repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
voila-dashboards/voila
jupyter
761
Distribute the JupyterLab preview extension with the Python package
This will be a follow-up to #732. For JupyterLab 3.0 we should consider distributing the preview extension with the `voila` Python package using the federated extension system. We should however still publish the extension to npm for those who want to depend on `@jupyter-voila/jupyterlab-preview` in their own extension.
closed
2020-11-11T11:56:06Z
2020-12-23T13:39:21Z
https://github.com/voila-dashboards/voila/issues/761
[ "jupyterlab-preview" ]
jtpio
0
sgl-project/sglang
pytorch
3,996
Performance issue comparing on MI210x4
Hello developers, I'm benchmarking sglang and vllm on my server with 4 AMD Instinct MI210 GPUs. Here're some configuration details and benchmark results: vllm server with command: ``` python -m vllm.entrypoints.openai.api_server \ --model /app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B \ -tp 4 \ --port 10000 ``` configs: ``` INFO 03-02 15:20:30 [api_server.py:912] args: Namespace(host=None, port=10000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, enable_reasoning=False, reasoning_parser=None, tool_call_parser=None, tool_parser_plugin='', model='/app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=None, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=4, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', generation_config=None, override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False) ``` sglang server with command: ``` python -m sglang.launch_server \ --model-path /app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B \ --host 0.0.0.0 \ --port 10000 \ --tp-size 4 ``` configs: ``` [2025-03-02 15:19:44] server_args=ServerArgs(model_path='/app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B', tokenizer_path='/app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B', tokenizer_mode='auto', load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, quantization=None, context_length=None, device='cuda', served_model_name='/app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B', chat_template=None, is_embedding=False, revision=None, skip_tokenizer_init=False, host='0.0.0.0', port=10000, mem_fraction_static=0.85, max_running_requests=None, max_total_tokens=None, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='lpm', schedule_conservativeness=1.0, cpu_offload_gb=0, prefill_only_one_req=False, tp_size=4, stream_interval=1, stream_output=False, random_seed=751863663, constrained_json_whitespace_pattern=None, watchdog_timeout=300, download_dir=None, base_gpu_id=0, log_level='info', log_level_http=None, log_requests=False, show_time_cost=False, enable_metrics=False, decode_log_interval=40, api_key=None, file_storage_pth='sglang_storage', enable_cache_report=False, dp_size=1, load_balance_method='round_robin', ep_size=1, dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', lora_paths=None, max_loras_per_batch=8, lora_backend='triton', attention_backend='triton', sampling_backend='pytorch', grammar_backend='outlines', speculative_draft_model_path=None, speculative_algorithm=None, speculative_num_steps=5, speculative_num_draft_tokens=64, speculative_eagle_topk=8, enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, disable_radix_cache=False, disable_jump_forward=False, disable_cuda_graph=False, disable_cuda_graph_padding=False, enable_nccl_nvls=False, disable_outlines_disk_cache=False, disable_custom_all_reduce=False, disable_mla=False, disable_overlap_schedule=False, enable_mixed_chunk=False, enable_dp_attention=False, enable_ep_moe=False, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=160, cuda_graph_bs=None, torchao_config='', enable_nan_detection=False, enable_p2p_check=False, triton_attention_reduce_in_fp32=False, triton_attention_num_kv_splits=16, num_continuous_decode_steps=1, delete_ckpt_after_loading=False, enable_memory_saver=False, allow_auto_truncate=False, return_hidden_states=False, enable_custom_logit_processor=False, tool_call_parser=None, enable_hierarchical_cache=False, enable_flashinfer_mla=False) ``` vllm benchmark ``` Namespace(backend='vllm', base_url=None, host='0.0.0.0', port=10000, dataset_name='sharegpt', dataset_path='', model='/app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B', tokenizer=None, num_prompts=1000, sharegpt_output_len=None, sharegpt_context_len=None, random_input_len=1024, random_output_len=1024, random_range_ratio=0.0, request_rate=inf, max_concurrency=250, multi=False, request_rate_range='2,34,2', output_file=None, disable_tqdm=False, disable_stream=False, return_logprob=False, seed=1, disable_ignore_eos=False, extra_request_body=None, apply_chat_template=False, profile=False, lora_name=None, gsp_num_groups=64, gsp_prompts_per_group=16, gsp_system_prompt_len=2048, gsp_question_len=128, gsp_output_len=256) ``` sglang benchmark ``` Namespace(backend='sglang', base_url=None, host='0.0.0.0', port=10000, dataset_name='sharegpt', dataset_path='', model='/app/wdxu/models/DeepSeek-R1-Distill-Qwen-32B', tokenizer=None, num_prompts=1000, sharegpt_output_len=None, sharegpt_context_len=None, random_input_len=1024, random_output_len=1024, random_range_ratio=0.0, request_rate=inf, max_concurrency=250, multi=False, request_rate_range='2,34,2', output_file=None, disable_tqdm=False, disable_stream=False, return_logprob=False, seed=1, disable_ignore_eos=False, extra_request_body=None, apply_chat_template=False, profile=False, lora_name=None, gsp_num_groups=64, gsp_prompts_per_group=16, gsp_system_prompt_len=2048, gsp_question_len=128, gsp_output_len=256) ``` Results: vllm ![Image](https://github.com/user-attachments/assets/d551f436-4f22-44be-9f81-76d88ba83eef) sglang ![Image](https://github.com/user-attachments/assets/d3d14954-7253-47f0-bd69-d129ac834390) I got such a performance gap result between two inference frameworks and I'm wondering whether I made some mistakes when benchmarking. Thanks!
open
2025-03-02T15:35:24Z
2025-03-03T06:33:03Z
https://github.com/sgl-project/sglang/issues/3996
[]
VincentXWD
1
google-research/bert
tensorflow
1,025
BERT pretraining num_train_steps questions
Hello, I would like to confirm how the number of training steps and hence the number of epochs used in the paper for pretraining BERT is calculated. From the paper, I deduced (kindly correct me if I am mistaken): #_training_steps = #_desired_epochs * (#_words_(not_sentences)_in_all_input_corpus / #tokens_per_batch) where #tokens_per_batch = batch_size * max_seq_len So using the numbers in the paper: 1,000,000 ~ 40 * (3,300,000,000 / (256*512)) **Question # 1) Is this deduction correct?** --- Also, to my understanding, batch_size represents the "number of training instances consumed in 1 batch". If we assume: - the original number of sequences in my original dataset is 100 (a simple number for sake of easing the explanation) and - we set the dupe_factor in "create_pretraining_data.py" to 5, resulting in a total of approximately 5x100=500 training instances for BERT. **Question # 2) Is the "number of training instances consumed in 1 batch" concerned with original 100 or duped 500 instances?** Thank you!
open
2020-03-07T14:02:32Z
2020-06-05T19:17:44Z
https://github.com/google-research/bert/issues/1025
[]
MarwahAhmadHelaly
3
deepinsight/insightface
pytorch
2,262
Why Fp16 Grad Scale is 0?
Training: 2023-03-14 09:08:43,293-Speed 2178.40 samples/sec Loss nan LearningRate 0.001000 Epoch: 0 Global Step: 20 Fp16 Grad Scale: 0 Required: 194 hours Training: 2023-03-14 09:08:47,984-Speed 2183.37 samples/sec Loss nan LearningRate 0.001000 Epoch: 0 Global Step: 30 Fp16 Grad Scale: 0 Required: 144 hours Training: 2023-03-14 09:08:52,689-Speed 2177.01 samples/sec Loss nan LearningRate 0.001000 Epoch: 0 Global Step: 40 Fp16 Grad Scale: 0 Required: 120 hours
closed
2023-03-14T01:11:43Z
2023-03-27T02:18:13Z
https://github.com/deepinsight/insightface/issues/2262
[]
deep-practice
0
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,308
[Bug]: sdxl model with api generates simple/geometric shapes images
### Checklist - [ ] The issue exists after disabling all extensions - [ ] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [X] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? I downloaded a sdxl model as well as sdxl_vae.safetensors, both put in the respective folders. The model works fine on the web UI, but when using the API the output images are, for lack of better words, simplistic, almost drawings of a 3-year-old, full of geometric shapes or random artifacts. I initially thought it had to do with the vae, so I edited `sd_vae = "Automatic"` and posted to the /sdapi/v1/options endpoint, but nothing changed. The thing is, this issue only arises when using the API. Can someone tell me what could be the reason? I could not find anything online. ### Steps to reproduce the problem 1. load "sd_model" and "sd_vae" info on the options POST request 2. do a txt2img post request as normal, set width and height to 1024px. 3. get the output image, which looks overly simplistic and boring. ### What should have happened? the output image generated via the API should look exactly like the images coming out when using the web UI => higher quality, better in general, no random artifacts ### What browsers do you use to access the UI ? _No response_ ### Sysinfo version: [v1.7.0](https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/cf2772fab0af5573da775e7437e6acdca424f26e)  •  python: 3.10.13  •  torch: 2.0.1+cu118  •  xformers: 0.0.20  •  gradio: 3.41.2  •  checkpoint: [67ab2fd8ec](https://google.com/search?q=67ab2fd8ec439a89b3fedb15cc65f54336af163c7eb5e4f2acc98f090a29b0b3) ### Console logs ```Shell there are no error messages or bugs. ``` ### Additional information _No response_
closed
2024-03-18T17:57:02Z
2024-03-19T12:04:48Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15308
[ "bug-report" ]
victorbianconi
0
CorentinJ/Real-Time-Voice-Cloning
tensorflow
1,223
FFMPEG error, works most of the time but random error
Some voice files give me an error when I attempt to use my training over them. I have changed the format of the files, edited and saved them in Audition, so on, but I still occasionally get this output and it won't work: `Traceback (most recent call last): File "L:\RCV_voiceclone\my_utils.py", line 14, in load_audio ffmpeg.input(file, threads=0) File "L:\RCV_voiceclone\runtime\lib\site-packages\ffmpeg\_run.py", line 325, in run raise Error('ffmpeg', out, err) ffmpeg._run.Error: ffmpeg error (see stderr output for detail) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "L:\RCV_voiceclone\infer-web.py", line 161, in vc_single audio = load_audio(input_audio_path, 16000) File "L:\RCV_voiceclone\my_utils.py", line 19, in load_audio raise RuntimeError(f"Failed to load audio: {e}") RuntimeError: Failed to load audio: ffmpeg error (see stderr output for detail) Traceback (most recent call last): File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\routes.py", line 321, in run_predict output = await app.blocks.process_api( File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\blocks.py", line 1007, in process_api data = self.postprocess_data(fn_index, result["prediction"], state) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\blocks.py", line 953, in postprocess_data prediction_value = block.postprocess(prediction_value) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\components.py", line 2076, in postprocess processing_utils.audio_to_file(sample_rate, data, file.name) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\processing_utils.py", line 206, in audio_to_file data = convert_to_16_bit_wav(data) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\processing_utils.py", line 219, in convert_to_16_bit_wav if data.dtype in [np.float64, np.float32, np.float16]: AttributeError: 'NoneType' object has no attribute 'dtype' Traceback (most recent call last): File "L:\RCV_voiceclone\my_utils.py", line 14, in load_audio ffmpeg.input(file, threads=0) File "L:\RCV_voiceclone\runtime\lib\site-packages\ffmpeg\_run.py", line 325, in run raise Error('ffmpeg', out, err) ffmpeg._run.Error: ffmpeg error (see stderr output for detail) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "L:\RCV_voiceclone\infer-web.py", line 161, in vc_single audio = load_audio(input_audio_path, 16000) File "L:\RCV_voiceclone\my_utils.py", line 19, in load_audio raise RuntimeError(f"Failed to load audio: {e}") RuntimeError: Failed to load audio: ffmpeg error (see stderr output for detail) Traceback (most recent call last): File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\routes.py", line 321, in run_predict output = await app.blocks.process_api( File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\blocks.py", line 1007, in process_api data = self.postprocess_data(fn_index, result["prediction"], state) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\blocks.py", line 953, in postprocess_data prediction_value = block.postprocess(prediction_value) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\components.py", line 2076, in postprocess processing_utils.audio_to_file(sample_rate, data, file.name) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\processing_utils.py", line 206, in audio_to_file data = convert_to_16_bit_wav(data) File "L:\RCV_voiceclone\runtime\lib\site-packages\gradio\processing_utils.py", line 219, in convert_to_16_bit_wav if data.dtype in [np.float64, np.float32, np.float16]: AttributeError: 'NoneType' object has no attribute 'dtype'` This is not a constant thing, as I have had many times where files DO work. I'm not sure if you have an stderr capture in the code for the ffmeg errors, if so I can put those logs in as well if told where they save.
open
2023-06-04T19:54:44Z
2023-06-04T19:54:44Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1223
[]
hobolyra
0
deepspeedai/DeepSpeed
deep-learning
6,006
[BUG] Bad compatibility check by testing the existence of a CHANGELOG.md file which is not always available depending on the way of CUTLASS library installation
In this code, if we have nvidia-cutlass package installed with pip, there will be no CHANGELOG.md file in the installed site-package directory, and hence the test result will be false negative. ![image](https://github.com/user-attachments/assets/5a2aae09-a0f8-4b65-b33a-7e20d9c20ea7) ![image](https://github.com/user-attachments/assets/e7b2baea-13db-4f77-bf78-4c942578e57b) https://github.com/microsoft/DeepSpeed/blob/4d4ff0edddb28a4d53d40dffad9ba16e59b83aec/op_builder/evoformer_attn.py#L55C41-L55C53 Please fix this by checking other files that are always available or maybe the best way to check is to see if the following python code return a valid result without throwing an exception: ```python import os, cutlass cutlass_path = os.path.dirname(cutlass.__file__) cutlass_version = cutlass.__version__ ``` ![image](https://github.com/user-attachments/assets/32ac9382-8d25-476b-aec9-706f67beff12)
closed
2024-08-16T00:33:29Z
2024-08-22T17:36:14Z
https://github.com/deepspeedai/DeepSpeed/issues/6006
[]
zhangwei217245
0
K3D-tools/K3D-jupyter
jupyter
393
Minor grid lines are not visible
* K3D version: 2.14.5 * ipywidgets: 7.7.1 * notebook: 6.5.2 * Python version: 3.10.6 * Operating System: Ubuntu 22.04 * Nvidia Driver: 515.86.01 ### Description I've just started using a new machine that comes with an nvidia RTX 3060. It seems like the minor grid lines are not rendered. ![Screenshot 2022-12-12 at 23-11-40 Untitled24 - Jupyter Notebook](https://user-images.githubusercontent.com/9921777/207166974-398467a5-58bf-4103-9898-932ad47362ac.png) However, if I lower the opacity of the mesh, then they become visible underneath the mesh: ![Screenshot 2022-12-12 at 23-11-24 Untitled24 - Jupyter Notebook](https://user-images.githubusercontent.com/9921777/207167095-a87995bf-bff5-4258-8a2d-d319ddee0327.png) Note that if I take a PNG screenshot, they will be visible. ![K3D-1670882998161](https://user-images.githubusercontent.com/9921777/207168023-f63bcfbd-894c-41d3-a028-4bdeae620c9e.png) I'm wondering if this is a driver related issue, if anyone experienced something similar and eventually how to fix it? ### Web console log / python logs ``` K3D: (UNMASKED_VENDOR_WEBGL) NVIDIA Corporation [Renderer.js:64:12](webpack://k3d/src/providers/threejs/initializers/Renderer.js) K3D: (UNMASKED_RENDERER_WEBGL) NVIDIA GeForce GTX 980/PCIe/SSE2 [Renderer.js:65:12](webpack://k3d/src/providers/threejs/initializers/Renderer.js) K3D: (depth bits) 24 [Renderer.js:66:12](webpack://k3d/src/providers/threejs/initializers/Renderer.js) K3D: (stencil bits) 8 [Renderer.js:67:12](webpack://k3d/src/providers/threejs/initializers/Renderer.js) K3D: Object type "Mesh" loaded in: 0.287 s [Loader.js:61:32](webpack://k3d/src/core/lib/Loader.js) ```
closed
2022-12-12T22:24:16Z
2022-12-20T08:10:52Z
https://github.com/K3D-tools/K3D-jupyter/issues/393
[]
Davide-sd
2
yt-dlp/yt-dlp
python
11,764
Sign the Mac executive file in the release
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm requesting a feature unrelated to a specific site - [X] I've looked through the [README](https://github.com/yt-dlp/yt-dlp#readme) - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) ### Provide a description that is worded well enough to be understood Now the released executive for MacOS is unsigned, so it needs to be manually enabled in the security settings before being able to use. Signing it would remove the warning. yt-dlp is now a big project and is worth to be signed :) ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [X] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output _No response_
closed
2024-12-08T12:10:00Z
2024-12-10T23:25:21Z
https://github.com/yt-dlp/yt-dlp/issues/11764
[ "docs/meta/cleanup", "wontfix" ]
asdf2adsfad
1
OpenBB-finance/OpenBB
machine-learning
6,680
[Bug] OpenBB Platform hijacks default logger
**Describe the bug** By importing openbb the default logger is manipulated impacting host applications. **To Reproduce** Run this code: ```py import logging logging.basicConfig(level=logging.INFO) logging.info("This message is shown") import openbb logging.info("This message is hidden") ``` _Notice: That the host application messages which are printed after importing openbb no longer function the same._ At the very least it would be nice to be able to disable this behavior with a user/system setting so that the host application can control logging. Yes the application can override, but because this happens when openbb is imported it can happen at any time while the application is running. This design effectively forces the user to import openbb at a controlled location to then override these settings which is of course not ideal. **Desktop (please complete the following information):** - OS: Mac affects all OSes - Python version 3.11 affects all versions **Additional context** I believe this is due to the `LoggingService` changing the default logging configuration: https://github.com/OpenBB-finance/OpenBB/blob/develop/openbb_platform/core/openbb_core/app/logs/logging_service.py#L122-L128 ```py logging.basicConfig( level=self._logging_settings.verbosity, format=FormatterWithExceptions.LOGFORMAT, datefmt=FormatterWithExceptions.DATEFORMAT, handlers=[], force=True, ) ```
closed
2024-09-19T21:06:50Z
2024-09-23T12:55:32Z
https://github.com/OpenBB-finance/OpenBB/issues/6680
[ "bug" ]
ncimino
4
huggingface/datasets
pytorch
7,249
How to debugging
