 Epoch 23/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4540 - accuracy: 0.7816/16 [==============================] - 0s 5ms/step - loss: 0.4340 - accuracy: 0.8047 - val_loss: 0.3913 - val_accuracy: 0.8348 Epoch 24/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5882 - accuracy: 0.7116/16 [==============================] - 0s 4ms/step - loss: 0.4257 - accuracy: 0.8125 - val_loss: 0.3854 - val_accuracy: 0.8435 Epoch 25/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4903 - accuracy: 0.7816/16 [==============================] - 0s 5ms/step - loss: 0.4263 - accuracy: 0.8242 - val_loss: 0.4097 - val_accuracy: 0.8261 Epoch 26/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5059 - accuracy: 0.8416/16 [==============================] - 0s 4ms/step - loss: 0.4068 - accuracy: 0.8203 - val_loss: 0.4205 - val_accuracy: 0.8174 Epoch 27/1000 1/16 [>.............................] - ETA: 0s - loss: 0.6119 - accuracy: 0.7516/16 [==============================] - 0s 4ms/step - loss: 0.4279 - accuracy: 0.8086 - val_loss: 0.3904 - val_accuracy: 0.8348 Epoch 28/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4844 - accuracy: 0.7816/16 [==============================] - 0s 4ms/step - loss: 0.4052 - accuracy: 0.8398 - val_loss: 0.4189 - val_accuracy: 0.8174 Epoch 29/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5712 - accuracy: 0.6516/16 [==============================] - 0s 4ms/step - loss: 0.4195 - accuracy: 0.8203 - val_loss: 0.4423 - val_accuracy: 0.8348 Epoch 30/1000 1/16 [>.............................] - ETA: 0s - loss: 0.3971 - accuracy: 0.8716/16 [==============================] - 0s 4ms/step - loss: 0.4081 - accuracy: 0.8340 - val_loss: 0.3681 - val_accuracy: 0.8522 Epoch 31/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4551 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.4357 - accuracy: 0.8145 - val_loss: 0.4294 - val_accuracy: 0.8696 Epoch 32/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4730 - accuracy: 0.7816/16 [==============================] - 0s 4ms/step - loss: 0.4254 - accuracy: 0.8184 - val_loss: 0.4023 - val_accuracy: 0.8174 Epoch 33/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4941 - accuracy: 0.7816/16 [==============================] - 0s 4ms/step - loss: 0.4452 - accuracy: 0.8145 - val_loss: 0.3756 - val_accuracy: 0.8261 Epoch 34/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5311 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.4210 - accuracy: 0.8164 - val_loss: 0.4062 - val_accuracy: 0.8087 Epoch 35/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4841 - accuracy: 0.7116/16 [==============================] - 0s 5ms/step - loss: 0.4034 - accuracy: 0.8105 - val_loss: 0.3638 - val_accuracy: 0.8348 Epoch 36/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4511 - accuracy: 0.8416/16 [==============================] - 0s 4ms/step - loss: 0.4177 - accuracy: 0.8242 - val_loss: 0.4077 - val_accuracy: 0.8522 Epoch 37/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5379 - accuracy: 0.8116/16 [==============================] - 0s 4ms/step - loss: 0.4063 - accuracy: 0.8262 - val_loss: 0.3705 - val_accuracy: 0.8348 Epoch 38/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4644 - accuracy: 0.8416/16 [==============================] - 0s 4ms/step - loss: 0.4079 - accuracy: 0.8359 - val_loss: 0.3600 - val_accuracy: 0.8696 Epoch 39/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4944 - accuracy: 0.7516/16 [==============================] - 0s 4ms/step - loss: 0.4129 - accuracy: 0.8457 - val_loss: 0.3446 - val_accuracy: 0.8609 Epoch 40/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4056 - accuracy: 0.8116/16 [==============================] - 0s 4ms/step - loss: 0.3861 - accuracy: 0.8262 - val_loss: 0.3640 - val_accuracy: 0.8696 Epoch 41/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4578 - accuracy: 0.8716/16 [==============================] - 0s 5ms/step - loss: 0.4050 - accuracy: 0.8262 - val_loss: 0.3439 - val_accuracy: 0.8696 Epoch 42/1000 1/16 [>.............................] - ETA: 0s - loss: 0.5131 - accuracy: 0.8116/16 [==============================] - 0s 4ms/step - loss: 0.3956 - accuracy: 0.8281 - val_loss: 0.3349 - val_accuracy: 0.8609 Epoch 43/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4367 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.3686 - accuracy: 0.8340 - val_loss: 0.3352 - val_accuracy: 0.8435 Epoch 44/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4487 - accuracy: 0.8716/16 [==============================] - 0s 4ms/step - loss: 0.3879 - accuracy: 0.8281 - val_loss: 0.3221 - val_accuracy: 0.8783 Epoch 45/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4602 - accuracy: 0.8416/16 [==============================] - 0s 5ms/step - loss: 0.3942 - accuracy: 0.8418 - val_loss: 0.3461 - val_accuracy: 0.8609 Epoch 46/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4294 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.3849 - accuracy: 0.8320 - val_loss: 0.3527 - val_accuracy: 0.8609 Epoch 47/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4323 - accuracy: 0.8416/16 [==============================] - 0s 5ms/step - loss: 0.3939 - accuracy: 0.8203 - val_loss: 0.3732 - val_accuracy: 0.8261 Epoch 48/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4246 - accuracy: 0.8416/16 [==============================] - 0s 4ms/step - loss: 0.3832 - accuracy: 0.8496 - val_loss: 0.4042 - val_accuracy: 0.8696 Epoch 49/1000 1/16 [>.............................] - ETA: 0s - loss: 0.3794 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.3627 - accuracy: 0.8398 - val_loss: 0.3698 - val_accuracy: 0.8609 Epoch 50/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4711 - accuracy: 0.7816/16 [==============================] - 0s 4ms/step - loss: 0.3887 - accuracy: 0.8242 - val_loss: 0.3443 - val_accuracy: 0.8609 Epoch 51/1000 1/16 [>.............................] - ETA: 0s - loss: 0.3824 - accuracy: 0.8116/16 [==============================] - 0s 4ms/step - loss: 0.3925 - accuracy: 0.8340 - val_loss: 0.4368 - val_accuracy: 0.8261 Epoch 52/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4646 - accuracy: 0.8116/16 [==============================] - 0s 5ms/step - loss: 0.3852 - accuracy: 0.8438 - val_loss: 0.4202 - val_accuracy: 0.8087 Epoch 53/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4349 - accuracy: 0.8716/16 [==============================] - 0s 5ms/step - loss: 0.3697 - accuracy: 0.8398 - val_loss: 0.4056 - val_accuracy: 0.8261 Epoch 54/1000 1/16 [>.............................] - ETA: 0s - loss: 0.4676 - accuracy: 0.8416/16 [==============================] - 0s 5ms/step - loss: 0.3724 - accuracy: 0.8379 - val_loss: 0.3753 - val_accuracy: 0.8261 [Trial complete] [Trial summary] |-Trial ID: 05b23cac10d5f471c6d77d73f3c7000e |-Score: 0.8782608509063721 |-Best step: 43 > Hyperparameters: |-classification_head_1/dropout_rate: 0 |-optimizer: adam |-structured_data_block_1/dense_block_1/dropout_rate: 0.25 |-structured_data_block_1/dense_block_1/num_layers: 2 |-structured_data_block_1/dense_block_1/units_0: 1024 |-structured_data_block_1/dense_block_1/units_1: 128 |-structured_data_block_1/dense_block_1/use_batchnorm: True [Starting new trial] Epoch 1/1000 1/16 [>.............................] - ETA: 0s - loss: 2.1611 - accuracy: 0.5316/16 [==============================] - 0s 6ms/step - loss: 0.9218 - accuracy: 0.6270 - val_loss: 0.5265 - val_accuracy: 0.7043 Epoch 2/1000 1/16 [>.............................] - ETA: 0s - loss: 0.8769 - accuracy: 0.4616/16 [==============================] - 0s 2ms/step - loss: 0.7397 - accuracy: 0.6289 - val_loss: 0.6304 - val_accuracy: 0.7043 Epoch 3/1000 1/16 [>.............................] - ETA: 0s - loss: 1.0053 - accuracy: 0.4616/16 [==============================] - 0s 2ms/step - loss: 0.7013 - accuracy: 0.6152 - val_loss: 0.5581 - val_accuracy: 0.7304 Epoch 4/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7856 - accuracy: 0.5916/16 [==============================] - 0s 2ms/step - loss: 0.6441 - accuracy: 0.6621 - val_loss: 0.5394 - val_accuracy: 0.7478 Epoch 5/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7105 - accuracy: 0.5316/16 [==============================] - 0s 2ms/step - loss: 0.6350 - accuracy: 0.6758 - val_loss: 0.5434 - val_accuracy: 0.7304 Epoch 6/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7370 - accuracy: 0.5616/16 [==============================] - 0s 2ms/step - loss: 0.6494 - accuracy: 0.6699 - val_loss: 0.5633 - val_accuracy: 0.7130 Epoch 7/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7826 - accuracy: 0.5916/16 [==============================] - 0s 2ms/step - loss: 0.6480 - accuracy: 0.6797 - val_loss: 0.5581 - val_accuracy: 0.7130 Epoch 8/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7585 - accuracy: 0.5616/16 [==============================] - 0s 2ms/step - loss: 0.6350 - accuracy: 0.6797 - val_loss: 0.5479 - val_accuracy: 0.7217 Epoch 9/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7414 - accuracy: 0.5616/16 [==============================] - 0s 2ms/step - loss: 0.6270 - accuracy: 0.6816 - val_loss: 0.5461 - val_accuracy: 0.7130 Epoch 10/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7368 - accuracy: 0.5616/16 [==============================] - 0s 2ms/step - loss: 0.6234 - accuracy: 0.6895 - val_loss: 0.5405 - val_accuracy: 0.7652 Epoch 11/1000 1/16 [>.............................] - ETA: 0s - loss: 0.7234 - accuracy: 0.6216/16 [==============================] - 0s 2ms/step - loss: 0.6178 - accuracy: 0.6934 - val_loss: 0.5374 - val_accuracy: 0.7652 [Trial complete] [Trial summary] |-Trial ID: c0ef66df3ffa96c10e2e2bae85fc9e26 |-Score: 0.7652173638343811 |-Best step: 9 > Hyperparameters: |-classification_head_1/dropout_rate: 0 |-optimizer: adam |-structured_data_block_1/dense_block_1/dropout_rate: 0.0 |-structured_data_block_1/dense_block_1/num_layers: 2 |-structured_data_block_1/dense_block_1/units_0: 32 |-structured_data_block_1/dense_block_1/units_1: 64 |-structured_data_block_1/dense_block_1/use_batchnorm: False Epoch 1/54 1/20 [>.............................] - ETA: 0s - loss: 0.7088 - accuracy: 0.5317/20 [========================>.....] - ETA: 0s - loss: 0.6610 - accuracy: 0.6420/20 [==============================] - 0s 3ms/step - loss: 0.6477 - accuracy: 0.6539 Epoch 2/54 1/20 [>.............................] - ETA: 0s - loss: 0.7955 - accuracy: 0.5918/20 [==========================>...] - ETA: 0s - loss: 0.6055 - accuracy: 0.6920/20 [==============================] - 0s 3ms/step - loss: 0.5937 - accuracy: 0.7033 Epoch 3/54 1/20 [>.............................] - ETA: 0s - loss: 0.7455 - accuracy: 0.6217/20 [========================>.....] - ETA: 0s - loss: 0.5864 - accuracy: 0.7220/20 [==============================] - 0s 3ms/step - loss: 0.5717 - accuracy: 0.7352 Epoch 4/54 1/20 [>.............................] - ETA: 0s - loss: 0.7916 - accuracy: 0.5618/20 [==========================>...] - ETA: 0s - loss: 0.5190 - accuracy: 0.7220/20 [==============================] - 0s 3ms/step - loss: 0.5068 - accuracy: 0.7384 Epoch 5/54 1/20 [>.............................] - ETA: 0s - loss: 0.7673 - accuracy: 0.6818/20 [==========================>...] - ETA: 0s - loss: 0.5247 - accuracy: 0.7420/20 [==============================] - 0s 3ms/step - loss: 0.5110 - accuracy: 0.7544 Epoch 6/54 1/20 [>.............................] - ETA: 0s - loss: 0.6668 - accuracy: 0.6818/20 [==========================>...] - ETA: 0s - loss: 0.5063 - accuracy: 0.7620/20 [==============================] - 0s 3ms/step - loss: 0.4923 - accuracy: 0.7719 Epoch 7/54 1/20 [>.............................] - ETA: 0s - loss: 0.5890 - accuracy: 0.6818/20 [==========================>...] - ETA: 0s - loss: 0.5177 - accuracy: 0.7620/20 [==============================] - 0s 3ms/step - loss: 0.5031 - accuracy: 0.7767 Epoch 8/54 1/20 [>.............................] - ETA: 0s - loss: 0.4941 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4566 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4423 - accuracy: 0.8054 Epoch 9/54 1/20 [>.............................] - ETA: 0s - loss: 0.5542 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4922 - accuracy: 0.7820/20 [==============================] - 0s 3ms/step - loss: 0.4780 - accuracy: 0.7879 Epoch 10/54 1/20 [>.............................] - ETA: 0s - loss: 0.5366 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4773 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4616 - accuracy: 0.8054 Epoch 11/54 1/20 [>.............................] - ETA: 0s - loss: 0.5197 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4724 - accuracy: 0.8020/20 [==============================] - 0s 3ms/step - loss: 0.4572 - accuracy: 0.8150 Epoch 12/54 1/20 [>.............................] - ETA: 0s - loss: 0.5889 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4865 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4692 - accuracy: 0.8006 Epoch 13/54 1/20 [>.............................] - ETA: 0s - loss: 0.4531 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4594 - accuracy: 0.7720/20 [==============================] - 0s 3ms/step - loss: 0.4458 - accuracy: 0.7847 Epoch 14/54 1/20 [>.............................] - ETA: 0s - loss: 0.4767 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4649 - accuracy: 0.7820/20 [==============================] - 0s 3ms/step - loss: 0.4464 - accuracy: 0.7959 Epoch 15/54 1/20 [>.............................] - ETA: 0s - loss: 0.5535 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4507 - accuracy: 0.8020/20 [==============================] - 