repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
vllm-project/vllm
pytorch
14,403
[Bug]: Error when Run Image Docker Vllm v0.7.3 - Unexpected error from cudaGetDeviceCount(). ....
### Your current environment <details> <summary> I have problem when start docker image with vllm v0.7.3 ( lasted now ) ![Image](https://github.com/user-attachments/assets/5bc4ee89-474c-494f-8f1a-39c61422a8ce) My docker-compose.yml file ### Docker Compose Configuration ```yaml version: "3.8" services: vllm-openai: deploy: resources: reservations: devices: - driver: nvidia count: all capabilities: - gpu volumes: - ~/.cache/huggingface:/root/.cache/huggingface environment: - HUGGING_FACE_HUB_TOKEN=<...> ports: - 8000:8000 ipc: host image: vllm/vllm-openai:latest runtime: nvidia command: --model deepseek-ai/DeepSeek-R1-Distill-Qwen-14B ``` this my result when run nvidia-smi ![Image](https://github.com/user-attachments/assets/02e8d8d4-e38f-41e8-9160-af31a9cf8445) and nvcc --version ![Image](https://github.com/user-attachments/assets/16cf6a9d-746f-4356-ab0d-278df85de43f) </summary> </details> ### 🐛 Describe the bug ![Image](https://github.com/user-attachments/assets/d09ea20e-d3ae-49a9-8f47-3a3fe7b91d6c) ### Before submitting a new issue... - [ ] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
open
2025-03-07T04:24:55Z
2025-03-10T17:07:25Z
https://github.com/vllm-project/vllm/issues/14403
[ "bug" ]
duytran1999
2
ets-labs/python-dependency-injector
asyncio
692
Selector should be able to select between different Configurations
Let's say I have this yaml configuration: ``` selected: option1 option1: param1:... param2:.... option2: param1:... param2:... ``` I want to be able to do something like this: ``` class Container(containers.DeclarativeContainer): config = providers.Configuration() parameters = providers.Selector( config.selected, option1=config.option1, option2=config.option2 ) foo = providers.Factory( SomeClass, param1=parameters.param1, param1=parameters.param2 ) ```
open
2023-03-31T21:09:27Z
2023-04-01T13:12:34Z
https://github.com/ets-labs/python-dependency-injector/issues/692
[]
andresi
1
davidsandberg/facenet
tensorflow
429
Why the dataset has to be aligned
i ran the following script , `sudo python align_dataset_mtcnn.py /datasets/lfw/raw /datasets/lfw/lfw_mtcnnpy_160 --image_size 160 --margin 32 --random_order --gpu_memory_fraction 0.25 ` May I know what this script basically does? why do we have to align it? [This](https://github.com/davidsandberg/facenet/wiki/Validate-on-lfw#4-align-the-lfw-dataset) doesn't explain why alignment is necessary
closed
2017-08-20T11:52:26Z
2017-08-23T17:35:39Z
https://github.com/davidsandberg/facenet/issues/429
[]
Zumbalamambo
2
amdegroot/ssd.pytorch
computer-vision
56
RunTime Error in Training with default values
`python train.py Loading base network... Initializing weights... Loading Dataset... Training SSD on VOC0712 Traceback (most recent call last): File "train.py", line 232, in <module> train() File "train.py", line 181, in train out = net(images) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 60, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 70, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 67, in parallel_apply raise output File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 42, in _worker output = module(*input, **kwargs) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/gpu/utkrsh/code/ssd.pytorch/ssd.py", line 76, in forward s = self.L2Norm(x) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line 224, in __call__ result = self.forward(*input, **kwargs) File "/data/gpu/utkrsh/code/ssd.pytorch/layers/modules/l2norm.py", line 21, in forward x/=norm.expand_as(x) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/autograd/variable.py", line 725, in expand_as return Expand.apply(self, (tensor.size(),)) File "/users/gpu/utkrsh/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/autograd/_functions/tensor.py", line 111, in forward result = i.expand(*new_size) RuntimeError: The expanded size of the tensor (512) must match the existing size (8) at non-singleton dimension 1. at /opt/conda/conda-bld/pytorch_1502009910772/work/torch/lib/THC/generic/T$CTensor.c:323 ` I am getting the above stack trace after running train.py for default values. The dataset and weights were downloaded in the default location. I am using python 3.6 and pytorch 0.2.0 I do understand the meaning of the error, I am just not able to find the source. Can anyone point in the right direction?
closed
2017-08-18T12:59:08Z
2019-05-21T06:39:46Z
https://github.com/amdegroot/ssd.pytorch/issues/56
[]
chauhan-utk
13
graphql-python/graphene-sqlalchemy
graphql
133
Nested inputs in mutations
I'm failing to convert nested inputs into sqlalchemy models in mutations. Here's my example: Let's say I want to create a quiz. For that I have the following code: ``` ''' GraphQL Models ''' class Quiz(SQLAlchemyObjectType): ''' GraphQL representation of a Quiz ''' class Meta: model = QuizModel class Question(SQLAlchemyObjectType): ''' GraphQL representation of a Question ''' class Meta: model = QuestionModel ''' Inputs ''' class QuestionInput(graphene.InputObjectType): text = graphene.String() media = graphene.String() class QuizInput(graphene.InputObjectType): name = graphene.String() creator_id = graphene.Int() description = graphene.String() media = graphene.String() id = graphene.Int() debugging_questions = graphene.InputField(graphene.List(QuestionInput)) questions = graphene.InputField(graphene.List(QuestionInput)) ''' Mutation ''' class CreateQuiz(graphene.Mutation): class Arguments: quiz = QuizInput(required=True) quiz = graphene.Field(lambda: Quiz) def mutate(self, info, **kwargs): quiz_attributes = dict(kwargs['quiz']) if quiz_attributes.get('id'): quiz = db_session.query(QuizModel).filter((QuizModel.id == quiz_attributes.get('id'))).one() quiz_attributes.pop('id') for key, value in quiz_attributes.items(): setattr(quiz, key, value) else: quiz = QuizModel(**quiz_attributes) db_session.add(quiz) db_session.commit() return CreateQuiz(quiz=quiz) ``` My GraphQL query is the following: ``` mutation creatingQuiz($quiz: QuizInput!) { createQuiz(quiz: $quiz) { quiz { id, name, description, media, creatorId, questions { id, text, media, } } } } ``` Note the relation between the global variables and the response: Example A - returns a response, obviously doesn't add any quizzes because it uses `debuggingQuestions`. ``` Global variables: { "quiz": { "id": 136, "name": "fake name", "description": "simple desc", "creatorId": 1, "media": "img.jpg", "debuggingQuestions": [{ "media": "media", "text": "text" }] } } Response: { "data": { "createQuiz": { "quiz": { "id": "136", "name": "fake name", "description": "simple desc", "media": "img.jpg", "creatorId": 1, "questions": [] } } } } ``` Now if I try and pass question data in the `questions` field instead of `debuggingQuestions`: ``` Global variables: { "quiz": { "id": 136, "name": "fake name", "description": "simple desc", "creatorId": 1, "media": "img.jpg", "questions": [{ "media": "media", "text": "text" }] } } Response: { "errors": [{ "message": "unhashable type: 'QuestionInput'", "locations": [{ "line": 2, "column": 3 }] }], "data": { "createQuiz": null } } ``` What step am I missing so that `QuestionInput` is automatically converted into a Question sqlalchemy model?
open
2018-05-22T19:21:42Z
2018-05-22T19:49:08Z
https://github.com/graphql-python/graphene-sqlalchemy/issues/133
[]
NathanBWaters
2
ultralytics/ultralytics
deep-learning
19,574
Use ray to tune
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Train ### Bug Hi guys, I need your help with an issue I'm facing when using Ray to tune my YOLO model. When using Ray, some processes run normally while others fail. The error I'm encountering is: ``` Failure # 1 (occurred at 2025-03-08_15-26-26) ray::ImplicitFunc.train() (pid=499864, ip=192.168.5.3, actor_id=2c6a9084244fbf1b3f754eb001000000, repr=_tune) File "/home/aiwork/anaconda3/envs/py39/lib/python3.9/site-packages/ray/tune/trainable/trainable.py", line 330, in train raise skipped from exception_cause(skipped) File "/home/aiwork/anaconda3/envs/py39/lib/python3.9/site-packages/ray/air/_internal/util.py", line 107, in run self._ret = self._target(*self._args, **self._kwargs) File "/home/aiwork/anaconda3/envs/py39/lib/python3.9/site-packages/ray/tune/trainable/function_trainable.py", line 45, in <lambda> training_func=lambda: self._trainable_func(self.config), File "/home/aiwork/anaconda3/envs/py39/lib/python3.9/site-packages/ray/tune/trainable/function_trainable.py", line 261, in _trainable_func output = fn() File "/home/aiwork/csn/Projects/ultralytics/ultralytics/utils/tuner.py", line 106, in _tune results = model_to_train.train(**config) File "/home/aiwork/csn/Projects/ultralytics/ultralytics/engine/model.py", line 810, in train self.trainer.train() File "/home/aiwork/csn/Projects/ultralytics/ultralytics/engine/trainer.py", line 203, in train raise e File "/home/aiwork/csn/Projects/ultralytics/ultralytics/engine/trainer.py", line 201, in train subprocess.run(cmd, check=True) File "/home/aiwork/anaconda3/envs/py39/lib/python3.9/subprocess.py", line 528, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['/home/aiwork/anaconda3/envs/py39/bin/python', '-m', 'torch.distributed.run', '--nproc_per_node', '2', '--master_port', '43925', '/home/aiwork/.config/Ultralytics/DDP/_temp_aqpask7_133441279378960.py']' returned non-zero exit status 1. ``` ### Environment My server configuration is as follows: - System: Ubuntu 20.04 - CPU: 80 cores - GPU: 2 x NVIDIA 3090 - Python: 3.9 - I'm using the latest versions of Ultralytics and Ray. ### Minimal Reproducible Example Here's my code: ```python # test_model_tune.py import warnings warnings.filterwarnings('ignore') from ultralytics import YOLO import ray import os if __name__ == '__main__': # Initialize Ray weights_path = os.path.abspath('./weights/yolo11n.pt') model = YOLO(weights_path) # Need to modify print(f"model.ckpt_path:{model.ckpt_path}") ray.init(num_cpus=20, num_gpus=2) # Adjust according to your hardware configuration result_grid = model.tune( data=r'./custom_configs/dateset/image_split.yaml', # Need to modify imgsz=2560, epochs=10, batch=8, device='0,1', optimizer='SGD', project='runs/tune', iterations=10, name='exp', use_ray=True ) for i, result in enumerate(result_grid): print(f"Trial #{i}: Configuration: {result.config}, Last Reported Metrics: {result.metrics}") # Shutdown Ray ray.shutdown() ``` ```python # tuner.py # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_cfg, get_save_dir from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS, checks def run_ray_tune( model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args, ): """ Runs hyperparameter tuning using Ray Tune. Args: model (YOLO): Model to run the tuner on. space (dict, optional): The hyperparameter search space. Defaults to None. grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. max_samples (int, optional): The maximum number of trials to run. Defaults to 10. train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. Returns: (dict): A dictionary containing the results of the hyperparameter search. Example: ```python from ultralytics import YOLO # Load a YOLO11n model model = YOLO("yolo11n.pt") # Start tuning hyperparameters for YOLO11n training on the COCO8 dataset result_grid = model.tune(data="coco8.yaml", use_ray=True) ``` """ LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune ") if train_args is None: train_args = {} try: checks.check_requirements("ray[tune]") import ray from ray import tune from ray.air import RunConfig from ray.air.integrations.wandb import WandbLoggerCallback from ray.tune.schedulers import ASHAScheduler except ImportError: raise ModuleNotFoundError('Ray Tune required but not found. To install run: pip install "ray[tune]"') try: import wandb assert hasattr(wandb, "__version__") except (ImportError, AssertionError): wandb = False checks.check_version(ray.__version__, ">=2.0.0", "ray") default_space = { # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), "lr0": tune.uniform(1e-5, 1e-1), "lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) "momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1 "weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4 "warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok) "warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum "box": tune.uniform(0.02, 0.2), # box loss gain "cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels) "hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction) "hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction) "hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction) "degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg) "translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction) "scale": tune.uniform(0.0, 0.9), # image scale (+/- gain) "shear": tune.uniform(0.0, 10.0), # image shear (+/- deg) "perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 "flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability) "fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability) "bgr": tune.uniform(0.0, 1.0), # image channel BGR (probability) "mosaic": tune.uniform(0.0, 1.0), # image mixup (probability) "mixup": tune.uniform(0.0, 1.0), # image mixup (probability) "copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability) } # Put the model in ray store task = model.task model_in_store = ray.put(model) def _tune(config): """ Trains the YOLO model with the specified hyperparameters and additional arguments. Args: config (dict): A dictionary of hyperparameters to use for training. Returns: None """ model_to_train = ray.get(model_in_store) # get the model from ray store for tuning model_to_train.reset_callbacks() config.update(train_args) results = model_to_train.train(**config) if results is not None: print(results) return results.results_dict else: print("_tune::results is None") return None # Get search space if not space: space = default_space LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.") # Get dataset data = train_args.get("data", TASK2DATA[task]) space["data"] = data if "data" not in train_args: LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".') # modified by chenshining # Define the trainable function with allocated resources # trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0}) trainable_with_resources = tune.with_resources(_tune, {"cpu": 4, "gpu": gpu_per_trial or 1}) # Define the ASHA scheduler for hyperparameter search asha_scheduler = ASHAScheduler( time_attr="epoch", metric=TASK2METRIC[task], mode="max", max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100, grace_period=grace_period, reduction_factor=3, ) # Define the callbacks for the hyperparameter search tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else [] # Create the Ray Tune hyperparameter search tuner tune_dir = get_save_dir( get_cfg(DEFAULT_CFG, train_args), name=train_args.pop("name", "tune") ).resolve() # must be absolute dir tune_dir.mkdir(parents=True, exist_ok=True) # modified by chenshining tuner = tune.Tuner( trainable_with_resources, param_space=space, tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples, max_concurrent_trials=4), run_config=RunConfig(name="memory_optimized_tune", callbacks=tuner_callbacks, storage_path=tune_dir), ) # Run the hyperparameter search tuner.fit() # Get the results of the hyperparameter search results = tuner.get_results() # Shut down Ray to clean up workers ray.shutdown() return results ``` ### Additional _No response_ ### Are you willing to submit a PR? - [x] Yes I'd like to help by submitting a PR!
closed
2025-03-08T08:28:18Z
2025-03-24T09:03:21Z
https://github.com/ultralytics/ultralytics/issues/19574
[ "bug", "enhancement" ]
csn223355
12
saulpw/visidata
pandas
1,462
Copy multiple columns across different files
Is there a way for me to copy multiple consecutive columns from one file and paste/insert them into another file? Thanks!
closed
2022-08-09T23:22:38Z
2022-08-09T23:29:03Z
https://github.com/saulpw/visidata/issues/1462
[ "wishlist" ]
jingxixu
1
tqdm/tqdm
pandas
1,283
`ipywidgets` variant broken
```python import sys, time, tqdm for j in tqdm.trange(100, file=sys.stdout, leave=False, unit_scale=True, desc='loop'): time.sleep(1) ``` works, but ```python for j in tqdm.auto.tqdm(range(100), file=sys.stdout, leave=False, unit_scale=True, desc='loop'): time.sleep(1) ```` shows a frozen progress bar and no percent update: ``` loop: 0%| | 0.00/100 [00:00<?, ?it/s] ``` <details><summary><b>conda list</b></summary> ``` # packages in environment at D:\Anaconda\envs\pyt: # # Name Version Build Channel absl-py 0.15.0 pyhd8ed1ab_0 conda-forge aiohttp 3.7.4.post0 py38h294d835_1 conda-forge alabaster 0.7.12 py_0 conda-forge anyio 3.3.3 py38haa244fe_0 conda-forge appdirs 1.4.4 pyh9f0ad1d_0 conda-forge argh 0.26.2 pyh9f0ad1d_1002 conda-forge argon2-cffi 21.1.0 py38h294d835_0 conda-forge arrow 1.2.0 pyhd8ed1ab_0 conda-forge astroid 2.5.8 py38haa244fe_0 conda-forge async-timeout 3.0.1 py_1000 conda-forge async_generator 1.10 py_0 conda-forge atomicwrites 1.4.0 pyh9f0ad1d_0 conda-forge attrs 21.2.0 pyhd8ed1ab_0 conda-forge audioread 2.1.9 py38haa244fe_0 conda-forge autopep8 1.6.0 pyhd8ed1ab_1 conda-forge babel 2.9.1 pyh44b312d_0 conda-forge backcall 0.2.0 pyh9f0ad1d_0 conda-forge backports 1.0 py_2 conda-forge backports.functools_lru_cache 1.6.4 pyhd8ed1ab_0 conda-forge bcrypt 3.2.0 py38h294d835_1 conda-forge binaryornot 0.4.4 py_1 conda-forge black 21.9b0 pyhd8ed1ab_0 conda-forge blas 1.0 mkl bleach 4.1.0 pyhd8ed1ab_0 conda-forge blinker 1.4 py_1 conda-forge brotli-python 1.0.9 py38h885f38d_5 conda-forge brotlipy 0.7.0 py38h294d835_1001 conda-forge bzip2 1.0.8 h8ffe710_4 conda-forge ca-certificates 2021.10.26 haa95532_2 cached-property 1.5.2 hd8ed1ab_1 conda-forge cached_property 1.5.2 pyha770c72_1 conda-forge cachetools 4.2.4 pyhd8ed1ab_0 conda-forge certifi 2021.10.8 py38haa244fe_1 conda-forge cffi 1.14.6 py38hd8c33c5_1 conda-forge chardet 4.0.0 py38haa244fe_1 conda-forge charset-normalizer 2.0.0 pyhd8ed1ab_0 conda-forge click 7.1.2 pyh9f0ad1d_0 conda-forge cloudpickle 2.0.0 pyhd8ed1ab_0 conda-forge colorama 0.4.4 pyh9f0ad1d_0 conda-forge conda 4.11.0 py38haa244fe_0 conda-forge conda-package-handling 1.7.3 py38h31c79cd_1 conda-forge configparser 5.1.0 pyhd8ed1ab_0 conda-forge cookiecutter 1.6.0 py38_1000 conda-forge cryptography 3.4.7 py38hd7da0ea_0 conda-forge cudatoolkit 11.3.1 h59b6b97_2 cupy 9.5.0 py38hf95616d_1 conda-forge cycler 0.10.0 py_2 conda-forge cython 0.29.24 py38h885f38d_0 conda-forge dash 2.0.0 pyhd8ed1ab_0 conda-forge dataclasses 0.8 pyhc8e2a94_3 conda-forge debugpy 1.4.1 py38h885f38d_0 conda-forge decorator 5.1.0 pyhd8ed1ab_0 conda-forge defusedxml 0.7.1 pyhd8ed1ab_0 conda-forge diff-match-patch 20200713 pyh9f0ad1d_0 conda-forge docker-pycreds 0.4.0 py_0 conda-forge docutils 0.17.1 py38haa244fe_0 conda-forge entrypoints 0.3 pyhd8ed1ab_1003 conda-forge fastrlock 0.8 py38h885f38d_1 conda-forge fftw 3.3.10 nompi_hea9a5d6_101 conda-forge flake8 4.0.1 