repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
sqlalchemy/alembic
sqlalchemy
1,363
AttributeError: 'ConfigParser' object has no attribute '_proxies'
**Describe the bug** After installing the `alembic` package, I entered the `alembic init migrations` command and alembic created the migrations directory and the `alembic.ini` file without any errors, but when I use the `alembic revision --autogenerate -m "Some message"` command, I get the error `AttributeError: 'ConfigParser' object has no attribute '_proxies'` and I don't know where the problem is. I also tested different versions of sqlalchemy and alembic, but the problem still persists. This error is also displayed when using the `alembic check` command. Below is a picture of the error that occurred : ![alembic](https://github.com/sqlalchemy/alembic/assets/40084943/39bf92c4-9a0d-4e13-ad95-cf227abb8cef) **Versions.** - OS: Windows 10 - Python: 3.9 - Alembic: 1.12.1 - SQLAlchemy: 2.0.23 - Database: Sqlite
closed
2023-11-22T04:39:48Z
2023-11-22T16:01:34Z
https://github.com/sqlalchemy/alembic/issues/1363
[ "third party library / application issues" ]
MosTafa2K
2
seleniumbase/SeleniumBase
web-scraping
2,098
Options with undetected driver
Hi, How to add options chrome in undetected driver? I dont see any example Thanks
closed
2023-09-12T12:25:56Z
2023-09-12T15:43:01Z
https://github.com/seleniumbase/SeleniumBase/issues/2098
[ "question", "UC Mode / CDP Mode" ]
FranciscoPalomares
3
deepspeedai/DeepSpeed
deep-learning
6,044
Inference acceleration doesn't work
I'm trying to use DeepSpeed to accelerate a ViT model implemented by this [project](https://github.com/lucidrains/vit-pytorch). I following this [tutorial](https://www.deepspeed.ai/tutorials/inference-tutorial/) to optimize the model: ``` from vit_pytorch import ViT import torch import deepspeed import time def optimize_by_deepspeed(model): ds_engine = deepspeed.init_inference( model, tensor_parallel={"tp_size": 1}, dtype=torch.float, checkpoint=None, replace_with_kernel_inject=True) model = ds_engine.module return model device = "cuda:0" model = ViT( image_size=32, patch_size=8, channels=64, num_classes=512, dim=512, depth=6, heads=16, mlp_dim=1024, dropout=0.1, emb_dropout=0.1 ).to(device) input_data = torch.randn(1, 64, 32, 32, dtype=torch.float32, device=device) model = optimize_by_deepspeed(model) start_time = time.time() for i in range(1000): res = model(input_data) print("time consumption: {}".format(time.time() - start_time)) ``` and launch the program with following command: ``` deepspeed --num_gpus 1 example.py ``` However, I found that the time consumption is roughly the same whether or not `model = optimize_by_deepspeed(model)` is executed. Is there any problem in my code?
closed
2024-08-17T09:13:52Z
2024-09-07T08:13:14Z
https://github.com/deepspeedai/DeepSpeed/issues/6044
[]
broken-dream
2
Gerapy/Gerapy
django
255
Spider Works in Terminal Not in Gerapy
Before I start I just want to say that you all have done a great job developing this project. I love gerapy. I will probably start contributing to the project. I will try to document this as well as I can so it can be helpful to others. **Describe the bug** I have a scrapy project which runs perfectly fine in terminal using the following command: `scrapy crawl examplespider` However, when I schedule it in a task and run it on my local scrapyd client it runs but immediately closes. I don't know why it opens and closes without doing anything. Throws no errors. I think it's a config file issue. When I view the results of the job it shows the following: ``` `y.spidermiddlewares.urllength.UrlLengthMiddleware', 'scrapy.spidermiddlewares.depth.DepthMiddleware'] 2022-12-15 07:03:21 [scrapy.middleware] INFO: Enabled item pipelines: [] 2022-12-15 07:03:21 [scrapy.core.engine] INFO: Spider opened 2022-12-15 07:03:21 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min) 2022-12-15 07:03:21 [scrapy.extensions.telnet] INFO: Telnet console listening on 127.0.0.1:6023 2022-12-15 07:03:21 [scrapy.core.engine] INFO: Closing spider (finished) 2022-12-15 07:03:21 [scrapy.statscollectors] INFO: Dumping Scrapy stats: {'elapsed_time_seconds': 0.002359, 'finish_reason': 'finished', 'finish_time': datetime.datetime(2022, 12, 15, 7, 3, 21, 314439), 'log_count/DEBUG': 1, 'log_count/INFO': 10, 'log_count/WARNING': 1, 'memusage/max': 63709184, 'memusage/startup': 63709184, 'start_time': datetime.datetime(2022, 12, 15, 7, 3, 21, 312080)} 2022-12-15 07:03:21 [scrapy.core.engine] INFO: Spider closed (finished)` ``` In the logs it shows the following: **/home/ubuntu/env/scrape/bin/logs/examplescraper/examplespider** ``` 2022-12-15 07:03:21 [scrapy.utils.log] INFO: Scrapy 2.7.1 started (bot: examplescraper) 2022-12-15 07:03:21 [scrapy.utils.log] INFO: Versions: lxml 4.9.1.0, libxml2 2.9.14, cssselect 1.2.0, parsel 1.7.0, w3lib 2.1.1, Twisted 22.10.0, Python 3.8.10 (default, Nov 14 2022, 12:59:47) - [GCC 9.4.0], pyOpenSSL 22.1.0 (OpenSSL 3.0.7 1 Nov 2022), cryptography 38.0.4, Platform Linux-5.15.0-1026-aws-x86_64-with-glibc2.29 2022-12-15 07:03:21 [scrapy.crawler] INFO: Overridden settings: {'BOT_NAME': 'examplescraper', 'DOWNLOAD_DELAY': 0.1, 'LOG_FILE': 'logs/examplescraper/examplespider/8d623d447c4611edad0641137877ddff.log', 'NEWSPIDER_MODULE': 'examplespider.spiders', 'SPIDER_MODULES': ['examplespider.spiders'], 'USER_AGENT': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 ' '(KHTML, like Gecko) Chrome/101.0.4951.67 Safari/537.36' } 2022-12-15 07:03:21 [py.warnings] WARNING: /home/ubuntu/env/scrape/lib/python3.8/site-packages/scrapy/utils/request.py:231: ScrapyDeprecationWarning: '2.6' is a deprecated value for the 'REQUEST_FINGERPRINTER_IMPLEMENTATION' setting. It is also the default value. In other words, it is normal to get this warning if you have not defined a value for the 'REQUEST_FINGERPRINTER_IMPLEMENTATION' setting. This is so for backward compatibility reasons, but it will change in a future version of Scrapy. See the documentation of the 'REQUEST_FINGERPRINTER_IMPLEMENTATION' setting for information on how to handle this deprecation. return cls(crawler) 2022-12-15 07:03:21 [scrapy.utils.log] DEBUG: Using reactor: twisted.internet.epollreactor.EPollReactor 2022-12-15 07:03:21 [scrapy.extensions.telnet] INFO: Telnet Password: b11a24faee23f82c 2022-12-15 07:03:21 [scrapy.middleware] INFO: Enabled extensions: ['scrapy.extensions.corestats.CoreStats', 'scrapy.extensions.telnet.TelnetConsole 'scrapy.extensions.memusage.MemoryUsage', 'scrapy.extensions.logstats.LogStats'] 2022-12-15 07:03:21 [scrapy.middleware] INFO: Enabled downloader middlewares: ['scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware', 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware', 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware', 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware', 'scrapy.downloadermiddlewares.retry.RetryMiddleware', 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware', 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware', 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware', 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware', 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware', 'scrapy.downloadermiddlewares.stats.DownloaderStats'] 2022-12-15 07:03:21 [scrapy.middleware] INFO: Enabled spider middlewares: ['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware', 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware', 'scrapy.spidermiddlewares.referer.RefererMiddleware', 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware', 'scrapy.spidermiddlewares.depth.DepthMiddleware'] 2022-12-15 07:03:21 [scrapy.middleware] INFO: Enabled item pipelines: [] 2022-12-15 07:03:21 [scrapy.core.engine] INFO: Spider opened 2022-12-15 07:03:21 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min) 2022-12-15 07:03:21 [scrapy.extensions.telnet] INFO: Telnet console listening on 127.0.0.1:6023 2022-12-15 07:03:21 [scrapy.core.engine] INFO: Closing spider (finished) 2022-12-15 07:03:21 [scrapy.statscollectors] INFO: Dumping Scrapy stats: {'elapsed_time_seconds': 0.002359, 'finish_reason': 'finished', 'finish_time': datetime.datetime(2022, 12, 15, 7, 3, 21, 314439), 'log_count/DEBUG': 1, 'log_count/INFO': 10, 'log_count/WARNING': 1, 'memusage/max': 63709184, 'memusage/startup': 63709184, 'start_time': datetime.datetime(2022, 12, 15, 7, 3, 21, 312080) } 2022-12-15 07:03:21 [scrapy.core.engine] INFO: Spider closed (finished) ``` **/home/ubuntu/gerapy/logs** ``` ubuntu@ip-172-26-13-235:~/gerapy/logs$ cat 20221215065310.log INFO - 2022-12-15 14:53:18,043 - process: 480 - scheduler.py - gerapy.server.core.scheduler - 105 - scheduler - successfully synced task with jobs with force INFO - 2022-12-15 14:54:15,011 - process: 480 - scheduler.py - gerapy.server.core.scheduler - 34 - scheduler - execute job of client LOCAL, project examplescraper, spider examplespider ubuntu@ip-172-26-13-235:~/gerapy/logs$ ``` **To Reproduce** Steps to reproduce the behavior: 1. AWS Ubuntu 20.04 Instance 2. Use python3 virtual environment and follow the installation instructions 3. Create a systemd service for scrapyd and gerapy by doing the following: ``` cd /lib/systemd/system sudo nano scrapyd.service ``` paste the following: ``` [Unit] Description=Scrapyd service After=network.target [Service] User=ubuntu Group=ubuntu WorkingDirectory=/home/ubuntu/env/scrape/bin ExecStart=/home/ubuntu/env/scrape/bin/scrapyd [Install] WantedBy=multi-user.target ``` Issue the following commands: ``` sudo systemctl enable scrapyd.service sudo systemctl start scrapyd.service sudo systemctl status scrapyd.service ``` It should say: **active (running)** Create a script to run gerapy as a systemd service ``` cd ~/virtualenv/exampleproject/bin/ nano runserv-gerapy.sh ``` Paste the following: ``` #!/bin/bashcd /home/ubuntu/virtualenv source exampleproject/bin/activate cd /home/ubuntu/gerapy gerapy runserver 0.0.0.0:8000 ``` Give this file execute permissions `sudo chmod +x runserve-gerapy.sh` Navigate back to systemd and create a service to run the runserve-gerapy.sh ``` cd /lib/systemd/system sudo nano gerapy-web.service ``` Paste the following: ``` [Unit] Description=Gerapy Webserver Service After=network.target [Service] User=ubuntu Group=ubuntu WorkingDirectory=/home/ubuntu/virtualenv/exampleproject/bin ExecStart=/bin/bash /home/ubuntu/virtualenv/exampleproject/bin/runserver-gerapy.sh [Install] WantedBy=multi-user.target ``` Again issue the following: ``` sudo systemctl enable gerapy-web.service sudo systemctl start gerapy-web.service sudo systemctl status gerapy-web.service ``` Look for **active (running)** and navigate to http://your.pub.ip.add:8000 or http://localhost:8000 or http://127.0.0.1:8000 to verify that it is running. Reboot the instance to verify that the services are running on system startup. 5. Log in and create a client for the local scrapyd service. Use IP 127.0.0.1 and Port 6800. No Auth. Save it as "Local" or "Scrapyd" 6. Create a project. Select Clone. For testing I used the following github scrapy project: https://github.com/eneiromatos/NebulaEmailScraper (actually a pretty nice starter project). Save the project. Build the project. Deploy the project. (If you get an error when deploying make sure to be running in the virtual env, you might need to reboot). 7. Create a task. Make sure the project name and spider name matches what is in the scrapy.cfg and examplespider.py files and save the task. Schedule the task. Run the task **Traceback** See logs above ^^^ **Expected behavior** It should run for at least 5 minutes and output to a file called emails.json in the project root folder (the folder with scrapy.cfg file) **Screenshots** I can upload screenshots if requested. **Environment (please complete the following information):** - OS: AWS Ubuntu 20.04 - Browser Firefox - Python Version 3.8 - Gerapy Version 0.9.11 (latest) **Additional context** Add any other context about the problem here.
open
2022-12-15T08:57:52Z
2022-12-17T19:18:58Z
https://github.com/Gerapy/Gerapy/issues/255
[ "bug" ]
wmullaney
0
saulpw/visidata
pandas
1,768
[save_filetype] when save_filetype is set, you cannot gY as any other filetype on the DirSheet
**Small description** I use `options.save_filetype = 'jsonl'` in my `.visidatarc`. I use this to set my default save type. However, sometimes I like to copy rows out as different file types, csv, fixed etc. and so I press gY and provide [e.g.] `copy 19 rows as filetype: fixed` but the response I get back is `"fixed" │ copying 19 rows to system clipboard as fixed │ saving 1 sheets to .fixed as jsonl` and the rows that are copied are in fact `jsonl`. **Expected result** To be able to set `options.save_filetype` and this be provided as the default option when copying and/or saving, however be able to save as different filetypes on-the-fly (as expected). **Actual result with screenshot** Shown above **Steps to reproduce with sample data and a .vd** 1. Set `options.save_filetype = 'jsonl'` in `.visidatarc` 2. open a ~~file~~ directory (DirSheet) _< edited 2023-03-01_ 3. Select some rows 4. Press `gY` (`syscopy-selected`) 5. enter "fixed"
closed
2023-02-27T19:17:42Z
2023-10-18T05:56:12Z
https://github.com/saulpw/visidata/issues/1768
[ "bug", "fixed" ]
geekscrapy
17
keras-team/keras
data-science
20,104
Tensorflow model.fit fails on test_step: 'NoneType' object has no attribute 'items'
I am using tf.data module to load my datasets. Although the training and validation data modules are almost the same. The train_step works properly and the training on the first epoch continues till the last batch, but in the test_step I get the following error: ```shell 353 val_logs = { --> 354 "val_" + name: val for name, val in val_logs.items() 355 } 356 epoch_logs.update(val_logs) 358 callbacks.on_epoch_end(epoch, epoch_logs) AttributeError: 'NoneType' object has no attribute 'items' ``` Here is the code for fitting the model: ```shell results = auto_encoder.fit( train_data, epochs=config['epochs'], steps_per_epoch=(num_train // config['batch_size']), validation_data=valid_data, validation_steps=(num_valid // config['batch_size'])-1, callbacks=callbacks ) ``` I should mention that I have used .repeat() on both train_data and valid_data, so the problem is not with not having enough samples.
closed
2024-08-09T15:32:39Z
2024-08-10T17:59:05Z
https://github.com/keras-team/keras/issues/20104
[ "stat:awaiting response from contributor", "type:Bug" ]
JVD9kh96
2
napari/napari
numpy
6,744
Remove lambdas in help menu actions `_help_actions.py`
We should remove lambdas used in help menu actions in `napari/_app_model/actions/_help_actions.py`. The callbacks are all calls to `webbrowser.open`. This is a case where having `kwargs` field in actions would be useful. (ref: https://github.com/pyapp-kit/app-model/issues/52)
closed
2024-03-13T11:21:08Z
2024-05-20T09:33:08Z
https://github.com/napari/napari/issues/6744
[ "maintenance" ]
lucyleeow
0
autogluon/autogluon
computer-vision
4,181
Failed to load cask: libomp.rb
$ brew install libomp.rb Error: Failed to load cask: libomp.rb Cask 'libomp' is unreadable: wrong constant name #<Class:0x00000001150a5b48> Warning: Treating libomp.rb as a formula. ==> Fetching libomp ==> Downloading https://mirrors.ustc.edu.cn/homebrew-bottles/libomp-11.1.0.big_sur.bottle.tar.gz curl: (22) The requested URL returned error: 404 Warning: Bottle missing, falling back to the default domain... ==> Downloading https://ghcr.io/v2/homebrew/core/libomp/manifests/11.1.0 Already downloaded: /Users/leo/Library/Caches/Homebrew/downloads/d07c72aee9e97441cb0e3a5ea764f8acae989318597336359b6e111c3f4c44b1--libomp-11.1.0.bottle_manifest.json ==> Downloading https://ghcr.io/v2/homebrew/core/libomp/blobs/sha256:ec279162f0062c675ea96251801a99c19c3b82f395f1598ae2f31cd4cbd9a963 ############################################################################################################################################################################## 100.0% Warning: libomp 18.1.5 is available and more recent than version 11.1.0. ==> Pouring libomp--11.1.0.big_sur.bottle.tar.gz 🍺 /usr/local/Cellar/libomp/11.1.0: 9 files, 1.4MB ==> Running `brew cleanup libomp`... Disable this behaviour by setting HOMEBREW_NO_INSTALL_CLEANUP. Hide these hints with HOMEBREW_NO_ENV_HINTS (see `man brew`). Removing: /Users/leo/Library/Caches/Homebrew/libomp--11.1.0... (467.3KB)
closed
2024-05-08T02:19:54Z
2024-06-27T09:26:02Z
https://github.com/autogluon/autogluon/issues/4181
[ "bug: unconfirmed", "OS: Mac", "Needs Triage" ]
LeonTing1010
3
christabor/flask_jsondash
flask
134
Using the example app
I am sorry if this sounds stupid, but I am new to flask development. I am confused with how exactly to use the example app to study how the flask_jsondash work. I run the app and click the link that said 'Visit the chart blueprints' but it lead to server timeout error. When I looked at the code I understand that there is no function mapped to '/charts' URL, I guess you want people to implement that themselves but I can't figure out what I need to do. The doc seems to be built so people with experiences can understand quickly, but I can't. Do you have some guideline for people who are new to this? Specifically, I would appreciate a newbie tutorial. It does not have to be detailed, but a steps that I can follow to understand more easily.
closed
2017-07-19T02:50:23Z
2017-07-20T04:43:50Z
https://github.com/christabor/flask_jsondash/issues/134
[]
FMFluke
7
davidteather/TikTok-Api
api
629
[FEATURE_REQUEST] - Accessing private tik toks
Unable to access private tik toks. Running V.3.9.9 - have manually entered verifyFp cookie from logged in account with access to private content in question; working fine for public tik toks but for privates just runs and stops with no triggered error messages. I know variations of this topic have been discussed in past, any functionality as of June 2021? Also noticed class TikTokUser which seems relevant. Any help appreciated.
closed
2021-06-21T23:50:16Z
2021-08-07T00:13:59Z
https://github.com/davidteather/TikTok-Api/issues/629
[ "feature_request" ]
alanblue2000
1
pydata/pandas-datareader
pandas
495
Release 0.7.0
The recent re-addition of Yahoo! will trigger a new release in the next week. I will try to get as many PRs in before then.
closed
2018-02-21T18:22:00Z
2018-09-12T11:32:24Z
https://github.com/pydata/pandas-datareader/issues/495
[]
bashtage
15
kaliiiiiiiiii/Selenium-Driverless
web-scraping
300
is there a way to start it with firefox ?
SO my mian browser is firefox, but for selenium_driverless i use chrome. so is there a way to use firefox instead ? thanks
closed
2024-12-26T12:55:21Z
2024-12-26T13:05:00Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/300
[]
firaki12345-cmd
1
ets-labs/python-dependency-injector
flask
814
Configuration object is a dictionary and not an object with which the dot notation could be used to access its elements
I cannot figure out why the config is a dictionary, while in every example it is an object with "." (dot) operator to access its variables. Here is a simple code that I used: ``` from dependency_injector import containers, providers from dependency_injector.wiring import Provide, inject class Container(containers.DeclarativeContainer): config = providers.Configuration() @inject def use_config(config: providers.Configuration = Provide[Container.config]): print(type(config)) print(config) if __name__ == "__main__": container = Container() container.config.from_yaml("config.yaml") container.wire(modules=[__name__]) use_config() ``` and the type is a 'dict'
open
2024-09-02T12:55:35Z
2025-01-04T16:37:36Z
https://github.com/ets-labs/python-dependency-injector/issues/814
[]
Zevrap-81
2
zappa/Zappa
django
520
[Migrated] Feature Request: Including vs. Excluding
Originally from: https://github.com/Miserlou/Zappa/issues/1366 by [rr326](https://github.com/rr326) This may go against your fundamental design philosophy, but I feel it would be better to have Zappa require an explicit inclusion list rather than an exclusion list. Background: I've just spent a day trying to figure out why my Zappa installation stopped working. After following one cryptic lambda error after another, and reading many Zappa issues, I finally figured out that my package was > 500MB. (And it is a SIMPLE Flask app.) After more research, I figured out that it was including all sorts of stuff that it didn't need to. Then after a lot of trial and error, I excluded one dir after another, until my previously > 500MB .gz is now about 8 MB! I'm not saying Zappa did anything "wrong". But it simply couldn't guess what should and shouldn't have been included in my project. (I'm happy to share a project structure and give details if you want, but I think my structure is reasonable.) By including an "include" array, I know that it is my responsibility to modify it. And if you make it required and start with: `"include": ["."]`, I see it as a clue to tell me I need to figure it out. Alternatively, much more prominent information on the importance of "exclude" in the documentation would help. I could take a stab at that if it would be helpful, though I don't really understand what is and isn't included in the first place.