### Describe the bug I wanted to use my own script to handle the processing, and followed the tutorial documentation by rewriting the MyDatasetConfig and MyDatasetBuilder (which contains the _info,_split_generators and _generate_examples methods) classes. Testing with simple data was able to output the results of the processing, but when I wished to do more complex processing, I found that I was unable to debug (even the simple samples were inaccessible). There are no errors reported, and I am able to print the _info,_split_generators and _generate_examples messages, but I am unable to access the breakpoints. ### Steps to reproduce the bug # my_dataset.py import json import datasets class MyDatasetConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(MyDatasetConfig, self).__init__(**kwargs) class MyDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ MyDatasetConfig( name="default", version=VERSION, description="myDATASET" ), ] def _info(self): print("info") # breakpoints return datasets.DatasetInfo( description="myDATASET", features=datasets.Features( { "id": datasets.Value("int32"), "text": datasets.Value("string"), "label": datasets.ClassLabel(names=["negative", "positive"]), } ), supervised_keys=("text", "label"), ) def _split_generators(self, dl_manager): print("generate") # breakpoints data_file = "data.json" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file} ), ] def _generate_examples(self, filepath): print("example") # breakpoints with open(filepath, encoding="utf-8") as f: data = json.load(f) for idx, sample in enumerate(data): yield idx, { "id": sample["id"], "text": sample["text"], "label": sample["label"], } #main.py import os os.environ["TRANSFORMERS_NO_MULTIPROCESSING"] = "1" from datasets import load_dataset dataset = load_dataset("my_dataset.py", split="train", cache_dir=None) print(dataset[:5]) ### Expected behavior Pause at breakpoints while running debugging ### Environment info pycharm
open
2024-10-24T01:03:51Z
2024-10-24T01:03:51Z
https://github.com/huggingface/datasets/issues/7249
[]
ShDdu
0
ydataai/ydata-profiling
jupyter
779
'Heat Map tabs not clickable'
**Warning , Heat Map tabs not clickable** <!-- The warning tab in Pandas Profile [New PowerPoint.pptx](https://github.com/pandas-profiling/pandas-profiling/files/6448197/New.PowerPoint.pptx) is not clickable in-spite multiple effort -->
closed
2021-05-09T18:47:06Z
2021-05-11T23:34:55Z
https://github.com/ydataai/ydata-profiling/issues/779
[ "information requested ❔" ]
Leneet603
1
openapi-generators/openapi-python-client
rest-api
211
Exception when running with Python 3.9
**Describe the bug** Traceback when trying to run `openapi-python-client generate --url https://api.va.gov/services/va_facilities/docs/v0/api` **To Reproduce** Steps to reproduce the behavior: 1. Install via pipx 2. run `openapi-python-client generate --url https://api.va.gov/services/va_facilities/docs/v0/api` **Expected behavior** I'm not sure yet, this is my first interaction with the tool. **OpenAPI Spec File** n/a **Desktop (please complete the following information):** - OS: MacOS 10.14.6 - Python Version: 3.7.6 - openapi-python-client version - not sure **Additional context** ``` Traceback (most recent call last): File "/Users/tommy/.local/bin/openapi-python-client", line 5, in <module> from openapi_python_client.cli import app File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/__init__.py", line 16, in <module> from .parser import GeneratorData, import_string_from_reference File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/parser/__init__.py", line 5, in <module> from .openapi import GeneratorData, import_string_from_reference File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/parser/openapi.py", line 8, in <module> from .. import schema as oai File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/schema/__init__.py", line 41, in <module> from .components import Components File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/schema/components.py", line 6, in <module> from .header import Header File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/schema/header.py", line 3, in <module> from .parameter import Parameter File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/schema/parameter.py", line 6, in <module> from .media_type import MediaType File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/schema/media_type.py", line 8, in <module> from .schema import Schema File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/openapi_python_client/schema/schema.py", line 559, in <module> Schema.update_forward_refs() File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/pydantic/main.py", line 677, in update_forward_refs update_field_forward_refs(f, globalns=globalns, localns=localns) File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/pydantic/typing.py", line 237, in update_field_forward_refs update_field_forward_refs(sub_f, globalns=globalns, localns=localns) File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/pydantic/typing.py", line 237, in update_field_forward_refs update_field_forward_refs(sub_f, globalns=globalns, localns=localns) File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/pydantic/typing.py", line 233, in update_field_forward_refs field.type_ = evaluate_forwardref(field.type_, globalns, localns or None) File "/Users/tommy/.local/pipx/venvs/openapi-python-client/lib/python3.9/site-packages/pydantic/typing.py", line 50, in evaluate_forwardref return type_._evaluate(globalns, localns) TypeError: _evaluate() missing 1 required positional argument: 'recursive_guard' ```
closed
2020-10-10T19:59:08Z
2020-11-03T16:38:16Z
https://github.com/openapi-generators/openapi-python-client/issues/211
[ "🐞bug" ]
duganth
3
sqlalchemy/alembic
sqlalchemy
310
_iterate_related_revisions gets stuck with duplicate revisions
**Migrated issue, originally created by Michael Bayer ([@zzzeek](https://github.com/zzzeek))** attached test illustrates a complex revision tree, where the _iterate_related_revisions() gets bogged down doing the same nodes over and over again. As only needs to emit unique nodes we need to put a seen set into it: ``` index e9958b1..40cfbb2 100644 --- a/alembic/script/revision.py +++ b/alembic/script/revision.py @@ -544,17 +544,24 @@ class RevisionMap(object): if map_ is None: map_ = self._revision_map + seen = set() todo = collections.deque() for target in targets: + todo.append(target) if check: per_target = set() + while todo: rev = todo.pop() - todo.extend( - map_[rev_id] for rev_id in fn(rev)) if check: per_target.add(rev) + + if rev in seen: + continue + seen.add(rev) + todo.extend( + map_[rev_id] for rev_id in fn(rev)) yield rev if check and per_target.intersection(targets).difference([target]): raise RevisionError( ``` ---------------------------------------- Attachments: [runtest.py](../wiki/imported_issue_attachments/310/runtest.py)
closed
2015-07-22T16:12:16Z
2015-07-22T16:38:22Z
https://github.com/sqlalchemy/alembic/issues/310
[ "bug", "versioning model" ]
sqlalchemy-bot
3
s3rius/FastAPI-template
asyncio
50
Template using syntax docker-compose v2 "depends_on", but docker-compose version: '3.7'
Issue: ```bash $ docker-compose -f deploy/docker-compose.yml --project-directory . build ERROR: The Compose file './deploy/docker-compose.yml' is invalid because: services.api.depends_on contains an invalid type, it should be an array services.migrator.depends_on contains an invalid type, it should be an array ``` In docker-compose file: ``` depends_on: db: condition: service_healthy redis: condition: service_healthy ``` Should be: ``` depends_on: - db - redis ``` Reference: https://docs.docker.com/compose/compose-file/compose-file-v3/#depends_on
closed
2021-11-17T22:55:41Z
2022-04-12T22:09:04Z
https://github.com/s3rius/FastAPI-template/issues/50
[]
yevhen-kalyna
4
Avaiga/taipy
automation
1,535
Improve style of metric control
### Description Having two metrics takes all my page. Metric takes 100% of my screen. This is unusable by itself. ![image](https://github.com/user-attachments/assets/d480aa23-29af-43d9-80d8-2b3a55897408) The size must be configurable. This should look like this by default: ![image](https://github.com/user-attachments/assets/409ff477-6749-4c50-8de6-c31a599d3c05) ### Acceptance Criteria - [ ] Ensure new code is unit tested, and check code coverage is at least 90%. - [ ] Propagate any change on the demos and run all of them to ensure there is no breaking change. - [ ] Ensure any change is well documented. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
closed
2024-07-17T09:08:10Z
2024-08-23T07:32:21Z
https://github.com/Avaiga/taipy/issues/1535
[ "📈 Improvement", "🖰 GUI", "🆘 Help wanted", "🟧 Priority: High" ]
FlorianJacta
4
pydantic/pydantic-ai
pydantic
552
Longer text returns may seem to be missing at the end.
class QaResult(BaseModel): answer: str = Field(description="Answer to question, Markdown format") mermaid: str = Field(description="") This answer may not be finished yet
closed
2024-12-27T06:24:56Z
2024-12-27T15:43:04Z
https://github.com/pydantic/pydantic-ai/issues/552
[ "question", "more info" ]
blackwhite084
1
laughingman7743/PyAthena
sqlalchemy
214
DurationSeconds in SQLAlchemy
Hi, ``` conn_str = f"awsathena+rest://{aws_access_key_id}:{aws_secret_access_key}@athena.{region_name}.amazonaws.com:443/?"\ f"s3_staging_dir={s3_staging_dir}&role_arn={role_arn}&role_session_name={role_session_name}"\ f"&serial_number={serial_number}&duration_seconds={duration_seconds}" ``` adding the argument duration_seconds in the SQL Alchemy connection string gives the following error: ``` Invalid type for parameter DurationSeconds, value: 10800, type: <class 'str'>, valid types: <class 'int'> ``` Which is not weird because they expect a int as option, however this is not something I think you can accomplish. I guess there should be a check if it's possible to parse the string to an int or change the argument to a str in the end Hope you understand the problem.
closed
2021-02-15T15:11:28Z
2021-02-21T14:49:48Z
https://github.com/laughingman7743/PyAthena/issues/214
[]
acountrec
2
python-restx/flask-restx
flask
129
How to enable version switcher?
Hi team, I go through the doc but I didn't find a way to enable the version switcher in swagger, what I want to achieve is to present different swagger.json based on the version. I've already used namespace for the API: foo/v1/bar foo/v1.1/bar but the json contains the whole API v1 and v1.1, and it's kind of messy. Thanks in advance
open
2020-05-06T20:09:25Z
2020-09-13T06:32:47Z
https://github.com/python-restx/flask-restx/issues/129
[ "question" ]
rqiu25
2
sangaline/wayback-machine-scraper
web-scraping
4
Crashes (includes fix)
Since I can't commit to your project, here are two fixes that I had to made in order to get the scraper to run: In mirror_spider.py, line 50, there is no check whether the output path is valid. The URL can contain ? characters which causes the script to crash. Here's my solution, it's just a quick fix and may require elaboration for different characters and Linux/Windows compatibility: ``` url_parts = response.url.split('://')[1].split('/') parent_directory = os.path.join(self.directory, *url_parts) parent_directory = parent_directory.replace("?", "_q_") # normalize path os.makedirs(parent_directory, exist_ok=True) ``` There is another bug in your other project scrapy_wayback_machine which is imported here, that causes a crash. It's in __init__.py, line 91: `cdx_url = self.cdx_url_template.format(url=pathname2url(request.url))` At this point, request.url is something like http://website.com. But pathname2url will look for a colon : and require that anything before that is only one letter (since we are dealing with regular paths here, like C:\mypath. When I removed the call to pathname2url, it worked for me, but I don't know which other cases may break: `cdx_url = self.cdx_url_template.format(url=request.url)`
closed
2018-04-29T09:07:56Z
2021-02-15T19:01:29Z
https://github.com/sangaline/wayback-machine-scraper/issues/4
[]
Cerno-b
1
labmlai/annotated_deep_learning_paper_implementations
deep-learning
148
Guideline on setting "n_z" parameter of hyperLSTM
How to set "n_z" parameter of hyperLSTM? Are there any guidelines?
closed
2022-09-15T17:50:07Z
2022-12-18T15:20:42Z
https://github.com/labmlai/annotated_deep_learning_paper_implementations/issues/148
[ "question" ]
Simply-Adi
1
viewflow/viewflow
django
458
Redirect to the End node details on a process finish
https://stackoverflow.com/questions/56349628/how-to-specify-what-django-view-to-display-when-a-process-ends
open
2024-07-18T07:33:09Z
2024-07-18T07:33:19Z
https://github.com/viewflow/viewflow/issues/458
[ "request/enhancement", "dev/flow" ]
kmmbvnr
0
apachecn/ailearning
python
624
M
**Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
closed
2021-08-06T08:02:03Z
2021-09-07T17:41:51Z
https://github.com/apachecn/ailearning/issues/624
[]
king-005
0
ageitgey/face_recognition
machine-learning
1,147
Question delever requeriments of face_recognition on windows to end users
Hey, my name is christopher proß. thank you for this grate project. My question is the following: I am writing at the moment an add-on for a screen-reader called nvda, a program which reads out screen elements too the blind on windows system. This program has the ability to be extended with add-ons in python. Which are executed at runtime. I would use this project for an add-on, but my problem is, to delever the requeriments there are listed in #175 , to the end-users. exists there a way to precompile or prepack this all requeriments or pack it all to geter in an installer? An executable file is not my first choice, because I write an add-on and need this library for some features, so I need to import this. Call it over subprocess seems to be inperformant and not very clean for me. Maybe someone can help me here. All the best.
open
2020-05-18T15:21:18Z
2021-05-02T12:22:23Z
https://github.com/ageitgey/face_recognition/issues/1147
[]
christopherpross
2
nonebot/nonebot2
fastapi
2,832
Plugin: nonebot-plugin-autopush
### PyPI 项目名 nonebot-plugin-autopush ### 插件 import 包名 nonebot_plugin_autopush ### 标签 [] ### 插件配置项 ```dotenv AUTOPUSH_SERVERS=[] ```
closed
2024-07-21T06:50:04Z
2024-07-21T12:35:18Z
https://github.com/nonebot/nonebot2/issues/2832
[ "Plugin" ]
This-is-XiaoDeng
1
Anjok07/ultimatevocalremovergui
pytorch
965
I have this error with my gpu
Last Error Received: Process: Ensemble Mode The application was unable to allocate enough GPU memory to use this model. Please close any GPU intensive applications and try again. If the error persists, your GPU might not be supported. Raw Error Details: OutOfMemoryError: "CUDA out of memory. Tried to allocate 3.91 GiB (GPU 0; 12.00 GiB total capacity; 16.84 GiB already allocated; 0 bytes free; 16.86 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 652, in seperate File "separate.py", line 771, in demix File "torch\nn\modules\module.py", line 1190, in _call_impl File "lib_v5\tfc_tdf_v3.py", line 226, in forward File "torch\nn\modules\module.py", line 1190, in _call_impl File "lib_v5\tfc_tdf_v3.py", line 143, in forward File "torch\nn\modules\module.py", line 1190, in _call_impl File "torch\nn\modules\container.py", line 204, in forward File "torch\nn\modules\module.py", line 1190, in _call_impl File "torch\nn\modules\activation.py", line 684, in forward " Error Time Stamp [2023-11-10 23:10:21] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 8000 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: v4 | htdemucs segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: MDX23C-InstVoc HQ chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 device_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: True model_sample_mode_duration: 30 demucs_stems: Vocals mdx_stems: Vocals
open
2023-11-10T15:12:01Z
2023-11-10T15:16:51Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/965
[]
cwj7
0
marimo-team/marimo
data-science
3,200
Vim keybindings taking precedence over text area keybindings
### Describe the bug - Go to https://marimo.app/?slug=ugvgap - Enable vim keybindings - Try typing `k/j` in `Prompt`, won't be able to ### Environment playground ### Code to reproduce _No response_
closed
2024-12-17T18:45:47Z
2024-12-18T23:34:05Z
https://github.com/marimo-team/marimo/issues/3200
[ "bug" ]
akshayka
0
TracecatHQ/tracecat
automation
133
Add contextual information for ASGI requests
# Motivation FastAPI calls don't include any contextual information, and it would be nice to include this for each request. # Note - Make sure not to include any PII (like IP address etc)
closed
2024-05-06T00:50:17Z
2024-05-08T18:26:59Z
https://github.com/TracecatHQ/tracecat/issues/133
[ "enhancement", "engine" ]
daryllimyt
0
Evil0ctal/Douyin_TikTok_Download_API
api
15
html = requests.get(url=original_url, headers=tiktok_headers) 报错 Object of type SSLError is not JSON serializable
http://127.0.0.1:2333/api?url=https://www.tiktok.com/@gabyluvsskz_/video/7075120105608203563?is_from_webapp=1&sender_device=pc 调用API的时候scraper.py 报的错误 请问是我操作的问题还是怎么回事啊
closed
2022-04-18T14:03:05Z
2022-04-23T22:06:41Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/15
[]
qqiuqingx
6
frol/flask-restplus-server-example
rest-api
99
ValueError: too many values to unpack (expected 2) when add_columns in resources
i have 1 model which is related to another model by on to on relation, here my model ``` class User(db.Model): """ User database model. """ __tablename__ = 'simpati_mst_user' user_id = db.Column(db.Integer, primary_key=True) # pylint: disable=invalid-name nip = db.Column(db.String(length=255), unique=True, nullable=False) user_name = db.Column(db.String(length=255), unique=True, nullable=False) user_pass = db.Column( db.String(length=255) ) def validate_password(self, password): return bcrypt.verify(password, self.password) def __repr__(self): return ( "<{class_name}(" "user_id={self.user_id}, " "user_name=\"{self.user_name}\", " "user_pass=\"{self.user_pass}\", " ")>".format( class_name=self.__class__.__name__, self=self ) ) class Employe(db.Model): """ Employes Database Model """ __tablename__ = 'v_pegawai' nip = db.Column(db.String(length=255), primary_key=True, unique=True, nullable=False) nama = db.Column(db.String(length=255)) def __repr__(self): return ( "<{class_name}(" "nip={self.nip}, " "nama=\"{self.nama}\", " ")>".format( class_name=self.__class__.__name__, self=self ) ) ``` in my resource.py on get method, this is my query model ``` sql = User.query.join(Employe, User.nip==Employe.nip).add_columns(Employe.nama, Employe.nip).first() log.debug(sql) return sql ``` this is value returned by sql variable ` (<User(user_id=88, user_name="197810212009021002", user_pass="69584243de0848597be32548a55216cd", )>, 'WINDU AGUNG ASMORO, S.H, M.H.', '197810212009021002')` this is my schema ``` class DetailEmploye(Schema): nama = base_fields.String() class Meta: field = ('nip',) ``` but got this error ``` Traceback (most recent call last): File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\flask\app.py", line 1612, in full_dispatch_request rv = self.dispatch_request() File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\flask\app.py", line 1598, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\flask_restplus\api.py", line 313, in wrapper resp = resource(*args, **kwargs) File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\flask\views.py", line 84, in view return self.dispatch_request(*args, **kwargs) File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\flask_restplus\resource.py", line 44, in dispatch_request resp = meth(*args, **kwargs) File "F:\Projects\Tugas Akhir\restful-api\app\extensions\auth\oauth2.py", line 156, in wrapper return origin_decorated_func(*args, **kwargs) File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\flask_oauthlib\provider\oauth2.py", line 565, in decorated return f(*args, **kwargs) File "c:\users\user\appdata\local\programs\python\python36-32\lib\site-packages\permission\permission.py", line 23, in decorator return func(*args, **kwargs) File "F:\Projects\Tugas Akhir\restful-api\flask_restplus_patched\namespace.py", line 148, in dump_wrapper response, _code = response ValueError: too many values to unpack (expected 2) ``` this happend when i trying to add column or custom alias field on querying.
