hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794e6076d0019b30f164eb0177f2c860a5934b77
2,137
py
Python
ros2_control_bolt_bringup/launch/bolt_system_position_only_gazebo.launch.py
Benjamin-Amsellem/ros2_control_bolt
ae91f30826eddf2bed7cd5b69f6bab12c6b7dcc8
[ "Apache-2.0" ]
null
null
null
ros2_control_bolt_bringup/launch/bolt_system_position_only_gazebo.launch.py
Benjamin-Amsellem/ros2_control_bolt
ae91f30826eddf2bed7cd5b69f6bab12c6b7dcc8
[ "Apache-2.0" ]
null
null
null
ros2_control_bolt_bringup/launch/bolt_system_position_only_gazebo.launch.py
Benjamin-Amsellem/ros2_control_bolt
ae91f30826eddf2bed7cd5b69f6bab12c6b7dcc8
[ "Apache-2.0" ]
null
null
null
from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.substitutions import Command, FindExecutable, PathJoinSubstitution from launch.launch_description_sources import PythonLaunchDescriptionSource from launch_ros.actions import Node from launch_ros.substitutions import FindPackageShare def generate_launch_description(): gazebo = IncludeLaunchDescription( PythonLaunchDescriptionSource( [PathJoinSubstitution([FindPackageShare("gazebo_ros"), "launch", "gazebo.launch.py"])] ), launch_arguments={"verbose": "false", "pause": "true"}.items(), ) # Get URDF via xacro robot_description_content = Command( [ PathJoinSubstitution([FindExecutable(name="xacro")]), " ", PathJoinSubstitution( [ FindPackageShare("ros2_description_bolt"), "urdf", "system_bolt_description.urdf.xacro", ] ), " use_sim:=true", ] ) robot_description = {"robot_description": robot_description_content} node_robot_state_publisher = Node( package="robot_state_publisher", executable="robot_state_publisher", output="screen", parameters=[robot_description], ) spawn_entity = Node( package="gazebo_ros", executable="spawn_entity.py", arguments=["-topic", "robot_description", "-entity", "bolt", "-x 0", "-y 0", "-z 0.5"], output="screen", ) spawn_controller = Node( package="controller_manager", executable="spawner.py", arguments=["joint_state_broadcaster"], output="screen", ) spawn_controller_effort = Node( package="controller_manager", executable="spawner.py", arguments=["effort_controllers"], output="screen", ) return LaunchDescription( [ gazebo, node_robot_state_publisher, spawn_entity, spawn_controller, spawn_controller_effort, ] )
30.528571
98
0.617688
794e60b6305209053b335fa8f0743658bae15d6f
355
py
Python
laia/losses/dortmund_bce_loss.py
basbeu/PyLaia
d14458484b56622204b1730a7d53220c5d0f1bc1
[ "MIT" ]
2
2020-09-10T13:31:17.000Z
2021-07-31T09:44:17.000Z
laia/losses/dortmund_bce_loss.py
basbeu/PyLaia
d14458484b56622204b1730a7d53220c5d0f1bc1
[ "MIT" ]
1
2020-12-06T18:11:52.000Z
2020-12-06T18:19:38.000Z
laia/losses/dortmund_bce_loss.py
basbeu/PyLaia
d14458484b56622204b1730a7d53220c5d0f1bc1
[ "MIT" ]
2
2020-04-20T13:40:56.000Z
2020-10-17T11:59:55.000Z
from __future__ import absolute_import from torch.nn import BCEWithLogitsLoss class DortmundBCELoss(BCEWithLogitsLoss): def __init__(self): super(DortmundBCELoss, self).__init__(reduction="sum") def forward(self, output, target): loss = super(DortmundBCELoss, self).forward(output, target) return loss / output.size(0)
27.307692
67
0.729577
794e618cfb1c109eabf3bdac9d8307e9180cc8ab
1,425
py
Python
parent/restcache/test-server/resttest/resttest/wsgi.py
kinokocchi/Ttada
632311375bb4b5a629a5455dea677c3fd69d873a
[ "MIT" ]
null
null
null
parent/restcache/test-server/resttest/resttest/wsgi.py
kinokocchi/Ttada
632311375bb4b5a629a5455dea677c3fd69d873a
[ "MIT" ]
null
null
null
parent/restcache/test-server/resttest/resttest/wsgi.py
kinokocchi/Ttada
632311375bb4b5a629a5455dea677c3fd69d873a
[ "MIT" ]
null
null
null
""" WSGI config for resttest project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. """ import os # We defer to a DJANGO_SETTINGS_MODULE already in the environment. This breaks # if running multiple sites in the same mod_wsgi process. To fix this, use # mod_wsgi daemon mode with each site in its own daemon process, or use # os.environ["DJANGO_SETTINGS_MODULE"] = "resttest.settings" os.environ.setdefault("DJANGO_SETTINGS_MODULE", "resttest.settings") # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. from django.core.wsgi import get_wsgi_application application = get_wsgi_application() # Apply WSGI middleware here. # from helloworld.wsgi import HelloWorldApplication # application = HelloWorldApplication(application)
43.181818
79
0.803509
794e624fdcb29d0663882dac712031dc1c41ad20
6,675
py
Python
python/sklearn/sklearn/dummy.py
seckcoder/lang-learn
1e0d6f412bbd7f89b1af00293fd907ddb3c1b571
[ "Unlicense" ]
1
2017-10-14T04:23:45.000Z
2017-10-14T04:23:45.000Z
python/sklearn/sklearn/dummy.py
seckcoder/lang-learn
1e0d6f412bbd7f89b1af00293fd907ddb3c1b571
[ "Unlicense" ]
null
null
null
python/sklearn/sklearn/dummy.py
seckcoder/lang-learn
1e0d6f412bbd7f89b1af00293fd907ddb3c1b571
[ "Unlicense" ]
null
null
null
# Author: Mathieu Blondel <mathieu@mblondel.org> # License: BSD Style. import numpy as np from .base import BaseEstimator, ClassifierMixin, RegressorMixin from .utils import check_random_state from .utils.fixes import unique from .utils.validation import safe_asarray class DummyClassifier(BaseEstimator, ClassifierMixin): """ DummyClassifier is a classifier that makes predictions using simple rules. This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real problems. Parameters ---------- strategy: str Strategy to use to generate predictions. * "stratified": generates predictions by respecting the training set's class distribution. * "most_frequent": always predicts the most frequent label in the training set. * "uniform": generates predictions uniformly at random. random_state: int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use. Attributes ---------- `classes_` : array, shape = [n_classes] Class labels. `class_prior_` : array, shape = [n_classes] Probability of each class. """ def __init__(self, strategy="stratified", random_state=None): self.strategy = strategy self.random_state = random_state def fit(self, X, y): """Fit the random classifier. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns self. """ if self.strategy not in ("most_frequent", "stratified", "uniform"): raise ValueError("Unknown strategy type.") self.classes_, y = unique(y, return_inverse=True) self.class_prior_ = np.bincount(y) / float(y.shape[0]) return self def predict(self, X): """ Perform classification on test vectors X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- y : array, shape = [n_samples] Predicted target values for X. """ if not hasattr(self, "classes_"): raise ValueError("DummyClassifier not fitted.") X = safe_asarray(X) n_samples = X.shape[0] rs = check_random_state(self.random_state) if self.strategy == "most_frequent": ret = np.ones(n_samples, dtype=int) * self.class_prior_.argmax() elif self.strategy == "stratified": ret = self.predict_proba(X).argmax(axis=1) elif self.strategy == "uniform": ret = rs.randint(len(self.classes_), size=n_samples) return self.classes_[ret] def predict_proba(self, X): """ Return probability estimates for the test vectors X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- P : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered arithmetically. """ if not hasattr(self, "classes_"): raise ValueError("DummyClassifier not fitted.") X = safe_asarray(X) n_samples = X.shape[0] n_classes = len(self.classes_) rs = check_random_state(self.random_state) if self.strategy == "most_frequent": ind = np.ones(n_samples, dtype=int) * self.class_prior_.argmax() out = np.zeros((n_samples, n_classes), dtype=np.float64) out[:, ind] = 1.0 elif self.strategy == "stratified": out = rs.multinomial(1, self.class_prior_, size=n_samples) elif self.strategy == "uniform": out = np.ones((n_samples, n_classes), dtype=np.float64) out /= n_classes return out def predict_log_proba(self, X): """ Return log probability estimates for the test vectors X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- P : array-like, shape = [n_samples, n_classes] Returns the log probability of the sample for each class in the model, where classes are ordered arithmetically. """ return np.log(self.predict_proba(X)) class DummyRegressor(BaseEstimator, RegressorMixin): """ DummyRegressor is a regressor that always predicts the mean of the training targets. This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real problems. Attributes ---------- `y_mean_` : float Mean of the training targets. """ def fit(self, X, y): """Fit the random regressor. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns self. """ self.y_mean_ = np.mean(y) return self def predict(self, X): """ Perform classification on test vectors X. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Input vectors, where n_samples is the number of samples and n_features is the number of features. Returns ------- y : array, shape = [n_samples] Predicted target values for X. """ if not hasattr(self, "y_mean_"): raise ValueError("DummyRegressor not fitted.") X = safe_asarray(X) n_samples = X.shape[0] return np.ones(n_samples) * self.y_mean_
31.485849
79
0.594457
794e62e4aafc8c2ec393b466096743dcc1ab0ac4
5,482
py
Python
qiskit_metal/qlibrary/lumped/resonator_coil_rect.py
wdczdj/qiskit-metal
c77805f66da60021ef8d10d668715c1dc2ebcd1d
[ "Apache-2.0" ]
null
null
null
qiskit_metal/qlibrary/lumped/resonator_coil_rect.py
wdczdj/qiskit-metal
c77805f66da60021ef8d10d668715c1dc2ebcd1d
[ "Apache-2.0" ]
null
null
null
qiskit_metal/qlibrary/lumped/resonator_coil_rect.py
wdczdj/qiskit-metal
c77805f66da60021ef8d10d668715c1dc2ebcd1d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """File contains dictionary for NSquareSpiral and the make().""" from qiskit_metal import draw, Dict from qiskit_metal.qlibrary.core import QComponent import numpy as np class ResonatorCoilRect(QComponent): """A rectnagle spiral resonator based on length input. The X dimension is modified by the code based on the total length inputed. Inherits `QComponent` class A rectangular spiral resonator. The width of the spiral is modified based on inputted values and given total length of the spiral. :: <--------X--------> __________________ | ___________ | | | | | | | | | | |______________| | Default Options: Convention: Values (unless noted) are strings with units included, (e.g., '30um') * n: '3' -- Number of turns of the spiral * length: '2000um' -- Total length of the spiral * line_width: '1um' -- The width of the line of the spiral * height: '40um' -- The height of the inner portion of the spiral * gap: '4um' -- The distance between each layer of the spiral * coupler_distance: '10um' -- The pin position from the grounded termination of the spiral * pos_x: '0um' -- The x position of the ground termination. * pos_y: '0um' -- The y position of the ground termination. * rotation: '0' -- The direction of the termination. 0 degrees is +x, following a counter-clockwise rotation (eg. 90 is +y) * chip: 'main' -- The chip the pin should be on. * layer: '1' -- Layer the pin is on. Does not have any practical impact to the short. """ component_metadata = Dict(short_name='res') """Component metadata""" default_options = Dict(n='3', length='2000um', line_width='1um', height='40um', gap='4um', coupler_distance='10um', pos_x='0um', pos_y='0um', rotation='0', chip='main', layer='1') """Default drawing options""" def make(self): """The make function implements the logic that creates the geoemtry (poly, path, etc.) from the qcomponent.options dictionary of parameters, and the adds them to the design, using qcomponent.add_qgeometry(...), adding in extra needed information, such as layer, subtract, etc.""" p = self.p # p for parsed parameters. Access to the parsed options. n = int(p.n) # Create the geometry spiral_list = [] #Formulat to determine the size of the spiral based on inputed length. x_n = (p.length / (2 * n)) - (p.height + 2 * (p.gap + p.line_width) * (2 * n - 1)) if x_n <= p.gap + p.line_width: self._error_message = f'Inputted values results in the width of the spiral being too small.' self.logger.warning(self._error_message) return for step in range(n): x_point = x_n / 2 + step * (p.line_width + p.gap) y_point = p.height / 2 + step * (p.line_width + p.gap) spiral_list.append((-x_point, -y_point)) spiral_list.append((x_point, -y_point)) spiral_list.append((x_point, y_point)) spiral_list.append((-x_point - (p.line_width + p.gap), y_point)) x_point = (x_n / 2 + (step + 1) * (p.line_width + p.gap)) y_point = (p.height / 2 + (step + 1) * (p.line_width + p.gap) - p.line_width / 2) spiral_list.append((-x_point, -y_point)) spiral_list = draw.LineString(spiral_list) spiral_etch = draw.shapely.geometry.box( -(x_point + p.line_width / 2 + p.gap), -y_point, x_point - p.line_width / 2, y_point) #Generates a linestring to track port location points = draw.LineString([ (-x_point + p.line_width / 2, -y_point + p.coupler_distance), (-x_point - p.line_width / 2, -y_point + p.coupler_distance) ]) c_items = [spiral_list, spiral_etch, points] c_items = draw.rotate(c_items, p.rotation, origin=(0, 0)) c_items = draw.translate(c_items, p.pos_x, p.pos_y) [spiral_list, spiral_etch, points] = c_items ############################################## # add elements self.add_qgeometry('path', {'n_spiral': spiral_list}, width=p.line_width) self.add_qgeometry('poly', {'n_spira_etch': spiral_etch}, subtract=True) # NEW PIN SPOT self.add_pin('spiralPin', points=np.array(points.coords), width=p.line_width, input_as_norm=True)
41.218045
104
0.568588
794e63dc8c774e769d71067b3c58e691d118ade4
5,347
py
Python
models/sngan_cifar10.py
sudarshanregmi/ICRGAN-and-SSGAN
c9e7b01d89cba19505e566892a678932717b8039
[ "MIT" ]
3
2021-02-03T17:19:33.000Z
2021-02-03T17:22:14.000Z
models/sngan_cifar10.py
sudarshanregmi/ICRGAN-and-SSGAN
c9e7b01d89cba19505e566892a678932717b8039
[ "MIT" ]
null
null
null
models/sngan_cifar10.py
sudarshanregmi/ICRGAN-and-SSGAN
c9e7b01d89cba19505e566892a678932717b8039
[ "MIT" ]
null
null
null
import torch.nn as nn from .gen_resblock import GenBlock class Generator(nn.Module): def __init__(self, args, activation=nn.ReLU(), n_classes=0): super(Generator, self).__init__() self.bottom_width = args.bottom_width self.activation = activation self.n_classes = n_classes self.ch = args.gf_dim self.l1 = nn.Linear(args.latent_dim, (self.bottom_width ** 2) * self.ch) self.block2 = GenBlock(self.ch, self.ch, activation=activation, upsample=True, n_classes=n_classes) self.block3 = GenBlock(self.ch, self.ch, activation=activation, upsample=True, n_classes=n_classes) self.block4 = GenBlock(self.ch, self.ch, activation=activation, upsample=True, n_classes=n_classes) self.b5 = nn.BatchNorm2d(self.ch) self.c5 = nn.Conv2d(self.ch, 3, kernel_size=3, stride=1, padding=1) def forward(self, z): h = z h = self.l1(h).view(-1, self.ch, self.bottom_width, self.bottom_width) h = self.block2(h) h = self.block3(h) h = self.block4(h) h = self.b5(h) h = self.activation(h) h = nn.Tanh()(self.c5(h)) return h """Discriminator""" def _downsample(x): # Downsample (Mean Avg Pooling with 2x2 kernel) return nn.AvgPool2d(kernel_size=2)(x) class OptimizedDisBlock(nn.Module): def __init__(self, args, in_channels, out_channels, ksize=3, pad=1, activation=nn.ReLU()): super(OptimizedDisBlock, self).__init__() self.activation = activation self.c1 = nn.Conv2d(in_channels, out_channels, kernel_size=ksize, padding=pad) self.c2 = nn.Conv2d(out_channels, out_channels, kernel_size=ksize, padding=pad) self.c_sc = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if args.d_spectral_norm: self.c1 = nn.utils.spectral_norm(self.c1) self.c2 = nn.utils.spectral_norm(self.c2) self.c_sc = nn.utils.spectral_norm(self.c_sc) def residual(self, x): h = x h = self.c1(h) h = self.activation(h) h = self.c2(h) h = _downsample(h) return h def shortcut(self, x): return self.c_sc(_downsample(x)) def forward(self, x): return self.residual(x) + self.shortcut(x) class DisBlock(nn.Module): def __init__(self, args, in_channels, out_channels, hidden_channels=None, ksize=3, pad=1, activation=nn.ReLU(), downsample=False): super(DisBlock, self).__init__() self.activation = activation self.downsample = downsample self.learnable_sc = (in_channels != out_channels) or downsample hidden_channels = in_channels if hidden_channels is None else hidden_channels self.c1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=ksize, padding=pad) self.c2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=ksize, padding=pad) if args.d_spectral_norm: self.c1 = nn.utils.spectral_norm(self.c1) self.c2 = nn.utils.spectral_norm(self.c2) if self.learnable_sc: self.c_sc = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if args.d_spectral_norm: self.c_sc = nn.utils.spectral_norm(self.c_sc) def residual(self, x): h = x h = self.activation(h) h = self.c1(h) h = self.activation(h) h = self.c2(h) if self.downsample: h = _downsample(h) return h def shortcut(self, x): if self.learnable_sc: x = self.c_sc(x) if self.downsample: return _downsample(x) else: return x else: return x def forward(self, x): return self.residual(x) + self.shortcut(x) class Discriminator(nn.Module): def __init__(self, args, activation=nn.ReLU(), ssup=False): super(Discriminator, self).__init__() self.ch = args.df_dim self.activation = activation self.ssup = ssup self.block1 = OptimizedDisBlock(args, 3, self.ch) self.block2 = DisBlock(args, self.ch, self.ch, activation=activation, downsample=True) self.block3 = DisBlock(args, self.ch, self.ch, activation=activation, downsample=False) self.block4 = DisBlock(args, self.ch, self.ch, activation=activation, downsample=False) self.softmax = nn.Softmax() if ssup: self.fully_connect_rot = nn.Linear(self.ch, 4, bias=False) self.fully_connect_gan = nn.Linear(self.ch, 1, bias=False) if args.d_spectral_norm: self.fully_connect_gan = nn.utils.spectral_norm(self.fully_connect_gan) if ssup: self.fully_connect_rot = nn.utils.spectral_norm(self.fully_connect_rot) def forward(self, x): h = x h = self.block1(h) h = self.block2(h) h = self.block3(h) h = self.block4(h) h = self.activation(h) # GAN logits # Global average pooling h = h.sum(2).sum(2) gan_logits = self.fully_connect_gan(h) rot_logits, rot_prob = -1, -1 if self.ssup: rot_logits = self.fully_connect_rot(h) rot_prob = self.softmax(rot_logits) return gan_logits, rot_logits, rot_prob
35.885906
107
0.620909
794e64393602b4f9f160790fdb9ea04191a0e53a
1,454
py
Python
src/resource-graph/azext_resourcegraph/vendored_sdks/resourcegraph/models/error_py3.py
mayank88mahajan/azure-cli-extensions
8bd389a1877bffd14052bec5519ce75dc6fc34cf
[ "MIT" ]
1
2019-05-10T19:58:09.000Z
2019-05-10T19:58:09.000Z
src/resource-graph/azext_resourcegraph/vendored_sdks/resourcegraph/models/error_py3.py
mayank88mahajan/azure-cli-extensions
8bd389a1877bffd14052bec5519ce75dc6fc34cf
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
src/resource-graph/azext_resourcegraph/vendored_sdks/resourcegraph/models/error_py3.py
mayank88mahajan/azure-cli-extensions
8bd389a1877bffd14052bec5519ce75dc6fc34cf
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class Error(Model): """Error info. Error details. All required parameters must be populated in order to send to Azure. :param code: Required. Error code identifying the specific error. :type code: str :param message: Required. A human readable error message. :type message: str :param details: Error details :type details: list[~azure.mgmt.resourcegraph.models.ErrorDetails] """ _validation = { 'code': {'required': True}, 'message': {'required': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'details': {'key': 'details', 'type': '[ErrorDetails]'}, } def __init__(self, *, code: str, message: str, details=None, **kwargs) -> None: super(Error, self).__init__(**kwargs) self.code = code self.message = message self.details = details
31.608696
83
0.577029
794e650a8399ef5a01f6e253d3e63167cbde8df1
9,148
py
Python
protocol/sensor_msgs/msg/not used/_MagneticField.py
Tsinghua-OpenICV/carla_icv_bridge
4d5f8c26b1847dbb16a81fe43f146bf4a9a8da5e
[ "MIT" ]
null
null
null
protocol/sensor_msgs/msg/not used/_MagneticField.py
Tsinghua-OpenICV/carla_icv_bridge
4d5f8c26b1847dbb16a81fe43f146bf4a9a8da5e
[ "MIT" ]
null
null
null
protocol/sensor_msgs/msg/not used/_MagneticField.py
Tsinghua-OpenICV/carla_icv_bridge
4d5f8c26b1847dbb16a81fe43f146bf4a9a8da5e
[ "MIT" ]
1
2020-12-19T05:48:01.000Z
2020-12-19T05:48:01.000Z
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from sensor_msgs/MagneticField.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import geometry_msgs.msg import protocol.std_msgs.msg as std_msgs class MagneticField(genpy.Message): _md5sum = "2f3b0b43eed0c9501de0fa3ff89a45aa" _type = "sensor_msgs/MagneticField" _has_header = True #flag to mark the presence of a Header object _full_text = """ # Measurement of the Magnetic Field vector at a specific location. # If the covariance of the measurement is known, it should be filled in # (if all you know is the variance of each measurement, e.g. from the datasheet, #just put those along the diagonal) # A covariance matrix of all zeicv will be interpreted as "covariance unknown", # and to use the data a covariance will have to be assumed or gotten from some # other source Header header # timestamp is the time the # field was measured # frame_id is the location and orientation # of the field measurement geometry_msgs/Vector3 magnetic_field # x, y, and z components of the # field vector in Tesla # If your sensor does not output 3 axes, # put NaNs in the components not reported. float64[9] magnetic_field_covariance # Row major about x, y, z axes # 0 is interpreted as variance unknown ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: geometry_msgs/Vector3 # This represents a vector in free space. # It is only meant to represent a direction. Therefore, it does not # make sense to apply a translation to it (e.g., when applying a # generic rigid transformation to a Vector3, tf2 will only apply the # rotation). If you want your data to be translatable too, use the # geometry_msgs/Point message instead. float64 x float64 y float64 z""" __slots__ = ['header','magnetic_field','magnetic_field_covariance'] _slot_types = ['std_msgs/Header','geometry_msgs/Vector3','float64[9]'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,magnetic_field,magnetic_field_covariance :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(MagneticField, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.Header() if self.magnetic_field is None: self.magnetic_field = geometry_msgs.msg.Vector3() if self.magnetic_field_covariance is None: self.magnetic_field_covariance = [0.] * 9 else: self.header = std_msgs.Header() self.magnetic_field = geometry_msgs.msg.Vector3() self.magnetic_field_covariance = [0.] * 9 def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_3d().pack(_x.magnetic_field.x, _x.magnetic_field.y, _x.magnetic_field.z)) buff.write(_get_struct_9d().pack(*self.magnetic_field_covariance)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.header is None: self.header = std_msgs.Header() if self.magnetic_field is None: self.magnetic_field = geometry_msgs.msg.Vector3() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 24 (_x.magnetic_field.x, _x.magnetic_field.y, _x.magnetic_field.z,) = _get_struct_3d().unpack(str[start:end]) start = end end += 72 self.magnetic_field_covariance = _get_struct_9d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_3d().pack(_x.magnetic_field.x, _x.magnetic_field.y, _x.magnetic_field.z)) buff.write(self.magnetic_field_covariance.tostring()) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.header is None: self.header = std_msgs.Header() if self.magnetic_field is None: self.magnetic_field = geometry_msgs.msg.Vector3() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8') else: self.header.frame_id = str[start:end] _x = self start = end end += 24 (_x.magnetic_field.x, _x.magnetic_field.y, _x.magnetic_field.z,) = _get_struct_3d().unpack(str[start:end]) start = end end += 72 self.magnetic_field_covariance = numpy.frombuffer(str[start:end], dtype=numpy.float64, count=9) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_9d = None def _get_struct_9d(): global _struct_9d if _struct_9d is None: _struct_9d = struct.Struct("<9d") return _struct_9d _struct_3d = None def _get_struct_3d(): global _struct_3d if _struct_3d is None: _struct_3d = struct.Struct("<3d") return _struct_3d
38.276151
145
0.648885
794e66062d08af1fd6a8ef151ddab59a3435da38
1,359
py
Python
functions/QBSM.py
Yuleii/yulei-thesis-QBSM-kw94
bb882bc6c809331c370a4d6442c36ad67ccad498
[ "MIT" ]
null
null
null
functions/QBSM.py
Yuleii/yulei-thesis-QBSM-kw94
bb882bc6c809331c370a4d6442c36ad67ccad498
[ "MIT" ]
null
null
null
functions/QBSM.py
Yuleii/yulei-thesis-QBSM-kw94
bb882bc6c809331c370a4d6442c36ad67ccad498
[ "MIT" ]
null
null
null
"""Functions that compute quantile-based sensitivity measures.""" import numpy as np def quantile_measures(quantile_y_x, quantile_y_x_mix): """Estimate the values of quantile based measures.""" m, n_params, len_alp = quantile_y_x_mix.shape[:3] # initialization q_1 = np.zeros((len_alp, n_params)) q_2 = np.zeros((len_alp, n_params)) delt = np.zeros((m, n_params, len_alp, 1)) for j in range(m): for i in range(n_params): for pp in range(len_alp): delt[j, i, pp] = quantile_y_x_mix[j, i, pp] - quantile_y_x[pp] q_1[pp, i] = np.mean(np.absolute(delt[:, i, pp])) q_2[pp, i] = np.mean(delt[:, i, pp] ** 2) return q_1, q_2 def normalized_quantile_measures(q_1, q_2): """Estimate the values of normalized quantile based measures.""" len_alp, n_params = q_1.shape # initialization sum_q_1 = np.zeros(len_alp) sum_q_2 = np.zeros(len_alp) norm_q_1 = np.zeros((len_alp, n_params)) norm_q_2 = np.zeros((len_alp, n_params)) # Equation 13 & 14 for pp in range(len_alp): sum_q_1[pp] = np.sum(q_1[pp, :]) sum_q_2[pp] = np.sum(q_2[pp, :]) for i in range(n_params): norm_q_1[pp, i] = q_1[pp, i] / sum_q_1[pp] norm_q_2[pp, i] = q_2[pp, i] / sum_q_2[pp] return norm_q_1, norm_q_2
31.604651
78
0.6078
794e67a16253ecf691a0d0784f21a801c2ec61cb
210
py
Python
1_estrutura_sequencial/06_area_circulo.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
1_estrutura_sequencial/06_area_circulo.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
1_estrutura_sequencial/06_area_circulo.py
cecilmalone/lista_de_exercicios_pybr
6d7c4aeddf8d1b1d839ad05ef5b5813a8fe611b5
[ "MIT" ]
null
null
null
""" 6. Faça um Programa que peça o raio de um círculo, calcule e mostre sua área. """ raio = int(input('Informe o raio do círculo: ')) area = 3.14 * (raio ** 2) print('A área do círculo é: {}'.format(area))
21
77
0.638095
794e689b7c0116cee4078be9f755ca5e2adcdfa4
1,809
py
Python
parse.py
logpacket/sun-rin_geupsic
333f149525f6100869f3123313c8635ef4cddb7e
[ "MIT" ]
null
null
null
parse.py
logpacket/sun-rin_geupsic
333f149525f6100869f3123313c8635ef4cddb7e
[ "MIT" ]
null
null
null
parse.py
logpacket/sun-rin_geupsic
333f149525f6100869f3123313c8635ef4cddb7e
[ "MIT" ]
null
null
null
#-*- coding: utf-8 -*- import sys import requests from bs4 import BeautifulSoup from datetime import datetime reload(sys) sys.setdefaultencoding('utf8') key = '"keyboard":{"type":"buttons", "buttons":["오늘의 급식", "내일의 급식"]}}' output_date = [] def create_form(menu): menu = menu.replace('\n', '') menu = menu.replace('\r', '') menu = menu.replace('\t', '') menu = menu.replace(' ', '') menu = menu.replace(',', '\\n') menu = menu.replace('(', '\\n') menu = menu.replace(')', '') message = '{"message":{"text":' + '\"'+ menu + '\"' + '}' + ',' + key return message def check_day(): date = soup.select('dl > dd > p.date') to_day = datetime.today() to_day = str(to_day) to_day = to_day[8:10] date_list = [] for day in date: output_date.append(day.text) date_list.append(day.text[8:10]) if to_day in date_list : return 1; else : today.write('{"message":{"text":' + '\"' + '오늘 급식이 없습니다!' + '\"' + '}' + ',' + key) to_day = int(to_day) to_day += 1 tomorrow_day = str(to_day) if tomorrow_day != date_list[0]: tomorrow.write('{"message":{"text":' + '\"' + '내일 급식이 없습니다!' + '\"' + '}' + ',' + key) sys.exit() else : tomorrow.write(create_form(output_date[0] +'\\n\\n'+ menu[0].text)) sys.exit() today = open("/home/packet/sun-rin_geupsic/today", "w") tomorrow = open("/home/packet/sun-rin_geupsic/tomorrow", "w") req = requests.get('http://www.sunrint.hs.kr/index.do') html = req.text soup = BeautifulSoup(html, 'html.parser') menu = soup.select(' dl > dd > p.menu') check_day() today.write(create_form(output_date[0] + '\\n\\nn' + menu[0].text)) tomorrow.write(create_form(output_date[1] + '\\n\\n' + menu[1].text))
32.890909
98
0.557767
794e69386fa7a400922c65085d72d1fd8fe0b2e6
1,325
py
Python
aiida/tools/data/array/trajectory.py
PercivalN/aiida-core
b215ed5a7ce9342bb7f671b67e95c1f474cc5940
[ "BSD-2-Clause" ]
1
2019-07-31T04:08:13.000Z
2019-07-31T04:08:13.000Z
aiida/tools/data/array/trajectory.py
PercivalN/aiida-core
b215ed5a7ce9342bb7f671b67e95c1f474cc5940
[ "BSD-2-Clause" ]
null
null
null
aiida/tools/data/array/trajectory.py
PercivalN/aiida-core
b215ed5a7ce9342bb7f671b67e95c1f474cc5940
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Tools to operate on `TrajectoryData` nodes.""" from __future__ import division from __future__ import print_function from __future__ import absolute_import from aiida.engine import calcfunction @calcfunction def _get_aiida_structure_inline(trajectory, parameters): """ Creates :py:class:`aiida.orm.nodes.data.structure.StructureData` using ASE. .. note:: requires ASE module. """ kwargs = {} if parameters is not None: kwargs = parameters.get_dict() if 'index' not in kwargs.keys() or kwargs['index'] is None: raise ValueError("Step index is not supplied for TrajectoryData") return {'structure': trajectory.get_step_structure(**kwargs)}
42.741935
79
0.556981
794e6a61a34f4dbaa3ee669bc7173eb7fe760c24
2,877
py
Python
src/binwalk/plugins/lzmamod.py
zhao07/binwalk
99d814a04b183d9f19d8425189a1c20ec8d64d5a
[ "MIT" ]
1
2015-05-04T21:08:20.000Z
2015-05-04T21:08:20.000Z
src/binwalk/plugins/lzmamod.py
zhao07/binwalk
99d814a04b183d9f19d8425189a1c20ec8d64d5a
[ "MIT" ]
null
null
null
src/binwalk/plugins/lzmamod.py
zhao07/binwalk
99d814a04b183d9f19d8425189a1c20ec8d64d5a
[ "MIT" ]
null
null
null
import os import shutil import binwalk.core.plugin from binwalk.core.compat import * from binwalk.core.common import BlockFile class LZMAModPlugin(binwalk.core.plugin.Plugin): ''' Finds and extracts modified LZMA files commonly found in cable modems. Based on Bernardo Rodrigues' work: http://w00tsec.blogspot.com/2013/11/unpacking-firmware-images-from-cable.html ''' MODULES = ['Signature'] FAKE_LZMA_SIZE = "\x00\x00\x00\x10\x00\x00\x00\x00" SIGNATURE = "lzma compressed data" def init(self): self.original_cmd = '' # Replace the existing LZMA extraction command with our own # Note that this assumes that there is *one* LZMA extraction command... rules = self.module.extractor.get_rules() for i in range(0, len(rules)): if rules[i]['regex'].match(self.SIGNATURE) and rules[i]['cmd']: self.original_cmd = rules[i]['cmd'] rules[i]['cmd'] = self.lzma_cable_extractor break def lzma_cable_extractor(self, fname): # Try extracting the LZMA file without modification first result = self.module.extractor.execute(self.original_cmd, fname) # If the external extractor was successul (True) or didn't exist (None), don't do anything. if result not in [True, None]: out_name = os.path.splitext(fname)[0] + '-patched' + os.path.splitext(fname)[1] fp_out = BlockFile(out_name, 'w') # Use self.module.config.open_file here to ensure that other config settings (such as byte-swapping) are honored fp_in = self.module.config.open_file(fname, offset=0, length=0) fp_in.set_block_size(peek=0) i = 0 while i < fp_in.length: (data, dlen) = fp_in.read_block() if i == 0: out_data = data[0:5] + self.FAKE_LZMA_SIZE + data[5:] else: out_data = data fp_out.write(out_data) i += dlen fp_in.close() fp_out.close() # Overwrite the original file so that it can be cleaned up if -r was specified shutil.move(out_name, fname) self.module.extractor.execute(self.original_cmd, fname) def scan(self, result): # The modified cable modem LZMA headers all have valid dictionary sizes and a properties byte of 0x5D. if result.description.lower().startswith(self.SIGNATURE) and "invalid uncompressed size" in result.description: if "properties: 0x5D" in result.description and "invalid dictionary size" not in result.description: result.valid = True result.description = result.description.split("invalid uncompressed size")[0] + "missing uncompressed size"
42.308824
124
0.619395
794e6b1fbe3208ce353ab0f3565e274bc96a6dc2
1,231
py
Python
about/models.py
D-GopalKrishna/RobotixWeb2021
3f99d41b2c4c99a3d1a214db1489f3e2fb1bfbb2
[ "Apache-2.0" ]
null
null
null
about/models.py
D-GopalKrishna/RobotixWeb2021
3f99d41b2c4c99a3d1a214db1489f3e2fb1bfbb2
[ "Apache-2.0" ]
7
2020-02-12T02:54:35.000Z
2022-03-12T00:06:26.000Z
about/models.py
D-GopalKrishna/RobotixWeb2021
3f99d41b2c4c99a3d1a214db1489f3e2fb1bfbb2
[ "Apache-2.0" ]
6
2020-02-10T16:37:38.000Z
2021-01-28T13:39:46.000Z
from django.db import models # Create your models here. class Convenor(models.Model): photo = models.ImageField(upload_to='img/convenors') name = models.CharField(max_length=50) branch = models.CharField(max_length=50) fb_id = models.URLField() mail_id = models.EmailField() phone = models.CharField(max_length=100) def __str__(self): return self.name class HeadCoordinator(models.Model): name = models.CharField(max_length=50) branch = models.CharField(max_length=50) fb_id = models.URLField() mail_id = models.EmailField() phone = models.CharField(max_length=100) def __str__(self): return self.name class Manager(models.Model): name = models.CharField(max_length=50) branch = models.CharField(max_length=50) fb_id = models.URLField() mail_id = models.EmailField() phone = models.CharField(max_length=100) def __str__(self): return self.name class Coordinator(models.Model): name = models.CharField(max_length=50) branch = models.CharField(max_length=50) fb_id = models.URLField() mail_id = models.EmailField() phone = models.CharField(max_length=100) def __str__(self): return self.name
27.355556
56
0.697807
794e6c8c1251d8c60e3913d0cce7bdd87337479b
1,148
py
Python
report.py
kaushalvivek/train-escort-app
d87e8c0d6ffcfbc34e7a6c745ad675fdb72eba29
[ "MIT" ]
1
2020-06-07T05:19:34.000Z
2020-06-07T05:19:34.000Z
report.py
kaushalvivek/train-escort-app
d87e8c0d6ffcfbc34e7a6c745ad675fdb72eba29
[ "MIT" ]
3
2020-05-28T09:35:15.000Z
2020-05-28T09:37:24.000Z
report.py
kaushalvivek/train-escort-app
d87e8c0d6ffcfbc34e7a6c745ad675fdb72eba29
[ "MIT" ]
null
null
null
import sqlite3 import dateparser from datetime import datetime, timedelta, date from mail import send_mail # path="/home/traincheck/mysite/" path="" conn = sqlite3.connect(path+'store.db') c = conn.cursor() now = datetime.now() hours = timedelta(hours=24) cutoff= now-hours c.execute("SELECT * from Escort where datetime_created > '%s'" % cutoff) unique = [] for i in c: train_no = i[2] origin_date = i[12] uni = str(train_no)+origin_date unique.append(uni) segments = len(unique) trains = len(set(unique)) conn.close() # mail section sender = { 'email': "vivekkaushalauto@gmail.com", 'password':"autoaccount", 'identity':"Train Escort Check", 'smtp':"smtp.gmail.com", } recipients = ['ascpsrb@gmail.com'] subject = 'Daily Report : '+str(now.date()) content = "Hello,<br/> Report generated on : "+str(now.date())+\ "<br/>Number of Segments Escorted : "+str(segments) +\ "<br/>Number of Trains Escorted : "+str(trains)+\ "<br/>Regards,<br/>Train Check Escort<br/>"+\ "<br/><a href='http://vivekkaushal.com'>vivekkaushal.com</a>" send_mail(sender, recipients, subject, content) print('mails sent on', now) print ('done')
24.425532
72
0.686411
794e6cfd62304f9de7f7b4624f168563d5fc8453
2,353
py
Python
tests/application/test_version.py
pallavigopi/esper-cli
83c3536088031fd6a9e5e6e7ae8f18e3e82eeb78
[ "Apache-2.0" ]
7
2019-05-17T06:56:37.000Z
2022-03-18T16:54:48.000Z
tests/application/test_version.py
pallavigopi/esper-cli
83c3536088031fd6a9e5e6e7ae8f18e3e82eeb78
[ "Apache-2.0" ]
5
2019-07-29T17:55:33.000Z
2022-01-19T02:01:45.000Z
tests/application/test_version.py
pallavigopi/esper-cli
83c3536088031fd6a9e5e6e7ae8f18e3e82eeb78
[ "Apache-2.0" ]
9
2019-08-22T06:15:39.000Z
2021-10-04T09:08:50.000Z
from unittest import TestCase from _pytest.monkeypatch import MonkeyPatch from esper.main import EsperTest from tests.utils import set_configure, teardown class VersionTest(TestCase): def setUp(self) -> None: self.monkeypatch = MonkeyPatch() set_configure(self.monkeypatch) argv = ['app', 'upload', 'tests/application/Tiny Notepad Simple Small_v1.0_apkpure.com.apk'] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered self.application_id = data[0]["DETAILS"] def tearDown(self) -> None: argv = ['app', 'delete', self.application_id] with EsperTest(argv=argv) as app: app.run() teardown() def test_list_version(self): argv = ['version', 'list', '--app', self.application_id] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered assert len(data) == 1 def test_list_version_with_active_application(self): argv = ['app', 'set-active', '--id', self.application_id] with EsperTest(argv=argv) as app: app.run() argv = ['version', 'list'] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered assert len(data) == 1 def test_show_version(self): argv = ['version', 'list', '--app', self.application_id,] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered version_id = data[0]["ID"] argv = ['version', 'show', '--app', self.application_id, version_id] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered assert data[0]["DETAILS"] == version_id def test_delete_version(self): argv = ['version', 'list', '--app', self.application_id,] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered version_id = data[0]["ID"] argv = ['version', 'delete', '--app', self.application_id, version_id] with EsperTest(argv=argv) as app: app.run() data, output = app.last_rendered assert data == f"Version with id {version_id} deleted successfully"
31.373333
100
0.58351
794e6d2c92c89bd9bf6da821d62481cf8544a92d
6,819
py
Python
Scalable-Machine-Learning-with-Apache-Spark/ML Electives/MLE 03 - Logistic Regression Lab.py
databricks-academy/scalable-machine-learning-with-apache-spark
2b560dea766e2e6589defaaf6d9d15f361ce6db6
[ "CC0-1.0" ]
null
null
null
Scalable-Machine-Learning-with-Apache-Spark/ML Electives/MLE 03 - Logistic Regression Lab.py
databricks-academy/scalable-machine-learning-with-apache-spark
2b560dea766e2e6589defaaf6d9d15f361ce6db6
[ "CC0-1.0" ]
null
null
null
Scalable-Machine-Learning-with-Apache-Spark/ML Electives/MLE 03 - Logistic Regression Lab.py
databricks-academy/scalable-machine-learning-with-apache-spark
2b560dea766e2e6589defaaf6d9d15f361ce6db6
[ "CC0-1.0" ]
8
2021-12-09T19:40:48.000Z
2022-03-24T19:19:42.000Z
# Databricks notebook source # MAGIC %md-sandbox # MAGIC # MAGIC <div style="text-align: center; line-height: 0; padding-top: 9px;"> # MAGIC <img src="https://databricks.com/wp-content/uploads/2018/03/db-academy-rgb-1200px.png" alt="Databricks Learning" style="width: 600px"> # MAGIC </div> # COMMAND ---------- # MAGIC %md # Classification: Logistic Regression # MAGIC # MAGIC Up until this point, we have only examined regression use cases. Now let's take a look at how to handle classification. # MAGIC # MAGIC For this lab, we will use the same Airbnb dataset, but instead of predicting price, we will predict if host is a <a href="https://www.airbnb.com/superhost" target="_blank">superhost</a> or not in San Francisco. # MAGIC # MAGIC ## ![Spark Logo Tiny](https://files.training.databricks.com/images/105/logo_spark_tiny.png) In this lesson you:<br> # MAGIC - Build a Logistic Regression model # MAGIC - Use various metrics to evaluate model performance # COMMAND ---------- # MAGIC %run "../Includes/Classroom-Setup" # COMMAND ---------- file_path = f"{datasets_dir}/airbnb/sf-listings/sf-listings-2019-03-06-clean.delta/" airbnb_df = spark.read.format("delta").load(file_path) # COMMAND ---------- # MAGIC %md ## Baseline Model # MAGIC # MAGIC Before we build any Machine Learning models, we want to build a baseline model to compare to. We are going to start by predicting if a host is a <a href="https://www.airbnb.com/superhost" target="_blank">superhost</a>. # MAGIC # MAGIC For our baseline model, we are going to predict no on is a superhost and evaluate our accuracy. We will examine other metrics later as we build more complex models. # MAGIC # MAGIC 0. Convert our **`host_is_superhost`** column (t/f) into 1/0 and call the resulting column **`label`**. DROP the **`host_is_superhost`** afterwards. # MAGIC 0. Add a column to the resulting DataFrame called **`prediction`** which contains the literal value **`0.0`**. We will make a constant prediction that no one is a superhost. # MAGIC # MAGIC After we finish these two steps, then we can evaluate the "model" accuracy. # MAGIC # MAGIC Some helpful functions: # MAGIC * <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.functions.when.html#pyspark.sql.functions.when" target="_blank">when()</a> # MAGIC * <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.withColumn.html?highlight=withcolumn#pyspark.sql.DataFrame.withColumn" target="_blank">withColumn()</a> # MAGIC * <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.functions.lit.html?highlight=lit#pyspark.sql.functions.lit" target="_blank">lit()</a> # COMMAND ---------- # TODO from <FILL_IN> label_df = airbnb_df.<FILL_IN> pred_df = label_df.<FILL_IN> # Add a prediction column # COMMAND ---------- # MAGIC %md ## Evaluate model # MAGIC # MAGIC For right now, let's use accuracy as our metric. This is available from <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html?highlight=multiclassclassificationevaluator#pyspark.ml.evaluation.MulticlassClassificationEvaluator" target="_blank">MulticlassClassificationEvaluator</a>. # COMMAND ---------- from pyspark.ml.evaluation import MulticlassClassificationEvaluator mc_evaluator = MulticlassClassificationEvaluator(metricName="accuracy") print(f"The accuracy is {100*mc_evaluator.evaluate(pred_df):.2f}%") # COMMAND ---------- # MAGIC %md ## Train-Test Split # MAGIC # MAGIC Alright! Now we have built a baseline model. The next step is to split our data into a train-test split. # COMMAND ---------- train_df, test_df = label_df.randomSplit([.8, .2], seed=42) print(train_df.cache().count()) # COMMAND ---------- # MAGIC %md ## Visualize # MAGIC # MAGIC Let's look at the relationship between **`review_scores_rating`** and **`label`** in our training dataset. # COMMAND ---------- display(train_df.select("review_scores_rating", "label")) # COMMAND ---------- # MAGIC %md ## Logistic Regression # MAGIC # MAGIC Now build a <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.classification.LogisticRegression.html?highlight=logisticregression#pyspark.ml.classification.LogisticRegression" target="_blank">logistic regression model</a> using all of the features (HINT: use RFormula). Put the pre-processing step and the Logistic Regression Model into a Pipeline. # COMMAND ---------- # TODO from pyspark.ml import Pipeline from pyspark.ml.feature import RFormula from pyspark.ml.classification import LogisticRegression r_formula = RFormula(<FILL_IN>) lr = <FILL_IN> pipeline = Pipeline(<FILL_IN>) pipeline_model = pipeline.fit(<FILL_IN>) pred_df = pipeline_model.transform(<FILL_IN>) # COMMAND ---------- # MAGIC %md ## Evaluate # MAGIC # MAGIC What is AUROC useful for? Try adding additional evaluation metrics, like Area Under PR Curve. # COMMAND ---------- # TODO from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator mc_evaluator = MulticlassClassificationEvaluator(metricName="accuracy") print(f"The accuracy is {100*mc_evaluator.evaluate(pred_df):.2f}%") bc_evaluator = BinaryClassificationEvaluator(metricName="areaUnderROC") print(f"The area under the ROC curve: {bc_evaluator.evaluate(pred_df):.2f}") # COMMAND ---------- # MAGIC %md ## Add Hyperparameter Tuning # MAGIC # MAGIC Try changing the hyperparameters of the logistic regression model using the cross-validator. By how much can you improve your metrics? # COMMAND ---------- # TODO from pyspark.ml.tuning import ParamGridBuilder from pyspark.ml.tuning import CrossValidator param_grid = <FILL_IN> evaluator = <FILL_IN> cv = <FILL_IN> pipeline = <FILL_IN> pipeline_model = <FILL_IN> pred_df = <FILL_IN> # COMMAND ---------- # MAGIC %md ## Evaluate again # COMMAND ---------- mc_evaluator = MulticlassClassificationEvaluator(metricName="accuracy") print(f"The accuracy is {100*mc_evaluator.evaluate(pred_df):.2f}%") bc_evaluator = BinaryClassificationEvaluator(metricName="areaUnderROC") print(f"The area under the ROC curve: {bc_evaluator.evaluate(pred_df):.2f}") # COMMAND ---------- # MAGIC %md ## Super Bonus # MAGIC # MAGIC Try using MLflow to track your experiments! # COMMAND ---------- # MAGIC %md-sandbox # MAGIC &copy; 2022 Databricks, Inc. All rights reserved.<br/> # MAGIC Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="https://www.apache.org/">Apache Software Foundation</a>.<br/> # MAGIC <br/> # MAGIC <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="https://help.databricks.com/">Support</a>
38.965714