pyhd8ed1ab_1 conda-forge flask 2.0.2 pyhd8ed1ab_0 conda-forge flask-compress 1.10.1 pyhd8ed1ab_0 conda-forge freetype 2.10.4 h546665d_1 conda-forge fsspec 2021.10.1 pyhd8ed1ab_0 conda-forge future 0.18.2 py38haa244fe_3 conda-forge gitdb 4.0.9 pyhd8ed1ab_0 conda-forge gitpython 3.1.24 pyhd8ed1ab_0 conda-forge google-auth 1.35.0 pyh6c4a22f_0 conda-forge google-auth-oauthlib 0.4.6 pyhd8ed1ab_0 conda-forge grpcio 1.41.1 py38he5377a8_1 conda-forge h5py 3.6.0 nompi_py38hde0384b_100 conda-forge hdf5 1.12.1 nompi_h2a0e4a3_103 conda-forge icu 68.1 h0e60522_0 conda-forge idna 3.1 pyhd3deb0d_0 conda-forge imagesize 1.2.0 py_0 conda-forge importlib-metadata 4.2.0 py38haa244fe_0 conda-forge importlib_metadata 4.2.0 hd8ed1ab_0 conda-forge inflection 0.5.1 pyh9f0ad1d_0 conda-forge iniconfig 1.1.1 pyh9f0ad1d_0 conda-forge intel-openmp 2021.3.0 h57928b3_3372 conda-forge intervaltree 3.0.2 py_0 conda-forge ipykernel 6.4.1 py38h595d716_0 conda-forge ipython 7.28.0 py38h595d716_0 conda-forge ipython_genutils 0.2.0 py_1 conda-forge ipywidgets 7.6.5 pyhd8ed1ab_0 conda-forge isort 5.9.3 pyhd8ed1ab_0 conda-forge itsdangerous 2.0.1 pyhd8ed1ab_0 conda-forge jbig 2.1 h8d14728_2003 conda-forge jedi 0.18.0 py38haa244fe_2 conda-forge jellyfish 0.8.9 py38h294d835_2 conda-forge jinja2 3.0.2 pyhd8ed1ab_0 conda-forge jinja2-time 0.2.0 py_2 conda-forge joblib 1.1.0 pyhd8ed1ab_0 conda-forge jpeg 9d h8ffe710_0 conda-forge json5 0.9.6 pyhd3eb1b0_0 jsonschema 4.1.0 pyhd8ed1ab_0 conda-forge jupyter-console 6.4.0 pypi_0 pypi jupyter_client 6.1.12 pyhd8ed1ab_0 conda-forge jupyter_core 4.8.1 py38haa244fe_0 conda-forge jupyter_server 1.11.1 pyhd8ed1ab_0 conda-forge jupyterlab 3.2.1 pyhd8ed1ab_0 conda-forge jupyterlab-server 1.2.0 pypi_0 pypi jupyterlab_pygments 0.1.2 pyh9f0ad1d_0 conda-forge jupyterlab_server 2.8.2 pyhd8ed1ab_0 conda-forge jupyterlab_widgets 1.0.2 pyhd8ed1ab_0 conda-forge keyring 23.2.1 py38haa244fe_0 conda-forge kiwisolver 1.3.2 py38hbd9d945_0 conda-forge krb5 1.19.2 h20d022d_3 conda-forge lazy-object-proxy 1.6.0 py38h294d835_0 conda-forge lcms2 2.12 h2a16943_0 conda-forge lerc 2.2.1 h0e60522_0 conda-forge libarchive 3.5.2 hb45042f_1 conda-forge libblas 3.9.0 11_win64_mkl conda-forge libcblas 3.9.0 11_win64_mkl conda-forge libclang 11.1.0 default_h5c34c98_1 conda-forge libcurl 7.80.0 h789b8ee_1 conda-forge libdeflate 1.7 h8ffe710_5 conda-forge libflac 1.3.3 h0e60522_1 conda-forge libiconv 1.16 he774522_0 conda-forge liblapack 3.9.0 11_win64_mkl conda-forge libmamba 0.19.1 h44daa3b_0 conda-forge libmambapy 0.19.1 py38h2bfd5b9_0 conda-forge libogg 1.3.5 h2bbff1b_1 libopus 1.3.1 h8ffe710_1 conda-forge libpng 1.6.37 h1d00b33_2 conda-forge libprotobuf 3.19.1 h7755175_0 conda-forge librosa 0.8.1 pyhd8ed1ab_0 conda-forge libsndfile 1.0.31 h0e60522_1 conda-forge libsodium 1.0.18 h8d14728_1 conda-forge libsolv 0.7.19 h7755175_5 conda-forge libspatialindex 1.9.3 h39d44d4_4 conda-forge libssh2 1.10.0 h680486a_2 conda-forge libtiff 4.3.0 h0c97f57_1 conda-forge libuv 1.40.0 he774522_0 libvorbis 1.3.7 ha925a31_0 conda-forge libxml2 2.9.12 hf5bbc77_1 conda-forge libzlib 1.2.11 h8ffe710_1013 conda-forge llvmlite 0.36.0 py38h57a6900_0 conda-forge lz4-c 1.9.3 h8ffe710_1 conda-forge lzo 2.10 hfa6e2cd_1000 conda-forge m2w64-gcc-libgfortran 5.3.0 6 conda-forge m2w64-gcc-libs 5.3.0 7 conda-forge m2w64-gcc-libs-core 5.3.0 7 conda-forge m2w64-gmp 6.1.0 2 conda-forge m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge mamba 0.19.1 py38hecfeebb_0 conda-forge markdown 3.3.4 pyhd8ed1ab_0 conda-forge markupsafe 2.0.1 py38h294d835_0 conda-forge matplotlib 3.4.3 py38haa244fe_1 conda-forge matplotlib-base 3.4.3 py38h1f000d6_1 conda-forge matplotlib-inline 0.1.3 pyhd8ed1ab_0 conda-forge mccabe 0.6.1 py_1 conda-forge menuinst 1.4.18 py38haa244fe_1 conda-forge mistune 0.8.4 py38h294d835_1004 conda-forge mkl 2021.3.0 hb70f87d_564 conda-forge more-itertools 8.10.0 pyhd8ed1ab_0 conda-forge mpmath 1.2.1 pyhd8ed1ab_0 conda-forge msys2-conda-epoch 20160418 1 conda-forge multidict 5.2.0 py38h294d835_1 conda-forge mypy_extensions 0.4.3 py38haa244fe_3 conda-forge nbclassic 0.3.2 pyhd8ed1ab_0 conda-forge nbclient 0.5.4 pyhd8ed1ab_0 conda-forge nbconvert 5.6.1 pypi_0 pypi nbformat 5.1.3 pyhd8ed1ab_0 conda-forge nest-asyncio 1.5.1 pyhd8ed1ab_0 conda-forge ninja 1.10.2 h6d14046_1 notebook 6.4.4 pyha770c72_0 conda-forge numba 0.53.0 py38h5c177ec_0 conda-forge numpy 1.21.2 py38h089cfbf_0 conda-forge numpydoc 1.1.0 py_1 conda-forge oauthlib 3.1.1 pyhd8ed1ab_0 conda-forge olefile 0.46 pyh9f0ad1d_1 conda-forge openjpeg 2.4.0 hb211442_1 conda-forge openssl 1.1.1l h8ffe710_0 conda-forge packaging 21.0 pyhd8ed1ab_0 conda-forge pandas 1.3.3 py38h5d928e2_0 conda-forge pandoc 2.14.2 h8ffe710_0 conda-forge pandocfilters 1.5.0 pyhd8ed1ab_0 conda-forge paramiko 2.7.2 pyh9f0ad1d_0 conda-forge parso 0.8.2 pyhd8ed1ab_0 conda-forge pathspec 0.9.0 pyhd8ed1ab_0 conda-forge pathtools 0.1.2 py_1 conda-forge pdfkit 0.6.1 pypi_0 pypi pexpect 4.8.0 pyh9f0ad1d_2 conda-forge pickleshare 0.7.5 py_1003 conda-forge pillow 8.3.2 py38h794f750_0 conda-forge pip 21.2.4 pyhd8ed1ab_0 conda-forge platformdirs 2.3.0 pyhd8ed1ab_0 conda-forge plotly 5.3.1 py_0 plotly pluggy 1.0.0 py38haa244fe_1 conda-forge pooch 1.5.2 pyhd8ed1ab_0 conda-forge poyo 0.5.0 py_0 conda-forge prometheus_client 0.11.0 pyhd8ed1ab_0 conda-forge promise 2.3 py38haa244fe_5 conda-forge prompt-toolkit 3.0.20 pyha770c72_0 conda-forge protobuf 3.19.1 py38h885f38d_1 conda-forge psutil 5.8.0 py38h294d835_1 conda-forge ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge py 1.10.0 pyhd3deb0d_0 conda-forge py-lz4framed 0.14.0 pypi_0 pypi pyasn1 0.4.8 py_0 conda-forge pyasn1-modules 0.2.8 py_0 pybind11-abi 4 hd8ed1ab_3 conda-forge pycodestyle 2.8.0 pyhd8ed1ab_0 conda-forge pycosat 0.6.3 py38h294d835_1009 conda-forge pycparser 2.20 pyh9f0ad1d_2 conda-forge pydeprecate 0.3.1 pyhd8ed1ab_0 conda-forge pydocstyle 6.1.1 pyhd8ed1ab_0 conda-forge pyfftw 0.12.0 py38h46b76f8_3 conda-forge pyflakes 2.4.0 pyhd8ed1ab_0 conda-forge pygments 2.10.0 pyhd8ed1ab_0 conda-forge pyjwt 2.3.0 pyhd8ed1ab_0 conda-forge pylint 2.7.2 py38haa244fe_0 conda-forge pyls-spyder 0.4.0 pyhd8ed1ab_0 conda-forge pynacl 1.4.0 py38h31c79cd_2 conda-forge pyopenssl 21.0.0 pyhd8ed1ab_0 conda-forge pyparsing 2.4.7 pyh9f0ad1d_0 conda-forge pypiwin32 223 pypi_0 pypi pyqt 5.12.3 py38haa244fe_7 conda-forge pyqt-impl 5.12.3 py38h885f38d_7 conda-forge pyqt5-sip 4.19.18 py38h885f38d_7 conda-forge pyqtchart 5.12 py38h885f38d_7 conda-forge pyqtwebengine 5.12.1 py38h885f38d_7 conda-forge pyrsistent 0.17.3 py38h294d835_2 conda-forge pysocks 1.7.1 py38haa244fe_3 conda-forge pysoundfile 0.10.3.post1 pyhd3deb0d_0 conda-forge pytest 6.2.5 py38haa244fe_0 conda-forge python 3.8.12 h7840368_1_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python-lsp-black 1.0.0 pyhd8ed1ab_0 conda-forge python-lsp-jsonrpc 1.0.0 pyhd8ed1ab_0 conda-forge python-lsp-server 1.3.3 pyhd8ed1ab_0 conda-forge python_abi 3.8 2_cp38 conda-forge pytorch 1.10.0 py3.8_cuda11.3_cudnn8_0 pytorch pytorch-lightning 1.5.6 pyhd8ed1ab_0 conda-forge pytorch-mutex 1.0 cuda pytorch pytz 2021.3 pyhd8ed1ab_0 conda-forge pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge pywin32 301 py38h294d835_0 conda-forge pywin32-ctypes 0.2.0 py38haa244fe_1003 conda-forge pywinpty 1.1.4 py38hd3f51b4_0 conda-forge pyyaml 5.4.1 py38h294d835_1 conda-forge pyzmq 22.3.0 py38h09162b1_0 conda-forge qdarkstyle 3.0.2 pyhd8ed1ab_0 conda-forge qstylizer 0.2.1 pyhd8ed1ab_0 conda-forge qt 5.12.9 h5909a2a_4 conda-forge qtawesome 1.0.3 pyhd8ed1ab_0 conda-forge qtconsole 5.2.2 pyhd8ed1ab_0 conda-forge qtpy 1.11.2 pyhd8ed1ab_0 conda-forge regex 2021.10.8 py38h294d835_0 conda-forge reproc 14.2.3 h8ffe710_0 conda-forge reproc-cpp 14.2.3 h0e60522_0 conda-forge requests 2.26.0 pyhd8ed1ab_0 conda-forge requests-oauthlib 1.3.0 pyh9f0ad1d_0 conda-forge requests-unixsocket 0.2.0 py_0 conda-forge resampy 0.2.2 py_0 conda-forge rope 0.20.1 pyhd8ed1ab_0 conda-forge rsa 4.7.2 pyh44b312d_0 conda-forge rtree 0.9.7 py38h8b54edf_2 conda-forge ruamel_yaml 0.15.100 py38h2bbff1b_0 scikit-learn 1.0 py38h8224a6f_1 conda-forge scipy 1.7.1 py38ha1292f7_0 conda-forge send2trash 1.8.0 pyhd8ed1ab_0 conda-forge sentry-sdk 1.5.0 pyhd8ed1ab_0 conda-forge setuptools 58.2.0 py38haa244fe_0 conda-forge shortuuid 1.0.8 py38haa244fe_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge smmap 3.0.5 pyh44b312d_0 conda-forge sniffio 1.2.0 py38haa244fe_1 conda-forge snowballstemmer 2.1.0 pyhd8ed1ab_0 conda-forge sortedcontainers 2.4.0 pyhd8ed1ab_0 conda-forge sounddevice 0.4.3 pypi_0 pypi sphinx 4.2.0 pyh6c4a22f_0 conda-forge sphinxcontrib-applehelp 1.0.2 py_0 conda-forge sphinxcontrib-devhelp 1.0.2 py_0 conda-forge sphinxcontrib-htmlhelp 2.0.0 pyhd8ed1ab_0 conda-forge sphinxcontrib-jsmath 1.0.1 py_0 conda-forge sphinxcontrib-qthelp 1.0.3 py_0 conda-forge sphinxcontrib-serializinghtml 1.1.5 pyhd8ed1ab_0 conda-forge spyder 5.2.1 py38haa244fe_0 conda-forge spyder-kernels 2.2.0 py38haa244fe_0 conda-forge sqlite 3.36.0 h8ffe710_2 conda-forge subprocess32 3.5.4 py_1 conda-forge sympy 1.9 py38haa244fe_0 conda-forge tbb 2021.3.0 h2d74725_0 conda-forge tenacity 8.0.1 py38haa95532_0 tensorboard 2.6.0 pyhd8ed1ab_1 conda-forge tensorboard-data-server 0.6.0 py38haa244fe_1 conda-forge tensorboard-plugin-wit 1.8.0 pyh44b312d_0 conda-forge termcolor 1.1.0 py_2 conda-forge terminado 0.12.1 py38haa244fe_0 conda-forge testpath 0.5.0 pyhd8ed1ab_0 conda-forge textdistance 4.2.1 pyhd8ed1ab_0 conda-forge threadpoolctl 3.0.0 pyh8a188c0_0 conda-forge three-merge 0.1.1 pyh9f0ad1d_0 conda-forge tinycss2 1.1.0 pyhd8ed1ab_0 conda-forge tk 8.6.11 h8ffe710_1 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge tomli 1.2.1 pyhd8ed1ab_0 conda-forge torchinfo 1.5.4 pyhd8ed1ab_0 conda-forge torchmetrics 0.6.0 pyhd8ed1ab_0 conda-forge torchsummary 1.5.1 pypi_0 pypi torchvision 0.11.1 py38_cu113 pytorch tornado 6.1 py38h294d835_1 conda-forge tqdm 4.62.3 pyhd8ed1ab_0 conda-forge traitlets 4.3.3 pypi_0 pypi typed-ast 1.4.3 py38h294d835_0 conda-forge typing-extensions 3.10.0.2 hd8ed1ab_0 conda-forge typing_extensions 3.10.0.2 pyha770c72_0 conda-forge ucrt 10.0.20348.0 h57928b3_0 conda-forge ujson 4.2.0 py38h885f38d_0 conda-forge urllib3 1.26.7 pyhd8ed1ab_0 conda-forge vc 14.2 hb210afc_5 conda-forge vs2015_runtime 14.29.30037 h902a5da_5 conda-forge wandb 0.12.9 pyhd8ed1ab_0 conda-forge watchdog 2.1.6 py38haa244fe_0 conda-forge wcwidth 0.2.5 pyh9f0ad1d_2 conda-forge webencodings 0.5.1 py_1 conda-forge websocket-client 0.58.0 py38haa95532_4 werkzeug 2.0.1 pyhd8ed1ab_0 conda-forge wheel 0.37.0 pyhd8ed1ab_1 conda-forge whichcraft 0.6.1 py_0 conda-forge widgetsnbextension 3.5.2 py38haa244fe_0 conda-forge win10toast 0.9 pypi_0 pypi win_inet_pton 1.1.0 py38haa244fe_2 conda-forge winpty 0.4.3 4 conda-forge wrapt 1.12.1 py38h294d835_3 conda-forge xz 5.2.5 h62dcd97_1 conda-forge yaml 0.2.5 he774522_0 conda-forge yaml-cpp 0.6.3 ha925a31_4 conda-forge yapf 0.31.0 pyhd8ed1ab_0 conda-forge yarl 1.7.2 py38h294d835_1 conda-forge yaspin 2.1.0 pyhd8ed1ab_0 conda-forge zeromq 4.3.4 h0e60522_1 conda-forge zipp 3.6.0 pyhd8ed1ab_0 conda-forge zlib 1.2.11 h8ffe710_1013 conda-forge zstd 1.5.0 h6255e5f_0 conda-forge ``` </details> <details><summary><b>conda info</b></summary> ``` active environment : pyt active env location : D:\Anaconda\envs\pyt shell level : 2 user config file : C:\Users\OverL\.condarc populated config files : C:\Users\OverL\.condarc conda version : 4.10.3 conda-build version : 3.18.11 python version : 3.8.3.final.0 virtual packages : __cuda=11.5=0 __win=0=0 __archspec=1=x86_64 base environment : D:\Anaconda (writable) conda av data dir : D:\Anaconda\etc\conda conda av metadata url : None channel URLs : https://repo.anaconda.com/pkgs/main/win-64 https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/win-64 https://repo.anaconda.com/pkgs/r/noarch https://repo.anaconda.com/pkgs/msys2/win-64 https://repo.anaconda.com/pkgs/msys2/noarch package cache : D:\Anaconda\pkgs C:\Users\OverL\.conda\pkgs C:\Users\OverL\AppData\Local\conda\conda\pkgs envs directories : D:\Anaconda\envs C:\Users\OverL\.conda\envs C:\Users\OverL\AppData\Local\conda\conda\envs platform : win-64 user-agent : conda/4.10.3 requests/2.24.0 CPython/3.8.3 Windows/10 Windows/10.0.19041 administrator : False netrc file : C:\Users\OverL/.netrc offline mode : False ``` </details> Discovered in [PL](https://github.com/PyTorchLightning/pytorch-lightning/issues/11208)
open
2021-12-22T22:20:23Z
2022-09-14T15:03:40Z
https://github.com/tqdm/tqdm/issues/1283
[ "invalid ⛔", "need-feedback 📢", "p2-bug-warning ⚠", "submodule-notebook 📓" ]
OverLordGoldDragon
5
databricks/koalas
pandas
1,305
Index.to_series() works not properly
When converting an Index to Series for comparing operation like the below, there is something problem. ```python >>> pidx = pd.Index([1, 2, 3, 4, 5]) >>> kidx1 = ks.Index([1, 2, 3, 4, 5]) >>> kidx2 = ks.Index(pidx) >>> kidx3 = ks.from_pandas(pidx) >>> kidx1.to_series() == kidx2.to_series() == kidx3.to_series() Traceback (most recent call last): ... AssertionError: (1, 0) ``` The existing implementation seems only can convert from index to series properly when the index is came from DataFrame like the below. ```python >>> df = ks.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats'], ... index=list('abcd')) >>> df['dogs'].index.to_series() == df['cats'].index.to_series() a True b True c True d True Name: 0, dtype: bool ```
closed
2020-02-24T17:35:58Z
2020-03-02T18:50:31Z
https://github.com/databricks/koalas/issues/1305
[ "bug" ]
itholic
0
django-cms/django-cms
django
7,794
[DOC] code update
Do you also want to take a look at https://github.com/django-cms/django-cms/blob/develop-4/docs/contributing/code.rst? There's still reference to aldryn-boilerplate (a bootstrap3 thing)
open
2024-01-29T11:57:19Z
2025-02-22T18:27:01Z
https://github.com/django-cms/django-cms/issues/7794
[ "component: documentation" ]
marksweb
1
vitalik/django-ninja
rest-api
593
How to define responses for the swagger
Hello! I'm passing my API responses to schemas so that the corresponding responses and status appear in the swagger documentation. In those that return a list with keys I have no problem, but in those that return a plain text, or a list without keys, how could I define it? For example, an endpoint returning the services available at a location, the current response is: `['Internet', 'Aplicaciones', 'Wifi' .... ]` Or an endpoint that returns the status of the API, it is currently returning "OK" Regards!
closed
2022-10-17T14:52:38Z
2023-01-13T10:03:27Z
https://github.com/vitalik/django-ninja/issues/593
[]
JFeldaca
1
huggingface/datasets
machine-learning
7,442
Flexible Loader
### Feature request Can we have a utility function that will use `load_from_disk` when given the local path and `load_dataset` if given an HF dataset? It can be something as simple as this one: ``` def load_hf_dataset(path_or_name): if os.path.exists(path_or_name): return load_from_disk(path_or_name) else: return load_dataset(path_or_name) ``` ### Motivation This can be done inside the user codebase, too, but in my experience, it becomes repetitive code. ### Your contribution I can open a pull request.
open
2025-03-09T16:55:03Z
2025-03-17T20:35:07Z
https://github.com/huggingface/datasets/issues/7442
[ "enhancement" ]
dipta007
2
zama-ai/concrete-ml
scikit-learn
852
[Feature Request] Support for threshold decryption
## Feature request Hi. Is there any plan to support Concrete-ML (or Concrete) with threshold decryption? ## Motivation I came across this paper [https://eprint.iacr.org/2023/815.pdf](url). It seems that there has already been some research done by Zama about threshold decryption on TFHE. It would be good to also have Concrete-ML (and Concrete) support this feature. Thanks!
open
2024-09-02T09:01:17Z
2024-09-02T13:48:49Z
https://github.com/zama-ai/concrete-ml/issues/852
[]
gy-cao
1
pydantic/logfire
fastapi
907
Emit severity text in logRecord?
### Question Hello, I'm trying to use logfire with an alternative backend, however I am having issues getting the severity level to show up in loki. When looking at the otel endpoint, the following is found in the trace attributes: `logfire.level_num`. However this doesn't translate to anything concrete. Is it possible to add another attribute when emitting the log? I am also using the loguru integration if that changes things. I can see the number being set here: https://github.com/pydantic/logfire/blob/06b5531896dbae3bfc43e21e733fcdc208312c7a/logfire/integrations/logging.py#L84 Let me know if this is something that should be supported and I'll whip up a PR! Thanks for any help.
closed
2025-03-04T20:21:32Z
2025-03-05T16:11:41Z
https://github.com/pydantic/logfire/issues/907
[ "Question" ]
jonas-meyer
5
aimhubio/aim
data-visualization
2,659
Unable to access Aim instance with a domain without specifying a port number
### Describe the bug When trying to access an Aim instance using a domain, the current implementation expects a port number to be included in the URL. However, in some cases, the port number might not be required, especially when using default ports (e.g., port 80 for HTTP). The current implementation of the _separate_paths() method in the Client class does not handle cases where no port number is provided, causing a ValueError. ### To Reproduce Here's an example of the problematic code: ```py aim_run_remote = Run(repo='aim://aim-server.domain.com', experiment='test-remote') ``` The above code raises the following exception: `ValueError: not enough values to unpack (expected 2, got 1)` ### Expected behavior Aim should be able to handle cases where no port number is provided in the URL, using a default port or handling it in a more graceful manner. https://github.com/aimhubio/aim/blob/4a934662e42c4d250dc2d0395fb12e0b302b2604/aim/ext/transport/client.py#L72
open
2023-04-18T03:40:02Z
2023-05-02T06:45:21Z
https://github.com/aimhubio/aim/issues/2659
[]
ds-sebastian
1
praw-dev/praw
api
1,107
Allow creating a userflair template with both a CSS class and a background color
## Issue Description When support was added for v2 flairs back in January (#1018), the Reddit API did not support defining new userflair templates that had both CSS classes and background colors defined. There are some checks in the code currently that throw errors if you try to do this (eg. praw/models/reddit/subreddit.py, line 956). After doing some testing myself, I found that the API does support this now, so this limitation is no longer necessary. Reading through the other v2 flair code, it looks like there are a lot of similar limitations in other places. I haven't had the time to test those yet, but some of those might also be able to be removed. This should be a very simple change. I might try to put together a pull request if I can find the time. ## System Information - PRAW Version: 6.3.2.dev0 - Python Version: 3.5.2 - Operating System: Linux Mint 18.3
closed
2019-07-15T21:20:55Z
2019-07-29T02:08:40Z
https://github.com/praw-dev/praw/issues/1107
[]
jenbanim
1
CorentinJ/Real-Time-Voice-Cloning
python
1,274
How can I decrease speed for cloning?