closed
2018-03-18T06:57:39Z
2018-03-18T07:16:54Z
https://github.com/frol/flask-restplus-server-example/issues/99
[]
tarikhagustia
1
blacklanternsecurity/bbot
automation
1,616
Engine Occasionally Hangs
``` [DBUG] dnsresolve.finished: False [DBUG] running: True [DBUG] tasks: [DBUG] - dnsresolve.handle_event((DNS_NAME("us1.dev.emm.dell.com", module=subdomaincenter, tags={'in-scope', 'subdomain'}), {'abort_if': <bound method subdomain_enum.abort_if of <bbot.modules.subdomaincenter.subdomaincenter object at 0x721cebfd6540>>})) running for 10 hours, 36 minutes, 39 seconds: [DBUG] - dnsresolve.handle_event((DNS_NAME("securemail.vsu.edu", module=sslcert, tags={'distance-2', 'subdomain'}), {})) running for 9 hours, 56 minutes, 54 seconds: [DBUG] - dnsresolve.handle_event((DNS_NAME("dell.cz", module=speculate, tags={'domain', 'distance-2'}), {})) running for 9 hours, 49 minutes, 25 seconds: ``` ``` [DBUG] EngineClient DNSHelper: Timeout waiting for response for waiting for return value from is_wildcard((), {'query': 'us1.dev.emm.dell.com', 'ips': None, 'rdtype': None}), retrying... [DBUG] EngineClient DNSHelper: Timeout waiting for response for waiting for new iteration from resolve_raw_batch((), {'queries': [('dell.cz', 'A'), ('dell.cz', 'AAAA'), ('dell.cz', 'SRV'), ('dell.cz', 'MX'), ('dell.cz', 'NS'), ('dell.cz', 'SOA'), ('dell.cz', 'CNAME'), ('dell.cz', 'TXT')]}), retrying... [DBUG] EngineClient DNSHelper: Timeout waiting for response for waiting for new iteration from resolve_raw_batch((), {'queries': [('securemail.vsu.edu', 'A'), ('securemail.vsu.edu', 'AAAA'), ('securemail.vsu.edu', 'SRV'), ('securemail.vsu.edu', 'MX'), ('securemail.vsu.edu', 'NS'), ('securemail.vsu.edu', 'SOA'), ('securemail.vsu.edu', 'CNAME'), ('securemail.vsu.edu', 'TXT')]}), retrying... ```
closed
2024-08-02T14:28:02Z
2024-09-30T00:41:59Z
https://github.com/blacklanternsecurity/bbot/issues/1616
[ "bug", "high-priority" ]
TheTechromancer
21
streamlit/streamlit
machine-learning
9,977
Add a min_selections parameter to st.multiselect
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar feature requests. - [x] I added a descriptive title and summary to this issue. ### Summary I wanted to do a st.multiselect where users could select up to (and only) 2. I checked the [API Reference](https://docs.streamlit.io/develop/api-reference/widgets/st.multiselect) from docs.streamlit.io but I haven't found such thing. ### Why? I am doing a case study project using streamlit. I wanted to use a st.multiselect, but I need to limit the minimum selections, or my exploratory graph won't work. There's no such argument as `min_selections` in the st.multiselect, I'm pretty sure. ### How? I want a min_selections argument for st.multiselect It should be easy, something like: ```python if len(selections) < min_selection: raise ValueError("The number of selections is smaller than the minimum allowed selections") ``` Thanks! ### Additional Context _No response_
open
2024-12-09T04:17:42Z
2024-12-20T14:46:44Z
https://github.com/streamlit/streamlit/issues/9977
[ "type:enhancement", "feature:st.multiselect" ]
Unknownuserfrommars
3
psf/black
python
3,665
string_processing: duplicates comments when reformatting a multi-line call with comments in the middle
<!-- Please make sure that the bug is not already fixed either in newer versions or the current development version. To confirm this, you have three options: 1. Update Black's version if a newer release exists: `pip install -U black` 2. Use the online formatter at <https://black.vercel.app/?version=main>, which will use the latest main branch. 3. Or run _Black_ on your machine: - create a new virtualenv (make sure it's the same Python version); - clone this repository; - run `pip install -e .[d]`; - run `pip install -r test_requirements.txt` - make sure it's sane by running `python -m pytest`; and - run `black` like you did last time. --> **Describe the bug** The following code ```python a = b.c( d, # comment ("e") ) ``` is formatted to: ```python a = b.c(d, "e") # comment # comment ``` with the comment duplicated. Only happens in preview style, and the parentheses in `("e")` are needed to reproduce. So this is likely something in removing these parentheses. See [playground](https://black.vercel.app/?version=stable&state=_Td6WFoAAATm1rRGAgAhARYAAAB0L-Wj4ACPAGRdAD2IimZxl1N_WlOfrjrwLQ97dt3yCueH1hmYrl5aQFIsytphjn9cFnCpEP7801EqsEDiwP6AZK318iW2MayBXp_YZhdVQOu6-K8Lew01US-bdWed2tQxHmSNAOf0Sm1_fbC98gAAcEw4wdLZ5PYAAYABkAEAACZiB1yxxGf7AgAAAAAEWVo=).
open
2023-04-27T21:42:41Z
2024-01-30T18:27:48Z
https://github.com/psf/black/issues/3665
[ "T: bug", "F: strings", "C: preview style" ]
yilei
1
FactoryBoy/factory_boy
django
704
Latest Doc version is always 0.1.0
#### Description The latest doc version is 0.1.0 : see here https://factoryboy.readthedocs.io/_/downloads/en/latest/pdf/ This is probably a consequence of https://github.com/FactoryBoy/factory_boy/commit/93bbd0317092c8e804d039ed60413f4b75fd7e77 I guess we only need to fix this piece of code : https://github.com/FactoryBoy/factory_boy/blob/79161b0409842b5fc8a43d5844669f233403e14c/docs/conf.py#L63-L73
closed
2020-02-20T09:51:27Z
2020-03-09T17:39:27Z
https://github.com/FactoryBoy/factory_boy/issues/704
[ "Bug", "Doc" ]
tonial
2
custom-components/pyscript
jupyter
564
not implemented ast ast_generatorexp
I'm guessing someone hasn't come around to it, just parking this here for myself or if someone else has the time 😄 ``` majo-hast-1 | 2024-01-05 15:23:09.477 ERROR (MainThread) [custom_components.pyscript.scripts.energy_price.fetch_prices] Exception in <scripts.energy_price.fetch_prices> line 49: majo-hast-1 | hour['is_avarage'] = not any(value for key, value in hour.items() if key.endswith(('lowest', 'highest'))) majo-hast-1 | ^ majo-hast-1 | NotImplementedError: scripts.energy_price.fetch_prices: not implemented ast ast_generatorexp ```
open
2024-01-05T14:27:20Z
2024-01-05T17:28:55Z
https://github.com/custom-components/pyscript/issues/564
[]
jkaberg
1
supabase/supabase-py
flask
1
create project base structure
Use [postgrest-py](https://github.com/supabase/postgrest-py) and [supabase-js](https://github.com/supabase/supabase-js) as reference implementations
closed
2020-08-28T06:38:31Z
2021-04-01T18:44:49Z
https://github.com/supabase/supabase-py/issues/1
[ "help wanted" ]
awalias
0
SYSTRAN/faster-whisper
deep-learning
129
Open source speech translate stacks
Nowadays I am using open source models to realize a speech to speech translator. Because I only have a 1070ti, I have to use ctranslator models. I use faster-whisper(really amazing fast) as the ASR, nllb-200-3.3b-ct2 as the text translator and gTTS for the tts. I found nllb-200 is not very precise so I have to change to deepl api. For the tts, I have tried conqui tts, their models are scattered and not easy to use, so I use gTTS directly. This is the stacks I used now. fast whisper + deepl api + gTTS For the stacks, can anyone give me some suggestion? Thank you very much.
closed
2023-04-09T11:11:25Z
2023-04-09T13:52:09Z
https://github.com/SYSTRAN/faster-whisper/issues/129
[]
ILG2021
0
WZMIAOMIAO/deep-learning-for-image-processing
deep-learning
599
环境配置问题
**System information** * Have I written custom code: pip install -r .\requirements.txt * OS Platform(e.g., window10 or Linux Ubuntu 16.04): window10 * Python version: Python 3.7.13 **Describe the current behavior** Wz学长,您好! 我在配置yolov3spp的环境过程中,运行pip install -r .\requirements.txt,问题显示:无法找到版本为0.8.2的torchvision。请问我该如何解决这个问题? **Error info / logs** ERROR: Ignored the following versions that require a different python version: 1.22.0 Requires-Python >=3.8; 1.22.0rc1 Requires-Python >=3.8; 1.22.0rc2 Requires-Python >=3.8; 1.22.0rc3 Requires-Python >=3.8; 1.22.1 Requires-Python >=3.8; 1.22.2 Requires-Python >=3.8; 1.22.3 Requires-Python >=3.8; 1.22.4 Requires-Python >=3.8; 1.23.0 Requires-Python >=3.8; 1.23.0rc1 Requires-Python >=3.8; 1.23.0rc2 Requires-Python >=3.8; 1.23.0rc3 Requires-Python >=3.8; 1.23.1 Requires-Python >=3.8 ERROR: Could not find a version that satisfies the requirement torchvision==0.8.2 (from versions: 0.1.6, 0.1.7, 0.1.8, 0.1.9, 0.2.0, 0.2.1, 0.2.2, 0.2.2.post2, 0.2.2.post3, 0.3.0, 0.4.1, 0.5.0, 0.9.0, 0.9.1, 0.10.0, 0.10.1, 0.11.0, 0.11.1, 0.11.2, 0.11.3, 0.12.0, 0.13.0) ERROR: No matching distribution found for torchvision==0.8.2
closed
2022-07-21T01:12:33Z
2022-07-22T08:43:40Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/599
[]
asapple
4
junyanz/pytorch-CycleGAN-and-pix2pix
deep-learning
1,297
Size of ONNX
Hi guys, I'm just curious about the final size of exported onnx file. Regardless of number of input channels, the size is always 212 MB. Is this expected?
open
2021-07-12T08:12:16Z
2023-07-18T12:58:29Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1297
[]
synthetica3d
1
ageitgey/face_recognition
machine-learning
1,578
File "C:\Users\hp\PycharmProjects\face-reco-attendence\.venv\Lib\site-packages\face_recognition\api.py", line 105, in _raw_face_locations return face_detector(img, number_of_times_to_upsample) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ RuntimeError: Unsupported image type, must be 8bit gray or RGB image.
* face_recognition version: * Python version: * Operating System: ### Description Describe what you were trying to get done. Tell us what happened, what went wrong, and what you expected to happen. IMPORTANT: If your issue is related to a specific picture, include it so others can reproduce the issue. ### What I Did import os import cv2 import face_recognition # Function to load images from a folder and encode them def load_and_encode_images(folderPath): PathList = os.listdir(folderPath) print("Found images:", PathList) imgList = [] studentIds = [] for path in PathList: img_path = os.path.join(folderPath, path) img = cv2.imread(img_path) if img is None: print(f"Error loading image: {img_path}") continue # Convert image to RGB format img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) imgList.append(img_rgb) studentIds.append(os.path.splitext(path)[0]) encodeList = [] for img in imgList: try: # Ensure image is 8-bit RGB or grayscale if img.shape[2] != 3: print(f"Skipping image {img}: not 8-bit RGB") continue encode = face_recognition.face_encodings(img)[0] encodeList.append(encode) except IndexError: print(f"No face found in image: {img}") # You can choose to skip this image or handle the error as needed return encodeList, studentIds # Example usage folderPath = 'Images' print("Encoding started .......") encodeListKnown, studentIds = load_and_encode_images(folderPath) print("Encoding complete") # Print the results print("Encoded faces:", encodeListKnown) print("Student IDs:", studentIds) ``` Paste the command(s) you ran and the output. If there was a crash, please include the traceback here. ```
open
2024-07-30T14:09:26Z
2024-08-26T07:40:55Z
https://github.com/ageitgey/face_recognition/issues/1578
[]
Ananya221203
1
gee-community/geemap
streamlit
1,812
Bug in displaying images in geemap
Hi, Many thanks for solving the other bug with the drawing feature. I have now come across another bug which has appeared from the recent updates. set up the map ``` geom = ee.Geometry.Point([-2.98333, 58.93078]) Map = geemap.Map() Map.centerObject(geom, 13) img_params = {'bands':'VV', 'min':-16, 'max':-6} image = ee.Image('COPERNICUS/S1_GRD/S1A_IW_GRDH_1SDV_20231010T063002_20231010T063027_050699_061BCD_88FE') Map.addLayer(image, img_params, 'Satellite Image',True) Map ``` Now if remove the map and then add the same image using the code below it throws an error below. However if you run the last line again `Map.addLayer(image, img_params, 'Satellite Image',True) ` it adds the image to the map. I think there may be bug in remove_layer function. ``` for layer in Map.layers: if layer.name == 'Satellite Image': Map.remove_layer(layer) Map.addLayer(image, img_params, 'Satellite Image',True) ``` Error --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) [<ipython-input-109-2d2be8686fdc>](https://localhost:8080/#) in <cell line: 4>() 2 if layer.name == 'Satellite Image': 3 Map.remove_layer(layer) ----> 4 Map.addLayer(image, img_params, 'Satellite Image',True) 5 Map.addLayer(image, img_params, 'Satellite Image',True) 6 frames [/usr/local/lib/python3.10/dist-packages/geemap/geemap.py](https://localhost:8080/#) in add_ee_layer(self, ee_object, vis_params, name, shown, opacity) 337 ) 338 --> 339 super().add_layer(ee_object, vis_params, name, shown, opacity) 340 341 if isinstance(ee_object, (ee.Image, ee.ImageCollection)): [/usr/local/lib/python3.10/dist-packages/geemap/core.py](https://localhost:8080/#) in add_layer(self, ee_object, vis_params, name, shown, opacity) 754 755 # Remove the layer if it already exists. --> 756 self.remove(name) 757 758 self.ee_layers[name] = { [/usr/local/lib/python3.10/dist-packages/geemap/core.py](https://localhost:8080/#) in remove(self, widget) 719 tile_layer = ee_layer.get("ee_layer", None) 720 if tile_layer is not None: --> 721 self.remove_layer(tile_layer) 722 if legend := ee_layer.get("legend", None): 723 self.remove(legend) [/usr/local/lib/python3.10/dist-packages/ipyleaflet/leaflet.py](https://localhost:8080/#) in remove_layer(self, rm_layer) 2539 warnings.warn("remove_layer is deprecated, use remove instead", DeprecationWarning) 2540 -> 2541 self.remove(rm_layer) 2542 2543 def substitute_layer(self, old, new): [/usr/local/lib/python3.10/dist-packages/geemap/core.py](https://localhost:8080/#) in remove(self, widget) 726 return 727 --> 728 super().remove(widget) 729 if isinstance(widget, ipywidgets.Widget): 730 widget.close() [/usr/local/lib/python3.10/dist-packages/ipyleaflet/leaflet.py](https://localhost:8080/#) in remove(self, item) 2682 """ 2683 if isinstance(item, Layer): -> 2684 if item.model_id not in self._layer_ids: 2685 raise LayerException('layer not on map: %r' % item) 2686 self.layers = tuple([layer for layer in self.layers if layer.model_id != item.model_id]) [/usr/local/lib/python3.10/dist-packages/ipywidgets/widgets/widget.py](https://localhost:8080/#) in model_id(self) 518 519 If a Comm doesn't exist yet, a Comm will be created automagically.""" --> 520 return self.comm.comm_id 521 522 #------------------------------------------------------------------------- AttributeError: 'NoneType' object has no attribute 'comm_id'
closed
2023-11-02T13:56:00Z
2023-11-02T14:46:10Z
https://github.com/gee-community/geemap/issues/1812
[ "bug" ]
haydenclose
1
piskvorky/gensim
machine-learning
3,158
doc2vec's infer_vector has `epochs` and `steps` input parameters - `steps` not in use
Refer to doc2vec.py, `infer_vector` function seems to be using `epochs` for the number of iterations and `steps` is not in used. However, in the `similarity_unseen_docs` function, `steps` is used when calling the infer_vector function. ![image](https://user-images.githubusercontent.com/62754326/119926239-9085d400-bfa9-11eb-838b-dae98da26c3f.png)
closed
2021-05-28T03:40:01Z
2021-06-29T00:55:42Z
https://github.com/piskvorky/gensim/issues/3158
[ "bug", "difficulty easy", "good first issue" ]
gohjunlin
1
pydantic/pydantic-core
pydantic
963
ValidationError.from_exception_data doesn't work with error type: 'ip_v4_address'"
**Describe the bug** When constructing validation errors using `ValidationError.from_exception_data`, this fails when the error type is `ip_v4_address`.It will raise: ``` KeyError: "Invalid error type: 'ip_v4_address' ``` **To Reproduce** Run the code below. It uses a custom model validator that manually constructs the validation error using `ValidationError.from_exception_data` ```python3 from pydantic import BaseModel, Field, model_validator, ValidationError from ipaddress import IPv4Address from pydantic_core import InitErrorDetails class OutputStream(BaseModel): destination_ip: IPv4Address = Field( ..., ) class StreamingDevice(BaseModel): output_stream: OutputStream = Field( ..., ) @model_validator(mode="before") @classmethod def validate_model(cls, data: dict) -> dict: validation_errors: list[InitErrorDetails] = [] if data.get("output_stream") is not None: try: OutputStream.model_validate(data["output_stream"]) except ValidationError as e: validation_errors.extend(e.errors()) if validation_errors: raise ValidationError.from_exception_data(title=cls.__name__, line_errors=validation_errors) return data streaming_device_payload = {"output_stream": {"destination_ip": "123"}} streaming_device = StreamingDevice.model_validate(streaming_device_payload) ``` **Expected behavior** Pydantic is capable of generating 'ip_v4_address' errors when using model validation without the custom model validator. Therefore, we should be able to manually construct the validation error using the error dictionary that contains the ip_v4_address error type as input into `ValidationError.from_exception_data`. If you were to remove the custom model validator in the example above, Pydantic would successfully throw that error type: ``` pydantic_core._pydantic_core.ValidationError: 1 validation error for StreamingDevice output_stream.destination_ip Input is not a valid IPv4 address [type=ip_v4_address, input_value='123', input_type=str ``` Haven't tested it, but should ip_v4_address be in this error list here? https://github.com/pydantic/pydantic-core/blob/main/python/pydantic_core/core_schema.py#L3900 **Version:** - OS: Ubuntu 20.04.4 LTS - Python version: 3.9.16 - pydantic version: 2.3.0
open
2023-09-15T13:57:29Z
2024-08-28T17:56:35Z
https://github.com/pydantic/pydantic-core/issues/963
[ "documentation" ]
mikedavidson-evertz
9
jupyter-incubator/sparkmagic
jupyter
619
connect to pre-created livy session?