388
0.733979
794e6db7ca37fa5d225540ae06865448db35ff2e
443
py
Python
game/migrations/0006_profile_num_antidotes.py
shintouki/augmented-pandemic
94725f0390c4bf86ff613f7a1efa477324bbbefe
[ "MIT" ]
null
null
null
game/migrations/0006_profile_num_antidotes.py
shintouki/augmented-pandemic
94725f0390c4bf86ff613f7a1efa477324bbbefe
[ "MIT" ]
12
2016-12-28T13:16:03.000Z
2016-12-28T13:16:03.000Z
game/migrations/0006_profile_num_antidotes.py
shintouki/augmented-pandemic
94725f0390c4bf86ff613f7a1efa477324bbbefe
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2016-12-07 21:31 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('game', '0005_safezone'), ] operations = [ migrations.AddField( model_name='profile', name='num_antidotes', field=models.IntegerField(default=0), ), ]
21.095238
49
0.609481
794e6f2bc13b79438204ca71e53c92258a2addc2
1,776
py
Python
pyscript/ml/bayes.py
airy-ict/learn_python
5a6c45c627208856bb04c2545fae8cba903519d3
[ "MIT" ]
1
2021-06-07T09:01:21.000Z
2021-06-07T09:01:21.000Z
pyscript/ml/bayes.py
airy-ict/learn_python
5a6c45c627208856bb04c2545fae8cba903519d3
[ "MIT" ]
null
null
null
pyscript/ml/bayes.py
airy-ict/learn_python
5a6c45c627208856bb04c2545fae8cba903519d3
[ "MIT" ]
null
null
null
import numpy as np import scipy as sp from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.datasets import load_files from sklearn.feature_extraction.text import * from sklearn.metrics import precision_recall_curve from sklearn.metrics import classification_report from sklearn import neighbors from sklearn.externals import joblib import os def main(): """ 朴素贝叶斯实现 """ # 加载数据 movies_reviews = load_files("data/tokens") sp.save('data/movie_data.npy', movies_reviews.data) sp.save('data/movie_target.npy', movies_reviews.target) movie_data = sp.load('data/movie_data.npy') movie_target = sp.load('data/movie_target.npy') x = movie_data y = movie_target x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2) count_vec = TfidfVectorizer( binary=False, decode_error='ignore', stop_words="english") # 训练数据 x_train = count_vec.fit_transform(x_train) x_test = count_vec.transform(x_test) # 分类器 clf = MultinomialNB().fit(x_train, y_train) # doc_pred = clf.predict(x_test) # print("平均值:", np.mean(doc_pred == y_test)) # 可用 clf.score 代替以上均值 score = clf.score(x_test, y_test) print("score:",score) # 准确率 召回率 precision, recall, thresholds = precision_recall_curve( y_test, clf.predict(x_test)) answer = clf.predict_proba(x_test)[:, 1] report = answer > 0.5 print(classification_report(y_test, report, target_names=['net', 'pos'])) # 特征名称 # print(count_vec.get_feature_names()) # 保存模型 curr_path = os.getcwd() model_path = curr_path + "\models\clf_bayes.model" joblib.dump(clf, model_path, compress=0) if __name__ == '__main__': main()
28.190476
77
0.70045
794e6f9eb965b2b2e8e31988e4a96a9067079d46
7,341
py
Python
mvg_distributions/covariance_representations/covariance_chol.py
Liang813/tf_mvg
01bc681a8b3aac5dcf0837d481b963f4968eb777
[ "MIT" ]
21
2019-04-04T07:46:54.000Z
2021-12-15T18:06:35.000Z
mvg_distributions/covariance_representations/covariance_chol.py
Liang813/tf_mvg
01bc681a8b3aac5dcf0837d481b963f4968eb777
[ "MIT" ]
8
2019-03-01T10:08:30.000Z
2021-10-04T13:00:11.000Z
mvg_distributions/covariance_representations/covariance_chol.py
Liang813/tf_mvg
01bc681a8b3aac5dcf0837d481b963f4968eb777
[ "MIT" ]
7
2019-12-18T23:41:44.000Z
2021-11-21T10:15:48.000Z
import tensorflow as tf from mvg_distributions.covariance_representations.covariance_matrix import Covariance, DecompMethod class _CovarianceCholeskyCommon(Covariance): def __init__(self, inversion_method=None, **kwargs): self._log_diag_chol_covariance = None self._log_diag_chol_precision = None if inversion_method is None: inversion_method = DecompMethod.CHOLESKY super(_CovarianceCholeskyCommon, self).__init__(inversion_method=inversion_method, **kwargs) @property def log_diag_chol_covariance(self): if self._log_diag_chol_covariance is None: self._log_diag_chol_covariance = self._build_log_diag_chol_covariance() return self._log_diag_chol_covariance @log_diag_chol_covariance.setter def log_diag_chol_covariance(self, value): self._log_diag_chol_covariance = value def _build_log_diag_chol_covariance(self): with tf.name_scope("DiagCholCovariance"): diag_c = tf.matrix_diag_part(self.chol_covariance, name="diag_chol_covariance") return tf.log(diag_c, name="log_diag_chol_covariance") @property def log_diag_chol_precision(self): if self._log_diag_chol_precision is None: self._log_diag_chol_precision = self._build_log_diag_chol_precision() return self._log_diag_chol_precision @log_diag_chol_precision.setter def log_diag_chol_precision(self, value): self._log_diag_chol_precision = value def _build_log_diag_chol_precision(self): with tf.name_scope("DiagCholPrecision"): diag_c = tf.matrix_diag_part(self.chol_precision, name="diag_chol_precision") return tf.log(diag_c, name="log_diag_chol_precision") def _build_log_det_covariance_with_chol(self): with tf.name_scope("DiagCholCovariance"): if self._build_with_covariance: return 2.0 * tf.reduce_sum(self.log_diag_chol_covariance, axis=1, name="log_det_covar") else: log_det = 2.0 * tf.reduce_sum(self.log_diag_chol_precision, axis=1) return tf.negative(log_det, name="log_det_covar") class CovarianceCholesky(_CovarianceCholeskyCommon): def __init__(self, chol_covariance, **kwargs): super(CovarianceCholesky, self).__init__(**kwargs) tf.assert_rank(chol_covariance, 3, message="Size must be [batch dim, feature dim, feature dim]") self._chol_covariance = chol_covariance self.dtype = self._chol_covariance.dtype if self._chol_covariance.shape.is_fully_defined(): self._matrix_shape = self._chol_covariance.shape else: self._matrix_shape = tf.shape(self._chol_covariance) def _build_covariance(self): with tf.name_scope("Covariance"): return tf.matmul(self.chol_covariance, self.chol_covariance, transpose_b=True, name="covariance") def _build_chol_covariance(self): return self._chol_covariance def _build_covariance_diag_part(self): with tf.name_scope("covariance_diag_part"): return tf.einsum('bij,bij->bi', self.chol_covariance, self.chol_covariance) def x_precision_x(self, x, mean_batch=False, no_gradients=False): """ :param x: input, should be [batch dim, num_samples, num features], or [batch dim, num features] :param mean_batch: if True do the mean over the batch :param no_gradients: if True, do not back-propagate gradients on the Cholesky :return: """ # , M = cholesky(covariance) # x (M M^T)^-1 x^T = x (M^T)^-1 * M^-1 x^T -> M^-1 x^T -> M y^T = x^T # Solve the M system for y^T and multiply by the solution by itself if x.shape.ndims == 2: x = tf.expand_dims(x, 2) else: x = tf.transpose(x, perm=[0, 2, 1]) # x should be [batch dim, num features, num_samples] x.shape[0:2].assert_is_compatible_with(self.chol_covariance.shape[0:2]) if no_gradients: chol_covariance = tf.stop_gradient(self.chol_covariance) else: chol_covariance = self.chol_covariance # Compute x * Cholesky x_chol_precision = tf.matrix_triangular_solve(chol_covariance, x) # Compute matmul((x * Cholesky),(x * Cholesky)) and sum over samples squared_error = tf.multiply(x_chol_precision, x_chol_precision) squared_error = tf.reduce_sum(squared_error, axis=1) # Error per sample if squared_error.shape[1].value == 1: squared_error = tf.squeeze(squared_error, axis=1, name="x_precision_x") # Remove sample dim if mean_batch: squared_error = tf.reduce_mean(squared_error, name="mean_x_precision_x") return squared_error class PrecisionCholesky(_CovarianceCholeskyCommon): def __init__(self, chol_precision, **kwargs): super(PrecisionCholesky, self).__init__(**kwargs) tf.assert_rank(chol_precision, 3, message="Size must be [batch dim, feature dim, feature dim]") self._chol_precision = chol_precision self._build_with_covariance = False self.dtype = self._chol_precision.dtype if self._chol_precision.shape.is_fully_defined(): self._matrix_shape = self._chol_precision.shape else: self._matrix_shape = tf.shape(self._chol_precision) def _build_covariance(self): return self._inverse_covariance_or_precision() def _build_precision(self): with tf.name_scope("Precision"): return tf.matmul(self.chol_precision, self.chol_precision, transpose_b=True, name="precision") def _build_chol_precision(self): return self._chol_precision def _build_precision_diag_part(self): with tf.name_scope("precision_diag_part"): return tf.einsum('bij,bij->bi', self._chol_precision, self._chol_precision) def x_precision_x(self, x, mean_batch=False, no_gradients=False): """ :param x: input, should be [batch dim, num_samples, num features], or [batch dim, num features] :param mean_batch: if True do the mean over the batch :param no_gradients: if True, do not back-propagate gradients on the Cholesky :return: """ # M = cholesky(covariance) # x M M^T x^T = (x M) (M x)^T = y y^T if x.shape.ndims == 2: x = tf.expand_dims(x, 1) # x should be [batch dim, num_samples, num features] x.shape[0:3:2].assert_is_compatible_with(self.chol_covariance.shape[0:3:2]) if no_gradients: chol_precision = tf.stop_gradient(self.chol_precision) else: chol_precision = self.chol_precision # Compute x * Cholesky x_chol_precision = tf.matmul(x, chol_precision) # Compute matmul((x * Cholesky),(x * Cholesky)) and sum over samples squared_error = tf.multiply(x_chol_precision, x_chol_precision) squared_error = tf.reduce_sum(squared_error, axis=2) # Error per sample if squared_error.shape[1].value == 1: squared_error = tf.squeeze(squared_error, axis=1, name="x_precision_x") # Remove sample dim if mean_batch: squared_error = tf.reduce_mean(squared_error, name="mean_x_precision_x") return squared_error
42.929825
109
0.680016
794e701bbd46b3cca35493e389c73a79e3cc5308
6,073
py
Python
YCgplearn/skutils/tests/test_utils.py
eggachecat/YCgplearn
098bda558f5bb986e9dab70e82394602aca6519c
[ "BSD-3-Clause" ]
null
null
null
YCgplearn/skutils/tests/test_utils.py
eggachecat/YCgplearn
098bda558f5bb986e9dab70e82394602aca6519c
[ "BSD-3-Clause" ]
null
null
null
YCgplearn/skutils/tests/test_utils.py
eggachecat/YCgplearn
098bda558f5bb986e9dab70e82394602aca6519c
[ "BSD-3-Clause" ]
null
null
null
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from YCgplearn.skutils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest) from YCgplearn.skutils import check_random_state from YCgplearn.skutils import deprecated from YCgplearn.skutils import resample from YCgplearn.skutils import safe_mask from YCgplearn.skutils import column_or_1d from YCgplearn.skutils import safe_indexing from YCgplearn.skutils import shuffle from sklearn.utils.extmath import pinvh from YCgplearn.skutils.mocking import MockDataFrame def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S)
32.132275
80
0.629178
794e715b3bbca356c804c167be044f11a065b5f2
4,636
py
Python
final_yr_proj/tf_utils1.py
kauku123/Undergraduate_Fin_Proj_2018
e635d03c05785ca898c7a6bc48261de81318be26
[ "Apache-2.0" ]
null
null
null
final_yr_proj/tf_utils1.py
kauku123/Undergraduate_Fin_Proj_2018
e635d03c05785ca898c7a6bc48261de81318be26
[ "Apache-2.0" ]
null
null
null
final_yr_proj/tf_utils1.py
kauku123/Undergraduate_Fin_Proj_2018
e635d03c05785ca898c7a6bc48261de81318be26
[ "Apache-2.0" ]
null
null
null
import h5py import numpy as np import tensorflow as tf import math def load_dataset(): train_dataset = h5py.File('datasets/train_signs.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels test_dataset = h5py.File('datasets/test_signs.h5', "r") test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels classes = np.array(test_dataset["list_classes"][:]) # the list of classes train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) mini_batch_size - size of the mini-batches, integer seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours. Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ m = X.shape[1] # number of training examples mini_batches = [] np.random.seed(seed) # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m)) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = int(math.floor(m/mini_batch_size)) # number of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size] mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m] mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def convert_to_one_hot(Y, C): Y = np.eye(C)[Y.reshape(-1)].T return Y def predict(X, parameters): W1 = tf.convert_to_tensor(parameters["W1"]) b1 = tf.convert_to_tensor(parameters["b1"]) W2 = tf.convert_to_tensor(parameters["W2"]) b2 = tf.convert_to_tensor(parameters["b2"]) W3 = tf.convert_to_tensor(parameters["W3"]) b3 = tf.convert_to_tensor(parameters["b3"]) params = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} x = tf.placeholder("float", [12288, 1]) z3 = forward_propagation_for_predict(x, params) p = tf.argmax(z3) sess = tf.Session() prediction = sess.run(p, feed_dict = {x: X}) return prediction def forward_propagation_for_predict(X, parameters): """ Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] # Numpy Equivalents: Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1 A1 = tf.nn.relu(Z1) # A1 = relu(Z1) Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2 A2 = tf.nn.relu(Z2) # A2 = relu(Z2) Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3 return Z3
38.31405
136
0.630716
794e717c501359fedebe6c1d19cdf62e0ee958b3
1,171
py
Python
modules/burpstate.py
bellma101/Osmedeus
3713c73edd75bda25423100e4de9c1ffd1cab116
[ "Apache-2.0" ]
null
null
null
modules/burpstate.py
bellma101/Osmedeus
3713c73edd75bda25423100e4de9c1ffd1cab116
[ "Apache-2.0" ]
null
null
null
modules/burpstate.py
bellma101/Osmedeus
3713c73edd75bda25423100e4de9c1ffd1cab116
[ "Apache-2.0" ]
null
null
null
import os from core import execute from core import utils class BurpState(object): """docstring for PortScan""" def __init__(self, options): utils.print_banner("Scanning through BurpState") utils.make_directory(options['env']['WORKSPACE'] + '/burpstate/') self.options = options self.initial() def initial(self): self.linkfinder() self.sqlmap() self.sleuthql() def linkfinder(self): utils.print_good('Starting linkfinder') cmd = '$PLUGINS_PATH/linkfinder.py -i $BURPSTATE -b -o cli | tee $WORKSPACE/burp-$TARGET-linkfinder.txt' cmd = utils.replace_argument(self.options, cmd) execute.run(cmd) utils.print_info("Execute: {0} ".format(cmd)) def sqlmap(self): utils.print_good('Starting sqlmap') cmd = '$PLUGINS_PATH/sqlmap/sqlmap.py -l $BURPSTATE --batch $MORE' cmd = utils.replace_argument(self.options, cmd) execute.run(cmd) utils.print_info("Execute: {0} ".format(cmd)) def sleuthql(self): utils.print_good('Starting sleuthql') cmd = 'python3 $PLUGINS_PATH/sleuthql/sleuthql.py -d $TARGET -f $BURPSTATE' cmd = utils.replace_argument(self.options, cmd) execute.run(cmd) utils.print_info("Execute: {0} ".format(cmd))
31.648649
106
0.722459
794e72461d022da8bbe68d41a3cf2e55a06154eb
1,944
py
Python
fahnder/document.py
klorenz/fahnder
98b4a131b9a298da6b44e291be1cceb028dbb074
[ "MIT" ]
null
null
null
fahnder/document.py
klorenz/fahnder
98b4a131b9a298da6b44e291be1cceb028dbb074
[ "MIT" ]
null
null
null
fahnder/document.py
klorenz/fahnder
98b4a131b9a298da6b44e291be1cceb028dbb074
[ "MIT" ]
null
null
null
from typing import Union, Any from datetime import datetime class Document(dict): def __init__(self, type: str, url: str, title: str = None, excerpt: str = None, published_at: Union[datetime, str] = None, thumbnail_url: str = None, mimetype: str = None, content: str = None, weight: float = 1.0, fields: dict = None, ): """A Search result representation Args: type (str): Type of the document. Can be one of 'page', 'news', 'video', 'image', 'audio' url (str): Url of the Document title (str, optional): Title of the document. Defaults to None. excerpt (str, optional): Excerpt to be displayed. Defaults to None. published_at (Union, optional): Date of last modification/publishing. Defaults to None. thumbnail_url (str, optional): Url to a thumbnail. Defaults to None. mimetype (str, optional): Mimetype. Defaults to None. weight (float, optional): Weight of this document in search results. Defaults to 1. content (str, optional): Content of the document. Defaults to None. This is usually not used in a search result, but if you return this document as an answer, this is expected. fields (dict, optional): extra fields """ assert type in ('page', 'image', 'video', 'news', 'audio', 'issue') self['type'] = type self['url'] = url self['title'] = title self['excerpt'] = excerpt self['fields'] = fields self['published_at'] = published_at self['thumbnail_url'] = thumbnail_url self['mimetype'] = mimetype self['content'] = content self['weight'] = weight
34.714286
79
0.543724
794e73180f4450765b53ebceb3c6ad63aa1fa0cb
50,148
py
Python
4. Sequences, Time Series and Prediction/Week 1/Exercise_1_Create_and_predict_synthetic_data_Question-FINAL.py
DhruvAwasthi/TensorFlowSpecialization
aeaa57eefd74f96f7389458662e050667eab7a54
[ "Apache-2.0" ]
2
2020-06-09T08:01:00.000Z
2020-10-22T16:53:08.000Z
4. Sequences, Time Series and Prediction/Week 1/Exercise_1_Create_and_predict_synthetic_data_Question-FINAL.py
DhruvAwasthi/TensorFlowSpecialization
aeaa57eefd74f96f7389458662e050667eab7a54
[ "Apache-2.0" ]
null
null
null
4. Sequences, Time Series and Prediction/Week 1/Exercise_1_Create_and_predict_synthetic_data_Question-FINAL.py
DhruvAwasthi/TensorFlowSpecialization
aeaa57eefd74f96f7389458662e050667eab7a54
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: # ATTENTION: Please do not alter any of the provided code in the exercise. Only add your own code where indicated # ATTENTION: Please do not add or remove any cells in the exercise. The grader will check specific cells based on the cell position. # ATTENTION: Please use the provided epoch values when training. import tensorflow as tf print(tf.__version__) # EXPECTED OUTPUT # 2.0.0-beta1 (or later) # In[2]: import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras def plot_series(time, series, format="-", start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(True) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.1, np.cos(season_time * 7 * np.pi), 1 / np.exp(5 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(4 * 365 + 1, dtype="float32") baseline = 10 series = trend(time, 0.1) baseline = 10 amplitude = 40 slope = 0.01 noise_level = 2 # Create the series series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) # Update with noise series += noise(time, noise_level, seed=42) plt.figure(figsize=(10, 6)) plot_series(time, series) plt.show() # EXPECTED OUTPUT # Chart as in the screencast. First should have 5 distinctive 'peaks' # Now that we have the time series, let's split it so we can start forecasting # In[8]: split_time = 1100 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] plt.figure(figsize=(10, 6)) plot_series(time_train, x_train) plt.show() plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plt.show() # EXPECTED OUTPUT # Chart WITH 4 PEAKS between 50 and 65 and 3 troughs between -12 and 0 # Chart with 2 Peaks, first at slightly above 60, last at a little more than that, should also have a single trough at about 0 # # Naive Forecast # In[9]: naive_forecast = series[split_time - 1: -1] # In[10]: plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, naive_forecast) # Expected output: Chart similar to above, but with forecast overlay # Let's zoom in on the start of the validation period: # In[11]: plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid, start=0, end=150) plot_series(time_valid, naive_forecast, start=1, end=151) # EXPECTED - Chart with X-Axis from 1100-1250 and Y Axes with series value and projections. Projections should be time stepped 1 unit 'after' series # Now let's compute the mean squared error and the mean absolute error between the forecasts and the predictions in the validation period: # In[12]: print(keras.metrics.mean_squared_error(x_valid, naive_forecast).numpy()) print(keras.metrics.mean_absolute_error(x_valid, naive_forecast).numpy()) # Expected Output # 19.578304 # 2.6011968 # That's our baseline, now let's try a moving average: # In[13]: def moving_average_forecast(series, window_size): """Forecasts the mean of the last few values. If window_size=1, then this is equivalent to naive forecast""" forecast = [] for time in range(len(series) - window_size): forecast.append(series[time:time + window_size].mean()) return np.array(forecast) # In[14]: moving_avg = moving_average_forecast(series, 30)[split_time - 30:] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, moving_avg) # EXPECTED OUTPUT # CHart with time series from 1100->1450+ on X # Time series plotted # Moving average plotted over it # In[15]: print(keras.metrics.mean_squared_error(x_valid, moving_avg).numpy()) print(keras.metrics.mean_absolute_error(x_valid, moving_avg).numpy()) # EXPECTED OUTPUT # 65.786224 # 4.3040023 # In[17]: diff_series = (series[365:]- series[:-365]) diff_time = time[365:] plt.figure(figsize=(10, 6)) plot_series(diff_time, diff_series) plt.show() # EXPECETED OUTPUT: CHart with diffs # Great, the trend and seasonality seem to be gone, so now we can use the moving average: # In[18]: diff_moving_avg = moving_average_forecast(diff_series, 50)[split_time - 365 - 50:] plt.figure(figsize=(10, 6)) plot_series(time_valid, diff_series[split_time - 365:]) plot_series(time_valid, diff_moving_avg) plt.show() # Expected output. Diff chart from 1100->1450 + # Overlaid with moving average # Now let's bring back the trend and seasonality by adding the past values from t – 365: # In[19]: diff_moving_avg_plus_past = series[split_time - 365:-365] + diff_moving_avg plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, diff_moving_avg_plus_past) plt.show() # Expected output: Chart from 1100->1450+ on X. Same chart as earlier for time series, but projection overlaid looks close in value to it # In[20]: print(keras.metrics.mean_squared_error(x_valid, diff_moving_avg_plus_past).numpy()) print(keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_past).numpy()) # EXPECTED OUTPUT # 8.498155 # 2.327179 # Better than naive forecast, good. However the forecasts look a bit too random, because we're just adding past values, which were noisy. Let's use a moving averaging on past values to remove some of the noise: # In[21]: diff_moving_avg_plus_smooth_past = moving_average_forecast(series[split_time - 370:-360], 10) + diff_moving_avg plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, diff_moving_avg_plus_smooth_past) plt.show() # EXPECTED OUTPUT: # Similar chart to above, but the overlaid projections are much smoother # In[23]: print(keras.metrics.mean_squared_error(x_valid, diff_moving_avg_plus_smooth_past).numpy()) print(keras.metrics.mean_absolute_error(x_valid, diff_moving_avg_plus_smooth_past).numpy()) # EXPECTED OUTPUT # 12.527958 # 2.2034433 # In[ ]: # Now click the 'Submit Assignment' button above. # Once that is complete, please run the following two cells to save your work and close the notebook # In[ ]: get_ipython().run_cell_magic('javascript', '', '<!-- Save the notebook -->\nIPython.notebook.save_checkpoint();') # In[ ]: get_ipython().run_cell_magic('javascript', '', 'IPython.notebook.session.delete();\nwindow.onbeforeunload = null\nsetTimeout(function() { window.close(); }, 1000);')
184.367647
43,275
0.937425
794e732617dd74f7767b97faaed5979567149da5
5,670
py
Python
practicer/gui/pyside/widgets/exercise_details.py
DominikPott/practicer
1e0f10d3cc9ec17ead067708e3334223fbeb72ea
[ "MIT" ]
1
2021-10-01T09:15:08.000Z
2021-10-01T09:15:08.000Z
practicer/gui/pyside/widgets/exercise_details.py
DominikPott/practicer
1e0f10d3cc9ec17ead067708e3334223fbeb72ea
[ "MIT" ]
3
2021-04-18T11:13:25.000Z
2021-04-19T16:36:47.000Z
practicer/gui/pyside/widgets/exercise_details.py
DominikPott/practicer
1e0f10d3cc9ec17ead067708e3334223fbeb72ea
[ "MIT" ]
null
null
null
from PySide2 import QtWidgets, QtCore, QtGui import practicer.gui.pyside.resources # pyside compiles resources. Holds the icons for qresources class ExerciseSpreadSheet(QtWidgets.QWidget): def __init__(self, exercise, stats, parent=None): super(ExerciseSpreadSheet, self).__init__(parent) self.exercise = exercise self._stats = stats self.thumbnail = QtWidgets.QLabel() self.thumbnail.setMinimumSize(640, 360) self.exercise_name = QtWidgets.QLabel() self.exercise_name.setAlignment(QtCore.Qt.AlignCenter) self.exercise_name.setFixedHeight(50) font = QtGui.QFont("Times", 12, QtGui.QFont.DemiBold) font.setCapitalization(QtGui.QFont.Capitalize) self.exercise_name.setFont(font) self.instructionsGroup = QtWidgets.QGroupBox("Instructions:") self.instruction = QtWidgets.QLabel() self.instruction.setMinimumHeight(100) self.instruction.setAlignment(QtCore.Qt.AlignLeading) self.instruction.setFont(QtGui.QFont("Times", 10)) self.instruction.setWordWrap(True) self.instructionsLayout = QtWidgets.QVBoxLayout() self.instructionsLayout.addWidget(self.instruction) self.instructionsGroup.setLayout(self.instructionsLayout) self.linksGroup = QtWidgets.QGroupBox("Tutorials:") self.links = QtWidgets.QLabel() self.links.setAlignment(QtCore.Qt.AlignLeading) self.links.setOpenExternalLinks(True) self.linksLayout = QtWidgets.QVBoxLayout() self.linksLayout.addWidget(self.links) self.linksGroup.setLayout(self.linksLayout) self.statsGroup = QtWidgets.QGroupBox("Level:") self.statsGroup.setFixedWidth(250) self.stats = StatsWidget(stats=self._stats) self.statsLayout = QtWidgets.QVBoxLayout() self.statsLayout.addWidget(self.stats) self.statsGroup.setLayout(self.statsLayout) self.additional = QtWidgets.QWidget() self.additional.setFixedHeight(160) self.additional_layout = QtWidgets.QHBoxLayout() self.additional_layout.addWidget(self.statsGroup) self.additional_layout.addWidget(self.linksGroup) self.additional_layout.setMargin(0) self.additional.setLayout(self.additional_layout) self.setLayout(QtWidgets.QVBoxLayout()) self.layout().addWidget(self.exercise_name) self.layout().addWidget(self.thumbnail) self.layout().addWidget(self.instructionsGroup) self.layout().addWidget(self.additional) self._refresh() def _refresh(self): self.exercise_name.setText(self.exercise.get("label", "No Label")) self._update_thumbnail() self.instruction.setText(self.exercise.get("instruction", "No Instructions")) self.links.setText(self._format_hyperlinks()) self.stats.refresh(self._stats) def _format_hyperlinks(self): links = self.exercise.get("hyperlinks", [""]) formated_links = [ "<a href='{link}' style='color: gray;'>{short_link}</a >".format(link=link, short_link=link[:30]) for link in links] return "<br>".join(formated_links) def _update_thumbnail(self): thumbnail_path = self.exercise.get("thumbnail", "") thumbnail = QtGui.QPixmap(thumbnail_path).scaled(640, 360, QtCore.Qt.AspectRatioMode.KeepAspectRatio, QtCore.Qt.TransformationMode.SmoothTransformation) self.thumbnail.setPixmap(thumbnail) self.thumbnail.setScaledContents(True) def refresh(self, exercise, stats): self.exercise = exercise self._stats = stats self._refresh() class StatsWidget(QtWidgets.QWidget): def __init__(self, stats, parent=None): super(StatsWidget, self).__init__(parent=parent) self._stats = stats self.level_progress = QtWidgets.QProgressBar() self.level = LevelWidget() self.setLayout(QtWidgets.QVBoxLayout()) self.layout().addWidget(self.level) self.layout().addWidget(self.level_progress) self.refresh(stats=self._stats) def refresh(self, stats): self._stats = stats self.level.refresh(self._stats.get("level", 0)) self.level_progress.setRange(0, self._stats.get("level_max_progress", 100)) self.level_progress.setValue(self._stats.get("progress", 0.0)) class LevelWidget(QtWidgets.QWidget): MAX_LEVELS = 5 # TODO: This is buisness logic move into api ENABLED = QtGui.QImage(":/icons/enabled.png") DISABLED = QtGui.QImage(":/icons/disabled.png") def __init__(self, level=0, parent=None): super(LevelWidget, self).__init__(parent=parent) self.level = level self.setLayout(QtWidgets.QHBoxLayout()) self.level_icons = [] def populate(self): self._clear() for index, _ in enumerate(range(self.MAX_LEVELS), 1): image = self.ENABLED if index <= self.level else self.DISABLED icon = self._build_icon(pixmap=QtGui.QPixmap.fromImage(image)) self.level_icons.append(icon) self.layout().addWidget(icon) def _build_icon(self, pixmap): container = QtWidgets.QLabel() container.setPixmap(pixmap) container.setFixedSize(32, 32) container.setScaledContents(True) return container def refresh(self, level): self.level = level self.populate() def _clear(self): for widget in self.level_icons: self.layout().removeWidget(widget) widget.clear() self.level_icons = []
39.103448
118
0.669841
794e7371166f7cb980dfa43dbd5c112311721162
1,712
py
Python
apps/readux/urls.py
ecds/readux
4eac8b48efef8126f4f2be28b5eb943c85a89c2e
[ "Apache-2.0" ]
18
2017-06-12T09:58:02.000Z
2021-10-01T11:14:34.000Z
apps/readux/urls.py
ecds/readux
4eac8b48efef8126f4f2be28b5eb943c85a89c2e
[ "Apache-2.0" ]
276
2019-04-26T20:13:01.000Z
2022-03-31T10:26:28.000Z
apps/readux/urls.py
ecds/readux
4eac8b48efef8126f4f2be28b5eb943c85a89c2e
[ "Apache-2.0" ]
7
2018-03-13T23:44:26.000Z
2021-09-15T17:54:55.000Z
"""URL patterns for the Readux app""" from django.urls import path from . import views, annotations from .search import SearchManifestCanvas urlpatterns = [ path('collection/', views.CollectionsList.as_view(), name='collections list'), path('volume/', views.VolumesList.as_view(), name='volumes list'), path('collection/<collection>/', views.CollectionDetail.as_view(), name="collection"), path('volume/<volume>', views.VolumeDetail.as_view(), name='volume'), path('volume/<volume>/page/all', views.PageDetail.as_view(), name='volumeall'), # url for page altered to prevent conflict with Wagtail # TODO: find another way to resolve this conflict path('volume/<volume>/page/<page>', views.PageDetail.as_view(), name='page'), path('volume/<volume>/export', views.ExportOptions.as_view(), name='export'), path( 'volume/<volume>/<filename>/export_download', views.ExportDownload.as_view(), name='export_download' ), path( 'volume/<filename>/export_download_zip', views.ExportDownloadZip.as_view(), name='export_download_zip' ), path('annotations/', annotations.Annotations.as_view(), name='post_user_annotations'), path( 'annotations/<username>/<volume>/list/<canvas>', annotations.Annotations.as_view(), name='user_annotations' ), path('annotations-crud/', annotations.AnnotationCrud.as_view(), name='crud_user_annotation'), path('search/', views.VolumeSearch.as_view(), name='search'), path('_anno_count/<volume>/<page>', views.AnnotationsCount.as_view(), name='_anno_count'), path('search/volume/pages', SearchManifestCanvas.as_view(), name='search_pages'), ]
46.27027
97
0.689836
794e769e2c86295b3a4eaea3770ec5a9df5aee46
7,387
py
Python
src/.history/Test2/HiwinRT605_Strategy_test_v2_20190628092449.py
SamKaiYang/2019_Hiwin_Shaking
d599f8c87dc4da89eae266990d12eb3a8b0f3e16
[ "MIT" ]
null
null
null
src/.history/Test2/HiwinRT605_Strategy_test_v2_20190628092449.py
SamKaiYang/2019_Hiwin_Shaking
d599f8c87dc4da89eae266990d12eb3a8b0f3e16
[ "MIT" ]
null
null
null
src/.history/Test2/HiwinRT605_Strategy_test_v2_20190628092449.py
SamKaiYang/2019_Hiwin_Shaking
d599f8c87dc4da89eae266990d12eb3a8b0f3e16
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # license removed for brevity #策略 機械手臂 四點來回跑 import threading import time import rospy import os import numpy as np from std_msgs.msg import String from ROS_Socket.srv import * from ROS_Socket.msg import * import math import enum #import Hiwin_RT605_ArmCommand_Socket as ArmTask import Hiwin_RT605_Arm_Command_v2 as ArmTask # 0628 from std_msgs.msg import Int32MultiArray ##----Arm state----------- Arm_state_flag = 0 Strategy_flag = 0 Sent_data_flag = True ##----Arm status enum class Arm_status(enum.IntEnum): Idle = 0 Isbusy = 1 Error = 2 shutdown = 6 #-----------server feedback arm state---------- # def Arm_state(req): # global CurrentMissionType,Strategy_flag,Arm_state_flag # Arm_state_flag = int('%s'%req.Arm_state) # if Arm_state_flag == Arm_status.Isbusy: #表示手臂忙碌 # Strategy_flag = False # return(1) # if Arm_state_flag == Arm_status.Idle: #表示手臂準備 # Strategy_flag = True # return(0) # if Arm_state_flag == Arm_status.shutdown: #表示程式中斷 # Strategy_flag = 6 # return(6) # ##-----------server feedback Sent_flag---------- # def Sent_flag(req): # global Sent_data_flag # Sent_data_flag = int('%s'%req.sent_flag) # return(1) def callback(state): global Arm_state_flag,Sent_data_flag # rospy.loginfo(rospy.get_caller_id() + "I heard %s", data.data) Arm_state_flag = state.data[0] Sent_data_flag = state.data[1] #print(state.data) def arm_state_listener(): #rospy.init_node(NAME) #s = rospy.Service('arm_state',arm_state, Arm_state) ##server arm state #a = rospy.Service('sent_flag',sent_flag,Sent_flag) #rospy.spin() ## spin one rospy.Subscriber("chatter", Int32MultiArray, callback) ##-----------switch define------------## class switch(object): def __init__(self, value): self.value = value self.fall = False def __iter__(self): """Return the match method once, then stop""" yield self.match raise StopIteration def match(self, *args): """Indicate whether or not to enter a case suite""" if self.fall or not args: return True elif self.value in args: # changed for v1.5, see below self.fall = True return True else: return False ##------------class------- class point(): def __init__(self,x,y,z,pitch,roll,yaw): self.x = x self.y = y self.z = z self.pitch = pitch self.roll = roll self.yaw = yaw pos = point(0,36.8,11.35,-90,0,0) ##-------------------------strategy--------------------- action = 0 def Mission_Trigger(): global action,Arm_state_flag,Sent_data_flag #print("Arm :",Arm_state_flag) #print("Sent:",Sent_data_flag) if Arm_state_flag == Arm_status.Idle and Sent_data_flag == 1: Sent_data_flag = 0 Arm_state_flag = Arm_status.Isbusy for case in switch(action): #傳送指令給socket選擇手臂動作 if case(0): pos.x = 10 pos.y = 36.8 pos.z = 11.35 pos.pitch = -90 pos.roll = 0 pos.yaw = 0 action = 1 print('x: ',pos.x,' y: ',pos.y,' z: ',pos.z,' pitch: ',pos.pitch,' roll: ',pos.roll,' yaw: ',pos.yaw) ArmTask.strategy_client_pos_move(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) ArmTask.strategy_client_Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both # ArmTask.point_data(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) # ArmTask.Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both break if case(1): pos.x = 10 pos.y = 42 pos.z = 11.35 pos.pitch = -90 pos.roll = 0 pos.yaw = 0 action = 2 print('x: ',pos.x,' y: ',pos.y,' z: ',pos.z,' pitch: ',pos.pitch,' roll: ',pos.roll,' yaw: ',pos.yaw) ArmTask.strategy_client_pos_move(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) ArmTask.strategy_client_Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both # ArmTask.point_data(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) # ArmTask.Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both break if case(2): pos.x = -10 pos.y = 42 pos.z = 11.35 pos.pitch = -90 pos.roll = 0 pos.yaw = 0 action = 3 print('x: ',pos.x,' y: ',pos.y,' z: ',pos.z,' pitch: ',pos.pitch,' roll: ',pos.roll,' yaw: ',pos.yaw) ArmTask.strategy_client_pos_move(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) ArmTask.strategy_client_Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both # ArmTask.point_data(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) # ArmTask.Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both break if case(3): pos.x = -10 pos.y = 36.8 pos.z = 11.35 pos.pitch = -90 pos.roll = 0 pos.yaw = 0 action = 4 print('x: ',pos.x,' y: ',pos.y,' z: ',pos.z,' pitch: ',pos.pitch,' roll: ',pos.roll,' yaw: ',pos.yaw) ArmTask.strategy_client_pos_move(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) ArmTask.strategy_client_Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both # ArmTask.point_data(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) # ArmTask.Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both break if case(4): pos.x = 0 pos.y = 36.8 pos.z = 11.35 pos.pitch = -90 pos.roll = 0 pos.yaw = 0 action = 0 print('x: ',pos.x,' y: ',pos.y,' z: ',pos.z,' pitch: ',pos.pitch,' roll: ',pos.roll,' yaw: ',pos.yaw) ArmTask.strategy_client_pos_move(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) ArmTask.strategy_client_Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both # ArmTask.point_data(pos.x,pos.y,pos.z,pos.pitch,pos.roll,pos.yaw) # ArmTask.Arm_Mode(2,1,0,10,2)#action,ra,grip,vel,both break if case(): # default, could also just omit condition or 'if True' rospy.on_shutdown(myhook) ArmTask.rospy.on_shutdown(myhook) #action: ptp line #ra : abs rel #grip 夾爪 #vel speed #both : Ctrl_Mode ##-------------strategy end ------------ def myhook(): print ("shutdown time!") if __name__ == '__main__': argv = rospy.myargv() rospy.init_node('strategy', anonymous=True) GetInfoFlag = True #Test no data arm_state_listener() start_input=int(input('開始策略請按1,離開請按3 : ')) #輸入開始指令 start_input = 1 if start_input==1: while 1: #time.sleep(0.3) #0627 最穩定 delay 0.3秒 # my_list=[] # for i in range(2500000): # my_list.append(i) Mission_Trigger() if start_input == 3: pass #timer.join() ArmTask.rospy.spin() rospy.spin()
36.389163
117
0.542981
794e76b2a2c5085d1808cb08b6a0576a2a223d54
7,054
py
Python
rxcs/ana/SNR.py
JacekPierzchlewski/RxCS
250f9ebfe9c12f49754f354e60cc511be76e4632
[ "BSD-2-Clause" ]
3
2015-02-10T17:57:33.000Z
2017-03-16T00:46:45.000Z
rxcs/ana/SNR.py
JacekPierzchlewski/RxCS
250f9ebfe9c12f49754f354e60cc511be76e4632
[ "BSD-2-Clause" ]
null
null
null
rxcs/ana/SNR.py
JacekPierzchlewski/RxCS
250f9ebfe9c12f49754f354e60cc511be76e4632
[ "BSD-2-Clause" ]
null
null
null
"""| This module contains SNR evaluation function of the reconstructed signals. |br| *Examples*: Please go to the *examples/analysis* directory for examples on how to use the SNR analysis modules. |br| *Settings*: Parameters of the SNR analysis are described below. Take a look on '__inputSignals' function for more info on the parameters. Parameters of the SNR analysis are attributes of the class which must/can be set before the analysis is run. Required parameters: - a. **mSig** (*2D Numpy array*): list with signals to be tested - b. **mSigRef** (*2D Numpy array*): list with reference signals Optional parameters: - c. **strComment** (*string*): an optional comment to the name of the SNR analysis module - d. **iSNRSuccess** (*float*): success threshold. SNR over this threshold is treated as a successful reconstruction [default = not given] - e. **bMute** (*int*): mute the console output from the sampler [default = 0] *Output*: Description of the SNR analysis output is below. This is the list of attributes of the class which are available after calling the 'run' method: - a. **iSNR** (*float*): the average SNR - b. **vSNR** (*float*): SNR for every signal - c. **iSR** (*float*): average success ratio - d. **vSuccessBits** (*float*): list with success flags for every signal *Author*: Jacek Pierzchlewski, Aalborg University, Denmark. <jap@es.aau.dk> *Version*: 0.1 | 20-MAY-2014 : * Initial version. |br| 0.2 | 21-MAY-2014 : * Success Ratio computation is added. |br| 0.3 | 21-MAY-2014 : * Docstrings added. |br| 0.4 | 21-MAY-2014 : * Configuration with a dictionary |br| 0.5 | 21-MAY-2014 : * Progress and results printing |br| 1.0 | 21-MAY-2014 : * Version 1.0 released. |br| 2,0 | 21-AUG-2015 : * Version 2,0 (objectified version) is released. |br| 2.0r1 | 25-AUG-2015 : * Improvements in headers |br| 2,1 | 09-SEP-2015 : * Optional comment to the name was added |br| *License*: BSD 2-Clause """ from __future__ import division import numpy as np import rxcs class SNR(rxcs._RxCSobject): def __init__(self, *args): rxcs._RxCSobject.__init__(self) # Make it a RxCS object self.strRxCSgroup = 'Analysis' # Name of group of RxCS modules self.strModuleName = 'SNR' # Module name self.__inputSignals() # Define the input signals self.__parametersDefine() # Define the parameters # Define parameters def __inputSignals(self): # Signal under test self.paramAddMan('mSig', 'Signal under test', noprint=1) self.paramType('mSig', np.ndarray) # Must be a Numpy array self.paramTypeEl('mSig', (int, float)) # Elements must be of float or int type self.paramNDimLE('mSig', 2) # Must be a 1, or 2 dimensional matrix # Reference signal self.paramAddMan('mSigRef', 'Reference signal', noprint=1) self.paramType('mSigRef', np.ndarray) # Must be a Numpy array self.paramTypeEl('mSigRef', (int, float)) # Elements must be of float or int type self.paramNDimLE('mSigRef', 2) # Must be a 1, or 2 dimensional matrix self.paramDimEq('mSigRef', 'mSig', 'rows', 'rows') # Must have shape equal to mSig self.paramDimEq('mSigRef', 'mSig', 'columns', 'columns') # ^ # Define parameters def __parametersDefine(self): # Success threshold self.paramAddOpt('iSNRSuccess', 'Success threshold') self.paramType('iSNRSuccess', (int, float)) # Must be a Numpy array self.paramH('iSNRSuccess', -np.inf) self.paramL('iSNRSuccess', np.inf) # Additional comment in printing self.paramAddOpt('strComment', 'Additional comment in printing', noprint=1, default='') self.paramType('strComment', (str)) # Must be a Numpy array # 'Mute the output' flag self.paramAddOpt('bMute', 'Mute the output', noprint=1, default=0) self.paramType('bMute', int) # Must be of int type self.paramAllowed('bMute',[0, 1]) # It can be either 1 or 0 # Run def run(self): self.parametersCheck() # Check if all the needed partameters are in place and are correct self.addComment2Name() # Add a comment to the name of the SNR analysis, if needed self.parametersPrint() # Print the values of parameters self.engineStartsInfo() # Info that the engine starts self.__engine() # Run the engine self.engineStopsInfo() # Info that the engine ends return self.__dict__ # Return dictionary with the parameters # Add a comment to the name of the module, if needed def addComment2Name(self): if not (self.strComment == ''): if not 'strModuleName_' in self.__dict__: self.strModuleName_ = self.strModuleName self.strModuleName = self.strModuleName_ + ' [' + self.strComment + ']' self.strComment = '' return # Engine - compute the noise and the success rate def __engine(self): # Make the 2D matrces with signals under test and observed signals self.mSig = self.makeArray2Dim(self.mSig) self.mSigRef = self.makeArray2Dim(self.mSigRef) # Get the number of signals and the size of signals (nSigs, iSizSig) = self.mSig.shape # Size of the noise # Compute the noise mNoise = np.abs(self.mSig - self.mSigRef) (_, iSizNoise) = mNoise.shape # Size of the noise # Compute the power of noise vNoiseP = (np.sum(mNoise**2, axis=1) / iSizSig) # Compute the power of reference signals vSigP = (np.sum(self.mSigRef**2, axis=1) / iSizSig) # Compute the SNR for every reconstructed signal and the average SNR self.vSNR = 10 * np.log10(vSigP / vNoiseP) self.iSNR = self.vSNR.mean() # Compute the success for every reconstructed signal and the success ratio self.iSR = np.nan if self.wasParamGiven('iSNRSuccess'): self.vSuccessBits = (self.vSNR >= self.iSNRSuccess) self.iSR = self.vSuccessBits.mean() # Print results if self.bMute == 0: self._printResults(self.iSNR, self.iSR, self.iSNRSuccess) return # Print the results of analysis def _printResults(self, iSNR, iSR, iSNRSuccess): rxcs.console.bullet_param('The average SNR of the reconstruction', self.iSNR, '-', 'dB') if self.wasParamGivenVal(self.iSR): rxcs.console.param('The Success Ratio', iSR, ' ', '') rxcs.console.param('(success threshold)', iSNRSuccess, '-', 'dB') return
