repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ARM-DOE/pyart
data-visualization
872
Speed up of "estimate_noise_hs74"
Hi all, In my own version of Py-ART I have modified the code of pyart/util/hildebrand_sekhon.py in order to speed it up. Check out: https://github.com/meteoswiss-mdr/pyart/blob/master/pyart/util/hildebrand_sekhon.py The resultant code is significantly faster. You may want to add it up in Py-ART. Greetings from Switzerland!
closed
2019-10-18T11:47:35Z
2019-11-11T15:36:59Z
https://github.com/ARM-DOE/pyart/issues/872
[]
meteoswiss-mdr
3
wagtail/wagtail
django
12,718
Sass @import to @use module system migration
Part of #12717. We need to migrate our Sass code to the language’s `@use` module system, as `@import` is deprecated. `@use` is more explicit in its behavior and more featureful, but there are some aspects of how we use `@import` that will require more than a 1:1 refactoring. See [wagtail.org#483](https://github.com/wagtail/wagtail.org/pull/483) as an example of conducting this migration. More info from Sass: https://sass-lang.com/d/import ### Working on this <!-- Do you have thoughts on skills needed? Are you keen to work on this yourself once the issue has been accepted? Please let us know here. --> Anyone can contribute to this. View our [contributing guidelines](https://docs.wagtail.org/en/latest/contributing/index.html), add a comment to the issue once you’re ready to start. The first step we would recommend is to review the project’s use of `@import`, and the documentation on `@use`, and devise a migration plan here in the comments. The majority of the `@import` in Wagtail can be switched to `@use` as-is, but there are a few cases where this won’t be possible: - For our loading of variables mixins / functions, we need to add a lot of `@use` to move away from globally loading those variables / mixins / functions. - For dependencies that also use Sass, we may have to review their support for the new module system and make more involved changes.
closed
2024-12-19T13:32:03Z
2025-02-24T15:17:12Z
https://github.com/wagtail/wagtail/issues/12718
[ "type:Cleanup/Optimisation", "Compatibility" ]
thibaudcolas
7
wkentaro/labelme
deep-learning
1,002
Program shutted down after clicked ‘OK' for changing the label in Windows latest release version
Program shutted down after clicked ‘OK' for changing the label in Windows latest release version. It happend for all my Windows10 system devices. ``` Traceback (most recent call last): File "d:\libraries\anaconda3\lib\site-packages\labelme\app.py", line 1075, in editLabel self._update_shape_color(shape) File "d:\libraries\anaconda3\lib\site-packages\labelme\app.py", line 1155, in _update_shape_color r, g, b = self._get_rgb_by_label(shape.label) File "d:\libraries\anaconda3\lib\site-packages\labelme\app.py", line 1165, in _get_rgb_by_label item = self.uniqLabelList.findItemsByLabel(label)[0] IndexError: list index out of range ```
open
2022-03-14T01:53:06Z
2024-12-30T12:47:56Z
https://github.com/wkentaro/labelme/issues/1002
[ "issue::bug" ]
Zaoyee
1
flasgger/flasgger
api
347
Return list as response
Hello everyone, in the example of https://github.com/flasgger/flasgger/blob/master/README.md#using-marshmallow-schemas it shows how to use nested to define a list as response. It returns e.g. ``` { 'cmyk': ['cian', 'magenta', 'yellow', 'black'] } ``` How can I modify it such that it returns directly a list? For the above example, the expected return value would be ``` ['cian', 'magenta', 'yellow', 'black'] ``` Is that something that would be considered wrong from a design perspective? I found a way to do it, but it breaks the apidocs overview. I want a view that returns a list of orders. Currently, this is what I did ``` class OrderSchema(Schema): id = fields.String(description="Identifier") class OrdersView(SwaggerView): decorators = None tags = ["user"] summary = "List orders" description = "Returns a list of all orders" parameters = None responses = { 200: {"description": "OK", "schema": OrderSchema} } validation = False def get(self): orders = Oders() result = OrderSchema().dump(orders, many=True) return jsonify(result) ``` It works, but in the apidocs, the response value is now not a list, but only one OrderSchema object. I could introduce a OrderListSchema, that has a nested OrderSchema field, but then the return value would not be directly the list, but a dict with the list in the field's name.
closed
2019-11-20T09:40:29Z
2019-12-18T08:51:17Z
https://github.com/flasgger/flasgger/issues/347
[]
sschiessl-bcp
2
babysor/MockingBird
deep-learning
735
Could not load symbol cublasGetSmCountTarget from cublas64_11.dll. Error code 127
训练时提示 Could not load symbol cublasGetSmCountTarget from cublas64_11.dll. Error code 127 但仍可以继续,这是什么情况?
open
2022-09-06T15:03:56Z
2022-09-06T15:03:56Z
https://github.com/babysor/MockingBird/issues/735
[]
kensukwok
0
matplotlib/matplotlib
matplotlib
29,319
[Bug]: Legend with location set to ‘best’ overlaps with the title when the titles is moved down
### Bug summary If I adjust the y-position of a plot title to move it down, and then I add a legend with loc set to `best`, the legend overlaps with the title. ### Code for reproduction ```Python import matplotlib.pyplot as plt plt.close('all') plt.plot((1,2,3), label='Just a very long legend') plt.title('Just a very long title 1234567890', y=0.9) plt.legend(loc='best') plt.show() ``` ### Actual outcome ![foo](https://github.com/user-attachments/assets/cfa35a2e-7cea-4cda-afdb-ea8cf4c5bc44) ### Expected outcome I expect the legend to be placed in a location that does not overlap with the title. ### Additional information _No response_ ### Operating system Linux ### Matplotlib Version 3.9.4 ### Matplotlib Backend qtagg ### Python version 3.12.7 ### Jupyter version _No response_ ### Installation pip
open
2024-12-16T08:25:31Z
2024-12-17T10:14:19Z
https://github.com/matplotlib/matplotlib/issues/29319
[ "Documentation: API" ]
aweinstein
6
AUTOMATIC1111/stable-diffusion-webui
deep-learning
16,199
[Feature Request]: Add Ascend NPU npu_fusion_attention to accelerate training
### Is there an existing issue for this? - [X] I have searched the existing issues and checked the recent builds/commits ### What would your feature do ? - a simple description of npu_fusion_attention operator - add Ascend NPU npu_fusion_attention to accelerate training ### Proposed workflow 1. Go to add description of npu_fusion_attention operator 2. add Ascend NPU npu_fusion_attention to accelerate training ### Additional information _No response_
open
2024-07-12T08:52:41Z
2024-07-24T08:48:30Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16199
[ "enhancement" ]
kevin19891229
2
InstaPy/InstaPy
automation
5,789
Bot not working at all with docker-compose
See error log below (username and password are correct): ```InstaPy Version: 0.6.10 ._. ._. ._. ._. ._. ._. ._. Workspace in use: "/code/InstaPyN" 2445kb [00:03, 754.76kb/s] Traceback (most recent call last): File "docker_quickstart.py", line 19, in <module> bot = InstaPy(username=insta_username, password=insta_password, headless_browser=False) File "/usr/local/lib/python3.7/site-packages/instapy/instapy.py", line 323, in __init__ self.logger, File "/usr/local/lib/python3.7/site-packages/instapy/browser.py", line 120, in set_selenium_local_session driver_path = geckodriver_path or get_geckodriver() File "/usr/local/lib/python3.7/site-packages/instapy/browser.py", line 36, in get_geckodriver sym_path = gdd.download_and_install()[1] File "/usr/local/lib/python3.7/site-packages/webdriverdownloader/webdriverdownloader.py", line 215, in download_and_install os.symlink(symlink_src, symlink_target) OSError: [Errno 71] Protocol error: '/code/InstaPyN/assets/gecko/v0.27.0/geckodriver-v0.27.0-linux64/geckodriver' -> '/code/InstaPyN/assets/geckodriver' InstaPy Version: 0.6.10 ._. ._. ._. ._. ._. ._. ._. Workspace in use: "/code/InstaPyN" Traceback (most recent call last): File "docker_quickstart.py", line 19, in <module> bot = InstaPy(username=insta_username, password=insta_password, headless_browser=False) File "/usr/local/lib/python3.7/site-packages/instapy/instapy.py", line 323, in __init__ self.logger, File "/usr/local/lib/python3.7/site-packages/instapy/browser.py", line 120, in set_selenium_local_session driver_path = geckodriver_path or get_geckodriver() File "/usr/local/lib/python3.7/site-packages/instapy/browser.py", line 36, in get_geckodriver sym_path = gdd.download_and_install()[1] File "/usr/local/lib/python3.7/site-packages/webdriverdownloader/webdriverdownloader.py", line 215, in download_and_install os.symlink(symlink_src, symlink_target) OSError: [Errno 71] Protocol error: '/code/InstaPyN/assets/gecko/v0.27.0/geckodriver-v0.27.0-linux64/geckodriver' -> '/code/InstaPyN/assets/geckodriver' ```
closed
2020-09-19T16:01:34Z
2021-05-10T04:46:53Z
https://github.com/InstaPy/InstaPy/issues/5789
[ "wontfix" ]
wsdt
2
dnouri/nolearn
scikit-learn
275
Convolutional Autoencoder NaN
Hi! I'm trying to make a convolutional autoencoder based off of VGG-S (https://github.com/Lasagne/Recipes/blob/master/modelzoo/vgg_cnn_s.py). For some reason, learning always converges to NaN almost immediately. I think my architecture is correct from VGG-S, so I'm not sure why this is happening. <img width="504" alt="screenshot 2016-06-09 10 07 57" src="https://cloud.githubusercontent.com/assets/1855931/15938905/23c4c5a8-2e2a-11e6-948a-926c32976131.png"> Here's my code (https://gist.github.com/sampepose/ccb58557271cff10d182f4ab8282f3b4).
closed
2016-06-09T17:09:39Z
2016-08-28T03:10:50Z
https://github.com/dnouri/nolearn/issues/275
[]
sampepose
2
datapane/datapane
data-visualization
30
Style formatted Pandas Dataframe with ,
Hi , I am using datapane table populated with formatted pandas dataframe. The issue is out of 6 column , one column transforms to date. Rest of the 5 columns display correctly with , formatted.
closed
2020-10-23T16:22:21Z
2021-01-12T16:48:34Z
https://github.com/datapane/datapane/issues/30
[ "bug" ]
kumarmisra
2
StackStorm/st2
automation
6,215
Inquiries with invalid schema go to blank page
## SUMMARY If there's any issues with the JSON schema for an inquiry, when you click on the inquiry in the UI, it sends you to a blank page ### STACKSTORM VERSION st2 3.8.1, on Python 3.9.13 ##### OS, environment, install method Post what OS you are running this on, along with any other relevant information/ Docker on Ubuntu server ## Steps to reproduce the problem Provide an invalid JSON format to an Inquiry, then go to Inquiries in the web UI and click on that newly created Inquiry ## Expected Results Unsure, but I'd at least expect an error to be shown on the page ## Actual Results Just a blank page Thanks!
open
2024-06-26T06:36:47Z
2024-06-26T11:03:13Z
https://github.com/StackStorm/st2/issues/6215
[]
lexiismadd
1
scikit-learn-contrib/metric-learn
scikit-learn
222
Deprecate use_pca for lmnn
There is still a `use_pca` attribute for LMNN, that needs to be deprecated
closed
2019-06-17T07:15:10Z
2019-07-04T06:48:28Z
https://github.com/scikit-learn-contrib/metric-learn/issues/222
[]
wdevazelhes
0
proplot-dev/proplot
data-visualization
137
Would you add the "readshapefile" method in proplot?
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> ### Description [Description of the bug or feature.] ### Steps to reproduce A "[Minimal, Complete and Verifiable Example](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports)" will make it much easier for maintainers to help you. ```python # your code here # we should be able to copy-paste this into python and exactly reproduce your bug ``` **Expected behavior**: [What you expected to happen] **Actual behavior**: [What actually happened] ### Equivalent steps in matplotlib Please make sure this bug is related to a specific proplot feature. If you're not sure, try to replicate it with the [native matplotlib API](https://matplotlib.org/3.1.1/api/index.html). Matplotlib bugs belong on the [matplotlib github page](https://github.com/matplotlib/matplotlib). ```python # your code here, if applicable ``` ### Proplot version Paste the result of `import proplot; print(proplot.version)` here.
closed
2020-04-07T04:14:20Z
2020-04-22T23:15:45Z
https://github.com/proplot-dev/proplot/issues/137
[ "feature" ]
sfhua
2
JaidedAI/EasyOCR
pytorch
386
build failed on AArch64, Fedora 33
[jw@cn05 easyocr]$ sudo python3 setup.py install --verbose running install running bdist_egg running egg_info writing easyocr.egg-info/PKG-INFO writing dependency_links to easyocr.egg-info/dependency_links.txt writing entry points to easyocr.egg-info/entry_points.txt writing requirements to easyocr.egg-info/requires.txt writing top-level names to easyocr.egg-info/top_level.txt reading manifest file 'easyocr.egg-info/SOURCES.txt' reading manifest template 'MANIFEST.in' warning: no files found matching 'LICENSE.txt' writing manifest file 'easyocr.egg-info/SOURCES.txt' installing library code to build/bdist.linux-aarch64/egg running install_lib running build_py creating build/bdist.linux-aarch64/egg creating build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/__init__.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/cli.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/config.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/craft.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/craft_utils.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/detection.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/easyocr.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/imgproc.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/recognition.py -> build/bdist.linux-aarch64/egg/easyocr copying build/lib/easyocr/utils.py -> build/bdist.linux-aarch64/egg/easyocr creating build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ab_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/abq_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ady_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/af_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ang_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ar_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/as_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ava_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/az_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/be_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/bg_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/bh_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/bho_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/bn_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/bs_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ch_pin_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ch_sim_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ch_tra_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/che_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/cs_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/cy_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/da_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/dar_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/de_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/en_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/es_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/et_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/fa_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/fr_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ga_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/gom_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/he_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/hi_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/hr_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/hu_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/id_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/inh_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/is_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/it_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ja_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ja_char2.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ja_punc.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/kbd_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/kn.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/kn_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ko_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ku_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/la_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/lbe_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/lez_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/lt_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/lv_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/mah_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/mai_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/mi_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ml_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/mn_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/mr_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ms_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/mt_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ne_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/new_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/nl_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/no_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/oc_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/pb_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/pi_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/pl_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/pt_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ro_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/rs_cyrillic_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/rs_latin_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ru_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/sck_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/sk_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/sl_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/sq_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/sv_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/sw_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ta_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/tab_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/te.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/te_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/th_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/tl_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/tr_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ug_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/uk_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/ur_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/uz_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character copying build/lib/easyocr/character/vi_char.txt -> build/bdist.linux-aarch64/egg/easyocr/character creating build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ab.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/af.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ar.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/az.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/be.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/bg.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/bn.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/bs.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ch-pin-syl.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ch_pin.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/cs.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/cy.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/da.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/de.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/en.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/es.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/et.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/fa.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/fr.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ga.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/he.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/hi.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/hr.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/hu.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/id.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/is.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/it.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ja.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/kn.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ko.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ku.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/la.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/lt.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/lv.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/mi.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ml.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/mn.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/mr.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ms.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/mt.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ne.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/nl.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/no.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/oc.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/pb.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/pi.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/pl.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/pt.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ro.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/rs_cyrillic.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/rs_latin.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ru.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/sk.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/sl.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/sq.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/sv.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/sw.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ta.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/te.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/th.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/tl.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/tr.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ug.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/uk.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/ur.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/uz.txt -> build/bdist.linux-aarch64/egg/easyocr/dict copying build/lib/easyocr/dict/vi.txt -> build/bdist.linux-aarch64/egg/easyocr/dict creating build/bdist.linux-aarch64/egg/easyocr/model copying build/lib/easyocr/model/__init__.py -> build/bdist.linux-aarch64/egg/easyocr/model copying build/lib/easyocr/model/model.py -> build/bdist.linux-aarch64/egg/easyocr/model copying build/lib/easyocr/model/modules.py -> build/bdist.linux-aarch64/egg/easyocr/model copying build/lib/easyocr/model/vgg_model.py -> build/bdist.linux-aarch64/egg/easyocr/model byte-compiling build/bdist.linux-aarch64/egg/easyocr/__init__.py to __init__.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/cli.py to cli.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/config.py to config.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/craft.py to craft.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/craft_utils.py to craft_utils.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/detection.py to detection.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/easyocr.py to easyocr.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/imgproc.py to imgproc.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/recognition.py to recognition.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/utils.py to utils.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/model/__init__.py to __init__.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/model/model.py to model.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/model/modules.py to modules.cpython-39.pyc byte-compiling build/bdist.linux-aarch64/egg/easyocr/model/vgg_model.py to vgg_model.cpython-39.pyc creating build/bdist.linux-aarch64/egg/EGG-INFO copying easyocr.egg-info/PKG-INFO -> build/bdist.linux-aarch64/egg/EGG-INFO copying easyocr.egg-info/SOURCES.txt -> build/bdist.linux-aarch64/egg/EGG-INFO copying easyocr.egg-info/dependency_links.txt -> build/bdist.linux-aarch64/egg/EGG-INFO copying easyocr.egg-info/entry_points.txt -> build/bdist.linux-aarch64/egg/EGG-INFO copying easyocr.egg-info/requires.txt -> build/bdist.linux-aarch64/egg/EGG-INFO copying easyocr.egg-info/top_level.txt -> build/bdist.linux-aarch64/egg/EGG-INFO zip_safe flag not set; analyzing archive contents... easyocr.__pycache__.config.cpython-39: module references __file__ creating 'dist/easyocr-1.2.5.1-py3.9.egg' and adding 'build/bdist.linux-aarch64/egg' to it removing 'build/bdist.linux-aarch64/egg' (and everything under it) Processing easyocr-1.2.5.1-py3.9.egg removing '/usr/local/lib/python3.9/site-packages/easyocr-1.2.5.1-py3.9.egg' (and everything under it) creating /usr/local/lib/python3.9/site-packages/easyocr-1.2.5.1-py3.9.egg Extracting easyocr-1.2.5.1-py3.9.egg to /usr/local/lib/python3.9/site-packages easyocr 1.2.5.1 is already the active version in easy-install.pth Installing easyocr script to /usr/local/bin Installed /usr/local/lib/python3.9/site-packages/easyocr-1.2.5.1-py3.9.egg Processing dependencies for easyocr==1.2.5.1 Searching for PyYAML Reading https://pypi.org/simple/PyYAML/ Download error on https://pypi.org/simple/PyYAML/: [Errno -2] Name or service not known -- Some packages may not be found! Couldn't find index page for 'PyYAML' (maybe misspelled?) Scanning index of all packages (this may take a while) Reading https://pypi.org/simple/ Download error on https://pypi.org/simple/: [Errno -2] Name or service not known -- Some packages may not be found! No local packages or working download links found for PyYAML error: Could not find suitable distribution for Requirement.parse('PyYAML') [jw@cn05 easyocr]$ pip3 install pyyaml Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: pyyaml in /home/jw/.local/lib/python3.9/site-packages (5.1) [jw@cn05 easyocr]$
closed
2021-03-03T10:52:30Z
2021-06-22T10:34:25Z
https://github.com/JaidedAI/EasyOCR/issues/386
[]
LutzWeischerFujitsu
1
matplotlib/matplotlib
data-visualization
29,534
[Bug]: missing graph
### Bug summary Good day, I'm having issues with my graphs showing after running my command, I only get axis but no graph ![Image](https://github.com/user-attachments/assets/c19f90fb-7946-44cb-ab34-3ed69580460e) ### Code for reproduction ```Python Gby_plt.plot() ``` ### Actual outcome ![Image](https://github.com/user-attachments/assets/a17e50ea-3cf0-4ad9-bb38-010441b86300) ### Expected outcome ![Image](https://github.com/user-attachments/assets/642c86ef-0190-46e9-bac4-475632fc6dfa) ### Additional information _No response_ ### Operating system _No response_ ### Matplotlib Version 3.9.2 ### Matplotlib Backend _No response_ ### Python version 3.10.1 ### Jupyter version _No response_ ### Installation None
open
2025-01-28T16:37:05Z
2025-01-29T17:58:27Z
https://github.com/matplotlib/matplotlib/issues/29534
[ "Community support" ]
Gidman21
2
tflearn/tflearn
tensorflow
827
The published RNN pixels example not working, kindly advise..