closed
2021-02-20T09:43:51Z
2022-07-16T07:25:01Z
https://github.com/zappa/Zappa/issues/520
[ "enhancement", "feature-request" ]
jneves
2
chainer/chainer
numpy
8,623
can't use chainer with new cupy, can't install old cupy
Chainer officially only support cupy == 7.8.0. Sadly, I can't install older cupy and when installing newer cupy, cupy is not recognized by chainer. Option 1: `pip install Cython` # works and installs Cython 0.29.31 `pip install cupy==7.8.0` # fails > CUDA_PATH : /cvmfs/soft.computecanada.ca/easybuild/software/2020/Core/cudacore/11.0.2 > NVTOOLSEXT_PATH : (none) > NVCC : (none) > ROCM_HOME : (none) > > Modules: > cuda : Yes (version 11000) > cusolver : Yes > cudnn : Yes (version 8003) > nccl : No > -> Include files not found: ['nccl.h'] > -> Check your CFLAGS environment variable. > nvtx : Yes > thrust : Yes > cutensor : No > -> Include files not found: ['cutensor.h'] > -> Check your CFLAGS environment variable. > cub : Yes > > WARNING: Some modules could not be configured. > CuPy will be installed without these modules. > Please refer to the Installation Guide for details: > https://docs.cupy.dev/en/stable/install.html > > ************************************************************ > > NOTICE: Skipping cythonize as cupy/core/_dtype.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_kernel.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_memory_range.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_routines_indexing.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_routines_logic.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_routines_manipulation.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_routines_math.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_routines_sorting.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_routines_statistics.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/_scalar.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/core.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/dlpack.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/flags.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/internal.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/fusion.pyx does not exist. > NOTICE: Skipping cythonize as cupy/core/raw.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/cublas.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/cufft.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/curand.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/cusparse.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/device.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/driver.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/memory.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/memory_hook.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/nvrtc.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/pinned_memory.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/profiler.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/function.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/stream.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/runtime.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/texture.pyx does not exist. > NOTICE: Skipping cythonize as cupy/util.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/cusolver.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/cudnn.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cudnn.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/nvtx.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/thrust.pyx does not exist. > NOTICE: Skipping cythonize as cupy/cuda/cub.pyx does not exist. > Traceback (most recent call last): > File "<string>", line 2, in <module> > File "<pip-setuptools-caller>", line 34, in <module> > File "/tmp/pip-install-3nvzj2jg/cupy_b0144fd6a6cf445885b7f609ca09f2cc/setup.py", line 156, in <module> > setup( > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/__init__.py", line 87, in setup > return distutils.core.setup(**attrs) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 177, in setup > return run_commands(dist) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/core.py", line 193, in run_commands > dist.run_commands() > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 968, in run_commands > self.run_command(cmd) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/dist.py", line 1217, in run_command > super().run_command(command) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 987, in run_command > cmd_obj.run() > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/command/install.py", line 68, in run > return orig.install.run(self) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/command/install.py", line 695, in run > self.run_command('build') > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 317, in run_command > self.distribution.run_command(command) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/dist.py", line 1217, in run_command > super().run_command(command) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 987, in run_command > cmd_obj.run() > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/command/build.py", line 24, in run > super().run() > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/command/build.py", line 131, in run > self.run_command(cmd_name) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/cmd.py", line 317, in run_command > self.distribution.run_command(command) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/dist.py", line 1217, in run_command > super().run_command(command) > File "/home/jolicoea/vidgen2/lib/python3.8/site-packages/setuptools/_distutils/dist.py", line 987, in run_command > cmd_obj.run() > File "/tmp/pip-install-3nvzj2jg/cupy_b0144fd6a6cf445885b7f609ca09f2cc/cupy_setup_build.py", line 991, in run > check_extensions(self.extensions) > File "/tmp/pip-install-3nvzj2jg/cupy_b0144fd6a6cf445885b7f609ca09f2cc/cupy_setup_build.py", line 728, in check_extensions > raise RuntimeError('''\ > RuntimeError: Missing file: cupy/cuda/cub.cpp > Please install Cython 0.28.0 or later. Please also check the version of Cython. > See https://docs.cupy.dev/en/stable/install.html for details. I have Cython 0.29.31, pip install says that 0.28.0 is not available so I can't downgrade. Option 2: `pip install cupy` or install from a git clone with `pip install -e .` cupy installs properly and I can use it, but chainer does not think that cupy is properly installed and I get cupy.core not found errors ### To Reproduce ```py pip install Cython pip install cupy==7.8.0 # error pip install cupy-cuda110 # error not found pip install cupy # works pip install chainer python -c 'import chainer; chainer.print_runtime_info()' # cupy not recognized by chainer ``` ### Environment ``` # python -c 'import chainer; chainer.print_runtime_info()' Chainer: 4.5.0 NumPy: 1.23.0 CuPy: Not Available # python -c 'import cupy; cupy.show_config()' OS : Linux-3.10.0-1160.62.1.el7.x86_64-x86_64-with-glibc2.2.5 Python Version : 3.8.10 CuPy Version : 11.0.0 CuPy Platform : NVIDIA CUDA NumPy Version : 1.23.0 SciPy Version : 1.8.0 Cython Build Version : 0.29.31 Cython Runtime Version : 0.29.31 CUDA Root : /cvmfs/soft.computecanada.ca/easybuild/software/2020/Core/cudacore/11.0.2 nvcc PATH : /cvmfs/soft.computecanada.ca/easybuild/software/2020/Core/cudacore/11.0.2/bin/nvcc CUDA Build Version : 11040 CUDA Driver Version : 11060 CUDA Runtime Version : 11040 cuBLAS Version : (available) cuFFT Version : 10502 cuRAND Version : 10205 cuSOLVER Version : (11, 2, 0) cuSPARSE Version : (available) NVRTC Version : (11, 4) Thrust Version : 101201 CUB Build Version : 101201 Jitify Build Version : d90e2e0 cuDNN Build Version : 8200 cuDNN Version : 8200 NCCL Build Version : 21104 NCCL Runtime Version : 21104 cuTENSOR Version : None cuSPARSELt Build Version : None Device 0 Name : Tesla V100-SXM2-16GB Device 0 Compute Capability : 70 Device 0 PCI Bus ID : 0000:1C:00.0 Device 1 Name : Tesla V100-SXM2-16GB Device 1 Compute Capability : 70 Device 1 PCI Bus ID : 0000:1D:00.0 ```
closed
2022-08-01T17:54:52Z
2022-08-02T04:51:48Z
https://github.com/chainer/chainer/issues/8623
[]
AlexiaJM
1
ydataai/ydata-profiling
pandas
1,288
Missing tags for latest v3.6.x releases
On PyPI, there are 3.6.4, 3.6.5 and 3.6.6 releases (https://pypi.org/project/pandas-profiling/#history), but no corresponding tags in this repo. Can you add them please?
closed
2023-03-17T10:08:19Z
2023-04-13T11:37:54Z
https://github.com/ydataai/ydata-profiling/issues/1288
[ "question/discussion ❓" ]
jamesmyatt
1
tensorly/tensorly
numpy
143
Feature Request: Outer Product
Hi, I am starting to work with tensors and found your toolbox. When trying the CPD, I first wanted to create a rank-3 tensor and then decompose it again and look at the result, since CPD is unique. There I noticed that no outer vector product is implemented in the toolbox. It would be nice if there is one, for simulations etc. I know there is numpy.outer, but this only works for 2 vectors. Thanks in advance, Isi
closed
2019-12-02T10:49:47Z
2019-12-02T12:43:58Z
https://github.com/tensorly/tensorly/issues/143
[]
IsabellLehmann
2
alpacahq/alpaca-trade-api-python
rest-api
453
Paper Trade client does not support fractional trading
Not sure if this is a client or server issue but when trying the below code with a paper trading endpoint and API key resp = api.submit_order( symbol='SPY', notional=450, # notional value of 1.5 shares of SPY at $300 side='buy', type='market', time_in_force='day', ) I get alpaca_trade_api.rest.APIError: qty is required
closed
2021-06-19T21:32:40Z
2021-06-19T21:42:51Z
https://github.com/alpacahq/alpaca-trade-api-python/issues/453
[]
arun-annamalai
0
neuml/txtai
nlp
465
How to add a custom pipeline into yaml config?
I have MyPipeline class. How to add the pipeline? Can we use this syntax? ```yaml my_pipeline: __import__: app.MyPipeline ```
closed
2023-04-25T11:07:44Z
2023-04-26T13:56:58Z
https://github.com/neuml/txtai/issues/465
[]
pyoner
2
microsoft/nni
deep-learning
5,225
customized trial issue from wechat
**Describe the issue**: 您好,这个操作如何使用命令执行? hi, could I use nni-command to do it? ![customized_png](https://user-images.githubusercontent.com/61399850/201559099-8b160c93-fdb1-4bbb-90a1-ffd7aa811312.png) **Environment**: - NNI version: -- - Training service (local|remote|pai|aml|etc): - Client OS: - Server OS (for remote mode only): - Python version: - PyTorch/TensorFlow version: - Is conda/virtualenv/venv used?: - Is running in Docker?: **Configuration**: - Experiment config (remember to remove secrets!): - Search space: **Log message**: - nnimanager.log: - dispatcher.log: - nnictl stdout and stderr: <!-- Where can you find the log files: LOG: https://github.com/microsoft/nni/blob/master/docs/en_US/Tutorial/HowToDebug.md#experiment-root-director STDOUT/STDERR: https://nni.readthedocs.io/en/stable/reference/nnictl.html#nnictl-log-stdout --> **How to reproduce it?**:
open
2022-11-14T01:58:20Z
2022-11-16T02:41:00Z
https://github.com/microsoft/nni/issues/5225
[ "feature request" ]
Lijiaoa
0
ARM-DOE/pyart
data-visualization
1,297
ENH: Add keyword add_lines in method plot_grid in gridmapdisplay
On occasion you would like to have the grid lines but not the coast maps in the plot. Separating the two would be useful (see https://github.com/MeteoSwiss/pyart/blob/dev/pyart/graph/gridmapdisplay.py)
closed
2022-10-21T11:10:25Z
2022-11-03T15:57:17Z
https://github.com/ARM-DOE/pyart/issues/1297
[ "Enhancement", "good first issue" ]
jfigui
3
alpacahq/alpaca-trade-api-python
rest-api
409
Invalid TimeFrame in getbars for hourly
Hello when I try to use the example, I get an error: `api.get_bars("AAPL", TimeFrame.Hour, "2021-02-08", "2021-02-08", limit=10, adjustment='raw').df` ``` """ Traceback (most recent call last): File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 160, in _one_request resp.raise_for_status() File "/home/kyle/.virtualenv/lib/python3.8/site-packages/requests/models.py", line 943, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 422 Client Error: Unprocessable Entity for url: https://data.alpaca.markets/v2/stocks/AAPL/bars?timeframe=1Hour&adjustment=raw&start=2021-02-08&end=2021-02-08&limit=10 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "run_hourly.py", line 231, in make_df tdf = api.get_bars("AAPL", TimeFrame.Hour, "2021-02-08", "2021-02-08", limit=10, adjustment='raw').df File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 625, in get_bars bars = list(self.get_bars_iter(symbol, File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 611, in get_bars_iter for bar in bars: File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 535, in _data_get_v2 resp = self.data_get('/stocks/{}/{}'.format(symbol, endpoint), File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 192, in data_get return self._request( File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 139, in _request return self._one_request(method, url, opts, retry) File "/home/kyle/.virtualenv/lib/python3.8/site-packages/alpaca_trade_api/rest.py", line 168, in _one_request raise APIError(error, http_error) alpaca_trade_api.rest.APIError: invalid timeframe ``` Minute data seems to work.
closed
2021-03-30T15:22:37Z
2021-07-02T09:35:55Z
https://github.com/alpacahq/alpaca-trade-api-python/issues/409
[]
hansonkd
7
flaskbb/flaskbb
flask
24
Add tests
I think tests are needed, I myself am I big fan of [py.test](http://pytest.org/latest/) in combination with [pytest-bdd](https://github.com/olegpidsadnyi/pytest-bdd) for functional tests.
closed
2014-03-08T11:14:40Z
2018-04-15T07:47:30Z
https://github.com/flaskbb/flaskbb/issues/24
[]
hvdklauw
15
LAION-AI/Open-Assistant
python
3,293
user streak updates in the backend takes up 100% cpu
updating user streak seems to use the cpu 100% in db.commit(). Add end of task debug info Batch the commits
closed
2023-06-05T00:16:51Z
2023-06-07T13:03:34Z
https://github.com/LAION-AI/Open-Assistant/issues/3293
[ "bug", "backend" ]
melvinebenezer
0
microsoft/nni
pytorch
4,874
Error about running with framecontroller mode
**config.yml** experimentName: example_mnist_pytorch trialConcurrency: 1 maxExecDuration: 1h maxTrialNum: 2 debug: false nniManagerIp: 172.16.40.155 #choice: local, remote, pai, kubeflow trainingServicePlatform: frameworkcontroller searchSpacePath: search_space.json #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: codeDir: . taskRoles: - name: worker taskNum: 1 command: python3 model.py gpuNum: 0 cpuNum: 1 memoryMB: 8192 image: frameworkcontroller/nni:v1.0 securityContext: privileged: true frameworkAttemptCompletionPolicy: minFailedTaskCount: 1 minSucceededTaskCount: 1 frameworkcontrollerConfig: storage: nfs serviceAccountName: frameworkcontroller nfs: # Your NFS server IP, like 10.10.10.10 server: <my nfs server ip> # Your NFS server export path, like /var/nfs/nni path: /nfs/nni readOnly: false nfs server: /etc/exports /nfs/nni *(rw,no_root_squash,sync,insecure,no_subtree_check) **k8s logs** kubectl describe pod nniexpywn5cftxenvma3hh-worker-0: ![image](https://user-images.githubusercontent.com/38311217/169243547-73b7641d-0265-41b0-b5fc-38af2df6e0a0.png) How to solve this error?
open
2022-05-19T08:02:48Z
2022-06-28T09:39:36Z
https://github.com/microsoft/nni/issues/4874
[ "user raised", "support", "Training Service" ]
N-Kingsley
1
ydataai/ydata-profiling
data-science
1,134
Introduce type-checking
### Missing functionality Types are not enforced by Python, nevertheless, to introduce type checking would reduce the number of issues open. ### Proposed feature Introduce type-checking for the user interfaced methods. ### Alternatives considered _No response_ ### Additional context _No response_
closed
2022-10-31T20:40:46Z
2022-11-10T11:08:04Z
https://github.com/ydataai/ydata-profiling/issues/1134
[ "needs-triage" ]
fabclmnt
0
davidsandberg/facenet
tensorflow
292
the result question
closed
2017-05-26T07:41:04Z
2017-05-26T07:42:55Z
https://github.com/davidsandberg/facenet/issues/292
[]
hanbim520
0
openapi-generators/openapi-python-client
rest-api
1,002
Providing package version via command properties
Allow setting generated client version by providing `--package-version` like property in the `openapi-python-client generate` This will simplify automatic processes in the Git-like environments
open
2024-03-14T10:09:16Z
2024-03-14T10:09:16Z
https://github.com/openapi-generators/openapi-python-client/issues/1002
[]
pasolid
0
pywinauto/pywinauto
automation
983
No Conda Installation
## Expected Behavior I am trying to install pywinauto thought conda. Here is the documentation: https://anaconda.org/conda-forge/pywinauto ## Actual Behavior PackagesNotFoundError: The following packages are not available from current channels: - pywinauto ## Steps to Reproduce the Problem 1. Open any Conda Environment 2. Write: 2.1. conda install -c conda-forge pywinauto or 2.2. conda install -c conda-forge/label/cf201901 pywinauto or 2.3. conda install -c conda-forge/label/cf202003 pywinauto ## Specifications - Pywinauto version: - Python version and bitness: Python 3.7 - Platform and OS: MacOS Sierra v10.12.6
closed
2020-09-15T14:25:23Z
2020-09-15T19:09:25Z
https://github.com/pywinauto/pywinauto/issues/983
[ "duplicate" ]
CibelesR
3
rougier/scientific-visualization-book
matplotlib
33
Requirements files for package versions
Having the versions of packages used for the book in a `requirements.txt` would be helpful for others reproducing things a year or so down the line. Looking through the repo for something such as `numpy` doesn't bring up anything wrt the version used, just that it's imported in several locations. As this book was only recently finished, perhaps there's an environment on the authors computer which has all the correct package versions within it? And a file could be generated from that. Example search for numpy with `rg numpy` : ``` README.md:* [From Python to Numpy](https://www.labri.fr/perso/nrougier/from-python-to-numpy/) (Scientific Python Volume I) README.md:* [100 Numpy exercices](https://github.com/rougier/numpy-100) rst/threed.rst:specify the color of each of the triangle using a numpy array, so let's just do rst/anatomy.rst: import numpy as np rst/anatomy.rst: import numpy as np rst/00-preface.rst: import numpy as np rst/00-preface.rst: >>> import numpy; print(numpy.__version__) code/showcases/escher-movie.py:import numpy as np code/showcases/domain-coloring.py:import numpy as np code/showcases/mandelbrot.py:import numpy as np code/showcases/text-shadow.py:import numpy as np code/showcases/windmap.py:import numpy as np code/showcases/mosaic.py:import numpy as np code/showcases/mosaic.py: from numpy.random.mtrand import RandomState code/showcases/contour-dropshadow.py:import numpy as np code/showcases/escher.py:import numpy as np code/showcases/text-spiral.py:import numpy as np code/showcases/recursive-voronoi.py:import numpy as np code/showcases/recursive-voronoi.py: from numpy.random.mtrand import RandomState code/showcases/waterfall-3d.py:import numpy as np rst/defaults.rst: import numpy as np code/beyond/stamp.py:import numpy as np code/beyond/dyson-hatching.py:import numpy as np code/beyond/tikz-dashes.py:import numpy as np rst/coordinates.rst: import numpy as np rst/animation.rst: import numpy as np rst/animation.rst: import numpy as np rst/animation.rst: import numpy as np code/beyond/tinybot.py:import numpy as np code/beyond/dungeon.py:import numpy as np cover/cover-pattern.py:import numpy as np code/beyond/interactive-loupe.py:import numpy as np code/beyond/bluenoise.py:import numpy as np code/beyond/bluenoise.py: from numpy.random.mtrand import RandomState code/beyond/polygon-clipping.py:import numpy as np code/beyond/radial-maze.py:import numpy as np code/reference/hatch.py:import numpy as np code/reference/colormap-sequential-1.py:import numpy as np code/reference/colormap-uniform.py:import numpy as np code/reference/marker.py:import numpy as np code/reference/line.py:import numpy as np code/ornaments/annotation-zoom.py:import numpy as np code/scales-projections/text-polar.py:import numpy as np code/ornaments/legend-regular.py:import numpy as np code/ornaments/elegant-scatter.py:import numpy as np code/reference/axes-adjustment.py:import numpy as np code/ornaments/legend-alternatives.py:import numpy as np code/reference/colorspec.py:import numpy as np code/typography/typography-matters.py:import numpy as np code/colors/color-gradients.py:import numpy as np code/threed/bunny-6.py:import numpy as np code/scales-projections/projection-polar-config.py:import numpy as np code/colors/color-wheel.py:import numpy as np code/colors/mona-lisa.py:import numpy as np code/threed/bunny-4.py:import numpy as np code/ornaments/title-regular.py:import numpy as np code/typography/text-outline.py:import numpy as np code/ornaments/bessel-functions.py:import numpy as np code/scales-projections/projection-polar-histogram.py:import numpy as np code/rules/rule-6.py:import numpy as np code/colors/open-colors.py:import numpy as np code/colors/material-colors.py:import numpy as np code/colors/flower-polar.py:import numpy as np code/typography/typography-legibility.py:import numpy as np code/colors/colored-plot.py:import numpy as np code/rules/rule-7.py:import numpy as np code/colors/colored-hist.py:import numpy as np code/rules/rule-3.py:import numpy as np code/colors/alpha-vs-color.py:import numpy as np code/colors/stacked-plots.py:import numpy as np code/ornaments/label-alternatives.py:import numpy as np code/typography/tick-labels-variation.py:import numpy as np code/rules/projections.py:import numpy as np code/typography/typography-math-stacks.py:import numpy as np code/rules/rule-2.py:import numpy as np code/colors/alpha-scatter.py:import numpy as np code/typography/typography-text-path.py:import numpy as np code/scales-projections/polar-patterns.py:import numpy as np code/scales-projections/scales-custom.py:import numpy as np code/rules/parameters.py:import numpy as np code/threed/bunny-1.py:import numpy as np code/scales-projections/geo-projections.py:import numpy as np code/rules/rule-8.py:import numpy as np code/threed/bunny-5.py:import numpy as np code/ornaments/latex-text-box.py:import numpy as np code/ornaments/annotation-direct.py:import numpy as np code/typography/projection-3d-gaussian.py:import numpy as np code/threed/bunny-7.py:import numpy as np code/rules/helper.py:import numpy as np code/rules/helper.py: """ Generate a numpy array containing a disc. """ code/typography/typography-font-stacks.py:import numpy as np code/scales-projections/scales-log-log.py:import numpy as np code/scales-projections/projection-3d-frame.py:import numpy as np code/threed/bunnies.py:import numpy as np code/threed/bunny.py:import numpy as np code/threed/bunny-3.py:import numpy as np code/rules/rule-9.py:import numpy as np code/ornaments/annotate-regular.py:import numpy as np code/threed/bunny-2.py:import numpy as np code/reference/tick-locator.py:import numpy as np code/threed/bunny-8.py:import numpy as np code/reference/colormap-diverging.py:import numpy as np code/scales-projections/scales-comparison.py:import numpy as np code/reference/text-alignment.py:import numpy as np code/scales-projections/scales-check.py:import numpy as np code/reference/scale.py:import numpy as np code/reference/colormap-qualitative.py:import numpy as np code/reference/tick-formatter.py:import numpy as np code/rules/graphics.py:import numpy as np code/rules/rule-1.py:import numpy as np code/reference/collection.py:import numpy as np code/ornaments/annotation-side.py:import numpy as np code/reference/colormap-sequential-2.py:import numpy as np code/defaults/defaults-exercice-1.py:import numpy as np code/animation/platecarree.py:import numpy as np code/defaults/defaults-step-4.py:import numpy as np code/layout/standard-layout-2.py:import numpy as np code/coordinates/transforms-blend.py:import numpy as np code/unsorted/layout-weird.py:import numpy as np code/unsorted/advanced-linestyles.py:import numpy as np code/coordinates/transforms-exercise-1.py:import numpy as np code/animation/fluid-animation.py:import numpy as np code/unsorted/alpha-gradient.py:import numpy as np code/animation/sine-cosine.py:import numpy as np code/optimization/line-benchmark.py:import numpy as np code/animation/fluid.py:import numpy as np code/optimization/transparency.py:import numpy as np code/animation/rain.py:import numpy as np code/optimization/scatter-benchmark.py:import numpy as np code/optimization/self-cover.py:import numpy as np code/animation/imgcat.py:import numpy as np code/unsorted/hatched-bars.py:import numpy as np code/optimization/multithread.py:import numpy as np code/animation/earthquakes.py:import numpy as np code/unsorted/poster-layout.py:import numpy as np code/coordinates/transforms-letter.py:import numpy as np code/optimization/scatters.py:import numpy as np code/animation/sine-cosine-mp4.py:import numpy as np code/optimization/multisample.py:import numpy as np code/unsorted/make-hatch-linewidth.py:import numpy as np code/animation/lissajous.py:import numpy as np code/coordinates/transforms-polar.py:import numpy as np code/unsorted/earthquakes.py:import numpy as np code/unsorted/git-commits.py:import numpy as np code/unsorted/github-activity.py:import numpy as np code/coordinates/collage.py:import numpy as np code/introduction/matplotlib-timeline.py:import numpy as np code/coordinates/transforms-floating-axis.py:import numpy as np code/coordinates/transforms-hist.py:import numpy as np code/layout/complex-layout-bare.py:import numpy as np code/animation/less-is-more.py:import numpy as np code/coordinates/transforms.py:import numpy as np code/unsorted/alpha-compositing.py:import numpy as np code/layout/standard-layout-1.py:import numpy as np code/layout/layout-classical.py:import numpy as np code/unsorted/stacked-bars.py:import numpy as np code/layout/complex-layout.py:import numpy as np code/layout/layout-aspect.py:import numpy as np code/unsorted/metropolis.py:import numpy as np code/unsorted/scale-logit.py:import numpy as np code/unsorted/dyson-hatching.py:import numpy as np code/unsorted/dyson-hatching.py: from numpy.random.mtrand import RandomState code/layout/layout-gridspec.py:import numpy as np code/defaults/defaults-step-1.py:import numpy as np code/defaults/defaults-step-2.py:import numpy as np code/defaults/defaults-step-5.py:import numpy as np code/defaults/defaults-step-3.py:import numpy