0s 3ms/step - loss: 0.4358 - accuracy: 0.8102 Epoch 16/54 1/20 [>.............................] - ETA: 0s - loss: 0.5714 - accuracy: 0.7819/20 [===========================>..] - ETA: 0s - loss: 0.4497 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4420 - accuracy: 0.8022 Epoch 17/54 1/20 [>.............................] - ETA: 0s - loss: 0.5527 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4730 - accuracy: 0.8020/20 [==============================] - 0s 3ms/step - loss: 0.4567 - accuracy: 0.8134 Epoch 18/54 1/20 [>.............................] - ETA: 0s - loss: 0.4463 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4503 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4341 - accuracy: 0.8054 Epoch 19/54 1/20 [>.............................] - ETA: 0s - loss: 0.5689 - accuracy: 0.7519/20 [===========================>..] - ETA: 0s - loss: 0.4518 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4424 - accuracy: 0.7959 Epoch 20/54 1/20 [>.............................] - ETA: 0s - loss: 0.6748 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4583 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4414 - accuracy: 0.8022 Epoch 21/54 1/20 [>.............................] - ETA: 0s - loss: 0.5214 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4366 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4210 - accuracy: 0.8214 Epoch 22/54 1/20 [>.............................] - ETA: 0s - loss: 0.5192 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4446 - accuracy: 0.8020/20 [==============================] - 0s 3ms/step - loss: 0.4345 - accuracy: 0.8102 Epoch 23/54 1/20 [>.............................] - ETA: 0s - loss: 0.4957 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4292 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4153 - accuracy: 0.8214 Epoch 24/54 1/20 [>.............................] - ETA: 0s - loss: 0.5285 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4391 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4238 - accuracy: 0.8262 Epoch 25/54 1/20 [>.............................] - ETA: 0s - loss: 0.5750 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4353 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4227 - accuracy: 0.8214 Epoch 26/54 1/20 [>.............................] - ETA: 0s - loss: 0.5240 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4439 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4325 - accuracy: 0.8214 Epoch 27/54 1/20 [>.............................] - ETA: 0s - loss: 0.5631 - accuracy: 0.7118/20 [==========================>...] - ETA: 0s - loss: 0.4357 - accuracy: 0.7920/20 [==============================] - 0s 3ms/step - loss: 0.4200 - accuracy: 0.8054 Epoch 28/54 1/20 [>.............................] - ETA: 0s - loss: 0.5509 - accuracy: 0.8418/20 [==========================>...] - ETA: 0s - loss: 0.4116 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3992 - accuracy: 0.8309 Epoch 29/54 1/20 [>.............................] - ETA: 0s - loss: 0.5300 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4295 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4145 - accuracy: 0.8246 Epoch 30/54 1/20 [>.............................] - ETA: 0s - loss: 0.5644 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4213 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4067 - accuracy: 0.8214 Epoch 31/54 1/20 [>.............................] - ETA: 0s - loss: 0.4828 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4098 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.3952 - accuracy: 0.8230 Epoch 32/54 1/20 [>.............................] - ETA: 0s - loss: 0.4392 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4129 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.3986 - accuracy: 0.8198 Epoch 33/54 1/20 [>.............................] - ETA: 0s - loss: 0.4751 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.4084 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.3929 - accuracy: 0.8262 Epoch 34/54 1/20 [>.............................] - ETA: 0s - loss: 0.5702 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4053 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3921 - accuracy: 0.8405 Epoch 35/54 1/20 [>.............................] - ETA: 0s - loss: 0.5798 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.4133 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3983 - accuracy: 0.8325 Epoch 36/54 1/20 [>.............................] - ETA: 0s - loss: 0.5477 - accuracy: 0.7519/20 [===========================>..] - ETA: 0s - loss: 0.4206 - accuracy: 0.8120/20 [==============================] - 0s 3ms/step - loss: 0.4111 - accuracy: 0.8214 Epoch 37/54 1/20 [>.............................] - ETA: 0s - loss: 0.4746 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.3898 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3768 - accuracy: 0.8389 Epoch 38/54 1/20 [>.............................] - ETA: 0s - loss: 0.4018 - accuracy: 0.8418/20 [==========================>...] - ETA: 0s - loss: 0.3853 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3733 - accuracy: 0.8357 Epoch 39/54 1/20 [>.............................] - ETA: 0s - loss: 0.4808 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4058 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3945 - accuracy: 0.8373 Epoch 40/54 1/20 [>.............................] - ETA: 0s - loss: 0.5848 - accuracy: 0.7518/20 [==========================>...] - ETA: 0s - loss: 0.3917 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3813 - accuracy: 0.8309 Epoch 41/54 1/20 [>.............................] - ETA: 0s - loss: 0.4457 - accuracy: 0.7820/20 [==============================] - ETA: 0s - loss: 0.3719 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3719 - accuracy: 0.8373 Epoch 42/54 1/20 [>.............................] - ETA: 0s - loss: 0.4841 - accuracy: 0.7819/20 [===========================>..] - ETA: 0s - loss: 0.3947 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3856 - accuracy: 0.8405 Epoch 43/54 1/20 [>.............................] - ETA: 0s - loss: 0.4550 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.4005 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3844 - accuracy: 0.8373 Epoch 44/54 1/20 [>.............................] - ETA: 0s - loss: 0.4141 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.3850 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3735 - accuracy: 0.8437 Epoch 45/54 1/20 [>.............................] - ETA: 0s - loss: 0.5307 - accuracy: 0.7819/20 [===========================>..] - ETA: 0s - loss: 0.3839 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3754 - accuracy: 0.8357 Epoch 46/54 1/20 [>.............................] - ETA: 0s - loss: 0.4849 - accuracy: 0.7519/20 [===========================>..] - ETA: 0s - loss: 0.3710 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3630 - accuracy: 0.8437 Epoch 47/54 1/20 [>.............................] - ETA: 0s - loss: 0.3873 - accuracy: 0.8419/20 [===========================>..] - ETA: 0s - loss: 0.3604 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3521 - accuracy: 0.8437 Epoch 48/54 1/20 [>.............................] - ETA: 0s - loss: 0.4314 - accuracy: 0.7819/20 [===========================>..] - ETA: 0s - loss: 0.3736 - accuracy: 0.8520/20 [==============================] - 0s 3ms/step - loss: 0.3650 - accuracy: 0.8565 Epoch 49/54 1/20 [>.............................] - ETA: 0s - loss: 0.4029 - accuracy: 0.8718/20 [==========================>...] - ETA: 0s - loss: 0.3775 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3652 - accuracy: 0.8357 Epoch 50/54 1/20 [>.............................] - ETA: 0s - loss: 0.4561 - accuracy: 0.8118/20 [==========================>...] - ETA: 0s - loss: 0.3712 - accuracy: 0.8520/20 [==============================] - 0s 3ms/step - loss: 0.3590 - accuracy: 0.8581 Epoch 51/54 1/20 [>.............................] - ETA: 0s - loss: 0.4574 - accuracy: 0.7118/20 [==========================>...] - ETA: 0s - loss: 0.3812 - accuracy: 0.8220/20 [==============================] - 0s 3ms/step - loss: 0.3678 - accuracy: 0.8357 Epoch 52/54 1/20 [>.............................] - ETA: 0s - loss: 0.5078 - accuracy: 0.8718/20 [==========================>...] - ETA: 0s - loss: 0.4007 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3848 - accuracy: 0.8437 Epoch 53/54 1/20 [>.............................] - ETA: 0s - loss: 0.5683 - accuracy: 0.7818/20 [==========================>...] - ETA: 0s - loss: 0.3683 - accuracy: 0.8320/20 [==============================] - 0s 3ms/step - loss: 0.3588 - accuracy: 0.8437 Epoch 54/54 1/20 [>.............................] - ETA: 0s - loss: 0.3632 - accuracy: 0.8418/20 [==========================>...] - ETA: 0s - loss: 0.3854 - accuracy: 0.8420/20 [==============================] - 0s 3ms/step - loss: 0.3714 - accuracy: 0.8517 Traceback (most recent call last): File "structured_data_classification.py", line 37, in <module> predicted_y = clf.predict(x_test_df) File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/autokeras/tasks/structured_data.py", line 114, in predict **kwargs) File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/autokeras/auto_model.py", line 414, in predict model = self.tuner.get_best_model() File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/autokeras/engine/tuner.py", line 49, in get_best_model model = super().get_best_models()[0] File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/kerastuner/engine/tuner.py", line 258, in get_best_models return super(Tuner, self).get_best_models(num_models) File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/kerastuner/engine/base_tuner.py", line 241, in get_best_models models = [self.load_model(trial) for trial in best_trials] File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/kerastuner/engine/base_tuner.py", line 241, in <listcomp> models = [self.load_model(trial) for trial in best_trials] File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/kerastuner/engine/tuner.py", line 184, in load_model trial.trial_id, best_epoch)) File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 250, in load_weights return super(Model, self).load_weights(filepath, by_name, skip_mismatch) File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/tensorflow/python/keras/engine/network.py", line 1231, in load_weights py_checkpoint_reader.NewCheckpointReader(filepath) File "/home/gsong/anaconda3/envs/tf2/lib/python3.6/site-packages/tensorflow/python/training/py_checkpoint_reader.py", line 95, in NewCheckpointReader return CheckpointReader(compat.as_bytes(filepattern)) ValueError: Unsuccessful TensorSliceReader constructor: Failed to get matching files on akeras_models/song4/trial_05b23cac10d5f471c6d77d73f3c7000e/checkpoints/epoch_43/checkpoint: Not found: akeras_models/song4/trial_05b23cac10d5f471c6d77d73f3c7000e/checkpoints/epoch_43; No such file or directory ### Setup Details Include the details about the versions of: - OS type and version: Unbuntu 18.04 - Python: 3.6 - autokeras: 1.0.3 - keras-tuner: 1.0.2rc0 - scikit-learn: - numpy: - pandas: - tensorflow: 2.2.0 no GPU used ### Additional context <!--- If applicable, add any other context about the problem. -->
closed
2020-06-26T19:00:50Z
2020-07-29T23:31:20Z
https://github.com/keras-team/autokeras/issues/1215
[ "bug report", "pinned" ]
chenmin1968
14
charlesq34/pointnet
tensorflow
67
OSError: raw write() returned invalid length 42 (should have been between 0 and 21)
Hello. Pointnet was executed using python2.7, cuDNN5.1, CUDA8.0 under Windows 10 64bit. The Error has been happened as follow. Let me know how to solve it. (tensorflow) C:\WORK\pointnet-master>python train.py 'cp' は、内部コマンドまたは外部コマンド、 操作可能なプログラムまたはバッチ ファイルとして認識されていません。 'cp' は、内部コマンドまたは外部コマンド、 操作可能なプログラムまたはバッチ ファイルとして認識されていません。 Tensor("Placeholder_2:0", shape=(), dtype=bool, device=/device:GPU:0) 2017-12-22 23:33:14.875482: I C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2 **** EPOCH 000 **** ----0----- mean loss: 3.888857 mean loss: 3.888857 Traceback (most recent call last): File "train.py", line 260, in <module> train() File "train.py", line 161, in train train_one_epoch(sess, ops, train_writer) File "train.py", line 212, in train_one_epoch log_string('mean loss: %f' % (loss_sum / float(num_batches))) File "train.py", line 70, in log_string print(out_str) OSError: raw write() returned invalid length 42 (should have been between 0 and 21) Yoshiyuki
closed
2017-12-22T14:47:47Z
2017-12-27T07:57:30Z
https://github.com/charlesq34/pointnet/issues/67
[]
yoshiyama
1
aidlearning/AidLearning-FrameWork
jupyter
93
After a while it is constantly stuck on the Loading screen
After using AID for a while (like just running the examples) the Desktop will reboot to the animated Loading screen and get stuck there. Continuously playing the animations. The only way to fix this is closing the AID desktop and relaunching the app. This is a very new device – Note 10+, 1TB of storage. Nothing else is running on the phone (fresh reboot)
closed
2020-03-12T18:57:14Z
2020-07-29T01:11:24Z
https://github.com/aidlearning/AidLearning-FrameWork/issues/93
[]
adamhill
2
marcomusy/vedo
numpy
333
creating subplots
Hi @marcomusy , I would like to create a figure with subplots (please check below) ![image](https://user-images.githubusercontent.com/29662579/110117753-4f818780-7ddf-11eb-8c11-e6b81036c995.png) generally, I would do plt = Plotter(shape=(3,2)) However, I am not sure how to place single figure in the first column. Could you please offer some suggestions?
