repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
donnemartin/system-design-primer
python
734
Sysdes
open
2023-01-23T05:51:21Z
2023-03-16T09:55:57Z
https://github.com/donnemartin/system-design-primer/issues/734
[ "needs-review" ]
ireensagh
1
ExpDev07/coronavirus-tracker-api
rest-api
233
Retrieving timelines by U.S. county
Is it possible to retrieve data by U.S. county by date? Based on a quick exploration it looks like the only date field is `last_updated`. Was thinking this query might allow me to pull data by date and by county: https://coronavirus-tracker-api.herokuapp.com/v2/locations?timelines=1&country_code=US&source=csbs
closed
2020-03-29T17:32:54Z
2020-03-30T20:16:24Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/233
[]
al-codaio
2
indico/indico
flask
6,085
Fail with a nicer error when uploading non-UTF8 CSV files
We have various places (e.g. when inviting people to register) where users can upload CSV files with bulk data. If it contains non-ASCII data that's not UTF-8 (apparently Excel still thinks it's acceptable to use something else than UTF-8 by default) they get this amazing error message: > UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe1 in position 86: invalid continuation byte Non-technical users will have no idea what this error means. Let's catch it and convert it to a custom one like "You need to save your CSV file using the UTF-8 encoding."
closed
2023-12-07T23:36:46Z
2024-03-28T16:01:11Z
https://github.com/indico/indico/issues/6085
[ "trivial" ]
ThiefMaster
0
hbldh/bleak
asyncio
802
Software caused connection to abort error
* bleak version: 0.14.2 * Python version: 3.7.5 * Operating System: Linux Ubuntu 18.04 * BlueZ version (`bluetoothctl -v`) in case of Linux: 5.48 ### Description I am running the BLE client within the python thread that utilizes behavior tree for robotics application. What's interesting is that it will run about 10% of the time (upon keep trying), but most of times, it gives me `bleak.exc.BleakDBusError: [org.bluez.Error.Failed] Software caused connection abort` error. Can someone explain how to address this issue and why this issue gets resolved upon just trying again? P.S. It seems that getting rid of the thread is not a viable solution as already shown from: https://github.com/hbldh/bleak/issues/666. ``` Exception in thread Thread-37: Traceback (most recent call last): File "/usr/lib/python3.7/threading.py", line 926, in _bootstrap_inner self.run() File "/usr/lib/python3.7/threading.py", line 870, in run self._target(*self._args, **self._kwargs) File "bluetooth_door_tool.py", line 402, in open_bluetooth_door run = asyncio.run(self.check_door_status()) File "/usr/lib/python3.7/asyncio/runners.py", line 43, in run return loop.run_until_complete(main) File "/usr/lib/python3.7/asyncio/base_events.py", line 579, in run_until_complete return future.result() File "bluetooth_door_tool.py", line 362, in check_door_status await self.client.connect() File "/home/BOSDYN/dlee/venv/ble_project/lib/python3.7/site-packages/bleak/backends/bluezdbus/client.py", line 278, in connect assert_reply(reply) File "/home/BOSDYN/dlee/venv/ble_project/lib/python3.7/site-packages/bleak/backends/bluezdbus/utils.py", line 23, in assert_reply raise BleakDBusError(reply.error_name, reply.body) bleak.exc.BleakDBusError: [org.bluez.Error.Failed] Software caused connection abort ```
closed
2022-04-08T17:22:27Z
2023-07-19T02:49:20Z
https://github.com/hbldh/bleak/issues/802
[ "Backend: BlueZ" ]
dlee640
5
zihangdai/xlnet
nlp
260
ValueError when running ./gpu_squad_base.sh
Hello, I am somewhat new to text embedding models. I have successfully ran sudo./prepro_squad.sh after some troubleshooting, and have moved on to the next step in the SQuAD2.0 training/testing. Unfortunately, I continue receiving this error and am having a hard time finding out whether or not it has to do with a .records file or something else that I am not familiar with at the moment? And if it is some .records file, how should I go about setting that up properly? Here is what the output is: **ValueError: Tensor conversion requested dtype string for Tensor with dtype float32: 'Tensor("arg0:0", shape=(), dtype=float32, device=/device:CPU:0)'** If someone knows how to troubleshoot this in some way, please let me know. Thank you!!
open
2020-04-06T15:44:10Z
2022-09-03T03:47:36Z
https://github.com/zihangdai/xlnet/issues/260
[]
Omnis23
3
wkentaro/labelme
deep-learning
455
Please add reorder action
Reordering, especially z-index reordering, is essential for segmentation labeling with occlusion, please add this feature so we no longer need to delete & add the label.
closed
2019-07-25T00:34:40Z
2019-07-31T04:20:20Z
https://github.com/wkentaro/labelme/issues/455
[]
MidoriYakumo
2
piskvorky/gensim
machine-learning
2,961
Documentation of strip_punctuation vs strip_punctuation2 in gensim.parsing.preprocessing
Thanks for all the hard work on this fantastic library. I found a small quirk today, not really a bug, just a bit of a rough edge: In `gensim.parsing` [preprocessing.py ](https://github.com/RaRe-Technologies/gensim/blob/e210f73c42c5df5a511ca27166cbc7d10970eab2/gensim/parsing/preprocessing.py#L121) `strip_punctuation2` is defined: `strip_punctuation2 = strip_punctuation`. In the [documentation](https://radimrehurek.com/gensim/parsing/preprocessing.html) the description of [`strip_punctuation2`](https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.strip_punctuation2) is a duplication of [`strip_punctuation`](https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.strip_punctuation) rather than a statement of equality. I noticed this while reading the documentation and, assuming I was missing an obvious distinction, attempting to hand diff the the docs for the two functions. When I gave up and flipped to the source it became obvious how the two functions are related.
closed
2020-09-28T12:54:03Z
2021-06-29T01:44:31Z
https://github.com/piskvorky/gensim/issues/2961
[ "documentation" ]
sciatro
4
iperov/DeepFaceLab
machine-learning
969
Hello, guys, where i can download oldest builds?
Hello, guys, where i can download oldest builds? working better for my , can somebody help my, where i can download them, ? Thanx you
open
2020-12-12T00:08:02Z
2023-06-08T21:38:34Z
https://github.com/iperov/DeepFaceLab/issues/969
[]
tembel123456
1
marimo-team/marimo
data-science
3,288
Integration with mito (dataframe-backed spreadsheets)
### Description Integrate with https://github.com/mito-ds/mito, a thing that provides "spreadsheet look and feel" (with formulas!) in Jupyter and Streamlit and translates it into dataframe python code. Why: bridge the gap to the people (lots of them) who have some pieces of analytical logic already developed in Excel, and would like to have a migration path over to Marimo. Related: - https://github.com/marimo-team/marimo/discussions/456, cc @sswatson - https://github.com/marimo-team/marimo/issues/2560 - https://github.com/marimo-team/marimo/discussions/1663 - Narwhals-based data editor has been added https://github.com/marimo-team/marimo/pull/2567 I don't know whether narwhals and mito really integrate or re-implement things of each other. They have never been mentioned in each other's repos. However, there are already some projects that [depend on both narwhals and mito](https://github.com/search?q=narwhals+mitosheet&type=code), but I don't understand what they are doing. ### Suggested solution TBD ### Alternative _No response_ ### Additional context _No response_
open
2024-12-24T11:34:26Z
2025-01-18T04:23:07Z
https://github.com/marimo-team/marimo/issues/3288
[ "enhancement", "upstream" ]
leventov
0
plotly/dash
plotly
2,475
Allow modification of position/direction and style of dash_table tooltips
**Context** - The tooltip is always positioned under its corresponding cell, except in the last rows where it's positioned on top. This automatic behaviour cannot be modified. - Right now it's only possible to modify the _general_ style of _all_ of the tooltips with the `css` argument of `dash_table.DataTable` **Describe the solution you'd like** Add an argument similar to `tooltip_position` an a `style` key in `tooltip_conditional`, that could be used like: ``` dash_table.DataTable( ..., tooltip_position='top', tooltip_conditional= { 'if': { 'filter_query': '{Region} contains "New"' }, 'type': 'markdown', 'value': 'This row is significant.', 'style': {'background-color':'red', 'max-width':'100px'} } ] ``` **Describe alternatives you've considered** The tooltip is not a container per cell, but a general container that covers the whole table, and I guess somehow it gets the mouse position and calculates the appropriate position for the visible hover div (the position is specified in css with position: absolute and then top: XXXpx left: XXXpx) I have explored solutions with the different tooltip properties of dash_table (https://dash.plotly.com/datatable/tooltips#conditional-tooltips) but there are no keys in the tooltip dict to specify the position/direction. I've explored a workaround by including the table as the children of a [dmc.Tooltip](https://www.dash-mantine-components.com/components/tooltip) and modifying its position based on the hover info of the table, but it didn't work. I will open a feature request so that the Product Team takes this into account for future developments.
open
2023-03-22T12:02:07Z
2024-08-13T19:29:34Z
https://github.com/plotly/dash/issues/2475
[ "feature", "dash-data-table", "P3" ]
celia-lm
0
SciTools/cartopy
matplotlib
2,099
`from_cf` constructor inherited from `pyproj` is broken.
### Description For 2 years now, `pyproj` has been able to parse CF "grid mapping" attributes (http://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#coordinate-system) (pyproj4/pyproj#660). This is done through the `pyproj.CRS.from_cf` method. Sadly, it is a `staticmethod`, and not a `classmethod`. Thus, the result is a `pyproj.CRS` object, even we call the method on `cartopy.crs.Projection`. And this is does not work as expected with matplotlib. The code seems to be done this way because even though the `from_cf` method lives in `CRS`, it actually returns children of `CRS`, but the exact type depends on the inputs. Would that mean it is not compatible with cartopy? It would be interesting if the function could be overrided to actually return a cartopy object. Also, this direct use of `cartopy.crs.Projection` doesn't seem much documented. Is it uncommon? In that case, would a `cartopy.crs.from_cf` function be interesting? I may have time to help on this. My long term goal would be to make [cf-xarray](https://github.com/xarray-contrib/cf-xarray/) aware of these `grid_mappings` CF variables and able to inject the correct cartopy CRS argument to matplotlib's `transform` argument. #### Code to reproduce ``` import matplotlib.pyplot as plt import cartopy.crs as ccrs cf_attrs = {'grid_mapping_name': 'rotated_latitude_longitude', 'grid_north_pole_latitude': 42.5, 'grid_north_pole_longitude': 83.0, 'north_pole_grid_longitude': 0.0} rp = ccrs.Projection.from_cf(cf_attrs) fig, ax = plt.subplots(subplot_kw={'projection': rp}) ``` #### Traceback ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In [15], line 6 1 cf_attrs = {'grid_mapping_name': 'rotated_latitude_longitude', 2 'grid_north_pole_latitude': 42.5, 3 'grid_north_pole_longitude': 83.0, 4 'north_pole_grid_longitude': 0.0} 5 rp = ccrs.Projection.from_cf(cf_attrs) ----> 6 fig, ax = plt.subplots(subplot_kw={'projection': rp}) File /exec/pbourg/.conda/cf_xarray_test/lib/python3.10/site-packages/matplotlib/pyplot.py:1443, in subplots(nrows, ncols, sharex, sharey, squeeze, width_ratios, height_ratios, subplot_kw, gridspec_kw, **fig_kw) 1299 """ 1300 Create a figure and a set of subplots. 1301 (...) 1440 1441 """ 1442 fig = figure(**fig_kw) -> 1443 axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, 1444 squeeze=squeeze, subplot_kw=subplot_kw, 1445 gridspec_kw=gridspec_kw, height_ratios=height_ratios, 1446 width_ratios=width_ratios) 1447 return fig, axs File /exec/pbourg/.conda/cf_xarray_test/lib/python3.10/site-packages/matplotlib/figure.py:894, in FigureBase.subplots(self, nrows, ncols, sharex, sharey, squeeze, width_ratios, height_ratios, subplot_kw, gridspec_kw) 891 gridspec_kw['width_ratios'] = width_ratios 893 gs = self.add_gridspec(nrows, ncols, figure=self, **gridspec_kw) --> 894 axs = gs.subplots(sharex=sharex, sharey=sharey, squeeze=squeeze, 895 subplot_kw=subplot_kw) 896 return axs File /exec/pbourg/.conda/cf_xarray_test/lib/python3.10/site-packages/matplotlib/gridspec.py:308, in GridSpecBase.subplots(self, sharex, sharey, squeeze, subplot_kw) 306 subplot_kw["sharex"] = shared_with[sharex] 307 subplot_kw["sharey"] = shared_with[sharey] --> 308 axarr[row, col] = figure.add_subplot( 309 self[row, col], **subplot_kw) 311 # turn off redundant tick labeling 312 if sharex in ["col", "all"]: File /exec/pbourg/.conda/cf_xarray_test/lib/python3.10/site-packages/matplotlib/figure.py:743, in FigureBase.add_subplot(self, *args, **kwargs) 740 if (len(args) == 1 and isinstance(args[0], Integral) 741 and 100 <= args[0] <= 999): 742 args = tuple(map(int, str(args[0]))) --> 743 projection_class, pkw = self._process_projection_requirements( 744 *args, **kwargs) 745 ax = subplot_class_factory(projection_class)(self, *args, **pkw) 746 key = (projection_class, pkw) File /exec/pbourg/.conda/cf_xarray_test/lib/python3.10/site-packages/matplotlib/figure.py:1682, in FigureBase._process_projection_requirements(self, axes_class, polar, projection, *args, **kwargs) 1680 kwargs.update(**extra_kwargs) 1681 else: -> 1682 raise TypeError( 1683 f"projection must be a string, None or implement a " 1684 f"_as_mpl_axes method, not {projection!r}") 1685 if projection_class.__name__ == 'Axes3D': 1686 kwargs.setdefault('auto_add_to_figure', False) TypeError: projection must be a string, None or implement a _as_mpl_axes method, not <Derived Geographic 2D CRS: {"$schema": "https://proj.org/schemas/v0.2/projjso ...> Name: undefined Axis Info [ellipsoidal]: - lon[east]: Longitude (degree) - lat[north]: Latitude (degree) Area of Use: - undefined Coordinate Operation: - name: Pole rotation (netCDF CF convention) - method: Pole rotation (netCDF CF convention) Datum: World Geodetic System 1984 - Ellipsoid: WGS 84 - Prime Meridian: Greenwich ``` <details> <summary>Full environment definition</summary> <!-- fill in the following information as appropriate --> ### Operating system Linux 64 ### Cartopy version 0.21.0 ### pyproj version 3.4.0 </details>
open
2022-11-07T19:14:42Z
2022-11-07T20:37:03Z
https://github.com/SciTools/cartopy/issues/2099
[]
aulemahal
1
tqdm/tqdm
jupyter
1,097
ValueError: too many values to unpack (expected 2)
i try to implement lda2vec from (https://github.com/sebkim/lda2vec-pytorch) with my own data. when i run the model preprocess.py. `from collections import Counter from tqdm import tqdm def preprocess(docs): """Tokenize, encode documents. Arguments: docs: A list of tuples (index, string), each string is a document. Returns: encoded_docs: A list of tuples (index, list), each list is a document with words encoded by integer values. decoder: A dict, integer -> word. word_counts: A list of integers, counts of words that are in decoder. word_counts[i] is the number of occurrences of word decoder[i] in all documents in docs. """ def tokenize(doc): return doc.split() tokenized_docs = [(i, tokenize(doc)) for i, doc in tqdm (docs[:])] counts = _count_unique_tokens(tokenized_docs) encoder, decoder, word_counts = _create_token_encoder(counts) encoded_docs = _encode(tokenized_docs, encoder) return encoded_docs, decoder, word_counts def _count_unique_tokens(tokenized_docs): tokens = [] for i, doc in tokenized_docs: tokens += doc return Counter(tokens) def _encode(tokenized_docs, encoder): return [(i, [encoder[t] for t in doc]) for i, doc in tokenized_docs] def _create_token_encoder(counts): total_tokens_count = sum( count for token, count in counts.most_common() ) print('total number of tokens:', total_tokens_count) encoder = {} decoder = {} word_counts = [] i = 0 for token, count in counts.most_common(): # counts.most_common() is in decreasing count order encoder[token] = i decoder[i] = token word_counts.append(count) i += 1 return encoder, decoder, word_counts def get_windows(doc, hws=5): """ For each word in a document get a window around it. Arguments: doc: a list of words. hws: an integer, half window size. Returns: a list of tuples, each tuple looks like this (word w, window around w), window around w equals to [hws words that come before w] + [hws words that come after w], size of the window around w is 2*hws. Number of the tuples = len(doc). """ length = len(doc) assert length > 2*hws, 'doc is too short!' inside = [(w, doc[(i - hws):i] + doc[(i + 1):(i + hws + 1)]) for i, w in enumerate(doc[hws:-hws], hws)] # for words that are near the beginning or # the end of a doc tuples are slightly different beginning = [(w, doc[:i] + doc[(i + 1):(2*hws + 1)]) for i, w in enumerate(doc[:hws], 0)] end = [(w, doc[-(2*hws + 1):i] + doc[(i + 1):]) for i, w in enumerate(doc[-hws:], length - hws)] return beginning + inside + end ` i'm getting this error : ValueError: too many values to unpack (expected 2) how to fix this ??
open
2020-12-15T22:22:04Z
2020-12-15T22:22:04Z
https://github.com/tqdm/tqdm/issues/1097
[]
fathia-ghribi
0
biolab/orange3
pandas
6,485
Pivot Table widget - wrong filtered data output
Hi there, I am experiencing a problem with the Pivot Table Widget, specifically with the "filtered data" output. I want to use the functionality to select specific groups of my pivoted table to analyze separately. When I select one of the groups as intended, the routing towards the output of the widget does not work correctly. As seen on the picture I select the group with 8 instances but the widget outputs 23 instances, which is the group left to it. ![image](https://github.com/biolab/orange3/assets/50302615/fa1c74cd-45f7-4297-b6d1-5df15a8904c5) When I select all of the groups, the number of outputted instances is also wrong, it doesn't include the most right column of groups. (>=30). The total count of instances in the output should be 94 but is only 50 with 44 instances missing from the most right column. ![image](https://github.com/biolab/orange3/assets/50302615/e843a988-2b6f-4f16-8a45-bb251006562a) It seems to me that the selection is simply taking all the instances belonging to the group left to the one I select with my mouse. I'm using Orange 3.35 as Standalone on Windows 11. Thanks a lot and all the best, Merit
closed
2023-06-21T07:13:27Z
2023-07-04T11:34:41Z
https://github.com/biolab/orange3/issues/6485
[ "bug report" ]
meritwagner
2
ranaroussi/yfinance
pandas
1,370
Known Yahoo rate limiter?