The tflearn library example is failing at creating the first LSTM layer itself. How to reproduce the error: Run RNN pixels example https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py Installations: tensorflow==1.1.0-rc2 tflearn==for both 0.3.1 and 0.3.2 Error: ``` >>> net = tflearn.lstm(net, 128, return_seq=True) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/pandit/.local/lib/python2.7/site-packages/tflearn/layers/recurrent.py", line 222, in lstm restore=restore, reuse=reuse) File "/home/pandit/.local/lib/python2.7/site-packages/tflearn/layers/recurrent.py", line 499, in __init__ self.trainable = trainable File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/layers/base.py", line 124, in __setattr__ super(_Layer, self).__setattr__(name, value) AttributeError: can't set attribute >>> net = tflearn.lstm(net, 128) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/pandit/.local/lib/python2.7/site-packages/tflearn/layers/recurrent.py", line 222, in lstm restore=restore, reuse=reuse) File "/home/pandit/.local/lib/python2.7/site-packages/tflearn/layers/recurrent.py", line 499, in __init__ self.trainable = trainable File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/layers/base.py", line 124, in __setattr__ super(_Layer, self).__setattr__(name, value) AttributeError: can't set attribute ``` My own similar script works fine within virtual environment with tf 0.12, and tflearn 0.2.1. Apparently tflearn 0.3 needs updates in these regards?
open
2017-07-09T16:46:21Z
2017-07-10T16:01:22Z
https://github.com/tflearn/tflearn/issues/827
[]
vedhas
0
matterport/Mask_RCNN
tensorflow
2,820
Iou mask
My question is when evaluate iou mask for evaluate AP with different therthold. The predict mask is 28x28 to evaluate AP or resize to original size of roi after that compute AP
closed
2022-05-01T13:37:25Z
2022-05-01T13:43:05Z
https://github.com/matterport/Mask_RCNN/issues/2820
[]
Nawaffarhan
1
nonebot/nonebot2
fastapi
3,221
Plugin: SuggarChat OpenAI协议聊天插件
### PyPI 项目名 nonebot-plugin-suggarchat ### 插件 import 包名 nonebot_plugin_suggarchat ### 标签 [{"label":"ChatBot","color":"#ea5252"},{"label":"OpenAI","color":"#00ffe3"},{"label":"聊天","color":"#0067ff"}] ### 插件测试 - [ ] 如需重新运行插件测试,请勾选左侧勾选框
closed
2024-12-29T13:55:28Z
2025-02-20T14:56:23Z
https://github.com/nonebot/nonebot2/issues/3221
[ "Plugin", "Publish" ]
JohnRichard4096
11
strawberry-graphql/strawberry
asyncio
3,343
Schema visibility filters
I'm opening a new issue to spec-out the API, and also write down what should we take into account to make this happen. Visibility filters will be a feature that allows to hide fields (or types) based on the current request. This is different from #3274 where we allow people to customise fields at schema build time. ## API This is to be defined, I just put a random though here for now: ```python @strawberry.type class MyUser: id: str email: str = strawberry.field(...) # do we use tags? or do we go with functions? ``` ## Considerations This should be fast, we can't afford to do a lot of work at request time, which I guess means we can't build the schema at request time. @erikwrede @skilkis @bellini666 this could be a cool conversation to have 😊 Security, this should be secure, we should make sure we cover all the execution paths and make sure we never allow running resolvers when they should be hidden. Also we need to make sure we do the right thing when introspecting the schema **and** when printing the schema (where we won't have the request context) ## Help us If you want this feature, please let us know, I'm also happy to hop on calls, and please consider sponsoring us, especially if your company needs this, there's a badge at the bottom to sponsor this issue, but we also have GitHub sponsorship enabled 😊 Related #361 #3274 #2609
open
2024-01-16T11:36:50Z
2025-03-20T15:56:34Z
https://github.com/strawberry-graphql/strawberry/issues/3343
[ "feature-request" ]
patrick91
0
ultralytics/ultralytics
computer-vision
18,896
Excuse me, how can I solve the problem that the confidence level is only 0.1 after switching to the ONNX model?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component _No response_ ### Bug ![Image](https://github.com/user-attachments/assets/ee89874f-1b06-4319-80d0-9f6bc96c903a) ### Environment [2025/01/26 15:52:38] ppocr DEBUG: Namespace(alpha=1.0, alphacolor=(255, 255, 255), benchmark=False, beta=1.0, binarize=False, cls_batch_num=6, cls_image_shape='3, 48, 192', cls_model_dir='./weights/ocr/ch_ppocr_mobile_v2.0_cls_infer/', cls_thresh=0.9, cpu_threads=10, crop_res_save_dir='./output', det=True, det_algorithm='DB', det_box_type='quad', det_db_box_thresh=0.6, det_db_score_mode='fast', det_db_thresh=0.3, det_db_unclip_ratio=1.5, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_east_score_thresh=0.8, det_limit_side_len=960, det_limit_type='max', det_model_dir='/home/tony/.paddleocr/whl/det/en/en_PP-OCRv3_det_infer', det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, det_pse_thresh=0, det_sast_nms_thresh=0.2, det_sast_score_thresh=0.5, draw_img_save_dir='./inference_results', drop_score=0.5, e2e_algorithm='PGNet', e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_limit_side_len=768, e2e_limit_type='max', e2e_model_dir=None, e2e_pgnet_mode='fast', e2e_pgnet_score_thresh=0.5, e2e_pgnet_valid_set='totaltext', enable_mkldnn=False, formula=False, formula_algorithm='LaTeXOCR', formula_batch_num=1, formula_char_dict_path=None, formula_model_dir=None, fourier_degree=5, gpu_id=0, gpu_mem=500, help='==SUPPRESS==', image_dir=None, image_orientation=False, invert=False, ir_optim=True, kie_algorithm='LayoutXLM', label_list=['0', '180'], lang='en', layout=True, layout_dict_path=None, layout_model_dir=None, layout_nms_threshold=0.5, layout_score_threshold=0.5, max_batch_size=10, max_text_length=25, merge_no_span_structure=True, min_subgraph_size=15, mode='structure', ocr=True, ocr_order_method=None, ocr_version='PP-OCRv4', output='./output', page_num=0, precision='fp32', process_id=0, re_model_dir=None, rec=True, rec_algorithm='SVTR_LCNet', rec_batch_num=6, rec_char_dict_path='./weights/ocr/ppocr_keys_v1_fhhx.txt', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_model_dir='./weights/ocr/0510/', recovery=False, recovery_to_markdown=False, return_word_box=False, save_crop_res=False, save_log_path='./log_output/', savefile=False, scales=[8, 16, 32], ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ser_model_dir=None, show_log=True, sr_batch_num=1, sr_image_shape='3, 32, 128', sr_model_dir=None, structure_version='PP-StructureV2', table=True, table_algorithm='TableAttn', table_char_dict_path=None, table_max_len=488, table_model_dir=None, total_process_num=1, type='ocr', use_angle_cls=False, use_dilation=False, use_gpu=True, use_mlu=False, use_mp=False, use_npu=False, use_onnx=False, use_pdf2docx_api=False, use_pdserving=False, use_space_char=True, use_tensorrt=False, use_visual_backbone=True, use_xpu=False, vis_font_path='./doc/fonts/simfang.ttf', warmup=False) [2025/01/26 15:52:38] ppocr WARNING: The first GPU is used for inference by default, GPU ID: 0 [2025/01/26 15:52:39] ppocr WARNING: The first GPU is used for inference by default, GPU ID: 0 Ultralytics 8.3.66 🚀 Python-3.8.8 torch-1.13.1+cu117 CUDA:0 (NVIDIA GeForce RTX 3090, 24132MiB) ### Minimal Reproducible Example ```python import cv2 import math import copy import torch import time import os import onnxruntime as ort from paddleocr import PaddleOCR import concurrent.futures # 将 YOLO 模型转换为 ONNX 模型 def export_to_onnx(weights): from ultralytics import YOLO model = YOLO(weights) try: model.export(format='onnx') print("ONNX 模型转换成功。") except Exception as e: print(f"ONNX 模型转换失败: {e}") class YOLO_det: def __init__(self, weights, imgsz=640, conf_thres=0.1, iou_thres=0.25, max_det=1000): # 提高置信度阈值 if torch.cuda.is_available() and torch.cuda.device_count() > 0: providers = [ ('CUDAExecutionProvider', { 'device_id': 0, 'arena_extend_strategy': 'kNextPowerOfTwo', 'gpu_mem_limit': 4 * 1024 * 1024 * 1024, # 4GB 内存限制 'cudnn_conv_algo_search': 'EXHAUSTIVE', 'do_copy_in_default_stream': True, }) ] else: providers = ['CPUExecutionProvider'] onnx_weights = weights.replace('.pt', '.onnx') if not os.path.exists(onnx_weights): export_to_onnx(weights) self.session = ort.InferenceSession(onnx_weights, providers=providers) self.imgsz = imgsz self.conf = conf_thres self.iou = iou_thres self.max_det = max_det def preprocess(self, img): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (self.imgsz, self.imgsz)) img = img.transpose(2, 0, 1) img = img[None] img = img.astype('float32') / 255.0 return img def detect(self, img): input_name = self.session.get_inputs()[0].name input_img = self.preprocess(img) try: outputs = self.session.run(None, {input_name: input_img}) print(f"推理输出形状: {[o.shape for o in outputs]}") # 打印输出形状 print(f"推理输出部分内容: {outputs[0][0, :5, :]}") # 打印部分输出内容 except Exception as e: print(f"推理过程中出现异常: {e}") return [] # 假设输出只有一个数组,需要根据实际情况解析 output = outputs[0] boxes = [] confidences = [] # 根据实际输出格式调整解析逻辑 if output.ndim == 3: num_detections = output.shape[1] for i in range(num_detections): # 假设前 4 列是边界框信息,第 5 列是置信度 box = output[0, i, :4] conf = output[0, i, 4] boxes.append(box) confidences.append(conf) else: print(f"不支持的输出形状: {output.shape}") return [] return_list = [] for box, conf in zip(boxes, confidences): if conf > self.conf: xyxy = box x1 = math.ceil(xyxy[0]) y1 = math.ceil(xyxy[1]) x2 = math.ceil(xyxy[2]) y2 = math.ceil(xyxy[1]) x3 = math.ceil(xyxy[2]) y3 = math.ceil(xyxy[3]) x4 = math.ceil(xyxy[0]) y4 = math.ceil(xyxy[3]) return_list.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) if not return_list: print("未检测到目标。") return return_list def sorted_boxes(dt_boxes): sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0])) _boxes = [[[int(num) for num in sub_list] for sub_list in main_list] for main_list in sorted_boxes] for i in range(len(dt_boxes) - 1): for j in range(i, -1, -1): if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and ( _boxes[j + 1][0][0] < _boxes[j][0][0] ): tmp = _boxes[j] _boxes[j] = _boxes[j + 1] _boxes[j + 1] = tmp else: break return _boxes def _4point2xyxy(points): list_out_xyxy = [] for point in points: x_coords, y_coords = zip(*point) min_x, max_x = min(x_coords), max(x_coords) min_y, max_y = min(y_coords), max(y_coords) rectangle = [int(min_x), int(min_y), int(max_x), int(max_y)] list_out_xyxy.append(rectangle) return list_out_xyxy def process_image(index, image_path, ocr_rec, yolo_det): start = time.time() # 记录开始时间 try: det_img = cv2.imread(image_path) if det_img is None: print(f"无法读取图片: {image_path}") return except Exception as e: print(f"读取图片 {image_path} 时出现错误: {e}") return out_yolo_det = yolo_det.detect(det_img) if not out_yolo_det: print(f"在图片 {image_path} 中未检测到目标。") out_yolo_det = sorted_boxes(out_yolo_det) list_ocr_det_bbox_xyxy = _4point2xyxy(out_yolo_det) show_img = copy.deepcopy(det_img) for i in range(len(list_ocr_det_bbox_xyxy)): # xyxy 坐标 x1, y1, x2, y2 = list_ocr_det_bbox_xyxy[i] # 检查截取区域是否有效 if x2 > x1 and y2 > y1: # 截取文本小图 ocr_rec_det_img = det_img[y1:y2, x1:x2] one_ocr_rec_out = ocr_rec.ocr(ocr_rec_det_img, det=False, cls=False) print(one_ocr_rec_out) # 绘制 bbox show_img = cv2.rectangle(show_img, (x1, y1), (x2, y2), (0, 0, 255), 1) # 设置字体、大小、颜色和线条粗细 font = cv2.FONT_HERSHEY_SIMPLEX # 绘制文本 show_img = cv2.putText(show_img, str(i), (x1, y1 + 20), font, 0.8, (0, 255, 0), 2) # 确保 output 文件夹存在 output_folder = 'output_onnx' if not os.path.exists(output_folder): try: os.makedirs(output_folder) print(f"成功创建输出文件夹: {output_folder}") except OSError as e: print(f"创建输出文件夹时出错: {e}") return # 保存图片 output_path = os.path.join(output_folder, f'out_image{index + 1}.jpg') if cv2.imwrite(output_path, show_img): print(f"图片已成功保存到: {output_path}") else: print(f"无法保存图片到: {output_path},请检查文件权限或路径是否正确。") end = time.time() # 记录结束时间 elapsed = end - start # 计算该图片处理耗时 print(f"图片 {image_path} 处理耗时: {elapsed:.2f} 秒") print("\n", "=" * 200, "\n") if __name__ == "__main__": start_time = time.time() # 文本识别_权重 rec_model_dir = './weights/ocr/0510/' # 文本字典 rec_char_dict_path = './weights/ocr/ppocr_keys_v1_fhhx.txt' # 方向分类器 cls_model_dir = './weights/ocr/ch_ppocr_mobile_v2.0_cls_infer/' # yolo_det 权重目录 weighs = './weights/best.pt' # 加载 文本检测权重... ocr_rec = PaddleOCR(lang='en', rec_model_dir=rec_model_dir, rec_char_dict_path=rec_char_dict_path, cls_model_dir=cls_model_dir, use_gpu=True) # 明确指定使用GPU # 加载 yolo_det 权重... yolo_det = YOLO_det(weighs, imgsz=640) # 获取 input_images 文件夹下的所有图片路径 input_folder = 'input_images' if not os.path.exists(input_folder): print(f"输入文件夹 {input_folder} 不存在,请检查路径。") else: image_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith(('.png', '.jpg', '.jpeg'))] if not image_files: print(f"在 {input_folder} 中未找到有效的图片文件,请检查文件夹内容。") else: # 使用线程池并行处理图片,并行数量为 10 with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: futures = [] for index, image_path in enumerate(image_files): future = executor.submit(process_image, index, image_path, ocr_rec, yolo_det) futures.append(future) # 等待所有任务完成 concurrent.futures.wait(futures) end_time = time.time() elapsed_time = end_time - start_time print(f"代码总运行时间: {elapsed_time:.2f} 秒") # 一些后续可能添加的收尾操作可以在这里进行 # 例如,释放一些资源(虽然目前代码里没有明显需要手动释放的资源) # 或者做一些数据统计、日志记录等额外工作 # 下面是一个简单的示例,用于记录本次运行的总时间到一个日志文件中 log_file_path = "run_log.txt" try: with open(log_file_path, "a") as log_file: log_file.write(f"本次运行于 {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())} 开始,耗时 {elapsed_time:.2f} 秒。\n") except Exception as e: print(f"写入日志文件时出现错误: {e}") ``` ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2025-01-26T07:53:15Z
2025-01-26T13:48:03Z
https://github.com/ultralytics/ultralytics/issues/18896
[ "exports" ]
CanhaoL
2
fastapi/fastapi
pydantic
12,290
Chrome does not display Swagger UI
### Privileged issue - [X] I'm @tiangolo or he asked me directly to create an issue here. ### Issue Content ![image](https://github.com/user-attachments/assets/0a5523b2-3727-4e33-8590-e13b5a7c7126) Chrome does not display Swagger UI, but Edge can. Is this a bug?
closed
2024-09-28T13:51:40Z
2024-09-28T13:55:37Z
https://github.com/fastapi/fastapi/issues/12290
[]
soevai
0
tfranzel/drf-spectacular
rest-api
1,271
How is it possible to close all groups at Swagger's opening?