closed
2021-03-05T12:53:49Z
2021-03-05T16:31:44Z
https://github.com/marcomusy/vedo/issues/333
[]
DeepaMahm
1
tqdm/tqdm
pandas
1,023
[Jupyter Lab] visual output bug in nested for loops
- [X] I have marked all applicable categories: + [x] exception-raising bug + [X] visual output bug + [x] documentation request (i.e. "X is missing from the documentation." If instead I want to ask "how to use X?" I understand [StackOverflow#tqdm] is more appropriate) + [x] new feature request - [X] I have visited the [source website], and in particular read the [known issues] - [X] I have searched through the [issue tracker] for duplicates - [X] I have mentioned version numbers, operating system and environment, where applicable ### Environment ```python import tqdm, sys print(tqdm.__version__, sys.version, sys.platform) # 4.48.2 3.7.4 (default, Aug 13 2019, 15:17:50) # [Clang 4.0.1 (tags/RELEASE_401/final)] darwin ``` `conda list` output: ``` ipykernel 5.1.4 py37h39e3cac_0 ipython 7.12.0 py37h5ca1d4c_0 ipython_genutils 0.2.0 py37_0 ipywidgets 7.5.1 py_0 jupyter 1.0.0 py37_7 jupyter_client 5.3.4 py37_0 jupyter_console 6.1.0 py_0 jupyter_core 4.6.1 py37_0 jupyterlab 2.1.5 py_0 conda-forge jupyterlab_server 1.2.0 py_0 conda-forge ``` ### Visual output ![image](https://user-images.githubusercontent.com/19281800/90973478-fb0a6f00-e554-11ea-9020-010a73777ebf.png) [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q= [StackOverflow#tqdm]: https://stackoverflow.com/questions/tagged/tqdm
open
2020-08-23T07:26:36Z
2023-05-11T07:10:53Z
https://github.com/tqdm/tqdm/issues/1023
[]
hongshaoyang
7
plotly/dash
flask
3,211
[BUG] Version 3.0.0rc3 - Default Dropdown Value Bug
When selecting another option from the dropdown that is not the default option, it changes normally, but when returning to the default option, it does not switch back to it. It is possible to see in the video that "Tratar + Ignorar" was the default option and after I change that, I can't switch back to it. https://github.com/user-attachments/assets/3f377f08-61fe-474f-a86b-0230d0af542c Code: ```python dbc.Label("Escolha o Tratamento de inviabilidades", className="d-flex justify-content-center", style={"color": "#002f4a", "font-weight": "bold"}), dcc.Dropdown( id='inviabilidade-estudo', options=[ {"label": "Tratar inviabilidades", "value": 1}, {"label": "Ignorar inviabilidades", "value": 2}, {"label": "Tratar + Ignorar", "value": 3}, {"label": "Tratamento True", "value": 4} ], value=3 ) ``` Versions: dash==3.0.0rc3 dash-bootstrap-components==2.0.0b2 dash-breakpoints==0.1.0 dash-core-components==2.0.0 dash-html-components==2.0.0 dash-table==5.0.0 dash-ag-grid==31.3.1rc1 dash_auth==2.3.0 dash-mantine-components==0.12.1
closed
2025-03-11T21:35:25Z
2025-03-12T12:49:33Z
https://github.com/plotly/dash/issues/3211
[]
xiforivia
0
custom-components/pyscript
jupyter
352
app : config type TypeError: string indices must be integers
Could you help please I'm going crazy it's my first app with pyscript . the state_trigger is ok but when want to use the app I get an error for config : <2022-05-29 03:36:56 INFO (MainThread) [custom_components.pyscript.global_ctx] Reloaded /config/pyscript/currentgen.py 2022-05-29 03:36:56 INFO (MainThread) [custom_components.pyscript.file.currentgen.currentoff_startup] {'allow_all_imports': True, 'hass_is_global': True, 'apps': {'currentoff': [{'dev': 'dev1', 'switch_id': 'switch.salon_socket_1', 'CTlim': 0.7, 'DTref': 0, 'DDref': 0}, {'dev': 'dev2', 'switch_id': 'switch.salon_socket_1', 'CTlim': 0.5, 'DTref': 30, 'DDref': 10}, {'dev': 'dev3', 'switch_id': 'switch.salon_socket_1', 'CTlim': 0.3, 'DTref': 60, 'DDref': 10}]}} 2022-05-29 03:36:56 INFO (MainThread) [custom_components.pyscript.file.currentgen.currentoff_startup] app allow_all_imports 2022-05-29 03:36:56 INFO (MainThread) [custom_components.pyscript.file.currentgen.currentoff_startup] app hass_is_global 2022-05-29 03:36:56 INFO (MainThread) [custom_components.pyscript.file.currentgen.currentoff_startup] app apps 2022-05-29 03:36:56 ERROR (MainThread) [custom_components.pyscript.file.currentgen.currentoff_startup] Exception in <file.currentgen.currentoff_startup> line 53: @state_trigger(f"float(sensor.current) < {config['CTlim']} and {config['switch_id']} == 'on' and vcur == False", state_hold_false=0) ^ TypeError: string indices must be integers @state_trigger(f"float(sensor.current) < {config['CTlim']} and {config['switch_id']} == 'on' and vcur == False", state_hold_false=0) ^ TypeError: string indices must be integers > `########### the config yaml file : allow_all_imports: true hass_is_global: true apps: currentoff: - dev : dev1 switch_id: switch.salon_socket_1 CTlim : 0.7 DTref : 0 DDref: 0 - dev : dev2 switch_id: switch.prise2 Socket 1 CTlim : 0.5 DTref : 30 DDref: 10 - dev : dev3 switch_id: switch.hall_socket_1 CTlim : 0.3 DTref : 60 DDref: 10 ''' registered_triggers = [] global_vars = {} def make_currentoff(config): vcur = False #global_vars[f"{config['cur']}"] @state_trigger(f"float(sensor.current) < {config['CTlim']} and {config['switch_id']} == 'on' and vcur == False", state_hold_false=0) def currentoff(): global global_vars dev_id = config["dev"] DTref = config["DTref"] task.unique(f"currentoff_{dev_id}") switch.turn_off(entity_id=config["switch_id"]) vcur = True #global_vars[f"{config['cur']}"] = True task.sleep(float(1)) vswitch_id = config["switch_id"] log.info(f"currentoff etat apres lancer trigger {vswitch_id}") if float(DTref) == 0 : return task.sleep(float(DTref)) switch.turn_on(entity_id=config["switch_id"]) task.sleep(float(1)) log.info(f"currentoff {vswitch_id}") task.sleep(float(config["DDref"])) switch.turn_off(entity_id=config["switch_id"]) vcur = False #global_vars[f"{config['cur']}"] = False task.sleep(float(1)) log.info(f"currentoff {vswitch_id}") registered_triggers.append(currentoff) @time_trigger('startup') def currentoff_startup(): log.info(pyscript.config) for app in pyscript.config: log.info("app "+app) make_currentoff(app)`
closed
2022-05-29T02:57:35Z
2022-05-30T01:43:02Z
https://github.com/custom-components/pyscript/issues/352
[]
kabcasa
2
vllm-project/vllm
pytorch
15,105
[Bug]: Extremely slow inference + big waste of memory on 0.8.0
### Your current environment 2xRTX3090 32GB RAM Driver Version: 570.124.04 nvcc --version: ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2024 NVIDIA Corporation Built on Thu_Mar_28_02:18:24_PDT_2024 Cuda compilation tools, release 12.4, V12.4.131 Build cuda_12.4.r12.4/compiler.34097967_0 ``` ### 🐛 Describe the bug Hello! I've encountered an unpleasant bug: When I run Qwen QwQ in AWQ or GPTQ 4-bit quantization on version 0.8.0, the text generation speed is only 7 tokens per second, whereas on version 0.7.3 it was consistently 45 tokens per second. Additionally, memory consumption has sharply increased—while using the same context window that I used with 0.7.3, Qwen now throws a "CUDA out of memory" error. The issue was only resolved by adding the parameter `--disable-mm-preprocessor-cache`, which allowed Qwen AWQ to barely fit into two 3090 GPUs, consuming exactly 24068 MiB on each. On version 0.7.3, this number was only 19-20 GB. Please help me, I would be very grateful! The command I use to run both versions 0.8.0 and 0.7.3 is the same (except for the --disable-mm-preprocessor-cache option): ```bash CUDA_VISIBLE_DEVICES=0,1 CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_LAUNCH_BLOCKING=1 vllm serve OPEA_QwQ-32B-int4-AutoRound-gptq-sym --dtype auto --api-key token-abc123 --host 0.0.0.0 --port 8000 --tensor-parallel-size 2 --gpu-memory-utilization 0.95 --max-model-len 30000 --cpu-offload-gb 0 --device cuda --disable-custom-all-reduce --enable-reasoning --reasoning-parser deepseek_r1 --served-model-name AlexBefest/Qwen_QwQ-32B-AWQ --block-size 32 --max-seq-len-to-capture 30000 --disable-mm-preprocessor-cache ``` ### Logs Using --disable-mm-preprocessor-cache: ```bash (base) root@287aa8679d31:/workdir# CUDA_VISIBLE_DEVICES=0,1 CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_LAUNCH_BLOCKING=1 vllm serve Qwen_QwQ-32B-AWQ --dtype auto --api-key token-abc123 --host 0.0.0.0 --port 8000 --tensor-parallel-size 2 --gpu-memory-utilization 0.9 --max-model-len 30000 --cpu-offload-gb 0 --device cuda --disable-custom-all-reduce --enable-reasoning --reasoning-parser deepseek_r 1 --served-model-name AlexBefest/Qwen_QwQ-32B-AWQ --max-seq-len-to-capture 30000 --disable-mm-preprocessor-cache INFO 03-19 07:08:38 [__init__.py:256] Automatically detected platform cuda. INFO 03-19 07:08:38 [api_server.py:977] vLLM API server version 0.8.0 INFO 03-19 07:08:38 [api_server.py:978] args: Namespace(subparser='serve', model_tag='Qwen_QwQ-32B-AWQ', config='', host='0.0.0.0', port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='token-abc123', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='Qwen_QwQ-32B-AWQ', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=30000, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=2, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0.0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=30000, disable_custom_all_reduce=True, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=True, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='cuda', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['AlexBefest/Qwen_QwQ-32B-AWQ'], qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=True, reasoning_parser='deepseek_r1', disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7bec2da64680>) INFO 03-19 07:08:42 [config.py:583] This model supports multiple tasks: {'embed', 'classify', 'reward', 'score', 'generate'}. Defaulting to 'generate'. INFO 03-19 07:08:42 [awq_marlin.py:114] The model is convertible to awq_marlin during runtime. Using awq_marlin kernel. INFO 03-19 07:08:43 [config.py:1515] Defaulting to use mp for distributed inference INFO 03-19 07:08:43 [config.py:1693] Chunked prefill is enabled with max_num_batched_tokens=2048. INFO 03-19 07:08:45 [__init__.py:256] Automatically detected platform cuda. INFO 03-19 07:08:46 [core.py:53] Initializing a V1 LLM engine (v0.8.0) with config: model='Qwen_QwQ-32B-AWQ', speculative_config=None, tokenizer='Qwen_QwQ-32B-AWQ', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=30000, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=True, quantization=awq_marlin, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend='deepseek_r1'), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=AlexBefest/Qwen_QwQ-32B-AWQ, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=True, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512} WARNING 03-19 07:08:46 [multiproc_worker_utils.py:310] Reducing Torch parallelism from 10 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. INFO 03-19 07:08:46 [custom_cache_manager.py:19] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager INFO 03-19 07:08:46 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1], buffer_handle=(2, 10485760, 10, 'psm_beb3b9f4'), local_subscribe_addr='ipc:///tmp/ce9eccf8-bbce-4307-8cf2-67e527f7bbd5', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 03-19 07:08:48 [__init__.py:256] Automatically detected platform cuda. WARNING 03-19 07:08:49 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7f61187e0740> (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:49 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_8542c68d'), local_subscribe_addr='ipc:///tmp/e9ec4cbd-1549-49b7-a170-b2c893ca601f', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 03-19 07:08:51 [__init__.py:256] Automatically detected platform cuda. WARNING 03-19 07:08:53 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7eb68b240740> (VllmWorker rank=1 pid=2171) INFO 03-19 07:08:53 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_f9144cb5'), local_subscribe_addr='ipc:///tmp/9b5a184a-0e3d-4651-b866-a1040b73bc65', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:53 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorker rank=1 pid=2171) INFO 03-19 07:08:53 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:53 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorker rank=1 pid=2171) INFO 03-19 07:08:53 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:53 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_feb1ae88'), local_subscribe_addr='ipc:///tmp/ee6a85d1-d404-463e-aa96-dddabc0e21df', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=1 pid=2171) INFO 03-19 07:08:53 [parallel_state.py:967] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1 (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:53 [parallel_state.py:967] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0 (VllmWorker rank=1 pid=2171) INFO 03-19 07:08:53 [cuda.py:215] Using Flash Attention backend on V1 engine. (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:53 [cuda.py:215] Using Flash Attention backend on V1 engine. (VllmWorker rank=1 pid=2171) INFO 03-19 07:08:53 [gpu_model_runner.py:1128] Starting to load model Qwen_QwQ-32B-AWQ... (VllmWorker rank=0 pid=2154) INFO 03-19 07:08:53 [gpu_model_runner.py:1128] Starting to load model Qwen_QwQ-32B-AWQ... (VllmWorker rank=0 pid=2154) WARNING 03-19 07:08:53 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer. (VllmWorker rank=1 pid=2171) WARNING 03-19 07:08:53 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer. Loading safetensors checkpoint shards: 0% Completed | 0/5 [00:00<?, ?it/s] Loading safetensors checkpoint shards: 20% Completed | 1/5 [00:10<00:42, 10.68s/it] Loading safetensors checkpoint shards: 40% Completed | 2/5 [00:21<00:32, 10.85s/it] Loading safetensors checkpoint shards: 60% Completed | 3/5 [00:33<00:22, 11.14s/it] Loading safetensors checkpoint shards: 80% Completed | 4/5 [00:43<00:10, 10.97s/it] Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:53<00:00, 10.41s/it] Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:53<00:00, 10.65s/it] (VllmWorker rank=0 pid=2154) (VllmWorker rank=1 pid=2171) INFO 03-19 07:09:47 [loader.py:429] Loading weights took 53.30 seconds (VllmWorker rank=0 pid=2154) INFO 03-19 07:09:47 [loader.py:429] Loading weights took 53.30 seconds (VllmWorker rank=0 pid=2154) INFO 03-19 07:09:48 [gpu_model_runner.py:1140] Model loading took 9.0968 GB and 54.175259 seconds (VllmWorker rank=1 pid=2171) INFO 03-19 07:09:48 [gpu_model_runner.py:1140] Model loading took 9.0968 GB and 54.463499 seconds (VllmWorker rank=0 pid=2154) INFO 03-19 07:09:59 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/68067b4c1d/rank_0_0 for vLLM's torch.compile (VllmWorker rank=0 pid=2154) INFO 03-19 07:09:59 [backends.py:419] Dynamo bytecode transform time: 10.99 s (VllmWorker rank=1 pid=2171) INFO 03-19 07:09:59 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/68067b4c1d/rank_1_0 for vLLM's torch.compile (VllmWorker rank=1 pid=2171) INFO 03-19 07:09:59 [backends.py:419] Dynamo bytecode transform time: 11.04 s (VllmWorker rank=0 pid=2154) INFO 03-19 07:10:02 [backends.py:132] Cache the graph of shape None for later use (VllmWorker rank=1 pid=2171) INFO 03-19 07:10:02 [backends.py:132] Cache the graph of shape None for later use (VllmWorker rank=0 pid=2154) INFO 03-19 07:10:37 [backends.py:144] Compiling a graph for general shape takes 37.07 s (VllmWorker rank=1 pid=2171) INFO 03-19 07:10:37 [backends.py:144] Compiling a graph for general shape takes 37.58 s (VllmWorker rank=0 pid=2154) INFO 03-19 07:11:09 [monitor.py:33] torch.compile takes 48.05 s in total (VllmWorker rank=1 pid=2171) INFO 03-19 07:11:09 [monitor.py:33] torch.compile takes 48.62 s in total INFO 03-19 07:11:10 [kv_cache_utils.py:537] GPU KV cache size: 48,928 tokens INFO 03-19 07:11:10 [kv_cache_utils.py:540] Maximum concurrency for 30,000 tokens per request: 1.63x INFO 03-19 07:11:10 [kv_cache_utils.py:537] GPU KV cache size: 48,928 tokens INFO 03-19 07:11:10 [kv_cache_utils.py:540] Maximum concurrency for 30,000 tokens per request: 1.63x (VllmWorker rank=1 pid=2171) INFO 03-19 07:12:00 [gpu_model_runner.py:1436] Graph capturing finished in 50 secs, took 2.28 GiB (VllmWorker rank=0 pid=2154) INFO 03-19 07:12:00 [gpu_model_runner.py:1436] Graph capturing finished in 50 secs, took 2.28 GiB INFO 03-19 07:12:01 [core.py:138] init engine (profile, create kv cache, warmup model) took 133.53 seconds INFO 03-19 07:12:01 [serving_chat.py:115] Using default chat sampling params from model: {'temperature': 0.6, 'top_k': 40, 'top_p': 0.95} INFO 03-19 07:12:01 [serving_completion.py:61] Using default completion sampling params from model: {'temperature': 0.6, 'top_k': 40, 'top_p': 0.95} INFO 03-19 07:12:01 [api_server.py:1024] Starting vLLM API server on http://0.0.0.0:8000 INFO 03-19 07:12:01 [launcher.py:26] Available routes are: INFO 03-19 07:12:01 [launcher.py:34] Route: /openapi.json, Methods: GET, HEAD INFO 03-19 07:12:01 [launcher.py:34] Route: /docs, Methods: GET, HEAD INFO 03-19 07:12:01 [launcher.py:34] Route: /docs/oauth2-redirect, Methods: GET, HEAD INFO 03-19 07:12:01 [launcher.py:34] Route: /redoc, Methods: GET, HEAD INFO 03-19 07:12:01 [launcher.py:34] Route: /health, Methods: GET INFO 03-19 07:12:01 [launcher.py:34] Route: /load, Methods: GET INFO 03-19 07:12:01 [launcher.py:34] Route: /ping, Methods: GET, POST INFO 03-19 07:12:01 [launcher.py:34] Route: /tokenize, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /detokenize, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/models, Methods: GET INFO 03-19 07:12:01 [launcher.py:34] Route: /version, Methods: GET INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/chat/completions, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/completions, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/embeddings, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /pooling, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /score, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/score, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/audio/transcriptions, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /rerank, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v1/rerank, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /v2/rerank, Methods: POST INFO 03-19 07:12:01 [launcher.py:34] Route: /invocations, Methods: POST INFO: Started server process [2040] INFO: Waiting for application startup. INFO: Application startup complete. ``` Without --disable-mm-preprocessor-cache: ```bash (base) root@287aa8679d31:/workdir# CUDA_VISIBLE_DEVICES=0,1 CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_LAUNCH_BLOCKING=1 vllm serve Qwen_QwQ-32B-AWQ --dtype auto --api-key token-abc123 --host 0.0.0.0 --port 8000 --tensor-parallel-size 2 --gpu-memory-utilization 0.95 --max-model-len 30000 --cpu-offload-gb 0 --device cuda --disable-custom-all-reduce --enable-reasoning --reasoning-parser deepseek _r1 --served-model-name AlexBefest/Qwen_QwQ-32B-AWQ --block-size 32 --max-seq-len-to-capture 30000 INFO 03-19 07:26:21 [__init__.py:256] Automatically detected platform cuda. INFO 03-19 07:26:22 [api_server.py:977] vLLM API server version 0.8.0 INFO 03-19 07:26:22 [api_server.py:978] args: Namespace(subparser='serve', model_tag='Qwen_QwQ-32B-AWQ', config='', host='0.0.0.0', port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='token-abc123', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='Qwen_QwQ-32B-AWQ', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=30000, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=2, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=32, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0.0, gpu_memory_utilization=0.95, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=30000, disable_custom_all_reduce=True, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='cuda', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['AlexBefest/Qwen_QwQ-32B-AWQ'], qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=True, reasoning_parser='deepseek_r1', disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x70a528e44680>) INFO 03-19 07:26:25 [config.py:583] This model supports multiple tasks: {'embed', 'classify', 'reward', 'generate', 'score'}. Defaulting to 'generate'. INFO 03-19 07:26:26 [awq_marlin.py:114] The model is convertible to awq_marlin during runtime. Using awq_marlin kernel. INFO 03-19 07:26:26 [config.py:1515] Defaulting to use mp for distributed inference INFO 03-19 07:26:26 [config.py:1693] Chunked prefill is enabled with max_num_batched_tokens=2048. INFO 03-19 07:26:28 [__init__.py:256] Automatically detected platform cuda. INFO 03-19 07:26:29 [core.py:53] Initializing a V1 LLM engine (v0.8.0) with config: model='Qwen_QwQ-32B-AWQ', speculative_config=None, tokenizer='Qwen_QwQ-32B-AWQ', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=30000, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=True, quantization=awq_marlin, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend='deepseek_r1'), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=AlexBefest/Qwen_QwQ-32B-AWQ, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512} WARNING 03-19 07:26:29 [multiproc_worker_utils.py:310] Reducing Torch parallelism from 10 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed. INFO 03-19 07:26:29 [custom_cache_manager.py:19] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager INFO 03-19 07:26:29 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1], buffer_handle=(2, 10485760, 10, 'psm_bb033d9c'), local_subscribe_addr='ipc:///tmp/a2fc9108-5a69-4e68-a24d-ee50a0d20326', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 03-19 07:26:31 [__init__.py:256] Automatically detected platform cuda. WARNING 03-19 07:26:33 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x73e7feb3a990> (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:33 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_e8fce57c'), local_subscribe_addr='ipc:///tmp/4ed9f7dc-1a74-4c8e-a8cf-1ad57aaa1d98', remote_subscribe_addr=None, remote_addr_ipv6=False) INFO 03-19 07:26:35 [__init__.py:256] Automatically detected platform cuda. WARNING 03-19 07:26:36 [utils.py:2282] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7402d36d3080> (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:36 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_7277707f'), local_subscribe_addr='ipc:///tmp/437feb63-2089-4cda-a88d-ffc5c5c0cd8e', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:36 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:36 [utils.py:925] Found nccl from library libnccl.so.2 (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:36 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:36 [pynccl.py:69] vLLM is using nccl==2.21.5 (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:36 [shm_broadcast.py:258] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_4229fceb'), local_subscribe_addr='ipc:///tmp/b60d89c4-f906-4be3-8728-d0344f13458c', remote_subscribe_addr=None, remote_addr_ipv6=False) (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:36 [parallel_state.py:967] rank 1 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 1 (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:36 [parallel_state.py:967] rank 0 in world size 2 is assigned as DP rank 0, PP rank 0, TP rank 0 (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:36 [cuda.py:215] Using Flash Attention backend on V1 engine. (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:36 [cuda.py:215] Using Flash Attention backend on V1 engine. (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:36 [gpu_model_runner.py:1128] Starting to load model Qwen_QwQ-32B-AWQ... (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:36 [gpu_model_runner.py:1128] Starting to load model Qwen_QwQ-32B-AWQ... (VllmWorker rank=0 pid=2961) WARNING 03-19 07:26:37 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer. Loading safetensors checkpoint shards: 0% Completed | 0/5 [00:00<?, ?it/s] (VllmWorker rank=1 pid=2978) WARNING 03-19 07:26:37 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer. Loading safetensors checkpoint shards: 20% Completed | 1/5 [00:00<00:02, 1.51it/s] Loading safetensors checkpoint shards: 40% Completed | 2/5 [00:01<00:02, 1.44it/s] Loading safetensors checkpoint shards: 60% Completed | 3/5 [00:02<00:01, 1.43it/s] Loading safetensors checkpoint shards: 80% Completed | 4/5 [00:02<00:00, 1.56it/s] Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:03<00:00, 1.74it/s] Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:03<00:00, 1.62it/s] (VllmWorker rank=0 pid=2961) (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:40 [loader.py:429] Loading weights took 3.13 seconds (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:41 [gpu_model_runner.py:1140] Model loading took 9.0970 GB and 3.917567 seconds (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:42 [loader.py:429] Loading weights took 5.21 seconds (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:43 [gpu_model_runner.py:1140] Model loading took 9.0970 GB and 6.210210 seconds (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:54 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/68067b4c1d/rank_1_0 for vLLM's torch.compile (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:54 [backends.py:419] Dynamo bytecode transform time: 10.80 s (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:54 [backends.py:409] Using cache directory: /root/.cache/vllm/torch_compile_cache/68067b4c1d/rank_0_0 for vLLM's torch.compile (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:54 [backends.py:419] Dynamo bytecode transform time: 11.01 s (VllmWorker rank=1 pid=2978) INFO 03-19 07:26:55 [backends.py:115] Directly load the compiled graph for shape None from the cache (VllmWorker rank=0 pid=2961) INFO 03-19 07:26:56 [backends.py:115] Directly load the compiled graph for shape None from the cache (VllmWorker rank=0 pid=2961) INFO 03-19 07:27:07 [monitor.py:33] torch.compile takes 11.01 s in total (VllmWorker rank=1 pid=2978) INFO 03-19 07:27:07 [monitor.py:33] torch.compile takes 10.80 s in total INFO 03-19 07:27:08 [kv_cache_utils.py:537] GPU KV cache size: 58,816 tokens INFO 03-19 07:27:08 [kv_cache_utils.py:540] Maximum concurrency for 30,000 tokens per request: 1.96x INFO 03-19 07:27:08 [kv_cache_utils.py:537] GPU KV cache size: 58,816 tokens INFO 03-19 07:27:08 [kv_cache_utils.py:540] Maximum concurrency for 30,000 tokens per request: 1.96x (VllmWorker rank=0 pid=2961) INFO 03-19 07:27:52 [gpu_model_runner.py:1436] Graph capturing finished in 44 secs, took 2.28 GiB (VllmWorker rank=1 pid=2978) INFO 03-19 07:27:52 [gpu_model_runner.py:1436] Graph capturing finished in 44 secs, took 2.28 GiB (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] WorkerProc hit an exception: %s (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] WorkerProc hit an exception: %s (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] Traceback (most recent call last): (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] Traceback (most recent call last): (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1308, in _dummy_sampler_run (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1308, in _dummy_sampler_run (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] sampler_output = self.model.sample( (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] sampler_output = self.model.sample( (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/model_executor/models/qwen2.py", line 480, in sample (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/model_executor/models/qwen2.py", line 480, in sample (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] next_tokens = self.sampler(logits, sampling_metadata) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] next_tokens = self.sampler(logits, sampling_metadata) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return self._call_impl(*args, **kwargs) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return self._call_impl(*args, **kwargs) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return forward_call(*args, **kwargs) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return forward_call(*args, **kwargs) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/sampler.py", line 49, in forward (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/sampler.py", line 49, in forward (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] sampled = self.sample(logits, sampling_metadata) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] sampled = self.sample(logits, sampling_metadata) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/sampler.py", line 104, in sample (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/sampler.py", line 104, in sample (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] random_sampled = self.topk_topp_sampler( (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] random_sampled = self.topk_topp_sampler( (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return self._call_impl(*args, **kwargs) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return self._call_impl(*args, **kwargs) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return forward_call(*args, **kwargs) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return forward_call(*args, **kwargs) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/ops/topk_topp_sampler.py", line 79, in forward_native (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/ops/topk_topp_sampler.py", line 79, in forward_native (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] logits = apply_top_k_top_p(logits, k, p) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] logits = apply_top_k_top_p(logits, k, p) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/ops/topk_topp_sampler.py", line 111, in apply_top_k_top_p (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/sample/ops/topk_topp_sampler.py", line 111, in apply_top_k_top_p (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] logits_sort, logits_idx = logits.sort(dim=-1, descending=False) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] logits_sort, logits_idx = logits.sort(dim=-1, descending=False) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.74 GiB. GPU 1 has a total capacity of 23.57 GiB of which 605.88 MiB is free. Process 133288 has 22.97 GiB memory in use. Of the allocated memory 20.21 GiB is allocated by PyTorch, with 128.00 MiB allocated in private pools (e.g., CUDA Graphs), and 185.98 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.74 GiB. GPU 0 has a total capacity of 23.57 GiB of which 594.88 MiB is free. Process 133267 has 22.97 GiB memory in use. Of the allocated memory 20.21 GiB is allocated by PyTorch, with 128.00 MiB allocated in private pools (e.g., CUDA Graphs), and 185.98 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] The above exception was the direct cause of the following exception: (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] The above exception was the direct cause of the following exception: (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] Traceback (most recent call last): (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] Traceback (most recent call last): (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/executor/multiproc_executor.py", line 371, in worker_busy_loop (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/executor/multiproc_executor.py", line 371, in worker_busy_loop (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] output = func(*args, **kwargs) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] output = func(*args, **kwargs) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 226, in compile_or_warm_up_model (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 226, in compile_or_warm_up_model (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] self.model_runner._dummy_sampler_run( (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] self.model_runner._dummy_sampler_run( (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return func(*args, **kwargs) (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] return func(*args, **kwargs) (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] ^^^^^^^^^^^^^^^^^^^^^ (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1312, in _dummy_sampler_run (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1312, in _dummy_sampler_run (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] raise RuntimeError( (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] raise RuntimeError( (VllmWorker rank=1 pid=2978) ERROR 03-19 07:27:53 [multiproc_executor.py:375] RuntimeError: CUDA out of memory occurred when warming up sampler with 1024 dummy requests. Please try lowering `max_num_seqs` or `gpu_memory_utilization` when initializing the engine. (VllmWorker rank=0 pid=2961) ERROR 03-19 07:27:53 [multiproc_executor.py:375] RuntimeError: CUDA out of memory occurred when warming up sampler with 1024 dummy requests. Please try lowering `max_num_seqs` or `gpu_memory_utilization` when initializing the engine. ERROR 03-19 07:27:53 [core.py:340] EngineCore hit an exception: Traceback (most recent call last): ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 332, in run_engine_core ERROR 03-19 07:27:53 [core.py:340] engine_core = EngineCoreProc(*args, **kwargs) ERROR 03-19 07:27:53 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 287, in __init__ ERROR 03-19 07:27:53 [core.py:340] super().__init__(vllm_config, executor_class, log_stats) ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 62, in __init__ ERROR 03-19 07:27:53 [core.py:340] num_gpu_blocks, num_cpu_blocks = self._initialize_kv_caches( ERROR 03-19 07:27:53 [core.py:340] ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 135, in _initialize_kv_caches ERROR 03-19 07:27:53 [core.py:340] self.model_executor.initialize_from_config(kv_cache_configs) ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/executor/abstract.py", line 63, in initialize_from_config ERROR 03-19 07:27:53 [core.py:340] self.collective_rpc("compile_or_warm_up_model") ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/executor/multiproc_executor.py", line 133, in collective_rpc ERROR 03-19 07:27:53 [core.py:340] raise e ERROR 03-19 07:27:53 [core.py:340] File "/opt/conda/lib/python3.12/site-packages/vllm/v1/executor/multiproc_executor.py", line 122, in collective_rpc ERROR 03-19 07:27:53 [core.py:340] raise result ERROR 03-19 07:27:53 [core.py:340] RuntimeError: CUDA out of memory occurred when warming up sampler with 1024 dummy requests. Please try lowering `max_num_seqs` or `gpu_memory_utilization` when initializing the engine. ERROR 03-19 07:27:53 [core.py:340] CRITICAL 03-19 07:27:53 [core_client.py:269] Got fatal signal from worker processes, shutting down. See stack trace above for root cause issue. Killed ``` ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
closed
2025-03-19T07:36:31Z
2025-03-20T03:56:36Z
https://github.com/vllm-project/vllm/issues/15105
[ "bug" ]
AlexBefest
10
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
1,541
WHy is there no latest_net_G.pth in checkpoints folder?
When I train my own custom dataset, I am getting this error: FileNotFoundError: [Errno 2] No such file or directory: './checkpoints/flir_v2ir/latest_net_G.pth'. Any ideas? This is the full error message: Traceback (most recent call last): File "train.py", line 34, in <module> model.setup(opt) # regular setup: load and print networks; create schedulers File "/content/drive/MyDrive/pytorch-CycleGAN-and-pix2pix-master/models/base_model.py", line 88, in setup self.load_networks(load_suffix) File "/content/drive/MyDrive/pytorch-CycleGAN-and-pix2pix-master/models/base_model.py", line 192, in load_networks state_dict = torch.load(load_path, map_location=str(self.device)) File "/usr/local/lib/python3.8/dist-packages/torch/serialization.py", line 771, in load with _open_file_like(f, 'rb') as opened_file: File "/usr/local/lib/python3.8/dist-packages/torch/serialization.py", line 270, in _open_file_like return _open_file(name_or_buffer, mode) File "/usr/local/lib/python3.8/dist-packages/torch/serialization.py", line 251, in __init__ super(_open_file, self).__init__(open(name, mode)) FileNotFoundError: [Errno 2] No such file or directory: './checkpoints/flir_v2ir/latest_net_G.pth'
open
2023-02-06T17:36:56Z
2023-02-10T14:16:44Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1541
[]
jcgit786
1
ranaroussi/yfinance
pandas
1,557
code from quickstart is not working properly
I am referring to the code that is displayed under the Quick Start section of the module. It doesn't seems to work with version 0.2.20 with the following error yfinance failed to decrypt Yahoo data response for the following attribute: #msft.shares #msft.income_stmt #msft.quarterly_income_stmt #msft.balance_sheet #msft.quarterly_balance_sheet #msft.cashflow #msft.quarterly_cashflow #msft.earnings #msft.quarterly_earnings #msft.sustainability #msft.recommendations #msft.recommendations_summary #msft.analyst_price_target #msft.revenue_forecasts #msft.earnings_forecasts #msft.earnings_trend #msft.calendar I get that there was a significant API change. I was wondering how to improve the quickstart guide. I was thinking about removal of the code that is not working for a start. But maybe there is a better way to proceed (Is there a way to get these informations from an alternative way in the API and document that ?)
closed
2023-06-10T10:16:53Z
2023-06-24T18:10:13Z
https://github.com/ranaroussi/yfinance/issues/1557
[]
lcrmorin
3
2noise/ChatTTS
python
630
S
closed
2024-07-25T08:47:12Z
2024-07-27T16:27:22Z
https://github.com/2noise/ChatTTS/issues/630
[ "invalid" ]
MantleGuy12
0
hzwer/ECCV2022-RIFE
computer-vision
161
Performance of v3 model
I'm not sure if v3 model can beat v2.4 model because the scale hypermeter is very sensitive after v3 model. Anyone can help to test some hard cases?
closed
2021-05-15T09:28:57Z
2021-05-17T06:53:38Z
https://github.com/hzwer/ECCV2022-RIFE/issues/161
[]
hzwer
4
microsoft/nni
tensorflow
5,009
Experiment can not run(Waiting). And I can not refresh the web after the first time I open it. Some experiments would fail because of 'placementConstraint: { type: 'None', gpus: [] }'.
