repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
DistrictDataLabs/yellowbrick
matplotlib
979
Visualize the results without fitting the model
Let's say I have to visualize a confusion matrix. I can use yellowbrick and use the LogisticRegression and visualize like this: https://www.scikit-yb.org/en/latest/api/classifier/confusion_matrix.html ``` from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split as tts from sklearn.linear_model import LogisticRegression from yellowbrick.classifier import ConfusionMatrix iris = load_iris() X = iris.data y = iris.target classes = iris.target_names X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2) model = LogisticRegression(multi_class="auto", solver="liblinear") iris_cm = ConfusionMatrix( model, classes=classes, label_encoder={0: 'setosa', 1: 'versicolor', 2: 'virginica'} ) iris_cm.fit(X_train, y_train) iris_cm.score(X_test, y_test) iris_cm.show() ``` But, most of the times I use scikit-learn and I already have confusion matrix: For example: ``` cm = np.array([[56750, 114], [ 95, 3]]) ``` Can we now simply use this result in YELLOWBRICK, give label names visualize it?
closed
2019-10-12T18:26:54Z
2019-10-12T18:48:32Z
https://github.com/DistrictDataLabs/yellowbrick/issues/979
[ "type: question" ]
bhishanpdl
1
jmcnamara/XlsxWriter
pandas
170
Issue with DataLabels Position in Column Chart
I'm trying to position the data labels at the top of each column in a column chart, however doing so creates an Excel file with invalid XML that Excel won't process. I'm using XlsxWriter version 0.5.7 with Python version 2.7.6. Here's a sample that will create such a file: ``` python from xlsxwriter import Workbook import random book = Workbook('C:\\Temp\\ex.xlsx') sheet = book.add_worksheet('Will Error') data_sheet = book.add_worksheet('data') year_dict = {} year_list = [2013, 2014] year = [] month = [] defect_rate = [] # Creates three columns of random data for each month in two years for y in year_list: year_dict[y] = 0 for m in range(1, 13): year.append(y) month.append(m) defect_rate.append(random.randint(0, 100)) year_dict[y] += 1 data_sheet.write_column("A1", year) data_sheet.write_column("B1", month) data_sheet.write_column("C1", defect_rate) chart = book.add_chart({'type': 'column'}) chart.add_series({ 'values': ['data', 0, 2, year_dict[2013] - 1, 2], 'categories': ['data', 0, 1, year_dict[2013] - 1, 1], 'name': '2013', 'data_labels': {'value': True, 'position': 'top'} }) chart.add_series({ 'values': ['data', year_dict[2013], 2, year_dict[2013] + year_dict[2014] - 1, 2], 'categories': ['data', year_dict[2013], 1, year_dict[2013] + year_dict[2014] - 1, 1], 'name': '2014', 'data_labels': {'value': True, 'position': 'top'} }) chart.set_x_axis({'name': 'Month', 'name_font': {'size': 14, 'bold': True}}) chart.set_size({'width': 800, 'height': 600}) chart.set_title({'name': "Defect Rate By Month"}) sheet.insert_chart('A1', chart) book.close() ```
closed
2014-10-15T18:28:30Z
2014-10-29T02:21:50Z
https://github.com/jmcnamara/XlsxWriter/issues/170
[ "bug", "documentation", "ready to close" ]
MitsuharuEishi
3
blb-ventures/strawberry-django-plus
graphql
84
I don't see why we need to install a new dependency django-choices-field
https://github.com/blb-ventures/strawberry-django-plus/blob/9f06e1169f6ce696a9439bec52abd546ef380b29/strawberry_django_plus/types.py#L208 Hey there, I'm currently trying the lib here, I'm enjoying it so far, hopefully it gets merged with the main lib soon. Regarding the above, can't you just do something like the following ``` isinstance(field, CharField) and Model._meta.get_field('<field_name>').choices isinstance(field, IntegerField) and Model._meta.get_field('<field_name>').choices ``` Shouldn't that be enough? Assuming you're able to get access to to the model there.
open
2022-07-17T02:00:16Z
2022-07-19T22:18:36Z
https://github.com/blb-ventures/strawberry-django-plus/issues/84
[ "question" ]
mhdismail
5
marshmallow-code/apispec
rest-api
176
Can't use apispec tornado plugin icw complex paths
I'm trying to use apispec icw the 'apispec.ext.tornado' and 'apispec.ext.marshmallow' plugins. Only i'm getting the following error: ``` Traceback (most recent call last): File "D:\JetBrains\PyCharm 2017.2.4\helpers\pydev\pydevd.py", line 1599, in <module> globals = debugger.run(setup['file'], None, None, is_module) File "D:\JetBrains\PyCharm 2017.2.4\helpers\pydev\pydevd.py", line 1026, in run pydev_imports.execfile(file, globals, locals) # execute the script File "D:\myproj/start.py", line 7, in <module> main() File "D:\myproj\medusa\__main__.py", line 2104, in main application.start(sys.argv[1:]) File "D:\myproj\medusa\__main__.py", line 347, in start self.web_server = AppWebServer(self.web_options) File "D:\myproj\medusa\server\core.py", line 230, in __init__ spec.add_path(urlspec=urlspec) File "D:\Python27\lib\site-packages\apispec\core.py", line 211, in add_path raise APISpecError('Path template is not specified') apispec.exceptions.APISpecError: Path template is not specified ``` It seems to be happening because matcher._path is None. https://github.com/marshmallow-code/apispec/blob/dev/apispec/ext/tornado.py#L95 `urlspec.matcher._path` returns None, because of this: https://github.com/tornadoweb/tornado/blob/master/tornado/routing.py#L571 And my route looks like this: `'/api/v2/series/(?P<series_slug>\\w+)/episode(?:(?:(?:(?:/(?P<episode_slug>[\\w-]+))|/?)(?:(?:/(?P<path_param>\\w+))|/?))|/?)/?$'` So because the tornado plugin uses the matcher._path, it's can't translate to an OpenApi compliant path. Is there anything I can do about it?
closed
2017-12-11T19:41:43Z
2018-11-03T14:33:19Z
https://github.com/marshmallow-code/apispec/issues/176
[]
p0psicles
2
ray-project/ray
python
51,642
[core] Unify `CoreWorker::Exit` and `CoreWorker::Shutdown`
### Description See https://github.com/ray-project/ray/pull/51582#discussion_r2010500080 for more details. ### Use case _No response_
open
2025-03-24T16:52:35Z
2025-03-24T16:52:44Z
https://github.com/ray-project/ray/issues/51642
[ "enhancement", "core" ]
kevin85421
0
FlareSolverr/FlareSolverr
api
1,223
[yggtorrent] (testing) Exception (yggtorrent): FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds.: FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds.
### Have you checked our README? - [X] I have checked the README ### Have you followed our Troubleshooting? - [X] I have followed your Troubleshooting ### Is there already an issue for your problem? - [X] I have checked older issues, open and closed ### Have you checked the discussions? - [X] I have read the Discussions ### Environment ```markdown - FlareSolverr version:3.3.19 - Last working FlareSolverr version:3.3.19 - Operating system:debian - Are you using Docker: no - FlareSolverr User-Agent (see log traces or / endpoint): - Are you using a VPN: no - Are you using a Proxy: no - Are you using Captcha Solver: no - If using captcha solver, which one: - URL to test this issue: ``` ### Description "Usual" issue with cloudflare breaking up access to yggtorrent rather regularly. Jackett updated to v0.22.188 ### Logged Error Messages ```text Jackett.Common.IndexerException: Exception (yggtorrent): FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds. [v0.22.188.0] Jackett.Common.IndexerException: Exception (yggtorrent): FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds. ---> FlareSolverrSharp.Exceptions.FlareSolverrException: FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds. at FlareSolverrSharp.Solvers.FlareSolverr.<>c__DisplayClass12_0.<<SendFlareSolverrRequest>b__0>d.MoveNext() --- End of stack trace from previous location --- at FlareSolverrSharp.Utilities.SemaphoreLocker.LockAsync[T](Func`1 worker) at FlareSolverrSharp.Solvers.FlareSolverr.SendFlareSolverrRequest(HttpContent flareSolverrRequest) at FlareSolverrSharp.Solvers.FlareSolverr.Solve(HttpRequestMessage request, String sessionId) at FlareSolverrSharp.ClearanceHandler.SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) at System.Net.Http.HttpClient.<SendAsync>g__Core|83_0(HttpRequestMessage request, HttpCompletionOption completionOption, CancellationTokenSource cts, Boolean disposeCts, CancellationTokenSource pendingRequestsCts, CancellationToken originalCancellationToken) at Jackett.Common.Utils.Clients.HttpWebClient2.Run(WebRequest webRequest) in ./Jackett.Common/Utils/Clients/HttpWebClient2.cs:line 180 at Jackett.Common.Utils.Clients.WebClient.GetResultAsync(WebRequest request) in ./Jackett.Common/Utils/Clients/WebClient.cs:line 186 at Jackett.Common.Indexers.BaseWebIndexer.RequestWithCookiesAsync(String url, String cookieOverride, RequestType method, String referer, IEnumerable`1 data, Dictionary`2 headers, String rawbody, Nullable`1 emulateBrowser) in ./Jackett.Common/Indexers/BaseIndexer.cs:line 598 at Jackett.Common.Indexers.CardigannIndexer.PerformQuery(TorznabQuery query) in ./Jackett.Common/Indexers/CardigannIndexer.cs:line 1532 at Jackett.Common.Indexers.BaseIndexer.ResultsForQuery(TorznabQuery query, Boolean isMetaIndexer) in ./Jackett.Common/Indexers/BaseIndexer.cs:line 366 --- End of inner exception stack trace --- at Jackett.Common.Indexers.BaseIndexer.ResultsForQuery(TorznabQuery query, Boolean isMetaIndexer) in ./Jackett.Common/Indexers/BaseIndexer.cs:line 387 at Jackett.Common.Indexers.BaseWebIndexer.ResultsForQuery(TorznabQuery query, Boolean isMetaIndexer) in ./Jackett.Common/Indexers/BaseIndexer.cs:line 778 at Jackett.Common.Services.IndexerManagerService.TestIndexer(String name) in ./Jackett.Common/Services/IndexerManagerService.cs:line 323 at Jackett.Server.Controllers.IndexerApiController.Test() in ./Jackett.Server/Controllers/IndexerApiController.cs:line 132 at Microsoft.AspNetCore.Mvc.Infrastructure.ActionMethodExecutor.TaskOfIActionResultExecutor.Execute(ActionContext actionContext, IActionResultTypeMapper mapper, ObjectMethodExecutor executor, Object controller, Object[] arguments) at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeActionMethodAsync>g__Awaited|12_0(ControllerActionInvoker invoker, ValueTask`1 actionResultValueTask) at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeNextActionFilterAsync>g__Awaited|10_0(ControllerActionInvoker invoker, Task lastTask, State next, Scope scope, Object state, Boolean isCompleted) at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.Rethrow(ActionExecutedContextSealed context) at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.Next(State& next, Scope& scope, Object& state, Boolean& isCompleted) at Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker.<InvokeInnerFilterAsync>g__Awaited|13_0(ControllerActionInvoker invoker, Task lastTask, State next, Scope scope, Object state, Boolean isCompleted) at Microsoft.AspNetCore.Mvc.Infrastructure.ResourceInvoker.<InvokeFilterPipelineAsync>g__Awaited|20_0(ResourceInvoker invoker, Task lastTask, State next, Scope scope, Object state, Boolean isCompleted) at Microsoft.AspNetCore.Mvc.Infrastructure.ResourceInvoker.<InvokeAsync>g__Awaited|17_0(ResourceInvoker invoker, Task task, IDisposable scope) at Microsoft.AspNetCore.Mvc.Infrastructure.ResourceInvoker.<InvokeAsync>g__Awaited|17_0(ResourceInvoker invoker, Task task, IDisposable scope) at Microsoft.AspNetCore.Authentication.AuthenticationMiddleware.Invoke(HttpContext context) at Microsoft.AspNetCore.Builder.Extensions.UsePathBaseMiddleware.InvokeCore(HttpContext context, PathString matchedPath, PathString remainingPath) at Jackett.Server.Middleware.CustomExceptionHandler.Invoke(HttpContext httpContext) in ./Jackett.Server/Middleware/CustomExceptionHandler.cs:line 26 ``` ### Screenshots _No response_
closed
2024-06-21T09:21:23Z
2024-06-21T09:26:08Z
https://github.com/FlareSolverr/FlareSolverr/issues/1223
[ "duplicate" ]
eejag
1
python-gino/gino
sqlalchemy
351
Release GINO 0.7.6 and 0.8
I'm planning to release GINO 0.8 (1.0-rc) from current master, and close `v0.6.x` branch and support. @wwwjfy anything to add please?
closed
2018-09-29T03:28:29Z
2018-10-17T07:41:56Z
https://github.com/python-gino/gino/issues/351
[ "task" ]
fantix
11
coqui-ai/TTS
deep-learning
3,840
[Bug] can not load the checkpoints when do fine-tune with XTTS_v2
### Describe the bug Hello, community and @eginhard, For the XTTS fine-tuning, I manually downloaded `dvae.pth, mel_stats.pth, model.pth` and `vocab.json` in `train_gpt_xtts.py`. Further, below is the command line for fine-tuning XTTS_v2. ``` CUDA_VISIBLE_DEVICES="0" python recipes/mshop/xtts_v2/train_gpt_xtts.py \ --restore_path /home/ec2-user/SageMaker/workspace/TTS/XTTS/xtts_v2/model.pth ``` where the model.pth is derived from `tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)` I got the error as below: ``` | > Layer missing in the checkpoint: dvae.decoder.3.net.4.weight | > Layer missing in the checkpoint: dvae.decoder.3.net.4.bias | > Layer missing in the checkpoint: dvae.decoder.4.0.conv.weight | > Layer missing in the checkpoint: dvae.decoder.4.0.conv.bias | > Layer missing in the checkpoint: dvae.decoder.5.0.conv.weight | > Layer missing in the checkpoint: dvae.decoder.5.0.conv.bias | > Layer missing in the checkpoint: dvae.decoder.6.weight | > Layer missing in the checkpoint: dvae.decoder.6.bias | > Layer missing in the checkpoint: dvae.codebook.embed | > Layer missing in the checkpoint: dvae.codebook.cluster_size | > Layer missing in the checkpoint: dvae.codebook.embed_avg | > Layer missing in the checkpoint: torch_mel_spectrogram_dvae.mel_stft.spectrogram.window | > Layer missing in the checkpoint: torch_mel_spectrogram_dvae.mel_stft.mel_scale.fb | > 0 / 1023 layers are restored. > Model restored from step 10000000 Traceback (most recent call last): File "/home/ec2-user/SageMaker/workspace/TTS/XTTS/recipes/mshop/xtts_v2/train_gpt_xtts.py", line 202, in <module> main() File "/home/ec2-user/SageMaker/workspace/TTS/XTTS/recipes/mshop/xtts_v2/train_gpt_xtts.py", line 186, in main trainer = Trainer( File "/home/ec2-user/anaconda3/envs/JupyterSystemEnv/lib/python3.10/site-packages/trainer/trainer.py", line 558, in __init__ (self.model, self.optimizer, self.scaler, self.restore_step, self.restore_epoch) = self.restore_model( File "/home/ec2-user/anaconda3/envs/JupyterSystemEnv/lib/python3.10/site-packages/trainer/trainer.py", line 862, in restore_model restore_epoch = checkpoint["epoch"] KeyError: 'epoch' ``` As a result, 1) I put the pretrained weights of dvae, hifigan (mel_stats.pth), model.pth in DVAE_CHECKPOINT, MEL_NORM_FILE, TOKENIZER_FILE, and XTTS_CHECKPOINT, but it seems like not working 2) When I check the XTTS_v2 checkpoints with torch.load() and do find 'epoch', there is no epoch in checkpoints. ### To Reproduce ``` CUDA_VISIBLE_DEVICES="0" python recipes/mshop/xtts_v2/train_gpt_xtts.py \ --restore_path /home/ec2-user/SageMaker/workspace/TTS/XTTS/xtts_v2/model.pth ``` ### Expected behavior fine-tuning with own dataset ### Logs ```shell | > Layer missing in the checkpoint: xtts.gpt.gpt.h.28.ln_2.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.28.mlp.c_fc.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.28.mlp.c_fc.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.28.mlp.c_proj.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.28.mlp.c_proj.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.ln_1.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.ln_1.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.attn.c_attn.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.attn.c_attn.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.attn.c_proj.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.attn.c_proj.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.ln_2.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.ln_2.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.mlp.c_fc.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.mlp.c_fc.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.mlp.c_proj.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.h.29.mlp.c_proj.bias | > Layer missing in the checkpoint: xtts.gpt.gpt.ln_f.weight | > Layer missing in the checkpoint: xtts.gpt.gpt.ln_f.bias | > Layer missing in the checkpoint: xtts.gpt.mel_pos_embedding.emb.weight | > Layer missing in the checkpoint: xtts.gpt.text_pos_embedding.emb.weight | > Layer missing in the checkpoint: xtts.gpt.final_norm.weight | > Layer missing in the checkpoint: xtts.gpt.final_norm.bias | > Layer missing in the checkpoint: xtts.gpt.text_head.weight | > Layer missing in the checkpoint: xtts.gpt.text_head.bias | > Layer missing in the checkpoint: xtts.gpt.mel_head.weight | > Layer missing in the checkpoint: xtts.gpt.mel_head.bias | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.latents | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.0.to_q.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.0.to_kv.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.0.to_out.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.1.0.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.1.0.bias | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.1.2.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.0.1.2.bias | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.0.to_q.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.0.to_kv.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.0.to_out.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.1.0.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.1.0.bias | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.1.2.weight | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.layers.1.1.2.bias | > Layer missing in the checkpoint: xtts.gpt.conditioning_perceiver.norm.gamma | > Layer missing in the checkpoint: torch_mel_spectrogram_style_encoder.mel_stft.spectrogram.window | > Layer missing in the checkpoint: torch_mel_spectrogram_style_encoder.mel_stft.mel_scale.fb | > Layer missing in the checkpoint: dvae.discrete_loss.accumulator_index | > Layer missing in the checkpoint: dvae.discrete_loss.accumulator_filled | > Layer missing in the checkpoint: dvae.discrete_loss.accumulator | > Layer missing in the checkpoint: dvae.encoder.0.0.weight | > Layer missing in the checkpoint: dvae.encoder.0.0.bias | > Layer missing in the checkpoint: dvae.encoder.1.0.weight | > Layer missing in the checkpoint: dvae.encoder.1.0.bias | > Layer missing in the checkpoint: dvae.encoder.2.net.0.weight | > Layer missing in the checkpoint: dvae.encoder.2.net.0.bias | > Layer missing in the checkpoint: dvae.encoder.2.net.2.weight | > Layer missing in the checkpoint: dvae.encoder.2.net.2.bias | > Layer missing in the checkpoint: dvae.encoder.2.net.4.weight | > Layer missing in the checkpoint: dvae.encoder.2.net.4.bias | > Layer missing in the checkpoint: dvae.encoder.3.net.0.weight | > Layer missing in the checkpoint: dvae.encoder.3.net.0.bias | > Layer missing in the checkpoint: dvae.encoder.3.net.2.weight | > Layer missing in the checkpoint: dvae.encoder.3.net.2.bias | > Layer missing in the checkpoint: dvae.encoder.3.net.4.weight | > Layer missing in the checkpoint: dvae.encoder.3.net.4.bias | > Layer missing in the checkpoint: dvae.encoder.4.net.0.weight | > Layer missing in the checkpoint: dvae.encoder.4.net.0.bias | > Layer missing in the checkpoint: dvae.encoder.4.net.2.weight | > Layer missing in the checkpoint: dvae.encoder.4.net.2.bias | > Layer missing in the checkpoint: dvae.encoder.4.net.4.weight | > Layer missing in the checkpoint: dvae.encoder.4.net.4.bias | > Layer missing in the checkpoint: dvae.encoder.5.weight | > Layer missing in the checkpoint: dvae.encoder.5.bias | > Layer missing in the checkpoint: dvae.decoder.0.weight | > Layer missing in the checkpoint: dvae.decoder.0.bias | > Layer missing in the checkpoint: dvae.decoder.1.net.0.weight | > Layer missing in the checkpoint: dvae.decoder.1.net.0.bias | > Layer missing in the checkpoint: dvae.decoder.1.net.2.weight | > Layer missing in the checkpoint: dvae.decoder.1.net.2.bias | > Layer missing in the checkpoint: dvae.decoder.1.net.4.weight | > Layer missing in the checkpoint: dvae.decoder.1.net.4.bias | > Layer missing in the checkpoint: dvae.decoder.2.net.0.weight | > Layer missing in the checkpoint: dvae.decoder.2.net.0.bias | > Layer missing in the checkpoint: dvae.decoder.2.net.2.weight | > Layer missing in the checkpoint: dvae.decoder.2.net.2.bias | > Layer missing in the checkpoint: dvae.decoder.2.net.4.weight | > Layer missing in the checkpoint: dvae.decoder.2.net.4.bias | > Layer missing in the checkpoint: dvae.decoder.3.net.0.weight | > Layer missing in the checkpoint: dvae.decoder.3.net.0.bias | > Layer missing in the checkpoint: dvae.decoder.3.net.2.weight | > Layer missing in the checkpoint: dvae.decoder.3.net.2.bias | > Layer missing in the checkpoint: dvae.decoder.3.net.4.weight | > Layer missing in the checkpoint: dvae.decoder.3.net.4.bias | > Layer missing in the checkpoint: dvae.decoder.4.0.conv.weight | > Layer missing in the checkpoint: dvae.decoder.4.0.conv.bias | > Layer missing in the checkpoint: dvae.decoder.5.0.conv.weight | > Layer missing in the checkpoint: dvae.decoder.5.0.conv.bias | > Layer missing in the checkpoint: dvae.decoder.6.weight | > Layer missing in the checkpoint: dvae.decoder.6.bias | > Layer missing in the checkpoint: dvae.codebook.embed | > Layer missing in the checkpoint: dvae.codebook.cluster_size | > Layer missing in the checkpoint: dvae.codebook.embed_avg | > Layer missing in the checkpoint: torch_mel_spectrogram_dvae.mel_stft.spectrogram.window | > Layer missing in the checkpoint: torch_mel_spectrogram_dvae.mel_stft.mel_scale.fb | > 0 / 1023 layers are restored. > Model restored from step 10000000 Traceback (most recent call last): File "/home/ec2-user/SageMaker/workspace/TTS/XTTS/recipes/mshop/xtts_v2/train_gpt_xtts.py", line 202, in <module> main() File "/home/ec2-user/SageMaker/workspace/TTS/XTTS/recipes/mshop/xtts_v2/train_gpt_xtts.py", line 186, in main trainer = Trainer( File "/home/ec2-user/anaconda3/envs/JupyterSystemEnv/lib/python3.10/site-packages/trainer/trainer.py", line 558, in __init__ (self.model, self.optimizer, self.scaler, self.restore_step, self.restore_epoch) = self.restore_model( File "/home/ec2-user/anaconda3/envs/JupyterSystemEnv/lib/python3.10/site-packages/trainer/trainer.py", line 862, in restore_model restore_epoch = checkpoint["epoch"] KeyError: 'epoch' ``` ### Environment ```shell { "CUDA": { "GPU": [ "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB", "Tesla V100-SXM2-32GB" ], "available": true, "version": "12.1" }, "Packages": { "PyTorch_debug": false, "PyTorch_version": "2.3.1+cu121", "TTS": "0.22.0", "numpy": "1.22.0" }, "System": { "OS": "Linux", "architecture": [ "64bit", "ELF" ], "processor": "x86_64", "python": "3.10.8", "version": "#1 SMP Tue May 21 16:52:24 UTC 2024" } } ``` ### Additional context ...