Hi Folks, Here we have a use case like following: 1. John posts a request of provisioning a spark cluster to an in-house REST API 2. the rest API actually writes this into a database 3. another process constantly polls the database and finds the new request 4. it does some administrative work with this request(for example quota check), and then start a livy session in the mesos cluster with the requested resources(assume it passes the check) 5. John starts a jupyter notebook locally, and wants to connect to this livy session so he could use the cluster nodes to run his spark code I searched around and didn't see any documentation about this. The closest I saw is this: https://github.com/jupyter-incubator/sparkmagic/issues/286 The comments there were valid and I understand the concerns. Just, this use case seems valid too. With the admin tasks in the middle, it makes sense to decouple the creation and usage. Not sure if in the sparkmagic config I could directly point it to a session instead of livy url? I also found this link: https://www.qubole.com/blog/connecting-jupyter-remote-qubole-spark-cluster-aws-ms-azure-oracle-bmc/ where they probably use multiple livy servers by using different urls: { "kernel_python_credentials" : { "username": "", "password": "", "url": "https://api.qubole.com/livy-spark-<cluster_id>" }, "kernel_scala_credentials" : { "username": "", "password": "", "url": "https://api.qubole.com/livy-spark-<cluster_id>" } Finally, I saw that sparkmagic could use a name to access a session, but it has to be created with sparkmagic. I may dig further to see how sparkmagic manages livy sessions and whether it could handle sessions not created by itself. At the same time if someone could share some information, I'll really appreciate. :-)
open
2020-01-20T20:24:21Z
2020-01-20T20:24:21Z
https://github.com/jupyter-incubator/sparkmagic/issues/619
[]
rui-wang-codebase
0
horovod/horovod
deep-learning
3,711
TF DataService example fails with tf 2.11
Starting with Tensorflow 2.11, the DataService example fails for Gloo and MPI (but not Spark!) on GPU using CUDA (not reproducible locally with GPU but without CUDA). The identical MNIST example without DataService passes.
open
2022-09-22T06:02:31Z
2022-09-22T06:06:26Z
https://github.com/horovod/horovod/issues/3711
[ "bug" ]
EnricoMi
0
ExpDev07/coronavirus-tracker-api
fastapi
163
Consider ulklc/covid19-timeseries as optional source
Because my app relies on recovered data to estimate "active" cases, I'm going to have to switch from this API (which is lovely, btw) to this data, unless you want to add it as an optional source here? https://github.com/ulklc/covid19-timeseries
open
2020-03-24T13:02:22Z
2020-03-24T16:40:58Z
https://github.com/ExpDev07/coronavirus-tracker-api/issues/163
[ "enhancement" ]
imjoshellis
1
open-mmlab/mmdetection
pytorch
11,720
[mm grounding dino]
Are there any plans to support mm grounding dino **using image as prompt**?
open
2024-05-16T01:01:07Z
2024-05-16T01:01:23Z
https://github.com/open-mmlab/mmdetection/issues/11720
[]
SHX9610
0
pytorch/pytorch
machine-learning
148,951
DISABLED test_wrap_kwarg_default_dynamic_shapes (__main__.DynamicShapesHigherOrderOpTests)
Platforms: linux, rocm, mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_wrap_kwarg_default_dynamic_shapes&suite=DynamicShapesHigherOrderOpTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/38534736647). Over the past 3 hours, it has been determined flaky in 17 workflow(s) with 34 failures and 17 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_wrap_kwarg_default_dynamic_shapes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/dynamo/test_higher_order_ops.py", line 1667, in test_wrap_kwarg_default self._test_wrap_simple(f, default_args_generator((x, y)), arg_count) File "/var/lib/jenkins/pytorch/test/dynamo/test_higher_order_ops.py", line 191, in _test_wrap_simple self.assertEqual(len(wrap_node.args), expected_num_wrap_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 4091, in assertEqual raise error_metas.pop()[0].to_error( # type: ignore[index] AssertionError: Scalars are not equal! Expected 4 but got 7. Absolute difference: 3 Relative difference: 0.75 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/dynamo/test_dynamic_shapes.py DynamicShapesHigherOrderOpTests.test_wrap_kwarg_default_dynamic_shapes This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `dynamo/test_dynamic_shapes.py` cc @clee2000 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
open
2025-03-11T06:44:50Z
2025-03-12T09:42:35Z
https://github.com/pytorch/pytorch/issues/148951
[ "triaged", "module: flaky-tests", "skipped", "oncall: pt2", "module: dynamo" ]
pytorch-bot[bot]
4
ranaroussi/yfinance
pandas
2,245
`returnOnAssets` might be returning faulty data
### Describe bug I am using yfinance 0.2.51, and `returnOnAssets` might be returning faulty data, or the the ROA is calculated calculacted with unknown method to me. I noticed this because my script was calculating the ROA itself using the yfinance income statment and balance sheet data, and I was comparing it to the yfinance values. If we take the TSM ticker for example: Annual Net Income 2024 = 1.173.268.000 Annual Total Assets 2024 = 6.691.938.000 ROA = Net Income / Total Assets = 0,1753 = 17,53 % However, if you use the yfinance function `stock_info.get("returnOnAssets", None)` directly, then it returns ROA of 0.12409. I am also encountering this issue for other tickers: 2025-01-27 17:32:56,955 - INFO - ROA - yFinance (Ticker: ASML): 12.71 % 2025-01-27 17:32:56,956 - INFO - ROA - Calc (Ticker: ASML): 19.62 % 2025-01-27 17:32:59,345 - INFO - ROA - yFinance (Ticker: AWI): 9.84 % 2025-01-27 17:32:59,346 - INFO - ROA - Calc (Ticker: AWI): 13.38 % 2025-01-27 17:33:00,438 - INFO - ROA - yFinance (Ticker: RHI): 5.08 % 2025-01-27 17:33:00,439 - INFO - ROA - Calc (Ticker: RHI): 13.66 % What is strange, that the difference between yFinance and my calculated values is quite big. ### Simple code that reproduces your problem # Fetch the stock data from Yahoo Finance stock = yf.Ticker(ticker) # Ticker e.g. TSM stock_info = stock.info # Fetch ROA from the Yahoo Finance data roa_yfinance = stock_info.get("returnOnAssets", None) # Returned ROA is 0.12409 ### Debug log DEBUG get_raw_json(): https://query2.finance.yahoo.com/v10/finance/quoteSummary/TSM DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/v10/finance/quoteSummary/TSM DEBUG params={'modules': 'financialData,quoteType,defaultKeyStatistics,assetProfile,summaryDetail', 'corsDomain': 'finance.yahoo.com', 'formatted': 'false', 'symbol': 'TSM'} DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG loaded persistent cookie DEBUG reusing cookie DEBUG crumb = 'c3P895az14W' DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query1.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/TSM?symbol=TSM&type=trailingPegRatio&period1=1722211200&period2=1738022400 DEBUG params=None DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG reusing cookie DEBUG reusing crumb DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() 2025-01-27 17:37:57,605 - INFO - ---------------------- TSM ---------------------- DEBUG Entering _fetch_time_series() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/TSM?symbol=TSM&type=annualTaxEffectOfUnusualItems,annualTaxRateForCalcs,annualNormalizedEBITDA,annualNormalizedDiluted... DEBUG params=None DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG reusing cookie DEBUG reusing crumb DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() DEBUG Exiting _fetch_time_series() 2025-01-27 17:37:57,772 - INFO - Fetched Earnings data (EPS) for 4 years period (Ticker: TSM). 2025-01-27 17:37:57,772 - INFO - EPS (latest) (Ticker: TSM): 226.21 2025-01-27 17:37:57,773 - INFO - Fetched Earnings data (Net Income) for 4 years period (Ticker: TSM). 2025-01-27 17:37:57,773 - INFO - Calculating Earnings Variability (EVAR) over 3 year period (Ticker: TSM). 2025-01-27 17:37:57,774 - INFO - EVAR 4Y (EPS) (Ticker: TSM): 44.62% 2025-01-27 17:37:57,774 - INFO - Calculating Earnings Variability (EVAR) over 3 year period (Ticker: TSM). 2025-01-27 17:37:57,774 - INFO - EVAR 4Y (Net Income) (Ticker: TSM): 42.35% 2025-01-27 17:37:57,774 - INFO - Calculating Compound Annual Growth Rate (CAGR) (Ticker: TSM). 2025-01-27 17:37:57,775 - INFO - CAGR 4Y (EPS) (Ticker: TSM): 25.28 % 2025-01-27 17:37:57,775 - INFO - Calculating Compound Annual Growth Rate (CAGR) (Ticker: TSM). 2025-01-27 17:37:57,775 - INFO - CAGR 4Y (Net Income) (Ticker: TSM): 25.58 % 2025-01-27 17:37:57,775 - INFO - Dividend Yield (Ticker: TSM): 1.34 % 2025-01-27 17:37:57,775 - INFO - ROE - yFinance (Ticker: TSM): 28.03 % DEBUG Entering _fetch_time_series() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/TSM?symbol=TSM&type=annualTreasurySharesNumber,annualPreferredSharesNumber,annualOrdinarySharesNumber,annualShareIssue... DEBUG params=None DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG reusing cookie DEBUG reusing crumb DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() DEBUG Exiting _fetch_time_series() DEBUG Entering _fetch_time_series() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/TSM?symbol=TSM&type=quarterlyTaxEffectOfUnusualItems,quarterlyTaxRateForCalcs,quarterlyNormalizedEBITDA,quarterlyNorma... DEBUG params=None DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG reusing cookie DEBUG reusing crumb DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() DEBUG Exiting _fetch_time_series() DEBUG Entering _fetch_time_series() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/TSM?symbol=TSM&type=quarterlyTreasurySharesNumber,quarterlyPreferredSharesNumber,quarterlyOrdinarySharesNumber,quarter... DEBUG params=None DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG reusing cookie DEBUG reusing crumb DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() DEBUG Exiting _fetch_time_series() 2025-01-27 17:37:58,417 - INFO - ROE - Calc (Ticker: TSM): 27.36 % 2025-01-27 17:37:58,417 - INFO - ROA - yFinance (Ticker: TSM): 12.41 % 2025-01-27 17:37:58,418 - INFO - ROA - Calc (Ticker: TSM): 17.53 % DEBUG Entering _fetch_time_series() DEBUG Entering get() DEBUG Entering _make_request() DEBUG url=https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/TSM?symbol=TSM&type=annualForeignSales,annualDomesticSales,annualAdjustedGeographySegmentData,annualFreeCashFlow,annua... DEBUG params=None DEBUG Entering _get_cookie_and_crumb() DEBUG cookie_mode = 'basic' DEBUG Entering _get_cookie_and_crumb_basic() DEBUG reusing cookie DEBUG reusing crumb DEBUG Exiting _get_cookie_and_crumb_basic() DEBUG Exiting _get_cookie_and_crumb() DEBUG response code=200 DEBUG Exiting _make_request() DEBUG Exiting get() DEBUG Exiting _fetch_time_series() 2025-01-27 17:37:58,594 - INFO - CFOA (Ticker: TSM): 27.29 % 2025-01-27 17:37:58,595 - INFO - GPOA (Ticker: TSM): 24.27 % 2025-01-27 17:37:58,596 - INFO - GPMAR (Ticker: TSM): 56.12 % 2025-01-27 17:37:58,596 - INFO - Profit Margin (Ticker: TSM): 39.12 % 2025-01-27 17:37:58,596 - INFO - P/E (Forward) (Ticker: TSM): 17.94 2025-01-27 17:37:58,597 - INFO - P/E (Trailing) (Ticker: TSM): 27.59 2025-01-27 17:37:58,597 - INFO - P/B (Ticker: TSM): 1.24 2025-01-27 17:37:58,597 - INFO - Sector: Technology 2025-01-27 17:37:58,597 - INFO - Industry: Semiconductors ### Bad data proof https://finance.yahoo.com/quote/TSM/financials/ https://finance.yahoo.com/quote/TSM/balance-sheet/ ### `yfinance` version 0.2.51 ### Python version 3.13.1 ### Operating system Windows 11 Enterprise
closed
2025-01-27T16:40:41Z
2025-01-27T21:58:21Z
https://github.com/ranaroussi/yfinance/issues/2245
[]
SimpleThings07
3
deepspeedai/DeepSpeed
machine-learning
6,817
deepspeed installation problem
Hi, During the installation, i get the following error: ```python Collecting deepspeed Using cached deepspeed-0.16.0.tar.gz (1.4 MB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [32 lines of output] [2024-12-04 11:05:58,747] [WARNING] [real_accelerator.py:174:get_accelerator] Setting accelerator to CPU. If you have GPU or other accelerator, we were unable to detect it. [2024-12-04 11:05:58,767] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cpu (auto detect) Warning: The cache directory for DeepSpeed Triton autotune, /home/sagie.dekel/.triton/autotune, appears to be on an NFS system. While this is generally acceptable, if you experience slowdowns or hanging when DeepSpeed exits, it is recommended to set the TRITON_CACHE_DIR environment variable to a non-NFS path. [2024-12-04 11:06:00,385] [WARNING] [real_accelerator.py:174:get_accelerator] Setting accelerator to CPU. If you have GPU or other accelerator, we were unable to detect it. [2024-12-04 11:06:00,391] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cpu (auto detect) Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/setup.py", line 40, in <module> from op_builder import get_default_compute_capabilities, OpBuilder File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/op_builder/__init__.py", line 18, in <module> import deepspeed.ops.op_builder # noqa: F401 # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/deepspeed/__init__.py", line 25, in <module> from . import ops File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/deepspeed/ops/__init__.py", line 15, in <module> from ..git_version_info import compatible_ops as __compatible_ops__ File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/deepspeed/git_version_info.py", line 29, in <module> op_compatible = builder.is_compatible() ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/op_builder/cpu/async_io.py", line 80, in is_compatible aio_compatible = self.has_function('io_submit', ('aio', )) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/sagie.dekel/tmp/pip-install-c2oi7t19/deepspeed_6339861123c84ed3856f1feb571e3473/op_builder/builder.py", line 388, in has_function shutil.rmtree(tempdir) File "/home/sagie.dekel/PROGS/anaconda3/envs/RLRF_env/lib/python3.12/shutil.py", line 759, in rmtree _rmtree_safe_fd(stack, onexc) File "/home/sagie.dekel/PROGS/anaconda3/envs/RLRF_env/lib/python3.12/shutil.py", line 703, in _rmtree_safe_fd onexc(func, path, err) File "/home/sagie.dekel/PROGS/anaconda3/envs/RLRF_env/lib/python3.12/shutil.py", line 662, in _rmtree_safe_fd os.rmdir(name, dir_fd=dirfd) OSError: [Errno 39] Directory not empty: '/home/sagie.dekel/tmp/tmp4yqce7ut' [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details. ``` **My environment:** - OS: Linux Python: 3.12.7 (also tried to downgrade without success) Transformers: 2.4.1 PyTorch: 4.46.1 CUDA (python -c 'import torch; print(torch.version.cuda)'): 11.8 **Packages Version:** ```python # Name Version Build Channel _libgcc_mutex 0.1 main _openmp_mutex 5.1 1_gnu absl-py 2.1.0 py312h06a4308_0 accelerate 1.0.0 pypi_0 pypi aiohappyeyeballs 2.4.3 pypi_0 pypi aiohttp 3.10.10 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi annotated-types 0.7.0 pypi_0 pypi argparse 1.4.0 pypi_0 pypi attrs 24.2.0 pypi_0 pypi blas 1.0 mkl bottleneck 1.4.2 py312ha883a20_0 brotli-python 1.0.9 py312h6a678d5_8 bzip2 1.0.8 h5eee18b_6 c-ares 1.19.1 h5eee18b_0 ca-certificates 2024.11.26 h06a4308_0 certifi 2024.8.30 py312h06a4308_0 charset-normalizer 3.4.0 pypi_0 pypi click 8.1.7 pypi_0 pypi cuda-cudart 11.8.89 0 nvidia cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.4 hbda6634_3 datasets 3.0.1 pypi_0 pypi dill 0.3.8 pypi_0 pypi docstring-parser 0.16 pypi_0 pypi expat 2.6.3 h6a678d5_0 ez-setup 0.9 pypi_0 pypi ffmpeg 4.3 hf484d3e_0 pytorch filelock 3.16.1 pypi_0 pypi freetype 2.12.1 h4a9f257_0 frozenlist 1.4.1 pypi_0 pypi fsspec 2024.6.1 pypi_0 pypi gmp 6.2.1 