Maybe it's a silly question, but how can I inform DRF-Spectacular to make all groups closed when opening Swagger? It seems that every time I request Swagger, it opens all groups, and since I have a lot of APIs, navigation becomes a real disaster. Is there any setting? Thanks for your great module. Best regards.
closed
2024-08-05T20:32:28Z
2024-08-09T20:43:31Z
https://github.com/tfranzel/drf-spectacular/issues/1271
[]
amirhoseinbidar
2
sgl-project/sglang
pytorch
3,719
[Bug] v0.4.3 performance degradation 2x8xH100
### Checklist - [x] 1. I have searched related issues but cannot get the expected help. - [ ] 2. The bug has not been fixed in the latest version. - [ ] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback. - [ ] 4. If the issue you raised is not a bug but a question, please raise a discussion at https://github.com/sgl-project/sglang/discussions/new/choose Otherwise, it will be closed. - [x] 5. Please use English, otherwise it will be closed. ### Describe the bug sglang was upgraded to version v0.4.3.post2-cu125, and the performance was found to be seriously degraded ### Reproduction sglang_launch_server ``` python3 -m sglang.launch_server --model-path /root/.cache/modelscope/DeepSeek-R1 --served-model-name deepseek-r1 --tp 16 --dist-init-addr $LWS_LEADER_ADDRESS:20000 --nnodes $LWS_GROUP_SIZE --node-rank 0 --trust-remote-code --context-length 131072 --enable-metrics --host 0.0.0.0 --port 8000 --disable-cuda-graph env: - name: GLOO_SOCKET_IFNAME value: eth0 - name: NCCL_IB_HCA value: "mlx5_0,mlx5_1,mlx5_4,mlx5_5" - name: NCCL_P2P_LEVEL value: "NVL" - name: NCCL_IB_GID_INDEX value: "0" - name: NCCL_IB_CUDA_SUPPORT value: "1" - name: NCCL_IB_DISABLE value: "0" - name: NCCL_SOCKET_IFNAME value: "eth0" - name: NCCL_DEBUG value: "INFO" - name: NCCL_NET_GDR_LEVEL value: "2" - name: POD_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: SGLANG_USE_MODELSCOPE value: "true" ``` v0.4.3 ``` python3 -m sglang.bench_one_batch_server --model None --base-url http://127.0.0.1:8000 --batch-size 10 --input-len 1280 --output-len 1280 /usr/local/lib/python3.10/dist-packages/transformers/models/auto/image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead warnings.warn( INFO 02-20 11:31:59 __init__.py:190] Automatically detected platform cuda. batch size: 16 latency: 8.34 s output throughput: 30.68 token/s (input + output) throughput: 1994.45 token/s batch size: 10 latency: 312.19 s output throughput: 41.00 token/s (input + output) throughput: 82.00 token/s Results are saved to result.jsonl ``` v0.4.2 ``` python3 -m sglang.bench_one_batch_server --model None --base-url http://127.0.0.1:8000 --batch-size 10 --input-len 1280 --output-len 1280 INFO 02-18 18:10:55 __init__.py:190] Automatically detected platform cuda. batch size: 16 latency: 2.50 s output throughput: 102.31 token/s (input + output) throughput: 6650.28 token/s batch size: 10 latency: 58.57 s output throughput: 218.54 token/s (input + output) throughput: 437.07 token/s ``` ### Environment ``` python3 -m sglang.check_env INFO 02-20 11:44:59 __init__.py:190] Automatically detected platform cuda. Python: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] CUDA available: True GPU 0,1,2,3,4,5,6,7: NVIDIA H100 80GB HBM3 GPU 0,1,2,3,4,5,6,7 Compute Capability: 9.0 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 12.4, V12.4.131 CUDA Driver Version: 560.35.03 PyTorch: 2.5.1+cu124 sgl_kernel: 0.0.3.post6 flashinfer: 0.2.1.post2+cu124torch2.5 triton: 3.1.0 transformers: 4.48.3 torchao: 0.8.0 numpy: 1.26.4 aiohttp: 3.11.12 fastapi: 0.115.8 hf_transfer: 0.1.9 huggingface_hub: 0.28.1 interegular: 0.3.3 modelscope: 1.23.0 orjson: 3.10.15 packaging: 24.2 psutil: 7.0.0 pydantic: 2.10.6 multipart: 0.0.20 zmq: 26.2.1 uvicorn: 0.34.0 uvloop: 0.21.0 vllm: 0.7.2 openai: 1.63.2 tiktoken: 0.9.0 anthropic: 0.45.2 decord: 0.6.0 NVIDIA Topology: GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 PIX NODE SYS SYS NODE 0-47,96-143 0 N/A GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE SYS SYS NODE 0-47,96-143 0 N/A GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE PIX SYS SYS NODE 0-47,96-143 0 N/A GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE NODE SYS SYS PIX 0-47,96-143 0 N/A GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS PIX NODE SYS 48-95,144-191 1 N/A GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS NODE NODE SYS 48-95,144-191 1 N/A GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS NODE PIX SYS 48-95,144-191 1 N/A GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS NODE NODE SYS 48-95,144-191 1 N/A NIC0 PIX NODE NODE NODE SYS SYS SYS SYS X NODE SYS SYS NODE NIC1 NODE NODE PIX NODE SYS SYS SYS SYS NODE X SYS SYS NODE NIC2 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS X NODE SYS NIC3 SYS SYS SYS SYS NODE NODE PIX NODE SYS SYS NODE X SYS NIC4 NODE NODE NODE PIX SYS SYS SYS SYS NODE NODE SYS SYS X Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks NIC Legend: NIC0: mlx5_0 NIC1: mlx5_1 NIC2: mlx5_4 NIC3: mlx5_5 NIC4: mlx5_bond_0 ulimit soft: 1048576 ```
open
2025-02-20T03:48:02Z
2025-02-20T05:04:39Z
https://github.com/sgl-project/sglang/issues/3719
[]
Hugh-yw
2
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,074
[Bug]: 283 settings changed after click to save
### Checklist - [X] The issue exists after disabling all extensions - [x] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [X] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? after a clean install, when i click to save my configs, it say "283 settings changed: outdir_samples, outdir_txt2img_samples, outdir_img2img_samples, outdir_extras_samples, outdir_grids, outdir_txt2img_grids, outdir_img2img_grids, outdir_save, outdir_init_images, samples_save, samples_format, samples_filename_pattern, save_images_add_number, save_images_replace_action, grid_save, grid_format, grid_extended_filename, grid_only_if_multiple, grid_prevent_empty_spots, grid_zip_filename_pattern, n_rows, font, grid_text_active_color, grid_text_inactive_color, grid_background_color, save_images_before_face_restoration, save_images_before_highres_fix, save_images_before_color_correction, save_mask, save_mask_composite, jpeg_quality, webp_lossless, export_for_4chan, img_downscale_threshold, target_side_length, img_max_size_mp, use_original_name_batch, use_upscaler_name_as_suffix, save_selected_only, save_init_img, temp_dir, clean_temp_dir_at_start, save_incomplete_images, notification_audio, notification_volume, save_to_dirs, grid_save_to_dirs, use_save_to_dirs_for_ui, directories_filename_pattern, directories_max_prompt_words, auto_backcompat, use_old_emphasis_implementation, use_old_karras_scheduler_sigmas, no_dpmpp_sde_batch_determinism, use_old_hires_fix_width_height, dont_fix_second_order_samplers_schedule, hires_fix_use_firstpass_conds, use_old_scheduling, use_downcasted_alpha_bar, lora_functional, extra_networks_show_hidden_directories, extra_networks_dir_button_function, extra_networks_hidden_models, extra_networks_default_multiplier, extra_networks_card_width, extra_networks_card_height, extra_networks_card_text_scale, extra_networks_card_show_desc, extra_networks_card_description_is_html, extra_networks_card_order_field, extra_networks_card_order, extra_networks_tree_view_default_enabled, extra_networks_add_text_separator, ui_extra_networks_tab_reorder, textual_inversion_print_at_load, textual_inversion_add_hashes_to_infotext, sd_hypernetwork, sd_lora, lora_preferred_name, lora_add_hashes_to_infotext, lora_show_all, lora_hide_unknown_for_versions, lora_in_memory_limit, lora_not_found_warning_console, lora_not_found_gradio_warning, cross_attention_optimization, s_min_uncond, token_merging_ratio, token_merging_ratio_img2img, token_merging_ratio_hr, pad_cond_uncond, pad_cond_uncond_v0, persistent_cond_cache, batch_cond_uncond, fp8_storage, cache_fp16_weight, hide_samplers, eta_ddim, eta_ancestral, ddim_discretize, s_churn, s_tmin, s_tmax, s_noise, k_sched_type, sigma_min, sigma_max, rho, eta_noise_seed_delta, always_discard_next_to_last_sigma, sgm_noise_multiplier, uni_pc_variant, uni_pc_skip_type, uni_pc_order, uni_pc_lower_order_final, sd_noise_schedule, sd_checkpoints_limit, sd_checkpoints_keep_in_cpu, sd_checkpoint_cache, sd_unet, enable_quantization, emphasis, enable_batch_seeds, comma_padding_backtrack, CLIP_stop_at_last_layers, upcast_attn, randn_source, tiling, hires_fix_refiner_pass, enable_prompt_comments, sdxl_crop_top, sdxl_crop_left, sdxl_refiner_low_aesthetic_score, sdxl_refiner_high_aesthetic_score, sd_vae_checkpoint_cache, sd_vae, sd_vae_overrides_per_model_preferences, auto_vae_precision_bfloat16, auto_vae_precision, sd_vae_encode_method, sd_vae_decode_method, inpainting_mask_weight, initial_noise_multiplier, img2img_extra_noise, img2img_color_correction, img2img_fix_steps, img2img_background_color, img2img_editor_height, img2img_sketch_default_brush_color, img2img_inpaint_mask_brush_color, img2img_inpaint_sketch_default_brush_color, return_mask, return_mask_composite, img2img_batch_show_results_limit, overlay_inpaint, return_grid, do_not_show_images, js_modal_lightbox, js_modal_lightbox_initially_zoomed, js_modal_lightbox_gamepad, js_modal_lightbox_gamepad_repeat, sd_webui_modal_lightbox_icon_opacity, sd_webui_modal_lightbox_toolbar_opacity, gallery_height, open_dir_button_choice, enable_pnginfo, save_txt, add_model_name_to_info, add_model_hash_to_info, add_vae_name_to_info, add_vae_hash_to_info, add_user_name_to_info, add_version_to_infotext, disable_weights_auto_swap, infotext_skip_pasting, infotext_styles, show_progressbar, live_previews_enable, live_previews_image_format, show_progress_grid, show_progress_every_n_steps, show_progress_type, live_preview_allow_lowvram_full, live_preview_content, live_preview_refresh_period, live_preview_fast_interrupt, js_live_preview_in_modal_lightbox, keyedit_precision_attention, keyedit_precision_extra, keyedit_delimiters, keyedit_delimiters_whitespace, keyedit_move, disable_token_counters, include_styles_into_token_counters, extra_options_txt2img, extra_options_img2img, extra_options_cols, extra_options_accordion, compact_prompt_box, samplers_in_dropdown, dimensions_and_batch_together, sd_checkpoint_dropdown_use_short, hires_fix_show_sampler, hires_fix_show_prompts, txt2img_settings_accordion, img2img_settings_accordion, interrupt_after_current, localization, quicksettings_list, ui_tab_order, hidden_tabs, ui_reorder_list, gradio_theme, gradio_themes_cache, show_progress_in_title, send_seed, send_size, api_enable_requests, api_forbid_local_requests, api_useragent, auto_launch_browser, enable_console_prompts, show_warnings, show_gradio_deprecation_warnings, memmon_poll_rate, samples_log_stdout, multiple_tqdm, enable_upscale_progressbar, print_hypernet_extra, list_hidden_files, disable_mmap_load_safetensors, hide_ldm_prints, dump_stacks_on_signal, face_restoration, face_restoration_model, code_former_weight, face_restoration_unload, postprocessing_enable_in_main_ui, postprocessing_operation_order, upscaling_max_images_in_cache, postprocessing_existing_caption_action, ESRGAN_tile, ESRGAN_tile_overlap, realesrgan_enabled_models, dat_enabled_models, DAT_tile, DAT_tile_overlap, unload_models_when_training, pin_memory, save_optimizer_state, save_training_settings_to_txt, dataset_filename_word_regex, dataset_filename_join_string, training_image_repeats_per_epoch, training_write_csv_every, training_xattention_optimizations, training_enable_tensorboard, training_tensorboard_save_images, training_tensorboard_flush_every, canvas_hotkey_zoom, canvas_hotkey_adjust, canvas_hotkey_shrink_brush, canvas_hotkey_grow_brush, canvas_hotkey_move, canvas_hotkey_fullscreen, canvas_hotkey_reset, canvas_hotkey_overlap, canvas_show_tooltip, canvas_auto_expand, canvas_blur_prompt, canvas_disabled_functions, interrogate_keep_models_in_memory, interrogate_return_ranks, interrogate_clip_num_beams, interrogate_clip_min_length, interrogate_clip_max_length, interrogate_clip_dict_limit, interrogate_clip_skip_categories, interrogate_deepbooru_score_threshold, deepbooru_sort_alpha, deepbooru_use_spaces, deepbooru_escape, deepbooru_filter_tags. Search... Paths for saving Saving images/grids Saving to a directory Compatibility Extra Networks Optimizations Sampler parameters Stable Diffusion Stable Diffusion XL VAE img2img Gallery Infotext Live previews Prompt editing Settings in UI UI alternatives User interface API System Face restoration Postprocessing Upscaling Training ADetailer Aspect Ratio Helper Canvas Hotkeys ControlNet Hypertile Interrogate Defaults Sysinfo Actions Licenses Show all pages Maximum number of checkpoints loaded at the same time 1 Only keep one model on device (will keep models other than the currently used one in RAM rather than VRAM) Checkpoints to cache in RAM (obsolete; set to 0 and use the two settings above instead) 0 SD Unet (choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint) Automatic 🔄 Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds (requires Reload UI) Emphasis mode (makes it possible to make model to pay (more:1.1) or (less:0.9) attention to text when you use the syntax in prompt; None: disable the mechanism entirely and treat (:.1.1) as literal characters, Ignore: treat all empasised words as if they have no emphasis, Original: the orginal emphasis implementation, No norm: same as orginal, but without normalization (seems to work better for SDXL))" **and my Lora filtering options goes off, somebody know how to fix?** ### Steps to reproduce the problem 1 - clean install 2 - launch 3 - apply new configs
closed
2024-06-23T02:10:13Z
2024-06-24T08:36:29Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16074
[ "asking-for-help-with-local-system-issues" ]
HenryEvan
5
miguelgrinberg/Flask-SocketIO
flask
990
Getting 404 error when using gunicorn/eventlet in prod
Hi, I've spent several hours looking online and reading through the issues posted but have not found a solution. This totally works on dev without gunicorn and eventlet websocket request return the following error: ~~~~ { "error": "404 Not Found: The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.", "traceback": [ " File \"/usr/local/lib/python3.7/site-packages/flask/app.py\", line 1813, in full_dispatch_request\n rv = self.dispatch_request()\n", " File \"/usr/local/lib/python3.7/site-packages/flask/app.py\", line 1791, in dispatch_request\n self.raise_routing_exception(req)\n", " File \"/usr/local/lib/python3.7/site-packages/flask/app.py\", line 1774, in raise_routing_exception\n raise request.routing_exception\n", " File \"/usr/local/lib/python3.7/site-packages/flask/ctx.py\", line 336, in match_request\n self.url_adapter.match(return_rule=True)\n", " File \"/usr/local/lib/python3.7/site-packages/werkzeug/routing.py\", line 1786, in match\n raise NotFound()\n" ] } ~~~~ I'm running gunicorn like `gunicorn --worker-class eventlet --bind :5000 wsgi:app --log-level=debug --log-file=-` my wsgi.py file looks like ~~~ from app import init_app from flask_socketio import SocketIO app = init_app() if __name__ == '__main__': socketio = SocketIO(app) socketio.run(app) ~~~ the init_app func is just a wrapper for the usual `app = Flask(__name__)` no magic there other than setting some variables and environment configs my nginx config for this is ~~~~ location /socket.io { proxy_http_version 1.1; proxy_buffering off; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "Upgrade"; proxy_pass http://api:5000/socket.io; } ~~~~ Python packages ~~~ $ pip freeze aniso8601==6.0.0 blinker==1.4 Click==7.0 dnspython==1.16.0 eventlet==0.24.1 Flask==1.0.2 Flask-Caching==1.5.0 Flask-Mail==0.9.1 Flask-RESTful==0.3.7 Flask-SocketIO==3.2.1 Flask-SQLAlchemy==2.3.2 greenlet==0.4.15 gunicorn==19.9.0 itsdangerous==1.1.0 Jinja2==2.10.1 MarkupSafe==1.1.1 monotonic==1.5 mysqlclient==1.3.14 PyJWT==1.7.1 python-engineio==3.7.0 python-socketio==4.0.3 pytz==2019.1 six==1.12.0 SQLAlchemy==1.3.4 Werkzeug==0.15.4 ~~~ The error output is obviously being generated by flask. Otherwise my endpoints work fine. Any ideas?
closed
2019-05-31T02:26:32Z
2019-05-31T15:00:51Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/990
[ "question" ]
jcuna
6
opengeos/leafmap
plotly
661
NAIP STAC Item added to map as layer disappears on zoom out, needs a very close zoom level to appear.
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information - leafmap version: 0.30.1 - Python version: 3.10 - Operating System: Ubuntu ### Description I want to zoom out and see my image on the map. But it disappears at far away zoom levels. Also the default zoom level that is set when the map opens won't show the image. ### What I Did ```python import pystac_client import planetary_computer from shapely.geometry import Point area_of_interest = Point((-121.034, 36.990)) # wright solar farm lon lat catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", modifier=planetary_computer.sign_inplace, ) range_old = "2010-01-01/2013-01-01" range_new = "2020-01-01/2021-01-01" search_old = catalog.search( collections=["naip"], intersects=area_of_interest, datetime=range_old ) search_new = catalog.search( collections=["naip"], intersects=area_of_interest, datetime=range_new ) items_old = search_old.item_collection() items_new = search_new.item_collection() print(f"{len(items_old)} Items found in the 'old' range") print(f"{len(items_new)} Items found in the 'new' range") map = leafmap.Map() leafmap.stac_assets(collection="naip", item=items_old[0].id, titiler_endpoint="pc") m = leafmap.Map() m.add_stac_layer( collection="naip", item='ca_m_3612108_ne_10_1_20120622_20120904', assets=["image"], name="Old image 2012 before solar development", ) m ```
closed
2024-01-16T22:29:36Z
2024-02-06T15:32:44Z
https://github.com/opengeos/leafmap/issues/661
[ "bug" ]
rbavery
1
miguelgrinberg/python-socketio
asyncio
554
Update connect_error documentation
Hello, I would like to suggest you mention in the documentation that the `connect_error` handler can get arguments. Now, it is only shown not getting arguments, [here](https://python-socketio.readthedocs.io/en/latest/client.html?highlight=connect_error#defining-event-handlers). As you stated in issue [#508](https://github.com/miguelgrinberg/python-socketio/issues/508#issuecomment-646352384), there are some cases where this handler can be invoked with multiple or none arguments, depending on the server, and some cases where it can get one argument. In my opinion, it is worth mentioning this in the documentation as it can lead to confusion and bugs.