closed
2024-07-29T14:10:11Z
2024-07-29T18:46:28Z
https://github.com/coqui-ai/TTS/issues/3840
[ "bug" ]
kaen2891
4
jina-ai/serve
fastapi
5,613
Error reporting when DNS exists, but route is not valid
When an external Executor/Flow is down, but there is no DNS error (e.g. because it is behind an API gateway), then the error reporting does not show which Executor is the failing one. **Reproduce:** ```python from jina import Flow from docarray import DocumentArray, Document f = Flow().add(host='https://blah.wolf.jina.ai/', external=True) # this Flow does not exist, but no DNS issue with f: f.post(inputs=Document, on='/foo') ``` On the client: ```text jina.excepts.BadServerFlow: gRPC error: StatusCode.UNKNOWN Unexpected <class 'grpc.aio._call.AioRpcError'>: <AioRpcError of RPC that terminated with: status = StatusCode.NOT_FOUND details = "no Route matched with those values" debug_error_string = "{"created":"@1674229068.908652727","description":"Error received from peer ipv4:35.169.210.186:443","file":"src/core/lib/surface/call.cc","file_line":952,"grpc_message":"no Route matched with those values","grpc_status":5}" > ``` On the gateway: ``` ERROR gateway/rep-0/GatewayRuntime@91339 Error while getting responses from deployments: <AioRpcError of RPC that terminated with: status = StatusCode.NOT_FOUND details = "no Route matched with those values" debug_error_string = "{"created":"@1674229068.908652727","description":"E… received from peer ipv4:35.169.210.186:443","file":"src/core/lib/surfac… Route matched with those values","grpc_status":5}" > ``` Reference: https://jinaai.slack.com/archives/C018F60RBL5/p1674205594827639
closed
2023-01-20T12:05:32Z
2023-01-24T11:40:54Z
https://github.com/jina-ai/serve/issues/5613
[]
JohannesMessner
0
tensorflow/tensor2tensor
deep-learning
1,640
mismatch of tensor2tensor.layers.common_audio.compute_mel_filterbank_features with tensorflow audio_ops.mfcc
### Description ... ### Environment information ``` OS: Ubuntu 18.04 $ pip freeze | grep tensor tensorflow: 1.14.0 $ python -V 3.6.8 ``` ### For bugs: reproduction and error logs ``` # Steps to reproduce: import tensorflow as tf tf.enable_eager_execution() from tensorflow.contrib.framework.python.ops import audio_ops import numpy as np import matplotlib.pyplot as plt from tensor2tensor.layers.common_audio import compute_mel_filterbank_features sample_rate = 16000 desired_samples = 16000 nyquist = sample_rate // 2 num_sinusoids = 5 frame_length = 512 frame_step = 320 fft_length = 512 # Sinusoid sweep from 1 Hz to nyquist. frequencies = tf.lin_space(1.0, nyquist - 1, num_sinusoids) # Generate the sinusoids. signal = tf.reduce_sum(tf.math.sin(2.0 * np.pi * tf.range(desired_samples, dtype=tf.float32)[tf.newaxis, :] * frequencies[:, tf.newaxis] / sample_rate), 0) # Add some white noise for fun. signal += tf.random_normal([desired_samples]) * 0.1 print(signal.get_shape()) num_mfccs = 26 lower_edge_hertz=20 upper_edge_hertz=4000.0 log_noise_floor=1e-4 num_mel_bins = 40 sample_rate=16000 spectrogram = tf.squeeze(audio_ops.audio_spectrogram(signal[:, tf.newaxis], window_size=frame_length, stride=frame_step, magnitude_squared=False), 0) audio_ops_mfccs = audio_ops.mfcc(tf.expand_dims(spectrogram, 0), \ sample_rate=sample_rate, \ lower_frequency_limit=lower_edge_hertz, \ upper_frequency_limit=upper_edge_hertz, \ filterbank_channel_count=num_mel_bins, \ dct_coefficient_count=num_mfccs) audio_ops_mfccs= tf.squeeze(audio_ops_mfccs,0 ) signal_mfccs = compute_mel_filterbank_features( signal, sample_rate=sample_rate, frame_length=frame_length, frame_step=frame_step, lower_edge_hertz=lower_edge_hertz, upper_edge_hertz=upper_edge_hertz, num_mel_bins=num_mfccs, apply_mask=False) signal_mfccs =tf.signal.mfccs_from_log_mel_spectrograms(signal_mfccs) np.testing.assert_allclose(signal_mfccs, audio_ops_mfccs, rtol=1e-4, atol=1e-4); ``` ``` # Error logs: mismatch in the results of both the apis, as per the tensorflow [issue-11339](https://github.com/tensorflow/tensorflow/issues/11339#issuecomment-345741527), audio ops is just a FusedOP for mobile computation the algorithm is still same and also the float precision is different. the way tensor2tensor computes the mel spectrograms doesn't matches the results for tf audio ops. ```
open
2019-07-24T09:07:23Z
2019-07-24T09:07:23Z
https://github.com/tensorflow/tensor2tensor/issues/1640
[]
cahuja1992
0
custom-components/pyscript
jupyter
420
Enhancement request: wildcards in @state_trigger
Can `@state_trigger` be changed to support wildcards? I am wanting to do: ```` @state_trigger('sensor.ble_temperature_*') ````
closed
2022-12-31T17:36:05Z
2023-01-01T04:21:16Z
https://github.com/custom-components/pyscript/issues/420
[]
fovea1959
3
PrefectHQ/prefect
automation
16,917
Prefect UI only shows blank white screen
> Hey! I'm getting the same result by running prefect inside a uv venv on linux, commands used: > ``` > uv venv --python 3.12 && source .venv/bin/activate > uv pip install -U prefect > prefect server start > ``` > > Visiting localhost or 127.0.0.1 gives the same result, /docs works as intended. Screenshot with error: > > ![Image](https://github.com/user-attachments/assets/28c568c2-22fe-41a5-b1e4-96d8525b9df1) _Originally posted by @HRKings in [#10452](https://github.com/PrefectHQ/prefect/issues/10452#issuecomment-2625606594)_
open
2025-01-30T21:58:40Z
2025-01-30T21:58:40Z
https://github.com/PrefectHQ/prefect/issues/16917
[]
aaazzam
0
tflearn/tflearn
tensorflow
215
validation_set doesn't seem to run through Image Augmentation
I'm trying to use validation_set=0.1 with the below tflearn image augmentation pipeline, but I get the following error which makes it seem like tflearn is trying to run the metric on the original image (128,128,3) instead of an augmented one (112,112,3): Cannot feed value of shape (128, 128, 128, 3) for Tensor u'InputData/X:0', which has shape '(?, 112, 112, 3)' ``` python img_aug = ImageAugmentation() img_aug.add_random_crop((112,112)) net = input_data(shape=[None, 112, 112, 3], data_augmentation=img_aug) ... ... net = regression(net, optimizer='adam', loss='mean_square', learning_rate=0.001) model = tflearn.DNN(net, tensorboard_verbose=0) model.fit(X, latent, n_epoch=50, shuffle=True, show_metric=True, batch_size=128, validation_set=0.1) ```
open
2016-07-21T11:33:56Z
2016-07-21T17:01:23Z
https://github.com/tflearn/tflearn/issues/215
[]
tetmin
3
iMerica/dj-rest-auth
rest-api
67
Docs Improvement: Register users from admin panel in a compatible way.
Hi, I went through the documentation for this library. But didn't find an answer for my question. So I implemented dj-rest-auth and everything is smooth AF. Thank you so much for this amazing library. So a user can register via my web app..but I want to be able to add users from my admin application. How can I go about doing that. I have User registered to admin app, but I guess that's not enough. What are the next steps I need to follow.
open
2020-05-12T05:53:04Z
2022-03-30T10:08:55Z
https://github.com/iMerica/dj-rest-auth/issues/67
[ "enhancement" ]
Goutam192002
9
milesmcc/shynet
django
329
Docker-less troubles
Edit: updated instructions to fix my own problem. And help anyone who finds this. As discussed in #9, I've been trying to get shynet up and running without docker in order to submit a PR with documentation. I'm using RHEL but once done the instructions can easily be translated into Debian or any other Linux flavor. I'm running into issues. Here's what I've done so far: 1. ```sudo dnf install -y python3 python3-pip git gcc``` 2. ```curl -sSL https://install.python-poetry.org | python3 -``` 3. ```git clone https://github.com/milesmcc/shynet.git``` 4. ```cd shynet``` 5. ```npm install``` 6. ```poetry run pip install "Cython<3.0" "pyyaml==5.4.1" "django-allauth==0.45.0" --no-build-isolation``` 7. ```poetry install``` 8. set up the ```.env``` file with your ```db```, your domain in ```allowed_hosts``` and ```csrf_trusted_origins```, and ```port``` (matching your vhost). I also did ```django_secret_key``` and ```time_zone```. 9. set up a corresponding vhost or Caddy site block 10. ```poetry run python manage.py migrate``` 11. ```poetry run python manage.py collectstatic``` 12. ```python manage.py compilemessages``` ~~Here's the output:~~ The updated instructions shouldn't cause this error. ```File "shynet/shynet/manage.py", line 21, in <module> main() File "shynet/shynet/manage.py", line 17, in main execute_from_command_line(sys.argv) File "/root/.cache/pypoetry/virtualenvs/shynet-p4mndYDs-py3.9/lib/python3.9/site-packages/django/core/management/__init__.py", line 446, in execute_from_command_line utility.execute() File "/root/.cache/pypoetry/virtualenvs/shynet-p4mndYDs-py3.9/lib/python3.9/site-packages/django/core/management/__init__.py", line 420, in execute django.setup() File "/root/.cache/pypoetry/virtualenvs/shynet-p4mndYDs-py3.9/lib/python3.9/site-packages/django/__init__.py", line 24, in setup apps.populate(settings.INSTALLED_APPS) File "/root/.cache/pypoetry/virtualenvs/shynet-p4mndYDs-py3.9/lib/python3.9/site-packages/django/apps/registry.py", line 91, in populate app_config = AppConfig.create(entry) File "/root/.cache/pypoetry/virtualenvs/shynet-p4mndYDs-py3.9/lib/python3.9/site-packages/django/apps/config.py", line 193, in create import_module(entry) File "/usr/lib64/python3.9/importlib/__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1030, in _gcd_import File "<frozen importlib._bootstrap>", line 1007, in _find_and_load File "<frozen importlib._bootstrap>", line 984, in _find_and_load_unlocked ModuleNotFoundError: No module named 'allauth' ``` ``` - Installing django-allauth (0.45.0): Failed ChefBuildError Backend subprocess exited when trying to invoke get_requires_for_build_wheel Traceback (most recent call last): File "/root/.local/share/pypoetry/venv/lib64/python3.9/site-packages/pyproject_hooks/_in_process/_in_process.py", line 373, in <module> main() File "/root/.local/share/pypoetry/venv/lib64/python3.9/site-packages/pyproject_hooks/_in_process/_in_process.py", line 357, in main json_out["return_val"] = hook(**hook_input["kwargs"]) File "/root/.local/share/pypoetry/venv/lib64/python3.9/site-packages/pyproject_hooks/_in_process/_in_process.py", line 134, in get_requires_for_build_wheel return hook(config_settings) File "/tmp/tmpam4wz8v1/.venv/lib/python3.9/site-packages/setuptools/build_meta.py", line 327, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) File "/tmp/tmpam4wz8v1/.venv/lib/python3.9/site-packages/setuptools/build_meta.py", line 297, in _get_build_requires self.run_setup() File "/tmp/tmpam4wz8v1/.venv/lib/python3.9/site-packages/setuptools/build_meta.py", line 497, in run_setup super().run_setup(setup_script=setup_script) File "/tmp/tmpam4wz8v1/.venv/lib/python3.9/site-packages/setuptools/build_meta.py", line 313, in run_setup exec(code, locals()) File "<string>", line 9, in <module> ImportError: cannot import name 'convert_path' from 'setuptools' (/tmp/tmpam4wz8v1/.venv/lib/python3.9/site-packages/setuptools/__init__.py) at ~/.local/share/pypoetry/venv/lib64/python3.9/site-packages/poetry/installation/chef.py:164 in _prepare 160│ 161│ error = ChefBuildError("\n\n".join(message_parts)) 162│ 163│ if error is not None: → 164│ raise error from None 165│ 166│ return path 167│ 168│ def _prepare_sdist(self, archive: Path, destination: Path | None = None) -> Path: Note: This error originates from the build backend, and is likely not a problem with poetry but with django-allauth (0.45.0) not supporting PEP 517 builds. You can verify this by running 'pip wheel --no-cache-dir --use-pep517 "django-allauth (==0.45.0)"'. ``` ~~I was able to install django-allauth manually using pip, but that doesn't prevent poetry from trying to install it. I couldn't find a requirements.py file to remove it as a dependency.~~
closed
2024-07-16T15:56:46Z
2024-07-20T21:49:57Z
https://github.com/milesmcc/shynet/issues/329
[]
CarlSinclair
3
pydata/xarray
pandas
9,608
xarray can open a nc file with open_dataset, but fails to load this nc file with load
### What is your issue? Recently, I have downloaded chla data from copernicus marine service, and tried to regrid it with xarray. The sad thing is that the data always goes wrong in the load phase. I have checked that variables in test dataset could be plotted normally. I do know what happen to this. Any advice is appreciated. The test code: ``` import xarray as xr ds = xr.open_dataset("chla201601.nc") ds.load() ``` Test dataset: [chla201601.zip](https://github.com/user-attachments/files/17341303/chla201601.zip) Error information: <details><summary>Details</summary> <p> ```python-traceback --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[3], line 1 ----> 1 ds.load() File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/dataset.py:880](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/dataset.py#line=879), in Dataset.load(self, **kwargs) 878 for k, v in self.variables.items(): 879 if k not in lazy_data: --> 880 v.load() 882 return self File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/variable.py:981](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/variable.py#line=980), in Variable.load(self, **kwargs) 964 def load(self, **kwargs): 965 """Manually trigger loading of this variable's data from disk or a 966 remote source into memory and return this variable. 967 (...) 979 dask.array.compute 980 """ --> 981 self._data = to_duck_array(self._data, **kwargs) 982 return self File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/namedarray/pycompat.py:134](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/namedarray/pycompat.py#line=133), in to_duck_array(data, **kwargs) 131 return loaded_data 133 if isinstance(data, ExplicitlyIndexed): --> 134 return data.get_duck_array() # type: ignore[no-untyped-call, no-any-return] 135 elif is_duck_array(data): 136 return data File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py:837](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py#line=836), in MemoryCachedArray.get_duck_array(self) 836 def get_duck_array(self): --> 837 self._ensure_cached() 838 return self.array.get_duck_array() File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py:831](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py#line=830), in MemoryCachedArray._ensure_cached(self) 830 def _ensure_cached(self): --> 831 self.array = as_indexable(self.array.get_duck_array()) File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py:788](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py#line=787), in CopyOnWriteArray.get_duck_array(self) 787 def get_duck_array(self): --> 788 return self.array.get_duck_array() File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py:651](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py#line=650), in LazilyIndexedArray.get_duck_array(self) 647 array = apply_indexer(self.array, self.key) 648 else: 649 # If the array is not an ExplicitlyIndexedNDArrayMixin, 650 # it may wrap a BackendArray so use its __getitem__ --> 651 array = self.array[self.key] 653 # self.array[self.key] is now a numpy array when 654 # self.array is a BackendArray subclass 655 # and self.key is BasicIndexer((slice(None, None, None),)) 656 # so we need the explicit check for ExplicitlyIndexed 657 if isinstance(array, ExplicitlyIndexed): File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:100](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/backends/netCDF4_.py#line=99), in NetCDF4ArrayWrapper.__getitem__(self, key) 99 def __getitem__(self, key): --> 100 return indexing.explicit_indexing_adapter( 101 key, self.shape, indexing.IndexingSupport.OUTER, self._getitem 102 ) File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py:1015](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/core/indexing.py#line=1014), in explicit_indexing_adapter(key, shape, indexing_support, raw_indexing_method) 993 """Support explicit indexing by delegating to a raw indexing method. 994 995 Outer and[/or](http://localhost:8888/or) vectorized indexers are supported by indexing a second time (...) 1012 Indexing result, in the form of a duck numpy-array. 1013 """ 1014 raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support) -> 1015 result = raw_indexing_method(raw_key.tuple) 1016 if numpy_indices.tuple: 1017 # index the loaded np.ndarray 1018 indexable = NumpyIndexingAdapter(result) File [/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:113](http://localhost:8888/usr/miniforge3/envs/xesmf_env/lib/python3.12/site-packages/xarray/backends/netCDF4_.py#line=112), in NetCDF4ArrayWrapper._getitem(self, key) 111 with self.datastore.lock: 112 original_array = self.get_array(needs_lock=False) --> 113 array = getitem(original_array, key) 114 except IndexError: 115 # Catch IndexError in netCDF4 and return a more informative 116 # error message. This is most often called when an unsorted 117 # indexer is used before the data is loaded from disk. 118 msg = ( 119 "The indexing operation you are attempting to perform " 120 "is not valid on netCDF4.Variable object. Try loading " 121 "your data into memory first by calling .load()." 122 ) File src[/netCDF4/_netCDF4.pyx:4981](http://localhost:8888/netCDF4/_netCDF4.pyx#line=4980), in netCDF4._netCDF4.Variable.__getitem__() File src[/netCDF4/_netCDF4.pyx:5953](http://localhost:8888/netCDF4/_netCDF4.pyx#line=5952), in netCDF4._netCDF4.Variable._get() File src[/netCDF4/_netCDF4.pyx:2113](http://localhost:8888/netCDF4/_netCDF4.pyx#line=2112), in netCDF4._netCDF4._ensure_nc_success() RuntimeError: NetCDF: HDF error ``` </p> </details> Main package information: > xarray 2024.9.0 > numpy 2.0.2 > netCDF 4 1.7.1 > h5netcdf 1.4.0 > python 3.12.7 The ram information: total used free shared buff/cache available Mem: 8.3Gi 2.1Gi 5.3Gi 45Mi 1.2Gi 6.2Gi Swap: 3.9Gi 0B 3.9Gi
open
2024-10-11T10:29:44Z
2024-10-25T01:33:57Z
https://github.com/pydata/xarray/issues/9608
[ "needs info" ]
onion5376
3
TencentARC/GFPGAN
pytorch
564
Problem about finetuning GFPGAN v1.4
Hello Xintao, We found that the direct inferencing based on GFPGAN v1.4 performs pretty well on our own datasets, whilst GFPGAN v1 inferencing is not high-quality. However, when we tried to finetune this model, we found that only the related files of training GFPGAN v1 was released. Could you please share the .pth files, including discriminator, with us? So l could finetune the GFPGAN v1.4 with our custom data. Thank you very much! Best Junheng
open
2024-08-03T09:29:59Z
2024-08-23T10:33:21Z
https://github.com/TencentARC/GFPGAN/issues/564
[]
leonsylarfang
4
mars-project/mars
numpy
3,211
[BUG] Ray executor auto merge chunk may raise KeyError
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Describe the bug** A clear and concise description of what the bug is. ```python mars/deploy/oscar/tests/test_ray_dag.py:189 (test_merge_groupby[before-None]) ray_start_regular_shared2 = RayContext(dashboard_url='', python_version='3.8.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03...127.0.0.1:64894', 'address': '127.0.0.1:64894', 'node_id': '987c20539d0bb8031ea7d8ddfc5783c01d5b79d143191bdb072ba21b'}) create_cluster = (<mars.deploy.oscar.local.LocalClient object at 0x31b18edc0>, {}) method = None, auto_merge = 'before' @require_ray @pytest.mark.parametrize("method", ["broadcast", None]) @pytest.mark.parametrize("auto_merge", ["before", "after"]) def test_merge_groupby(ray_start_regular_shared2, create_cluster, method, auto_merge): rs = np.random.RandomState(0) raw1 = pd.DataFrame({"a": rs.randint(3, size=100), "b": rs.rand(100)}) raw2 = pd.DataFrame({"a": rs.randint(3, size=10), "c": rs.rand(10)}) df1 = md.DataFrame(raw1, chunk_size=10).execute() df2 = md.DataFrame(raw2, chunk_size=10).execute() # do not trigger auto merge df3 = df1.merge( df2, on="a", auto_merge_threshold=8, method=method, auto_merge=auto_merge ) df4 = df3.groupby("a").sum() > result = df4.execute().fetch() mars/deploy/oscar/tests/test_ray_dag.py:205: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ mars/core/entity/tileables.py:462: in execute result = self.data.execute(session=session, **kw) mars/core/entity/executable.py:144: in execute return execute(self, session=session, **kw) mars/deploy/oscar/session.py:1890: in execute return session.execute( mars/deploy/oscar/session.py:1684: in execute execution_info: ExecutionInfo = fut.result( ../../.pyenv/versions/3.8.13/lib/python3.8/concurrent/futures/_base.py:444: in result return self.__get_result() ../../.pyenv/versions/3.8.13/lib/python3.8/concurrent/futures/_base.py:389: in __get_result raise self._exception mars/deploy/oscar/session.py:1870: in _execute await execution_info mars/deploy/oscar/session.py:105: in wait return await self._aio_task mars/deploy/oscar/session.py:953: in _run_in_background raise task_result.error.with_traceback(task_result.traceback) mars/services/task/supervisor/processor.py:368: in run async for stage_args in self._iter_stage_chunk_graph(): mars/services/task/supervisor/processor.py:158: in _iter_stage_chunk_graph chunk_graph = await self._get_next_chunk_graph(chunk_graph_iter) mars/services/task/supervisor/processor.py:149: in _get_next_chunk_graph chunk_graph = await fut mars/lib/aio/_threads.py:36: in to_thread return await loop.run_in_executor(None, func_call) ../../.pyenv/versions/3.8.13/lib/python3.8/concurrent/futures/thread.py:57: in run result = self.fn(*self.args, **self.kwargs) mars/services/task/supervisor/processor.py:144: in next_chunk_graph return next(chunk_graph_iter) mars/services/task/supervisor/preprocessor.py:194: in tile for chunk_graph in chunk_graph_builder.build(): mars/core/graph/builder/chunk.py:440: in build yield from self._build() mars/core/graph/builder/chunk.py:434: in _build graph = next(tile_iterator) mars/services/task/supervisor/preprocessor.py:74: in _iter_without_check to_update_tileables = self._iter() mars/core/graph/builder/chunk.py:317: in _iter self._tile( mars/core/graph/builder/chunk.py:211: in _tile need_process = next(tile_handler) mars/core/graph/builder/chunk.py:183: in _tile_handler tiled_tileables = yield from handler.tile(tiled_tileables) mars/core/entity/tileables.py:79: in tile tiled_result = yield from tile_handler(op) mars/dataframe/merge/merge.py:729: in tile left = auto_merge_chunks(ctx, left) mars/dataframe/utils.py:1355: in auto_merge_chunks metas = ctx.get_chunks_meta( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <mars.services.task.execution.ray.context.RayExecutionContext object at 0x31c7432b0> data_keys = ['ed0cb85eeb0149649a565523a17aee60_0', 'ef36ff532158e2c4219867243b37f2dd_0', 'd9f91608f2ca6d88396d91ebdd9ff435_0', 'dc92a54294b3a665971b5b15da6ddd0b_0', 'c7cbea6d90a45df0826bc2a267b72d15_0', 'f769e2009ccc91538652404889dcf893_0', ...] fields = ['memory_size'], error = 'ignore' @implements(Context.get_chunks_meta) def get_chunks_meta( self, data_keys: List[str], fields: List[str] = None, error="raise" ) -> List[Dict]: result = [] # TODO(fyrestone): Support get_chunks_meta from meta service if needed. for key in data_keys: > chunk_meta = self._task_chunks_meta[key] E KeyError: 'ed0cb85eeb0149649a565523a17aee60_0' mars/services/task/execution/ray/context.py:141: KeyError ``` **To Reproduce** To help us reproducing this bug, please provide information below: 1. Your Python version 3.8.13 2. The version of Mars you use Latest master 3. Versions of crucial packages, such as numpy, scipy and pandas 4. Full stack of the error. 5. Minimized code to reproduce the error. **Expected behavior** A clear and concise description of what you expected to happen. **Additional context** Add any other context about the problem here.