h295c915_3 gnutls 3.6.15 he1e5248_0 grpcio 1.62.2 py312h6a678d5_0 hjson 3.1.0 pypi_0 pypi huggingface-hub 0.25.2 pypi_0 pypi idna 3.10 pypi_0 pypi intel-openmp 2023.1.0 hdb19cb5_46306 jinja2 3.1.4 py312h06a4308_1 jpeg 9e h5eee18b_3 lame 3.100 h7b6447c_0 lcms2 2.12 h3be6417_0 ld_impl_linux-64 2.40 h12ee557_0 lerc 3.0 h295c915_0 libabseil 20240116.2 cxx17_h6a678d5_0 libcublas 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufile 1.9.1.3 h99ab3db_1 libcurand 10.3.5.147 h99ab3db_1 libcusolver 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libdeflate 1.17 h5eee18b_1 libffi 3.4.4 h6a678d5_1 libgcc-ng 11.2.0 h1234567_1 libgomp 11.2.0 h1234567_1 libgrpc 1.62.2 h2d74bed_0 libiconv 1.16 h5eee18b_3 libidn2 2.3.4 h5eee18b_0 libjpeg-turbo 2.0.0 h9bf148f_0 pytorch libnpp 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libpng 1.6.39 h5eee18b_0 libprotobuf 4.25.3 he621ea3_0 libstdcxx-ng 11.2.0 h1234567_1 libtasn1 4.19.0 h5eee18b_0 libtiff 4.5.1 h6a678d5_0 libunistring 0.9.10 h27cfd23_0 libuuid 1.41.5 h5eee18b_0 libwebp-base 1.3.2 h5eee18b_1 llvm-openmp 14.0.6 h9e868ea_0 lz4-c 1.9.4 h6a678d5_1 markdown 3.4.1 py312h06a4308_0 markdown-it-py 3.0.0 pypi_0 pypi markupsafe 3.0.1 pypi_0 pypi mdurl 0.1.2 pypi_0 pypi mkl 2023.1.0 h213fc3f_46344 mkl-service 2.4.0 py312h5eee18b_1 mkl_fft 1.3.11 py312h5eee18b_0 mkl_random 1.2.8 py312h526ad5a_0 mpmath 1.3.0 py312h06a4308_0 msgpack 1.1.0 pypi_0 pypi multidict 6.1.0 pypi_0 pypi multiprocess 0.70.16 pypi_0 pypi ncurses 6.4 h6a678d5_0 nettle 3.7.3 hbbd107a_1 networkx 3.3 py312h06a4308_0 ninja 1.11.1.2 pypi_0 pypi numexpr 2.10.1 py312h3c60e43_0 numpy 1.26.4 py312hc5e2394_0 numpy-base 1.26.4 py312h0da6c21_0 nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi nvidia-curand-cu12 10.3.2.106 pypi_0 pypi nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi nvidia-nccl-cu12 2.20.5 pypi_0 pypi nvidia-nvjitlink-cu12 12.6.77 pypi_0 pypi nvidia-nvtx-cu12 12.1.105 pypi_0 pypi openh264 2.1.1 h4ff587b_0 openjpeg 2.5.2 he7f1fd0_0 openssl 3.0.15 h5eee18b_0 packaging 24.1 pypi_0 pypi pandas 2.2.3 pypi_0 pypi pillow 8.2.0 pypi_0 pypi pip 24.3.1 pypi_0 pypi propcache 0.2.0 pypi_0 pypi protobuf 3.20.0 pypi_0 pypi psutil 6.0.0 pypi_0 pypi py-cpuinfo 9.0.0 pypi_0 pypi pyarrow 17.0.0 pypi_0 pypi pydantic 2.10.1 pypi_0 pypi pydantic-core 2.27.1 pypi_0 pypi pygments 2.18.0 pypi_0 pypi pysocks 1.7.1 py312h06a4308_0 python 3.12.7 h5148396_0 python-dateutil 2.9.0post0 py312h06a4308_2 python-tzdata 2023.3 pyhd3eb1b0_0 pytorch 2.4.1 py3.12_cuda11.8_cudnn9.1.0_0 pytorch pytorch-cuda 11.8 h7e8668a_5 pytorch pytorch-mutex 1.0 cuda pytorch pytz 2024.1 py312h06a4308_0 pyyaml 6.0.2 py312h5eee18b_0 rbo 0.1.3 pypi_0 pypi re2 2022.04.01 h295c915_0 readline 8.2 h5eee18b_0 regex 2024.9.11 pypi_0 pypi requests 2.32.3 py312h06a4308_1 rich 13.9.2 pypi_0 pypi safetensors 0.4.5 pypi_0 pypi scipy 1.14.1 pypi_0 pypi setuptools 69.5.0 pypi_0 pypi shtab 1.7.1 pypi_0 pypi six 1.16.0 pyhd3eb1b0_1 sqlite 3.45.3 h5eee18b_0 sympy 1.13.3 pypi_0 pypi tbb 2021.8.0 hdb19cb5_0 tensorboard 2.17.0 py312h06a4308_0 tensorboard-data-server 0.7.0 py312h52d8a92_1 tk 8.6.14 h39e8969_0 tokenizers 0.20.0 pypi_0 pypi torch 2.4.1 pypi_0 pypi torchaudio 2.4.1 py312_cu118 pytorch torchtriton 3.0.0 py312 pytorch torchvision 0.19.1 py312_cu118 pytorch tqdm 4.66.5 py312he106c6f_0 transformers 4.46.1 pypi_0 pypi triton 3.0.0 pypi_0 pypi trl 0.12.0 pypi_0 pypi typing-extensions 4.12.2 pypi_0 pypi typing_extensions 4.11.0 py312h06a4308_0 tyro 0.8.12 pypi_0 pypi tzdata 2024b h04d1e81_0 urllib3 2.2.3 py312h06a4308_0 werkzeug 3.0.6 py312h06a4308_0 wheel 0.44.0 py312h06a4308_0 xxhash 3.5.0 pypi_0 pypi xz 5.4.6 h5eee18b_1 yaml 0.2.5 h7b6447c_0 yarl 1.14.0 pypi_0 pypi zlib 1.2.13 h5eee18b_1 zstd 1.5.6 hc292b87_0 ``` Thanks for helping :)
closed
2024-12-04T09:21:11Z
2024-12-11T06:01:56Z
https://github.com/deepspeedai/DeepSpeed/issues/6817
[]
sagie-dekel
8
marcomusy/vedo
numpy
802
Plot surface into variable with out showing result
Hi @marcomusy , I'm trying to plot a surface mesh into a variable/pillow-image/mumpy-array that I can post-process. I saw `vedo.Plotter()` has two functions `.show()` and `.screenshot()`. When calling `show()` from a juypter notebook, the result is immediately shown. I was now wondering if it is possible to draw a plot of a surface without showing it and retrieving the plot in a numpy array or Pillow Image instead. Background: I would like to have the screenshot in a variable and build some stuff around before showing it, similar to [`stackview.insight()`](https://github.com/haesleinhuepf/stackview#static-insight-views) but with surfaces instead of images... Any hint is welcome. Thanks! Best, Robert
closed
2023-02-04T13:31:48Z
2023-02-04T15:44:28Z
https://github.com/marcomusy/vedo/issues/802
[]
haesleinhuepf
4
ydataai/ydata-profiling
pandas
966
latest version 3.2.0 is broken in google colab
**Describe the bug** <!-- cannot import ProfileReport --> **To Reproduce** profile = ProfileReport(df, title="Pandas Profiling Report") profile.to_notebook_iframe() will throw error <!-- anyone want a dirty fix !pip install pandas-profiling==3.1.0 instead
closed
2022-05-06T17:00:23Z
2022-05-07T15:31:59Z
https://github.com/ydataai/ydata-profiling/issues/966
[ "bug 🐛" ]
athulkrishna2015
3
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,069
"Multimedia content" disappears after globaleaks update
**Describe the bug** In a questionnaire step there is only a group of questions. I have checked "add multimedia content" and added an mp4 video locally uploaded. No other question has been added. The video is educational on the specific whistleblowing case. When updating the platform to the latest version the checkbox becomes unchecked and the video does not appear. When checking again the box and entering the file path the issue is restored. This has happened at least two times.
closed
2021-10-12T09:08:40Z
2021-10-21T07:50:09Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3069
[ "T: Bug", "C: Backend" ]
elbill
2
JoeanAmier/TikTokDownloader
api
351
请问终端交互模式下怎么修改默认的下载文件夹呢
### Discussed in https://github.com/JoeanAmier/TikTokDownloader/discussions/350 <div type='discussions-op-text'> <sup>Originally posted by **imzhanglibo** December 12, 2024</sup> 输入完链接确认后默认下载到_internal文件夹里面了,请问下可以修改到其他文件夹吗</div>
open
2024-12-12T15:04:12Z
2025-01-12T10:05:02Z
https://github.com/JoeanAmier/TikTokDownloader/issues/351
[]
imzhanglibo
1
autogluon/autogluon
computer-vision
3,919
Not able install Autogluon in my windows system. It is not able to find numpy==1.21.3
Hi, I am not able to install Autogluon in my windows 10 system. I am using "pip install autogluon**" command in command prompt. I have python 3.11.0 install and can't downgrade it due to other dependencies . While installation giving below error. I tried manually installing numpy==1.21.3 but I guess it is not supporting python 3.11.0. Please help. ERROR: Could not find a version that satisfies the requirement numpy==1.21.3 (from versions: 1.3.0, 1.4.1, 1.5.0, 1.5.1, 1.6.0, 1.6.1, 1.6.2, 1.7.0, 1.7.1, 1.7.2, 1.8.0, 1.8.1, 1.8.2, 1.9.0, 1.9.1, 1.9.2, 1.9.3, 1.10.0.post2, 1.10.1, 1.10.2, 1.10.4, 1.11.0, 1.11.1, 1.11.2, 1.11.3, 1.12.0, 1.12.1, 1.13.0, 1.13.1, 1.13.3, 1.14.0, 1.14.1, 1.14.2, 1.14.3, 1.14.4, 1.14.5, 1.14.6, 1.15.0, 1.15.1, 1.15.2, 1.15.3, 1.15.4, 1.16.0, 1.16.1, 1.16.2, 1.16.3, 1.16.4, 1.16.5, 1.16.6, 1.17.0, 1.17.1, 1.17.2, 1.17.3, 1.17.4, 1.17.5, 1.18.0, 1.18.1, 1.18.2, 1.18.3, 1.18.4, 1.18.5, 1.19.0, 1.19.1, 1.19.2, 1.19.3, 1.19.4, 1.19.5, 1.20.0, 1.20.1, 1.20.2, 1.20.3, 1.21.0, 1.21.1, 1.22.0, 1.22.1, 1.22.2, 1.22.3, 1.22.4, 1.23.0rc1, 1.23.0rc2, 1.23.0rc3, 1.23.0, 1.23.1, 1.23.2, 1.23.3, 1.23.4, 1.23.5, 1.24.0rc1, 1.24.0rc2, 1.24.0, 1.24.1, 1.24.2, 1.24.3, 1.24.4, 1.25.0rc1, 1.25.0, 1.25.1, 1.25.2, 1.26.0b1, 1.26.0rc1, 1.26.0, 1.26.1, 1.26.2, 1.26.3, 1.26.4) ERROR: No matching distribution found for numpy==1.21.3 Thanks
closed
2024-02-14T04:08:26Z
2024-02-14T08:32:45Z
https://github.com/autogluon/autogluon/issues/3919
[]
rahulhiware
1
litestar-org/polyfactory
pydantic
531
Docs: Document functions/classes/methods that have no docstrings and are missing from the built docs
We should document these. I don't think any are exposed in the reference documentation because of lack of docstrings _Originally posted by @JacobCoffee in https://github.com/litestar-org/polyfactory/pull/530#discussion_r1585191572_
open
2024-04-30T16:47:18Z
2025-03-20T15:53:16Z
https://github.com/litestar-org/polyfactory/issues/531
[ "documentation" ]
JacobCoffee
0
google-research/bert
tensorflow
878
how to realize the tokenization of BERT model in c++
Thanks for your work. If I want to use tensorflow c++ api to import the pretrained BERT model, how could I process the txt data in C++, including tokenization of BERT? is there c++ wrapper for Bert? or does tensorfow c++ api provide the tokenization of Bert? Or do I need to implement the same tokenization.py in c++? Thanks for any information.
closed
2019-10-14T15:45:49Z
2019-11-22T08:29:58Z
https://github.com/google-research/bert/issues/878
[]
lytum
14
marcomusy/vedo
numpy
93
migrating: Actor -> Mesh
Hi Marco, my code was still using .Actor and getActors() which are depreciated in the latest version. It updating my code as easy as replacing the Actor() [class] by the Mesh and renaming getActors to getMeshes?
closed
2020-01-09T16:37:59Z
2020-01-09T16:42:08Z
https://github.com/marcomusy/vedo/issues/93
[]
RubendeBruin
2
mckinsey/vizro
plotly
776
Add other elements to Filter/Control sidebar
### Question Is it possible to add any component to the Filter/Parameter sidebar? As far as I understood, only elements which are added as children of controls will be added to the sidebar. But controls only takes either vm.Filter() or vm.Parameter(). I want to add a dropdown in the sidebar, which I want to control using dash callbacks. I hope the code example helps to make clear what I want. ### Code/Examples ``` import dash_core_components as dcc import vizro.models as vm import vizro.plotly.express as px from vizro import Vizro iris = px.data.iris() page = vm.Page( title="My first page", components=[ vm.Graph( id="scatter_chart", figure=px.scatter(iris, title="My scatter chart", x="sepal_length", y="petal_width", color="species"), ), ], controls=[ #Here I want to add any component, could also be dcc.Dropdown or any other custom element. vm.Dropdown( id="my-dropdown", ... ), vm.Parameter( targets=["scatter_chart.title"], selector=vm.Dropdown( options=["My scatter chart", "A better title!", "Another title..."], multi=False, ), ), ], ) dashboard = vm.Dashboard(pages=[page]) Vizro().build(dashboard).run() ``` ### Which package? vizro ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
closed
2024-10-04T09:54:58Z
2024-10-04T10:15:51Z
https://github.com/mckinsey/vizro/issues/776
[ "General Question :question:" ]
FSaal
2
pytorch/vision
machine-learning
8,509
[Documentation] Improve Clarity on `torchvision.io.write_video` options
### 📚 The doc issue ### tl;dr `options` parameter under `torchvision.io.write_video` is inadequately documented, challenging for end-users to tweak videos to their liking. same goes for `audio_options` In [`torchvision.io.write_video`](https://pytorch.org/vision/stable/generated/torchvision.io.write_video.html#torchvision.io.write_video), `options` and `audio_options` parameters are not sufficiently elaborated upon. At first glance, this is okay as the function is ultimately just a wrapper around `PyAV`'s video recording capabilities. In practice, however, **it is nontrivial to find relevant documentation to finetune the output.** This is especially so if the end-user, like me, is not familiar with `PyAV` or video recording in general. [Here is an example](https://github.com/pytorch/rl/issues/2258) of the potential issues this may cause. ### Suggest a potential alternative/fix This is an issue we are working on as well in [TorchRL](https://github.com/pytorch/rl/tree/4e60774dedb6d5847c163c985b71928598123b46). As suggested by @vmoens, it would be nice if a link could be provided to the [FFmpeg documentation](https://trac.ffmpeg.org/wiki), which is ultimately behind the `options` exposed by `PyAV`. A potential extra step could then be to translate the wiki information into *specific code examples* that end-users can easily read and apply. This will probably benefit more people than if such information were only being documented in downstream libraries. [Here's what a "specific code example" could look like](https://github.com/pytorch/rl/blob/4e60774dedb6d5847c163c985b71928598123b46/knowledge_base/VIDEO_CUSTOMISATION.md),
open
2024-07-02T14:31:10Z
2024-07-04T10:32:11Z
https://github.com/pytorch/vision/issues/8509
[]
N00bcak
1
ansible/awx
django
15,725
A project update is triggered every time a task related to this project is started
### Please confirm the following - [X] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [X] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [X] I understand that AWX is open source software provided for free and that I might not receive a timely response. - [X] I am **NOT** reporting a (potential) security vulnerability. (These should be emailed to `security@ansible.com` instead.) ### Bug Summary I have a project that sees IT as a source, and the branch name is listed there. I also have an inventory that lists this project as the source. The Startup Update and Startup Revision Update options are disabled. When I start inventory synchronization, the project update starts. I don't need to update the project, it's updated. I tried to use the corrected version of the branch, intercept the branch and try to recreate the project and other branches. The problem remains, the project is updated every time inventory synchronization is started. ### AWX version 24.6.1 ### Select the relevant components - [X] UI - [ ] UI (tech preview) - [X] API - [ ] Docs - [ ] Collection - [ ] CLI - [ ] Other ### Installation method kubernetes ### Modifications no ### Ansible version _No response_ ### Operating system _No response_ ### Web browser Chrome ### Steps to reproduce 1) create a project. 1.1 Select Source control type - GIT and source control branch 1.2 sync project 2) create an inventory. Select project and inventory_file 3) sync inventory ### Expected results I expect that the project will not be updated. If you click on the details, you can see the update status of the project and the messages say that the project was updated. ### Actual results 1) create a project. 1.1 Select Source control type - GIT and source control branch ![image](https://github.com/user-attachments/assets/3640c9eb-8826-407b-8218-fbf9a40fb11a) 1.2 sync project ![image](https://github.com/user-attachments/assets/19e2db90-d0d4-4f50-83a0-46095e70889d) 2) create an inventory. Select project and inventory_file ![image](https://github.com/user-attachments/assets/673fb6d6-75c7-40bc-ab20-0be1ca77caf4) 3) sync inventory ![image](https://github.com/user-attachments/assets/22279a6c-a2f4-4acf-8700-ee6c242b7335) ![image](https://github.com/user-attachments/assets/e8042035-57c1-4402-a3bc-c5bf16bb7480) Select details: ![image](https://github.com/user-attachments/assets/5039d3b2-3544-4982-b7b0-dac30fe8eeca) Click Project Update Status: ![image](https://github.com/user-attachments/assets/d410c763-7700-4709-9e47-9f10bbdd9b65) ### Additional information _No response_
open
2024-12-24T14:43:38Z
2025-01-22T18:46:57Z
https://github.com/ansible/awx/issues/15725
[ "type:bug", "component:api", "component:ui", "needs_triage", "community" ]
nikiforova13
0
jowilf/starlette-admin
sqlalchemy
319
Question: How to password protect the admin page?