as np code/anatomy/bold-ticklabel.py:import numpy as np code/unsorted/3d/contour.py:import numpy as np code/unsorted/3d/sphere.py:import numpy as np code/unsorted/3d/platonic-solids.py:import numpy as np code/unsorted/3d/surf.py:import numpy as np code/unsorted/3d/bar.py:import numpy as np tex/cover-pattern.py:import numpy as np code/unsorted/3d/scatter.py:import numpy as np tex/book.bib: url = {https://www.labri.fr/perso/nrougier/from-python-to-numpy/}, code/anatomy/pixel-font.py:import numpy as np code/anatomy/raster-vector.py:import numpy as np code/anatomy/zorder-plots.py:import numpy as np code/anatomy/ruler.py:import numpy as np code/anatomy/anatomy.py:import numpy as np code/anatomy/zorder.py:import numpy as np code/unsorted/3d/bunny.py:import numpy as np code/unsorted/3d/bunnies.py:import numpy as np code/unsorted/3d/plot.py:import numpy as np code/unsorted/3d/plot.py: camera : 4x4 numpy array code/unsorted/3d/glm.py:import numpy as np ``` These seem to be the imports used in the text: ``` 'from __future__ import absolute_import', 'from __future__ import division', 'from __future__ import print_function', 'from __future__ import unicode_literals', 'from datetime import date, datetime', 'from datetime import datetime', 'from dateutil.relativedelta import relativedelta', 'from docutils import nodes', 'from docutils.core import publish_cmdline', 'from docutils.parsers.rst import directives, Directive', 'from fluid import Fluid, inflow', 'from functools import reduce', 'from graphics import *', 'from helper import *', 'from itertools import cycle', 'from math import cos, sin, floor, sqrt, pi, ceil', 'from math import factorial', 'from math import sqrt, ceil, floor, pi, cos, sin', 'from matplotlib import colors', 'from matplotlib import ticker', 'from matplotlib.animation import FuncAnimation, writers', 'from matplotlib.artist import Artist', 'from matplotlib.backend_bases import GraphicsContextBase, RendererBase', 'from matplotlib.backends.backend_agg import FigureCanvas', 'from matplotlib.backends.backend_agg import FigureCanvasAgg', 'from matplotlib.collections import AsteriskPolygonCollection', 'from matplotlib.collections import CircleCollection', 'from matplotlib.collections import EllipseCollection', 'from matplotlib.collections import LineCollection', 'from matplotlib.collections import PatchCollection', 'from matplotlib.collections import PathCollection', 'from matplotlib.collections import PolyCollection', 'from matplotlib.collections import PolyCollection', 'from matplotlib.collections import QuadMesh', 'from matplotlib.collections import RegularPolyCollection', 'from matplotlib.collections import StarPolygonCollection', 'from matplotlib.colors import LightSource', 'from matplotlib.figure import Figure', 'from matplotlib.font_manager import FontProperties', 'from matplotlib.font_manager import findfont, FontProperties', 'from matplotlib.gridspec import GridSpec', 'from matplotlib.gridspec import GridSpec', 'from matplotlib.patches import Circle', 'from matplotlib.patches import Circle', 'from matplotlib.patches import Circle, Rectangle', 'from matplotlib.patches import ConnectionPatch', 'from matplotlib.patches import Ellipse', 'from matplotlib.patches import Ellipse', 'from matplotlib.patches import FancyBboxPatch', 'from matplotlib.patches import PathPatch', 'from matplotlib.patches import Polygon', 'from matplotlib.patches import Polygon', 'from matplotlib.patches import Polygon, Ellipse', 'from matplotlib.patches import Rectangle', 'from matplotlib.patches import Rectangle, PathPatch', 'from matplotlib.path import Path', 'from matplotlib.patheffects import Stroke, Normal', 'from matplotlib.patheffects import withStroke', 'from matplotlib.text import TextPath', 'from matplotlib.textpath import TextPath', 'from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatter', 'from matplotlib.ticker import MultipleLocator', 'from matplotlib.ticker import NullFormatter', 'from matplotlib.ticker import NullFormatter, MultipleLocator', 'from matplotlib.ticker import NullFormatter, SymmetricalLogLocator', 'from matplotlib.transforms import Affine2D', 'from matplotlib.transforms import ScaledTranslation', 'from matplotlib.transforms import blended_transform_factory, ScaledTranslation', 'from mpl_toolkits.axes_grid1 import ImageGrid', 'from mpl_toolkits.axes_grid1 import ImageGrid', 'from mpl_toolkits.axes_grid1 import make_axes_locatable', 'from mpl_toolkits.axes_grid1.inset_locator import inset_axes', 'from mpl_toolkits.axes_grid1.inset_locator import mark_inset', 'from mpl_toolkits.axes_grid1.inset_locator import mark_inset', 'from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes', 'from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes', 'from mpl_toolkits.mplot3d import Axes3D, art3d', 'from mpl_toolkits.mplot3d import Axes3D, proj3d, art3d', 'from multiprocessing import Pool', 'from numpy.random.mtrand import RandomState', 'from parameters import *', 'from pathlib import Path', 'from projections import *', 'from pylab import *', 'from scipy.ndimage import gaussian_filter', 'from scipy.ndimage import gaussian_filter1d', 'from scipy.ndimage import map_coordinates, spline_filter', 'from scipy.sparse.linalg import factorized', 'from scipy.spatial import Voronoi', 'from scipy.special import erf', 'from scipy.special import jn, jn_zeros', 'from shapely.geometry import Polygon', 'from shapely.geometry import box, Polygon', 'from skimage.color import rgb2lab, lab2rgb, rgb2xyz, xyz2rgb', 'from timeit import default_timer as timer', 'from tqdm.autonotebook import tqdm', 'import bluenoise', 'import cartopy', 'import cartopy.crs', 'import cartopy.crs as ccrs', 'import colorsys', 'import dateutil.parser', 'import git', 'import glm', 'import html.parser', 'import imageio', 'import locale', 'import math', 'import matplotlib', 'import matplotlib as mpl', 'import matplotlib.animation as animation', 'import matplotlib.animation as animation', 'import matplotlib.colors as colors', 'import matplotlib.colors as mc', 'import matplotlib.colors as mcolors', 'import matplotlib.gridspec as gridspec', 'import matplotlib.image as mpimg', 'import matplotlib.patches as mpatch', 'import matplotlib.patches as mpatches', 'import matplotlib.patches as patches', 'import matplotlib.path as mpath', 'import matplotlib.path as path', 'import matplotlib.patheffects as PathEffects', 'import matplotlib.patheffects as path_effects', 'import matplotlib.pylab as plt', 'import matplotlib.pyplot as plt', 'import matplotlib.pyplot as plt', 'import matplotlib.ticker as ticker', 'import matplotlib.transforms as transforms', 'import mpl_toolkits.axisartist.floating_axes as floating_axes', 'import mpl_toolkits.mplot3d.art3d as art3d', 'import mpmath', 'import noise', 'import numpy as np', 'import os', 'import plot', 'import re', 'import scipy', 'import scipy.sparse as sp', 'import scipy.spatial', 'import shapely.geometry', 'import sys', 'import tqdm', 'import tqdm', 'import types', 'import urllib', 'import urllib.request' ```
open
2021-12-11T12:57:53Z
2021-12-13T11:26:24Z
https://github.com/rougier/scientific-visualization-book/issues/33
[]
geo7
0
SYSTRAN/faster-whisper
deep-learning
869
Transcribe results being translated to different language
Hi all, I just want to post an issue I encountered. As the title suggests, faster-whisper transcribed the audio file in the wrong language. This is my code for this test: ``` from faster_whisper import WhisperModel model_size = "medium" file = "audio.mp3" model = WhisperModel(model_size, device="cpu", compute_type="int8") segments, info = model.transcribe( file, initial_prompt="Umm, hmm, Uhh, Ahh", #used to detect fillers temperature=0, vad_filter=True, without_timestamps=True, beam_size=1, # chunk_length=3 ) print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) print(info) for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` And the result was: > [1.01s -> 8.40s] Tidak ada, biar saya tolong awak dengan masalah pembayaran. Boleh saya tahu masalah apa yang awak hadapi? I used google translate for the result and saw that the Malay sentence is close to what was said in the English audio, I'm not sure why it was translated. I checked the all_language_probs and saw that the highest prob was "ms". Given this, is there a way to prevent this? I know that setting a language helps, but the plan is to make it flexible and be able to transcribe audios of differing languages. [audio.zip](https://github.com/user-attachments/files/15551003/audio.zip)
closed
2024-06-04T12:08:45Z
2024-06-17T07:04:37Z
https://github.com/SYSTRAN/faster-whisper/issues/869
[]
acn-reginald-casela
11
plotly/dash
dash
2,764
Dangerous link detected error after upgrading to Dash 2.15.0
``` dash 2.15.0 dash-bootstrap-components 1.5.0 dash-core-components 2.0.0 dash-extensions 1.0.12 dash-html-components 2.0.0 dash-iconify 0.1.2 dash-mantine-components 0.12.1 dash-table 5.0.0 ``` After upgrading to Dash 2.15.0, I have apps that are now breaking with `Dangerous link detected` errors, which are emitted when I use `Iframe` components to display embedded data, e.g. PDF files. Here is a small example, ``` import base64 import requests from dash import Dash, html # Get a sample PDF file. r = requests.get("https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf") bts = r.content # Encode PDF file as base64 string. encoded_string = base64.b64encode(bts).decode("ascii") src = f"data:application/pdf;base64,{encoded_string}" # Make a small example app. app = Dash() app.layout = html.Iframe(id="embedded-pdf", src=src, width="100%", height="100%") if __name__ == '__main__': app.run_server() ``` I would expect the app would continue to work, displaying the PDF, like it did in previous versions. I guess the issue is related to the fixing of XSS vulnerabilities as mentioned in #2743 . However, I am not sure why it should be considered a vulnerability to display an embedded PDF file.
closed
2024-02-18T13:47:23Z
2024-04-22T15:43:09Z
https://github.com/plotly/dash/issues/2764
[ "bug", "sev-1" ]
emilhe
11
chatopera/Synonyms
nlp
25
请问words.nearby.json.gz这个词典的数据是怎么生成的啊,万分感谢
# description ## current ## expected # solution # environment * version: The commit hash (`git rev-parse HEAD`)
closed
2018-01-16T00:40:04Z
2018-01-16T06:22:40Z
https://github.com/chatopera/Synonyms/issues/25
[ "duplicate" ]
waterzxj
3
sanic-org/sanic
asyncio
2,464
`Async for` can be used to iterate over a websocket's incoming messages
**Is your feature request related to a problem? Please describe.** When creating a websocket server I'd like to use `async for` to iterate over the incoming messages from a connection. This is a feature that the [websockets lib](https://websockets.readthedocs.io/en/stable/) uses. Currently, if you try to use `async for` you get the following error: ```console TypeError: 'async for' requires an object with __aiter__ method, got WebsocketImplProtocol ``` **Describe the solution you'd like** Ideally, I could run something like the following on a Sanic websocket route: ```python @app.websocket("/") async def feed(request, ws): async for msg in ws: print(f'received: {msg.data}') await ws.send(msg.data) ``` **Additional context** [This was originally discussed on the sanic-support channel on the discord server](https://discord.com/channels/812221182594121728/813454547585990678/978393931903545344)
closed
2022-05-23T21:05:24Z
2022-09-20T21:20:33Z
https://github.com/sanic-org/sanic/issues/2464
[ "help wanted", "intermediate", "feature request" ]
bradlangel
11
PaddlePaddle/PaddleHub
nlp
1,410
hub serving启动成功,访问返回503
用hub serving启动了我fintune后的模型,但在访问时返回503
open
2021-05-12T03:27:55Z
2021-05-14T02:21:05Z
https://github.com/PaddlePaddle/PaddleHub/issues/1410
[ "serving" ]
dedex1994
3
TheKevJames/coveralls-python
pytest
4
Documentation could be clearer
The README says > First, log in via Github and add your repo on Coveralls website. > > Second, install this package: > > $ pip install coveralls > > If you're using Travis CI, no further configuration is required. Which raises a question: How can a package I pip install locally into my development laptop affect anything that happens between Travis CI and Coveralls.io? Turns out some further configuration _is_ required after all. Specifically, I have to edit .travis.yml: - I have to add `pip install coveralls` to the `install` section (or update my requirements.txt if I have one). - I have to compute the coverage (using some variation of `coverage run testscript.py`), - and then I have to push it to coveralls.io (by calling `coveralls` in the after_script section -- or should it be after_success? I don't know, I've seen both!). It would be really helpful to have a sample .travis.yml in the README.
closed
2013-04-09T19:10:07Z
2013-04-10T16:57:21Z
https://github.com/TheKevJames/coveralls-python/issues/4
[]
mgedmin
6
pallets-eco/flask-sqlalchemy
flask
1,145
flask-sqlAlchemy >=3.0.0 version: session.bind is None
<!-- This issue tracker is a tool to address bugs in Flask-SQLAlchemy itself. Please use Pallets Discord or Stack Overflow for questions about your own code. Ensure your issue is with Flask-SQLAlchemy and not SQLAlchemy itself. Replace this comment with a clear outline of what the bug is. --> <!-- Describe how to replicate the bug. Include a minimal reproducible example that demonstrates the bug. Include the full traceback if there was an exception. --> ``` from flask import Flask from flask_sqlalchemy import SQLAlchemy import pymysql db = SQLAlchemy() app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = '' pymysql.install_as_MySQLdb() db.init_app(app) class Task(db.Model): """ task info table """ __tablename__ = 'test_client_task' __table_args__ = {'extend_existing': True} id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(32), nullable=False) with app.app_context(): print(db.session.bind) # Task.__table__.drop(db.session.bind) Task.__table__.create(db.session.bind) ``` <!-- Describe the expected behavior that should have happened but didn't. --> Expected: db.session.bind is Engine, but happened db.session.bind is None. When a table is created in this way, an exception is raised. But I found it to be normal with version 2.5.1 Environment: - Python version: 3.9 - Flask-SQLAlchemy version: >= 3.0 - SQLAlchemy version: 1.4.45
closed
2022-12-13T07:23:11Z
2023-01-31T14:25:21Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/1145
[]
wangtao2213405054
1
TencentARC/GFPGAN
pytorch
496
Add atile
open
2024-01-27T07:15:33Z
2024-01-27T07:15:33Z
https://github.com/TencentARC/GFPGAN/issues/496
[]
dildarhossin
0
mwaskom/seaborn
data-visualization
3,292
Wrong legend color when using histplot multiple times
``` sns.histplot([1,2,3]) sns.histplot([4,5,6]) sns.histplot([7,8,9]) sns.histplot([10,11,12]) plt.legend(labels=["A", "B", "C", "D"]) ``` ![image](https://user-images.githubusercontent.com/14833020/224363975-cc4d8975-bf3f-4044-80d7-b8d1e3d77b38.png) Seaborn 0.12.2, matplotlib 3.6.2 This may be related to https://github.com/mwaskom/seaborn/issues/3115 but is not the same issue, since histplot is used multiple times
closed
2023-03-10T16:04:15Z
2023-03-10T19:10:43Z
https://github.com/mwaskom/seaborn/issues/3292
[]
mesvam
1
huggingface/datasets
numpy
7,371
500 Server error with pushing a dataset
### Describe the bug Suddenly, I started getting this error message saying it was an internal error. `Error creating/pushing dataset: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible! Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/u1295595/grasp_dataset_converter/src/grasp_dataset_converter/main.py", line 142, in main subset_train.push_to_hub(dataset_name, split='train') File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5624, in push_to_hub commit_info = api.create_commit( File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 1518, in _inner return fn(self, *args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 4087, in create_commit hf_raise_for_status(commit_resp, endpoint_name="commit") File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible!` ### Steps to reproduce the bug I am pushing a Dataset in a loop via push_to_hub API ### Expected behavior It worked fine until it stopped working suddenly. Expected behavior: It should start working again ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-4.18.0-477.15.1.el8_8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.0 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
open
2025-01-15T18:23:02Z
2025-01-15T20:06:05Z
https://github.com/huggingface/datasets/issues/7371
[]
martinmatak
1
FlareSolverr/FlareSolverr
api
580
can not run FlareSolverr. auto stop if I run it.
can not run FlareSolverr ### Environment * **FlareSolverr version**: 2.2.10 * **Last working FlareSolverr version**: * **Operating system**: qnap QTS 5.0.1.2194 * **Are you using Docker**: [yes/no] yes * **FlareSolverr User-Agent (see log traces or / endpoint)**: * **Are you using a proxy or VPN?** [yes/no] no * **Are you using Captcha Solver:** [yes/no] no * **If using captcha solver, which one:** * **URL to test this issue:** ### Description [List steps to reproduce the error and details on what happens and what you expected to happen] ### Logged Error Messages [Place any relevant error messages you noticed from the logs here.] [Make sure you attach the full logs with your personal information removed in case we need more information] ### Screenshots ![image](https://user-images.githubusercontent.com/1157840/201249263-c4bf34f5-32f2-46bb-86f6-75e496ca2049.png) [Place any screenshots of the issue here if needed]
closed
2022-11-11T02:31:24Z
2022-11-12T04:24:03Z
https://github.com/FlareSolverr/FlareSolverr/issues/580
[ "more information needed" ]
dongxi8
7
vimalloc/flask-jwt-extended
flask
167
How to start server
Hey everyone, Successfully installed the dependencies in requirements.txt, But i am having difficulty in server starting. Any help will be greatly appreciated.
closed
2018-07-05T10:39:33Z
2018-07-21T02:57:32Z
https://github.com/vimalloc/flask-jwt-extended/issues/167
[]
shafikhaan
1
koxudaxi/datamodel-code-generator
fastapi
1,841
linkml export support?
I discovered your project from https://github.com/gold-standard-phantoms/bids-pydantic/ which produces pydantic model from our BIDS standard metadata descriptor files such as https://github.com/bids-standard/bids-schema/blob/main/versions/1.9.0/schema/objects/metadata.yaml after a few [ad-hoc transformations](https://github.com/bids-standard/bids-schema/blob/main/versions/1.9.0/schema/objects/metadata.yaml) using your library. But there is now relatively new kid in the sandbox -- the https://linkml.io/ which provides a metadata description in yaml files expressive enough to then export in a [variety underlying serializations like pydantic , jsonschema etc](https://linkml.io/linkml/generators/index.html). Thought to drop here to possibly see adoption for the "export" functionality.
open
2024-02-06T23:50:24Z
2024-02-06T23:50:24Z
https://github.com/koxudaxi/datamodel-code-generator/issues/1841
[]
yarikoptic
0
Evil0ctal/Douyin_TikTok_Download_API
fastapi
233
接口报 500 错误
https://api.douyin.wtf/tiktok_video_data?video_id=7257925577091386642 这个接口报 500 错误 Internal Server Error
closed
2023-08-04T03:17:01Z
2023-08-04T09:28:09Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/233
[ "BUG" ]
419606974
2
jupyterhub/repo2docker
jupyter
901
Spurious numpy version gets installed
### Bug description An [archived repo of mine](https://github.com/mdeff/ntds_2016) requires python 3.5 (specified in `runtime.txt`) and numpy 1.11.1 (specified in `requirements.txt`). While it used to work, the repo now fails to build on <https://mybinder.org> as it somehow tries to use numpy 1.19.0rc1, which is not compatible with python 3.5. (Why a numpy rc would ever be installed?) #### Expected behaviour Only numpy 1.11.1 gets installed. #### Actual behaviour Build fails with `SyntaxError` during the installation of `statsmodels==0.6.1` because there's an f-string in numpy 1.19's `setup.py` (introduced in python 3.6). ### How to reproduce Click <https://mybinder.org/v2/gh/mdeff/ntds_2016/with_outputs?urlpath=tree> and observe the build error. (Why can't I copy text from the build logs?)
closed
2020-05-28T15:31:19Z
2020-06-15T16:50:08Z
https://github.com/jupyterhub/repo2docker/issues/901
[]
mdeff
5
miguelgrinberg/Flask-SocketIO
flask
1,997
Support for once to listen for an event only 1 time (Like official socket.io server has)
**Is your feature request related to a problem? Please describe.** For example to request user input from a socket and to only handle the output once. **Describe the solution you'd like** Sending a event to the client requestInput -> {"title": "Enter name of file"} then in the client ask for input, then send the the respsonse to the server In the server write the data to for example redis. **Additional context** [Add any other context or screenshots about the feature request here. ](https://socket.io/docs/v4/listening-to-events/#socketonceeventname-listener)
closed
2023-06-30T10:31:07Z
2024-01-06T19:10:35Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1997
[ "enhancement" ]
kingdevnl
1
chezou/tabula-py
pandas
255
First line is ignored while Reading
<!--- Provide a general summary of your changes in the Title above --> The issue raises when the pdf has the incomplete borders in the first row in the table. # Summary of your issue <!-- Write the summary of your issue here --> # Check list before submit <!--- Write and check the following questionaries. --> - [ ] Did you read [FAQ](https://tabula-py.readthedocs.io/en/latest/faq.html)? Yes - [ ] (Optional, but really helpful) Your PDF URL: ? Cant't Upload - [ ] Paste the output of `import tabula; tabula.environment_info()` on Python REPL: ? Python version: 3.7.4 (default, Aug 9 2019, 18:34:13) [MSC v.1915 64 bit (AMD64)] Java version: openjdk version "11.0.1" 2018-10-16 LTS OpenJDK Runtime Environment Zulu11.2+3 (build 11.0.1+13-LTS) OpenJDK 64-Bit Server VM Zulu11.2+3 (build 11.0.1+13-LTS, mixed mode) tabula-py version: 1.4.1 platform: Windows-10-10.0.18362-SP0 uname: uname_result(system='Windows', node='APCL20L6F1F2CE4', release='10', version='10.0.18362', machine='AMD64', processor='Intel64 Family 6 Model 142 Stepping 10, GenuineIntel') linux_distribution: ('MSYS_NT-10.0-18362', '3.0.7', '') mac_ver: ('', ('', '', ''), '') If not possible to execute `tabula.environment_info()`, please answer following questions manually. - [ ] Paste the output of `python --version` command on your terminal: ? - [ ] Paste the output of `java -version` command on your terminal: ? - [ ] Does `java -h` command work well?; Ensure your java command is included in `PATH` - [ ] Write your OS and it's version: ? # What did you do when you faced the problem? ![image](https://user-images.githubusercontent.com/50916738/89265324-ecb1ed00-d651-11ea-9031-18ba9f8894d3.png) <!--- Provide your information to reproduce the issue. --> ## Code: import os import tabula os.chdir('C://python') table = tb.read_pdf("Core_Lib.pdf",multiple_tables = True,pages='35', lattice = True,stream = True) ``` paste your core code which minimum reproducible for the issue ``` ## Expected behavior: <!--- Write your expected results/outputs --> ``` write your expected output ``` ## Actual behavior: <!--- Put the actual results/outputs --> ![image](https://user-images.githubusercontent.com/50916738/89265375-02271700-d652-11ea-8807-56ec86cdabfb.png) ``` paste your output ``` ## Related Issues:
closed
2020-08-04T07:27:18Z
2020-08-04T12:30:54Z
https://github.com/chezou/tabula-py/issues/255
[ "PDF required" ]
Jagadeeshkb
1
JaidedAI/EasyOCR
machine-learning
1,215
English multi-column text is returned out of order
Newspapers and other multi-column text blocks appear to be scanned line by line, there is no column detection. The resulting output is in the order of first line from first column, first line from second column, first line from third column, second line from first column, second line from second column, etc. I am not sure the best approach to fixing this. As a workaround I will just split the input images by column.
open
2024-02-17T00:38:02Z
2024-02-17T00:38:02Z
https://github.com/JaidedAI/EasyOCR/issues/1215
[]
mlc-delgado
0
jmcnamara/XlsxWriter
pandas
138
Change to method signature of workbook.add_format()
I am wondering if there is any support for changing the signature for the workbook.add_format() method to the following: ``` python def add_format(self, properties = {}, **props): if properties and props: raise Exception("Use one or the other (make nicer error message)") .... ``` This would allow a (in my opinion) more pleasing and less cluttered method of defining formats. Instead of ``` python workbook.add_format({ "font_name" : "Tahoma", "font_size" : 8 }) ``` we could have ``` python workbook.add_format(font_name = "Tahoma", font_size = 8) ``` If there is any support for this I could generate a pull request for doing this but don't want to waste anyone's time if there is a reason for not doing this that has been covered in the past. Please advise. Thanks!
closed
2014-06-26T16:41:37Z
2016-09-30T14:16:13Z
https://github.com/jmcnamara/XlsxWriter/issues/138
[ "feature request" ]
anthony-tuininga
6
jpadilla/django-rest-framework-jwt
django
354
Use JWT token auth for https api failed (return "Authentication credentials were not provided")
When I just deploy this app with apache2 using http, it works fine. But after I set "SSLEngine on" in apache2, I can only access these apis in browser. Accesses via postman or python-requests or curl is all failed with the same error. ![image](https://user-images.githubusercontent.com/12494243/28624379-8e6b9f6a-724b-11e7-9a3a-4b77b673b61d.png)
closed
2017-07-26T13:46:35Z
2019-05-17T17:49:19Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/354
[]
lizeyan
2
ultrafunkamsterdam/undetected-chromedriver
automation
1,023
Imperva dedecction
Hi. I try all things like stealh-selenium,window.cdc_*,fake user-agent but everytime imperva dedect me. https://fingerprint.com/products/bot-detection and other bot dedect result is clear.Do you guys any idea about this ?.It's not about my ip because i try at different ip's.Sorry for my bad eng btw.
closed
2023-02-02T12:44:36Z
2023-02-09T01:24:38Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1023
[]
melleryb
11
CorentinJ/Real-Time-Voice-Cloning
python
322
Problem:Run demo_cli.py, Nothing happened!