**Describe the issue**: Experiment can not run(Waiting). And I can not refresh the web after the first time I open it. Some experiments would fail because of 'placementConstraint: { type: 'None', gpus: [] }'. **Environment**: - NNI version: 2.6.1 - Training service (local|remote|pai|aml|etc): local - Client OS: Linux - Server OS (for remote mode only): - Python version: 3.6.13 - PyTorch/TensorFlow version: Pytorch - Is conda/virtualenv/venv used?: Conda - Is running in Docker?: no [dispatcher.log](https://github.com/microsoft/nni/files/9156977/dispatcher.log) [nnictl_stderr.log](https://github.com/microsoft/nni/files/9156978/nnictl_stderr.log) [nnictl_stdout.log](https://github.com/microsoft/nni/files/9156979/nnictl_stdout.log) [nnimanager.log](https://github.com/microsoft/nni/files/9156980/nnimanager.log)
closed
2022-07-21T07:10:12Z
2022-07-23T04:41:02Z
https://github.com/microsoft/nni/issues/5009
[]
JimmyMa99
10
Anjok07/ultimatevocalremovergui
pytorch
1,770
i am facing this issue please read the body
Last Error Received: Process: MDX-Net If this error persists, please contact the developers with the error details. Raw Error Details: RuntimeException: "[ONNXRuntimeError] : 6 : RUNTIME_EXCEPTION : Non-zero status code returned while running BatchNormalization node. Name:'BatchNormalization_28' Status Message: bad allocation" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 499, in seperate File "separate.py", line 594, in demix File "separate.py", line 635, in run_model File "separate.py", line 491, in <lambda> File "onnxruntime\capi\onnxruntime_inference_collection.py", line 192, in run " Error Time Stamp [2025-03-10 12:19:28] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Inst HQ 3 chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: True is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 device_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
open
2025-03-10T06:50:31Z
2025-03-10T06:50:31Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1770
[]
Draxie232
0
biolab/orange3
numpy
6,713
AttributeError: module 'Orange.widgets.gui' has no attribute 'WebviewWidge
orange 3.3 orange-text 1.15.0 OS linux mint victoria run it with the "python3 -m Orange.canvas" command Expected behavior It's suposed to create a worcloud from a corpus file. Actual behavior when run it appears an error message: 'Orange.widgets.gui' has no attribute 'WebviewWidget'. Steps to reproduce the behavior Create corpus link corpus to preprrocessing text link preprocessing to wordcloud try to open wordcloud
closed
2024-01-24T02:00:14Z
2025-01-12T22:29:29Z
https://github.com/biolab/orange3/issues/6713
[ "snack" ]
JoaoGabrielTN
19
modin-project/modin
data-science
7,298
BUG: conda install modin-all isn't installing modin-ray or ray
### Modin version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest released version of Modin. - [ ] I have confirmed this bug exists on the main branch of Modin. (In order to do this you can follow [this guide](https://modin.readthedocs.io/en/stable/getting_started/installation.html#installing-from-the-github-main-branch).) ### Reproducible Example ```python conda install modin-all ``` ### Issue Description In the list of packages that will be installed, there isn't modin-ray nor ray ### Expected Behavior `conda install modin-all` should install modin-ray, or ray, or both ### Error Logs _No response_ ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : bdc79c146c2e32f2cab629be240f01658cfb6cc2 python : 3.12.3.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19045 machine : AMD64 processor : AMD64 Family 25 Model 33 Stepping 2, AuthenticAMD byteorder : little LC_ALL : None LANG : fr_FR.UTF-8 LOCALE : English_Europe.1252 pandas : 2.2.1 numpy : 1.26.4 pytz : 2024.1 dateutil : 2.9.0.post0 setuptools : 69.5.1 pip : 24.0 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : 3.1.4 IPython : None pandas_datareader : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : 2024.3.1 gcsfs : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 14.0.2 pyreadstat : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None zstandard : 0.22.0 tzdata : 2023.3 qtpy : None pyqt5 : None </details>
closed
2024-06-03T15:09:10Z
2024-06-05T10:02:48Z
https://github.com/modin-project/modin/issues/7298
[ "bug 🦗", "Triage 🩹" ]
RomainROCH
16
keras-team/keras
pytorch
20,108
Bug in `keras.src.saving.saving_lib._save_model_to_dir`
`tf.keras.__version__` -> "3.4.1" If model is already saved then method call by `keras.src.models.model.Model.save` call `keras.src.saving.saving_lib._save_model_to_dir`, if model is already saved then `asset_store = DiskIOStore(assert_dirpath, mode="w")` ([Line - 178](https://github.com/keras-team/keras/blob/master/keras/src/saving/saving_lib.py#L179)) raise `FileExistsError` which error handling and finally clause line - `asset_store.close()` ([Line - 189](https://github.com/keras-team/keras/blob/master/keras/src/saving/saving_lib.py#L189)) causes - `UnboundLocalError: local variable 'asset_store' referenced before assignment` as `asset_store` is not define. ```shell FileExistsError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py](https://localhost:8080/#) in _save_model_to_dir(model, dirpath, weights_format) 139 ) --> 140 asset_store = DiskIOStore(assert_dirpath, mode="w") 141 _save_state( FileExistsError: [Errno 17] File exists: '/content/.../model_weights/assets' During handling of the above exception, another exception occurred: UnboundLocalError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py](https://localhost:8080/#) in _save_model_to_dir(model, dirpath, weights_format) 148 finally: 149 weights_store.close() --> 150 asset_store.close() 151 152 UnboundLocalError: local variable 'asset_store' referenced before assignment ``` Solution to move `asset_store.close()` from `finally` clause to try clause or check if `asset_store` is define then only call `asset_store.close()` (Update from line 158 to line 189 i.e., https://github.com/keras-team/keras/blob/master/keras/src/saving/saving_lib.py#L158-L189) ```python def _save_model_to_dir(model, dirpath, weights_format): if not file_utils.exists(dirpath): file_utils.makedirs(dirpath) config_json, metadata_json = _serialize_model_as_json(model) with open(file_utils.join(dirpath, _METADATA_FILENAME), "w") as f: f.write(metadata_json) with open(file_utils.join(dirpath, _CONFIG_FILENAME), "w") as f: f.write(config_json) weights_filepath = file_utils.join(dirpath, _VARS_FNAME_H5) assert_dirpath = file_utils.join(dirpath, _ASSETS_DIRNAME) try: if weights_format == "h5": weights_store = H5IOStore(weights_filepath, mode="w") elif weights_format == "npz": weights_store = NpzIOStore(weights_filepath, mode="w") else: raise ValueError( "Unknown `weights_format` argument. " "Expected 'h5' or 'npz'. " f"Received: weights_format={weights_format}" ) asset_store = DiskIOStore(assert_dirpath, mode="w") _save_state( model, weights_store=weights_store, assets_store=asset_store, inner_path="", visited_saveables=set(), ) finally: weights_store.close() if ('asset_store' in locals()): asset_store.close() # check if `asset_store` define then only close ```
closed
2024-08-10T13:12:49Z
2024-08-15T05:33:26Z
https://github.com/keras-team/keras/issues/20108
[ "stat:awaiting response from contributor", "type:Bug" ]
MegaCreater
6
autokey/autokey
automation
157
Does not work with Rofi
## Classification: Bug ## Reproducibility: Always ## Summary I use a launcher program called [rofi](https://github.com/DaveDavenport/rofi). I use autokey phrases to map arrow keys to hyper + hjkl (I modified the us layout file to have capslock as the hyper key). When I open to rofi window to run a program, autokey seems to send the keys to the window below it instead. ## Steps to Reproduce For example: 1. Using firefox and then open rofi, 2. Try to use Hyper + j/k to move between the programs listed in rofi. ## Expected Results It should act like arrow keys and move change the highlighted program up/down. ## Actual Results The page in firefox scroll in stead, a bunch of j,k letters is typed in to rofi. ## Version Latest git e1b6ba4. Distro: KDE Neon, basically Ubuntu 16.04
closed
2018-06-18T11:07:54Z
2022-10-02T06:51:29Z
https://github.com/autokey/autokey/issues/157
[ "wontfix", "upstream bug", "autokey triggers" ]
snippins
7
tqdm/tqdm
jupyter
779
fix broken url link to awesome-python
Hi, the url link to awesome-python repo in the index README is not working because of the unwanted trailing `)`. https://github.com/tqdm/tqdm/pull/778
closed
2019-07-19T10:15:30Z
2019-08-08T16:33:32Z
https://github.com/tqdm/tqdm/issues/779
[ "question/docs ‽", "to-merge ↰" ]
cheng10
1
xuebinqin/U-2-Net
computer-vision
251
For smooth loss func advise
SInce I tried BCE loss for a while, the loss struggle around 0.03. I thought the BCE is not that suitable for smooth labeled training. As for lots of dataset, gts are labeled in [0-1] including DUTS-TR you used. So isn't it better to use mse loss, even KL Divergence as the loss function instead of BCE? Or convert it to be a ce problem with softmax activation. @xuebinqin
open
2021-08-27T13:08:51Z
2022-02-14T17:07:12Z
https://github.com/xuebinqin/U-2-Net/issues/251
[]
Sparknzz
1
tensorpack/tensorpack
tensorflow
1,155
Stuck on Pre-filling StagingArea
Settings: Tensorflow 1.9.0 Cuda 9.0 Tensorpack 0.8.9 I use the official training code (alexnet-dorefa.py), but stuck on Pre-filling StagingArea. When I change the `SyncMultiGPUTrainerReplicated` -> `SyncMultiGPUTrainerParameterServer`, the training works. Can anyone provide some suggestions? I have tried to change tensorflow version 1.9.0, 1.10.0, 1.11.0, and tensorpack to latest one 0.9.4, but still fails if using official SyncMultiGPUTrainerReplicated.
closed
2019-04-18T10:09:29Z
2019-04-18T13:26:05Z
https://github.com/tensorpack/tensorpack/issues/1155
[]
snownus
2
deeppavlov/DeepPavlov
tensorflow
1,557
👩‍💻📞 DeepPavlov Community Call #15
Всем привет, Мы решили не нарушать наших традиций и спустя небольшой перерыв вновь собираемся встретиться с вами на Community Call, ведь нам есть что рассказать! В этом месяце Community Call пройдет только на **русском языке.** Предстоящий звонок мы посвятим [Dialog Flow Framework](https://github.com/deepmipt/dialog_flow_framework#-dialog-flow-engine-stable), фреймворку для создания диалоговых систем. Благодаря ему у разработчиков есть возможность быстро создавать небольших ботов и AI ассистентов, в основе которых - всего один скилл. Dialog Flow Framework успел обзавестись некоторыми фичами, которые можно использовать уже прямо сейчас. Денис Кузнецов расскажет, как и где их применять, как же будет происходить дальнейшее развитие продукта и с чего все начиналось. Современный мир нуждается в этом решении, а вот какие преимущества оно даст разработчикам и где оно применимо - Денис расскажет на звонке. Ждем ваши предложения и надеемся увидеть на нашем Community Call! **Мы проведем следующий звонок 27 апреля 2022 в 19.00 по Московскому времени (19 MSK/16 или 17 UTC в зависимости от региона).** > Добавьте напоминание в календарь: https://bit.ly/DPMonthlyCallRU **Повестка DeepPavlov Community Call #15:** > 7:00pm–7:10pm | Приветствие 7:10pm–8:00pm | Денис Кузнецов: DialogFlow Framework 8:00pm–8:30pm | Вопросы и обсуждения с командой инженеров DeepPavlov В случае, если вы пропустили Calls ранее, вы всегда их можете найти в [плейлисте](https://www.youtube.com/playlist?list=PLt1IfGj6-_-ev9BsM38sXyQ-_ODqsNvIl). Мы приглашаем вас присоединиться к нам, чтобы сообщить, что вы думаете о последних изменениях, поделиться своими ожиданиями от предстоящей версии библиотеки и рассказать, как DeepPavlov помогает вам в ваших проектах! **Оставьте отзыв о библиотеке DeepPavlov** Мы хотим услышать вас. Вы можете заполнить форму ниже, чтобы сообщить нам, как вы используете DeepPavlov Library, что вы хотите, чтобы мы добавили или улучшили! https://bit.ly/DPLibrarySurvey **Заинтересовались?** Не упускайте шанс и присоединяйтесь к нам! Этот Call открыт для всех энтузиастов в области Conversational AI.
closed
2022-04-21T12:29:19Z
2022-05-26T12:44:49Z
https://github.com/deeppavlov/DeepPavlov/issues/1557
[ "discussion" ]
PolinaMrdv
0
sinaptik-ai/pandas-ai
pandas
1,136
SSL in MySQLConnector
### 🚀 The feature Hi @gventuri , We are using pandasai connectors to connect to mysql in our production environment. And the MySQL connection we have is SSL enabled. However we see that in pandasai connectors we are not able to connect to SSL ### Motivation, pitch MySQL Connection - SSL ### Alternatives _No response_ ### Additional context _No response_
closed
2024-04-25T07:52:50Z
2024-08-05T16:05:17Z
https://github.com/sinaptik-ai/pandas-ai/issues/1136
[]
shwetabhattad-TU
1
OpenGeoscience/geonotebook
jupyter
107
RasterData name should defer to reader
https://github.com/OpenGeoscience/geonotebook/blob/master/geonotebook/wrappers/raster.py#L169-L170
open
2017-03-14T16:18:22Z
2017-03-14T16:18:22Z
https://github.com/OpenGeoscience/geonotebook/issues/107
[]
kotfic
0
hzwer/ECCV2022-RIFE
computer-vision
49
关于flow_gt于loss_dis
作者您好,我有点疑问。 在loss代码中,根据权重, loss_cons应该是论文中的loss_dis吧? for i in range(3): loss_cons += self.epe(flow_list[i], flow_gt[:, :2], 1) loss_cons += self.epe(-flow_list[i], flow_gt[:, 2:4], 1) ![image](https://user-images.githubusercontent.com/36263119/101143075-62a28100-3651-11eb-9b4f-305adf943783.png) 定义是这样的,flow_list[i]于-flow_list[i]是代表0->1和1->0? 论文中的是0->t,和t->1?