Hello, I try to scan **Ticker.quarterly_income_stmt** income statements using multithreading. After a few mins I start receiving empty DataFrames PLUS yahoo website shows the following issue (see the screenshot below). I there any known IP-based Yahoo rate limiter? ![image](https://user-images.githubusercontent.com/51125243/215294200-e391d354-3c4c-4126-8813-6f2cff3250ee.png)
closed
2023-01-28T22:39:05Z
2023-07-21T12:06:08Z
https://github.com/ranaroussi/yfinance/issues/1370
[]
ganymedenet
20
LAION-AI/Open-Assistant
machine-learning
3,763
website is not active
website do not active
open
2025-01-07T04:26:38Z
2025-01-07T04:27:18Z
https://github.com/LAION-AI/Open-Assistant/issues/3763
[]
daohuong605
0
pytorch/vision
computer-vision
8,401
Can't use gaussian_blur if sigma is a tensor on gpu
### 🐛 Describe the bug Admittedly perhaps an unconventional use, but I'm using gaussian_blur in my model to blur attention maps and I want to have the sigma be a parameter. It would work, except for this function: https://github.com/pytorch/vision/blob/06ad737628abc3a1e617571dc03cbdd5b36ea96a/torchvision/transforms/_functional_tensor.py#L725 x is not moved to the device that sigma is on. I believe it is like this in all torchvision versions. WORKS: ``` import torch from torchvision.transforms.functional import gaussian_blur k = 15 s = torch.tensor(0.3 * ((5 - 1) * 0.5 - 1) + 0.8, requires_grad = True) blurred = gaussian_blur(torch.randn(1, 3, 256, 256), k, [s]) blurred.mean().backward() print(s.grad) >>> tensor(-4.6193e-05) ``` DOES NOT: ``` import torch from torchvision.transforms.functional import gaussian_blur k = 15 s = torch.tensor(0.3 * ((5 - 1) * 0.5 - 1) + 0.8, requires_grad = True, device='cuda') blurred = gaussian_blur(torch.randn(1, 3, 256, 256, device='cuda'), k, [s]) blurred.mean().backward() print(s.grad) --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [D:\Temp\ipykernel_39000\3525683463.py](file:///D:/Temp/ipykernel_39000/3525683463.py) in <module> 4 s = torch.tensor(0.3 * ((5 - 1) * 0.5 - 1) + 0.8, requires_grad = True, device='cuda') 5 ----> 6 blurred = gaussian_blur(torch.randn(1, 3, 256, 256, device='cuda'), k, [s]) 7 blurred.mean().backward() 8 print(s.grad) [s:\anaconda3\envs\base_pip\lib\site-packages\torchvision\transforms\functional.py](file:///S:/anaconda3/envs/base_pip/lib/site-packages/torchvision/transforms/functional.py) in gaussian_blur(img, kernel_size, sigma) 1361 t_img = pil_to_tensor(img) 1362 -> 1363 output = F_t.gaussian_blur(t_img, kernel_size, sigma) 1364 1365 if not isinstance(img, torch.Tensor): [s:\anaconda3\envs\base_pip\lib\site-packages\torchvision\transforms\_functional_tensor.py](file:///S:/anaconda3/envs/base_pip/lib/site-packages/torchvision/transforms/_functional_tensor.py) in gaussian_blur(img, kernel_size, sigma) 749 750 dtype = img.dtype if torch.is_floating_point(img) else torch.float32 --> 751 kernel = _get_gaussian_kernel2d(kernel_size, sigma, dtype=dtype, device=img.device) 752 kernel = kernel.expand(img.shape[-3], 1, kernel.shape[0], kernel.shape[1]) 753 [s:\anaconda3\envs\base_pip\lib\site-packages\torchvision\transforms\_functional_tensor.py](file:///S:/anaconda3/envs/base_pip/lib/site-packages/torchvision/transforms/_functional_tensor.py) in _get_gaussian_kernel2d(kernel_size, sigma, dtype, device) 736 kernel_size: List[int], sigma: List[float], dtype: torch.dtype, device: torch.device 737 ) -> Tensor: --> 738 kernel1d_x = _get_gaussian_kernel1d(kernel_size[0], sigma[0]).to(device, dtype=dtype) 739 kernel1d_y = _get_gaussian_kernel1d(kernel_size[1], sigma[1]).to(device, dtype=dtype) 740 kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :]) [s:\anaconda3\envs\base_pip\lib\site-packages\torchvision\transforms\_functional_tensor.py](file:///S:/anaconda3/envs/base_pip/lib/site-packages/torchvision/transforms/_functional_tensor.py) in _get_gaussian_kernel1d(kernel_size, sigma) 727 728 x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) --> 729 pdf = torch.exp(-0.5 * (x / sigma).pow(2)) 730 kernel1d = pdf / pdf.sum() 731 RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! ``` ~~I don't know about the convention, like whether device should be passed in, but the simplest fix I believe would just be to change: `728 x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)` to: `728 x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size).to(sigma.device)`~~ Actually that won't when sigma is just a float. So I guess there could be a check for whether its a float or a float tensor. ### Versions [pip3] efficientunet-pytorch==0.0.6 [pip3] ema-pytorch==0.4.5 [pip3] flake8==6.0.0 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.24.3 [pip3] numpydoc==1.4.0 [pip3] pytorch-msssim==1.0.0 [pip3] siren-pytorch==0.1.7 [pip3] torch==2.2.2+cu118 [pip3] torch-cluster==1.6.0+pt113cu116 [pip3] torch_geometric==2.4.0 [pip3] torch-scatter==2.1.0+pt113cu116 [pip3] torch-sparse==0.6.16+pt113cu116 [pip3] torch-spline-conv==1.2.1+pt113cu116 [pip3] torch-tools==0.1.5 [pip3] torchaudio==2.2.2+cu118 [pip3] torchbearer==0.5.3 [pip3] torchmeta==1.8.0 [pip3] torchvision==0.17.2+cu118 [pip3] uformer-pytorch==0.0.8 [pip3] vit-pytorch==1.5.0 [conda] blas 1.0 mkl [conda] efficientunet-pytorch 0.0.6 pypi_0 pypi [conda] ema-pytorch 0.4.5 pypi_0 pypi [conda] mkl 2021.4.0 haa95532_640 [conda] mkl-service 2.4.0 py39h2bbff1b_0 [conda] mkl_fft 1.3.1 py39h277e83a_0 [conda] mkl_random 1.2.2 py39hf11a4ad_0 [conda] numpy 1.24.3 pypi_0 pypi [conda] numpydoc 1.4.0 py39haa95532_0 [conda] pytorch-cuda 11.6 h867d48c_1 pytorch [conda] pytorch-msssim 1.0.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] siren-pytorch 0.1.7 pypi_0 pypi [conda] torch 1.13.0 pypi_0 pypi [conda] torch-cluster 1.6.0+pt113cu116 pypi_0 pypi [conda] torch-geometric 2.4.0 pypi_0 pypi [conda] torch-scatter 2.1.0+pt113cu116 pypi_0 pypi [conda] torch-sparse 0.6.16+pt113cu116 pypi_0 pypi [conda] torch-spline-conv 1.2.1+pt113cu116 pypi_0 pypi [conda] torch-tools 0.1.5 pypi_0 pypi [conda] torchaudio 0.9.1 pypi_0 pypi [conda] torchbearer 0.5.3 pypi_0 pypi [conda] torchmeta 1.8.0 pypi_0 pypi [conda] torchvision 0.17.2+cu118 pypi_0 pypi [conda] uformer-pytorch 0.0.8 pypi_0 pypi [conda] vit-pytorch 1.5.0 pypi_0 pypi
closed
2024-05-01T23:30:56Z
2024-05-29T13:03:31Z
https://github.com/pytorch/vision/issues/8401
[]
Xact-sniper
3
keras-team/keras
pytorch
20,084
Layer "dense" expects 1 input(s), but it received 2 input tensors error while loading a keras model
**Hello, I'm not 100% sure it's a bug. I trained a model and saved it on Google Colab Entreprise Tensorflow v2.17.0 Keras v 3.4.1 Once a try to load the model using tf.keras.models.load_model('model_v0-1 (1).keras') I get the following error :** --------------------------------------------------------------------------- ValueError Traceback (most recent call last) [<ipython-input-16-161c7446005a>](https://localhost:8080/#) in <cell line: 1>() ----> 1 model = tf.keras.models.load_model('model_v0-1 (1).keras') 11 frames [/usr/local/lib/python3.10/dist-packages/keras/src/layers/input_spec.py](https://localhost:8080/#) in assert_input_compatibility(input_spec, inputs, layer_name) 158 inputs = tree.flatten(inputs) 159 if len(inputs) != len(input_spec): --> 160 raise ValueError( 161 f'Layer "{layer_name}" expects {len(input_spec)} input(s),' 162 f" but it received {len(inputs)} input tensors. " ValueError: Layer "dense" expects 1 input(s), but it received 2 input tensors. Inputs received: [<KerasTensor shape=(None, 11, 11, 1280), dtype=float32, sparse=False, name=keras_tensor_4552>, <KerasTensor shape=(None, 11, 11, 1280), dtype=float32, sparse=False, name=keras_tensor_4553>] --------------------------------------------------------------------------- **I trained EffecientNetB0 and added some layers** ``` # Configure the startegy if len(gpus) > 1: strategy = tf.distribute.MirroredStrategy() else: strategy = tf.distribute.get_strategy() with strategy.scope(): base_model = tf.keras.applications.EfficientNetB0(include_top=False, input_shape=(336, 336, 3), weights='imagenet') base_model.trainable = True # Unfreeze the base model # Freeze the first few layers for layer in base_model.layers[:15]: layer.trainable = False num_neurons = (len(filtered_data['species'].unique()) + 1280) // 2 # Add layers model = models.Sequential([ base_model, layers.GlobalAveragePooling2D(), layers.Dense(num_neurons, activation='relu', kernel_regularizer=regularizers.l2(0.001)), layers.BatchNormalization(), layers.Dropout(0.2), layers.Dense(num_neurons, activation='relu', kernel_regularizer=regularizers.l2(0.001)), layers.BatchNormalization(), layers.Dropout(0.2), layers.Dense(len(filtered_data['species'].unique()), activation='softmax') ]) ``` Model: "sequential" ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ │ efficientnetb0 (Functional) │ (None, 11, 11, 1280) │ 4,049,571 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ global_average_pooling2d │ (None, 1280) │ 0 │ │ (GlobalAveragePooling2D) │ │ │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense (Dense) │ (None, 672) │ 860,832 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ batch_normalization │ (None, 672) │ 2,688 │ │ (BatchNormalization) │ │ │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dropout (Dropout) │ (None, 672) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense_1 (Dense) │ (None, 672) │ 452,256 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ batch_normalization_1 │ (None, 672) │ 2,688 │ │ (BatchNormalization) │ │ │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dropout_1 (Dropout) │ (None, 672) │ 0 │ ├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤ │ dense_2 (Dense) │ (None, 65) │ 43,745 │ └──────────────────────────────────────┴─────────────────────────────┴─────────────────┘ Total params: 16,142,256 (61.58 MB) Trainable params: 5,365,237 (20.47 MB) Non-trainable params: 46,543 (181.81 KB) Optimizer params: 10,730,476 (40.93 MB) **Therefore, the only dense layers are the ones I added at the end. Am I doing something wrong ? I read that some other person faces the same issue sinc TF2.16 and keras 3.4, so I guessed it is an issue in keras but not sure.** Thank you for your help/review
open
2024-08-02T12:05:50Z
2024-08-06T14:42:47Z
https://github.com/keras-team/keras/issues/20084
[ "type:Bug" ]
BastienPailloux
3
mljar/mercury
data-visualization
90
add themes to slides
closed
2022-04-25T08:22:09Z
2022-04-27T11:17:00Z
https://github.com/mljar/mercury/issues/90
[ "enhancement" ]
pplonski
1
ymcui/Chinese-BERT-wwm
tensorflow
209
我用bert官方的分类代码去跑,用bert-wwm作为预训练模型,报错TypeError: __init__() takes 1 positional argument but 3 were given
WARNING:tensorflow:From /usr/local/lib/python3.5/dist-packages/tensorflow/python/training/learning_rate_decay_v2.py:321: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. INFO:tensorflow:Error recorded from training_loop: __init__() takes 1 positional argument but 3 were given INFO:tensorflow:training_loop marked as finished WARNING:tensorflow:Reraising captured error Traceback (most recent call last): File "/tf/bert/run_classifier.py", line 1064, in <module> tf.compat.v1.app.run() File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 125, in run _sys.exit(main(argv)) File "/tf/bert/run_classifier.py", line 962, in main estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2457, in train rendezvous.raise_errors() File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/error_handling.py", line 128, in raise_errors six.reraise(typ, value, traceback) File "/usr/local/lib/python3.5/dist-packages/six.py", line 693, in reraise raise value File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2452, in train saving_listeners=saving_listeners) File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 358, in train loss = self._train_model(input_fn, hooks, saving_listeners) File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1124, in _train_model return self._train_model_default(input_fn, hooks, saving_listeners) File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1154, in _train_model_default features, labels, model_fn_lib.ModeKeys.TRAIN, self.config) File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2251, in _call_model_fn config) File "/usr/local/lib/python3.5/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1112, in _call_model_fn model_fn_results = self._model_fn(features=features, **kwargs) File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 2534, in _model_fn features, labels, is_export_mode=is_export_mode) File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1323, in call_without_tpu return self._call_model_fn(features, labels, is_export_mode=is_export_mode) File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/tpu/python/tpu/tpu_estimator.py", line 1593, in _call_model_fn estimator_spec = self._model_fn(features=features, **kwargs) File "/tf/bert/run_classifier.py", line 756, in model_fn total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) File "/tf/bert/optimization.py", line 65, in create_optimizer exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) File "/tf/bert/optimization.py", line 100, in __init__ super(AdamWeightDecayOptimizer, self).__init__(False, name) TypeError: __init__() takes 1 positional argument but 3 were given
closed
2021-12-29T09:32:45Z
2023-10-25T09:08:27Z
https://github.com/ymcui/Chinese-BERT-wwm/issues/209
[ "stale" ]
dolphin-Jia
3
geex-arts/django-jet
django
18
jquery UI postprocessing issue. Image 'animated-overlay.gif' not found
Hi, On production server, collectstatic is failing as it is unable to find 'animated-overlay.gif' ``` bash Post-processed 'jet/vendor/jquery-ui-timepicker/include/ui-1.10.0/ui-lightness/images/ui-icons_222222_256x240.png' as 'jet/vendor/jquery-ui-timepicker/include/ui-1.10.0/ui-lightness/images/ui-icons_222222_256x240.ebe6b6902a40.png' Post-processing 'jet/vendor/jquery-ui-timepicker/include/ui-1.10.0/ui-lightness/jquery-ui-1.10.0.custom.min.css' failed! Traceback (most recent call last): File "./manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/home/dheerendra/.Envs/ldapsso/local/lib/python2.7/site-packages/django/core/management/__init__.py", line 350, in execute_from_command_line utility.execute() File "/home/dheerendra/.Envs/ldapsso/local/lib/python2.7/site-packages/django/core/management/__init__.py", line 342, in execute self.fetch_command(subcommand).run_from_argv(self.argv) File "/home/dheerendra/.Envs/ldapsso/local/lib/python2.7/site-packages/django/core/management/base.py", line 348, in run_from_argv self.execute(*args, **cmd_options) File "/home/dheerendra/.Envs/ldapsso/local/lib/python2.7/site-packages/django/core/management/base.py", line 399, in execute output = self.handle(*args, **options) File "/home/dheerendra/.Envs/ldapsso/local/lib/python2.7/site-packages/django/contrib/staticfiles/management/commands/collectstatic.py", line 176, in handle collected = self.collect() File "/home/dheerendra/.Envs/ldapsso/local/lib/python2.7/site-packages/django/contrib/staticfiles/management/commands/collectstatic.py", line 128, in collect raise processed ValueError: The file 'jet/vendor/jquery-ui-timepicker/include/ui-1.10.0/ui-lightness/images/animated-overlay.gif' could not be found with <django.contrib.staticfiles.storage.CachedStaticFilesStorage object at 0x7f8d62ed6a50> ```
closed
2015-10-24T20:01:45Z
2015-11-07T06:33:34Z
https://github.com/geex-arts/django-jet/issues/18
[]
DheerendraRathor
2
hankcs/HanLP
nlp
1,340
四川发文取缔全部不合规p2p, 不能分开"合规"和p2p
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是:1.7.5 我使用的版本是:1.7.5 <!--以上属于必填项,以下可自由发挥--> ## 我的问题 <!-- 请详细描述问题,越详细越可能得到解决 --> ## 复现问题 <!-- 你是如何操作导致产生问题的?比如修改了代码?修改了词典或模型?--> ### 步骤 1. 首先…… 2. 然后…… 3. 接着…… ### 触发代码 ``` String words = "四川发文取缔全部不合规P2P"; System.out.println(NLPTokenizer.segment(words)); ``` ### 期望输出 ``` 四川 发文 取缔 全部 不 合规 P2P ``` ### 实际输出 ``` [四川/n, 发文/v, 取缔/v, 全部/n, 不/d, 合规p2p/a] ``` ## 其他信息 CoreNatureDictionary.ngram.txt中加入了二元句法: 合规@p2p 200 合规@P2P 200 仍不能被分开,不知道是不是因为训练语料没有这样的数据导致(搜索了data/test/下的文件没搜到"p2p"). 想知道有什么办法解决.
closed
2019-12-05T10:04:57Z
2020-01-01T10:48:04Z
https://github.com/hankcs/HanLP/issues/1340
[ "ignored" ]
wangtao208208
4
polyaxon/traceml
matplotlib
25
Error in Pytorch Lightning Callback method.
In function [log_model_summary](https://github.com/polyaxon/traceml/blob/6b6e3a2f575c76edbce65df861d640f4cc8c72bb/traceml/traceml/integrations/pytorch_lightning.py#L144) there is a reference to non existing attribute `self.run`. Using this function will raise error: ```python rel_path = self.run.get_outputs_path("model_summary.txt") AttributeError: 'Callback' object has no attribute 'run' ``` Possible fix: replacing `self.run` with `self.experiment` (as used in other methods) seems to fix the issue.
closed
2023-03-14T10:13:00Z
2023-03-14T10:20:12Z
https://github.com/polyaxon/traceml/issues/25
[]
sebastian-sz
0
eamigo86/graphene-django-extras
graphql
146
"totalCount" field stays camelCase when auto_camelcase == False
Our GraphQL schema uses snake_case, so we have `auto_camelcase` switched off: ```python schema = graphene.Schema(query=Query, mutation=Mutation, auto_camelcase=False) ``` This works fine for everything except for the `totalCount` field since it's hardcoded here: https://github.com/eamigo86/graphene-django-extras/blob/ddc2ed921bd915be16234f4a9761108508cbd49f/graphene_django_extras/types.py#L313 Which means our queries: ```graphql { projects(title_text__icontains: "create") { totalCount results { id title_text } } } ``` and results: ```json { "data": { "projects": { "totalCount": 1, "results": [ { "id": "1", "title_text": "Create Notification Stack" } ] } } } ``` end up with inconsistent styling.
open
2020-07-14T11:48:35Z
2020-07-14T11:48:35Z
https://github.com/eamigo86/graphene-django-extras/issues/146
[]
flyte
0
errbotio/errbot
automation
1,672
Is errbot project still actively maintained?
Hi, Is errbot project still actively maintained? I see the last release (v6.1.9) dated Jun 11, 2022. There're some pull requests opened within a year which are still pending to merge. So, just curious if the project will keep on-going? Thanks.
closed
2023-12-03T04:11:19Z
2024-01-04T16:49:55Z
https://github.com/errbotio/errbot/issues/1672
[ "type: feature" ]
dtserekhman
6
modoboa/modoboa
django
2,553
Migrate from 1.17 to 2.01 error
# Impacted versions * OS Type: Ubuntu * OS Version: 18.04 LTs * Database Type: MariaDB * Database version: X.y * Modoboa: 2.0.1 * installer used: Unknown * Webserver: Nginx # Current behavior I just tried upgrading modoboa to 2.0.1 from 1.17. I was able to succesfully upgrade the modules via cli, did the migrate/static/deploy. I did have to reinstall all the modules after updating python from 3.6 to 3.9 but after doing that I was able to migrate and deploy. I'm getting the warning as follows from all the modoboa related users cron. /srv/modoboa/env/lib/python3.9/site-packages/requests/__init__.py:109: RequestsDependencyWarning: urllib3 (1.21.1) or chardet (5.0.0)/charset_normalizer (2.0.12) doesn't match a supported version! warnings.warn( I've tried changing versions of urllib3 to no avail. All come back with the same error. Here's the debug: Environment: Request Method: GET Request URL: https://my.server.com Django Version: 2.2.12 Python Version: 3.6.9 Installed Applications: ('django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.sites', 'django.contrib.staticfiles', 'reversion', 'ckeditor', 'ckeditor_uploader', 'rest_framework', 'rest_framework.authtoken', 'django_otp', 'django_otp.plugins.otp_totp', 'django_otp.plugins.otp_static', 'modoboa', 'modoboa.core', 'modoboa.lib', 'modoboa.admin', 'modoboa.transport', 'modoboa.relaydomains', 'modoboa.limits', 'modoboa.parameters', 'modoboa.dnstools', 'modoboa.maillog', 'modoboa_amavis', 'modoboa_pdfcredentials', 'modoboa_postfix_autoreply', 'modoboa_sievefilters', 'modoboa_webmail', 'modoboa_contacts', 'modoboa_radicale', 'webpack_loader') Installed Middleware: ('x_forwarded_for.middleware.XForwardedForMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django_otp.middleware.OTPMiddleware', 'modoboa.core.middleware.TwoFAMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'modoboa.core.middleware.LocalConfigMiddleware', 'modoboa.lib.middleware.AjaxLoginRedirect', 'modoboa.lib.middleware.CommonExceptionCatcher', 'modoboa.lib.middleware.RequestCatcherMiddleware') Traceback: File "/srv/modoboa/env/lib/python3.6/site-packages/rest_framework/settings.py" in import_from_string 177. return import_string(val) File "/srv/modoboa/env/lib/python3.6/site-packages/django/utils/module_loading.py" in import_string 17. module = import_module(module_path) File "/usr/lib/python3.6/importlib/__init__.py" in import_module 126. return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>" in _gcd_import 994. <source code not available> File "<frozen importlib._bootstrap>" in _find_and_load 971. <source code not available> File "<frozen importlib._bootstrap>" in _find_and_load_unlocked 953. <source code not available> During handling of the above exception (No module named 'modoboa.core.drf_authentication'), another exception occurred: File "/srv/modoboa/env/lib/python3.6/site-packages/django/core/handlers/exception.py" in inner 34. response = get_response(request) File "/srv/modoboa/env/lib/python3.6/site-packages/modoboa/core/middleware.py" in __call__ 26. redirect_url = reverse("core:2fa_verify") File "/srv/modoboa/env/lib/python3.6/site-packages/django/urls/base.py" in reverse 58. app_list = resolver.app_dict[ns] File "/srv/modoboa/env/lib/python3.6/site-packages/django/urls/resolvers.py" in app_dict 513. self._populate() File "/srv/modoboa/env/lib/python3.6/site-packages/django/urls/resolvers.py" in _populate 447. for url_pattern in reversed(self.url_patterns): File "/srv/modoboa/env/lib/python3.6/site-packages/django/utils/functional.py" in __get__ 80. res = instance.__dict__[self.name] = self.func(instance) File "/srv/modoboa/env/lib/python3.6/site-packages/django/urls/resolvers.py" in url_patterns 584. patterns = getattr(self.urlconf_module, "urlpatterns", self.urlconf_module) File "/srv/modoboa/env/lib/python3.6/site-packages/django/utils/functional.py" in __get__ 80. res = instance.__dict__[self.name] = self.func(instance) File "/srv/modoboa/env/lib/python3.6/site-packages/django/urls/resolvers.py" in urlconf_module 577. return import_module(self.urlconf_name) File "/usr/lib/python3.6/importlib/__init__.py" in import_module 126. return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>" in _gcd_import 994. <source code not available> File "<frozen importlib._bootstrap>" in _find_and_load 971. <source code not available> File "<frozen importlib._bootstrap>" in _find_and_load_unlocked 955. <source code not available> File "<frozen importlib._bootstrap>" in _load_unlocked 665. <source code not available> File "<frozen importlib._bootstrap_external>" in exec_module 678. <source code not available> File "<frozen importlib._bootstrap>" in _call_with_frames_removed 219. <source code not available> File "./instance/urls.py" in <module> 4. url(r'', include('modoboa.urls')), File "/srv/modoboa/env/lib/python3.6/site-packages/django/urls/conf.py" in include 34. urlconf_module = import_module(urlconf_module) File "/usr/lib/python3.6/importlib/__init__.py" in import_module 126. return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>" in _gcd_import 994. <source code not available> File "<frozen importlib._bootstrap>" in _find_and_load 971. <source code not available> File "<frozen importlib._bootstrap>" in _find_and_load_unlocked 955. <source code not available> File "<frozen importlib._bootstrap>" in _load_unlocked 665. <source code not available> File "<frozen importlib._bootstrap_external>" in exec_module 678. <source code not available> File "<frozen importlib._bootstrap>" in _call_with_frames_removed 219. <source code not available> File "/srv/modoboa/env/lib/python3.6/site-packages/modoboa/urls.py" in <module> 13. from rest_framework.schemas import get_schema_view File "/srv/modoboa/env/lib/python3.6/site-packages/rest_framework/schemas/__init__.py" in <module> 33. authentication_classes=api_settings.DEFAULT_AUTHENTICATION_CLASSES, File "/srv/modoboa/env/lib/python3.6/site-packages/rest_framework/settings.py" in __getattr__ 220. val = perform_import(val, attr) File "/srv/modoboa/env/lib/python3.6/site-packages/rest_framework/settings.py" in perform_import 168. return [import_from_string(item, setting_name) for item in val] File "/srv/modoboa/env/lib/python3.6/site-packages/rest_framework/settings.py" in <listcomp> 168. return [import_from_string(item, setting_name) for item in val] File "/srv/modoboa/env/lib/python3.6/site-packages/rest_framework/settings.py" in import_from_string 180. raise ImportError(msg) Exception Type: ImportError at / Exception Value: Could not import 'modoboa.core.drf_authentication.JWTAuthenticationWith2FA' for API setting 'DEFAULT_AUTHENTICATION_CLASSES'. ModuleNotFoundError: No module named 'modoboa.core.drf_authentication'.
closed
2022-06-28T16:27:31Z
2022-06-29T07:32:39Z
https://github.com/modoboa/modoboa/issues/2553
[]
studioluminous
4
ufoym/deepo
jupyter
74
errors with caffe2
Thanks for creating and sharing this needed tool! I'm trying to use a deepo:caffe2-py36-cu90 docker image as a basis for running Detectron with python3.6 (AFAIKT all shared Detectron docker images are bases on fb's caffe docker images, which are all py2.7) I'm able to build the docker image but it throws caffe2 errors when I run Detectron. Without getting too much in the weeds with the Detectron code, I get the following basic error with deepo caffe2-py36-cu90: STEPS: ```bash docker run --runtime=nvidia --rm -it ufoym/deepo:caffe2-py36-cu90 bash -c "python -c 'from caffe2.python import workspace;print(1)'" ``` EXPECTED - should print '1' OBSERVED: ```bash Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named 'caffe2' ``` NOTE: The same command works as expected with the official caffe docker image, e.g. ```bash docker run --runtime=nvidia --rm -it caffe2/caffe2:snapshot-py2-cuda9.0-cudnn7-ubuntu16.04 bash -c "python -c 'from caffe2.python import workspace;print(1)'" # prints '1' ```
closed
2019-01-10T17:27:13Z
2019-01-11T17:13:07Z
https://github.com/ufoym/deepo/issues/74
[]
beatthat
2
ultralytics/yolov5
deep-learning
12,988
Inference model after convert to tflite file.