I already run " pip3 install -r requirements.txt" ,it's done. When I run "demo_cli.py", nothing happened. I repeated it several times, but just nothing. As follows: (base) C:\Users\Administrator\Real-Time-Voice-Cloning-master\Real-Time-Voice-Cloning-master>python demo_cli.py (base) C:\Users\Administrator\Real-Time-Voice-Cloning-master\Real-Time-Voice-Cloning-master> Does anyone know why? Thanks.
closed
2020-04-15T12:22:32Z
2020-04-28T03:33:08Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/322
[]
herorichard
3
LAION-AI/Open-Assistant
machine-learning
3,537
Lagging
There is a bug or lag in the chat, the internet is always full when I want to start the chat, please fix the server again even though my internet is good.
closed
2023-07-01T09:55:38Z
2023-07-04T19:51:32Z
https://github.com/LAION-AI/Open-Assistant/issues/3537
[ "bug" ]
M4X4Lmina
1
aio-libs/aiopg
sqlalchemy
385
Any way to stream results asynchronously?
Since psycopg2 doesn't support named cursors in async mode, is there any way to stream results? Is it possible to use aipog's interface synchronously to stream results? If so, how? Do I need to use raw psycopg2 directly?
closed
2017-09-11T16:42:23Z
2021-03-05T21:18:20Z
https://github.com/aio-libs/aiopg/issues/385
[]
Daenyth
3
erdewit/ib_insync
asyncio
46
doing loops to get historical data and execute order at specific time
Hello, Wondering if there is an easy way to get historical data and execute order at specific time. For example, in the first second of every minute (e.g. 15:00:01, 15:01:01, 15:02:01, 15:03:01...) i want to get some data and execute orders. Thanks.
closed
2018-02-28T04:59:36Z
2018-02-28T10:38:00Z
https://github.com/erdewit/ib_insync/issues/46
[]
dccw
1
sherlock-project/sherlock
python
1,336
Define JSON Schemas to put at the top of each JSON file
<!-- ###################################################################### WARNING! IGNORING THE FOLLOWING TEMPLATE WILL RESULT IN ISSUE CLOSED AS INCOMPLETE ###################################################################### --> ## Checklist <!-- Put x into all boxes (like this [x]) once you have completed what they say. Make sure complete everything in the checklist. --> - [x] I'm reporting a feature request - [x] I've checked for similar feature requests including closed ones ## Description <!-- Provide a detailed description of the feature you would like Sherlock to have --> We maintain quite a few _huge_ JSON files in this repository. It's not impossible that human-error does it's thing and we have typos in fields, or property values that don't make sense, or accidentally add redundant properties etc. I think we should make a JSON Schema that validates the contents of the JSON files, and we can define them at `$schema`. This will: 1. Add code completion and validation on IDEs and code editors when contributors modify the file, vastly improving the contribution experience. 2. Allow us to strictly define and document all rules / properties that can be set in the JSON files. 3. Maybe later we can add a validation step in CI to ensure the schema matches. (Maybe this could be in code as well for when users use a custom JSON file via the `--json` argument.)
closed
2022-05-07T07:44:20Z
2024-05-07T19:26:00Z
https://github.com/sherlock-project/sherlock/issues/1336
[ "enhancement" ]
SethFalco
0
plotly/dash
data-science
2,615
[BUG] DataTable Failed to execute 'querySelector' on 'Element' - Line break in column id
``` Error: Failed to execute 'querySelector' on 'Element': 'tr:nth-of-type(1) th[data-dash-column="ccc ddd"]:not(.phantom-cell)' is not a valid selector. ``` This happens when the column id has a line break (e.g. `{'name':'aaabbb', 'id':'aaa\nbbb'}`) but not when the line break is in the name (e.g. `{'name':'aaa\nbbb', 'id':'aaabbb'}`). **Traceback:** ``` Error: Failed to execute 'querySelector' on 'Element': 'tr:nth-of-type(1) th[data-dash-column="ccc ddd"]:not(.phantom-cell)' is not a valid selector. at u.value (http://127.0.0.1:8050/_dash-component-suites/dash/dash_table/async-table.js:2:334450) at u.value (http://127.0.0.1:8050/_dash-component-suites/dash/dash_table/async-table.js:2:327840) at commitLifeCycles (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:19970:24) at commitLayoutEffects (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:22938:9) at HTMLUnknownElement.callCallback (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:182:16) at Object.invokeGuardedCallbackDev (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:231:18) at invokeGuardedCallback (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:286:33) at commitRootImpl (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:22676:11) at unstable_runWithPriority (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react@16.v2_10_2m1687358438.14.0.js:2685:14) at runWithPriority$1 (http://127.0.0.1:8050/_dash-component-suites/dash/deps/react-dom@16.v2_10_2m1687358438.14.0.js:11174:12) ``` **MRE:** ``` from dash import Dash, dash_table, html import pandas as pd df = pd.DataFrame({ "aaa\nbbb":[4,5,6], "ccc\nddd":[1,2,3] }) app = Dash(__name__) app.layout = html.Div([ dash_table.DataTable( id='table', columns=[ {"name": "aaabbb", "id": "aaa\nbbb"} , {"name": "cccddd", "id": "ccc\nddd"} ], data=df.to_dict('records'), ) ]) if __name__ == '__main__': app.run(debug=True) ``` **Env:** Python 3.9.0 dash==2.10.2
closed
2023-08-09T11:13:05Z
2023-08-14T17:03:32Z
https://github.com/plotly/dash/issues/2615
[ "bug", "dash-data-table" ]
celia-lm
0
allenai/allennlp
nlp
5,537
Using evaluate command for multi-task model
<!-- Please fill this template entirely and do not erase any of it. We reserve the right to close without a response bug reports which are incomplete. If you have a question rather than a bug, please ask on [Stack Overflow](https://stackoverflow.com/questions/tagged/allennlp) rather than posting an issue here. --> ## Checklist <!-- To check an item on the list replace [ ] with [x]. --> - [x] I have verified that the issue exists against the `main` branch of AllenNLP. - [x] I have read the relevant section in the [contribution guide](https://github.com/allenai/allennlp/blob/main/CONTRIBUTING.md#bug-fixes-and-new-features) on reporting bugs. - [x] I have checked the [issues list](https://github.com/allenai/allennlp/issues) for similar or identical bug reports. - [x] I have checked the [pull requests list](https://github.com/allenai/allennlp/pulls) for existing proposed fixes. - [x] I have checked the [CHANGELOG](https://github.com/allenai/allennlp/blob/main/CHANGELOG.md) and the [commit log](https://github.com/allenai/allennlp/commits/main) to find out if the bug was already fixed in the main branch. - [x] I have included in the "Description" section below a traceback from any exceptions related to this bug. - [x] I have included in the "Related issues or possible duplicates" section beloew all related issues and possible duplicate issues (If there are none, check this box anyway). - [x] I have included in the "Environment" section below the name of the operating system and Python version that I was using when I discovered this bug. - [x] I have included in the "Environment" section below the output of `pip freeze`. - [x] I have included in the "Steps to reproduce" section below a minimally reproducible example. ## Description evaluate command can not support multitask that input_file only takes the file name as input. But multi-task reader needs Dic. <!-- Please provide a clear and concise description of what the bug is here. --> <details> <summary><b>Python traceback:</b></summary> <p> <!-- Paste the traceback from any exception (if there was one) in between the next two lines below --> (allennlp2_8) D:\WorkSpace\GeoQA-with-UniT -2_8>allennlp evaluate save/test test_data_path --include-package NGS_Aux --cuda-device 0 2022-01-07 09:38:22,837 - INFO - allennlp.models.archival - loading archive file save/test 2022-01-07 09:38:23,469 - INFO - allennlp.data.vocabulary - Loading token dictionary from save/test\vocabulary. ##### Checkpoint Loaded! ##### 2022-01-07 09:38:28,271 - INFO - allennlp.modules.token_embedders.embedding - Loading a model trained before embedding extension was implemented; pass an explicit vocab namespace if you wan t to extend the vocabulary. 2022-01-07 09:38:29,051 - INFO - allennlp.common.checks - Pytorch version: 1.10.0+cu113 2022-01-07 09:38:29,053 - INFO - allennlp.commands.evaluate - Reading evaluation data from test_data_path Traceback (most recent call last): File "D:\Anaconda\envs\allennlp2_8\lib\runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "D:\Anaconda\envs\allennlp2_8\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "D:\Anaconda\envs\allennlp2_8\Scripts\allennlp.exe\__main__.py", line 7, in <module> File "D:\Anaconda\envs\allennlp2_8\lib\site-packages\allennlp\__main__.py", line 46, in run main(prog="allennlp") File "D:\Anaconda\envs\allennlp2_8\lib\site-packages\allennlp\commands\__init__.py", line 123, in main args.func(args) File "D:\Anaconda\envs\allennlp2_8\lib\site-packages\allennlp\commands\evaluate.py", line 189, in evaluate_from_args params=data_loader_params, reader=dataset_reader, data_path=evaluation_data_path File "D:\Anaconda\envs\allennlp2_8\lib\site-packages\allennlp\common\from_params.py", line 656, in from_params **extras, File "D:\Anaconda\envs\allennlp2_8\lib\site-packages\allennlp\common\from_params.py", line 686, in from_params return constructor_to_call(**kwargs) # type: ignore File "D:\Anaconda\envs\allennlp2_8\lib\site-packages\allennlp\data\data_loaders\multitask_data_loader.py", line 143, in __init__ if self.readers.keys() != self.data_paths.keys(): AttributeError: 'str' object has no attribute 'keys' </p> </details> ## Related issues or possible duplicates - None ## Environment <!-- Provide the name of operating system below (e.g. OS X, Linux) --> Windows: aiohttp 3.8.0 aiosignal 1.2.0 allennlp 2.8.0 argcomplete 1.12.3 argon2-cffi 21.1.0 async-timeout 4.0.0 asynctest 0.13.0 atomicwrites 1.4.0 attrs 21.2.0 backcall 0.2.0 backports.csv 1.0.7 base58 2.1.1 beautifulsoup4 4.10.0 bleach 4.1.0 blis 0.7.5 boto3 1.19.12 botocore 1.22.12 cached-path 0.3.2 cached-property 1.5.2 cachetools 4.2.4 catalogue 1.0.0 certifi 2021.10.8 cffi 1.15.0 chardet 4.0.0 charset-normalizer 2.0.7 checklist 0.0.11 cheroot 8.5.2 CherryPy 18.6.1 click 8.0.3 colorama 0.4.4 configparser 5.1.0 cryptography 35.0.0 cymem 2.0.6 Cython 0.29.23 datasets 1.15.1 debugpy 1.5.1 decorator 5.1.0 defusedxml 0.7.1 dill 0.3.4 docker-pycreds 0.4.0 en-core-web-sm 2.3.0 entrypoints 0.3 fairscale 0.4.0 feedparser 6.0.8 filelock 3.3.2 frozenlist 1.2.0 fsspec 2021.11.0 future 0.18.2 gensim 4.1.2 gitdb 4.0.9 GitPython 3.1.24 google-api-core 2.2.2 google-auth 2.3.3 google-cloud-core 2.1.0 google-cloud-storage 1.42.3 google-crc32c 1.3.0 google-resumable-media 2.1.0 googleapis-common-protos 1.53.0 h5py 3.5.0 huggingface-hub 0.1.1 idna 3.3 importlib-metadata 4.8.1 importlib-resources 5.4.0 iniconfig 1.1.1 ipykernel 6.5.0 ipython 7.29.0 ipython-genutils 0.2.0 ipywidgets 7.6.5 iso-639 0.4.5 jaraco.classes 3.2.1 jaraco.collections 3.4.0 jaraco.functools 3.4.0 jaraco.text 3.6.0 jedi 0.18.0 jieba 0.42.1 Jinja2 3.0.2 jmespath 0.10.0 joblib 1.1.0 jsonschema 4.2.1 jupyter 1.0.0 jupyter-client 7.0.6 jupyter-console 6.4.0 jupyter-core 4.9.1 jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.2 lmdb 1.2.1 lxml 4.6.4 MarkupSafe 2.0.1 matplotlib-inline 0.1.3 mistune 0.8.4 more-itertools 8.10.0 multidict 5.2.0 multiprocess 0.70.12.2 munch 2.5.0 murmurhash 1.0.6 nbclient 0.5.4 nbconvert 6.2.0 nbformat 5.1.3 nest-asyncio 1.5.1 nltk 3.6.5 notebook 6.4.5 numpy 1.21.4 opencv-python 4.5.4.58 overrides 3.1.0 packaging 21.2 pandas 1.3.4 pandocfilters 1.5.0 parso 0.8.2 pathtools 0.1.2 pathy 0.6.1 patternfork-nosql 3.6 pdfminer.six 20211012 pickleshare 0.7.5 Pillow 8.4.0 pip 21.2.4 plac 1.1.3 pluggy 1.0.0 portend 3.0.0 preshed 3.0.6 prometheus-client 0.12.0 promise 2.3 prompt-toolkit 3.0.22 protobuf 3.19.1 psutil 5.8.0 py 1.11.0 pyarrow 6.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8 pycparser 2.21 pydantic 1.8.2 Pygments 2.10.0 pyparsing 2.4.7 pyrsistent 0.18.0 pytest 6.2.5 python-dateutil 2.8.2 python-docx 0.8.11 pytz 2021.3 pywin32 302 pywinpty 1.1.5 PyYAML 6.0 pyzmq 22.3.0 qtconsole 5.1.1 QtPy 1.11.2 regex 2021.11.2 requests 2.26.0 rsa 4.7.2 s3transfer 0.5.0 sacremoses 0.0.46 scikit-learn 1.0.1 scipy 1.7.2 Send2Trash 1.8.0 sentencepiece 0.1.96 sentry-sdk 1.4.3 setuptools 58.0.4 sgmllib3k 1.0.0 shortuuid 1.0.1 six 1.16.0 smart-open 5.2.1 smmap 5.0.0 soupsieve 2.3 spacy 2.3.7 spacy-legacy 3.0.8 sqlitedict 1.7.0 srsly 1.0.5 subprocess32 3.5.4 tempora 4.1.2 tensorboardX 2.4 termcolor 1.1.0 terminado 0.12.1 testpath 0.5.0 thinc 7.4.5 threadpoolctl 3.0.0 tokenizers 0.10.3 toml 0.10.2 torch 1.10.0+cu113 torchaudio 0.10.0+cu113 torchvision 0.11.1+cu113 tornado 6.1 tqdm 4.62.3 traitlets 5.1.1 transformers 4.12.3 typer 0.4.0 typing-extensions 3.10.0.2 urllib3 1.26.7 wandb 0.12.6 wasabi 0.8.2 wcwidth 0.2.5 webencodings 0.5.1 wheel 0.37.0 widgetsnbextension 3.5.2 wincertstore 0.2 xxhash 2.0.2 yarl 1.7.2 yaspin 2.1.0 zc.lockfile 2.0 zipp 3.6.0 <!-- Provide the Python version you were using (e.g. 3.7.1) --> Python version: 3.7 <details> <summary><b>Output of <code>pip freeze</code>:</b></summary> <p> <!-- Paste the output of `pip freeze` in between the next two lines below --> ``` ``` </p> </details> ## Steps to reproduce <details> <summary><b>Example source:</b></summary> <p> <!-- Add a fully runnable example in between the next two lines below that will reproduce the bug --> ``` ``` </p> </details>
closed
2022-01-07T02:16:46Z
2022-02-28T21:42:05Z
https://github.com/allenai/allennlp/issues/5537
[ "bug", "stale" ]
ICanFlyGFC
10
dask/dask
numpy
11,307
Out of memory
**Describe the issue**: It looks like `dask-expr` optimizes the query wrongly. Adding the extra `persist()` fixes the OOM memory: ```text --------------------------------------------------------------------------- MemoryError Traceback (most recent call last) Cell In[5], line 100 87 display( 88 train_df, 89 test_df, 90 sku_groups_df, 91 ) 93 display( 94 train_df.head(), 95 test_df.head(), 96 sku_groups_df.head(), 97 ) 99 display( --> 100 *dask.compute( 101 sku_groups_df['group'].value_counts(), 102 train_df['group'].value_counts(), 103 test_df['group'].value_counts(), 104 ) 105 ) 107 print(train_df.dtypes) 108 print(test_df.dtypes) File ~/src/.venv/lib/python3.10/site-packages/dask/base.py:661, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs) 658 postcomputes.append(x.__dask_postcompute__()) 660 with shorten_traceback(): --> 661 results = schedule(dsk, keys, **kwargs) 663 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) File ~/src/.venv/lib/python3.10/site-packages/distributed/client.py:2234, in Client._gather(self, futures, errors, direct, local_worker) 2232 exc = CancelledError(key) 2233 else: -> 2234 raise exception.with_traceback(traceback) 2235 raise exc 2236 if errors == "skip": MemoryError: Task ('repartitionsize-a141886386f8cc3cbacc3d585efdbc07', 470) has 22.35 GiB worth of input dependencies, but worker tls://10.164.0.41:40427 has memory_limit set to 15.64 GiB. ``` Working example: ```python import dask import dask.dataframe as dd groups_df = ( dd .read_parquet( f'gs://groups.parquet/*', columns=['ItemID', 'group'], ) .astype({'group': 'category'}) .repartition(partition_size='100MB') .persist() ) def read_dataset(path: str) -> dd.DataFrame: df = ( dd.read_parquet( path, # We have to request existing cols before renaming columns=['ItemID', 'A_n/a', 'AT_n/a'], ) .rename(columns={'A_n/a': 'A_na', 'AT_n/a': 'AT_na' }) # This fixes weired issue with dask-expr. I faced with OOM .persist() ) return ( df .merge( groups_df, on='ID', how='left' ) .query('group in @groups_to_include', local_dict={'groups_to_include': ['group1', 'group2', 'group3', 'group4', 'group4']}) .repartition(partition_size='100MB') ) train_df = read_dataset(f'gs://train.parquet/*') test_df = read_dataset(f'gs://test.parquet/*') train_df.pprint() train_df, test_df = dask.persist(train_df, test_df) display( train_df, test_df, groups_df, ) display( train_df.head(), test_df.head(), groups_df.head(), ) display( *dask.compute( groups_df['sku_group'].value_counts(), train_df['sku_group'].value_counts(), test_df['sku_group'].value_counts(), ) ) ``` `pprint`: ```text Repartition: partition_size='100MB'None Query: _expr='group in @groups_to_include' expr_kwargs={'local_dict': {'groups_to_include': ['group1', 'group2', 'group3', 'group4', 'group4']}} Merge: how='left' left_on='ItemID' right_on='ItemID' FromGraph: layer={('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 0): <Future: pending, key: ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 0)>, ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 1): <Future: pending, key: ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 1)>, ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 2): <Future: pending, key: ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 2)>, ..., ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 941): <Future: finished, type: pandas.core.frame.DataFrame, key: ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 941)>, ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 942): <Future: finished, type: pandas.core.frame.DataFrame, key: ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 942)>} _meta='<pandas>' divisions=(None, None, ..., None, None) keys=[('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 0), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 1), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 2), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 3), ..., ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 934), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 935), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 936), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 937), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 938), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 939), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 940), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 941), ('read_parquet-operation-fe85241c2cbf3f4e3c47c8ce4d1bb145', 942)] name_prefix='read_parquet-operation' FromGraph: layer={('repartitionsize-a7f9918679644d0763b0995e4cc22887', 0): <Future: finished, type: pandas.core.frame.DataFrame, key: ('repartitionsize-a7f9918679644d0763b0995e4cc22887', 0)>} _meta='<pandas>' divisions=(None, None) keys=[('repartitionsize-a7f9918679644d0763b0995e4cc22887', 0)] name_prefix='repartitionsize' ``` An example that leads to OOM: ```python # ... .rename(columns={'A_n/a': 'A_na', 'AT_n/a': 'AT_na' }) # Commeting out this line leads to OOM #.persist() #... ``` `pprint`: ```text Repartition: partition_size='100MB'None Query: _expr='sku_group in @sku_groups_to_include' expr_kwargs={'local_dict': {'sku_groups_to_include': ['no_sales', 'very_intermittent', 'intermittent', 'frequent', 'very_frequent']}} Merge: how='left' left_on='InventoryID' right_on='InventoryID' RenameFrame: columns={'A_n/a': 'A_na', 'AT_n/a': 'AT_na', ... } ReadParquetFSSpec: path='gs://ecentria-ai-team-352717-demand-forecasting/ai-459/data/ecentria/features/train_features.parquet/*' columns=['CN', 'lag1', 'A_n/a', 'AT_n/a', ...] kwargs={'dtype_backend': None} FromGraph: layer={('repartitionsize-a7f9918679644d0763b0995e4cc22887', 0): <Future: finished, type: pandas.core.frame.DataFrame, key: ('repartitionsize-a7f9918679644d0763b0995e4cc22887', 0)>} _meta='<pandas>' divisions=(None, None) keys=[('repartitionsize-a7f9918679644d0763b0995e4cc22887', 0)] name_prefix='repartitionsize' ``` **Minimal Complete Verifiable Example**: TBD **Anything else we need to know?**: **Environment**: - Dask version: ``` dask = "2024.5.2" dask-expr = "1.1.2" ``` - Python version: 3.10 - Operating System: WSL - Install method (conda, pip, source): poetry
open
2024-08-13T13:34:44Z
2024-08-19T10:21:22Z
https://github.com/dask/dask/issues/11307
[ "dataframe", "dask-expr" ]
dbalabka
12
microsoft/nni
pytorch
5,609
Tensorboard logging
**Describe the issue**: Hello, I'm using NNI v3.0 and trying to log using tensorboard. On the code I create the logging directory as `log_dir = os.path.join(os.environ["NNI_OUTPUT_DIR"], "tensorboard")` but when I try to open tensorboard on the webgui doesn't appear any logging. Looking at the output directory I noticed that the NNI_OUTPUT_DIR points towards to > nni-experiments/dh1ou4w7/environments/local-env/trials/dqOLE/tensorboard but tensorboard is trying to read > nni-experiments/dh1ou4w7/trials/QlXHm/output/tensorboard How can I get the correct one and what's the difference of both?