I am using this model on aws ec2 instance but it takes approx 30 seconds to clone, but I want to clone it faster. I have tried changing the instance types but that didn't worked. I have tried g4, g5 and p3 instances but the time taken was same in all of them.
open
2023-11-26T16:06:22Z
2023-11-26T16:06:22Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1274
[]
Satyam206
0
arogozhnikov/einops
tensorflow
74
[Feature suggestion] Add layer 'repeat_as'
In pytorch, we have 'expand_as' which check dim before expand. I'm aware of 'repeat' layer as replace for 'expand' but could you add 'repeat_as' as expand for 'expand as' ? Thanks.
closed
2020-10-21T03:31:57Z
2024-09-16T18:49:01Z
https://github.com/arogozhnikov/einops/issues/74
[]
NguyenVanThanhHust
1
marshmallow-code/flask-smorest
rest-api
177
Document file download
How can I document a file download (done with send_file from flask) in openapi.json?
closed
2020-08-06T11:06:34Z
2020-08-14T02:57:49Z
https://github.com/marshmallow-code/flask-smorest/issues/177
[]
kettenbach-it
1
noirbizarre/flask-restplus
api
267
upgrade swagger to 3.0
https://github.com/swagger-api/swagger-ui/blob/master/dist/index.html need a little fix on css ![image](https://cloud.githubusercontent.com/assets/5886048/24454857/0e27b3fe-14c0-11e7-867c-525609791bfb.png)
closed
2017-03-29T12:40:01Z
2022-06-24T02:56:03Z
https://github.com/noirbizarre/flask-restplus/issues/267
[]
tkizm1
3
davidsandberg/facenet
computer-vision
964
VGG19 Model
Can some one share VGG19 architecture, modified to run with facenet code?
open
2019-01-29T09:44:52Z
2019-03-20T12:21:00Z
https://github.com/davidsandberg/facenet/issues/964
[]
Shahnawazgrewal
1
akfamily/akshare
data-science
5,593
AKShare 接口问题报告 | ak.stock_zh_a_spot_em只能抓取200个股票了
ak.stock_zh_a_spot_em 今天上午还能抓取5000多个股票的,下午变成只能抓取200个股票了。请问是什么问题,我akshare版本降级到1.15.84以后还是只能抓取200个。 序号 代码 名称 最新价 涨跌幅 涨跌额 成交量 ... 市净率 总市值 流通市值 涨速 5分钟涨跌 60日涨跌幅 年初至今涨跌幅 0 1 873167 新赣江 28.08 30.00 6.48 112559 ... 4.22 1989783900 1173234825 0.00 0.00 64.98 99.57 1 2 835305 云创数据 45.13 29.98 10.41 264575 ... 7.70 5974134521 3660082489 0.00 0.00 97.16 122.21 2 3 430300 辰光医疗 16.70 29.96 3.85 218519 ... 5.25 1433647004 1111078655 0.00 0.00 21.19 43.97 3 4 300478 杭州高新 12.94 20.04 2.16 310775 ... 21.53 1639148620 1639148620 0.00 0.00 18.72 43.62 4 5 300287 飞利信 7.19 20.03 1.20 3634914 ... 8.20 10319618680 9424298834 0.00 0.00 26.14 71.19 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 195 196 300036 超图软件 19.19 6.49 1.17 456369 ... 3.31 9456191380 8390385305 0.00 -0.05 -4.53 13.02 196 197 300143 盈康生命 10.18 6.49 0.62 310752 ... 3.20 7629417329 6529214602 0.10 -0.10 -3.78 10.65 197 198 688302 海创药业-U 31.79 6.46 1.93 17801 ... 2.56 3147705860 2311910552 0.22 0.35 -19.58 3.52 198 199 300460 惠伦晶体 12.89 6.44 0.78 275660 ... 4.06 3619566795 3619566795 0.23 0.08 -21.59 6.18 199 200 836504 博迅生物 20.86 6.43 1.26 23721 ... 4.86 903928466 267794485 -0.10 0.10 -7.33 17.92 [200 rows x 23 columns]
closed
2025-02-15T07:49:04Z
2025-02-15T14:25:06Z
https://github.com/akfamily/akshare/issues/5593
[ "bug" ]
diana518516
5
deezer/spleeter
tensorflow
917
[Bug] protobuf incompatibility
- [ ✅] I didn't find a similar issue already open. - [ ✅] I read the documentation (README AND Wiki) - [ ✅] I have installed FFMpeg - [ ❌] My problem is related to Spleeter only, not a derivative product (such as Webapplication, or GUI provided by others) ## Description I'm trying to build a streamlit web application with library version 1.39.0 which it requires protobuf<6,>=3.20 but latest spleeter version which i installed from github using `pip install git+https://github.com/deezer/spleeter` requires protobuf<3.20,>=3.9.2 Can you consider adapting spleeter to newer versions of protobuf so i could easily use it? ## Step to reproduce <!-- Indicates clearly steps to reproduce the behavior: --> 1. Installed using `pip install git+https://github.com/deezer/spleeter` 2. Run as `user` 3. Got `streamlit 1.39.0 requires protobuf<6,>=3.20, but you have protobuf 3.19.6 which is incompatible.` error ## Environment <!-- Fill the following table --> | | | | ----------------- | ------------------------------- | | OS | Windows 11 | | Python | 3.10.15 | | Installation type | pip install git+https://github.com/deezer/spleeter | | RAM available | 16GB | | Hardware spec | 12gen intel corei9 with 14 cores |
open
2024-11-04T08:35:15Z
2024-11-04T08:35:15Z
https://github.com/deezer/spleeter/issues/917
[ "bug", "invalid" ]
sahandkh1419
0
Gozargah/Marzban
api
1,058
nodes
سلام وقت بخیر من یه مشکلی که دارم بعضی موقعا نود ام به قطع و وصلی میوفته مجبور میشم برم ssh بزنم به سرور node یه بار دستور ریستارت اجرا کنم ``` docker compose down --remove-orphans; docker compose up -d ``` تا مشکل حل بشه کانفیگ داکر سرور نودم هم به این صورت هست ``` services: marzban-node: # build: . image: gozargah/marzban-node:latest restart: always network_mode: host environment: XRAY_EXECUTABLE_PATH: /var/lib/marzban/xray-core/xray SSL_CLIENT_CERT_FILE: /var/lib/marzban-node/ssl_client_cert.pem volumes: - /var/lib/marzban-node:/var/lib/marzban-node - /var/lib/marzban:/var/lib/marzban
closed
2024-06-22T21:31:25Z
2024-06-26T04:41:20Z
https://github.com/Gozargah/Marzban/issues/1058
[ "Bug" ]
xmohammad1
0
onnx/onnx
tensorflow
5,954
How to export a yolov8 model to onnx format
open
2024-02-23T03:23:33Z
2024-02-23T03:23:33Z
https://github.com/onnx/onnx/issues/5954
[ "question" ]
LeoYoung6k
0
jupyter/docker-stacks
jupyter
1,775
[BUG] - java & pyspark not pre-installed?
### What docker image(s) are you using? pyspark-notebook ### OS system and architecture running docker image windows 11 ### What Docker command are you running? docker run --name pyspark -p 8888:8888 jupyter/scipy-notebook:latest ### How to Reproduce the problem? from pyspark.sql import * spark = SparkSession.builder.appName('PySpark Read CSV').getOrCreate() # Reading csv file df = spark.read.csv("users.csv") df.printSchema() df.show() ### Command output ```bash session JAVA_HOME is not set ``` ### Expected behavior data frame created successfully ### Actual behavior It seems that java is not installed on the docker container and the JAVA_HOME environment variable is not set ### Anything else? I was able to fix this issue, but I had to pip install pyspark and install java through conda and set the environment variable. I'm not sure if this is a bug or a feature but, I would image you would want the container to have java and pyspark pre installed?
closed
2022-08-21T16:06:07Z
2022-08-21T16:30:34Z
https://github.com/jupyter/docker-stacks/issues/1775
[ "type:Bug" ]
TBrannan
3
keras-team/keras
deep-learning
20,048
keras.ops.map can't handle nested structures for TensorFlow backend
Keras: 3.4.1 TensorFlow: 2.17.0 As background, I am looking to leverage both `keras.ops.map` as well as `keras.ops.vectorize_map` for custom preprocessing layers. Certain layers require sequential mapping hence I use `keras.ops.map`. If I pass a nested input, `keras.ops.map` will fail when using TensorFlow backend. I believe [this line](https://github.com/keras-team/keras/blob/7d92e9eea354da51e7c2a3edd679839ca0315a02/keras/src/backend/tensorflow/core.py#L233) is an issue as it assumes the input is not nested: ```python def map(f, xs): xs = tree.map_structure(convert_to_tensor, xs) def get_fn_output_signature(x): out = f(x) return tree.map_structure(tf.TensorSpec.from_tensor, out) fn_output_signature = get_fn_output_signature(xs[0]) return tf.map_fn(f, xs, fn_output_signature=fn_output_signature) ``` From what I can tell, it is trying to determine the output signature (which might not match the input) by feeding the function a single element (e.g. `xs[0]`) which won't work on nested inputs. I was able to fix it by updating the function as follows (note: I've done only limited testing). ```python def map(f, xs): xs = tree.map_structure(convert_to_tensor, xs) def get_fn_output_signature(x): out = f(x) return tree.map_structure(tf.TensorSpec.from_tensor, out) # Grab single element unpacking and repacking single element x = tf.nest.pack_sequence_as(xs, [x[0] for x in tf.nest.flatten(xs)]) fn_output_signature = get_fn_output_signature(x) return tf.map_fn(f, xs, fn_output_signature=fn_output_signature) ``` Test case: ```python import os os.environ["KERAS_BACKEND"] = "tensorflow" import keras import tensorflow as tf def my_fn(inputs): outputs = dict(inputs) outputs['x'] = inputs['x'][:, 0] outputs['y'] = inputs['y'] + 1 return outputs xs = { 'x': tf.convert_to_tensor(np.random.rand(4, 100, 3), dtype=tf.float32), 'y': tf.convert_to_tensor(np.random.randint(0, 10, size=(4, 1)), dtype=tf.int32) } ``` Calling `keras.ops.map`: ```python ys = keras.ops.map(my_fn, xs) ``` produces error: ```bash 225 out = f(x) 226 return tree.map_structure(tf.TensorSpec.from_tensor, out) --> 228 fn_output_signature = get_fn_output_signature(xs[0]) 229 return tf.map_fn(f, xs, fn_output_signature=fn_output_signature) KeyError: 0" ``` Calling custom `map`: ```python ys = map(my_fn, xs) print(ys['x'].shape) ``` produces correct result: ```bash (4, 100) ```
closed
2024-07-26T14:59:47Z
2024-08-11T22:24:16Z
https://github.com/keras-team/keras/issues/20048
[ "type:Bug", "backend:tensorflow" ]
apage224
2
BMW-InnovationLab/BMW-YOLOv4-Training-Automation
rest-api
27
FileNotFoundError: [Errno 2] No such file or directory: 'config/darknet/yolov4_default_weights/yolov4.weights'
Hi, I am facing this issue ![e1](https://user-images.githubusercontent.com/30057560/131981616-77449bc8-bb38-4166-ba2e-7a3758d4b818.png) Though we can see that the file exists there: ![e2](https://user-images.githubusercontent.com/30057560/131981625-98d75e02-4f74-4aa0-8cec-d960f8a31257.png)
closed
2021-09-03T09:16:15Z
2021-09-03T10:38:08Z
https://github.com/BMW-InnovationLab/BMW-YOLOv4-Training-Automation/issues/27
[]
boredomed
1
encode/databases
asyncio
424
Clarification on transaction isolation and management
Consider the following simulation of concurrent access: ``` # pylint: skip-file import asyncio import os from databases import Database async def tx1(db): async with db.transaction(): await db.execute("INSERT INTO foo VALUES (1)") await asyncio.sleep(1.5) async def tx2(db): async with db.transaction(): await asyncio.sleep(0.5) result = await db.execute("SELECT * FROM foo") assert result is None, result await asyncio.sleep(1) async def main(): db = Database("postgresql://rdbms:rdbms@localhost") await db.connect() await db.execute("CREATE TABLE IF NOT EXISTS foo (bar int4)") await db.execute("TRUNCATE foo CASCADE") await asyncio.gather( tx1(db.connection()), tx2(db.connection()) ) if __name__ == '__main__': asyncio.run(main()) ``` This code should exit succesfully, but either fails with `cannot perform operation: another operation is in progress` (which is also weird because a new connection is requested) or at the `assert` statement. Please provide some clarification regarding the expected transactional behavior and isolation of this module.
closed
2021-11-16T01:38:20Z
2023-08-28T14:44:24Z
https://github.com/encode/databases/issues/424
[ "clean up" ]
cochiseruhulessin
6
freqtrade/freqtrade
python
11,218
ModuleNotFoundError: No module named 'freqtrade'
* Operating system: ____Linux 5.14.0-427.37.1.el9_4.x86_64 * Python Version: _____in openshift * CCXT version: _____in openshift * Freqtrade Version: ____ image: freqtradeorg/freqtrade:stable The trying to install in openshift with "oc new-app freqtradeorg/freqtrade:stable" fails with the following error: Traceback (most recent call last): File "/home/ftuser/.local/bin/freqtrade", line 5, in <module> from freqtrade.main import main ModuleNotFoundError: No module named 'freqtrade' Steps to reproduce: Run : "oc new-app freqtradeorg/freqtrade:stable"
closed
2025-01-12T07:28:17Z
2025-01-15T02:40:16Z
https://github.com/freqtrade/freqtrade/issues/11218
[ "Question", "Install" ]
chmj
2
zappa/Zappa
django
569
[Migrated] Flask 1.0 is out
Originally from: https://github.com/Miserlou/Zappa/issues/1493 by [mnp](https://github.com/mnp) <!--- Provide a general summary of the issue in the Title above --> ## Context <!--- Provide a more detailed introduction to the issue itself, and why you consider it to be a bug --> <!--- Also, please make sure that you are running Zappa _from a virtual environment_ and are using Python 2.7/3.6 --> There's a new 1.0 release of Flask: https://www.palletsprojects.com/blog/flask-1-0-released/ ## Expected Behavior <!--- Tell us what should happen --> It offers some new features which might need to be evaluated and integrated. ## Actual Behavior <!--- Tell us what happens instead --> ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> 1. 2. 3. ## Your Environment <!--- Include as many relevant details about the environment you experienced the bug in --> * Zappa version used: * Operating System and Python version: * The output of `pip freeze`: * Link to your project (optional): * Your `zappa_settings.py`:
closed
2021-02-20T12:22:54Z
2022-07-16T07:04:54Z
https://github.com/zappa/Zappa/issues/569
[]
jneves
1
Neoteroi/BlackSheep
asyncio
51
Enrich the API for OpenAPI Docs
* support defining common responses to be shared across all operations * support defining ~~security and~~ servers settings without subclassing `OpenAPIHandler`
closed
2020-11-30T19:51:37Z
2020-12-27T11:48:12Z
https://github.com/Neoteroi/BlackSheep/issues/51
[ "enhancement" ]
RobertoPrevato
0
jazzband/django-oauth-toolkit
django
594
[Question]: What is music?
I have questions 1. What is `scope` in the document context? ```python OAUTH2_PROVIDER = { # this is the list of available scopes 'SCOPES': {'read': 'Read scope', 'write': 'Write scope', 'groups': 'Access to your groups'} } ``` Because `scopes` contain `verb`, and `plural nouns`. I am confusing the usage and key idea of it 2. ` required_scopes = ['music']` What is music? Is it model 3. What is the relation between `music` and `song`? What is the model relation?
closed
2018-05-11T06:48:06Z
2018-05-19T10:08:20Z
https://github.com/jazzband/django-oauth-toolkit/issues/594
[ "question" ]
elcolie
2
sktime/pytorch-forecasting
pandas
1,753
[BUG] temporal fusion transformer trained with GPU's then loaded with map_locations=torch.device('cpu') does not apply the correct device to loss metric
**Describe the bug** <!-- A clear and concise description of what the bug is. --> **To Reproduce** <!-- Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com --> ```python <Paste your code here> ``` **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> **Additional context** <!-- Add any other context about the problem here. --> **Versions** <details> <!-- Please run the following code snippet and paste the output here: from sktime import show_versions; show_versions() --> </details> <!-- Thanks for contributing! -->
closed
2025-01-15T03:56:04Z
2025-01-15T04:02:01Z
https://github.com/sktime/pytorch-forecasting/issues/1753
[ "bug" ]
arizzuto
0
koaning/scikit-lego
scikit-learn
630
[DOCS] Document KlusterFoldValidation
Related to https://www.linkedin.com/feed/update/urn:li:activity:7176859386554789888?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A7176859386554789888%2C7176877653679894528%29&dashCommentUrn=urn%3Ali%3Afsd_comment%3A%287176877653679894528%2Curn%3Ali%3Aactivity%3A7176859386554789888%29 It doesn't help that it is misspelled but the docs are also just plain missing. No bueno. Will pick this up during the pyladies sprint tomorrow.
closed
2024-03-22T16:28:44Z
2024-03-24T14:11:10Z
https://github.com/koaning/scikit-lego/issues/630
[ "documentation" ]
koaning
3
tfranzel/drf-spectacular
rest-api
996
Defining a static dict for an error response in @extend_schema returns "string" as the response body
**Describe the bug** In instances where there is no available serializer, or the response returns a dict, I would like to be able to specify that dict as the response in my responses list under `extend_schema`. I understand this is not maybe how it should be expected to behave but I was also unable to figure out a solution for this via the documentation. **To Reproduce** ``` class RequestAPIView(APIView): @extend_schema( responses={ 200: ResponseSerializer, 404: {"id": "not_found", "message": "User not found"} }, ) def get(self, request, format=None): ... except: return Response(data={"id": "not_found", "message": "User not found"}) .... ``` output the following openapi spec <img width="547" alt="image" src="https://github.com/tfranzel/drf-spectacular/assets/1347347/ab0d801f-e171-4ef8-80d6-8c7c12845cd1"> **Expected behavior** It would be nice to either have documentation on how to return a static dict response such as this, or to be able to specify as defined. Thanks in advance for any and all help
closed
2023-05-31T19:50:27Z
2023-06-11T18:55:56Z
https://github.com/tfranzel/drf-spectacular/issues/996
[]
dashdanw
3
babysor/MockingBird
pytorch
310
本人小白,语音合成时遇Errors in loading staste_dict for Tacotron 求解决方法
![image](https://user-images.githubusercontent.com/90098227/147901074-9c3be4e9-62f2-4b6f-adca-f9a7ea4efd3c.png)
closed
2022-01-03T05:10:55Z
2022-01-03T05:51:36Z
https://github.com/babysor/MockingBird/issues/310
[]
Kristen-PRC
3
deepspeedai/DeepSpeed
pytorch
6,951
[REQUEST] Pipeline Parallelism support multi optimizer to train
**Is your feature request related to a problem? Please describe.** i want to train big model gan, must shard to multi-gpu, but the pipeline_module seems not support multi-optimizer **Describe the solution you'd like** support **Describe alternatives you've considered** can control flow to which layer **Additional context**
open
2025-01-15T11:48:23Z
2025-01-15T11:48:23Z
https://github.com/deepspeedai/DeepSpeed/issues/6951
[ "enhancement" ]
whcjb
0
amdegroot/ssd.pytorch
computer-vision
251
eval.py Error [ ValueError: not enough values to unpack (expected 2, got 0) ]
../ssd.pytorch/layers/functions/detection.py", line 54, in forward ids, count = nms(boxes, scores, self.nms_thresh, self.top_k) ValueError: not enough values to unpack (expected 2, got 0) What does that mean? How to solve that problem?
closed
2018-10-19T09:57:23Z
2020-02-11T11:57:40Z
https://github.com/amdegroot/ssd.pytorch/issues/251
[]
MakeToast
7
microsoft/nlp-recipes
nlp
74
[Example] Named Entity Recognition using MT-DNN
closed
2019-05-28T16:51:13Z
2020-01-14T17:51:50Z
https://github.com/microsoft/nlp-recipes/issues/74
[ "example" ]
saidbleik
3
gunthercox/ChatterBot
machine-learning
1,950
SpecificResponseAdapter "Not processing the statement"
I'm confused about how this adapter works. I'm using the example. The only thing I'm doing differently is using Mongo as storage. Here is the log: ![image](https://user-images.githubusercontent.com/5381013/79676996-fd248180-81a0-11ea-9848-ada930739ebc.png) Am I missing something here? Do I need to set read only to False, or train my bot with the response adapter before I call it? Not likely, since the example should work without any problems as it is right?
open
2020-04-19T01:20:33Z
2020-04-19T01:20:44Z
https://github.com/gunthercox/ChatterBot/issues/1950
[]
FallenSpaces
0
babysor/MockingBird
pytorch
994
预处理pre.py报错
Traceback (most recent call last): File "/home_1/gaoyiyao/MockingBird-main/pre.py", line 74, in <module> preprocess_dataset(**vars(args)) File "/home_1/gaoyiyao/MockingBird-main/models/synthesizer/preprocess.py", line 86, in preprocess_dataset for speaker_metadata in tqdm(job, dataset, len(speaker_dirs), unit="speakers"): File "/home_1/gaoyiyao/anaconda3/envs/sound/lib/python3.9/site-packages/tqdm/std.py", line 1181, in __iter__ for obj in iterable: File "/home_1/gaoyiyao/anaconda3/envs/sound/lib/python3.9/multiprocessing/pool.py", line 870, in next raise value FileNotFoundError: [Errno 2] No such file or directory: 'data/SV2TTS/synthesizer/audio/audio-SSB03850064.wav_00.npy' 哪位大佬知道怎么解决
open
2024-04-20T13:46:15Z
2024-04-25T12:29:55Z
https://github.com/babysor/MockingBird/issues/994
[]
gaoyiyao
3
geopandas/geopandas
pandas
2,872
BUG: Different results between `GeoSeries.fillna` and `GeoDataFrame.fillna`
- [x] I have checked that this issue has not already been reported. - [x] I have confirmed this bug exists on the latest version of geopandas. - [x] (optional) I have confirmed this bug exists on the main branch of geopandas. --- **Note**: Please read [this guide](https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) detailing how to provide the necessary information for us to reproduce your bug. #### Code Sample, a copy-pastable example ```python >>> import geopandas as gpd >>> from shapely.geometry import Polygon >>> s = gpd.GeoSeries( ... [ ... Polygon([(0, 0), (1, 1), (0, 1)]), ... None, ... Polygon([(0, 0), (-1, 1), (0, -1)]), ... ] ... ) >>> s.fillna() # no error 0 POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0.... 1 GEOMETRYCOLLECTION EMPTY 2 POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0... dtype: geometry >>> df = s.to_frame("geometry") >>> type(df) geopandas.geodataframe.GeoDataFrame >>> df.fillna() # get an error ``` <details> <summary>error</summary> ```python File C:\Software\miniforge3\envs\dtoolkit\lib\site-packages\pandas\core\frame.py:5501, in DataFrame.fillna(self, value, method, axis, inplace, limit, downcast) 5490 @doc(NDFrame.fillna, **_shared_doc_kwargs) 5491 def fillna( 5492 self, (...) 5499 downcast: dict | None = None, 5500 ) -> DataFrame | None: -> 5501 return super().fillna( 5502 value=value, 5503 method=method, 5504 axis=axis, 5505 inplace=inplace, 5506 limit=limit, 5507 downcast=downcast, 5508 ) File C:\Software\miniforge3\envs\dtoolkit\lib\site-packages\pandas\core\generic.py:6866, in NDFrame.fillna(self, value, method, axis, inplace, limit, downcast) 6753 """ 6754 Fill NA/NaN values using the specified method. 6755 (...) 6863 Note that column D is not affected since it is not present in df2. 6864 """ 6865 inplace = validate_bool_kwarg(inplace, "inplace") -> 6866 value, method = validate_fillna_kwargs(value, method) 6868 # set the default here, so functions examining the signaure 6869 # can detect if something was set (e.g. in groupby) (GH9221) 6870 if axis is None: File C:\Software\miniforge3\envs\dtoolkit\lib\site-packages\pandas\util\_validators.py:288, in validate_fillna_kwargs(value, method, validate_scalar_dict_value) 285 from pandas.core.missing import clean_fill_method 287 if value is None and method is None: --> 288 raise ValueError("Must specify a fill 'value' or 'method'.") 289 if value is None and method is not None: 290 method = clean_fill_method(method) ValueError: Must specify a fill 'value' or 'method'. ``` </details> #### Problem description `GeoSeries.fillna()` will get result but `GeoDataFrame.fillna` will get an `ValueError`. Because `GeoDataFrame` don't have the following lines. https://github.com/geopandas/geopandas/blob/76403be5b772ca13802b8f57f1ff803dc1a81f4b/geopandas/geoseries.py#L825-L827 #### Expected Output #### Output of ``geopandas.show_versions()`` <details> SYSTEM INFO ----------- python : 3.9.12 | packaged by conda-forge | (main, Mar 24 2022, 23:18:12) [MSC v.1929 64 bit (AMD64)] executable : C:\Software\miniforge3\envs\dtoolkit\python.exe machine : Windows-10-10.0.22621-SP0 GEOS, GDAL, PROJ INFO --------------------- GEOS : 3.11.1 GEOS lib : None GDAL : 3.6.2 GDAL data dir: None PROJ : 9.1.1 PROJ data dir: C:\Software\miniforge3\envs\dtoolkit\Library\share\proj PYTHON DEPENDENCIES ------------------- geopandas : 0.12.2 numpy : 1.22.3 pandas : 2.0.0 pyproj : 3.4.1 shapely : 2.0.1 fiona : 1.8.22 geoalchemy2: None geopy : 2.2.0 matplotlib : 3.5.1 mapclassify: 2.4.3 pygeos : None pyogrio : 0.5.1 psycopg2 : None pyarrow : None rtree : 1.0.0 </details>
open
2023-04-16T12:00:45Z
2023-04-17T09:11:59Z
https://github.com/geopandas/geopandas/issues/2872
[ "bug", "enhancement" ]
Zeroto521
1
coqui-ai/TTS
deep-learning
2,642
[Bug]
### Describe the bug Problem when running yourtts training recipe with use_phonemes=True Error - ``` > TRAINING (2023-05-30 17:28:48) ! Run is kept in /newvolume/souvik/yourtts_exp/TTS/recipes/vctk/yourtts/YourTTS-EN-VCTK-May-30-2023_05+28PM-2071088b Traceback (most recent call last): File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/trainer/trainer.py", line 1591, in fit self._fit() File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/trainer/trainer.py", line 1544, in _fit self.train_epoch() File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/trainer/trainer.py", line 1308, in train_epoch for cur_step, batch in enumerate(self.train_loader): File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 634, in __next__ data = self._next_data() File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1346, in _next_data return self._process_data(data) File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 1372, in _process_data data.reraise() File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/_utils.py", line 644, in reraise raise exception TypeError: Caught TypeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop data = fetcher.fetch(index) File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py", line 51, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py", line 51, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "/newvolume/souvik/yourtts_exp/TTS/TTS/tts/models/vits.py", line 272, in __getitem__ token_ids = self.get_token_ids(idx, item["text"]) File "/newvolume/souvik/yourtts_exp/TTS/TTS/tts/datasets/dataset.py", line 240, in get_token_ids token_ids = self.get_phonemes(idx, text)["token_ids"] File "/newvolume/souvik/yourtts_exp/TTS/TTS/tts/datasets/dataset.py", line 217, in get_phonemes out_dict = self.phoneme_dataset[idx] File "/newvolume/souvik/yourtts_exp/TTS/TTS/tts/datasets/dataset.py", line 607, in __getitem__ ids = self.compute_or_load(string2filename(item["audio_unique_name"]), item["text"], item["language"]) File "/newvolume/souvik/yourtts_exp/TTS/TTS/tts/datasets/dataset.py", line 620, in compute_or_load cache_path = os.path.join(self.cache_path, file_name + file_ext) File "/newvolume/anaconda3/envs/yourtts/lib/python3.9/posixpath.py", line 76, in join a = os.fspath(a) TypeError: expected str, bytes or os.PathLike object, not NoneType ``` ### To Reproduce Run the same code just change use_phonemes=True in vits config ### Expected behavior Should have ran by using phonemes. ### Logs _No response_ ### Environment ```shell Updated tts version ``` ### Additional context _No response_
closed
2023-05-30T17:47:11Z
2023-06-05T08:05:31Z
https://github.com/coqui-ai/TTS/issues/2642
[ "bug" ]
souvikg544
2
ultrafunkamsterdam/undetected-chromedriver
automation
1,864
[Nodriver] Why does the number of browser.tabs remain unchanged after "Page" close?