closed
2020-12-04T08:57:03Z
2020-12-06T03:32:53Z
https://github.com/hzwer/ECCV2022-RIFE/issues/49
[]
xxh96
2
yt-dlp/yt-dlp
python
11,718
Theater Complex TOWN is not working
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting that yt-dlp is broken on a **supported** site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region Japan ### Provide a description that is worded well enough to be understood Theater Complex TOWN is not working ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [X] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', 'https://www.theater-complex.town/en/live/79akNM7bJeD5Fi9EP39aDp', '--username', 'PRIVATE', 'and', '--password', 'PRIVATE'] [debug] Encodings: locale cp936, fs utf-8, pref cp936, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2024.11.18 from yt-dlp/yt-dlp [7ea278792] (win_x86_exe) [debug] Python 3.10.11 (CPython AMD64 32bit) - Windows-10-10.0.22631-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: ffmpeg 5.1.2-essentials_build-www.gyan.dev (setts) [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2024.08.30, mutagen-1.47.0, requests-2.32.3, sqlite3-3.40.1, urllib3-2.2.3, websockets-13.1 [debug] Proxy map: {} [debug] Request Handlers: urllib, requests, websockets [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest Latest version: stable@2024.11.18 from yt-dlp/yt-dlp yt-dlp is up to date (stable@2024.11.18 from yt-dlp/yt-dlp) [generic] Extracting URL: https://www.theater-complex.town/en/live/79akNM7bJeD5Fi9EP39aDp [generic] 79akNM7bJeD5Fi9EP39aDp: Downloading webpage WARNING: [generic] Falling back on generic information extractor [generic] 79akNM7bJeD5Fi9EP39aDp: Extracting information [debug] Looking for embeds ERROR: Unsupported URL: https://www.theater-complex.town/en/live/79akNM7bJeD5Fi9EP39aDp Traceback (most recent call last): File "yt_dlp\YoutubeDL.py", line 1624, in wrapper File "yt_dlp\YoutubeDL.py", line 1759, in __extract_info File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\generic.py", line 2553, in _real_extract yt_dlp.utils.UnsupportedError: Unsupported URL: https://www.theater-complex.town/en/live/79akNM7bJeD5Fi9EP39aDp [generic] Extracting URL: and ERROR: [generic] 'and' is not a valid URL. Set --default-search "ytsearch" (or run yt-dlp "ytsearch:and" ) to search YouTube File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\generic.py", line 2361, in _real_extract ```
closed
2024-12-03T05:05:20Z
2025-01-26T03:13:05Z
https://github.com/yt-dlp/yt-dlp/issues/11718
[ "account-needed", "site-bug", "patch-available", "can-share-account" ]
shibage
2
modin-project/modin
pandas
6,870
BUG: Modin on dask is throwing errors on initialization,
### Modin version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest released version of Modin. - [X] I have confirmed this bug exists on the main branch of Modin. (In order to do this you can follow [this guide](https://modin.readthedocs.io/en/stable/getting_started/installation.html#installing-from-the-github-master-branch).) ### Reproducible Example ```python # modin version 0.26.0 # dask version 2024.1 from modin.config import Engine Engine.put("dask") from dask.distributed import Client client = Client('localhost:8786') # this port forwards to dask cluster import modin.pandas as mpd df2 = mpd.DataFrame({'a': [1, 2], 'b': [3, 4]}) df2 ``` ### Issue Description Seems like modin is using an api from distributed client which is no longer supported. ### Expected Behavior It should create a simple test modin dataframe. ### Error Logs <details> ```python-traceback --------------------------------------------------------------------------- Exception Traceback (most recent call last) Cell In[26], line 1 ----> 1 df2 = mpd.DataFrame({'a': [1, 2], 'b': [3, 4]}) 2 df2 File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/logging/logger_decorator.py:129, in enable_logging.<locals>.decorator.<locals>.run_and_log(*args, **kwargs) 114 """ 115 Compute function with logging if Modin logging is enabled. 116 (...) 126 Any 127 """ 128 if LogMode.get() == "disable": --> 129 return obj(*args, **kwargs) 131 logger = get_logger() 132 logger_level = getattr(logger, log_level) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/pandas/dataframe.py:179, in DataFrame.__init__(self, data, index, columns, dtype, copy, query_compiler) 177 # Check type of data and use appropriate constructor 178 elif query_compiler is None: --> 179 distributed_frame = from_non_pandas(data, index, columns, dtype) 180 if distributed_frame is not None: 181 self._query_compiler = distributed_frame._query_compiler File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/pandas/io.py:970, in from_non_pandas(df, index, columns, dtype) 949 """ 950 Convert a non-pandas DataFrame into Modin DataFrame. 951 (...) 966 Converted DataFrame. 967 """ 968 from modin.core.execution.dispatching.factories.dispatcher import FactoryDispatcher --> 970 new_qc = FactoryDispatcher.from_non_pandas(df, index, columns, dtype) 971 if new_qc is not None: 972 return ModinObjects.DataFrame(query_compiler=new_qc) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/core/execution/dispatching/factories/dispatcher.py:177, in FactoryDispatcher.from_non_pandas(cls, *args, **kwargs) 174 @classmethod 175 @_inherit_docstrings(factories.BaseFactory._from_non_pandas) 176 def from_non_pandas(cls, *args, **kwargs): --> 177 return cls.get_factory()._from_non_pandas(*args, **kwargs) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/core/execution/dispatching/factories/dispatcher.py:115, in FactoryDispatcher.get_factory(cls) 112 if cls.__factory is None: 113 from modin.pandas import _update_engine --> 115 Engine.subscribe(_update_engine) 116 Engine.subscribe(cls._update_factory) 117 StorageFormat.subscribe(cls._update_factory) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/config/pubsub.py:291, in Parameter.subscribe(cls, callback) 282 """ 283 Add `callback` to the `_subs` list and then execute it. 284 (...) 288 Callable to execute. 289 """ 290 cls._subs.append(callback) --> 291 callback(cls) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/pandas/__init__.py:154, in _update_engine(publisher) 151 if _is_first_update.get("Dask", True): 152 from modin.core.execution.dask.common import initialize_dask --> 154 initialize_dask() 155 elif publisher.get() == "Unidist": 156 if _is_first_update.get("Unidist", True): File ~/.pyenv/versions/venv/lib/python3.11/site-packages/modin/core/execution/dask/common/utils.py:42, in initialize_dask() 38 import warnings 40 warnings.simplefilter("ignore", category=FutureWarning) ---> 42 client.run(_disable_warnings) 44 except ValueError: 45 from distributed import Client File ~/.pyenv/versions/venv/lib/python3.11/site-packages/distributed/client.py:2998, in Client.run(self, function, workers, wait, nanny, on_error, *args, **kwargs) 2915 def run( 2916 self, 2917 function, (...) 2923 **kwargs, 2924 ): 2925 """ 2926 Run a function on all workers outside of task scheduling system 2927 (...) 2996 >>> c.run(print_state, wait=False) # doctest: +SKIP 2997 """ -> 2998 return self.sync( 2999 self._run, 3000 function, 3001 *args, 3002 workers=workers, 3003 wait=wait, 3004 nanny=nanny, 3005 on_error=on_error, 3006 **kwargs, 3007 ) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/distributed/utils.py:358, in SyncMethodMixin.sync(self, func, asynchronous, callback_timeout, *args, **kwargs) 356 return future 357 else: --> 358 return sync( 359 self.loop, func, *args, callback_timeout=callback_timeout, **kwargs 360 ) File ~/.pyenv/versions/venv/lib/python3.11/site-packages/distributed/utils.py:434, in sync(loop, func, callback_timeout, *args, **kwargs) 431 wait(10) 433 if error is not None: --> 434 raise error 435 else: 436 return result File ~/.pyenv/versions/venv/lib/python3.11/site-packages/distributed/utils.py:408, in sync.<locals>.f() 406 awaitable = wait_for(awaitable, timeout) 407 future = asyncio.ensure_future(awaitable) --> 408 result = yield future 409 except Exception as exception: 410 error = exception File ~/.pyenv/versions/venv/lib/python3.11/site-packages/tornado/gen.py:767, in Runner.run(self) 765 try: 766 try: --> 767 value = future.result() 768 except Exception as e: 769 # Save the exception for later. It's important that 770 # gen.throw() not be called inside this try/except block 771 # because that makes sys.exc_info behave unexpectedly. 772 exc: Optional[Exception] = e File ~/.pyenv/versions/venv/lib/python3.11/site-packages/distributed/client.py:2903, in Client._run(self, function, nanny, workers, wait, on_error, *args, **kwargs) 2900 continue 2902 if on_error == "raise": -> 2903 raise exc 2904 elif on_error == "return": 2905 results[key] = exc File /opt/conda/lib/python3.10/site-packages/distributed/scheduler.py:6258, in send_message() File /opt/conda/lib/python3.10/site-packages/distributed/core.py:1180, in send_recv() Exception: TypeError('code expected at most 16 arguments, got 18') ``` </details> ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 47a9a4a294c75cd7b67f0fd7f95f846ed53fbafa python : 3.11.1.final.0 python-bits : 64 OS : Darwin OS-release : 23.2.0 Version : Darwin Kernel Version 23.2.0: Wed Nov 15 21:55:06 PST 2023; root:xnu-10002.61.3~2/RELEASE_ARM64_T6020 machine : arm64 processor : arm byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 Modin dependencies ------------------ modin : 0.26.0 ray : 2.9.0 dask : 2024.1.0 distributed : 2024.1.0 hdk : None pandas dependencies ------------------- pandas : 2.1.4 numpy : 1.26.1 pytz : 2023.3.post1 dateutil : 2.8.2 setuptools : 68.2.2 pip : 23.3.2 Cython : None pytest : 7.1.2 hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.9.3 html5lib : None pymysql : None psycopg2 : 2.9.5 jinja2 : 3.1.2 IPython : 8.17.2 pandas_datareader : None bs4 : 4.12.2 bottleneck : None dataframe-api-compat: None fastparquet : None fsspec : 2023.10.0 gcsfs : 2023.10.0 matplotlib : 3.6.2 numba : 0.58.1 numexpr : None odfpy : None openpyxl : 3.1.2 pandas_gbq : None pyarrow : 14.0.1 pyreadstat : None pyxlsb : None s3fs : 0.4.2 scipy : 1.11.4 sqlalchemy : 1.4.49 tables : None tabulate : None xarray : 2023.11.0 xlrd : 2.0.1 zstandard : None tzdata : 2023.3 qtpy : None pyqt5 : None </details>
closed
2024-01-19T23:03:40Z
2024-01-30T12:51:08Z
https://github.com/modin-project/modin/issues/6870
[ "bug 🦗", "Needs more information ❔", "Dask ⚡", "External" ]
jan876
3
marshmallow-code/marshmallow-sqlalchemy
sqlalchemy
58
Using Python built-in Enum type in sqlalchemy.Enum column type produces wrong oneOf validation
``` python class Choices(enum.Enum): a = 'a' b = 'b' c = 'c' class MyModel(db.Model): # ... selected_choice = db.Column(db.Enum(Choices), nullable=False) class MyModelSchema(ModelSchema): class Meta: model = MyModel fields = ['selected_choice'] ``` The `MyModelSchema` end up having ``` selected_choice.validate[0].choices == (<enum 'ChoicesEnum'>,) ``` (notice a tuple), because `MyModel.selected_choice.type.enums` stores a tuple of an enum for some reason... BTW, constructing a marshmallow field with `oneOf(ChoicesEnum)` (omit the unnecessary tuple wrapping) doesn't help much: ``` python >>> f = fields.Str(validate=[ validate.OneOf(ChoicesEnum), ]) >>> f.serialize('a', ChoicesEnum.a) 'ChoicesEnum.a' ``` And I couldn't make it to deserialize. A related discussion that I have found: https://github.com/marshmallow-code/marshmallow-sqlalchemy/pull/2
closed
2016-02-22T15:54:13Z
2016-11-10T18:39:03Z
https://github.com/marshmallow-code/marshmallow-sqlalchemy/issues/58
[]
frol
2
mirumee/ariadne
graphql
1,039
Incorrect typing for values on EnumType.__init__()
Ariadne 0.18.0 has updated the `EnumType` class in a way that causes the `values` argument of `__init__()` to become typed, but the typing is incorrect: ``` def __init__( self, name: str, values: Union[Dict[str, Any], enum.Enum, enum.IntEnum] ) -> None: ``` should be: ``` def __init__( self, name: str, values: Union[Dict[str, Any], Type[enum.Enum], Type[enum.IntEnum]] ) -> None: ```
closed
2023-02-21T17:21:07Z
2023-02-22T10:29:22Z
https://github.com/mirumee/ariadne/issues/1039
[ "bug", "help wanted" ]
markedwards
4
supabase/supabase-py
fastapi
790
Cannot get past this empty error
# Bug report ## Describe the bug Trying to execute a simple select query using Python 3.12 or 3.9. I cannot get past this error. ## To Reproduce ```python Python 3.12.3 (main, Apr 9 2024, 08:09:14) [Clang 15.0.0 (clang-1500.3.9.4)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from supabase import create_client, Client >>> from supabase.lib.client_options import ClientOptions >>> url: str = "https://svyjpvnhftybdowglgmt.supabase.co/rest/v1/iot" >>> key: str = "OMITTED" >>> client_options = ClientOptions(postgrest_client_timeout=999999, schema="public") >>> supabase: Client = create_client(url, key, client_options) >>> print(supabase.table("iot").select("id").execute()) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/markreeves/.local/share/virtualenvs/vercel-tidbyt-35n3k3fp/lib/python3.12/site-packages/postgrest/_sync/request_builder.py", line 78, in execute raise APIError(r.json()) postgrest.exceptions.APIError: {} >>> print(supabase) <supabase._sync.client.SyncClient object at 0x1043c5a30> >>> print (supabase.table("iot").select("id")) <postgrest._sync.request_builder.SyncSelectRequestBuilder object at 0x1063f7fe0> ``` I've tried using postgrest directly too, receive the same error. Same happens with `select("*")`. ## Expected behavior It works in RapidAPI or using `requests` to simply fetch my project URL, so it's not a permissions issue. I expect to not get an error using the documented methods. ## System information - OS: macOS - Version of supabase-py: 2.4.5
closed
2024-05-05T22:36:32Z
2024-05-22T20:24:19Z
https://github.com/supabase/supabase-py/issues/790
[ "invalid" ]
heymarkreeves
1
piskvorky/gensim
data-science
3,094
IndexError related to self.vectors_lockf in KeyedVectors.intersect_word2vec_format() in 4.0+
Both lines containing `vectors_lockf` variable should be: ```python self.vectors_lockf = lockf ``` Current (4.0.0) version is: ```python self.vectors_lockf[self.get_index(word)] = lockf ``` And this gives us IndexError trying to make `intersect_word2vec_format()`
open
2021-03-29T05:05:38Z
2022-06-08T11:33:09Z
https://github.com/piskvorky/gensim/issues/3094
[ "bug" ]
notonlyvandalzzz
7
KaiyangZhou/deep-person-reid
computer-vision
254
Can you release model zoo configs?