open
2023-06-13T15:25:48Z
2024-01-16T08:16:41Z
https://github.com/microsoft/nni/issues/5609
[]
ferqui
2
HumanSignal/labelImg
deep-learning
109
a problem for V1.3.3 and V1.3.2 when using Windows
when trying to use V1.3.3 and V1.3.2 under windows, it always exit without any problem. what should i do?
closed
2017-07-06T07:40:03Z
2017-07-25T01:42:19Z
https://github.com/HumanSignal/labelImg/issues/109
[]
wzx918
1
datadvance/DjangoChannelsGraphqlWs
graphql
26
Support for Django-GraphQL-Social-Auth
There are two awesome projects called: 1. https://github.com/flavors/django-graphql-social-auth 2. https://github.com/flavors/django-graphql-jwt I am trying to use both the django-graphql-social-auth and the django-channels-graphql-ws packages in conjunction with each other. Ultimately, I would like to have a django channels websocket graphql api backend and a JS front-end using social auth. When using dgql-social-auth with this library, I run into an issue with the request going through the python social auth library here: https://github.com/python-social-auth/social-app-django/blob/c00d23c2b45c3317bd35b15ad1b959338689cef8/social_django/strategy.py#L51 ```python def request_data(self, merge=True): if not self.request: return {} if merge: data = self.request.GET.copy() data.update(self.request.POST) elif self.request.method == 'POST': data = self.request.POST else: data = self.request.GET return data ``` I see the following error: > An error occurred while resolving field Mutation.socialAuth > Traceback (most recent call last): > File "channels_graphql_ws\scope_as_context.py", line 42, in __getattr__ > return self._scope[name] > KeyError: 'GET' I believe this is because of how the websocket request object is formed versus a traditional request object that python social auth would expect. My code includes adding this mutation to the example in this lib ```python class Mutation(graphene.ObjectType): """Root GraphQL mutation.""" send_chat_message = SendChatMessage.Field() login = Login.Field() social_auth = graphql_social_auth.SocialAuthJWT.Field() ``` Using this gql ```graphql mutation SocialAuth($provider: String!, $accessToken: String!) { socialAuth(provider: $provider, accessToken: $accessToken) { social { uid } token } } ``` Is there any way to get these two to work together well?
closed
2019-10-02T03:20:56Z
2020-12-05T23:52:42Z
https://github.com/datadvance/DjangoChannelsGraphqlWs/issues/26
[ "question" ]
kingtimm
3
developmentseed/lonboard
jupyter
134
Sync the clicked index back to Python
It would be great, besides a tooltip to display on the JS side, to sync the index of the object that was clicked. Then the user can do `gdf.iloc[map_.clicked_index]` to retrieve the specific row Note that this can probably be an array of indices?
closed
2023-10-18T01:23:48Z
2023-11-28T18:08:18Z
https://github.com/developmentseed/lonboard/issues/134
[]
kylebarron
0
gradio-app/gradio
deep-learning
10,396
Using S3 Presgned URL's with GR.Model3D and GR.VIDEO was fail
### Describe the bug **_Bug Report_**:_Presigned URL Error with Gradio Components_ **_Encountering an `OSError` when using presigned URLs with specific Gradio components, such as `gr.Video` or `gr.Model3D`. The error details are as follows_** ### Have you searched existing issues? 🔎 - [x] I have searched and found no existing issues ### Reproduction 1. Generate a presigned URL for a file stored in S3. 2. Use the presigned URL as an input to a Gradio component, such as `gr.Video` or `gr.Model3D`. 3. Observe the error during file handling. ### Screenshot _No response_ ### Logs ```shell OSError: [Errno 22] Invalid argument: 'C:\\Users\\Morningstar\\AppData\\Local\\Temp\\gradio\\<hashed_filename>\\.mp4?response-content-disposition=inline&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Security-Token=<truncated_token>&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=<truncated_credential>&X-Amz-Date=20250116T133649Z&X-Amz-Expires=1800&X-Amz-SignedHeaders=host&X-Amz-Signature=<truncated_signature>' ``` ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Windows gradio version: 5.12.0 gradio_client version: 1.5.4 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.8.0 audioop-lts: 0.2.1 fastapi: 0.115.6 ffmpy: 0.5.0 gradio-client==1.5.4 is not installed. httpx: 0.28.1 huggingface-hub: 0.27.1 jinja2: 3.1.5 markupsafe: 2.1.5 numpy: 2.2.1 orjson: 3.10.13 packaging: 24.2 pandas: 2.2.3 pillow: 10.4.0 pydantic: 2.10.4 pydub: 0.25.1 python-multipart: 0.0.20 pyyaml: 6.0.2 ruff: 0.8.6 safehttpx: 0.1.6 semantic-version: 2.10.0 starlette: 0.41.3 tomlkit: 0.12.0 typer: 0.15.1 typing-extensions: 4.12.2 urllib3: 2.3.0 uvicorn: 0.34.0 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.12.0 httpx: 0.28.1 huggingface-hub: 0.27.1 packaging: 24.2 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity I can work around it
closed
2025-01-21T03:56:21Z
2025-01-21T06:42:16Z
https://github.com/gradio-app/gradio/issues/10396
[ "bug" ]
AshrafMorningstar
1
python-restx/flask-restx
flask
345
Improve documentation of `fields` arguments
**Is your feature request related to a problem? Please describe.** Currently, it's quite unclear which arguments are accepted by which `flask_restx.fields` functions. For example, for `fields.Float`, [none are explicitly documented](https://flask-restx.readthedocs.io/en/latest/api.html#flask_restx.fields.Float). To find out how to specify exclusiveMinimum, I have to read the [source code](https://flask-restx.readthedocs.io/en/latest/_modules/flask_restx/fields.html) of `fields.Float`, which inherits `fields.NumberMixin`, which inherits `fields.MinMaxMixin`, where I finally find out that an openAPI `exclusiveMinimum` is specified with the RestX argument `exclusiveMin`. **Describe the solution you'd like** Improved documentation or code changes. Really any improvement would be welcome.
open
2021-06-24T13:41:19Z
2022-07-26T13:37:03Z
https://github.com/python-restx/flask-restx/issues/345
[ "enhancement" ]
thomsentner
0
d2l-ai/d2l-en
computer-vision
2,134
A mistake in seq2seq prediction implementation?
https://github.com/d2l-ai/d2l-en/blob/9e4fbb1e97f4e0b3919563073344368755fe205b/d2l/torch.py#L2996-L3030 **Bugs here:** ``` Python for _ in range(num_steps): Y, dec_state = net.decoder(dec_X, dec_state) ``` As you can see here, dec_state will update in every loop. But it not only affects the hidden state for rnn, but also the context vector for each step. (I don't know why Seq2SeqDecoder seems not implemented in [d2l/torch.py](https://github.com/d2l-ai/d2l-en/blob/9e4fbb1e97f4e0b3919563073344368755fe205b/d2l/torch.py)), In chapter 9.7.2, here wrote: https://github.com/d2l-ai/d2l-en/blob/9e4fbb1e97f4e0b3919563073344368755fe205b/chapter_recurrent-modern/seq2seq.md?plain=1#L383-L411 ![](https://raw.githubusercontent.com/d2l-ai/d2l-en/9e4fbb1e97f4e0b3919563073344368755fe205b/img/seq2seq-predict.svg) And according to this graph, the correct approach should be to keep the context vector always constant at each time step. (there is no problem with this method when training, because the target sentence is complete and context vector is already broadcast in every time step) **My Solution(Not tested):** Modify Seq2SeqDecoder: ``` Python class Seq2SeqDecoder(d2l.Decoder): """The RNN decoder for sequence to sequence learning.""" def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_size) self.rnn = d2l.GRU(embed_size+num_hiddens, num_hiddens, num_layers, dropout) self.dense = nn.LazyLinear(vocab_size) self.apply(init_seq2seq) def init_state(self, enc_outputs, *args): return enc_outputs[1] # Add a parameter here: def forward(self, X, enc_state, enc_final_layer_output_at_last_step): # X shape: (batch_size, num_steps) # embs shape: (num_steps, batch_size, embed_size) embs = self.embedding(d2l.astype(d2l.transpose(X), d2l.int32)) # context shape: (batch_size, num_hiddens) # Broadcast context to (num_steps, batch_size, num_hiddens) context = enc_final_layer_output_at_last_step.repeat(embs.shape[0], 1, 1) # Concat at the feature dimension embs_and_context = d2l.concat((embs, context), -1) outputs, state = self.rnn(embs_and_context, enc_state) outputs = d2l.swapaxes(self.dense(outputs), 0, 1) # outputs shape: (batch_size, num_steps, vocab_size) # state shape: (num_layers, batch_size, num_hiddens) return outputs, state ``` Modify [EncoderDecoder](https://github.com/d2l-ai/d2l-en/blob/9e4fbb1e97f4e0b3919563073344368755fe205b/d2l/torch.py#L864-L868): ``` Python def forward(self, enc_X, dec_X, *args): enc_outputs = self.encoder(enc_X, *args) dec_state = self.decoder.init_state(enc_outputs, *args) # Return decoder output only return self.decoder(dec_X, dec_state, enc_outputs[1][-1])[0] ``` Modify predict_seq2seq(): ``` Python for _ in range(num_steps): Y, dec_state = net.decoder(dec_X, dec_state, enc_outputs[1][-1]) ```
closed
2022-05-16T09:12:58Z
2022-12-14T04:24:45Z
https://github.com/d2l-ai/d2l-en/issues/2134
[]
zhmou
2
pydata/pandas-datareader
pandas
258
Yahoo datasource issue
Hello, It looks like Yahoo single stock data has stopped as of Friday - when I try and download last night's closes it doesn't return anything. Has the website changed or has something happened I should be aware of ? Thanks
closed
2016-11-08T10:11:07Z
2017-01-08T22:10:00Z
https://github.com/pydata/pandas-datareader/issues/258
[]
hnasser95
7
paperless-ngx/paperless-ngx
machine-learning
9,167
[BUG] Saved View using Tag shows no entries on Dashboard when Showed Columns is "Default" and displayed as "Table"
### Description When a Saved View is displayed on the Dashboard, it shows no entries when all displayed columns are removed to set the "Default" column config. I guess that this behavior has changed at some point, as I have Saved Views that have been created similarly already quite some time ago and those show the documents with the default columns on the Dashboard correctly. Only newly created Saved Views seem affected. ### Steps to reproduce 1. create a Tag eg. "Todo" 2. tag some documents with this "Todo" tag 3. create a saved view based on the "Todotag, show it on the Dashboard ![Image](https://github.com/user-attachments/assets/71c8f1e6-5319-4bcf-a5be-c1314a817dee) 4. check that the tagged documents are properly displayed on the Dashboard ![Image](https://github.com/user-attachments/assets/b79321b6-7a23-4968-a5a5-a6591f5c7b23) 5. open the Saved View screen and check the created view for the "Todo" Tag ![Image](https://github.com/user-attachments/assets/d3fb7fbc-76bb-47de-a47a-dce414354d75) 6. remove all separately present columns so that "_Default_" is shown and change the "Display as" to "Table" ![Image](https://github.com/user-attachments/assets/c5c04a07-a7bd-4c51-99bf-8113d8495b3c) 7. go back to the Dashboard, see that in the "Tag: Todo" view no document is displayed anymore ![Image](https://github.com/user-attachments/assets/00cc75b9-f78a-4e55-b35b-a342883a8fc8) ### Webserver logs ```bash (no errors or logs are written to the webserver log, when the "Seps to reproduce" are executed) ``` ### Browser logs ```bash ``` ### Paperless-ngx version 2.14.7 ### Host OS Raspberry Pi 4 ### Installation method Docker - official image ### System status ```json { "pngx_version": "2.14.7", "server_os": "Linux-6.6.74-v8+-aarch64-with-glibc2.36", "install_type": "docker", "storage": { "total": 114440536064, "available": 89372897280 }, "database": { "type": "postgresql", "url": "paperless", "status": "OK", "error": null, "migration_status": { "latest_migration": "mfa.0003_authenticator_type_uniq", "unapplied_migrations": [] } }, "tasks": { "redis_url": "redis://broker:6379", "redis_status": "OK", "redis_error": null, "celery_status": "OK", "index_status": "OK", "index_last_modified": "2025-02-19T21:31:12.651623+01:00", "index_error": null, "classifier_status": "OK", "classifier_last_trained": "2025-02-19T21:08:04.472993Z", "classifier_error": null } } ``` ### Browser Firefox ### Configuration changes PAPERLESS_OCR_LANGUAGES: deu eng PAPERLESS_FILENAME_FORMAT: {created_year}/{created_month}/{created_year}{created_month}{created_day}-{correspondent}{document_type}{title} PAPERLESS_CONSUMER_POLLING_DELAY: 15 PAPERLESS_CONSUMER_POLLING_RETRY_COUNT: 10 PAPERLESS_OCR_USER_ARGS: {"invalidate_digital_signatures": true} ### Please confirm the following - [x] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [x] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [x] I have already searched for relevant existing issues and discussions before opening this report. - [x] I have updated the title field above with a concise description.
closed
2025-02-19T21:51:26Z
2025-03-22T03:13:26Z
https://github.com/paperless-ngx/paperless-ngx/issues/9167
[ "bug", "backend", "frontend" ]
kosi2801
1
saulpw/visidata
pandas
1,617
Packages very old
**Small description** I'm not sure how or who packages this tool for Ubuntu, but the version is old enough that there isn't even a menu in the current deb provided via apt. This was pretty confusing since the docs start off showing a menu, and trying to activate or show it was the first order of business for someone like me that prefers this convenience. This might be an apt only thing, but I left this issue general so that other packages can be checked. I also considered this to be a bug rather than feature since the doc mismatch and time spent trying to show the menu is uncomfortable. **Expected result** **Actual result with screenshot** ``` $ sudo apt install visidata ... Get:1 http://ca.archive.ubuntu.com/ubuntu jammy/universe amd64 visidata all 2.2.1-1 [157 kB] ``` **Steps to reproduce with sample data and a .vd** NA **Additional context** ``` $ vd --version saul.pw/VisiData v2.2.1 ```
closed
2022-12-04T18:43:09Z
2023-02-06T22:49:29Z
https://github.com/saulpw/visidata/issues/1617
[ "bug" ]
PaluMacil
6
pallets-eco/flask-wtf
flask
72
WTForms 1.0.4 supports html5
There's no need to keep html5 compat module, WTForms supports it since v1.0.4 released 2013-04-29.
closed
2013-05-29T12:01:39Z
2021-05-30T01:24:42Z
https://github.com/pallets-eco/flask-wtf/issues/72
[]
zgoda
0
babysor/MockingBird
pytorch
243
是否实验过m2_hat用linear频谱计算误差呢?
您好,有注意到用了postnet处理mel为linear,但是看训练过程,并没有用linear的频谱,而是用mel的频谱。 问下是否实验过m2_hat用linear频谱计算误差呢? 如果有实验过,能否谈一下结果如何呢? 下面贴上loss的计算: # Backward pass m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels) m2_loss = F.mse_loss(m2_hat, mels) stop_loss = F.binary_cross_entropy(stop_pred, stop)
open
2021-11-29T12:45:14Z
2021-11-30T08:48:58Z
https://github.com/babysor/MockingBird/issues/243
[]
ghost
4
matplotlib/cheatsheets
matplotlib
42
Cmap 'Blues' instead of 'Oranges'
There might be a typo in the tips & tricks handout where a `Blues` color map is called although an `Oranges` one is displayed: ![image](https://user-images.githubusercontent.com/733861/91155892-b8b37000-e6c3-11ea-9737-d809f2616b73.png) For consistency, maybe we could use ``` cmap = plt.get_cmap("Oranges") ``` instead of ``` cmap = plt.get_cmap("Blues") ```
closed
2020-08-25T09:13:42Z
2021-08-24T07:12:54Z
https://github.com/matplotlib/cheatsheets/issues/42
[]
pierrepo
2
gee-community/geemap
jupyter
1,831
135 segmentation - Exception during adding raster / shape file to Map
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information I use Google Colab (TPU) ### Description Hello, I tried to run step 135 of the tutorial - https://geemap.org/notebooks/135_segmentation on google colab. The segmentation worked fine, but the steps of adding the results to the Map did not work: ``` Map.add_raster("annotations.tif", alpha=0.5, layer_name="Masks") Map ``` ![image](https://github.com/gee-community/geemap/assets/22587682/5e733371-00c0-48b7-a360-41f9473295bb) ``` style = { "color": "#3388ff", "weight": 2, "fillColor": "#7c4185", "fillOpacity": 0.5, } Map.add_vector('masks.shp', layer_name="Vector", style=style) Map ``` ![image](https://github.com/gee-community/geemap/assets/22587682/bf60482c-ed29-4f40-8e98-aca7c48c9977) ### What I Did I tried to run the following commands, both worked: !pip install geemap[raster] !pip install localtileserver and then: `import localtileserver` and got the following exception: ![image](https://github.com/gee-community/geemap/assets/22587682/424d87b9-e87b-4c40-be10-2f2d03921df9)
closed
2023-11-13T21:03:56Z
2023-11-24T12:44:45Z
https://github.com/gee-community/geemap/issues/1831
[ "bug" ]
FaranIdo
4
newpanjing/simpleui
django
11
自定义搜索功能不生效
我自定义一个过滤器,放在 list_filter 的列表中,要原生的 admin 下是可以出现过滤的效果,但在 simpleui中过滤数据不生效,我的代码如下: ` model.py class Price(models.Model): name = models.CharField('名称', max_length=64, blank=True, null=True) num = models.IntegerField('价格', blank=True, null=True) def __str__(self): return self.name class Meta: verbose_name = '价格' verbose_name_plural = '价格' admin.py from django.contrib import admin from goods import models class PriceFilter(admin.SimpleListFilter): """ 自定义价格过滤器 """ title = '价格' parameter_name = 'num' def lookups(self, request, model_admin): return ( ('0', '高价'), ('1', '中价'), ('3', '低价'), ) def queryset(self, request, queryset): if self.value() == '0': return queryset.filter(num__gt='555') if self.value() == '1': return queryset.filter(num__gte='222', num__lte='555') if self.value() == '3': return queryset.filter(num__lt='222') class PriceAdmin(admin.ModelAdmin): list_display = ['name', 'num'] ordering = ['-num'] list_filter = [PriceFilter,] ` 请查看,如果有什么不太清楚我,可以随时@我,谢谢!
closed
2019-03-08T07:38:51Z
2019-04-16T09:30:43Z
https://github.com/newpanjing/simpleui/issues/11
[]
qylove516
2
tensorpack/tensorpack
tensorflow
656
Dynamic imports and IDE friendliness
Thank you for great framework, I have a question about editing tensorpack-based code. I'm using PyCharm IDE, its code navigation and code auto-completion greatly simplifies working with a model code. These IDE features works flawlessly with a Tensorflow/Keras, but did'nt work at all with a tensorpack-based models, because tensorpack uses dynamic imports everywhere. Intellectual IDE just turns into dumb text editor, because it can't perform static analysis of tensorpack modules. Do you have any ideas or plans how to to improve tensorpack IDE friendliness? May be some code generation to emit static import statements during library setup?
closed
2018-02-15T11:27:47Z
2018-05-30T20:59:36Z
https://github.com/tensorpack/tensorpack/issues/656
[ "enhancement" ]
Arturus
13
slackapi/bolt-python
fastapi
1,169
Using workflow custom function on AWS lambda
I am trying to convert a a legacy workflow step to the new custom function in AWS lambda, but do not see any documentation on this. The closest is https://api.slack.com/automation/functions/custom-bolt and https://api.slack.com/tutorials/tracks/bolt-custom-function, but both are using `SocketModeHandler` and have no mention of FaaS, like AWS lambda. Is the feature compatible?