closed
2020-10-13T10:53:03Z
2021-05-04T22:09:46Z
https://github.com/miguelgrinberg/python-socketio/issues/554
[ "documentation" ]
turicfr
1
lexiforest/curl_cffi
web-scraping
17
Bug: Request header is 'application/x-www-form-urlencoded' but use json as request body
Request header is 'application/x-www-form-urlencoded' but use json as request body when requests.post have both json and data parameter, here are code ```python requests.post("https://httpbin.org/post", data={"data": 1}, json={"json": 1}).json() ``` here are output ```json {'args': {}, 'data': '', 'files': {}, 'form': {'{"json": 1}': ''}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'Content-Length': '11', 'Content-Type': 'application/x-www-form-urlencoded', 'Host': 'httpbin.org', 'X-Amzn-Trace-Id': 'Root=1-6401f15c-60b4e9a57970941f002fe1af'}, 'json': None, 'origin': '103.116.72.5', 'url': 'https://httpbin.org/post'} ```
closed
2023-03-03T13:13:08Z
2023-09-29T12:25:30Z
https://github.com/lexiforest/curl_cffi/issues/17
[]
MagicalBomb
3
gevent/gevent
asyncio
1,419
ImportError: cannot import name _corecffi
I installed gevent using `pip install gevent` and have the latest version 1.4.0. I would like to compare the speed between all event loops but don't manage to use libuv. Is there a specific installation to do ? ``` >>> import gevent >>> gevent.config.loop = 'libuv' Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/dist-packages/gevent/_config.py", line 197, in __setattr__ self.set(name, value) File "/usr/local/lib/python2.7/dist-packages/gevent/_config.py", line 204, in set self.settings[name].set(value) File "/usr/local/lib/python2.7/dist-packages/gevent/_config.py", line 150, in set self.value = self.validate(self._convert(val)) File "/usr/local/lib/python2.7/dist-packages/gevent/_config.py", line 248, in validate return self._import_one_of([self.shortname_map.get(x, x) for x in value]) File "/usr/local/lib/python2.7/dist-packages/gevent/_config.py", line 223, in _import_one_of return self._import_one(candidates[-1]) File "/usr/local/lib/python2.7/dist-packages/gevent/_config.py", line 237, in _import_one module = importlib.import_module(module) File "/usr/lib/python2.7/importlib/__init__.py", line 37, in import_module __import__(name) File "/usr/local/lib/python2.7/dist-packages/gevent/libuv/loop.py", line 15, in <module> from gevent.libuv import _corecffi # pylint:disable=no-name-in-module,import-error ImportError: cannot import name _corecffi ```
closed
2019-05-04T15:50:43Z
2019-05-04T16:27:03Z
https://github.com/gevent/gevent/issues/1419
[]
maingoh
2
nolar/kopf
asyncio
227
[PR] Switch to `aiohttp` and full asynchronous I/O in the core
> <a href="https://github.com/nolar"><img align="left" height="50" src="https://avatars0.githubusercontent.com/u/544296?v=4"></a> A pull request by [nolar](https://github.com/nolar) at _2019-11-13 10:31:58+00:00_ > Original URL: https://github.com/zalando-incubator/kopf/pull/227 > Merged by [nolar](https://github.com/nolar) at _2019-11-13 11:00:51+00:00_ Remove any synchronous Kubernetes API clients or asyncio executors. Make Kopf fully and truly asynchronous. > Issue : #142, #140, maybe #204, maybe #169 > Replaces: #176 #152 #143, #141 ## Problem `pykube-ng`, `kubernetes`, `requests`, and any other synchronous client libraries use the streaming responses of the built-in `urllib3` and `http` for watching over the k8s-events. These streaming requests/responses can be closed when a chunk/line is yielded to the consumer, the control flow is returned to the caller, and the streaming socket itself is idling. E.g., for `requests`: https://2.python-requests.org/en/master/user/advanced/#streaming-requests However, if nothing happens on the k8s-event stream (i.e. no k8s resources are added/modified/deleted), the streaming response spends most of its time in the blocking `read()` operation on a socket. It can remain there for long time — minutes, hours — until some data arrives on the socket. If the streaming response runs in a thread, while the main thread is used for an asyncio event-loop, such stream cannot be closed/cancelled/terminated (because of the blocking `read()`). This, in turn, makes the application to hang on exit, holding its pod from restarting, since the thread is not finished until the `read()` call is finished. There is no easy way to terminate the blocking `read()` operation on a socket. One way is a dirty hack with the OS-level process signals, which interrupt the I/O operations on low level (OS&libc&co) — see #152. ## Solution The proper solution, however, is to use async i/o inside of the async app. **This PR** converts all i/o to/from Kubernetes API to `aiohttp`. It is already present in the dependencies indirectly. This efficiently removes `pykube-ng` (or any other clients) from the Kopf's core. There is no much need in them, as the main purpose of the client libraries is to provide a convenient DSL (domain-specific language) for the Kubernetes objects manipulation. In Kopf, all manipulation is unified, used only internally, not exposed as a public interface, and implemented so that the kind of objects being handled is not so important. *An attempt to do this was already performed in #176, but it contained a huge part about authentication methods. With custom authentication and piggybacking implemented separately in #226. This new PR now contains only the i/o-related changes.* ## Testing **For testing,** [aresponses](https://github.com/CircleUp/aresponses) is used instead of mocked `requests`. It runs an actual web server locally, and intercepts all aiohttp outgoing requests to be redirected to that web-server. This switch led to almost full rewrite of all tests for `kopf.clients` module (all API communication) — which makes a half of this PR's size (while keeping the same semantics of the tests). ## Types of Changes - Bug fix (non-breaking change which fixes an issue) - Refactor/improvements ## Review _List of tasks the reviewer must do to review the PR_ - [ ] Tests - [ ] Documentation
closed
2020-08-18T20:01:14Z
2020-08-23T20:51:34Z
https://github.com/nolar/kopf/issues/227
[ "enhancement", "archive", "refactoring" ]
kopf-archiver[bot]
0
shaikhsajid1111/social-media-profile-scrapers
web-scraping
10
The pinterest scraper doesn't work.
it returns: 'country' None
open
2022-07-06T10:57:07Z
2022-07-06T17:07:16Z
https://github.com/shaikhsajid1111/social-media-profile-scrapers/issues/10
[]
meatloaf4u
2
reloadware/reloadium
pandas
52
Plugin 0.8.6 (with Relodium 0.9.3) breaks with PyCharm 2022.2.3
**Describe the bug** Relodium breaks. I had relodium installed and upgraded both PyCharm and Relodium versions. After the upgrade, the plugin fails when running. Because code is obfuscated I cannot see where it breaks, but I attached the log console. **Screenshots** ![image](https://user-images.githubusercontent.com/1275184/196942123-1f93040e-b588-4df1-92c5-c8c306d2be77.png) **Desktop (please complete the following information):** - OS: Windows 11 - Reloadium package version: 0.8.6 - Editor: PyCharm 2022.2.3 (Professional Edition) Build #PY-222.4345.23, built on October 10, 2022 - Run mode: Run **Additional context** Add any other context about the problem here.
closed
2022-10-20T11:58:54Z
2022-10-24T12:37:28Z
https://github.com/reloadware/reloadium/issues/52
[]
laurapons
9
2noise/ChatTTS
python
225
求一个cURL版的API调用方式
closed
2024-06-03T08:38:55Z
2024-06-04T05:06:07Z
https://github.com/2noise/ChatTTS/issues/225
[]
Huixxi
1
scikit-image/scikit-image
computer-vision
7,620
Expose clip_negative as a parameter of rescale_intensithy
### Description: `skimage.exposure.rescale_intensity(image, in_range='dtype', out_range='float32'` will take an input image with `dtype` of `int[8,16,32,64]` and scale to be in the range of `[-1,1]`. This is the normal and expected behavior, but I would actually like it to scale in the range of `[0,1]` (as in the case for unsigned integers). I realize this is strange. Why have a signed image as input if I don't want to preserve negative values? The reason is that I am normalizing images from users / external sources, and I *need* all of my images to be in the range of `[0,1]` for subsequent operations. I currently just do the correction after the fact, but would prefer to avoid the extra cpu cycles. As far as I can tell, the difference in behavior for unsigned and signed integers is captured by the `clip_negative` value that is passed on to `intensity_range`. ``` omin, omax = map(float, intensity_range(image, out_range, clip_negative=(imin >= 0))) ``` It would be nice to expose this as an overridable parameter to `rescale_intensity` itself, so that I can force it to be `True` regardless of `imin`'s value. I would be happy to open a PR. Just want to first make sure this is acceptable, given that it is an esoteric request, before going through the trouble.
closed
2024-11-25T14:59:16Z
2024-11-27T12:22:51Z
https://github.com/scikit-image/scikit-image/issues/7620
[ ":pray: Feature request" ]
gnodar01
2
mage-ai/mage-ai
data-science
4,882
[BUG] cannot cancel closing unsaved modified file
### Mage version v0.9.68 ### Describe the bug After having modified a file, and then trying to close it without saving the changes, a pop up windows asks if I'm sure to close it without saving changes. If I answer Ok, the expected beahaviour occurs : the file is closed without changes saved. But if I click on the Cancel button, the same behaviour occurs, but we would expect the file not to be closed, so that we don't lose our changes. ### To reproduce - Open a file in the 'Files' window - modify the file (like adding a word or whatever) - click on the cross to close the file - click the Cancel button (or the equivalent, my system is not in english) ### Expected behavior I expect the file not to close, and not to be modified by clicking the Cancel button ### Screenshots _No response_ ### Operating system - OS : Windows 11 - Browser : Chrome version 123.0.6312.86 ### Additional context _No response_
closed
2024-04-03T20:31:43Z
2024-04-29T18:48:30Z
https://github.com/mage-ai/mage-ai/issues/4882
[ "bug" ]
gtentillier
2
BeanieODM/beanie
asyncio
90
[examples] Update example projects
There two official example projects: - [FastAPI Demo](https://github.com/roman-right/beanie-fastapi-demo) - Beanie and FastAPI collaboration demonstration. CRUD and Aggregation. - [Indexes Demo](https://github.com/roman-right/beanie-index-demo) - Regular and Geo Indexes usage example wrapped to a microservice. Both should: - Show, how to use current Beanie syntax - Contain unit tests
closed
2021-07-10T20:13:54Z
2023-04-16T02:26:00Z
https://github.com/BeanieODM/beanie/issues/90
[ "good first issue", "Stale" ]
roman-right
3
allenai/allennlp
data-science
5,043
bug
<!-- Please fill this template entirely and do not erase any of it. We reserve the right to close without a response bug reports which are incomplete. If you have a question rather than a bug, please ask on [Stack Overflow](https://stackoverflow.com/questions/tagged/allennlp) rather than posting an issue here. --> ## Checklist <!-- To check an item on the list replace [ ] with [x]. --> - [ ] I have verified that the issue exists against the `master` branch of AllenNLP. - [ ] I have read the relevant section in the [contribution guide](https://github.com/allenai/allennlp/blob/master/CONTRIBUTING.md#bug-fixes-and-new-features) on reporting bugs. - [ ] I have checked the [issues list](https://github.com/allenai/allennlp/issues) for similar or identical bug reports. - [ ] I have checked the [pull requests list](https://github.com/allenai/allennlp/pulls) for existing proposed fixes. - [ ] I have checked the [CHANGELOG](https://github.com/allenai/allennlp/blob/master/CHANGELOG.md) and the [commit log](https://github.com/allenai/allennlp/commits/master) to find out if the bug was already fixed in the master branch. - [ ] I have included in the "Description" section below a traceback from any exceptions related to this bug. - [ ] I have included in the "Related issues or possible duplicates" section beloew all related issues and possible duplicate issues (If there are none, check this box anyway). - [ ] I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug. - [ ] I have included in the "Environment" section below the output of `pip freeze`. - [ ] I have included in the "Steps to reproduce" section below a minimally reproducible example. ## Description <!-- Please provide a clear and concise description of what the bug is here. --> <details> <summary><b>Python traceback:</b></summary> <p> <!-- Paste the traceback from any exception (if there was one) in between the next two lines below --> ``` ``` </p> </details> ## Related issues or possible duplicates - None ## Environment <!-- Provide the name of operating system below (e.g. OS X, Linux) --> OS: <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: <details> <summary><b>Output of <code>pip freeze</code>:</b></summary> <p> <!-- Paste the output of `pip freeze` in between the next two lines below --> ``` ``` </p> </details> ## Steps to reproduce <details> <summary><b>Example source:</b></summary> <p> <!-- Add a fully runnable example in between the next two lines below that will reproduce the bug --> ``` ``` </p> </details>
closed
2021-03-07T20:55:37Z
2021-03-08T19:06:41Z
https://github.com/allenai/allennlp/issues/5043
[ "bug" ]
apsiriwat
0
ghtmtt/DataPlotly
plotly
244
Overlay two graphics on atlas
**Describe the bug** I am trying to overlay two graphics in the atlas. I think that should be done from element properties by adding two graphics (screenshot 1). I have an atlas with 100 points. I am interested in representing in the same graphic the 100 points and in another color (superimposing) the point to which the atlas refers. As you can see in the screenshot 2 I have represented 2 times the two points but in the screenshot 3 you can see all the points. I have activated "use only features inside atlas feature" in onli one but it seems that activating this box affects both graphics and not each one independently. It is a bug or I am wrong about something? Thanks ![C1](https://user-images.githubusercontent.com/25932761/102689381-dcb03980-41fd-11eb-962d-b1e245855164.jpg) ---------------------------------------------------------------------- ![C2](https://user-images.githubusercontent.com/25932761/102689383-dfab2a00-41fd-11eb-944e-0101b670ebb4.jpg) ---------------------------------------------------------------------------------------------------------- ![C3](https://user-images.githubusercontent.com/25932761/102689384-e3d74780-41fd-11eb-96a4-c111c59a44b6.jpg)
closed
2020-12-19T12:30:27Z
2021-03-18T07:24:32Z
https://github.com/ghtmtt/DataPlotly/issues/244
[ "bug" ]
cesarcorreo
12
KaiyangZhou/deep-person-reid
computer-vision
25
How to set the parameters of xent+htri that use the densenet-121
Thanks for provide the elegant code; When I train the densenet 121 with xent+htri loss, I set 80 epoch ; I train it for three times ,but got not good result: batch size = 32,epoch = 80 :rank1 = 60.6% batch size = 16,epoch = 80 :rank1 = 61.2% batch size = 48,epoch = 60 :rank1 = 58.4% I don't know why the result is not good like yours,can you teach me how to set the parameter when you train the densenet121; Thanks
closed
2018-06-13T09:56:53Z
2018-06-21T22:27:33Z
https://github.com/KaiyangZhou/deep-person-reid/issues/25
[]
jianwu585218
4
ycd/manage-fastapi
fastapi
147
Is this repo still maintained?
Hey @ycd , @Kludex 👋🏻 I was curious about what your plans are with this repo. It looks like the maintenance stopped a year ago and there are [some important issues ](https://github.com/ycd/manage-fastapi/issues/146)that makes the tool practically unusable, and multiple PRs waiting open for a while. If you don't plan to sunset the tool, I'd like to help with its cleaning and updates. I can start with triaging/reviewing open PRs, and then continue with updating supported Python versions.
open
2024-10-24T14:28:19Z
2024-10-24T14:28:19Z
https://github.com/ycd/manage-fastapi/issues/147
[]
ulgens
0
jschneier/django-storages
django
963
mistake
sorry, mistake to open. Please delete...
closed
2020-12-11T08:28:05Z
2020-12-11T08:52:29Z
https://github.com/jschneier/django-storages/issues/963
[]
sakimyto
0
python-gino/gino
asyncio
636
Query Filters, Pagination and Sorting
* GINO version: 0.8.6 * Python version: 3.7.0 * asyncpg version: 0.20.1 * aiocontextvars version: 0.2.2 * PostgreSQL version: 11 ### Description I'm trying to find solution in **Gino** for **filtering**, **pagination**, and **sorting**. Like this one which is for **SQL Alchemy**: [sqlalchemy-filters](https://pypi.org/project/sqlalchemy-filters/) I know that **GINO** isn't working with the **sqlalchemy.orm** part. But I wanna ask if there is some way to adapt it to work with **GINO** or is there any similar solution for it?
closed
2020-03-10T15:15:23Z
2020-09-07T21:08:06Z
https://github.com/python-gino/gino/issues/636
[ "question" ]
Psykepro
8
predict-idlab/plotly-resampler
plotly
274
Python 3.12 support
closed
2023-11-22T18:29:44Z
2024-02-05T15:30:35Z
https://github.com/predict-idlab/plotly-resampler/issues/274
[ "enhancement", "installation" ]
jvdd
4
huggingface/transformers
tensorflow
36,561
Improving expected test results
Several tests use the concept of "expected" results. Sometimes the expected results are dependant on the environment. We've used `torch.cuda.get_device_capability()` to differentiate between different cuda environments, and this has worked fairly well so far. I recently started adding expected results for AMD devices ([ref](https://github.com/huggingface/transformers/pull/36535/files)) and realized we will be running into conflicts fairly soon and so we need a better approach. My idea is to add a couple of utility concepts that can make expected results more generic. The current solution is basically this: ```python result = "2" major, minor = torch.cuda.get_device_capability() EXPECTED_RESULTS= { 8: "1", 9: "2", } assert result == EXPECTED_RESULTS[major] ``` I want to end up with functionality that looks like this: ```python result = "2" expectations = Expectations( Expectation.default("1"), Expectation(Properties("cuda", 8, 1), "2"), Expectation(Properties("cuda", 7, 0), "3"), Expectation(Properties("rocm"), "4"), ) expected = expectations.find_expected() assert result == expected.result ``` This is a best effort approach. If we are on cuda 7.5 we get "3", but if we are on rocm 7.0 we should get "4". The `default` case should apply if the best result has a score of 0. In other words if we are on xpu we get "1".
open
2025-03-05T13:34:16Z
2025-03-05T13:34:16Z
https://github.com/huggingface/transformers/issues/36561
[]
ivarflakstad
0
junyanz/pytorch-CycleGAN-and-pix2pix
pytorch
764
Training Time
Hi, I have been training pix2pix with unet256 as generator. My training data is 10000 images of 256*256 resolution. Each epoch is taking around 25000 seconds (7.25 hrs) I am running experiments on two 1080 Ti cards with batch size 32 May I know if it is usually the case? Thanks for any help,
closed
2019-09-11T05:36:50Z
2024-05-25T12:17:03Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/764
[]
jsaisagar
3
miguelgrinberg/flasky
flask
82
Errata: if current_user.is_authenticated()
`Tag: 12a` In the book the `if current_user.is_authenticated()` field in template `user.html` contains parentheses. The correct thing without the parenthesis. Cause the error: ![image](https://cloud.githubusercontent.com/assets/10760131/10494354/536a9d50-728c-11e5-8ab4-edef00a849f8.png) The code on GitHub is correct :+1: Ps: My English is very poor! Sorry!
closed
2015-10-14T18:59:21Z
2017-03-17T18:54:27Z
https://github.com/miguelgrinberg/flasky/issues/82
[]
ghost
4
deepinsight/insightface
pytorch
2,073
[Inference using model trained on mnet25 backbone] Operands cannot be broadcasted together
insightface->detection->retinaface->retinaface.py (line 464) bbox_pred (line 761) Dimension issue ![MicrosoftTeams-image (1)](https://user-images.githubusercontent.com/26607565/183900375-57e15cb1-54e1-4a20-8fc3-7fb93d66be44.png)
open
2022-08-10T12:24:50Z
2022-08-10T12:24:50Z
https://github.com/deepinsight/insightface/issues/2073
[]
iqraJilani
0
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,378
[Feature Request]: Please add support for the FLUX model, thank you!