browser = await uc.start() page = await browser.get('url') url2 = 'example.com' #For special reasons, you need to use evaluate window.open to bypass Cloudflare await page.evaluate(f'''window.open("{url2}", "_blank"); ''') await page.close() print(str(len(browser.tabs))) #output len ​​2 page=browser.tabs[len(self.browser.tabs)-1] In fact, the effect I want is to make the page become the last page of the browser when closing the current page. But this doesn’t seem right, any suggestions?
open
2024-05-04T01:52:52Z
2024-05-04T01:52:52Z
https://github.com/ultrafunkamsterdam/undetected-chromedriver/issues/1864
[]
mashien0201
0
LibrePhotos/librephotos
django
664
My Albums disappear and new ones are no longer created/visible : Showing 0 user created albums
# 🐛 Bug Report * [X] 📁 I've Included a ZIP file containing my librephotos `log` files [gunicorn_django.log](https://github.com/LibrePhotos/librephotos/files/9791059/gunicorn_django.log) * [X] ❌ I have looked for similar issues (including closed ones) * [X] 🎬 (If applicable) I've provided pictures or links to videos that clearly demonstrate the issue [Example of behavior](https://gfycat.com/officialadoredbufflehead) ## 📝 Description of issue: After uploading photos then adding them into an album, any albums previously created disappear. Attempts to recreate previous albums or create new ones still results in **Showing 0 user created albums** All pictures are still present Albums shared with a second account are still visible for the second account Sometimes I'm able to setup 4 or 5 new albums, but every time at some point it will no longer show any albums I'm not sure what logs are necessary to help ## 🔁 How can we reproduce it: ### [Following Docker install steps](https://docs.librephotos.com/1/standard_install/) `cd librephotos-docker` `cp librephotos.env .env` ### Edit .env the following variables ``` scanDirectory=~/scanDirectory data=./librephotos/data logs=~/logs dbName=librephotos dbUser=librephotos dbPass=<pass> ``` ### From docker-compose.yml ``` backend: image: reallibrephotos/librephotos:${tag} container_name: backend restart: unless-stopped volumes: - ${scanDirectory}:/data - ${data}/protected_media:/protected_media - ${logs}:/logs - ${data}/cache:/root/.cache ``` ### docker-compose up - Begin uploading photos from localhost:3000 - Wait until worker is green and available (upper right) - Select uploaded photos and click the + to add to an album - Go to Albums > My albums > refresh page to see new data ## Please provide additional information: - 💻 Operating system: Debian 11 Bullseye (Standard), from Proxmox templates - ⚙ Architecture (x86 or ARM): x86_64 - 🔢 Librephotos version: reallibrephotos/librephotos-frontend latest reallibrephotos/librephotos latest reallibrephotos/librephotos-proxy - 📸 Librephotos installation method (Docker, Kubernetes, .deb, etc.): Docker : latest - 📁 How is you picture library mounted (Local file system (Type), NFS, SMB, etc.): Cephfs with a symlink from cephfs to workingdir \librephotos-docker scanDirectory -> /mnt/pictures/librephotos/scanDirectory/ - ☁ If you are virtualizing librephotos, Virtualization platform (Proxmox, Xen, HyperV, etc.): Proxmox VE 7.2
closed
2022-10-14T18:35:44Z
2023-04-13T08:21:34Z
https://github.com/LibrePhotos/librephotos/issues/664
[ "bug" ]
Circenn5130
7
ultralytics/yolov5
machine-learning
13,453
conv2d() received an invalid combination of arguments
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question ## environment windows10 python3.8 ## question I used the trained model to detect. The following code throws an error ``` import pathlib import torch from PIL import Image import numpy as np from pathlib import Path pathlib.PosixPath = pathlib.WindowsPath model = torch.load(r'D:\py\yolo\yolov5\mymodel\testbest.pt', map_location=torch.device('cpu'))['model'].float() model.eval() results = model(r'D:\py\code\dnfm-yolo-tutorial\naima\28.png') results.print() results.show() ``` the error ``` Traceback (most recent call last): File "D:/py/PyCharm 2024.1.6/plugins/python/helpers/pydev/pydevd.py", line 1551, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "D:\py\PyCharm 2024.1.6\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "D:\py\yolo\yolov5\test.py", line 13, in <module> results = model(r'D:\py\code\dnfm-yolo-tutorial\naima\28.png') File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "D:\py\yolo\yolov5\models\yolo.py", line 267, in forward return self._forward_once(x, profile, visualize) # single-scale inference, train File "D:\py\yolo\yolov5\models\yolo.py", line 167, in _forward_once x = m(x) # run File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "D:\py\yolo\yolov5\models\common.py", line 86, in forward return self.act(self.bn(self.conv(x))) File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\conv.py", line 458, in forward return self._conv_forward(input, self.weight, self.bias) File "D:\py\yolo\yolov5\venv\lib\site-packages\torch\nn\modules\conv.py", line 454, in _conv_forward return F.conv2d(input, weight, bias, self.stride, TypeError: conv2d() received an invalid combination of arguments - got (str, Parameter, NoneType, tuple, tuple, tuple, int), but expected one of: * (Tensor input, Tensor weight, Tensor bias = None, tuple of ints stride = 1, tuple of ints padding = 0, tuple of ints dilation = 1, int groups = 1) didn't match because some of the arguments have invalid types: (!str!, !Parameter!, !NoneType!, !tuple of (int, int)!, !tuple of (int, int)!, !tuple of (int, int)!, !int!) * (Tensor input, Tensor weight, Tensor bias = None, tuple of ints stride = 1, str padding = "valid", tuple of ints dilation = 1, int groups = 1) didn't match because some of the arguments have invalid types: (!str!, !Parameter!, !NoneType!, !tuple of (int, int)!, !tuple of (int, int)!, !tuple of (int, int)!, !int!) ``` ### Additional _No response_
open
2024-12-08T13:24:11Z
2024-12-13T10:18:27Z
https://github.com/ultralytics/yolov5/issues/13453
[ "question", "detect" ]
niusme
3
nltk/nltk
nlp
2,858
Manually wrap output lines in HOWTO files
cf https://github.com/nltk/nltk/pull/2856#issuecomment-945193387
open
2021-10-18T10:02:18Z
2024-10-07T16:34:36Z
https://github.com/nltk/nltk/issues/2858
[ "good first issue", "documentation" ]
stevenbird
3
wkentaro/labelme
computer-vision
1,448
labels.txt not able to read the label 'car'
### Provide environment information python labelme2voc.py /home/amodpatil/semantic_dataset/segmentation /home/amodpatil/semantic_dataset/am --labels /home/amodpatil/pytorch-segmentation/datasets/labels.txt Creating dataset: /home/amodpatil/semantic_dataset/am Generating dataset from: /home/amodpatil/semantic_dataset/segmentation/left2306.json Label name to value dictionary: {'vegetation': 1, 'traffic-light': 2, 'road': 3, 'sidewalk': 4, 'parking': 5, 'building': 6} Shapes: [{'label': 'sidewalk', 'points': [[586.0, 413.5], [552.0, 412.5], [551.0, 411.5], [547.0, 411.5], [546.0, 410.5], [533.0, 410.5], [532.0, 409.5], [512.0, 408.5], [509.0, 406.5], [507.0, 407.5], [506.0, 406.5], [492.0, 406.5], [491.0, 405.5], [482.0, 405.5], [481.0, 404.5], [477.0, 403.5], [475.5, 402.0], [475.5, 399.0], [481.5, 394.0], [481.5, 392.0], [480.5, 391.0], [481.5, 386.0], [480.5, 384.0], [476.5, 381.0], [473.5, 375.0], [473.5, 372.0], [471.5, 368.0], [470.5, 361.0], [469.5, 360.0], [469.5, 354.0], [467.5, 350.0], [467.5, 342.0], [466.5, 341.0], [466.5, 338.0], [463.0, 333.5], [461.0, 333.5], [458.5, 332.0], [456.5, 330.0], [456.5, 328.0], [460.0, 326.5], [475.0, 326.5], [476.0, 327.5], [487.0, 327.5], [488.0, 328.5], [511.0, 328.5], [512.0, 329.5], [525.0, 329.5], [526.0, 328.5], [535.0, 328.5], [536.0, 327.5], [542.0, 327.5], [543.0, 328.5], [545.0, 328.5], [546.0, 327.5], [553.0, 327.5], [554.0, 328.5], [556.0, 327.5], [559.0, 327.5], [560.0, 328.5], [575.0, 329.5], [575.0, 331.5], [577.0, 331.5], [578.0, 332.5], [583.0, 332.5], [639.0, 332.70833333333337], [639.0, 338.95833333333337], [639.0, 347.2916666666667], [639.0, 363.95833333333337], [639.0, 372.2916666666667], [639.0, 368.12500000000006], [639.0, 386.0416666666667], [639.0, 383.5416666666667], [639.0, 393.95833333333337], [639.0, 405.62500000000006], [637.2916666666666, 419.37500000000006], [617.7083333333334, 419.7916666666667], [589.5, 412.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'sidewalk', 'points': [[412.0, 393.5], [391.0, 393.5], [390.0, 392.5], [379.0, 392.5], [378.0, 391.5], [371.0, 391.5], [370.0, 390.5], [362.0, 390.5], [361.0, 389.5], [347.0, 389.5], [346.0, 388.5], [337.0, 388.5], [336.0, 387.5], [325.0, 387.5], [324.0, 386.5], [281.0, 385.5], [280.0, 384.5], [272.0, 383.5], [270.0, 381.5], [267.0, 381.5], [265.5, 380.0], [269.0, 378.5], [269.5, 377.0], [275.0, 372.5], [277.0, 372.5], [291.0, 365.5], [293.0, 365.5], [295.0, 363.5], [302.0, 362.5], [305.0, 359.5], [307.0, 358.5], [310.0, 358.5], [315.0, 355.5], [317.0, 355.5], [325.0, 350.5], [328.0, 350.5], [329.0, 349.5], [332.0, 349.5], [335.0, 347.5], [337.0, 347.5], [340.0, 344.5], [349.0, 340.5], [354.0, 336.5], [362.0, 336.5], [363.0, 335.5], [368.0, 334.5], [371.0, 332.5], [373.0, 332.5], [376.0, 330.5], [378.0, 330.5], [381.0, 328.5], [383.0, 328.5], [384.0, 327.5], [389.0, 327.5], [396.0, 333.5], [401.0, 335.5], [402.5, 337.0], [403.5, 343.0], [404.5, 344.0], [402.5, 347.0], [402.5, 365.0], [403.5, 366.0], [404.5, 372.0], [406.5, 375.0], [406.5, 377.0], [409.5, 384.0], [409.5, 390.0], [412.5, 392.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'road', 'points': [[521.0, 479.0], [506.0, 475.5], [502.0, 467.5], [499.5, 469.0], [502.5, 476.0], [496.0, 476.5], [493.5, 461.0], [463.0, 433.5], [452.0, 438.5], [449.0, 432.5], [442.0, 434.5], [439.0, 430.5], [410.5, 429.0], [440.0, 426.5], [399.0, 423.5], [324.0, 427.5], [283.0, 433.5], [285.0, 437.5], [281.0, 437.5], [279.0, 432.5], [274.5, 434.0], [277.5, 436.0], [275.0, 437.5], [241.0, 432.5], [179.0, 434.5], [136.0, 444.5], [69.0, 448.5], [1.0, 465.5], [0.5, 365.0], [9.0, 360.5], [11.0, 366.5], [21.0, 369.5], [104.0, 368.5], [105.0, 371.5], [82.0, 369.5], [80.5, 373.0], [112.0, 377.5], [140.0, 377.5], [144.0, 372.5], [159.0, 371.5], [160.5, 376.0], [155.5, 380.0], [158.0, 381.5], [217.0, 386.5], [229.0, 381.5], [248.0, 380.5], [249.0, 377.5], [253.0, 380.5], [254.0, 376.5], [256.0, 382.5], [272.0, 381.5], [282.0, 386.5], [310.0, 387.5], [312.0, 390.5], [389.0, 394.5], [421.0, 398.5], [422.0, 401.5], [479.0, 406.5], [481.0, 410.5], [553.0, 413.5], [549.5, 417.0], [559.0, 417.5], [561.0, 421.5], [611.0, 420.5], [620.5, 422.0], [615.0, 425.5], [635.5, 427.0], [620.0, 428.5], [619.0, 431.5], [616.0, 428.5], [597.0, 431.5], [594.0, 428.5], [590.0, 431.5], [584.0, 428.5], [577.0, 431.5], [572.0, 427.5], [548.0, 431.5], [541.0, 428.5], [540.0, 431.5], [521.0, 431.5], [519.0, 434.5], [512.0, 430.5], [509.5, 440.0], [502.0, 438.5], [499.0, 446.5], [492.0, 439.5], [490.5, 450.0], [502.0, 461.5], [514.0, 466.5], [520.5, 462.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'car', 'points': [[276.0, 356.5], [259.0, 356.5], [251.0, 348.5], [238.0, 348.5], [237.0, 347.5], [231.0, 348.5], [229.0, 346.5], [226.0, 346.5], [224.0, 348.5], [222.0, 346.5], [217.0, 345.5], [216.0, 346.5], [207.0, 345.5], [206.0, 346.5], [197.0, 345.5], [193.0, 346.5], [180.0, 344.5], [167.0, 344.5], [165.0, 342.5], [137.0, 341.5], [133.5, 338.0], [130.5, 330.0], [130.5, 308.0], [133.5, 294.0], [136.5, 288.0], [140.5, 284.0], [141.5, 278.0], [145.0, 274.5], [152.0, 271.5], [170.0, 269.5], [171.0, 267.5], [178.0, 267.5], [181.0, 265.5], [186.0, 265.5], [193.0, 262.5], [207.0, 247.5], [213.0, 244.5], [220.0, 237.5], [231.0, 235.5], [246.0, 235.5], [247.0, 234.5], [253.0, 235.5], [264.0, 233.5], [280.0, 235.5], [295.0, 234.5], [318.0, 237.5], [334.0, 242.5], [351.5, 261.0], [353.5, 266.0], [356.5, 288.0], [359.5, 295.0], [360.5, 302.0], [360.5, 317.0], [358.5, 324.0], [354.0, 327.5], [346.0, 328.5], [339.0, 327.5], [334.0, 323.5], [330.0, 323.5], [291.0, 334.5], [287.5, 339.0], [285.5, 348.0], [283.5, 351.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'car', 'points': [[69.0, 334.5], [62.0, 334.5], [54.0, 331.5], [47.0, 331.5], [39.0, 329.5], [29.5, 318.0], [27.5, 313.0], [23.0, 308.5], [19.0, 307.5], [14.5, 304.0], [15.5, 302.0], [13.5, 299.0], [13.5, 296.0], [10.5, 294.0], [12.5, 293.0], [12.0, 291.5], [5.0, 291.5], [4.0, 292.5], [0.5, 291.0], [0.5, 270.0], [8.0, 268.5], [10.0, 269.5], [18.0, 269.5], [19.0, 268.5], [20.0, 269.5], [35.0, 269.5], [44.0, 267.5], [47.0, 265.5], [52.0, 265.5], [55.0, 264.5], [56.0, 262.5], [62.0, 260.5], [68.0, 254.5], [74.0, 252.5], [77.0, 249.5], [79.0, 249.5], [89.0, 243.5], [92.0, 244.5], [98.0, 242.5], [101.0, 243.5], [112.0, 242.5], [115.5, 241.0], [114.5, 238.0], [116.0, 236.5], [121.5, 234.0], [105.0, 233.5], [105.0, 231.5], [121.0, 230.5], [122.0, 229.5], [184.0, 228.5], [185.0, 229.5], [206.0, 229.5], [215.5, 232.0], [216.5, 236.0], [203.0, 247.5], [197.0, 251.5], [191.0, 251.5], [187.0, 253.5], [182.0, 263.5], [162.0, 266.5], [144.0, 272.5], [139.5, 277.0], [137.5, 284.0], [132.5, 291.0], [124.5, 320.0], [117.0, 323.5], [114.0, 328.5], [110.0, 330.5], [106.0, 330.5], [104.0, 333.5], [101.0, 330.5], [96.0, 331.5], [92.0, 330.5], [81.0, 331.5], [79.0, 330.5], [77.0, 333.5], [75.0, 331.5], [73.0, 333.5]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'parking', 'points': [[227.0, 383.5], [219.0, 380.5], [204.0, 380.5], [182.0, 377.5], [158.0, 377.5], [154.0, 379.5], [150.0, 375.5], [146.0, 375.5], [139.0, 378.5], [116.0, 378.5], [84.5, 374.0], [86.0, 372.5], [96.5, 373.0], [93.0, 370.5], [80.0, 370.5], [77.0, 372.5], [38.0, 372.5], [16.0, 370.5], [7.0, 365.5], [0.5, 366.0], [0.5, 339.0], [13.0, 341.5], [53.0, 341.5], [77.0, 345.5], [97.0, 345.5], [115.0, 340.5], [124.0, 340.5], [128.0, 345.5], [134.0, 347.5], [147.0, 348.5], [160.0, 352.5], [200.0, 352.5], [209.0, 353.5], [214.0, 356.5], [223.0, 355.5], [229.0, 357.5], [231.0, 355.5], [242.0, 355.5], [260.5, 363.0], [255.0, 365.5], [266.0, 366.5], [270.5, 370.0], [269.0, 375.5], [258.0, 381.5], [241.0, 380.5], [229.0, 381.5]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'person', 'points': [[462.0, 397.5], [460.5, 397.0], [460.5, 390.0], [459.5, 389.0], [460.5, 388.0], [460.5, 387.0], [459.5, 386.0], [459.5, 385.0], [456.5, 382.0], [456.5, 380.0], [455.0, 379.5], [453.5, 378.0], [453.5, 376.0], [451.5, 374.0], [451.5, 373.0], [448.5, 370.0], [448.5, 368.0], [447.5, 367.0], [447.5, 365.0], [447.0, 364.5], [445.0, 364.5], [444.0, 363.5], [440.0, 363.5], [439.0, 364.5], [436.0, 364.5], [435.5, 364.0], [435.5, 360.0], [434.5, 359.0], [434.5, 356.0], [432.5, 354.0], [432.5, 352.0], [431.0, 350.5], [430.0, 350.5], [426.5, 347.0], [426.5, 346.0], [425.5, 345.0], [424.5, 342.0], [421.5, 339.0], [421.5, 338.0], [419.5, 335.0], [419.5, 334.0], [418.5, 333.0], [418.5, 327.0], [419.5, 326.0], [419.5, 323.0], [420.5, 322.0], [420.5, 321.0], [419.0, 320.5], [416.5, 318.0], [416.5, 314.0], [417.5, 313.0], [417.5, 310.0], [418.5, 309.0], [418.5, 308.0], [421.0, 305.5], [427.0, 305.5], [429.5, 307.0], [429.5, 308.0], [430.5, 309.0], [431.5, 312.0], [436.5, 317.0], [435.5, 318.0], [435.5, 320.0], [437.0, 320.5], [445.5, 329.0], [445.5, 330.0], [447.0, 331.5], [448.0, 331.5], [450.0, 333.5], [452.0, 333.5], [453.0, 334.5], [454.0, 334.5], [455.5, 336.0], [454.0, 336.5], [452.5, 338.0], [452.5, 339.0], [457.5, 342.0], [459.5, 348.0], [463.0, 351.5], [464.5, 352.0], [464.5, 360.0], [463.5, 361.0], [463.5, 364.0], [464.0, 364.5], [467.0, 364.5], [467.5, 365.0], [467.5, 367.0], [469.5, 370.0], [469.5, 375.0], [468.0, 375.5], [465.5, 378.0], [468.5, 381.0], [469.0, 382.5], [473.0, 382.5], [475.5, 386.0], [475.5, 388.0], [474.5, 389.0], [474.5, 392.0], [473.0, 393.5], [469.0, 393.5], [468.0, 392.5], [467.0, 392.5], [465.5, 391.0], [465.5, 389.0], [464.0, 388.5], [463.5, 389.0], [463.5, 391.0], [462.5, 392.0], [462.5, 397.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}] Traceback (most recent call last): File "/home/amodpatil/pytorch-segmentation/labelme2voc.py", line 103, in <module> main() File "/home/amodpatil/pytorch-segmentation/labelme2voc.py", line 83, in main lbl, _ = labelme.utils.shapes_to_label( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/amodpatil/miniconda3/lib/python3.12/site-packages/labelme/utils/shape.py", line 68, in shapes_to_label cls_id = label_name_to_value[cls_name] ~~~~~~~~~~~~~~~~~~~^^^^^^^^^^ KeyError: 'car' ### What OS are you using? Ubuntu 20.04 ### Describe the Bug python labelme2voc.py /home/amodpatil/semantic_dataset/segmentation /home/amodpatil/semantic_dataset/am --labels /home/amodpatil/pytorch-segmentation/datasets/labels.txt Creating dataset: /home/amodpatil/semantic_dataset/am Generating dataset from: /home/amodpatil/semantic_dataset/segmentation/left2306.json Label name to value dictionary: {'vegetation': 1, 'traffic-light': 2, 'road': 3, 'sidewalk': 4, 'parking': 5, 'building': 6} Shapes: [{'label': 'sidewalk', 'points': [[586.0, 413.5], [552.0, 412.5], [551.0, 411.5], [547.0, 411.5], [546.0, 410.5], [533.0, 410.5], [532.0, 409.5], [512.0, 408.5], [509.0, 406.5], [507.0, 407.5], [506.0, 406.5], [492.0, 406.5], [491.0, 405.5], [482.0, 405.5], [481.0, 404.5], [477.0, 403.5], [475.5, 402.0], [475.5, 399.0], [481.5, 394.0], [481.5, 392.0], [480.5, 391.0], [481.5, 386.0], [480.5, 384.0], [476.5, 381.0], [473.5, 375.0], [473.5, 372.0], [471.5, 368.0], [470.5, 361.0], [469.5, 360.0], [469.5, 354.0], [467.5, 350.0], [467.5, 342.0], [466.5, 341.0], [466.5, 338.0], [463.0, 333.5], [461.0, 333.5], [458.5, 332.0], [456.5, 330.0], [456.5, 328.0], [460.0, 326.5], [475.0, 326.5], [476.0, 327.5], [487.0, 327.5], [488.0, 328.5], [511.0, 328.5], [512.0, 329.5], [525.0, 329.5], [526.0, 328.5], [535.0, 328.5], [536.0, 327.5], [542.0, 327.5], [543.0, 328.5], [545.0, 328.5], [546.0, 327.5], [553.0, 327.5], [554.0, 328.5], [556.0, 327.5], [559.0, 327.5], [560.0, 328.5], [575.0, 329.5], [575.0, 331.5], [577.0, 331.5], [578.0, 332.5], [583.0, 332.5], [639.0, 332.70833333333337], [639.0, 338.95833333333337], [639.0, 347.2916666666667], [639.0, 363.95833333333337], [639.0, 372.2916666666667], [639.0, 368.12500000000006], [639.0, 386.0416666666667], [639.0, 383.5416666666667], [639.0, 393.95833333333337], [639.0, 405.62500000000006], [637.2916666666666, 419.37500000000006], [617.7083333333334, 419.7916666666667], [589.5, 412.