closed
2023-10-02T22:13:03Z
2023-10-04T15:31:48Z
https://github.com/jowilf/starlette-admin/issues/319
[]
magedhelmy1
1
pennersr/django-allauth
django
3,603
Amazon Cognito - Where to define my CustomAmazonCognitoProvider
Hi all, thanks for this wonderful package. I have a small question. I've completed setting up AWS Cognito account sign-in. Now, I need a small thing as well. It is to get custom user attributes from Cognito. ### Question in short Where can i add my `CustomAmazonCognitoProvider` after extending? ### Brief overview In [`allauth/socialaccount/providers/amazon_cognito/provider.py`](https://github.com/pennersr/django-allauth/blob/105aace58fe767595c61e3a43563af7e1c277797/allauth/socialaccount/providers/amazon_cognito/provider.py#L52) , we see the class `AmazonCognitoProvider`. Inside this class, there is `extract_extra_data` method. This method is responsible for getting attributes and it does the job well. Now, i want a custom attribute say; `foo` from Cognito. I've monkey patched the method - inside `return` just added `"zoneinfo": data.get("custom:foo")`. It does work as well. ### What i've tried Now that i know it can get the info, since its always better to extend the class, i did below; ``` from allauth.socialaccount.providers.amazon_cognito.provider import ( AmazonCognitoProvider as BaseAmazonCognitoProvider, ) class CustomAmazonCognitoProvider(BaseAmazonCognitoProvider): def extract_extra_data(self, data): extra_data = super(CustomAmazonCognitoProvider, self).extract_extra_data(data) # Add your custom field extraction logic here custom_field = data.get("custom:foo") extra_data["foo"] = custom_field print(f">>>>>>>>> hung:{extra_data}") return extra_data ``` I've added this `CustomAmazonCognitoProvider` in settings as: ``` SOCIALACCOUNT_PROVIDERS = { "amazon_cognito": { # "SOCIALACCOUNT_ADAPTER": "myapp.views.CustomAmazonCognitoProvider", "DOMAIN": "https://cogauth.auth.ap-south-1.amazoncognito.com", "APP": {"class": "polls.views.CustomAmazonCognitoProvider"}, }, } ``` This caused ```raise MultipleObjectsReturned django.core.exceptions.MultipleObjectsReturned``` ### Question What i posted above, it might be also wrong, not sure where to put my `CustomAmazonCognitoProvider`. Question is, where do i put `CustomAmazonCognitoProvider`? Does `CustomAmazonCognitoProvider` seems to be okay? Thanks for reading!
closed
2024-01-19T11:18:28Z
2024-04-16T07:15:19Z
https://github.com/pennersr/django-allauth/issues/3603
[]
b3nsh4
3
indico/indico
sqlalchemy
6,058
[A11Y] File field in the registration form is not accessible
**Describe the bug** The field name is not mentioned when the file upload button is focused. **To Reproduce** Steps to reproduce the behavior: 1. Go to a registration form that includes a file field using a screen reader 2. Tab through the fields and focus the upload button 3. Observe that the field name is not announced **Expected behavior** The field name should be included in the announcement. **Additional context** https://www.w3.org/WAI/WCAG21/Understanding/labels-or-instructions.html
open
2023-11-24T09:31:02Z
2023-11-24T09:31:02Z
https://github.com/indico/indico/issues/6058
[ "bug" ]
foxbunny
0
STVIR/pysot
computer-vision
450
When I set__ C. TRAIN.EXEMPLAR_ SIZE=512.. my loc loss is always 0
When I set__ C. TRAIN.EXEMPLAR_ SIZE=512,__ C. TRAIN.SEARCH_ SIZE=800,__ C. TRAIN.OUTPUT_ When size = 37, my loc loss is always 0. What other parameters do I need to change
closed
2020-10-15T02:07:53Z
2020-11-10T09:21:08Z
https://github.com/STVIR/pysot/issues/450
[ "invalid" ]
XuShoweR
2
plotly/dash
data-science
2,519
[BUG] `dash.get_relative_path()` docstring out of date
Docstrings for `dash.get_relative_path()` and `dash.strip_relative_path()` still refer to the `app` way of accessing those functions, which creates inconsistency in the docs: ![Screen Shot 2023-05-02 at 2 44 32 PM](https://user-images.githubusercontent.com/4672118/235759684-d386ad8c-cee1-48a4-ba6c-9b54fb442440.png) https://dash.plotly.com/reference#dash.get_relative_path
closed
2023-05-02T18:57:09Z
2023-05-15T20:29:16Z
https://github.com/plotly/dash/issues/2519
[]
emilykl
0
modelscope/modelscope
nlp
543
各个微调代码的差别
请问大牛们和开发者们[https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llama/run_train_lora.sh代码和https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora/sft.sh这段代码是不是都可以模型分割并行呢?除了用torchrun、swift方面和qlora、lora方面有区别](https://github.com/modelscope/modelscope/blob/master/examples/pytorch/llama/run_train_lora.sh%E4%BB%A3%E7%A0%81%E5%92%8Chttps://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora/sft.sh%E8%BF%99%E6%AE%B5%E4%BB%A3%E7%A0%81%E6%98%AF%E4%B8%8D%E6%98%AF%E9%83%BD%E5%8F%AF%E4%BB%A5%E6%A8%A1%E5%9E%8B%E5%88%86%E5%89%B2%E5%B9%B6%E8%A1%8C%E5%91%A2%EF%BC%9F%E9%99%A4%E4%BA%86%E7%94%A8torchrun%E3%80%81swift%E6%96%B9%E9%9D%A2%E5%92%8Cqlora%E3%80%81lora%E6%96%B9%E9%9D%A2%E6%9C%89%E5%8C%BA%E5%88%AB),在数据并行方面有什么区别呀,前一个可以设置per_device_train_batch_size会不会每个gpu都可以跑batch_size更快些呢,感激感激,希望能模型并行和数据并行一起上跑更快些
closed
2023-09-16T13:32:36Z
2023-09-18T10:24:33Z
https://github.com/modelscope/modelscope/issues/543
[]
yzyz-77
3
pydantic/logfire
fastapi
313
Anthropic Instrumentation errors
### Description Received the following error on a `instrument_anthopic` call. ``` File ~/an-env/lib/python3.11/site-packages/logfire/_internal/main.py:1012, in Logfire.instrument_anthropic(self, anthropic_client, suppress_other_instrumentation) 962 """Instrument an Anthropic client so that spans are automatically created for each request. 963 964 The following methods are instrumented for both the sync and the async clients: (...) 1008 Use of this context manager is optional. 1009 """ 1010 import anthropic -> 1012 from .integrations.llm_providers.anthropic import get_endpoint_config, is_async_client, on_response 1013 from .integrations.llm_providers.llm_provider import instrument_llm_provider 1015 self._warn_if_not_initialized_for_instrumentation() File ~/an-env/lib/python3.11/site-packages/logfire/_internal/integrations/llm_providers/anthropic.py:6 3 from typing import TYPE_CHECKING, Any 5 import anthropic ----> 6 from anthropic.types import Message, RawContentBlockDeltaEvent, RawContentBlockStartEvent, TextBlock, TextDelta 8 from .types import EndpointConfig 10 if TYPE_CHECKING: ImportError: cannot import name 'RawContentBlockDeltaEvent' from 'anthropic.types' (/Users/someuser/an-env/lib/python3.11/site-packages/anthropic/types/__init__.py) ### Python, Logfire & OS Versions, related packages (not required) ``` ```TOML logfire="0.46.1" platform="macOS-10.16-x86_64-i386-64bit" python="3.11.5 (main, Sep 11 2023, 08:19:27) [Clang 14.0.6 ]" anthropic==0.25.9 ```
closed
2024-07-13T16:06:48Z
2024-07-17T15:13:11Z
https://github.com/pydantic/logfire/issues/313
[ "bug", "P1" ]
bllchmbrs
2
tflearn/tflearn
data-science
878
TensorBoard: how to plot custom variable?
How can i plot changes of some custom variable at each epoch with tflearn and tensorboard? I found some way how i can show my custom variable with callbacks in console. But i want visualize that changes using tensorboard. ```python NR = 3500 #Amount of first class data NS = 3500 #Amount of second class data class CustomCallback(tflearn.callbacks.Callback): def __init__(self): pass def on_epoch_end(self, training_state): TP = 0 TN = 0 FP = 0 FN = 0 predictions = model.predict(X) for prediction, actual in zip(predictions, Y): predicted_class = np.argmax(prediction) actual_class = np.argmax(actual) if predicted_class == 1: if actual_class == 1: TP+=1 else: FP+=1 else: if actual_class == 0: TN+=1 else: FN+=1 Metric = (TP / NR) - (FP / NS) print ("Metric: " + str(Metric)) print("--") callback = CustomCallback() model = tflearn.DNN(net, tensorboard_verbose=0) model.fit(X, Y, n_epoch=3, show_metric=True, callbacks=callback) ``` Like this ![example](https://user-images.githubusercontent.com/6983515/29493705-cb5970f4-85de-11e7-9eb1-69e5e1172b14.png)
open
2017-08-20T09:31:59Z
2017-08-20T09:37:27Z
https://github.com/tflearn/tflearn/issues/878
[]
kulsemig
0
bauerji/flask-pydantic
pydantic
49
Using flask-pydantic with Python Dependency Injection Framework
Hi! I am using this module with Python Dependency Injection Framework and when i try to use Provider in kwargs of the view i am getting: `RuntimeError: no validator found for <class '...'>, see arbitrary_types_allowed in Config` Reason of this error is the fact that @validate decorator ignores only kwargs named as "query", "body", "return". It would be better if @validate decorator ignored kwargs which default is Provide instance Sample code: ``` @bp.route('/api/posts', methods=['GET']) @inject @validate(response_many=True) def get_posts( service: PostService = Provide[Container.services.post_service] ) -> List[ReadPost]: ... ```
open
2022-03-30T11:55:59Z
2024-03-21T21:18:34Z
https://github.com/bauerji/flask-pydantic/issues/49
[]
akhundMurad
7
pennersr/django-allauth
django
3,282
`OpenIDConnectProvider` generates slug using `_server_id` and does not fallback to inherited implementation
KeycloakProvider started using `openid_connect` as its base url since the `OpenIDConnectProvider` implemented `get_slug`
closed
2023-03-15T08:00:58Z
2023-03-16T15:43:36Z
https://github.com/pennersr/django-allauth/issues/3282
[]
ManiacMaxo
1
biolab/orange3
pandas
6,664
orange-canvas does not work
<!-- Thanks for taking the time to report a bug! If you're raising an issue about an add-on (i.e., installed via Options > Add-ons), raise an issue in the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 To fix the bug, we need to be able to reproduce it. Please answer the following questions to the best of your ability. --> **What's wrong?** <!-- Be specific, clear, and concise. Include screenshots if relevant. --> <!-- If you're getting an error message, copy it, and enclose it with three backticks (```). --> orange-canvas does not work and says "illegal instruction (core dumped)" after the splash screen, so impossible to open it (Idem with python -m Orange.canvas) **How can we reproduce the problem?** <!-- Upload a zip with the .ows file and data. --> <!-- Describe the steps (open this widget, click there, then add this...) --> By trying orange-canvas after having installed with pip3 install orange3 **What's your environment?** <!-- To find your Orange version, see "Help → About → Version" or `Orange.version.full_version` in code --> - Operating system: Linux Mint 21.2 - Orange version: 3.36.1 - How you installed Orange: pip3 install orange3 - I use Python 3.10.12 with numpy, scipy, PyQt5 (version 5.15.6) and PyQtWebEngine (version 5.15.5) Thank you.
open
2023-12-03T10:03:53Z
2024-01-01T19:12:27Z
https://github.com/biolab/orange3/issues/6664
[ "bug report" ]
pgr123
6
gee-community/geemap
streamlit
1,928
Release geemap
Test
closed
2024-02-29T21:39:15Z
2024-05-24T20:43:28Z
https://github.com/gee-community/geemap/issues/1928
[ "release" ]
jdbcode
0
adbar/trafilatura
web-scraping
560
Use `with_metadata` parameter to decide whether to run metadata extraction
So far this parameter is pending deprecation. It could be re-used to do what most expect: decide manually (not only based on output format) whether to run metadata extraction. Focusing on the main text only speeds up things.
closed
2024-04-15T13:20:09Z
2024-06-07T14:40:11Z
https://github.com/adbar/trafilatura/issues/560
[ "enhancement" ]
adbar
0
AirtestProject/Airtest
automation
715
为什么要新增一步『根据识别区域,求出结果可信度』
如SURF这种算法,既然都获得了计算结果,为啥要单独再去计算一个可信度? 我觉得没有必要。如分辨率出现了变化或二次截图这种明显会导致可信度计算非常差,我测试二次截图在第四步的可信度计算哪儿可信度会出现通不过的情况。如果去掉第四步是否可行? 我没有理解到为啥需要这一步,烦请告知!!! https://github.com/AirtestProject/Airtest/blob/master/airtest/aircv/keypoint_base.py#L86
closed
2020-04-05T07:46:37Z
2020-05-25T06:03:27Z
https://github.com/AirtestProject/Airtest/issues/715
[]
enlangs792
3
zama-ai/concrete-ml
scikit-learn
789
Adding encrypted training for other ML models and DL models
## Feature request From the [doc of encrypted training](https://docs.zama.ai/concrete-ml/built-in-models/training), only `SGDClassifier` is mentioned. I would like to train other ML/DL models on encrypted data and also would love to contribute. Here are some questions after reading some of the codes related to encrypted training : 1. What are the reasons that there is no encrypted training for other ML/DL models? Is it because there is some limitation in either concrete or concrete-ml that blocks this development? If so, what are those limitations? 2. Some potential constraints I observed from the code that does encrypted learning on `SGDClassifier`: (1) [Parameter range has to be preset](https://github.com/zama-ai/concrete-ml/blob/77cbdd61d0e44ab5875f8ee1c57d0831577042da/src/concrete/ml/sklearn/linear_model.py#L136) $~~~~~$ * Is this inevitable due to overflowing during FHE computation? (2) [Floating point distribution of input has to be similar](https://github.com/zama-ai/concrete-ml/blob/main/docs/advanced_examples/LogisticRegressionTraining.ipynb) $~~~~~$ * Could you elaborate more on this? (3) [Learning rate == 1](https://github.com/zama-ai/concrete-ml/blob/77cbdd61d0e44ab5875f8ee1c57d0831577042da/src/concrete/ml/sklearn/linear_model.py#L190) $~~~~~$ * Does it mean we cannot have arbitrary learning rates? It would be much appreciated if you could explain the causes of them. ## Motivation I would like to contribute to encrypted learning for other models. \ \ Thanks a lot in advance.