37.924731
100
0.612418
794e76d9d20b394b433c41aa35e96783e3b85d90
2,022
py
Python
system/result_printer.py
hz512/Smart-Parking-Enforcement-System
e990903de545693ad6e2536bf167c69ab672d16a
[ "MIT" ]
null
null
null
system/result_printer.py
hz512/Smart-Parking-Enforcement-System
e990903de545693ad6e2536bf167c69ab672d16a
[ "MIT" ]
null
null
null
system/result_printer.py
hz512/Smart-Parking-Enforcement-System
e990903de545693ad6e2536bf167c69ab672d16a
[ "MIT" ]
null
null
null
import os class Printer: def __init__(self, features=None, width=None): if features is None: features = ['slot_id', 'status', 'duration', 'violation', 'msg'] width = [20, 10, 10, 10, 30] self.features = features self.width = width def print(self, records): info = [] for record in records: line = [record[column] for column in self.features] info.append(line) self._pprint(info) def _pprint(self, slot_status): os.system('cls||clear') self._print_msg_box('Parking monitoring in progress', title='Parking time analysis', indent=4, width=sum(self.width)) line_format = '\t' for i, w in enumerate(self.width): line_format += '| {{{}: <{}}} |'.format(i, w) header = line_format.format(*self.features) print('\t' + '-' * len(header)) print(header) print('\t' + '-' * len(header)) for line in slot_status: #print(line) string = line_format.format(*line) print(string) print('\t' + '-' * len(header)) @classmethod def _print_msg_box(cls, msg, indent=1, width=None, title=None, padding='\t'): """Print message-box with optional title.""" lines = msg.split('\n') space = " " * indent if not width: width = max(map(len, lines)) box = padding + f'╔{"═" * (width + indent * 2)}╗\n' # upper_border if title: box += padding + f'║{space}{title:<{width}}{space}║\n' # title box += padding + f'║{space}{"-" * width:<{width}}{space}║\n' # underscore box += ''.join([padding + f'║{space}{line:<{width}}{space}║\n' for line in lines]) box += padding + f'╚{"═" * (width + indent * 2)}╝' # lower_border print(box)
38.150943
91
0.487636
794e76e9d949cf08c76f8279791e67fee228fca9
3,749
py
Python
watertap3/watertap3/wt_units/basic_unit.py
kurbansitterley/WaterTAP3
8f4493182a39e3ba180019aba02249916dbae500
[ "BSD-3-Clause" ]
null
null
null
watertap3/watertap3/wt_units/basic_unit.py
kurbansitterley/WaterTAP3
8f4493182a39e3ba180019aba02249916dbae500
[ "BSD-3-Clause" ]
34
2021-06-25T17:54:12.000Z
2021-06-25T17:54:27.000Z
watertap3/watertap3/wt_units/basic_unit.py
kurbansitterley/WaterTAP3
8f4493182a39e3ba180019aba02249916dbae500
[ "BSD-3-Clause" ]
4
2021-06-25T18:32:31.000Z
2022-03-24T20:24:18.000Z
from pyomo.environ import Block, Expression, units as pyunits from watertap3.utils import cost_curves, financials from watertap3.wt_units.wt_unit import WT3UnitProcess ## REFERENCE: ADD REFERENCE HERE module_name = 'basic_unit' tpec_or_tic = 'TPEC' class UnitProcess(WT3UnitProcess): def fixed_cap(self): ''' :param flow_in: Flow in to basic unit [m3/hr] :type flow_in: float ''' time = self.flowsheet().config.time.first() sys_cost_params = self.parent_block().costing_param flow_in_m3yr = pyunits.convert(self.flow_in, to_units=(pyunits.m ** 3 / pyunits.year)) if self.unit_process_name == "tramp_oil_tank": disposal_cost = 0.000114 # Kiran's disposal cost assumption $/m3 self.costing.other_var_cost = flow_in_m3yr * disposal_cost * sys_cost_params.plant_cap_utilization if self.kind == 'flow': flow_basis = self.basis * (pyunits.m ** 3 / pyunits.hour) flow_factor = self.flow_in / flow_basis basic_cap = self.cap_basis * flow_factor ** self.cap_exp return basic_cap if self.kind == 'mass': constituents = self.config.property_package.component_list mass_basis = self.basis * (pyunits.kg / pyunits.hour) mass_in = 0 for constituent in constituents: mass_in += self.conc_mass_in[time, constituent] density = 0.6312 * mass_in + 997.86 total_mass_in = density * self.flow_in mass_factor = total_mass_in / mass_basis basic_cap = self.cap_basis * mass_factor ** self.cap_exp return basic_cap def elect(self): ''' Electricity intensity for basic units. :return: Electricity intensity [kWh/m3] ''' if self.unit_process_name in ['mbr_nitrification', 'mbr_denitrification'] and not self.case_specific: # Electricity consumption for MBRs from: # "Assessing Location and Scale of Urban Nonpotable Water Reuse Systems for Life-Cycle Energy Consumption and Greenhouse Gas Emissions" Kavvada et al (2016) # Equation located in SI return 9.5 * self.flow_in ** -0.3 else: return self.elect_intensity def get_costing(self, unit_params=None, year=None): ''' Initialize the unit in WaterTAP3. ''' time = self.flowsheet().config.time.first() self.flow_in = pyunits.convert(self.flow_vol_in[time], to_units=pyunits.m ** 3 / pyunits.hr) self.unit_process_name = unit_params['unit_process_name'] if 'case_specific' in unit_params.keys(): self.case_specific = unit_params['case_specific'] self.basis, self.cap_basis, self.cap_exp, self.elect_intensity, self.basis_year, self.kind = cost_curves.basic_unit(self.unit_process_name, case_specific=self.case_specific) else: self.case_specific = False self.basis, self.cap_basis, self.cap_exp, self.elect_intensity, self.basis_year, self.kind = cost_curves.basic_unit(self.unit_process_name) self.chem_dict = {} financials.create_costing_block(self, self.basis_year, tpec_or_tic) self.deltaP_outlet.unfix() self.deltaP_waste.unfix() self.pressure_out.fix(1) self.pressure_waste.fix(1) self.costing.fixed_cap_inv_unadjusted = Expression(expr=self.fixed_cap(), doc='Unadjusted fixed capital investment') self.electricity = Expression(expr=self.elect(), doc='Electricity intensity [kwh/m3]') financials.get_complete_costing(self.costing)
44.105882
185
0.644705
794e782971f595fde9db73666f0625c9f1366d91
1,767
py
Python
message/tests/test_message.py
ThePokerFaCcCe/messenger
2db3d5c2ccd05ac40d2442a13d664ca9ad3cb14c
[ "MIT" ]
null
null
null
message/tests/test_message.py
ThePokerFaCcCe/messenger
2db3d5c2ccd05ac40d2442a13d664ca9ad3cb14c
[ "MIT" ]
null
null
null
message/tests/test_message.py
ThePokerFaCcCe/messenger
2db3d5c2ccd05ac40d2442a13d664ca9ad3cb14c
[ "MIT" ]
null
null
null
from django.test.testcases import TestCase from user.tests.utils import create_active_user from conversation.tests.utils import create_private_chat from message.models import Message from message.queryset import get_chat_messages from .utils import create_deleted_msg, create_message from core.tests.utils import assert_items_are_same_as_data class MessageModelTest(TestCase): def setUp(self) -> None: self.user1 = create_active_user() self.user2 = create_active_user() self.pv = create_private_chat(self.user1, self.user2) def test_deleted_msgs_not_in_chat_queryset(self): msg1 = create_message(self.user1, self.pv) msg2 = create_message(self.user1, self.pv) msg3 = create_message(self.user2, self.pv) assert_items_are_same_as_data( items=[msg1.pk, msg2.pk, msg3.pk], data=get_chat_messages(self.pv.pk, self.user1.pk).values(), data_key='id' ) msg2.soft_delete() assert_items_are_same_as_data( items=[msg1.pk, msg3.pk], data=get_chat_messages(self.pv.pk, self.user1.pk).values(), data_key='id' ) assert_items_are_same_as_data( items=[msg1.pk, msg3.pk], data=get_chat_messages(self.pv.pk, self.user2.pk).values(), data_key='id' ) create_deleted_msg(msg3, self.user1) assert_items_are_same_as_data( items=[msg1.pk], data=get_chat_messages(self.pv.pk, self.user1.pk).values(), data_key='id' ) assert_items_are_same_as_data( items=[msg1.pk, msg3.pk], data=get_chat_messages(self.pv.pk, self.user2.pk).values(), data_key='id' )
32.127273
71
0.647425
794e785f410604ab58cbd85ab22417259c4857c8
13,883
py
Python
tests/open_alchemy/schemas/validation/test_unique_secondary.py
MihailMiller/OpenAlchemy
55b751c58ca50706ebc46262f50addb7dec34278
[ "Apache-2.0" ]
40
2019-11-05T06:50:35.000Z
2022-03-09T01:34:57.000Z
tests/open_alchemy/schemas/validation/test_unique_secondary.py
MihailMiller/OpenAlchemy
55b751c58ca50706ebc46262f50addb7dec34278
[ "Apache-2.0" ]
178
2019-11-03T04:10:38.000Z
2022-03-31T00:07:17.000Z
tests/open_alchemy/schemas/validation/test_unique_secondary.py
MihailMiller/OpenAlchemy
55b751c58ca50706ebc46262f50addb7dec34278
[ "Apache-2.0" ]
17
2019-11-04T07:22:46.000Z
2022-03-23T05:29:49.000Z
"""Tests for spec unique tablename.""" import pytest from open_alchemy.schemas import validation CHECK_TESTS = [ pytest.param({"Schema1": {}}, True, None, id="single schema not constructable"), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": {"prop_1": {"type": "integer"}}, } }, True, None, id="single schema single property not many-to-many", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, } }, } }, True, None, id="single schema single property many-to-many", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, } }, True, None, id="single schema multiple property many-to-many different secondary", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, } }, False, ("Schema1", "prop_2", "association_1", "Schema1", "prop_1"), id="single schema multiple property many-to-many same secondary", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, "prop_3": { "type": "array", "items": {"x-secondary": "association_3"}, }, }, } }, True, None, id="single schema many property many-to-many different secondary", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_3": { "type": "array", "items": {"x-secondary": "association_3"}, }, }, } }, False, ("Schema1", "prop_2", "association_1", "Schema1", "prop_1"), id="single schema many property many-to-many same secondary first", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, "prop_3": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, } }, False, ("Schema1", "prop_3", "association_1", "Schema1", "prop_1"), id="single schema many property many-to-many same secondary first and last", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, "prop_3": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, } }, False, ("Schema1", "prop_3", "association_2", "Schema1", "prop_2"), id="single schema many property many-to-many same secondary last", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_2": { "type": "array", "items": {"x-secondary": "association_1"}, }, "prop_3": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, } }, False, ("Schema1", "prop_2", "association_1", "Schema1", "prop_2"), id="single schema many property many-to-many same secondary all", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, }, }, True, None, id="multiple schema single property many-to-many different secondary", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, }, False, ("Schema2", "prop_2", "association_1", "Schema1", "prop_1"), id="multiple schema single property many-to-many same secondary", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, }, "Schema3": { "x-tablename": "schema_3", "properties": { "prop_3": { "type": "array", "items": {"x-secondary": "association_3"}, }, }, }, }, True, None, id="many schema single property many-to-many different secondary", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema3": { "x-tablename": "schema_3", "properties": { "prop_3": { "type": "array", "items": {"x-secondary": "association_3"}, }, }, }, }, False, ("Schema2", "prop_2", "association_1", "Schema1", "prop_1"), id="many schema single property many-to-many same secondary first", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, }, "Schema3": { "x-tablename": "schema_3", "properties": { "prop_3": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, }, False, ("Schema3", "prop_3", "association_1", "Schema1", "prop_1"), id="many schema single property many-to-many same secondary first last", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, }, "Schema3": { "x-tablename": "schema_3", "properties": { "prop_3": { "type": "array", "items": {"x-secondary": "association_2"}, }, }, }, }, False, ("Schema3", "prop_3", "association_2", "Schema2", "prop_2"), id="many schema single property many-to-many same secondary last", ), pytest.param( { "Schema1": { "x-tablename": "schema_1", "properties": { "prop_1": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema2": { "x-tablename": "schema_2", "properties": { "prop_2": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, "Schema3": { "x-tablename": "schema_3", "properties": { "prop_3": { "type": "array", "items": {"x-secondary": "association_1"}, }, }, }, }, False, ("Schema2", "prop_2", "association_1", "Schema1", "prop_1"), id="many schema single property many-to-many same secondary all", ), ] @pytest.mark.schemas @pytest.mark.validate @pytest.mark.parametrize("schemas, expected_valid, expected_reasons", CHECK_TESTS) def test_check(schemas, expected_valid, expected_reasons): """ GIVEN schemas and expected result WHEN check is called with the schemas THEN the expected result is returned. """ returned_result = validation.unique_secondary.check(schemas=schemas) assert returned_result.valid == expected_valid if expected_reasons is not None: for reason in expected_reasons: assert reason in returned_result.reason else: assert returned_result.reason is None
31.841743
84
0.345747
794e78f71628c92829ed4fc0d205151128a0b6d4
3,525
py
Python
examples/pipeline/feldman_verifiable_sum/pipeline-feldman-verifiable-sum.py
hubert-he/FATE
6758e150bd7ca7d6f788f9a7a8c8aea7e6500363
[ "Apache-2.0" ]
3,787
2019-08-30T04:55:10.000Z
2022-03-31T23:30:07.000Z
examples/pipeline/feldman_verifiable_sum/pipeline-feldman-verifiable-sum.py
hubert-he/FATE
6758e150bd7ca7d6f788f9a7a8c8aea7e6500363
[ "Apache-2.0" ]
1,439
2019-08-29T16:35:52.000Z
2022-03-31T11:55:31.000Z
examples/pipeline/feldman_verifiable_sum/pipeline-feldman-verifiable-sum.py
hubert-he/FATE
6758e150bd7ca7d6f788f9a7a8c8aea7e6500363
[ "Apache-2.0" ]
1,179
2019-08-29T16:18:32.000Z
2022-03-31T12:55:38.000Z
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse from pipeline.backend.pipeline import PipeLine from pipeline.component import Reader from pipeline.component import DataIO from pipeline.component import FeldmanVerifiableSum from pipeline.interface import Data from pipeline.utils.tools import load_job_config from pipeline.runtime.entity import JobParameters def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host backend = config.backend work_mode = config.work_mode guest_train_data = {"name": "breast_homo_test", "namespace": f"experiment{namespace}"} host_train_data = {"name": "breast_homo_test", "namespace": f"experiment{namespace}"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role="guest", party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance(role="host", party_id=hosts).component_param(table=host_train_data) dataio_0 = DataIO(name="dataio_0") # get and configure DataIO party instance of guest dataio_0.get_party_instance(role="guest", party_id=guest).component_param(with_label=False, output_format="dense") # get and configure DataIO party instance of host dataio_0.get_party_instance(role="host", party_id=hosts).component_param(with_label=False) # define FeldmanVerifiableSum components feldmanverifiablesum_0 = FeldmanVerifiableSum(name="feldmanverifiablesum_0") feldmanverifiablesum_0.get_party_instance(role="guest", party_id=guest).component_param(sum_cols=[1, 2, 3], q_n=6) feldmanverifiablesum_0.get_party_instance(role="host", party_id=hosts).component_param(sum_cols=[1, 2, 3], q_n=6) # add components to pipeline, in order of task execution. pipeline.add_component(reader_0) pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data)) pipeline.add_component(feldmanverifiablesum_0, data=Data(data=dataio_0.output.data)) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model job_parameters = JobParameters(backend=backend, work_mode=work_mode) pipeline.fit(job_parameters) if __name__ == "__main__": parser = argparse.ArgumentParser("PIPELINE DEMO") parser.add_argument("-config", type=str, help="config file") args = parser.parse_args() if args.config is not None: main(args.config) else: main()
38.315217
118
0.743262
794e790b6e53e67407a7833c7f4f83bab8625c1d
1,820
py
Python
src/quocslib/timeevolution/piecewise_integrator.py
marcorossignolo/QuOCS
5ed631e2aebc42b226f5992daf27e2da75a89af9
[ "Apache-2.0" ]
null
null
null
src/quocslib/timeevolution/piecewise_integrator.py
marcorossignolo/QuOCS
5ed631e2aebc42b226f5992daf27e2da75a89af9
[ "Apache-2.0" ]
null
null
null
src/quocslib/timeevolution/piecewise_integrator.py
marcorossignolo/QuOCS
5ed631e2aebc42b226f5992daf27e2da75a89af9
[ "Apache-2.0" ]
null
null
null
import numpy as np from scipy.linalg import expm # can we do conditional import? try: import jax.scipy as jsp except: raise ImportError def pw_evolution(U_store, drive, A, B, n_slices, dt): """Compute the piecewise evolution of a system defined by the Hamiltonian H = A + drive * B and store the result in U_store :param List[np.matrix] U_store: the storage for all of the computed propagators :param np.array drive: an array of dimension n_controls x n_slices that contains the amplitudes of the pulse :param np.matrix A: the drift Hamiltonian :param List[np.matrix] B: the control Hamiltonians :param int n_slices: number of slices :param float dt: the duration of each time slice :return None: Stores the new propagators so this doesn't return """ K = len(B) for i in range(n_slices): H = A for k in range(K): H = H + drive[k, i] * B[k] U_store[i] = expm(-1j * dt * H) return None def pw_final_evolution(drive, A, B, n_slices, dt, u0): """Compute the piecewise evolution of a system defined by the Hamiltonian H = A + drive * B and concatenate all the propagators :param List[np.matrix] U_store: the storage for all of the computed propagators :param np.array drive: an array of dimension n_controls x n_slices that contains the amplitudes of the pulse :param np.matrix A: the drift Hamiltonian :param List[np.matrix] B: the control Hamiltonians :param int n_slices: number of slices :param np.matrix u0: the initial density matrix to start from :return np.matrix: the final propagator """ K = len(B) U = u0 for i in range(n_slices): H = A for k in range(K): H = H + drive[k, i] * B[k] U = expm(-1j * dt * H) @ U return U
35
112
0.663736
794e79b4d19525cab0ee659c77d7a4383a1c962c
3,607
py
Python
A3C/options.py
Francesco-Sovrano/Generic-Hierarchical-Deep-Reinforcement-Learning-for-Sentiment-Analysis
f6845b682176b76c97cbfc4e0d2dc8576e9883cb
[ "MIT" ]
13
2018-11-04T16:51:41.000Z
2022-01-31T17:41:15.000Z
A3C/options.py
Francesco-Sovrano/Generic-Hierarchical-Deep-Reinforcement-Learning-for-Sentiment-Analysis
f6845b682176b76c97cbfc4e0d2dc8576e9883cb
[ "MIT" ]
null
null
null
A3C/options.py
Francesco-Sovrano/Generic-Hierarchical-Deep-Reinforcement-Learning-for-Sentiment-Analysis
f6845b682176b76c97cbfc4e0d2dc8576e9883cb
[ "MIT" ]
2
2018-12-12T08:45:30.000Z
2021-06-27T21:47:18.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def build(): # Common tf.app.flags.DEFINE_boolean("use_gpu", False, "whether to use the GPU") tf.app.flags.DEFINE_string("env_type", "sentipolc", "environment type") tf.app.flags.DEFINE_string("checkpoint_dir", "./checkpoint", "checkpoint directory") tf.app.flags.DEFINE_string("event_dir", "./events", "events directory") tf.app.flags.DEFINE_string("log_dir", "./log", "events directory") tf.app.flags.DEFINE_boolean("show_best_screenshots", True, "whether to save the best matches") tf.app.flags.DEFINE_boolean("show_all_screenshots", False, "whether to save all the matches") tf.app.flags.DEFINE_string("test_set_path", "./database/test_set_sentipolc16.csv", "test set") tf.app.flags.DEFINE_string("training_set_path", "./database/training_set_sentipolc16.csv", "training set") tf.app.flags.DEFINE_string("emoji_sentiment_lexicon", "./database/Emoji_Sentiment_Data_v1.0.csv", "emoji sentiment lexicon") tf.app.flags.DEFINE_string("preprocessed_dict", "./database/preprocessed", "vectorized training set") tf.app.flags.DEFINE_string("translated_lemma_tokens", "./database/translated_lemma_tokens", "cache of translated lemma tokens") # dictionary with translated lemma tokens tf.app.flags.DEFINE_string("lexeme_sentiment_dict", "./database/lexeme_sentiment_dict", "cache of lexeme_sentiment") # lexeme sentiment dictionary tf.app.flags.DEFINE_string("test_annotations", "./database/test_annotations", "cache of test_annotations") tf.app.flags.DEFINE_string("training_annotations", "./database/training_annotations", "cache of training_annotations") tf.app.flags.DEFINE_string("tagger_path", "./.env2/treetagger", "tagger path") tf.app.flags.DEFINE_string("nltk_data", './.env2/nltk_data', "nltk data") tf.app.flags.DEFINE_string("word2vec_path", './.env2/word2vec/cc.it.300.bin', "word2vec data") tf.app.flags.DEFINE_string("task", "subjective, opos, oneg, ironic, lpos, lneg", "choose a combination of: subjective, opos, oneg, ironic, lpos, lneg") tf.app.flags.DEFINE_string("granularity", "lemma", "lemma or token") tf.app.flags.DEFINE_integer("gram_size", 1, "number of tokens/lemma to process at each step") tf.app.flags.DEFINE_integer("match_count_for_evaluation", 200, "number of matches used for evaluation scores") tf.app.flags.DEFINE_integer("parallel_size", 8, "parallel thread size") tf.app.flags.DEFINE_integer("situation_count", 3, "number of partitions considered by the algorithm") # For training tf.app.flags.DEFINE_float("gamma", 0.99, "discount factor for rewards") # doesn't work: 0.75 tf.app.flags.DEFINE_integer("local_t_max", 5, "repeat step size") # doesn't work: 10 tf.app.flags.DEFINE_float("entropy_beta", 0.001, "entropy regularization constant") tf.app.flags.DEFINE_integer("max_time_step", 6*10**6, "max time steps") tf.app.flags.DEFINE_integer("save_interval_step", 10**4, "saving interval steps") tf.app.flags.DEFINE_float("rmsp_alpha", 0.99, "decay parameter for rmsprop") tf.app.flags.DEFINE_float("rmsp_epsilon", 0.1, "epsilon parameter for rmsprop") tf.app.flags.DEFINE_float("initial_alpha_low", 1e-4, "log_uniform low limit for learning rate") tf.app.flags.DEFINE_float("initial_alpha_high", 5e-3, "log_uniform high limit for learning rate") tf.app.flags.DEFINE_float("initial_alpha_log_rate", 0.5, "log_uniform interpolate rate for learning rate") tf.app.flags.DEFINE_float("grad_norm_clip", 40.0, "gradient norm clipping") def get(): return tf.app.flags.FLAGS
69.365385
170
0.768506
794e7b067fca7a338c7c3ad4d8f2ebb65c68785f
13,468
py
Python
submodules/dqd/ribs/emitters/opt/_cma_es.py
JiangZehua/control-pcgrl3D
f9b04e65e1cbf70b7306f4df251450d83c6fb2be
[ "MIT" ]
null
null
null
submodules/dqd/ribs/emitters/opt/_cma_es.py
JiangZehua/control-pcgrl3D
f9b04e65e1cbf70b7306f4df251450d83c6fb2be
[ "MIT" ]
null
null
null
submodules/dqd/ribs/emitters/opt/_cma_es.py
JiangZehua/control-pcgrl3D
f9b04e65e1cbf70b7306f4df251450d83c6fb2be
[ "MIT" ]
null
null
null
"""Implementation of CMA-ES that can be used across various emitters. Adapted from Nikolaus Hansen's pycma: https://github.com/CMA-ES/pycma/blob/master/cma/purecma.py """ import numba as nb import numpy as np class DecompMatrix: """Maintains a covariance matrix and its eigendecomposition. CMA-ES requires the inverse square root of the covariance matrix in order to sample new solutions from a multivariate normal distribution. However, calculating the inverse square root is an O(n^3) operation because an eigendecomposition is involved. (n is the dimensionality of the search space). To amortize the operation to O(n^2) and avoid recomputing, this class maintains the inverse square root and waits several evals before recomputing the inverse square root. Args: dimension (int): Size of the (square) covariance matrix. dtype (str or data-type): Data type of the matrix, typically np.float32 or np.float64. """ def __init__(self, dimension, dtype): self.cov = np.eye(dimension, dtype=dtype) self.eigenbasis = np.eye(dimension, dtype=dtype) self.eigenvalues = np.ones((dimension,), dtype=dtype) self.condition_number = 1 self.invsqrt = np.eye(dimension, dtype=dtype) # C^(-1/2) self.dtype = dtype # The last evaluation on which the eigensystem was updated. self.updated_eval = 0 def update_eigensystem(self, current_eval, lazy_gap_evals): """Updates the covariance matrix if lazy_gap_evals have passed. We have attempted to use numba in this method, but since np.linalg.eigh is the bottleneck, and it is already implemented in BLAS or LAPACK, numba does not help much (and actually slows things down a bit). Args: current_eval (int): The number of solutions the optimizer has evaluated so far. lazy_gap_evals (int): The number of evaluations to wait between covariance matrix updates. """ if current_eval <= self.updated_eval + lazy_gap_evals: return # Force symmetry. self.cov = np.maximum(self.cov, self.cov.T) # Note: eigh returns float64, so we must cast it. self.eigenvalues, self.eigenbasis = np.linalg.eigh(self.cov) self.eigenvalues = self.eigenvalues.real.astype(self.dtype) self.eigenbasis = self.eigenbasis.real.astype(self.dtype) self.condition_number = (np.max(self.eigenvalues) / np.min(self.eigenvalues)) self.invsqrt = (self.eigenbasis * (1 / np.sqrt(self.eigenvalues))) @ self.eigenbasis.T # Force symmetry. self.invsqrt = np.maximum(self.invsqrt, self.invsqrt.T) self.updated_eval = current_eval class CMAEvolutionStrategy: """CMA-ES optimizer for use with emitters. The basic usage is: - Initialize the optimizer and reset it. - Repeatedly: - Request new solutions with ask() - Rank the solutions in the emitter (better solutions come first) and pass them back with tell(). - Use check_stop() to see if the optimizer has reached a stopping condition, and if so, call reset(). Args: sigma0 (float): Initial step size. batch_size (int): Number of solutions to evaluate at a time. If None, we calculate a default batch size based on solution_dim. solution_dim (int): Size of the solution space. weight_rule (str): Method for generating weights. Either "truncation" (positive weights only) or "active" (include negative weights). seed (int): Seed for the random number generator. dtype (str or data-type): Data type of solutions. """ def __init__(self, sigma0, batch_size, solution_dim, weight_rule, seed, dtype): self.batch_size = (4 + int(3 * np.log(solution_dim)) if batch_size is None else batch_size) self.sigma0 = sigma0 self.solution_dim = solution_dim self.dtype = dtype if weight_rule not in ["truncation", "active"]: raise ValueError(f"Invalid weight_rule {weight_rule}") self.weight_rule = weight_rule # Calculate gap between covariance matrix updates. num_parents = self.batch_size // 2 *_, c1, cmu = self._calc_strat_params(self.solution_dim, num_parents, self.weight_rule) self.lazy_gap_evals = (0.5 * self.solution_dim * self.batch_size * (c1 + cmu)**-1 / self.solution_dim**2) # Strategy-specific params -> initialized in reset(). self.current_eval = None self.mean = None self.sigma = None self.pc = None self.ps = None self.cov = None self._rng = np.random.default_rng(seed) def reset(self, x0): """Resets the optimizer to start at x0. Args: x0 (np.ndarray): Initial mean. """ self.current_eval = 0 self.sigma = self.sigma0 self.mean = np.array(x0, self.dtype) # Setup evo path variables. self.pc = np.zeros(self.solution_dim, dtype=self.dtype) self.ps = np.zeros(self.solution_dim, dtype=self.dtype) # Setup the covariance matrix. self.cov = DecompMatrix(self.solution_dim, self.dtype) def check_stop(self, ranking_values): """Checks if the optimization should stop and be reset. Tolerances come from CMA-ES. Args: ranking_values (np.ndarray): Array of objective values of the solutions, sorted in the same order that the solutions were sorted when passed to tell(). Returns: True if any of the stopping conditions are satisfied. """ if self.cov.condition_number > 1e14: return True # Area of distribution too small. area = self.sigma * np.sqrt(max(self.cov.eigenvalues)) if area < 1e-11: return True # Fitness is too flat (only applies if there are at least 2 # parents). if (len(ranking_values) >= 2 and np.abs(ranking_values[0] - ranking_values[-1]) < 1e-12): return True return False @staticmethod @nb.jit(nopython=True) def _transform_and_check_sol(unscaled_params, transform_mat, mean, lower_bounds, upper_bounds): """Numba helper for transforming parameters to the solution space.""" solutions = ((transform_mat @ unscaled_params.T).T + np.expand_dims(mean, axis=0)) out_of_bounds = np.logical_or( solutions < np.expand_dims(lower_bounds, axis=0), solutions > np.expand_dims(upper_bounds, axis=0), ) return solutions, out_of_bounds def ask(self, lower_bounds, upper_bounds): """Samples new solutions from the Gaussian distribution. Args: lower_bounds (float or np.ndarray): scalar or (solution_dim,) array indicating lower bounds of the solution space. Scalars specify the same bound for the entire space, while arrays specify a bound for each dimension. Pass -np.inf in the array or scalar to indicated unbounded space. upper_bounds (float or np.ndarray): Same as above, but for upper bounds (and pass np.inf instead of -np.inf). """ self.cov.update_eigensystem(self.current_eval, self.lazy_gap_evals) solutions = np.empty((self.batch_size, self.solution_dim), dtype=self.dtype) transform_mat = self.cov.eigenbasis * np.sqrt(self.cov.eigenvalues) # Resampling method for bound constraints -> sample new solutions until # all solutions are within bounds. remaining_indices = np.arange(self.batch_size) while len(remaining_indices) > 0: unscaled_params = self._rng.normal( 0.0, self.sigma, (len(remaining_indices), self.solution_dim), ).astype(self.dtype) new_solutions, out_of_bounds = self._transform_and_check_sol( unscaled_params, transform_mat, self.mean, lower_bounds, upper_bounds) solutions[remaining_indices] = new_solutions # Find indices in remaining_indices that are still out of bounds # (out_of_bounds indicates whether each entry in each solution is # out of bounds). out_of_bounds_indices = np.where(np.any(out_of_bounds, axis=1))[0] remaining_indices = remaining_indices[out_of_bounds_indices] return np.asarray(solutions) @staticmethod @nb.jit(nopython=True) def _calc_strat_params(solution_dim, num_parents, weight_rule): """Calculates weights, mueff, and learning rates for CMA-ES.""" # Create fresh weights for the number of parents found. if weight_rule == "truncation": weights = (np.log(num_parents + 0.5) - np.log(np.arange(1, num_parents + 1))) total_weights = np.sum(weights) weights = weights / total_weights mueff = np.sum(weights)**2 / np.sum(weights**2) elif weight_rule == "active": weights = None # Dynamically update these strategy-specific parameters. cc = ((4 + mueff / solution_dim) / (solution_dim + 4 + 2 * mueff / solution_dim)) cs = (mueff + 2) / (solution_dim + mueff + 5) c1 = 2 / ((solution_dim + 1.3)**2 + mueff) cmu = min( 1 - c1, 2 * (mueff - 2 + 1 / mueff) / ((solution_dim + 2)**2 + mueff), ) return weights, mueff, cc, cs, c1, cmu @staticmethod @nb.jit(nopython=True) def _calc_mean(parents, weights): """Numba helper for calculating the new mean.""" return np.sum(parents * np.expand_dims(weights, axis=1), axis=0) @staticmethod @nb.jit(nopython=True) def _calc_weighted_ys(parents, old_mean, weights): """Calculates y's for use in rank-mu update.""" ys = parents - np.expand_dims(old_mean, axis=0) return ys * np.expand_dims(weights, axis=1), ys @staticmethod @nb.jit(nopython=True) def _calc_cov_update(cov, c1a, cmu, c1, pc, sigma, rank_mu_update): """Calculates covariance matrix update.""" rank_one_update = c1 * np.outer(pc, pc) return (cov * (1 - c1a - cmu) + rank_one_update * c1 + rank_mu_update * cmu / (sigma**2)) def tell(self, solutions, num_parents): """Passes the solutions back to the optimizer. Note that while we use numba to optimize certain parts of this function (in particular the covariance update), we are more cautious about other parts because the code that uses numba is significantly harder to read and maintain. Args: solutions (np.ndarray): Array of ranked solutions. The user should have determined some way to rank the solutions, such as by objective value. It is important that _all_ of the solutions initially given in ask() are returned here. num_parents (int): Number of best solutions to select. """ self.current_eval += len(solutions) if num_parents == 0: return parents = solutions[:num_parents] weights, mueff, cc, cs, c1, cmu = self._calc_strat_params( self.solution_dim, num_parents, self.weight_rule) damps = (1 + 2 * max( 0, np.sqrt((mueff - 1) / (self.solution_dim + 1)) - 1, ) + cs) # Recombination of the new mean. old_mean = self.mean self.mean = self._calc_mean(parents, weights) # Update the evo path. y = self.mean - old_mean z = np.matmul(self.cov.invsqrt, y) self.ps = ((1 - cs) * self.ps + (np.sqrt(cs * (2 - cs) * mueff) / self.sigma) * z) left = (np.sum(np.square(self.ps)) / self.solution_dim / (1 - (1 - cs)**(2 * self.current_eval / self.batch_size))) right = 2 + 4. / (self.solution_dim + 1) hsig = 1 if left < right else 0 self.pc = ((1 - cc) * self.pc + hsig * np.sqrt(cc * (2 - cc) * mueff) * y) # Adapt the covariance matrix. weighted_ys, ys = self._calc_weighted_ys(parents, old_mean, weights) # Equivalent to calculating the outer product of each ys[i] with itself # and taking a weighted sum of the outer products. Unfortunately, numba # does not support einsum. rank_mu_update = np.einsum("ki,kj", weighted_ys, ys) c1a = c1 * (1 - (1 - hsig**2) * cc * (2 - cc)) self.cov.cov = self._calc_cov_update(self.cov.cov, c1a, cmu, c1, self.pc, self.sigma, rank_mu_update) # Update sigma. cn, sum_square_ps = cs / damps, np.sum(np.square(self.ps)) self.sigma *= np.exp( min(1, cn * (sum_square_ps / self.solution_dim - 1) / 2))
40.812121
80
0.604396
794e7ceba492090ad1d58d9ed53edc74bb440771
644
py
Python
convertall.py
dholth/wgc
4e3bd877420fbacd66e961a32adaf1428e24bd42
[ "0BSD" ]
null
null
null
convertall.py
dholth/wgc
4e3bd877420fbacd66e961a32adaf1428e24bd42
[ "0BSD" ]
null
null
null
convertall.py
dholth/wgc
4e3bd877420fbacd66e961a32adaf1428e24bd42
[ "0BSD" ]
null
null
null
#!/bin/python import glob import wgc2 from pathlib import Path if False: """ real 0m51.348s user 0m40.623s sys 0m8.666s """ outdir = "converted" for i in glob.glob("wheels/*.whl"): infile = Path(i) outfile = Path(outdir).joinpath(infile.name) wgc2.recompress(i, outfile) else: """ real 1m24.037s user 1m21.935s sys 0m1.851s """ outdir = "rewritten" for i in glob.glob("wheels/*.whl"): infile = Path(i) outfile = Path(outdir).joinpath(infile.name) wgc2.rewrite(i, outfile) """ $ du -hs converted/ rewritten/ 448M converted/ 543M rewritten/ """
18.4
52
0.599379
794e8038b98f45f8c11052caf9cbe98d97e08bbe
949
py
Python
Logger.py
brilliant-ember/YouTube-Channel-Downloader
6f17a19066a0deeae7e16e91860d04285cdb2f5d
[ "Unlicense" ]
null
null
null
Logger.py
brilliant-ember/YouTube-Channel-Downloader
6f17a19066a0deeae7e16e91860d04285cdb2f5d
[ "Unlicense" ]
22
2021-11-02T10:27:06.000Z
2022-01-08T12:16:40.000Z
Logger.py
brilliant-ember/YouTube-Channel-Downloader
6f17a19066a0deeae7e16e91860d04285cdb2f5d
[ "Unlicense" ]
null
null
null
import logging from utils import get_now_date class Log: def __init__(self, log_file_path): logging.basicConfig(filename=log_file_path, format='%(levelname)s - %(message)s', level=logging.INFO) def log(self, msg:str, level="info", print_log=True) -> None: #TODO add more log levels like debug, warn , critical ...etc level = level.lower() msg = f'{get_now_date()} - {msg}' # print(msg, level) if level=="info": logging.info(msg) elif level == "error": logging.error(msg) elif level == "warn" or level == "warning": logging.warning(msg) elif level == 'critical': logging.critical(msg) elif level == 'debug': logging.debug(msg) else: print ("unknown level, will default to info") logging.warning("Passed error level is not good, will use info level to print next log entry") logging.info(msg) if print_log: print(msg) def exit(self): self.log("Exiting", print_log=True) logging.shutdown()
27.911765
103
0.682824
794e8088807412a9788164fd7106d6718880e3b4
217
py
Python
Sorting/test_distinct.py
matt-sm/codility
355eef4a1be67f5758faa884cb97a5c0ff65169e
[ "MIT" ]
null
null
null
Sorting/test_distinct.py
matt-sm/codility
355eef4a1be67f5758faa884cb97a5c0ff65169e
[ "MIT" ]
null
null
null
Sorting/test_distinct.py
matt-sm/codility
355eef4a1be67f5758faa884cb97a5c0ff65169e
[ "MIT" ]
null
null
null
import pytest import distinct testdata = [([2, 1, 1, 2, 3, 1], 3), ([9, 9, 9, 9, 9], 1)] @pytest.mark.parametrize("A,expected", testdata) def test_distinct(A, expected): assert distinct.solution(A) == expected
21.7
58
0.64977
794e814b317313bb02a3f3b40e966b9c7d038606
701
py
Python
src/part_2_automation/data_driven/runner.py
AndreiHustiuc/IT_Factory_Course
c6f3e4a9282a1c19c0f52c79f0c81f026814a02a
[ "MIT" ]
null
null
null
src/part_2_automation/data_driven/runner.py
AndreiHustiuc/IT_Factory_Course
c6f3e4a9282a1c19c0f52c79f0c81f026814a02a
[ "MIT" ]
null
null
null
src/part_2_automation/data_driven/runner.py
AndreiHustiuc/IT_Factory_Course
c6f3e4a9282a1c19c0f52c79f0c81f026814a02a
[ "MIT" ]
1
2022-03-16T10:39:03.000Z
2022-03-16T10:39:03.000Z
import os from fuzzywuzzy import fuzz from src.part_2_automation.data_driven.parser import get_input_data from src.part_2_automation.data_driven.parser_csv_file import get_input_data_csv def my_test_case(input_data, expected_data): similarity = fuzz.partial_ratio(input_data, expected_data) if similarity > 90: print("passed") elif 30 < similarity < 90: print('warning') else: print('not pass') return similarity # print(os.getcwd()) data = get_input_data(os.getcwd() + '/input_data/input_data.json') for key, value in data.items(): # print(key, value) status = my_test_case(data[key]['input'], data[key]['expected']) print(status)
21.242424
80
0.707561
794e81c002c7776a5673aa6ceac3b61ac83cf1b6
437
py
Python
frontend/views.py
hasadna/birdee
304a9e259d69e49535f4529288a01967c9c4c15a
[ "Apache-2.0" ]
1
2017-10-29T05:56:00.000Z
2017-10-29T05:56:00.000Z
frontend/views.py
hasadna/birdee
304a9e259d69e49535f4529288a01967c9c4c15a
[ "Apache-2.0" ]
null
null
null
frontend/views.py
hasadna/birdee
304a9e259d69e49535f4529288a01967c9c4c15a
[ "Apache-2.0" ]
null
null
null
from account.forms import AccountCreationForm from account.models import Account from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic import TemplateView, CreateView class MainView(LoginRequiredMixin, TemplateView): template_name = 'frontend/main.html' class AccountRegisterView(CreateView): model = Account form_class = AccountCreationForm template_name = 'registration/register.html'
29.133333
57
0.814645
794e8210f82e3d23df9543aa44d8b2195ab7e407
621
py
Python
homeassistant/components/nest/sensor.py
galihmelon/core
0c852b5f816c9b21f244b7acebfcc952ff29b937
[ "Apache-2.0" ]
null
null
null
homeassistant/components/nest/sensor.py
galihmelon/core
0c852b5f816c9b21f244b7acebfcc952ff29b937
[ "Apache-2.0" ]
47
2020-07-15T06:41:53.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/nest/sensor.py
tedsluis/home-assistant
cc776214772c51d0db808852306fa6762b9616e1
[ "Apache-2.0" ]
1
2018-08-03T20:06:38.000Z
2018-08-03T20:06:38.000Z
"""Support for Nest sensors that dispatches between API versions.""" from homeassistant.config_entries import ConfigEntry from homeassistant.helpers.typing import HomeAssistantType from .const import DATA_SDM from .sensor_legacy import async_setup_legacy_entry from .sensor_sdm import async_setup_sdm_entry async def async_setup_entry( hass: HomeAssistantType, entry: ConfigEntry, async_add_entities ) -> None: """Set up the sensors.""" if DATA_SDM not in entry.data: await async_setup_legacy_entry(hass, entry, async_add_entities) await async_setup_sdm_entry(hass, entry, async_add_entities)
34.5
71
0.800322
794e8220aef17a5a3d56ead8b62c7c81386c783d
5,587
py
Python
app/user/tests/test_user_api.py
dushdesh/django-recipe-api
6343720ec6270fa8dc927677a7af30431e4efbf8
[ "MIT" ]
null
null
null
app/user/tests/test_user_api.py
dushdesh/django-recipe-api
6343720ec6270fa8dc927677a7af30431e4efbf8
[ "MIT" ]
null
null
null
app/user/tests/test_user_api.py
dushdesh/django-recipe-api
6343720ec6270fa8dc927677a7af30431e4efbf8
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status CREATE_USER_URL = reverse('user:create') USER_TOKEN_URL = reverse('user:token') ME_URL = reverse('user:me') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUserApiTests(TestCase): """Test the users API (public)""" def setUp(self): self.client = APIClient() def test_create_valid_user_success(self): """Test creating a valid user is successful""" payload = { 'email': 'rinkidink@test.com', 'password': 'rinkidinkstinks', 'name': 'TestRink', } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) user = get_user_model().objects.get(**res.data) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', res.data) def test_create_user_exists_failure(self): """Creating user that already exists fails""" payload = { 'email': 'lorem@impsum.com', 'password': 'loremipsumdolor', 'name': 'Test' } create_user(**payload) res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """Test password must be more then 4 chars""" payload = { 'email': 'lorem@impsum.com', 'password': 'lore', 'name': 'Test' } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) user_exists = get_user_model().objects.filter( email=payload['email'] ).exists() self.assertFalse(user_exists) def test_create_user_token(self): """Test that a token is created for the user""" payload = { 'email': 'lorem@impsum.com', 'password': 'loremipsum' } create_user(**payload) res = self.client.post(USER_TOKEN_URL, payload) self.assertIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_200_OK) def test_create_token_invalid_creds(self): """Test token is not created with invalid creds""" create_user(email='lorem@impsum.com', password='loremipsum') payload = { 'email': 'lorem@impsum.com', 'password': 'wrongpassword' } res = self.client.post(USER_TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_with_user_not_created(self): """Token not created if user does not exists""" payload = { 'email': 'lorem@impsum.com', 'password': 'loremipsum' } res = self.client.post(USER_TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_field_password(self): """Test password is required to issue token""" res = self.client.post( USER_TOKEN_URL, { 'email': 'some', 'password': '' } ) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_field_email(self): """Test email is required to issue token""" res = self.client.post( USER_TOKEN_URL, { 'email': '', 'password': 'loremipsum', } ) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_user_unauth(self): """Test that authentication is required for users""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateUserAPITests(TestCase): """Test API requests that require authentication""" def setUp(self): self.user = create_user( email='gandalf@lotr.com', password='youshallnotpass', name='Gandalf the Grey' ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_retrieve_profile_success(self): """Test retrieving profile of logged in user""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual( res.data, { 'email': self.user.email, 'name': self.user.name, } ) def test_post_me_not_allowed(self): """Test POST is not allowed on ME url""" res = self.client.post(ME_URL, {}) self.assertEqual(res.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def test_update_user_profile(self): """Test updating the user profile""" payload = {'name': 'Gandalf the white', 'password': 'reborn'} res = self.client.patch(ME_URL, payload) self.user.refresh_from_db() self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password'])) self.assertEqual(res.status_code, status.HTTP_200_OK)