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'sidewalk', 'points': [[412.0, 393.5], [391.0, 393.5], [390.0, 392.5], [379.0, 392.5], [378.0, 391.5], [371.0, 391.5], [370.0, 390.5], [362.0, 390.5], [361.0, 389.5], [347.0, 389.5], [346.0, 388.5], [337.0, 388.5], [336.0, 387.5], [325.0, 387.5], [324.0, 386.5], [281.0, 385.5], [280.0, 384.5], [272.0, 383.5], [270.0, 381.5], [267.0, 381.5], [265.5, 380.0], [269.0, 378.5], [269.5, 377.0], [275.0, 372.5], [277.0, 372.5], [291.0, 365.5], [293.0, 365.5], [295.0, 363.5], [302.0, 362.5], [305.0, 359.5], [307.0, 358.5], [310.0, 358.5], [315.0, 355.5], [317.0, 355.5], [325.0, 350.5], [328.0, 350.5], [329.0, 349.5], [332.0, 349.5], [335.0, 347.5], [337.0, 347.5], [340.0, 344.5], [349.0, 340.5], [354.0, 336.5], [362.0, 336.5], [363.0, 335.5], [368.0, 334.5], [371.0, 332.5], [373.0, 332.5], [376.0, 330.5], [378.0, 330.5], [381.0, 328.5], [383.0, 328.5], [384.0, 327.5], [389.0, 327.5], [396.0, 333.5], [401.0, 335.5], [402.5, 337.0], [403.5, 343.0], [404.5, 344.0], [402.5, 347.0], [402.5, 365.0], [403.5, 366.0], [404.5, 372.0], [406.5, 375.0], [406.5, 377.0], [409.5, 384.0], [409.5, 390.0], [412.5, 392.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'road', 'points': [[521.0, 479.0], [506.0, 475.5], [502.0, 467.5], [499.5, 469.0], [502.5, 476.0], [496.0, 476.5], [493.5, 461.0], [463.0, 433.5], [452.0, 438.5], [449.0, 432.5], [442.0, 434.5], [439.0, 430.5], [410.5, 429.0], [440.0, 426.5], [399.0, 423.5], [324.0, 427.5], [283.0, 433.5], [285.0, 437.5], [281.0, 437.5], [279.0, 432.5], [274.5, 434.0], [277.5, 436.0], [275.0, 437.5], [241.0, 432.5], [179.0, 434.5], [136.0, 444.5], [69.0, 448.5], [1.0, 465.5], [0.5, 365.0], [9.0, 360.5], [11.0, 366.5], [21.0, 369.5], [104.0, 368.5], [105.0, 371.5], [82.0, 369.5], [80.5, 373.0], [112.0, 377.5], [140.0, 377.5], [144.0, 372.5], [159.0, 371.5], [160.5, 376.0], [155.5, 380.0], [158.0, 381.5], [217.0, 386.5], [229.0, 381.5], [248.0, 380.5], [249.0, 377.5], [253.0, 380.5], [254.0, 376.5], [256.0, 382.5], [272.0, 381.5], [282.0, 386.5], [310.0, 387.5], [312.0, 390.5], [389.0, 394.5], [421.0, 398.5], [422.0, 401.5], [479.0, 406.5], [481.0, 410.5], [553.0, 413.5], [549.5, 417.0], [559.0, 417.5], [561.0, 421.5], [611.0, 420.5], [620.5, 422.0], [615.0, 425.5], [635.5, 427.0], [620.0, 428.5], [619.0, 431.5], [616.0, 428.5], [597.0, 431.5], [594.0, 428.5], [590.0, 431.5], [584.0, 428.5], [577.0, 431.5], [572.0, 427.5], [548.0, 431.5], [541.0, 428.5], [540.0, 431.5], [521.0, 431.5], [519.0, 434.5], [512.0, 430.5], [509.5, 440.0], [502.0, 438.5], [499.0, 446.5], [492.0, 439.5], [490.5, 450.0], [502.0, 461.5], [514.0, 466.5], [520.5, 462.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'car', 'points': [[276.0, 356.5], [259.0, 356.5], [251.0, 348.5], [238.0, 348.5], [237.0, 347.5], [231.0, 348.5], [229.0, 346.5], [226.0, 346.5], [224.0, 348.5], [222.0, 346.5], [217.0, 345.5], [216.0, 346.5], [207.0, 345.5], [206.0, 346.5], [197.0, 345.5], [193.0, 346.5], [180.0, 344.5], [167.0, 344.5], [165.0, 342.5], [137.0, 341.5], [133.5, 338.0], [130.5, 330.0], [130.5, 308.0], [133.5, 294.0], [136.5, 288.0], [140.5, 284.0], [141.5, 278.0], [145.0, 274.5], [152.0, 271.5], [170.0, 269.5], [171.0, 267.5], [178.0, 267.5], [181.0, 265.5], [186.0, 265.5], [193.0, 262.5], [207.0, 247.5], [213.0, 244.5], [220.0, 237.5], [231.0, 235.5], [246.0, 235.5], [247.0, 234.5], [253.0, 235.5], [264.0, 233.5], [280.0, 235.5], [295.0, 234.5], [318.0, 237.5], [334.0, 242.5], [351.5, 261.0], [353.5, 266.0], [356.5, 288.0], [359.5, 295.0], [360.5, 302.0], [360.5, 317.0], [358.5, 324.0], [354.0, 327.5], [346.0, 328.5], [339.0, 327.5], [334.0, 323.5], [330.0, 323.5], [291.0, 334.5], [287.5, 339.0], [285.5, 348.0], [283.5, 351.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'car', 'points': [[69.0, 334.5], [62.0, 334.5], [54.0, 331.5], [47.0, 331.5], [39.0, 329.5], [29.5, 318.0], [27.5, 313.0], [23.0, 308.5], [19.0, 307.5], [14.5, 304.0], [15.5, 302.0], [13.5, 299.0], [13.5, 296.0], [10.5, 294.0], [12.5, 293.0], [12.0, 291.5], [5.0, 291.5], [4.0, 292.5], [0.5, 291.0], [0.5, 270.0], [8.0, 268.5], [10.0, 269.5], [18.0, 269.5], [19.0, 268.5], [20.0, 269.5], [35.0, 269.5], [44.0, 267.5], [47.0, 265.5], [52.0, 265.5], [55.0, 264.5], [56.0, 262.5], [62.0, 260.5], [68.0, 254.5], [74.0, 252.5], [77.0, 249.5], [79.0, 249.5], [89.0, 243.5], [92.0, 244.5], [98.0, 242.5], [101.0, 243.5], [112.0, 242.5], [115.5, 241.0], [114.5, 238.0], [116.0, 236.5], [121.5, 234.0], [105.0, 233.5], [105.0, 231.5], [121.0, 230.5], [122.0, 229.5], [184.0, 228.5], [185.0, 229.5], [206.0, 229.5], [215.5, 232.0], [216.5, 236.0], [203.0, 247.5], [197.0, 251.5], [191.0, 251.5], [187.0, 253.5], [182.0, 263.5], [162.0, 266.5], [144.0, 272.5], [139.5, 277.0], [137.5, 284.0], [132.5, 291.0], [124.5, 320.0], [117.0, 323.5], [114.0, 328.5], [110.0, 330.5], [106.0, 330.5], [104.0, 333.5], [101.0, 330.5], [96.0, 331.5], [92.0, 330.5], [81.0, 331.5], [79.0, 330.5], [77.0, 333.5], [75.0, 331.5], [73.0, 333.5]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'parking', 'points': [[227.0, 383.5], [219.0, 380.5], [204.0, 380.5], [182.0, 377.5], [158.0, 377.5], [154.0, 379.5], [150.0, 375.5], [146.0, 375.5], [139.0, 378.5], [116.0, 378.5], [84.5, 374.0], [86.0, 372.5], [96.5, 373.0], [93.0, 370.5], [80.0, 370.5], [77.0, 372.5], [38.0, 372.5], [16.0, 370.5], [7.0, 365.5], [0.5, 366.0], [0.5, 339.0], [13.0, 341.5], [53.0, 341.5], [77.0, 345.5], [97.0, 345.5], [115.0, 340.5], [124.0, 340.5], [128.0, 345.5], [134.0, 347.5], [147.0, 348.5], [160.0, 352.5], [200.0, 352.5], [209.0, 353.5], [214.0, 356.5], [223.0, 355.5], [229.0, 357.5], [231.0, 355.5], [242.0, 355.5], [260.5, 363.0], [255.0, 365.5], [266.0, 366.5], [270.5, 370.0], [269.0, 375.5], [258.0, 381.5], [241.0, 380.5], [229.0, 381.5]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}, {'label': 'person', 'points': [[462.0, 397.5], [460.5, 397.0], [460.5, 390.0], [459.5, 389.0], [460.5, 388.0], [460.5, 387.0], [459.5, 386.0], [459.5, 385.0], [456.5, 382.0], [456.5, 380.0], [455.0, 379.5], [453.5, 378.0], [453.5, 376.0], [451.5, 374.0], [451.5, 373.0], [448.5, 370.0], [448.5, 368.0], [447.5, 367.0], [447.5, 365.0], [447.0, 364.5], [445.0, 364.5], [444.0, 363.5], [440.0, 363.5], [439.0, 364.5], [436.0, 364.5], [435.5, 364.0], [435.5, 360.0], [434.5, 359.0], [434.5, 356.0], [432.5, 354.0], [432.5, 352.0], [431.0, 350.5], [430.0, 350.5], [426.5, 347.0], [426.5, 346.0], [425.5, 345.0], [424.5, 342.0], [421.5, 339.0], [421.5, 338.0], [419.5, 335.0], [419.5, 334.0], [418.5, 333.0], [418.5, 327.0], [419.5, 326.0], [419.5, 323.0], [420.5, 322.0], [420.5, 321.0], [419.0, 320.5], [416.5, 318.0], [416.5, 314.0], [417.5, 313.0], [417.5, 310.0], [418.5, 309.0], [418.5, 308.0], [421.0, 305.5], [427.0, 305.5], [429.5, 307.0], [429.5, 308.0], [430.5, 309.0], [431.5, 312.0], [436.5, 317.0], [435.5, 318.0], [435.5, 320.0], [437.0, 320.5], [445.5, 329.0], [445.5, 330.0], [447.0, 331.5], [448.0, 331.5], [450.0, 333.5], [452.0, 333.5], [453.0, 334.5], [454.0, 334.5], [455.5, 336.0], [454.0, 336.5], [452.5, 338.0], [452.5, 339.0], [457.5, 342.0], [459.5, 348.0], [463.0, 351.5], [464.5, 352.0], [464.5, 360.0], [463.5, 361.0], [463.5, 364.0], [464.0, 364.5], [467.0, 364.5], [467.5, 365.0], [467.5, 367.0], [469.5, 370.0], [469.5, 375.0], [468.0, 375.5], [465.5, 378.0], [468.5, 381.0], [469.0, 382.5], [473.0, 382.5], [475.5, 386.0], [475.5, 388.0], [474.5, 389.0], [474.5, 392.0], [473.0, 393.5], [469.0, 393.5], [468.0, 392.5], [467.0, 392.5], [465.5, 391.0], [465.5, 389.0], [464.0, 388.5], [463.5, 389.0], [463.5, 391.0], [462.5, 392.0], [462.5, 397.0]], 'shape_type': 'polygon', 'flags': {}, 'description': '', 'group_id': None, 'mask': None, 'other_data': {}}] Traceback (most recent call last): File "/home/amodpatil/pytorch-segmentation/labelme2voc.py", line 103, in <module> main() File "/home/amodpatil/pytorch-segmentation/labelme2voc.py", line 83, in main lbl, _ = labelme.utils.shapes_to_label( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/amodpatil/miniconda3/lib/python3.12/site-packages/labelme/utils/shape.py", line 68, in shapes_to_label cls_id = label_name_to_value[cls_name] ~~~~~~~~~~~~~~~~~~~^^^^^^^^^^ KeyError: 'car' ### Expected Behavior not providing an output ### To Reproduce It should the labels.txt with all the labels in it
open
2024-06-11T11:44:14Z
2024-06-11T11:44:14Z
https://github.com/wkentaro/labelme/issues/1448
[ "issue::bug" ]
amodpatil1
0
biolab/orange3
numpy
6,553
Nomogram and Predictions widget report different class probabilities for the same naive Bayesian model
**What's wrong?** Given the same feature-value pairs for the data instances and the same model, nomogram should predict the same class probability as the Predict widget. It does not, and the numbers are different. The attached workflow exemplifies this problem. I have considered the Titanic data set, create an instance with sex=female and status=third. Nomogram predicts probability of survival of 66%, whereas Predictions shows 82%. ![image](https://github.com/biolab/orange3/assets/726604/83b25941-5504-4a47-b232-50f240bb189f) I get similar problem one other data sets (e.g., Attrition), where sometime the differences are even more pronounced. If I use logistic regression, the predictions in the Nomogram and Predictions match (the comparison requires that all feature values are defined). **How can we reproduce the problem?** See the attached workflow. [nomogram-vs-predictions.ows.zip](https://github.com/biolab/orange3/files/12445283/nomogram-vs-predictions.ows.zip) **What's your environment?** OS X, Orange 3.35, dmg.
closed
2023-08-26T11:54:15Z
2023-09-01T15:16:13Z
https://github.com/biolab/orange3/issues/6553
[ "bug" ]
BlazZupan
3
AirtestProject/Airtest
automation
486
find_element_by_xpath("//button[@type='submit']") 执行失败
(请尽量按照下面提示内容填写,有助于我们快速定位和解决问题,感谢配合。否则直接关闭。) **(重要!问题分类)** * 测试开发环境AirtestIDE使用问题 -> https://github.com/AirtestProject/AirtestIDE/issues * 控件识别、树状结构、poco库报错 -> https://github.com/AirtestProject/Poco/issues * 图像识别、设备控制相关问题 -> 按下面的步骤 **描述问题bug** (简洁清晰得概括一下遇到的问题是什么。或者是报错的traceback信息。) 1.当执行WEB端自动化的时候,采用airtestIDE工具进行UI抓取登录的button按钮时, 获取的脚本信息为: driver.find_element_by_xpath("//button[@type='submit']") 2.在执行脚本的过程中出现 了以下的错误信息 (在这里粘贴traceback或其他报错信息) screenshot does not match file type. It should end with a `.png` extension "type. It should end with a `.png` extension", UserWarning) custom tearDown **相关截图** (贴出遇到问题时的截图内容,如果有的话) (在AirtestIDE里产生的图像和设备相关的问题,请贴一些AirtestIDE控制台黑窗口相关报错信息) **复现步骤** 打开我们的内部网站 1. driver.find_element_by_xpath("//button[@type='submit']") **预期效果** (预期想要得到什么、见到什么) 通过UI抓取的信息,能正常执行 **python 版本:** `python3.5` **airtest 版本:** `1.0.69` > airtest版本通过`pip freeze`可以命令可以查到 **设备:** - 型号: [e.g. google pixel 2] - 系统: [e.g. Android 8.1] - (别的信息) **其他相关环境信息** (其他运行环境,例如在linux ubuntu16.04上运行异常,在windows上正常。)
closed
2019-08-03T06:21:23Z
2019-08-16T01:37:54Z
https://github.com/AirtestProject/Airtest/issues/486
[]
chen072086
1
google-research/bert
tensorflow
1,376
Bert pre training approach
Hi, I have stated working on Bert model. Do anyone know what was Bert pre-training accuracy(not fine tuned) using 100-0-0 masking approach vs 80-10-10 approach. I could not get it anywhere. Basically I understand why 80-10-10 approach is implemented but did they do any experiments to figure this out
open
2022-12-23T14:22:04Z
2022-12-23T14:22:17Z
https://github.com/google-research/bert/issues/1376
[]
shu1273
0
deezer/spleeter
deep-learning
920
[Discussion] is there any way to use spleeter in flutter ?
Flutter has a tensorflow lite version. https://pub-web.flutter-io.cn/packages/tflite_flutter
open
2024-12-09T12:25:23Z
2024-12-09T12:25:23Z
https://github.com/deezer/spleeter/issues/920
[ "question" ]
badboy-tian
0
jupyter/nbviewer
jupyter
272
Notebooks with accents in the filename do not render
It seems that notebooks with accented characters in the filename do not render correctly. For example: https://github.com/computo-fc/python_cientifico/blob/master/0.%20Por%20que%CC%81%20Python.ipynb gives the following error: ``` 404 : Not Found You are requesting a page that does not exist!" The remote resource was not found. ``` This carries over also to not showing the containing directory. Other notebooks in the same directory with filenames not containing accents are fine: http://nbviewer.ipython.org/github/computo-fc/python_cientifico/blob/master/2.%20Estructuras%20de%20control.ipynb
closed
2014-05-05T21:57:30Z
2014-05-06T21:03:19Z
https://github.com/jupyter/nbviewer/issues/272
[]
dpsanders
9
PokemonGoF/PokemonGo-Bot
automation
5,859
Automatic Installation
I don't understand why this is called "automatic" installation while we need to search and find and download ourselves some UNFOUNDABLE DLLs (encrypt.so and encrypt.dll or encrypt_64.dll) for whom you cannot give us links.
closed
2017-01-05T21:22:33Z
2017-01-08T12:29:19Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5859
[]
mcferson
6
roboflow/supervision
deep-learning
686
Class none person, how to remove it ?
### Search before asking - [X] I have searched the Supervision [issues](https://github.com/roboflow/supervision/issues) and found no similar feature requests. ### Question I'm running this code on my raspberry pi 4 with picamera to detect and count people, using yolov8n, but sometimes it detects a class called none person, and then shows several boxes, when crossing the line it ends up counting these boxes with the class none person, and then, it ends up uncalibrating the count... I didn't find it in the documentation about this class called none person... how to disable it? `import cv2 import json import numpy as np from picamera2 import Picamera2 from ultralytics import YOLO import supervision as sv import os class PiLineCounter: def __init__(self, lines_json_path, model_path): with open(lines_json_path, 'r') as f: self.lines_data = json.load(f) self.model = YOLO(model_path) # Inicialização dos anotadores self.line_annotator = sv.LineZoneAnnotator( thickness=1, text_thickness=1, text_scale=1, custom_in_text="entrando", custom_out_text="saindo" ) self.box_annotator = sv.BoxAnnotator( thickness=2, text_thickness=1, text_scale=0.5 ) # Inicialização da PiCamera2 self.picam2 = Picamera2() preview_config = self.picam2.create_preview_configuration() self.picam2.configure(preview_config) self.picam2.start() # Inicialização dos contadores de linha self.line_counters = {} self.initialize_counters() def initialize_counters(self): for line_key, line_value in self.lines_data.items(): # Usar as coordenadas das linhas diretamente do JSON start_point_x, start_point_y = line_value['points'][0] end_point_x, end_point_y = line_value['points'][1] start_point = sv.Point(start_point_x, start_point_y) end_point = sv.Point(end_point_x, end_point_y) self.line_counters[line_key] = sv.LineZone(start=start_point, end=end_point) def run(self): while True: frame = self.picam2.capture_array() frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR) results = self.model.track(frame, show=False, stream=False, agnostic_nms=True, imgsz=320) print(f"Número de resultados de detecção: {len(results)}") for result in results: detections = sv.Detections.from_ultralytics(result) if detections is None or len(detections.xyxy) == 0: print("Nenhuma detecção neste frame. Pulando...") continue # Imprimir todas as detecções e seus respectivos class_id, labels e confianças for d in detections: class_id = d[3] label = self.model.model.names[class_id] confidence = d[2] print(f"Detecção: class_id={class_id}, label={label}, confiança={confidence:.2f}") detections_filtered = [d for d in detections if d[3] == 0] print(f"Número de detecções de pessoas: {len(detections_filtered)}") labels = [f"{d[4]} {self.model.model.names[d[3]]} {d[2]:0.2f}" for d in detections_filtered] for line_key in self.line_counters.keys(): in_count, out_count = self.line_counters[line_key].trigger(detections=detections_filtered) print(f"Linha {line_key}: Entrando - {in_count}, Saindo - {out_count}") # Criar um objeto Detections que possa ser usado pelo BoxAnnotator if len(detections_filtered) > 0: xyxy = np.array([d[0] for d in detections_filtered]) confidences = np.array([d[2] for d in detections_filtered]) class_ids = np.array([d[3] for d in detections_filtered]) tracker_ids = np.array([d[4] for d in detections_filtered]) detections_for_annotation = sv.Detections(xyxy=xyxy, confidence=confidences, class_id=class_ids, tracker_id=tracker_ids) frame = self.box_annotator.annotate( scene=frame, detections=detections_for_annotation, labels=labels ) else: print("Nenhuma detecção de pessoas neste frame.") for line_key in self.line_counters.keys(): self.line_annotator.annotate(frame=frame, line_counter=self.line_counters[line_key]) # Exibir o frame original sem redimensionamento cv2.imshow("PiCamera Line Counter", frame) #cv2.imwrite('/dev/shm/frame.jpg', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() if __name__ == '__main__': lines_json_path = "lines_with_doubled_data.json" model_path = "yolov8n.pt" pi_line_counter = PiLineCounter( lines_json_path=lines_json_path, model_path=model_path ) pi_line_counter.run() ` ### Additional [lines_with_doubled_data.json](https://github.com/roboflow/supervision/files/13736268/lines_with_doubled_data.json)
closed
2023-12-21T05:05:40Z
2023-12-28T12:25:28Z
https://github.com/roboflow/supervision/issues/686
[ "question" ]
Rasantis
1
plotly/dash-cytoscape
plotly
162
Background image
Is there a way to set a background image?