open
2024-07-09T05:52:09Z
2024-07-26T22:13:51Z
https://github.com/zama-ai/concrete-ml/issues/789
[]
riemanli
5
ranaroussi/yfinance
pandas
2,166
yfinance earnings date error
### Describe bug Earnings was working 3 weeks ago. Have been trying to debug - but it looks like somethings changed. ### Simple code that reproduces your problem Here's a simple test script: import yfinance as yf dat = yf.Ticker("MSFT") dat.earnings_dates ### Debug log DEBUG Entering get_earnings_dates() --------------------------------------------------------------------------- KeyError Traceback (most recent call last) File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py:3802, in Index.get_loc(self, key, method, tolerance) 3801 try: -> 3802 return self._engine.get_loc(casted_key) 3803 except KeyError as err: File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\_libs\index.pyx:138, in pandas._libs.index.IndexEngine.get_loc() File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\_libs\index.pyx:165, in pandas._libs.index.IndexEngine.get_loc() File pandas\_libs\hashtable_class_helper.pxi:5745, in pandas._libs.hashtable.PyObjectHashTable.get_item() File pandas\_libs\hashtable_class_helper.pxi:5753, in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'Earnings Date' The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) Cell In[27], line 4 2 yf.enable_debug_mode() 3 dat = yf.Ticker("MSFT") ----> 4 dat.earnings_dates File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\yfinance\ticker.py:295, in Ticker.earnings_dates(self) 293 @property 294 def earnings_dates(self) -> _pd.DataFrame: --> 295 return self.get_earnings_dates() File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\yfinance\utils.py:104, in log_indent_decorator.<locals>.wrapper(*args, **kwargs) 101 logger.debug(f'Entering {func.__name__}()') 103 with IndentationContext(): --> 104 result = func(*args, **kwargs) 106 logger.debug(f'Exiting {func.__name__}()') 107 return result File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\yfinance\base.py:629, in TickerBase.get_earnings_dates(self, limit, proxy) 627 cn = "Earnings Date" 628 # - remove AM/PM and timezone from date string --> 629 tzinfo = dates[cn].str.extract('([AP]M[a-zA-Z]*)$') 630 dates[cn] = dates[cn].replace(' [AP]M[a-zA-Z]*$', '', regex=True) 631 # - split AM/PM from timezone File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py:3807, in DataFrame.__getitem__(self, key) 3805 if self.columns.nlevels > 1: 3806 return self._getitem_multilevel(key) -> 3807 indexer = self.columns.get_loc(key) 3808 if is_integer(indexer): 3809 indexer = [indexer] File ~\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py:3804, in Index.get_loc(self, key, method, tolerance) 3802 return self._engine.get_loc(casted_key) 3803 except KeyError as err: -> 3804 raise KeyError(key) from err 3805 except TypeError: 3806 # If we have a listlike key, _check_indexing_error will raise 3807 # InvalidIndexError. Otherwise we fall through and re-raise 3808 # the TypeError. 3809 self._check_indexing_error(key) KeyError: 'Earnings Date' ### Bad data proof Error = "Earnings Date' ### `yfinance` version latest ### Python version 3.1 ### Operating system Windows
closed
2024-12-04T00:02:55Z
2025-01-24T11:07:36Z
https://github.com/ranaroussi/yfinance/issues/2166
[]
rhnagpal
2
ivy-llc/ivy
tensorflow
28,430
fix the `ivy.not_equal` to support the float dtype and numeric dtype
closed
2024-02-26T20:12:21Z
2024-02-29T13:17:36Z
https://github.com/ivy-llc/ivy/issues/28430
[ "Sub Task" ]
samthakur587
0
newpanjing/simpleui
django
268
希望可以加载一个菜单生成器。
**你希望增加什么功能?** ** what features do you wish to add? * * 1.动态加载菜单和路由的时候,可以通过加载函数的方式,传入登录客户的user,做到自定义权限控制数据表。而不是只能加载一个dict。 **留下你的联系方式,以便与你取得联系** ** what would you like to see optimized? * * QQ:531189371 E-mail:chise123@live.com
closed
2020-06-02T05:53:01Z
2020-06-22T07:08:19Z
https://github.com/newpanjing/simpleui/issues/268
[ "enhancement" ]
Chise1
1
jumpserver/jumpserver
django
14,284
[Feature] 数据库客户端方式拉起之后没法自定义设置token过期时间
### 产品版本 v3.10.13 ### 版本类型 - [ ] 社区版 - [ ] 企业版 - [X] 企业试用版 ### 安装方式 - [ ] 在线安装 (一键命令安装) - [X] 离线包安装 - [ ] All-in-One - [ ] 1Panel - [ ] Kubernetes - [ ] 源码安装 ### ⭐️ 需求描述 客户端方式访问数据库,建立连接之后不操作就会过期失效 <img width="725" alt="b62db472b7c8cda119221670c418e55" src="https://github.com/user-attachments/assets/3a85b0df-fd17-4797-ad21-19fefc47975e"> <img width="365" alt="a7afd57157ac8beeacd5dad7a0cacb7" src="https://github.com/user-attachments/assets/398dd76c-6ca5-4986-b594-288d6f511c0d"> ### 解决方案 这个数据库客户端方式可以跟连接向导一样设置成可配置项,由用户自己设置他的过期时间么 ### 补充信息 _No response_
closed
2024-10-12T02:41:03Z
2024-11-28T03:22:31Z
https://github.com/jumpserver/jumpserver/issues/14284
[ "⭐️ Feature Request" ]
zhenzhendong
1
deezer/spleeter
tensorflow
922
How to export onnx model
How to export spleeter to onnx model,and call by C# by onnxruntime
open
2024-12-29T06:16:13Z
2024-12-29T06:16:13Z
https://github.com/deezer/spleeter/issues/922
[ "question" ]
dfengpo
0
coqui-ai/TTS
deep-learning
3,427
[Bug] when i run print(TTS().list_models()) I get <TTS.utils.manage.ModelManager object at 0x7fa9d4c5a7a0>
### Describe the bug was found in coqui tts V0.22.0 not sure why its happening the but when i run print(TTS().list_models()) i get <TTS.utils.manage.ModelManager object at 0x7fa9d4c5a7a0> ### To Reproduce When i run print(TTS().list_models()) I get <TTS.utils.manage.ModelManager object at 0x7fa9d4c5a7a0> ### Expected behavior It should be giving me a list of all of the models but it doesn't ### Logs _No response_ ### Environment ```shell Seems to occur in what I,ve tested being python 3.11 and 3.10 ``` ### Additional context I found a fix tho
closed
2023-12-14T01:13:58Z
2024-01-28T22:40:23Z
https://github.com/coqui-ai/TTS/issues/3427
[ "bug", "wontfix" ]
DrewThomasson
2
d2l-ai/d2l-en
data-science
2,573
Incorrect Use of torch.no_grad() in fit_epoch Method in d2l/torch.py::Trainer::fit_epoch
Hello, I noticed a potential issue in the fit_epoch method in https://github.com/d2l-ai/d2l-en/blob/master/d2l/torch.py, where loss.backward() is called within a torch.no_grad() block: ``` self.optim.zero_grad() with torch.no_grad(): loss.backward() ... ``` This usage likely prevents the calculation of gradients, as loss.backward() should not be inside a torch.no_grad() block. The correct approach would be: ``` self.optim.zero_grad() loss.backward() ... ``` Here is the original code: ``` def fit_epoch(self): """Defined in :numref:`sec_linear_scratch`""" self.model.train() for batch in self.train_dataloader: loss = self.model.training_step(self.prepare_batch(batch)) self.optim.zero_grad() with torch.no_grad(): loss.backward() if self.gradient_clip_val > 0: # To be discussed later self.clip_gradients(self.gradient_clip_val, self.model) self.optim.step() self.train_batch_idx += 1 if self.val_dataloader is None: return self.model.eval() for batch in self.val_dataloader: with torch.no_grad(): self.model.validation_step(self.prepare_batch(batch)) self.val_batch_idx += 1 ```
open
2023-12-19T16:21:48Z
2024-10-29T17:35:14Z
https://github.com/d2l-ai/d2l-en/issues/2573
[]
caydenwei
3
uriyyo/fastapi-pagination
fastapi
857
Display total number of rows when using Cursor pagination
The regular pagination function returns the total number of rows available when used, I would like to have that information available while using cursor pagination as well, is that possible currently?
closed
2023-10-04T22:35:14Z
2023-10-30T17:34:20Z
https://github.com/uriyyo/fastapi-pagination/issues/857
[ "enhancement" ]
graham-atom
2
matplotlib/mplfinance
matplotlib
63
Get renko values
Hi, how can I get renko values that are calculated for plot ? And also moving average values associated ?
closed
2020-03-22T21:00:44Z
2020-05-06T01:32:51Z
https://github.com/matplotlib/mplfinance/issues/63
[ "enhancement", "released" ]
haybb
6
ageitgey/face_recognition
machine-learning
1,550
Facial
open
2024-01-14T22:17:30Z
2024-01-14T22:17:30Z
https://github.com/ageitgey/face_recognition/issues/1550
[]
Kenforme300
0
mouredev/Hello-Python
fastapi
33
Aprender python
closed
2024-03-21T22:16:03Z
2024-05-11T08:47:21Z
https://github.com/mouredev/Hello-Python/issues/33
[]
bryanjm2
0
httpie/cli
api
1,608
Install httpie-edgegrid plugins fails
## Checklist - [x] I've searched for similar issues. - [x] I'm using the latest version of HTTPie. --- ## Minimal reproduction code and steps 1. Execute `httpie cli plugins install httpie-edgegrid` ## Current result ``` Installing httpie-edgegrid... Collecting httpie-edgegrid Using cached httpie_edgegrid-2.1.4-py3-none-any.whl.metadata (3.5 kB) Collecting httpie==3.2.2 (from httpie-edgegrid) Using cached httpie-3.2.2-py3-none-any.whl.metadata (7.6 kB) Collecting edgegrid-python==1.3.1 (from httpie-edgegrid) Using cached edgegrid_python-1.3.1-py3-none-any.whl.metadata (754 bytes) Collecting pyOpenSSL==24.1.0 (from httpie-edgegrid) Using cached pyOpenSSL-24.1.0-py3-none-any.whl.metadata (12 kB) Requirement already satisfied: urllib3<3.0.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie-edgegrid) (2.2.3) Requirement already satisfied: requests>=2.3.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from edgegrid-python==1.3.1->httpie-edgegrid) (2.32.3) Requirement already satisfied: requests-toolbelt>=0.9.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from edgegrid-python==1.3.1->httpie-edgegrid) (1.0.0) Collecting ndg-httpsclient (from edgegrid-python==1.3.1->httpie-edgegrid) Using cached ndg_httpsclient-0.5.1-py3-none-any.whl.metadata (6.2 kB) Collecting pyasn1 (from edgegrid-python==1.3.1->httpie-edgegrid) Using cached pyasn1-0.6.1-py3-none-any.whl.metadata (8.4 kB) Requirement already satisfied: pip in /opt/homebrew/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (24.2) Requirement already satisfied: charset-normalizer>=2.0.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (3.4.0) Requirement already satisfied: defusedxml>=0.6.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (0.7.1) Requirement already satisfied: Pygments>=2.5.2 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (2.18.0) Requirement already satisfied: multidict>=4.7.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (6.1.0) Requirement already satisfied: setuptools in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (75.3.0) Requirement already satisfied: rich>=9.10.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (13.9.4) Collecting cryptography<43,>=41.0.5 (from pyOpenSSL==24.1.0->httpie-edgegrid) Using cached cryptography-42.0.8-cp39-abi3-macosx_10_12_universal2.whl.metadata (5.3 kB) Collecting cffi>=1.12 (from cryptography<43,>=41.0.5->pyOpenSSL==24.1.0->httpie-edgegrid) Using cached cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl.metadata (1.5 kB) Requirement already satisfied: idna<4,>=2.5 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from requests>=2.3.0->edgegrid-python==1.3.1->httpie-edgegrid) (3.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/homebrew/opt/certifi/lib/python3.13/site-packages (from requests>=2.3.0->edgegrid-python==1.3.1->httpie-edgegrid) (2024.8.30) Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from requests[socks]>=2.22.0->httpie==3.2.2->httpie-edgegrid) (1.7.1) Requirement already satisfied: markdown-it-py>=2.2.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from rich>=9.10.0->httpie==3.2.2->httpie-edgegrid) (3.0.0) Collecting pycparser (from cffi>=1.12->cryptography<43,>=41.0.5->pyOpenSSL==24.1.0->httpie-edgegrid) Using cached pycparser-2.22-py3-none-any.whl.metadata (943 bytes) Requirement already satisfied: mdurl~=0.1 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from markdown-it-py>=2.2.0->rich>=9.10.0->httpie==3.2.2->httpie-edgegrid) (0.1.2) Using cached httpie_edgegrid-2.1.4-py3-none-any.whl (9.2 kB) Using cached edgegrid_python-1.3.1-py3-none-any.whl (17 kB) Using cached httpie-3.2.2-py3-none-any.whl (127 kB) Using cached pyOpenSSL-24.1.0-py3-none-any.whl (56 kB) Using cached cryptography-42.0.8-cp39-abi3-macosx_10_12_universal2.whl (5.9 MB) Using cached ndg_httpsclient-0.5.1-py3-none-any.whl (34 kB) Using cached pyasn1-0.6.1-py3-none-any.whl (83 kB) Using cached cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl (178 kB) Using cached pycparser-2.22-py3-none-any.whl (117 kB) Installing collected packages: pycparser, pyasn1, cffi, httpie, cryptography, pyOpenSSL, ndg-httpsclient, edgegrid-python, httpie-edgegrid Attempting uninstall: httpie Found existing installation: httpie 3.2.4 Can't install 'httpie-edgegrid' ``` ## Expected result Successful installation --- ## Debug output Please re-run the command with `--debug`, then copy the entire command & output and paste both below: Command: `httpie cli plugins install httpie-edgegrid --debug` Output: ```bash HTTPie 3.2.4 Requests 2.32.3 Pygments 2.18.0 Python 3.13.0 (main, Oct 7 2024, 05:02:14) [Clang 15.0.0 (clang-1500.3.9.4)] /opt/homebrew/Cellar/httpie/3.2.4/libexec/bin/python Darwin 23.5.0 <Environment {'apply_warnings_filter': <function Environment.apply_warnings_filter at 0x1019dcc20>, 'args': Namespace(), 'as_silent': <function Environment.as_silent at 0x1019dcae0>, 'colors': 256, 'config': {'default_options': []}, 'config_dir': PosixPath('/Users/glen.thomas/.config/httpie'), 'devnull': <property object at 0x1019cd260>, 'is_windows': False, 'log_error': <function Environment.log_error at 0x1019dcb80>, 'program_name': 'httpie', 'quiet': 0, 'rich_console': <functools.cached_property object at 0x10196d350>, 'rich_error_console': <functools.cached_property object at 0x1019d03b0>, 'show_displays': True, 'stderr': <_io.TextIOWrapper name='<stderr>' mode='w' encoding='utf-8'>, 'stderr_isatty': True, 'stdin': <_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>, 'stdin_encoding': 'utf-8', 'stdin_isatty': True, 'stdout': <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>, 'stdout_encoding': 'utf-8', 'stdout_isatty': True}> <PluginManager {'adapters': [], 'auth': [<class 'httpie.plugins.builtin.BasicAuthPlugin'>, <class 'httpie.plugins.builtin.DigestAuthPlugin'>, <class 'httpie.plugins.builtin.BearerAuthPlugin'>], 'converters': [], 'formatters': [<class 'httpie.output.formatters.headers.HeadersFormatter'>, <class 'httpie.output.formatters.json.JSONFormatter'>, <class 'httpie.output.formatters.xml.XMLFormatter'>, <class 'httpie.output.formatters.colors.ColorFormatter'>]}> Installing httpie-edgegrid... Collecting httpie-edgegrid Using cached httpie_edgegrid-2.1.4-py3-none-any.whl.metadata (3.5 kB) Collecting httpie==3.2.2 (from httpie-edgegrid) Using cached httpie-3.2.2-py3-none-any.whl.metadata (7.6 kB) Collecting edgegrid-python==1.3.1 (from httpie-edgegrid) Using cached edgegrid_python-1.3.1-py3-none-any.whl.metadata (754 bytes) Collecting pyOpenSSL==24.1.0 (from httpie-edgegrid) Using cached pyOpenSSL-24.1.0-py3-none-any.whl.metadata (12 kB) Requirement already satisfied: urllib3<3.0.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie-edgegrid) (2.2.3) Requirement already satisfied: requests>=2.3.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from edgegrid-python==1.3.1->httpie-edgegrid) (2.32.3) Requirement already satisfied: requests-toolbelt>=0.9.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from edgegrid-python==1.3.1->httpie-edgegrid) (1.0.0) Collecting ndg-httpsclient (from edgegrid-python==1.3.1->httpie-edgegrid) Using cached ndg_httpsclient-0.5.1-py3-none-any.whl.metadata (6.2 kB) Collecting pyasn1 (from edgegrid-python==1.3.1->httpie-edgegrid) Using cached pyasn1-0.6.1-py3-none-any.whl.metadata (8.4 kB) Requirement already satisfied: pip in /opt/homebrew/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (24.2) Requirement already satisfied: charset-normalizer>=2.0.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (3.4.0) Requirement already satisfied: defusedxml>=0.6.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (0.7.1) Requirement already satisfied: Pygments>=2.5.2 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (2.18.0) Requirement already satisfied: multidict>=4.7.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (6.1.0) Requirement already satisfied: setuptools in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (75.3.0) Requirement already satisfied: rich>=9.10.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from httpie==3.2.2->httpie-edgegrid) (13.9.4) Collecting cryptography<43,>=41.0.5 (from pyOpenSSL==24.1.0->httpie-edgegrid) Using cached cryptography-42.0.8-cp39-abi3-macosx_10_12_universal2.whl.metadata (5.3 kB) Collecting cffi>=1.12 (from cryptography<43,>=41.0.5->pyOpenSSL==24.1.0->httpie-edgegrid) Using cached cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl.metadata (1.5 kB) Requirement already satisfied: idna<4,>=2.5 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from requests>=2.3.0->edgegrid-python==1.3.1->httpie-edgegrid) (3.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/homebrew/opt/certifi/lib/python3.13/site-packages (from requests>=2.3.0->edgegrid-python==1.3.1->httpie-edgegrid) (2024.8.30) Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from requests[socks]>=2.22.0->httpie==3.2.2->httpie-edgegrid) (1.7.1) Requirement already satisfied: markdown-it-py>=2.2.0 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from rich>=9.10.0->httpie==3.2.2->httpie-edgegrid) (3.0.0) Collecting pycparser (from cffi>=1.12->cryptography<43,>=41.0.5->pyOpenSSL==24.1.0->httpie-edgegrid) Using cached pycparser-2.22-py3-none-any.whl.metadata (943 bytes) Requirement already satisfied: mdurl~=0.1 in /opt/homebrew/Cellar/httpie/3.2.4/libexec/lib/python3.13/site-packages (from markdown-it-py>=2.2.0->rich>=9.10.0->httpie==3.2.2->httpie-edgegrid) (0.1.2) Using cached httpie_edgegrid-2.1.4-py3-none-any.whl (9.2 kB) Using cached edgegrid_python-1.3.1-py3-none-any.whl (17 kB) Using cached httpie-3.2.2-py3-none-any.whl (127 kB) Using cached pyOpenSSL-24.1.0-py3-none-any.whl (56 kB) Using cached cryptography-42.0.8-cp39-abi3-macosx_10_12_universal2.whl (5.9 MB) Using cached ndg_httpsclient-0.5.1-py3-none-any.whl (34 kB) Using cached pyasn1-0.6.1-py3-none-any.whl (83 kB) Using cached cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl (178 kB) Using cached pycparser-2.22-py3-none-any.whl (117 kB) Installing collected packages: pycparser, pyasn1, cffi, httpie, cryptography, pyOpenSSL, ndg-httpsclient, edgegrid-python, httpie-edgegrid Attempting uninstall: httpie Found existing installation: httpie 3.2.4 Can't install 'httpie-edgegrid' ``` ## Additional information, screenshots, or code examples …
closed
2024-11-04T17:36:34Z
2024-11-04T20:42:15Z
https://github.com/httpie/cli/issues/1608
[ "bug", "new" ]
glenthomas
2
serengil/deepface
deep-learning
666
Problem with Deepface.stream
After I run this line: DeepFace.stream(db_path = "./faces", enable_face_analysis=False) It's showing AttributeError: module 'deepface.commons.functions' has no attribute 'preprocess_face'. How do I solve this issue?