closed
2024-09-25T13:00:11Z
2024-09-29T07:11:32Z
https://github.com/slackapi/bolt-python/issues/1169
[ "question" ]
ben-dov
1
svc-develop-team/so-vits-svc
deep-learning
125
[Help]: 在Google colab上运行,到推理这一步出现错误,ModuleNotFoundError: No module named 'torchcrepe'
### 请勾选下方的确认框。 - [X] 我已仔细阅读[README.md](https://github.com/svc-develop-team/so-vits-svc/blob/4.0/README_zh_CN.md)和[wiki中的Quick solution](https://github.com/svc-develop-team/so-vits-svc/wiki/Quick-solution)。 - [X] 我已通过各种搜索引擎排查问题,我要提出的问题并不常见。 - [X] 我未在使用由第三方用户提供的一键包/环境包。 ### 系统平台版本号 win10 ### GPU 型号 525.85.12 ### Python版本 Python 3.9.16 ### PyTorch版本 2.0.0+cu118 ### sovits分支 4.0(默认) ### 数据集来源(用于判断数据集质量) UVR处理过的vtb直播音频 ### 出现问题的环节或执行的命令 推理 ### 问题描述 在推理环节出现以下错误 Traceback (most recent call last): File "/content/so-vits-svc/inference_main.py", line 11, in <module> from inference import infer_tool File "/content/so-vits-svc/inference/infer_tool.py", line 20, in <module> import utils File "/content/so-vits-svc/utils.py", line 20, in <module> from modules.crepe import CrepePitchExtractor File "/content/so-vits-svc/modules/crepe.py", line 8, in <module> import torchcrepe ModuleNotFoundError: No module named 'torchcrepe' ### 日志 ```python #@title 合成音频(推理) #@markdown 需要将音频上传到so-vits-svc/raw 文件夹下, 然后设置模型路径、配置文件路径、合成的音频名称 !python inference_main.py -m "logs/44k/G_32000.pth" -c "configs/config.json" -n "live1.wav" -s qq Traceback (most recent call last): File "/content/so-vits-svc/inference_main.py", line 11, in <module> from inference import infer_tool File "/content/so-vits-svc/inference/infer_tool.py", line 20, in <module> import utils File "/content/so-vits-svc/utils.py", line 20, in <module> from modules.crepe import CrepePitchExtractor File "/content/so-vits-svc/modules/crepe.py", line 8, in <module> import torchcrepe ModuleNotFoundError: No module named 'torchcrepe' ``` ### 截图`so-vits-svc`、`logs/44k`文件夹并粘贴到此处 ![e934426a659fb80f44f449e4c51f136](https://user-images.githubusercontent.com/98253974/230118055-a7a21441-b28d-4904-9b5c-85d0b5341e7d.png) ### 补充说明 _No response_
closed
2023-04-05T14:49:38Z
2023-04-09T05:14:42Z
https://github.com/svc-develop-team/so-vits-svc/issues/125
[ "help wanted" ]
Asgardloki233
1
marshmallow-code/apispec
rest-api
196
Documenting callable default
When a default/missing value is a callable, it is called when generating the documentation. ```python if default is not marshmallow.missing: if callable(default): ret['default'] = default() else: ret['default'] = default ``` This can be wrong if the value of the callable depends on the moment it is called. Typically, if it is `dt.datetime.now`. There should be an opt-out for this allowing to specify an alternative text to write in the docs. Not sure how to do that. Maybe a `default_doc` attribute in the Schema that would take precedence over default/missing.
closed
2018-04-05T07:51:52Z
2018-07-18T02:04:04Z
https://github.com/marshmallow-code/apispec/issues/196
[ "feedback welcome" ]
lafrech
4
Lightning-AI/pytorch-lightning
deep-learning
20,058
Expose `weights_only` option for loading checkpoints
### Description & Motivation PyTorch will default the `torch.load(weights_only=)` option to True in the future, and started emitting FutureWarning in 2.4. Since Lightning allows storing all kinds of data into the checkpoint (mainly through save_hyperparameters() and the on_save_checkpoint hooks), so far we have to explicitly set `weights_only=False` internally to be able to load checkpoints. But we could also expose this argument as a flag for the user to choose how strict they want to be when loading checkpoints. ### Pitch In Fabric.load, expose weights_only. In PyTorch Lightning, either add `fit(..., load_weights_only=...)` or add an attribute to the LightningModule (similar to how we handle strict_loading). ### Alternatives _No response_ ### Additional context _No response_ cc @borda @awaelchli
open
2024-07-08T07:30:33Z
2024-07-12T15:42:13Z
https://github.com/Lightning-AI/pytorch-lightning/issues/20058
[ "feature", "checkpointing" ]
awaelchli
4
jonaswinkler/paperless-ng
django
1,447
[BUG] Consuming from smb share sometimes fails with "file not found" errors
<!--- => Before opening an issue, please check the documentation and see if it helps you resolve your issue: https://paperless-ng.readthedocs.io/en/latest/troubleshooting.html => Please also make sure that you followed the installation instructions. => Please search the issues and look for similar issues before opening a bug report. => If you would like to submit a feature request please submit one under https://github.com/jonaswinkler/paperless-ng/discussions/categories/feature-requests => If you encounter issues while installing of configuring Paperless-ng, please post that in the "Support" section of the discussions. Remember that Paperless successfully runs on a variety of different systems. If paperless does not start, it's probably an issue with your system, and not an issue of paperless. => Don't remove the [BUG] prefix from the title. --> **Describe the bug** I use an smb share as the consumption directory. The consumer always picks up new documents and starts processing them. Often, the task eventually fails with `[Errno 2] No such file or directory: '/usr/src/paperless/src/../consume/Scan19112021193259.pdf'`. PDF files are copied to the share in one piece. I have set `PAPERLESS_CONSUMER_POLLING: 30`, so inotify is disabled. **To Reproduce** Steps to reproduce the behavior: 1. Set up paperless via docker-compose 2. Set up smb share as consumption directory 3. Add pdf file to consumption directory 4. Check the webserver log to see Error (in majority of cases) **Expected behavior** - Document is deleted from consumption directory - Consumption task finishes without error - Document is added to database **Actual behavior** - Document is deleted from consumption directory - Consumption task finishes WITH error - Document is NOT added to database **Webserver logs** ``` [2021-11-19 19:33:18,697] [DEBUG] [paperless.management.consumer] Waiting for file /usr/src/paperless/src/../consume/Scan19112021193259.pdf to remain unmodified [2021-11-19 19:33:23,703] [INFO] [paperless.management.consumer] Adding /usr/src/paperless/src/../consume/Scan19112021193259.pdf to the task queue. [2021-11-19 19:33:23,881] [INFO] [paperless.consumer] Consuming Scan19112021193259.pdf [2021-11-19 19:33:23,890] [DEBUG] [paperless.consumer] Detected mime type: application/pdf [2021-11-19 19:33:23,905] [DEBUG] [paperless.consumer] Parser: RasterisedDocumentParser [2021-11-19 19:33:23,914] [DEBUG] [paperless.consumer] Parsing Scan19112021193259.pdf... [2021-11-19 19:33:24,895] [DEBUG] [paperless.parsing.tesseract] Extracted text from PDF file /usr/src/paperless/src/../consume/Scan19112021193259.pdf [2021-11-19 19:33:25,117] [DEBUG] [paperless.parsing.tesseract] Calling OCRmyPDF with args: {'input_file': '/usr/src/paperless/src/../consume/Scan19112021193259.pdf', 'output_file': '/tmp/paperless/paperless-9bsrj6ku/archive.pdf', 'use_threads': True, 'jobs': 4, 'language': 'deu', 'output_type': 'pdfa', 'progress_bar': False, 'skip_text': True, 'clean': True, 'deskew': True, 'rotate_pages': True, 'rotate_pages_threshold': 12.0, 'sidecar': '/tmp/paperless/paperless-9bsrj6ku/sidecar.txt'} [2021-11-19 19:33:31,516] [DEBUG] [paperless.parsing.tesseract] Incomplete sidecar file: discarding. [2021-11-19 19:33:32,331] [DEBUG] [paperless.parsing.tesseract] Extracted text from PDF file /tmp/paperless/paperless-9bsrj6ku/archive.pdf [2021-11-19 19:33:32,332] [DEBUG] [paperless.consumer] Generating thumbnail for Scan19112021193259.pdf... [2021-11-19 19:33:32,346] [DEBUG] [paperless.parsing] Execute: convert -density 300 -scale 500x5000> -alpha remove -strip -auto-orient /tmp/paperless/paperless-9bsrj6ku/archive.pdf[0] /tmp/paperless/paperless-9bsrj6ku/convert.png [2021-11-19 19:33:34,855] [DEBUG] [paperless.parsing.tesseract] Execute: optipng -silent -o5 /tmp/paperless/paperless-9bsrj6ku/convert.png -out /tmp/paperless/paperless-9bsrj6ku/thumb_optipng.png [2021-11-19 19:33:40,278] [ERROR] [paperless.consumer] The following error occured while consuming Scan19112021193259.pdf: [Errno 2] No such file or directory: '/usr/src/paperless/src/../consume/Scan19112021193259.pdf' Traceback (most recent call last): File "/usr/src/paperless/src/documents/consumer.py", line 287, in try_consume_file document = self._store( File "/usr/src/paperless/src/documents/consumer.py", line 372, in _store stats = os.stat(self.path) FileNotFoundError: [Errno 2] No such file or directory: '/usr/src/paperless/src/../consume/Scan19112021193259.pdf' [2021-11-19 19:33:40,280] [DEBUG] [paperless.parsing.tesseract] Deleting directory /tmp/paperless/paperless-9bsrj6ku ``` **Relevant information** - Debian 10 - Firefox - 1.5.0 - Installation method: docker-compose.postgres-tika - Any configuration changes you made in `docker-compose.yml`, `docker-compose.env` or `paperless.conf`: ***docker-compose.yml*** ```yaml version: "3.4" services: broker: image: redis:6.0 restart: unless-stopped networks: - internal db: image: postgres:13 restart: unless-stopped volumes: - pgdata:/var/lib/postgresql/data environment: POSTGRES_DB: paperless POSTGRES_USER: paperless POSTGRES_PASSWORD: <<secret>> networks: - internal webserver: image: jonaswinkler/paperless-ng:1.5.0 restart: unless-stopped depends_on: - db - broker - gotenberg - tika ports: - 8083:8000 healthcheck: test: ["CMD", "curl", "-f", "http://localhost:8000"] interval: 30s timeout: 10s retries: 5 volumes: - data:/usr/src/paperless/data - media:/usr/src/paperless/media - /mnt/smb/paperless/export:/usr/src/paperless/export - /mnt/smb/paperless/inbox:/usr/src/paperless/consume env_file: docker-compose.env environment: PAPERLESS_REDIS: redis://broker:6379 PAPERLESS_DBHOST: db PAPERLESS_DBPASS: <<secret>> PAPERLESS_ADMIN_USER: admin PAPERLESS_ADMIN_PASSWORD: <<secret>> PAPERLESS_TIKA_ENABLED: 1 PAPERLESS_TIKA_GOTENBERG_ENDPOINT: http://gotenberg:3000 PAPERLESS_TIKA_ENDPOINT: http://tika:9998 PAPERLESS_CONSUMER_POLLING: 30 labels: - traefik.http.routers.paperless.rule=Host(`<<secret>>`) - traefik.port=8000 networks: - proxy - internal gotenberg: image: thecodingmachine/gotenberg restart: unless-stopped environment: DISABLE_GOOGLE_CHROME: 1 networks: - internal tika: image: apache/tika restart: unless-stopped networks: - internal networks: internal: proxy: external: true volumes: data: driver: local driver_opts: type: 'none' o: 'bind' device: '/mnt/hdd-storage/docker/paperless/data' media: driver: local driver_opts: type: 'none' o: 'bind' device: '/mnt/hdd-storage/docker/paperless/media' pgdata: ``` ***docker-compose.env*** ```env PAPERLESS_SECRET_KEY=<<secret>> PAPERLESS_TIME_ZONE=Europe/Berlin PAPERLESS_OCR_LANGUAGE=deu ````
closed
2021-11-20T15:11:19Z
2022-02-06T19:56:43Z
https://github.com/jonaswinkler/paperless-ng/issues/1447
[]
drgif
2
dmlc/gluon-nlp
numpy
751
CI reports linkcheck as passing for pull-requests even though it fails
@szha There is some bug in the CI setup for pull-requests. Even though the linkcheck consistently failed for all pull-requests after #566, the CI did not recognize the failure and reported the test as passing. Only on the master branch, the CI correctly reports the test as failing. See for example the log for #732: - The pipeline checking the links is reported as passing http://ci.mxnet.io/blue/organizations/jenkins/GluonNLP-py3-master-gpu-doc/detail/PR-732/32/pipeline/85 - However, looking at the detailed log files, http://ci.mxnet.io/blue/rest/organizations/jenkins/pipelines/GluonNLP-py3-master-gpu-doc/branches/PR-732/runs/32/nodes/85/steps/106/log/?start=0 we see that the recipe for target linkcheck failed and reported Error 1 (last few lines)
closed
2019-06-07T07:15:24Z
2019-06-08T09:27:04Z
https://github.com/dmlc/gluon-nlp/issues/751
[ "bug", "release focus" ]
leezu
2
KaiyangZhou/deep-person-reid
computer-vision
105
About the accuracy of PCB model
Thanks for sharing. I am reproducing the PCB model, but I have tried a variety of parameter adjustment methods that can not achieve the accuracy of the original paper. My best rank1 result of pcb_p6 is 80.3%. I would like to ask what is the accuracy of your PCB model? Thanks.
closed
2019-01-20T03:33:02Z
2019-02-04T23:19:48Z
https://github.com/KaiyangZhou/deep-person-reid/issues/105
[]
jiao133
2
iterative/dvc
data-science
9,743
`exp push`: https fails
# Bug Report ## Description Unable to exp push to https git remote ### Reproduce ```console $ git clone https://github.com/iterative/example-get-started-experiments-non-demo.git $ cd example-get-started-experiments-non-demo $ dvc exp run --pull $ dvc exp push -v --no-cache origin 2023-07-18 11:18:28,971 DEBUG: v3.5.1 (pip), CPython 3.11.4 on macOS-13.4.1-arm64-arm-64bit 2023-07-18 11:18:28,971 DEBUG: command: /Users/dave/micromamba/envs/example-get-started-experiments/bin/dvc exp push -v --no-cache origin 2023-07-18 11:18:29,137 DEBUG: git push experiment ['refs/exps/49/f1dcff62757de0ca1ccba55e0b3b9b79fdce5d/natal-bots:refs/exps/49/f1dcff62757de0ca1ccba55e0b3b9b79fdce5d/natal-bots'] -> 'origin' Pushing git refs| |0.00/? [00:00, ?obj/s]Username for 'https://github.com': dberenbaum Password for 'https://dberenbaum@github.com': 2023-07-18 11:18:33,273 ERROR: unexpected error - HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /iterative/example-get-started-experiments-non-demo.git/git-receive-pack (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2423)'))) Traceback (most recent call last): File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connectionpool.py", line 714, in urlopen httplib_response = self._make_request( ^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connectionpool.py", line 415, in _make_request conn.request(method, url, **httplib_request_kw) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connection.py", line 244, in request super(HTTPConnection, self).request(method, url, body=body, headers=headers) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/http/client.py", line 1286, in request self._send_request(method, url, body, headers, encode_chunked) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/http/client.py", line 1332, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/http/client.py", line 1281, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/http/client.py", line 1080, in _send_output self.send(chunk) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/http/client.py", line 1002, in send self.sock.sendall(data) File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/ssl.py", line 1241, in sendall v = self.send(byte_view[count:]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/ssl.py", line 1210, in send return self._sslobj.write(data) ^^^^^^^^^^^^^^^^^^^^^^^^ ssl.SSLEOFError: EOF occurred in violation of protocol (_ssl.c:2423) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/cli/__init__.py", line 209, in main ret = cmd.do_run() ^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/cli/command.py", line 26, in do_run return self.run() ^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/commands/experiments/push.py", line 55, in run result = self.repo.experiments.push( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/repo/experiments/__init__.py", line 389, in push return push(self.repo, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/repo/__init__.py", line 64, in wrapper return f(repo, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/repo/scm_context.py", line 151, in run return method(repo, *args, **kw) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/repo/experiments/push.py", line 120, in push push_result = _push(repo, git_remote, exp_ref_set, force) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dvc/repo/experiments/push.py", line 162, in _push results: Mapping[str, SyncStatus] = repo.scm.push_refspecs( ^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/scmrepo/git/__init__.py", line 286, in _backend_func result = func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/scmrepo/git/backend/dulwich/__init__.py", line 580, in push_refspecs result = client.send_pack( ^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dulwich/client.py", line 2048, in send_pack resp, read = self._smart_request( ^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dulwich/client.py", line 1988, in _smart_request resp, read = self._http_request(url, headers, data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/scmrepo/git/backend/dulwich/client.py", line 49, in _http_request result = super()._http_request( ^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/dulwich/client.py", line 2211, in _http_request resp = self.pool_manager.request( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/request.py", line 78, in request return self.request_encode_body( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/request.py", line 170, in request_encode_body return self.urlopen(method, url, **extra_kw) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/poolmanager.py", line 376, in urlopen response = conn.urlopen(method, u.request_uri, **kw) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connectionpool.py", line 826, in urlopen return self.urlopen( ^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connectionpool.py", line 826, in urlopen return self.urlopen( ^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connectionpool.py", line 826, in urlopen return self.urlopen( ^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/connectionpool.py", line 798, in urlopen retries = retries.increment( ^^^^^^^^^^^^^^^^^^ File "/Users/dave/micromamba/envs/example-get-started-experiments/lib/python3.11/site-packages/urllib3/util/retry.py", line 592, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='github.com', port=443): Max retries exceeded with url: /iterative/example-get-started-experiments-non-demo.git/git-receive-pack (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2423)'))) 2023-07-18 11:18:33,303 DEBUG: Removing '/private/tmp/.SNv8fX8x3vBLJGm7CyVXFZ.tmp' 2023-07-18 11:18:33,304 DEBUG: Removing '/private/tmp/.SNv8fX8x3vBLJGm7CyVXFZ.tmp' 2023-07-18 11:18:33,304 DEBUG: Removing '/private/tmp/.SNv8fX8x3vBLJGm7CyVXFZ.tmp' 2023-07-18 11:18:33,304 DEBUG: Removing '/private/tmp/example-get-started-experiments-non-demo/.dvc/cache/files/md5/.bFc97uwWMMPqFiP9gJcwnu.tmp' 2023-07-18 11:18:37,342 DEBUG: Version info for developers: DVC version: 3.5.1 (pip) ------------------------ Platform: Python 3.11.4 on macOS-13.4.1-arm64-arm-64bit Subprojects: dvc_data = 2.5.0 dvc_objects = 0.23.0 dvc_render = 0.5.3 dvc_task = 0.3.0 scmrepo = 1.0.4 Supports: http (aiohttp = 3.8.4, aiohttp-retry = 2.8.3), https (aiohttp = 3.8.4, aiohttp-retry = 2.8.3), s3 (s3fs = 2023.6.0, boto3 = 1.26.161) Config: Global: /Users/dave/Library/Application Support/dvc System: /Library/Application Support/dvc Cache types: reflink, hardlink, symlink Cache directory: apfs on /dev/disk3s1s1 Caches: local Remotes: https Workspace directory: apfs on /dev/disk3s1s1 Repo: dvc, git Repo.site_cache_dir: /Library/Caches/dvc/repo/b1fc49d4408cca5f1e780cdbe0783d09 Having any troubles? Hit us up at https://dvc.org/support, we are always happy to help! 2023-07-18 11:18:37,346 DEBUG: Analytics is disabled. ```
closed
2023-07-18T15:21:47Z
2023-07-19T13:29:08Z
https://github.com/iterative/dvc/issues/9743
[ "bug", "p2-medium", "A: experiments", "git" ]
dberenbaum
4
jupyterlab/jupyter-ai
jupyter
930
`default.faiss` not checked for existance before using
jupyter-ai seems not to check if `default.faiss` exists before using it through `faiss` ``` [E 2024-08-03 17:49:43.118 AiExtension] Could not load vector index from disk. Full exception details printed below. [E 2024-08-03 17:49:43.118 AiExtension] Error in faiss::FileIOReader::FileIOReader(const char*) at /project/faiss/faiss/impl/io.cpp:67: Error: 'f' failed: could not open /p/home/user1/cluster1/.local/share/jupyter/jupyter_ai/indices/default.faiss for reading: No such file or directory ``` and it also does not regenerate it if the file is missing. (I am using jupyter-ai 2.19.1 in combination with JupyterLab 4.2.1)
open
2024-08-03T16:01:08Z
2025-01-21T22:14:22Z
https://github.com/jupyterlab/jupyter-ai/issues/930
[ "bug", "good first issue" ]
jhgoebbert
0
axnsan12/drf-yasg
django
530
How can a add "Injection security definitions" on my redoc?
Hi experts, How can a add "Injection security definitions" on my redoc? I didn't understand the link: https://github.com/Redocly/redoc/blob/master/docs/security-definitions-injection.md#injection-security-definitions I want to add a few menus itens before the menu item Authentication like below: ![image](https://user-images.githubusercontent.com/52941839/72556277-0be75980-387d-11ea-9b41-f010187029b9.png)
closed
2020-01-16T19:27:35Z
2020-01-16T21:00:25Z
https://github.com/axnsan12/drf-yasg/issues/530
[]
danilocastelhano1
1
mljar/mljar-supervised
scikit-learn
356
Add Neural Network in Optuna
closed
2021-03-29T06:51:01Z
2021-03-29T07:01:04Z
https://github.com/mljar/mljar-supervised/issues/356
[ "enhancement" ]
pplonski
0
prisma-labs/python-graphql-client
graphql
6
Will update soon on PyPI
Hi everyone, Sorry I've been busy. I'll update this project soon on PyPI
closed
2018-05-14T18:43:40Z
2018-05-25T10:04:20Z
https://github.com/prisma-labs/python-graphql-client/issues/6
[]
ssshah86
1
littlecodersh/ItChat
api
872
现在微信禁止网页版登录,这个包用不了了,求解答
open
2019-09-16T01:59:03Z
2022-03-04T08:06:58Z
https://github.com/littlecodersh/ItChat/issues/872
[]
kuangshp
17
mitmproxy/mitmproxy
python
7,034
Is support x86 systems?