### Is there an existing issue for this? - [X] I have searched the existing issues and checked the recent builds/commits ### What would your feature do ? The FLUX model's hand processing and prompt accuracy are incredibly powerful, and it's been super popular recently! ### Proposed workflow 1. thank you! 2. thank you! 3. thank you! ### Additional information _No response_
open
2024-08-13T08:33:37Z
2024-12-06T01:08:19Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16378
[ "enhancement" ]
divineblessing
14
syrupy-project/syrupy
pytest
333
Incorrect unused snapshot detection for targeting single case in parameterized test
**To Reproduce** - Create a parameterized test case, for example test_dict in tests/test_extension_amber.py. - Run pytest targeting one case: `pytest tests/test_extension_amber.py::test_dict[actual4]` Syrupy says 1 snapshot passed, and the rest are unused. **Expected behavior** One snapshot should pass. Nothing should be mentioned about the non-targeted test cases. --- Syrupy==0.6.1
closed
2020-08-24T20:52:29Z
2020-10-30T02:58:21Z
https://github.com/syrupy-project/syrupy/issues/333
[ "bug", "released" ]
noahnu
1
ufoym/deepo
jupyter
133
theano gpu not working
Hi, I've followed instructions of how to run theano gpu using the deepo; unfortuantely i'm not able to run the theano code with gpu. it uses the cpu instead steps that I took `docker run --gpus all -it ufoym/deepo:theano bash` and I'm running the following test code (from theano documentations) ``` # Code to test if theano is using GPU or CPU # Reference: https://stackoverflow.com/questions/34328467/how-can-i-use-my-gpu-on-ipython-notebook import os os.environ["MKL_THREADING_LAYER"] = "GNU" from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print(f.maker.fgraph.toposort()) t0 = time.time() # if you're using Python3, rename `xrange` to `range` in the following line for i in range(iters): r = f() t1 = time.time() print("Looping %d times took %f seconds" % (iters, t1 - t0)) print("Result is %s" % (r,)) if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print('Used the cpu') else: print('Used the gpu') ``` I'm getting the following output which says it have used cpu instead of gpu: ``` /usr/local/lib/python3.6/dist-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <= v7. warnings.warn("Your cuDNN version is more recent than " Using cuDNN version 7605 on context None Mapped name None to device cuda0: TITAN RTX (0000:65:00.0) [GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float32, vector)>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)] Looping 1000 times took 0.180456 seconds Result is [1.2317803 1.6187935 1.5227807 ... 2.2077181 2.2996776 1.623233 ] Used the cpu ``` here is my nvidia-smi inside my docker ``` Tue May 5 19:41:17 2020 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 440.82 Driver Version: 440.82 CUDA Version: 10.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 TITAN X (Pascal) Off | 00000000:17:00.0 Off | N/A | | 23% 28C P8 8W / 250W | 2MiB / 12196MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 1 TITAN RTX Off | 00000000:65:00.0 On | N/A | | 41% 33C P8 1W / 280W | 611MiB / 24217MiB | 4% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| +-----------------------------------------------------------------------------+ ``` any help is appreciated
closed
2020-05-05T19:42:47Z
2021-12-27T14:58:36Z
https://github.com/ufoym/deepo/issues/133
[]
sedghi
1
pyg-team/pytorch_geometric
pytorch
9,530
None edge_attr assertion in GeneralConv
### 🐛 Describe the bug The `GeneralConv` layer is raising an assertion when only a node array (`x`) and adjacency (`edge_index`) are provided. I expect the layer to return a result when I don't provide `edge_attr` (default is None). Context: I'm writing unit tests for a model that is composed of many layers. I've worked back to a core torch_geometric layer that is raising an assert. I get the assertion when providing a basic data input. For example, ```python from torch_geometric.datasets import FakeDataset from torch_geometric.nn import GeneralConv gnn = GeneralConv(in_channels=100, out_channels=100) dataset = FakeDataset( num_graphs=32 * 4, # 4 batches of 32 avg_num_nodes=20, num_channels=100, num_classes=2, edge_dim=1, is_undirected=False, ) gnn(dataset[0].x, dataset[0].edge_index) ``` The forward pass to `gnn` is raising an AssertionError via `assert edge_attr is not None`. I'm having trouble locating the file asserting the error. Is this a legit bug or user error? Any help would be much appreciated! Thanks! Here's the traceback from the above test. ```bash _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /home/dev/.venvs/project/lib/python3.11/site-packages/torch/nn/modules/module.py:1532: in _wrapped_call_impl return self._call_impl(*args, **kwargs) /home/dev/.venvs/project/lib/python3.11/site-packages/torch/nn/modules/module.py:1541: in _call_impl return forward_call(*args, **kwargs) /home/dev/.venvs/project/lib/python3.11/site-packages/torch_geometric/nn/conv/general_conv.py:155: in forward out = self.propagate(edge_index, x=x, size=size, edge_attr=edge_attr) /tmp/torch_geometric.nn.conv.general_conv_GeneralConv_propagate_7jgj7uxt.py:163: in propagate kwargs = self.collect( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = GeneralConv(100, 100) edge_index = tensor([[ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, ... 5, 6, 10, 16, 0, 3, 5, 9, 11, 14, 16, 5, 7, 8, 10, 13, 15, 1, 4, 6, 10, 0, 7, 10, 14, 16, 17]]) x = (tensor([[-1.5406, 1.4097, 1.5205, ..., -0.8308, 1.1799, 4.4395], [-0.4764, 1.4493, 1.8234, ..., 1.57...259, 2.4132, ..., 1.5033, 1.0380, 1.5486], [ 1.4862, 1.8833, 2.0412, ..., 0.6160, -0.9966, 1.6773]])) edge_attr = None, size = [None, None] def collect( self, edge_index: Union[Tensor, SparseTensor], x: OptPairTensor, edge_attr: OptTensor, size: List[Optional[int]], ) -> CollectArgs: i, j = (1, 0) if self.flow == 'source_to_target' else (0, 1) # Collect special arguments: if isinstance(edge_index, Tensor): if is_torch_sparse_tensor(edge_index): adj_t = edge_index if adj_t.layout == torch.sparse_coo: edge_index_i = adj_t.indices()[0] edge_index_j = adj_t.indices()[1] ptr = None elif adj_t.layout == torch.sparse_csr: ptr = adj_t.crow_indices() edge_index_j = adj_t.col_indices() edge_index_i = ptr2index(ptr, output_size=edge_index_j.numel()) else: raise ValueError(f"Received invalid layout '{adj_t.layout}'") if edge_attr is None: _value = adj_t.values() edge_attr = None if _value.dim() == 1 else _value else: edge_index_i = edge_index[i] edge_index_j = edge_index[j] ptr = None elif isinstance(edge_index, SparseTensor): adj_t = edge_index edge_index_i, edge_index_j, _value = adj_t.coo() ptr, _, _ = adj_t.csr() if edge_attr is None: edge_attr = None if _value is None or _value.dim() == 1 else _value else: raise NotImplementedError > assert edge_attr is not None E AssertionError /tmp/torch_geometric.nn.conv.general_conv_GeneralConv_propagate_7jgj7uxt.py:78: AssertionError ``` ### Versions Collecting environment information... PyTorch version: 2.3.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (aarch64) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.11.9 (main, Apr 6 2024, 17:59:24) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.6.32-linuxkit-aarch64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: aarch64 CPU op-mode(s): 64-bit Byte Order: Little Endian CPU(s): 14 On-line CPU(s) list: 0-13 Vendor ID: Apple Model: 0 Thread(s) per core: 1 Core(s) per cluster: 14 Socket(s): - Cluster(s): 1 Stepping: 0x0 BogoMIPS: 48.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 asimddp sha512 asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg dcpodp flagm2 frint Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.3.1 [pip3] torch_geometric==2.5.3 [pip3] torchmetrics==1.4.0.post0 [conda] Could not collect
open
2024-07-22T15:53:49Z
2024-08-19T14:56:46Z
https://github.com/pyg-team/pytorch_geometric/issues/9530
[ "bug" ]
bgeier
2
frappe/frappe
rest-api
31,183
Add a Bidirectional Link FieldType for automatic Two-Way Relationships Between DocTypes
**Is your feature request related to a problem? Please describe.** Right now, there’s no easy way to create a two-way link between DocTypes in Frappe. For example, let’s say I have a `Job` DocType and a `Task` DocType: - In the `Job` form, I have a `child_tasks` field where I can select multiple tasks. - In the `Task` form, there’s a `parent_job` field linking back to its job. The problem is, if I update the `child_tasks` field in a `Job`, the `parent_job` field in each `Task` doesn’t update automatically. And if I update the `parent_job` field in a `Task`, the `child_tasks` field in the related `Job` doesn’t change either. This means I have to manually keep them in sync, which is a pain. **Describe the solution you'd like** I’d love to have a new FieldType called **Bidirectional Link**. This would make sure that when I link two DocTypes, the relationship stays updated on both sides—automatically! Using the `Job` and `Task` example: - If I add or remove tasks in a `Job`, the `parent_job` field in each `Task` should update automatically. - If I change the `parent_job` field in a `Task`, the `child_tasks` field in the corresponding `Job` should update too. Notion has something similar with **two-way relations**. When you link databases, Notion automatically mirrors the relationship in both places, making sure everything stays in sync. ![Image](https://github.com/user-attachments/assets/fe2449c6-0142-40ce-b5d3-ddaafc1dc6f1) **Describe alternatives you've considered** The only way to do this right now is by writing custom scripts that manually update linked fields whenever something changes. But that’s extra work, can get messy, and is easy to break as things grow. **Additional context** Having a **Bidirectional Link** field in Frappe would make life so much easier! It would keep related DocTypes in sync automatically, without needing extra scripts. This would be super useful for any app where different records need to stay connected, and it would save developers a lot of time.
open
2025-02-07T13:52:50Z
2025-02-13T07:12:02Z
https://github.com/frappe/frappe/issues/31183
[ "feature-request" ]
Waishnav
1
jonaswinkler/paperless-ng
django
381
Mail consumer - "It is not a file"
Couldn't seem to see this on another bug. Just set up the imap consumer to pull from a folder. Action to move it to another one. Processing attachments only, and using the attachment filename as the document title. The following appears in the logs for all the files. These files consume fine when uploading the pdf to the UI. ``` webserver_1 | ERROR 2021-01-18 16:45:13,629 loggers Cannot consume /tmp/paperless/paperless-mail-e6fpeh_h: It is not a file. webserver_1 | 16:45:13 [Q] INFO Process-1:1 processing [19 11 TV TERMS OF BUSINESS inc PRIVACY NOTICE.pdf] webserver_1 | 16:45:13 [Q] INFO Process-1:3 processing [19 04 Distance Selling.pdf] webserver_1 | ERROR 2021-01-18 16:45:13,634 loggers Cannot consume /tmp/paperless/paperless-mail-ii6js02q: It is not a file. webserver_1 | 16:45:13 [Q] ERROR Failed [CCL Knight.pdf] - Cannot consume /tmp/paperless/paperless-mail-e6fpeh_h: It is not a file : Traceback (most recent call last): webserver_1 | File "/usr/local/lib/python3.7/site-packages/django_q/cluster.py", line 436, in worker webserver_1 | res = f(*task["args"], **task["kwargs"]) webserver_1 | File "/usr/src/paperless/src/documents/tasks.py", line 73, in consume_file webserver_1 | override_tag_ids=override_tag_ids) webserver_1 | File "/usr/src/paperless/src/documents/consumer.py", line 138, in try_consume_file webserver_1 | self.pre_check_file_exists() webserver_1 | File "/usr/src/paperless/src/documents/consumer.py", line 48, in pre_check_file_exists webserver_1 | self.path)) webserver_1 | documents.consumer.ConsumerError: Cannot consume /tmp/paperless/paperless-mail-e6fpeh_h: It is not a file webserver_1 | webserver_1 | ERROR 2021-01-18 16:45:13,636 loggers Cannot consume /tmp/paperless/paperless-mail-_qbqazmv: It is not a file. webserver_1 | 16:45:13 [Q] ERROR Failed [19 11 TV TERMS OF BUSINESS inc PRIVACY NOTICE.pdf] - Cannot consume /tmp/paperless/paperless-mail-ii6js02q: It is not a file : Traceback (most recent call last): webserver_1 | File "/usr/local/lib/python3.7/site-packages/django_q/cluster.py", line 436, in worker webserver_1 | res = f(*task["args"], **task["kwargs"]) webserver_1 | File "/usr/src/paperless/src/documents/tasks.py", line 73, in consume_file webserver_1 | override_tag_ids=override_tag_ids) webserver_1 | File "/usr/src/paperless/src/documents/consumer.py", line 138, in try_consume_file webserver_1 | self.pre_check_file_exists() webserver_1 | File "/usr/src/paperless/src/documents/consumer.py", line 48, in pre_check_file_exists webserver_1 | self.path)) webserver_1 | documents.consumer.ConsumerError: Cannot consume /tmp/paperless/paperless-mail-ii6js02q: It is not a file ```
closed
2021-01-18T16:52:00Z
2021-01-22T11:15:16Z
https://github.com/jonaswinkler/paperless-ng/issues/381
[ "bug" ]
rknightion
10
flaskbb/flaskbb
flask
163
Ask for confirmation before deleting things?
I love how it asks "Are you sure?" before letting you unban a banned user but will cheerfully blow away a category and all forums below it with a single click. Would you like me to have a bit of a poke at the admin section and add some "Are you sure?" dialogues?
closed
2015-12-30T03:28:05Z
2018-04-15T07:47:37Z
https://github.com/flaskbb/flaskbb/issues/163
[]
gordonjcp
1
google-research/bert
tensorflow
858
when using c++ to do inference, tensorflow::session->Run error
open
2019-09-18T08:26:54Z
2019-12-01T13:26:01Z
https://github.com/google-research/bert/issues/858
[]
Jiayuforfreeo
0
plotly/plotly.py
plotly
4,507
go.Scatter3d doesn't display a given tensor
# Issue While plotting an np.ndarray of type fp64, it is not displayed. It is so funny that we could reproduce it only for one specific array. Thigs that make the script work: - If we add epsilon (as in the commented line), then the pointcloud is displayed properly. - If we cast to fp32 it works. - If we add a small value (0.000000000001 for example), it works. Things that doesn't work: - If we add or substract big values, like 0.4, 1 or 2, it doesn't work - If we substract epsilon, it doesn't work - if we add numbers larger than 0.000000000001, it doesnt' work even if tehy are small (0.000001 for example) # Environment We tried this (and reproduced in at least 2 computers) with numpy 1.26.3 and plotly 5.18.0 on ubuntu 22 ``` import numpy as np import plotly.graph_objects as go init = np.array( [ [ -0.063, -0.063, 0.0, ], [ -0.063, -0.021, 0.0, ], [ -0.063, 0.021, 0.0, ], [ -0.063, 0.063, 0.0, ], [ -0.021, -0.021, 0.0, ], [ -0.021, -0.063, 0.0, ], [ -0.021, 0.021, 0.0, ], [ -0.021, 0.063, 0.0, ], [ 0.021, -0.063, 0.0, ], [ 0.021, -0.021, 0.0, ], [ 0.021, 0.021, 0.0, ], [ 0.021, 0.063, 0.0, ], [ 0.063, -0.063, 0.0, ], [ 0.063, -0.021, 0.0, ], [ 0.063, 0.021, 0.0, ], [ 0.063, 0.063, 0.0, ], ] ) rot_mat = [ [4.93038066e-32, -1.00000000e00, 2.22044605e-16], [2.22044605e-16, 2.22044605e-16, 1.00000000e00], [-1.00000000e00, 0.00000000e00, 2.22044605e-16], ] transformed = (rot_mat @ init.T).T + np.array([0.5, 0.5, 0.5]) x, y, z = 0, 1, 2 idx = list(transformed.shape).index(3) if idx < 0: raise ValueError("Array must be [X,Y,Z] x N") elif idx == 1: array = transformed.transpose() default_kwargs = dict( mode="markers", marker=dict(size=3, color="black"), ) print(array.dtype) # array[y]+=np.finfo(np.float64).eps print(array.dtype) print(array) plot = go.Scatter3d(x=array[x], y=array[y], z=array[z], **default_kwargs) default_kwargs = dict( scene=dict( xaxis=dict(title="X", range=[0, 2]), yaxis=dict(title="Y", range=[0, 2]), zaxis=dict(title="Z", range=[0, 2]), ), ) layout = go.Layout(**default_kwargs) fig = go.Figure(data=plot, layout=layout) fig.show() ```
open
2024-02-06T16:07:02Z
2024-08-13T13:08:34Z
https://github.com/plotly/plotly.py/issues/4507
[ "bug", "sev-2", "P3" ]
JuanFMontesinos
3
chainer/chainer
numpy
7,797
Release Tasks for v7.0.0b3 / v6.3.0
This is an issue to track-down release-blocker tasks. - [x] #7741 NumPy 1.17 support - [x] Python 2 drop - [x] chainer #7826 - [x] cupy https://github.com/cupy/cupy/pull/2343 - [x] blog https://github.com/chainer/chainer.org/pull/110 Merge after release: - ~Separate parameter combinations between master and stable https://github.com/chainer/chainer-test/issues/490~ will be handled in #8006
closed
2019-07-23T11:14:21Z
2019-10-01T07:21:06Z
https://github.com/chainer/chainer/issues/7797
[ "release-blocker", "prio:high" ]
kmaehashi
0
xinntao/Real-ESRGAN
pytorch
169
Unexpected key(s) in state_dict error
我按照Training.md.教學訓練了RealESRGANmodel 將python inference_realesrgan.py --model_path experiments/pretrained_models/RealESRGAN_x4plus.pth --input inputs --face_enhance 換成訓練的model 得到了這個錯誤
closed
2021-11-29T20:30:04Z
2021-11-29T20:35:08Z
https://github.com/xinntao/Real-ESRGAN/issues/169
[]
610821216
0
mwaskom/seaborn
data-science
3,373
Standard seaborn.objects printouts are inaccessible in some ways on Macs
Alright, this one involves like four different pieces of software to isolate. But I *think* the issue here is in **seaborn** rather than one of those other places. Here's the issue: 1. I have a Jupyter notebook containing two **seaborn.objects** graphs. The first one is printed using **matplotlib** (`fig = plt.figure()`, then `so.Plot().on(fig)`. The second one is printed using `seaborn.objects` directly (without `.on(fig)`). These graphs render properly in Jupyter. 2. I render that notebook to a document (HTML, Word, PDF, Powerpoint, any of them), using Quarto. 3. The first graph renders properly in the resulting document. The second one does not appear. Note: 1. This issue occurs _only on Mac_. I have tested this on two Mac machine and two Windows machines. On both Windows machines, both graphs render properly. On both Macs, only the first renders and the second does not appear. I haven't tested Linux. 2. This does not produce an error or anything, the graph simply does not appear in the resulting document. 3. This issue does not occur with non-`objects` **seaborn** graphs. `sns.lineplot()` works fine. 4. The **matplotlib** mode (`inline` or `notebook`) doesn't seem to matter. 5. Versions: **matplotlib** 3.7.1, **seaborn** 0.12.2 I suspect there is something different in the way that **seaborn.objects** prints things as opposed to how **matplotlib** prints things (specifically on Mac I guess?) that is causing this, which is what makes me thing this is a **seaborn.objects** issue as opposed to, say, a Quarto issue. Here is the code for a Jupyter notebook that exhibits the issue. Note that I am using `p.plot()` here, but the same issue occurs if you don't save the plot as `p` and instead just have `so.Plot()` on a line by itself. (code chunk 1, this renders properly on both Windows and Mac) ```python import pandas as pd import seaborn.objects as so import matplotlib.pyplot as plt dat = pd.DataFrame({'a':[1,2],'b':[3,4]}) fig = plt.figure() p = so.Plot(dat, x = 'a', y = 'b').on(fig).add(so.Dot()) p.plot() ``` (code chunk 2, this does not show up in the resulting document on Mac, but it works fine on Windows) ```python p = so.Plot(dat, x = 'a', y = 'b').add(so.Dot()) p.plot() ```
closed
2023-05-25T22:46:46Z
2023-05-26T16:49:43Z
https://github.com/mwaskom/seaborn/issues/3373
[]
NickCH-K
2
slackapi/bolt-python
fastapi
327
Custom Select Menu-- Payload Too Big
I'm using a custom select menu in socket mode, like this: https://slack.dev/bolt-python/concepts#options and am getting the error: ``` slack_sdk/socket_mode/builtin/internals.py", line 411, in _build_data_frame_for_sending header += struct.pack("!BH", b2, payload_length) struct.error: 'H' format requires 0 <= number <= 65535. ``` I think this is because I'm sending a long list of things in the options format: ```python options = [ { "text": {"type": "plain_text", "text": "Option 1"}, "value": "1-1", }, { "text": {"type": "plain_text", "text": "Option 2"}, "value": "1-2", }, ] ``` Imagine there are many text and value entries here. Is there a way around this payload requirement and if not is there any other way to load my external data into some sort of dropdown format? I basically just want to send in a list of names, but this options format is making the length of the data longer than necessary. Thank you! #### The `slack_bolt` version slack-sdk==3.5.0 slack-bolt==1.5.0 #### Python runtime version python==2.7.16 #### OS info ProductName: Mac OS X ProductVersion: 10.15.7 BuildVersion: 19H524 Darwin Kernel Version 19.6.0 ## Requirements Please read the [Contributing guidelines](https://github.com/slackapi/bolt-python/blob/main/.github/contributing.md) and [Code of Conduct](https://slackhq.github.io/code-of-conduct) before creating this issue or pull request. By submitting, you are agreeing to those rules.