closed
2022-08-09T02:51:44Z
2022-08-19T03:30:10Z
https://github.com/mars-project/mars/issues/3211
[ "type: bug", "mod: ray integration" ]
fyrestone
0
vimalloc/flask-jwt-extended
flask
502
Jwt_required and optional == True
This appears to be a bug unless I'm missing the requirement/intended functionality: If optional is True, I'm expecting jwt-extended not to raise any errors - however, I'm still getting a 401 - token missing error. I dug in a bit deeper in the code, and the issue seems to be that the verify_jwt_in_request method's error handler only catches NoAuthorizationError. However, _decode_jwt_from_config reraises ExpiredSignatureError.... stack: jwt_required() verify_jwt_in_request _decode_jwt_from_request decode_token jwt_manager._decode_jwt_from_config <== The only way to fix this is by adding the exception from the jwt manager to the verify_jwt_in_request method like so: ``` except (NoAuthorizationError, ExpiredSignatureError): if not optional: raise g._jwt_extended_jwt = {} g._jwt_extended_jwt_header = {} g._jwt_extended_jwt_user = {"loaded_user": None} g._jwt_extended_jwt_location = None return None ``` Let me know if this makes sense
closed
2022-11-15T19:08:50Z
2022-12-22T22:52:30Z
https://github.com/vimalloc/flask-jwt-extended/issues/502
[]
hooverdirt
1
sktime/sktime
scikit-learn
7,652
[BUG] AttributeError in SubLOF with novelty=False when calling fit_transform or fit_predict
When using SubLOF from the sktime library with novelty=False and calling fit_transform or fit_predict, an AttributeError is raised. The error indicates that the predict method is not available when novelty=False, which contradicts the documentation's recommendation to use fit_predict for outlier detection on the training data. **To Reproduce** ```python import pandas as pd from sktime.annotation.lof import SubLOF model = SubLOF(3, window_size=5, novelty=False) x = pd.DataFrame([0, 0.5, 100, 0.1, 0, 0, 0, 100, 0, 0, 0.3, -1, 0, 100, 0.2]) model.fit_transform(x) ``` **Expected behavior** I expected the fit_predict method to detect outliers in the provided dataset x without raising an AttributeError. According to the documentation, fit_predict should be used for outlier detection when novelty=False. From the documentation: > By default, LocalOutlierFactor is only meant to be used for outlier > detection (novelty=False). Set novelty to True if you want to use > LocalOutlierFactor for novelty detection. In this case be aware that > you should only use predict, decision_function and score_samples > on new unseen data and not on the training set; and note that the > results obtained this way may differ from the standard LOF results. **Additional context** When 'novelty=True' is set, a warning is raised: UserWarning: Warning: the Y parameter in detection/annotation algorithms is deprecated and will be removed in the 0.37.0 release. Users should use the y parameter instead. The class SubLOF uses the Y parameter internally in _fit, this should be replaced with y by a maintainer. Until the 0.37.0 release, this will raise no exceptions, ensuring backwards compatibility. warn( This is due to passing Y=None to the default function: ```python def fit_transform(self, X, y=None, Y=None): ``` **Versions** <details> System: python: 3.10.11 (v3.10.11:7d4cc5aa85, Apr 4 2023, 19:05:19) [Clang 13.0.0 (clang-1300.0.29.30)] executable: /usr/local/bin/python3 machine: macOS-15.2-arm64-arm-64bit Python dependencies: pip: 24.3.1 sktime: 0.35.0 sklearn: 1.5.2 skbase: 0.12.0 numpy: 1.26.4 scipy: 1.14.1 pandas: 2.2.3 matplotlib: 3.9.3 joblib: 1.4.2 numba: 0.60.0 statsmodels: 0.14.4 pmdarima: None statsforecast: 2.0.0 tsfresh: None tslearn: None torch: 2.5.1 tensorflow: 2.16.2 </details>
open
2025-01-17T07:44:33Z
2025-03-15T23:17:41Z
https://github.com/sktime/sktime/issues/7652
[ "bug", "module:detection" ]
axisrow
4
ryfeus/lambda-packs
numpy
21
Lamda Packs for Tensorflow 1.6 based on Python 3
Hi, I'm trying to create a lamda pack for tensorflow 1.6 based on Python 3. However I am not able to compress the pack to be less than 50 MB. Can you please share your taught's on how to do that.
closed
2018-05-23T07:28:04Z
2018-12-13T18:13:50Z
https://github.com/ryfeus/lambda-packs/issues/21
[]
SumanthReddyKaliki
1
aminalaee/sqladmin
fastapi
172
Be able to hook into the fastAPI subapp
### Checklist - [X] There are no similar issues or pull requests for this yet. ### Is your feature related to a problem? Please describe. Hello, great work ! :) I would like to be able to add my own url paths below the root endpoint of the admin app. For example I would like to be able to do a POST on the homepage (url "/") Something that would look like this ```python @router.post("") async def post_homepage(request: Request): logger.warning("post !!") return templates.TemplateResponse("index.html", {"request": request}) ``` From what I understand it is not possible to access or modify the sub app Neither is it possible to mount another sub application on the same endpoint (because routes would conflict) It would be great if we could use the default routes but also add some and override existing routes ### Describe the solution you would like. ```python from backoffice import homepage admin = Admin(app, create_engine(Settings().db_uri), base_url="/backoffice") admin.include_router(homepage.router) ``` routes could be added before the existing routes to have priority ### Describe alternatives you considered _No response_ ### Additional context _No response_
open
2022-06-08T16:18:35Z
2022-06-24T12:18:34Z
https://github.com/aminalaee/sqladmin/issues/172
[ "waiting-for-feedback" ]
lebrunthibault
5
feder-cr/Jobs_Applier_AI_Agent_AIHawk
automation
347
Phone number and country did not change
I have changed the phone number and the country in plain_text_resume.yaml but when i see the bot applying to jobs , It write italy in the country and different phone number. I apply with my own pdf using python main.py --resume /path/to/your/resume.pdf ![image](https://github.com/user-attachments/assets/e3f84919-ec93-40c3-8ca7-f4c1eacf3873)
closed
2024-09-10T16:32:50Z
2024-09-13T11:53:22Z
https://github.com/feder-cr/Jobs_Applier_AI_Agent_AIHawk/issues/347
[]
db2024git
2
aiortc/aiortc
asyncio
200
example server not working on remote machine
The example server code works perfectly locally, even within a docker. However, if I run the server code on a remote machine, and open the webpage from the local machine browser, ICE gathering state is always new. Did I miss anything? Or it indeed takes very long to connect? Much appreciate it.
closed
2019-08-04T04:26:14Z
2019-08-17T06:09:33Z
https://github.com/aiortc/aiortc/issues/200
[]
litanlitudan
2
ultrafunkamsterdam/undetected-chromedriver
automation
840
Give Old Docker image Dockerfile
Recently you updated your docker image. Could you give me the old dockerfile as the newer one takes a lot of time to build as it installs chrome.
closed
2022-10-15T16:42:07Z
2022-10-16T07:18:32Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/840
[]
Chetan11-dev
2
adamerose/PandasGUI
pandas
168
Change the qt calls to use qtpy to deal with different Qt bindings
Today the best approach to ensure some consistency and flexibility across different Qt python bindings (PyQt5, PySide2, PyQt6, PySide6, ...) is the use of [QtPy: Abstraction layer for PyQt5/PyQt4/PySide2/PySide](https://github.com/spyder-ide/qtpy). I propose a set of minor changes to ensure all the calls to Qt bindings are performed via from qtpy import. By default the module to be called will be PyQt5 but it can be changed by setting the environment variable QT_API. If the proposal is accepted, I will submit a git commit against the latest version.
open
2021-08-29T08:44:43Z
2021-08-29T21:19:40Z
https://github.com/adamerose/PandasGUI/issues/168
[]
EmanueleCannizzaro
1
mljar/mercury
data-visualization
417
Option to hide the RunMercury switch at the top black bar
Hello: I have been testing this product and it's wonderful... Only issues I had are with: - Share button: in some cases, I would prefer not to have our users sharing the links for security reasons. - The RunMercury switch at the top blank bar, might not be good in those cases where you don't want the users to check all available notebooks, so it would be good to have an option to hide/show this. Are there these options considered in this product's roadmap? Regards; Greg
closed
2024-02-04T23:17:10Z
2024-02-15T13:37:14Z
https://github.com/mljar/mercury/issues/417
[]
gregcode123
3
MorvanZhou/tutorials
tensorflow
78
建议
建议课程中多讲一点理论,比如数学基础等。感谢提供教程
closed
2019-03-08T03:01:44Z
2019-03-08T03:03:35Z
https://github.com/MorvanZhou/tutorials/issues/78
[]
ustcerlik
0
jschneier/django-storages
django
869
""Unicode-objects must be encoded before hashing" when i try upload a .m3u8 file using storages|s3 instead local storage.
**Describe the bug** **COMPLETE CODE AND SETTINGS IN THE END OF THE FILE** **the upload works when i add the .m3u8 file directly in the aws s3 site** I was able to send the video normally to my local machine, but when I changed the storage settings, I just started getting this error. The error points to the line where the code is ``` instance.file.save(file_name_m3u8, file_m3u8) ``` And then immediately points to ``` .../python3.8/site-packages/storages/backends/s3boto3.py ... obj.upload_fileobj(content, ExtraArgs=params) ... ``` My file object `file_m3u8` is: ``` file_object <_io.TextIOWrapper name='/tmp/media/lectures/first_video_2/2020-04-04_16-11-20.m3u8' mode='r' encoding='UTF-8'> ``` Example: ``` from django.db.models.signals import post_save from django.dispatch import receiver from django.core.files import File from .models import Lecture @receiver(post_save, sender=Lecture) def handle_video_upload (sender, instance, created, ** kwargs): with open ( "/tmp/media/lectures/first_video_2/2020-04-04_16-11-20.m3u8", "r") as file_object: file_m3u8 = File ( name = "media/lectures/first_video_2/2020-04-04_16-11-20.m3u8", file = file_object) instance.file.save ("2020-04-04_16-11-20.m3u8", file_m3u8) ``` I'm using django-storages and settings this in my settings.py file: ``` STATICFILES_STORAGE = "django.contrib.staticfiles.storage.ManifestStaticFilesStorage" DEFAULT_FILE_STORAGE = "storages.backends.s3boto3.S3Boto3Storage" AWS_ACCESS_KEY_ID = config("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = config("AWS_SECRET_ACCESS_KEY") AWS_STORAGE_BUCKET_NAME = config("AWS_STORAGE_BUCKET_NAME") CLOUDFRONT_ID = config("CLOUDFRONT_ID") CLOUDFRONT_DOMAIN = f"{CLOUDFRONT_ID}.cloudfront.net" AWS_S3_CUSTOM_DOMAIN = f"{CLOUDFRONT_ID}.cloudfront.net" ``` **Expected behavior** i expect that the file will be uploaded normally **Debug logs** terminal output: ``` [05/Apr/2020 17:42:30] "GET /admin/jsi18n/ HTTP/1.1" 200 7275 /home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/storages/backends/s3boto3.py:340: UserWarning: The default behavior of S3Boto3Storage is insecure and will change in django-storages 1.10. By default files and new buckets are saved with an ACL of 'public-read' (globally publicly readable). Version 1.10 will default to using the bucket's ACL. To opt into the new behavior set AWS_DEFAULT_ACL = None, otherwise to silence this warning explicitly set AWS_DEFAULT_ACL. warnings.warn( [05/Apr/2020 17:42:32] "GET /admin/lectures/lecture/5/change/ HTTP/1.1" 200 6712 [05/Apr/2020 17:42:32] "GET /admin/jsi18n/ HTTP/1.1" 200 7275 /tmp/media/lectures/first_video_2/2020-04-04_16-11-20.m3u8 2020-04-04_16-11-20.m3u8 Internal Server Error: /admin/lectures/lecture/5/change/ Traceback (most recent call last): File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/core/handlers/exception.py", line 34, in inner response = get_response(request) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/core/handlers/base.py", line 115, in _get_response response = self.process_exception_by_middleware(e, request) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/core/handlers/base.py", line 113, in _get_response response = wrapped_callback(request, *callback_args, **callback_kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/contrib/admin/options.py", line 607, in wrapper return self.admin_site.admin_view(view)(*args, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/utils/decorators.py", line 130, in _wrapped_view response = view_func(request, *args, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/views/decorators/cache.py", line 44, in _wrapped_view_func response = view_func(request, *args, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/contrib/admin/sites.py", line 231, in inner return view(request, *args, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/contrib/admin/options.py", line 1641, in change_view return self.changeform_view(request, object_id, form_url, extra_context) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/utils/decorators.py", line 43, in _wrapper return bound_method(*args, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/utils/decorators.py", line 130, in _wrapped_view response = view_func(request, *args, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/contrib/admin/options.py", line 1522, in changeform_view return self._changeform_view(request, object_id, form_url, extra_context) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/contrib/admin/options.py", line 1565, in _changeform_view self.save_model(request, new_object, form, not add) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/contrib/admin/options.py", line 1081, in save_model obj.save() File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/db/models/base.py", line 745, in save self.save_base(using=using, force_insert=force_insert, File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/db/models/base.py", line 793, in save_base post_save.send( File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/dispatch/dispatcher.py", line 173, in send return [ File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/dispatch/dispatcher.py", line 174, in <listcomp> (receiver, receiver(signal=self, sender=sender, **named)) File "/home/marcos/geeknoon/geeknoon_server/lectures/signals.py", line 90, in handle_video_upload instance.file.save(file_name_m3u8, file_m3u8) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/db/models/fields/files.py", line 87, in save self.name = self.storage.save(name, content, max_length=self.field.max_length) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/django/core/files/storage.py", line 52, in save return self._save(name, content) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/storages/backends/s3boto3.py", line 547, in _save obj.upload_fileobj(content, ExtraArgs=params) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/boto3/s3/inject.py", line 619, in object_upload_fileobj return self.meta.client.upload_fileobj( File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/boto3/s3/inject.py", line 539, in upload_fileobj return future.result() File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/s3transfer/futures.py", line 106, in result return self._coordinator.result() File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/s3transfer/futures.py", line 265, in result raise self._exception File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/s3transfer/tasks.py", line 126, in __call__ return self._execute_main(kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/s3transfer/tasks.py", line 150, in _execute_main return_value = self._main(**kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/s3transfer/upload.py", line 692, in _main client.put_object(Bucket=bucket, Key=key, Body=body, **extra_args) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/client.py", line 316, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/client.py", line 602, in _make_api_call handler, event_response = self.meta.events.emit_until_response( File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/hooks.py", line 360, in emit_until_response return self._emitter.emit_until_response(aliased_event_name, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/hooks.py", line 243, in emit_until_response responses = self._emit(event_name, kwargs, stop_on_response=True) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/hooks.py", line 211, in _emit response = handler(**kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/handlers.py", line 216, in conditionally_calculate_md5 calculate_md5(params, **kwargs) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/handlers.py", line 194, in calculate_md5 binary_md5 = _calculate_md5_from_file(body) File "/home/marcos/.local/share/virtualenvs/geeknoon_server-HmoJlbqP/lib/python3.8/site-packages/botocore/handlers.py", line 208, in _calculate_md5_from_file md5.update(chunk) TypeError: Unicode-objects must be encoded before hashing [05/Apr/2020 17:42:39] "POST /admin/lectures/lecture/5/change/ HTTP/1.1" 500 249595 ``` ## Complete code in signals.py: ``` import subprocess import os from django.db.models.signals import post_save from django.dispatch import receiver from django.core.files import File from pathlib import Path from .models import Lecture @receiver(post_save, sender=Lecture) def handle_video_upload(sender, instance, created, **kwargs): file_relative_path = Path(instance.file.name) file_suffix = file_relative_path.suffix if not file_suffix == '.m3u8' and instance.file_type == "V": file_relative_dir = os.path.dirname(instance.file.name) file_relative_path_m3u8 = file_relative_path.with_suffix(".m3u8") file_name_m3u8 = file_relative_path_m3u8.name file_tmp_local_dir = f"/tmp/{file_relative_dir}" file_tmp_local_output = f"{file_tmp_local_dir}/{file_name_m3u8}" file_cloudfront_url = instance.file.url subprocess.run(['mkdir', '-p', file_tmp_local_dir]) subprocess.run([ "ffmpeg", "-i", file_cloudfront_url, "-f", "hls", file_tmp_local_output, '-loglevel', 'quiet' ]) <comment: update the file with the new .m3u8 file> with open(file_tmp_local_output, "r") as file_object: print(file_tmp_local_output) print(file_name_m3u8) file_m3u8 = File(name=file_relative_path_m3u8, file=file_object) instance.file.save(file_name_m3u8, file_m3u8) subprocess.run(["rm", "-r", file_tmp_local_dir]) boto3.set_stream_logger('') ``` All relevant settings.py vars: ``` INSTALLED_APPS = [ "storages", ] STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] STATIC_ROOT = BASE_DIR.joinpath("local", "static") MEDIA_ROOT = BASE_DIR.joinpath("local", "media") STATICFILES_STORAGE = "django.contrib.staticfiles.storage.ManifestStaticFilesStorage" DEFAULT_FILE_STORAGE = "storages.backends.s3boto3.S3Boto3Storage" AWS_ACCESS_KEY_ID = config("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = config("AWS_SECRET_ACCESS_KEY") AWS_STORAGE_BUCKET_NAME = config("AWS_STORAGE_BUCKET_NAME") CLOUDFRONT_ID = config("CLOUDFRONT_ID") CLOUDFRONT_DOMAIN = f"{CLOUDFRONT_ID}.cloudfront.net" AWS_S3_CUSTOM_DOMAIN = f"{CLOUDFRONT_ID}.cloudfront.net" ``` What i trying? Convert .mkv|.mp4 videos etc after upload, and set the new .m3u8 file in the file field in my model. I check if this process is needed by checking the file_type and checking if the file was converted by checking if the suffix is the .m3u8. My model relevant code: ``` from django.db import models from base_models import CommomInfo # with updated, created and uuid fields def lecture_file_path(instance, filename): return f"media/lectures/{instance.slug}/{filename}" class Lecture(CommomInfo): FILE_TYPE_CHOICES = (("V", "Video"), ("P", "PDF")) file = models.FileField(upload_to=lecture_file_path) file_type = models.CharField( max_length=1, choices=FILE_TYPE_CHOICES, default="V") ```
closed
2020-04-05T17:52:16Z
2020-04-05T18:17:47Z
https://github.com/jschneier/django-storages/issues/869
[]
marcosfromrio
3
explosion/spaCy
data-science
12,982
RuntimeError: Error(s) in loading state_dict for RobertaModel: Unexpected key(s) in state_dict: "embeddings.position_ids".