open
2022-01-06T16:20:15Z
2022-01-06T16:20:15Z
https://github.com/plotly/dash-cytoscape/issues/162
[]
hitnik
0
gradio-app/gradio
machine-learning
10,021
gr.State serializes pydantic BaseModel objects at initialization
### Describe the bug When passing an object based on the Pydantic BaseModel to gr.State during initalization of the gr.State the object gets serialized into a dictionary. This doesn't happen for a regular class object. Interestingly, when passing a Pydantic object into an already initialized gr.State the serialization does not occur (at least in a certain scenario). ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction ```python import gradio as gr from pydantic import BaseModel class TestRegular: def __init__(self, name): self.name = name class TestPydantic(BaseModel): name: str t_reg = TestRegular("hey there") t_pyd = TestPydantic(name="wassup") state_reg = gr.State(t_reg) state_pyd = gr.State(t_pyd) print("== regular class remains unchanged ==") print(f"{t_reg=}") print(f"{state_reg.value=}") print("== pydantic is serialized ==") print(f"{t_pyd=}") print(f"{state_pyd.value=}") ``` ### Screenshot ![image](https://github.com/user-attachments/assets/ca910b68-fa0a-4750-9cc2-8cfcf2fea435) The output of running the above code snippet. ### Logs _No response_ ### System Info ```shell Gradio Environment Information: ------------------------------ Operating System: Linux gradio version: 5.6.0 gradio_client version: 1.4.3 ------------------------------------------------ gradio dependencies in your environment: aiofiles: 23.2.1 anyio: 4.4.0 audioop-lts is not installed. fastapi: 0.115.5 ffmpy: 0.4.0 gradio-client==1.4.3 is not installed. httpx: 0.27.2 huggingface-hub: 0.25.2 jinja2: 3.1.4 markupsafe: 2.1.3 numpy: 1.26.4 orjson: 3.10.7 packaging: 24.1 pandas: 2.2.2 pillow: 10.4.0 pydantic: 2.10.1 pydub: 0.25.1 python-multipart==0.0.12 is not installed. pyyaml: 6.0.2 ruff: 0.6.7 safehttpx: 0.1.1 semantic-version: 2.10.0 starlette: 0.41.3 tomlkit==0.12.0 is not installed. typer: 0.12.5 typing-extensions: 4.12.2 urllib3: 2.2.2 uvicorn: 0.30.6 authlib; extra == 'oauth' is not installed. itsdangerous; extra == 'oauth' is not installed. gradio_client dependencies in your environment: fsspec: 2024.5.0 httpx: 0.27.2 huggingface-hub: 0.25.2 packaging: 24.1 typing-extensions: 4.12.2 websockets: 12.0 ``` ### Severity I can work around it
closed
2024-11-22T15:23:34Z
2024-11-27T19:25:03Z
https://github.com/gradio-app/gradio/issues/10021
[ "bug" ]
filiso
0
huggingface/transformers
python
36,014
[Bug-Qwen2VL] Error when calling generate with fsdp2
I have split Qwen2VL-2B using fsdp2 across 8 GPUs. Following the [official example](https://github.com/huggingface/transformers/blob/main/tests/generation/test_fsdp.py#L81-L101), I call the generate function, but encounter the following error: ```markdown [rank7]: File "/software/mamba/envs/mm/lib/python3.11/site-packages/transformers/models/qwen2_vl/modeling_qwen2_vl.py", line 1791, in prepare_inputs_for_generation [rank7]: input_ids = input_ids[:, cache_position] [rank7]: ~~~~~~~~~^^^^^^^^^^^^^^^^^^^ [rank7]: RuntimeError: CUDA error: device-side assert triggered [rank7]: Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions ``` Upon inspecting the source code of `modeling_qwen2_vl.py`, I found that the `cache_position` in the[ line 1735](https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py#L1735) `input_ids = input_ids[:, cache_position]` is out of bounds. It seems that the generation has already stopped and `input_ids` is no longer being extended, but `cache_position` is still increasing. I am unsure of the deeper cause of this issue. A quick fix I found is to add `cache_position[0] = min(cache_position[0], input_ids.shape[1] - 1)` above this line. I’d like to ask for your help—does this seem like a viable fix? If not, is there a way to make generate work correctly under fsdp2 for Qwen2VL without modifying the source code? Here is a minimal reproduction script (transformers.__version__ ==4.47.0). After the above fix, this script should run correctly on 8 GPUs. ```python import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import torch.distributed from torch.distributed._composable.fsdp import fully_shard, register_fsdp_forward_method from torch.distributed.device_mesh import init_device_mesh from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLDecoderLayer queries = [ "What is the main object shown in the picture?", "What type of plants are present in the image?", "What items can be seen on the table?", "Is the view outside the window sunny or cloudy?", "Can you spot any drinks in the image?", "Are there any decorations or paintings on the wall?", "What is the color and material of the chair?", "Is the scene set indoors or outdoors?" ] data = [] for query in queries: messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": query}, ], } ] data.append(messages) def fsdp2_generate(): torch.cuda.set_device(device := torch.device(rank := torch.distributed.get_rank())) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen2/Qwen2-VL-2B-Instruct", device_map="cpu" ) model.to(device) mesh = init_device_mesh("cuda", (torch.distributed.get_world_size(),)) for submodule in model.modules(): if isinstance(submodule, Qwen2VLDecoderLayer): fully_shard(submodule, mesh=mesh) fully_shard(model, mesh=mesh) register_fsdp_forward_method(model, "generate") processor = AutoProcessor.from_pretrained("Qwen2/Qwen2-VL-2B-Instruct") messages = data[rank] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, _ = process_vision_info(messages) batch = processor( text=[text], images=image_inputs, return_tensors="pt", ).to(device) query_responses = model.generate( **batch, max_new_tokens=128, ) context_length = batch.input_ids.shape[1] responses = query_responses[:, context_length:] response_texts = processor.batch_decode( responses, skip_special_tokens=True, clean_up_tokenization_spaces=False ) rank = torch.distributed.get_rank() print() print(f"Rank {rank}: {response_texts}") print() if __name__ == "__main__": torch.distributed.init_process_group(backend='nccl', world_size=torch.cuda.device_count()) fsdp2_generate() torch.distributed.destroy_process_group() ``` ### Who can help? @amyeroberts @qubvel @zucchini-nlp ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction ```python import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info import torch import torch.distributed from torch.distributed._composable.fsdp import fully_shard, register_fsdp_forward_method from torch.distributed.device_mesh import init_device_mesh from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLDecoderLayer queries = [ "What is the main object shown in the picture?", "What type of plants are present in the image?", "What items can be seen on the table?", "Is the view outside the window sunny or cloudy?", "Can you spot any drinks in the image?", "Are there any decorations or paintings on the wall?", "What is the color and material of the chair?", "Is the scene set indoors or outdoors?" ] data = [] for query in queries: messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": query}, ], } ] data.append(messages) def fsdp2_generate(): torch.cuda.set_device(device := torch.device(rank := torch.distributed.get_rank())) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen2/Qwen2-VL-2B-Instruct", device_map="cpu" ) model.to(device) mesh = init_device_mesh("cuda", (torch.distributed.get_world_size(),)) for submodule in model.modules(): if isinstance(submodule, Qwen2VLDecoderLayer): fully_shard(submodule, mesh=mesh) fully_shard(model, mesh=mesh) register_fsdp_forward_method(model, "generate") processor = AutoProcessor.from_pretrained("Qwen2/Qwen2-VL-2B-Instruct") messages = data[rank] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, _ = process_vision_info(messages) batch = processor( text=[text], images=image_inputs, return_tensors="pt", ).to(device) query_responses = model.generate( **batch, max_new_tokens=128, ) context_length = batch.input_ids.shape[1] responses = query_responses[:, context_length:] response_texts = processor.batch_decode( responses, skip_special_tokens=True, clean_up_tokenization_spaces=False ) rank = torch.distributed.get_rank() print() print(f"Rank {rank}: {response_texts}") print() if __name__ == "__main__": torch.distributed.init_process_group(backend='nccl', world_size=torch.cuda.device_count()) fsdp2_generate() torch.distributed.destroy_process_group() ``` ### Expected behavior All ranks can generate correct outputs.
closed
2025-02-03T13:35:57Z
2025-02-04T01:15:16Z
https://github.com/huggingface/transformers/issues/36014
[ "bug", "VLM" ]
mantle2048
2
davidsandberg/facenet
computer-vision
404
where to find the model file?
Hi, Experts I had try to train the model. After the training finish, I can find some files under the folder of models, includes: .meta, .index, .data-00000-of-00001 and checkpoint, but can not find the .pb file. Where can I get the .pb file, which can be used for compare.
closed
2017-08-01T02:33:48Z
2017-10-21T11:34:53Z
https://github.com/davidsandberg/facenet/issues/404
[]
tonybaigang
2
jofpin/trape
flask
57
trape showing issue
[2018-10-03 11:14:38,961] ERROR in app: Exception on /rl [GET] Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/flask/app.py", line 1982, in wsgi_app response = self.full_dispatch_request() File "/usr/local/lib/python2.7/dist-packages/flask/app.py", line 1614, in full_dispatch_request rv = self.handle_user_exception(e) File "/usr/local/lib/python2.7/dist-packages/flask/app.py", line 1517, in handle_user_exception reraise(exc_type, exc_value, tb) File "/usr/local/lib/python2.7/dist-packages/flask/app.py", line 1612, in full_dispatch_request rv = self.dispatch_request() File "/usr/local/lib/python2.7/dist-packages/flask/app.py", line 1598, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "/root/trape/core/victim.py", line 36, in homeVictim html = victim_inject_code(opener.open(trape.url_to_clone).read(), 'lure') File "/usr/lib/python2.7/urllib2.py", line 421, in open protocol = req.get_type() File "/usr/lib/python2.7/urllib2.py", line 283, in get_type raise ValueError, "unknown url type: %s" % self.__original ValueError: unknown url type: rl
closed
2018-10-03T15:15:21Z
2018-11-24T01:54:59Z
https://github.com/jofpin/trape/issues/57
[]
asciiterminal
1
xuebinqin/U-2-Net
computer-vision
308
3D Photo: New app on iOS using U-2-Net
Hey everyone, Happy to share that we finished last week a new app using U-2-Net, that lets anyone create engaging animated video from any static photo. The app offers dozens of animated 3D motion styles. In seconds, you can turn a photo (or Live Photo) into an animated video using U-2-Net. Optionally add 3D layers, apply filters, animated overlays, music, add text / stickers, and save & share the video. I hope you will like it, and add it to the README of the project @xuebinqin https://apps.apple.com/us/app/3d-photo-creator/id1619676262 [Demo GIF](https://i.giphy.com/media/JAzFTPLZ4lSH1khb15/giphy-downsized-large.gif) ![3d Photo app](https://i.giphy.com/media/JAzFTPLZ4lSH1khb15/giphy-downsized-large.gif) ![preview](https://i.ibb.co/z52X33R/3dphoto-Preview.png) Have fun :)
open
2022-06-03T07:37:32Z
2022-06-03T07:37:32Z
https://github.com/xuebinqin/U-2-Net/issues/308
[]
adirkol
0
lexiforest/curl_cffi
web-scraping
325
[BUG] KEY_USAGE_BIT_INCORRECT CHECK PLS PLS
https://github.com/yifeikong/curl_cffi/issues/323 Look, we need to solve this problem, I'm willing to pay 100-200$. Give me your contacts and we'll talk! here's the solution on httpx, but I really want it to work in your library! It's all about the certificate, we need openssl, certifi. import ssl import httpx ssl_context = ssl.create_default_context() ssl_context.set_ciphers(':HIGH:!DH:!aNULL') ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE LOCK = asyncio.Lock() transport = httpx.AsyncHTTPTransport(retries=3, verify=ssl_context,) async with httpx.AsyncClient( headers=headers, transport=transport, timeout=300.0, follow_redirects=True ) as session:
closed
2024-06-12T13:16:21Z
2024-06-13T06:42:13Z
https://github.com/lexiforest/curl_cffi/issues/325
[ "bug" ]
viskok-yuri
1
JaidedAI/EasyOCR
deep-learning
520
How to train the recognition model?
I have a set of pictures, but the recognition accuracy of the existing model is not high. How can I train my own recognition model?
closed
2021-08-18T09:30:42Z
2022-03-02T09:25:33Z
https://github.com/JaidedAI/EasyOCR/issues/520
[]
yourstar9
6
localstack/localstack
python
11,454
[INC-16] Certificate revocation for localhost.localstack.cloud
Updates for the ongoing issue (`INC-16`) with the certificate revocation for localhost.localstack.cloud[[1](https://localstack.statuspage.io/incidents/qcft2h8sffsb)][[2](https://localstack.statuspage.io/incidents/lpwmzs8x47y8)]. > [!IMPORTANT] > We recommend **[updating to the latest LocalStack version](https://docs.localstack.cloud/getting-started/installation/#updating)** for the most reliable and seamless experience. <details> <summary>🟢 Sep 6, 2024: Incident resolved with the LocalStack 3.7.2 patch release.</summary> ### Summary - No further service degradation observed for the past 48 hours. - All fixes are applied in the new 3.7.2 patch release. Make sure to [update Docker images](https://docs.localstack.cloud/references/docker-images/) using `latest` or `3.7.2` tag. - If you are using an older version, you may still encounter certificate revocation issues. Please, update to the latest version or see [How do I resolve SSL issues due to revoked local certificate for localhost.localstack.cloud](https://docs.localstack.cloud/getting-started/faq/#how-do-i-resolve-ssl-issues-due-to-revoked-local-certificate-for-localhostlocalstackcloud) in the docs. </details> <details> <summary>🟢 Sep 5, 2024: No service degradation observed for the past 24 hours.</summary> ### Summary Incident under control with short and mid-term solutions in the latest LocalStack version. </details> <details> <summary>🟡 Sep 4, 2024: Recommended action: update LocalStack CLI to the latest version (3.7)</summary> ### Summary - **CI/LI usage**: Older images were encountering issues downloading the certificate from GitHub and the CDN, resulting in a fallback to a self-signed certificate that affected CI/CLI functionality. We have implemented a fix to restore certificate downloads from GitHub, resolving the CI/CLI issues with older LS images. </details> <details> <summary>🟡 Sep 3, 2024: Incident contained, with temporary workarounds. We're actively working on a long-term solution</summary> ### Summary - **Incident contained**: We’ve implemented short-term fixes to contain the issue. The incident isn’t fully resolved yet, but we’re working on it. - **Temporary workarounds**: If you still experience certificate revocation issues: 1. Set the environment variable `SKIP_SSL_CERT_DOWNLOAD=1` to use a self-signed SSL certificate. 2. Use `http://` instead of `https://` where possible. - **Long-term solution**: We’re working on a permanent fix and will update you as we progress. - **Recent DNS resolution issues**: Some customers experienced DNS issues from yesterday afternoon until this morning (CET). This has been fixed, and certificate renewals should no longer impact DNS resolution. </details> --- We are actively working on a long-term solution and will keep you updated. 🐿️ Follow [status.localstack.cloud](https://status.localstack.cloud/) for more updates, and thanks for your patience! 💛
closed
2024-09-03T15:01:52Z
2024-09-25T08:01:41Z
https://github.com/localstack/localstack/issues/11454
[]
gtsiolis
0
sebp/scikit-survival
scikit-learn
473
Histogram-based Gradient Boosting survival models
It would be great to have Histogram-based Gradient Boosting models on top of normal ones as it is much more scalable : They are supported by scikit-learn: - https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor
open
2024-08-08T07:48:50Z
2025-02-25T19:59:00Z
https://github.com/sebp/scikit-survival/issues/473
[ "enhancement" ]
ogencoglu
2
matplotlib/mplfinance
matplotlib
523
How to draw a hidden K-line with mplfinance?
@DanielGoldfarb : When there are many K-line data, the drawing is not intuitive. I want to draw a hidden K-line. The following figure shows the effect drawn with Matplotlib. How to draw such an effect with mplfinance? ![tBU2](https://user-images.githubusercontent.com/48607893/164360146-8d1eb16e-b185-4b73-88c3-238be8c8add0.jpg)
closed
2022-04-21T02:30:38Z
2022-06-09T11:40:51Z
https://github.com/matplotlib/mplfinance/issues/523
[ "question" ]
lyl1836
4
sigmavirus24/github3.py
rest-api
705
Support for fetching README rendered as HTML
The Github API supports fetching a repository's README rendered as HTML, i.e. as displayed in the Github web interface. This feature is described here [Contents: custom media types](https://developer.github.com/v3/repos/contents/#custom-media-types). In fact that seems to work for any file although I haven't actually tested this. With a bit of trickery this is already possible with *github3.py*, ```python import github3 repo = github3.repository('sigmavirus24', 'github3.py') # Here come the clever bits repo._session.headers['Accept'] = 'application/vnd.github.v3.html' url = repo._build_url('readme', base_url=repo._api) response = repo._get(url) print response.content # Don't forget to reset the header!!! repo._session.headers['Accept'] = 'application/vnd.github.v3.full+json' ``` This could be added to the API by either * Adding a `Repository.readme_as_html()` method, or * Adding a `format="html"` argument to `Repository.readme()` and `Repository.contents()` methods. Any thoughts? Markus <bountysource-plugin> --- Want to back this issue? **[Post a bounty on it!](https://www.bountysource.com/issues/45280852-support-for-fetching-readme-rendered-as-html?utm_campaign=plugin&utm_content=tracker%2F183477&utm_medium=issues&utm_source=github)** We accept bounties via [Bountysource](https://www.bountysource.com/?utm_campaign=plugin&utm_content=tracker%2F183477&utm_medium=issues&utm_source=github). </bountysource-plugin>
open
2017-05-17T10:47:40Z
2018-03-22T02:35:33Z
https://github.com/sigmavirus24/github3.py/issues/705
[]
mjuenema
1
coqui-ai/TTS
deep-learning
3,488
next steps after shutdown
According to the main site https://coqui.ai/ , coqui is shutting down, which is unfortunate as these open source libraries are great and could still be maintained. I'm wondering if there are any next steps to proceed, like if the license should allow for commercial use and the open source community could fork this repository to keep it alive. Hoping we can still get use out of it because I'd say it is currently the best open-source voice synthesis and cloning toolkit out there at the moment. For reference, I also have tried standalone bark, StyleTTS 2 and OpenVoice as alternatives, but I find the voice cloning was not as good as this library (general synthesis is pretty good, but cloning in particular is hard to get right).
open
2024-01-03T14:38:14Z
2025-03-15T11:51:33Z
https://github.com/coqui-ai/TTS/issues/3488
[ "feature request" ]
bachittle
31
Anjok07/ultimatevocalremovergui
pytorch
1,710
I've a problem to create the stems of every song
Last Error Received: Process: Demucs If this error persists, please contact the developers with the error details. Raw Error Details: RuntimeError: "Could not allocate tensor with 231211008 bytes. There is not enough GPU video memory available!" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 855, in seperate File "separate.py", line 1000, in demix_demucs File "demucs\apply.py", line 196, in apply_model File "demucs\apply.py", line 222, in apply_model File "demucs\apply.py", line 256, in apply_model File "demucs\utils.py", line 490, in result File "demucs\apply.py", line 271, in apply_model File "torch\nn\modules\module.py", line 1501, in _call_impl File "demucs\htdemucs.py", line 593, in forward File "torch\nn\modules\module.py", line 1501, in _call_impl File "demucs\transformer.py", line 667, in forward File "torch\nn\modules\module.py", line 1501, in _call_impl File "demucs\transformer.py", line 365, in forward File "torch\nn\modules\transformer.py", line 581, in _sa_block File "torch\nn\modules\module.py", line 1501, in _call_impl File "torch\nn\modules\activation.py", line 1189, in forward File "torch\nn\functional.py", line 5334, in multi_head_attention_forward " Error Time Stamp [2025-01-22 16:51:48] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: v4 | htdemucs segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: Choose Model chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: True is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 device_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
open
2025-01-22T15:55:08Z
2025-02-02T20:10:26Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1710
[]
Flavioalex75
2
keras-team/keras
deep-learning
20,108
Bug in `keras.src.saving.saving_lib._save_model_to_dir`
`tf.keras.__version__` -> "3.4.1" If model is already saved then method call by `keras.src.models.model.Model.save` call `keras.src.saving.saving_lib._save_model_to_dir`, if model is already saved then `asset_store = DiskIOStore(assert_dirpath, mode="w")` ([Line - 178](https://github.com/keras-team/keras/blob/master/keras/src/saving/saving_lib.py#L179)) raise `FileExistsError` which error handling and finally clause line - `asset_store.close()` ([Line - 189](https://github.com/keras-team/keras/blob/master/keras/src/saving/saving_lib.py#L189)) causes - `UnboundLocalError: local variable 'asset_store' referenced before assignment` as `asset_store` is not define. ```shell FileExistsError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py](https://localhost:8080/#) in _save_model_to_dir(model, dirpath, weights_format) 139 ) --> 140 asset_store = DiskIOStore(assert_dirpath, mode="w") 141 _save_state( FileExistsError: [Errno 17] File exists: '/content/.../model_weights/assets' During handling of the above exception, another exception occurred: UnboundLocalError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py](https://localhost:8080/#) in _save_model_to_dir(model, dirpath, weights_format) 148 finally: 149 weights_store.close() --> 150 asset_store.close() 151 152 UnboundLocalError: local variable 'asset_store' referenced before assignment ``` Solution to move `asset_store.close()` from `finally` clause to try clause or check if `asset_store` is define then only call `asset_store.close()` (Update from line 158 to line 189 i.e., https://github.com/keras-team/keras/blob/master/keras/src/saving/saving_lib.py#L158-L189) ```python def _save_model_to_dir(model, dirpath, weights_format): if not file_utils.exists(dirpath): file_utils.makedirs(dirpath) config_json, metadata_json = _serialize_model_as_json(model) with open(file_utils.join(dirpath, _METADATA_FILENAME), "w") as f: f.write(metadata_json) with open(file_utils.join(dirpath, _CONFIG_FILENAME), "w") as f: f.write(config_json) weights_filepath = file_utils.join(dirpath, _VARS_FNAME_H5) assert_dirpath = file_utils.join(dirpath, _ASSETS_DIRNAME) try: if weights_format == "h5": weights_store = H5IOStore(weights_filepath, mode="w") elif weights_format == "npz": weights_store = NpzIOStore(weights_filepath, mode="w") else: raise ValueError( "Unknown `weights_format` argument. " "Expected 'h5' or 'npz'. " f"Received: weights_format={weights_format}" ) asset_store = DiskIOStore(assert_dirpath, mode="w") _save_state( model, weights_store=weights_store, assets_store=asset_store, inner_path="", visited_saveables=set(), ) finally: weights_store.close() if ('asset_store' in locals()): asset_store.close() # check if `asset_store` define then only close ```
closed
2024-08-10T13:12:49Z
2024-08-15T05:33:26Z
https://github.com/keras-team/keras/issues/20108
[ "stat:awaiting response from contributor", "type:Bug" ]
MegaCreater
6
deeppavlov/DeepPavlov
tensorflow
896
Bert_Squad context length longer than 512 tokens sequences
Hi, Currently I have a long context and the answer cannot be extracted from the context when the context exceeds a certain length. Is there any python code to deal with long length context. P.S. I am using BERT-based model for context question answering.