closed
2021-05-07T21:32:17Z
2021-05-10T16:31:40Z
https://github.com/slackapi/bolt-python/issues/327
[ "question" ]
mariebarrramsey
5
explosion/spaCy
nlp
12,566
CLI benchmark accuracy doesn't save rendered displacy htmls
The accuracy benchmark of my model does not save rendered displacy htmls as requested. Benchmark works that's why I'm confused. The model contains only **transformers** and **spancat** components. Does **spancat** is not yet supported? 😞 DocBin does not contain any empty docs CLI output: ```powershell $ python -m spacy benchmark accuracy data/models/pl_spancat_acc/model-best/ data/test.spacy --output results/spacy/metrics.json --gpu-id 0 --displacy-path results/spacy/benchmark_acc_test_displacy ℹ Using GPU: 0 ================================== Results ================================== TOK 100.00 SPAN P 79.31 SPAN R 54.19 SPAN F 64.38 SPEED 3752 ============================== SPANS (per type) ============================== P R F nam_loc_gpe_city 77.29 74.42 75.83 nam_pro_software 82.35 36.84 50.91 nam_org_institution 63.11 50.78 56.28 nam_liv_person 87.34 82.64 84.93 nam_loc_gpe_country 95.24 85.37 90.03 . . . nam_pro 0.00 0.00 0.00 ✔ Generated 25 parses as HTML results/spacy/benchmark_acc_test_displacy ✔ Saved results to results/spacy/benchmark_acc_test_metrics.json ``` Random doc.to_json() from test DocBin: ```python {'ents': [{'end': 54, 'label': 'nam_adj_country', 'start': 44}, {'end': 83, 'label': 'nam_liv_person', 'start': 69}, {'end': 100, 'label': 'nam_pro_title_book', 'start': 86}], 'spans': {'sc': [{'end': 54, 'kb_id': '', 'label': 'nam_adj_country', 'start': 44}, {'end': 83, 'kb_id': '', 'label': 'nam_liv_person', 'start': 69}, {'end': 100, 'kb_id': '', 'label': 'nam_pro_title_book', 'start': 86}]}, 'text': 'Niedawno czytał em nową książkę znakomitego szkockiego medioznawcy , ' 'Briana McNaira - Cultural Chaos .', 'tokens': [{'end': 8, 'id': 0, 'start': 0}, {'end': 15, 'id': 1, 'start': 9}, {'end': 18, 'id': 2, 'start': 16}, {'end': 23, 'id': 3, 'start': 19}, {'end': 31, 'id': 4, 'start': 24}, {'end': 43, 'id': 5, 'start': 32}, {'end': 54, 'id': 6, 'start': 44}, {'end': 66, 'id': 7, 'start': 55}, {'end': 68, 'id': 8, 'start': 67}, {'end': 75, 'id': 9, 'start': 69}, {'end': 83, 'id': 10, 'start': 76}, {'end': 85, 'id': 11, 'start': 84}, {'end': 94, 'id': 12, 'start': 86}, {'end': 100, 'id': 13, 'start': 95}, {'end': 102, 'id': 14, 'start': 101}]} ``` <details><summary><b>Model config</b></summary> <p> ```ini [paths] train = null dev = null vectors = null init_tok2vec = null [system] gpu_allocator = "pytorch" seed = 0 [nlp] lang = "pl" pipeline = ["transformer","spancat"] batch_size = 128 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} [components] [components.spancat] factory = "spancat" max_positive = null scorer = {"@scorers":"spacy.spancat_scorer.v1"} spans_key = "sc" threshold = 0.5 [components.spancat.model] @architectures = "spacy.SpanCategorizer.v1" [components.spancat.model.reducer] @layers = "spacy.mean_max_reducer.v1" hidden_size = 128 [components.spancat.model.scorer] @layers = "spacy.LinearLogistic.v1" nO = null nI = null [components.spancat.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.spancat.suggester] @misc = "spacy.ngram_suggester.v1" sizes = [1,2,3] [components.transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "dkleczek/bert-base-polish-cased-v1" mixed_precision = false [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.transformer.model.grad_scaler_config] [components.transformer.model.tokenizer_config] use_fast = true [components.transformer.model.transformer_config] [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 gold_preproc = false limit = 0 augmenter = null [training] accumulate_gradient = 3 dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_padded.v1" discard_oversize = true size = 2000 buffer = 256 get_length = null [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 [training.optimizer.learn_rate] @schedules = "warmup_linear.v1" warmup_steps = 250 total_steps = 20000 initial_rate = 0.00005 [training.score_weights] spans_sc_f = 1.0 spans_sc_p = 0.0 spans_sc_r = 0.0 [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer] ``` </p> </details>
closed
2023-04-23T21:40:47Z
2023-05-29T00:02:17Z
https://github.com/explosion/spaCy/issues/12566
[ "bug", "feat / cli", "feat / spancat" ]
jamnicki
3
activeloopai/deeplake
computer-vision
2,848
[BUG] I cannot create an empty dataset on custom s3 location due to signed header
### Severity P0 - Critical breaking issue or missing functionality ### Current Behavior Trying to create an empty dataset using the s3 provider with a custom endpoint I fail with following error ` Traceback (most recent call last): File "~/.virtualenvs/exchfmt/lib/python3.10/site-packages/deeplake/core/storage/s3.py", line 275, in get_bytes return self._get_bytes(path, start_byte, end_byte) File "~/.virtualenvs/exchfmt/lib/python3.10/site-packages/deeplake/core/storage/s3.py", line 247, in _get_bytes resp = self.client.get_object(Bucket=self.bucket, Key=path, Range=range) File "~/.virtualenvs/exchfmt/lib/python3.10/site-packages/botocore/client.py", line 553, in _api_call return self._make_api_call(operation_name, kwargs) File "~/.virtualenvs/exchfmt/lib/python3.10/site-packages/botocore/client.py", line 1009, in _make_api_call raise error_class(parsed_response, operation_name) botocore.exceptions.ClientError: An error occurred (AccessDenied) when calling the GetObject operation: V4 authentication signed header not found: range ` ### Steps to Reproduce Following code fails to create an empty dataset ` import deeplake import configparser from pathlib import Path cfgprs = configparser.ConfigParser() cfgprs.read_string(Path("~/.aws/credentials").expanduser().read_text()) ds = deeplake.empty( "s3://koolbucket/deeplake/datasets", public=False, creds=dict( **dict(cfgprs["default"]), endpoint_url="https://koolcustom.s3.server.com", region="eu-north-1", ), ) ` ### Expected/Desired Behavior I expect this to work. I have full access to this s3 instance but apparantly we haven't used s3 signed requests before ### Python Version Python 3.10.12 ### OS Ubuntu 22.04 ### IDE vscode ### Packages _No response_ ### Additional Context _No response_ ### Possible Solution Remove the Range=range keyword in as shown below ` class S3Provider(StorageProvider): ... def _get_bytes(): ... - resp = self.client.get_object(Bucket=self.bucket, Key=path, Range=range) + resp = self.client.get_object(Bucket=self.bucket, Key=path) ... ` ### Are you willing to submit a PR? - [X] I'm willing to submit a PR (Thank you!)
closed
2024-05-08T14:24:41Z
2024-05-10T15:13:03Z
https://github.com/activeloopai/deeplake/issues/2848
[ "bug" ]
hoshimura
5
pydata/xarray
numpy
10,157
Selecting point closest to (lon0, lat0) when lon,lat coordinates are 2D
It's very common to want to extract a time series at a specified coordinate location, and I'm wondering whether xarray could support this directly without using xoak. Currently I'm using xoak, as in this reproducible example: ``` python import xarray as xr import intake import xoak intake_catalog_url = 'https://usgs-coawst.s3.amazonaws.com/useast-archive/coawst_intake.yml' cat = intake.open_catalog(intake_catalog_url) ds = cat['COAWST-USEAST'].to_dask() lat, lon = 42.5, -70.0 # Gulf of Maine, 100km east of Boston, MA da = ds['Hwave'] da.xoak.set_index(['lat_rho', 'lat_rho'], 'scipy_kdtree') ds_point = xr.Dataset({"lon": ("point", [lon]), "lat": ("point", [lat])}) da.xoak.sel(lat_rho=ds_point.lat, lon_rho=ds_point.lon).sel(ocean_time='2012-10-01') ``` which produces: ![Image](https://github.com/user-attachments/assets/9a96d5a3-8dd9-428d-a498-2f79e08149bf) Would it be possible to enable this in xarray or is this too specific a functionality to consider?
open
2025-03-20T15:42:46Z
2025-03-21T10:14:00Z
https://github.com/pydata/xarray/issues/10157
[ "enhancement" ]
rsignell
5
ploomber/ploomber
jupyter
805
add did you mean feature to `ploomber examples`
We should add the "did you mean?" feature when executing `ploomber examples` ```sh ploomber examples -n cookbook/fileclient -o fileclient ``` ```txt There is no example named "cookbook/fileclient", did you mean "cookbook/file-client"? ``` for reference: We already have this built-in in other places https://github.com/ploomber/ploomber/blob/907c5ed798354efbedc5f4cfd397179e75812ec5/src/ploomber_cli/cli.py#L17
closed
2022-05-22T04:44:22Z
2022-07-19T18:08:47Z
https://github.com/ploomber/ploomber/issues/805
[]
edublancas
1
jackmpcollins/magentic
pydantic
38
Proposal: Custom base url/parameters environment variables for AI gateways
Would be neat to support environment variables for base url and necessary key/value parameters to support AI gateways, like Cloudflare's offering! > ### AI Gateway > [Cloudflare AI Gateway Documentation](https://developers.cloudflare.com/ai-gateway/) > Cloudflare’s AI Gateway allows you to gain visibility and control over your AI apps. By connecting your apps to AI Gateway, you can gather insights on how people are using your application with analytics and logging and then control how your application scales with features such as caching, rate limiting, as well as request retries, model fallback, and more. Better yet - it only takes one line of code to get started.
closed
2023-10-04T14:46:05Z
2024-03-04T01:03:12Z
https://github.com/jackmpcollins/magentic/issues/38
[]
peteallport
3
hankcs/HanLP
nlp
1,236
执行from pyhanlp import * 报错”A fatal error has been detected by the Java Runtime Environment:“
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是:hanlp-1.7.4 我使用的版本是:hanlp-1.7.4 <!--以上属于必填项,以下可自由发挥--> 执行 :from pyhanlp import * “ 导入pyhanlp时报错 ## 我的问题 Python 3.6.3 |Anaconda, Inc.| (default, Oct 6 2017, 12:04:38) [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> from pyhanlp import * <!-- 请详细描述问题,越详细越可能得到解决 --> ## 复现问题 <!-- 你是如何操作导致产生问题的?比如修改了代码?修改了词典或模型?--> ### 步骤 1. 首先 在mac的终端Terminater输入”python3“ 2. 然后执行”from pyhanlp import *“ ### 触发代码 ``` from phhanlp import * ``` ### 期望输出 ``` 程序正常执行,无错误提示 ``` ### 实际输出 # # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0x00000001124355c0, pid=20972, tid=775 # # JRE version: Java(TM) SE Runtime Environment (7.0_79-b15) (build 1.7.0_79-b15) # Java VM: Java HotSpot(TM) 64-Bit Server VM (24.79-b02 mixed mode bsd-amd64 compressed oops) # Problematic frame: # V [libjvm.dylib+0x30f5c0] jni_invoke_nonstatic(JNIEnv_*, JavaValue*, _jobject*, JNICallType, _jmethodID*, JNI_ArgumentPusher*, Thread*)+0x1b # # Failed to write core dump. Core dumps have been disabled. To enable core dumping, try "ulimit -c unlimited" before starting Java again # # An error report file with more information is saved as: # /Users/www/hs_err_pid20972.log ``` 实际输出 ``` ## 其他信息 <!-- 任何可能有用的信息,包括截图、日志、配置文件、相关issue等等。--> ![image](https://user-images.githubusercontent.com/12984460/60889481-ab52e080-a28b-11e9-91db-42422d65c4aa.png)
closed
2019-07-09T12:47:07Z
2020-01-01T10:49:17Z
https://github.com/hankcs/HanLP/issues/1236
[ "ignored" ]
ferrior30
3
AntonOsika/gpt-engineer
python
462
Statistics: collection of learnings did not work as intended
this line is expecting 1 arguments, might need to specify the `open_ssl` version https://github.com/AntonOsika/gpt-engineer/blob/main/gpt_engineer/collect.py#L39 ## Expected Behavior Collection of data should have been submitted ## Current Behavior What is the current behavior? To help gpt-engineer learn, please answer 3 questions: ```python Did the generated code run at all? y/n/u(ncertain): y Did the generated code do everything you wanted? y/n/u(ncertain): y Thank you Traceback (most recent call last): File "/opt/homebrew/Caskroom/miniconda/base/bin/gpt-engineer", line 8, in <module> sys.exit(app()) File "/Users/eleijonmarck/dev/gpt-engineer/gpt_engineer/main.py", line 67, in main collect_learnings(model, temperature, steps, dbs) File "/Users/eleijonmarck/dev/gpt-engineer/gpt_engineer/collect.py", line 31, in collect_learnings model, temperature, steps, dbs, steps_file_hash=steps_file_hash() File "/Users/eleijonmarck/dev/gpt-engineer/gpt_engineer/collect.py", line 39, in steps_file_hash return hashlib.sha256(content.encode("utf-8"), usedforsecurity=False).hexdigest() TypeError: openssl_sha256() takes at most 1 argument (2 given) ``` ### Steps to Reproduce Please provide detailed steps for reproducing the issue. 1. generate project 2. run code 3. CTRL+C (end the program running) 4. answer questions pyproject.toml ```toml [build-system] requires = ["setuptools", "wheel"] [project] name = "gpt-engineer" version = "0.0.7" description = "Specify what you want it to build, the AI asks for clarification, and then builds it." readme = "README.md" requires-python = ">=3.8" dependencies = [ 'black == 23.3.0', 'click >= 8.0.0', 'mypy == 1.3.0', 'openai == 0.27.8', 'pre-commit == 3.3.3', 'pytest == 7.3.1', 'ruff == 0.0.272', 'termcolor==2.3.0', 'typer >= 0.3.2', 'rudder-sdk-python == 2.0.2', 'dataclasses-json == 0.5.7', ] classifiers = [ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "License :: OSI Approved :: MIT License", "Topic :: Scientific/Engineering :: Artificial Intelligence", ] [project.scripts] gpt-engineer = 'gpt_engineer.main:app' [tool.setuptools] packages = ["gpt_engineer"] [tool.ruff] select = ["F", "E", "W", "I001"] line-length = 90 show-fixes = false target-version = "py311" task-tags = ["TODO", "FIXME"] exclude = [ ".bzr", ".direnv", ".eggs", ".git", ".ruff_cache", ".svn", ".tox", ".venv", "__pypackages__", "_build", "buck-out", "build", "dist", "node_modules", "venv", ] [project.urls] "Homepage" = "https://github.com/AntonOsika/gpt-engineer" "Bug Tracker" = "https://github.com/AntonOsika/gpt-engineer/issues" [tool.ruff.isort] known-first-party = [] known-third-party = [] section-order = [ "future", "standard-library", "third-party", "first-party", "local-folder", ] combine-as-imports = true split-on-trailing-comma = false lines-between-types = 1 [tool.black] line-length = 90 target-version = ["py311"] include = '\.pyi?$' exclude = ''' ( /( \.direnv | \.eggs | \.git | \.tox | \.venv | _build | build | dist | venv )/ ) ''' ```
closed
2023-07-01T15:39:58Z
2023-07-02T15:37:37Z
https://github.com/AntonOsika/gpt-engineer/issues/462
[]
eleijonmarck
2
huggingface/datasets
deep-learning
6,851
load_dataset('emotion') UnicodeDecodeError
### Describe the bug **emotions = load_dataset('emotion')** _UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte_ ### Steps to reproduce the bug load_dataset('emotion') ### Expected behavior succese ### Environment info py3.10 transformers 4.41.0.dev0 datasets 2.19.0
open
2024-04-30T09:25:01Z
2024-09-05T03:11:04Z
https://github.com/huggingface/datasets/issues/6851
[]
L-Block-C
2
ExpDev07/coronavirus-tracker-api
rest-api
488
Coronavirus data missing for Finland
Having downloaded the data from the beginning of the pandemic, I have notices in the last 10 days or so than Finland data are zero. No data from the 15th January to present day. (15-16 January would normally be zero as it is a weekend) just thought I would point it out. KEEP UP THE GOOD WORK AND THANKS.
closed
2022-01-26T09:58:39Z
2023-09-10T11:24:33Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/488
[]
PRRH
1
Farama-Foundation/PettingZoo
api
1,262
[Proposal] Flexibility with _was_dead_step
### Proposal Hello, I propose to modify how AECEnv (and possibly ParrallelEnv, but I have not worked with it so I'm not sure how its handled there) handles dropping out of agents. I've been working with the current method (_was_dead_step) for the past couple of weeks and perhaps I think I understand its purpose and the strategy behind its design. My suggestion is to change how the environment handles dropping of dead agents such that the "already dead" agent no longer needs to pass a None action to the step function. Not only is this not intuitive, but it adds unnecessary complexity to the training loop. For example, AgileRL memory buffers (and likely others) do not support None values (pytorch backend I think?), so my training loop currently has to handle the None actions. I've currently implemented a simple way to do this. 1. Ive changed _was_dead_step to no longer require an action, and instead require an agent_id parameter ` def _was_dead_step(self, agent) -> None: ` 2. I create a wrapper function for checking if _was_dead_step needs to be executed ` def remove_dead_agents(self, agent): if (self.terminations[agent] or self.truncations[agent]): # for when you died not on your turn # print(f'Current agent is dead, {self.agent_selection}, skipping action') self._was_dead_step(agent) # Handle the case where the agent dies mid round or something. I'm pretty sure I need to set the next action type to be a base action self.infos[agent] = {"next_action_type":self.game.turn.next_action_type} ` 3. I call remove_dead_agents on all of my agent ids at THE END of my step function ` [self.remove_dead_agents(agent) for agent in self.agents] ` I have not tested this thoroughly across the code-base, and maybe there are implications for this that I'm not aware of. But it seems to be working so far. ### Motivation Currently, _was_dead_step() is suggested to be called at the top of the .step() function. What this means is that at the begging of the step function, if the agent is dead (terminated = True), then the "action" must default to a "None" action. I think the handling of dead agents could be more intuitively handled with decreased complexity. My approach was motivated by the fact that I have an environment which terminates when there is only 1 agent left. This was making it very difficult to setup my proper termination flags and setup how everything interacts with the agent because I was determining if the game was over at the END of the step function (which I think is intuitive). However, the actual deletion of the agent occurs at the beginning of the NEXT step function. This got me thinking and I think it is more intuitive in general to **check at the end of a step function if the game is over or not**, at least for turn-based board games like what I'm working with. Additionally I was running into problems using AgileRL because the None values were being added to my memory buffer. This is not allowed within the pytorch framework as far as I understand, leading to errors. To handle this I added code to handle the None actions by turning them into non-None values, but this adds unnecessary complexity that I think could just be handled by an alternative strategy. ### Pitch Change the way that AECEnv handles the dropping out of dead agents by checking the game state at the end of each step (from the beginning of the next step) ### Alternatives I could be missing something here because I think the documentation for understanding how _was_dead_step handles dead agents, and also how it is truly intended to be used is lacking ### Additional context _No response_ ### Checklist - [x] I have checked that there is no similar [issue](https://github.com/Farama-Foundation/PettingZoo/issues) in the repo
open
2025-02-10T23:36:08Z
2025-02-10T23:36:08Z
https://github.com/Farama-Foundation/PettingZoo/issues/1262
[ "enhancement" ]
AlexAdrian-Hamazaki
0
tensorflow/datasets
numpy
5,448
etils.epy.lazy_imports not found
When running the import of version 4.9.5, it complains that etils.epy.lazy_imports() is not found. My version of etils is 1.7.0. (etils==1.9.0 would require Python 3.11 and I still have Python 3.10.) Importing version 4.9.4 works fine --- I notice it is also the current default in Colab.