<!-- NOTE: For questions or install related issues, please open a Discussion instead. --> ## How to reproduce the behaviour ```py import spacy nlp = spacy.load('en_core_web_trf') ``` Full traceback: ``` --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[7], line 1 ----> 1 nlp = spacy.load('en_core_web_trf') File /opt/conda/lib/python3.8/site-packages/spacy/__init__.py:51, in load(name, vocab, disable, enable, exclude, config) 27 def load( 28 name: Union[str, Path], 29 *, (...) 34 config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(), 35 ) -> Language: 36 """Load a spaCy model from an installed package or a local path. 37 38 name (str): Package name or model path. (...) 49 RETURNS (Language): The loaded nlp object. 50 """ ---> 51 return util.load_model( 52 name, 53 vocab=vocab, 54 disable=disable, 55 enable=enable, 56 exclude=exclude, 57 config=config, 58 ) File /opt/conda/lib/python3.8/site-packages/spacy/util.py:465, in load_model(name, vocab, disable, enable, exclude, config) 463 return get_lang_class(name.replace("blank:", ""))() 464 if is_package(name): # installed as package --> 465 return load_model_from_package(name, **kwargs) # type: ignore[arg-type] 466 if Path(name).exists(): # path to model data directory 467 return load_model_from_path(Path(name), **kwargs) # type: ignore[arg-type] File /opt/conda/lib/python3.8/site-packages/spacy/util.py:501, in load_model_from_package(name, vocab, disable, enable, exclude, config) 484 """Load a model from an installed package. 485 486 name (str): The package name. (...) 498 RETURNS (Language): The loaded nlp object. 499 """ 500 cls = importlib.import_module(name) --> 501 return cls.load(vocab=vocab, disable=disable, enable=enable, exclude=exclude, config=config) File /opt/conda/lib/python3.8/site-packages/en_core_web_trf/__init__.py:10, in load(**overrides) 9 def load(**overrides): ---> 10 return load_model_from_init_py(__file__, **overrides) File /opt/conda/lib/python3.8/site-packages/spacy/util.py:682, in load_model_from_init_py(init_file, vocab, disable, enable, exclude, config) 680 if not model_path.exists(): 681 raise IOError(Errors.E052.format(path=data_path)) --> 682 return load_model_from_path( 683 data_path, 684 vocab=vocab, 685 meta=meta, 686 disable=disable, 687 enable=enable, 688 exclude=exclude, 689 config=config, 690 ) File /opt/conda/lib/python3.8/site-packages/spacy/util.py:547, in load_model_from_path(model_path, meta, vocab, disable, enable, exclude, config) 538 config = load_config(config_path, overrides=overrides) 539 nlp = load_model_from_config( 540 config, 541 vocab=vocab, (...) 545 meta=meta, 546 ) --> 547 return nlp.from_disk(model_path, exclude=exclude, overrides=overrides) File /opt/conda/lib/python3.8/site-packages/spacy/language.py:2155, in Language.from_disk(self, path, exclude, overrides) 2152 if not (path / "vocab").exists() and "vocab" not in exclude: # type: ignore[operator] 2153 # Convert to list here in case exclude is (default) tuple 2154 exclude = list(exclude) + ["vocab"] -> 2155 util.from_disk(path, deserializers, exclude) # type: ignore[arg-type] 2156 self._path = path # type: ignore[assignment] 2157 self._link_components() File /opt/conda/lib/python3.8/site-packages/spacy/util.py:1392, in from_disk(path, readers, exclude) 1389 for key, reader in readers.items(): 1390 # Split to support file names like meta.json 1391 if key.split(".")[0] not in exclude: -> 1392 reader(path / key) 1393 return path File /opt/conda/lib/python3.8/site-packages/spacy/language.py:2149, in Language.from_disk.<locals>.<lambda>(p, proc) 2147 if not hasattr(proc, "from_disk"): 2148 continue -> 2149 deserializers[name] = lambda p, proc=proc: proc.from_disk( # type: ignore[misc] 2150 p, exclude=["vocab"] 2151 ) 2152 if not (path / "vocab").exists() and "vocab" not in exclude: # type: ignore[operator] 2153 # Convert to list here in case exclude is (default) tuple 2154 exclude = list(exclude) + ["vocab"] File /opt/conda/lib/python3.8/site-packages/spacy_transformers/pipeline_component.py:416, in Transformer.from_disk(self, path, exclude) 409 self.model.attrs["set_transformer"](self.model, hf_model) 411 deserialize = { 412 "vocab": self.vocab.from_disk, 413 "cfg": lambda p: self.cfg.update(deserialize_config(p)), 414 "model": load_model, 415 } --> 416 util.from_disk(path, deserialize, exclude) # type: ignore 417 return self File /opt/conda/lib/python3.8/site-packages/spacy/util.py:1392, in from_disk(path, readers, exclude) 1389 for key, reader in readers.items(): 1390 # Split to support file names like meta.json 1391 if key.split(".")[0] not in exclude: -> 1392 reader(path / key) 1393 return path File /opt/conda/lib/python3.8/site-packages/spacy_transformers/pipeline_component.py:390, in Transformer.from_disk.<locals>.load_model(p) 388 try: 389 with open(p, "rb") as mfile: --> 390 self.model.from_bytes(mfile.read()) 391 except AttributeError: 392 raise ValueError(Errors.E149) from None File /opt/conda/lib/python3.8/site-packages/thinc/model.py:638, in Model.from_bytes(self, bytes_data) 636 msg = srsly.msgpack_loads(bytes_data) 637 msg = convert_recursive(is_xp_array, self.ops.asarray, msg) --> 638 return self.from_dict(msg) File /opt/conda/lib/python3.8/site-packages/thinc/model.py:676, in Model.from_dict(self, msg) 674 node.set_param(param_name, value) 675 for i, shim_bytes in enumerate(msg["shims"][i]): --> 676 node.shims[i].from_bytes(shim_bytes) 677 return self File /opt/conda/lib/python3.8/site-packages/spacy_transformers/layers/hf_shim.py:120, in HFShim.from_bytes(self, bytes_data) 118 filelike.seek(0) 119 device = get_torch_default_device() --> 120 self._model.load_state_dict(torch.load(filelike, map_location=device)) 121 self._model.to(device) 122 else: File /opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:2041, in Module.load_state_dict(self, state_dict, strict) 2036 error_msgs.insert( 2037 0, 'Missing key(s) in state_dict: {}. '.format( 2038 ', '.join('"{}"'.format(k) for k in missing_keys))) 2040 if len(error_msgs) > 0: -> 2041 raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( 2042 self.__class__.__name__, "\n\t".join(error_msgs))) 2043 return _IncompatibleKeys(missing_keys, unexpected_keys) RuntimeError: Error(s) in loading state_dict for RobertaModel: Unexpected key(s) in state_dict: "embeddings.position_ids". ``` Also: ``` ~$ conda list torch # packages in environment at /opt/conda: # # Name Version Build Channel efficientnet-pytorch 0.7.1 pyhd8ed1ab_1 conda-forge pytorch 2.0.1 py3.8_cuda11.7_cudnn8.5.0_0 pytorch pytorch-cuda 11.7 h67b0de4_0 pytorch pytorch-lightning 2.0.1.post0 pypi_0 pypi pytorch-mutex 1.0 cuda pytorch rotary-embedding-torch 0.2.1 pypi_0 pypi torchaudio 2.0.2 py38_cu117 pytorch torchmetrics 0.11.4 pypi_0 pypi torchtriton 2.0.0 py38 pytorch torchvision 0.15.2 py38_cu117 pytorch torchviz 0.0.2 pypi_0 pypi ``` ## Your Environment <!-- Include details of your environment. You can also type `python -m spacy info --markdown` and copy-paste the result here.--> * Operating System: * Python Version Used: * spaCy Version Used: * Environment Information: ``` spaCy version 3.6.1 Location /opt/conda/lib/python3.8/site-packages/spacy Platform Linux-5.13.0-1023-aws-x86_64-with-glibc2.17 Python version 3.8.17 Pipelines en_core_web_trf (3.6.1) ```
closed
2023-09-14T14:08:37Z
2023-10-19T00:02:09Z
https://github.com/explosion/spaCy/issues/12982
[ "install", "feat / transformer" ]
dzenilee
6
zappa/Zappa
flask
775
[Migrated] 'exclude' setting in config excludes all occurrences also for dependencies
Originally from: https://github.com/Miserlou/Zappa/issues/1917 by [themmes](https://github.com/themmes) <!--- Provide a general summary of the issue in the Title above --> ## Context <!--- Provide a more detailed introduction to the issue itself, and why you consider it to be a bug --> I do not understand why I am getting the following error. It seems the lambda cannot be loaded from S3 and therefore is not able to find the module to execute the function. ``` [1565266143895] [DEBUG] 2019-08-08T12:09:03.895Z ef9eb08e-f4f9-43a5-9072-c11f15be1b80 Changing event name from docs.*.cloudsearchdomain.Search.complete-section to docs.*.cloudsearch-domain.Search.complete-section [1565266143897] The 's3' resource does not exist. The available resources are: - : ResourceNotExistsError Traceback (most recent call last): File "/var/task/handler.py", line 602, in lambda_handler return LambdaHandler.lambda_handler(event, context) File "/var/task/handler.py", line 245, in lambda_handler handler = cls() File "/var/task/handler.py", line 102, in __init__ self.load_remote_project_archive(project_archive_path) File "/var/task/handler.py", line 170, in load_remote_project_archive s3 = boto_session.resource('s3') File "/var/task/boto3/session.py", line 347, in resource has_low_level_client) boto3.exceptions.ResourceNotExistsError: The 's3' resource does not exist. The available resources are: - [1565266201109] [DEBUG] 2019-08-08T12:10:01.109Z ef9eb08e-f4f9-43a5-9072-c11f15be1b80 Zappa Event: {'Records': [{'eventVersion': '2.1', 'eventSource': 'aws:s3', 'awsRegion': 'eu-central-1', 'eventTime': '2019-08-08T12:09:00.157Z', 'eventName': 'ObjectCreated:Put', 'userIdentity': {'principalId': 'AWS:AIDAY5TJ3FA44X4WWYBA7'}, 'requestParameters': {'sourceIPAddress': '213.127.67.154'}, 'responseElements': {'x-amz-request-id': 'B35B73FF4F75D59E', 'x-amz-id-2': 'ELkqeB94Gb17TPF12ffhVtASmEhtR7NlQO4DevDruHvA5I5DrFlln/oYPSJkDx9RO/D7MMxERKE='}, 's3': {'s3SchemaVersion': '1.0', 'configurationId': 'function-dev:sample.lambda_handler', 'bucket': {'name': 'test-function', 'ownerIdentity': {'principalId': 'A3V2HVB9FLXO6B'}, 'arn': 'arn:aws:s3:::test-function'}, 'object': {'key': 'test_5.pts.gz', 'size': 7924, 'eTag': '3b39cf26af0e2aa49b917a2771bcc068', 'sequencer': '005D4C10DC203B4EB2'}}}]} [1565266201111] No module named 'sample': ModuleNotFoundError Traceback (most recent call last): File "/var/task/handler.py", line 602, in lambda_handler return LambdaHandler.lambda_handler(event, context) File "/var/task/handler.py", line 248, in lambda_handler return handler.handler(event, context) File "/var/task/handler.py", line 423, in handler app_function = self.import_module_and_get_function(whole_function) File "/var/task/handler.py", line 239, in import_module_and_get_function app_module = importlib.import_module(module) File "/var/lang/lib/python3.6/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_import File "<frozen importlib._bootstrap>", line 971, in _find_and_load File "<frozen importlib._bootstrap>", line 953, in _find_and_load_unlocked ModuleNotFoundError: No module named 'sample' ``` - I verified the tar.gz is in the correct `bucket-zappa` bucket on S3 - The Zappa LambdaRole is correctly created and has access to S3 <!--- Also, please make sure that you are running Zappa _from a virtual environment_ and are using Python 2.7/3.6 --> ## Expected Behavior <!--- Tell us what should happen --> I expected the application to be found on S3 and the specific module.function to be ran upon the event. ## Actual Behavior <!--- Tell us what happens instead --> It seems the package cannot be found on S3 and when the S3 event comes in Lambda is not able to find the correct module.function to run ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> Its hard to specify how to reproduce because I have no idea what is causing this, from one day to the other my Lambda applications start raising this issue. ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: 0.48.2 * Operating System and Python version: Xenial 16.04 python3.6 * The output of `pip freeze`: boto3==1.9.204 * Link to your project (optional): * Your `zappa_settings.py`: ``` { "dev": { "project_name": "test", "runtime": "python3.6", "exclude": ["env","tests","data","output","notebooks", "launch.sh"], "s3_bucket": "bucket-zappa", "slim_handler": true, "aws_region": "eu-central-1", "events": [{ "function": "sample.lambda_handler", "event_source": { "arn": "arn:aws:s3:::test-function", "events": ["s3:ObjectCreated:*"] } }], "keep_warm": false, "apigateway_enabled": false } } ```
closed
2021-02-20T12:42:15Z
2024-04-13T18:37:15Z
https://github.com/zappa/Zappa/issues/775
[ "no-activity", "auto-closed" ]
jneves
3
zappa/Zappa
django
695
[Migrated] Flask-like app factory support
Originally from: https://github.com/Miserlou/Zappa/issues/1775 by [fcicc](https://github.com/fcicc) # Description How to use application factories in Zappa: * app.py `def create_app():` &nbsp;&nbsp;&nbsp;&nbsp;`app = Flask()` &nbsp;&nbsp;&nbsp;&nbsp;`#define settings, db, routes, ...` &nbsp;&nbsp;&nbsp;&nbsp;`return app` * zappa_settings.json `{` &nbsp;&nbsp;&nbsp;&nbsp;`"app_function": "app.create_app"` `}` # GitHub Issue #1771
closed
2021-02-20T12:33:03Z
2022-07-16T06:37:34Z
https://github.com/zappa/Zappa/issues/695
[ "needs-user-testing" ]
jneves
1
hootnot/oanda-api-v20
rest-api
90
"Connection: Keep-Alive" question
This is more a question than an issue. It's about the best practices section of the developer references (http://developer.oanda.com/rest-live-v20/best-practices/). They say that you should add a http header with the following content `Connection: Keep-Alive`. However I ran `grep -rn "Connection" .` in this repository and I found nothing. I would like to know if you consider this.
closed
2017-07-19T18:37:45Z
2017-07-20T07:49:16Z
https://github.com/hootnot/oanda-api-v20/issues/90
[]
silgon
3
tqdm/tqdm
pandas
859
fractional total keyword can cause AssertionError in version 4.40
In the newest version, a fractional total can produce an AssertionError, where in previous versions it worked as expected. The documentation suggests that `total` can be a floating point value, so the error appears to be a bug. Here is a minimal reproducible example: ```python import sys, tqdm print(tqdm.__version__, sys.version, sys.platform) for i in tqdm.tqdm(iterable=range(10), total=9.6): pass ``` Here is the output I get in an older tqdm version: ``` 4.32.2 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0] linux 10it [00:00, 74367.09it/s] ``` Here is the output in 4.40.0: ``` 4.40.0 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0] linux 0%| | 0/9.6 [00:00<?, ?it/s\ ]Traceback (most recent call last): File "tqdm_test.py", line 3, in <module> for i in tqdm.tqdm(iterable=range(10), total=9.6): File "/home/aronnem/miniconda3/envs/tqdm_test/lib/python3.6/site-packages/tqdm/std.py", line 1150, in __iter__ self.close() File "/home/aronnem/miniconda3/envs/tqdm_test/lib/python3.6/site-packages/tqdm/std.py", line 1261, in close self.display(pos=0) File "/home/aronnem/miniconda3/envs/tqdm_test/lib/python3.6/site-packages/tqdm/std.py", line 1428, in display self.sp(self.__repr__() if msg is None else msg) File "/home/aronnem/miniconda3/envs/tqdm_test/lib/python3.6/site-packages/tqdm/std.py", line 1058, in __repr__ return self.format_meter(**self.format_dict) File "/home/aronnem/miniconda3/envs/tqdm_test/lib/python3.6/site-packages/tqdm/std.py", line 482, in format_meter charset=Bar.ASCII if ascii is True else ascii or Bar.UTF) File "/home/aronnem/miniconda3/envs/tqdm_test/lib/python3.6/site-packages/tqdm/std.py", line 146, in __init__ assert 0 <= frac <= 1 AssertionError ``` [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q= [StackOverflow#tqdm]: https://stackoverflow.com/questions/tagged/tqdm
closed
2019-12-05T16:49:54Z
2019-12-06T11:29:57Z
https://github.com/tqdm/tqdm/issues/859
[ "p0-bug-critical ☢", "duplicate 🗐" ]
aronnem
2
mwaskom/seaborn
data-visualization
3,784
[Feature Request] style parameter in `displot`, `catplot` and `lmplot` similar to `relplot`
Currently, `relplot` has `style` parameter that provides an additional way to "facet" the data beyond col, row and hue using `linestyle`. It would be nice if this was extended to the other figure plot types. This would also lead to a more consistent API across the different facet grid plots. - `displot` - kdeplot and ecdfplot would change `linestyle`, histplot would change patch `hatching`. - `catplot` - stripplot, swarmplot would change `linestyle`; boxplot, violinplot, boxenplot, barplot and countplot would change `hatching`, pointplot would change `linestyle` and `marker` - `lmplot` - would change `marker` and `linestyle` References for supporting in underlying matplotlib. https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html https://matplotlib.org/stable/gallery/lines_bars_and_markers/marker_reference.html https://matplotlib.org/stable/gallery/shapes_and_collections/hatch_style_reference.html
closed
2024-11-13T21:48:27Z
2024-11-13T22:56:40Z
https://github.com/mwaskom/seaborn/issues/3784
[]
hguturu
4
fastapi/fastapi
python
13,067
poor quality traceback / useful stack frames not present when exceptions raised in sync dependencies
### Privileged issue - [X] I'm ~@tiangolo or he asked me directly to create an issue here~ a liar, but the discussion template was crazy onerous, and I'm confident I can write a decent, succinct issue description that's worth reading here ;-) ### Issue Content If I apply this diff to the [full-stack-fastapi-template](https://github.com/fastapi/full-stack-fastapi-template/blob/88c83cc06ccab67efa839c2c0994435b727986a3/backend/app/api/deps.py#L21-L23): ```diff diff --git a/backend/app/api/deps.py b/backend/app/api/deps.py index c2b83c8..c99cdb2 100644 --- a/backend/app/api/deps.py +++ b/backend/app/api/deps.py @@ -19,6 +19,7 @@ reusable_oauth2 = OAuth2PasswordBearer( def get_db() -> Generator[Session, None, None]: + raise Exception("error") with Session(engine) as session: yield session ``` ...and issue a GET to `http://127.0.0.1:8000/api/v1/users/`, the traceback shown in the console is really unhelpful: ``` File "...3.11/lib/python3.11/contextlib.py", line 650, in enter_async_context result = await _enter(cm) ^^^^^^^^^^^^^^^^ File "...3.11/lib/python3.11/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File ".../full-stack-fastapi-template/backend/.venv/lib/python3.11/site-packages/fastapi/concurrency.py", line 35, in contextmanager_in_threadpool raise e Exception: error ``` There are no frames from the actual site of the exception, and, on the face of it, potentially no way to go back from the exception to the source of the error. I first noticed this doing test driven development on a new FastAPI project, having not done any FastAPI dev for a couple of years, and was pretty shocked. What I don't understand is why the exception being re-raised appears to have no traceback of its own?
closed
2024-12-13T08:04:35Z
2024-12-14T10:42:04Z
https://github.com/fastapi/fastapi/issues/13067
[]
cjw296
7
deepfakes/faceswap
machine-learning
1,085
Being informed on manual preview refresh
On slower hardware and with demanding model configurations it can take several minutes until a manual preview refresh actually completes. For that reason I suggest that another message "Refresh preview done" will be added, so that the user can focus on other things in the meantime and still reliably tell whether the refresh has completed or not.
closed
2020-11-10T10:37:25Z
2021-05-30T10:48:41Z
https://github.com/deepfakes/faceswap/issues/1085
[ "feature" ]
OreSeq
1
rasbt/watermark
jupyter
1
Error in the date with the options -u -n -t -z
Hello Sebastian, I noticed that with `%watermark -u -n -t -z` the date is incorrect, the day takes the same value as the minute. Here is, for comparison, the outputs I have with different options: --- - Output of %watermark 01/10/2014 14:17:34 CPython 2.7.3 IPython 2.2.0 compiler : GCC 4.2.1 (Apple Inc. build 5666) (dot 3) system : Darwin release : 12.5.0 machine : x86_64 processor : i386 CPU cores : 2 interpreter: 64bit --- - Output of %watermark -d -t 01/10/2014 14:17:34 --- - Output of %watermark -u -n -t -z Last updated: Wed Oct 17 2014 14:17:34 CEST
closed
2014-10-01T12:21:08Z
2014-10-01T17:46:57Z
https://github.com/rasbt/watermark/issues/1
[]
TaurusOlson
1
521xueweihan/HelloGitHub
python
2,187
微信聊天记录年度报告
## 项目推荐 - 项目地址:https://github.com/myth984/wechat-report - 类别:JS - 项目后续更新计划: - 项目描述: - 必写:和女朋友微信聊天记录统计年度报告 - 描述长度(不包含示例代码): 一步一步的教你生成和女朋友的微信聊天记录年度报告 - 推荐理由:各个APP都有年度报告 给女朋友也出一个报告吧 - 截图: ![image](https://user-images.githubusercontent.com/43159834/165904532-48a8948b-e02a-4c5f-8f59-58e3aa89e3e9.png)
closed
2022-04-29T07:51:20Z
2022-05-27T01:22:32Z
https://github.com/521xueweihan/HelloGitHub/issues/2187
[ "已发布", "JavaScript 项目" ]
myth984
1
mwaskom/seaborn
data-science
3,592
Add more detailed errorbar type (ci, pi, se, sd) description to the documentation
I propose adding a short explanation of the options ci, pi, sd, and se to every function description that uses the errorbar keyword. Like a link to the tutorial section for example, since that page never shows up in my search queries. Showing the equations used behind the different types woul also be a benefit, as it might be unclear if the SDEV is calculated with n or n-1.
closed
2023-12-14T13:36:39Z
2023-12-17T22:43:51Z
https://github.com/mwaskom/seaborn/issues/3592
[]
rk-exxec
1
microsoft/unilm
nlp
882
BEIT v3 code
I am very interested in the BEIT v3 paper. When will the code be publicly available? Thanks!