closed
2019-06-23T14:37:55Z
2020-05-13T11:41:45Z
https://github.com/deeppavlov/DeepPavlov/issues/896
[]
Chunglwc
2
litestar-org/litestar
api
3,801
Docs: improve "Improving performance with the codegen backend" docs in "DTOs"
### Summary Link: https://docs.litestar.dev/latest/usage/dto/0-basic-use.html#improving-performance-with-the-codegen-backend Why do I think that it needs a refactor? 1. It was written when `experimental_codegen_backend` was not enabled by default 2. Right now it makes more sense to show how to turn it off 3. We can still leave a note for older version on how to turn this on, but it should not be the default intention For example: `app = Litestar(experimental_features=[ExperimentalFeatures.DTO_CODEGEN])` will now produce a warning: ```python if ExperimentalFeatures.DTO_CODEGEN in self.experimental_features: warnings.warn( "Use of redundant experimental feature flag DTO_CODEGEN. " "DTO codegen backend is enabled by default since Litestar 2.8. The " "DTO_CODEGEN feature flag can be safely removed from the configuration " "and will be removed in version 3.0.", category=LitestarWarning, stacklevel=2, ) ``` Plus, I can see several typos there :) PR is incoming! 🏎️
closed
2024-10-15T13:44:27Z
2025-03-20T15:54:58Z
https://github.com/litestar-org/litestar/issues/3801
[ "Documentation :books:", "DTOs" ]
sobolevn
0
geex-arts/django-jet
django
103
The revenue model of Django JET
I think Django JET has the most potential of all the Django admin extensions available to date. Simply because it has the most complete responsive experience with easy integration. That said, I question the renevue model of Django JET mr @f1nality. Do you want this to be the product of a one-man army? Or do you prefer to have a community around Django JET? I just can't see a reason why people would want to contribute to a product, where you would have to buy a license to use the product commercially. I honestly think there are other revenue models like BountySource or donations that would not eliminate the possibility to make this a community product.
closed
2016-08-19T09:49:34Z
2016-08-27T11:30:32Z
https://github.com/geex-arts/django-jet/issues/103
[]
Zundrium
2
marshmallow-code/flask-smorest
rest-api
65
Path parameters: document converters parameters
In FlaskPlugin, add min/max to number converters. Manage negative values introduced in Werkzeug 0.15 (https://github.com/pallets/werkzeug/pull/1355).
closed
2019-05-03T07:54:56Z
2020-10-01T21:32:17Z
https://github.com/marshmallow-code/flask-smorest/issues/65
[ "enhancement", "help wanted", "backwards incompat" ]
lafrech
1
iperov/DeepFaceLab
machine-learning
5,232
pressing "L" key while in training preview switches to command window
## Expected behavior 2021 releases - pressing "L" key is supposed to change the graph granularity in the training preview window ## Actual behavior "L" key now just switches to command window or brings it to the front. Can get around by pressing shift+L in preview window ## Steps to reproduce Just hit L at the preview window. ## Other relevant information
closed
2021-01-04T23:25:06Z
2021-01-07T17:21:50Z
https://github.com/iperov/DeepFaceLab/issues/5232
[]
frighte
2
iMerica/dj-rest-auth
rest-api
330
Allauth creates migrations in site packages - Django 3.2.4
Hi, it seems that Django 3.2.X is not properly supported due to a bug which I guess comes from allouth and seem to be fixed in the latest version as per https://github.com/pennersr/django-allauth/issues/2971 This results in migrations being created inside the `site-packages` of the virtual environment. This has been already reported https://github.com/pennersr/django-allauth/issues/2891 According to release notes of AllAuth Django3.2 compatibility has been released just 2 days ago (as of writing this) https://github.com/pennersr/django-allauth/blob/0.46.0/ChangeLog.rst Steps to reproduce: 1) Create venv 2) `pip install "dj-rest-auth[with_social]==2.1.11"` 3) `django-admin startproject config` 4) `cd config` 5) update `config/settings.py` ``` # all auth ACCOUNT_UNIQUE_EMAIL = False ACCOUNT_EMAIL_REQUIRED = True # ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_EMAIL_VERIFICATION = True ACCOUNT_EMAIL_CONFIRMATION_HMAC = False SITE_ID = 1 INSTALLED_APPS += [ "django.contrib.sites", "allauth", "allauth.account", # "allauth.socialaccount", "dj_rest_auth", "dj_rest_auth.registration", "rest_framework", "rest_framework.authtoken", ] ``` 6) `./manage.py makemigrations` 7) Migration created in virtualenv ``` Migrations for 'account': /venv/lib/python3.8/site-packages/allauth/account/migrations/0003_auto_20211117_1455.py - Alter field id on emailaddress - Alter field id on emailconfirmation ```
open
2021-11-17T14:57:57Z
2021-11-17T14:57:57Z
https://github.com/iMerica/dj-rest-auth/issues/330
[]
1oglop1
0
jazzband/django-oauth-toolkit
django
1,018
access django request in OAuth2Validator.get_additional_claims
In get_additional_claims I want to give url of users avatar, some thing like google claims... But django image field just give path of file without domain base on https://stackoverflow.com/questions/1451138/how-can-i-get-the-domain-name-of-my-site-within-a-django-template I have to somehow access django request to find site domain and build avatars full url But base on https://django-oauth-toolkit.readthedocs.io/en/1.5.0/oidc.html?highlight=OAuth2Validator#adding-claims-to-the-id-token request object that pass to get_additional_claims isn't a django request object and seems have no data of site domin and its schema to build full url I know i can set a variable in setting like `SITE_URL` or use `contrib.site` to build full url and currently use `SITE_URL` but using django request objest is far better solution because won't break when domain changed So is there any way to access django request object or can you provide a interface( or anything ) for it?
closed
2021-10-01T14:42:47Z
2023-10-04T15:01:06Z
https://github.com/jazzband/django-oauth-toolkit/issues/1018
[ "question" ]
amirhoseinbidar
1
PokeAPI/pokeapi
api
734
Add Pokemon strengths and weaknesses
Hey, During my use of the API i also discovered that in a normal [Pokémon Request](https://pokeapi.co/api/v2/pokemon/1) no strengths and weaknesses are provided in the response json. It would be really cool if you could expand on this. Best Regards
open
2022-07-18T06:55:52Z
2022-11-11T04:07:24Z
https://github.com/PokeAPI/pokeapi/issues/734
[]
bidery
1
mherrmann/helium
web-scraping
52
How to do multiple select?
Hi, I am trying to select more than one option from a multi select element. Right now, I've achieved this by writing a select command for each option like ``` Python select(ComboBox('multi select element'), 'option 1') select(ComboBox('multi select element'), 'option 2') select(ComboBox('multi select element'), 'option 4') ``` Is there any better or easy way to do this?
closed
2020-12-19T19:15:33Z
2020-12-21T04:14:48Z
https://github.com/mherrmann/helium/issues/52
[]
some-sh
1
CanopyTax/asyncpgsa
sqlalchemy
60
pip failed to install package
pip can't install **_asyncpgsa_** if it's part of requirements list alongside with **_asyncpg_** (in other words it requires _asyncpg_ to be installed before installing _asyncpgsa_). Is there a way to change version determination? ``` Collecting asyncpg==0.12.0 (from -r .meta/packages (line 5)) .... Collecting asyncpgsa==0.18.1 (from -r .meta/packages (line 6)) Complete output from command python setup.py egg_info: Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-build-gcdgh8ov/asyncpgsa/setup.py", line 6, in <module> version=__import__('asyncpgsa').__version__, File "/tmp/pip-build-gcdgh8ov/asyncpgsa/asyncpgsa/__init__.py", line 1, in <module> from .pool import create_pool File "/tmp/pip-build-gcdgh8ov/asyncpgsa/asyncpgsa/pool.py", line 3, in <module> import asyncpg ModuleNotFoundError: No module named 'asyncpg' ```
closed
2017-12-15T15:57:52Z
2018-02-13T00:13:09Z
https://github.com/CanopyTax/asyncpgsa/issues/60
[]
vayw
2
ymcui/Chinese-LLaMA-Alpaca
nlp
90
找不到params.json 文件,模型文件里面也没有这个文件呀
FileNotFoundError: [Errno 2] No such file or directory: '/content/drive/MyDrive/model/7B/params.json'
closed
2023-04-09T05:53:20Z
2023-08-24T13:16:47Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca/issues/90
[]
Song367
4
ymcui/Chinese-LLaMA-Alpaca-2
nlp
474
位置插值训练数据相关咨询
### 提交前必须检查以下项目 - [X] 请确保使用的是仓库最新代码(git pull),一些问题已被解决和修复。 - [X] 我已阅读[项目文档](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki)和[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案。 - [X] 第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[LangChain](https://github.com/hwchase17/langchain)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)等,同时建议到对应的项目中查找解决方案。 ### 问题类型 其他问题 ### 基础模型 Others ### 操作系统 Linux ### 详细描述问题 各位大佬好,因为在discussion区提问没有得到回复,所以在issue区也提一个,请各位大佬见谅。 我这边有个模型现在有8k的上下文长度,如果我想扩展到16k的长度,已经使用ntk直接推理测试过,但是想用线性插值训练一下模型测试看看,线性插值的代码已经实现。 所以想请教一下下面的几个问题: 1. 添加位置插值之后,训练的方式是sft还是增量预训练? 2. 添加位置插值之后,训练的语料长度一般为多少更合适?如现有模型是8k的话,目标是将模型的context length训练到16k,训练语料长度是否16k? 3. 使用位置插值训练,参考[PI](https://arxiv.org/abs/2306.15595)这篇论文的说法,在千步级别的steps即可达到很好的效果,所以想要学习一下大佬的经验,Chinese-LLaMA-Alpaca的位置插值训练的时候,训练了多少个steps? 4. 训练的数据如果是开源的话,请问能给个地址吗? ### 依赖情况(代码类问题务必提供) ``` # 请在此处粘贴依赖情况(请粘贴在本代码块里) ``` ### 运行日志或截图 ``` # 请在此处粘贴运行日志(请粘贴在本代码块里) ```
closed
2023-12-14T07:35:44Z
2023-12-28T23:46:51Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/issues/474
[ "stale" ]
KyrieXu11
5
plotly/dash-cytoscape
dash
206
[BUG] CyLeaflet: Updating tile layer causes map to be initially blue before pan/zoom
<!-- Thanks for your interest in Plotly's Dash Cytoscape Component! Note that GitHub issues in this repo are reserved for bug reports and feature requests. Implementation questions should be discussed in our [Dash Community Forum](https://community.plotly.com/c/dash). Before opening a new issue, please search through existing issues (including closed issues) and the [Dash Community Forum](https://community.plotly.com/c/dash). When reporting a bug, please include a reproducible example! We recommend using the [latest version](https://github.com/plotly/dash-cytoscape/blob/master/CHANGELOG.md) as this project is frequently updated. Issues can be browser-specific so it's usually helpful to mention the browser and version that you are using. --> #### Description When the tile layer of a CyLeaflet component is updated via callback, the map shows initially blue before manual pan/zoom. After manual pan/zoom, the map renders normally. This happens whether the tile layer is updated by re-instantiating the entire CyLeaflet component, or by using a callback to update just the `children` of the underlying Leaflet component. Initially (after callback): ![image005](https://github.com/plotly/dash-cytoscape/assets/4672118/f95611b3-16df-463e-913e-86e6be8aef06) After zooming out then in: ![image006](https://github.com/plotly/dash-cytoscape/assets/4672118/79024aea-dc9c-4cc0-8289-f43f78ee2152) #### Steps/Code to Reproduce ```python import dash from dash import html, dcc, callback, Input, Output import dash_cytoscape as cyto import dash_leaflet as dl CARTO_TILES = dl.TileLayer( url="https://{s}.basemaps.cartocdn.com/rastertiles/voyager_labels_under/{z}/{x}/{y}{r}.png", maxZoom = 30, attribution='&copy; <a href="https://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors &copy; <a href="https://carto.com/attributions">CARTO</a>', ) ELEMENTS = [ {"data": {"id": "a", "label": "Node A", "lat": 45.519, "lon": -73.576}}, {"data": {"id": "b", "label": "Node B", "lat": 45.521, "lon": -73.574}}, {"data": {"id": "c", "label": "Node C", "lat": 45.520, "lon": -73.572}}, {"data": {"id": "ab", "source": "a", "target": "b"}}, ] cyleaflet_leaflet_id= { "id":"cyleaflet_tiles_from_callback", "component":"cyleaflet", "sub": "leaf", } def serve_layout(): return html.Div( children=[ html.Div('Tiles dropdown'), dcc.Dropdown(id='tiles_dropdown', options=[{'label': x, 'value': x} for x in ['OSM', 'CARTO']], value='CARTO', ), cyto.CyLeaflet( id="cyleaflet_tiles_from_callback", cytoscape_props=dict( elements=ELEMENTS, ), ), ], ) app = dash.Dash(__name__) server = app.server app.layout = serve_layout @callback( Output(cyleaflet_leaflet_id, "children"), Input("tiles_dropdown", "value"), ) def update_tiles(tiles): if tiles == 'OSM': return cyto.CyLeaflet.OSM else: return CARTO_TILES if __name__ == "__main__": app.run_server(debug=True) ``` #### Versions `dash_cytoscape==1.0.0`
closed
2024-02-07T15:56:30Z
2024-07-11T09:10:39Z
https://github.com/plotly/dash-cytoscape/issues/206
[]
emilykl
2
Evil0ctal/Douyin_TikTok_Download_API
fastapi
10
多条视频链接下莫名卡在第六条 无报错。。
``` 127.0.0.1 - - [17/Mar/2022 20:15:05] "GET /?app=index HTTP/1.1" 200 - Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7074510252833606925 Type = video http://v95-a.douyinvod.com/3ae2fc443a268604e866b91136d7f97c/6233347a/video/tos/cn/tos-cn-ve-15c001-alinc2/0515dd92f27f421b874fbd0009f2672e/?a=1128&br=1117&bt=1117&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsd38yytqY&l=202203172015030102080971031F05DDA3&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=M2drOzU6ZnV1OzMzNGkzM0ApNjw2PGY4Nzw5N2g8NGdkN2cpaGRqbGRoaGRmYmctNXI0MDVqYC0tZC0vc3MxMDBhLzMzYTZjMC01LV5fOmNwb2wrbStqdDo%3D&vl=&vr= https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7074510303102552869.mp3 https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7074510303102552869.mp3 惊不惊喜,意不意外#搞笑 #沙雕 @磁铁李飞(沙雕村) 彭恰恰(沙雕村) pengqq88888 getting douyin result ['http://v95-a.douyinvod.com/3ae2fc443a268604e866b91136d7f97c/6233347a/video/tos/cn/tos-cn-ve-15c001-alinc2/0515dd92f27f421b874fbd0009f2672e/?a=1128&br=1117&bt=1117&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsd38yytqY&l=202203172015030102080971031F05DDA3&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=M2drOzU6ZnV1OzMzNGkzM0ApNjw2PGY4Nzw5N2g8NGdkN2cpaGRqbGRoaGRmYmctNXI0MDVqYC0tZC0vc3MxMDBhLzMzYTZjMC01LV5fOmNwb2wrbStqdDo%3D&vl=&vr=', 'https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7074510303102552869.mp3', '惊不惊喜,意不意外#搞笑 #沙雕 @磁铁李飞(沙雕村)', '彭恰恰(沙雕村)', 'pengqq88888', 'https://www.douyin.com/video/7074510252833606925\n'] getting video info https://www.douyin.com/video/7073080385739033887 127.0.0.1 - - [17/Mar/2022 20:15:06] "GET /?app=index HTTP/1.1" 200 - Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7073080385739033887 127.0.0.1 - - [17/Mar/2022 20:15:07] "GET /?app=index HTTP/1.1" 200 - 127.0.0.1 - - [17/Mar/2022 20:15:08] "GET /?app=index HTTP/1.1" 200 - getting video info https://www.douyin.com/video/7073080385739033887 127.0.0.1 - - [17/Mar/2022 20:15:09] "GET /?app=index HTTP/1.1" 200 - Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7073080385739033887 Type = video http://v99-cold.douyinvod.com/01e01753cae1e96b28a702510487bae3/623334d5/video/tos/cn/tos-cn-ve-15c001-alinc2/67b6db9ab3d14e5baa9c9bec7a72727f/?a=1128&br=2037&bt=2037&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdG8yytqY&l=202203172015070102091570483105DB89&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=Mzp4cTs6Zjw8OzMzNGkzM0ApaDk0OGRnOWVmNzk2Zjo4ZmcpaGRqbGRoaGRmNTBlL3I0X25oYC0tZC0vc3MwLV42YDUyMjBjYzEtLmEvOmNwb2wrbStqdDo%3D&vl=&vr= https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7073080454420630302.mp3 https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7073080454420630302.mp3 又是斗志斗勇的一天#凡尔赛式退货#搞笑 #沙雕 彭恰恰(沙雕村) pengqq88888 getting douyin result ['http://v99-cold.douyinvod.com/01e01753cae1e96b28a702510487bae3/623334d5/video/tos/cn/tos-cn-ve-15c001-alinc2/67b6db9ab3d14e5baa9c9bec7a72727f/?a=1128&br=2037&bt=2037&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdG8yytqY&l=202203172015070102091570483105DB89&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=Mzp4cTs6Zjw8OzMzNGkzM0ApaDk0OGRnOWVmNzk2Zjo4ZmcpaGRqbGRoaGRmNTBlL3I0X25oYC0tZC0vc3MwLV42YDUyMjBjYzEtLmEvOmNwb2wrbStqdDo%3D&vl=&vr=', 'https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7073080454420630302.mp3', '又是斗志斗勇的一天#凡 尔赛式退货#搞笑 #沙雕', '彭恰恰(沙雕村)', 'pengqq88888', 'https://www.douyin.com/video/7073080385739033887\n'] getting video info https://www.douyin.com/video/7072296901554474247 127.0.0.1 - - [17/Mar/2022 20:15:10] "GET /?app=index HTTP/1.1" 200 - Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7072296901554474247 127.0.0.1 - - [17/Mar/2022 20:15:11] "GET /?app=index HTTP/1.1" 200 - getting video info https://www.douyin.com/video/7072296901554474247 127.0.0.1 - - [17/Mar/2022 20:15:12] "GET /?app=index HTTP/1.1" 200 - Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7072296901554474247 Type = video http://v5-coldy.douyinvod.com/e10a1263277990bb0c0aa3e9bba15dbf/62333492/video/tos/cn/tos-cn-ve-15-alinc2/96ddf1dc899a4a6795df4573b3872958/?a=1128&br=1672&bt=1672&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdC8yytqY&l=202203172015100102101860444A060559&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=M3I4eTo6Zml3OzMzNGkzM0ApMzxlaTc6ZDw5N2ZnZ2k7ZWcpaGRqbGRoaGRmMGhgNHI0Z2RmYC0tZC0vc3MyYjExYTMwNV4xX15gLzIzOmNwb2wrbStqdDo%3D&vl=&vr= https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7072296930944043807.mp3 https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7072296930944043807.mp3 遭了!昨晚玩游戏忘充电了😱#搞笑 #沙雕@磁铁李飞(沙雕村) 彭恰恰(沙雕村) pengqq88888 getting douyin result ['http://v5-coldy.douyinvod.com/e10a1263277990bb0c0aa3e9bba15dbf/62333492/video/tos/cn/tos-cn-ve-15-alinc2/96ddf1dc899a4a6795df4573b3872958/?a=1128&br=1672&bt=1672&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdC8yytqY&l=202203172015100102101860444A060559&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=M3I4eTo6Zml3OzMzNGkzM0ApMzxlaTc6ZDw5N2ZnZ2k7ZWcpaGRqbGRoaGRmMGhgNHI0Z2RmYC0tZC0vc3MyYjExYTMwNV4xX15gLzIzOmNwb2wrbStqdDo%3D&vl=&vr=', 'https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7072296930944043807.mp3', '遭了!昨晚玩游戏忘充电了😱#搞笑 #沙雕@磁铁李飞(沙雕村)', '彭恰恰(沙雕村)', 'pengqq88888', 'https://www.douyin.com/video/7072296901554474247\n'] 127.0.0.1 - - [17/Mar/2022 20:15:13] "GET /?app=index HTTP/1.1" 200 - getting video info https://www.douyin.com/video/7071923678782557477 Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7071923678782557477 127.0.0.1 - - [17/Mar/2022 20:15:14] "GET /?app=index HTTP/1.1" 200 - 127.0.0.1 - - [17/Mar/2022 20:15:15] "GET /?app=index HTTP/1.1" 200 - getting video info https://www.douyin.com/video/7071923678782557477 Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7071923678782557477 Type = video http://v26-cold.douyinvod.com/4988cd1d8baaa575038689dc0d2d5237/6233348d/video/tos/cn/tos-cn-ve-15-alinc2/926e645571fd4b4d977bfec4a67239a7/?a=1128&br=1327&bt=1327&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdO8yytqY&l=202203172015130102120980964605C56C&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=M3Q5czo6ZnY7OzMzNGkzM0ApPGU1ZWc0NDxpNzU7NzhlaGcpaGRqbGRoaGRmYDNxMXI0ZzZmYC0tZC0vc3MtMDUuLzI0NV9iNS02LTExOmNwb2wrbStqdDo%3D&vl=&vr= https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7071923708365261604.mp3 https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7071923708365261604.mp3 这个不说话的男人回来了#搞笑 #沙雕 @磁铁李飞(沙雕村) 彭恰恰(沙雕村) pengqq88888 getting douyin result ['http://v26-cold.douyinvod.com/4988cd1d8baaa575038689dc0d2d5237/6233348d/video/tos/cn/tos-cn-ve-15-alinc2/926e645571fd4b4d977bfec4a67239a7/?a=1128&br=1327&bt=1327&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdO8yytqY&l=202203172015130102120980964605C56C&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=M3Q5czo6ZnY7OzMzNGkzM0ApPGU1ZWc0NDxpNzU7NzhlaGcpaGRqbGRoaGRmYDNxMXI0ZzZmYC0tZC0vc3MtMDUuLzI0NV9iNS02LTExOmNwb2wrbStqdDo%3D&vl=&vr=', 'https://sf6-cdn-tos.douyinstatic.com/obj/ies-music/7071923708365261604.mp3', '这个不说话的男人回来了#搞 笑 #沙雕 @磁铁李飞(沙雕村)', '彭恰恰(沙雕村)', 'pengqq88888', 'https://www.douyin.com/video/7071923678782557477\n'] getting video info https://www.douyin.com/video/7070123234179517733 127.0.0.1 - - [17/Mar/2022 20:15:16] "GET /?app=index HTTP/1.1" 200 - Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7070123234179517733 127.0.0.1 - - [17/Mar/2022 20:15:17] "GET /?app=index HTTP/1.1" 200 - Type = video http://v95-a.douyinvod.com/787e5645a4d3b712f94ff7b3b729760b/623334e5/video/tos/cn/tos-cn-ve-15-alinc2/e4bbb663a15442718744e83fccbe1206/?a=1128&br=2184&bt=2184&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdz8yytqY&l=2022031720151501021203810940054DFF&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=anR2Ojk6ZjU0OzMzNGkzM0ApZ2c4NTk1ZGQ1N2c1OjczZ2cpaGRqbGRoaGRmYGlsMnI0Z3JjYC0tZC0vc3NiNTQzNi5hMzYzLWA0MWNfOmNwb2wrbStqdDo%3D&vl=&vr= getting video info https://www.douyin.com/video/7070123234179517733 Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7070123234179517733 127.0.0.1 - - [17/Mar/2022 20:15:18] "GET /?app=index HTTP/1.1" 200 - 127.0.0.1 - - [17/Mar/2022 20:15:19] "GET /?app=index HTTP/1.1" 200 - getting video info https://www.douyin.com/video/7070123234179517733 Sending request to: https://www.iesdouyin.com/web/api/v2/aweme/iteminfo/?item_ids=7070123234179517733 Type = video http://v95-a.douyinvod.com/c4fc2102337b736514f9e8900846f1b7/623334e8/video/tos/cn/tos-cn-ve-15-alinc2/e4bbb663a15442718744e83fccbe1206/?a=1128&br=2184&bt=2184&cd=0%7C0%7C0%7C0&ch=0&cr=0&cs=0&cv=1&dr=0&ds=3&er=&ft=gGf_l88-oU-DYlnt7TQ_plXxuhsdT8yytqY&l=2022031720151801021207406923058A72&lr=&mime_type=video_mp4&net=0&pl=0&qs=0&rc=anR2Ojk6ZjU0OzMzNGkzM0ApZ2c4NTk1ZGQ1N2c1OjczZ2cpaGRqbGRoaGRmYGlsMnI0Z3JjYC0tZC0vc3NiNTQzNi5hMzYzLWA0MWNfOmNwb2wrbStqdDo%3D&vl=&vr= 127.0.0.1 - - [17/Mar/2022 20:15:20] "GET /?app=index HTTP/1.1" 200 - ```
closed
2022-03-17T12:22:32Z
2022-03-17T18:10:21Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/10
[]
wanghaisheng
0
jupyter/nbviewer
jupyter
554
Slideviewer 400 errors.