### Search before asking - [x] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question After converting the YOLOv5 model to a TFLite model using `export.py`, I am attempting to use it for object detection. However, I need to understand how to draw the bounding boxes and what the input and output formats are for this TFLite model. I'm currently facing issues with incorrect bounding box placement or errors in my object detection code. Here's the code I'm using to load the image and perform object detection, but the outcomes are not correct: FYI, this is how I converted the model `python3 export.py --weights /home/ubuntu/ssl/yolov5/runs/train/exp9/weights/best.pt --include tflite` And this is my tensor input and output ``` Input Details: [{'name': 'serving_default_input_1:0', 'index': 0, 'shape': array([ 1, 640, 640, 3], dtype=int32), 'shape_signature': array([ 1, 640, 640, 3], dtype=int32), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}}] ``` ``` Output Details: [{'name': 'StatefulPartitionedCall:0', 'index': 532, 'shape': array([ 1, 25200, 10], dtype=int32), 'shape_signature': array([ 1, 25200, 10], dtype=int32), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}}] ``` ### Additional ``` def preprocess_image(image_path, input_size, input_mean=127.5, input_std=127.5): image = cv2.imread(image_path) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image_resized = cv2.resize(image_rgb, (input_size, input_size)) input_data = (np.float32(image_resized) - input_mean) / input_std return image, np.expand_dims(input_data, axis=0) def detect_objects(interpreter, image_path, threshold=0.25): input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() _, input_size = input_details[0]['shape'][1], input_details[0]['shape'][2] image, input_data = preprocess_image(image_path, input_size) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() boxes = interpreter.get_tensor(output_details[1]['index'])[0] # Bounding box coordinates of detected objects classes = interpreter.get_tensor(output_details[3]['index'])[0] # Class index of detected objects scores = interpreter.get_tensor(output_details[0]['index'])[0] # Confidence scores detections = [] # Ensure scores are treated as an array for safe iteration scores = np.squeeze(scores) classes = np.squeeze(classes) boxes = np.squeeze(boxes) for i in range(len(scores)): if scores[i] > threshold: ymin, xmin, ymax, xmax = boxes[i] # Ensure coordinates are scaled back to original image size imH, imW, _ = image.shape xmin = int(max(1, xmin * imW)) xmax = int(min(imW, xmax * imW)) ymin = int(max(1, ymin * imH)) ymax = int(min(imH, ymax * imH)) class_id = int(classes[i]) category_id_mapping = load_category_mapping(labels_path) # Using category_id_mapping to find the category ID category_id = category_id_mapping.get(class_id, class_id) + 1 # Fallback to class_id + 1 if not found detections.append({ "class_id": class_id, "category_id": category_id, 'bbox': [xmin, ymin, xmax, ymax], 'segmentation': [xmin, ymin, (xmax - xmin), (ymax - ymin)], "area": (xmax - xmin) * (ymax - ymin), "score": float(scores[i]) }) return detections ``` Here is the error I get ``` Traceback (most recent call last): File "/home/sangyoon/dCentralizedSystems/machine-learning/tensorflow/python/testing/thermal/thermal_test.py", line 562, in <module> main() File "/home/sangyoon/dCentralizedSystems/machine-learning/tensorflow/python/testing/thermal/thermal_test.py", line 412, in main detections = detect_objects(interpreter, image_path, threshold=0.25) File "/home/sangyoon/dCentralizedSystems/machine-learning/tensorflow/python/testing/thermal/thermal_test.py", line 109, in detect_objects boxes = interpreter.get_tensor(output_details[1]['index'])[0] # Bounding box coordinates of detected objects IndexError: list index out of range ```
closed
2024-05-07T18:12:34Z
2024-10-20T19:45:24Z
https://github.com/ultralytics/yolov5/issues/12988
[ "question" ]
sangyo1
18
ageitgey/face_recognition
python
847
What feature does this project need help with?
I sorry if this isn't the right place to ask, but I was curious if this project needs any help with any particular features.
open
2019-06-06T01:34:38Z
2019-06-13T10:24:24Z
https://github.com/ageitgey/face_recognition/issues/847
[]
hashgupta
1
keras-team/keras
tensorflow
20,596
Loss functions applied in alphabetical order instead of by dictionary keys in Keras 3.5.0
**Environment info** * Google Colab (CPU or GPU) * Tensorflow 2.17.0, 2.17.1 * Python 3.10.12 **Problem description** There seems to be a change in Keras 3.5.0 that has introduced a bug for models with multiple outputs. The problem is not present in Keras 3.4.1. Passing a dictionary as `loss` to model.compile() should result in those loss functions being applied to the respective outputs based on output name. But instead they now appear to be applied in alphabetical order of dictionary keys, leading to the wrong loss functions being applied against the model outputs. For example, in the following snippet, "loss_small" gets applied against "output_big" when it should be applied against "output_small". It appears that the loss dictionary gets 1) re-ordered by alphabetical order of key, and then 2) the dictionary values are read off in the resultant order and applied as an ordered list against the model outputs. ``` ... output_small = Dense(1, activation="sigmoid", name="output_small")(x) output_big = Dense(64, activation="softmax", name="output_big")(x) model = Model(inputs=input_layer, outputs=[output_small, output_big]) model.compile(optimizer='adam', loss={ 'output_small': DebugLoss(name='loss_small'), 'output_big': DebugLoss(name='loss_big') }) ``` This conclusion is the result of flipping the orders of these components and comparing the results. Which is what the following code does... **Code to reproduce** ```python import sys import tensorflow as tf import numpy as np from tensorflow.keras.layers import Dense, Input from tensorflow.keras.models import Model print(f"TensorFlow version: {tf.__version__}") print(f"Keras version: {tf.keras.__version__}") print(f"Python version: {sys.version}") print() print("Problem doesn't occur if model outputs happen to be ordered alphabetically: (big, small)") # Generate synthetic training data num_samples = 100 x_train = np.random.normal(size=(num_samples, 10)) # Input data y_train_output_big = np.eye(64)[np.random.choice(64, size=num_samples)] # Shape (num_samples, 64) y_train_output_small = np.random.choice([0, 1], size=(num_samples, 1)) # Shape (num_samples, 1) dataset = tf.data.Dataset.from_tensor_slices((x_train, (y_train_output_big, y_train_output_small))) dataset = dataset.batch(num_samples) # Define model with single input and two named outputs input_layer = Input(shape=(10,)) x = Dense(64, activation="relu")(input_layer) output_big = Dense(64, activation="softmax", name="output_big")(x) # (100,64) output_small = Dense(1, activation="sigmoid", name="output_small")(x) # (100,1) model = Model(inputs=input_layer, outputs=[output_big, output_small]) # Compile with custom loss function for debugging class DebugLoss(tf.keras.losses.Loss): def call(self, y_true, y_pred): print(f"{self.name} - y_true: {y_true.shape}, y_pred: {y_pred.shape}") return tf.reduce_mean((y_true - y_pred)**2) model.compile(optimizer='adam', loss={ 'output_big': DebugLoss(name='loss_big'), 'output_small': DebugLoss(name='loss_small') }) # Train tf.config.run_functions_eagerly(True) history = model.fit(dataset, epochs=1, verbose=0) print() print("Problem occurs if model outputs happen to be ordered non-alphabetically: (small, big)") # Generate synthetic training data num_samples = 100 x_train = np.random.normal(size=(num_samples, 10)) # Input data y_train_output_small = np.random.choice([0, 1], size=(num_samples, 1)) # Shape (num_samples, 1) y_train_output_big = np.eye(64)[np.random.choice(64, size=num_samples)] # Shape (num_samples, 64) dataset = tf.data.Dataset.from_tensor_slices((x_train, (y_train_output_small, y_train_output_big))) dataset = dataset.batch(num_samples) # Define model with single input and two named outputs input_layer = Input(shape=(10,)) x = Dense(64, activation="relu")(input_layer) output_small = Dense(1, activation="sigmoid", name="output_small")(x) # (100,1) output_big = Dense(64, activation="softmax", name="output_big")(x) # (100,64) model = Model(inputs=input_layer, outputs=[output_small, output_big]) # Compile with custom loss function for debugging class DebugLoss(tf.keras.losses.Loss): def call(self, y_true, y_pred): print(f"{self.name} - y_true: {y_true.shape}, y_pred: {y_pred.shape}") return tf.reduce_mean((y_true - y_pred)**2) model.compile(optimizer='adam', loss={ 'output_small': DebugLoss(name='loss_small'), 'output_big': DebugLoss(name='loss_big') }) # Train tf.config.run_functions_eagerly(True) history = model.fit(dataset, epochs=1, verbose=0) ``` **Code outputs on various environments** Current Google Colab env - fails on second ordering: ``` TensorFlow version: 2.17.1 Keras version: 3.5.0 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] Problem doesn't occur if model outputs happen to be ordered alphabetically: (big, small) loss_big - y_true: (100, 64), y_pred: (100, 64) loss_small - y_true: (100, 1), y_pred: (100, 1) Problem occurs occur if model outputs happen to be ordered non-alphabetically: (small, big) loss_big - y_true: (100, 1), y_pred: (100, 1) loss_small - y_true: (100, 64), y_pred: (100, 64) ``` Downgraded TF version, no change: ``` TensorFlow version: 2.17.0 Keras version: 3.5.0 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] Problem doesn't occur if model outputs happen to be ordered alphabetically: (big, small) loss_big - y_true: (100, 64), y_pred: (100, 64) loss_small - y_true: (100, 1), y_pred: (100, 1) Problem occurs occur if model outputs happen to be ordered non-alphabetically: (small, big) loss_big - y_true: (100, 1), y_pred: (100, 1) loss_small - y_true: (100, 64), y_pred: (100, 64) ``` Downgraded Keras, and now get correct output for both orderings ``` TensorFlow version: 2.17.0 Keras version: 3.4.1 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] Problem doesn't occur if model outputs happen to be ordered alphabetically: (big, small) loss_big - y_true: (100, 64), y_pred: (100, 64) loss_small - y_true: (100, 1), y_pred: (100, 1) Problem occurs occur if model outputs happen to be ordered non-alphabetically: (small, big) loss_small - y_true: (100, 1), y_pred: (100, 1) loss_big - y_true: (100, 64), y_pred: (100, 64) ``` **Final remarks** This seems related to https://github.com/tensorflow/tensorflow/issues/37887, but looks like someone has since tried to fix that bug and introduced another perhaps?
closed
2024-12-05T06:41:41Z
2025-02-13T02:55:54Z
https://github.com/keras-team/keras/issues/20596
[ "keras-team-review-pending", "type:Bug" ]
malcolmlett
6
freqtrade/freqtrade
python
11,494
Running parallel Bots on one account
<!-- Have you searched for similar issues before posting it? Did you have a VERY good look at the [documentation](https://www.freqtrade.io/en/latest/) and are sure that the question is not explained there Please do not use the question template to report bugs or to request new features. --> ## Describe your environment * Operating system: __linux__ * Python Version: __3.12.3___ (`python -V`) * CCXT version: ___4.4.65__ (`pip freeze | grep ccxt`) * Freqtrade Version: ___2025.2_ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker) ## Your question Suppose I searched for multiple sets of parameters using hyperopt, can I open multiple `freqtrade trade` programs to trade the same account? For example, if I have $300 in funds, I open three programs, each with $100. This is used to merge at the strategy level to reduce overall volatility and increase sharpe.
closed
2025-03-12T12:58:00Z
2025-03-13T05:31:37Z
https://github.com/freqtrade/freqtrade/issues/11494
[ "Question" ]
zhaohui-yang
5
yeongpin/cursor-free-vip
automation
58
v1.0.10 Mac 注册不成功,人机识别失败
<img width="1253" alt="Image" src="https://github.com/user-attachments/assets/46cb90f3-7db2-4dbf-8840-b27454230c6a" />
closed
2025-02-11T12:05:26Z
2025-02-12T07:41:57Z
https://github.com/yeongpin/cursor-free-vip/issues/58
[ "bug" ]
hx-1999
8
ExpDev07/coronavirus-tracker-api
rest-api
62
just a simple question why do I need to install it on my computer ?
cant I just use the links: https://coronavirus-tracker-api.herokuapp.com/ all/confirmed/etc' ? like some kind of web service ? why In the read me there is the installation part ?
closed
2020-03-17T14:09:11Z
2020-03-17T14:51:09Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/62
[ "question" ]
NatiBerko
2
deepset-ai/haystack
machine-learning
8,912
`tools_strict` option in `OpenAIChatGenerator` broken with `ComponentTool`
**Describe the bug** When using `ComponentTool` and setting `tools_strict=True` OpenAI API is complaining that `additionalProperties` of the schema is not `false`. **Error message** ```--------------------------------------------------------------------------- BadRequestError Traceback (most recent call last) Cell In[19], line 1 ----> 1 result = generator.run(messages=chat_messages["prompt"], tools=tool_invoker.tools) 2 result File ~/.local/lib/python3.12/site-packages/haystack/components/generators/chat/openai.py:246, in OpenAIChatGenerator.run(self, messages, streaming_callback, generation_kwargs, tools, tools_strict) 237 streaming_callback = streaming_callback or self.streaming_callback 239 api_args = self._prepare_api_call( 240 messages=messages, 241 streaming_callback=streaming_callback, (...) 244 tools_strict=tools_strict, 245 ) --> 246 chat_completion: Union[Stream[ChatCompletionChunk], ChatCompletion] = self.client.chat.completions.create( 247 **api_args 248 ) 250 is_streaming = isinstance(chat_completion, Stream) 251 assert is_streaming or streaming_callback is None File ~/.local/lib/python3.12/site-packages/ddtrace/contrib/trace_utils.py:336, in with_traced_module.<locals>.with_mod.<locals>.wrapper(wrapped, instance, args, kwargs) 334 log.debug("Pin not found for traced method %r", wrapped) 335 return wrapped(*args, **kwargs) --> 336 return func(mod, pin, wrapped, instance, args, kwargs) File ~/.local/lib/python3.12/site-packages/ddtrace/contrib/internal/openai/patch.py:282, in _patched_endpoint.<locals>.patched_endpoint(openai, pin, func, instance, args, kwargs) 280 resp, err = None, None 281 try: --> 282 resp = func(*args, **kwargs) 283 return resp 284 except Exception as e: File ~/.local/lib/python3.12/site-packages/openai/_utils/_utils.py:279, in required_args.<locals>.inner.<locals>.wrapper(*args, **kwargs) 277 msg = f"Missing required argument: {quote(missing[0])}" 278 raise TypeError(msg) --> 279 return func(*args, **kwargs) File ~/.local/lib/python3.12/site-packages/openai/resources/chat/completions/completions.py:879, in Completions.create(self, messages, model, audio, frequency_penalty, function_call, functions, logit_bias, logprobs, max_completion_tokens, max_tokens, metadata, modalities, n, parallel_tool_calls, prediction, presence_penalty, reasoning_effort, response_format, seed, service_tier, stop, store, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout) 837 @required_args(["messages", "model"], ["messages", "model", "stream"]) 838 def create( 839 self, (...) 876 timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, 877 ) -> ChatCompletion | Stream[ChatCompletionChunk]: 878 validate_response_format(response_format) --> 879 return self._post( 880 "/chat/completions", 881 body=maybe_transform( 882 { 883 "messages": messages, 884 "model": model, 885 "audio": audio, 886 "frequency_penalty": frequency_penalty, 887 "function_call": function_call, 888 "functions": functions, 889 "logit_bias": logit_bias, 890 "logprobs": logprobs, 891 "max_completion_tokens": max_completion_tokens, 892 "max_tokens": max_tokens, 893 "metadata": metadata, 894 "modalities": modalities, 895 "n": n, 896 "parallel_tool_calls": parallel_tool_calls, 897 "prediction": prediction, 898 "presence_penalty": presence_penalty, 899 "reasoning_effort": reasoning_effort, 900 "response_format": response_format, 901 "seed": seed, 902 "service_tier": service_tier, 903 "stop": stop, 904 "store": store, 905 "stream": stream, 906 "stream_options": stream_options, 907 "temperature": temperature, 908 "tool_choice": tool_choice, 909 "tools": tools, 910 "top_logprobs": top_logprobs, 911 "top_p": top_p, 912 "user": user, 913 }, 914 completion_create_params.CompletionCreateParams, 915 ), 916 options=make_request_options( 917 extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout 918 ), 919 cast_to=ChatCompletion, 920 stream=stream or False, 921 stream_cls=Stream[ChatCompletionChunk], 922 ) File ~/.local/lib/python3.12/site-packages/openai/_base_client.py:1290, in SyncAPIClient.post(self, path, cast_to, body, options, files, stream, stream_cls) 1276 def post( 1277 self, 1278 path: str, (...) 1285 stream_cls: type[_StreamT] | None = None, 1286 ) -> ResponseT | _StreamT: 1287 opts = FinalRequestOptions.construct( 1288 method="post", url=path, json_data=body, files=to_httpx_files(files), **options 1289 ) -> 1290 return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls)) File ~/.local/lib/python3.12/site-packages/openai/_base_client.py:967, in SyncAPIClient.request(self, cast_to, options, remaining_retries, stream, stream_cls) 964 else: 965 retries_taken = 0 --> 967 return self._request( 968 cast_to=cast_to, 969 options=options, 970 stream=stream, 971 stream_cls=stream_cls, 972 retries_taken=retries_taken, 973 ) File ~/.local/lib/python3.12/site-packages/openai/_base_client.py:1071, in SyncAPIClient._request(self, cast_to, options, retries_taken, stream, stream_cls) 1068 err.response.read() 1070 log.debug("Re-raising status error") -> 1071 raise self._make_status_error_from_response(err.response) from None 1073 return self._process_response( 1074 cast_to=cast_to, 1075 options=options, (...) 1079 retries_taken=retries_taken, 1080 ) BadRequestError: Error code: 400 - {'error': {'message': "Invalid schema for function 'web_search': In context=(), 'additionalProperties' is required to be supplied and to be false.", 'type': 'invalid_request_error', 'param': 'tools[0].function.parameters', 'code': 'invalid_function_parameters'}} ``` **Expected behavior** `use_strict=True` is working **Additional context** Add any other context about the problem here, like document types / preprocessing steps / settings of reader etc. **To Reproduce** ```python from haystack.components.generators.chat.openai import OpenAIChatGenerator from haystack.dataclasses.chat_message import ChatMessage gen = OpenAIChatGenerator.from_dict({'type': 'haystack.components.generators.chat.openai.OpenAIChatGenerator', 'init_parameters': {'model': 'gpt-4o', 'streaming_callback': None, 'api_base_url': None, 'organization': None, 'generation_kwargs': {}, 'api_key': {'type': 'env_var', 'env_vars': ['OPENAI_API_KEY'], 'strict': False}, 'timeout': None, 'max_retries': None, 'tools': [{'type': 'haystack.tools.component_tool.ComponentTool', 'data': {'name': 'web_search', 'description': 'Search the web for current information on any topic', 'parameters': {'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search query.'}}, 'required': ['query']}, 'component': {'type': 'haystack.components.websearch.serper_dev.SerperDevWebSearch', 'init_parameters': {'top_k': 10, 'allowed_domains': None, 'search_params': {}, 'api_key': {'type': 'env_var', 'env_vars': ['SERPERDEV_API_KEY'], 'strict': False}}}}}], 'tools_strict': True}}) gen.run([ChatMessage.from_user("How is the weather today in Berlin?")]) ``` **FAQ Check** - [ ] Have you had a look at [our new FAQ page](https://docs.haystack.deepset.ai/docs/faq)? **System:** - OS: - GPU/CPU: - Haystack version (commit or version number): 2.10.2 - DocumentStore: - Reader: - Retriever:
closed
2025-02-24T13:42:08Z
2025-03-03T15:23:26Z
https://github.com/deepset-ai/haystack/issues/8912
[ "P1" ]
tstadel
0
CorentinJ/Real-Time-Voice-Cloning
deep-learning
807
[Question] TTS - 3 question of generation voices?