closed
2022-09-28T12:24:09Z
2023-03-13T13:58:55Z
https://github.com/microsoft/unilm/issues/882
[]
DecstionBack
2
babysor/MockingBird
deep-learning
128
RuntimeError: CUDA out of memory. Tried to allocate 58.00 MiB (GPU 0; 6.00 GiB total capacity; 1.83 GiB already allocated; 2.49 GiB free; 2.02 GiB reserved in total by PyTorch)
{| Epoch: 1/1 (121/15311) | Loss: 1.719 | 0.73 steps/s | Step: 0k | }Traceback (most recent call last): 出现错误 RuntimeError: CUDA out of memory. Tried to allocate 58.00 MiB (GPU 0; 6.00 GiB total capacity; 1.83 GiB already allocated; 2.49 GiB free; 2.02 GiB reserved in total by PyTorch) 显示显存不足 已经修改### Tacotron Training tts_schedule = [(2, 1e-3, 10_000, 8), # Progressive training schedule (2, 5e-4, 15_000, 8), # (r, lr, step, batch_size) (2, 2e-4, 20_000, 8), # (r, lr, step, batch_size) (2, 1e-4, 30_000, 8), # (2, 5e-5, 40_000, 8), # (2, 1e-5, 60_000, 8), # (2, 5e-6, 160_000, 8), # r = reduction factor (# of mel frames (2, 3e-6, 320_000, 8), # synthesized for each decoder iteration) (2, 1e-6, 640_000, 8)], # lr = learning rate 请问我要怎么调整才能继续训练合成器?感谢各位大佬
open
2021-10-08T14:47:59Z
2022-01-18T12:00:47Z
https://github.com/babysor/MockingBird/issues/128
[]
yinjia823
4
Anjok07/ultimatevocalremovergui
pytorch
1,577
I have this error code, It wont go away, no matter what i try
Last Error Received: Process: MDX-Net Missing file error raised. Please address the error and try again. If this error persists, please contact the developers with the error details. Raw Error Details: FileNotFoundError: "[WinError 2] Das System kann die angegebene Datei nicht finden" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 717, in seperate File "separate.py", line 382, in final_process File "separate.py", line 446, in write_audio File "separate.py", line 419, in save_with_message File "separate.py", line 393, in save_audio_file File "separate.py", line 1317, in save_format File "pydub\audio_segment.py", line 820, in from_wav File "pydub\audio_segment.py", line 735, in from_file File "pydub\utils.py", line 274, in mediainfo_json File "subprocess.py", line 951, in __init__ File "subprocess.py", line 1420, in _execute_child " Error Time Stamp [2024-10-05 10:40:26] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 64 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: MDX23C-InstVoc HQ chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: True is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: FLAC wav_type_set: 64-bit Float device_set: NVIDIA GeForce RTX 3070:0 help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: Vocals
open
2024-10-05T08:41:42Z
2024-10-05T08:41:42Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1577
[]
Elias02345
0
facebookresearch/fairseq
pytorch
4,633
Transformer's pad token has non-zero embedding
## 🐛 Bug By default a transformer's token embedding layer has `padding_idx=1` indicating that the embedding of this token should be a 0 vector and should not contribute to loss. However, transformers trained using fairseq have non-zero pad token embeddings. ### To Reproduce Steps to reproduce the behavior (**always include the command you ran**): 1. Train a model 2. Look at the token embedding weights #### Code sample The following fails with a transformer trained using fairseq: ```python def check_zero_embedding(checkpoint_path, padding_idx=1): weights = torch.load(checkpoint_path)['model']['encoder.embed_tokens.weight'] assert torch.all(weights[padding_idx] == 0) ``` alternatively, examine for WMT19 system: ```python #!/usr/bin/env python3 import torch import logging # disable noisy fairseq logging... logging.disable(1_000) if __name__ == "__main__": en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model') pad_embedding_weight = en2de.models[0].encoder.embed_tokens.weight[en2de.models[0].encoder.embed_tokens.padding_idx] assert torch.all(pad_embedding_weight == 0), f"Embedding for padding index should be 0, found {pad_embedding_weight}" ``` which fails: ```console $ python failing_test.py Using cache found in /Users/erip/.cache/torch/hub/pytorch_fairseq_main Loading codes from /Users/erip/.cache/torch/pytorch_fairseq/81a0be5cbbf1c106320ef94681844d4594031c94c16b0475be11faa5a5120c48.63b093d59e7e0814ff799bb965ed4cbde30200b8c93a44bf8c1e5e98f5c54db3/bpecodes ... Read 30000 codes from the codes file. Traceback (most recent call last): File "/Users/erip/failing_test.py", line 11, in <module> assert torch.all(pad_embedding_weight == 0), f"Embedding for padding index should be 0, found {pad_embedding_weight}" AssertionError: Embedding for padding index should be 0, found tensor([ 0.0109, 0.0018, 0.0024, ..., 0.0170, -0.0071, -0.0250], grad_fn=<SelectBackward0>) ``` ### Expected behavior <!-- A clear and concise description of what you expected to happen. --> ### Environment - fairseq Version (e.g., 1.0 or main): main - PyTorch Version (e.g., 1.0) 1.12 - OS (e.g., Linux): n/a - How you installed fairseq (`pip`, source): source - Build command you used (if compiling from source): ... - Python version: - CUDA/cuDNN version: - GPU models and configuration: - Any other relevant information: ### Additional context <!-- Add any other context about the problem here. -->
open
2022-08-07T00:03:59Z
2022-08-09T13:53:12Z
https://github.com/facebookresearch/fairseq/issues/4633
[ "bug", "needs triage" ]
erip
3
lux-org/lux
jupyter
94
Improve general sampling strategy in PandasExecutor
The current sampling strategy is crude and largely based on random sampling. We should investigate the performance degradation of Lux across various large datasets to select better sampling strategies, as well as exposing tunable parameters in the API to allow users to adjust for different sampling parameters and strategies. Add ReadTheDoc page explaining default sampling strategy and how to tune them in Lux.
closed
2020-09-25T08:49:56Z
2021-01-08T10:03:58Z
https://github.com/lux-org/lux/issues/94
[]
dorisjlee
1
gevent/gevent
asyncio
1,777
SSLContext recursion when initialized before patching
Simple repro: ```python import gevent.monkey import ssl ctx = ssl.SSLContext() ctx.options |= ssl.Options.OP_NO_TICKET gevent.monkey.patch_all() ctx.options |= ssl.Options.OP_NO_TICKET # infinite recursion here ``` Perhaps a way to solve it would be to restructure `gevent._ssl3.SSLContext` to **copy** SSLContext instead of **basing** on it: ```diff -class SSLContext(orig_SSLContext): +class SSLContext(orig_SSLContext.__base__): __slots__ = () + vars().update(orig_SSLContext.__dict__) ```
closed
2021-03-03T20:01:21Z
2021-03-04T02:03:24Z
https://github.com/gevent/gevent/issues/1777
[]
ikonst
4
google-research/bert
tensorflow
706
Couldn't train BERT with SQUAD 1.1
I created VM (n1-standard-2) and Cloud TPU (v3-8) using ctpu tool. I have created a Storage bucket and mounted it in VM using GCSfuse. Tried to run it. Failed. ``` python run_squad.py \ > --vocab_file=$BERT_BASE_DIR/vocab.txt \ > --bert_config_file=$BERT_BASE_DIR/bert_config.json \ > --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \ > --do_train=True \ > --train_file=$SQUAD_DIR/train-v1.1.json \ > --do_predict=True \ > --predict_file=$SQUAD_DIR/dev-v1.1.json \ > --train_batch_size=12 \ > --learning_rate=3e-5 \ > --num_train_epochs=2.0 \ > --max_seq_length=384 \ > --doc_stride=128 \ > output_dir=$output Traceback (most recent call last): File "run_squad.py", line 1283, in <module> tf.app.run() File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", l ine 119, in run argv = flags.FLAGS(_sys.argv if argv is None else argv, known_only=True) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/flags.py", line 112, in __call__ return self.__dict__['__wrapped'].__call__(*args, **kwargs) File "/usr/local/lib/python2.7/dist-packages/absl/flags/_flagvalues.py", line 636, in __call__ self._assert_all_validators() File "/usr/local/lib/python2.7/dist-packages/absl/flags/_flagvalues.py", line 510, in _assert_all_validators self._assert_validators(all_validators) File "/usr/local/lib/python2.7/dist-packages/absl/flags/_flagvalues.py", line 531, in _assert_validators raise _exceptions.IllegalFlagValueError('%s: %s' % (message, str(e))) absl.flags._exceptions.IllegalFlagValueError: flag --output_dir=None: Flag --output_ dir must have a value other than None. ``` `$output` is `/output: Is a directory`.
closed
2019-06-19T06:13:50Z
2023-02-17T04:17:26Z
https://github.com/google-research/bert/issues/706
[]
JeevaTM
4
mlfoundations/open_clip
computer-vision
261
Investigate memory usage for HF models
mt5 xl non frozen + H/14 frozen uses > 40GB at batch size 1 that seems wrong, something is probably off
closed
2022-11-28T01:39:05Z
2024-10-30T16:32:06Z
https://github.com/mlfoundations/open_clip/issues/261
[ "bug", "important" ]
rom1504
2
vitalik/django-ninja
rest-api
436
Make `NinjaAPI().add_router` idempotent
**Problem** I have a project where we attach/register routes/urls during `apps.ready`. Which becomes problematic to keep doing when using `django-ninja` while also having test cases calling ```python with django.test.utils.modify_settings(INSTALLED_APPS={"append": ["django-app"]}): ... ``` As that'll trigger a runthrough of `apps.ready` for each installed app and `NinjaAPI().add_router` isn't idempotent, but instead raises a `ConfigError` from the code below: https://github.com/vitalik/django-ninja/blob/22e97cdab9faabc84a048eeac688192f3f1f19d7/ninja/router.py#L352-L359 **Describe the solution you'd like** I'd like `NinjaAPI().add_router` to be idempotent. Which I, from my brief investigation, think is possible. Since a `NinjaAPI` instance stores a list of 2-tuples with each tuple containing a prefix and a router. So what if `NinjaAPI.add_router` starts out by checking ```python if router.api == self and (prefix, router) in self._routers: # Idempotent on identical registration return elif router.api is not None: # Router already attached to an api raise ConfigError(...) ``` I think that should also allow removal of the `debug_server_url_reimport` in `Router.build_routers`: https://github.com/vitalik/django-ninja/blob/22e97cdab9faabc84a048eeac688192f3f1f19d7/ninja/router.py#L354-L356
open
2022-05-04T07:50:31Z
2022-05-04T07:50:31Z
https://github.com/vitalik/django-ninja/issues/436
[]
flaeppe
0
RobertCraigie/prisma-client-py
asyncio
259
Create with required relation is incorrectly typed
<!-- Thanks for helping us improve Prisma Client Python! 🙏 Please follow the sections in the template and provide as much information as possible about your problem, e.g. by enabling additional logging output. See https://prisma-client-py.readthedocs.io/en/stable/reference/logging/ for how to enable additional logging output. --> ## Bug description <!-- A clear and concise description of what the bug is. --> The following code will pass type checks but will raise an error at runtime as user is a required relation ```py Profile.prisma().create({'bio': 'My bio', 'country': 'Scotland'}) ``` ## Expected behavior <!-- A clear and concise description of what you expected to happen. --> Type checkers should report an error ## Prisma information <!-- Your Prisma schema, Prisma Client Python queries, ... Do not include your database credentials when sharing your Prisma schema! --> Internal schema ## Environment & setup <!-- In which environment does the problem occur --> - OS: <!--[e.g. Mac OS, Windows, Debian, CentOS, ...]--> Mac OS - Database: <!--[PostgreSQL, MySQL, MariaDB or SQLite]--> SQLite - Python version: <!--[Run `python -V` to see your Python version]--> 3.9.9
open
2022-02-01T01:16:11Z
2022-02-02T03:11:40Z
https://github.com/RobertCraigie/prisma-client-py/issues/259
[ "bug/2-confirmed", "kind/bug", "level/intermediate", "priority/high" ]
RobertCraigie
0
recommenders-team/recommenders
data-science
1,597
[BUG] Error when publishing to pypi with pymanopt
### Description <!--- Describe your issue/bug/request in detail --> When publishing to pypi the current code, I get an error: ``` $ twine upload lib/* Uploading distributions to https://upload.pypi.org/legacy/ /anaconda/envs/py38_default/lib/python3.8/site-packages/twine/auth.py:66: UserWarning: Failed to create the collection: Prompt dismissed.. warnings.warn(str(exc)) Enter your username: miguelgfierro /anaconda/envs/py38_default/lib/python3.8/site-packages/twine/auth.py:75: UserWarning: Failed to create the collection: Prompt dismissed.. warnings.warn(str(exc)) Enter your password: Uploading recommenders-1.0.0-py3-none-manylinux1_x86_64.whl 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 334k/334k [00:01<00:00, 309kB/s] Error during upload. Retry with the --verbose option for more details. HTTPError: 400 Bad Request from https://upload.pypi.org/legacy/ Invalid value for requires_dist. Error: Can't have direct dependency: 'pymanopt @ https://github.com/pymanopt/pymanopt/archive/fb36a272cdeecb21992cfd9271eb82baafeb316d.zip' ``` We need to find a good dependency for pymanopt that works with TF2 and the numpy version we have ### In which platform does it happen? <!--- Describe the platform where the issue is happening (use a list if needed) --> <!--- For example: --> <!--- * Azure Data Science Virtual Machine. --> <!--- * Azure Databricks. --> <!--- * Other platforms. --> ### How do we replicate the issue? <!--- Please be specific as possible (use a list if needed). --> <!--- For example: --> <!--- * Create a conda environment for pyspark --> <!--- * Run unit test `test_sar_pyspark.py` with `pytest -m 'spark'` --> <!--- * ... --> ### Expected behavior (i.e. solution) <!--- For example: --> <!--- * The tests for SAR PySpark should pass successfully. --> ### Other Comments
closed
2021-12-21T13:26:08Z
2022-01-10T14:50:40Z
https://github.com/recommenders-team/recommenders/issues/1597
[ "bug" ]
miguelgfierro
7
syrupy-project/syrupy
pytest
438
How to use pytest.approx() with syrupy
We have a bunch of tests that perform computations using pandas, numpy, and other scientific libraries and produce a dictionary containing the resulting key-value pairs. Some of the values are slightly different when run on different platforms (i.e. macOS vs Linux), so we wrap those values with `pytest.approx()` to accommodate those minor and acceptable differences. Digging into the syrupy code, the final comparison between the test value and the snapshot is performed against serialized data, so it appears that `pytest.approx()` cannot be used. Is that correct? Or can you suggest a way to allow these two great features to be used together? Thanks!
closed
2020-12-01T00:30:51Z
2020-12-03T17:30:22Z
https://github.com/syrupy-project/syrupy/issues/438
[ "question" ]
hashstat
5
Textualize/rich
python
3,441
[REQUEST] Support python -m rich.traceback myscript.py
**How would you improve Rich?** The Python debugger `pdb` supports running a script with debugging enabled by changing the command line call from `python myscript.py --args` to `python -m pdb myscript.py --args`. It would be great to have the same functionality for running a script with rich tracebacks installed: `python -m rich.traceback myscript.py --args`. The argument-less `python -m rich.traceback` could continue to display an example as before. **What problem does it solve for you?** This feature would allow using rich tracebacks occasionally for debugging without requiring to change any code or installing `sitecustomize.py` (especially when frequently changing environments).
closed
2024-08-02T05:59:18Z
2024-08-26T14:58:35Z
https://github.com/Textualize/rich/issues/3441
[ "Needs triage" ]
f0k
3
Guovin/iptv-api
api
640
分类指的是?这个地址作为订阅源我试了是可以获取结果的
分类指的是?这个地址作为订阅源我试了是可以获取结果的 _Originally posted by @Guovin in https://github.com/Guovin/iptv-api/issues/637#issuecomment-2530116885_ 是可以在每个大类上细分,如咪咕分类下有CCTV1-17,卫视等等,还有IPV6分类下有CCTV1-17,卫视等等。有没可能按照链接上的来分类
closed
2024-12-10T07:40:13Z
2024-12-10T07:41:34Z
https://github.com/Guovin/iptv-api/issues/640
[]
alantang1977
0
ml-tooling/opyrator
pydantic
94
Issue regarding determine uploaded file types on MIME
Hi, i played a bit with the project and noticed one potential issue. In this [function](https://github.com/ml-tooling/opyrator/blob/3f443f05b6b21f00685c2b9bba16cf080edf2385/src/opyrator/ui/streamlit_ui.py#L242), the mime type could be manipulated by remote user, hence he could upload any file with a manipulated MIME header. The description of such potential vulnerability is [here](https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload#Using_White-List_for_Files.E2.80.99_Extensions). One could use magic code to check the uploaded file type rather than rely on the MIME or extension
closed
2024-02-18T20:04:21Z
2024-11-08T02:33:18Z
https://github.com/ml-tooling/opyrator/issues/94
[ "question", "stale" ]
nevercodecorrect
3
microsoft/Bringing-Old-Photos-Back-to-Life
pytorch
166
老照片
老照片
closed
2021-05-15T16:23:15Z
2021-05-24T11:02:35Z
https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/issues/166
[]
56518
0
pyro-ppl/numpyro
numpy
1,916
`MCMC.run` gets error after `MCMC.warmup` with `AIES`
Hi, I get an error when I `MCMC.run` after `warmup` with `AIES`. Here is the example ``` import jax import jax.numpy as jnp import numpyro from numpyro.infer import MCMC, AIES import numpyro.distributions as dist n_dim, num_chains = 5, 100 mu, sigma = jnp.zeros(n_dim), jnp.ones(n_dim) def model(mu, sigma): with numpyro.plate('n_dim', n_dim): numpyro.sample("x", dist.Normal(mu, sigma)) kernel = AIES(model, moves={AIES.DEMove() : 0.5, AIES.StretchMove() : 0.5}) mcmc = MCMC(kernel, num_warmup=100, num_samples=100, num_chains=num_chains, chain_method='vectorized') mcmc.warmup(jax.random.PRNGKey(0), mu, sigma) mcmc.run(jax.random.PRNGKey(1), mu, sigma) ``` The error ``` { "name": "ValueError", "message": "split accepts a single key, but was given a key array of shape (100, 2) != (). Use jax.vmap for batching.", "stack": "--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[13], line 26 18 mcmc = MCMC(kernel, 19 num_warmup=100, 20 num_samples=100, 21 num_chains=num_chains, 22 chain_method='vectorized') 25 mcmc.warmup(jax.random.PRNGKey(0), mu, sigma) ---> 26 mcmc.run(jax.random.PRNGKey(1), mu, sigma) File ~/anaconda3/lib/python3.11/site-packages/numpyro/infer/mcmc.py:675, in MCMC.run(self, rng_key, extra_fields, init_params, *args, **kwargs) 673 else: 674 assert self.chain_method == \"vectorized\" --> 675 states, last_state = partial_map_fn(map_args) 676 # swap num_samples x num_chains to num_chains x num_samples 677 states = tree_map(lambda x: jnp.swapaxes(x, 0, 1), states) File ~/anaconda3/lib/python3.11/site-packages/numpyro/infer/mcmc.py:462, in MCMC._single_chain_mcmc(self, init, args, kwargs, collect_fields, remove_sites) 456 collection_size = self._collection_params[\"collection_size\"] 457 collection_size = ( 458 collection_size 459 if collection_size is None 460 else collection_size // self.thinning 461 ) --> 462 collect_vals = fori_collect( 463 lower_idx, 464 upper_idx, 465 sample_fn, 466 init_val, 467 transform=_collect_fn(collect_fields, remove_sites), 468 progbar=self.progress_bar, 469 return_last_val=True, 470 thinning=self.thinning, 471 collection_size=collection_size, 472 progbar_desc=partial(_get_progbar_desc_str, lower_idx, phase), 473 diagnostics_fn=diagnostics, 474 num_chains=self.num_chains if self.chain_method == \"parallel\" else 1, 475 ) 476 states, last_val = collect_vals 477 # Get first argument of type `HMCState` File ~/anaconda3/lib/python3.11/site-packages/numpyro/util.py:367, in fori_collect(lower, upper, body_fun, init_val, transform, progbar, return_last_val, collection_size, thinning, **progbar_opts) 365 with tqdm.trange(upper) as t: 366 for i in t: --> 367 vals = jit(_body_fn)(i, vals) 368 t.set_description(progbar_desc(i), refresh=False) 369 if diagnostics_fn: [... skipping hidden 11 frame] File ~/anaconda3/lib/python3.11/site-packages/numpyro/util.py:332, in fori_collect.<locals>._body_fn(i, vals) 329 @cached_by(fori_collect, body_fun, transform) 330 def _body_fn(i, vals): 331 val, collection, start_idx, thinning = vals --> 332 val = body_fun(val) 333 idx = (i - start_idx) // thinning 334 collection = cond( 335 idx >= 0, 336 collection, (...) 339 identity, 340 ) File ~/anaconda3/lib/python3.11/site-packages/numpyro/infer/mcmc.py:188, in _sample_fn_nojit_args(state, sampler, args, kwargs) 186 def _sample_fn_nojit_args(state, sampler, args, kwargs): 187 # state is a tuple of size 1 - containing HMCState --> 188 return (sampler.sample(state[0], args, kwargs),) File ~/anaconda3/lib/python3.11/site-packages/numpyro/infer/ensemble.py:192, in EnsembleSampler.sample(self, state, model_args, model_kwargs) 190 def sample(self, state, model_args, model_kwargs): 191 z, inner_state, rng_key = state --> 192 rng_key, _ = random.split(rng_key) 193 z_flat, unravel_fn = batch_ravel_pytree(z) 195 if self._randomize_split: File ~/anaconda3/lib/python3.11/site-packages/jax/_src/random.py:285, in split(key, num) 274 def split(key: KeyArrayLike, num: int | tuple[int, ...] = 2) -> KeyArray: 275 \"\"\"Splits a PRNG key into `num` new keys by adding a leading axis. 276 277 Args: (...) 283 An array-like object of `num` new PRNG keys. 284 \"\"\" --> 285 typed_key, wrapped = _check_prng_key(\"split\", key, error_on_batched=True) 286 return _return_prng_keys(wrapped, _split(typed_key, num)) File ~/anaconda3/lib/python3.11/site-packages/jax/_src/random.py:108, in _check_prng_key(name, key, allow_batched, error_on_batched) 105 msg = (f\"{name} accepts a single key, but was given a key array of \" 106 f\"shape {np.shape(key)} != (). Use jax.vmap for batching.\") 107 if error_on_batched: --> 108 raise ValueError(msg) 109 else: 110 warnings.warn(msg + \" In a future JAX version, this will be an error.\", 111 FutureWarning, stacklevel=3) ValueError: split accepts a single key, but was given a key array of shape (100, 2) != (). Use jax.vmap for batching." ``` It will get the same error if use `ESS`
closed
2024-11-25T14:53:29Z
2024-11-29T01:52:21Z
https://github.com/pyro-ppl/numpyro/issues/1916
[ "bug" ]
xiesl97
2
aiogram/aiogram
asyncio
1,103
Documentation mistake for PreCheckoutQuery type.