closed
2019-11-07T07:10:54Z
2019-11-08T07:25:54Z
https://github.com/KaiyangZhou/deep-person-reid/issues/254
[]
moyans
3
pandas-dev/pandas
pandas
60,861
BUG: Poor GroupBy Performance with ArrowDtype(...) wrapped types
### Pandas version checks - [x] I have checked that this issue has not already been reported. - [x] I have confirmed this bug exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [x] I have confirmed this bug exists on the [main branch](https://pandas.pydata.org/docs/dev/getting_started/install.html#installing-the-development-version-of-pandas) of pandas. ### Reproducible Example ```python import pandas as pd df = pd.DataFrame({"key": range(100000), "val": "test"}) %timeit df.groupby(["key"]).first(); pa_df = df.convert_dtypes(dtype_backend="pyarrow") %timeit pa_df.groupby(["key"]).first(); pa_df = pa_df.astype({"val": pd.StringDtype("pyarrow")}) %timeit pa_df.groupby(["key"]).first(); ``` ### Issue Description Grouping by and then aggregating on a dataframe that contains `ArrowDtype(pyarrow.string())` columns is orders of magnitude slower than performing the same operations on an equivalent dataframe whose corresponding string column is of any other acceptable string type (e.g. `string`, `StringDtype("python"), StringDtype("pyarrow")`). This is surprising in particular because `StringDtype("pyarrow")` does not exhibit the same problem. Note that in the bug reproduction example, `DataFrame.convert_dtypes` with `dtype_backend="pyarrow"` converts `string` columns to `ArrowDtype(pyarrow.string())` rather than `StringDtype("pyarrow")`. Finally, here's a sample run, with dtypes printed out for clarity; I've reproduced this on both OS X and OpenSuse Tumbleweed for the listed pandas and pyarrow versions (as well as current `main`): ```python In [7]: import pandas as pd In [8]: df = pd.DataFrame({"key": range(100000), "val": "test"}) In [9]: df["val"].dtype Out[9]: dtype('O') In [10]: %timeit df.groupby(["key"]).first(); 8.37 ms ± 599 μs per loop (mean ± std. dev. of 7 runs, 100 loops each) In [11]: pa_df = df.convert_dtypes(dtype_backend="pyarrow") In [13]: type(pa_df["val"].dtype) Out[13]: pandas.core.dtypes.dtypes.ArrowDtype In [14]: %timeit pa_df.groupby(["key"]).first(); 2.39 s ± 142 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) In [15]: pa_df = pa_df.astype({"val": pd.StringDtype("pyarrow")}) ...: In [16]: type(pa_df["val"].dtype) Out[16]: pandas.core.arrays.string_.StringDtype In [17]: %timeit pa_df.groupby(["key"]).first(); 12.9 ms ± 306 μs per loop (mean ± std. dev. of 7 runs, 100 loops each) ``` ### Expected Behavior Aggregation performance on `ArrowDtype(pyarrow.string())` columns should be comparable to aggregation performance on `StringDtype("pyarrow")`, `string` typed columns. ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.13.1 python-bits : 64 OS : Darwin OS-release : 24.3.0 Version : Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:16 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T6000 machine : arm64 processor : arm byteorder : little LC_ALL : en_CA.UTF-8 LANG : None LOCALE : en_CA.UTF-8 pandas : 2.2.3 numpy : 2.2.2 pytz : 2025.1 dateutil : 2.9.0.post0 pip : 24.3.1 Cython : None sphinx : None IPython : 8.32.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : 2025.2.0 html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.5 lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : None pymysql : None pyarrow : 19.0.0 pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.1 qtpy : None pyqt5 : None </details>
open
2025-02-05T20:53:50Z
2025-02-10T14:19:38Z
https://github.com/pandas-dev/pandas/issues/60861
[ "Bug", "Dtype Conversions", "Needs Discussion", "Arrow" ]
kzvezdarov
13
davidsandberg/facenet
computer-vision
856
Can't compile faceneten with tfcompile
I'm using tfcompile with this description file: ``` feed { id { node_name: "input" } shape { dim { size: 1 } dim { size: 3 } dim { size: 160 } dim { size: 160 } } } fetch { id { node_name: "embeddings" } } ``` `INVALID ARGUMENTS: Unable to functionalize control flow in graph: Switch ('InceptionResnetV1/Conv2d_1a_3x3/BatchNorm/cond/Switch_1') has operands ('InceptionResnetV1/Conv2d_1a_3x3/BatchNorm/cond/Switch_1/Switch' and 'InceptionResnetV1/Conv2d_1a_3x3/BatchNorm/cond/pred_id') that have different switch depths (1 != 0)` I'm using frozen_20170512-110547.pb because newest versions don't compile because of unsupported ops. Can anybody help me to struggle with this error? Maybe I can change Switch on something equivalent?
closed
2018-08-24T18:13:46Z
2019-12-09T10:31:20Z
https://github.com/davidsandberg/facenet/issues/856
[]
dbezhetskov
0
iperov/DeepFaceLab
deep-learning
5,628
Does an Intel arc a750 or 770 work on deepfacelab?
As the title states does this program work with an Intel arc a750 or 770. I was going to upgrade my computer so I can move over to saehd, and get much faster iterations. Whilst looking at graphics cards I noticed the A770 was cheaper and performed better than an RTX 3060. But I read a couple reviews saying that it doesn't work well with deep learning programs. So I am asking if it would work with deepfacelab because it does work on some.
open
2023-02-16T04:12:19Z
2023-06-08T23:07:00Z
https://github.com/iperov/DeepFaceLab/issues/5628
[]
bwppphillip
4
biolab/orange3
numpy
6,976
Group By: add straightforward possiblility to do aggregations over all records
<!-- Thanks for taking the time to submit a feature request! For the best chance at our team considering your request, please answer the following questions to the best of your ability. --> **What's your use case?** **What's your proposed solution?** Sometimes it is useful to have several aggregations of selected variables over all the data records. To that end, it would be nice to have "all rows" as an option in the column on the left in the Group-by interface **Are there any alternative solutions?** The obvious trick to achieve this with the current functionality is to introduce a dummy variable that has the same value for all rows, and to group by the dummy variable. However, as a workaround it is not _that_ intuitive.
open
2025-01-02T15:54:33Z
2025-01-13T09:47:36Z
https://github.com/biolab/orange3/issues/6976
[ "meal" ]
wvdvegte
5
MagicStack/asyncpg
asyncio
826
Large Object support
Are there any plans to have direct support for large objects for efficient streaming of data? My use case: my webapp supports uploads of binary data files. These files are stored with TOAST (bytea) which is fine: these files are not directly downloaded via the app, and even if they were, we're talking 10s of MB, so I'm not worried about memory footprint for an individual record. HOWEVER, part of the requirements for this app is that all these files can be downloaded in a single zip file. This can be 100s of MBs. My plan: kickoff a background task that builds the zip file, then stores the zip file in PG as a large object. The question then is: providing an efficient download via my webapp (aiohttp). I could stream it with a loop around, e.g.: ``` SELECT lo_get(data_oid, :offset, :chunksize) from zipstorage where id = :id ``` where `chunksize` might be 1MB and `offset` increases by 1MB with each iteration, stopping the iteration when the returned data is < 1MB. Might there be a more direct, efficient way? E.g., as with psycopg2's [lobject](https://www.psycopg.org/docs/extensions.html#psycopg2.extensions.lobject)? Other suggestions most welcome. Thanks!
open
2021-09-10T17:35:13Z
2021-11-07T21:44:25Z
https://github.com/MagicStack/asyncpg/issues/826
[]
al-dpopowich
1
jofpin/trape
flask
125
code 400, message Bad request syntax
I got this message. pls help my problem. _ | |_ ____ ____ ____ ____ | _) / ___) _ | _ \ / _ ) | |__| | ( ( | | | | ( (/ / \___)_| \_||_| ||_/ \____) |_| 2018 by Jose Pino (@jofpin) ----------------------------------------------- People tracker on internet for OSINT research |=- ----------------------------------------------- | v2.0 | -------- @-=[ UPDATES: RUNNING RECENT VERSION LOCAL INFORMATION ------------------- >-=[ Lure for the users: http://192.168.8.111:8080/github.com >-=[ Your REST API path: http://192.168.8.111:8080/a46087be590c.js >-=[ Control Panel Link: http://127.0.0.1:8080/bc8c3e6 >-=[ Your Access key: 1efea5af32f44ae446e24785 PUBLIC INFORMATION ------------------- >-=[ Link shortened lure: https://goo.gl/FtRaRJ (share) >-=[ Public lure: http://3c415abc.ngrok.io/github.com >-=[ Control Panel link: http://3c415abc.ngrok.io/bc8c3e6 [>] Start time: 2018-12-16 - 12:42:40 [?] Do not forget to close Trape, after use. Press Control C [¡] Waiting for the users to fall... 192.168.8.115 - - [16/Dec/2018 12:44:09] code 400, message Bad request syntax ("\x16\x03\x01\x00\xcf\x01\x00\x00\xcb\x03\x01\\\x15\xed0u\xf0-$\x9a\xc1I3\xaf\xd1A!X\x8a\xf5\xcc6e'm,\x83(A\xba_\x95\x99\x00\x00D\xc0\x14\xc0") 192.168.8.115 - - [16/Dec/2018 12:44:09] "��\�0u�-$��I3��A!X���6e'm,�(A�_��D��" 400 - 192.168.8.115 - - [16/Dec/2018 12:44:09] code 400, message Bad HTTP/0.9 request type ('\x16\x03\x01\x00\xcf\x01\x00\x00\xcb\x03\x01\\\x15\xed0$w\x9b\xf6guxQ\x99\xc7\xc7)`]\xed') 192.168.8.115 - - [16/Dec/2018 12:44:09] "��\�0$w��guxQ���)`]� h��$���" 400 - 192.168.8.115 - - [16/Dec/2018 12:44:09] code 400, message Bad request syntax ('\x16\x03\x00\x00o\x01\x00\x00k\x03\x00\\\x15\xed0X?fx\x1b\xb4\xd4\xfa\xe6\xe6BNY\x8dVP8\xd6\xa9\xc7\x11%\x9b\xcf\x05t;\xb0\x00\x00D\xc0\x14\xc0') 192.168.8.115 - - [16/Dec/2018 12:44:09] "ok\�0X?fx����BNY�VP8֩�%��t;�D��" 400 - 192.168.8.115 - - [16/Dec/2018 12:44:51] code 400, message Bad request syntax ('\x16\x03\x00\x00o\x01\x00\x00k\x03\x00\\\x15\xedZ\xde\xcb\xe7\xbc\x89\x07\xb0G\xab\xb5\xce^\xfc\xcd\x87\x1f9Gci\xef\x98\xd59\xe4\xa1\xf2l\x00\x00D\xc0\x14\xc0') 192.168.8.115 - - [16/Dec/2018 12:44:51] "ok\�Z��缉�G���^�͇9Gci��9��lD��" 400 - 192.168.8.115 - - [16/Dec/2018 12:44:51] code 400, message Bad request syntax ('\x16\x03\x00\x00o\x01\x00\x00k\x03\x00\\\x15\xedZF\x83\xd1t!\xe7=*\xf8\x08\xc9xU\xca.*\xbaw?\x1d\x12\xe0\xae\x92*%Y/\x00\x00D\xc0\x14\xc0') 192.168.8.115 - - [16/Dec/2018 12:44:51] "ok\�ZF��t!�=*�xU�.*�w?ஒ*%Y/D��" 400 - [trapexx.txt](https://github.com/jofpin/trape/files/2683299/trapexx.txt)
open
2018-12-16T06:26:40Z
2018-12-16T06:27:30Z
https://github.com/jofpin/trape/issues/125
[]
aungsoehein
0
aio-libs/aiomysql
sqlalchemy
94
Allow pulling down MetaData via reflection
Is there a way to pull down Table data with the aiomysql.sa API? When I try either of the following I get an error. `meta = MetaData()` `yield from meta.reflect(bind=engine)` or `meta = MetaData()` `Table('test_table', meta, autoload=True, autoload_with=engine)` File "/anaconda/envs/asap/lib/python3.5/asyncio/base_events.py", line 387, in run_until_complete return future.result() File "/anaconda/envs/asap/lib/python3.5/asyncio/futures.py", line 274, in result raise self._exception File "/anaconda/envs/asap/lib/python3.5/asyncio/tasks.py", line 239, in _step result = coro.send(None) File "/Users/user/Documents/test/loader/loader_asyncio.py", line 39, in get_vrts yield from get_data(engine, vrt) File "/Users/user/Documents/test/loader/loader_asyncio.py", line 53, in get_data yield from _get_compound_data(engine, message, vrt_number) File "/Users/user/Documents/test/loader/loader_asyncio.py", line 90, in _get_compound_data yield from meta.reflect(bind=engine) File "/anaconda/envs/asap/lib/python3.5/site-packages/sqlalchemy/sql/schema.py", line 3652, in reflect with bind.connect() as conn: AttributeError: 'Engine' object has no attribute 'connect' Exception ignored in: <bound method Connection.__del__ of <aiomysql.connection.Connection object at 0x1039a8940>> Traceback (most recent call last): File "/anaconda/envs/asap/lib/python3.5/site-packages/aiomysql/connection.py", line 694, in **del** File "/anaconda/envs/asap/lib/python3.5/site-packages/aiomysql/connection.py", line 260, in close File "/anaconda/envs/asap/lib/python3.5/asyncio/selector_events.py", line 573, in close File "/anaconda/envs/asap/lib/python3.5/asyncio/base_events.py", line 497, in call_soon File "/anaconda/envs/asap/lib/python3.5/asyncio/base_events.py", line 506, in _call_soon File "/anaconda/envs/asap/lib/python3.5/asyncio/base_events.py", line 334, in _check_closed RuntimeError: Event loop is closed
closed
2016-08-10T13:25:33Z
2016-08-10T14:11:41Z
https://github.com/aio-libs/aiomysql/issues/94
[]
tkram01
2
littlecodersh/ItChat
api
52
centos 6.5命令行下,输出二维码直接退出
一下两种都试了 1. itchat.auto_login( False , 'itchati.pkl', True ) 2. itchat.auto_login( False , 'itchati.pkl', 2 ) 输出内容: Failed to get QR Code, please restart the program
closed
2016-07-29T07:15:48Z
2016-07-31T03:08:43Z
https://github.com/littlecodersh/ItChat/issues/52
[ "question" ]
codebean
1
plotly/dash
data-science
2,505
[BUG] Error on hot-reload with client-side callbacks
**Describe your context** Error raises on hot-reload when there is a client-side callback. Browser has to be reloaded then ``` dash 2.9.2 dash-core-components 2.0.0 dash-html-components 2.0.0 dash-table 5.0.0 ``` **Describe the bug** ``` Cannot read properties of undefined (reading 'apply') (This error originated from the built-in JavaScript code that runs Dash apps. Click to see the full stack trace or open your browser's console.) TypeError: Cannot read properties of undefined (reading 'apply') at _callee3$ (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:580:74) at tryCatch (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:411:2404) at Generator._invoke (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:411:1964) at Generator.next (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:411:3255) at asyncGeneratorStep (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:415:103) at _next (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:416:194) at http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:416:364 at new Promise (<anonymous>) at http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:416:97 at handleClientside (http://localhost:8060/_dash-component-suites/dash/dash-renderer/build/dash_renderer.v2_9_2m1.dev.js:532:28) ``` **Screenshots** ![image](https://user-images.githubusercontent.com/44696797/231738532-eff1484e-b7cf-4b77-bd76-349ce0b77acc.png)
closed
2023-04-13T10:59:32Z
2023-04-13T13:26:14Z
https://github.com/plotly/dash/issues/2505
[]
esalehim
1
aws/aws-sdk-pandas
pandas
2,542
empty parquets are not accessible while using `chunked=INTEGER` in `s3.read_parquet`
Hello! I am using `awswrangler` to read a dataset from a specific parquet folder on s3, so `s3.read_parquet` is very useful. Currently, I need to read the dataset in chunks while having control of how many lines every chunk has, and for that reason I use the argument `chunked` with an integer instead of a bool. However, I've found a problem when the parquet file has no rows, only columns (note that it is not an empty file, is a dataset with no records, but with columns). My current line to read the files is: ``` reader = s3.read_parquet('s3://folder/key/', chunked=500000, dtype_backend="pyarrow") ``` On such case that the parquet file has only columns, I cannot reach any of its informations. I need to be able to go through with empty files, and ideally I would go with the code below. ``` reader = s3.read_parquet('s3://folder/key/', chunked=500000, dtype_backend="pyarrow") for df in reader: if df.empty: return empty result else: process rows ``` The `df.empty` part however returns nothing, and everything on the code block is ignored. I've tried some other commands and the results are always empty. ``` >>> for df in reader: ... print(df) ... >>> for df in reader: ... print(dir(df)) ... >>> for df in reader: ... print(df.empty) ... >>> for df in reader: ... print(df.shape) ... >>> ``` I tried reading it with the dataset option and had the same result. ``` reader = s3.read_parquet('s3://folder/key/', chunked=500000, dataset=True, dtype_backend="pyarrow") ``` While reading with `chunked=True`, I can check that the object has attributes and methods, but trying to access them gives me nothing. ``` >>> reader = s3.read_parquet('s3://folder/key/', chunked=True, dtype_backend="pyarrow") >>> for df in reader: ... print(dir(df)) ... [...columns..., ...attributes..., 'select_dtypes', 'sem', 'set_axis', 'set_flags', 'set_index', 'shape', 'shift', 'size', 'skew', 'sort_index', 'sort_values', 'squeeze', 'stack', 'std', 'style', 'sub', 'subtract', 'sum', 'swapaxes', 'swaplevel', 'tail', 'take', 'to_clipboard', 'to_csv', 'to_dict', 'to_excel', 'to_feather', 'to_gbq', 'to_hdf', 'to_html', 'to_json', 'to_latex', 'to_markdown', 'to_numpy', 'to_orc', 'to_parquet', 'to_period', 'to_pickle', 'to_records', 'to_sql', 'to_stata', 'to_string', 'to_timestamp', 'to_xarray', 'to_xml', 'transform', 'transpose', 'truediv', 'truncate', 'tz_convert', 'tz_localize', 'unstack', 'update', 'value_counts', 'values', 'var', 'where', 'xs'] >>> for df in reader: ... print(df.empty) ... ``` Above I left only a part of the output to show as an example, since I can't show the data. Now, the only way I got that `df` is actually an empty pandas dataframe is using a combination of `chunked=True` and `dataset=True`: ``` >>> reader = s3.read_parquet('s3://folder/key/', chunked=True, dataset=True, dtype_backend='pyarrow') >>> for df in reader: ... print(df.empty) ... True ``` But again, with `chunked=True` I cannot control how many rows each iteration has. My conditions are: * Reading the entire input parquet folder directly from S3 is much more useful than iterating over files; * I need to control the number of lines read for each chunk in case the dataframe is not empty; * I need to check whether the dataframe is empty or not; And my questions are: * Is there a way to get everything I need with `awswrangler.s3`?