I have questions about voice generation: 1) TTS, Can i change speed of speatch, faster/slower? 2) TTS, Can i change emotion eg; Neutral, Espressive, Anger, Fear, happy, Sad, Shouting? 3) TTS, Dictionary edit world equivalents to Pronuciation? Thx :)
closed
2021-07-23T15:28:37Z
2021-08-25T09:07:49Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/807
[]
SaraDark
1
NullArray/AutoSploit
automation
628
Unhandled Exception (e08e877b3)
Autosploit version: `3.0` OS information: `Linux-4.18.0-10-generic-x86_64-with-Ubuntu-18.10-cosmic` Running context: `autosploit.py --whitelist ************************` Error meesage: `global name 'Except' is not defined` Error traceback: ``` Traceback (most recent call): File "/home/gabriel/Escritorio/AutoSploit-master/autosploit/main.py", line 103, in main loaded_exploits = load_exploits(EXPLOIT_FILES_PATH) File "/home/gabriel/Escritorio/AutoSploit-master/lib/jsonize.py", line 61, in load_exploits except Except: NameError: global name 'Except' is not defined ``` Metasploit launched: `False`
closed
2019-04-04T12:22:38Z
2019-04-18T17:31:34Z
https://github.com/NullArray/AutoSploit/issues/628
[]
AutosploitReporter
0
igorbenav/fastcrud
sqlalchemy
79
Other missing SQLAlchemy features
There are a few sql things that are relevant and are currently missing from `FastCRUD`, I'll list some of them and you guys may add what I forget - [ ] Add possibility of `distinct` clause - [ ] Add `group by` - [ ] `like`, `ilike`, `between` operators - [ ] `is_` and `isnot_` operators
closed
2024-05-08T05:51:53Z
2024-06-22T05:27:23Z
https://github.com/igorbenav/fastcrud/issues/79
[ "enhancement", "FastCRUD Methods" ]
igorbenav
12
deezer/spleeter
tensorflow
615
Error: AttributeError: module 'ffmpeg' has no attribute '_run'
- [x ] I didn't find a similar issue already open. - [x ] I read the documentation (README AND Wiki) - [x ] I have installed FFMpeg - [ x] My problem is related to Spleeter only, not a derivative product (such as Webapplication, or GUI provided by others) ## Description When running spleeter to extract stems from a song. I keep getting this error message: `File "/Users/afolabi/Library/Python/3.8/lib/python/site-packages/spleeter/audio/ffmpeg.py", line 102, in load except ffmpeg._run.Error as e: AttributeError: module 'ffmpeg' has no attribute '_run'` I've installed ffmpeg and read the docs. I've googled extensively for this but can't find anything.
closed
2021-04-22T22:59:31Z
2022-10-17T14:05:43Z
https://github.com/deezer/spleeter/issues/615
[ "bug", "invalid" ]
afolabiaji
3
marshmallow-code/apispec
rest-api
566
Marshmallow plugin bug with string schema ref and schema_name_resolver
`resolve_schema_dict` claims to support `string` as its schema parameter type. It can get there for example when you are parsing schema from docstring using the provided yaml util, or using FlaskPlugin to do it for you. But, when `schema_name_resolver` returns `None` for this case, the schema gets forwarded to `schema2jsonschema` which expects a `marshmallow.Schema` instance and crashes. Test case is a slightly modified "example application": <details> <summary>Show example test case</summary> ```python import uuid from apispec import APISpec from apispec.ext.marshmallow import MarshmallowPlugin from apispec_webframeworks.flask import FlaskPlugin from flask import Flask, jsonify from marshmallow import fields, Schema def schema_name_resolver(schema): if schema == "PetSchema": return None # Create an APISpec spec = APISpec( title="Swagger Petstore", version="1.0.0", openapi_version="3.0.2", plugins=[ FlaskPlugin(), MarshmallowPlugin(schema_name_resolver=schema_name_resolver), ], ) # Optional marshmallow support class CategorySchema(Schema): id = fields.Int() name = fields.Str(required=True) class PetSchema(Schema): categories = fields.List(fields.Nested(CategorySchema)) name = fields.Str() # Optional Flask support app = Flask(__name__) @app.route("/random") def random_pet(): """A cute furry animal endpoint. --- get: description: Get a random pet responses: 200: description: Return a pet content: application/json: schema: PetSchema """ # Hardcoded example data pet_data = { "name": "sample_pet_" + str(uuid.uuid1()), "categories": [{"id": 1, "name": "sample_category"}], } return PetSchema().dump(pet_data) # Register the path and the entities within it with app.test_request_context(): spec.path(view=random_pet) @app.route("/spec.json") def get_spec(): return jsonify(spec.to_dict()) ``` </details> <details> <summary>Show example stacktrace</summary> ``` Traceback (most recent call last): File "/home//PycharmProjects/test-apispec/main.py", line 62, in <module> spec.path(view=random_pet) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/core.py", line 280, in path plugin.operation_helper(path=path, operations=operations, **kwargs) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/__init__.py", line 202, in operation_helper self.resolver.resolve_response(response) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/schema_resolver.py", line 113, in resolve_response self.resolve_schema(response) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/schema_resolver.py", line 161, in resolve_schema content["schema"] = self.resolve_schema_dict(content["schema"]) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/schema_resolver.py", line 218, in resolve_schema_dict return self.converter.resolve_nested_schema(schema) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/openapi.py", line 96, in resolve_nested_schema json_schema = self.schema2jsonschema(schema) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/openapi.py", line 261, in schema2jsonschema fields = get_fields(schema) File "/home//.local/share/virtualenvs/test-apispec-HubT4B3L/lib/python3.8/site-packages/apispec/ext/marshmallow/common.py", line 63, in get_fields raise ValueError( ValueError: 'PetSchema' doesn't have either `fields` or `_declared_fields`. ``` </details> I think it should be enough to just pass `schema_instance` instead of `schema` to `self.schema2jsonschema` in `resolve_nested_schema`
closed
2020-05-21T11:32:58Z
2020-06-06T09:26:41Z
https://github.com/marshmallow-code/apispec/issues/566
[]
black3r
1
dmlc/gluon-cv
computer-vision
1,416
"IndexError: too many indices for array" when training SSD with subset of VOC
I would like to train a SSD model with only subset of VOC - [ "person", "dog" ]. However, I encountered error with [VOCLike](https://gluon-cv.mxnet.io/build/examples_datasets/detection_custom.html?highlight=voclike#pascal-voc-like) with subset of classes. It works if I expand to full classes: ``` class VOCLike(gdata.VOCDetection): CLASSES = ['person','dog'] # not working # CLASSES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # this works def __init__(self, root, splits, transform=None, index_map=None, preload_label=True): super(VOCLike, self).__init__(root, splits, transform, index_map, preload_label) ``` Error message: ``` INFO:root:Namespace(amp=False, batch_size=32, dali=False, data_shape=300, dataset='voc', dataset_root='.', epochs=240, gpus='0', horovod=False, log_interval=100, lr=0.001, lr_decay=0.1, lr_decay_epoch='160,200', momentum=0.9, network='resnet34_v1b', num_workers=4, resume='', save_interval=10, save_prefix='ssd_300_resnet34_v1b_voc', seed=233, start_epoch=0, syncbn=False, val_interval=1, wd=0.0005) INFO:root:Start training from [Epoch 0] multiprocessing.pool.RemoteTraceback: """ Traceback (most recent call last): File "/usr/local/Cellar/python@3.8/3.8.5/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/Users/richardkang/training/lib/python3.8/site-packages/mxnet/gluon/data/dataloader.py", line 450, in _worker_fn batch = batchify_fn([_worker_dataset[i] for i in samples]) File "/Users/richardkang/training/lib/python3.8/site-packages/mxnet/gluon/data/dataloader.py", line 450, in <listcomp> batch = batchify_fn([_worker_dataset[i] for i in samples]) File "/Users/richardkang/training/lib/python3.8/site-packages/mxnet/gluon/data/dataset.py", line 219, in __getitem__ return self._fn(*item) File "/Users/richardkang/training/lib/python3.8/site-packages/gluoncv/data/transforms/presets/ssd.py", line 153, in __call__ bbox = tbbox.translate(label, x_offset=expand[0], y_offset=expand[1]) File "/Users/richardkang/training/lib/python3.8/site-packages/gluoncv/data/transforms/bbox.py", line 160, in translate bbox[:, :2] += (x_offset, y_offset) IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "train_ssd.py", line 431, in <module> train(net, train_data, val_data, eval_metric, ctx, args) File "train_ssd.py", line 316, in train for i, batch in enumerate(train_data): File "/Users/richardkang/training/lib/python3.8/site-packages/mxnet/gluon/data/dataloader.py", line 506, in __next__ batch = pickle.loads(ret.get(self._timeout)) File "/usr/local/Cellar/python@3.8/3.8.5/Frameworks/Python.framework/Versions/3.8/lib/python3.8/multiprocessing/pool.py", line 771, in get raise self._value IndexError: too many indices for array: array is 1-dimensional, but 2 were indexed ``` To reproduce 1. Prepare [VOC dataset](https://gluon-cv.mxnet.io/build/examples_datasets/pascal_voc.html#sphx-glr-build-examples-datasets-pascal-voc-py) 2. Download [train_ssd.py](https://gluon-cv.mxnet.io/build/examples_detection/train_ssd_voc.html#sphx-glr-build-examples-detection-train-ssd-voc-py) 3. Create `VOCLike` and replace `gdata.VOCDetection` in `train_ssd.py::get_dataset()` to use `VOCLike` 4. Define only sub classes in `VOCLike` 5. Run the `train_ssd.py` and the error will appear System details: 1. OS: OSX 10.15.5 2. Python: Python 3.8.5, pip details: ``` % python -m pip freeze certifi==2020.6.20 chardet==3.0.4 cycler==0.10.0 gluoncv==0.8.0 graphviz==0.8.4 idna==2.10 imgviz==1.2.2 kiwisolver==1.2.0 labelme==4.5.6 lxml==4.5.2 matplotlib==3.3.0 mxnet==1.6.0 numpy==1.19.1 opencv-python==4.4.0.40 Pillow==7.2.0 portalocker==2.0.0 pyparsing==2.4.7 PyQt5==5.15.0 PyQt5-sip==12.8.0 python-dateutil==2.8.1 PyYAML==5.3.1 QtPy==1.9.0 requests==2.24.0 scipy==1.5.2 six==1.15.0 termcolor==1.1.0 tqdm==4.48.2 urllib3==1.25.10 ```
closed
2020-08-14T00:58:46Z
2021-05-22T06:40:32Z
https://github.com/dmlc/gluon-cv/issues/1416
[ "Stale" ]
kangks
2
psf/requests
python
6,372
InvalidHeader exception when using subclass of str or bytes
An InvalidHeader is raised while preparing a request using a subclass of `str` instead of `str` or `bytes` in headers. ## Origin This is due to type checking in check_header_validity in utils.py. This type check uses `type` instead of `isinstance`. ## Context The need of using subclass of str instead of str comes from the need to have 2 "Authorization" header and not just one with 2 tokens separeated by a comma. PS: I didn't build the API i am requesting, don't blame me.
closed
2023-03-07T14:49:34Z
2024-03-07T00:02:47Z
https://github.com/psf/requests/issues/6372
[]
hpierre001
2
BayesWitnesses/m2cgen
scikit-learn
298
Error when compiling exported Java code using javac: Too many constants
Hi! I have problems when compiling the generated Java Code from m2cgen. I am using an XGBClassifier with n_estimators = 400. The generated code is ~360k lines long, which is around 17MB. Unfortunately, this code does not compile with javac as i get this error: ``` Model.java:1: error: too many constants public class Model { ^ 1 error ``` Using the approach suggested in #297, i have managed to split the score function into subroutines, which unfortunately does not fix my problem. Is there any workaround for this type of error? Manually adjusting the file is not really an option since i am planning to create a large number of models and compare them
open
2020-08-21T09:57:23Z
2020-09-04T21:32:18Z
https://github.com/BayesWitnesses/m2cgen/issues/298
[]
kijz
2
iterative/dvc
data-science
9,754
fetch/push/status: not handling config from other revisions
When branches have wildly different remote setups, those configs are not taken into account during fetch/push/status -c --all-tags/branches/etc Example: ``` #!/bin/bash set -e set -x rm -rf mytest mkdir mytest cd mytest mkdir remote1 mkdir remote2 remote1="$(pwd)/remote1" remote2="$(pwd)/remote2" mkdir repo cd repo git init dvc init git commit -m "init" git branch branch1 git branch branch2 git checkout branch1 echo foo > foo dvc add foo dvc remote add -d myremote1 $remote1 dvc push git add .gitignore foo.dvc .dvc/config git commit -m "foo" git checkout branch2 echo bar > bar dvc add bar dvc remote add -d myremote2 $remote2 dvc push git add .gitignore bar.dvc .dvc/config git commit -m "bar" git checkout main rm -rf .dvc/cache dvc fetch --all-branches tree .dvc/cache # will show 0 files ``` Studio uses real `git checkout` to collect objects and has been doing that for years as a workaround, but I couldn't find an issue in dvc yet. To fix this we should make `config` part of `Index`(same as stages, outs, etc are, don't confuse with DataIndex) and use it to build `Index.data`. This is the easiest to do in `dvc fetch` because it is using `Index.data` already, but might require temporary workarounds for `push/status -c` like manually triggering config reloading in brancher or something. - [x] fetch (#9758) - [ ] push (requires https://github.com/iterative/dvc/issues/9333) - [ ] status -c
open
2023-07-24T20:51:26Z
2024-10-23T08:06:33Z
https://github.com/iterative/dvc/issues/9754
[ "bug", "p2-medium", "A: data-sync" ]
efiop
2
ray-project/ray
pytorch
51,218
[Core] get_user_temp_dir() Doesn't Honor the User Specified Temp Dir
### What happened + What you expected to happen There are a couple of places in the code that uses `ray._private.utils.get_user_temp_dir()` to get the temporary directory for ray. However, if the user specifies the `--temp-dir` during `ray start`, the `get_user_temp_dir()` won't honor the custom temp directory. The function or the usage of the function needs to be fixed to honor the user specified temp directory. ### Versions / Dependencies Nightly ### Reproduction script 1. Start ray using: `ray start --head --temp-dir=/tmp/my-temp-dir` 2. Run the following: ``` import ray ray._private.utils.get_user_temp_dir() # it will return 'tmp' instead of the tmp directory specified in ray start ``` ### Issue Severity Low: It annoys or frustrates me.
open
2025-03-10T17:45:56Z
2025-03-21T23:10:02Z
https://github.com/ray-project/ray/issues/51218
[ "bug", "P1", "core" ]
MengjinYan
0
coqui-ai/TTS
pytorch
3,745
[Bug] Anyway to run this as docker-compose ?
### Describe the bug Anyway to run this as docker-compose ? ### To Reproduce docker-compose up ### Expected behavior N/A ### Logs ```shell N/A ``` ### Environment ```shell N/A ``` ### Additional context N/A
closed
2024-05-16T23:08:26Z
2024-07-27T06:33:40Z
https://github.com/coqui-ai/TTS/issues/3745
[ "bug", "wontfix" ]
PeterTucker
4
BeastByteAI/scikit-llm
scikit-learn
13
`GPTVectorizer().fit_transform(X)` always returns `RuntimeError`
Hi! First of all very nice work! I was trying the embedding utility with something as simple as: ```python from skllm.datasets import get_classification_dataset X, _ = get_classification_dataset() model = GPTVectorizer() vectors = model.fit_transform(X) ``` however, I always get: ```bash RuntimeError: Could not obtain the embedding after retrying 3 times. Last captured error: `<empty message> ``` I also tried with a custom dataset and with some simple strings. Am I doing something wrong?
closed
2023-05-23T22:39:44Z
2023-05-24T18:27:46Z
https://github.com/BeastByteAI/scikit-llm/issues/13
[]
nicola-corbellini
12
MagicStack/asyncpg
asyncio
755
advice: best bulk upsert method that still allows to track # of affected rows?
I've been relying on the newest implementation of executemany() to perform bulk upserts, but it has the shortcoming that it will not allow to easily determine the number of affected rows by parsing the statusmsg. The number of effectively upserted rows can easily be less than the number of rows I attempt to upsert, since I qualify my ON CONFLICT clause with a further WHERE clause specifying that the update should only happen if the new and excluded tuples are distinct. ``` INSERT INTO "table_name" AS __destination_row ( id, other_column ) VALUES ($1, $2) ON CONFLICT (id) DO UPDATE SET id = excluded.id, other_column = excluded.other_column WHERE (__destination_row.id IS DISTINCT FROM excluded.id) OR (__destination_row.other_column IS DISTINCT FROM excluded.other_column) ; ``` (regular Postgres would allow for a much terser syntax, but this is the only syntax that is accepted by CockroachDB) Suppose that at times knowing the exact number of effectively upserted rows is more crucial than the bulk performance, and yet I would prefer not to go to the extreme of upserting one row at a time, what would be the best compromise? Should I rely on a temporary table and then upserting into the physical tables from that temporary table? ``` INSERT INTO "table_name" AS __destination_row ( id, other_column ) SELECT ( id, other_column ) FROM "__temp_table_name" ON CONFLICT (id) DO UPDATE SET id = excluded.id, other_column = excluded.other_column WHERE (__destination_row.id IS DISTINCT FROM excluded.id) OR (__destination_row.other_column IS DISTINCT FROM excluded.other_column) ; ``` Should I instead use a transaction with several individual upserts of values once again provided by the client? Are there other approaches I should explore?
open
2021-05-06T06:59:59Z
2021-09-30T20:49:49Z
https://github.com/MagicStack/asyncpg/issues/755
[]
ale-dd
8
Gozargah/Marzban
api
713
مشکل محاسبه حجم اشتباه
با سلام وقتی یوزر به نود از طریق کلودفلر وصل میشه سرور حجم رو چند برابر مصرف اصلی محاسبه میکنه ولی حالت مستقیم اوکی هست مخصوصا وقتی اسپید تست گرفته میشه
closed
2023-12-26T00:48:26Z
2023-12-27T11:01:33Z
https://github.com/Gozargah/Marzban/issues/713
[ "Bug" ]
theonewhopassed
2
ml-tooling/opyrator
fastapi
45
launch-api does not support file upload
![image](https://user-images.githubusercontent.com/5986600/147811263-fcbc06f0-d2fe-4d23-8ce7-569f4f36c02c.png) I've tested the launch-ui, everything works fine. But when I go to use the api, and tried with postman, I encountered this problem: ``` { "detail": [ { "loc": [ "body" ], "msg": "value is not a valid dict", "type": "type_error.dict" } ] } ``` I think the definition is not compatible with FastAPI? Should I change that into some Form format? ``` class Input(BaseModel): file: FileContent = Field(..., mime_type="application/x-sqlite3") calc_type: str = 'PF' ``` Append: When change the api into `http://127.0.0.1:8080/call/` the response goes into: ``` WARNING: Invalid HTTP request received. Traceback (most recent call last): File "/Users/dragonszy/miniconda3/lib/python3.9/site-packages/uvicorn/protocols/http/httptools_impl.py", line 132, in data_received self.parser.feed_data(data) File "httptools/parser/parser.pyx", line 212, in httptools.parser.parser.HttpParser.feed_data httptools.parser.errors.HttpParserInvalidMethodError: Invalid method encountered INFO: 127.0.0.1:54894 - "POST /call HTTP/1.1" 422 Unprocessable Entity INFO: 127.0.0.1:54993 - "POST /call HTTP/1.1" 422 Unprocessable Entity ```
closed
2021-12-31T08:07:42Z
2022-04-15T03:15:22Z
https://github.com/ml-tooling/opyrator/issues/45
[ "bug", "stale" ]
loongmxbt
2
JaidedAI/EasyOCR
pytorch
1,099
multilanguage train
Hi, how does detection in two languages work in general? Earlier I tried to detect using easyocr with the languages ru and en, in principle it works, but so far it does not detect well, so I decided to annotate my dataset and retrain the model. but I ran into a problem, the fact is that the texts that I need to detect look like this: P6ОЖ00, 9OОЖ08, 3QОЖ2383 and so on, the meaning is like this (the first two can either be numbers or English letters, the second two are Cyrillic and then the numbers go). I can't teach, because I get an error related to encoding. Now I don't know how to use a dataset of 4000 texts to train a model.