closed
2024-06-04T00:51:52Z
2024-06-04T16:15:50Z
https://github.com/tensorflow/datasets/issues/5448
[ "bug" ]
hhoppe
5
DistrictDataLabs/yellowbrick
matplotlib
1,065
issue in installation in ubuntu
**try: import deepmatcher except: !pip install -qqq deepmatcher While running the above code in python 3.6 i am getting the error mention below File "/home/vikrant/anaconda2/lib/python2.7/site-packages/deepmatcher/data/field.py", line 163 def build_vocab(self, *args, **vectors=None**, cache=None, **kwargs): ^ SyntaxError: invalid syntax Showing error at vectors **<!-- If you have a question, note that you can email us via our listserve: https://groups.google.com/forum/#!forum/yellowbrick --> <!-- This line alerts the Yellowbrick maintainers, feel free to use this @ address to alert us directly in follow up comments --> @DistrictDataLabs/team-oz-maintainers
closed
2020-05-13T15:25:16Z
2020-05-13T15:49:27Z
https://github.com/DistrictDataLabs/yellowbrick/issues/1065
[ "invalid" ]
parulmishra19
1
mitmproxy/pdoc
api
127
After installing pdoc with pip it not recognised as an executable on Windows
Tried navigating to \Scripts, same result.
closed
2017-04-14T07:26:29Z
2021-02-26T00:02:35Z
https://github.com/mitmproxy/pdoc/issues/127
[]
epogrebnyak
16
ranaroussi/yfinance
pandas
1,425
_get_decryption_keys_from_yahoo_js(soup) got yfinance failed to decrypt Yahoo data response error
# IMPORTANT Confirm by running: tf version : 0.2.12 python version : 3.9.7 using ticker: "AAPL" Thank you update quickely 0.2.11 -> 0.2.12 but i found error " " in scraper.py tk = TickerData("AAPL") tk._get_decryption_keys_from_yahoo_js(soup) ```python from yfinance.data import decrypt_cryptojs_aes_stores, TickerData headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36' } url = 'https://finance.yahoo.com/calendar/earnings' response = requests.get(url, headers=headers) page_content = response.content.decode(encoding='utf-8',errors='strict') soup = BeautifulSoup(response.content, "html.parser") td = TickerData("AAPL") keys = td._get_decryption_keys_from_yahoo_js(soup) page_data_string = [row for row in page_content.split( '\n') if row.startswith('root.App.main = ')][0][:-1] page_data_string = page_data_string.split('root.App.main = ', 1)[1] decrypt_cryptojs_aes_stores(json.loads(page_data_string),keys) # yfinance failed to decrypt Yahoo data response print(keys) # [] ``` im using yfinance with https://github.com/wenboyu2/yahoo-earnings-calendar/pull/35 Thank you share good repo
closed
2023-02-17T01:47:32Z
2023-02-18T11:38:58Z
https://github.com/ranaroussi/yfinance/issues/1425
[]
seohyunjun
2
pyg-team/pytorch_geometric
pytorch
9,520
Take too long to install PyG on Colab
### 😵 Describe the installation problem I used to install the required packages on Colab to run PyG using the following codes within 2 minutes. ``` import torch def format_pytorch_version(version): return version.split('+')[0] TORCH_version = torch.__version__ TORCH = format_pytorch_version(TORCH_version) def format_cuda_version(version): return 'cu' + version.replace('.', '') CUDA_version = torch.version.cuda CUDA = format_cuda_version(CUDA_version) !pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html !pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html !pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html !pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html !pip install torch-geometric ``` However, when I tried to run the same code on Colab today, it took 15 minutes to install torch-scatter, and after 30 minutes, I am still waiting for the second installation of torch-sparse to finish (it's taking a very long time at _Building wheels for collected packages: torch-sparse_). Is this due to recent updates to the packages? How can I install the required packages more quickly? Thank you very much! ### Environment * PyG version: * PyTorch version: 2.3.1 * OS: * Python version: Python 3.10.12 * CUDA/cuDNN version: 12.1 * How you installed PyTorch and PyG (`conda`, `pip`, source): * Any other relevant information (*e.g.*, version of `torch-scatter`):
open
2024-07-19T03:41:35Z
2024-09-19T15:48:02Z
https://github.com/pyg-team/pytorch_geometric/issues/9520
[ "installation" ]
xubingze
4
InstaPy/InstaPy
automation
6,657
Login XPaths are broken
## Expected Behavior Can login and execute program ## Current Behavior Cannot login and program fails. Console logs: ``` InstaPy Version: 0.6.16 ._. ._. ._. ._. ._. ._. ._. ._. ._. Workspace in use: "C:/Users/admin/InstaPy" OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO INFO [2022-11-30 11:36:02] [tardeo.bar] Session started! oooooooooooooooooooooooooooooooooooooooooooooooooooooo INFO [2022-11-30 11:36:06] [tardeo.bar] - Cookie file not found, creating cookie... WARNING [2022-11-30 11:36:16] [tardeo.bar] Login A/B test detected! Trying another string... WARNING [2022-11-30 11:36:21] [tardeo.bar] Could not pass the login A/B test. Trying last string... ERROR [2022-11-30 11:36:26] [tardeo.bar] Login A/B test failed! b"Message: Unable to locate element: //div[text()='Log In']\nStacktrace:\nRemoteError@chrome://remote/content/shared/RemoteError.sys.mjs:8:8\nWebDriverError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:182:5\nNoSuchElementError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:394:5\nelement.find/</<@chrome://remote/content/marionette/element.sys.mjs:280:16\n" Traceback (most recent call last): File "C:\Python310\lib\site-packages\instapy-0.6.16-py3.10.egg\instapy\login_util.py", line 337, in login_user login_elem = browser.find_element( File "C:\Python310\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 861, in find_element return self.execute(Command.FIND_ELEMENT, {"using": by, "value": value})["value"] File "C:\Python310\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 444, in execute self.error_handler.check_response(response) File "C:\Python310\lib\site-packages\selenium\webdriver\remote\errorhandler.py", line 249, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.NoSuchElementException: Message: Unable to locate element: //button[text()='Log In'] Stacktrace: RemoteError@chrome://remote/content/shared/RemoteError.sys.mjs:8:8 WebDriverError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:182:5 NoSuchElementError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:394:5 element.find/</<@chrome://remote/content/marionette/element.sys.mjs:280:16 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Python310\lib\site-packages\instapy-0.6.16-py3.10.egg\instapy\login_util.py", line 343, in login_user login_elem = browser.find_element( File "C:\Python310\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 861, in find_element return self.execute(Command.FIND_ELEMENT, {"using": by, "value": value})["value"] File "C:\Python310\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 444, in execute self.error_handler.check_response(response) File "C:\Python310\lib\site-packages\selenium\webdriver\remote\errorhandler.py", line 249, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.NoSuchElementException: Message: Unable to locate element: //a[text()='Log in'] Stacktrace: RemoteError@chrome://remote/content/shared/RemoteError.sys.mjs:8:8 WebDriverError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:182:5 NoSuchElementError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:394:5 element.find/</<@chrome://remote/content/marionette/element.sys.mjs:280:16 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "C:\Python310\lib\site-packages\instapy-0.6.16-py3.10.egg\instapy\login_util.py", line 350, in login_user login_elem = browser.find_element( File "C:\Python310\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 861, in find_element return self.execute(Command.FIND_ELEMENT, {"using": by, "value": value})["value"] File "C:\Python310\lib\site-packages\selenium\webdriver\remote\webdriver.py", line 444, in execute self.error_handler.check_response(response) File "C:\Python310\lib\site-packages\selenium\webdriver\remote\errorhandler.py", line 249, in check_response raise exception_class(message, screen, stacktrace) selenium.common.exceptions.NoSuchElementException: Message: Unable to locate element: //div[text()='Log In'] Stacktrace: RemoteError@chrome://remote/content/shared/RemoteError.sys.mjs:8:8 WebDriverError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:182:5 NoSuchElementError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:394:5 element.find/</<@chrome://remote/content/marionette/element.sys.mjs:280:16 ........................................................................................................................ CRITICAL [2022-11-30 11:36:26] [tardeo.bar] Unable to login to Instagram! You will find more information in the logs above. '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' INFO [2022-11-30 11:36:29] [tardeo.bar] Sessional Live Report: |> No any statistics to show [Session lasted 35.04 seconds] OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO INFO [2022-11-30 11:36:29] [tardeo.bar] Session ended! ooooooooooooooooooooooooooooooooooooooooooooooooooooooo ``` ## Possible Solution (optional) - Update the XPath - Review PR in Github, some developers update that. ## InstaPy configuration ```python import random import os from dotenv import load_dotenv from instapy import InstaPy from instapy.util import smart_run load_dotenv() # login credentials insta_username = os.getenv('SERVICE_USERNAME') insta_password = os.getenv('SERVICE_PASSWORD') # restriction data dont_like_list = os.getenv('DONT_LIKE_WORD_LIST').split(',') ignore_user_list = os.getenv('IGNORE_USER_LIST').split(',') # Prevent commenting on and unfollowing friend_user_list friend_user_list = os.getenv('FRIEND_USER_LIST').split(',') # Prevent posts that contains next words ignore_word_list = os.getenv('IGNORE_WORD_LIST').split(',') # Set similar accounts and influencers from your niche to target... target_user_list = os.getenv('TARGET_USER_LIST').split(',') # Skip all business accounts, except from list given... target_business_categories = os.getenv( 'TARGET_BUSINESS_CATEGORY_LIST').split(',') # InstaPy session session = InstaPy(username=insta_username, password=insta_password, headless_browser=False, disable_image_load=True, multi_logs=True, want_check_browser=False, browser_executable_path=r"C:\Program Files\Mozilla Firefox\firefox.exe") # Main function with smart_run(session): # HEY HO LETS GO # general settings session.set_dont_include(friend_user_list) session.set_dont_like(dont_like_list) session.set_ignore_if_contains(ignore_word_list) session.set_ignore_users(ignore_user_list) session.set_simulation(enabled=True) session.set_relationship_bounds(enabled=True, potency_ratio=None, delimit_by_numbers=True, max_followers=7500, max_following=3000, min_followers=1, min_following=1, min_posts=1) session.set_skip_users(skip_private=True, skip_no_profile_pic=True, skip_business=False, dont_skip_business_categories=[target_business_categories]) session.set_user_interact(amount=3, randomize=True, percentage=80, media='Photo') session.set_do_like(enabled=True, percentage=90) session.set_do_follow(enabled=True, percentage=40, times=1) # activities # FOLLOW+INTERACTION on TARGETED accounts """ Select users form a list of a predefined target_user_list... """ number = random.randint(3, 5) random_targets = target_user_list if len(target_user_list) <= number: random_targets = target_user_list else: random_targets = random.sample(target_user_list, number) # Interact with the chosen target_user_list session.follow_user_followers(random_targets, amount=random.randint( 30, 60), randomize=True, sleep_delay=600, interact=True) # UNFOLLOW activity # Unfollow nonfollowers after one day... session.unfollow_users(amount=random.randint(75, 100), instapy_followed_enabled=True, instapy_followed_param="all", style="FIFO", unfollow_after=48*60*60, sleep_delay=600) # Unfollow all users followed by InstaPy after one week to keep the following-level clean... session.unfollow_users(amount=random.randint(75, 100), instapy_followed_enabled=True, instapy_followed_param="all", style="FIFO", unfollow_after=168*60*60, sleep_delay=600) ```
open
2022-11-30T16:41:17Z
2023-03-11T16:23:10Z
https://github.com/InstaPy/InstaPy/issues/6657
[]
thEpisode
4
AUTOMATIC1111/stable-diffusion-webui
pytorch
16,650
[Bug]: Error when loading v-pred model on dev branch
### Checklist - [ ] The issue exists after disabling all extensions - [ ] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? An error is thrown when trying to load a v-pred model using the dev branch. ### Steps to reproduce the problem 1. Pull dev branch 2. Start WebUI 3. Try to load v-pred model ### What should have happened? WebUI should successfully load the model. ### What browsers do you use to access the UI ? Mozilla Firefox ### Sysinfo •  version: [v1.10.1-42-g7799859f] •  python: 3.10.6   •  torch: 2.3.0+cu121   •  xformers: 0.0.26.post1   •  gradio: 3.41.2   ### Console logs ```Shell changing setting sd_model_checkpoint to noobaiXLNAIXL_vPred05Version.safetensors [78748f163e]: ValueError Traceback (most recent call last): File "A:\AI\stable-diffusion-webui\modules\options.py", line 165, in set option.onchange() File "A:\AI\stable-diffusion-webui\modules\call_queue.py", line 14, in f res = func(*args, **kwargs) File "A:\AI\stable-diffusion-webui\modules\initialize_util.py", line 181, in <lambda> shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) File "A:\AI\stable-diffusion-webui\modules\sd_models.py", line 972, in reload_model_weights state_dict = get_checkpoint_state_dict(checkpoint_info, timer) File "A:\AI\stable-diffusion-webui\modules\sd_models.py", line 344, in get_checkpoint_state_dict res = read_state_dict(checkpoint_info.filename) File "A:\AI\stable-diffusion-webui\modules\sd_models.py", line 320, in read_state_dict pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read()) File "A:\AI\stable-diffusion-webui\venv\lib\site-packages\safetensors\torch.py", line 338, in load return _view2torch(flat) File "A:\AI\stable-diffusion-webui\venv\lib\site-packages\safetensors\torch.py", line 386, in _view2torch arr = torch.frombuffer(v["data"], dtype=dtype).reshape(v["shape"]) ValueError: both buffer length (0) and count (-1) must not be 0 ``` ### Additional information I have tried manually loading the checkpoint using the WebUI env using Diffusers via the following snippet and it successfully loads the model and generates an image: https://huggingface.co/Laxhar/noobai-XL-Vpred-0.5#method-iv-diffusers I've also tried loading it via the safetensors module (the thing throwing the error above) and it loads fine that way too: ``` import safetensors.torch import torch model_path = "./models/Stable-diffusion/noobaiXLNAIXL_vPred05Version.safetensors" try: model = safetensors.torch.load_file(model_path, device='cuda' if torch.cuda.is_available() else 'cpu') print("V-pred model loaded successfully.") except Exception as e: print(f"Failed to load V-pred model: {e}") ``` This would seem to indicate that the issue is within WebUI itself.
closed
2024-11-13T01:22:58Z
2024-11-19T07:00:06Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16650
[ "bug", "upstream" ]
quicks1lver42
5
scikit-hep/awkward
numpy
2,936
Test against NumPy 2.0
Ruff has tools for this, and there are NumPy 2.0 prereleases (or there will be soon).
closed
2024-01-11T16:28:10Z
2024-04-01T18:18:40Z
https://github.com/scikit-hep/awkward/issues/2936
[]
jpivarski
8
lundberg/respx
pytest
36
Fixture / global level mocking
Is it possible to do the respx setup in a fixture so that it can be used by all test functions instead of one setup per function? Thanks and excellent work on this.
closed
2019-12-30T23:42:46Z
2020-01-27T09:09:14Z
https://github.com/lundberg/respx/issues/36
[ "documentation" ]
dave-brennan
3
minimaxir/textgenrnn
tensorflow
230
why train_from_file generate text ?
look at the name
closed
2021-05-18T16:32:47Z
2021-05-24T16:16:12Z
https://github.com/minimaxir/textgenrnn/issues/230
[]
SomeMinecraftModder
0
jupyter/nbgrader
jupyter
961
Document how to set up nbgrader for multiple graders when running without JupyterHub
There is already documentation on how to use nbgrader with [multiple graders with JupyterHub](http://nbgrader.readthedocs.io/en/master/configuration/jupyterhub_config.html#example-use-case-one-class-multiple-graders), but not when *not* using JupyterHub. Briefly, the answer is that you still need access to a shared server, which would host the course directory. You would then run a password-protected version of the notebook on a public port on that server, and give the link to your graders so they can access the formgrader.
open
2018-05-09T20:34:30Z
2022-12-02T14:20:19Z
https://github.com/jupyter/nbgrader/issues/961
[ "documentation" ]
jhamrick
1
Farama-Foundation/PettingZoo
api
1,181
[Bug Report] AgileRL tutorials broken
### Describe the bug AgileRL updated to version 0.1.20 a couple days ago. The changes break the example tutorials in PettingZoo for example: `python agilerl_maddpg.py` gives ``` Traceback (most recent call last): File "/opt/home/code/PettingZoo/tutorials/AgileRL/agilerl_maddpg.py", line 86, in <module> pop = initialPopulation( File "/opt/conda/lib/python3.9/site-packages/agilerl/utils/utils.py", line 245, in initialPopulation lr_actor=INIT_HP["LR_ACTOR"], KeyError: 'LR_ACTOR' ``` I didn't try all of the the tutorials so I don't know what else is broken or what's involved in fixing them. ### Code example _No response_ ### System info ``` >>> import sys; sys.version '3.9.12 (main, Apr 5 2022, 06:56:58) \n[GCC 7.5.0]' >>> pettingzoo.__version__ '1.24.3' ``` ### Additional context Pinning the version to 0.1.19 works as a temporary fix but it would be nice to fix these. ### Checklist - [X] I have checked that there is no similar [issue](https://github.com/Farama-Foundation/PettingZoo/issues) in the repo
closed
2024-02-11T22:44:09Z
2024-03-13T18:35:22Z
https://github.com/Farama-Foundation/PettingZoo/issues/1181
[ "bug" ]
dm-ackerman
1
aeon-toolkit/aeon
scikit-learn
2,211
[BUG] RandomIntervalClassifier and SupervisedIntervalClassifier do not set n_jobs in contained scikit learn estimator
### Describe the bug found when writing tests. These classifiers set the contained estimators n_jobs as follows ```python self._estimator = _clone_estimator( ( RandomForestClassifier(n_estimators=200) if self.estimator is None else self.estimator ), self.random_state, ) m = getattr(self._estimator, "n_jobs", None) if m is not None: self._estimator.n_jobs = self._n_jobs ``` I assume the problem is with m = getattr(self._estimator, "n_jobs", None) returns None if the attribute is present (which it is) but set to the value None ![image](https://github.com/user-attachments/assets/d7cc86ef-171b-4f52-88f7-decfeb2ccbe1) ### Steps/Code to reproduce the bug ```python import pytest from aeon.classification.interval_based import RandomIntervalClassifier, SupervisedIntervalClassifier from aeon.testing.data_generation import make_example_3d_numpy from sklearn.svm import SVC @pytest.mark.parametrize("cls",[SupervisedIntervalClassifier, RandomIntervalClassifier]) def test_random_interval_classifier(cls): X,y = make_example_3d_numpy(n_cases=5, n_channels=1, n_timepoints=12) r = cls(estimator=SVC()) r.fit(X, y) p = r.predict_proba(X) assert p.shape == (5, 2) r = cls(n_jobs=2) r.fit(X, y) assert r._estimator.n_jobs == 2 ``` ### Expected results test should pass ### Actual results test_interval_pipelines.py::test_random_interval_classifier[SupervisedIntervalClassifier] FAILED [ 50%] aeon\classification\interval_based\tests\test_interval_pipelines.py:7 (test_random_interval_classifier[SupervisedIntervalClassifier]) None != 2 Expected :2 Actual :None ### Versions _No response_
closed
2024-10-16T10:27:15Z
2024-10-18T13:18:36Z
https://github.com/aeon-toolkit/aeon/issues/2211
[ "bug", "classification" ]
TonyBagnall
2
hpcaitech/ColossalAI
deep-learning
5,359
[DOC]: Fix typo for 1D 张量并行
### 📚 The doc issue The sentence "这就是所谓的行并行方式" should be placed on a new line: ![](https://github.com/hpcaitech/ColossalAI/assets/33915732/ba1b266d-973b-429b-becc-106c0aba7122) In the English documentation, the layout is correct: ![](https://github.com/hpcaitech/ColossalAI/assets/33915732/65319159-7c42-46b9-9718-0426c9df8488)
closed
2024-02-05T07:45:51Z
2024-02-19T08:53:30Z
https://github.com/hpcaitech/ColossalAI/issues/5359
[ "documentation" ]
yixiaoer
0
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,446
using pre-trained day2night for own dataset
Hello I use "!python /content/pytorch-CycleGAN-and-pix2pix/test.py --dataroot /tmp/pitts30k/images/test/ --name day2night_pretrained --model test --no_dropout " for create day to night images with our dataset and we received this error: AttributeError: 'Sequential' object has no attribute 'model' how can I solve the problem?