closed
2023-02-09T05:22:54Z
2023-02-09T13:21:15Z
https://github.com/serengil/deepface/issues/666
[ "duplicate" ]
LaThanhTrong
1
ageitgey/face_recognition
python
767
problems with using the library with celery
Hi, I have flask app with following extensions used: ``` Python 3.7.2 Flask 1.0.2 Celery 4.3.0rc2 Face-recognition 1.2.3 ``` And when I'm running this: `face_recognition.face_locations(image, model='cnn)` my worker fails with this output: ``` [2019-03-06 19:51:15,454: ERROR/MainProcess] Process 'ForkPoolWorker-8' pid:93763 exited with 'signal 11 (SIGSEGV)' [2019-03-06 19:51:15,472: ERROR/MainProcess] Task handler raised error: WorkerLostError('Worker exited prematurely: signal 11 (SIGSEGV).') ``` I know, that celery workers are not fork safe but still hope that there's a solution for my case Any help appreciated
open
2019-03-06T17:13:36Z
2019-10-28T09:41:39Z
https://github.com/ageitgey/face_recognition/issues/767
[]
chickenfresh
2
jmcnamara/XlsxWriter
pandas
152
list format for sheet range entry for error bars not supported
Hello, Usually, excel ranges can be specified in XlsxWriter by giving a list [sheetname, startRow, startCol, endRow, endCol]. However, when trying to enter a range in that format for the 'minus_values' for 'y_error_bars', it appears to be incompatible: the output excel file has weird error bars not corresponding to the correct values. If I change the code so that I specify the sheet name using the regular excel format of '=SheetName!', then everything works perfectly. I believe I am using the list method of entering ranges correctly because in the lines specifying the category names and values it works fine. Below is my code, there are two alternate versions for setting the 'minus_values'. The first is currently commented, but I believe should be supported. The second works correctly. Awesome Python package, hugely helpful. Thanks, Eli ``` workbook = xlsxwriter.Workbook('testBook.xlsx') spikeInBoxWhisker = workbook.add_chart({'type': 'column', 'subtype': 'stacked'}) currentChart = spikeInBoxWhisker trim5PrimeWorksheetName = 'Trim5Prime_Summary' trim5PrimeWorksheet = workbook.add_worksheet(trim5PrimeWorksheetName) thisWorksheet = trim5PrimeWorksheet thisWorksheet.write_column('A1', ['a', 'b', 'c', 'd']) thisWorksheet.write_column('B1', [1, 2, 1.5, 3]) thisWorksheet.write_column('C1', [.3, .35, .25, .15]) currentChart.add_series({ 'name': 'First Quartile', 'categories': [trim5PrimeWorksheetName, 0, 0, 3, 0], 'values': [trim5PrimeWorksheetName, 0, 1, 3, 1], 'fill': {'none': True}, 'border': {'none': True}, 'y_error_bars': { 'type': 'custom', 'direction': 'minus', #'minus_values': [trim5PrimeWorksheetName, 0, 2, 3, 2] 'minus_values': '=Trim5Prime_Summary!' + xl_range(0, 2, 3, 2) } }) thisWorksheet.insert_chart(0, 6, spikeInBoxWhisker) workbook.close() ```
closed
2014-08-27T17:39:08Z
2014-11-01T17:11:00Z
https://github.com/jmcnamara/XlsxWriter/issues/152
[ "question", "ready to close" ]
ejfine
4
serengil/deepface
machine-learning
1,012
Can't run deepface api on ubuntu
I'm trying to deploy this on AWS ubuntu instance, i cloned the repository, installed deepface through pip install deepface and flask but it can't run api.py, i tried this localy on macos M1 it works fine. Error: Could not find cuda drivers on your machine, GPU will not be used. File "/home/ubuntu/deepface/deepface/api/src/api.py", line 2, in <module> import app File "/home/ubuntu/deepface/deepface/api/src/app.py", line 3, in <module> from deepface.api.src.modules.core.routes import blueprint ImportError: libGL.so.1: cannot open shared object file: No such file or directory
closed
2024-02-07T11:53:34Z
2024-02-07T12:36:16Z
https://github.com/serengil/deepface/issues/1012
[ "dependencies" ]
sana2024
8
roboflow/supervision
deep-learning
1,073
The line is not being displayed
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Question thats my code: ` import cv2 from ultralytics import YOLO import supervision as sv import sys def main(VIDEO_SOURCE): # Points to draw trigger lines # Because at the current there is no implementation from supervision # to switch counter for IN/OUT result, and the LineZoneAnnotator results # depends on results from LineZone then we have to swap START # and END points to swap IN/OUT result # Road from EAST END_E = sv.Point(1750, 800) START_E = sv.Point(1280, 520) # Road from WEST START_W = sv.Point(500, 1000) END_W = sv.Point(200, 580) # Road from NORTH END_N = sv.Point(1280, 520) START_N = sv.Point(200, 580) # Road from SOUTH START_S = sv.Point(1750, 800) END_S = sv.Point(500, 1000) # car, motocycle, bus, truck CLASS_ID = [0,2, 3, 5, 7] # Load Model model = YOLO("yolov8x.pt") # Get video size to export to video file video_info = sv.VideoInfo.from_video_path(VIDEO_SOURCE) video_size = (video_info.width, video_info.height) out = cv2.VideoWriter("output.avi", cv2.VideoWriter_fourcc(*'MJPG'), 20, (video_size)) # Init trigger lines line_zone_E = sv.LineZone(start=START_E, end=END_E) line_zone_W = sv.LineZone(start=START_W, end=END_W) line_zone_N = sv.LineZone(start=START_N, end=END_N) line_zone_S = sv.LineZone(start=START_S, end=END_S) # Init annotator to draw trigger lines line_zone_annotator = sv.LineZoneAnnotator(thickness=5, color=sv.Color.from_hex(color_hex="#00ff00"), text_thickness=2, text_scale=2) # Init box to draw objects box_annotator = sv.BoxAnnotator() for result in model.track(VIDEO_SOURCE, show=True, stream=True, classes=CLASS_ID): # Get frame frame = result.orig_img detections = sv.Detections.from_ultralytics(result) # Set box ID so that we can count object when it cross trigger lines if result.boxes.id is not None: detections.tracker_id = result.boxes.id.cpu().numpy().astype(int) # Draw box around objects frame = box_annotator.annotate(scene=frame, detections=detections) # Set triggers line_zone_E.trigger(detections=detections) line_zone_W.trigger(detections=detections) line_zone_N.trigger(detections=detections) line_zone_S.trigger(detections=detections) # Draw trigger lines line_zone_annotator.annotate(frame=frame, line_counter=line_zone_E) line_zone_annotator.annotate(frame=frame, line_counter=line_zone_W) line_zone_annotator.annotate(frame=frame, line_counter=line_zone_N) line_zone_annotator.annotate(frame=frame, line_counter=line_zone_S) # Write to file out.write(frame) # Show results as processing cv2.imshow("result", frame) if(cv2.waitKey(30) == 27): break if len(sys.argv) == 2: main(sys.argv[1])` I´m using supervision==0.17.0 and ultralytics==8.1.34, i´m using this "old code" because i need the line counter solution without depending of a center id or someting like this.... i need the counter throught the bounding box The lines of the counting are not being displayed in the frame... ### Additional _No response_
closed
2024-03-29T07:38:19Z
2024-03-29T12:17:42Z
https://github.com/roboflow/supervision/issues/1073
[ "question" ]
Rasantis
1
NullArray/AutoSploit
automation
864
Divided by zero exception134
Error: Attempted to divide by zero.134
closed
2019-04-19T16:01:40Z
2019-04-19T16:37:27Z
https://github.com/NullArray/AutoSploit/issues/864
[]
AutosploitReporter
0
widgetti/solara
jupyter
704
Documentation request: elaborate on proper use of `Reactive.subscribe()`
Use case: I want to add a listener to a reactive variable's changes, but unlike `use_effect`, I do _not_ want the listener to fire on the initial value -- only on changes. I can do this: ```python _unused = solara.use_reactive(variable, on_change=listener) ``` but I was wondering if I can simply leverage `subscribe()` directly. The mechanics around `forward_on_change` and `update` are confusing to me, so it would be helpful to understand how to leverage subscription hooks.
closed
2024-07-03T18:21:20Z
2024-07-13T22:25:50Z
https://github.com/widgetti/solara/issues/704
[]
ntjess
4
pytorch/pytorch
python
149,550
Remove pre-cxx11 from the documentation and tutorials
### 🐛 Describe the bug Please see: https://github.com/pytorch/pytorch/issues/123649 and https://dev-discuss.pytorch.org/t/pytorch-linux-wheels-switching-to-new-wheel-build-platform-manylinux-2-28-on-november-12-2024/2581/2 Pytorch is using D_GLIBCXX_USE_CXX11_ABI=1 and Manylinux 2.28 Hence we should remove the usage of PRE_CXX11_ABI from the documents Example: https://pytorch.org/cppdocs/installing.html#system-requirements ### Versions 2.7.0 cc @svekars @sekyondaMeta @AlannaBurke
open
2025-03-19T20:14:31Z
2025-03-19T20:15:07Z
https://github.com/pytorch/pytorch/issues/149550
[ "module: docs", "triaged", "topic: docs" ]
atalman
0
tqdm/tqdm
pandas
683
tqdm.write not working as expected
Both on Debian and Ubuntu, tqdm.write() is not working as expected. Messages are written but the progress bar behaves as if I would be using print. This used to work correctly with a previous version of tqdm (4.19.4) but after installing a new server and using version 4.31.1 it now behaves like this: -- sir.uylp -> no data for requested time window -- sir.uyni -> no data for requested time window -- sir.uypt -> no data for requested time window -- sir.uyri -> no data for requested time window 99%|██████████████████████████████████████▊| 1120/1127 [01:16<00:00, 20.45it/s] -- sir.uyrv -> no data for requested time window -- sir.uysj -> no data for requested time window -- sir.uyta -> no data for requested time window -- sir.valp -> no data for requested time window 100%|██████████████████████████████████████▉| 1124/1127 [01:16<00:00, 22.86it/s] -- sir.varg -> no data for requested time window -- sir.vesl -> adding... -- sir.vico -> no data for requested time window 100%|███████████████████████████████████████| 1127/1127 [01:18<00:00, 14.41it/s] Note that the text starts at the end of the progress bar. I've searched the issues page but could not find anything similar. Not sure if it is relevant, but I'm running the program over ssh. Again, this work fine with the previous version I had. The code is very simple: `for Stn in tqdm(sorted(stations), ncols=80): NetworkCode = Stn['NetworkCode'] StationCode = Stn['StationCode'] rs = cnn.query( 'SELECT * FROM rinex_proc WHERE "NetworkCode" = \'%s\' AND "StationCode" = \'%s\' AND ' '"ObservationSTime" >= \'%s\' AND "ObservationETime" <= \'%s\'' % (NetworkCode, StationCode, (dates[0] - 1).first_epoch(), (dates[1] + 1).last_epoch())) if rs.ntuples() > 0: tqdm.write(' -- %s.%s -> adding...' % (NetworkCode, StationCode)) try: stn_obj.append(Station(cnn, NetworkCode, StationCode, dates)) except pyETMException: tqdm.write(' %s.%s -> station exists, but there was a problem initializing ETM.' % (NetworkCode, StationCode)) else: tqdm.write(' -- %s.%s -> no data for requested time window' % (NetworkCode, StationCode))`
open
2019-02-27T19:07:41Z
2024-06-19T17:15:57Z
https://github.com/tqdm/tqdm/issues/683
[ "question/docs ‽", "to-fix ⌛", "p2-bug-warning ⚠" ]
demiangomez
3
holoviz/panel
matplotlib
6,996
ValueError when using inclusive_bounds
I'm working on adding support for Pydantic dataclasses to Panel when I stumbled upon this bug ```python import param import panel as pn pn.extension() class SomeModel(param.Parameterized): int_field = param.Integer(default=1, bounds=(0,10), inclusive_bounds=(False, False)) float_field = param.Integer(default=1, bounds=(0, 10), inclusive_bounds=(False, False)) model = SomeModel() pn.Param(model).servable() ``` If you drag either of the the slider to the end you will get one of ```bash ValueError: Integer parameter 'SomeModel.float_field' must be less than 10, not 10. ValueError: Integer parameter 'SomeModel.float_field' must be less than 10, not 10. ```
open
2024-07-17T05:18:23Z
2025-01-20T19:18:52Z
https://github.com/holoviz/panel/issues/6996
[]
MarcSkovMadsen
1
deepspeedai/DeepSpeed
deep-learning
6,598
ZeRO Stage 2 with Offload: Unexpectedly large optimizer state files
I was running Stage 2 training of Llama 3.1 8B model on one 80GB GPU. **Setup Info** * OS: Ubuntu 22.04 * DeepSpeed: 0.15.1 (installed with `DS_BUILD_CPU_ADAM=1`) * PyTorch: 2.4.0 * Transformers: 4.44.2 * CUDA: 12.1 * Model: Llama 3.1 8B Instruct * DeepSpeed config: ZeRO Stage 2 with optimizer offloaded to CPU, bf16 * GPU: Single 80GB H100 GPU The `global_step[xxx]` directory from checkpoints contains very large optimizer state files (> 105 GB): ``` 90G bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt 15G mp_rank_00_model_states.pt ``` This is significantly larger than the actual model parameters, which take up about 15GB: ``` 4.7G pytorch_model-00001-of-00004.bin 4.7G pytorch_model-00002-of-00004.bin 4.6G pytorch_model-00003-of-00004.bin 1.1G pytorch_model-00004-of-00004.bin ``` I'm surprised by the large size of the optimizer state files, even with Stage 2 and offload. Is this expected behavior, or is there a way to reduce the storage requirements? --- **DeepSpeed configuration** ```python deepspeed_config = { "fp16": { "enabled": False, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": True, }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": 0.01, } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu", "pin_memory": True, }, "allgather_partitions": True, "allgather_bucket_size": 5e8, "overlap_comm": True, "reduce_scatter": True, "reduce_bucket_size": 5e8, "contiguous_gradients": True }, "steps_per_print": 100, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "activation_checkpointing": { "partition_activations": True, "contiguous_memory_optimization": True }, "wall_clock_breakdown": False } ``` **TrainingArguments** ```python train_args=transformers.TrainingArguments( deepspeed=deepspeed_config, per_device_train_batch_size=micro_batch_size, per_device_eval_batch_size=micro_batch_size, num_train_epochs=_num_epochs, learning_rate=learning_rate, fp16=deepspeed_config['fp16']['enabled'], bf16=deepspeed_config['bf16']['enabled'], save_safetensors=False, logging_steps=50, logging_dir=os.path.join(stage_output_dir, 'logs'), # optim="adamw_torch", weight_decay=deepspeed_config['optimizer']['params']['weight_decay'], evaluation_strategy=eval_strategy if val_set_size > 0 else "no", save_strategy=save_strategy, eval_steps=eval_steps if val_set_size > 0 else None, save_steps=save_steps, output_dir=stage_output_dir, save_total_limit=1, load_best_model_at_end=True if val_set_size > 0 else False, group_by_length=group_by_length, # save_only_model=True, ) ```
closed
2024-10-03T04:40:15Z
2024-10-16T09:09:39Z
https://github.com/deepspeedai/DeepSpeed/issues/6598
[]
joycey97
4
LibreTranslate/LibreTranslate
api
602
Docker Swarm "OSError: [Errno 97] Address family not supported by protocol"
Hello Trying to run docker image of libretranslate in Docker Swarm environment The Linux OS (Ubuntu 20.04.02 LTS) have **ipv6 disabled** The docker version is : ``` Client: Docker Engine - Community Version: 23.0.1 API version: 1.42 Go version: go1.19.5 Git commit: a5ee5b1 Built: Thu Feb 9 19:46:56 2023 OS/Arch: linux/amd64 Context: default Server: Docker Engine - Community Engine: Version: 23.0.1 API version: 1.42 (minimum version 1.12) Go version: go1.19.5 Git commit: bc3805a Built: Thu Feb 9 19:46:56 2023 OS/Arch: linux/amd64 Experimental: false containerd: Version: 1.6.16 GitCommit: 31aa4358a36870b21a992d3ad2bef29e1d693bec runc: Version: 1.1.4 GitCommit: v1.1.4-0-g5fd4c4d docker-init: Version: 0.19.0 GitCommit: de40ad0 ``` When running libreTranslate image from docker hub we get this error : ``` Updating language models Found 88 models Keep 2 models Loaded support for 2 languages (2 models total)! Running on http://*:5000 Traceback (most recent call last): File "/app/./venv/bin/libretranslate", line 8, in <module> sys.exit(main()) File "/app/venv/lib/python3.10/site-packages/libretranslate/main.py", line 230, in main serve( File "/app/venv/lib/python3.10/site-packages/waitress/__init__.py", line 13, in serve server = _server(app, **kw) File "/app/venv/lib/python3.10/site-packages/waitress/server.py", line 78, in create_server last_serv = TcpWSGIServer( File "/app/venv/lib/python3.10/site-packages/waitress/server.py", line 237, in __init__ self.create_socket(self.family, self.socktype) File "/app/venv/lib/python3.10/site-packages/waitress/wasyncore.py", line 352, in create_socket sock = socket.socket(family, type) File "/usr/local/lib/python3.10/socket.py", line 232, in __init__ _socket.socket.__init__(self, family, type, proto, fileno) OSError: [Errno 97] Address family not supported by protocol ``` We tried different configuration in docker compose file, with same result in any case - Tried -LT_HOST=127.0.0.1 to except to force ipv4 'only' bind of the container - Tried also (simultaneously or not with above setting ) ports : "127.0.0.1:5000:5000" (docker swarm tell 127.0.0.1 ignored in ports value with this ports parameter) Here is docker-compose.yml file used (base file, without the above settings) ``` version: '3.7' services: libretranslate-nginx: image: libretranslate/libretranslate:latest # build: # context: . # dockerfile: docker/Dockerfile ports: - "5000:5000" ## Uncomment this for logging in docker compose logs # tty: true healthcheck: test: ['CMD-SHELL', './venv/bin/python scripts/healthcheck.py'] ## Uncomment above command and define your args if necessary # command: --ssl --ga-id MY-GA-ID --req-limit 100 --char-limit 500 ## Uncomment this section and the libretranslate_api_keys volume if you want to backup your API keys environment: # - LT_API_KEYS=true # - LT_API_KEYS_DB_PATH=/app/db/api_keys.db # Same result as `db/api_keys.db` or `./db/api_keys.db` ## Uncomment these vars and libretranslate_models volume to optimize loading time. - LT_UPDATE_MODELS=true - LT_LOAD_ONLY=en,fr volumes: # - libretranslate_api_keys:/app/db # Keep the models in a docker volume, to avoid re-downloading on startup - libretranslate_models:/home/libretranslate/.local:rw networks: - traefik-public - libretranslate-network # depends_on: # - mastack-phpfpm deploy: placement: constraints: - node.labels.production.worker == true labels: (here comes only traefik config, removed) volumes: # libretranslate_api_keys: libretranslate_models: networks: libretranslate-network: driver: overlay attachable: true traefik-public: external: true ``` We also tried to run the container as simple as possible in no swarm context (no docker stack deploy ... ) with same result : docker run -ti --rm -p 5000:5000 libretranslate/libretranslate --load-only en,fr Seems the container try to bind to ipv6 even ipv6 not available on the system We have others docker stacks et containers (elasticsearch, nginx, php-fpm, ...) running perfect on this system in docker swarm mode, with no specific configuration related to ipv6 Can you help ? bug in container initialisation when ipv6 is disabled ? Francis Nalta Systems
open
2024-03-20T13:18:21Z
2025-01-07T20:31:09Z
https://github.com/LibreTranslate/LibreTranslate/issues/602
[ "enhancement" ]
Francis-Nalta
9