open
2023-07-28T10:39:57Z
2023-07-28T10:39:57Z
https://github.com/JaidedAI/EasyOCR/issues/1099
[]
Sherlock-IT
0
dynaconf/dynaconf
flask
1,261
[bug] Overrides not working with environments
**Describe the bug** When using environments, a key in non-default environment doesn't override default. The below example results in ```bash Working in prod environment FOO<str> 'DEFAULT' ``` **To Reproduce** Steps to reproduce the behavior: 1. Having the following folder structure <!-- Describe or use the command `$ tree -v` and paste below --> <details> <summary> Project structure </summary> ```bash conf ├── config.py ├── default.yaml └── prod.yaml ``` </details> 2. Having the following config files: <!-- Please adjust if you are using different files and formats! --> <details> <summary> Config files </summary> **default.yaml** ```yaml default: foo: DEFAULT ``` **prod.yaml** ```yaml prod: foo: PROD ``` </details> 3. Having the following app code: <details> <summary> Code </summary> **config.py** ```python from dynaconf import Dynaconf config = Dynaconf( settings_files=["*.yaml"], environments=True, env_switcher="ENV", ) ``` </details> 4. Executing under the following environment <details> <summary> Execution </summary> ```bash ENV=prod dynaconf -i config.config list ``` </details> **Expected behavior** Should result in: ```bash Working in prod environment FOO<str> 'PROD' ``` **Environment (please complete the following information):** - OS: MacOS 15.3.1 - Dynaconf Version 3.2.10 - Frameworks in use: N/A **Additional context** It is not completely clear from the documentation if this is the intended behaviour or not. I assumed a non-default environment would override everything (top-level or nested) from a `default` environment. [Default-override workflow](https://www.dynaconf.com/faq/#default-override-workflow) says this, which makes me believe this is a bug: > By default, top-level settings with different keys will both be kept, **while the ones with the same keys will be overridden.**
open
2025-02-28T11:53:34Z
2025-03-07T17:57:39Z
https://github.com/dynaconf/dynaconf/issues/1261
[ "bug" ]
rsmeral
0
mirumee/ariadne
api
374
Proposal: ariadne-relay
@rafalp and @patrys, I dropped a comment on #188 a couple of weeks ago, but I think it might have gone under the radar since that issue is closed, so I'm going to make a more formal proposal here. I've already built a quick-and-dirty implementation for **Relay** connections, based on a decorator that wraps an ObjectType resolver that emits a Sequence. The implementation resolves the connection using [graphql-relay-py](https://github.com/graphql-python/graphql-relay-py). It works well, but its too specific to my case to be offered as a generalized implementation. I agree with the assessment in #188 that the right path forward here is for there to be an independent **ariadne-relay** package. It seems reasonable to build it on top of **graphql-relay-py** so it is synchronised closely to the [reference Relay codebase](https://github.com/graphql/graphql-relay-js). I'm willing to take ownership of this project, but I want to introduce the approach I have in mind here for comment, prior to doing further work. Proposed implementation: * ~~**ariadne-relay** will provide a `ConnectionType` class, as a subclass of `ariadne.ObjectType`, which takes care of the boilerplate glue between an iterable/sliceable object returned by another resolver and **graphql-relay-py**. This class will have a `set_count_resolver()` method and a `count_resolver` decorator to allow for control over how the count is derived.~~ * **ariadne-relay** will provide a `NodeType` class, as a subclass of `Ariadne.InterfaceType`, which will help with the formation of `ID` values, leveraging the methods in **graphql-relay-py**. This class will have a `set_id_value_resolver()` method and a `id_value_resolver` decorator to allow for control over how ids are derived. * I haven't worked yet with `graphql_relay.mutation` so I'm not sure how that might be leveraged, but at a glance it seems like it should be possible to do something useful here. * **ariadne-relay** will adhere to Ariadne's dev and coding standards, so it stays a close cousin. Does this seems like a reasonable basic direction? It seems from #188 that you guys have put a bit of consideration into this already, so perhaps you have some insight that I'm missing?
closed
2020-05-31T18:46:47Z
2021-03-19T12:19:03Z
https://github.com/mirumee/ariadne/issues/374
[ "discussion" ]
markedwards
4
unit8co/darts
data-science
1,795
[BUG] RMSE and MAE have same result when using backtest()
**Describe the bug** When using the RMSE and MAE as metrics for the backtest the results are the same. I do not get why, as the implemented metrics look correct. I am using the backtest function to perform one-step-ahead forecasting. **To Reproduce** ```py import pandas as pd from pytorch_lightning.callbacks import EarlyStopping from ray import tune from ray.tune import CLIReporter from ray.tune.integration.pytorch_lightning import TuneReportCallback from ray.tune.schedulers import ASHAScheduler from torchmetrics import ( MeanAbsoluteError, MeanSquaredError, MetricCollection, ) from darts.dataprocessing.transformers import Scaler from darts.datasets import AirPassengersDataset from darts.models import NBEATSModel from darts.metrics import rmse, mae def train_model(model_args, callbacks, train, val): torch_metrics = MetricCollection( [MeanAbsoluteError(), MeanSquaredError(squared=False)] ) # Create the model using model_args from Ray Tune model = NBEATSModel( input_chunk_length=24, output_chunk_length=1, n_epochs=1, torch_metrics=torch_metrics, pl_trainer_kwargs={ "callbacks": callbacks, "enable_progress_bar": False, "accelerator": "auto", }, **model_args ) pred = model.backtest( series=series, start=len(train), forecast_horizon=1, stride=1, retrain=True, verbose=False, metric=[mae, rmse], ) tune.report(mae=pred[0], rmse=pred[1]) # Read data: series = AirPassengersDataset().load() # Create training and validation sets: train, val = series.split_after(pd.Timestamp(year=1957, month=12, day=1)) # Normalize the time series (note: we avoid fitting the transformer on the validation set) transformer = Scaler() transformer.fit(train) train = transformer.transform(train) val = transformer.transform(val) # set up ray tune callback tune_callback = TuneReportCallback( { "loss": "val_loss", "mae": "val_MeanAbsoluteError", "rmse": "val_MeanSquaredError", }, on="validation_end", ) # define the hyperparameter space config = { "batch_size": tune.choice([16, 32, 64, 128]), "num_blocks": tune.choice([1, 2, 3, 4, 5]), "num_stacks": tune.choice([32, 64, 128]), "dropout": tune.uniform(0, 0.2), } reporter = CLIReporter( parameter_columns=list(config.keys()), metric_columns=["loss", "rmse", "mae", "training_iteration"], ) train_fn_with_parameters = tune.with_parameters( train_model, callbacks=[tune_callback], train=train, val=val, ) # optimize hyperparameters by minimizing the MAPE on the validation set analysis = tune.run( train_fn_with_parameters, resources_per_trial={"cpu": 12, "gpu": 1}, # Using a metric instead of loss allows for # comparison between different likelihood or loss functions. metric="rmse", # any value in TuneReportCallback. mode="min", config=config, num_samples=1, scheduler=ASHAScheduler(max_t=100, grace_period=3, reduction_factor=2), progress_reporter=reporter, name="tune_darts", ) print("Best hyperparameters found were: ", analysis.best_config) ```` **Expected behavior** When running the code above, the RMSE and MAE were both 886.74. I understand that the RMSE and MAE can be similar if all values are small, so is this due to the scaler? **System (please complete the following information):** - Python version: 3.10.11 - darts version: 0.24.0
closed
2023-05-23T17:46:49Z
2023-06-12T08:25:39Z
https://github.com/unit8co/darts/issues/1795
[ "bug", "triage" ]
StephanAkkerman
5
strawberry-graphql/strawberry
graphql
3,814
Resolver error nulls other resolvers
When evaluating strawberry-graphql as a tool, we are experiencing behavior where when a single resolver throws an error but other resolvers involved in the same query do not, we are not getting partial responses. Consider the following: ```python import strawberry @strawberry.type class Query: @strawberry.field def successful_field(self) -> str: return "This field works" @strawberry.field def error_field(self) -> str: raise Exception("This field fails") schema = strawberry.Schema(Query) ``` If we were to write the following query: ```json { successfulField errorField } ``` We would expect: ```json { "data": { "successfulField": "This field works", "errorField": null }, "errors": [ { "message": "This field fails", "locations": [{"line": 3, "column": 3}], "path": ["errorField"] } ] } ``` but instead I am getting: ```json { "data": null, "errors": [ { "message": "This field fails", "locations": [{"line": 3, "column": 3}], "path": ["errorField"] } ] } ``` This doesn't seem to be the expected behavior
open
2025-03-20T22:36:49Z
2025-03-21T19:18:53Z
https://github.com/strawberry-graphql/strawberry/issues/3814
[ "bug" ]
TheCaffinatedDeveloper
2
scikit-multilearn/scikit-multilearn
scikit-learn
93
Issue with WEKA multilabel ?
Hi. I am new with multilabel classificatin and I was making some tests and I want to figure out how MEKA works with sckitmultilearn. I got a dataset YEAST from http://mulan.sourceforge.net/datasets-mlc.html and converted it to .csv using MEKA, after that I tried to make some classification... Does anybody know what went wrong ? ![jupyter_meka_error](https://user-images.githubusercontent.com/31269176/34574292-2242fea4-f15e-11e7-8ef5-15a08783670b.png)
closed
2018-01-04T16:49:47Z
2018-06-06T16:46:28Z
https://github.com/scikit-multilearn/scikit-multilearn/issues/93
[]
mvenanc
6
horovod/horovod
tensorflow
3,474
TBB Warning: The number of workers is currently limited to 0
**Environment:** 1. Framework: (TensorFlow, Keras, PyTorch, MXNet): Pytorch 2. Framework version: 1.7.1 3. Horovod version: 0.21.0 4. MPI version: 3.1.3 5. CUDA version: 11.0 6. NCCL version: 2.7.8 7. Python version: 3.8.11 8. Spark / PySpark version: N/A 9. Ray version: N/A 10. OS and version: RHEL 8.4 11. GCC version: 8.4.1 12. CMake version: 3.18.2 **Checklist:** 1. Did you search issues to find if somebody asked this question before? 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? **Bug report:** Please describe erroneous behavior you're observing and steps to reproduce it. I ran pytorch_imagenet_resnet50.py on two nodes with 6GPU on each and got the following warnings: [1,5]<stderr>:TBB Warning: The number of workers is currently limited to 0. The request for 15 workers is ignored. Further requests for more workers will be silently ignored until the limit changes. [1,5]<stderr>: [1,16]<stderr>:TBB Warning: The number of workers is currently limited to 0. The request for 15 workers is ignored. Further requests for more workers will be silently ignored until the limit changes. [1,16]<stderr>: [1,19]<stderr>:TBB Warning: The number of workers is currently limited to 0. The request for 15 workers is ignored. Further requests for more workers will be silently ignored until the limit changes. [1,19]<stderr>: [1,13]<stderr>:TBB Warning: The number of workers is currently limited to 0. The request for 15 workers is ignored. Further requests for more workers will be silently ignored until the limit changes. [1,13]<stderr>: I am not sure if these are benign and expected. Would they cause any performance issues? Is there a way to set the number of workers to something else or is it hard coded? Thanks.
open
2022-03-17T20:05:18Z
2022-03-17T20:05:18Z
https://github.com/horovod/horovod/issues/3474
[ "bug" ]
kkvtran
0
tflearn/tflearn
data-science
566
No example of tflearn.custom_layer
There is no documentation, regarding how to specify a custom function when using tflearn. I also checked and there is no unit test for tflearn.custom_layer either.
open
2017-01-17T19:41:35Z
2017-01-19T06:36:07Z
https://github.com/tflearn/tflearn/issues/566
[]
kieran-mace
1
pytest-dev/pytest-cov
pytest
85
Branch coverage please
Please allow turning on branch coverage. IMO it should be the default too.
closed
2015-08-25T11:15:02Z
2017-03-15T23:11:37Z
https://github.com/pytest-dev/pytest-cov/issues/85
[]
dimaqq
7
alpacahq/alpaca-trade-api-python
rest-api
226
Data streaming broken on version 0.48 but not on v0.46 ('AM.*')
Just spent way too many hours of my life to figure out what was causing the problem :/ I have a project streaming ['AM.*', 'trade_updates'] on alpaca-trade-api v0.46. Everything works as expected. On another project, I had the exact same code but only 'trade_updates' were working. The difference was alpaca-trade-api v0.48. Not sure if this is related to Alpaca's new data streaming but something broke between these two versions. Just wanted to make you and others aware. Note: I was streaming using paper credentials, not sure about live. My code: ```python self._on_minute_bars = self.paper_conn.on(r'^AM$')(self._on_minute_bars) self._on_trade_updates = self.paper_conn.on(r'trade_updates$')(self._on_trade_updates) ```
closed
2020-06-18T09:25:07Z
2020-07-07T11:56:10Z
https://github.com/alpacahq/alpaca-trade-api-python/issues/226
[]
duhfrazee
6
waditu/tushare
pandas
1,109
业绩预告p_change_min, p_change_max无数据时返回值不统一
调用业绩预告时返回的p_change_min, p_change_max有的没有数据,当没有数据的时候,有的是标记成nan或NaN,type是numpy.float64,但是有的返回的是None,type显示是“<class 'NoneType'>“。 email: hbzong@qq.com
closed
2019-08-01T15:41:29Z
2019-08-06T06:10:08Z
https://github.com/waditu/tushare/issues/1109
[]
hbzong
1
huggingface/text-generation-inference
nlp
2,681
Complexe response format lead the container to run forever on CPU
### System Info System: `Linux 4.18.0-553.22.1.el8_10.x86_64 #1 SMP Wed Sep 25 09:20:43 UTC 2024 x86_64 x86_64 x86_64 GNU/Linux` `Rocky Linux 8.10` Model: `mistralai/Mistral-Nemo-Instruct-2407` Hardware: * GPU: `NVIDIA A100-SXM4-80GB` * CPU: ``` Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 256 On-line CPU(s) list: 0-255 Thread(s) per core: 2 Core(s) per socket: 64 Socket(s): 2 NUMA node(s): 8 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7742 64-Core Processor Stepping: 0 CPU MHz: 2250.000 CPU max MHz: 2250.0000 CPU min MHz: 1500.0000 ``` Using text-generation-inference docker containers, the issue is reproduced with TGI 2.3.1 & 2.2.0 ### Information - [X] Docker - [ ] The CLI directly ### Tasks - [X] An officially supported command - [ ] My own modifications ### Reproduction 1. Run a TGI container ``` sh # Podman podman run --device nvidia.com/gpu=4 --shm-size 64g -p 7085:80 -v /data/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id /data/models--mistralai--Mistral-Nemo-Instruct-2407/snapshots/e17a136e1dcba9c63ad771f2c85c1c312c563e6b --num-shard 1 --trust-remote-code --env --max-input-length 63999 --max-total-tokens 64000 --max-batch-prefill-tokens 64000 --max-concurrent-requests 128 --cuda-memory-fraction 0.94 --json-output # Equivalent using docker docker run --gpus '"device=4"' --shm-size 64g -p 7085:80 -v /data/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id /data/models--mistralai--Mistral-Nemo-Instruct-2407/snapshots/e17a136e1dcba9c63ad771f2c85c1c312c563e6b --num-shard 1 --trust-remote-code --env --max-input-length 63999 --max-total-tokens 64000 --max-batch-prefill-tokens 64000 --max-concurrent-requests 128 --cuda-memory-fraction 0.94 --json-output ``` <details> <summary>2. Make a chat completion call with a complexe regex in response format:</summary> ``` sh curl -X 'POST' \ 'http://px101.prod.exalead.com:7085/v1/chat/completions' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "model": "mistralai/Mistral-Nemo-Instruct-2407", "messages": [ { "role": "user", "content": "hello", "tool_calls": null } ], "temperature": 0.0, "top_p": null, "max_tokens": 2048, "stop": [], "stream": true, "seed": null, "frequency_penalty": null, "presence_penalty": null, "logprobs": false, "top_logprobs": null, "stream_options": null, "response_format": { "type": "regex", "whitespace_pattern": null, "value": "\\{([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\]([ ]?,[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?|([ ]?\"a\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"b\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"c\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"d\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"e\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"f\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"g\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"h\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"i\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"j\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?([ ]?\"k\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\][ ]?,)?[ ]?\"l\"[ ]?:[ ]?\\[[ ]?((\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")(,[ ]?(\"([^\"\\\\\\x00-\\x1F\\x7F-\\x9F]|\\\\[\"\\\\])*\")){0,})?[ ]?\\])?[ ]?\\}" }, "tools": null, "tool_choice": null, "logit_bias": null, "n": null, "parallel_tool_choice": null, "functions": null, "function_call": null }' ``` </details> <details> <summary>JSON schema for above regex</summary> ``` json { "properties": { "a": {"type": "array", "items": {"type": "string"}}, "b": {"type": "array", "items": {"type": "string"}}, "c": {"type": "array", "items": {"type": "string"}}, "d": {"type": "array", "items": {"type": "string"}}, "e": {"type": "array", "items": {"type": "string"}}, "f": {"type": "array", "items": {"type": "string"}}, "g": {"type": "array", "items": {"type": "string"}}, "h": {"type": "array", "items": {"type": "string"}}, "i": {"type": "array", "items": {"type": "string"}}, "j": {"type": "array", "items": {"type": "string"}}, "k": {"type": "array", "items": {"type": "string"}}, "l": {"type": "array", "items": {"type": "string"}} } } ``` </details> Note that the issue is still present when passing the JSON schema instead of the regex, but for various reasons we compute the regex ourselves using outlines.build_regex_from_schema. So when running above curl, TGI does accept the request and start processing. The %CPU goes to 99.7% and it stays like this for very long time until I decide to kill it. The container no longer accepts new requests and becomes useless. ### Expected behavior A timeout that would stop the processing before it runs for too long. Not sure which kind of timeout is relevant but since no token is received, a timeout _until first token is received_ would make sense for me. <details> <summary>Here's another schema that also triggers above issue but is more common</summary> ```json { "properties": { "main_intent": { "type": "string" }, "expected_output": { "type": "string" }, "key_entities": { "type": "array", "items": { "type": "string" } }, "key_properties": { "type": "array", "items": { "type": "object", "properties": { "name": { "type": "string" }, "comment": { "type": "string" } } } }, "classes": { "type": "string" }, "properties": { "type": "string" }, "sparql_query_form": { "type": "string" }, "variables": { "type": "array", "items": { "type": "object", "properties": { "name": { "type": "string" }, "comment": { "type": "string" } } } }, "properties_marked_as_optional": { "type": "array", "items": { "type": "string" } }, "triple_patterns_for_relations": { "type": "array", "items": { "type": "string" } }, "triple_patterns_for_classes": { "type": "array", "items": { "type": "string" } }, "additional_properties": { "type": "array", "items": { "type": "string" } }, "filters_and_constraints": { "type": "array", "items": { "type": "string" } }, "output_variables": { "type": "array", "items": { "type": "string" } }, "sparql_query": { "type": "string" } } } ``` </details>
open
2024-10-23T08:10:43Z
2024-12-10T16:56:16Z
https://github.com/huggingface/text-generation-inference/issues/2681
[]
Rictus
1
RayVentura/ShortGPT
automation
35
Add Chinese support
I hope to increase support for Chinese ,Really
closed
2023-07-22T10:37:30Z
2023-07-27T12:45:35Z
https://github.com/RayVentura/ShortGPT/issues/35
[]
tianheil3
4
miguelgrinberg/python-socketio
asyncio
411
Invalid async_mode specified while running docker image
Hi, while running docker image I am facing the below issue, I have added the --hidden-import=gevent-websocket, but no luck. anyone can help me on this. **my requirements.txt** Click==7.0 dnspython==1.16.0 eventlet==0.25.1 Flask==1.1.1 Flask-SocketIO==4.2.1 greenlet==0.4.15 itsdangerous==1.1.0 Jinja2==2.10.3 MarkupSafe==1.1.1 monotonic==1.5 pymongo==3.10.1 python-engineio==3.11.2 python-socketio==4.4.0 gevent-websocket==0.10.1 six==1.13.0 Werkzeug==0.16.0 [6] Failed to execute script app Traceback (most recent call last): File "app/app.py", line 12, in <module> File "flask_socketio/__init__.py", line 185, in __init__ File "flask_socketio/__init__.py", line 245, in init_app File "socketio/server.py", line 108, in __init__ File "engineio/server.py", line 139, in __init__ ValueError: Invalid async_mode specified
closed
2020-01-16T09:17:48Z
2020-04-10T14:15:31Z
https://github.com/miguelgrinberg/python-socketio/issues/411
[ "question" ]
nmanthena18
5
pytorch/vision
computer-vision
8,762
[Feature Request] Datasets Should Use New `torchvision.io` Image Loader APIs and Return `TVTensor` Images by Default
### 🚀 The feature 1. Add "torchvision" image loader backend based on new `torchvision.io` APIs (See: [Release Notes v0.20](https://github.com/pytorch/vision/releases/tag/v0.20.0)) and enable it by default. 2. VisionDatasets should return `TVTensor` images by default instead of `PIL.Image`. ### Motivation, pitch 1. TorchVision v0.20 introduces new `torchvision.io` APIs that enhance its encoding/decoding capabilities. 2. Current VisionDatasets returns `PIL.Image` by default, but the first step of transforms is usually `transforms.ToImage()`. 3. PIL is slow (See: [Pillow-SIMD](https://python-pillow.org/pillow-perf/)), especially when compared with new `torchvision.io` APIs. 4. Current TorchVision image loader backends are based on PIL or accimage, not including new `torchvision.io` APIs. ### Alternatives 1. The return type of datasets can be `PIL.Image` when using the PIL or the accimage backends, and be `TVTensor` if using new APIs (may lose consistency). ### Additional context I would like to make a pull request if the community likes this feature.