### Checklist - [x] I am sure the error is coming from aiogram code - [X] I have searched in the issue tracker for similar bug reports, including closed ones ### Operating system Windows 11 21H2 ### Python version 3.11.1 ### aiogram version 2.24 ### Expected behavior When I open documentation for [types.PreCheckoutQuery](https://github.com/aiogram/aiogram/blob/dev-2.x/aiogram/types/pre_checkout_query.py) class, it should contain docstring as provided in [Bot API documentation](https://core.telegram.org/bots/api#precheckoutquery). ### Current behavior When I open documentation for [types.PreCheckoutQuery](https://github.com/aiogram/aiogram/blob/dev-2.x/aiogram/types/pre_checkout_query.py) class, I see text in docstring about HTML5 games which is not related to Telegram Payments and `PreCheckoutQuery` type. ### Steps to reproduce 1. Open [source code](https://github.com/aiogram/aiogram/blob/dev-2.x/aiogram/types/pre_checkout_query.py) for PreCheckoutQuery type. 2. Open official Bot API [documentation](https://core.telegram.org/bots/api#precheckoutquery). 3. Check that docstring in code and description in documentation do not match as they should be. ### Code example _No response_ ### Logs _No response_ ### Additional information This is also reproduced when I open documentation on [docs.aiogram.dev](https://docs.aiogram.dev/en/latest/telegram/types/pre_checkout_query.html) in the browser
closed
2023-01-21T12:44:49Z
2023-08-14T20:23:56Z
https://github.com/aiogram/aiogram/issues/1103
[ "bug" ]
iamnalinor
1
sinaptik-ai/pandas-ai
data-visualization
841
Conversational/Follow Up questions for Agent still takes the base dataframe for code generation
### System Info python==3.10.13 pandasai==1.5.11 Windows OS ### 🐛 Describe the bug I initialized pandasai agent for conversation capabilities. Gave the base dataframe and Azure OpenAI LLM. Agent answers first question well, but when I ask follow up question it runs/build the python code on base dataframe rather than previous answer dataframe. Below is my code (excluding imports) ``` nl_course_agent = Agent([course_data], memory_size=10, config={ "llm": llm, "response_parser": CustomPandasDataFrameResponse, "generate_python_code": MyCustomPrompt() # "custom_instructions": "Ensure to include all queries in the conversation while you generate the response" } ) question1 = "what are HR case management related courses?" question2 = "show me only greater than 4 rating" nl_course_agent.start_new_conversation() nl_course_agent.chat(question1) ## returns right answer ### Follow up questions nl_course_agent.chat(question2) ## Returns wrong answer print(nl_course_agent.last_prompt) <conversation> Q: what are HR case management related courses? A: Check it out: <dataframe> </conversation> <query> show me only greater than 4 rating </query> Is the query somehow related to the previous conversation? Answer only "true" or "false" (lowercase). nl_course_agent.check_if_related_to_conversation(question2) ## Returns True ``` I also tried a custom prompt but no change in response. ``` class MyCustomPrompt(AbstractPrompt): template = """You are given a dataframe with number if rows equal to {dfs[0].shape[0]} and number of columns equal to {dfs[0].shape[1]} Here's the conversation: {conversation} If the question is related to conversation, then use entire conversation to filter the dataframe. Not just the recent question. """ ``` How to make agent 1) Take entire conversation to build python code if it recognizes a follow up question ? OR 2) Pass filtered dataframe as input to follow up question?
closed
2023-12-29T05:11:32Z
2024-06-01T00:20:42Z
https://github.com/sinaptik-ai/pandas-ai/issues/841
[]
chaituValKanO
0
itamarst/eliot
numpy
144
Allow passing existing `Field`s to `fields`
As it stands combining previously defined `Field`s with `fields` is a bit of a mess: ``` python BAR = Field(u'bar', ...) LOG_FOO = ActionType(u'example:foo', [BAR, ...] + fields(reason=int, ...), [BAR, ...] + fields(result=int), ...) ``` It would be convenient if `fields` accepted positional arguments of `Field` instances.
closed
2015-02-24T09:43:19Z
2018-09-22T20:59:16Z
https://github.com/itamarst/eliot/issues/144
[]
jonathanj
1
keras-team/autokeras
tensorflow
828
[Question] Project Algorithms Milestones and its relations to Kerastuner
Hi, You seem to be using RandomSearch and params band search (HyperBand) from kerastuner as algorithms. You are planning to deploy other popular NAS/AutoML as Reinforcement Learning and Meta-Heuristic Search (GA e.g.) ? Does keras-team plans to do all the algorithms in kerastuner or in this module ? Do you have a road to the milestones of it until the beta ? NAS is a very new research topic and seems to be very exciting to build a module to easy the flow through this research ... To note: master branch is not specifying kerastuner as dependency as-far-i-have-seem. thank you
closed
2019-11-07T19:04:30Z
2020-02-08T14:39:21Z
https://github.com/keras-team/autokeras/issues/828
[ "wontfix" ]
Uiuran
6
rougier/scientific-visualization-book
numpy
7
Visualizations
open
2021-08-11T23:06:12Z
2021-08-11T23:06:12Z
https://github.com/rougier/scientific-visualization-book/issues/7
[]
morr-debug
0
floodsung/Deep-Learning-Papers-Reading-Roadmap
deep-learning
85
UnicodeEncodeError: 'charmap' codec can't encode
[3] "Reducing the dimensionality of data with neur [...] (http://www.cs.toronto.edu/~hinton/science.pdf) Traceback (most recent call last): File "download.py", line 102, in <module> print_title(point.text) File "download.py", line 50, in print_title print('\n'.join(("", title, pattern * len(title)))) File "C:\Python27\lib\encodings\cp437.py", line 12, in encode return codecs.charmap_encode(input,errors,encoding_map) UnicodeEncodeError: 'charmap' codec can't encode character u'\uff08' in position 23: character maps to <undefined>
open
2017-12-05T15:37:13Z
2019-06-10T12:47:44Z
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap/issues/85
[]
Vyomax
4
tensorpack/tensorpack
tensorflow
782
ops are assigned to gpu when run DistributedTrainerParameterServer
I want to run DistributedTrainerParameterServer example , so I modify thr examples/basics/mnist-convnet.py as below: launch_train_with_config(config, SyncMultiGPUTrainerParameterServer(gpus=args.gpu.split(","))) ===> cluster = tf.train.ClusterSpec({"ps":["localhost:2222"], "worker":["localhost:2223"]}) server = tf.train.Server(cluster, job_name=args.job_name, task_index=int(args.task_index)) launch_train_with_config(config, DistributedTrainerParameterServer([int(x) for x in args.gpu.split(",")], server)) and run it in two window: python distributed-mnist-convnet.py --gpu=0 --job_name=ps --task_index=0 python distributed-mnist-convnet.py --gpu=0 --job_name=worker --task_index=0 then I got the error: ` [0606 09:37:48 @summary.py:75] Summarizing collection 'summaries' of size 19. [0606 09:37:48 @base.py:197] Creating the session ... 2018-06-06 09:37:48.721536: I tensorflow/core/distributed_runtime/master_session.cc:1024] Start master session 840fd3c8777697e2 with config: Traceback (most recent call last): File "distributed-mnist-convnet.py", line 145, in <module> launch_train_with_config(config, DistributedTrainerParameterServer([int(x) for x in args.gpu.split(",")], server)) File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/train/interface.py", line 90, in launch_train_with_config extra_callbacks=config.extra_callbacks) File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/train/base.py", line 301, in train_with_defaults steps_per_epoch, starting_epoch, max_epoch) File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/train/base.py", line 272, in train self.initialize(session_creator, session_init) File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/train/trainers.py", line 199, in initialize get_distributed_session_creator(self.server), session_init) File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/utils/argtools.py", line 181, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/train/base.py", line 200, in initialize self.sess = session_creator.create_session() File "/usr/local/lib/python2.7/dist-packages/tensorpack-0.8.5-py2.7.egg/tensorpack/tfutils/distributed.py", line 40, in create_session return sm.prepare_session(master=server.target, init_op=init_op) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/session_manager.py", line 281, in prepare_session sess.run(init_op, feed_dict=init_feed_dict) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 905, in run run_metadata_ptr) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1140, in _run feed_dict_tensor, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1321, in _do_run run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1340, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation 'tower0/lr': Could not satisfy explicit device specification '/job:worker/task:0/device:GPU:0' because no supported kernel for GPU devices is available. Registered kernels: device='CPU'; T in [DT_DOUBLE] device='CPU'; T in [DT_FLOAT] device='CPU'; T in [DT_BFLOAT16] device='CPU'; T in [DT_HALF] device='CPU'; T in [DT_INT8] device='CPU'; T in [DT_UINT8] device='CPU'; T in [DT_INT16] device='CPU'; T in [DT_UINT16] device='CPU'; T in [DT_INT32] device='CPU'; T in [DT_INT64] [[Node: tower0/lr = ScalarSummary[T=DT_FLOAT, _device="/job:worker/task:0/device:GPU:0"](tower0/lr/tags, tower0/learning_rate)]] `
closed
2018-06-06T09:47:26Z
2018-06-15T07:40:19Z
https://github.com/tensorpack/tensorpack/issues/782
[ "usage", "upstream issue" ]
yogurfrul
5
DistrictDataLabs/yellowbrick
scikit-learn
1,087
Show ROC for train and test + hide macro/micro in binary classification.
Hi! Thanks (again) for this incredible package 👍 I hope not to be missing heavily with this feature, I read all of the documentation + google + stackoverflow. Please if I'm wrong to point me in the right direction (=> URL) Normally we check train data vs test data. I see that ROC feature only shows the data for test. It would be nice to see the whole picture and check if the model is overfitting. But it is not easy in multiclass. In addition, I'd like to know how micro/macro statistics are calculated in binary class. Never see it before (and I guess it is only useful in multiclass). Thus, my recommendation is to turn them False by default. It can be done smoothly in sklearn: ![image](https://user-images.githubusercontent.com/9369685/87863788-97799a00-c935-11ea-8dfa-e75d4942edb4.png) In yellowbrick, for the same data I see: ![image](https://user-images.githubusercontent.com/9369685/87863816-1242b500-c936-11ea-9b80-130b66c83ced.png) As you can see, in the last plot the information regarding micro/macro does not add value, but the fact that the model heavily overfitting cannot be missed. This is my hack, to pass the train data as test data as shown in the image: ![image](https://user-images.githubusercontent.com/9369685/87863843-6057b880-c936-11ea-9270-8c87ed97cfa0.png) Given the mentioned behavior, why do we have to pass the train in order to plot since the current plot only shows the data for testing? Wouldn't be enough the model + the test data? Finally, another suggestion is in binary classification, to hide less representative class. It shouldn't add too much value to show both classes. Thanks a lot in advance! Keep rocking 🤘
closed
2020-07-18T23:39:51Z
2020-10-02T17:43:27Z
https://github.com/DistrictDataLabs/yellowbrick/issues/1087
[ "type: question" ]
pablo14
4
timkpaine/lantern
plotly
201
Add conda recipe
closed
2020-02-18T19:59:13Z
2024-02-03T21:42:36Z
https://github.com/timkpaine/lantern/issues/201
[ "feature", "backlog" ]
timkpaine
0
fastapi/sqlmodel
sqlalchemy
95
How to deal with column type needed situation?
### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python from sqlmodel import SQLModel, UniqueConstraint, select class BookCollection(SQLModel, table=True): user_nid: int book_nid: int UniqueConstraint( BookCollection.user_nid, # Argument of type "int" cannot be assigned to parameter "columns" of type "str | Column[Any]" in function "__init__" BookCollection.book_nid, # Argument of type "int" cannot be assigned to parameter "columns" of type "str | Column[Any]" in function "__init__" name="uidx_book_collection_user_nid_book_nid", ) # Cannot access member "not_in" for type "int" select(BookCollection).where(BookCollection.book_nid.not_in([1, 2, 3])) ``` ### Description Some APIs of sqlalchemy may still need a column type. Without that, a type checker will complain. Currently, I'm using `type: ignore` to skip those. ### Operating System Linux, macOS ### Operating System Details _No response_ ### SQLModel Version 0.0.4 ### Python Version 3.8.6 ### Additional Context _No response_
open
2021-09-14T08:05:54Z
2023-09-03T20:43:36Z
https://github.com/fastapi/sqlmodel/issues/95
[ "question" ]
Ma233
1
Anjok07/ultimatevocalremovergui
pytorch
757
Fail: "[ONNXRuntimeError]
Last Error Received: Process: Ensemble Mode If this error persists, please contact the developers with the error details. Raw Error Details: Fail: "[ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running FusedConv node. Name:'Conv_0' Status Message: CUDNN error executing cudnnFindConvolutionForwardAlgorithmEx( s_.handle, s_.x_tensor, s_.x_data, s_.w_desc, s_.w_data, s_.conv_desc, s_.y_tensor, s_.y_data, 1, &algo_count, &perf, algo_search_workspace.get(), max_ws_size)" Traceback Error: " File "UVR.py", line 4716, in process_start File "separate.py", line 287, in seperate File "separate.py", line 366, in demix_base File "separate.py", line 386, in run_model File "separate.py", line 281, in <lambda> File "onnxruntime\capi\onnxruntime_inference_collection.py", line 192, in run " Error Time Stamp [2023-08-22 20:55:57] Full Application Settings: vr_model: Choose Model aggression_setting: 10 window_size: 512 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 shifts: 3 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: MDX-Net: UVR-MDX-NET-Inst_HQ_3 is_demucs_pre_proc_model_activate: True is_demucs_pre_proc_model_inst_mix: False mdx_net_model: Choose Model chunks: Auto margin: 44100 compensate: Auto is_denoise: True is_invert_spec: True is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: True is_testing_audio: False is_add_model_name: True is_accept_any_input: True is_task_complete: False is_normalization: True is_create_model_folder: False mp3_bit_set: 320k save_format: WAV wav_type_set: PCM_24 help_hints_var: True model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems I don't know wtf, and I'm not professional in this.
open
2023-08-22T13:58:07Z
2023-08-22T19:10:34Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/757
[]
dimadt
3
tartiflette/tartiflette
graphql
256
.cook() is not idempotent
* [x] **Explain with a simple sentence the expected behavior**: it should be possible to call `.cook()` multiple times without it failing with hard-to-debug error tracebacks. * [x] **Tartiflette version:** 0.11.2 * [x] **Python version:** 3.7.2 * [x] **Executed in docker:** No * [x] **Is it a regression from a previous versions?** No (I think the root cause has always been there?) * [x] **Stack trace**: I pushed a failing test in #255 ```python _______________________________________ ERROR at setup of test_error_handling _______________________________________ ttftt = <tartiflette_starlette.app.TartifletteApp object at 0x105b25668> @pytest.fixture(name="client") def fixture_client(ttftt: TartifletteApp) -> TestClient: > with TestClient(ttftt) as client: tests/conftest.py:28: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/starlette/testclient.py:449: in __enter__ loop.run_until_complete(self.wait_startup()) /Users/Florimond/.pyenv/versions/3.7.2/lib/python3.7/asyncio/base_events.py:584: in run_until_complete return future.result() /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/starlette/testclient.py:467: in wait_startup self.task.result() /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/starlette/testclient.py:459: in lifespan await self.app(scope, self.receive_queue.get, self.send_queue.put) tartiflette_starlette/app.py:55: in __call__ await self.lifespan(scope, receive, send) /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/starlette/routing.py:472: in __call__ await self.startup() /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/starlette/routing.py:458: in startup await handler() tartiflette_starlette/app.py:51: in on_startup await self.engine.cook() /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/tartiflette/engine.py:157: in cook self._modules, modules_sdl = await _import_modules(modules, schema_name) /Users/Florimond/Developer/tartiflette-projects/tartiflette-starlette/venv/lib/python3.7/site-packages/tartiflette/engine.py:76: in _import_modules module = import_module(module["name"]) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ name = <module 'tests.resolvers' from '/Users/florimond/Developer/tartiflette-projects/tartiflette-starlette/tests/resolvers.py'> package = None def import_module(name, package=None): """Import a module. The 'package' argument is required when performing a relative import. It specifies the package to use as the anchor point from which to resolve the relative import to an absolute import. """ level = 0 > if name.startswith('.'): E AttributeError: module 'tests.resolvers' has no attribute 'startswith' /Users/Florimond/.pyenv/versions/3.7.2/lib/python3.7/importlib/__init__.py:118: AttributeError ``` **More details** While playing with https://github.com/tartiflette/tartiflette-starlette/issues/32 I ran into issues when `.cook()` was being called multiple times. (I need to to this because we can't create an `Engine` multiple times in the same session, and so one single `Engine` is reused across tests.) Ultimately, here are the reasons why I think this doesn't work: - `.cook()` tries to import modules, although `self._modules` might already contain the imported `module` objects from a previous call. Overall I think this (and potentially other issues) can be fixed by adding a simple `._cooked` flag and skipping `.cook()` if it's `True`. - `.cook()` always registers the SDL, even though it may have already been added to the `SchemaRegistry` before, which fails on second time because the same SDL is used, resulting in conflicting types. (I suppose this is why we use a `clean_registry` in the engine unit tests.) I don't really have an idea on how to fix this. Should I just clean the registry like we do in the tests before calling `.cook()` in `tartiflette-starlette`?
closed
2019-07-02T07:49:57Z
2019-07-02T22:30:07Z
https://github.com/tartiflette/tartiflette/issues/256
[ "enhancement" ]
florimondmanca
8
vanna-ai/vanna
data-visualization
228
Ask Snowflake - Couldn't run sql: 'NoneType' object has no attribute 'fetchall'
I am running vn.ask(question="some natual language questions") to query Snowflake table, and it returns the following error. None WARNING:snowflake.connector.cursor:execute: no query is given to execute Couldn't run sql: 'NoneType' object has no attribute 'fetchall'
closed
2024-02-02T10:29:33Z
2024-03-02T04:13:22Z
https://github.com/vanna-ai/vanna/issues/228
[]
boyuanqian
0
hankcs/HanLP
nlp
1,162
关于简繁转换的问题
<!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 1.6.5 ## 我的问题 System.out.println(HanLP.convertToSimplifiedChinese("「以後等妳當上皇后,就能買士多啤梨慶祝了」")); 输出 : “以后等你当上皇后,就能买草莓庆祝了” System.out.println(HanLP.convertToTraditionalChinese("“以后等你当上皇后,就能买草莓庆祝了”")); 输出 : “以後等你當上皇后,就能買草莓慶祝了” 期望能输出 “以後等妳當上皇后,就能買士多啤梨慶祝了”,是有什么地方需要配置吗?
closed
2019-04-26T07:19:26Z
2019-04-26T07:38:17Z
https://github.com/hankcs/HanLP/issues/1162
[]
humiao8sz
1
python-visualization/folium
data-visualization
1,286
How to open the popup automatically when a search is found for a GeoJson layer?