31.744318
77
0.615894
794e826dae8d94e015f0fb63e01a4edae4104764
10,186
py
Python
elasticapm/transport/http.py
snappyflow/sftrace-python-agent
dc186b55aef86e7ec7d8d755c72b16c292eac9b3
[ "BSD-3-Clause" ]
null
null
null
elasticapm/transport/http.py
snappyflow/sftrace-python-agent
dc186b55aef86e7ec7d8d755c72b16c292eac9b3
[ "BSD-3-Clause" ]
null
null
null
elasticapm/transport/http.py
snappyflow/sftrace-python-agent
dc186b55aef86e7ec7d8d755c72b16c292eac9b3
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # BSD 3-Clause License # # Copyright (c) 2019, Elasticsearch BV # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hashlib import json import re import ssl import urllib3 from urllib3.exceptions import MaxRetryError, TimeoutError from elasticapm.transport.exceptions import TransportException from elasticapm.transport.http_base import HTTPTransportBase from elasticapm.utils import compat, json_encoder, read_pem_file from elasticapm.utils.logging import get_logger try: import certifi except ImportError: certifi = None logger = get_logger("elasticapm.transport.http") class Transport(HTTPTransportBase): def __init__(self, url: str, *args, **kwargs) -> None: super(Transport, self).__init__(url, *args, **kwargs) pool_kwargs = {"cert_reqs": "CERT_REQUIRED", "ca_certs": self.ca_certs, "block": True} if url.startswith("https"): if self._server_cert: pool_kwargs.update( {"assert_fingerprint": self.cert_fingerprint, "assert_hostname": False, "cert_reqs": ssl.CERT_NONE} ) del pool_kwargs["ca_certs"] elif not self._verify_server_cert: pool_kwargs["cert_reqs"] = ssl.CERT_NONE pool_kwargs["assert_hostname"] = False self._pool_kwargs = pool_kwargs self._http = None self._url = url def send(self, data): response = None headers = self._headers.copy() if self._headers else {} headers.update(self.auth_headers) if compat.PY2 and isinstance(self._url, compat.text_type): url = self._url.encode("utf-8") else: url = self._url try: try: response = self.http.urlopen( "POST", url, body=data, headers=headers, timeout=self._timeout, preload_content=False ) logger.debug("Sent request, url=%s size=%.2fkb status=%s", url, len(data) / 1024.0, response.status) except Exception as e: print_trace = True if isinstance(e, MaxRetryError) and isinstance(e.reason, TimeoutError): message = "Connection to APM Server timed out " "(url: %s, timeout: %s seconds)" % ( self._url, self._timeout, ) print_trace = False else: message = "Unable to reach APM Server: %s (url: %s)" % (e, self._url) raise TransportException(message, data, print_trace=print_trace) body = response.read() if response.status >= 400: if response.status == 429: # rate-limited message = "Temporarily rate limited: " print_trace = False else: message = "HTTP %s: " % response.status print_trace = True message += body.decode("utf8", errors="replace")[:10000] raise TransportException(message, data, print_trace=print_trace) return response.getheader("Location") finally: if response: response.close() @property def http(self) -> urllib3.PoolManager: if not self._http: url_parts = compat.urlparse.urlparse(self._url) proxies = compat.getproxies_environment() proxy_url = proxies.get("https", proxies.get("http", None)) if proxy_url and not compat.proxy_bypass_environment(url_parts.netloc): self._http = urllib3.ProxyManager(proxy_url, **self._pool_kwargs) else: self._http = urllib3.PoolManager(**self._pool_kwargs) return self._http def handle_fork(self) -> None: # reset http pool to avoid sharing connections with the parent process self._http = None def get_config(self, current_version=None, keys=None): """ Gets configuration from a remote APM Server :param current_version: version of the current configuration :param keys: a JSON-serializable dict to identify this instance, e.g. { "service": { "name": "foo", "environment": "bar" } } :return: a three-tuple of new version, config dictionary and validity in seconds. Any element of the tuple can be None. """ url = self._config_url data = json_encoder.dumps(keys).encode("utf-8") headers = self._headers.copy() headers[b"Content-Type"] = "application/json" headers.pop(b"Content-Encoding", None) # remove gzip content-encoding header headers.update(self.auth_headers) max_age = 300 if current_version: headers["If-None-Match"] = current_version try: response = self.http.urlopen( "POST", url, body=data, headers=headers, timeout=self._timeout, preload_content=False ) except (urllib3.exceptions.RequestError, urllib3.exceptions.HTTPError) as e: logger.debug("HTTP error while fetching remote config: %s", compat.text_type(e)) return current_version, None, max_age body = response.read() if "Cache-Control" in response.headers: try: max_age = int(next(re.finditer(r"max-age=(\d+)", response.headers["Cache-Control"])).groups()[0]) except StopIteration: logger.debug("Could not parse Cache-Control header: %s", response.headers["Cache-Control"]) if response.status == 304: # config is unchanged, return logger.debug("Configuration unchanged") return current_version, None, max_age elif response.status >= 400: return None, None, max_age if not body: logger.debug("APM Server answered with empty body and status code %s", response.status) return current_version, None, max_age body = body.decode("utf-8") try: data = json_encoder.loads(body) return response.headers.get("Etag"), data, max_age except json.JSONDecodeError: logger.warning("Failed decoding APM Server response as JSON: %s", body) return current_version, None, max_age def _process_queue(self): # if not self.client.server_version: # self.fetch_server_info() super()._process_queue() def fetch_server_info(self): headers = self._headers.copy() if self._headers else {} headers.update(self.auth_headers) headers["accept"] = "text/plain" try: response = self.http.urlopen("GET", self._server_info_url, headers=headers, timeout=self._timeout) body = response.data data = json_encoder.loads(body.decode("utf8")) version = data["version"] logger.info("Fetched APM Server version %s", version) self.client.server_version = version_string_to_tuple(version) except (urllib3.exceptions.RequestError, urllib3.exceptions.HTTPError) as e: logger.warning("HTTP error while fetching server information: %s", str(e)) except json.JSONDecodeError as e: logger.warning("JSON decoding error while fetching server information: %s", str(e)) except (KeyError, TypeError): logger.warning("No version key found in server response: %s", response.data) @property def cert_fingerprint(self): if self._server_cert: with open(self._server_cert, "rb") as f: cert_data = read_pem_file(f) digest = hashlib.sha256() digest.update(cert_data) return digest.hexdigest() return None @property def auth_headers(self): headers = super(Transport, self).auth_headers return {k.encode("ascii"): v.encode("ascii") for k, v in compat.iteritems(headers)} @property def ca_certs(self): """ Return location of certificate store. If it is available and not disabled via setting, this will return the location of the certifi certificate store. """ return certifi.where() if (certifi and self.client.config.use_certifi) else None def version_string_to_tuple(version): if version: version_parts = re.split(r"[.\-]", version) return tuple(int(p) if p.isdigit() else p for p in version_parts) return () # left for backwards compatibility AsyncTransport = Transport
42.441667
119
0.628215
794e82c374da191c7df59fbd4fa68619964ac713
306
py
Python
Python/numOfAlpha.py
Mario263/Hacktoberfest_2021
57965f48d3b19d25d2c0b75525eab4c4dce0157a
[ "MIT" ]
16
2021-10-15T08:41:52.000Z
2022-01-02T11:14:30.000Z
Python/numOfAlpha.py
Mario263/Hacktoberfest_2021
57965f48d3b19d25d2c0b75525eab4c4dce0157a
[ "MIT" ]
5
2021-10-17T06:04:41.000Z
2021-10-30T16:45:40.000Z
Python/numOfAlpha.py
Mario263/Hacktoberfest_2021
57965f48d3b19d25d2c0b75525eab4c4dce0157a
[ "MIT" ]
43
2021-10-15T14:03:48.000Z
2022-03-09T21:32:46.000Z
text = input("Enter text: ") alpha,digit,space = 0,0,0 for x in text: if x.isdigit(): digit+=1 elif x.isspace(): space+=1 elif x.isalpha(): alpha+=1 print('Number of Alphabets =',alpha) print('Number of Digits =',digit) print('Number of Spaces =',space)
20.4
37
0.565359
794e83666d92896681bb16e0eaecef54d57c2277
1,719
py
Python
official/vision/configs/video_classification_test.py
mcasanova1445/models
37be0fdb4abccca633bb3199a4e6f3f71cd174d9
[ "Apache-2.0" ]
1
2022-03-04T02:08:52.000Z
2022-03-04T02:08:52.000Z
official/vision/configs/video_classification_test.py
mcasanova1445/models
37be0fdb4abccca633bb3199a4e6f3f71cd174d9
[ "Apache-2.0" ]
null
null
null
official/vision/configs/video_classification_test.py
mcasanova1445/models
37be0fdb4abccca633bb3199a4e6f3f71cd174d9
[ "Apache-2.0" ]
1
2022-03-21T13:47:02.000Z
2022-03-21T13:47:02.000Z
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for video_classification.""" # pylint: disable=unused-import from absl.testing import parameterized import tensorflow as tf from official import vision from official.core import config_definitions as cfg from official.core import exp_factory from official.vision.configs import video_classification as exp_cfg class VideoClassificationConfigTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters(('video_classification',), ('video_classification_kinetics600',)) def test_video_classification_configs(self, config_name): config = exp_factory.get_exp_config(config_name) self.assertIsInstance(config, cfg.ExperimentConfig) self.assertIsInstance(config.task, exp_cfg.VideoClassificationTask) self.assertIsInstance(config.task.model, exp_cfg.VideoClassificationModel) self.assertIsInstance(config.task.train_data, exp_cfg.DataConfig) config.validate() config.task.train_data.is_training = None with self.assertRaises(KeyError): config.validate() if __name__ == '__main__': tf.test.main()
37.369565
78
0.774869
794e8428eb5a6001068a83715f4ad6acc4994e3f
105,171
py
Python
pysnmp-with-texts/SNANET-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/SNANET-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/SNANET-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module SNANET-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SNANET-MIB # Produced by pysmi-0.3.4 at Wed May 1 15:08:02 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") iso, enterprises, Gauge32, TimeTicks, NotificationType, Bits, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, NotificationType, Counter32, IpAddress, ObjectIdentity, Integer32, Unsigned32, ModuleIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "enterprises", "Gauge32", "TimeTicks", "NotificationType", "Bits", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "NotificationType", "Counter32", "IpAddress", "ObjectIdentity", "Integer32", "Unsigned32", "ModuleIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") unisys = MibIdentifier((1, 3, 6, 1, 4, 1, 223)) dcp = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8)) snanet = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3)) prodInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 1)) t5node = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 2)) subarea = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 3)) snaNau = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 4)) snaSession = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 5)) snaLink = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 6)) prodInfoDesc = MibScalar((1, 3, 6, 1, 4, 1, 223, 8, 3, 1, 1), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: prodInfoDesc.setStatus('mandatory') if mibBuilder.loadTexts: prodInfoDesc.setDescription('A textual description of the software release. Includes the release level and the internal revision level (example: SNA/net Release 5R2 Revision 5.2.10 Installed 06/03/94 07:10 ).') prodInfoFeatures = MibScalar((1, 3, 6, 1, 4, 1, 223, 8, 3, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: prodInfoFeatures.setStatus('mandatory') if mibBuilder.loadTexts: prodInfoFeatures.setDescription('A value which indicates the features included in the software release. The value is a sum. This sum initially takes the value zero, then for each feature a value is assigned corresponding to a power of 2, such that a unique number is generated for each combination of features. Feature 1 Cross-Domain Resource Manager 2 Terminal Connect 4 PU T2.0 Inverted 8 Node Type 2.1 Low Entry Node (len) 16 Network Packet-Switching Interface (NPSI) 32 Remote Batch File Transfer Extended (RBFTE)') t5nodeTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1), ) if mibBuilder.loadTexts: t5nodeTable.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeTable.setDescription('This table contains information about the Type 5 node functionality (SSCP) provided by the SNA/net product. Multiple nodes can be provided by a single SNA/net product.') t5nodeEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1), ).setIndexNames((0, "SNANET-MIB", "t5nodeIndex")) if mibBuilder.loadTexts: t5nodeEntry.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeEntry.setDescription('Entry contains information about the Type 5 node functionality (SSCP).') t5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeIndex.setDescription('SNA/net can appear as more than one t5node. Used to index instances of this object. Value is assigned by the agent and remains constant.') t5nodeDomainName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeDomainName.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeDomainName.setDescription('The configured name for this domain. This is also the t5nodeSscpName, if t5nodeSscpName is a 0 length string.') t5nodeOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("other", 1), ("up", 2), ("down", 3), ("standby", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeOperState.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeOperState.setDescription('The operational state of the Type 5 Domain.') t5nodeSubareaNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeSubareaNumber.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeSubareaNumber.setDescription('The subarea number for this domain.') t5nodeSscpName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeSscpName.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeSscpName.setDescription('The name of the SSCP. Must be unique in the SNA subnetwork. It must match the name of the VTAM CDRM macro that defines this t5node as a CDRM to VTAM. May be a zero length string, in which case, the t5nodeDomainName is the name of the SSCP.') t5nodeNetworkName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeNetworkName.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeNetworkName.setDescription('The SNA network name.') t5nodeSscpId = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodeSscpId.setStatus('mandatory') if mibBuilder.loadTexts: t5nodeSscpId.setDescription('This value is used in ACTCDRM messages sent to VTAM.') t5nodePuName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 1, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5nodePuName.setStatus('mandatory') if mibBuilder.loadTexts: t5nodePuName.setDescription('The PU identifier of this node.') t5CdrmTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2), ) if mibBuilder.loadTexts: t5CdrmTable.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmTable.setDescription('This table contains information about other Crossdomain Resource Managers known to this type 5 node.') t5CdrmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1), ).setIndexNames((0, "SNANET-MIB", "t5CdrmT5nodeIndex"), (0, "SNANET-MIB", "t5CdrmName")) if mibBuilder.loadTexts: t5CdrmEntry.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmEntry.setDescription('The entry contains information about CDRMs. Variables have read-only access. The variable t5CdrmAdminState has read-write access and is used to control a CDRM.') t5CdrmT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this CDRM is associated with.') t5CdrmName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmName.setDescription('The configured name of the CDRM.') t5CdrmSnaName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmSnaName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmSnaName.setDescription('The name of the CDRM as it is known in the SNA network. May be a zero length string, in which case, the t5CdrmName is the SNA name.') t5CdrmType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("external", 1), ("snanet", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmType.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmType.setDescription('Identifies the type of CDRM.') t5CdrmAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("up", 2), ("down", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: t5CdrmAdminState.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmAdminState.setDescription('Used by the Management Station to control the CDRM. Values up (2) and down (3) can be read or written, while value other (1) is read-only and indicates that this variable has not been set since reboot.') t5CdrmOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("active", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmOperState.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmOperState.setDescription('The current operational state of the CDRM in relation to this Type 5 node SSCP.') t5CdrmSubareaNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmSubareaNumber.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmSubareaNumber.setDescription('The subarea number for the CDRM.') t5CdrmNetworkName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmNetworkName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmNetworkName.setDescription('The SNA network name for the CDRM.') t5CdrmElementAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 2, 1, 9), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 32767))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrmElementAddress.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrmElementAddress.setDescription('Element Address assigned to this CDRM. ') t5CdrscTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3), ) if mibBuilder.loadTexts: t5CdrscTable.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscTable.setDescription('This table contains information about other Crossdomain Resources known to this type 5 node.') t5CdrscEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1), ).setIndexNames((0, "SNANET-MIB", "t5CdrscT5nodeIndex"), (0, "SNANET-MIB", "t5CdrscName")) if mibBuilder.loadTexts: t5CdrscEntry.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscEntry.setDescription('The entry contains information about a CDRSC. Variables have read-only access. The variable t5CdrscAdminState has read-write access and is used to control a CDRSC.') t5CdrscT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this CDRSC is associated with.') t5CdrscName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscName.setDescription('The configured name of the CDRSC.') t5CdrscSnaName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscSnaName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscSnaName.setDescription('The name of the CDRSC as it is known in the SNA Network. The SnaName is the same a the t5CdrscName when this value is a zero length string.') t5CdrscCdrmName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscCdrmName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscCdrmName.setDescription('The name the CDRM which owns this CDRSC.') t5CdrscAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("up", 2), ("down", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: t5CdrscAdminState.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscAdminState.setDescription('Used by the Management Station to control the use of the CDRSC. Values up (2) and down (3) may be read or written, while the value other(1) read-only and indicates this variable has not been set since the last reboot.') t5CdrscOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("active", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscOperState.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscOperState.setDescription('The current operational state of the CDRSC in relation to this Type 5 node SSCP.') t5CdrscSessions = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscSessions.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscSessions.setDescription('The number of active SNA LU-LU sessions for this CDRSC.') t5CdrscDlmName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscDlmName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscDlmName.setDescription('The name of the Default Logon mode table used by this CDRSC.') t5CdrscCosName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 3, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CdrscCosName.setStatus('mandatory') if mibBuilder.loadTexts: t5CdrscCosName.setDescription('The name of the Class of Service table used by this CDRSC.') t5DlmTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4), ) if mibBuilder.loadTexts: t5DlmTable.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmTable.setDescription('This table contains information about Default Logon Mode Tables used by the SSCP for LU-LU session establishment.') t5DlmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1), ).setIndexNames((0, "SNANET-MIB", "t5DlmT5nodeIndex"), (0, "SNANET-MIB", "t5DlmName")) if mibBuilder.loadTexts: t5DlmEntry.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmEntry.setDescription('The entry contains a Default Logon Mode Table entry. All variables are read-only.') t5DlmT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this DLM is associated with.') t5DlmName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmName.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmName.setDescription('The configured name of the Default Logon Mode.') t5DlmSnaName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmSnaName.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmSnaName.setDescription('The name of the Default Logon Mode as it is known in the SNA network. May contain a zero length string, in which case, the t5DlmName is the SNA name.') t5DlmFmprof = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmFmprof.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmFmprof.setDescription('The Function Management Profile type, a value from 0 to 18 hexadecimal(byte 1 in the session parameter field).') t5DlmTsprof = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmTsprof.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmTsprof.setDescription('The Transmission Services profile type, a value from 1 to 17 hexadecimal(byte 2 in the session parameter field).') t5DlmPriprot = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmPriprot.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmPriprot.setDescription('The primary logical unit protocol, a value from 0 to 0FF hexadecimal(byte 3 in the session parameter field).') t5DlmSecprot = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmSecprot.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmSecprot.setDescription('The secondary logical unit protocol, a value from 0 to 0FF hexadecimal(byte 4 in the session parameter field).') t5DlmComprot = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 8), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmComprot.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmComprot.setDescription('The common logical unit protocol, a value from 0 to 0FFFF hexadecimal(byte 5 and 6 in the session parameter field).') t5DlmRusizes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmRusizes.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmRusizes.setDescription('The maximum length of data request units in bytes. A four digit hexadecimal value is provided in the same format as for the ACF/VTAM generation(bytes 9 and 10 in the session parameter field.') t5DlmPservic = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 10), OctetString().subtype(subtypeSpec=ValueSizeConstraint(12, 12)).setFixedLength(12)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmPservic.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmPservic.setDescription('The logical unit presentation services profile and usage field(bytes 13 through 24 in the session parameter field). A 24 digit hexadecimal number.') t5DlmPsndpac = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 11), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmPsndpac.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmPsndpac.setDescription('The primary send pacing count(byte 11 in the session parameter field), a value from 0 to 63 decimal.') t5DlmPrcvpac = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 12), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmPrcvpac.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmPrcvpac.setDescription('The primary receive pacing count(byte 12 in the session parameter field), a value from 0 to 63 decimal.') t5DlmSsndpac = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 13), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmSsndpac.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmSsndpac.setDescription('The secondary send pacing count(byte 7 in the session parameter field), a value from 0 to 63 decimal.') t5DlmSrcvpac = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 14), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmSrcvpac.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmSrcvpac.setDescription('The secondary receive pacing count(byte 8 in the session parameter field), a value from 0 to 63 decimal.') t5DlmEncr = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 15), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmEncr.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmEncr.setDescription('The encryption/decryption type expected by the logical unit(first four bits of byte 26 in the session parameter field), a value from 0 to F hexadecimal.') t5DlmBindType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 16), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 1))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmBindType.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmBindType.setDescription('The BIND type, a value of 0 or 1. 0 means a negotiable BIND 1 means a non-negotiable BIND.') t5DlmCos = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 4, 1, 17), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5DlmCos.setStatus('mandatory') if mibBuilder.loadTexts: t5DlmCos.setDescription('The name of the class of service to be used for a session that uses this logon mode.') t5CosTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 5), ) if mibBuilder.loadTexts: t5CosTable.setStatus('mandatory') if mibBuilder.loadTexts: t5CosTable.setDescription('This table contain class of service (COS) entries.') t5CosEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 5, 1), ).setIndexNames((0, "SNANET-MIB", "t5CosT5nodeIndex"), (0, "SNANET-MIB", "t5CosName")) if mibBuilder.loadTexts: t5CosEntry.setStatus('mandatory') if mibBuilder.loadTexts: t5CosEntry.setDescription('The entry contains a class of service entry. All variables are read-only.') t5CosT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 5, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CosT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t5CosT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this COS is associated with.') t5CosName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 5, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CosName.setStatus('mandatory') if mibBuilder.loadTexts: t5CosName.setDescription('The configured name of the class of service entry.') t5CosSnaName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 5, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CosSnaName.setStatus('mandatory') if mibBuilder.loadTexts: t5CosSnaName.setDescription('The name of the class of service entry as it is known in the SNA Network. May be a zero length string, in which case, the t5CosName is the SNA name.') t5CosVrids = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 5, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 48))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5CosVrids.setStatus('mandatory') if mibBuilder.loadTexts: t5CosVrids.setDescription('A list of virtual routes, in hierarchical order, that are used for LU-LU session traffic. The list is octet pairs in the form x,y where x is the virtual route number from 0 to 7, and y is the transmission priority from 0 to 3. Up to 24 ordered pairs are possible (vr1,tp1 vr2,tp2 ...vr24,tp24).') t5AliasTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 6), ) if mibBuilder.loadTexts: t5AliasTable.setStatus('mandatory') if mibBuilder.loadTexts: t5AliasTable.setDescription('This table is a crossreference for alias names to SNA/net resource names. The current use of this table is for alternate logon names for Crossdomain resources.') t5AliasEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 6, 1), ).setIndexNames((0, "SNANET-MIB", "t5AliasT5nodeIndex"), (0, "SNANET-MIB", "t5AliasName")) if mibBuilder.loadTexts: t5AliasEntry.setStatus('mandatory') if mibBuilder.loadTexts: t5AliasEntry.setDescription('The entry contains the alias name and a reference to the SNA (CDRSC) resource it refers to. All variables are read-only.') t5AliasT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 6, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5AliasT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t5AliasT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this Alias Name is associated with.') t5AliasName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 6, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t5AliasName.setStatus('mandatory') if mibBuilder.loadTexts: t5AliasName.setDescription('The configured alias name.') t5AliasResourceId = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 2, 6, 1, 3), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: t5AliasResourceId.setStatus('mandatory') if mibBuilder.loadTexts: t5AliasResourceId.setDescription('A reference to the SNA resource (CDRSC) identified by this Alias Name. It is the object identifier representing the instance of the index variable of the resource.') saErTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1), ) if mibBuilder.loadTexts: saErTable.setStatus('mandatory') if mibBuilder.loadTexts: saErTable.setDescription('This table contains information about explicit routes between this subarea and other network subareas.') saErEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1, 1), ).setIndexNames((0, "SNANET-MIB", "saErT5nodeIndex"), (0, "SNANET-MIB", "saErDestinationSubarea"), (0, "SNANET-MIB", "saErNumber")) if mibBuilder.loadTexts: saErEntry.setStatus('mandatory') if mibBuilder.loadTexts: saErEntry.setDescription('This entry contain information about an explicit route.') saErT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saErT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: saErT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this explicit route is associated with.') saErDestinationSubarea = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: saErDestinationSubarea.setStatus('mandatory') if mibBuilder.loadTexts: saErDestinationSubarea.setDescription('The destination subarea number for this Expicit Route.') saErNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: saErNumber.setStatus('mandatory') if mibBuilder.loadTexts: saErNumber.setDescription('The number of the Explicit Route.') saErTgNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saErTgNumber.setStatus('mandatory') if mibBuilder.loadTexts: saErTgNumber.setDescription('The Transmission Group number associated with this Explicit Route.') saErOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("other", 1), ("inoperative", 2), ("operative", 3), ("actPend", 4), ("innActPend", 5), ("innAct", 6), ("actNoSend", 7), ("active", 8)))).setMaxAccess("readonly") if mibBuilder.loadTexts: saErOperState.setStatus('mandatory') if mibBuilder.loadTexts: saErOperState.setDescription('The current operational state of the Explicit Route.') saVrTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2), ) if mibBuilder.loadTexts: saVrTable.setStatus('mandatory') if mibBuilder.loadTexts: saVrTable.setDescription('This table contains information about virtual routes between this subarea and other network subareas. Virtual routes are logical connections between subareas and are mapped to explicit routes.') saVrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1), ).setIndexNames((0, "SNANET-MIB", "saVrT5nodeIndex"), (0, "SNANET-MIB", "saVrErNumber"), (0, "SNANET-MIB", "saVrNumber"), (0, "SNANET-MIB", "saVrTransmissionPriority")) if mibBuilder.loadTexts: saVrEntry.setStatus('mandatory') if mibBuilder.loadTexts: saVrEntry.setDescription('This entry contains information about a virtual route. All variables are read-only.') saVrT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: saVrT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this virtual route is associated with.') saVrErNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrErNumber.setStatus('mandatory') if mibBuilder.loadTexts: saVrErNumber.setDescription('The expicit route to which this virtual route belongs.') saVrNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrNumber.setStatus('mandatory') if mibBuilder.loadTexts: saVrNumber.setDescription('The number of the Virtual Route.') saVrTransmissionPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrTransmissionPriority.setStatus('mandatory') if mibBuilder.loadTexts: saVrTransmissionPriority.setDescription('The transmission priority for this virtual route.') saVrWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrWindowSize.setStatus('mandatory') if mibBuilder.loadTexts: saVrWindowSize.setDescription('The initial window size for this virtual route.') saVrMinWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrMinWindowSize.setStatus('mandatory') if mibBuilder.loadTexts: saVrMinWindowSize.setDescription('The minimum window size for this virtual route.') saVrMaxWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrMaxWindowSize.setStatus('mandatory') if mibBuilder.loadTexts: saVrMaxWindowSize.setDescription('The maximum window size for this virtual route.') saVrPacingCount = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 2, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saVrPacingCount.setStatus('mandatory') if mibBuilder.loadTexts: saVrPacingCount.setDescription('The pacing count for this virtual route.') saTransmissionGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3)) saTgTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1), ) if mibBuilder.loadTexts: saTgTable.setStatus('mandatory') if mibBuilder.loadTexts: saTgTable.setDescription('This table contains information about transmission groups between this subarea and other network subareas. Entries are dynamically added to this table as they are learned from TG link activations.') saTgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1), ).setIndexNames((0, "SNANET-MIB", "saTgT5nodeIndex"), (0, "SNANET-MIB", "saTgNumber"), (0, "SNANET-MIB", "saTgAdjacentSubarea")) if mibBuilder.loadTexts: saTgEntry.setStatus('mandatory') if mibBuilder.loadTexts: saTgEntry.setDescription('This entry contains information about a transmission group.') saTgT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: saTgT5nodeIndex.setDescription('Index in the t5nodetable of the t5node this transmission group is associated with.') saTgNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgNumber.setStatus('mandatory') if mibBuilder.loadTexts: saTgNumber.setDescription('The number of this transmission group.') saTgAdjacentSubarea = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgAdjacentSubarea.setStatus('mandatory') if mibBuilder.loadTexts: saTgAdjacentSubarea.setDescription('The adjacent subarea number with which this transmission group is associated.') saTgOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("inactive", 1), ("active", 2), ("pendActive", 3), ("pendInactive", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgOperState.setStatus('mandatory') if mibBuilder.loadTexts: saTgOperState.setDescription('The current operational state of this transmission group.') saTgMaxSendPiuSize = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65565))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgMaxSendPiuSize.setStatus('mandatory') if mibBuilder.loadTexts: saTgMaxSendPiuSize.setDescription('The maximum Path Information Unit size in bytes that may be sent on this Tranmission Group.') saTgMaxReceivePiuSize = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgMaxReceivePiuSize.setStatus('mandatory') if mibBuilder.loadTexts: saTgMaxReceivePiuSize.setDescription('The maximum Path Information Unit size in bytes that may be received on this Tranmission Group.') saTgActiveTime = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 7), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgActiveTime.setStatus('mandatory') if mibBuilder.loadTexts: saTgActiveTime.setDescription('The value of sysUpTime when this transmission group became active.') saTgLastStateChange = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 8), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLastStateChange.setStatus('mandatory') if mibBuilder.loadTexts: saTgLastStateChange.setDescription('The value of sysUpTime when the last state change occurred.') saTgSentBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgSentBytes.setStatus('mandatory') if mibBuilder.loadTexts: saTgSentBytes.setDescription('The number of bytes sent on this transmission group.') saTgReceivedBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgReceivedBytes.setStatus('mandatory') if mibBuilder.loadTexts: saTgReceivedBytes.setDescription('The number of bytes received on transmission group.') saTgSentBtus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgSentBtus.setStatus('mandatory') if mibBuilder.loadTexts: saTgSentBtus.setDescription('The number of Basic Transmission Units sent on this transmission group.') saTgReceivedBtus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 1, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgReceivedBtus.setStatus('mandatory') if mibBuilder.loadTexts: saTgReceivedBtus.setDescription('The number of Basic Transmission Units received on this transmission group.') saTgLinkTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2), ) if mibBuilder.loadTexts: saTgLinkTable.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkTable.setDescription('This table contains an entry for each link which may be used for a transmission group. The links are not associated with a transmission group until saTgLinkOperState is active (2).') saTgLinkEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1), ).setIndexNames((0, "SNANET-MIB", "saTgLinkT5nodeIndex"), (0, "SNANET-MIB", "saTgLinkIndex")) if mibBuilder.loadTexts: saTgLinkEntry.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkEntry.setDescription('Contains configuration and state information about TG links. Variables have read-only access. The variable saTgLinkAdminState has read-write access and is used to control a TG link.') saTgLinkT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkT5nodeIndex.setDescription('Identifies the Type 5 node with which this transmission group link is associated.') saTgLinkIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkIndex.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkIndex.setDescription('Unique index of this transmisson group link. The value is assigned by the agent and is unique among TG and PU links.') saTgLinkTgNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkTgNumber.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkTgNumber.setDescription('The transmission group number to which this link is associated. Contains a value of zero (0) when saTgLinkOperState is inactive(1).') saTgLinkAdjacentSubarea = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkAdjacentSubarea.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkAdjacentSubarea.setDescription('The adjacent subarea number with which this transmission group is associated. Contains a value of zero when saTgLinkOperState in inactive(1).') saTgLinkName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkName.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkName.setDescription('The administratively assigned name of the transmission group link.') saTgLinkOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("inactive", 1), ("active", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkOperState.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkOperState.setDescription('The current operational state of this transmission group link.') saTgLinkAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("up", 2), ("down", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: saTgLinkAdminState.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkAdminState.setDescription('Used by the Management Station to control the transmission group Link. Values up (2) and down (3) can be read or written, while value other (1) is read-only and indicates that this variable has not been set since reboot.') saTgLinkType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("internal", 1), ("link8022", 2), ("qllc", 3), ("sdlc", 4), ("channel", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkType.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkType.setDescription('The type of transmission group link.') saTgLinkSpecific = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 9), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkSpecific.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkSpecific.setDescription('A row in a table specific for the link. It is the object identifier representing the instance of the index variable in one of the snaLink tables from this MIB.') saTgLinkActiveTime = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 10), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkActiveTime.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkActiveTime.setDescription('The value of sysUpTime when this TG link became active.') saTgLinkLastStateChange = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 11), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkLastStateChange.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkLastStateChange.setDescription('The value of sysUptime when the last state change occurred.') saTgLinkSentBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkSentBytes.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkSentBytes.setDescription('The number of bytes sent on this TG link.') saTgLinkReceivedBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkReceivedBytes.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkReceivedBytes.setDescription('The number of bytes received on this TG link.') saTgLinkSentBtus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 14), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkSentBtus.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkSentBtus.setDescription('The number of Basic Transmission Units sent on this TG link.') saTgLinkReceivedBtus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 3, 3, 2, 1, 15), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: saTgLinkReceivedBtus.setStatus('mandatory') if mibBuilder.loadTexts: saTgLinkReceivedBtus.setDescription('The number of Basic Transmission Units received on this TG link.') t2node = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1)) snaLu = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2)) applicationLu = MibIdentifier((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3)) t2nodeTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1), ) if mibBuilder.loadTexts: t2nodeTable.