open
2024-11-28T10:31:42Z
2025-03-19T21:10:46Z
https://github.com/pytorch/vision/issues/8762
[]
fang-d
9
jupyter-widgets-contrib/ipycanvas
jupyter
24
Fill rule support
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Applying_styles_and_colors#Canvas_fill_rules
closed
2019-09-18T19:05:42Z
2019-09-20T14:18:10Z
https://github.com/jupyter-widgets-contrib/ipycanvas/issues/24
[ "enhancement" ]
martinRenou
0
Lightning-AI/pytorch-lightning
pytorch
20,268
rich progress bar shows v_num as 0.000
### Bug description ``` Epoch 11/999 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━ 1498/1638 0:02:25 • 0:00:14 10.20it/s v_num: 0.000 train/loss_step: 0.426 ``` tqdm works well to show v_num as integer ### What version are you seeing the problem on? v2.4 ### How to reproduce the bug _No response_ ### Error messages and logs ``` # Error messages and logs here please ``` ### Environment <details> <summary>Current environment</summary> ``` #- PyTorch Lightning Version (e.g., 2.4.0): #- PyTorch Version (e.g., 2.4): #- Python version (e.g., 3.12): #- OS (e.g., Linux): #- CUDA/cuDNN version: #- GPU models and configuration: #- How you installed Lightning(`conda`, `pip`, source): ``` </details> ### More info _No response_
open
2024-09-09T04:09:53Z
2024-09-09T04:10:44Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20268
[ "bug", "needs triage", "ver: 2.4.x" ]
npuichigo
0
omnilib/aiomultiprocess
asyncio
189
EOFError exception raised for unknown reason
Here is a simple code to test the apply() method, but it ended up with an `EOFError` exception: ```Python import asyncio from aiomultiprocess import Pool async def worker(): pass async def main(): async with Pool() as pool: tasks = [pool.apply(worker) for i in range(5)] await asyncio.gather(*tasks) if __name__ == "__main__": asyncio.run(main()) ``` Here is the output: ``` File "/home/babak/web/test/TEST.py", line 14, in <module> asyncio.run(main()) File "/usr/lib/python3.11/asyncio/runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/asyncio/base_events.py", line 653, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/home/babak/web/test/TEST.py", line 9, in main async with Pool() as pool: ^^^^^^ File "/home/babak/env_311/lib/python3.11/site-packages/aiomultiprocess/pool.py", line 186, in __init__ self.init() File "/home/babak/env_311/lib/python3.11/site-packages/aiomultiprocess/pool.py", line 214, in init self.processes[self.create_worker(qid)] = qid ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/babak/env_311/lib/python3.11/site-packages/aiomultiprocess/pool.py", line 251, in create_worker process = PoolWorker( ^^^^^^^^^^^ File "/home/babak/env_311/lib/python3.11/site-packages/aiomultiprocess/pool.py", line 59, in __init__ super().__init__( File "/home/babak/env_311/lib/python3.11/site-packages/aiomultiprocess/core.py", line 109, in __init__ namespace=get_manager().Namespace(), ^^^^^^^^^^^^^ File "/home/babak/env_311/lib/python3.11/site-packages/aiomultiprocess/core.py", line 29, in get_manager _manager = context.Manager() ^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/multiprocessing/context.py", line 57, in Manager m.start() File "/usr/lib/python3.11/multiprocessing/managers.py", line 567, in start self._address = reader.recv() ^^^^^^^^^^^^^ File "/usr/lib/python3.11/multiprocessing/connection.py", line 250, in recv buf = self._recv_bytes() ^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/multiprocessing/connection.py", line 430, in _recv_bytes buf = self._recv(4) ^^^^^^^^^^^^^ File "/usr/lib/python3.11/multiprocessing/connection.py", line 399, in _recv raise EOFError ``` What am I doing wrong? * OS: Ubuntu 20.0.4 running on a cheap VPS with 1 core CPU and about 1.3 GB of free RAM * Python version: 3.12 * aiomultiprocess version: 0.9.0
open
2024-01-05T08:40:08Z
2024-01-06T14:37:21Z
https://github.com/omnilib/aiomultiprocess/issues/189
[]
BabakAmini
0
nvbn/thefuck
python
1,257
Different rule found when using fish vs bash/zsh
The output of `thefuck --version` (something like `The Fuck 3.1 using Python 3.5.0 and Bash 4.4.12(1)-release`): The Fuck 3.31 using Python 3.10.1 and Fish Shell 3.3.1 Your system (Debian 7, ArchLinux, Windows, etc.): Fedora Linux 35 (Workstation Edition) How to reproduce the bug 1. Create a git branch which diverges from upstream such that it would require a force push e.g. using `git commit --amend` and changing the commit message. 2. Run a normal push without `--force`. 3. Run `fuck`. The output of The Fuck with `THEFUCK_DEBUG=true` exported (typically execute `export THEFUCK_DEBUG=true` in your shell before The Fuck): <details><summary>Log</summary> ``` fuck DEBUG: Run with settings: {'alter_history': True, 'debug': True, 'env': {'GIT_TRACE': '1', 'LANG': 'C', 'LC_ALL': 'C'}, 'exclude_rules': [], 'excluded_search_path_prefixes': [], 'history_limit': None, 'instant_mode': False, 'no_colors': False, 'num_close_matches': 3, 'priority': {}, 'repeat': False, 'require_confirmation': True, 'rules': [<const: All rules enabled>], 'slow_commands': ['lein', 'react-native', 'gradle', './gradlew', 'vagrant'], 'user_dir': PosixPath('/home/septatrix/.config/thefuck'), 'wait_command': 3, 'wait_slow_command': 15} DEBUG: Received output: 18:21:50.638803 git.c:455 trace: built-in: git push 18:21:50.641447 run-command.c:666 trace: run_command: unset GIT_PREFIX; ssh -p 20009 gitea@tracker.cde-ev.de 'git-receive-pack '\''/cdedb/cdedb2.git'\''' 18:21:51.551401 run-command.c:666 trace: run_command: .git/hooks/pre-push origin ssh://gitea@tracker.cde-ev.de:20009/cdedb/cdedb2.git To ssh://tracker.cde-ev.de:20009/cdedb/cdedb2.git ! [rejected] feature/configurable-db-host -> feature/configurable-db-host (non-fast-forward) error: failed to push some refs to 'ssh://tracker.cde-ev.de:20009/cdedb/cdedb2.git' hint: Updates were rejected because the tip of your current branch is behind hint: its remote counterpart. Integrate the remote changes (e.g. hint: 'git pull ...') before pushing again. hint: See the 'Note about fast-forwards' in 'git push --help' for details. DEBUG: Call: git push; with env: {'LC_MEASUREMENT': 'en_GB.UTF-8', 'COLORTERM': 'truecolor', 'GNOME_TERMINAL_SCREEN': '/org/gnome/Terminal/screen/20f05158_bd07_42d0_b162_7281d135ce0d', 'LC_MONETARY': 'en_GB.UTF-8', 'XDG_SESSION_CLASS': 'user', 'LANG': 'C', 'VIRTUAL_ENV': '/home/septatrix/Documents/cde/db/cdedb2/.venv', 'VSCODE_GIT_IPC_HANDLE': '/run/user/1000/vscode-git-996b716d83.sock', 'VSCODE_GIT_ASKPASS_MAIN': '/usr/share/code/resources/app/extensions/git/dist/askpass-main.js', 'WAYLAND_DISPLAY': 'wayland-0', 'TERM': 'xterm-256color', '_OLD_VIRTUAL_PATH': '/home/septatrix/.local/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin', 'SHLVL': '3', 'GNOME_TERMINAL_SERVICE': ':1.441', 'TERM_PROGRAM_VERSION': '1.63.2', 'XDG_RUNTIME_DIR': '/run/user/1000', 'VSCODE_GIT_ASKPASS_NODE': '/usr/share/code/code', 'LC_PAPER': 'en_GB.UTF-8', 'PATH': '/home/septatrix/Documents/cde/db/cdedb2/.venv/bin:/home/septatrix/.local/bin:/usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin', 'USER': 'septatrix', 'XDG_MENU_PREFIX': 'gnome-', 'XDG_CURRENT_DESKTOP': 'GNOME', 'XDG_SESSION_DESKTOP': 'gnome', 'VIRTUAL_ENV_PROMPT': '(.venv) ', 'CHROME_DESKTOP': 'code-url-handler.desktop', '_OLD_FISH_PROMPT_OVERRIDE': '/home/septatrix/Documents/cde/db/cdedb2/.venv', 'PWD': '/home/septatrix/Documents/cde/db/cdedb2', 'DESKTOP_SESSION': 'gnome', 'XMODIFIERS': '@im=ibus', 'SSH_AUTH_SOCK': '/run/user/1000/keyring/ssh', 'SHELL': '/usr/bin/fish', 'XDG_SESSION_TYPE': 'wayland', 'XDG_DATA_DIRS': '/home/septatrix/.local/share/flatpak/exports/share:/var/lib/flatpak/exports/share:/usr/local/share/:/usr/share/', 'HOME': '/home/septatrix', 'VTE_VERSION': '6602', 'SESSION_MANAGER': 'local/unix:@/tmp/.ICE-unix/1443610,unix/unix:/tmp/.ICE-unix/1443610', 'VSCODE_GIT_ASKPASS_EXTRA_ARGS': '--ms-enable-electron-run-as-node', 'LC_NUMERIC': 'en_GB.UTF-8', 'GDK_BACKEND': 'x11', 'SYSTEMD_EXEC_PID': '1443968', 'NO_AT_BRIDGE': '1', 'BREAKPAD_DUMP_LOCATION': '/home/septatrix/.config/Code/exthost Crash Reports', 'LC_TIME': 'en_GB.UTF-8', 'DISPLAY': ':0', 'THEFUCK_DEBUG': 'true', 'USERNAME': 'septatrix', 'APPLICATION_INSIGHTS_NO_DIAGNOSTIC_CHANNEL': 'true', 'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1000/bus', 'GNOME_SETUP_DISPLAY': ':1', 'TERM_PROGRAM': 'vscode', 'QT_IM_MODULE': 'ibus', 'GDMSESSION': 'gnome', 'ORIGINAL_XDG_CURRENT_DESKTOP': 'GNOME', 'EDITOR': '/usr/bin/nano', 'LOGNAME': 'septatrix', 'GIT_ASKPASS': '/usr/share/code/resources/app/extensions/git/dist/askpass.sh', 'GDM_LANG': 'en_US.UTF-8', 'XAUTHORITY': '/run/user/1000/.mutter-Xwaylandauth.2WCHF1', 'TF_SHELL': 'fish', 'TF_ALIAS': 'fuck', 'PYTHONIOENCODING': 'utf-8', 'LC_ALL': 'C', 'GIT_TRACE': '1'}; is slow: False took: 0:00:00.980850 DEBUG: Importing rule: adb_unknown_command; took: 0:00:00.000164 DEBUG: Importing rule: ag_literal; took: 0:00:00.000307 DEBUG: Importing rule: apt_get; took: 0:00:00.001086 DEBUG: Importing rule: apt_get_search; took: 0:00:00.000286 DEBUG: Importing rule: apt_invalid_operation; took: 0:00:00.000436 DEBUG: Importing rule: apt_list_upgradable; took: 0:00:00.000262 DEBUG: Importing rule: apt_upgrade; took: 0:00:00.000218 DEBUG: Importing rule: aws_cli; took: 0:00:00.000225 DEBUG: Importing rule: az_cli; took: 0:00:00.000186 DEBUG: Importing rule: brew_cask_dependency; took: 0:00:00.000464 DEBUG: Importing rule: brew_install; took: 0:00:00.000121 DEBUG: Importing rule: brew_link; took: 0:00:00.000183 DEBUG: Importing rule: brew_reinstall; took: 0:00:00.000536 DEBUG: Importing rule: brew_uninstall; took: 0:00:00.000240 DEBUG: Importing rule: brew_unknown_command; took: 0:00:00.000141 DEBUG: Importing rule: brew_update_formula; took: 0:00:00.000201 DEBUG: Importing rule: brew_upgrade; took: 0:00:00.000108 DEBUG: Importing rule: cargo; took: 0:00:00.000172 DEBUG: Importing rule: cargo_no_command; took: 0:00:00.000192 DEBUG: Importing rule: cat_dir; took: 0:00:00.000173 DEBUG: Importing rule: cd_correction; took: 0:00:00.000704 DEBUG: Importing rule: cd_cs; took: 0:00:00.000108 DEBUG: Importing rule: cd_mkdir; took: 0:00:00.000209 DEBUG: Importing rule: cd_parent; took: 0:00:00.000116 DEBUG: Importing rule: chmod_x; took: 0:00:00.000129 DEBUG: Importing rule: choco_install; took: 0:00:00.000350 DEBUG: Importing rule: composer_not_command; took: 0:00:00.000238 DEBUG: Importing rule: conda_mistype; took: 0:00:00.000231 DEBUG: Importing rule: cp_create_destination; took: 0:00:00.000223 DEBUG: Importing rule: cp_omitting_directory; took: 0:00:00.000257 DEBUG: Importing rule: cpp11; took: 0:00:00.000220 DEBUG: Importing rule: dirty_untar; took: 0:00:00.001978 DEBUG: Importing rule: dirty_unzip; took: 0:00:00.001140 DEBUG: Importing rule: django_south_ghost; took: 0:00:00.000128 DEBUG: Importing rule: django_south_merge; took: 0:00:00.000147 DEBUG: Importing rule: dnf_no_such_command; took: 0:00:00.000691 DEBUG: Importing rule: docker_image_being_used_by_container; took: 0:00:00.000248 DEBUG: Importing rule: docker_login; took: 0:00:00.000196 DEBUG: Importing rule: docker_not_command; took: 0:00:00.000539 DEBUG: Importing rule: dry; took: 0:00:00.000161 DEBUG: Importing rule: fab_command_not_found; took: 0:00:00.000241 DEBUG: Importing rule: fix_alt_space; took: 0:00:00.000182 DEBUG: Importing rule: fix_file; took: 0:00:00.001661 DEBUG: Importing rule: gem_unknown_command; took: 0:00:00.000345 DEBUG: Importing rule: git_add; took: 0:00:00.000391 DEBUG: Importing rule: git_add_force; took: 0:00:00.000164 DEBUG: Importing rule: git_bisect_usage; took: 0:00:00.000192 DEBUG: Importing rule: git_branch_delete; took: 0:00:00.000183 DEBUG: Importing rule: git_branch_delete_checked_out; took: 0:00:00.000186 DEBUG: Importing rule: git_branch_exists; took: 0:00:00.000199 DEBUG: Importing rule: git_branch_list; took: 0:00:00.000273 DEBUG: Importing rule: git_checkout; took: 0:00:00.000205 DEBUG: Importing rule: git_clone_git_clone; took: 0:00:00.000179 DEBUG: Importing rule: git_commit_amend; took: 0:00:00.000175 DEBUG: Importing rule: git_commit_reset; took: 0:00:00.000192 DEBUG: Importing rule: git_diff_no_index; took: 0:00:00.000183 DEBUG: Importing rule: git_diff_staged; took: 0:00:00.000189 DEBUG: Importing rule: git_fix_stash; took: 0:00:00.000188 DEBUG: Importing rule: git_flag_after_filename; took: 0:00:00.000200 DEBUG: Importing rule: git_help_aliased; took: 0:00:00.000178 DEBUG: Importing rule: git_hook_bypass; took: 0:00:00.000197 DEBUG: Importing rule: git_lfs_mistype; took: 0:00:00.000184 DEBUG: Importing rule: git_merge; took: 0:00:00.000184 DEBUG: Importing rule: git_merge_unrelated; took: 0:00:00.000173 DEBUG: Importing rule: git_not_command; took: 0:00:00.000192 DEBUG: Importing rule: git_pull; took: 0:00:00.000174 DEBUG: Importing rule: git_pull_clone; took: 0:00:00.000269 DEBUG: Importing rule: git_pull_uncommitted_changes; took: 0:00:00.000195 DEBUG: Importing rule: git_push; took: 0:00:00.000176 DEBUG: Importing rule: git_push_different_branch_names; took: 0:00:00.000184 DEBUG: Importing rule: git_push_force; took: 0:00:00.000170 DEBUG: Importing rule: git_push_pull; took: 0:00:00.000226 DEBUG: Importing rule: git_push_without_commits; took: 0:00:00.000305 DEBUG: Importing rule: git_rebase_merge_dir; took: 0:00:00.000184 DEBUG: Importing rule: git_rebase_no_changes; took: 0:00:00.000129 DEBUG: Importing rule: git_remote_delete; took: 0:00:00.000197 DEBUG: Importing rule: git_remote_seturl_add; took: 0:00:00.000154 DEBUG: Importing rule: git_rm_local_modifications; took: 0:00:00.000198 DEBUG: Importing rule: git_rm_recursive; took: 0:00:00.000190 DEBUG: Importing rule: git_rm_staged; took: 0:00:00.000171 DEBUG: Importing rule: git_stash; took: 0:00:00.000192 DEBUG: Importing rule: git_stash_pop; took: 0:00:00.000169 DEBUG: Importing rule: git_tag_force; took: 0:00:00.000230 DEBUG: Importing rule: git_two_dashes; took: 0:00:00.000171 DEBUG: Importing rule: go_run; took: 0:00:00.000197 DEBUG: Importing rule: go_unknown_command; took: 0:00:00.000307 DEBUG: Importing rule: gradle_no_task; took: 0:00:00.000401 DEBUG: Importing rule: gradle_wrapper; took: 0:00:00.000188 DEBUG: Importing rule: grep_arguments_order; took: 0:00:00.000159 DEBUG: Importing rule: grep_recursive; took: 0:00:00.000230 DEBUG: Importing rule: grunt_task_not_found; took: 0:00:00.000456 DEBUG: Importing rule: gulp_not_task; took: 0:00:00.000229 DEBUG: Importing rule: has_exists_script; took: 0:00:00.000176 DEBUG: Importing rule: heroku_multiple_apps; took: 0:00:00.000191 DEBUG: Importing rule: heroku_not_command; took: 0:00:00.000207 DEBUG: Importing rule: history; took: 0:00:00.000110 DEBUG: Importing rule: hostscli; took: 0:00:00.000201 DEBUG: Importing rule: ifconfig_device_not_found; took: 0:00:00.000282 DEBUG: Importing rule: java; took: 0:00:00.000222 DEBUG: Importing rule: javac; took: 0:00:00.000178 DEBUG: Importing rule: lein_not_task; took: 0:00:00.000215 DEBUG: Importing rule: ln_no_hard_link; took: 0:00:00.000196 DEBUG: Importing rule: ln_s_order; took: 0:00:00.000208 DEBUG: Importing rule: long_form_help; took: 0:00:00.000142 DEBUG: Importing rule: ls_all; took: 0:00:00.000202 DEBUG: Importing rule: ls_lah; took: 0:00:00.000194 DEBUG: Importing rule: man; took: 0:00:00.000192 DEBUG: Importing rule: man_no_space; took: 0:00:00.000151 DEBUG: Importing rule: mercurial; took: 0:00:00.000245 DEBUG: Importing rule: missing_space_before_subcommand; took: 0:00:00.000171 DEBUG: Importing rule: mkdir_p; took: 0:00:00.000206 DEBUG: Importing rule: mvn_no_command; took: 0:00:00.000215 DEBUG: Importing rule: mvn_unknown_lifecycle_phase; took: 0:00:00.000209 DEBUG: Importing rule: nixos_cmd_not_found; took: 0:00:00.000470 DEBUG: Importing rule: no_command; took: 0:00:00.000276 DEBUG: Importing rule: no_such_file; took: 0:00:00.000137 DEBUG: Importing rule: npm_missing_script; took: 0:00:00.000431 DEBUG: Importing rule: npm_run_script; took: 0:00:00.000193 DEBUG: Importing rule: npm_wrong_command; took: 0:00:00.000255 DEBUG: Importing rule: omnienv_no_such_command; took: 0:00:00.000407 DEBUG: Importing rule: open; took: 0:00:00.000264 DEBUG: Importing rule: pacman; took: 0:00:00.000620 DEBUG: Importing rule: pacman_invalid_option; took: 0:00:00.000384 DEBUG: Importing rule: pacman_not_found; took: 0:00:00.000178 DEBUG: Importing rule: path_from_history; took: 0:00:00.000202 DEBUG: Importing rule: php_s; took: 0:00:00.000252 DEBUG: Importing rule: pip_install; took: 0:00:00.000255 DEBUG: Importing rule: pip_unknown_command; took: 0:00:00.000276 DEBUG: Importing rule: port_already_in_use; took: 0:00:00.000324 DEBUG: Importing rule: prove_recursively; took: 0:00:00.000276 DEBUG: Importing rule: pyenv_no_such_command; took: 0:00:00.000443 DEBUG: Importing rule: python_command; took: 0:00:00.000235 DEBUG: Importing rule: python_execute; took: 0:00:00.000231 DEBUG: Importing rule: python_module_error; took: 0:00:00.000162 DEBUG: Importing rule: quotation_marks; took: 0:00:00.000151 DEBUG: Importing rule: react_native_command_unrecognized; took: 0:00:00.000498 DEBUG: Importing rule: remove_shell_prompt_literal; took: 0:00:00.000378 DEBUG: Importing rule: remove_trailing_cedilla; took: 0:00:00.000319 DEBUG: Importing rule: rm_dir; took: 0:00:00.000452 DEBUG: Importing rule: rm_root; took: 0:00:00.000350 DEBUG: Importing rule: scm_correction; took: 0:00:00.000286 DEBUG: Importing rule: sed_unterminated_s; took: 0:00:00.000251 DEBUG: Importing rule: sl_ls; took: 0:00:00.000145 DEBUG: Importing rule: ssh_known_hosts; took: 0:00:00.000245 DEBUG: Importing rule: sudo; took: 0:00:00.000156 DEBUG: Importing rule: sudo_command_from_user_path; took: 0:00:00.000261 DEBUG: Importing rule: switch_lang; took: 0:00:00.000273 DEBUG: Importing rule: systemctl; took: 0:00:00.000374 DEBUG: Importing rule: terraform_init; took: 0:00:00.000419 DEBUG: Importing rule: test.py; took: 0:00:00.000190 DEBUG: Importing rule: tmux; took: 0:00:00.000276 DEBUG: Importing rule: touch; took: 0:00:00.000322 DEBUG: Importing rule: tsuru_login; took: 0:00:00.000318 DEBUG: Importing rule: tsuru_not_command; took: 0:00:00.000328 DEBUG: Importing rule: unknown_command; took: 0:00:00.000170 DEBUG: Importing rule: unsudo; took: 0:00:00.000139 DEBUG: Importing rule: vagrant_up; took: 0:00:00.000288 DEBUG: Importing rule: whois; took: 0:00:00.000516 DEBUG: Importing rule: workon_doesnt_exists; took: 0:00:00.000317 DEBUG: Importing rule: yarn_alias; took: 0:00:00.000295 DEBUG: Importing rule: yarn_command_not_found; took: 0:00:00.000631 DEBUG: Importing rule: yarn_command_replaced; took: 0:00:00.000538 DEBUG: Importing rule: yarn_help; took: 0:00:00.000327 DEBUG: Importing rule: yum_invalid_operation; took: 0:00:00.000718 DEBUG: Trying rule: path_from_history; took: 0:00:00.000624 DEBUG: Trying rule: cd_cs; took: 0:00:00.000077 DEBUG: Trying rule: dry; took: 0:00:00.000004 DEBUG: Trying rule: git_hook_bypass; took: 0:00:00.000079 DEBUG: Trying rule: git_stash_pop; took: 0:00:00.000041 DEBUG: Trying rule: test.py; took: 0:00:00.000003 DEBUG: Trying rule: adb_unknown_command; took: 0:00:00.000019 DEBUG: Trying rule: ag_literal; took: 0:00:00.000041 DEBUG: Trying rule: aws_cli; took: 0:00:00.000031 DEBUG: Trying rule: az_cli; took: 0:00:00.000034 DEBUG: Trying rule: brew_link; took: 0:00:00.000056 DEBUG: Trying rule: brew_reinstall; took: 0:00:00.000032 DEBUG: Trying rule: brew_uninstall; took: 0:00:00.000028 DEBUG: Trying rule: brew_update_formula; took: 0:00:00.000033 DEBUG: Trying rule: cargo; took: 0:00:00.000003 DEBUG: Trying rule: cargo_no_command; took: 0:00:00.000032 DEBUG: Trying rule: cat_dir; took: 0:00:00.000035 DEBUG: Trying rule: cd_correction; took: 0:00:00.000049 DEBUG: Trying rule: cd_mkdir; took: 0:00:00.000048 DEBUG: Trying rule: cd_parent; took: 0:00:00.000002 DEBUG: Trying rule: chmod_x; took: 0:00:00.000003 DEBUG: Trying rule: composer_not_command; took: 0:00:00.000030 DEBUG: Trying rule: conda_mistype; took: 0:00:00.000029 DEBUG: Trying rule: cp_create_destination; took: 0:00:00.000023 DEBUG: Trying rule: cp_omitting_directory; took: 0:00:00.000034 DEBUG: Trying rule: cpp11; took: 0:00:00.000031 DEBUG: Trying rule: dirty_untar; took: 0:00:00.000026 DEBUG: Trying rule: dirty_unzip; took: 0:00:00.000028 DEBUG: Trying rule: django_south_ghost; took: 0:00:00.000003 DEBUG: Trying rule: django_south_merge; took: 0:00:00.000003 DEBUG: Trying rule: dnf_no_such_command; took: 0:00:00.000054 DEBUG: Trying rule: docker_image_being_used_by_container; took: 0:00:00.000032 DEBUG: Trying rule: docker_login; took: 0:00:00.000026 DEBUG: Trying rule: docker_not_command; took: 0:00:00.000034 DEBUG: Trying rule: fab_command_not_found; took: 0:00:00.000034 DEBUG: Trying rule: fix_alt_space; took: 0:00:00.000023 DEBUG: Trying rule: fix_file; took: 0:00:00.000181 DEBUG: Trying rule: gem_unknown_command; took: 0:00:00.000059 DEBUG: Trying rule: git_add; took: 0:00:00.000038 DEBUG: Trying rule: git_add_force; took: 0:00:00.000027 DEBUG: Trying rule: git_bisect_usage; took: 0:00:00.000026 DEBUG: Trying rule: git_branch_delete; took: 0:00:00.000023 DEBUG: Trying rule: git_branch_delete_checked_out; took: 0:00:00.000031 DEBUG: Trying rule: git_branch_exists; took: 0:00:00.000021 DEBUG: Trying rule: git_branch_list; took: 0:00:00.000026 DEBUG: Trying rule: git_checkout; took: 0:00:00.000040 DEBUG: Trying rule: git_clone_git_clone; took: 0:00:00.000017 DEBUG: Trying rule: git_commit_amend; took: 0:00:00.000015 DEBUG: Trying rule: git_commit_reset; took: 0:00:00.000021 DEBUG: Trying rule: git_diff_no_index; took: 0:00:00.000025 DEBUG: Trying rule: git_diff_staged; took: 0:00:00.000019 DEBUG: Trying rule: git_fix_stash; took: 0:00:00.000015 DEBUG: Trying rule: git_flag_after_filename; took: 0:00:00.000015 DEBUG: Trying rule: git_help_aliased; took: 0:00:00.000015 DEBUG: Trying rule: git_lfs_mistype; took: 0:00:00.000014 DEBUG: Trying rule: git_merge; took: 0:00:00.000019 DEBUG: Trying rule: git_merge_unrelated; took: 0:00:00.000015 DEBUG: Trying rule: git_not_command; took: 0:00:00.000015 DEBUG: Trying rule: git_pull; took: 0:00:00.000014 DEBUG: Trying rule: git_pull_clone; took: 0:00:00.000015 DEBUG: Trying rule: git_pull_uncommitted_changes; took: 0:00:00.000015 DEBUG: Trying rule: git_push; took: 0:00:00.000015 DEBUG: Trying rule: git_push_different_branch_names; took: 0:00:00.000015 DEBUG: Trying rule: git_push_pull; took: 0:00:00.000017 DEBUG: Trying rule: git_push_without_commits; took: 0:00:00.000015 DEBUG: Trying rule: git_rebase_merge_dir; took: 0:00:00.000015 DEBUG: Trying rule: git_rebase_no_changes; took: 0:00:00.000016 DEBUG: Trying rule: git_remote_delete; took: 0:00:00.000023 DEBUG: Trying rule: git_remote_seturl_add; took: 0:00:00.000022 DEBUG: Trying rule: git_rm_local_modifications; took: 0:00:00.000045 DEBUG: Trying rule: git_rm_recursive; took: 0:00:00.000025 DEBUG: Trying rule: git_rm_staged; took: 0:00:00.000029 DEBUG: Trying rule: git_stash; took: 0:00:00.000035 DEBUG: Trying rule: git_tag_force; took: 0:00:00.000027 DEBUG: Trying rule: git_two_dashes; took: 0:00:00.000025 DEBUG: Trying rule: go_run; took: 0:00:00.000032 DEBUG: Trying rule: go_unknown_command; took: 0:00:00.000025 DEBUG: Trying rule: gradle_no_task; took: 0:00:00.000031 DEBUG: Trying rule: gradle_wrapper; took: 0:00:00.000033 DEBUG: Trying rule: grep_arguments_order; took: 0:00:00.000028 DEBUG: Trying rule: grep_recursive; took: 0:00:00.000026 DEBUG: Trying rule: grunt_task_not_found; took: 0:00:00.000027 DEBUG: Trying rule: gulp_not_task; took: 0:00:00.000029 DEBUG: Trying rule: has_exists_script; took: 0:00:00.000053 DEBUG: Trying rule: heroku_multiple_apps; took: 0:00:00.000030 DEBUG: Trying rule: heroku_not_command; took: 0:00:00.000033 DEBUG: Trying rule: hostscli; took: 0:00:00.000040 DEBUG: Trying rule: ifconfig_device_not_found; took: 0:00:00.000040 DEBUG: Trying rule: java; took: 0:00:00.000032 DEBUG: Trying rule: javac; took: 0:00:00.000025 DEBUG: Trying rule: lein_not_task; took: 0:00:00.000047 DEBUG: Trying rule: ln_no_hard_link; took: 0:00:00.000016 DEBUG: Trying rule: ln_s_order; took: 0:00:00.000015 DEBUG: Trying rule: ls_all; took: 0:00:00.000026 DEBUG: Trying rule: ls_lah; took: 0:00:00.000029 DEBUG: Trying rule: man; took: 0:00:00.000027 DEBUG: Trying rule: mercurial; took: 0:00:00.000025 DEBUG: Trying rule: mkdir_p; took: 0:00:00.000019 DEBUG: Trying rule: mvn_no_command; took: 0:00:00.000026 DEBUG: Trying rule: mvn_unknown_lifecycle_phase; took: 0:00:00.000022 DEBUG: Trying rule: no_such_file; took: 0:00:00.001031 DEBUG: Trying rule: npm_missing_script; took: 0:00:00.000066 DEBUG: Trying rule: npm_run_script; took: 0:00:00.000032 DEBUG: Trying rule: npm_wrong_command; took: 0:00:00.000039 DEBUG: Trying rule: open; took: 0:00:00.000032 DEBUG: Trying rule: pacman_invalid_option; took: 0:00:00.000042 DEBUG: Trying rule: php_s; took: 0:00:00.000026 DEBUG: Trying rule: pip_install; took: 0:00:00.000038 DEBUG: Trying rule: pip_unknown_command; took: 0:00:00.000050 DEBUG: Trying rule: port_already_in_use; took: 0:00:00.000741 DEBUG: Trying rule: prove_recursively; took: 0:00:00.000069 DEBUG: Trying rule: pyenv_no_such_command; took: 0:00:00.000053 DEBUG: Trying rule: python_command; took: 0:00:00.000018 DEBUG: Trying rule: python_execute; took: 0:00:00.000023 DEBUG: Trying rule: python_module_error; took: 0:00:00.000003 DEBUG: Trying rule: quotation_marks; took: 0:00:00.000001 DEBUG: Trying rule: react_native_command_unrecognized; took: 0:00:00.000026 DEBUG: Trying rule: remove_shell_prompt_literal; took: 0:00:00.000003 DEBUG: Trying rule: remove_trailing_cedilla; took: 0:00:00.000004 DEBUG: Trying rule: rm_dir; took: 0:00:00.000016 DEBUG: Trying rule: scm_correction; took: 0:00:00.000029 DEBUG: Trying rule: sed_unterminated_s; took: 0:00:00.000030 DEBUG: Trying rule: sl_ls; took: 0:00:00.000003 DEBUG: Trying rule: ssh_known_hosts; took: 0:00:00.000029 DEBUG: Trying rule: sudo; took: 0:00:00.000043 DEBUG: Trying rule: sudo_command_from_user_path; took: 0:00:00.000037 DEBUG: Trying rule: switch_lang; took: 0:00:00.000003 DEBUG: Trying rule: systemctl; took: 0:00:00.000049 DEBUG: Trying rule: terraform_init; took: 0:00:00.000033 DEBUG: Trying rule: tmux; took: 0:00:00.000035 DEBUG: Trying rule: touch; took: 0:00:00.000033 DEBUG: Trying rule: tsuru_login; took: 0:00:00.000037 DEBUG: Trying rule: tsuru_not_command; took: 0:00:00.000026 DEBUG: Trying rule: unknown_command; took: 0:00:00.000705 DEBUG: Trying rule: unsudo; took: 0:00:00.000006 DEBUG: Trying rule: vagrant_up; took: 0:00:00.000056 DEBUG: Trying rule: whois; took: 0:00:00.000038 DEBUG: Trying rule: workon_doesnt_exists; took: 0:00:00.000040 DEBUG: Trying rule: yarn_alias; took: 0:00:00.000030 DEBUG: Trying rule: yarn_command_not_found; took: 0:00:00.000025 DEBUG: Trying rule: yarn_command_replaced; took: 0:00:00.000025 DEBUG: Trying rule: yarn_help; took: 0:00:00.000029 DEBUG: Trying rule: yum_invalid_operation; took: 0:00:00.000045 DEBUG: Trying rule: man_no_space; took: 0:00:00.000002 DEBUG: Trying rule: no_command; took: 0:00:00.000138 DEBUG: Trying rule: missing_space_before_subcommand; took: 0:00:00.042224 DEBUG: Trying rule: long_form_help; took: 0:00:00.000379 fish -ic "git push" [enter/↑/↓/ctrl+c] Aborted DEBUG: Total took: 0:00:02.887527 ``` </details> If the bug only appears with a specific application, the output of that application and its version: git version 2.33.1 Anything else you think is relevant: TF_SHELL=fish thefuck git push THEFUCK_ARGUMENT_PLACEHOLDER # does not work TF_SHELL=bash thefuck git push THEFUCK_ARGUMENT_PLACEHOLDER # works
open
2022-01-02T17:26:12Z
2022-01-05T00:24:04Z
https://github.com/nvbn/thefuck/issues/1257
[ "fish" ]
septatrix
19
litestar-org/litestar
pydantic
3,088
Enhancement: Support "+json" suffixed media types per RFC 6839
### Summary Json encoded responses in Litestar must have a media type which starts with "application/json", as can be seen https://github.com/litestar-org/litestar/blob/main/litestar/response/base.py#L388 ``` if media_type.startswith("application/json"): return encode_json(content, enc_hook) ``` I would like this to change so that it supports "application" media types with the "+json" suffix, as described in [RFC 6839](https://datatracker.ietf.org/doc/html/rfc6839#section-3.1). For example, the lines could change to something like ``` super_type, sub_type = media_type.split("/", 1) if super_type == "application" and (sub_type.startswith("json") or sub_type.endswith("+json")): return encode_json(content, enc_hook) ``` So that I can set the media type to, e.g., "application/problem+json" (as described [here](https://webconcepts.info/concepts/media-type/application/problem+json)), and then json encoding would still work. ### Basic Example I would like to be able to do something like the below and have the json encoding of the response work. If I run the below app now, the schema look alright, but the endpoint gives a server error because the response encoding fails since the media type does not start with "application/json". (It is clear that this is the problem because if I change the media type to "application/json+problem", it works.) ```python from typing import Optional import pydantic import litestar import litestar.status_codes class ProblemDetails(pydantic.BaseModel): title: str type: str status: Optional[int] = None detail: Optional[str] = None instance: Optional[str] = None @litestar.get( status_code=litestar.status_codes.HTTP_418_IM_A_TEAPOT, media_type="application/problem+json", ) async def problem_endpoint() -> ProblemDetails: return ProblemDetails(title="broken", type="bad server") app = litestar.Litestar(route_handlers=[problem_endpoint]) ``` ### Drawbacks and Impact I do not see any drawbacks. If you preserve the behavior for media types which start with "application/json", I think it should all be fine. It just extends the media types which can be encoded in responses, which is very unlikely to be problematic since I doubt many servers rely on response encoding failing. The "+json" suffix for application media types is not uncommon. For example, the "ProblemDetails" specification is quite common. Since there is an RFC for it (RFC 6839) it is clear that this is a standard worthy to support. ### Unresolved questions _No response_
closed
2024-02-08T11:01:55Z
2025-03-20T15:54:25Z
https://github.com/litestar-org/litestar/issues/3088
[ "Enhancement" ]
bunny-therapist
4
microsoft/unilm
nlp
772
Questions about implementing layoutlmv3 objective II MIM
Hi, I have been using layoutlm series for some time and thanks for the sharing. I would like to pretrain layoutlmv3 in my domain. I am currently implementing the second objective Masked Image Modeling(MIM). I get a question regarding how image masking is implemented in MIM head? I can see BEiT uses mask_token parameter to mask out image tokens produced by PatchEmbed. LayoutLMv3Model does not have a mask_token parameter, as it does not need it after pretraining. I wonder if a modified version of LayoutLMv3Model(with mask_token included and applied) was used in MIM head when you implmented it? Could you please give me some tips and description how it is implemented, so that I can reference the idea. With BEiT paper, I get a general idea on how to implement MIM head. I will generate image_masked_token_positions and labels(by Dall-e). Then I will use image_masked_token_positions to mask out image tokens produced by PatchEmbed(similar to BEiT). After that, image tokens and text tokens will be passed through transformer layers(the normal flow in LayoutLMv3Model). Hi @HYPJUDY, this is Cheng again. Thanks for helping out my previous issue #751. If you have time, please help me also. Thanks. Thanks, Cheng
closed
2022-06-27T01:25:19Z
2023-04-23T10:44:06Z
https://github.com/microsoft/unilm/issues/772
[]
weicheng113
10
writer/writer-framework
data-visualization
222
Add serialiser for Polars and Dataframe Interchange Protocol
Support Polars and DIP natively by serialising to Arrow before sending to frontend. - `df.to_arrow()` for Polars - `pyarrow.interchange.from_dataframe()` for Dataframe Interchange Protocol
closed
2024-02-02T20:46:00Z
2024-03-27T21:15:10Z
https://github.com/writer/writer-framework/issues/222
[ "enhancement", "ship soon" ]
ramedina86
1
ultrafunkamsterdam/undetected-chromedriver
automation
783
undetected-chromedriver with pyvirtualdisplay, but webdriver detect failed
``` from pyvirtualdisplay import Display import undetected_chromedriver as uc display = Display(visible=0, size=(1680, 860)) display.start() driver = uc.Chrome(headless=False) driver.get('https://bot.sannysoft.com/') driver.save_screenshot("sannysoft.png") display.stop() ``` I'm trying avoid detected on unbuntu, by using pyvirtualdisplay, I always get windows.navigator.webdriver = present(failed) ![image](https://user-images.githubusercontent.com/38950233/185067163-683837d9-76b9-4923-ab28-0980db5f678f.png)
open
2022-08-17T08:04:31Z
2022-08-22T02:18:00Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/783
[]
chenchenchen7
0
tqdm/tqdm
pandas
802
better `update(n: float)` guidelines
- update docs to recommend manual e.g. `{n:.3f}` in `bar_format` - move to `FloatProgress` as per #471 related to #456
closed
2019-09-04T16:42:52Z
2019-12-01T01:22:09Z
https://github.com/tqdm/tqdm/issues/802
[ "question/docs ‽", "to-fix ⌛", "need-feedback 📢", "submodule-notebook 📓" ]
casperdcl
0
autokey/autokey
automation
378
Invalid literal for int, when using a list menu
Now that I am using the QT version of Autokey and I can use the keyboard, I noticed that when I hit ESC to close the list that it tells me ``` ValueError: invalid literal for int() with base 10: " ``` Hmm, I realize it means null. The list menu needs to return -1 if I hit ESC or close, or cancel. ``` Operating System: Manjaro Linux KDE Plasma Version: 5.17.5 KDE Frameworks Version: 5.66.0 Qt Version: 5.14.1 Kernel Version: 5.4.18-1-MANJARO OS Type: 64-bit ``` Autokey-QT 0.95.10
open
2020-02-28T15:31:45Z
2023-07-29T19:16:18Z
https://github.com/autokey/autokey/issues/378
[ "bug", "enhancement", "autokey-qt", "scripting" ]
kreezxil
2
coqui-ai/TTS
python
3,101
xtts with use_deepspeed=true on gpu-1 Error[Bug]
### Describe the bug sing model directly error: use_deepspeed = True config = XttsConfig() config.load_json(tts_path + "config_v1.json") model = Xtts1.init_from_config(config) model.load_checkpoint(config, checkpoint_dir=tts_path, use_deepspeed=use_deepspeed, eval=True) model.cuda(1) ### To Reproduce Traceback (most recent call last): File "/data/work/tts/TTS-dev-231007/test1.py", line 67, in <module> xtts_test() File "/data/work/tts/TTS-dev-231007/test1.py", line 42, in xtts_test outputs = model.synthesize( File "/data/work/tts/TTS-dev-231007/TTS/tts/models/xtts1.py", line 451, in synthesize return self.inference_with_config(text, config, ref_audio_path=speaker_wav, language=language, **kwargs) File "/data/work/tts/TTS-dev-231007/TTS/tts/models/xtts1.py", line 473, in inference_with_config return self.full_inference(text, ref_audio_path, language, **settings) File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/data/work/tts/TTS-dev-231007/TTS/tts/models/xtts1.py", line 558, in full_inference return self.inference( File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/data/work/tts/TTS-dev-231007/TTS/tts/models/xtts1.py", line 620, in inference gpt_codes = self.gpt.generate( File "/data/work/tts/TTS-dev-231007/TTS/tts/layers/xtts/gpt.py", line 546, in generate gen = self.gpt_inference.generate( File "/opt/conda/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/transformers/generation/utils.py", line 1648, in generate return self.sample( File "/opt/conda/lib/python3.10/site-packages/transformers/generation/utils.py", line 2730, in sample outputs = self( File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/work/tts/TTS-dev-231007/TTS/tts/layers/xtts/gpt_inference.py", line 97, in forward transformer_outputs = self.transformer( File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/transformers/models/gpt2/modeling_gpt2.py", line 900, in forward outputs = block( File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_transformer.py", line 171, in forward self.attention(input, File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/deepspeed/ops/transformer/inference/ds_attention.py", line 154, in forward qkv_out = self.qkv_func(input=input, File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/deepspeed/ops/transformer/inference/op_binding/qkv_gemm.py", line 82, in forward output, norm = self.qkv_gemm_func(input, weight, q_scale, bias, gamma, beta, self.config.epsilon, add_bias, ValueError: Specified device cuda:1 does not match device of data cuda:0 ### Expected behavior _No response_ ### Logs _No response_ ### Environment ```shell linux torch 2.0.1 ``` ### Additional context _No response_
closed
2023-10-23T05:42:29Z
2023-12-04T03:45:19Z
https://github.com/coqui-ai/TTS/issues/3101
[ "bug", "wontfix" ]
hcl777
1
2noise/ChatTTS
python
768
音色更改失败,总是一种音色,想更改却没反应
```py spk_stat = torch.load('./asset/spk_stat.pt') spk = torch.randn(768) * spk_stat.chunk(2)[0] + spk_stat.chunk(2)[1] params_infer_code = ChatTTS.Chat.InferCodeParams( spk_emb=spk, # add sampled speaker temperature=.3, # using custom temperature top_P=0.7, # top P decode top_K=20, # top K decode ) params_refine_text = ChatTTS.Chat.RefineTextParams( prompt='[oral_2][laugh_0][break_6]', ) logger.info("Start inference.") wavs = chat.infer( texts, stream, params_infer_code = params_infer_code, params_refine_text=params_refine_text, use_decoder=True, ) ``` 之前总是一种很低沉很慢速的音色,想改却没效果。我的代码如上所示,但是不起作用,请问我有哪里写错了吗?
closed
2024-09-29T10:03:47Z
2024-10-08T06:09:51Z
https://github.com/2noise/ChatTTS/issues/768
[ "documentation" ]
Joseph513shen
1
scanapi/scanapi
rest-api
464
make change-version: create a readable PEP440-compatible dev version
## Feature request ### Description the feature <!-- A clear and concise description of what the new feature is. --> Make "make change-version" useful again by keeping the current release version, and adding a human readable and PEP440 compliant timestamp to it
closed
2021-07-31T17:28:33Z
2021-07-31T17:34:15Z
https://github.com/scanapi/scanapi/issues/464
[ "Automation" ]
camilamaia
0
gee-community/geemap
streamlit
2,119
Some basemaps do not work.