#### Please add a code sample or a nbviewer link, copy-pastable if possible ```python # Your code here import folium import branca import geopandas from folium.plugins import Search print(folium.__version__) states = geopandas.read_file( 'https://rawcdn.githack.com/PublicaMundi/MappingAPI/master/data/geojson/us-states.json', driver='GeoJSON' ) min, max = states['density'].quantile([0.05,0.95]).apply(lambda x: round(x, 2)) colormap = branca.colormap.LinearColormap( colors=['#f2f0f7','#cbc9e2','#9e9ac8','#756bb1','#54278f'], index=states['density'].quantile([0.2,0.4,0.6,0.8]), vmin=min, vmax=max ) colormap.caption="Population Density in the United States" m = folium.Map(location=[38,-97], zoom_start=4) style_function = lambda x: { 'fillColor': colormap(x['properties']['density']), 'color': 'black', 'weight':2, 'fillOpacity':0.5 } stategeo = folium.GeoJson( states, name='US States', style_function=style_function, popup=folium.GeoJsonPopup( fields=['name', 'density'], aliases=['State', 'Density'], localize=True ) ).add_to(m) statesearch = Search( layer=stategeo, geom_type='Polygon', placeholder='Search for a US State', collapsed=False, search_label='name' ).add_to(m) folium.LayerControl().add_to(m) colormap.add_to(m) m ``` #### Problem description I was trying to make the popup open automatically when a search is found in a GeoJson layer. My code is modified from an example code "plugin-Search.ipynb". I am using the "master" version of folium on the github. Right now, my code cannot open the popup when a search is found. I checked the source code "search.py" in "plugins" folder. The code is: {{this.layer.get_name()}}searchControl.on('search:locationfound', function(e) { {{this.layer.get_name()}}.setStyle(function(feature){ return feature.properties.style }) {% if this.options %} e.layer.setStyle({{ this.options|tojson }}); {% endif %} if(e.layer._popup) e.layer.openPopup(); }) I think the code should open popup if location is found but it did not. I manually added console.log(e.layer._popup) in front of if(e.layer._popup) in the html file. When I searched one state on the web page, the console outputs "undefined" for e.layer._popup. It's confusing to me. #### Expected Output I expect to open the popup automatically when a search is found like this leaflet search example https://labs.easyblog.it/maps/leaflet-search/examples/geojson-layer.html. #### Output of ``folium.__version__`` 0+unknown
open
2020-04-10T04:18:51Z
2022-11-28T16:56:55Z
https://github.com/python-visualization/folium/issues/1286
[ "bug" ]
RenchengDong
1
onnx/onnx
pytorch
6,013
AttributeError while installing ONNX
# Bug Report ### Is the issue related to model conversion? <!-- If the ONNX checker reports issues with this model then this is most probably related to the converter used to convert the original framework model to ONNX. Please create this bug in the appropriate converter's GitHub repo (pytorch, tensorflow-onnx, sklearn-onnx, keras-onnx, onnxmltools) to get the best help. --> No ### Describe the bug <!-- Please describe the bug clearly and concisely --> when I install ONNX from source in Ubuntu22.04, I follow the instructions in [install ONNX in Linux](https://github.com/onnx/onnx?tab=readme-ov-file#linux). However it failed. ### System information <!-- - OS Platform and Distribution (*e.g. Linux Ubuntu 20.04*): - ONNX version (*e.g. 1.13*): - Python version: - GCC/Compiler version (if compiling from source): - CMake version: - Protobuf version: - Visual Studio version (if applicable):--> - OS: Ubuntu22.04 - ONNX: latest - python: 3.10.12 - GCC: 11.4.0 - Cmake: 3.22.1 - Protobuf: 3.21.12 ### Reproduction instructions <!-- - Describe the code to reproduce the behavior. ``` import onnx model = onnx.load('model.onnx') ... ``` - Attach the ONNX model to the issue (where applicable)--> just follow the [install ONNX in Linux](https://github.com/onnx/onnx?tab=readme-ov-file#linux) ### Error logs ``` ➜ onnx git:(main) ✗ sudo pip install . Processing /home/cwwu/Downloads/onnx Installing build dependencies ... done Getting requirements to build wheel ... done Installing backend dependencies ... done Preparing metadata (pyproject.toml) ... done Building wheels for collected packages: UNKNOWN Building wheel for UNKNOWN (pyproject.toml) ... error error: subprocess-exited-with-error × Building wheel for UNKNOWN (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [105 lines of output] running bdist_wheel running build running build_ext running cmake_build -- ONNX_PROTOC_EXECUTABLE: /usr/bin/protoc -- Protobuf_VERSION: 3.21.12 Generated: /home/cwwu/Downloads/onnx/.setuptools-cmake-build/onnx/onnx-ml.proto Generated: /home/cwwu/Downloads/onnx/.setuptools-cmake-build/onnx/onnx-operators-ml.proto Generated: /home/cwwu/Downloads/onnx/.setuptools-cmake-build/onnx/onnx-data.proto -- Could NOT find pybind11 (missing: pybind11_DIR) -- pybind11 v2.10.4 -- -- ******** Summary ******** -- CMake version : 3.22.1 -- CMake command : /usr/bin/cmake -- System : Linux -- C++ compiler : /usr/bin/c++ -- C++ compiler version : 11.4.0 -- CXX flags : -Wnon-virtual-dtor -- Build type : Release -- Compile definitions : __STDC_FORMAT_MACROS -- CMAKE_PREFIX_PATH : -- CMAKE_INSTALL_PREFIX : /usr/local -- CMAKE_MODULE_PATH : -- -- ONNX version : 1.17.0 -- ONNX NAMESPACE : onnx -- ONNX_USE_LITE_PROTO : OFF -- USE_PROTOBUF_SHARED_LIBS : OFF -- Protobuf_USE_STATIC_LIBS : ON -- ONNX_DISABLE_EXCEPTIONS : OFF -- ONNX_DISABLE_STATIC_REGISTRATION : OFF -- ONNX_WERROR : OFF -- ONNX_BUILD_TESTS : OFF -- ONNX_BUILD_BENCHMARKS : OFF -- ONNX_BUILD_SHARED_LIBS : -- BUILD_SHARED_LIBS : -- -- Protobuf compiler : /usr/bin/protoc -- Protobuf includes : /usr/include -- Protobuf libraries : /usr/lib/x86_64-linux-gnu/libprotobuf.a -- BUILD_ONNX_PYTHON : ON -- Python version : -- Python executable : /usr/bin/python3 -- Python includes : /usr/include/python3.10 -- Configuring done -- Generating done -- Build files have been written to: /home/cwwu/Downloads/onnx/.setuptools-cmake-build [ 2%] Built target gen_onnx_proto [ 8%] Built target gen_onnx_operators_proto [ 8%] Built target gen_onnx_data_proto Consolidate compiler generated dependencies of target onnx_proto [ 22%] Built target onnx_proto Consolidate compiler generated dependencies of target onnx [ 97%] Built target onnx Consolidate compiler generated dependencies of target onnx_cpp2py_export [100%] Built target onnx_cpp2py_export Traceback (most recent call last): File "/usr/lib/python3/dist-packages/pip/_vendor/pep517/in_process/_in_process.py", line 363, in <module> main() File "/usr/lib/python3/dist-packages/pip/_vendor/pep517/in_process/_in_process.py", line 345, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "/usr/lib/python3/dist-packages/pip/_vendor/pep517/in_process/_in_process.py", line 261, in build_wheel return _build_backend().build_wheel(wheel_directory, config_settings, File "/usr/lib/python3/dist-packages/setuptools/build_meta.py", line 230, in build_wheel return self._build_with_temp_dir(['bdist_wheel'], '.whl', File "/usr/lib/python3/dist-packages/setuptools/build_meta.py", line 215, in _build_with_temp_dir self.run_setup() File "/usr/lib/python3/dist-packages/setuptools/build_meta.py", line 158, in run_setup exec(compile(code, __file__, 'exec'), locals()) File "setup.py", line 309, in <module> setuptools.setup( File "/usr/lib/python3/dist-packages/setuptools/__init__.py", line 153, in setup return distutils.core.setup(**attrs) File "/usr/lib/python3/dist-packages/setuptools/_distutils/core.py", line 148, in setup return run_commands(dist) File "/usr/lib/python3/dist-packages/setuptools/_distutils/core.py", line 163, in run_commands dist.run_commands() File "/usr/lib/python3/dist-packages/setuptools/_distutils/dist.py", line 967, in run_commands self.run_command(cmd) File "/usr/lib/python3/dist-packages/setuptools/_distutils/dist.py", line 986, in run_command cmd_obj.run() File "/usr/lib/python3/dist-packages/wheel/bdist_wheel.py", line 299, in run self.run_command('build') File "/usr/lib/python3/dist-packages/setuptools/_distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/usr/lib/python3/dist-packages/setuptools/_distutils/dist.py", line 986, in run_command cmd_obj.run() File "/usr/lib/python3/dist-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/usr/lib/python3/dist-packages/setuptools/_distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/usr/lib/python3/dist-packages/setuptools/_distutils/dist.py", line 986, in run_command cmd_obj.run() File "setup.py", line 247, in run return super().run() File "/usr/lib/python3/dist-packages/setuptools/command/build_ext.py", line 79, in run _build_ext.run(self) File "/usr/lib/python3/dist-packages/setuptools/_distutils/command/build_ext.py", line 339, in run self.build_extensions() File "setup.py", line 276, in build_extensions if self.editable_mode: File "/usr/lib/python3/dist-packages/setuptools/_distutils/cmd.py", line 103, in __getattr__ raise AttributeError(attr) AttributeError: editable_mode [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for UNKNOWN Failed to build UNKNOWN ERROR: Could not build wheels for UNKNOWN, which is required to install pyproject.toml-based projects ```
closed
2024-03-11T14:02:25Z
2024-07-31T16:01:36Z
https://github.com/onnx/onnx/issues/6013
[ "question", "topic: build" ]
Tom-Teamo
13
svc-develop-team/so-vits-svc
pytorch
126
[Help]: 每次训练都在 Epoch: 2 [42%], step: 800 的位置报错退出
### 请勾选下方的确认框。 - [x] 我已仔细阅读[README.md](https://github.com/svc-develop-team/so-vits-svc/blob/4.0/README_zh_CN.md)和[wiki中的Quick solution](https://github.com/svc-develop-team/so-vits-svc/wiki/Quick-solution)。 - [X] 我已通过各种搜索引擎排查问题,我要提出的问题并不常见。 - [X] 我未在使用由第三方用户提供的一键包/环境包。 ### 系统平台版本号 Windows 10 家庭版 ### GPU 型号 NVIDIA GeForce RTX 2060 ### Python版本 python3.9.7 ### PyTorch版本 2.0.0+cu118 ### sovits分支 4.0-v2 ### 数据集来源(用于判断数据集质量) 动画原声采集 ### 出现问题的环节或执行的命令 训练 ### 问题描述 每次训练都在 INFO:44k:Train Epoch: 2 [42%], step: 800, 的位置报错退出 即使把logs/44k文件夹清空重新训练,也是一样在这个位置报错退出 由于显卡是6G显存,config.json中我修改了batch_size,从6改为2 ,"batch_size": 2 ### 日志 ```python INFO:44k:Loaded checkpoint './logs\44k\D_0.pth' (iteration 1) E:\Python\lib\site-packages\torch\functional.py:641: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error. Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\SpectralOps.cpp:867.) return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined] INFO:torch.nn.parallel.distributed:Reducer buckets have been rebuilt in this iteration. E:\Python\lib\site-packages\torch\autograd\__init__.py:200: UserWarning: Grad strides do not match bucket view strides. This may indicate grad was not created according to the gradient layout contract, or that the param's strides changed since DDP was constructed. This is not an error, but may impair performance. grad.sizes() = [32, 1, 4], strides() = [4, 1, 1] bucket_view.sizes() = [32, 1, 4], strides() = [4, 4, 1] (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\distributed\c10d\reducer.cpp:337.) Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass INFO:44k:Train Epoch: 1 [0%] INFO:44k:Losses: [1.8350424766540527, 3.087881326675415, 15.519474029541016, 43.46516799926758, 2.739884614944458], step: 0, lr: 0.0001 INFO:44k:Saving model and optimizer state at iteration 1 to ./logs\44k\G_0.pth INFO:44k:Saving model and optimizer state at iteration 1 to ./logs\44k\D_0.pth INFO:torch.nn.parallel.distributed:Reducer buckets have been rebuilt in this iteration. INFO:44k:Train Epoch: 1 [35%] INFO:44k:Losses: [3.2042624950408936, 1.6023280620574951, 4.85037899017334, 24.364368438720703, 1.8815621137619019], step: 200, lr: 0.0001 INFO:44k:Train Epoch: 1 [71%] INFO:44k:Losses: [2.024649143218994, 2.5297534465789795, 12.023140907287598, 29.055946350097656, 1.7351597547531128], step: 400, lr: 0.0001 INFO:44k:====> Epoch: 1, cost 366.75 s INFO:44k:Train Epoch: 2 [6%] INFO:44k:Losses: [1.9109034538269043, 3.0717015266418457, 15.881654739379883, 31.35890769958496, 2.1832027435302734], step: 600, lr: 9.99875e-05 INFO:44k:Train Epoch: 2 [42%] INFO:44k:Losses: [2.1936745643615723, 2.2962450981140137, 8.9740629196167, 23.723608016967773, 1.4403268098831177], step: 800, lr: 9.99875e-05 Traceback (most recent call last): File "E:\1\2\so-vits-svc\train.py", line 315, in <module> main() File "E:\1\2\so-vits-svc\train.py", line 53, in main mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) File "E:\Python\lib\site-packages\torch\multiprocessing\spawn.py", line 239, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "E:\Python\lib\site-packages\torch\multiprocessing\spawn.py", line 197, in start_processes while not context.join(): File "E:\Python\lib\site-packages\torch\multiprocessing\spawn.py", line 160, in join raise ProcessRaisedException(msg, error_index, failed_process.pid) torch.multiprocessing.spawn.ProcessRaisedException: -- Process 0 terminated with the following error: Traceback (most recent call last): File "E:\Python\lib\site-packages\torch\utils\data\dataloader.py", line 1133, in _try_get_data data = self._data_queue.get(timeout=timeout) File "E:\Python\lib\multiprocessing\queues.py", line 114, in get raise Empty _queue.Empty The above exception was the direct cause of the following exception: Traceback (most recent call last): File "E:\Python\lib\site-packages\torch\multiprocessing\spawn.py", line 69, in _wrap fn(i, *args) File "E:\1\2\so-vits-svc\train.py", line 124, in run train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, File "E:\1\2\so-vits-svc\train.py", line 245, in train_and_evaluate evaluate(hps, net_g, eval_loader, writer_eval) File "E:\1\2\so-vits-svc\train.py", line 269, in evaluate for batch_idx, items in enumerate(eval_loader): File "E:\Python\lib\site-packages\torch\utils\data\dataloader.py", line 634, in __next__ data = self._next_data() File "E:\Python\lib\site-packages\torch\utils\data\dataloader.py", line 1329, in _next_data idx, data = self._get_data() File "E:\Python\lib\site-packages\torch\utils\data\dataloader.py", line 1295, in _get_data success, data = self._try_get_data() File "E:\Python\lib\site-packages\torch\utils\data\dataloader.py", line 1146, in _try_get_data raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e RuntimeError: DataLoader worker (pid(s) 18212) exited unexpectedly ``` ### 截图`so-vits-svc`、`logs/44k`文件夹并粘贴到此处 ![image](https://user-images.githubusercontent.com/88699170/230173384-7a320fa6-fe95-4dfa-ae31-cfbb34c7f3fc.png) ![image](https://user-images.githubusercontent.com/88699170/230173457-8af8987d-f113-43fd-891e-755d785b2233.png) ### 补充说明 _No response_
closed
2023-04-05T18:59:38Z
2023-04-13T04:03:13Z
https://github.com/svc-develop-team/so-vits-svc/issues/126
[ "help wanted" ]
AGuanDao
5
jina-ai/serve
machine-learning
5,744
Torch error in Jcloud http flow
**Describe the bug** <!-- A clear and concise description of what the bug is. --> Posting to the below flow in jcloud http protocol will throw a torch module not found error. Grpc is fine. ``` from jina import DocumentArray, Executor, requests import torch class dummy_torch(Executor): @requests def foo(self, docs: DocumentArray, **kwargs): for d in docs: d.embedding = torch.rand(1000) ``` YAML ``` jtype: Flow with: prefetch: 5 gateway: port: - 51000 - 52000 protocol: - grpc - http executors: - name: dummyExecutor uses: jinaai+docker://auth0-unified-40be9bf07eece29a/dummy_torch:latest env: JINA_LOG_LEVEL: DEBUG ``` LOCAL: ``` from jina import DocumentArray, Client client = Client(host='jcloud-endpoint) res = client.post(on='/', inputs=DocumentArray.empty(5), show_progress=True) res.summary() ``` LOCAL error trace: ``` Traceback (most recent call last): File "toy.py", line 5, in <module> res = client.post(on='/', inputs=DocumentArray.empty(5), show_progress=True) File "/Users/ziniuyu/Documents/github/jina/jina/clients/mixin.py", line 281, in post return run_async( File "/Users/ziniuyu/Documents/github/jina/jina/helper.py", line 1334, in run_async return asyncio.run(func(*args, **kwargs)) File "/opt/anaconda3/envs/py3813/lib/python3.8/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/opt/anaconda3/envs/py3813/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete return future.result() File "/Users/ziniuyu/Documents/github/jina/jina/clients/mixin.py", line 271, in _get_results async for resp in c._get_results(*args, **kwargs): File "/Users/ziniuyu/Documents/github/jina/jina/clients/base/http.py", line 165, in _get_results r_str = await response.json() File "/opt/anaconda3/envs/py3813/lib/python3.8/site-packages/aiohttp/client_reqrep.py", line 1104, in json raise ContentTypeError( aiohttp.client_exceptions.ContentTypeError: 0, message='Attempt to decode JSON with unexpected mimetype: text/plain; charset=utf-8', url=URL('jcloud-endpoint:443/post') ``` Gateway error trace: ``` ERROR: Exception in ASGI application Traceback (most recent call last): File "/usr/local/lib/python3.8/site-packages/uvicorn/protocols/http/httptools_impl.py", line 419, in run_asgi result = await app( # type: ignore[func-returns-value] File "/usr/local/lib/python3.8/site-packages/uvicorn/middleware/proxy_headers.py", line 78, in __call__ return await self.app(scope, receive, send) File "/usr/local/lib/python3.8/site-packages/fastapi/applications.py", line 271, in __call__ await super().__call__(scope, receive, send) File "/usr/local/lib/python3.8/site-packages/starlette/applications.py", line 118, in __call__ await self.middleware_stack(scope, receive, send) File "/usr/local/lib/python3.8/site-packages/starlette/middleware/errors.py", line 184, in __call__ raise exc File "/usr/local/lib/python3.8/site-packages/starlette/middleware/errors.py", line 162, in __call__ await self.app(scope, receive, _send) File "/usr/local/lib/python3.8/site-packages/starlette/middleware/exceptions.py", line 79, in __call__ raise exc File "/usr/local/lib/python3.8/site-packages/starlette/middleware/exceptions.py", line 68, in __call__ await self.app(scope, receive, sender) File "/usr/local/lib/python3.8/site-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__ raise e File "/usr/local/lib/python3.8/site-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__ await self.app(scope, receive, send) File "/usr/local/lib/python3.8/site-packages/starlette/routing.py", line 706, in __call__ await route.handle(scope, receive, send) File "/usr/local/lib/python3.8/site-packages/starlette/routing.py", line 276, in handle await self.app(scope, receive, send) File "/usr/local/lib/python3.8/site-packages/starlette/routing.py", line 66, in app response = await func(request) File "/usr/local/lib/python3.8/site-packages/fastapi/routing.py", line 237, in app raw_response = await run_endpoint_function( File "/usr/local/lib/python3.8/site-packages/fastapi/routing.py", line 163, in run_endpoint_function return await dependant.call(**values) File "/usr/local/lib/python3.8/site-packages/jina/serve/runtimes/gateway/http/app.py", line 191, in post result = await _get_singleton_result( File "/usr/local/lib/python3.8/site-packages/jina/serve/runtimes/gateway/http/app.py", line 382, in _get_singleton_result result_dict = result.to_dict() File "/usr/local/lib/python3.8/site-packages/jina/types/request/data.py", line 260, in to_dict da = self.docs File "/usr/local/lib/python3.8/site-packages/jina/types/request/data.py", line 276, in docs return self.data.docs File "/usr/local/lib/python3.8/site-packages/jina/types/request/data.py", line 47, in docs self._loaded_doc_array = self.document_array_cls.from_protobuf( File "/usr/local/lib/python3.8/site-packages/docarray/array/mixins/io/binary.py", line 361, in from_protobuf return cls(Document.from_protobuf(od) for od in pb_msg.docs) File "/usr/local/lib/python3.8/site-packages/docarray/array/mixins/io/from_gen.py", line 23, in __init__ super().__init__(*args, **kwargs) File "/usr/local/lib/python3.8/site-packages/docarray/array/base.py", line 12, in __init__ self._init_storage(*args, **kwargs) File "/usr/local/lib/python3.8/site-packages/docarray/array/storage/memory/backend.py", line 25, in wrapper return func(self, *args, **kwargs) File "/usr/local/lib/python3.8/site-packages/docarray/array/storage/memory/backend.py", line 83, in _init_storage self.extend(_docs) File "/usr/local/lib/python3.8/site-packages/docarray/array/storage/base/seqlike.py", line 81, in extend self._extend(values, **kwargs) File "/usr/local/lib/python3.8/site-packages/docarray/array/storage/memory/seqlike.py", line 60, in _extend values = list(values) # consume the iterator only once File "/usr/local/lib/python3.8/site-packages/docarray/array/mixins/io/binary.py", line 361, in <genexpr> return cls(Document.from_protobuf(od) for od in pb_msg.docs) File "/usr/local/lib/python3.8/site-packages/docarray/document/mixins/protobuf.py", line 13, in from_protobuf return parse_proto(pb_msg) File "/usr/local/lib/python3.8/site-packages/docarray/proto/io/__init__.py", line 24, in parse_proto fields[f_name] = read_ndarray(value) File "/usr/local/lib/python3.8/site-packages/docarray/proto/io/ndarray.py", line 44, in read_ndarray return _to_framework_array(x, framework) File "/usr/local/lib/python3.8/site-packages/docarray/proto/io/ndarray.py", line 147, in _to_framework_array from torch import from_numpy ModuleNotFoundError: No module named 'torch' ``` **Describe how you solve it** <!-- copy past your code/pull request link --> No error with numpy Possible reason: the default http gateway image does not have torch installed --- <!-- Optional, but really help us locate the problem faster --> **Environment** <!-- Run `jina --version-full` and copy paste the output here --> **Screenshots** <!-- If applicable, add screenshots to help explain your problem. -->
closed
2023-03-07T12:01:10Z
2023-03-13T21:55:46Z
https://github.com/jina-ai/serve/issues/5744
[]
ZiniuYu
0
nolar/kopf
asyncio
966
Replay resources doesn't work
### Keywords _No response_ ### Problem Hello, my use case manages two CRDs (DNS instance and DNS records). My operator allows removing the DNS instance leaving the associated DNS records present just in case it obeys to a temporary need. After recreating the DNS instance I planned to simply run "kubectl get dnsr -o yaml | kubectl replace -f -" to reprocess them but I got a strange behaviour. The resources are created but the code associated to the operator is not executed. After digging into the documentation I realized that "kopf.zalando.org/last-handled-configuration" annotation explains this behaviour. My question then, is there any better approach than just asking to remove the annotations with something like this? ``` kubectl get dnsr -o yaml | \ yq 'del(.items[].metadata.annotations."kopf.zalando.org/last-handled-configuration")' - | \ kubectl replace -f - ``` Thanks for your help.
closed
2022-10-30T10:32:38Z
2022-11-07T19:14:30Z
https://github.com/nolar/kopf/issues/966
[ "question" ]
davidp1404
2
google-research/bert
tensorflow
1,148
Can RoBERTa be fine-tuned on unlabeled data?
Im new working with language models, need some help Can i pre train RoBERTa with data set having just one column i-e sentences and no labels or anything?
open
2020-09-16T06:39:13Z
2020-09-16T06:39:13Z
https://github.com/google-research/bert/issues/1148
[]
HamzaYounis
0
aeon-toolkit/aeon
scikit-learn
1,931
[ENH] Improvements to write_to_tsfile
### Describe the feature or idea you want to propose just writing some data to file and will note anything here that could be better ### Describe your proposed solution 1. More informative errors 2. Data precision option: it currently creates big files 3. Doesnt work with univariate data in 2D format
closed
2024-08-08T10:07:40Z
2024-11-23T08:46:43Z
https://github.com/aeon-toolkit/aeon/issues/1931
[ "enhancement", "datasets" ]
TonyBagnall
0
cobrateam/splinter
automation
570
Unexpected behavior from setting profiles and extensions.
Python = 2.7.10 (mac OS X Sierra) Tried: browser = Browser('firefox', extensions=['/full/path/to/ext.xpi', '/full/path/to/ext2.xpi']) browser = Browser('firefox', extensions=['./ext.xpi', './ext2.xpi']) With and without escape characters because it's in 'Application Support' browser = Browser('firefox', profile=['/full/path/to/thingy.default, '/full/path/to/thing2.second']) browser = Browser('firefox', profile=['./thingy.default, './thing2.second']) Again With and without escape characters because it's in 'Application Support' Even combined both extension and profile. None of it seems to work, always similar errors "[Errno 2] No such file or directory: ".
closed
2017-11-01T01:52:34Z
2021-07-22T21:59:15Z
https://github.com/cobrateam/splinter/issues/570
[ "NeedsInvestigation" ]
orange-tsai
2
noirbizarre/flask-restplus
flask
466
App runs locally but returns 500 error on Heroku
There doesn't seem to be any documentation on deploying to Heroku with flask-restplus. I've just deployed an app and am getting the following: `Error: INTERNAL SERVER ERROR`. My Procfile is set to `web: gunicorn app:app` and my app is set as `api = Api(app)`, `app.wsgi_app = ProxyFix(app.wsgi_app)`, and `app = Flask(__name__)`, respectively. Anyone have any suggestions?
closed
2018-06-05T15:44:07Z
2024-03-20T17:15:35Z
https://github.com/noirbizarre/flask-restplus/issues/466
[]
rah-ool
39
Esri/arcgis-python-api
jupyter
1,815
License.all() returns incorrect results for orgs with >10,000 users
In an ArcGIS Online organization with >10,000 users, the License.all() method returns only the first 10,000 users that have a particular license. There does not seem to be a way to page results or otherwise access the users above the first 10,000. You can reproduce this issue in any org with more than 10,000 users, for something is licensed to more than 10,000 users, for which you attempt to use all() to retrieve the full list of usernames to which it is licensed. If the 10,000 limitation cannot be addressed, then it would be helpful to have all() return an error message that the list of usernames exceeds the limit and is incomplete, which a script could catch. In the meantime, any suggestions for a workaround that would help construct the complete list of users that have a license? Is getting a list of all users, and checking them one-by-one for that license, the best way to do it?
open
2024-04-28T14:56:37Z
2024-06-24T18:21:50Z
https://github.com/Esri/arcgis-python-api/issues/1815
[ "enhancement" ]
knoopum
0
waditu/tushare
pandas
1,617
数据获取工具获取上市公司管理层信息报错
环境:Chrome浏览器 功能点击:Tushare数据获取工具,获取上市公司管理层 时,报错,错误没有完全显示 ![bug1](https://user-images.githubusercontent.com/18225184/147850499-d217e7f3-9749-425c-ba51-07c619968aa1.png) 缺陷提交人:494037935@qq.com
open
2022-01-01T12:25:39Z
2022-01-01T12:26:02Z
https://github.com/waditu/tushare/issues/1617
[]
znufe2010
0
microsoft/JARVIS
pytorch
45
Would it support Azure OpenAI?