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeTable.setDescription('This table contains all configured and dynamic parameters of type 2 nodes have read-only access. There is also one control parameter, t2nodeAdminState which has read-write access. The link specific parameters are contained in a row of a separate table referenced by the snaLinkSpecific object.') t2nodeEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1), ).setIndexNames((0, "SNANET-MIB", "t2nodeT5nodeIndex"), (0, "SNANET-MIB", "t2nodeIndex")) if mibBuilder.loadTexts: t2nodeEntry.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeEntry.setDescription('Entry contains all parameters of one type 2 node. They have read-only access. The entry is created by the Agent. The variable t2nodeAdminState has read-write access and is used to start or stop the node.') t2nodeT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeT5nodeIndex.setDescription('Index in the t5nodeTable to which this t2node is associated.') t2nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeIndex.setDescription('Used to index the instances of objects assigned by the Agent.') t2nodeName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeName.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeName.setDescription('The value identifies the name of the Node.') t2nodeType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("other", 1), ("pu20prim", 2), ("pu20sec", 3), ("t21LEN", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeType.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeType.setDescription('This value identifies the type of Node.') t2nodeBlockNum = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 5), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(3, 3)).setFixedLength(3)).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeBlockNum.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeBlockNum.setDescription('The value identifies the block number for this Node instance. It is the first 3 hexadecimal digits of the t2node id.') t2nodeIdNum = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(5, 5)).setFixedLength(5)).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeIdNum.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeIdNum.setDescription('The value identifies the ID number for this Node instance. This is the last 5 hexadecimal digits of the t2node id.') t2nodeMaxPiu = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 7), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeMaxPiu.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeMaxPiu.setDescription('Maximum number of octets that can be exchanged by this PU in one Pathcontrol Information Unit (PIU).') t2nodeLinkType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("internal", 1), ("link8022", 2), ("qllc", 3), ("sdlc", 4), ("channelAttach", 5), ("tcpip", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeLinkType.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeLinkType.setDescription('The type of link protocol used for this PU.') t2nodeLinkSpecific = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 9), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeLinkSpecific.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeLinkSpecific.setDescription('The row in a table specific for the link. It is the object identifier representing the instance of the index variable in one of the snaLink tables from this MIB.') t2nodeOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("other", 1), ("disabled", 2), ("enabled", 3), ("active", 4), ("busy", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeOperState.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeOperState.setDescription('The operational state of the type 2 Node.') t2nodeAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 11), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("start", 2), ("stop", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: t2nodeAdminState.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeAdminState.setDescription('The administrative state of the type 2 Node and is used by the Management Station to start or stop the Node. The values that can be read and written are: start (2) - this value has to be used to start, stop (3) - this value has to be used to stop. The values that can be read only are: other (1) - this value indicates that the variable has not been set after reboot.') t2nodeStartTime = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 12), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStartTime.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStartTime.setDescription('The value of sysUpTime at type 2 Node activation.') t2nodeLastStateChange = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 13), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeLastStateChange.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeLastStateChange.setDescription('The value of sysUpTime at the last state change of the type 2 Node.') t2nodeActFailureReason = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 1, 1, 14), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeActFailureReason.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeActFailureReason.setDescription('The sense code for the activation failure. It will be sent in the trap t2NodeActFailTrap.') t2nodeStatsTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2), ) if mibBuilder.loadTexts: t2nodeStatsTable.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsTable.setDescription('This table contains the dynamic parameters which have read-only access. The entries in this table augment the entries in the t2nodeTable and cannot be created by Management Station.') t2nodeStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1), ).setIndexNames((0, "SNANET-MIB", "t2nodeStatsT5nodeIndex"), (0, "SNANET-MIB", "t2nodeStatsIndex")) if mibBuilder.loadTexts: t2nodeStatsEntry.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsEntry.setDescription('The entry contains parameters which describe the statistics of one t2node. They have read-only access. The counters represent traffic for all kinds of sessions: LU-LU, SSCP-PU, and SSCP-LU. The entry is created by the Agent.') t2nodeStatsT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsT5nodeIndex.setDescription(' Index in the t5nodeTable to which this t2node is associated.') t2nodeStatsIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsIndex.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsIndex.setDescription('The instance of the entry parameters. The index value is taken by the Agent from t2nodeIndex.') t2nodeStatsSentBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsSentBytes.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsSentBytes.setDescription('The number of bytes sent by this Node.') t2nodeStatsReceivedBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsReceivedBytes.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsReceivedBytes.setDescription('The number of bytes received by this Node.') t2nodeStatsSentPius = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsSentPius.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsSentPius.setDescription('The number of PIUs sent by this Node.') t2nodeStatsReceivedPius = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsReceivedPius.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsReceivedPius.setDescription('The number of PIUs received by this Node.') t2nodeStatsSentNegativeResps = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsSentNegativeResps.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsSentNegativeResps.setDescription('The number of negative responses sent by this Node.') t2nodeStatsReceivedNegativeResps = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsReceivedNegativeResps.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsReceivedNegativeResps.setDescription('The number of negative responses received by this Node.') t2nodeStatsActiveLus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsActiveLus.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsActiveLus.setDescription('The number of LUs currently active on this PU.') t2nodeStatsActLus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 10), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsActLus.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsActLus.setDescription('The number of LUs on this type 2 Node which have active SSCP-LU sessions.') t2nodeStatsInActLus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 11), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsInActLus.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsInActLus.setDescription('The number of LUs on this type 2 Node which do not have active SSCP-LU sessions.') t2nodeStatsBindLus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 1, 2, 1, 12), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: t2nodeStatsBindLus.setStatus('mandatory') if mibBuilder.loadTexts: t2nodeStatsBindLus.setDescription('The number of LUs on this type 2 Node which have received and acknowledged a BIND request.') snaLuTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1), ) if mibBuilder.loadTexts: snaLuTable.setStatus('mandatory') if mibBuilder.loadTexts: snaLuTable.setDescription('This table contains configuration and state information relating to LUs.') snaLuEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1), ).setIndexNames((0, "SNANET-MIB", "snaLuT5nodeIndex"), (0, "SNANET-MIB", "snaLuT2nodeIndex"), (0, "SNANET-MIB", "snaLuIndex")) if mibBuilder.loadTexts: snaLuEntry.setStatus('mandatory') if mibBuilder.loadTexts: snaLuEntry.setDescription('Contains configuration and state objects relating to an LU. All have read-only access with the exeption of snaLuAdminState which has read-write access and is used by the Management station to control the state of the LU.') snaLuT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLuT5nodeIndex.setDescription('Index in the t5nodeTable to which this LU is associated.') snaLuT2nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuT2nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLuT2nodeIndex.setDescription('Index in the t2nodeTable of the type 2 Node with which this LU is associated.') snaLuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLuIndex.setDescription('This value identifies a unique index for an LU instance within a type 2 Node.') snaLuName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuName.setStatus('mandatory') if mibBuilder.loadTexts: snaLuName.setDescription('The SNA name for this LU. ') snaLuType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("other", 1), ("lu0", 2), ("lu1", 3), ("lu2", 4), ("lu3", 5), ("lu62", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuType.setStatus('mandatory') if mibBuilder.loadTexts: snaLuType.setDescription('Identifies whether the LU is Type 0, 1, 2, 3 or 6.2') snaLuLocalAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 1)).setFixedLength(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuLocalAddress.setStatus('mandatory') if mibBuilder.loadTexts: snaLuLocalAddress.setDescription('The local address for this LU. It is a byte with a value ranging in size from 0 to 255. For dependent LUs this value ranges from 1 to 255. For independent Lus this value is always 0.') snaLuUserName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuUserName.setStatus('mandatory') if mibBuilder.loadTexts: snaLuUserName.setDescription('The name of the non-sna terminal or SNA LU that is using this LU. This value does not apply to all LUs and contains a zero length string if not known or does not apply.') snaLuPoolName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuPoolName.setStatus('mandatory') if mibBuilder.loadTexts: snaLuPoolName.setDescription('The name of the LU pool to which this LU belongs. An LU Pool is configured by the user. It contains a group of LUs any of which can be assigned to a user requesting an LU by the Pool name. May be a zero length string if this LU does not belong to a pool.') snaLuOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("inactive", 1), ("active", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuOperState.setStatus('mandatory') if mibBuilder.loadTexts: snaLuOperState.setDescription('The current operational state of this LU: For dependent LUs active(2) indicates the SSCP-LU session is active. For Independent LUs active(2) indicates that the LU is able to send or receive BINDs.') snaLuAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("up", 2), ("down", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: snaLuAdminState.setStatus('mandatory') if mibBuilder.loadTexts: snaLuAdminState.setDescription('This object is used by a management station to control the LU. Values up(2) and down(3) can be read or written, while a value other(1) is read-only and indicates that this variable has not been set since reboot.') snaLuLastStateChange = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 11), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuLastStateChange.setStatus('mandatory') if mibBuilder.loadTexts: snaLuLastStateChange.setDescription('The value of sysUpTime when the last state change occurred.') snaLuActiveTime = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 12), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuActiveTime.setStatus('mandatory') if mibBuilder.loadTexts: snaLuActiveTime.setDescription('The value of sysUpTime when this LU becomes active.') snaLuBindFailureReason = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 2, 1, 1, 13), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLuBindFailureReason.setStatus('mandatory') if mibBuilder.loadTexts: snaLuBindFailureReason.setDescription('The sense code when there is a bind failure.') applicationLuTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1), ) if mibBuilder.loadTexts: applicationLuTable.setStatus('mandatory') if mibBuilder.loadTexts: applicationLuTable.setDescription('Table of application LUs configuration and operational information.') appLuEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1), ).setIndexNames((0, "SNANET-MIB", "appLuT5nodeIndex"), (0, "SNANET-MIB", "appLuIndex")) if mibBuilder.loadTexts: appLuEntry.setStatus('mandatory') if mibBuilder.loadTexts: appLuEntry.setDescription('Contains configuration and operational variables of an application LU. Variables are read-only with the exception of appLuAdminState which has read-write access and is used by the Management station to control the state of the Application LU.') appLuT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: appLuT5nodeIndex.setDescription('Index in the t5nodeTable to which this application LU is associated.') appLuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuIndex.setStatus('mandatory') if mibBuilder.loadTexts: appLuIndex.setDescription('Unique index of an application LU.') appLuName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuName.setStatus('mandatory') if mibBuilder.loadTexts: appLuName.setDescription('Configured name for this application LU.') appLuConversionType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("interactive", 1), ("transparent", 2), ("native", 3), ("netvOper", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuConversionType.setStatus('mandatory') if mibBuilder.loadTexts: appLuConversionType.setDescription('Indicates the type of protocol conversion being performed on behalf of the application LU.') appLuHostInterfaceType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("interactive", 1), ("outbound", 2), ("appc", 3), ("batch", 4), ("rbfte", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuHostInterfaceType.setStatus('mandatory') if mibBuilder.loadTexts: appLuHostInterfaceType.setDescription('Identifies the type of application interface used by this application LU.') appLuApplicationName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 6), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuApplicationName.setStatus('mandatory') if mibBuilder.loadTexts: appLuApplicationName.setDescription('The name of the host application which uses this application LU.') appLuGatewayName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuGatewayName.setStatus('mandatory') if mibBuilder.loadTexts: appLuGatewayName.setDescription('The name of the application gateway. The gateway is used to group application LUs together for management purposes.') appLuAdminState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("up", 2), ("down", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: appLuAdminState.setStatus('mandatory') if mibBuilder.loadTexts: appLuAdminState.setDescription('Used by the Management Station to control the Application LU. Values up (2) and down (3) can be read or written, while value other (1) is read-only and indicates that this variable has not been set since reboot.') appLuOperState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("other", 1), ("disabled", 2), ("inactive", 3), ("active", 4), ("busy", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuOperState.setStatus('mandatory') if mibBuilder.loadTexts: appLuOperState.setDescription('The current operational state of this application LU: whether it is inactive, active, or has one of more active sessions.') appLuActiveTime = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 10), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuActiveTime.setStatus('mandatory') if mibBuilder.loadTexts: appLuActiveTime.setDescription('The value of sysUpTime when this application LU becomes active.') appLuLastStateChange = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 11), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuLastStateChange.setStatus('mandatory') if mibBuilder.loadTexts: appLuLastStateChange.setDescription('The value of sysUpTime when the last state change occurred.') appLuBindFailureReason = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 1, 1, 12), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuBindFailureReason.setStatus('mandatory') if mibBuilder.loadTexts: appLuBindFailureReason.setDescription('The sense code when there is a bind failure.') appLuBatchDeviceTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2), ) if mibBuilder.loadTexts: appLuBatchDeviceTable.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceTable.setDescription('Table of configuration information for batch devices associated with a batch type application LU.') appLuBatchDeviceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2, 1), ).setIndexNames((0, "SNANET-MIB", "appLuBatchDeviceT5nodeIndex"), (0, "SNANET-MIB", "appLuBatchDeviceLuIndex"), (0, "SNANET-MIB", "appLuBatchDeviceName")) if mibBuilder.loadTexts: appLuBatchDeviceEntry.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceEntry.setDescription('The entry contains configuration variables for batch devices associated with batch type application LUs.') appLuBatchDeviceT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuBatchDeviceT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceT5nodeIndex.setDescription('Index in the t5nodeTable to which this batch device is associated.') appLuBatchDeviceLuIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuBatchDeviceLuIndex.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceLuIndex.setDescription('The index of an application LU to which this batch device is associated.') appLuBatchDeviceName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuBatchDeviceName.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceName.setDescription('The configured name for this batch device.') appLuBatchDeviceType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("console", 1), ("cardreader", 2), ("cardpunch", 3), ("printer", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuBatchDeviceType.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceType.setDescription('Indicates the type of batch device.') appLuBatchDeviceNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 4, 3, 2, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 14))).setMaxAccess("readonly") if mibBuilder.loadTexts: appLuBatchDeviceNumber.setStatus('mandatory') if mibBuilder.loadTexts: appLuBatchDeviceNumber.setDescription('A device number used to identify multiple devices of the same type.') snaSessionTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1), ) if mibBuilder.loadTexts: snaSessionTable.setStatus('mandatory') if mibBuilder.loadTexts: snaSessionTable.setDescription('Table containing dynamic statistics information relating to SNA sessions.') snaSessionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1), ).setIndexNames((0, "SNANET-MIB", "snaSessT5nodeIndex"), (0, "SNANET-MIB", "snaSessNauName"), (0, "SNANET-MIB", "snaSessNauSessNumber")) if mibBuilder.loadTexts: snaSessionEntry.setStatus('mandatory') if mibBuilder.loadTexts: snaSessionEntry.setDescription('Contains information about an SNA session. Objects in this table have read-only access.') snaSessT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaSessT5nodeIndex.setDescription('Identifies the Type 5 node which is associated with this SNA session.') snaSessNauName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessNauName.setStatus('mandatory') if mibBuilder.loadTexts: snaSessNauName.setDescription('The name of the SNA network addressable unit (NAU).') snaSessNauSessNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessNauSessNumber.setStatus('mandatory') if mibBuilder.loadTexts: snaSessNauSessNumber.setDescription('A number identifying the session number within the NAU.') snaSessType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("sscp-sscp", 1), ("lu-lu", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessType.setStatus('mandatory') if mibBuilder.loadTexts: snaSessType.setDescription('Identifies the type of SNA session.') snaSessNauElementAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessNauElementAddress.setStatus('mandatory') if mibBuilder.loadTexts: snaSessNauElementAddress.setDescription('The element address assigned to the SNA NAU by the Type 5 node.') snaSessState = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("initiating", 1), ("terminating", 2), ("queued", 3), ("active", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessState.setStatus('mandatory') if mibBuilder.loadTexts: snaSessState.setDescription('The state of the session. Valid values for all session types are: initiating (1), terminating (2), and active (4). The value queued (3) is valid only for snaSessType value of lu-lu (2). Some variables are unknown when the session state is initiating (1) or queued (2). ') snaSessActiveTime = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 7), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessActiveTime.setStatus('mandatory') if mibBuilder.loadTexts: snaSessActiveTime.setDescription('The value of sysUpTime when session becomes active.') snaSessSentBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessSentBytes.setStatus('mandatory') if mibBuilder.loadTexts: snaSessSentBytes.setDescription('The number of bytes sent on this SNA session.') snaSessReceivedBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessReceivedBytes.setStatus('mandatory') if mibBuilder.loadTexts: snaSessReceivedBytes.setDescription('The number of bytes received on this session.') snaSessSentRus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessSentRus.setStatus('mandatory') if mibBuilder.loadTexts: snaSessSentRus.setDescription('The number of RUs sent on this session.') snaSessReceivedRus = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessReceivedRus.setStatus('mandatory') if mibBuilder.loadTexts: snaSessReceivedRus.setDescription('The number of RUs received on this session.') snaSessSentNegativeResps = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessSentNegativeResps.setStatus('mandatory') if mibBuilder.loadTexts: snaSessSentNegativeResps.setDescription('The number of negative responses sent on this session.') snaSessReceivedNegativeResps = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessReceivedNegativeResps.setStatus('mandatory') if mibBuilder.loadTexts: snaSessReceivedNegativeResps.setDescription('The number of negative responses received on this session.') snaSessPartnerNauName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 14), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessPartnerNauName.setStatus('mandatory') if mibBuilder.loadTexts: snaSessPartnerNauName.setDescription('The name of the session partner NAU. May be a zero length string if not known.') snaSessPartnerNauSubarea = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 15), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessPartnerNauSubarea.setStatus('mandatory') if mibBuilder.loadTexts: snaSessPartnerNauSubarea.setDescription('The subarea number of the session partner NAU. Will be zero if not known.') snaSessPartnerNauElementAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 16), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 65536))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessPartnerNauElementAddress.setStatus('mandatory') if mibBuilder.loadTexts: snaSessPartnerNauElementAddress.setDescription('The element address of the session partner NAU. Will be zero if not known.') snaSessVirtualRouteNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 17), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 7))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessVirtualRouteNumber.setStatus('mandatory') if mibBuilder.loadTexts: snaSessVirtualRouteNumber.setDescription('A value indicating the virtual route number for this session. Will be zero if not known.') snaSessTransmissionPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 18), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessTransmissionPriority.setStatus('mandatory') if mibBuilder.loadTexts: snaSessTransmissionPriority.setDescription('A transmission priority for this session. Will be zero if not known.') snaSessProcCorrelationId = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 19), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessProcCorrelationId.setStatus('mandatory') if mibBuilder.loadTexts: snaSessProcCorrelationId.setDescription('This variable uniquely identifies this lu-lu session. Will contain a zero length string if snaSessType value is not lu-lu (2).') snaSessPluIndicator = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("other", 1), ("plu", 2), ("slu", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessPluIndicator.setStatus('mandatory') if mibBuilder.loadTexts: snaSessPluIndicator.setDescription('It indicates whether LU is primary or secondary for this session. Will be other (1) if snaSessType value is not lu-lu (2).') snaSessModeName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 5, 1, 1, 21), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaSessModeName.setStatus('mandatory') if mibBuilder.loadTexts: snaSessModeName.setDescription('The name of the mode used for this session. Contains a zero length string if snaSessType value is not lu-lu (2).') snaLink802Dot2Table = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1), ) if mibBuilder.loadTexts: snaLink802Dot2Table.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2Table.setDescription('This table contains Managed Objects which describe basic configuration parameters for PUs or TGs using 802.2 links.') snaLink802Dot2Entry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1), ).setIndexNames((0, "SNANET-MIB", "snaLink802Dot2T5nodeIndex"), (0, "SNANET-MIB", "snaLink802Dot2Index")) if mibBuilder.loadTexts: snaLink802Dot2Entry.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2Entry.setDescription('Entry contains all link configuration parameters for one PU or TG. The objects in the entry have read-only access.') snaLink802Dot2T5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2T5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2T5nodeIndex.setDescription('The index of the Type 5 node associated with this link.') snaLink802Dot2Index = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2Index.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2Index.setDescription('The index variable assigned by Agent.') snaLink802Dot2SourceAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 12))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2SourceAddress.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2SourceAddress.setDescription('Medium Access Control (MAC) address of the source node of this logical link.') snaLink802Dot2SourceSAP = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2SourceSAP.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2SourceSAP.setDescription("The source node's Service Access Point (SSAP).") snaLink802Dot2DestinationAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 12))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2DestinationAddress.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2DestinationAddress.setDescription('Medium Access Control (MAC) address of the destination node of this logical link.') snaLink802Dot2DestinationSAP = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2DestinationSAP.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2DestinationSAP.setDescription('The Service Access Point used by the remote node (DSAP).') snaLink802Dot2MediaType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 10))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2MediaType.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2MediaType.setDescription('The underlying physical media type: token-ring or ethernet.') snaLink802Dot2Role = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("secondary", 1), ("primary", 2), ("negotiable", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2Role.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2Role.setDescription('The role of the PU used for the 802.2 link.') snaLink802Dot2LineName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2LineName.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2LineName.setDescription('The configured name of the associated line.') snaLink802Dot2Port = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 10), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2Port.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2Port.setDescription('The physical port location in the system. The first octet contains the port processor id (0 to 255) and the second octet contains the line number (0-8) for line modules which support multiple lines. ') snaLink802Dot2IfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 1, 1, 11), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLink802Dot2IfIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLink802Dot2IfIndex.setDescription('The IfIndex value of the interface used by this link.') snaLinkSdlcTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2), ) if mibBuilder.loadTexts: snaLinkSdlcTable.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcTable.setDescription('This table contains Managed Objects which describe basic configuration parameters for PUs using SDLC link.') snaLinkSdlcEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1), ).setIndexNames((0, "SNANET-MIB", "snaLinkSdlcT5nodeIndex"), (0, "SNANET-MIB", "snaLinkSdlcIndex")) if mibBuilder.loadTexts: snaLinkSdlcEntry.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcEntry.setDescription('Entry contains all link configuration parameters for one PU. The objects in the entry have read-only access.') snaLinkSdlcT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcT5nodeIndex.setDescription('The index of the Type 5 node associated with this link.') snaLinkSdlcIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcIndex.setDescription('The index variable assigned by Agent.') snaLinkSdlcDestinationStationAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 3), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 1))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcDestinationStationAddr.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcDestinationStationAddr.setDescription('Station Address (1 byte) of the destination node.') snaLinkSdlcStationRole = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("secondary", 1), ("primary", 2), ("negotiable", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcStationRole.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcStationRole.setDescription('The role of the local station in relation to a remote one.') snaLinkSdlcLineName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 5), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcLineName.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcLineName.setDescription('The configured name of the associated line.') snaLinkSdlcPort = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcPort.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcPort.setDescription('The physical port location in the system. The first octet contains the port processor id (0 to 255) and the second octet contains the line number (0-8) for line modules which support multiple lines. ') snaLinkSdlcIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 2, 1, 7), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkSdlcIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkSdlcIfIndex.setDescription('The IfIndex value of the interface used by this link.') snaLinkQllcTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3), ) if mibBuilder.loadTexts: snaLinkQllcTable.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcTable.setDescription('This table contains Managed Objects which describe basic configuration parameters for PUs using QLLC links.') snaLinkQllcEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1), ).setIndexNames((0, "SNANET-MIB", "snaLinkQllcT5nodeIndex"), (0, "SNANET-MIB", "snaLinkQllcIndex")) if mibBuilder.loadTexts: snaLinkQllcEntry.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcEntry.setDescription('Entry contains all link configuration parameters for one PU. The objects in the entry have read-only access.') snaLinkQllcT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcT5nodeIndex.setDescription('The index of the Type 5 node associated with this link.') snaLinkQllcIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcIndex.setDescription('The index variable assigned by Agent.') snaLinkQllcLcn = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcLcn.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcLcn.setDescription('The Logical Channel Number (LCN) used by the source node in the case of SVC. Identifies the Circuit number in the case of PVC.') snaLinkQllcSourceDteAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcSourceDteAddr.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcSourceDteAddr.setDescription('The DTE Address (15 bytes) of the source node.') snaLinkQllcDestinationDteAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcDestinationDteAddr.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcDestinationDteAddr.setDescription('The DTE Address (15 bytes) of the destination node.') snaLinkQllcRole = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("secondary", 1), ("primary", 2), ("negotiable", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcRole.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcRole.setDescription('The role of the QLLC PU in relation to a remote one.') snaLinkQllcPdnGroupName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcPdnGroupName.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcPdnGroupName.setDescription('Name of the associated PDNGROUP.') snaLinkQllcLineName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcLineName.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcLineName.setDescription('The configured name of the associated line.') snaLinkQllcPort = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcPort.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcPort.setDescription('The physical port location in the system. The first octet contains the port processor id (0 to 255) and the second octet contains the line number (0-8) for line modules which support multiple lines. ') snaLinkQllcIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 3, 1, 10), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkQllcIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkQllcIfIndex.setDescription('The IfIndex value of the interface used by this link.') snaLinkChannelTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4), ) if mibBuilder.loadTexts: snaLinkChannelTable.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelTable.setDescription('This table contains Managed Objects which describe basic configuration parameters for PUs using Channel link.') snaLinkChannelEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4, 1), ).setIndexNames((0, "SNANET-MIB", "snaLinkChannelT5nodeIndex"), (0, "SNANET-MIB", "snaLinkChannelIndex")) if mibBuilder.loadTexts: snaLinkChannelEntry.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelEntry.setDescription('Entry contains all link configuration parameters for one PU. The objects in the entry have read-only access.') snaLinkChannelT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkChannelT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelT5nodeIndex.setDescription('The index of the Type 5 node associated with this link.') snaLinkChannelIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkChannelIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelIndex.setDescription('The index variable assigned by Agent.') snaLinkChannelLineName = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 8))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkChannelLineName.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelLineName.setDescription('The configured name of the associated line.') snaLinkChannelPort = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2)).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkChannelPort.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelPort.setDescription('The physical port location in the system. The first octet contains the port processor id (0 to 255) and the second octet contains the line number (0-8) for line modules which support multiple lines. ') snaLinkChannelIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 4, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkChannelIfIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkChannelIfIndex.setDescription('The IfIndex value of the interface used by this link.') snaLinkIntTable = MibTable((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5), ) if mibBuilder.loadTexts: snaLinkIntTable.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntTable.setDescription('This table contains Managed Objects which describe basic configuration parameters Internal links.') snaLinkIntEntry = MibTableRow((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5, 1), ).setIndexNames((0, "SNANET-MIB", "snaLinkIntT5nodeIndex"), (0, "SNANET-MIB", "snaLinkIntIndex")) if mibBuilder.loadTexts: snaLinkIntEntry.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntEntry.setDescription('Entry contains all link configuration parameters for one PU. The objects in the entry have read-only access.') snaLinkIntT5nodeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkIntT5nodeIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntT5nodeIndex.setDescription('The index of the Type 5 node associated with this link.') snaLinkIntIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkIntIndex.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntIndex.setDescription('The index variable assigned by Agent.') snaLinkIntServiceType = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("tglink", 1), ("uniscope", 2), ("ds3270", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkIntServiceType.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntServiceType.setDescription('The type of the internal link.') snaLinkIntOutputCredit = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkIntOutputCredit.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntOutputCredit.setDescription('This value is used to control the flow of data on the internal link.') snaLinkIntOutputPacing = MibTableColumn((1, 3, 6, 1, 4, 1, 223, 8, 3, 6, 5, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: snaLinkIntOutputPacing.setStatus('mandatory') if mibBuilder.loadTexts: snaLinkIntOutputPacing.setDescription('This value is used to control the flow of data on the internal link.') mibBuilder.exportSymbols("SNANET-MIB", snaLinkSdlcStationRole=snaLinkSdlcStationRole, t5CdrmNetworkName=t5CdrmNetworkName, t2nodeLinkType=t2nodeLinkType, appLuApplicationName=appLuApplicationName, snaLinkIntOutputPacing=snaLinkIntOutputPacing, snaSessProcCorrelationId=snaSessProcCorrelationId, t5CdrscDlmName=t5CdrscDlmName, t5DlmTsprof=t5DlmTsprof, t5DlmFmprof=t5DlmFmprof, snaLink=snaLink, saVrTable=saVrTable, t2nodeStatsActLus=t2nodeStatsActLus, t5nodeNetworkName=t5nodeNetworkName, t5CdrmSnaName=t5CdrmSnaName, t2nodeEntry=t2nodeEntry, t2nodeStatsSentPius=t2nodeStatsSentPius, snaLinkIntT5nodeIndex=snaLinkIntT5nodeIndex, saTgLinkIndex=saTgLinkIndex, snaLink802Dot2Entry=snaLink802Dot2Entry, t5CdrmT5nodeIndex=t5CdrmT5nodeIndex, t2nodeMaxPiu=t2nodeMaxPiu, t5CdrscOperState=t5CdrscOperState, appLuT5nodeIndex=appLuT5nodeIndex, snaLuT2nodeIndex=snaLuT2nodeIndex, snaSession=snaSession, snaLink802Dot2DestinationAddress=snaLink802Dot2DestinationAddress, t2nodeStatsInActLus=t2nodeStatsInActLus, snaLuTable=snaLuTable, snaSessionTable=snaSessionTable, prodInfoDesc=prodInfoDesc, t5CdrscSessions=t5CdrscSessions, appLuBatchDeviceLuIndex=appLuBatchDeviceLuIndex, saErTgNumber=saErTgNumber, snaLinkIntEntry=snaLinkIntEntry, snaLinkQllcSourceDteAddr=snaLinkQllcSourceDteAddr, t2nodeStatsBindLus=t2nodeStatsBindLus, snaLinkChannelT5nodeIndex=snaLinkChannelT5nodeIndex, saTgMaxReceivePiuSize=saTgMaxReceivePiuSize, saErNumber=saErNumber, snaLink802Dot2Index=snaLink802Dot2Index, t5nodeIndex=t5nodeIndex, t2nodeStatsEntry=t2nodeStatsEntry, saVrEntry=saVrEntry, snaLinkQllcIfIndex=snaLinkQllcIfIndex, saVrErNumber=saVrErNumber, t2nodeStatsReceivedPius=t2nodeStatsReceivedPius, t5DlmSecprot=t5DlmSecprot, snaSessTransmissionPriority=snaSessTransmissionPriority, t5DlmBindType=t5DlmBindType, saErDestinationSubarea=saErDestinationSubarea, t5CdrscAdminState=t5CdrscAdminState, t5AliasName=t5AliasName, snaLinkSdlcIfIndex=snaLinkSdlcIfIndex, t2nodeLastStateChange=t2nodeLastStateChange, saErTable=saErTable, t2nodeName=t2nodeName, saTgLinkT5nodeIndex=saTgLinkT5nodeIndex, t2nodeT5nodeIndex=t2nodeT5nodeIndex, t2nodeActFailureReason=t2nodeActFailureReason, snaLinkSdlcIndex=snaLinkSdlcIndex, t5CdrmName=t5CdrmName, snaSessReceivedNegativeResps=snaSessReceivedNegativeResps, snaLinkChannelTable=snaLinkChannelTable, snaSessType=snaSessType, snaLuEntry=snaLuEntry, snaLu=snaLu, snaLinkQllcLcn=snaLinkQllcLcn, saTgNumber=saTgNumber, appLuActiveTime=appLuActiveTime, t5nodeSscpName=t5nodeSscpName, dcp=dcp, saTgSentBytes=saTgSentBytes, t5AliasEntry=t5AliasEntry, t2nodeStartTime=t2nodeStartTime, t5DlmPsndpac=t5DlmPsndpac, t2nodeStatsIndex=t2nodeStatsIndex, snaLuOperState=snaLuOperState, t5DlmRusizes=t5DlmRusizes, snaLinkIntServiceType=snaLinkIntServiceType, saTgLinkEntry=saTgLinkEntry, snaSessState=snaSessState, snaLinkQllcEntry=snaLinkQllcEntry, t2nodeStatsTable=t2nodeStatsTable, t5CdrscEntry=t5CdrscEntry, saTgActiveTime=saTgActiveTime, t5nodeSscpId=t5nodeSscpId, snaLinkQllcTable=snaLinkQllcTable, snaLinkQllcDestinationDteAddr=snaLinkQllcDestinationDteAddr, snaLinkQllcLineName=snaLinkQllcLineName, snaSessSentRus=snaSessSentRus, t5nodeTable=t5nodeTable, appLuConversionType=appLuConversionType, t5CosName=t5CosName, t5node=t5node, saTgReceivedBtus=saTgReceivedBtus, saTgLinkReceivedBtus=saTgLinkReceivedBtus, snaLuAdminState=snaLuAdminState, snaSessPartnerNauSubarea=snaSessPartnerNauSubarea, t5CosSnaName=t5CosSnaName, t5DlmPrcvpac=t5DlmPrcvpac, snaSessVirtualRouteNumber=snaSessVirtualRouteNumber, saVrT5nodeIndex=saVrT5nodeIndex, saTgSentBtus=saTgSentBtus, snaLuName=snaLuName, saTgLinkAdjacentSubarea=saTgLinkAdjacentSubarea, snaLinkQllcT5nodeIndex=snaLinkQllcT5nodeIndex, snaLinkSdlcDestinationStationAddr=snaLinkSdlcDestinationStationAddr, appLuOperState=appLuOperState, t2node=t2node, appLuHostInterfaceType=appLuHostInterfaceType, saTgLinkReceivedBytes=saTgLinkReceivedBytes, saTransmissionGroup=saTransmissionGroup, appLuEntry=appLuEntry, saTgTable=saTgTable, t2nodeStatsSentNegativeResps=t2nodeStatsSentNegativeResps, t5DlmPservic=t5DlmPservic, saTgOperState=saTgOperState, snaLuIndex=snaLuIndex, snaLink802Dot2Role=snaLink802Dot2Role, applicationLuTable=applicationLuTable, snaLinkChannelPort=snaLinkChannelPort, appLuGatewayName=appLuGatewayName, saTgLinkSentBytes=saTgLinkSentBytes, appLuIndex=appLuIndex, appLuBatchDeviceTable=appLuBatchDeviceTable, snaLinkQllcPort=snaLinkQllcPort, snaLuPoolName=snaLuPoolName, t2nodeTable=t2nodeTable, snaSessionEntry=snaSessionEntry, saVrMinWindowSize=saVrMinWindowSize, snaLuType=snaLuType, snaLinkQllcIndex=snaLinkQllcIndex, t5nodeSubareaNumber=t5nodeSubareaNumber, t5CdrmElementAddress=t5CdrmElementAddress, snaLink802Dot2SourceSAP=snaLink802Dot2SourceSAP, appLuBatchDeviceName=appLuBatchDeviceName, saTgLinkTable=saTgLinkTable, t2nodeType=t2nodeType, t5DlmPriprot=t5DlmPriprot, snaLuUserName=snaLuUserName, prodInfo=prodInfo, snaSessActiveTime=snaSessActiveTime, t5AliasTable=t5AliasTable, saTgLinkAdminState=saTgLinkAdminState, saTgLinkLastStateChange=saTgLinkLastStateChange, saVrNumber=saVrNumber, t2nodeStatsT5nodeIndex=t2nodeStatsT5nodeIndex, saTgReceivedBytes=saTgReceivedBytes, snaLuLastStateChange=snaLuLastStateChange, t5nodePuName=t5nodePuName, snaLinkSdlcTable=snaLinkSdlcTable, saTgLinkTgNumber=saTgLinkTgNumber, appLuBindFailureReason=appLuBindFailureReason, snaLink802Dot2IfIndex=snaLink802Dot2IfIndex, snaSessNauSessNumber=snaSessNauSessNumber, snaLinkChannelIndex=snaLinkChannelIndex, t5CosT5nodeIndex=t5CosT5nodeIndex, snaLink802Dot2T5nodeIndex=snaLink802Dot2T5nodeIndex, snaLinkIntOutputCredit=snaLinkIntOutputCredit, snaLuT5nodeIndex=snaLuT5nodeIndex, t2nodeStatsReceivedBytes=t2nodeStatsReceivedBytes, t5CdrmType=t5CdrmType, saVrMaxWindowSize=saVrMaxWindowSize, t5DlmComprot=t5DlmComprot, saVrPacingCount=saVrPacingCount, t5AliasT5nodeIndex=t5AliasT5nodeIndex, t5CdrscSnaName=t5CdrscSnaName, snaLink802Dot2Table=snaLink802Dot2Table, t5DlmEncr=t5DlmEncr, t5DlmSrcvpac=t5DlmSrcvpac, t5nodeDomainName=t5nodeDomainName, snaLinkIntIndex=snaLinkIntIndex, t2nodeOperState=t2nodeOperState, snaLuBindFailureReason=snaLuBindFailureReason, appLuAdminState=appLuAdminState, saTgLinkType=saTgLinkType, appLuBatchDeviceType=appLuBatchDeviceType, t2nodeStatsSentBytes=t2nodeStatsSentBytes, saErT5nodeIndex=saErT5nodeIndex, snaLink802Dot2LineName=snaLink802Dot2LineName, t5DlmSsndpac=t5DlmSsndpac, snaSessReceivedRus=snaSessReceivedRus, t2nodeBlockNum=t2nodeBlockNum, t2nodeAdminState=t2nodeAdminState, appLuBatchDeviceT5nodeIndex=appLuBatchDeviceT5nodeIndex, t5CosEntry=t5CosEntry, snaLinkQllcRole=snaLinkQllcRole, saTgLastStateChange=saTgLastStateChange, snaSessSentNegativeResps=snaSessSentNegativeResps, snaLinkSdlcEntry=snaLinkSdlcEntry, t5DlmEntry=t5DlmEntry, t5CdrmOperState=t5CdrmOperState, saErOperState=saErOperState, snaLuLocalAddress=snaLuLocalAddress, snaSessModeName=snaSessModeName, snaLinkSdlcT5nodeIndex=snaLinkSdlcT5nodeIndex, t2nodeLinkSpecific=t2nodeLinkSpecific, t5CdrscCosName=t5CdrscCosName, t5CdrmEntry=t5CdrmEntry, saTgAdjacentSubarea=saTgAdjacentSubarea, saTgLinkOperState=saTgLinkOperState, t2nodeIdNum=t2nodeIdNum, t5CdrmSubareaNumber=t5CdrmSubareaNumber, snaSessPartnerNauName=snaSessPartnerNauName, snaLinkIntTable=snaLinkIntTable, snanet=snanet, snaNau=snaNau, snaSessPluIndicator=snaSessPluIndicator, snaLinkSdlcLineName=snaLinkSdlcLineName, snaLinkChannelIfIndex=snaLinkChannelIfIndex, t5DlmName=t5DlmName, applicationLu=applicationLu, snaLinkSdlcPort=snaLinkSdlcPort, t5CdrscName=t5CdrscName, appLuName=appLuName, appLuBatchDeviceEntry=appLuBatchDeviceEntry, t5DlmCos=t5DlmCos, saTgEntry=saTgEntry, snaSessReceivedBytes=snaSessReceivedBytes, appLuLastStateChange=appLuLastStateChange, saTgLinkName=saTgLinkName, subarea=subarea, snaLink802Dot2SourceAddress=snaLink802Dot2SourceAddress, saVrWindowSize=saVrWindowSize, snaSessT5nodeIndex=snaSessT5nodeIndex, snaLink802Dot2MediaType=snaLink802Dot2MediaType, t5CosTable=t5CosTable, saTgLinkSentBtus=saTgLinkSentBtus, snaSessNauName=snaSessNauName, t5CdrscTable=t5CdrscTable, t5nodeEntry=t5nodeEntry, t5DlmSnaName=t5DlmSnaName, saTgT5nodeIndex=saTgT5nodeIndex, saTgLinkSpecific=saTgLinkSpecific, t2nodeStatsReceivedNegativeResps=t2nodeStatsReceivedNegativeResps, snaSessPartnerNauElementAddress=snaSessPartnerNauElementAddress, snaLink802Dot2Port=snaLink802Dot2Port, saTgLinkActiveTime=saTgLinkActiveTime, snaLinkQllcPdnGroupName=snaLinkQllcPdnGroupName, saVrTransmissionPriority=saVrTransmissionPriority, t5DlmTable=t5DlmTable, snaLinkChannelEntry=snaLinkChannelEntry, unisys=unisys, snaLuActiveTime=snaLuActiveTime, t5AliasResourceId=t5AliasResourceId, t5CdrscCdrmName=t5CdrscCdrmName, saTgMaxSendPiuSize=saTgMaxSendPiuSize, t2nodeIndex=t2nodeIndex, appLuBatchDeviceNumber=appLuBatchDeviceNumber, snaLinkChannelLineName=snaLinkChannelLineName, t5CdrmTable=t5CdrmTable, t5CdrscT5nodeIndex=t5CdrscT5nodeIndex, t5DlmT5nodeIndex=t5DlmT5nodeIndex, t5nodeOperState=t5nodeOperState) mibBuilder.exportSymbols("SNANET-MIB", prodInfoFeatures=prodInfoFeatures, saErEntry=saErEntry, t2nodeStatsActiveLus=t2nodeStatsActiveLus, snaSessNauElementAddress=snaSessNauElementAddress, snaSessSentBytes=snaSessSentBytes, t5CdrmAdminState=t5CdrmAdminState, t5CosVrids=t5CosVrids, snaLink802Dot2DestinationSAP=snaLink802Dot2DestinationSAP)