#### Problem Description I installed the python 312 x86 environment and compiled mitmproxy, and the following message appears ![image](https://github.com/user-attachments/assets/5f323592-413d-438c-b396-00a30c21632d) mitmproxy Is support x86 systems? #### Steps to reproduce the behavior: 1. python -m venv venv 2. pip install -e . 3. build error
closed
2024-07-23T08:28:48Z
2024-07-23T10:15:44Z
https://github.com/mitmproxy/mitmproxy/issues/7034
[ "kind/triage" ]
linuxlin365
2
InstaPy/InstaPy
automation
6,012
Confuse with desired amount in session.like_by_tags
What i doing wrong? i set amount in like_by_tags with random, just for test 1,1 so the number will be one. But when it running always got 10 :S ## Expected Behavior desired amount: 1 ## Current Behavior desired amount: 10 ## Possible Solution (optional) ## InstaPy configuration ### hastagból bekövetett user hány postjával lépjen interraktba? session.set_user_interact(amount=2, randomize=True, percentage=100, media='Photo') ## Minden postot likeolunk session.set_do_like(enabled=False, percentage=100) ## Mindent bekövetünk session.set_do_follow(enabled=True, percentage=100, times=1) ## Minden 4. kommentelünk, 20 komment alatt. session.set_do_comment(enabled=True, percentage=25) session.set_delimit_commenting(enabled=False, max_comments=20, min_comments=None) session.set_comments(comments,media='Photo') ### Random hastagek random.shuffle(tri_hashtags) random_tri_hashtags = tri_hashtags[:4] ## TODO - Itt indulunk session.like_by_tags(random_tri_hashtags, amount=random.randint(1, 1), interact=True, skip_top_posts=True, media='Photo') <img width="1297" alt="Screenshot 2021-01-07 at 21 15 27" src="https://user-images.githubusercontent.com/12101834/103940661-faeac480-512d-11eb-9a36-bbe2fc7526f5.png">
open
2021-01-07T20:21:54Z
2021-07-22T21:33:47Z
https://github.com/InstaPy/InstaPy/issues/6012
[]
noobi97
4
Gozargah/Marzban
api
689
Node distribution
We need to add the ability to select nodes for users individually. So that some users are on node number one, and some users are on node number 2
closed
2023-12-10T09:16:16Z
2024-11-04T18:32:20Z
https://github.com/Gozargah/Marzban/issues/689
[ "Feature" ]
Genry777Morgan
7
yt-dlp/yt-dlp
python
12,026
[RFE] Supported Site Request - Means TV aka means.tv
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting a new site support request - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that none of provided URLs [violate any copyrights](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#is-the-website-primarily-used-for-piracy) or contain any [DRM](https://en.wikipedia.org/wiki/Digital_rights_management) to the best of my knowledge - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and am willing to share it if required ### Region Worldwide I think? Definitely in the USA ### Example URLs - Collection: https://means.tv/programs/mmn - Single video: https://means.tv/programs/mmn?cid=4003569&permalink=mmn-daily_122024 - Single video: https://means.tv/programs/mmn-daily_122024 ### Provide a description that is worded well enough to be understood This site is for anti-capitalist content. The example URLs all contain free downloads (the collection contains a mix of free and subscription), I checked the supported sites list and did not find it. I tried running with both the collection and the first single video and the generic extractor was unable to process either request. ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [X] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['--no-call-home', '--add-metadata', '--cookies', 'cookie-jar-file', '--embed-metadata', '--embed-thumbnail', '-v', 'https://means.tv/programs/mmn?cid=4003569&permalink=mmn-daily_122024'] [debug] Encodings: locale UTF-8, fs utf-8, pref UTF-8, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version stable@2024.12.23 from yt-dlp/yt-dlp [65cf46cdd] (source) [debug] Lazy loading extractors is disabled [debug] Git HEAD: 0b6b7742c [debug] Python 3.10.12 (CPython x86_64 64bit) - Linux-5.15.0-128-generic-x86_64-with-glibc2.35 (OpenSSL 3.0.2 15 Mar 2022, glibc 2.35) [debug] exe versions: ffmpeg N-113348-g0a5813fc68-20240119 (setts), ffprobe N-113348-g0a5813fc68-20240119 [debug] Optional libraries: Cryptodome-3.17, brotli-1.0.9, certifi-2024.02.02, mutagen-1.47.0, requests-2.32.3, secretstorage-3.3.1, sqlite3-3.37.2, urllib3-2.1.0, websockets-13.1 [debug] Proxy map: {} [debug] Request Handlers: urllib, requests, websockets [debug] Loaded 1837 extractors [generic] Extracting URL: https://means.tv/programs/mmn?cid=4003569&permalink=mmn-daily_122024 [generic] mmn?cid=4003569&permalink=mmn-daily_122024: Downloading webpage WARNING: [generic] Falling back on generic information extractor [generic] mmn?cid=4003569&permalink=mmn-daily_122024: Extracting information [debug] Looking for embeds [debug] Identified a JSON LD [generic] Extracting URL: https://means.tv/programs/mmn-daily_122024#__youtubedl_smuggle=%7B%22force_videoid%22%3A+%22mmn%3Fcid%3D4003569%26permalink%3Dmmn-daily_122024%22%2C+%22to_generic%22%3A+true%2C+%22referer%22%3A+%22https%3A%2F%2Fmeans.tv%2Fprograms%2Fmmn%3Fcid%3D4003569%26permalink%3Dmmn-daily_122024%22%7D [generic] mmn?cid=4003569&permalink=mmn-daily_122024: Downloading webpage [generic] mmn?cid=4003569&permalink=mmn-daily_122024: Extracting information [debug] Looking for embeds ERROR: Unsupported URL: https://means.tv/programs/mmn-daily_122024 Traceback (most recent call last): File "/home/h/dev/yt-dlp/yt_dlp/YoutubeDL.py", line 1634, in wrapper return func(self, *args, **kwargs) File "/home/h/dev/yt-dlp/yt_dlp/YoutubeDL.py", line 1769, in __extract_info ie_result = ie.extract(url) File "/home/h/dev/yt-dlp/yt_dlp/extractor/common.py", line 742, in extract ie_result = self._real_extract(url) File "/home/h/dev/yt-dlp/yt_dlp/extractor/generic.py", line 2553, in _real_extract raise UnsupportedError(url) yt_dlp.utils.UnsupportedError: Unsupported URL: https://means.tv/programs/mmn-daily_122024 ```
open
2025-01-08T03:16:32Z
2025-01-25T01:14:38Z
https://github.com/yt-dlp/yt-dlp/issues/12026
[ "site-request", "triage" ]
hibes
12
thtrieu/darkflow
tensorflow
846
There is an Error!
Parsing ./cfg/yolo.cfg Parsing cfg/yolo.cfg Loading bin/yolo.weights ... Traceback (most recent call last): File "E:\Users\ZP\Desktop\Getdata\flow.py", line 6, in <module> cliHandler(sys.argv) File "D:\Program Files\Python36\lib\site-packages\darkflow\cli.py", line 26, in cliHandler tfnet = TFNet(FLAGS) File "D:\Program Files\Python36\lib\site-packages\darkflow\net\build.py", line 58, in __init__ darknet = Darknet(FLAGS) File "D:\Program Files\Python36\lib\site-packages\darkflow\dark\darknet.py", line 27, in __init__ self.load_weights() File "D:\Program Files\Python36\lib\site-packages\darkflow\dark\darknet.py", line 82, in load_weights wgts_loader = loader.create_loader(*args) File "D:\Program Files\Python36\lib\site-packages\darkflow\utils\loader.py", line 105, in create_loader return load_type(path, cfg) File "D:\Program Files\Python36\lib\site-packages\darkflow\utils\loader.py", line 19, in __init__ self.load(*args) File "D:\Program Files\Python36\lib\site-packages\darkflow\utils\loader.py", line 77, in load walker.offset, walker.size) AssertionError: expect 203934260 bytes, found 248007048
open
2018-07-18T10:06:04Z
2018-07-18T10:06:04Z
https://github.com/thtrieu/darkflow/issues/846
[]
JoffreyN
0
dask/dask
numpy
11,382
when using max/min as first expression for new collumn dataframe will not compute
**Describe the issue**: in the code example below the dataframe will fail to compute after we have calculated cell_y collumn, I have determined that the cause is the arrangement of the expression, rearranging it can remove the error, this seems like a bug. **Minimal Complete Verifiable Example**: ```python import dask import dask.dataframe as dd import pandas as pd from importlib.metadata import version print(version("dask")) print(version("pandas")) data = pd.DataFrame( { "x": [0, 1, 0, 1], "y": [0, 0, 1, 1], "z": [1, 2, 3, 4], "beam_flag": [5, 0, 0, 0], "ping_number": [0] * 4, "beam_number": [0] * 4, "filename": [0] * 4, } ) ddf = dd.from_pandas(data, npartitions=1) ddf["cell_x"] = ((ddf.x - ddf.x.min()) // 1).astype("uint32") ddf["cell_y"] = ((ddf.y.max() - ddf.y) // 1).astype("uint32") print(ddf.compute()) ``` **Anything else we need to know?**: I got around the error by rearranging the expression, the code below does not error. The original code worked in older dasks. ```python import dask import dask.dataframe as dd import pandas as pd from importlib.metadata import version print(version("dask")) print(version("pandas")) data = pd.DataFrame( { "x": [0, 1, 0, 1], "y": [0, 0, 1, 1], "z": [1, 2, 3, 4], "beam_flag": [5, 0, 0, 0], "ping_number": [0] * 4, "beam_number": [0] * 4, "filename": [0] * 4, } ) ddf = dd.from_pandas(data, npartitions=1) ddf["cell_x"] = ((ddf.x - ddf.x.min()) // 1).astype("uint32") ddf["cell_y"] = ((-ddf.y + ddf.y.max()) // 1).astype("uint32") print(ddf.compute()) ``` **Environment**: - Dask version: 2024.8.2 - Pandas: 2.2.2 - Python version: 3.10 - Operating System: linux - Install method (poetry):
closed
2024-09-10T12:32:19Z
2024-10-11T16:02:59Z
https://github.com/dask/dask/issues/11382
[ "dask-expr" ]
JimHBeam
1
microsoft/unilm
nlp
922
Can Magneto train a 1000 layer network and how does it compare to Deepnet?
Looking forward to the reply. Thanks. ^^ @shumingma
closed
2022-11-18T09:41:01Z
2022-11-24T04:05:05Z
https://github.com/microsoft/unilm/issues/922
[]
nbcc
5
PokeAPI/pokeapi
api
813
Inconsistency between pokemon_forms and pokemon/pokemon_stats ids
closed
2023-01-10T21:57:41Z
2023-01-12T01:24:49Z
https://github.com/PokeAPI/pokeapi/issues/813
[]
tillfox
0
modelscope/modelscope
nlp
1,194
modelscope download下载数据集的默认路径变了?
不应该是.cache/modelscope/datasets下吗,现在为什么变成.cache/modelscope/hub/datasets下了 @wangxingjun778
closed
2025-01-17T16:36:45Z
2025-01-19T06:32:05Z
https://github.com/modelscope/modelscope/issues/1194
[]
acdart
7
freqtrade/freqtrade
python
10,654
Error during backtesting QuickAdapterV3 KeyError: '&s-extrema'
<!-- Have you searched for similar issues before posting it? Yes and I found that changing model id helps freqtrade to not get stuck in old models but still even if I delete the old models I get this error. The issue I found https://github.com/freqtrade/freqtrade/issues/9379 . If you have discovered a bug in the bot, please [search the issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue). If it hasn't been reported, please create a new issue. Please do not use bug reports to request new features. --> ## Describe your environment * Operating system: Windows 11 with Docker image freqtradeorg/freqtrade:stable_freqaitorch * Python Version: 3.10 (`python -V`) * CCXT version: 4.3.65 (`pip freeze | grep ccxt`) * Freqtrade Version: freqtrade docker-2024.9-dev-704e32b0 (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker) Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out. ## Describe the problem: *Explain the problem you have encountered* Hello, first of all, thanks for all your amazing work and support! I’ve just started working with FreqAI and I’m still trying to grasp everything. While running backtesting, I either encounter an error, or the backtesting finishes, but no trades are made. I made small modifications to the config file to reduce the amount of data processed during training, but nothing else. I also tried backtesting without the confirm_trade_entry function because it calls Trade.get_trades(), which is not supported in backtesting. I haven’t touched the XGBRegressor file, even though the error seems to originate from there. ### Steps to reproduce: 1. Backtest the strategy ### Observed Results: I either get the error or no trades are made ### Relevant code exceptions or logs The logs ``` docker compose -f docker-compose-ai.yml run --rm freqtrade backtesting --config user_data/config_ai.json --strategy QuickAdapterV3 --freqaimodel XGBoostRegressorQuickAdapterV3 --timerange 20240501-20240510 2024-09-15 16:46:17,738 - freqtrade - INFO - freqtrade 2024.7.1 2024-09-15 16:46:17,763 - freqtrade.configuration.load_config - INFO - Using config: user_data/config_ai.json ... 2024-09-15 16:46:17,770 - freqtrade.loggers - INFO - Verbosity set to 0 2024-09-15 16:46:17,770 - freqtrade.configuration.configuration - WARNING - `force_entry_enable` RPC message enabled. 2024-09-15 16:46:17,771 - freqtrade.configuration.configuration - INFO - Using max_open_trades: 3 ... 2024-09-15 16:46:17,771 - freqtrade.configuration.configuration - INFO - Parameter --timerange detected: 20240501-20240510 ... 2024-09-15 16:46:18,149 - freqtrade.configuration.configuration - INFO - Using user-data directory: /freqtrade/user_data ... 2024-09-15 16:46:18,153 - freqtrade.configuration.configuration - INFO - Using data directory: /freqtrade/user_data/data/binance ... 2024-09-15 16:46:18,153 - freqtrade.configuration.configuration - INFO - Parameter --cache=day detected ... 2024-09-15 16:46:18,153 - freqtrade.configuration.configuration - INFO - Filter trades by timerange: 20240501-20240510 2024-09-15 16:46:18,153 - freqtrade.configuration.configuration - INFO - Using freqaimodel class name: XGBoostRegressorQuickAdapterV3 2024-09-15 16:46:18,155 - freqtrade.exchange.check_exchange - INFO - Checking exchange... 2024-09-15 16:46:18,171 - freqtrade.exchange.check_exchange - INFO - Exchange "binance" is officially supported by the Freqtrade development team. 2024-09-15 16:46:18,171 - freqtrade.configuration.configuration - INFO - Using pairlist from configuration. 2024-09-15 16:46:18,171 - freqtrade.configuration.config_validation - INFO - Validating configuration ... 2024-09-15 16:46:18,176 - freqtrade.commands.optimize_commands - INFO - Starting freqtrade in Backtesting mode 2024-09-15 16:46:18,176 - freqtrade.exchange.exchange - INFO - Instance is running with dry_run enabled 2024-09-15 16:46:18,176 - freqtrade.exchange.exchange - INFO - Using CCXT 4.3.65 2024-09-15 16:46:18,177 - freqtrade.exchange.exchange - INFO - Applying additional ccxt config: {'options': {'defaultType': 'swap'}} 2024-09-15 16:46:18,190 - freqtrade.exchange.exchange - INFO - Applying additional ccxt config: {'options': {'defaultType': 'swap'}} 2024-09-15 16:46:18,206 - freqtrade.exchange.exchange - INFO - Using Exchange "Binance" 2024-09-15 16:46:21,060 - freqtrade.resolvers.exchange_resolver - INFO - Using resolved exchange 'Binance'... 2024-09-15 16:46:21,676 - freqtrade.resolvers.iresolver - WARNING - Could not import /freqtrade/user_data/strategies/GodStra.py due to 'No module named 'ta'' 2024-09-15 16:46:21,696 - freqtrade.resolvers.iresolver - WARNING - Could not import /freqtrade/user_data/strategies/Heracles.py due to 'No module named 'ta'' 2024-09-15 16:46:21,771 - freqtrade.resolvers.iresolver - WARNING - Could not import /freqtrade/user_data/strategies/MacheteV8b_Fixed.py due to 'No module named 'finta'' 2024-09-15 16:46:22,326 - freqtrade.resolvers.iresolver - INFO - Using resolved strategy QuickAdapterV3 from '/freqtrade/user_data/strategies/QuickAdapterV3.py'... 2024-09-15 16:46:22,328 - freqtrade.strategy.hyper - INFO - Found no parameter file. 2024-09-15 16:46:22,329 - freqtrade.resolvers.strategy_resolver - INFO - Override strategy 'timeframe' with value in config file: 3m. 2024-09-15 16:46:22,329 - freqtrade.resolvers.strategy_resolver - INFO - Override strategy 'stake_currency' with value in config file: USDT. 2024-09-15 16:46:22,329 - freqtrade.resolvers.strategy_resolver - INFO - Override strategy 'stake_amount' with value in config file: unlimited. 2024-09-15 16:46:22,329 - freqtrade.resolvers.strategy_resolver - INFO - Override strategy 'unfilledtimeout' with value in config file: {'entry': 10, 'exit': 30, 'exit_timeout_count': 0, 'unit': 'minutes'}. 2024-09-15 16:46:22,329 - freqtrade.resolvers.strategy_resolver - INFO - Override strategy 'max_open_trades' with value in config file: 3. 2024-09-15 16:46:22,329 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using minimal_roi: {'0': 0.03, '5000': -1} 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using timeframe: 3m 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using stoploss: -0.04 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using trailing_stop: False 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using trailing_stop_positive_offset: 0.0 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using trailing_only_offset_is_reached: False 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using use_custom_stoploss: False 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using process_only_new_candles: True 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using order_types: {'entry': 'limit', 'exit': 'market', 'emergency_exit': 'market', 'force_exit': 'market', 'force_entry': 'market', 'stoploss': 'market', 'stoploss_on_exchange': False, 'stoploss_on_exchange_interval': 120} 2024-09-15 16:46:22,330 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using order_time_in_force: {'entry': 'GTC', 'exit': 'GTC'} 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using stake_currency: USDT 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using stake_amount: unlimited 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using protections: [{'method': 'CooldownPeriod', 'stop_duration_candles': 4}, {'method': 'MaxDrawdown', 'lookback_period_candles': 48, 'trade_limit': 20, 'stop_duration_candles': 4, 'max_allowed_drawdown': 0.2}] 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using startup_candle_count: 80 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using unfilledtimeout: {'entry': 10, 'exit': 30, 'exit_timeout_count': 0, 'unit': 'minutes'} 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using use_exit_signal: True 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using exit_profit_only: False 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using ignore_roi_if_entry_signal: False 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using exit_profit_offset: 0.0 2024-09-15 16:46:22,331 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using disable_dataframe_checks: False 2024-09-15 16:46:22,332 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using ignore_buying_expired_candle_after: 0 2024-09-15 16:46:22,332 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using position_adjustment_enable: False 2024-09-15 16:46:22,332 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using max_entry_position_adjustment: 1 2024-09-15 16:46:22,332 - freqtrade.resolvers.strategy_resolver - INFO - Strategy using max_open_trades: 3 2024-09-15 16:46:22,332 - freqtrade.configuration.config_validation - INFO - Validating configuration ... 2024-09-15 16:46:22,370 - freqtrade.resolvers.iresolver - INFO - Using resolved pairlist StaticPairList from '/freqtrade/freqtrade/plugins/pairlist/StaticPairList.py'... 2024-09-15 16:46:22,389 - freqtrade.optimize.backtesting - INFO - Using fee 0.0500% - worst case fee from exchange (lowest tier). 2024-09-15 16:46:22,390 - freqtrade.data.dataprovider - INFO - Increasing startup_candle_count for freqai on 3m to 6800 2024-09-15 16:46:22,410 - freqtrade.data.history.history_utils - INFO - Using indicator startup period: 6800 ... 2024-09-15 16:46:23,336 - freqtrade.optimize.backtesting - INFO - Loading data from 2024-04-16 20:00:00 up to 2024-05-10 00:00:00 (23 days). 2024-09-15 16:46:23,650 - freqtrade.optimize.backtesting - INFO - Dataload complete. Calculating indicators 2024-09-15 16:46:23,705 - freqtrade.optimize.backtesting - INFO - Running backtesting for Strategy QuickAdapterV3 2024-09-15 16:46:23,968 - freqtrade.resolvers.iresolver - INFO - Using resolved freqaimodel XGBoostRegressorQuickAdapterV3 from '/freqtrade/user_data/freqaimodels/XGBoostRegressorQuickAdapterV3.py'... 2024-09-15 16:46:23,973 - freqtrade.freqai.freqai_interface - INFO - Backtesting module configured to save all models. 2024-09-15 16:46:23,985 - freqtrade.freqai.data_drawer - INFO - Could not find existing historic_predictions, starting from scratch 2024-09-15 16:46:23,988 - freqtrade.freqai.data_drawer - INFO - Could not find existing metric tracker, starting from scratch 2024-09-15 16:46:23,988 - freqtrade.freqai.freqai_interface - INFO - Set existing queue from trained timestamps. Best approximation queue: {best_queue} 2024-09-15 16:46:24,010 - freqtrade.strategy.hyper - INFO - No params for buy found, using default values. 2024-09-15 16:46:24,011 - freqtrade.strategy.hyper - INFO - No params for sell found, using default values. 2024-09-15 16:46:24,011 - freqtrade.strategy.hyper - INFO - No params for protection found, using default values. 