Some of the basemaps listed by the code below do not work. ``` for basemap in geemap.basemaps.keys(): print(basemap) ``` Last July, I was able to use the following layers as basemaps. What changes could have occurred? ``` ESA Worldcover 2021 ESA Worldcover 2021 S2 FCC ESA Worldcover 2021 S2 TCC ```
closed
2024-08-27T00:48:37Z
2024-08-27T02:16:43Z
https://github.com/gee-community/geemap/issues/2119
[ "bug" ]
osgeokr
2
AutoGPTQ/AutoGPTQ
nlp
152
Using the bigcode/starcoderbase model after quantization by gptq, the generation effect is poor, and only <|endoftext|> can be generated
Quantize config: ``` quantize_config = BaseQuantizeConfig( bits=4, group_size=128, desc_act=True, ) ``` Script: generation_speed.py (In examples) ```python python generation_speed.py --model_name_or_path /data/starcoderbase-4bit --tokenizer_name_or_path bigcode/starcoderbase --use_fast_tokenizer ``` Executing logs: ``` 2023-06-10 21:29:23 INFO [__main__] loading model and tokenizer 2023-06-10 21:29:24 INFO [auto_gptq.modeling._base] lm_head not been quantized, will be ignored when make_quant. 2023-06-10 21:29:29 WARNING [auto_gptq.modeling._base] GPTBigCodeGPTQForCausalLM hasn't fused attention module yet, will skip inject fused attention. 2023-06-10 21:29:29 WARNING [auto_gptq.modeling._base] GPTBigCodeGPTQForCausalLM hasn't fused mlp module yet, will skip inject fused mlp. 2023-06-10 21:29:29 INFO [__main__] model and tokenizer loading time: 6.2061s 2023-06-10 21:29:29 INFO [__main__] model quantized: True 2023-06-10 21:29:29 INFO [__main__] quantize config: {'bits': 4, 'group_size': 128, 'damp_percent': 0.01, 'desc_act': False, 'sym': True, 'true_sequential': True, 'model_name_or_path': '/data/workspace/code/generate-demo/models/quant/starcoderbase-4bit', 'model_file_base_name': 'gptq_model-4bit-128g'} 2023-06-10 21:29:29 INFO [__main__] model device map: {'transformer.wte': 0, 'transformer.wpe': 0, 'transformer.drop': 0, 'transformer.h.0': 0, 'transformer.h.1': 0, 'transformer.h.2': 0, 'transformer.h.3': 0, 'transformer.h.4': 0, 'transformer.h.5': 0, 'transformer.h.6': 0, 'transformer.h.7': 0, 'transformer.h.8': 0, 'transformer.h.9': 0, 'transformer.h.10': 0, 'transformer.h.11': 0, 'transformer.h.12': 0, 'transformer.h.13': 0, 'transformer.h.14': 0, 'transformer.h.15': 0, 'transformer.h.16': 0, 'transformer.h.17': 1, 'transformer.h.18': 1, 'transformer.h.19': 1, 'transformer.h.20': 1, 'transformer.h.21': 1, 'transformer.h.22': 1, 'transformer.h.23': 1, 'transformer.h.24': 1, 'transformer.h.25': 1, 'transformer.h.26': 1, 'transformer.h.27': 1, 'transformer.h.28': 1, 'transformer.h.29': 1, 'transformer.h.30': 1, 'transformer.h.31': 1, 'transformer.h.32': 1, 'transformer.h.33': 1, 'transformer.h.34': 1, 'transformer.h.35': 1, 'transformer.h.36': 1, 'transformer.h.37': 1, 'transformer.h.38': 1, 'transformer.h.39': 1, 'transformer.ln_f': 1, 'lm_head': 1} 2023-06-10 21:29:29 INFO [__main__] loading data Downloading and preparing dataset generator/default to /nas/cache/huggingface/datasets/generator/default-4941558ec0c8d6ec/0.0.0... Dataset generator downloaded and prepared to /nas/cache/huggingface/datasets/generator/default-4941558ec0c8d6ec/0.0.0. Subsequent calls will reuse this data. 2023-06-10 21:29:30 INFO [__main__] generation config: {'max_length': 20, 'max_new_tokens': 512, 'min_length': 0, 'min_new_tokens': 512, 'early_stopping': False, 'max_time': None, 'do_sample': False, 'num_beams': 1, 'num_beam_groups': 1, 'penalty_alpha': None, 'use_cache': True, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'epsilon_cutoff': 0.0, 'eta_cutoff': 0.0, 'diversity_penalty': 0.0, 'repetition_penalty': 1.0, 'encoder_repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'bad_words_ids': None, 'force_words_ids': None, 'renormalize_logits': False, 'constraints': None, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'suppress_tokens': None, 'begin_suppress_tokens': None, 'forced_decoder_ids': None, 'num_return_sequences': 1, 'output_attentions': False, 'output_hidden_states': False, 'output_scores': False, 'return_dict_in_generate': False, 'pad_token_id': 0, 'bos_token_id': None, 'eos_token_id': None, 'encoder_no_repeat_ngram_size': 0, 'decoder_start_token_id': None, 'generation_kwargs': {}, '_from_model_config': False, 'transformers_version': '4.28.1'} 2023-06-10 21:29:30 INFO [__main__] benchmark generation speed 100%|███████████████████████████████| 10/10 [00:15<00:00, 1.59s/it, num_tokens=0, speed=0.0000tokens/s, time=1.38] 2023-06-10 21:29:46 INFO [__main__] generated 0 tokens using 15.898282289505005 seconds, generation speed: 0.0tokens/s ``` version: auto-gptq 0.3.0.dev0 cuda: 11.7
open
2023-06-10T13:45:29Z
2023-07-21T03:25:20Z
https://github.com/AutoGPTQ/AutoGPTQ/issues/152
[ "bug" ]
liulhdarks
6
fbdesignpro/sweetviz
pandas
43
Make font color of "missing" red
Suggestion: This is an open suggestion that the font color of "missing" in report HTML would be nicer (IMHO) it has color red.
closed
2020-07-22T15:55:21Z
2020-11-24T15:13:41Z
https://github.com/fbdesignpro/sweetviz/issues/43
[ "feature request" ]
bhishanpdl
4
CorentinJ/Real-Time-Voice-Cloning
tensorflow
339
Problem with demo_cli.py
C:\Users\Test\Desktop\Real-Time-Voice-Cloning-master>python demo_cli.py --low_mem Traceback (most recent call last): File "demo_cli.py", line 2, in <module> from utils.argutils import print_args File "C:\Users\Test\Desktop\Real-Time-Voice-Cloning-master\utils\argutils.py", line 2, in <module> import numpy as np ModuleNotFoundError: No module named 'numpy' What am I doing wrong?
closed
2020-05-09T18:24:25Z
2020-08-24T04:06:28Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/339
[]
NumpyG
3
littlecodersh/ItChat
api
311
请问为什么无法调用图灵机器人的知识库?
您的itchat版本为:`1.3.5`。 程序: ```python import itchat, time, re from itchat.content import * import urllib2,urllib import json @itchat.msg_register(TEXT,isGroupChat=True) def text_reply(msg): info = msg['Text'].encode('UTF-8') url = 'http://www.tuling123.com/openapi/api' data = {u"key": "xxxxxxxxxxxxx","info": info,u"loc": "", "userid": ""} data = urllib.urlencode(data) url2 = urllib2.Request(url, data) response = urllib2.urlopen(url2) apicontent = response.read() s = json.loads(apicontent, encoding='utf-8') print 's==',s if s['code']== 100000: itchat.send(s['text'], msg['FromUserName']) itchat.auto_login(enableCmdQR=2,hotReload=True) itchat.run(debug=True) ``` 请问我在注册时开启了群聊,但是在群聊时出现以下问题: 1、不能通过上下文回答问题。 2、无法调用图灵机器人的知识库。 谢谢。
closed
2017-04-05T14:34:01Z
2017-04-25T03:45:09Z
https://github.com/littlecodersh/ItChat/issues/311
[ "question" ]
dujbo
4
netbox-community/netbox
django
18,769
Bulk edit devices: Switching Site fails when devices are racked
### Deployment Type Self-hosted ### NetBox Version v4.2.4 ### Python Version 3.11 ### Steps to Reproduce 1. select the checkbox of a bunch of devices, e.g. [by device type](http://netbox.local/dcim/devices/?device_type_id=1234), that are in different sites and are assigned a rack. 2. click "edit selected" and change the site, selecting "set null" for location. 3. click "save". ### Expected Behavior The Site should be updated for all selected devices, and the Rack should be cleared. Alternatively, the rack should be able to be cleared manually, but there is no option for this. ### Observed Behavior The following error toast is displayed in the lower right corner: `Rack oldlocation-rack1 does not belong to site newlocation.` It is not possible to edit the Rack/set it to null on the bulk-edit devices page.
closed
2025-02-28T09:40:11Z
2025-03-03T08:39:43Z
https://github.com/netbox-community/netbox/issues/18769
[]
uedvt359
3
flairNLP/flair
pytorch
2,760
Custom loss function in training or fine tunning of TARS model
Hello, is there a possibility or method where we can use a custom polyloss or focal loss for Tars model training?
closed
2022-05-12T08:17:45Z
2022-10-15T21:06:31Z
https://github.com/flairNLP/flair/issues/2760
[ "question", "wontfix" ]
Ujwal2910
1
comfyanonymous/ComfyUI
pytorch
6,912
Copy Paste bug - cntrl+v paste stuck on something from a long time ago
### Expected Behavior cntrl+c to copy nodes, cntrl+v to paste nodes. ### Actual Behavior cntrl+c to copy nodes, cntrl+v to paste nodes. Except it pastes nodes that were copied a long time ago (many resets ago), many days ago ### Steps to Reproduce seems very difficult to reproduce, as it isn't tied to any workflow or any specific action that was ever done (apart from everyday copy+paste of nodes ### Debug Logs ```powershell No debug logs as this is not logged behavior ``` ### Other _No response_
closed
2025-02-21T21:37:51Z
2025-02-24T00:10:46Z
https://github.com/comfyanonymous/ComfyUI/issues/6912
[ "Potential Bug" ]
aikaizen
3
shroominic/funcchain
pydantic
32
How can I intercept the prompt sent to the backend
I'd like to get the exact string sent to the backend, after everything is filled in and processed and formatted etc. How can I do that please?
open
2024-04-14T18:31:43Z
2024-04-14T18:31:43Z
https://github.com/shroominic/funcchain/issues/32
[]
AriMKatz
0
sigmavirus24/github3.py
rest-api
988
TypeError: 'NoneType' object is not subscriptable
## Version Information Please provide: - The version of Python you're using Python 3.7.3 - The version of pip you used to install github3.py conda 4.8.2. I used conda-forge to install github3.py - The version of github3.py, requests, uritemplate, and dateutil installed github3.py 1.3.0 py_0 conda-forge requests 2.22.0 py37_1 uritemplate.py 3.0.2 py_1 conda-forge didn't install dateutil ## Minimum Reproducible Example Please provide an example of the code that generates the error you're seeing. ``` repo = gh.repository('pytoolz', 'toolz') events = repo.issue_events() events = list(events) ``` I am trying to get all issue events for a repo. But I got `TypeError`, I think it's because some json records don't have all the fields. In this case, it doesn’t have user[‘avatar_url’]. ![image](https://user-images.githubusercontent.com/39501859/76889690-08a82400-6854-11ea-8a5c-f6c051566da8.png) ![image (1)](https://user-images.githubusercontent.com/39501859/76889698-0c3bab00-6854-11ea-94c0-a946ecc2479d.png) <!-- links --> [search]: https://github.com/sigmavirus24/github3.py/issues?utf8=%E2%9C%93&q=is%3Aissue
open
2020-03-17T18:37:22Z
2021-01-16T09:45:11Z
https://github.com/sigmavirus24/github3.py/issues/988
[ "help wanted", "bug" ]
sophiamyang
2
mherrmann/helium
web-scraping
26
Check current URL
Hey, Again great package. Is there any way to get the current URL? I have a login page and if the user login successfully he is redirected and I want to test that is redirected to the right URL. Thanks.
closed
2020-05-11T19:42:23Z
2020-05-12T05:51:20Z
https://github.com/mherrmann/helium/issues/26
[]
shlomiLan
1
pallets/flask
flask
4,794
PEP 484 – Type Hints & DI
I think it will be useful to start using core python functionality like type hints so the IDEs can be smarter with the code, so at the end it's time all of will save. And also integrate some Dependency injection ? I think the best example for this both cases is FastAPI they have both things and because of that they got a lot of people using the framework and became popular, both of this things are extremely useful and powerful so worth adding. There's more examples like starlite, etc..
closed
2022-08-31T15:07:48Z
2022-10-11T09:13:20Z
https://github.com/pallets/flask/issues/4794
[]
Saphyel
2
python-gino/gino
sqlalchemy
174
mixins do not work
* GINO version: 0.6.1 * Python version: 3.6.0 * Operating System: ubuntu 17.10 ### Description I want to use a simple mixin to add common columns. The added columns did not resolve to values after a query. ### What I Did ``` import asyncio from gino import Gino db = Gino() class Audit: created = db.Column(db.DateTime(timezone=True)) class Thing(Audit, db.Model): __tablename__ = 'thing' id = db.Column(db.Integer, primary_key=True) async def main(): async with db.with_bind('postgresql://user:password@localhost:5432/db'): await Thing.create(id='splunge') thing = await Thing.query.where(Thing.id == 'splunge').gino.first() print('name: {} created: {}'.format(thing.id, thing.created)) if __name__ == '__main__': asyncio.get_event_loop().run_until_complete(main()) ``` output: > name: splunge created: (no name) Accessing the created attribute returns a Column instance, not the value associated with the column.
closed
2018-03-23T15:26:08Z
2018-03-24T01:39:52Z
https://github.com/python-gino/gino/issues/174
[ "bug" ]
aglassdarkly
1
streamlit/streamlit
python
10,648
adding the help parameter to a (Button?) widget pads it weirdly instead of staying to the left.
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [x] I added a very descriptive title to this issue. - [x] I have provided sufficient information below to help reproduce this issue. ### Summary ```python st.page_link('sub_pages/resources/lesson_plans.py', label='Lesson Plans', icon=':material/docs:', help='View and download lesson plans') ``` ## Unexpected Outcome ![Image](https://github.com/user-attachments/assets/95ea3e8a-1a81-4676-81fc-f646a567b549) --- ## Expected ![Image](https://github.com/user-attachments/assets/ef3829d9-d8fc-4c16-867c-df7281ef45e4) ### Reproducible Code Example ```Python import streamlit as st st.page_link('sub_pages/resources/lesson_plans.py', label='Lesson Plans', icon=':material/docs:', help='View and download lesson plans') ``` ### Steps To Reproduce 1. Add help to a button widget ### Expected Behavior Button keeps help text and is on the left ![Image](https://github.com/user-attachments/assets/ef3829d9-d8fc-4c16-867c-df7281ef45e4) ### Current Behavior Button keeps help text but is on the right ![Image](https://github.com/user-attachments/assets/95ea3e8a-1a81-4676-81fc-f646a567b549) ### Is this a regression? - [x] Yes, this used to work in a previous version. ### Debug info - Streamlit version: 1.43.0 - Python version: 3.12.2 - Operating System: Windows 11 - Browser: Chrome ### Additional Information > Yes, this used to work in a previous version. 1.42.0 works
closed
2025-03-05T09:56:06Z
2025-03-07T21:21:05Z
https://github.com/streamlit/streamlit/issues/10648
[ "type:bug", "status:confirmed", "priority:P1", "feature:st.download_button", "feature:st.button", "feature:st.link_button", "feature:st.page_link" ]
thehamish555
2
ClimbsRocks/auto_ml
scikit-learn
175
test for gs_params and training_params
open
2017-03-13T20:48:31Z
2017-03-13T20:48:31Z
https://github.com/ClimbsRocks/auto_ml/issues/175
[]
ClimbsRocks
0
plotly/dash
data-science
2,496
Failure in Hot reload & clientside callbacks
Hot reload doesn't work with clientside callbacks, the frontend is reloaded but the new functions are not available and the browser must be refreshed to take effect.
open
2023-04-04T12:58:53Z
2024-08-13T19:30:57Z
https://github.com/plotly/dash/issues/2496
[ "bug", "P3" ]
T4rk1n
3
InstaPy/InstaPy
automation
6,024
follow_commenters Engine
Hi, I'm currently using InstaPy to growth my Insta Account and it's a pretty good solution but I've some interrogations! My first question is, is that possible to tell to the bot to reexcute some actions ? Situation I ask to my bot to follow 10 users but not private, business, at the end my bot followed only 2 users. How can I tell him to "loop" to grab other users and continue ? Secondly, is it possible to add filter on comments with 'follow_commenters' function ? Like select only users who there comments contains a '@' ? Thanks :)
open
2021-01-14T09:29:41Z
2021-07-21T03:19:05Z
https://github.com/InstaPy/InstaPy/issues/6024
[ "wontfix" ]
jonathanroze
1
sinaptik-ai/pandas-ai
data-science
1,390
Misleading license classifier in Python package?
Dear devs, I noticed on PyPi.org that the `MIT` license classifier is set for pandasai Python package. The readme on the same page, quite at the bottom, on the other hand, mentions an exception for the `/ee`-subfolder, which is also included in the Python package This got me confused.... Shouldn't the classifier be set to `Other/Proprietary License` in that case? Or both, MIT and Other, if that's possible? ![pypi](https://github.com/user-attachments/assets/e251cc88-fe89-409e-ae76-eddf0a5d7a92) ![pypi-2](https://github.com/user-attachments/assets/2207e513-3515-4e5c-8689-ef6c4cad8001)
closed
2024-10-10T07:43:15Z
2025-01-27T16:00:14Z
https://github.com/sinaptik-ai/pandas-ai/issues/1390
[]
dynobo
3
deeppavlov/DeepPavlov
tensorflow
1,684
Update to pydantic v2
I am running into issues using deeppavlov in combination with other packages that use pydantic>2, as deeppavlov has the requirement pydantic<2. I saw this post https://github.com/deeppavlov/DeepPavlov/pull/1665 which seemed to indicate that the dependency could be updated, but currently the latest release still specificies pydantic<2. Would it be possible to update the pydantic dependency?
open
2024-03-22T10:01:00Z
2024-03-22T10:01:00Z
https://github.com/deeppavlov/DeepPavlov/issues/1684
[ "enhancement" ]
robinderat
0
trevorstephens/gplearn
scikit-learn
7
Feature Request: Saving / Loading a Model
In many cases one invests significant time/effort to fit/train the GP model. Unfortunately, without a method of "saving" the model and "reloading" it from its save state, one is required to re-do the training of the model form its initial state. This forces one to spend the same (significant) time/effort. It would be ideal to: (a) save the state of the model to a file (b) load a model from a (state) file (c) Incrementally update the loaded model with new data This is a feature request.
closed
2016-03-03T17:44:30Z
2017-03-29T09:37:03Z
https://github.com/trevorstephens/gplearn/issues/7
[ "enhancement" ]
ericbroda
8
sczhou/CodeFormer
pytorch
388
Eye iris deformed
Thanks the author for the excellent work. I have issues thou with the irises, which in some case have been badly formed. Samples: ![Screen Shot 2024-07-10 at 10 35 15](https://github.com/sczhou/CodeFormer/assets/179513/641f9339-6c37-4dae-9942-b722041c3205) ![Screen Shot 2024-07-10 at 10 35 22](https://github.com/sczhou/CodeFormer/assets/179513/9d8763c2-aeb4-4960-8aa8-b98f0e0f6b46) any idea how to correct them? Help is so appreciated!
open
2024-07-10T02:43:33Z
2024-09-06T04:51:42Z
https://github.com/sczhou/CodeFormer/issues/388
[]
branaway
3
zappa/Zappa
flask
740
[Migrated] Getting 'AttributeError' Exception Thrown
Originally from: https://github.com/Miserlou/Zappa/issues/1864 by [canada4663](https://github.com/canada4663) I am getting uncaught AttributeError thrown at the line below: https://github.com/Miserlou/Zappa/blob/3ccf7490a8d8b8fa74a61ee39bf44234f3567739/zappa/handler.py#L309 It seems that the code is designed to catch exceptions where the 'command' key doesn't exist, however, if the message doesn't included an object with the get method and is only a 'str' then this fails.
closed
2021-02-20T12:41:37Z
2022-07-16T06:23:36Z
https://github.com/zappa/Zappa/issues/740
[]
jneves
1
flasgger/flasgger
api
21
Hardcoded optional_fields
[Optional fields for operation definition are hardcoded.](https://github.com/rochacbruno/flasgger/blob/master/flasgger/base.py#L228) So, if you want to add some non-standard fields (I want to generate swagger definition for Amazon API Gateway, so I have to use [their extensions to swagger](http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions.html)) you have to patch it, using inheritance or monkey-patching. It is very inconvenient. I suggest to allow overwriting this list in config or just allow using any optional fields without any filtering (maybe by adding to config "strict"/"non-strict" switcher, where "non-strict" will mean that any optional fields are allowed).
closed
2016-04-16T18:12:01Z
2017-03-24T20:15:10Z
https://github.com/flasgger/flasgger/issues/21
[]
vovanz
1
ageitgey/face_recognition
python
1,239
face recognition is very dlow
* face_recognition version: .1.3 * Python version: 3.7 * Operating System: RPI buster ### Description Use face_recognition for matching face from known photo database. Means trying to find the name of the detected person from the knows persons photo db. ### What I Did Code is here frame = cv2.flip(frame, 1) rgb = frame boxes = face_recognition.face_locations(rgb, model="hog") if len(boxes) > 0: encodings = face_recognition.face_encodings(rgb) else: return "Unknown" names = [] # loop over the facial embeddings for encoding in encodings: matches = face_recognition.compare_faces(self.data["encodings"],encoding) name = "Unknown" if True in matches: matchedIdxs = [i for (i, b) in enumerate(matches) if b] counts = {} for i in matchedIdxs: name = self.data["names"][i] counts[name] = counts.get(name, 0) + 1 name = max(counts, key=counts.get) # update the list of names names.append(name) return names[0] Where we can do the changes to make it faster
open
2020-10-31T17:48:27Z
2021-08-21T13:33:01Z
https://github.com/ageitgey/face_recognition/issues/1239
[]
naushadck
3