135.529639
8,910
0.775775
794e84947417442851a24dc0b8d47fc1781d42d2
1,915
py
Python
mayan/apps/document_parsing/tests/mixins.py
bonitobonita24/mayan-edms-v3.4.7
46604926e09b96716790c9aed462fe231968fd18
[ "Apache-2.0" ]
null
null
null
mayan/apps/document_parsing/tests/mixins.py
bonitobonita24/mayan-edms-v3.4.7
46604926e09b96716790c9aed462fe231968fd18
[ "Apache-2.0" ]
10
2021-03-19T23:48:12.000Z
2022-03-12T00:41:49.000Z
mayan/apps/document_parsing/tests/mixins.py
hidayath-ispace/mayan-edms
83e5d7e50fdace5cc1681b8b882193fef3053c70
[ "Apache-2.0" ]
null
null
null
class DocumentContentToolsViewsTestMixin(object): def _request_document_parsing_error_list_view(self): return self.get(viewname='document_parsing:error_list') def _request_document_parsing_tool_view(self): return self.post( viewname='document_parsing:document_type_submit', data={ 'document_type': self.test_document_type.pk } ) class DocumentContentViewTestMixin(object): def _request_test_document_content_delete_view(self): return self.post( viewname='document_parsing:document_content_delete', kwargs={ 'document_id': self.test_document.pk } ) def _request_test_document_content_download_view(self): return self.get( viewname='document_parsing:document_content_download', kwargs={ 'document_id': self.test_document.pk } ) def _request_test_document_content_view(self): return self.get( 'document_parsing:document_content', kwargs={ 'document_id': self.test_document.pk } ) def _request_test_document_page_content_view(self): return self.get( viewname='document_parsing:document_page_content', kwargs={ 'document_page_id': self.test_document.pages.first().pk, } ) def _request_test_document_parsing_error_list_view(self): return self.get( viewname='document_parsing:document_parsing_error_list', kwargs={ 'document_id': self.test_document.pk, } ) class DocumentTypeContentViewsTestMixin(object): def _request_test_document_type_parsing_settings(self): return self.get( viewname='document_parsing:document_type_parsing_settings', kwargs={'document_type_id': self.test_document_type.pk} )
34.196429
77
0.655352
794e850cd225621cb748b68c3d1a46ddc4e23efb
5,567
py
Python
plugins/hg4idea/testData/bin/mercurial/hgweb/common.py
dmarcotte/intellij-community
74ed654c3f9ed99f9cc84fa227846b2c38d683c0
[ "Apache-2.0" ]
null
null
null
plugins/hg4idea/testData/bin/mercurial/hgweb/common.py
dmarcotte/intellij-community
74ed654c3f9ed99f9cc84fa227846b2c38d683c0
[ "Apache-2.0" ]
null
null
null
plugins/hg4idea/testData/bin/mercurial/hgweb/common.py
dmarcotte/intellij-community
74ed654c3f9ed99f9cc84fa227846b2c38d683c0
[ "Apache-2.0" ]
1
2019-03-14T10:35:19.000Z
2019-03-14T10:35:19.000Z
# hgweb/common.py - Utility functions needed by hgweb_mod and hgwebdir_mod # # Copyright 21 May 2005 - (c) 2005 Jake Edge <jake@edge2.net> # Copyright 2005, 2006 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. import errno, mimetypes, os HTTP_OK = 200 HTTP_BAD_REQUEST = 400 HTTP_UNAUTHORIZED = 401 HTTP_FORBIDDEN = 403 HTTP_NOT_FOUND = 404 HTTP_METHOD_NOT_ALLOWED = 405 HTTP_SERVER_ERROR = 500 # Hooks for hgweb permission checks; extensions can add hooks here. Each hook # is invoked like this: hook(hgweb, request, operation), where operation is # either read, pull or push. Hooks should either raise an ErrorResponse # exception, or just return. # It is possible to do both authentication and authorization through this. permhooks = [] def checkauthz(hgweb, req, op): '''Check permission for operation based on request data (including authentication info). Return if op allowed, else raise an ErrorResponse exception.''' user = req.env.get('REMOTE_USER') deny_read = hgweb.configlist('web', 'deny_read') if deny_read and (not user or deny_read == ['*'] or user in deny_read): raise ErrorResponse(HTTP_UNAUTHORIZED, 'read not authorized') allow_read = hgweb.configlist('web', 'allow_read') result = (not allow_read) or (allow_read == ['*']) if not (result or user in allow_read): raise ErrorResponse(HTTP_UNAUTHORIZED, 'read not authorized') if op == 'pull' and not hgweb.allowpull: raise ErrorResponse(HTTP_UNAUTHORIZED, 'pull not authorized') elif op == 'pull' or op is None: # op is None for interface requests return # enforce that you can only push using POST requests if req.env['REQUEST_METHOD'] != 'POST': msg = 'push requires POST request' raise ErrorResponse(HTTP_METHOD_NOT_ALLOWED, msg) # require ssl by default for pushing, auth info cannot be sniffed # and replayed scheme = req.env.get('wsgi.url_scheme') if hgweb.configbool('web', 'push_ssl', True) and scheme != 'https': raise ErrorResponse(HTTP_OK, 'ssl required') deny = hgweb.configlist('web', 'deny_push') if deny and (not user or deny == ['*'] or user in deny): raise ErrorResponse(HTTP_UNAUTHORIZED, 'push not authorized') allow = hgweb.configlist('web', 'allow_push') result = allow and (allow == ['*'] or user in allow) if not result: raise ErrorResponse(HTTP_UNAUTHORIZED, 'push not authorized') # Add the default permhook, which provides simple authorization. permhooks.append(checkauthz) class ErrorResponse(Exception): def __init__(self, code, message=None, headers=[]): Exception.__init__(self) self.code = code self.headers = headers if message is not None: self.message = message else: self.message = _statusmessage(code) def _statusmessage(code): from BaseHTTPServer import BaseHTTPRequestHandler responses = BaseHTTPRequestHandler.responses return responses.get(code, ('Error', 'Unknown error'))[0] def statusmessage(code, message=None): return '%d %s' % (code, message or _statusmessage(code)) def get_mtime(spath): cl_path = os.path.join(spath, "00changelog.i") if os.path.exists(cl_path): return os.stat(cl_path).st_mtime else: return os.stat(spath).st_mtime def staticfile(directory, fname, req): """return a file inside directory with guessed Content-Type header fname always uses '/' as directory separator and isn't allowed to contain unusual path components. Content-Type is guessed using the mimetypes module. Return an empty string if fname is illegal or file not found. """ parts = fname.split('/') for part in parts: if (part in ('', os.curdir, os.pardir) or os.sep in part or os.altsep is not None and os.altsep in part): return "" fpath = os.path.join(*parts) if isinstance(directory, str): directory = [directory] for d in directory: path = os.path.join(d, fpath) if os.path.exists(path): break try: os.stat(path) ct = mimetypes.guess_type(path)[0] or "text/plain" req.respond(HTTP_OK, ct, length = os.path.getsize(path)) return open(path, 'rb').read() except TypeError: raise ErrorResponse(HTTP_SERVER_ERROR, 'illegal filename') except OSError, err: if err.errno == errno.ENOENT: raise ErrorResponse(HTTP_NOT_FOUND) else: raise ErrorResponse(HTTP_SERVER_ERROR, err.strerror) def paritygen(stripecount, offset=0): """count parity of horizontal stripes for easier reading""" if stripecount and offset: # account for offset, e.g. due to building the list in reverse count = (stripecount + offset) % stripecount parity = (stripecount + offset) / stripecount & 1 else: count = 0 parity = 0 while True: yield parity count += 1 if stripecount and count >= stripecount: parity = 1 - parity count = 0 def get_contact(config): """Return repo contact information or empty string. web.contact is the primary source, but if that is not set, try ui.username or $EMAIL as a fallback to display something useful. """ return (config("web", "contact") or config("ui", "username") or os.environ.get("EMAIL") or "")
35.916129
77
0.670559
794e86676817768b857b2153620496593827dd7a
108
py
Python
exceptions/__init__.py
jeremy-badcock/experiment-length-cli
96ce6f1c89dd83735d88a7806b80709dc8bb87fd
[ "MIT" ]
null
null
null
exceptions/__init__.py
jeremy-badcock/experiment-length-cli
96ce6f1c89dd83735d88a7806b80709dc8bb87fd
[ "MIT" ]
null
null
null
exceptions/__init__.py
jeremy-badcock/experiment-length-cli
96ce6f1c89dd83735d88a7806b80709dc8bb87fd
[ "MIT" ]
null
null
null
from .cli import InvalidArgumentError, InvalidDateFormatError from .experiment import InvalidDateRangeError
36
61
0.888889
794e86d4649ab161d2e025179ecd9984dd38d1e2
16,784
py
Python
yellowbrick/classifier/rocauc.py
Juan0001/yellowbrick
b2336e2b3e549bc3d9647c14893add7dd6bc8a2c
[ "Apache-2.0" ]
null
null
null
yellowbrick/classifier/rocauc.py
Juan0001/yellowbrick
b2336e2b3e549bc3d9647c14893add7dd6bc8a2c
[ "Apache-2.0" ]
null
null
null
yellowbrick/classifier/rocauc.py
Juan0001/yellowbrick
b2336e2b3e549bc3d9647c14893add7dd6bc8a2c
[ "Apache-2.0" ]
null
null
null
# yellowbrick.classifier.rocauc # Implements visual ROC/AUC curves for classification evaluation. # # Author: Rebecca Bilbro <rbilbro@districtdatalabs.com> # Author: Benjamin Bengfort <bbengfort@districtdatalabs.com> # Author: Neal Humphrey # Created: Wed May 18 12:39:40 2016 -0400 # # Copyright (C) 2017 District Data Labs # For license information, see LICENSE.txt # # ID: rocauc.py [5388065] neal@nhumphrey.com $ """ Implements visual ROC/AUC curves for classification evaluation. """ ########################################################################## ## Imports ########################################################################## import numpy as np from ..exceptions import ModelError from ..style.palettes import LINE_COLOR from .base import ClassificationScoreVisualizer from scipy import interp from sklearn.preprocessing import label_binarize from sklearn.model_selection import train_test_split from sklearn.metrics import auc, roc_curve # Dictionary keys for ROCAUC MACRO = "macro" MICRO = "micro" ########################################################################## ## ROCAUC Visualizer ########################################################################## class ROCAUC(ClassificationScoreVisualizer): """ Receiver Operating Characteristic (ROC) curves are a measure of a classifier's predictive quality that compares and visualizes the tradeoff between the models' sensitivity and specificity. The ROC curve displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one. This leads to another metric, area under the curve (AUC), a computation of the relationship between false positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to inspect the "steepness" of the curve, as this describes the maximization of the true positive rate while minimizing the false positive rate. Generalizing "steepness" usually leads to discussions about convexity, which we do not get into here. Parameters ---------- model : estimator Must be a classifier, otherwise raises YellowbrickTypeError ax : matplotlib Axes, default: None The axes to plot the figure on. If None is passed in the current axes will be used (or generated if required). classes : list A list of class names for the legend. If classes is None and a y value is passed to fit then the classes are selected from the target vector. Note that the curves must be computed based on what is in the target vector passed to the ``score()`` method. Class names are used for labeling only and must be in the correct order to prevent confusion. micro : bool, default = True Plot the micro-averages ROC curve, computed from the sum of all true positives and false positives across all classes. macro : bool, default = True Plot the macro-averages ROC curve, which simply takes the average of curves across all classes. per_class : bool, default = True Plot the ROC curves for each individual class. Primarily this is set to false if only the macro or micro average curves are required. kwargs : keyword arguments passed to the super class. Currently passing in hard-coded colors for the Receiver Operating Characteristic curve and the diagonal. These will be refactored to a default Yellowbrick style. Notes ----- ROC curves are typically used in binary classification, and in fact the Scikit-Learn ``roc_curve`` metric is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions can arise from unexpected models or outputs. Another important point is the relationship of class labels specified on initialization to those drawn on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique values specified in the target vector to the ``score`` method. To ensure the best quality visualization, do not use a LabelEncoder for this and do not pass in class labels. .. seealso:: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html .. todo:: Allow the class list to filter the curves on the visualization. Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from yellowbrick.classifier import ROCAUC >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> data = load_breast_cancer() >>> X = data['data'] >>> y = data['target'] >>> X_train, X_test, y_train, y_test = train_test_split(X, y) >>> viz = ROCAUC(LogisticRegression()) >>> viz.fit(X_train, y_train) >>> viz.score(X_test, y_test) >>> viz.poof() """ def __init__(self, model, ax=None, classes=None, micro=True, macro=True, per_class=True, **kwargs): super(ROCAUC, self).__init__(model, ax=ax, classes=classes, **kwargs) # Set the visual parameters for ROCAUC self.micro = micro self.macro = macro self.per_class = per_class def score(self, X, y=None, **kwargs): """ Generates the predicted target values using the Scikit-Learn estimator. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values Returns ------- score : float The micro-average area under the curve of all classes. """ # Compute the predictions for the test data y_pred = self._get_y_scores(X) # # Classes may be label encoded so only use what's in y to compute. # # The self.classes_ attribute will be used as names for labels. classes = np.unique(y) n_classes = len(classes) # Store the false positive rate, true positive rate and curve info. self.fpr = dict() self.tpr = dict() self.roc_auc = dict() # Compute ROC curve and ROC area for each class for i, c in enumerate(classes): self.fpr[i], self.tpr[i], _ = roc_curve(y, y_pred[:,i], pos_label=c) self.roc_auc[i] = auc(self.fpr[i], self.tpr[i]) # Compute micro average if self.micro: self._score_micro_average(y, y_pred, classes, n_classes) # Compute macro average if self.macro: self._score_macro_average(n_classes) # Draw the Curves self.draw() # Return micro average if specified if self.micro: return self.roc_auc[MICRO] # Return macro average if not micro if self.macro: return self.roc_auc[MACRO] # Return the base score if neither macro nor micro return self.estimator.score(X, y) def draw(self): """ Renders ROC-AUC plot. Called internally by score, possibly more than once Returns ------- ax : the axis with the plotted figure """ colors = self.colors[0:len(self.classes_)] n_classes = len(colors) # Plot the ROC curves for each class if self.per_class: for i, color in zip(range(n_classes), colors): self.ax.plot( self.fpr[i], self.tpr[i], color=color, label='ROC of class {}, AUC = {:0.2f}'.format( self.classes_[i], self.roc_auc[i], ) ) # Plot the ROC curve for the micro average if self.micro: self.ax.plot( self.fpr[MICRO], self.tpr[MICRO], linestyle="--", color= self.colors[len(self.classes_)-1], label='micro-average ROC curve, AUC = {:0.2f}'.format( self.roc_auc["micro"], ) ) # Plot the ROC curve for the macro average if self.macro: self.ax.plot( self.fpr[MACRO], self.tpr[MACRO], linestyle="--", color= self.colors[len(self.classes_)-1], label='macro-average ROC curve, AUC = {:0.2f}'.format( self.roc_auc["macro"], ) ) # Plot the line of no discrimination to compare the curve to. self.ax.plot([0,1], [0,1], linestyle=':', c=LINE_COLOR) return self.ax def finalize(self, **kwargs): """ Finalize executes any subclass-specific axes finalization steps. The user calls poof and poof calls finalize. Parameters ---------- kwargs: generic keyword arguments. """ # Set the title and add the legend self.set_title('ROC Curves for {}'.format(self.name)) self.ax.legend(loc='lower right', frameon=True) # Set the limits for the ROC/AUC (always between 0 and 1) self.ax.set_xlim([0.0, 1.0]) self.ax.set_ylim([0.0, 1.0]) # Set x and y axis labels self.ax.set_ylabel('True Postive Rate') self.ax.set_xlabel('False Positive Rate') def _get_y_scores(self, X): """ The ``roc_curve`` metric requires target scores that can either be the probability estimates of the positive class, confidence values or non- thresholded measure of decisions (as returned by "decision_function"). This method computes the scores by resolving the estimator methods that retreive these values. .. todo:: implement confidence values metric. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features -- generally the test data that is associated with y_true values. """ # The resolution order of scoring functions attrs = ( 'predict_proba', 'decision_function', ) # Return the first resolved function for attr in attrs: try: method = getattr(self.estimator, attr, None) if method: return method(X) except AttributeError: # Some Scikit-Learn estimators have both probability and # decision functions but override __getattr__ and raise an # AttributeError on access. continue # If we've gotten this far, raise an error raise ModelError( "ROCAUC requires estimators with predict_proba or " "decision_function methods." ) def _score_micro_average(self, y, y_pred, classes, n_classes): """ Compute the micro average scores for the ROCAUC curves. """ # Convert y to binarized array for micro and macro scores y = label_binarize(y, classes=classes) if n_classes == 2: y = np.hstack((1-y, y)) # Compute micro-average self.fpr[MICRO], self.tpr[MICRO], _ = roc_curve(y.ravel(), y_pred.ravel()) self.roc_auc[MICRO] = auc(self.fpr[MICRO], self.tpr[MICRO]) def _score_macro_average(self, n_classes): """ Compute the macro average scores for the ROCAUC curves. """ # Gather all FPRs all_fpr = np.unique(np.concatenate([self.fpr[i] for i in range(n_classes)])) avg_tpr = np.zeros_like(all_fpr) # Compute the averages per class for i in range(n_classes): avg_tpr += interp(all_fpr, self.fpr[i], self.tpr[i]) # Finalize the average avg_tpr /= n_classes # Store the macro averages self.fpr[MACRO] = all_fpr self.tpr[MACRO] = avg_tpr self.roc_auc[MACRO] = auc(self.fpr[MACRO], self.tpr[MACRO]) ########################################################################## ## Quick method for ROCAUC ########################################################################## def roc_auc(model, X, y=None, ax=None, **kwargs): """ROCAUC Quick method: Receiver Operating Characteristic (ROC) curves are a measure of a classifier's predictive quality that compares and visualizes the tradeoff between the models' sensitivity and specificity. The ROC curve displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one. This leads to another metric, area under the curve (AUC), a computation of the relationship between false positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to inspect the "steepness" of the curve, as this describes the maximization of the true positive rate while minimizing the false positive rate. Generalizing "steepness" usually leads to discussions about convexity, which we do not get into here. Parameters ---------- model : the Scikit-Learn estimator Should be an instance of a classifier, else the __init__ will return an error. X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values ax : the axis to plot the figure on. classes : list A list of class names for the legend. If classes is None and a y value is passed to fit then the classes are selected from the target vector. Note that the curves must be computed based on what is in the target vector passed to the ``score()`` method. Class names are used for labeling only and must be in the correct order to prevent confusion. micro : bool, default = True Plot the micro-averages ROC curve, computed from the sum of all true positives and false positives across all classes. macro : bool, default = True Plot the macro-averages ROC curve, which simply takes the average of curves across all classes. per_class : bool, default = True Plot the ROC curves for each individual class. Primarily this is set to false if only the macro or micro average curves are required. Notes ----- ROC curves are typically used in binary classification, and in fact the Scikit-Learn ``roc_curve`` metric is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions can arise from unexpected models or outputs. Another important point is the relationship of class labels specified on initialization to those drawn on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique values specified in the target vector to the ``score`` method. To ensure the best quality visualization, do not use a LabelEncoder for this and do not pass in class labels. .. seealso:: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html .. todo:: Allow the class list to filter the curves on the visualization. Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from yellowbrick.classifier import roc_auc >>> from sklearn.linear_model import LogisticRegression >>> data = load_breast_cancer() >>> roc_auc(LogisticRegression(), data.data, data.target) Returns ------- ax : matplotlib axes Returns the axes that the roc-auc curve was drawn on. """ # Instantiate the visualizer visualizer = ROCAUC(model, ax, **kwargs) # Create the train and test splits X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Fit and transform the visualizer (calls draw) visualizer.fit(X_train, y_train, **kwargs) visualizer.score(X_test, y_test) visualizer.finalize() # Return the axes object on the visualizer return visualizer.ax
38.058957
91
0.634295
794e871cb54dbdd706702778c4281a025954b744
218
py
Python
oauth/templatetags/__init__.py
sometimeslove/www.superstrong.com
8600706e526bf5a979ef095ca25ada09cf44d6ac
[ "MIT" ]
null
null
null
oauth/templatetags/__init__.py
sometimeslove/www.superstrong.com
8600706e526bf5a979ef095ca25ada09cf44d6ac
[ "MIT" ]
10
2020-06-06T01:55:42.000Z
2022-03-12T00:30:36.000Z
oauth/templatetags/__init__.py
sometimeslove/www.superstrong.com
8600706e526bf5a979ef095ca25ada09cf44d6ac
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 """ @version: ?? @author: superstrongz @license: MIT Licence @contact: 857508399@qq.com @site: http://www.superstrongz.com/ @software: PyCharm @file: __init__.py @time: ?? """
15.571429
35
0.683486
794e87cee969e30f1b35772f3c67266fe6f3ff97
4,730
py
Python
pyocd/coresight/generic_mem_ap.py
LONGZR007/pyOCD
2c5a20a267c2670db0c233487fefd262f5a7c181
[ "Apache-2.0" ]
null
null
null
pyocd/coresight/generic_mem_ap.py
LONGZR007/pyOCD
2c5a20a267c2670db0c233487fefd262f5a7c181
[ "Apache-2.0" ]
null
null
null
pyocd/coresight/generic_mem_ap.py
LONGZR007/pyOCD
2c5a20a267c2670db0c233487fefd262f5a7c181
[ "Apache-2.0" ]
null
null
null
# pyOCD debugger # Copyright (c) 2020 Cypress Semiconductor Corporation # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from .component import CoreSightCoreComponent from ..core.target import Target from ..core.core_registers import CoreRegistersIndex LOG = logging.getLogger(__name__) DEAD_VALUE = 0 class GenericMemAPTarget(Target, CoreSightCoreComponent): """! @brief This target represents ARM debug Access Port without a CPU It may be used to access the address space of the target via Access Ports without real ARM CPU core behind it. For instance Cypress PSoC64 devices have three APs implemented in the hardware: * AP #0 -> CPU-less AHB AP * AP #1 -> Cortex-M0+ AP * AP #2 -> Cortex-M4F AP Depending on the protection state, AP #1 and AP #2 can be permanently disabled. This class allows to communicate with Secure FW running on the target via AP #0. Most of the methods in this class (except memory access methods) are empty/dummy. """ def __init__(self, session, ap, memory_map=None, core_num=0, cmpid=None, address=None): Target.__init__(self, session, memory_map) CoreSightCoreComponent.__init__(self, ap, cmpid, address) self.core_number = core_num self.core_type = DEAD_VALUE self._core_registers = CoreRegistersIndex() self._target_context = None def add_child(self, cmp): pass @property def core_registers(self): return self._core_registers @property def supported_security_states(self): return Target.SecurityState.NONSECURE, def init(self): pass def disconnect(self, resume=True): pass def write_memory(self, addr, value, transfer_size=32): self.ap.write_memory(addr, value, transfer_size) def read_memory(self, addr, transfer_size=32, now=True): return self.ap.read_memory(addr, transfer_size, True) def read_memory_block8(self, addr, size): return self.ap.read_memory_block8(addr, size) def write_memory_block8(self, addr, data): self.ap.write_memory_block8(addr, data) def write_memory_block32(self, addr, data): self.ap.write_memory_block32(addr, data) def read_memory_block32(self, addr, size): return self.ap.read_memory_block32(addr, size) def halt(self): pass def step(self, disable_interrupts=True, start=0, end=0): pass def reset(self, reset_type=None): pass def reset_and_halt(self, reset_type=None): self.reset(reset_type) def get_state(self): return Target.State.HALTED def get_security_state(self): return Target.SecurityState.NONSECURE def is_running(self): return self.get_state() == Target.State.RUNNING def is_halted(self): return self.get_state() == Target.State.HALTED def resume(self): pass def find_breakpoint(self, addr): return None def read_core_register(self, reg): return DEAD_VALUE def read_core_register_raw(self, reg): return DEAD_VALUE def read_core_registers_raw(self, reg_list): return [DEAD_VALUE] * len(reg_list) def write_core_register(self, reg, data): pass def write_core_register_raw(self, reg, data): pass def write_core_registers_raw(self, reg_list, data_list): pass def set_breakpoint(self, addr, type=Target.BreakpointType.AUTO): return False def remove_breakpoint(self, addr): pass def get_breakpoint_type(self, addr): return None def set_watchpoint(self, addr, size, type): return False def remove_watchpoint(self, addr, size, type): pass def set_vector_catch(self, enable_mask): pass def get_vector_catch(self): return 0 def get_halt_reason(self): return Target.HaltReason.DEBUG def get_target_context(self, core=None): return self._target_context def set_target_context(self, context): self._target_context = context def create_init_sequence(self): pass def mass_erase(self): pass
27.988166
91
0.689006
794e898e03edef3950620d38cc7fc74d97d83c85
52
py
Python
lib/networks/__init__.py
bertid/clean-pvnet
8e1afdfe450c7d73274581d2907ad0215cba8331
[ "Apache-2.0" ]
284
2019-12-14T08:09:40.000Z
2022-03-26T02:17:26.000Z
lib/networks/__init__.py
danikhani/clean-pvnet
4f91324c5bc9d2a05624f49c6cad15a33a446106
[ "Apache-2.0" ]
208
2019-12-16T13:09:49.000Z
2022-03-25T07:38:20.000Z
lib/networks/__init__.py
danikhani/clean-pvnet
4f91324c5bc9d2a05624f49c6cad15a33a446106
[ "Apache-2.0" ]
88
2019-12-14T12:33:51.000Z
2022-03-22T21:07:09.000Z
from .make_network import make_network, get_network
26
51
0.865385
794e8a542a4446ecbd75f8604ec31e76aa80142b
3,728
py
Python
src/trainModel.py
XiaominWuFred/autoGaming
9277f6d3c8508ef7c2fa187801b995469af3f3f5
[ "MIT" ]
null
null
null
src/trainModel.py
XiaominWuFred/autoGaming
9277f6d3c8508ef7c2fa187801b995469af3f3f5
[ "MIT" ]
null
null
null
src/trainModel.py
XiaominWuFred/autoGaming
9277f6d3c8508ef7c2fa187801b995469af3f3f5
[ "MIT" ]
null
null
null
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt import math from keras import Sequential from keras.layers import Dense, Flatten, Activation, Dropout, Conv2D, MaxPooling2D from PIL import Image import random def loadImgs(): Imgs = [] for i in range(1000): image = Image.open('../train/shang/'+str(i)+'.png') npImg = np.array(image) Imgs.append([npImg,0]) print('loading shang: '+str(i)) for i in range(1000): image = Image.open('../train/xia/'+str(i)+'.png') npImg = np.array(image) Imgs.append([npImg,1]) print('loading xia: '+str(i)) for i in range(1000): image = Image.open('../train/zuo/'+str(i)+'.png') npImg = np.array(image) Imgs.append([npImg,2]) print('loading zuo: '+str(i)) for i in range(1000): image = Image.open('../train/you/'+str(i)+'.png') npImg = np.array(image) Imgs.append([npImg,3]) print('loading you: '+str(i)) Imgs = np.array(Imgs) print(Imgs.shape) random.shuffle(Imgs) imgs = [] labels = [] for each in Imgs: imgs.append(each[0]) labels.append(each[1]) imgs = np.array(imgs) labels = np.array(labels) print(imgs.shape) print(labels) train_images = imgs[0:3600] train_labels = labels[0:3600] test_images = imgs[3600:] test_labels = labels[3600:] return (train_images, train_labels), (test_images, test_labels) # Download MNIST dataset. #mnist = keras.datasets.mnist #(train_images, train_labels), (test_images, test_labels) = mnist.load_data() (train_images, train_labels), (test_images, test_labels) = loadImgs() # Normalize the input image so that each pixel value is between 0 to 1. train_images = train_images / 255.0 test_images = test_images / 255.0 # Show the first 25 images in the training dataset. #show_sample(train_images, #['Label: %s' % label for label in train_labels]) conv_net = Sequential() conv_net.add(Conv2D(32, (3, 3), activation='relu', input_shape=(67,60,3))) #127, 134 # fully connected conv_net.add(MaxPooling2D(pool_size=(3, 3))) conv_net.add(Conv2D(64, (3, 3), activation='relu')) conv_net.add(Flatten()) conv_net.add(Dense(32, activation='relu', use_bias=True)) conv_net.add(Dense(16, activation='relu', use_bias=True)) conv_net.add(Dense(4, activation='softmax', use_bias=True)) #conv_net.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model = conv_net model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) train_images = np.array(train_images) train_images = train_images.reshape((train_images.shape[0],train_images.shape[1],train_images.shape[2],3)) model.fit(train_images, train_labels, epochs=50) test_images = np.array(test_images) test_images = test_images.reshape((test_images.shape[0],test_images.shape[1],test_images.shape[2],3)) test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) # Predict the labels of digit images in our test dataset. predictions = model.predict(test_images) # Convert Keras model to TF Lite format. converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Save the TF Lite model as file f = open('../models/shendu2.tflite', "wb") f.write(tflite_model) f.close() print('finished')
29.354331
107
0.650751
794e8b1c4fb03341588e5a060f664f0a42c55394
551
py
Python
rqalpha/mod/rqalpha_mod_sys_simulation/testing.py
jandykwan/rqalpha
1ed12adb5337ad81cb0c662a45ff4c787b4f3313
[ "Apache-2.0" ]
1
2019-04-22T14:29:24.000Z
2019-04-22T14:29:24.000Z
rqalpha/mod/rqalpha_mod_sys_simulation/testing.py
jandykwan/rqalpha
1ed12adb5337ad81cb0c662a45ff4c787b4f3313
[ "Apache-2.0" ]
2
2018-07-31T08:42:11.000Z
2019-05-07T10:25:52.000Z
rqalpha/mod/rqalpha_mod_sys_simulation/testing.py
jandykwan/rqalpha
1ed12adb5337ad81cb0c662a45ff4c787b4f3313
[ "Apache-2.0" ]
1
2021-11-03T15:42:57.000Z
2021-11-03T15:42:57.000Z
from rqalpha.utils.testing import EnvironmentFixture class SimulationEventSourceFixture(EnvironmentFixture): def __init__(self, *args, **kwargs): super(SimulationEventSourceFixture, self).__init__(*args, **kwargs) self.simulation_event_source = None def init_fixture(self): from rqalpha.mod.rqalpha_mod_sys_simulation.simulation_event_source import SimulationEventSource super(SimulationEventSourceFixture, self).init_fixture() self.simulation_event_source = SimulationEventSource(self.env)
39.357143
104
0.76588
794e8b48334faba064479a0a742ff5dc322b2964
4,046
py
Python
terra_sdk/protobuf/tendermint/crypto/keys_pb2.py
sejalsahni/terra.py
0fd84969441c58427a21448520697c3ab3ec2d0c
[ "MIT" ]
24
2021-05-30T05:48:33.000Z
2021-10-07T04:47:15.000Z
terra_sdk/protobuf/tendermint/crypto/keys_pb2.py
sejalsahni/terra.py
0fd84969441c58427a21448520697c3ab3ec2d0c
[ "MIT" ]
18
2021-05-30T09:05:26.000Z
2021-10-17T07:12:12.000Z
terra_sdk/protobuf/tendermint/crypto/keys_pb2.py
sejalsahni/terra.py
0fd84969441c58427a21448520697c3ab3ec2d0c
[ "MIT" ]
10
2021-02-11T00:56:04.000Z
2021-05-27T08:37:49.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: tendermint/crypto/keys.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from gogoproto import gogo_pb2 as gogoproto_dot_gogo__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="tendermint/crypto/keys.proto", package="tendermint.crypto", syntax="proto3", serialized_options=b"Z8github.com/tendermint/tendermint/proto/tendermint/crypto", create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1ctendermint/crypto/keys.proto\x12\x11tendermint.crypto\x1a\x14gogoproto/gogo.proto"D\n\tPublicKey\x12\x11\n\x07\x65\x64\x32\x35\x35\x31\x39\x18\x01 \x01(\x0cH\x00\x12\x13\n\tsecp256k1\x18\x02 \x01(\x0cH\x00:\x08\xe8\xa1\x1f\x01\xe8\xa0\x1f\x01\x42\x05\n\x03sumB:Z8github.com/tendermint/tendermint/proto/tendermint/cryptob\x06proto3', dependencies=[ gogoproto_dot_gogo__pb2.DESCRIPTOR, ], ) _PUBLICKEY = _descriptor.Descriptor( name="PublicKey", full_name="tendermint.crypto.PublicKey", filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name="ed25519", full_name="tendermint.crypto.PublicKey.ed25519", index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name="secp256k1", full_name="tendermint.crypto.PublicKey.secp256k1", index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=b"\350\241\037\001\350\240\037\001", is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="sum", full_name="tendermint.crypto.PublicKey.sum", index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[], ), ], serialized_start=73, serialized_end=141, ) _PUBLICKEY.oneofs_by_name["sum"].fields.append(_PUBLICKEY.fields_by_name["ed25519"]) _PUBLICKEY.fields_by_name["ed25519"].containing_oneof = _PUBLICKEY.oneofs_by_name["sum"] _PUBLICKEY.oneofs_by_name["sum"].fields.append(_PUBLICKEY.fields_by_name["secp256k1"]) _PUBLICKEY.fields_by_name["secp256k1"].containing_oneof = _PUBLICKEY.oneofs_by_name[ "sum" ] DESCRIPTOR.message_types_by_name["PublicKey"] = _PUBLICKEY _sym_db.RegisterFileDescriptor(DESCRIPTOR) PublicKey = _reflection.GeneratedProtocolMessageType( "PublicKey", (_message.Message,), { "DESCRIPTOR": _PUBLICKEY, "__module__": "tendermint.crypto.keys_pb2" # @@protoc_insertion_point(class_scope:tendermint.crypto.PublicKey) }, ) _sym_db.RegisterMessage(PublicKey) DESCRIPTOR._options = None _PUBLICKEY._options = None # @@protoc_insertion_point(module_scope)
33.163934
358
0.673752
794e8b5b383d76ea0028f0618501d048a461317c
2,421
py
Python
doc/source/conf.py
jamielennox/jsonhome
b886b7167a57370707473b0535e03d0356b40b3e
[ "Apache-2.0" ]
1
2016-08-01T13:08:36.000Z
2016-08-01T13:08:36.000Z
doc/source/conf.py
jamielennox/jsonhome
b886b7167a57370707473b0535e03d0356b40b3e
[ "Apache-2.0" ]
null
null
null
doc/source/conf.py
jamielennox/jsonhome
b886b7167a57370707473b0535e03d0356b40b3e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', ] # autodoc generation is a bit aggressive and a nuisance when doing heavy # text edit cycles. # execute "export SPHINX_DEBUG=1" in your terminal to disable # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'jsonhome' copyright = u'2015, Jamie Lennox' # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. # html_theme_path = ["."] # html_theme = '_theme' # html_static_path = ['static'] # Output file base name for HTML help builder. htmlhelp_basename = '%sdoc' % project # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', '%s.tex' % project, u'%s Documentation' % project, u'Jamie Lennox', 'manual'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
32.28
79
0.695993
794e8ba07ed5197e30226e9b074cfd8b8f9f210e
13,015
py
Python
nova/api/openstack/compute/simple_tenant_usage.py
hanlind/nova
658ade3aca1305e15c3b29dcced5f184159794cd
[ "Apache-2.0" ]
null
null
null
nova/api/openstack/compute/simple_tenant_usage.py
hanlind/nova
658ade3aca1305e15c3b29dcced5f184159794cd
[ "Apache-2.0" ]
11
2017-06-19T01:28:55.000Z
2017-06-23T02:01:47.000Z
nova/api/openstack/compute/simple_tenant_usage.py
hanlind/nova
658ade3aca1305e15c3b29dcced5f184159794cd
[ "Apache-2.0" ]
1
2020-07-22T22:06:24.000Z
2020-07-22T22:06:24.000Z