2024-09-15 16:46:24,020 - freqtrade.freqai.freqai_interface - INFO - Training 5 timeranges 2024-09-15 16:46:24,023 - freqtrade.freqai.freqai_interface - INFO - Training BTC/USDT:USDT, 1/4 pairs from 2024-04-17 00:00:00 to 2024-05-01 00:00:00, 1/5 trains 2024-09-15 16:46:24,043 - freqtrade.freqai.data_kitchen - INFO - Found backtesting prediction file at /freqtrade/user_data/models/quickadapter-xgboost/backtesting_predictions/cb_btc_1714521600_prediction.feather 2024-09-15 16:46:24,161 - freqtrade.data.dataprovider - INFO - Increasing startup_candle_count for freqai on 5m to 4112 2024-09-15 16:46:24,161 - freqtrade.data.dataprovider - INFO - Loading data for BTC/USDT:USDT 5m from 2024-04-16 17:20:00 to 2024-05-10 00:00:00 2024-09-15 16:46:24,918 - freqtrade.data.dataprovider - INFO - Increasing startup_candle_count for freqai on 15m to 1424 2024-09-15 16:46:24,918 - freqtrade.data.dataprovider - INFO - Loading data for BTC/USDT:USDT 15m from 2024-04-16 04:00:00 to 2024-05-10 00:00:00 2024-09-15 16:46:25,235 - freqtrade.data.dataprovider - INFO - Increasing startup_candle_count for freqai on 1h to 416 2024-09-15 16:46:25,235 - freqtrade.data.dataprovider - INFO - Loading data for BTC/USDT:USDT 1h from 2024-04-13 16:00:00 to 2024-05-10 00:00:00 2024-09-15 16:46:25,418 - freqtrade.freqai.freqai_interface - INFO - Training BTC/USDT:USDT, 1/4 pairs from 2024-04-19 00:00:00 to 2024-05-03 00:00:00, 2/5 trains 2024-09-15 16:46:25,437 - freqtrade.freqai.data_kitchen - INFO - Found backtesting prediction file at /freqtrade/user_data/models/quickadapter-xgboost/backtesting_predictions/cb_btc_1714694400_prediction.feather 2024-09-15 16:46:25,453 - freqtrade.freqai.freqai_interface - INFO - Training BTC/USDT:USDT, 1/4 pairs from 2024-04-21 00:00:00 to 2024-05-05 00:00:00, 3/5 trains 2024-09-15 16:46:25,470 - freqtrade.freqai.data_kitchen - INFO - Found backtesting prediction file at /freqtrade/user_data/models/quickadapter-xgboost/backtesting_predictions/cb_btc_1714867200_prediction.feather 2024-09-15 16:46:25,485 - freqtrade.freqai.freqai_interface - INFO - Training BTC/USDT:USDT, 1/4 pairs from 2024-04-23 00:00:00 to 2024-05-07 00:00:00, 4/5 trains 2024-09-15 16:46:25,501 - freqtrade.freqai.data_kitchen - INFO - Found backtesting prediction file at /freqtrade/user_data/models/quickadapter-xgboost/backtesting_predictions/cb_btc_1715040000_prediction.feather 2024-09-15 16:46:25,516 - freqtrade.freqai.freqai_interface - INFO - Training BTC/USDT:USDT, 1/4 pairs from 2024-04-25 00:00:00 to 2024-05-09 00:00:00, 5/5 trains 2024-09-15 16:46:25,533 - freqtrade.freqai.data_kitchen - INFO - Found backtesting prediction file at /freqtrade/user_data/models/quickadapter-xgboost/backtesting_predictions/cb_btc_1715212800_prediction.feather 2024-09-15 16:46:25,544 - freqtrade.freqai.freqai_interface - INFO - Applying fit_live_predictions in backtesting 2024-09-15 16:46:25,607 - freqtrade - ERROR - Fatal exception! Traceback (most recent call last): File "/freqtrade/freqtrade/main.py", line 43, in main return_code = args["func"](args) ^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/commands/optimize_commands.py", line 60, in start_backtesting backtesting.start() File "/freqtrade/freqtrade/optimize/backtesting.py", line 1614, in start min_date, max_date = self.backtest_one_strategy(strat, data, timerange) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/optimize/backtesting.py", line 1524, in backtest_one_strategy preprocessed = self.strategy.advise_all_indicators(data) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1587, in advise_all_indicators pair: self.advise_indicators(pair_data.copy(), {"pair": pair}).copy() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/strategy/interface.py", line 1645, in advise_indicators return self.populate_indicators(dataframe, metadata) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/user_data/strategies/QuickAdapterV3.py", line 239, in populate_indicators dataframe = self.freqai.start(dataframe, metadata, self) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/freqai/freqai_interface.py", line 161, in start dk = self.start_backtesting(dataframe, metadata, self.dk, strategy) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/freqtrade/freqtrade/freqai/freqai_interface.py", line 387, in start_backtesting self.backtesting_fit_live_predictions(dk) File "/freqtrade/freqtrade/freqai/freqai_interface.py", line 891, in backtesting_fit_live_predictions dk.full_df.at[index, f"{label}_mean"] = self.dk.data["labels_mean"][ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ KeyError: '&s-extrema' ``` ##The config: ``` { "trading_mode": "futures", "margin_mode": "isolated", "max_open_trades": 3, "stake_currency": "USDT", "stake_amount": "unlimited", "tradable_balance_ratio": 0.1, "fiat_display_currency": "USD", "dry_run": true, "timeframe": "3m", "dry_run_wallet": 1000, "cancel_open_orders_on_exit": true, "unfilledtimeout": { "entry": 10, "exit": 30 }, "exchange": { "name": "binance", "key": "", "secret": "", "ccxt_config": {}, "ccxt_async_config": {}, "pair_whitelist": [ "BTC/USDT:USDT","SOL/USDT:USDT","BNB/USDT:USDT","ETH/USDT:USDT" ], "pair_blacklist": [] }, "entry_pricing": { "price_side": "same", "use_order_book": true, "order_book_top": 1, "price_last_balance": 0.0, "check_depth_of_market": { "enabled": false, "bids_to_ask_delta": 1 } }, "exit_pricing": { "price_side": "other", "use_order_book": true, "order_book_top": 1 }, "pairlists": [ { "method": "StaticPairList" } ], "freqai": { "enabled": true, "conv_width": 1, "purge_old_models": 5, "expiration_hours": 10, "train_period_days": 14, "backtest_period_days": 2, "write_metrics_to_disk": true, "identifier": "quickadapter-xgboost", "fit_live_predictions_candles": 600, "data_kitchen_thread_count": 10, "track_performance": true, "extra_returns_per_train": {"DI_value_param1":0, "DI_value_param2":0, "DI_value_param3":0, "DI_cutoff": 2, "&s-minima_sort_threshold":-2, "&s-maxima_sort_threshold":2}, "feature_parameters": { "include_corr_pairlist": [ ], "include_timeframes": [ "5m", "15m", "1h" ], "label_period_candles": 100, "include_shifted_candles": 3, "DI_threshold": 10, "weight_factor": 0.9, "principal_component_analysis": false, "use_SVM_to_remove_outliers": false, "use_DBSCAN_to_remove_outliers": false, "indicator_periods_candles": [8, 16, 32], "inlier_metric_window": 0, "noise_standard_deviation": 0.02, "reverse_test_train_order": false, "plot_feature_importances": 0, "buffer_train_data_candles": 100 }, "data_split_parameters": { "test_size": 0, "random_state": 1, "shuffle": false }, "model_training_parameters": { "n_jobs": 10, "verbosity": 1 } }, "bot_name": "", "force_entry_enable": true, "initial_state": "running", "internals": { "process_throttle_secs": 5 }, "telegram": { "enabled": true, "token": "your_telegram_token", "chat_id": "your_telegram_chat_id" }, "api_server": { "enabled": true, "listen_ip_address": "0.0.0.0", "listen_port": 8080, "verbosity": "error", "jwt_secret_key": "somethingrandom", "CORS_origins": [], "username": "freqtrader", "password": "SuperSecurePassword" } } ``` ##The strat: ``` python import logging from functools import reduce import datetime from datetime import timedelta import talib.abstract as ta from pandas import DataFrame, Series from technical import qtpylib from typing import Optional from freqtrade.strategy.interface import IStrategy from technical.pivots_points import pivots_points from freqtrade.exchange import timeframe_to_prev_date from freqtrade.persistence import Trade from scipy.signal import argrelextrema import numpy as np import pandas_ta as pta logger = logging.getLogger(__name__) class QuickAdapterV3(IStrategy): """ The following freqaimodel is released to sponsors of the non-profit FreqAI open-source project. If you find the FreqAI project useful, please consider supporting it by becoming a sponsor. We use sponsor money to help stimulate new features and to pay for running these public experiments, with a an objective of helping the community make smarter choices in their ML journey. This strategy is experimental (as with all strategies released to sponsors). Do *not* expect returns. The goal is to demonstrate gratitude to people who support the project and to help them find a good starting point for their own creativity. If you have questions, please direct them to our discord: https://discord.gg/xE4RMg4QYw https://github.com/sponsors/robcaulk """ position_adjustment_enable = False # Attempts to handle large drops with DCA. High stoploss is required. stoploss = -0.04 order_types = { "entry": "limit", "exit": "market", "emergency_exit": "market", "force_exit": "market", "force_entry": "market", "stoploss": "market", "stoploss_on_exchange": False, "stoploss_on_exchange_interval": 120, } # # Example specific variables max_entry_position_adjustment = 1 # # This number is explained a bit further down max_dca_multiplier = 2 minimal_roi = {"0": 0.03, "5000": -1} process_only_new_candles = True can_short = True plot_config = { "main_plot": {}, "subplots": { "accuracy": { "accuracy_score": { "color": "#c28ce3", "type": "line" } }, "extrema": { "&s-extrema": { "color": "#f53580", "type": "line" }, "&s-minima_sort_threshold": { "color": "#4ae747", "type": "line" }, "&s-maxima_sort_threshold": { "color": "#5b5e4b", "type": "line" } }, "min_max": { "maxima": { "color": "#a29db9", "type": "line" }, "minima": { "color": "#ac7fc", "type": "bar" } } } } @property def protections(self): return [ {"method": "CooldownPeriod", "stop_duration_candles": 4}, { "method": "MaxDrawdown", "lookback_period_candles": 48, "trade_limit": 20, "stop_duration_candles": 4, "max_allowed_drawdown": 0.2, }, # { # "method": "StoplossGuard", # "lookback_period_candles": 300, # "trade_limit": 1, # "stop_duration_candles": 300, # "only_per_pair": True, # }, ] use_exit_signal = True startup_candle_count: int = 80 # # Trailing stop: # trailing_stop = True # trailing_stop_positive = 0.01 # trailing_stop_positive_offset = 0.025 # trailing_only_offset_is_reached = True def feature_engineering_expand_all(self, dataframe, period, **kwargs): dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period) dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period) dataframe["%-adx-period"] = ta.ADX(dataframe, window=period) dataframe["%-cci-period"] = ta.CCI(dataframe, timeperiod=period) dataframe["%-er-period"] = pta.er(dataframe['close'], length=period) dataframe["%-rocr-period"] = ta.ROCR(dataframe, timeperiod=period) dataframe["%-cmf-period"] = chaikin_mf(dataframe, periods=period) dataframe["%-tcp-period"] = top_percent_change(dataframe, period) dataframe["%-cti-period"] = pta.cti(dataframe['close'], length=period) dataframe["%-chop-period"] = qtpylib.chopiness(dataframe, period) dataframe["%-linear-period"] = ta.LINEARREG_ANGLE( dataframe['close'], timeperiod=period) dataframe["%-atr-period"] = ta.ATR(dataframe, timeperiod=period) dataframe["%-atr-periodp"] = dataframe["%-atr-period"] / \ dataframe['close'] * 1000 return dataframe def feature_engineering_expand_basic(self, dataframe, **kwargs): dataframe["%-pct-change"] = dataframe["close"].pct_change() dataframe["%-raw_volume"] = dataframe["volume"] dataframe["%-obv"] = ta.OBV(dataframe) # Added bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=14, stds=2.2) dataframe["bb_lowerband"] = bollinger["lower"] dataframe["bb_middleband"] = bollinger["mid"] dataframe["bb_upperband"] = bollinger["upper"] dataframe["%-bb_width"] = (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"] dataframe["%-ibs"] = ((dataframe['close'] - dataframe['low']) / (dataframe['high'] - dataframe['low'])) dataframe['ema_50'] = ta.EMA(dataframe, timeperiod=50) dataframe['ema_12'] = ta.EMA(dataframe, timeperiod=12) dataframe['ema_26'] = ta.EMA(dataframe, timeperiod=26) dataframe['%-distema50'] = get_distance(dataframe['close'], dataframe['ema_50']) dataframe['%-distema12'] = get_distance(dataframe['close'], dataframe['ema_12']) dataframe['%-distema26'] = get_distance(dataframe['close'], dataframe['ema_26']) macd = ta.MACD(dataframe) dataframe['%-macd'] = macd['macd'] dataframe['%-macdsignal'] = macd['macdsignal'] dataframe['%-macdhist'] = macd['macdhist'] dataframe['%-dist_to_macdsignal'] = get_distance( dataframe['%-macd'], dataframe['%-macdsignal']) dataframe['%-dist_to_zerohist'] = get_distance(0, dataframe['%-macdhist']) # VWAP vwap_low, vwap, vwap_high = VWAPB(dataframe, 20, 1) dataframe['vwap_upperband'] = vwap_high dataframe['vwap_middleband'] = vwap dataframe['vwap_lowerband'] = vwap_low dataframe['%-vwap_width'] = ((dataframe['vwap_upperband'] - dataframe['vwap_lowerband']) / dataframe['vwap_middleband']) * 100 dataframe = dataframe.copy() dataframe['%-dist_to_vwap_upperband'] = get_distance( dataframe['close'], dataframe['vwap_upperband']) dataframe['%-dist_to_vwap_middleband'] = get_distance( dataframe['close'], dataframe['vwap_middleband']) dataframe['%-dist_to_vwap_lowerband'] = get_distance( dataframe['close'], dataframe['vwap_lowerband']) dataframe['%-tail'] = (dataframe['close'] - dataframe['low']).abs() dataframe['%-wick'] = (dataframe['high'] - dataframe['close']).abs() pp = pivots_points(dataframe) dataframe['pivot'] = pp['pivot'] dataframe['r1'] = pp['r1'] dataframe['s1'] = pp['s1'] dataframe['r2'] = pp['r2'] dataframe['s2'] = pp['s2'] dataframe['r3'] = pp['r3'] dataframe['s3'] = pp['s3'] dataframe['rawclose'] = dataframe['close'] dataframe['%-dist_to_r1'] = get_distance(dataframe['close'], dataframe['r1']) dataframe['%-dist_to_r2'] = get_distance(dataframe['close'], dataframe['r2']) dataframe['%-dist_to_r3'] = get_distance(dataframe['close'], dataframe['r3']) dataframe['%-dist_to_s1'] = get_distance(dataframe['close'], dataframe['s1']) dataframe['%-dist_to_s2'] = get_distance(dataframe['close'], dataframe['s2']) dataframe['%-dist_to_s3'] = get_distance(dataframe['close'], dataframe['s3']) dataframe["%-pct-change"] = dataframe["close"].pct_change() dataframe["%-raw_volume"] = dataframe["volume"] dataframe["%-raw_price"] = dataframe["close"] dataframe["%-raw_open"] = dataframe["open"] dataframe["%-raw_low"] = dataframe["low"] dataframe["%-raw_high"] = dataframe["high"] return dataframe def feature_engineering_standard(self, dataframe, **kwargs): dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7 dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25 return dataframe def set_freqai_targets(self, dataframe, **kwargs): dataframe["&s-extrema"] = 0 min_peaks = argrelextrema( dataframe["low"].values, np.less, order=self.freqai_info["feature_parameters"]["label_period_candles"] ) max_peaks = argrelextrema( dataframe["high"].values, np.greater, order=self.freqai_info["feature_parameters"]["label_period_candles"] ) for mp in min_peaks[0]: dataframe.at[mp, "&s-extrema"] = -1 for mp in max_peaks[0]: dataframe.at[mp, "&s-extrema"] = 1 dataframe["minima"] = np.where(dataframe["&s-extrema"] == -1, 1, 0) dataframe["maxima"] = np.where(dataframe["&s-extrema"] == 1, 1, 0) dataframe['&s-extrema'] = dataframe['&s-extrema'].rolling( window=5, win_type='gaussian', center=True).mean(std=0.5) return dataframe def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe = self.freqai.start(dataframe, metadata, self) dataframe["DI_catch"] = np.where( dataframe["DI_values"] > dataframe["DI_cutoff"], 0, 1, ) dataframe["minima_sort_threshold"] = dataframe["&s-minima_sort_threshold"] dataframe["maxima_sort_threshold"] = dataframe["&s-maxima_sort_threshold"] return dataframe def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame: enter_long_conditions = [ df["do_predict"] == 1, df["DI_catch"] == 1, df["&s-extrema"] < df["minima_sort_threshold"], ] if enter_long_conditions: df.loc[ reduce(lambda x, y: x & y, enter_long_conditions), [ "enter_long", "enter_tag"] ] = (1, "long") enter_short_conditions = [ df["do_predict"] == 1, df["DI_catch"] == 1, df["&s-extrema"] > df["maxima_sort_threshold"], ] if enter_short_conditions: df.loc[ reduce(lambda x, y: x & y, enter_short_conditions), [ "enter_short", "enter_tag"] ] = (1, "short") return df def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame: return df def custom_exit( self, pair: str, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, **kwargs ): dataframe, _ = self.dp.get_analyzed_dataframe( pair=pair, timeframe=self.timeframe) last_candle = dataframe.iloc[-1].squeeze() trade_date = timeframe_to_prev_date( self.timeframe, (trade.open_date_utc - timedelta(minutes=int(self.timeframe[:-1]))) ) trade_candle = dataframe.loc[(dataframe["date"] == trade_date)] if trade_candle.empty: return None trade_candle = trade_candle.squeeze() entry_tag = trade.enter_tag trade_duration = (current_time - trade.open_date_utc).seconds / 60 if trade_duration > 1000: return "trade expired" if last_candle["DI_catch"] == 0: return "Outlier detected" if ( last_candle["&s-extrema"] < last_candle["minima_sort_threshold"] and entry_tag == "short" ): return "minimia_detected_short" if ( last_candle["&s-extrema"] > last_candle["maxima_sort_threshold"] and entry_tag == "long" ): return "maxima_detected_long" def confirm_trade_entry( self, pair: str, order_type: str, amount: float, rate: float, time_in_force: str, current_time: datetime, entry_tag: Optional[str], side: str, **kwargs ) -> bool: open_trades = Trade.get_trades(trade_filter=Trade.is_open.is_(True)) num_shorts, num_longs = 0, 0 for trade in open_trades: if "short" in trade.enter_tag: num_shorts += 1 elif "long" in trade.enter_tag: num_longs += 1 if side == "long" and num_longs >= 5: return False if side == "short" and num_shorts >= 5: return False df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe) last_candle = df.iloc[-1].squeeze() if side == "long": if rate > (last_candle["close"] * (1 + 0.0025)): return False else: if rate < (last_candle["close"] * (1 - 0.0025)): return False return True def top_percent_change(dataframe: DataFrame, length: int) -> float: """ Percentage change of the current close from the range maximum Open price :param dataframe: DataFrame The original OHLC dataframe :param length: int The length to look back """ if length == 0: return (dataframe['open'] - dataframe['close']) / dataframe['close'] else: return (dataframe['open'].rolling(length).max() - dataframe['close']) / dataframe['close'] def chaikin_mf(df, periods=20): close = df['close'] low = df['low'] high = df['high'] volume = df['volume'] mfv = ((close - low) - (high - close)) / (high - low) mfv = mfv.fillna(0.0) mfv *= volume cmf = mfv.rolling(periods).sum() / volume.rolling(periods).sum() return Series(cmf, name='cmf') def VWAPB(dataframe, window_size=20, num_of_std=1): df = dataframe.copy() df['vwap'] = qtpylib.rolling_vwap(df, window=window_size) rolling_std = df['vwap'].rolling(window=window_size).std() df['vwap_low'] = df['vwap'] - (rolling_std * num_of_std) df['vwap_high'] = df['vwap'] + (rolling_std * num_of_std) return df['vwap_low'], df['vwap'], df['vwap_high'] def EWO(dataframe, sma_length=5, sma2_length=35): df = dataframe.copy() sma1 = ta.EMA(df, timeperiod=sma_length) sma2 = ta.EMA(df, timeperiod=sma2_length) smadif = (sma1 - sma2) / df['close'] * 100 return smadif def get_distance(p1, p2): return abs((p1) - (p2)) ``` ##The model: ``` python import logging from typing import Any, Dict, Tuple from xgboost import XGBRegressor import time from freqtrade.freqai.base_models.BaseRegressionModel import BaseRegressionModel from freqtrade.freqai.data_kitchen import FreqaiDataKitchen import pandas as pd import scipy as spy import numpy.typing as npt from pandas import DataFrame import numpy as np import warnings warnings.simplefilter(action='ignore', category=FutureWarning) logger = logging.getLogger(__name__) class XGBoostRegressorQuickAdapterV3(BaseRegressionModel): """ The following freqaimodel is released to sponsors of the non-profit FreqAI open-source project. If you find the FreqAI project useful, please consider supporting it by becoming a sponsor. We use sponsor money to help stimulate new features and to pay for running these public experiments, with a an objective of helping the community make smarter choices in their ML journey. This strategy is experimental (as with all strategies released to sponsors). Do *not* expect returns. The goal is to demonstrate gratitude to people who support the project and to help them find a good starting point for their own creativity. If you have questions, please direct them to our discord: https://discord.gg/xE4RMg4QYw https://github.com/sponsors/robcaulk """ def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: """ User sets up the training and test data to fit their desired model here :param data_dictionary: the dictionary constructed by DataHandler to hold all the training and test data/labels. """ X = data_dictionary["train_features"] y = data_dictionary["train_labels"] if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0: eval_set = None eval_weights = None else: eval_set = [(data_dictionary["test_features"], data_dictionary["test_labels"])] eval_weights = [data_dictionary['test_weights']] sample_weight = data_dictionary["train_weights"] xgb_model = self.get_init_model(dk.pair) model = XGBRegressor(**self.model_training_parameters) start = time.time() model.fit(X=X, y=y, sample_weight=sample_weight, eval_set=eval_set, sample_weight_eval_set=eval_weights, xgb_model=xgb_model) time_spent = (time.time() - start) self.dd.update_metric_tracker('fit_time', time_spent, dk.pair) return model def fit_live_predictions(self, dk: FreqaiDataKitchen, pair: str) -> None: warmed_up = True num_candles = self.freqai_info.get('fit_live_predictions_candles', 100) if self.live: if not hasattr(self, 'exchange_candles'): self.exchange_candles = len(self.dd.model_return_values[pair].index) candle_diff = len(self.dd.historic_predictions[pair].index) - \ (num_candles + self.exchange_candles) if candle_diff < 0: logger.warning( f'Fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go') warmed_up = False pred_df_full = self.dd.historic_predictions[pair].tail(num_candles).reset_index(drop=True) pred_df_sorted = pd.DataFrame() for label in pred_df_full.keys(): if pred_df_full[label].dtype == object: continue pred_df_sorted[label] = pred_df_full[label] # pred_df_sorted = pred_df_sorted for col in pred_df_sorted: pred_df_sorted[col] = pred_df_sorted[col].sort_values( ascending=False, ignore_index=True) frequency = num_candles / (self.freqai_info['feature_parameters']['label_period_candles'] * 2) max_pred = pred_df_sorted.iloc[:int(frequency)].mean() min_pred = pred_df_sorted.iloc[-int(frequency):].mean() if not warmed_up: dk.data['extra_returns_per_train']['&s-maxima_sort_threshold'] = 2 dk.data['extra_returns_per_train']['&s-minima_sort_threshold'] = -2 else: dk.data['extra_returns_per_train']['&s-maxima_sort_threshold'] = max_pred['&s-extrema'] dk.data['extra_returns_per_train']['&s-minima_sort_threshold'] = min_pred['&s-extrema'] dk.data["labels_mean"], dk.data["labels_std"] = {}, {} for ft in dk.label_list: # f = spy.stats.norm.fit(pred_df_full[ft]) dk.data['labels_std'][ft] = 0 # f[1] dk.data['labels_mean'][ft] = 0 # f[0] # fit the DI_threshold if not warmed_up: f = [0, 0, 0] cutoff = 2 else: f = spy.stats.weibull_min.fit(pred_df_full['DI_values']) cutoff = spy.stats.weibull_min.ppf(0.999, *f) dk.data["DI_value_mean"] = pred_df_full['DI_values'].mean() dk.data["DI_value_std"] = pred_df_full['DI_values'].std() dk.data['extra_returns_per_train']['DI_value_param1'] = f[0] dk.data['extra_returns_per_train']['DI_value_param2'] = f[1] dk.data['extra_returns_per_train']['DI_value_param3'] = f[2] dk.data['extra_returns_per_train']['DI_cutoff'] = cutoff ```
closed
2024-09-15T17:20:27Z
2024-10-01T16:14:25Z
https://github.com/freqtrade/freqtrade/issues/10654
[ "Question", "freqAI" ]
luca-palese
3
newpanjing/simpleui
django
251
Uncaught TypeError: Cannot read property 'replace' of undefined
#### simple UI 版本: 3.9.1 #### 复现步骤: 登录到后台主页 #### 浏览器 F12 控制台错误日志: index.js?_=3.9.1:98 Uncaught TypeError: Cannot read property 'replace' of undefined at window.simple_call (index.js?_=3.9.1:98) at latest?callback=simple_call:1 #### 出错位置代码片段: window.simple_call = function (data) { var o = __simpleui_version.replace(/\./g, ''); var n = data.data.name.replace(/\./g, ''); while(o.length!=3){ o += '0'; } while(n.length!=3){ n += '0'; } var oldVersion = parseInt(o) var newVersion = parseInt(n) var body = data.data.body; if (oldVersion < newVersion) { app.upgrade.isUpdate = true; app.upgrade.body = body; app.upgrade.version = data.data.name; } } #### 请求链接: [https://api.github.com/repos/newpanjing/simpleui/releases/latest?callback=simple_call](https://api.github.com/repos/newpanjing/simpleui/releases/latest?callback=simple_call) #### 出错原因: 返回数据缺少对应的字段
closed
2020-04-10T07:25:13Z
2020-05-05T05:22:17Z
https://github.com/newpanjing/simpleui/issues/251
[ "bug" ]
yinzhuoqun
1
CorentinJ/Real-Time-Voice-Cloning
pytorch
307
Error using Vocoder pretrained
when I click at the "Vocode only" or "Synthesize and vocode" using the pretrained vocode happen this: cuda runtime error(100) : no CUDA-capable device is detected at ../aten/src/THC/THCGeneral.cpp:50
closed
2020-04-02T23:21:32Z
2020-07-04T22:02:20Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/307
[]
Samtapes
1