Hi guys, I'm attempting to view some test books to see if the slideviewer app is working (I remember Damian having said it was in development but haven't kept up to date on whether it's still functional.) I was unable to get these notebooks to render a slideshow. I'm unsure if I'm just doing it incorrectly: https://raw.githubusercontent.com/mburke05/work_notebooks/master/test_three.ipynb https://github.com/mburke05/work_notebooks/blob/master/slide_test.ipynb I figured maybe it could have something to do with rendering the lightning-viz objects (though they render fine in nbviewer). Hence the test with just inline code in test_three.ipynb Matt
closed
2015-12-21T06:28:28Z
2015-12-21T14:09:17Z
https://github.com/jupyter/nbviewer/issues/554
[]
mburke05
2
horovod/horovod
tensorflow
2,956
When using the ring-of-rings branch of horovod,Segmentation fault(MPI)will appear when running distributed programs.
1. Framework: (using TensorFlow v1 (1.15) with Keras2.2.4) 2. OS and version: Ubuntu16.04 LTS 3. Horovod version: Branch ring-of-rings(horovod==0.12.2.dev0) 4. MPI version: OpenMPI 4.0.0 5. CUDA version:10.0 6. NCCL version:2.5.6 7. Python version:3.6.13(conda) 8. GCC version:5.4.0 9. CMake version:3.18.4 **Checklist:** 1. Did you search issues to find if somebody asked this question before? No 2. If your question is about hang, did you read [this doc] (https://github.com/horovod/horovod/blob/master/docs/running.rst)? Yes 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? Yes **Bug report:** Firstly compile the source code of the ring-of-rings branch,than I enter the conda environment. Finally,when I attempt to train Resnet50 model&Vgg model,some problems about mpi happens:Segmentation fault(mpirun noticed that process rank 0 with PID 0 on node node06 exited on signal 11 (Segmentation fault). **The instruction to run the distributed program is: mpirun -np 2 python cifar10_resnet50.py** The specific error information is as follows: [node06:24453] *** Process received signal *** [node06:24453] Signal: Segmentation fault (11) [node06:24453] Signal code: Invalid permissions (2) [node06:24453] Failing at address: 0x230f589800 [node06:24453] [ 0] /lib/x86_64-linux-gnu/libpthread.so.0(+0x12980)[0x7fed0c311980] [node06:24453] [ 1] /lib/x86_64-linux-gnu/libc.so.6(+0x18ec21)[0x7fed0c09cc21] [node06:24453] [ 2] /usr/local/lib/openmpi/mca_btl_vader.so(+0x2ed0)[0x7fec925a5ed0] [node06:24453] [ 3] /usr/local/lib/openmpi/mca_pml_ob1.so(mca_pml_ob1_send_request_start_prepare+0x51)[0x7fec917803e1] [node06:24453] [ 4] /usr/local/lib/openmpi/mca_pml_ob1.so(mca_pml_ob1_send+0x14e3)[0x7fec9176ddf3] [node06:24453] [ 5] /usr/local/lib/libmpi.so.40(ompi_coll_base_bcast_intra_split_bintree+0x6ef)[0x7feca20cdc0f] [node06:24453] [ 6] /usr/local/lib/openmpi/mca_coll_tuned.so(ompi_coll_tuned_bcast_intra_dec_fixed+0x126)[0x7fec90702386] [node06:24453] [ 7] /usr/local/lib/libmpi.so.40(MPI_Bcast+0x199)[0x7feca208f079] [node06:24453] [ 8] /home/antl/anaconda3/envs/tf1.15-test/lib/python3.6/site-packages/horovod-0.12.2.dev0-py3.6-linux-x86_64.egg/horovod/common/mpi_lib.cpython-36m-x86_64-linux-gnu.so(+0x47650)[0x7feca2605650] [node06:24453] [ 9] /home/antl/anaconda3/envs/tf1.15-test/lib/python3.6/site-packages/horovod-0.12.2.dev0-py3.6-linux-x86_64.egg/horovod/common/mpi_lib.cpython-36m-x86_64-linux-gnu.so(+0x4ff31)[0x7feca260df31] [node06:24453] [10] /home/antl/anaconda3/envs/tf1.15-test/bin/../lib/libstdc++.so.6(+0xc819d)[0x7fecb833b19d] [node06:24453] [11] /lib/x86_64-linux-gnu/libpthread.so.0(+0x76db)[0x7fed0c3066db] [node06:24453] [12] /lib/x86_64-linux-gnu/libc.so.6(clone+0x3f)[0x7fed0c02f71f] [node06:24453] *** End of error message *** -------------------------------------------------------------------------- Primary job terminated normally, but 1 process returned a non-zero exit code. Per user-direction, the job has been aborted. **What confuses me is that before 2021.05, there is no problem using the ring-of-rings branch to run distributed programs, but since May, once the mpi that supports cuda-aware is not compiled, MPI Segmentation fault will appear mistake!!!**
open
2021-06-07T09:53:38Z
2021-06-07T09:53:38Z
https://github.com/horovod/horovod/issues/2956
[ "bug" ]
Frank00001
0
Skyvern-AI/skyvern
api
1,190
Can you add a feature to capture specific network requests?
Can you add a feature to capture specific network requests? I need to get information from the network request headers. Also, it seems the F12 developer tools and bookmark creation are not supported.
closed
2024-11-14T14:35:07Z
2024-11-26T01:46:29Z
https://github.com/Skyvern-AI/skyvern/issues/1190
[]
chaoqunxie
8
mwaskom/seaborn
matplotlib
3,365
Change in Behavior for Python 3.12 for TestRegressionPlotter
Hi Team, I would like to bring to your attention there is an expected change in behavior of of how variables are scoped inside comprehensions inside a class scope, details are here: https://discuss.python.org/t/pep-709-one-behavior-change-that-was-missed-in-the-pep It has been identified in that thread (thanks to the work of Hugo van Kemenade and Carl Meyer) that [this line](https://github.com/mwaskom/seaborn/blob/v0.12.2/tests/test_regression.py#L122) in TestRegressionPlotter is affected by this behavioral change: ```python df["c"] = [rs.binomial(1, p_i) for p_i in p] ``` Currently `rs` is sourced from the global scope and in Python 3.12 it will instead source it from the class scope. Reading the context of the code it seems like sourcing from the class scope is actually the intended behavior but I thought I'd raise this issue just to inform you anyway. Please feel free to close this issue if this is actually the intended behavior.
closed
2023-05-14T13:35:54Z
2023-05-15T23:17:55Z
https://github.com/mwaskom/seaborn/issues/3365
[]
notatallshaw
1
alteryx/featuretools
data-science
2,368
Revert changes for local docs build once related sphinx issue is closed
In MR #2367, changes were made in `docs/Makefile` to allow docs to be build locally using the `make html` command. This was needed due to errors that happened when attempting to built the docs with Featuretools installed in editable mode. Docs builds failing in editable mode *might* be related to an issue with sphinx. When sphinx issue 10943 (https://github.com/sphinx-doc/sphinx/issues/10943) has been closed and resolved, we should revert the changes that were mode to the Makefile as indicated by the comments here: ``` .PHONY: html html: # Remove the following line when sphinx issue (https://github.com/sphinx-doc/sphinx/issues/10943) is closed python -m pip install .. --quiet --no-dependencies $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html $(SPHINXOPTS) # Remove the following line when sphinx issue (https://github.com/sphinx-doc/sphinx/issues/10943) is closed python -m pip install -e .. --quiet --no-dependencies @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." `
open
2022-11-09T16:59:06Z
2024-04-10T20:04:36Z
https://github.com/alteryx/featuretools/issues/2368
[ "good first issue", "documentation" ]
thehomebrewnerd
10
mljar/mercury
data-visualization
101
Return URL address of HTML/PDF notebook after REST API excution
There should be an option to execute the notebook with REST API and return the address of the resulting HTML/PDF notebook. It will create a lot of new possibilities for creating dynamic reports. ### The workflow 1. Create a notebook with variables editable in Mercury (variables in YAML header). 2. Share notebook as REST API endpoint in Mercury. 3. Execute notebook with REST API, send variables in JSON request. 4. Run notebook with new parameters, and create HTML / PDF outputs. 5. Return address to HTML / PDF outputs.
closed
2022-05-18T06:51:35Z
2023-02-15T10:13:23Z
https://github.com/mljar/mercury/issues/101
[ "enhancement", "help wanted" ]
pplonski
0
huggingface/diffusers
pytorch
10,050
Is there any img2img KDiffusion equivalent of StableDiffusionKDiffusionPipeline?
### Model/Pipeline/Scheduler description I'm working on result alignment between diffusers and A1111 webui. In txt2img scene, I can achieve via `StableDiffusionKDiffusionPipeline`, refer to https://github.com/huggingface/diffusers/issues/3253. But in img2img scene, is there any KDiffusion pipeline equivalent? I'm also trying to implement this by merging `StableDiffusionKDiffusionPipeline` and `StableDiffusionImg2ImgPipeline` together. Any clarification and help is appreciated. ### Open source status - [ ] The model implementation is available. - [ ] The model weights are available (Only relevant if addition is not a scheduler). ### Provide useful links for the implementation _No response_
open
2024-11-29T07:47:11Z
2024-12-29T15:03:05Z
https://github.com/huggingface/diffusers/issues/10050
[ "stale" ]
juju812
2
JoeanAmier/XHS-Downloader
api
39
如何把笔记的文案 保存到对应笔记的文件夹中
如何把笔记的文案 保存到对应笔记的文件夹中
open
2024-01-05T02:43:23Z
2024-01-07T17:17:42Z
https://github.com/JoeanAmier/XHS-Downloader/issues/39
[]
hackettk
5
mwaskom/seaborn
data-visualization
3,423
Issue with lineplot - conflict with pandas
When trying to create a lineplot - with only x (datetime64 or simple int64) and y without any sophisticated arguments - the following error is raised: > OptionError: No such keys(s): 'mode.use_inf_as_null' This is the detailed reference to pandas: > File [~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/seaborn/_core.py:1054](https://file+.vscode-resource.vscode-cdn.net/Users/kathse/Documents/NeueFische/4_Capstone/capstone_solar_energy/notebooks/~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/seaborn/_core.py:1054), in VectorPlotter.comp_data(self) > 1050 axis = getattr(ax, f"{var}axis") > 1052 # Use the converter assigned to the axis to get a float representation > 1053 # of the data, passing np.nan or pd.NA through (pd.NA becomes np.nan) > -> 1054 with pd.option_context('mode.use_inf_as_null', True): > 1055 orig = self.plot_data[var].dropna() > 1056 comp_col = pd.Series(index=orig.index, dtype=float, name=var) > > File [~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/pandas/_config/config.py:441](https://file+.vscode-resource.vscode-cdn.net/Users/kathse/Documents/NeueFische/4_Capstone/capstone_solar_energy/notebooks/~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/pandas/_config/config.py:441), in option_context.__enter__(self) > 440 def __enter__(self) -> None: > --> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops] > 443 for pat, val in self.ops: > 444 _set_option(pat, val, silent=True) > File [~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/pandas/_config/config.py:441](https://file+.vscode-resource.vscode-cdn.net/Users/kathse/Documents/NeueFische/4_Capstone/capstone_solar_energy/notebooks/~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/pandas/_config/config.py:441), in (.0) > 440 def __enter__(self) -> None: > --> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops] > 443 for pat, val in self.ops: > 444 _set_option(pat, val, silent=True) > > File [~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/pandas/_config/config.py:135](https://file+.vscode-resource.vscode-cdn.net/Users/kathse/Documents/NeueFische/4_Capstone/capstone_solar_energy/notebooks/~/Documents/NeueFische/4_Capstone/capstone_solar_energy/.venv/lib/python3.11/site-packages/pandas/_config/config.py:135), in _get_option(pat, silent) > 134 def _get_option(pat: str, silent: bool = False) -> Any: > --> 135 key = _get_single_key(pat, silent) > 137 # walk the nested dict > 138 root, k = _get_root(key) I tried multiple seaborn version, including 0.12.1 and 0.12.2. For pandas, I tried 2.0.2 and 2.0.1. Matplotlib is version 3.7.1. I would appreciate your help and also I would like to thank you for your awesome work!!
closed
2023-07-20T22:31:12Z
2023-08-02T11:20:03Z
https://github.com/mwaskom/seaborn/issues/3423
[]
KathSe1984
3
huggingface/datasets
tensorflow
7,073
CI is broken for convert_to_parquet: Invalid rev id: refs/pr/1 404 error causes RevisionNotFoundError
See: https://github.com/huggingface/datasets/actions/runs/10095313567/job/27915185756 ``` FAILED tests/test_hub.py::test_convert_to_parquet - huggingface_hub.utils._errors.RevisionNotFoundError: 404 Client Error. (Request ID: Root=1-66a25839-31ce7b475e70e7db1e4d44c2;b0c8870f-d5ef-4bf2-a6ff-0191f3df0f64) Revision Not Found for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_TRANSFORMERS_USER__/test-dataset-5188a8-17219154347516/preupload/refs%2Fpr%2F1. Invalid rev id: refs/pr/1 ``` ``` /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/hub.py:86: in convert_to_parquet dataset.push_to_hub( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/dataset_dict.py:1722: in push_to_hub split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/arrow_dataset.py:5511: in _push_parquet_shards_to_hub api.preupload_lfs_files( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/huggingface_hub/hf_api.py:4231: in preupload_lfs_files _fetch_upload_modes( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:118: in _inner_fn return fn(*args, **kwargs) /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/huggingface_hub/_commit_api.py:507: in _fetch_upload_modes hf_raise_for_status(resp) ```
closed
2024-07-26T08:27:41Z
2024-07-27T05:48:02Z
https://github.com/huggingface/datasets/issues/7073
[]
albertvillanova
9
graphistry/pygraphistry
jupyter
321
install pygraphistry togoogle colab
Hi, I have used succesfully on my personal laptop, but I need to use in Colab. How I can use pygraphistry in Colab? I have try to install in Google Colab with `!pip install graphistry` `!apt install graphistry`0 Every time it print that it successfully installed but then when running: `import graphistry` I receive error: > ModuleNotFoundError: No module named 'graphistry' thanks for the help
closed
2022-03-18T14:15:22Z
2022-03-21T20:12:49Z
https://github.com/graphistry/pygraphistry/issues/321
[]
SalvatoreRa
5
PaddlePaddle/ERNIE
nlp
249
bert 预训练代码有个小错误
ERNIE/BERT/reader/pretraining.py 91行与162行应该统一吧 162行应该是大于号
closed
2019-08-01T11:25:24Z
2019-08-19T02:54:35Z
https://github.com/PaddlePaddle/ERNIE/issues/249
[]
zle1992
2
freqtrade/freqtrade
python
11,216
Problem with order/trade open price (wrong price) in dry run
Describe your environment Operating system: Ubuntu 22.04.1 LTS Python Version: > 3.10 Freqtrade 2024.7.1 Freqtrade running in docker Exchange: Binance Dry-run mode without new BNFCR features I found a problem with order/trade open price. Strategy is on 1m TF Send an limit order for TRX/USDT:USDT at open_rate: 0.24442 But at time my order was send and filled, open price on the 1 min candle was between 0.24271 - 0.24282. We can see current_rate: 0.24274. 2025-01-11 07:19:39,888 - freqtrade.rpc.rpc_manager - INFO - Sending rpc message: {'trade_id': 54, 'type': entry_fill, 'buy_tag': 'long htf', 'enter_tag': 'long htf', 'exchange': 'Binance', 'pair': 'TRX/USDT:USDT', 'leverage': 1.0, 'direction': 'Long', 'limit': 0.24442, 'open_rate': 0.24442, 'order_type': 'limit', 'stake_amount': 1435.9675, 'stake_currency': 'USDT', 'base_currency': 'TRX', 'quote_currency': 'USDT', 'fiat_currency': 'USD', 'amount': 5875.0, 'open_date': datetime.datetime(2025, 1, 11, 7, 19, 39, 47685, tzinfo=datetime.timezone.utc), 'current_rate': 0.24274, 'sub_trade': False} But my order and trade will show the initial price 0.24442, not the real price 0.24274, that should be in order and trade: /status 54 Trade ID: 54 (since 2025-01-11 07:19:39) Current Pair: TRX/USDT:USDT Direction: Long (1.0x) Amount: 5875.0 (1435.967 USDT) Total invested: 1435.967 USDT Enter Tag: long htf Number of Entries: 1 Number of Exits: 0 Open Rate: 0.24442 Open Date: 2025-01-11 07:19:39 Current Rate: 0.24248 Unrealized Profit: -0.89% (-12.828 USDT) Stoploss: 0.2189 (-9.81%) Stoploss distance: -0.02358 (-9.72%) /order 54 Order List for Trade #54 Entry #1: Amount: 5875 (1435.967 USDT) Average Price: 0.24442 ``` 2025-01-11 07:19:38,801 - freqtrade.freqtradebot - INFO - Long signal found: about create a new trade for TRX/USDT:USDT with stake_amount: 1436.0752056404247 ... 2025-01-11 07:19:39,047 - freqtrade.freqtradebot - INFO - Order dry_run_buy_TRX/USDT:USDT_1736579978.801997 was created for TRX/USDT:USDT and status is closed. 2025-01-11 07:19:39,623 - freqtrade.wallets - INFO - Wallets synced. 2025-01-11 07:19:39,623 - freqtrade.rpc.rpc_manager - INFO - Sending rpc message: {'trade_id': 54, 'type': entry, 'buy_tag': 'long htf', 'enter_tag': 'long htf', 'exchange': 'Binance', 'pair': 'TRX/USDT:USDT', 'leverage': 1.0, 'direction': 'Long', 'limit': 0.24442, 'open_rate': 0.24442, 'order_type': 'limit', 'stake_amount': 1435.9675, 'stake_currency': 'USDT', 'base_currency': 'TRX', 'quote_currency': 'USDT', 'fiat_currency': 'USD', 'amount': 5875.0, 'open_date': datetime.datetime(2025, 1, 11, 7, 19, 39, 47685, tzinfo=datetime.timezone.utc), 'current_rate': 0.24274, 'sub_trade': False} 2025-01-11 07:19:39,623 - freqtrade.rpc.telegram - INFO - Notification 'entry' not sent. 2025-01-11 07:19:39,624 - freqtrade.freqtradebot - INFO - Found open order for Trade(id=54, pair=TRX/USDT:USDT, amount=5875.00000000, is_short=False, leverage=1.0, open_rate=0.24442000, open_since=2025-01-11 07:19:39) 2025-01-11 07:19:39,627 - freqtrade.freqtradebot - INFO - Fee for Trade Trade(id=54, pair=TRX/USDT:USDT, amount=5875.00000000, is_short=False, leverage=1.0, open_rate=0.24442000, open_since=2025-01-11 07:19:39) [buy]: 0.71798375 USDT - rate: 0.0005 2025-01-11 07:19:39,627 - freqtrade.persistence.trade_model - INFO - Updating trade (id=54) ... 2025-01-11 07:19:39,628 - freqtrade.persistence.trade_model - INFO - LIMIT_BUY has been fulfilled for Trade(id=54, pair=TRX/USDT:USDT, amount=5875.00000000, is_short=False, leverage=1.0, open_rate=0.24442000, open_since=2025-01-11 07:19:39). 2025-01-11 07:19:39,883 - freqtrade.wallets - INFO - Wallets synced. 2025-01-11 07:19:39,888 - freqtrade.rpc.rpc_manager - INFO - Sending rpc message: {'trade_id': 54, 'type': entry_fill, 'buy_tag': 'long htf', 'enter_tag': 'long htf', 'exchange': 'Binance', 'pair': 'TRX/USDT:USDT', 'leverage': 1.0, 'direction': 'Long', 'limit': 0.24442, 'open_rate': 0.24442, 'order_type': 'limit', 'stake_amount': 1435.9675, 'stake_currency': 'USDT', 'base_currency': 'TRX', 'quote_currency': 'USDT', 'fiat_currency': 'USD', 'amount': 5875.0, 'open_date': datetime.datetime(2025, 1, 11, 7, 19, 39, 47685, tzinfo=datetime.timezone.utc), 'current_rate': 0.24274, 'sub_trade': False} 2025-01-11 07:19:39,889 - freqtrade.worker - INFO - Bot heartbeat. PID=1, version='2024.7.1', state='RUNNING' ``` ![Image](https://github.com/user-attachments/assets/c521d83a-e1c5-4c1c-8d44-9495fe617bbc)
closed
2025-01-11T07:52:04Z
2025-01-11T15:21:22Z
https://github.com/freqtrade/freqtrade/issues/11216
[ "Question" ]
dobremha
2
AirtestProject/Airtest
automation
553
关于iOS环境text()用法的疑问
想要跟set_text()一样的效果:输入框没有内容写入,输入框有内容直接覆盖 但是iOS不支持set_text(),也不支持用keyevent("KEYCODE_DEL")删除内容,请问还有什么办法可以实现直接覆盖输入框内容或者删除输入框内容吗?
open
2019-10-11T07:07:05Z
2020-09-06T13:19:28Z
https://github.com/AirtestProject/Airtest/issues/553
[]
appp-deng
3
stanfordnlp/stanza
nlp
825
Stanza Document model to dataframe
Hi, I got this following output from NER process. I want this in the form of a dataframe .In that case,"id,text,upos,xpos,ner" shoud be column names.Is that possible to convert into dataframe? [ [ { "id": 1, "text": "[", "upos": "PUNCT", "xpos": "-LRB-", "start_char": 0, "end_char": 1, "ner": "O" }, { "id": 2, "text": "'", "upos": "PUNCT", "xpos": "''", "start_char": 1, "end_char": 2, "ner": "O" } ], [ { "id": 1, "text": "OLD", "upos": "ADJ", "xpos": "NNP", "feats": "Degree=Pos", "start_char": 2, "end_char": 5, "ner": "B-FAC" }, { "id": 2, "text": "COAST", "upos": "PROPN", "xpos": "NNP", "feats": "Number=Sing", "start_char": 6, "end_char": 11, "ner": "I-FAC" }, { "id": 3, "text": "BRIDGE", "upos": "PROPN", "xpos": "NNP", "feats": "Number=Sing", "start_char": 12, "end_char": 18, "ner": "I-FAC" }, { "id": 4, "text": "1", "upos": "NUM", "xpos": "CD", "feats": "NumForm=Digit|NumType=Card", "start_char": 19, "end_char": 20, "ner": "E-FAC" },
open
2021-10-08T08:52:47Z
2022-07-14T20:27:04Z
https://github.com/stanfordnlp/stanza/issues/825
[ "enhancement", "question" ]
sangeethsn
10