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import iso8601 from oslo_utils import timeutils import six import six.moves.urllib.parse as urlparse from webob import exc from nova.api.openstack import common from nova.api.openstack.compute.views import usages as usages_view from nova.api.openstack import extensions from nova.api.openstack import wsgi import nova.conf from nova import exception from nova.i18n import _ from nova import objects from nova.policies import simple_tenant_usage as stu_policies CONF = nova.conf.CONF ALIAS = "os-simple-tenant-usage" def parse_strtime(dstr, fmt): try: return timeutils.parse_strtime(dstr, fmt) except (TypeError, ValueError) as e: raise exception.InvalidStrTime(reason=six.text_type(e)) class SimpleTenantUsageController(wsgi.Controller): _view_builder_class = usages_view.ViewBuilder def _hours_for(self, instance, period_start, period_stop): launched_at = instance.launched_at terminated_at = instance.terminated_at if terminated_at is not None: if not isinstance(terminated_at, datetime.datetime): # NOTE(mriedem): Instance object DateTime fields are # timezone-aware so convert using isotime. terminated_at = timeutils.parse_isotime(terminated_at) if launched_at is not None: if not isinstance(launched_at, datetime.datetime): launched_at = timeutils.parse_isotime(launched_at) if terminated_at and terminated_at < period_start: return 0 # nothing if it started after the usage report ended if launched_at and launched_at > period_stop: return 0 if launched_at: # if instance launched after period_started, don't charge for first start = max(launched_at, period_start) if terminated_at: # if instance stopped before period_stop, don't charge after stop = min(period_stop, terminated_at) else: # instance is still running, so charge them up to current time stop = period_stop dt = stop - start return dt.total_seconds() / 3600.0 else: # instance hasn't launched, so no charge return 0 def _get_flavor(self, context, instance, flavors_cache): """Get flavor information from the instance object, allowing a fallback to lookup by-id for deleted instances only. """ try: return instance.get_flavor() except exception.NotFound: if not instance.deleted: # Only support the fallback mechanism for deleted instances # that would have been skipped by migration #153 raise flavor_type = instance.instance_type_id if flavor_type in flavors_cache: return flavors_cache[flavor_type] try: flavor_ref = objects.Flavor.get_by_id(context, flavor_type) flavors_cache[flavor_type] = flavor_ref except exception.FlavorNotFound: # can't bill if there is no flavor flavor_ref = None return flavor_ref def _tenant_usages_for_period(self, context, period_start, period_stop, tenant_id=None, detailed=True, limit=None, marker=None): instances = objects.InstanceList.get_active_by_window_joined( context, period_start, period_stop, tenant_id, expected_attrs=['flavor'], limit=limit, marker=marker) rval = {} flavors = {} all_server_usages = [] for instance in instances: info = {} info['hours'] = self._hours_for(instance, period_start, period_stop) flavor = self._get_flavor(context, instance, flavors) if not flavor: info['flavor'] = '' else: info['flavor'] = flavor.name info['instance_id'] = instance.uuid info['name'] = instance.display_name info['tenant_id'] = instance.project_id try: info['memory_mb'] = instance.flavor.memory_mb info['local_gb'] = (instance.flavor.root_gb + instance.flavor.ephemeral_gb) info['vcpus'] = instance.flavor.vcpus except exception.InstanceNotFound: # This is rare case, instance disappear during analysis # As it's just info collection, we can try next one continue # NOTE(mriedem): We need to normalize the start/end times back # to timezone-naive so the response doesn't change after the # conversion to objects. info['started_at'] = timeutils.normalize_time(instance.launched_at) info['ended_at'] = ( timeutils.normalize_time(instance.terminated_at) if instance.terminated_at else None) if info['ended_at']: info['state'] = 'terminated' else: info['state'] = instance.vm_state now = timeutils.utcnow() if info['state'] == 'terminated': delta = info['ended_at'] - info['started_at'] else: delta = now - info['started_at'] info['uptime'] = int(delta.total_seconds()) if info['tenant_id'] not in rval: summary = {} summary['tenant_id'] = info['tenant_id'] if detailed: summary['server_usages'] = [] summary['total_local_gb_usage'] = 0 summary['total_vcpus_usage'] = 0 summary['total_memory_mb_usage'] = 0 summary['total_hours'] = 0 summary['start'] = timeutils.normalize_time(period_start) summary['stop'] = timeutils.normalize_time(period_stop) rval[info['tenant_id']] = summary summary = rval[info['tenant_id']] summary['total_local_gb_usage'] += info['local_gb'] * info['hours'] summary['total_vcpus_usage'] += info['vcpus'] * info['hours'] summary['total_memory_mb_usage'] += (info['memory_mb'] * info['hours']) summary['total_hours'] += info['hours'] all_server_usages.append(info) if detailed: summary['server_usages'].append(info) return list(rval.values()), all_server_usages def _parse_datetime(self, dtstr): if not dtstr: value = timeutils.utcnow() elif isinstance(dtstr, datetime.datetime): value = dtstr else: for fmt in ["%Y-%m-%dT%H:%M:%S", "%Y-%m-%dT%H:%M:%S.%f", "%Y-%m-%d %H:%M:%S.%f"]: try: value = parse_strtime(dtstr, fmt) break except exception.InvalidStrTime: pass else: msg = _("Datetime is in invalid format") raise exception.InvalidStrTime(reason=msg) # NOTE(mriedem): Instance object DateTime fields are timezone-aware # so we have to force UTC timezone for comparing this datetime against # instance object fields and still maintain backwards compatibility # in the API. if value.utcoffset() is None: value = value.replace(tzinfo=iso8601.iso8601.Utc()) return value def _get_datetime_range(self, req): qs = req.environ.get('QUERY_STRING', '') env = urlparse.parse_qs(qs) # NOTE(lzyeval): env.get() always returns a list period_start = self._parse_datetime(env.get('start', [None])[0]) period_stop = self._parse_datetime(env.get('end', [None])[0]) if not period_start < period_stop: msg = _("Invalid start time. The start time cannot occur after " "the end time.") raise exc.HTTPBadRequest(explanation=msg) detailed = env.get('detailed', ['0'])[0] == '1' return (period_start, period_stop, detailed) @wsgi.Controller.api_version("2.40") @extensions.expected_errors(400) def index(self, req): """Retrieve tenant_usage for all tenants.""" return self._index(req, links=True) @wsgi.Controller.api_version("2.1", "2.39") # noqa @extensions.expected_errors(400) def index(self, req): """Retrieve tenant_usage for all tenants.""" return self._index(req) @wsgi.Controller.api_version("2.40") @extensions.expected_errors(400) def show(self, req, id): """Retrieve tenant_usage for a specified tenant.""" return self._show(req, id, links=True) @wsgi.Controller.api_version("2.1", "2.39") # noqa @extensions.expected_errors(400) def show(self, req, id): """Retrieve tenant_usage for a specified tenant.""" return self._show(req, id) def _index(self, req, links=False): context = req.environ['nova.context'] context.can(stu_policies.POLICY_ROOT % 'list') try: (period_start, period_stop, detailed) = self._get_datetime_range( req) except exception.InvalidStrTime as e: raise exc.HTTPBadRequest(explanation=e.format_message()) now = timeutils.parse_isotime(timeutils.utcnow().isoformat()) if period_stop > now: period_stop = now marker = None limit = CONF.api.max_limit if links: limit, marker = common.get_limit_and_marker(req) try: usages, server_usages = self._tenant_usages_for_period( context, period_start, period_stop, detailed=detailed, limit=limit, marker=marker) except exception.MarkerNotFound as e: raise exc.HTTPBadRequest(explanation=e.format_message()) tenant_usages = {'tenant_usages': usages} if links: usages_links = self._view_builder.get_links(req, server_usages) if usages_links: tenant_usages['tenant_usages_links'] = usages_links return tenant_usages def _show(self, req, id, links=False): tenant_id = id context = req.environ['nova.context'] context.can(stu_policies.POLICY_ROOT % 'show', {'project_id': tenant_id}) try: (period_start, period_stop, ignore) = self._get_datetime_range( req) except exception.InvalidStrTime as e: raise exc.HTTPBadRequest(explanation=e.format_message()) now = timeutils.parse_isotime(timeutils.utcnow().isoformat()) if period_stop > now: period_stop = now marker = None limit = CONF.api.max_limit if links: limit, marker = common.get_limit_and_marker(req) try: usage, server_usages = self._tenant_usages_for_period( context, period_start, period_stop, tenant_id=tenant_id, detailed=True, limit=limit, marker=marker) except exception.MarkerNotFound as e: raise exc.HTTPBadRequest(explanation=e.format_message()) if len(usage): usage = list(usage)[0] else: usage = {} tenant_usage = {'tenant_usage': usage} if links: usages_links = self._view_builder.get_links( req, server_usages, tenant_id=tenant_id) if usages_links: tenant_usage['tenant_usage_links'] = usages_links return tenant_usage class SimpleTenantUsage(extensions.V21APIExtensionBase): """Simple tenant usage extension.""" name = "SimpleTenantUsage" alias = ALIAS version = 1 def get_resources(self): resources = [] res = extensions.ResourceExtension(ALIAS, SimpleTenantUsageController()) resources.append(res) return resources def get_controller_extensions(self): return []
36.558989
79
0.594622
794e8be7b16a15df9dac4aeeb3260af74c7f8925
411
py
Python
.history/py/UserInput_20201230130306.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/py/UserInput_20201230130306.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
.history/py/UserInput_20201230130306.py
minefarmer/Comprehensive-Python
f97b9b83ec328fc4e4815607e6a65de90bb8de66
[ "Unlicense" ]
null
null
null
# person = input("Enter your name: ") # Carl # print("Hello ", person) # Hello Carl # x = input("Enter a number: ") # 8 # y = input("Enter another number: ") # 7 # z = x + y # print(z) # 87 ## this was the result of concatenation person = input("Enter your name: ") # print("Hello ", person) x = input("Enter a number: ") # 8 y = input("Enter another number: ") # 7 z = print(int(x) +int(y))
21.631579
58
0.576642
794e8cbdb82c51c415bad4fcef252a278b27865c
40,415
py
Python
sx/pisa3/pisa_context.py
kravciuk/pisa
39a7e9379cf059f11fea54127c8bfb242ad477e6
[ "Apache-2.0" ]
null
null
null
sx/pisa3/pisa_context.py
kravciuk/pisa
39a7e9379cf059f11fea54127c8bfb242ad477e6
[ "Apache-2.0" ]
null
null
null
sx/pisa3/pisa_context.py
kravciuk/pisa
39a7e9379cf059f11fea54127c8bfb242ad477e6
[ "Apache-2.0" ]
1
2021-06-10T20:46:31.000Z
2021-06-10T20:46:31.000Z
# -*- coding: utf-8 -*- # Copyright 2010 Dirk Holtwick, holtwick.it # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __reversion__ = "$Revision: 20 $" __author__ = "$Author: holtwick $" __date__ = "$Date: 2007-10-09 12:58:24 +0200 (Di, 09 Okt 2007) $" from pisa_util import * from pisa_reportlab import * import pisa_default import pisa_parser import re import urlparse import types from reportlab.platypus.paraparser import ParaParser, ParaFrag, ps2tt, tt2ps, ABag from reportlab.platypus.paragraph import cleanBlockQuotedText from reportlab.lib.styles import ParagraphStyle import reportlab.rl_config reportlab.rl_config.warnOnMissingFontGlyphs = 0 from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.lib.fonts import addMapping from sx.w3c import css, cssDOMElementInterface from html5lib.sanitizer import * import logging log = logging.getLogger("ho.pisa") sizeDelta = 2 # amount to reduce font size by for super and sub script subFraction = 0.4 # fraction of font size that a sub script should be lowered superFraction = 0.4 NBSP = u"\u00a0" def clone(self, **kwargs): n = ParaFrag(**self.__dict__) if kwargs: d = n.__dict__ d.update(kwargs) # This else could cause trouble in Paragraphs with images etc. if "cbDefn" in d: del d["cbDefn"] n.bulletText = None return n ParaFrag.clone = clone def getParaFrag(style): frag = ParaFrag() frag.sub = 0 frag.super = 0 frag.rise = 0 frag.underline = 0 # XXX Need to be able to set color to fit CSS tests frag.strike = 0 frag.greek = 0 frag.link = None frag.text = "" # frag.lineBreak = 0 #if bullet: # frag.fontName, frag.bold, frag.italic = ps2tt(style.bulletFontName) # frag.fontSize = style.bulletFontSize # frag.textColor = hasattr(style,'bulletColor') and style.bulletColor or style.textColor #else: frag.fontName = "Times-Roman" frag.fontName, frag.bold, frag.italic = ps2tt(style.fontName) frag.fontSize = style.fontSize frag.textColor = style.textColor # Extras frag.leading = 0 frag.leadingSource = "150%" frag.leadingSpace = 0 frag.backColor = None frag.spaceBefore = 0 frag.spaceAfter = 0 frag.leftIndent = 0 frag.rightIndent = 0 frag.firstLineIndent = 0 frag.keepWithNext = False frag.alignment = TA_LEFT frag.vAlign = None frag.borderWidth = 1 frag.borderStyle = None frag.borderPadding = 0 frag.borderColor = None frag.borderLeftWidth = frag.borderWidth frag.borderLeftColor = frag.borderColor frag.borderLeftStyle = frag.borderStyle frag.borderRightWidth = frag.borderWidth frag.borderRightColor = frag.borderColor frag.borderRightStyle = frag.borderStyle frag.borderTopWidth = frag.borderWidth frag.borderTopColor = frag.borderColor frag.borderTopStyle = frag.borderStyle frag.borderBottomWidth = frag.borderWidth frag.borderBottomColor = frag.borderColor frag.borderBottomStyle = frag.borderStyle frag.paddingLeft = 0 frag.paddingRight = 0 frag.paddingTop = 0 frag.paddingBottom = 0 frag.listStyleType = None frag.listStyleImage = None frag.whiteSpace = "normal" frag.pageNumber = False frag.height = None frag.width = None frag.bulletIndent = 0 frag.bulletText = None frag.bulletFontName = "Helvetica" frag.zoom = 1.0 frag.outline = False frag.outlineLevel = 0 frag.outlineOpen = False frag.keepInFrameMode = "shrink" #frag.keepInFrameMaxWidth = None #frag.keepInFrameMaxHeight = None frag.insideStaticFrame = 0 return frag def getDirName(path): if path and not (path.lower().startswith("http:") or path.lower().startswith("https:")): return os.path.dirname(os.path.abspath(path)) return path class pisaCSSBuilder(css.CSSBuilder): def atFontFace(self, declarations): " Embed fonts " result = self.ruleset([self.selector('*')], declarations) # print "@FONT-FACE", declarations, result try: data = result[0].values()[0] names = data["font-family"] # Font weight fweight = str(data.get("font-weight", "normal")).lower() bold = fweight in ("bold", "bolder", "500", "600", "700", "800", "900") if not bold and fweight <> "normal": log.warn(self.c.warning("@fontface, unknown value font-weight '%s'", fweight)) # Font style italic = str(data.get("font-style", "")).lower() in ("italic", "oblique") src = self.c.getFile(data["src"]) self.c.loadFont( names, src, bold=bold, italic=italic) except Exception, e: log.warn(self.c.warning("@fontface"), exc_info=1) return {}, {} def _pisaDimensions(self, data, width, height): " Calculate dimensions of a box " # print data, width, height box = data.get("-pdf-frame-box", []) # print 123, box if len(box) == 4: return [getSize(x) for x in box] top = getSize(data.get("top", 0), height) left = getSize(data.get("left", 0), width) bottom = - getSize(data.get("bottom", 0), height) right = - getSize(data.get("right", 0), width) w = getSize(data.get("width", 0), width, default=None) h = getSize(data.get("height", 0), height, default=None) #print width, height, top, left, bottom, right, w, h if "height" in data: if "bottom" in data: top = bottom - h else: bottom = top + h if "width" in data: if "right" in data: # print right, w left = right - w else: right = left + w top += getSize(data.get("margin-top", 0), height) left += getSize(data.get("margin-left", 0), width) bottom -= getSize(data.get("margin-bottom", 0), height) right -= getSize(data.get("margin-right", 0), width) # box = getCoords(left, top, width, height, self.c.pageSize) # print "BOX", box # print top, left, w, h return left, top, right, bottom def _pisaAddFrame(self, name, data, first=False, border=None, size=(0,0)): c = self.c if not name: name = "-pdf-frame-%d" % c.UID() x, y, w, h = self._pisaDimensions(data, size[0], size[1]) # print name, x, y, w, h #if not (w and h): # return None if first: return ( name, None, data.get("-pdf-frame-border", border), x, y, w, h) return ( name, data.get("-pdf-frame-content", None), data.get("-pdf-frame-border", border), x, y, w, h) def atPage(self, name, pseudopage, declarations): try: c = self.c data = {} name = name or "body" pageBorder = None if declarations: result = self.ruleset([self.selector('*')], declarations) # print "@PAGE", name, pseudopage, declarations, result if declarations: data = result[0].values()[0] pageBorder = data.get("-pdf-frame-border", None) if c.templateList.has_key(name): log.warn(self.c.warning("template '%s' has already been defined", name)) if data.has_key("-pdf-page-size"): c.pageSize = pisa_default.PML_PAGESIZES.get(str(data["-pdf-page-size"]).lower(), c.pageSize) if data.has_key("size"): size = data["size"] # print size, c.pageSize if type(size) is not types.ListType: size = [size] isLandscape = False sizeList = [] for value in size: valueStr = str(value).lower() if type(value) is types.TupleType: sizeList.append(getSize(value)) elif valueStr == "landscape": isLandscape = True elif pisa_default.PML_PAGESIZES.has_key(valueStr): c.pageSize = pisa_default.PML_PAGESIZES[valueStr] else: log.warn(c.warning("Unknown size value for @page")) if len(sizeList) == 2: c.pageSize = sizeList if isLandscape: c.pageSize = landscape(c.pageSize) for prop in [ "margin-top", "margin-left", "margin-right", "margin-bottom", "top", "left", "right", "bottom", "width", "height" ]: if data.has_key(prop): c.frameList.append(self._pisaAddFrame(name, data, first=True, border=pageBorder, size=c.pageSize)) break # self._drawing = PmlPageDrawing(self._pagesize) #if not c.frameList: # c.warning("missing frame definitions for template") # return {}, {} # Frames have to be calculated after we know the pagesize frameList = [] staticList = [] for fname, static, border, x, y, w, h in c.frameList: x, y, w, h = getCoords(x, y, w, h, c.pageSize) if w <= 0 or h <= 0: log.warn(self.c.warning("Negative width or height of frame. Check @frame definitions.")) frame = Frame( x, y, w, h, id=fname, leftPadding=0, rightPadding=0, bottomPadding=0, topPadding=0, showBoundary=border or pageBorder) if static: frame.pisaStaticStory = [] c.frameStatic[static] = [frame] + c.frameStatic.get(static, []) staticList.append(frame) else: frameList.append(frame) background = data.get("background-image", None) if background: background = self.c.getFile(background) # print background # print frameList if not frameList: # print 999 log.warn(c.warning("missing explicit frame definition for content or just static frames")) fname, static, border, x, y, w, h = self._pisaAddFrame(name, data, first=True, border=pageBorder, size=c.pageSize) x, y, w, h = getCoords(x, y, w, h, c.pageSize) if w <= 0 or h <= 0: log.warn(c.warning("Negative width or height of frame. Check @page definitions.")) frameList.append(Frame( x, y, w, h, id=fname, leftPadding=0, rightPadding=0, bottomPadding=0, topPadding=0, showBoundary=border or pageBorder)) pt = PmlPageTemplate( id=name, frames=frameList, pagesize=c.pageSize, ) pt.pisaStaticList = staticList pt.pisaBackground = background pt.pisaBackgroundList = c.pisaBackgroundList # self._pagesize) # pt.pml_statics = self._statics # pt.pml_draw = self._draw # pt.pml_drawing = self._drawing # pt.pml_background = attrs.background # pt.pml_bgstory = self._bgstory c.templateList[name] = pt c.template = None c.frameList = [] c.frameStaticList = [] except Exception, e: log.warn(self.c.warning("@page"), exc_info=1) return {}, {} def atFrame(self, name, declarations): if declarations: result = self.ruleset([self.selector('*')], declarations) # print "@BOX", name, declarations, result try: data = result[0] if data: data = data.values()[0] self.c.frameList.append( self._pisaAddFrame( name, data, size=self.c.pageSize)) except Exception, e: log.warn(self.c.warning("@frame"), exc_info=1) return {}, {} class pisaCSSParser(css.CSSParser): def parseExternal(self, cssResourceName): # print "@import", self.rootPath, cssResourceName oldRootPath = self.rootPath cssFile = self.c.getFile(cssResourceName, relative=self.rootPath) result = [] if not cssFile: return None if self.rootPath and (self.rootPath.startswith("http:") or self.rootPath.startswith("https:")): self.rootPath = urlparse.urljoin(self.rootPath, cssResourceName) else: self.rootPath = getDirName(cssFile.uri) # print "###", self.rootPath result = self.parse(cssFile.getData()) self.rootPath = oldRootPath return result class pisaContext: """ Helper class for creation of reportlab story and container for varoius data. """ def __init__(self, path, debug=0, capacity=-1): self.fontList = copy.copy(pisa_default.DEFAULT_FONT) self.path = [] self.capacity=capacity self.node = None self.toc = PmlTableOfContents() self.story = [] self.text = [] self.log = [] self.err = 0 self.warn = 0 self.text = u"" self.uidctr = 0 self.multiBuild = False self.pageSize = A4 self.template = None self.templateList = {} self.frameList = [] self.frameStatic = {} self.frameStaticList = [] self.pisaBackgroundList = [] self.baseFontSize = getSize("12pt") self.anchorFrag = [] self.anchorName = [] self.tableData = None self.frag = self.fragBlock = getParaFrag(ParagraphStyle('default%d' % self.UID())) self.fragList = [] self.fragAnchor = [] self.fragStack = [] self.fragStrip = True self.listCounter = 0 self.cssText = "" self.image = None self.imageData = {} self.force = False self.pathCallback = None # External callback function for path calculations # Store path to document self.pathDocument = path or "__dummy__" if not (self.pathDocument.lower().startswith("http:") or self.pathDocument.lower().startswith("https:")): self.pathDocument = os.path.abspath(self.pathDocument) self.pathDirectory = getDirName(self.pathDocument) self.meta = dict( author="", title="", subject="", keywords="", pagesize=A4, ) def UID(self): self.uidctr += 1 return self.uidctr # METHODS FOR CSS def addCSS(self, value): value = value.strip() if value.startswith("<![CDATA["): value = value[9: - 3] if value.startswith("<!--"): value = value[4: - 3] self.cssText += value.strip() + "\n" def parseCSS(self): #print repr(self.cssText) # self.debug(9, self.cssText) # XXX Must be handled in a better way! #self.cssText = self.cssText.replace("<!--", "\n") #self.cssText = self.cssText.replace("-->", "\n") #self.cssText = self.cssText.replace("<![CDATA[", "\n") #self.cssText = self.cssText.replace("]]>", "\n") #self.debug(9, self.cssText) # print repr(self.cssText) # file("pisa.css", "wb").write(self.cssText.encode("utf8")) # self.cssText = re.compile(r"url\((.*?\))", re.M).sub('"\1"', self.cssText) # self.cssText = re.compile(r"\-moz\-.*?([\;\}]+)", re.M).sub(r"\1", self.cssText) # XXX Import has to be implemented! # self.cssText = re.compile(r"\@import.*;", re.M).sub("", self.cssText) # if 0: # try: # # Sanitize CSS # import cssutils # import logging # cssutils.log.setlog(logging.getLogger('csslog')) # cssutils.log.setloglevel(logging.DEBUG) # sheet = cssutils.parseString(self.cssText) # self.cssText = sheet.cssText # #err = csslog.getvalue() # except ImportError, e: # pass # except Exception, e: # log.exception(self.error("Error parsing CSS by cssutils")) # print self.cssText # file("pisa-sanitized.css", "w").write(self.cssText.encode("utf8")) # print self.cssText self.cssBuilder = pisaCSSBuilder(mediumSet=["all", "print", "pdf"]) self.cssBuilder.c = self self.cssParser = pisaCSSParser(self.cssBuilder) self.cssParser.rootPath = self.pathDirectory self.cssParser.c = self self.css = self.cssParser.parse(self.cssText) self.cssCascade = css.CSSCascadeStrategy(self.css) self.cssCascade.parser = self.cssParser # METHODS FOR STORY def addStory(self, data): self.story.append(data) def swapStory(self, story=[]): self.story, story = copy.copy(story), copy.copy(self.story) return story def toParagraphStyle(self, first): style = ParagraphStyle('default%d' % self.UID(), keepWithNext=first.keepWithNext) style.fontName = first.fontName style.fontSize = first.fontSize style.leading = max(first.leading + first.leadingSpace, first.fontSize * 1.25) style.backColor = first.backColor style.spaceBefore = first.spaceBefore style.spaceAfter = first.spaceAfter style.leftIndent = first.leftIndent style.rightIndent = first.rightIndent style.firstLineIndent = first.firstLineIndent style.textColor = first.textColor style.alignment = first.alignment style.bulletFontName = first.bulletFontName or first.fontName style.bulletFontSize = first.fontSize style.bulletIndent = first.bulletIndent # Border handling for Paragraph # Transfer the styles for each side of the border, *not* the whole # border values that reportlab supports. We'll draw them ourselves in # PmlParagraph. style.borderTopStyle = first.borderTopStyle style.borderTopWidth = first.borderTopWidth style.borderTopColor = first.borderTopColor style.borderBottomStyle = first.borderBottomStyle style.borderBottomWidth = first.borderBottomWidth style.borderBottomColor = first.borderBottomColor style.borderLeftStyle = first.borderLeftStyle style.borderLeftWidth = first.borderLeftWidth style.borderLeftColor = first.borderLeftColor style.borderRightStyle = first.borderRightStyle style.borderRightWidth = first.borderRightWidth style.borderRightColor = first.borderRightColor # If no border color is given, the text color is used (XXX Tables!) if (style.borderTopColor is None) and style.borderTopWidth: style.borderTopColor = first.textColor if (style.borderBottomColor is None) and style.borderBottomWidth: style.borderBottomColor = first.textColor if (style.borderLeftColor is None) and style.borderLeftWidth: style.borderLeftColor = first.textColor if (style.borderRightColor is None) and style.borderRightWidth: style.borderRightColor = first.textColor style.borderPadding = first.borderPadding style.paddingTop = first.paddingTop style.paddingBottom = first.paddingBottom style.paddingLeft = first.paddingLeft style.paddingRight = first.paddingRight # This is the old code replaced by the above, kept for reference #style.borderWidth = 0 #if getBorderStyle(first.borderTopStyle): # style.borderWidth = max(first.borderLeftWidth, first.borderRightWidth, first.borderTopWidth, first.borderBottomWidth) # style.borderPadding = first.borderPadding # + first.borderWidth # style.borderColor = first.borderTopColor # # If no border color is given, the text color is used (XXX Tables!) # if (style.borderColor is None) and style.borderWidth: # style.borderColor = first.textColor style.fontName = tt2ps(first.fontName, first.bold, first.italic) return style def addTOC(self): # style = copy.deepcopy(self.toParagraphStyle(self.fragBlock)) #cssAttrs = copy.deepcopy(self.node.cssAttrs) #frag = copy.deepcopy(self.frag) styles = [] for i in range(0, 20): self.node.attributes["class"] = "pdftoclevel%d" % i #self.node.cssAttrs = copy.deepcopy(cssAttrs) #self.frag = copy.deepcopy(frag) self.cssAttr = pisa_parser.CSSCollect(self.node, self) pisa_parser.CSS2Frag(self, { "margin-top": 0, "margin-bottom": 0, "margin-left": 0, "margin-right": 0, }, True) pstyle = self.toParagraphStyle(self.frag) #styles.append(copy.deepcopy(pstyle)) styles.append(pstyle) # log.warn("%r", self.fragBlock.textColor) self.toc.levelStyles = styles self.addStory(self.toc) def dumpPara(self, frags, style): return print "%s/%s %s *** PARA" % (style.fontSize, style.leading, style.fontName) for frag in frags: print "%s/%s %r %r" % ( frag.fontSize, frag.leading, getattr(frag, "cbDefn", None), frag.text) print def addPara(self, force=False): # print self.force, repr(self.text) force = (force or self.force) self.force = False # Cleanup the trail try: rfragList = reversed(self.fragList) except: # For Python 2.3 compatibility rfragList = copy.copy(self.fragList) rfragList.reverse() #for frag in rfragList: # frag.text = frag.text.rstrip() # if frag.text: # break # Find maximum lead maxLeading = 0 #fontSize = 0 for frag in self.fragList: leading = getSize(frag.leadingSource, frag.fontSize) + frag.leadingSpace maxLeading = max(leading, frag.fontSize + frag.leadingSpace, maxLeading) frag.leading = leading if force or (self.text.strip() and self.fragList): # Strip trailing whitespaces #for f in self.fragList: # f.text = f.text.lstrip() # if f.text: # break #self.fragList[-1].lineBreak = self.fragList[-1].text.rstrip() # Update paragraph style by style of first fragment first = self.fragBlock style = self.toParagraphStyle(first) # style.leading = first.leading + first.leadingSpace if first.leadingSpace: style.leading = maxLeading else: style.leading = getSize(first.leadingSource, first.fontSize) + first.leadingSpace # style.leading = maxLeading # + first.leadingSpace #style.fontSize = fontSize # borderRadius: None, # print repr(self.text.strip()), style.leading, "".join([repr(x.text) for x in self.fragList]) # print first.leftIndent, first.listStyleType,repr(self.text) bulletText = copy.copy(first.bulletText) first.bulletText = None # Add paragraph to story if force or len(self.fragAnchor + self.fragList) > 0: # We need this empty fragment to work around problems in # Reportlab paragraphs regarding backGround etc. if self.fragList: self.fragList.append(self.fragList[ - 1].clone(text='')) else: blank = self.frag.clone() blank.fontName = "Helvetica" blank.text = '' self.fragList.append(blank) self.dumpPara(self.fragAnchor + self.fragList, style) para = PmlParagraph( self.text, style, frags=self.fragAnchor + self.fragList, bulletText=bulletText) # Mirrored and BIDI #import unicodedata #for c in self.text: # print unicodedata.bidirectional(c), para.outline = first.outline para.outlineLevel = first.outlineLevel para.outlineOpen = first.outlineOpen para.keepWithNext = first.keepWithNext para.autoLeading = "max" if self.image: para = PmlParagraphAndImage( para, self.image, side=self.imageData.get("align", "left")) self.addStory(para) self.fragAnchor = [] first.bulletText = None # Reset data self.image = None self.imageData = {} self.clearFrag() # METHODS FOR FRAG def clearFrag(self): self.fragList = [] self.fragStrip = True self.text = u"" def copyFrag(self, **kw): return self.frag.clone(**kw) def newFrag(self, **kw): self.frag = self.frag.clone(**kw) return self.frag def _appendFrag(self, frag): if frag.link and frag.link.startswith("#"): self.anchorFrag.append((frag, frag.link[1:])) self.fragList.append(frag) # XXX Argument frag is useless! def addFrag(self, text="", frag=None): frag = baseFrag = self.frag.clone() # if sub and super are both on they will cancel each other out if frag.sub == 1 and frag.super == 1: frag.sub = 0 frag.super = 0 # XXX Has to be replaced by CSS styles like vertical-align and font-size if frag.sub: frag.rise = - frag.fontSize * subFraction frag.fontSize = max(frag.fontSize - sizeDelta, 3) elif frag.super: frag.rise = frag.fontSize * superFraction frag.fontSize = max(frag.fontSize - sizeDelta, 3) # XXX Unused? #if frag.greek: # frag.fontName = 'symbol' # text = _greekConvert(text) # bold, italic, and underline frag.fontName = frag.bulletFontName = tt2ps(frag.fontName, frag.bold, frag.italic) # print frag.bulletFontName # Modify text for optimal whitespace handling # XXX Support Unicode whitespaces? # XXX What about images? # XXX Doesn't work with Reportlab > 2.1 # NBSP = '\xc2\xa0' # u"_" #if REPORTLAB22: # NBSP = u" " # Replace &shy; with empty and normalize NBSP text = (text .replace(u"\xad", u"") .replace(u"\xc2\xa0", NBSP) .replace(u"\xa0", NBSP)) # log.debug("> %r", text) if frag.whiteSpace == "pre": # Handle by lines for text in re.split(r'(\r\n|\n|\r)', text): # This is an exceptionally expensive piece of code self.text += text if ("\n" in text) or ("\r" in text): # If EOL insert a linebreak frag = baseFrag.clone() frag.text = "" frag.lineBreak = 1 self._appendFrag(frag) else: # Handle tabs in a simple way text = text.replace(u"\t", 8 * u" ") # Somehow for Reportlab NBSP have to be inserted # as single character fragments for text in re.split(r'(\ )', text): frag = baseFrag.clone() if text == " ": text = NBSP frag.text = text self._appendFrag(frag) else: for text in re.split(u'(' + NBSP + u')', text): frag = baseFrag.clone() if text == NBSP: self.force = True frag.text = NBSP self.text += text self._appendFrag(frag) else: frag.text = " ".join(("x" + text + "x").split())[1: - 1] if self.fragStrip: frag.text = frag.text.lstrip() if frag.text: self.fragStrip = False self.text += frag.text self._appendFrag(frag) # print frag.fontName, repr(frag.text), frag.bulletText def pushFrag(self): self.fragStack.append(self.frag) self.newFrag() def pullFrag(self): self.frag = self.fragStack.pop() # XXX def _getFragment(self, l=20): try: return repr(" ".join(self.node.toxml().split()[:l])) except: return "" def _getLineNumber(self): return 0 def context(self, msg): return "%s\n%s" % ( str(msg), self._getFragment(50)) # return "line %s: %s\n%s" % ( # self._getLineNumber(), # str(msg), # self._getFragment(50)) def warning(self, msg, *args): self.warn += 1 self.log.append((pisa_default.PML_WARNING, self._getLineNumber(), str(msg), self._getFragment(50))) try: return self.context(msg % args) except: return self.context(msg) def error(self, msg, *args): self.err += 1 self.log.append((pisa_default.PML_ERROR, self._getLineNumber(), str(msg), self._getFragment(50))) try: return self.context(msg % args) except: return self.context(msg) # UTILS def _getFileDeprecated(self, name, relative): try: if name.startswith("data:"): return name path = relative or self.pathDirectory if self.pathCallback is not None: nv = self.pathCallback(name, relative) else: if path is None: log.warn("Could not find main directory for getting filename. Use CWD") path = os.getcwd() nv = os.path.normpath(os.path.join(path, name)) if not(nv and os.path.isfile(nv)): nv = None if nv is None: log.warn(self.warning("File '%s' does not exist", name)) return nv except: log.warn(self.warning("getFile %r %r %r", name, relative, path), exc_info=1) def getFile(self, name, relative=None): """ Returns a file name or None """ if self.pathCallback is not None: return getFile(self._getFileDeprecated(name, relative)) return getFile(name, relative or self.pathDirectory) def getFontName(self, names, default="helvetica"): """ Name of a font """ # print names, self.fontList if type(names) is not types.ListType: names = str(names).strip().split(",") for name in names: font = self.fontList.get(str(name).strip().lower(), None) if font is not None: return font return self.fontList.get(default, None) def registerFont(self, fontname, alias=[]): self.fontList[str(fontname).lower()] = str(fontname) for a in alias: self.fontList[str(a)] = str(fontname) def loadFont(self, names, src, encoding="WinAnsiEncoding", bold=0, italic=0): # XXX Just works for local filenames! if names and src: # and src.local: file = src src = file.uri log.debug("Load font %r", src) if type(names) is types.ListType: fontAlias = names else: fontAlias = [x.lower().strip() for x in names.split(",") if x] # XXX Problems with unicode here fontAlias = [str(x) for x in fontAlias] fontName = fontAlias[0] parts = src.split(".") baseName, suffix = ".".join(parts[: - 1]), parts[ - 1] suffix = suffix.lower() try: if suffix == "ttf": # determine full font name according to weight and style fullFontName = "%s_%d%d" % (fontName, bold, italic) # check if font has already been registered if fullFontName in self.fontList: log.warn(self.warning("Repeated font embed for %s, skip new embed ", fullFontName)) else: # Register TTF font and special name filename = file.getNamedFile() pdfmetrics.registerFont(TTFont(fullFontName, filename)) # Add or replace missing styles for bold in (0, 1): for italic in (0, 1): if ("%s_%d%d" % (fontName, bold, italic)) not in self.fontList: addMapping(fontName, bold, italic, fullFontName) # Register "normal" name and the place holder for style self.registerFont(fontName, fontAlias + [fullFontName]) elif suffix in ("afm", "pfb"): if suffix == "afm": afm = file.getNamedFile() tfile = pisaFileObject(baseName + ".pfb") pfb = tfile.getNamedFile() else: pfb = file.getNamedFile() tfile = pisaFileObject(baseName + ".afm") afm = tfile.getNamedFile() #afm = baseName + ".afm" #pfb = baseName + ".pfb" # determine full font name according to weight and style fullFontName = "%s_%d%d" % (fontName, bold, italic) #fontNameOriginal = "" #for line in open(afm).readlines()[:-1]: # if line[:16] == 'StartCharMetrics': # self.error("Font name not found") # if line[:8] == 'FontName': # fontNameOriginal = line[9:].strip() # break # check if font has already been registered if fullFontName in self.fontList: log.warn(self.warning("Repeated font embed for %s, skip new embed", fontName)) else: # Include font face = pdfmetrics.EmbeddedType1Face(afm, pfb) fontNameOriginal = face.name pdfmetrics.registerTypeFace(face) # print fontName, fontNameOriginal, fullFontName justFont = pdfmetrics.Font(fullFontName, fontNameOriginal, encoding) pdfmetrics.registerFont(justFont) # Add or replace missing styles for bold in (0, 1): for italic in (0, 1): if ("%s_%d%d" % (fontName, bold, italic)) not in self.fontList: addMapping(fontName, bold, italic, fontNameOriginal) # Register "normal" name and the place holder for style self.registerFont(fontName, fontAlias + [fullFontName, fontNameOriginal]) #import pprint #pprint.pprint(self.fontList) else: log.warning(self.warning("wrong attributes for <pdf:font>")) except Exception: log.warn(self.warning("Loading font '%s'", fontName), exc_info=1)
38.091423
141
0.503006
794e8eb943228ba371e13c8f18e4b6b873714242
365
py
Python
setup.py
sanmedina/Top-Lifetime-Grosses-scrapper
e8245719f9e204b31e17746c96657b962c901ce7
[ "MIT" ]
null
null
null
setup.py
sanmedina/Top-Lifetime-Grosses-scrapper
e8245719f9e204b31e17746c96657b962c901ce7
[ "MIT" ]
null
null
null
setup.py
sanmedina/Top-Lifetime-Grosses-scrapper
e8245719f9e204b31e17746c96657b962c901ce7
[ "MIT" ]
null
null
null
from setuptools import setup setup( name="Top-Lifetime-Grosses-scrapper", version="1.0.0", packages=["src"], install_requires=[ "beautifulsoup4", "lxml", "requests", "black", "isort", "pre-commit", ], url="", license="", author="sanmedina", author_email="", description="", )
17.380952
41
0.520548
794e8ed4e8cae3c78b585cbaf78269d71550e58b
444
py
Python
date_models/examine_dataset.py
RossDeVito/news-tsl-cse291
7b9c2fe2feb6da673bd1bd73684cd841bff07496
[ "MIT" ]
null
null
null
date_models/examine_dataset.py
RossDeVito/news-tsl-cse291
7b9c2fe2feb6da673bd1bd73684cd841bff07496
[ "MIT" ]
6
2021-04-06T18:22:56.000Z
2022-03-12T00:52:25.000Z
date_models/examine_dataset.py
RossDeVito/news-tsl-cse291
7b9c2fe2feb6da673bd1bd73684cd841bff07496
[ "MIT" ]
null
null
null
''' Short script used to examine the format of the data in a news timeline dataset ''' import os import pandas as pd from date_models.model_utils import inspect def main(): input_file = '../datasets/t17/bpoil/articles.preprocessed_mod.jsonl' df = pd.read_json(input_file) inspect(df) if __name__ == '__main__': print('Starting: ', os.path.basename(__file__)) main() print('Completed: ', os.path.basename(__file__))
22.2
78
0.707207
794e8fb691d5cab797618210ea056ee76d840476
28,070
py
Python
test/functional/rpc_rawtransaction.py
VeriBlock/pop-bch
fd816fa9e173f944ce468820bfde8ee7a71edc96
[ "MIT" ]
1
2021-09-08T14:27:00.000Z
2021-09-08T14:27:00.000Z
test/functional/rpc_rawtransaction.py
cculianu/bitcoin-abc
007128a7f610936c20e060a4f3a2afe623d453b4
[ "MIT" ]
1
2022-03-09T14:32:59.000Z
2022-03-09T14:32:59.000Z
test/functional/rpc_rawtransaction.py
VeriBlock/pop-bch
fd816fa9e173f944ce468820bfde8ee7a71edc96
[ "MIT" ]
1
2019-10-28T13:39:39.000Z