closed
2023-12-04T21:21:12Z
2024-01-31T14:35:42Z
https://github.com/aws/aws-sdk-pandas/issues/2542
[ "question" ]
milena-andreuzo
4
Kanaries/pygwalker
plotly
371
can i customize the dashboard?
Hi, i want to display pygwalker dashboard.But - with less buttons in the control pannel (up) - with default values for plot type, x-axis,y-axis - put control pannel (up) in the right Can i do any of this? thanks
open
2023-12-23T07:29:35Z
2024-06-06T12:10:38Z
https://github.com/Kanaries/pygwalker/issues/371
[]
iuiu34
2
wkentaro/labelme
deep-learning
1,221
赣 字用工具读取会报错。
### Provide environment information 赣 字用工具读取会报错。 ### What OS are you using? 赣 字用工具读取会报错。 ### Describe the Bug 赣 字用工具读取会报错。 ### Expected Behavior _No response_ ### To Reproduce _No response_
closed
2022-11-29T10:14:36Z
2022-12-12T01:40:23Z
https://github.com/wkentaro/labelme/issues/1221
[ "issue::bug" ]
raymondwm
0
sqlalchemy/sqlalchemy
sqlalchemy
11,053
Using hybrid_property is select statements raise typing errors
### Ensure stubs packages are not installed - [X] No sqlalchemy stub packages is installed (both `sqlalchemy-stubs` and `sqlalchemy2-stubs` are not compatible with v2) ### Verify if the api is typed - [X] The api is not in a module listed in [#6810](https://github.com/sqlalchemy/sqlalchemy/issues/6810) so it should pass type checking ### Describe the typing issue Using `hybrid_property` in `select` and `where` clauses raise typing errors. For e.g. `str` `hybrid_property` is returning a type of `hybrid_property[str]` which is not present in any of the `select` overloads. ### To Reproduce ```python from sqlalchemy import String, select from sqlalchemy import func as sa_func from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy.orm import Mapped, mapped_column from src.db.base_class import Base class User(Base): first_name: Mapped[str] = mapped_column(String(64), nullable=False) last_name: Mapped[str] = mapped_column(String(64), nullable=False) @hybrid_property def full_name(self) -> str: return f'{self.first_name} {self.last_name}' @full_name.inplace.expression @classmethod def _full_name_expression(cls): return sa_func.concat(cls.first_name, ' ', cls.last_name) select_stmt = select(User.full_name) # Pylance reports: # No overloads for "select" match the provided argumentsPylancereportCallIssue # _selectable_constructors.py(448, 5): Overload 11 is the closest match # Argument of type "hybrid_property[str]" cannot be assigned to parameter "entities" of type "_ColumnsClauseArgument[Any]" in function "select" # Type "hybrid_property[str]" cannot be assigned to type "_ColumnsClauseArgument[Any]" # "hybrid_property[str]" is incompatible with "TypedColumnsClauseRole[Any]" # "hybrid_property[str]" is incompatible with "ColumnsClauseRole" # "hybrid_property[str]" is incompatible with "SQLCoreOperations[Any]" # "hybrid_property[str]" is incompatible with "Type[Any]" # "hybrid_property[str]" is incompatible with "Inspectable[_HasClauseElement]" # "hybrid_property[str]" is incompatible with protocol "_HasClauseElement" # "__clause_element__" is not present # ...PylancereportArgumentType # (property) full_name: hybrid_property[str] ``` ### Error ``` # Copy the complete text of any errors received by the type checker(s). Pylance reports: No overloads for "select" match the provided argumentsPylancereportCallIssue _selectable_constructors.py(448, 5): Overload 11 is the closest match Argument of type "hybrid_property[str]" cannot be assigned to parameter "entities" of type "_ColumnsClauseArgument[Any]" in function "select" Type "hybrid_property[str]" cannot be assigned to type "_ColumnsClauseArgument[Any]" "hybrid_property[str]" is incompatible with "TypedColumnsClauseRole[Any]" "hybrid_property[str]" is incompatible with "ColumnsClauseRole" "hybrid_property[str]" is incompatible with "SQLCoreOperations[Any]" "hybrid_property[str]" is incompatible with "Type[Any]" "hybrid_property[str]" is incompatible with "Inspectable[_HasClauseElement]" "hybrid_property[str]" is incompatible with protocol "_HasClauseElement" "__clause_element__" is not present ...PylancereportArgumentType (property) full_name: hybrid_property[str] ``` ### Versions - OS: macOS Monterey 12.6.5 (21G531) - Python: 3.10.9 - SQLAlchemy: 2.0.7 - Type checker (eg: pyright (Pylance v2024.2.2)): ### Additional context _No response_
closed
2024-02-24T07:35:58Z
2024-02-24T09:01:27Z
https://github.com/sqlalchemy/sqlalchemy/issues/11053
[ "typing" ]
imeckr
1
gunthercox/ChatterBot
machine-learning
2,245
Changing the input method to voice
Hi, a total newbie in here. I'm trying to get the chatbot to recognize voice inputs, but all that it returns is a None. I read that you can create a input adapter, but i don't have any idea from where to start. It's all in portuguese, if is confusing i can change it to english. My code until now is: class ENGSM: ISO_639_1 = 'en_core_web_sm' engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice', voices[0].id) def speak(text): engine.say(text) engine.runAndWait() def ouvir_microfone(): # Habilita o microfone do usuário microfone = sr.Recognizer() # usando o microfone with sr.Microphone() as source: # Chama um algoritmo de reducao de ruidos no som microfone.adjust_for_ambient_noise(source) # Frase para o usuario dizer algo print("Diga alguma coisa ") # Armazena o que foi dito numa variavel audio = microfone.listen(source) try: # Passa a variável para o algoritmo reconhecedor de padroes frase = microfone.recognize_google(audio, language='pt-BR') # Retorna a frase pronunciada print("Você disse: " + frase) # Se nao reconheceu o padrao de fala, exibe a mensagem except sr.UnkownValueError: print("Não entendi") speak("Não te entendi") return frase speak('Carregando sua assistente pessoal') print('Carregando sua assistente pessoal') first_run = speak("Olá! Diga qual nome você quer dar para mim ") ia_name = [ouvir_microfone()] my_name = speak("O nome que você escolheu para mim foi " + str(ia_name)) bot = ChatBot(str(ia_name), tagger_language=ENGSM, logic_adapters=['chatterbot.logic.MathematicalEvaluation'], input_adapter="chatterbot.input.VariableInputTypeAdapter") trainer = ListTrainer(bot) trainer.train(["Oi", "Olá", "Qual seu nome", "meu nome é" + str(ia_name)]) while True: try: speak("Oi, eu sou a I A " + str(ia_name) + "Qual o seu comando?") comando = ouvir_microfone() print("Sua solicitação foi: ", comando) speak("Sua solicitação foi: " + comando) com_txt = comando com_str = str(com_txt) bot_resposta = bot.get_response(com_str) print(bot_resposta) speak(bot_resposta) except (KeyboardInterrupt, EOFError, SystemExit): break
closed
2022-04-10T12:46:02Z
2022-04-11T09:41:12Z
https://github.com/gunthercox/ChatterBot/issues/2245
[]
NoronhaT
0
falconry/falcon
api
1,999
`parse_query_string()`: change default value of `csv` to False
Some url encoders don't encode comma to %2C And in such cases, the Falcon Query parser creates an array instead of a string. If you have a query string "ABC,ABC" instead of "ABC%2CABC" then if you try to fetch if using `msg = falcon.uri.parse_query_string(req.query_string).get("message")` then msg would be an array instead of string `msg = ['ABC', 'ABC'] ` which is incorrect
closed
2022-01-01T09:07:51Z
2023-12-26T16:51:02Z
https://github.com/falconry/falcon/issues/1999
[ "breaking-change", "question" ]
tahseenjamal
1
pytest-dev/pytest-django
pytest
1,075
Capture messages from Django messages framework
Similar to how pytest shows the captured stdout and log calls, it would be amazing to get the messages from the [Django messages framework](https://docs.djangoproject.com/en/4.2/ref/contrib/messages/). I'm not sure wether this is realistically doable, but I imagine something like the following: ``` ---------------------------------------- Captured log setup ---------------------------------------- INFO auth:auth_signals.py:36 login user=TeamMember, ip=None --------------------------------------- Captured stdout call --------------------------------------- {'Content-Type': 'text/html; charset=utf-8', 'X-Frame-Options': 'DENY', 'Vary': 'Cookie, Accept-Language, origin', 'Content-Length': '31904', 'Content-Language': 'de', 'X-Content-Type-Options': 'nosniff', 'Referrer-Policy': 'same-origin'} ---------------------------------------- Captured log call ----------------------------------------- DEBUG some_module:58 Some debug message WARNING some_other_module:106 Something went wrong ---------------------------------------- Captured Django messages call ----------------------------- SUCCESS "Hello user, this action worked as expected" WARNING "Hello user, this looks a bit weird" ERROR "Unexpected error happened, please contact an administrator" ``` This would help a lot to debug specific problems which were not logged explicitly. If somebody has an idea how something like this could be achieved, I would be happy to contribute this feature. Probably we would somehow need to pass this information from the Django request to pytest, so maybe a special middleware during testing?
closed
2023-10-10T13:30:56Z
2023-10-10T19:38:34Z
https://github.com/pytest-dev/pytest-django/issues/1075
[]
timobrembeck
1
ets-labs/python-dependency-injector
asyncio
383
Check if required container dependencies are provided, aka containers.check_dependencies(instance)
Need to implement a checker of container required dependencies. Ok -- very good. Yes -- I was already trying to do what you suggested with overrides. Now with the defaults on the individual Dependency its cleaner. Checking dependencies would be nice, but I guess that by design you are able to provide them "incrementally" so requiring them all up front would break other use cases. Perhaps a `containers.checkDependencies( instance )` would be nice at some point. Thanks. I guess we are all set as far as I'm concerned on this issue. Closing, and thank you! _Originally posted by @shaunc in https://github.com/ets-labs/python-dependency-injector/issues/336#issuecomment-770101562_
closed
2021-01-30T00:19:51Z
2021-02-15T19:23:28Z
https://github.com/ets-labs/python-dependency-injector/issues/383
[ "feature" ]
rmk135
2
pytest-dev/pytest-xdist
pytest
876
What's the reason for ensuring 2 tests per node?
https://github.com/pytest-dev/pytest-xdist/blob/master/src/xdist/scheduler/load.py#L266 The comment doesn't seem to explain why we can't always do round robin.
closed
2023-02-10T23:36:28Z
2023-03-01T19:55:39Z
https://github.com/pytest-dev/pytest-xdist/issues/876
[]
PrincipalsOffice
10
graphql-python/graphene
graphql
707
DataLoader pattern with SQL parent/child foreign key relationships
closed
2018-04-06T00:41:13Z
2018-04-06T00:41:17Z
https://github.com/graphql-python/graphene/issues/707
[]
bwells
0
huggingface/transformers
python
36,564
Add support for StableAdamW optimizer in Trainer
### Feature request StableAdamW is an optimizer first introduced in [Stable and low-precision training for large-scale vision-language models](https://arxiv.org/pdf/2304.13013), an AdamW and AdaFactor hybrid optimizer, leading to more stable training. Most notably, however, it has been used in the [modernBERT paper](https://arxiv.org/pdf/2412.13663): > StableAdamW’s learning rate clipping outperformed standard gradient clipping on downstream tasks and led to more stable training It would be great is this is available as an optimizer in `Trainer`! ### Motivation More models in the future may use StableAdamW because of its success in training modernBERT, and having it as an option in `Trainer` (as `optim` in `TrainingArguments`) would be convenient. ### Your contribution I'm interested to contribute! The modernBERT paper uses the implementation from [optimi](https://github.com/warner-benjamin/optimi), which can be added as an import. I'd love to submit a PR.
open
2025-03-05T15:14:19Z
2025-03-06T10:38:17Z
https://github.com/huggingface/transformers/issues/36564
[ "Feature request" ]
capemox
2