open
2022-07-05T18:56:23Z
2024-03-18T10:04:48Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1446
[]
saeedehj
1
reloadware/reloadium
pandas
10
Limit files watched
Is there anyway to limit what is watched? It's watching even the `.git` directory.
closed
2022-05-06T11:02:30Z
2022-05-06T12:18:21Z
https://github.com/reloadware/reloadium/issues/10
[]
iarp
8
streamlit/streamlit
data-visualization
10,521
Slow download of csv file when using the inbuild download as csv function for tables displayed as dataframes in Edge Browser
### Checklist - [x] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [x] I added a very descriptive title to this issue. - [x] I have provided sufficient information below to help reproduce this issue. ### Summary Issue is only in MS Edge Browser: When pressing "download as csv" on a table the download is really slow. and i run on a thinkpad p16 gen1. 15 columns x 20 k rows takes 9-11 sec 15 columns x 50 k rows takes 19-22 sec When i do it on with my own function using to_csv from the pandas libary i can do it in less than 1 sec for both 20 k and 50 k **Issue only occur in Edge browser.** Brave and firefox works just fine with the inbuild ### Reproducible Code Example ```Python import streamlit as st import pandas as pd # tested in both 1.38 and 1.42.2 # Name: streamlit # Version: 1.39.0 / 1.42.2 # Define number of rows and columns num_rows = 20000 # 20 k rows takes 9-11 sec to download via inbuild download as csv # num_rows = 50000 # 50 k rows takes 19-22 sec to download via inbuild download as csv num_cols = 15 # Generate random data data = { f"Col_{i+1}": np.random.choice(['A', 'B', 'C', 'D', 1, 2, 3, 4, 5, 10.5, 20.8, 30.1], num_rows) for i in range(num_cols) } data = pd.DataFrame(data) st.write(data) # the same issue when using st.dataframe(data) # the below method takes less a secound for both 20 k and 50 k rows # to_csv() is from the pandas libary which also are used in the streamlit package. csv = data.to_csv(index=False).encode('utf-8') # Download button st.download_button( label="Download as CSV OWN", data=csv, file_name='data.csv', mime='text/csv', ) ``` ### Steps To Reproduce hover over the table, click download as csv and watch your download folder for how slow it loads only a few 50-100 kb a sec then try using the custom made button: "Download as CSV OWN" then it instantly downloads ### Expected Behavior i would expect the inbuild download as csv function would be as fast as the pandas.to_csv() function. I tried it on a Thinkpad T14 gen 3, P16 gen 1 and on a linux server, all have the same issue ![Image](https://github.com/user-attachments/assets/a69108de-5ac7-416e-b48a-6ad1ec2863a3) ### Current Behavior no error msg, but it just super slow ### Is this a regression? - [ ] Yes, this used to work in a previous version. ### Debug info - Streamlit version: 1.39.0 and 1.42.2 - Python version: 3.12.1 - Operating System: Windows 11 / windows 10, Linux server - Browser: Edge for business: Version 133.0.3065.82 (Official build) (64-bit) ### Additional Information _No response_
open
2025-02-26T08:43:56Z
2025-03-03T11:49:27Z
https://github.com/streamlit/streamlit/issues/10521
[ "type:bug", "feature:st.dataframe", "status:confirmed", "priority:P3", "feature:st.download_button", "feature:st.data_editor" ]
LazerLars
2
axnsan12/drf-yasg
rest-api
299
Support nested coreschema in CoreAPI compat layer
```python class MyFilterBackend(BaseFilterBackend): def get_schema_fields(self, view): return [coreapi.Field( name="values" required=False, schema=coreschema.Array(items=coreschema.Integer(), unique_items=True), location='query' )] ``` Result: ![2019-01-22 18-18-05](https://user-images.githubusercontent.com/866005/51521361-235e5300-1e72-11e9-9f29-b95cdb30c575.png)
open
2019-01-22T08:18:42Z
2025-03-07T12:16:45Z
https://github.com/axnsan12/drf-yasg/issues/299
[ "triage" ]
khomyakov42
1
AntonOsika/gpt-engineer
python
594
Issue with tiktoken ''Could not automatically map gpt-4 to a tokeniser. Please use `tiktok.get_encoding` to explicitly get the tokeniser you expect.''
I have tried using both the dev and production versions and get the same error. I have followed the windows guide for setting ENV variables and installed all dependencies. I am on Windows 10 and python 3.11. Full version of the error: ![Screenshot_1](https://github.com/AntonOsika/gpt-engineer/assets/11824463/a3f3491c-87fb-4c0a-a7f1-27f5a6677855)
closed
2023-08-15T18:39:22Z
2023-09-28T14:20:09Z
https://github.com/AntonOsika/gpt-engineer/issues/594
[]
Wulf-Steppen
2
piskvorky/gensim
nlp
2,755
Doc2Vec.clear_sims bug
I was reading Doc2Vec source code and noticed a probable bug in clear_sims method. https://github.com/RaRe-Technologies/gensim/blob/8d79794118a3adeda8cf9c873eb205cecf47cfef/gensim/models/doc2vec.py#L387 It sets vectors_docs_norm attribute of Word2VecKeyedVectors to None. However, Word2VecKeyedVectors does not have this attribute. So I think this line should be `self.docvecs.vectors_docs_norm = None`
open
2020-02-17T08:23:04Z
2020-02-18T21:19:31Z
https://github.com/piskvorky/gensim/issues/2755
[]
pavellevap
1
ultralytics/ultralytics
computer-vision
18,755
cifar100 dataset cannot be loaded
closed
2025-01-18T15:19:31Z
2025-01-18T17:34:26Z
https://github.com/ultralytics/ultralytics/issues/18755
[ "bug", "dependencies", "detect" ]
cainiao123s
2
widgetti/solara
flask
950
Typing issue with solara `component`
<!--- Provide a general summary of the issue in the Title above --> ## Expected Behavior `solara.component` resolves and has proper autocomplete ## Current Behavior Typing and autocomplete cannot find `solara.component` ![image](https://github.com/user-attachments/assets/9469e40a-a8e3-4312-a7e4-fc53561eaa66) ![image](https://github.com/user-attachments/assets/7434023b-0d7c-47ba-8aef-31fc0022868c) ## Steps to Reproduce the Problem <!--- Provide a link to a live example, for example via [PyCafe](https://py.cafe), and/or an unambiguous --> <!--- set of steps to reproduce this bug. Include code, if relevant --> import solara, try to use component (vscode) ## Specifications - Solara Version: 1.43.0 - Platform: MacOS with vscode - Affected Python Versions: 3.10 Note that my code runs, component is available, it's just a typing/autocomplete issue
open
2024-12-23T14:55:54Z
2024-12-23T15:24:32Z
https://github.com/widgetti/solara/issues/950
[]
Ben-Epstein
3
microsoft/unilm
nlp
1,106
VALL-E demo page missing/404
VALL-E demo page is missing/404. It was initially working. Plz can you fix? https://valle-demo.github.io/
closed
2023-05-27T05:46:01Z
2023-06-14T11:51:15Z
https://github.com/microsoft/unilm/issues/1106
[]
rickkadamss
0
TheKevJames/coveralls-python
pytest
232
Python coverage not reported to https://coveralls.io/
I'm running: ```bash coverage run --source=. -m pytest cvise/tests/ coverage report -m COVERALLS_REPO_TOKEN=xyz coveralls -n ``` where I see: ``` ============================= test session starts ============================== platform linux -- Python 3.8.3, pytest-5.4.3, py-1.9.0, pluggy-0.13.1 rootdir: /usr/src/cvise/objdir collected 67 items cvise/tests/test_balanced.py .................. [ 26%] cvise/tests/test_comments.py .... [ 32%] cvise/tests/test_ifs.py . [ 34%] cvise/tests/test_ints.py ...... [ 43%] cvise/tests/test_line_markers.py .. [ 46%] cvise/tests/test_nestedmatcher.py ................ [ 70%] cvise/tests/test_peep.py .......... [ 85%] cvise/tests/test_special.py .... [ 91%] cvise/tests/test_ternary.py ...... [100%] ============================== 67 passed in 1.59s ============================== Name Stmts Miss Cover Missing ----------------------------------------------------------------- cvise-delta.py 6 6 0% 3-11 cvise.py 200 200 0% 3-291 cvise/__init__.py 1 0 100% cvise/cvise.py 102 74 27% 43-44, 48-54, 59-107, 110-131, 135-138, 141-145, 149-160 cvise/passes/__init__.py 17 0 100% cvise/passes/abstract.py 101 41 59% 20, 25, 33, 39, 42-53, 56-62, 75-78, 81-87, 90, 93, 96, 99, 102, 111-112, 120, 123, 126 cvise/passes/balanced.py 87 30 66% 7, 43-44, 46-47, 52-53, 55-56, 58-59, 61-62, 67-68, 70-71, 73-75, 79-89 cvise/passes/blank.py 37 24 35% 10, 13, 16, 19, 23-39, 42-53 cvise/passes/clang.py 31 20 35% 10, 13, 16, 19, 22-41 cvise/passes/clangbinarysearch.py 73 56 23% 13, 16-29, 32-33, 36, 39-43, 46-61, 64-70, 73-92 cvise/passes/clex.py 24 14 42% 9, 12, 15, 18, 21-31 cvise/passes/comments.py 25 1 96% 7 cvise/passes/ifs.py 61 13 79% 11, 23-26, 31, 44-45, 49, 59-62, 69, 76 cvise/passes/includeincludes.py 38 27 29% 10, 13, 16, 19, 22-53 cvise/passes/includes.py 33 22 33% 10, 13, 16, 19, 22-47 cvise/passes/indent.py 30 22 27% 6, 9, 12, 15, 18-43 cvise/passes/ints.py 54 2 96% 10, 42 cvise/passes/line_markers.py 35 4 89% 12, 26, 29, 39 cvise/passes/lines.py 45 32 29% 10, 13-26, 29-31, 35-38, 41, 44, 47-60 cvise/passes/peep.py 107 6 94% 125, 137-140, 164, 227 cvise/passes/special.py 56 13 77% 8, 31, 36-43, 56-60 cvise/passes/ternary.py 39 3 92% 23, 52, 62 cvise/passes/unifdef.py 42 30 29% 11, 14, 17, 20, 23-58 cvise/tests/__init__.py 0 0 100% cvise/tests/test_balanced.py 205 0 100% cvise/tests/test_comments.py 55 0 100% cvise/tests/test_ifs.py 21 0 100% cvise/tests/test_ints.py 86 0 100% cvise/tests/test_line_markers.py 28 0 100% cvise/tests/test_nestedmatcher.py 57 0 100% cvise/tests/test_peep.py 102 0 100% cvise/tests/test_special.py 51 0 100% cvise/tests/test_ternary.py 79 0 100% cvise/tests/testabstract.py 8 0 100% cvise/utils/__init__.py 0 0 100% cvise/utils/error.py 70 38 46% 8, 11, 15-16, 19, 23-24, 27-34, 37, 41, 45, 48, 52-53, 56-66, 73, 89-93, 96, 100-102, 105-122 cvise/utils/nestedmatcher.py 126 9 93% 19, 27, 35, 70, 86-88, 102-103, 118 cvise/utils/readkey.py 28 28 0% 1-40 cvise/utils/statistics.py 41 41 0% 1-50 cvise/utils/testing.py 385 385 0% 1-506 ----------------------------------------------------------------- TOTAL 2586 1141 56% {'message': 'Job ##1.11', 'url': 'https://coveralls.io/jobs/65487502'} ``` but the sent output with `coveralls` command does not mention any `.py` file. Can you please help me?
closed
2020-07-23T08:12:02Z
2020-07-25T00:29:54Z
https://github.com/TheKevJames/coveralls-python/issues/232
[]
marxin
4
microsoft/hummingbird
scikit-learn
237
Random forest in LightGBM
I want to clarify, now hummingbird is no support random forest in LightGBM? Is it planned? When I convert from lgbm to onnx this model, I get an error lgb.LGBMClassifier(boosting_type='rf', n_estimators = 128, max_depth = 5, subsample = 0.3, bagging_freq = 1) File "/venv/lib/python3.6/site-packages/hummingbird/ml/_parse.py", line 242, in <listcomp> this_operator.inputs = [scope.variables[in_] for in_ in input_names] KeyError: 'col_index'
open
2020-08-17T13:25:46Z
2020-11-11T01:51:43Z
https://github.com/microsoft/hummingbird/issues/237
[ "bug" ]
arfangeta
12
dmlc/gluon-cv
computer-vision
835
transfer learning for classification
Hello @zhreshold, As you told me in this issue: #746 to do the fine tuning of 'resnet50_v1b' I should replace the 'finetune_net.output' with 'finetune_net.fc' and it works. But for some classifiers I need to use 'finetune_net.output', so can you explain what's the difference between the 'output' and 'fc' and why some classifiers need 'output' and the others need 'fc'. Thank you in advance.
closed
2019-06-25T07:33:56Z
2019-07-02T08:02:52Z
https://github.com/dmlc/gluon-cv/issues/835
[]
FAFACHR
8
yihong0618/running_page
data-visualization
121
功能建议:加入月度统计数据展示
yihong 您好, 刚刚在看 @geekplux 的 running page 的时候发现 geekplus 在首页中加入了月统计柱状图,主要显示了 跑步,徒步,骑行的月度统计数据。 ![image](https://user-images.githubusercontent.com/53750381/115110291-31e23900-9fad-11eb-808e-623700191fd2.png) 私以为相比于年度和每日统计数据来说,**月度统计能够在一个更加折中的频率上展示统计数据,也丰富了展示效果**。 所以就依照 geekplus 本人的仓库尝试将此柱状图进行迁移,但是由于我并不曾深入研究学习过react框架导致出现了很多的错误。 所以想问一下您是否有任何计划将此月度统计柱状图迁移到 Running Page 仓库中呢?
closed
2021-04-17T10:47:51Z
2021-04-19T08:56:27Z
https://github.com/yihong0618/running_page/issues/121
[]
MFYDev
3
flasgger/flasgger
rest-api
586
Async/await in Flask 2.0+ breaks due to decorator order
| Name | Version | |--|--| | Flasgger | 0.9.7.1 | | Flask | 2.3.2 | | Python | 3.9, 3.10 | | OS | macOS 13.3 | I'm setting up a basic Flask project with an asynchronous route. I want to fetch information online using the `selenium` package, and this requires the Flask route to await for the task to finish. I've been using `@swag_from()` decorators to document my code and make it easier to work with, here is an idea of what my code looked like: ```py @website_api.route('/get-data-from-page', methods=['POST']) @swag_from('swagger/get-data-from-page.yml') async def get_data_from_page(): data = req.get_json() res = await common.get_data_from_page(data["url"]) return json.dumps({ "data": res }), 201 ``` For some reason, this kept throwing: _TypeError: The view function did not return a valid response. The return type must be a string, dict, list, tuple with headers or status, Response instance, or WSGI callable, but it was a coroutine._ After a couple of hours of trying everything, re-installing Python and both libraries, I found the issue. ### This causes the error: ```py @app.route(<route>) @swag_from(<file>) async def route(): # ... ``` ### This doesn't: ```py @swag_from(<file>) @app.route(<route>) async def route(): # ... ``` _(Note the order of the decorators)_ Now, this might not be a bug at all, it even might not have anything to do with flasgger and could be a problem is Flask directly. But the README of this project says to do it like so: ```py @app.route('/colors/<palette>/') @swag_from(specs_dict) def colors(palette): # ... ``` Maybe a switch between those two lines in the README and any documentation would be interesting?
open
2023-06-30T14:00:46Z
2024-12-02T19:16:39Z
https://github.com/flasgger/flasgger/issues/586
[]
phil-chp
2
mckinsey/vizro
plotly
630
[Docs] Py.Cafe code snippets to-do list
Here's an issue (public, so we can ask for contributions to it from our readers) to record the bits and pieces left to do on following the [introduction of py.cafe to our docs' examples](https://github.com/mckinsey/vizro/pull/569). - [ ] Change the requirement in `hatch.toml` when py.cafe release their mkdocs plugin (separate issue, stored as 1204 internally) - [ ] Update the code examples in the `data.md` how-to guide to use py.cafe once we can solve how to illustrate data handling without creating multiple projects in a profile to store the `iris.csv` dataset. - We considered using the function to create the dataframe directly for this example but disregarded it because it doesn't illustrate data loading, - We could code the data download from storage in this GitHub repo - We could make a bunch of projects like I did for other examples using custom css, for example, but there are a lot and it results in code example duplication, so it's not the optimum solution for any of the examples. - Best longer-term solution is to either change the example to call an API to get a dataset (which varies over time, as that's what the example is about) or to wait to see if we can work something out with py.cafe to add files to projects dynamically via the plugin (a bit like we specify requirements files as `extra-requirements`) - [ ] If a solution arises whereby we no longer need to create examples and link to them (rather than use the plugin) we can delete the examples I've created so far. But long-term, if we have these examples as part of our documentation, we should store them under a new profile in py.cafe that uses a shared email account so the team can update those projects as needed, rather than use my login.
open
2024-08-15T08:46:02Z
2025-01-14T09:40:02Z
https://github.com/mckinsey/vizro/issues/630
[ "Docs :spiral_notepad:" ]
stichbury
1
ivy-llc/ivy
pytorch
28,517
Fix Frontend Failing Test: torch - math.paddle.heaviside
To-do List: https://github.com/unifyai/ivy/issues/27498
closed
2024-03-09T14:58:00Z
2024-03-14T21:29:22Z
https://github.com/ivy-llc/ivy/issues/28517
[ "Sub Task" ]
ZJay07
0