Hi, I only saw OpenAI API key in config.yml. Does it support Azure OpenAI? Or is there any plans to support Azure OpenAI?
closed
2023-04-05T14:51:30Z
2023-04-10T05:22:04Z
https://github.com/microsoft/JARVIS/issues/45
[]
Ko-Ko-Kirk
2
pennersr/django-allauth
django
3,679
Assertion Error for Existing Users After Registering New User with Social Account
Hello, I've encountered an issue where, after registering a new user through a social account integration, all existing users are unable to log in and are met with an AssertionError. This problem persists across all stored users and makes it impossible for them to log in after a new user registers via a social account. Steps to Reproduce: 1. Register a new user using a social account (e.g., Google, Facebook). 2. Attempt to log in with an existing user account. 3. An AssertionError is thrown, preventing the login. ``` def complete_social_login(request, sociallogin): assert not sociallogin.is_existing … sociallogin.lookup() try: get_adapter().pre_social_login(request, sociallogin) signals.pre_social_login.send( sender=SocialLogin, request=request, sociallogin=sociallogin ) ``` Current Behavior: - After a new user registers through a social account, attempting to log in with any existing user accounts results in an AssertionError. Expected Behavior: - Existing users should be able to log in successfully, regardless of new users registering through social accounts. Workarounds: Restarting the Django server temporarily resolves the issue, allowing existing users to log in again without encountering the AssertionError. Deleting the newly registered user also returns the system to normal, eliminating the login issue for existing users. I am looking for guidance on how to permanently resolve this issue without resorting to restarting the server or deleting new users. Any insights or suggestions would be greatly appreciated. Thank you for your assistance.
closed
2024-03-11T15:33:23Z
2025-02-23T07:45:56Z
https://github.com/pennersr/django-allauth/issues/3679
[]
YuchenTOR
4
koxudaxi/datamodel-code-generator
pydantic
2,130
The class "Extra" is deprecated Extra is deprecated. Use literal values instead (e.g. `extra='allow'`)
**Describe the bug** This is not a bug **yet**, but I think I should report it. So, I just installed `datamodel-code-generator` to be able to convert a JSON schema to a dataclass. Here's the dependencies ``` datamodel-code-generator 0.26.2 ... pydantic 2.9.2 pydantic_core 2.23.4 ``` When I execute the command below, I get several warnings, such as > The class "Extra" is deprecated Extra is deprecated. Use literal values instead (e.g. `extra='allow'`) or > Call expression not allowed in type expression Pylance [reportInvalidTypeForm](https://github.com/microsoft/pyright/blob/main/docs/configuration.md#reportInvalidTypeForm) When I try to convert the dataclass back to a JSON schema, I get another similar warning > PydanticDeprecatedSince20: `pydantic.config.Extra` is deprecated, use literal values instead (e.g. `extra='allow'`). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.9/migration/ The generated model indeed imports `Extra` and defines the model as follows ``` class Model(BaseModel): class Config: extra = Extra.forbid # Extra is deprecated text: constr(min_length=3, max_length=16) # constr is deprecated ... ``` The "extra" code is generated because I have `"additionalProperties": false` in my schema, while the `constr` is added because I have something like this ``` "text": { "type": "string", "minLength": 3, "maxLength": 16 }, ``` Before I proceed to use this library, are you planning to solve these issues? **To Reproduce** See example above Used commandline: ``` datamodel-codegen --input schema.json --input-file-type jsonschema --output model.py ``` **Expected behavior** No warning **Version:** - OS: MacOS Sonoma - Python version: 3.11.9 - datamodel-code-generator version: 0.26.2
closed
2024-10-21T15:06:26Z
2024-10-22T17:04:00Z
https://github.com/koxudaxi/datamodel-code-generator/issues/2130
[]
nbro10
2
ultralytics/ultralytics
pytorch
19,310
Device selection on export on multi-gpu systems
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component _No response_ ### Bug Greatings! 🚀 Sorry for my English. I ran into issue (latest version, February, 19th) when choosing GPU to export on NVIDIA mGPU setup: ``` DEVICE0 = "cuda:1" torch.set_default_device(device=DEVICE0) with torch.cuda.device(device=DEVICE0): model = YOLO("yolo11m.pt") model.export(format="engine", half=True, imgsz=TRACK_HW, batch=BATCH_SIZE, dynamic=True, device=DEVICE0) ``` I selected second (:1) gpu, but got a usage on first (:0) one. nvidia-smi showed a full load on first gpu with a small one on second. utils/torch_utils.py ``` if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available devices = device.split(",") if device else "0" # i.e. "0,1" -> ["0", "1"] n = len(devices) # device count if n > 1: # multi-GPU if batch < 1: raise ValueError( "AutoBatch with batch<1 not supported for Multi-GPU training, " "please specify a valid batch size, i.e. batch=16." ) if batch >= 0 and batch % n != 0: # check batch_size is divisible by device_count raise ValueError( f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or " f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}." ) space = " " * (len(s) + 1) for i, d in enumerate(devices): s += f"{'' if i == 0 else space}CUDA:{d} ({get_gpu_info(i)})\n" # bytes to MB arg = "cuda:0" ``` The line leads to bug: ```arg = "cuda:0"``` I suppose it should be: ```arg = f"cuda:{device}"``` ### Environment Package Version ------------------------- ------------ addict 2.4.0 aiohappyeyeballs 2.4.4 aiohttp 3.11.11 aiosignal 1.3.2 albucore 0.0.23 albumentations 2.0.2 annotated-types 0.7.0 anyio 4.8.0 attrs 25.1.0 bcrypt 4.2.1 certifi 2025.1.31 cffi 1.17.1 chardet 5.2.0 charset-normalizer 3.4.1 click 8.1.8 coloredlogs 15.0.1 contourpy 1.3.1 cryptography 44.0.0 cycler 0.12.1 fastapi 0.115.6 filelock 3.17.0 flatbuffers 25.1.24 fonttools 4.55.7 frozenlist 1.5.0 fsspec 2025.2.0 geographiclib 2.0 greenlet 3.1.1 h11 0.14.0 huggingface-hub 0.27.1 humanfriendly 10.0 idna 3.10 Jinja2 3.1.5 jsonschema 4.23.0 jsonschema-specifications 2024.10.1 jwt 1.3.1 kiwisolver 1.4.8 lap 0.5.12 lightning-utilities 0.11.9 MarkupSafe 3.0.2 matplotlib 3.10.0 mpmath 1.3.0 msgpack 1.1.0 multidict 6.1.0 networkx 3.4.2 numpy 2.1.1 nvidia-cublas-cu12 12.6.4.1 nvidia-cuda-cupti-cu12 12.6.80 nvidia-cuda-nvrtc-cu12 12.6.77 nvidia-cuda-runtime-cu12 12.6.77 nvidia-cudnn-cu12 9.5.1.17 nvidia-cufft-cu12 11.3.0.4 nvidia-curand-cu12 10.3.7.77 nvidia-cusolver-cu12 11.7.1.2 nvidia-cusparse-cu12 12.5.4.2 nvidia-cusparselt-cu12 0.6.3 nvidia-nccl-cu12 2.21.5 nvidia-nvjitlink-cu12 12.6.85 nvidia-nvtx-cu12 12.6.77 onnx 1.17.0 onnxruntime-gpu 1.20.1 onnxslim 0.1.48 opencv-python 4.11.0.86 opencv-python-headless 4.11.0.86 openvino 2025.0.0 openvino-telemetry 2025.0.0 packaging 24.2 pandas 2.2.3 pillow 11.1.0 pip 24.3.1 propcache 0.2.1 protobuf 5.29.3 psutil 6.1.1 psycopg2-binary 2.9.10 py-cpuinfo 9.0.0 pyarrow 19.0.0 pycparser 2.22 pydantic 2.10.5 pydantic_core 2.27.2 PyJWT 2.10.1 pyparsing 3.2.1 pysrt 1.1.2 python-dateutil 2.9.0.post0 python-dotenv 1.0.1 python-magic 0.4.27 python-multipart 0.0.20 pytorch-lightning 2.5.0.post0 pytz 2025.1 PyYAML 6.0.2 pyzmq 26.2.0 ray 2.40.0 referencing 0.36.2 requests 2.32.3 rpds-py 0.22.3 safetensors 0.5.2 scipy 1.15.1 seaborn 0.13.2 setuptools 75.8.0 simsimd 6.2.1 six 1.17.0 sniffio 1.3.1 SQLAlchemy 2.0.37 sqlmodel 0.0.22 starlette 0.41.3 stringzilla 3.11.3 sympy 1.13.1 tensorboardX 2.6.2.2 tensorrt 10.7.0.post1 tensorrt_cu12 10.7.0.post1 tensorrt-cu12-bindings 10.7.0.post1 tensorrt-cu12-libs 10.7.0.post1 timm 1.0.14 torch 2.6.0+cu126 torch_tensorrt 2.6.0+cu126 torchaudio 2.6.0+cu126 TorchCodec 0.2.0+cu126 torchmetrics 1.0.3 torchvision 0.21.0+cu126 tqdm 4.67.1 triton 3.2.0 typing_extensions 4.12.2 tzdata 2025.1 ultralytics 8.3.76 ultralytics-thop 2.0.14 urllib3 2.3.0 uvicorn 0.34.0 websockets 14.2 wheel 0.45.1 yarl 1.18.3 ### Minimal Reproducible Example ``` DEVICE0 = "cuda:1" torch.set_default_device(device=DEVICE0) with torch.cuda.device(device=DEVICE0): model = YOLO("yolo11m.pt") model.export(format="engine", half=True, imgsz=TRACK_HW, batch=BATCH_SIZE, dynamic=True, device=DEVICE0) ``` ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
closed
2025-02-19T10:30:55Z
2025-02-20T18:39:51Z
https://github.com/ultralytics/ultralytics/issues/19310
[ "exports" ]
liwtw
4
pywinauto/pywinauto
automation
511
Maintaining control identifiers in centralized location
When desktop application is very large and has 10k identifiers,then how should one maintain and access then from centralized location (file) in python. Please give suggestions. Earlier we were using QTP for automation which has its own utility of object repository... For pywinauto how can we create similar utility or how can we organize objects in one file and access them efficiently in script
open
2018-06-26T15:42:37Z
2024-01-09T07:14:02Z
https://github.com/pywinauto/pywinauto/issues/511
[ "enhancement", "Priority-Critical", "good first issue" ]
NeJaiswal
12
FactoryBoy/factory_boy
django
598
Changes introduced in #345 altered how django_get_or_create behaves
Upgrading to 2.12.0 broke some of the tests we had, and I'm pretty sure either the docs for django_get_or_create are incorrect or the change in behavior was unintended. The change that seems to be causing the problem is https://github.com/FactoryBoy/factory_boy/pull/345 We have a model with three fields marked as unique=True. ```python class MyModel(model): field1 = models.CharField(max_length=128, unique=True) field2 = models.CharField(max_length=128, unique=True) field3 = models.CharField(max_length=128, unique=True) ``` We have a factory for creating MyModel in tests: ```python class MyModelFactory(factory.DjangoModelFactory): class Meta: model = MyModel django_get_or_create = ('field1',) field1 = factory.LazyAttribute(lambda x: fake.text(max_nb_chars=60)) field2 = factory.LazyAttribute(lambda x: fake.text(max_nb_chars=60)) field3 = factory.LazyAttribute(lambda x: fake.text(max_nb_chars=60)) ``` We have only one of the unique fields (field1) included in django_get_or_create. Then we have a different test that creates two MyModels with the same field2, and we expect the second creation to fail with a unique constraint exception. ```python def test_duplicate_field2_not_allowed(self): MyModelFactory(field2="something") with pytest.raises(IntegrityError): MyModelFactory(field2="something") ``` This works in 2.11.1, and fails in 2.12.0. It seems from the docs: ``` Fields whose name are passed in this list will be used to perform a Model.objects.get_or_create() instead of the usual Model.objects.create(): ``` that if a field isn't included in django_get_or_create then it shouldn't be used in Model.objects.get_or_create() ever.
closed
2019-05-24T19:20:35Z
2019-05-28T14:38:48Z
https://github.com/FactoryBoy/factory_boy/issues/598
[ "Bug", "Django" ]
mkokotovich
1
encode/httpx
asyncio
3,334
Document `Authentication` header is stripped on redirection
- [x] Initially raised as discussion #3291
open
2024-10-08T01:44:02Z
2024-10-28T21:27:39Z
https://github.com/encode/httpx/issues/3334
[ "docs" ]
findmyway
0
google-research/bert
nlp
674
Not compatible with tensorflow 2.0
Is Bert not compatible with tensorflow 2.0 ? AttributeError Traceback (most recent call last) <ipython-input-4-1b957e7a053a> in <module>() 1 import modeling ----> 2 import optimization 3 import run_classifier 4 import run_classifier_with_tfhub 5 import tokenization /content/bert_repo/optimization.py in <module>() 85 86 ---> 87 class AdamWeightDecayOptimizer(tf.train.Optimizer): 88 """A basic Adam optimizer that includes "correct" L2 weight decay.""" 89 AttributeError: module 'tensorflow._api.v2.train' has no attribute 'Optimizer'
closed
2019-06-04T05:55:20Z
2020-09-02T09:56:05Z
https://github.com/google-research/bert/issues/674
[]
makaveli10
5
CorentinJ/Real-Time-Voice-Cloning
python
816
Is this supposed to happen? am I supposed to put an audio file next to this?
Hello, I get this error in Ubuntu on my WSL 2 implementation and Ubuntu Docker NOVNC container. Please place more details or a pathway in documentation to help with error resolution See below ############ **gitpod /workspace/Real-Time-Voice-Cloning $** python demo_cli.py Arguments: enc_model_fpath: encoder/saved_models/pretrained.pt syn_model_fpath: synthesizer/saved_models/pretrained/pretrained.pt voc_model_fpath: vocoder/saved_models/pretrained/pretrained.pt cpu: False no_sound: False seed: None no_mp3_support: False Traceback (most recent call last): File "demo_cli.py", line 42, in <module> import sounddevice as sd File "/workspace/.pip-modules/lib/python3.8/site-packages/sounddevice.py", line 71, in <module> raise OSError('PortAudio library not found') OSError: PortAudio library not found **gitpod /workspace/Real-Time-Voice-Cloning $** ###########
closed
2021-08-11T20:51:14Z
2021-08-25T08:48:55Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/816
[]
Hi-ip
1
akfamily/akshare
data-science
5,227
AKShare 接口问题报告 - stock_board_industry_index_ths
**详细问题描述** 1. 请先详细阅读文档对应接口的使用方式:https://akshare.akfamily.xyz 2. 操作系统版本:Win11 64位 3. Python 版本:3.8 以上的版本 4. AKShare 版本:最新版 5. 接口的名称和相应的调用代码 接口名称:stock_board_industry_index_ths 调用:http://127.0.0.1:8080/api/public/stock_board_industry_index_ths?symbol=元件&start_date=20100930&end_date=20241009 7. 接口报错的截图或描述 其他的接口调用没有问题,只有这个接口一直报错: raise FeatureNotFound( bs4.FeatureNotFound: Couldn't find a tree builder with the features you requested: lxml. Do you need to install a parser library? <img width="892" alt="error" src="https://github.com/user-attachments/assets/bb8824da-b24b-4a52-8fb7-ad60abb824f2"> 9. 期望获得的正确结果 显示行业数据
closed
2024-10-07T13:06:43Z
2024-10-11T14:11:52Z
https://github.com/akfamily/akshare/issues/5227
[ "bug" ]
jiataocai
2
QingdaoU/OnlineJudge
django
463
纯小白求助
请问大家是怎么进行二次开发的呢 我在ubuntu上部署了FE和onlinejudge,在ubuntu上只能看到前端页面,也进不去后台管理,课设需要在青岛oj上开发,不太了解这种架构的开发方式,部署完了,怎么对前端和后端二次开发,有没有对这个项目有过二开经验的大佬,求有偿指导
closed
2024-04-15T14:15:40Z
2024-04-17T08:35:50Z
https://github.com/QingdaoU/OnlineJudge/issues/463
[]
t1yifang
1
strawberry-graphql/strawberry
django
2,864
Problems with from __future__ import annotations and relay
<!-- Provide a general summary of the bug in the title above. --> The novel relay module is not compatible with `from __future__ import annotations`. I build a simple demo: https://github.com/devkral/graphene-protector/tree/demo/withresolve_bug (see first section how to reproduce) Somehow the field cannot be correctly parsed from its string form. <!-- A clear and concise description of what the bug is. --> ## System Information - Strawberry version (if applicable): 0.186.1
open
2023-06-19T09:13:50Z
2025-03-20T15:56:15Z
https://github.com/strawberry-graphql/strawberry/issues/2864
[ "bug" ]
devkral
3
paperless-ngx/paperless-ngx
django
9,192
[BUG] Deleting a Split in Multi-Split Documents Deletes the Wrong Split
### Description When splitting documents I ran into this problem where if you have a document with many splits and then try to delete a split, it will fail to delete the selected split. ### Steps to reproduce 1. Download this sample pdf [bla4.pdf](https://github.com/user-attachments/files/18921583/bla4.pdf). Having said this, I think it is possible to reproduce the bug with any document that has many pages. 2. Open the split tool inside Paperless on the big document 3. Create small splits for the first 12 pages that only contain 1 page 4. Delete the Split that contains only page 10 **Expected**: The split that consists only of page 10 is being deleted and a new split is created that contains pages 10-11 **What actually happens**: The split that consists of page 7 is being deleted which leads to a new split that consists of pages 7 and 8 being created. Interestingly everything works fine if you create less splits: 1. Create single page splits for the first 5 pages 2. Delete the split that consists of page 3 What actually happens and also is expected: The split that consits of page 3 is deleted and a new split ís created that consists of page 3-4. In this GIF you can see the bug happening: ![Image](https://github.com/user-attachments/assets/776a38db-2eaf-45d1-9e8b-0692575b4d2a) ### Webserver logs ```bash There is no logs, because splitting hasn't happened yet. ``` ### Browser logs ```bash ``` ### Paperless-ngx version 2.14.5 ### Host OS Ubuntu 22.04 ### Installation method Docker - official image ### System status ```json ``` ### Browser Chrome ### Configuration changes _No response_ ### Please confirm the following - [x] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [x] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [x] I have already searched for relevant existing issues and discussions before opening this report. - [x] I have updated the title field above with a concise description.
closed
2025-02-22T10:34:24Z
2025-02-22T15:28:27Z
https://github.com/paperless-ngx/paperless-ngx/issues/9192
[ "bug", "frontend" ]
gooney47
2
mars-project/mars
scikit-learn
2,758
make mars type inference optional
<!-- Thank you for your contribution! Please review https://github.com/mars-project/mars/blob/master/CONTRIBUTING.rst before opening an issue. --> **Is your feature request related to a problem? Please describe.** Mars type inferrence will generate mock data, then feed the data into user provided function, if the user function is time-consuming which take minutes or hours, there will be much time wasting in type inference, and the real computing didn't even happen which is unacceptable in some cases. **Describe the solution you'd like** It would be great if we can make dtypes lazy and type inferrence optional. If so, the expression call cost would be minimal.
closed
2022-02-25T10:40:07Z
2022-02-28T06:15:22Z
https://github.com/mars-project/mars/issues/2758
[ "type: enhancement", "mod: dataframe" ]
chaokunyang
0
pyeve/eve
flask
605
GridFSMediaStorage does not save filename
`GridFSMediaStorage.put` method is saving the filename from the keyword argument, however `store_media_files` in `eve.methods.common` does not specify anything for filename argument. I have a workaround currently by subclassing `GridFSMediaStorage.put` method but default behavior should also specify the filename for keyword argument
closed
2015-04-18T02:32:03Z
2015-04-18T07:07:23Z
https://github.com/pyeve/eve/issues/605
[]
slamuu
0
sqlalchemy/alembic
sqlalchemy
369
ORM session creates a subtransaction on get_bind()? this interferes w/ things ?
**Migrated issue, originally created by chris7 ([@chris7](https://github.com/chris7))** I am trying to run a trivial migration, and alembic will migrate the database, but is not updating the database version. To update alembic_version, it requires me to run the migration again. Here's the script I am running: ```python def upgrade(): op.add_column( 'peaks', sa.Column('rti', sa.Float(), nullable=True), ) ``` And the output of a full migration: ``` alembic upgrade head INFO [alembic.runtime.migration] Context impl SQLiteImpl. INFO [alembic.runtime.migration] Will assume non-transactional DDL. INFO [alembic.runtime.migration] Running upgrade 1 -> 2, Add peakgroups INFO [alembic.runtime.migration] Running upgrade 2 -> 3, peakgroup_feature_reference INFO [alembic.runtime.migration] Running upgrade 3 -> 4, feature_to_peakgroup INFO [alembic.runtime.migration] Running upgrade 4 -> 5, remove feature peaks INFO [alembic.runtime.migration] Running upgrade 5 -> 6, add retention time indices $ alembic current INFO [alembic.runtime.migration] Context impl SQLiteImpl. INFO [alembic.runtime.migration] Will assume non-transactional DDL. 5 ``` The database at this point has the 'rti' column, so it was successful but the alembic_version table was never updated. I can run the migration again, and it will stamp the database with 6. running alembic v. 0.8.6 & SQLAlchemy 1.0.12. The database is a sqlite file.
closed
2016-04-17T15:17:38Z
2017-02-23T16:36:39Z
https://github.com/sqlalchemy/alembic/issues/369
[ "bug" ]
sqlalchemy-bot
10
aio-libs/aiomysql
sqlalchemy
102
Connecting via URL instead of separate connection values
Could we connect by passing the connection details via an URL instead of having separate host, port, etc. variables? [Similar to what aioamqp has with its from_url function](https://github.com/Polyconseil/aioamqp/blob/b1d11024c658e03722bee57f97a9ced8e3e6b1bc/aioamqp/__init__.py#L76).
closed
2016-09-01T11:35:57Z
2021-10-01T00:18:14Z
https://github.com/aio-libs/aiomysql/issues/102
[]
ghost
3
postmanlabs/httpbin
api
285
test_post_body_unicode fails on PyPy 3 with UnicodeDecodeError
PyPy 3 raises an exception during `test_post_body_unicode` ``` RPython traceback: ... Fatal RPython error: UnicodeDecodeError ``` Is httpbin interested in fixes for PyPy 3?
closed
2016-05-02T03:46:08Z
2018-04-26T17:51:10Z
https://github.com/postmanlabs/httpbin/issues/285
[]
jayvdb
2