2019-10-28T13:39:39.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the rawtranscation RPCs. Test the following RPCs: - createrawtransaction - signrawtransactionwithwallet - sendrawtransaction - decoderawtransaction - getrawtransaction """ from decimal import Decimal from collections import OrderedDict from io import BytesIO from test_framework.messages import ( COutPoint, CTransaction, CTxIn, CTxOut, ToHex, ) from test_framework.script import CScript from test_framework.test_framework import BitcoinTestFramework from test_framework.txtools import pad_raw_tx from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, connect_nodes, hex_str_to_bytes, ) class multidict(dict): """Dictionary that allows duplicate keys. Constructed with a list of (key, value) tuples. When dumped by the json module, will output invalid json with repeated keys, eg: >>> json.dumps(multidict([(1,2),(1,2)]) '{"1": 2, "1": 2}' Used to test calls to rpc methods with repeated keys in the json object.""" def __init__(self, x): dict.__init__(self, x) self.x = x def items(self): return self.x # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [["-txindex"], ["-txindex"], ["-txindex"]] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): super().setup_network() connect_nodes(self.nodes[0], self.nodes[2]) def run_test(self): self.log.info( 'prepare some coins for multiple *rawtransaction commands') self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.sync_all() self.nodes[0].generate(5) self.sync_all() self.log.info( 'Test getrawtransaction on genesis block coinbase returns an error') block = self.nodes[0].getblock(self.nodes[0].getblockhash(0)) assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot']) self.log.info( 'Check parameter types and required parameters of createrawtransaction') # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, 'foo') # Test `createrawtransaction` invalid `inputs` txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000' assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')", self.nodes[0].createrawtransaction, [{'txid': 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be a number", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {}) assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {}) # Test `createrawtransaction` invalid `outputs` address = self.nodes[0].getnewaddress() address2 = self.nodes[0].getnewaddress() assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo') # Should not throw for backwards compatibility self.nodes[0].createrawtransaction(inputs=[], outputs={}) self.nodes[0].createrawtransaction(inputs=[], outputs=[]) assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: {}".format( address), self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: {}".format( address), self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{"data": 'aa'}, {"data": "bb"}]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")])) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']]) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) self.log.info( 'Check that createrawtransaction accepts an array and object as outputs') tx = CTransaction() # One output tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction( inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99})))) assert_equal(len(tx.vout), 1) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction( inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]), ) # Two outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)]))))) assert_equal(len(tx.vout), 2) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {address: 99}, {address2: 99}]), ) # Multiple mixed outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[ {'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), (address2, 99), ('data', '99')]))))) assert_equal(len(tx.vout), 3) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[ {address: 99}, {address2: 99}, {'data': '99'}]), ) self.log.info('sendrawtransaction with missing input') # won't exists inputs = [ {'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout': 1}] outputs = {self.nodes[0].getnewaddress(): 4.998} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = pad_raw_tx(rawtx) rawtx = self.nodes[2].signrawtransactionwithwallet(rawtx) # This will raise an exception since there are missing inputs assert_raises_rpc_error(-25, "bad-txns-inputs-missingorspent", self.nodes[2].sendrawtransaction, rawtx['hex']) ##################################### # getrawtransaction with block hash # ##################################### # make a tx by sending then generate 2 blocks; block1 has the tx in it tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1) block1, block2 = self.nodes[2].generate(2) self.sync_all() # We should be able to get the raw transaction by providing the correct # block gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) # We should not have the 'in_active_chain' flag when we don't provide a # block gottx = self.nodes[0].getrawtransaction(tx, True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].getrawtransaction, tx, True, True) assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[0].getrawtransaction, tx, True, "foobar") assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[0].getrawtransaction, tx, True, "abcd1234") assert_raises_rpc_error( -8, "parameter 3 must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].getrawtransaction, tx, True, "ZZZ0000000000000000000000000000000000000000000000000000000000000") assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000") # Undo the blocks and check in_active_chain self.nodes[0].invalidateblock(block1) gottx = self.nodes[0].getrawtransaction( txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['in_active_chain'], False) self.nodes[0].reconsiderblock(block1) assert_equal(self.nodes[0].getbestblockhash(), block2) # # RAW TX MULTISIG TESTS # # # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) # createmultisig can only take public keys self.nodes[0].createmultisig( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # addmultisigaddress can take both pubkeys and addresses so long as # they are in the wallet, which is tested here. assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr1])['address'] # use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BCH to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[0].generate(1) self.sync_all() # node2 has both keys of the 2of2 ms addr., tx should affect the # balance assert_equal(self.nodes[2].getbalance(), bal + Decimal('1.20000000')) # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) addr3Obj = self.nodes[2].getaddressinfo(addr3) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address'] txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # THIS IS AN INCOMPLETE FEATURE # NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND # COUNT AT BALANCE CALCULATION # for now, assume the funds of a 2of3 multisig tx are not marked as # spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('2.20000000')) bal = self.nodes[0].getbalance() inputs = [{ "txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "amount": vout['value'], }] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet( rawTx, inputs) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned['complete'], False) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs) # node2 can sign the tx compl., own two of three keys assert_equal(rawTxSigned['complete'], True) self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal + Decimal( '50.00000000') + Decimal('2.19000000')) # block reward + tx rawTxBlock = self.nodes[0].getblock(self.nodes[0].getbestblockhash()) # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) self.nodes[1].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObjValid = self.nodes[2].getaddressinfo(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # the funds of a 2of2 multisig tx should not be marked as spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = next(o for o in rawTx2['vout'] if o['value'] == Decimal('2.20000000')) bal = self.nodes[0].getbalance() inputs = [{"txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey'] ['hex'], "redeemScript": mSigObjValid['hex'], "amount": vout['value']}] outputs = {self.nodes[0].getnewaddress(): 2.19} rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned1) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned1['complete'], False) rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned2) # node2 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned2['complete'], False) rawTxComb = self.nodes[2].combinerawtransaction( [rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']]) self.log.debug(rawTxComb) self.nodes[2].sendrawtransaction(rawTxComb) rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance( ), bal + Decimal('50.00000000') + Decimal('2.19000000')) # block reward + tx # getrawtransaction tests # 1. valid parameters - only supply txid txHash = rawTx["hash"] assert_equal( self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal( self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction( txHash, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to # update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction( txHash, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction( txHash, True)["hex"], rawTxSigned['hex']) # 6. invalid parameters - supply txid and string "Flase" assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "False") # 7. invalid parameters - supply txid and empty array assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, []) # 8. invalid parameters - supply txid and empty dict assert_raises_rpc_error( -1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {}) # Sanity checks on verbose getrawtransaction output rawTxOutput = self.nodes[0].getrawtransaction(txHash, True) assert_equal(rawTxOutput["hex"], rawTxSigned["hex"]) assert_equal(rawTxOutput["txid"], txHash) assert_equal(rawTxOutput["hash"], txHash) assert_greater_than(rawTxOutput["size"], 300) assert_equal(rawTxOutput["version"], 0x02) assert_equal(rawTxOutput["locktime"], 0) assert_equal(len(rawTxOutput["vin"]), 1) assert_equal(len(rawTxOutput["vout"]), 1) assert_equal(rawTxOutput["blockhash"], rawTxBlock["hash"]) assert_equal(rawTxOutput["confirmations"], 3) assert_equal(rawTxOutput["time"], rawTxBlock["time"]) assert_equal(rawTxOutput["blocktime"], rawTxBlock["time"]) inputs = [ {'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'sequence': 1000}] outputs = {self.nodes[0].getnewaddress(): 1} assert_raises_rpc_error( -8, 'Invalid parameter, missing vout key', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = "1" assert_raises_rpc_error( -8, 'Invalid parameter, vout must be a number', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, vout must be positive', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = 1 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) # 9. invalid parameters - sequence number out of range inputs[0]['sequence'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # 10. invalid parameters - sequence number out of range inputs[0]['sequence'] = 4294967296 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['sequence'] = 4294967294 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) #################################### # TRANSACTION VERSION NUMBER TESTS # #################################### # Test the minimum transaction version number that fits in a signed # 32-bit integer. tx = CTransaction() tx.nVersion = -0x80000000 rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], -0x80000000) # Test the maximum transaction version number that fits in a signed # 32-bit integer. tx = CTransaction() tx.nVersion = 0x7fffffff rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], 0x7fffffff) self.log.info('sendrawtransaction/testmempoolaccept with maxfeerate') txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) rawTx = self.nodes[0].getrawtransaction(txId, True) vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('1.00000000')) self.sync_all() inputs = [{"txid": txId, "vout": vout['n']}] # 1000 sat fee outputs = {self.nodes[0].getnewaddress(): Decimal("0.99999000")} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx) assert_equal(rawTxSigned['complete'], True) # 1000 sat fee, ~200 b transaction, fee rate should land around 5 sat/b = 0.00005000 BTC/kB # Thus, testmempoolaccept should reject testres = self.nodes[2].testmempoolaccept( [rawTxSigned['hex']], 0.00001000)[0] assert_equal(testres['allowed'], False) assert_equal(testres['reject-reason'], '256: absurdly-high-fee') # and sendrawtransaction should throw assert_raises_rpc_error(-26, "absurdly-high-fee", self.nodes[2].sendrawtransaction, rawTxSigned['hex'], 0.00001000) # And below calls should both succeed testres = self.nodes[2].testmempoolaccept( rawtxs=[rawTxSigned['hex']], maxfeerate=0.00007000)[0] assert_equal(testres['allowed'], True) self.nodes[2].sendrawtransaction( hexstring=rawTxSigned['hex'], maxfeerate=0.00007000) ########################################## # Decoding weird scripts in transactions # ########################################## self.log.info('Decode correctly-formatted but weird transactions') tx = CTransaction() # empty self.nodes[0].decoderawtransaction(ToHex(tx)) # truncated push tx.vin.append(CTxIn(COutPoint(42, 0), b'\x4e\x00\x00')) tx.vin.append(CTxIn(COutPoint(42, 0), b'\x4c\x10TRUNC')) tx.vout.append(CTxOut(0, b'\x4e\x00\x00')) tx.vout.append(CTxOut(0, b'\x4c\x10TRUNC')) self.nodes[0].decoderawtransaction(ToHex(tx)) # giant pushes and long scripts tx.vin.append( CTxIn(COutPoint(42, 0), CScript([b'giant push' * 10000]))) tx.vout.append(CTxOut(0, CScript([b'giant push' * 10000]))) self.nodes[0].decoderawtransaction(ToHex(tx)) self.log.info('Refuse garbage after transaction') assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, ToHex(tx) + '00') if __name__ == '__main__': RawTransactionsTest().main()
46.627907
139
0.585358
794e9056d41f66b5a9af93f43724bff85ce699fe
3,203
py
Python
jithbot.py
Jithra/JithBot
e99679fde3a74d956c40db15eca91223a401ad2e
[ "MIT" ]
null
null
null
jithbot.py
Jithra/JithBot
e99679fde3a74d956c40db15eca91223a401ad2e
[ "MIT" ]
null
null
null
jithbot.py
Jithra/JithBot
e99679fde3a74d956c40db15eca91223a401ad2e
[ "MIT" ]
null
null
null
from PluginManager import PluginManager import discord import traceback import re print("Starting JithBot") print("Starting Discord Client") # Creates a discord client, which we will use to connect and interact with the server. # All methods with @client.event annotations are event handlers for this client. client = discord.Client() print("Loading plugins") # Loads and initializes the plugin manager for the bot pm = PluginManager("plugins", client) pm.load_plugins() pm.register_events() print("Plugins loaded and registered") @client.event async def on_ready(): """ Event handler, fires when the bot has connected and is logged in """ print('Logged in as ' + client.user.name + " (" + client.user.id + ")") # Change nickname to nickname in configuration for instance in client.servers: await client.change_nickname(instance.me, pm.botPreferences.nickName) await client.change_presence(game=discord.Game(name='Evolving into a sentient being', type = 0)) @client.event async def on_message(message): """ Event handler, fires when a message is received in the server. :param message: discord.Message object containing the received message """ try: if message.content.startswith(pm.botPreferences.commandPrefix): # Send the received message off to the Plugin Manager to handle the command words = message.content.partition(' ') await pm.handle_command(message, words[0][len(pm.botPreferences.commandPrefix):], words[1:]) elif message.server is not None: await pm.handle_message(message) except Exception as e: await client.send_message(message.channel, "Error: " + str(e)) if pm.botPreferences.get_config_value("client", "debug") == "1": traceback.print_exc() @client.event async def on_typing(channel, user, when): """ Event handler, fires when a user is typing in a channel :param channel: discord.Channel object containing channel information :param user: discord.Member object containing the user information :param when: datetime timestamp """ try: await pm.handle_typing(channel, user, when) except Exception as e: await client.send_message(channel, "Error: " + str(e)) if pm.botPreferences.get_config_value("client", "debug") == "1": traceback.print_exc() @client.event async def on_message_delete(message): """ Event handler, fires when a message is deleted :param message: discord.Message object containing the deleted message """ try: if message.author.name != "PluginBot": await pm.handle_message_delete(message) except Exception as e: await client.send_message(message.channel, "Error: " + str(e)) if pm.botPreferences.get_config_value("client", "debug") == "1": traceback.print_exc() @client.event async def on_member_join(member): await pm.handle_member_join(member) @client.event async def on_member_remove(member): await pm.handle_member_leave(member) # Run the client and login with the bot token (yes, this needs to be down here) client.run(pm.botPreferences.token)
33.364583
104
0.700905
794e90b25d141c582eae5b0f89ea2b5927153f7d
3,782
py
Python
P1/Parte3.py
HerouFenix/PraticasIA
37f829b53e2eb2986468e69de297699fcd2a8462
[ "MIT" ]
2
2019-10-16T13:28:59.000Z
2019-11-13T13:21:51.000Z
P1/Parte3.py
HerouFenix/PraticasIA
37f829b53e2eb2986468e69de297699fcd2a8462
[ "MIT" ]
null
null
null
P1/Parte3.py
HerouFenix/PraticasIA
37f829b53e2eb2986468e69de297699fcd2a8462
[ "MIT" ]
2
2019-10-30T13:33:56.000Z
2019-11-25T14:36:28.000Z
#Funçoes que retornam None #1. Dada uma lista, retornar o elemento que esta a cabeca (ou seja, na posicao 0). def get_head(lista): #( ͡° ͜ʖ ͡°) if len(lista) == 0: #No caso de lista vazia return None return lista[0] #2. Dada uma lista, retornar a sua cauda (ou seja, todos os elementos a excepcao do primeiro). def get_tail(lista): if len(lista) == 0: #No caso de lista vazia return None return lista[1:] #3. Dado um par de listas com igual comprimento, produzir uma lista dos pares dos elementos hoḿologos. (P.ex [1,2,3], [4,5,6] -> [(1,4),(2,5),(3,6]) def join_homologos(list1,list2): if len(list1) != len(list2): #Se n tiverem comprimento igual R.I.P return None if len(list1) == 0: #Se uma delas tiver comp 0 (a outra tmb tem) e estamos num caso limite (return lista vazia) return [] return [(list1[0],list2[0])] + join_homologos(list1[1:],list2[1:]) #Criar o tuplo da cabeca de cada uma das listas e dar append da proxima iteracao #4. Dada uma lista de numeros, retorna o menor elemento. def get_smallest(lista): if len(lista) == 0: #No caso de lista vazia return None return min(lista) #5. Dada uma lista de numeros, retorna um par formado pelo menor elemento e pela lista dos restantes elementos. def get_smallest_and_rest(lista): if len(lista) == 0: #No caso de lista vazia return None smallest = min(lista) return [smallest, [element for element in lista if element != smallest] ] #Used List Comprehension :O #6. Dada uma lista de numeros, calcular o maximo e o mınimo, retornando-os num tuplo. def get_smallest_and_biggest(lista): if len(lista) == 0: #No caso de lista vazia return None return (min(lista),max(lista)) #7. Dada uma lista de numeros, retorna um triplo formado pelos dois menores elementos e pela lista dos restantes elementos. def get_smallest_biggest_and_rest(lista): if len(lista) == 0: #No caso de lista vazia return None smallest = min(lista) biggest = max(lista) return (smallest,biggest, [element for element in lista if element != smallest and element != biggest]) #8. Dada uma lista ordenada de numeros, calcular se possıvel a respectiva media e mediana, retornando-as num tuplo. def get_average_and_median(lista): if len(lista) == 0: #No caso de lista vazia return None if len([element for element in lista if isinstance(element, str)]) != 0: #Verificar se a lista é apenas numerica return None if lista != sorted(lista): #Verificar se a lista esta ordenada return None median = lista[len(lista)//2] sum = 0 for i in lista: sum += i average = sum/len(lista) return (average,median) if __name__ == "__main__": #1 print("1) " + str(get_head([1,2,3]))) print("1) " + str(get_head([]))) #2 print("2) " + str(get_tail([1,2,3]))) print("2) " + str(get_tail([]))) #3 print("3) " + str(join_homologos([1,2,3],[3,2,1]))) print("3) " + str(join_homologos([1,2,3],[3,1]))) #4 print("4) " + str(get_smallest([1,2,3]))) print("4) " + str(get_smallest([]))) #5 print("5) " + str(get_smallest_and_rest([1,2,3]))) print("5) " + str(get_smallest_and_rest([]))) #6 print("6) " + str(get_smallest_and_biggest([1,2,3,4]))) print("6) " + str(get_smallest_and_biggest([]))) #7 print("7) " + str(get_smallest_biggest_and_rest([1,2,3,4]))) print("7) " + str(get_smallest_biggest_and_rest([]))) #8 print("8) " + str(get_average_and_median([1,2,3,4,4,5,5]))) print("8) " + str(get_average_and_median([1,3,4,2]))) print("8) " + str(get_average_and_median([]))) print("8) " + str(get_average_and_median([1,3,'b'])))
34.697248
151
0.638287
794e90ebf4066373e9e80503d5223bdfcb0a3273
580
py
Python
lab8/point.py
kuzkov/computational-geometry
4411231a8097e618e03b3ef0ad5836e49e837216
[ "MIT" ]
1
2021-04-04T07:34:14.000Z
2021-04-04T07:34:14.000Z
lab8/point.py
kuzkov/computational-geometry
4411231a8097e618e03b3ef0ad5836e49e837216
[ "MIT" ]
null
null
null
lab8/point.py
kuzkov/computational-geometry
4411231a8097e618e03b3ef0ad5836e49e837216
[ "MIT" ]
1
2021-02-18T09:50:10.000Z
2021-02-18T09:50:10.000Z
import math import numpy as np from vector import Vector import segment as segment_lib class Point(Vector): def direction(self, segment): det = np.linalg.det([ segment.as_vector().as_array(), segment_lib.Segment(segment.p1, self).as_vector().as_array() ]) return 1 if det > 0 else 0 if math.isclose(det, 0) else -1 # 1 left, -1 right, 0 on def inside_segment(self, segment): pass def tolist(self): return (self.x, self.y) def within_polygon(self, polygon): return polygon.contains(self)
25.217391
91
0.631034
794e90fd526d75f68cf9df0b416a5f4fa1249391
9,900
py
Python
3D/models/main_model.py
zabaras/inn-surrogate
e04bbabb0c93ad9d8880193e3c1410ba5d9211c2
[ "MIT" ]
12
2021-02-17T08:38:23.000Z
2021-12-14T20:34:31.000Z
3D/models/main_model.py
zabaras/inn-surrogate
e04bbabb0c93ad9d8880193e3c1410ba5d9211c2
[ "MIT" ]
1
2021-11-18T13:25:18.000Z
2021-11-18T15:11:57.000Z
3D/models/main_model.py
zabaras/inn-surrogate
e04bbabb0c93ad9d8880193e3c1410ba5d9211c2
[ "MIT" ]
5
2021-02-19T23:06:29.000Z
2021-09-20T17:11:00.000Z
import numpy as np import torch import sys import torch.nn as nn from models.flat_data_model import Flat_data from models.Unflat_data_model import Unflat_data from models.Divide_data_model import divide_data from models.Permute_data_model import Permute_data from models.Downsample_model import Downsample from models.CouplingBlock_model import CouplingBlock from models.CouplingOneSide_model import CouplingOneSide class main_file(nn.Module): ''' Args: s_net_t_net: scale and shift network input_dimension: input dimension for corresponding multiscale blocks. x: Input (BXCXDXHXW) c: conditioning data ''' def __init__(self, cond_size, s_net_t_net, input_dimension1,input_dimension12,cond_size1, permute_a1,value_dim,input_dimension1_r, input_dimension2,input_dimension22,cond_size2,permute_a2,s_net_t_net2,input_dimension2_r, input_dimension3,input_dimension32,cond_size3,s_net_t_net3,permute_a3): super(main_file,self).__init__() self.single_side1 = CouplingOneSide(s_net_t_net, cond_size) self.single_side2 = CouplingOneSide(s_net_t_net, cond_size) self.single_side3 = CouplingOneSide(s_net_t_net, cond_size) self.single_side4 = CouplingOneSide(s_net_t_net, cond_size) self.single_side5 = CouplingOneSide(s_net_t_net, cond_size) self.single_side6 = CouplingOneSide(s_net_t_net, cond_size) self.downsample = Downsample() self.coupling1 = CouplingBlock(s_net_t_net, input_dimension1,input_dimension12,cond_size1) self.coupling2 = CouplingBlock(s_net_t_net, input_dimension1,input_dimension12,cond_size1) self.coupling3 = CouplingBlock(s_net_t_net, input_dimension1,input_dimension12,cond_size1) self.coupling4 = CouplingBlock(s_net_t_net, input_dimension1,input_dimension12,cond_size1) self.coupling5 = CouplingBlock(s_net_t_net, input_dimension1,input_dimension12,cond_size1) self.permute = Permute_data(permute_a1,0) self.permute_c1 = Permute_data(permute_a1,1) self.permute_c2 = Permute_data(permute_a1,2) self.permute_c3 = Permute_data(permute_a1,3) self.permute_c4 = Permute_data(permute_a1,4) self.unflat1 = Unflat_data(input_dimension1_r) self.split = divide_data(input_dimension1,value_dim) self.coupling21 = CouplingBlock(s_net_t_net2, input_dimension2,input_dimension22,cond_size2) self.coupling22 = CouplingBlock(s_net_t_net2, input_dimension2,input_dimension22,cond_size2) self.coupling23 = CouplingBlock(s_net_t_net2, input_dimension2,input_dimension22,cond_size2) self.coupling24 = CouplingBlock(s_net_t_net2, input_dimension2,input_dimension22,cond_size2) self.permute2 = Permute_data(permute_a2,0) self.permute2_c1 = Permute_data(permute_a2,1) self.permute2_c2 = Permute_data(permute_a2,2) self.permute2_c3 = Permute_data(permute_a2,3) self.split2 = divide_data(input_dimension2,[4,4]) self.flat2 = Flat_data() self.unflat2 = Unflat_data(input_dimension2_r) self.coupling31 = CouplingBlock(s_net_t_net3, input_dimension3,input_dimension32,cond_size3) self.permute3 = Permute_data(permute_a3,0) def forward(self, x, c1,c2,c3,c4,sample_the_data=False,forward=False,jac=False): if forward==True: #1-1 out1= self.single_side1(x,c1) jac0 = self.single_side1.jacobian() #1-2 out2 = self.single_side2(out1,c1) jac0_1 = self.single_side2.jacobian() #1-3 out3= self.single_side3(out2,c1) jac0_2 = self.single_side3.jacobian() #1-4 out4 = self.single_side4(out3,c1) jac0_3 = self.single_side4.jacobian() #1-5 out5 = self.single_side5(out4,c1) jac0_4 = self.single_side5.jacobian() #1-6 out6 = self.single_side6(out5,c1) jac0_5 = self.single_side6.jacobian() out7 = self.downsample(out6) jac_glow1 =out7 #2 out12 = self.coupling1(out7,c2) jac1 = self.coupling1.jacobian() out13 = self.permute(out12) out14 = self.coupling2(out13,c2) jac1_c1 = self.coupling2.jacobian() out15 = self.permute_c1(out14) out16 = self.coupling3(out15,c2) jac1_c2 = self.coupling3.jacobian() out17 = self.permute_c2(out16) out18 = self.coupling4(out17,c2) jac1_c3 = self.coupling4.jacobian() out19 = self.permute_c3(out18) out20 = self.coupling5(out19,c2) jac1_c4 = self.coupling5.jacobian() out21 = self.permute_c4(out20) out22 = self.split(out21) out1s = out22[0] out2s = out22[1] flat_output1 = self.flat2(out2s) out31 = self.downsample(out1s) jac_glow2 = out31 #3 out32 = self.coupling21(out31,c3) jac2 = self.coupling21.jacobian() out33 = self.permute2(out32) out34 = self.coupling22(out33,c3) jac2_c1 = self.coupling22.jacobian() out35 = self.permute2_c1(out34) out36 = self.coupling23(out35,c3) jac2_c2 = self.coupling23.jacobian() out37= self.permute2_c2(out36) out38 = self.coupling24(out37,c3) jac2_c3 = self.coupling24.jacobian() out39 = self.permute2_c3(out38) out40 = self.split2(out39) out1s4 = out40[0] out2s4 = out40[1] flat_output2 = self.flat2(out2s4) flat_ds2 = self.flat2(out1s4) jac_glow3 = flat_ds2 #4 out1f = self.coupling31(flat_ds2,c4) jac3 = self.coupling31.jacobian() out_all = self.permute3(out1f) final_out = torch.cat((flat_output1,flat_output2,out_all),dim=1) #jacobian jac = jac0+jac1+jac2+jac3+jac0_1+jac0_2+jac0_3+jac0_4+jac0_5+jac1_c1+jac1_c2+jac1_c3+jac1_c4+jac2_c1+jac2_c2+jac2_c3 return final_out, jac else: #import the data: out1 = x[:,:8192] out1_unflat = self.unflat1(out1) out2 = x[:,8192:12288] out2_unflat = self.unflat2(out2) out3 = x[:,12288:] out3p = self.permute3(out3,sample_the_data=True) out = self.coupling31(out3p,c4,sample_the_data=True) out3_unflat = self.unflat2(out) #combine the data combine_out2_out3 = torch.cat((out3_unflat,out2_unflat), dim=1) #========================================= #permute the data out_4 = self.permute2_c3(combine_out2_out3,sample_the_data=True) out_5 = self.coupling24(out_4,c3,sample_the_data=True) #============================================== #========================================= #permute the data out_4 = self.permute2_c2(out_5,sample_the_data=True) out_5 = self.coupling23(out_4,c3,sample_the_data=True) #============================================== #========================================= #permute the data out_4 = self.permute2_c1(out_5,sample_the_data=True) out_5 = self.coupling22(out_4,c3,sample_the_data=True) #============================================== Here #========================================= #permute the data out_4 = self.permute2(out_5,sample_the_data=True) out_5 = self.coupling21(out_4,c3,sample_the_data=True) #============================================== Here out_6 = self.downsample(out_5,sample_the_data=True) combine_out6_out1 = torch.cat((out_6,out1_unflat), dim=1) #============================= #permute out_7 = self.permute_c4(combine_out6_out1,sample_the_data=True) out_8 = self.coupling5(out_7,c2,sample_the_data=True) #================================== #============================= #permute out_7 = self.permute_c3(out_8,sample_the_data=True) out_8 = self.coupling4(out_7,c2,sample_the_data=True) #================================== #============================= #permute out_7 = self.permute_c2(out_8,sample_the_data=True) out_8 = self.coupling3(out_7,c2,sample_the_data=True) #================================== #============================= #permute out_7 = self.permute_c1(out_8,sample_the_data=True) out_8 = self.coupling2(out_7,c2,sample_the_data=True) #================================== #============================= #permute out_7 = self.permute(out_8,sample_the_data=True) out_8 = self.coupling1(out_7,c2,sample_the_data=True) #================================== #updample 1X64X64 out_9 = self.downsample(out_8,sample_the_data=True) out_10 = self.single_side6(out_9,c1,sample_the_data=True) out_10 = self.single_side5(out_10,c1,sample_the_data=True) out_10 = self.single_side4(out_10,c1,sample_the_data=True) out_10 = self.single_side3(out_10,c1,sample_the_data=True) out_10 = self.single_side2(out_10,c1,sample_the_data=True) out_10 = self.single_side1(out_10,c1,sample_the_data=True) return out_10
39.285714
128
0.580707
794e91238f5c819eaef9c850c84c8da86afe80ce
1,810
py
Python
docs/sources/conf.py
imbi7py/filemanager
1f0cf3ceb826528fe6be8fb38cfa1d252afbce22
[ "MIT" ]
24
2020-10-31T11:59:30.000Z
2022-03-23T10:37:05.000Z
docs/sources/conf.py
imbi7py/filemanager
1f0cf3ceb826528fe6be8fb38cfa1d252afbce22
[ "MIT" ]
2
2020-11-19T20:26:21.000Z
2021-05-04T17:06:28.000Z
docs/sources/conf.py
kivymd-extensions/filemanager
1f0cf3ceb826528fe6be8fb38cfa1d252afbce22
[ "MIT" ]
2
2020-11-16T13:37:04.000Z
2021-04-15T09:57:07.000Z
# Configuration file for the Sphinx documentation builder. # https://www.sphinx-doc.org/en/master/usage/configuration.html # Path setup import os import sys sys.path.insert(0, os.path.abspath("_extensions")) sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(".")))) import autoapi_filemanager # NOQA. from _extensions # Project information project = "File Manager" copyright = "2020 KivyMD Team" author = "KivyMD Team" version = "0.1.0" release = "0.1.0" # General configuration master_doc = "index" exclude_patterns = [] templates_path = ["_templates"] locale_dirs = ["_locales"] language = "Python" # HTML Theme html_theme = "sphinx_rtd_theme" html_static_path = ["_static"] html_favicon = "_static/logo-kivymd.png" html_logo = "_static/logo-kivymd.png" html_theme_options = { "canonical_url": "https://kivymd.readthedocs.io/en/latest/", "navigation_depth": 2, "collapse_navigation": False, "titles_only": True, } # Extensions extensions = [ "sphinx.ext.autodoc", "autoapi_filemanager", "sphinx.ext.intersphinx", "kivy_lexer", "toctree_with_sort", ] # AutoAPI configuration autoapi_dirs = ["../../kivymd_extensions/filemanager"] autoapi_template_dir = os.path.abspath("_templates") autoapi_type = "python" autoapi_file_patterns = ["*.py"] autoapi_generate_api_docs = True autoapi_options = ["members", "undoc-members"] autoapi_root = "api" autoapi_add_toctree_entry = False autoapi_include_inheritance_graphs = False autoapi_include_summaries = True autoapi_python_class_content = "class" autoapi_python_use_implicit_namespaces = False autoapi_keep_files = False # True for debugging # InterSphinx configuration intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "kivy": ("https://kivy.org/doc/stable/", None), }
25.492958
74
0.739779
794e92f4d7f7435d4f4c9fdaf31ca68fce3ca0ec
26,336
py
Python
Exercises/pacman-search/pacman.py
yajuanw/artificial-intelligence
b10f7651fd4516a9ccf8b90e05a12809a3ba7b33
[ "MIT" ]
2
2021-01-03T11:04:03.000Z
2021-01-03T11:04:03.000Z
Exercises/pacman-search/pacman.py
yajuanw/artificial-intelligence
b10f7651fd4516a9ccf8b90e05a12809a3ba7b33
[ "MIT" ]
null
null
null
Exercises/pacman-search/pacman.py
yajuanw/artificial-intelligence
b10f7651fd4516a9ccf8b90e05a12809a3ba7b33
[ "MIT" ]
null
null
null
# pacman.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ Pacman.py holds the logic for the classic pacman game along with the main code to run a game. This file is divided into three sections: (i) Your interface to the pacman world: Pacman is a complex environment. You probably don't want to read through all of the code we wrote to make the game runs correctly. This section contains the parts of the code that you will need to understand in order to complete the project. There is also some code in game.py that you should understand. (ii) The hidden secrets of pacman: This section contains all of the logic code that the pacman environment uses to decide who can move where, who dies when things collide, etc. You shouldn't need to read this section of code, but you can if you want. (iii) Framework to start a game: The final section contains the code for reading the command you use to set up the game, then starting up a new game, along with linking in all the external parts (agent functions, graphics). Check this section out to see all the options available to you. To play your first game, type 'python pacman.py' from the command line. The keys are 'a', 's', 'd', and 'w' to move (or arrow keys). Have fun! """ from game import GameStateData from game import Game from game import Directions from game import Actions from util import nearestPoint from util import manhattanDistance import util, layout import sys, types, time, random, os ################################################### # YOUR INTERFACE TO THE PACMAN WORLD: A GameState # ################################################### class GameState: """ A GameState specifies the full game state, including the food, capsules, agent configurations and score changes. GameStates are used by the Game object to capture the actual state of the game and can be used by agents to reason about the game. Much of the information in a GameState is stored in a GameStateData object. We strongly suggest that you access that data via the accessor methods below rather than referring to the GameStateData object directly. Note that in classic Pacman, Pacman is always agent 0. """ #################################################### # Accessor methods: use these to access state data # #################################################### # static variable keeps track of which states have had getLegalActions called explored = set() def getAndResetExplored(): tmp = GameState.explored.copy() GameState.explored = set() return tmp getAndResetExplored = staticmethod(getAndResetExplored) def getLegalActions( self, agentIndex=0 ): """ Returns the legal actions for the agent specified. """ # GameState.explored.add(self) if self.isWin() or self.isLose(): return [] if agentIndex == 0: # Pacman is moving return PacmanRules.getLegalActions( self ) else: return GhostRules.getLegalActions( self, agentIndex ) def generateSuccessor( self, agentIndex, action): """ Returns the successor state after the specified agent takes the action. """ # Check that successors exist if self.isWin() or self.isLose(): raise Exception('Can\'t generate a successor of a terminal state.') # Copy current state state = GameState(self) # Let agent's logic deal with its action's effects on the board if agentIndex == 0: # Pacman is moving state.data._eaten = [False for i in range(state.getNumAgents())] PacmanRules.applyAction( state, action ) else: # A ghost is moving GhostRules.applyAction( state, action, agentIndex ) # Time passes if agentIndex == 0: state.data.scoreChange += -TIME_PENALTY # Penalty for waiting around else: GhostRules.decrementTimer( state.data.agentStates[agentIndex] ) # Resolve multi-agent effects GhostRules.checkDeath( state, agentIndex ) # Book keeping state.data._agentMoved = agentIndex state.data.score += state.data.scoreChange GameState.explored.add(self) GameState.explored.add(state) return state def getLegalPacmanActions( self ): return self.getLegalActions( 0 ) def generatePacmanSuccessor( self, action ): """ Generates the successor state after the specified pacman move """ return self.generateSuccessor( 0, action ) def getPacmanState( self ): """ Returns an AgentState object for pacman (in game.py) state.pos gives the current position state.direction gives the travel vector """ return self.data.agentStates[0].copy() def getPacmanPosition( self ): return self.data.agentStates[0].getPosition() def getGhostStates( self ): return self.data.agentStates[1:] def getGhostState( self, agentIndex ): if agentIndex == 0 or agentIndex >= self.getNumAgents(): raise Exception("Invalid index passed to getGhostState") return self.data.agentStates[agentIndex] def getGhostPosition( self, agentIndex ): if agentIndex == 0: raise Exception("Pacman's index passed to getGhostPosition") return self.data.agentStates[agentIndex].getPosition() def getGhostPositions(self): return [s.getPosition() for s in self.getGhostStates()] def getNumAgents( self ): return len( self.data.agentStates ) def getScore( self ): return float(self.data.score) def getCapsules(self): """ Returns a list of positions (x,y) of the remaining capsules. """ return self.data.capsules def getNumFood( self ): return self.data.food.count() def getFood(self): """ Returns a Grid of boolean food indicator variables. Grids can be accessed via list notation, so to check if there is food at (x,y), just call currentFood = state.getFood() if currentFood[x][y] == True: ... """ return self.data.food def getWalls(self): """ Returns a Grid of boolean wall indicator variables. Grids can be accessed via list notation, so to check if there is a wall at (x,y), just call walls = state.getWalls() if walls[x][y] == True: ... """ return self.data.layout.walls def hasFood(self, x, y): return self.data.food[x][y] def hasWall(self, x, y): return self.data.layout.walls[x][y] def isLose( self ): return self.data._lose def isWin( self ): return self.data._win ############################################# # Helper methods: # # You shouldn't need to call these directly # ############################################# def __init__( self, prevState = None ): """ Generates a new state by copying information from its predecessor. """ if prevState != None: # Initial state self.data = GameStateData(prevState.data) else: self.data = GameStateData() def deepCopy( self ): state = GameState( self ) state.data = self.data.deepCopy() return state def __eq__( self, other ): """ Allows two states to be compared. """ return hasattr(other, 'data') and self.data == other.data def __hash__( self ): """ Allows states to be keys of dictionaries. """ return hash( self.data ) def __str__( self ): return str(self.data) def initialize( self, layout, numGhostAgents=1000 ): """ Creates an initial game state from a layout array (see layout.py). """ self.data.initialize(layout, numGhostAgents) ############################################################################ # THE HIDDEN SECRETS OF PACMAN # # # # You shouldn't need to look through the code in this section of the file. # ############################################################################ SCARED_TIME = 40 # Moves ghosts are scared COLLISION_TOLERANCE = 0.7 # How close ghosts must be to Pacman to kill TIME_PENALTY = 1 # Number of points lost each round class ClassicGameRules: """ These game rules manage the control flow of a game, deciding when and how the game starts and ends. """ def __init__(self, timeout=30): self.timeout = timeout def newGame( self, layout, pacmanAgent, ghostAgents, display, quiet = False, catchExceptions=False): agents = [pacmanAgent] + ghostAgents[:layout.getNumGhosts()] initState = GameState() initState.initialize( layout, len(ghostAgents) ) game = Game(agents, display, self, catchExceptions=catchExceptions) game.state = initState self.initialState = initState.deepCopy() self.quiet = quiet return game def process(self, state, game): """ Checks to see whether it is time to end the game. """ if state.isWin(): self.win(state, game) if state.isLose(): self.lose(state, game) def win( self, state, game ): if not self.quiet: print("Pacman emerges victorious! Score: %d" % state.data.score) game.gameOver = True def lose( self, state, game ): if not self.quiet: print("Pacman died! Score: %d" % state.data.score) game.gameOver = True def getProgress(self, game): return float(game.state.getNumFood()) / self.initialState.getNumFood() def agentCrash(self, game, agentIndex): if agentIndex == 0: print("Pacman crashed") else: print("A ghost crashed") def getMaxTotalTime(self, agentIndex): return self.timeout def getMaxStartupTime(self, agentIndex): return self.timeout def getMoveWarningTime(self, agentIndex): return self.timeout def getMoveTimeout(self, agentIndex): return self.timeout def getMaxTimeWarnings(self, agentIndex): return 0 class PacmanRules: """ These functions govern how pacman interacts with his environment under the classic game rules. """ PACMAN_SPEED=1 def getLegalActions( state ): """ Returns a list of possible actions. """ return Actions.getPossibleActions( state.getPacmanState().configuration, state.data.layout.walls ) getLegalActions = staticmethod( getLegalActions ) def applyAction( state, action ): """ Edits the state to reflect the results of the action. """ legal = PacmanRules.getLegalActions( state ) if action not in legal: raise Exception("Illegal action " + str(action)) pacmanState = state.data.agentStates[0] # Update Configuration vector = Actions.directionToVector( action, PacmanRules.PACMAN_SPEED ) pacmanState.configuration = pacmanState.configuration.generateSuccessor( vector ) # Eat next = pacmanState.configuration.getPosition() nearest = nearestPoint( next ) if manhattanDistance( nearest, next ) <= 0.5 : # Remove food PacmanRules.consume( nearest, state ) applyAction = staticmethod( applyAction ) def consume( position, state ): x,y = position # Eat food if state.data.food[x][y]: state.data.scoreChange += 10 state.data.food = state.data.food.copy() state.data.food[x][y] = False state.data._foodEaten = position # TODO: cache numFood? numFood = state.getNumFood() if numFood == 0 and not state.data._lose: state.data.scoreChange += 500 state.data._win = True # Eat capsule if( position in state.getCapsules() ): state.data.capsules.remove( position ) state.data._capsuleEaten = position # Reset all ghosts' scared timers for index in range( 1, len( state.data.agentStates ) ): state.data.agentStates[index].scaredTimer = SCARED_TIME consume = staticmethod( consume ) class GhostRules: """ These functions dictate how ghosts interact with their environment. """ GHOST_SPEED=1.0 def getLegalActions( state, ghostIndex ): """ Ghosts cannot stop, and cannot turn around unless they reach a dead end, but can turn 90 degrees at intersections. """ conf = state.getGhostState( ghostIndex ).configuration possibleActions = Actions.getPossibleActions( conf, state.data.layout.walls ) reverse = Actions.reverseDirection( conf.direction ) if Directions.STOP in possibleActions: possibleActions.remove( Directions.STOP ) if reverse in possibleActions and len( possibleActions ) > 1: possibleActions.remove( reverse ) return possibleActions getLegalActions = staticmethod( getLegalActions ) def applyAction( state, action, ghostIndex): legal = GhostRules.getLegalActions( state, ghostIndex ) if action not in legal: raise Exception("Illegal ghost action " + str(action)) ghostState = state.data.agentStates[ghostIndex] speed = GhostRules.GHOST_SPEED if ghostState.scaredTimer > 0: speed /= 2.0 vector = Actions.directionToVector( action, speed ) ghostState.configuration = ghostState.configuration.generateSuccessor( vector ) applyAction = staticmethod( applyAction ) def decrementTimer( ghostState): timer = ghostState.scaredTimer if timer == 1: ghostState.configuration.pos = nearestPoint( ghostState.configuration.pos ) ghostState.scaredTimer = max( 0, timer - 1 ) decrementTimer = staticmethod( decrementTimer ) def checkDeath( state, agentIndex): pacmanPosition = state.getPacmanPosition() if agentIndex == 0: # Pacman just moved; Anyone can kill him for index in range( 1, len( state.data.agentStates ) ): ghostState = state.data.agentStates[index] ghostPosition = ghostState.configuration.getPosition() if GhostRules.canKill( pacmanPosition, ghostPosition ): GhostRules.collide( state, ghostState, index ) else: ghostState = state.data.agentStates[agentIndex] ghostPosition = ghostState.configuration.getPosition() if GhostRules.canKill( pacmanPosition, ghostPosition ): GhostRules.collide( state, ghostState, agentIndex ) checkDeath = staticmethod( checkDeath ) def collide( state, ghostState, agentIndex): if ghostState.scaredTimer > 0: state.data.scoreChange += 200 GhostRules.placeGhost(state, ghostState) ghostState.scaredTimer = 0 # Added for first-person state.data._eaten[agentIndex] = True else: if not state.data._win: state.data.scoreChange -= 500 state.data._lose = True collide = staticmethod( collide ) def canKill( pacmanPosition, ghostPosition ): return manhattanDistance( ghostPosition, pacmanPosition ) <= COLLISION_TOLERANCE canKill = staticmethod( canKill ) def placeGhost(state, ghostState): ghostState.configuration = ghostState.start placeGhost = staticmethod( placeGhost ) ############################# # FRAMEWORK TO START A GAME # ############################# def default(str): return str + ' [Default: %default]' def parseAgentArgs(str): if str == None: return {} pieces = str.split(',') opts = {} for p in pieces: if '=' in p: key, val = p.split('=') else: key,val = p, 1 opts[key] = val return opts def readCommand( argv ): """ Processes the command used to run pacman from the command line. """ from optparse import OptionParser usageStr = """ USAGE: python pacman.py <options> EXAMPLES: (1) python pacman.py - starts an interactive game (2) python pacman.py --layout smallClassic --zoom 2 OR python pacman.py -l smallClassic -z 2 - starts an interactive game on a smaller board, zoomed in """ parser = OptionParser(usageStr) parser.add_option('-n', '--numGames', dest='numGames', type='int', help=default('the number of GAMES to play'), metavar='GAMES', default=1) parser.add_option('-l', '--layout', dest='layout', help=default('the LAYOUT_FILE from which to load the map layout'), metavar='LAYOUT_FILE', default='mediumClassic') parser.add_option('-p', '--pacman', dest='pacman', help=default('the agent TYPE in the pacmanAgents module to use'), metavar='TYPE', default='KeyboardAgent') parser.add_option('-t', '--textGraphics', action='store_true', dest='textGraphics', help='Display output as text only', default=False) parser.add_option('-q', '--quietTextGraphics', action='store_true', dest='quietGraphics', help='Generate minimal output and no graphics', default=False) parser.add_option('-g', '--ghosts', dest='ghost', help=default('the ghost agent TYPE in the ghostAgents module to use'), metavar = 'TYPE', default='RandomGhost') parser.add_option('-k', '--numghosts', type='int', dest='numGhosts', help=default('The maximum number of ghosts to use'), default=4) parser.add_option('-z', '--zoom', type='float', dest='zoom', help=default('Zoom the size of the graphics window'), default=1.0) parser.add_option('-f', '--fixRandomSeed', action='store_true', dest='fixRandomSeed', help='Fixes the random seed to always play the same game', default=False) parser.add_option('-r', '--recordActions', action='store_true', dest='record', help='Writes game histories to a file (named by the time they were played)', default=False) parser.add_option('--replay', dest='gameToReplay', help='A recorded game file (pickle) to replay', default=None) parser.add_option('-a','--agentArgs',dest='agentArgs', help='Comma separated values sent to agent. e.g. "opt1=val1,opt2,opt3=val3"') parser.add_option('-x', '--numTraining', dest='numTraining', type='int', help=default('How many episodes are training (suppresses output)'), default=0) parser.add_option('--frameTime', dest='frameTime', type='float', help=default('Time to delay between frames; <0 means keyboard'), default=0.1) parser.add_option('-c', '--catchExceptions', action='store_true', dest='catchExceptions', help='Turns on exception handling and timeouts during games', default=False) parser.add_option('--timeout', dest='timeout', type='int', help=default('Maximum length of time an agent can spend computing in a single game'), default=30) options, otherjunk = parser.parse_args(argv) if len(otherjunk) != 0: raise Exception('Command line input not understood: ' + str(otherjunk)) args = dict() # Fix the random seed if options.fixRandomSeed: random.seed('cs188') # Choose a layout args['layout'] = layout.getLayout( options.layout ) if args['layout'] == None: raise Exception("The layout " + options.layout + " cannot be found") # Choose a Pacman agent noKeyboard = options.gameToReplay == None and (options.textGraphics or options.quietGraphics) pacmanType = loadAgent(options.pacman, noKeyboard) agentOpts = parseAgentArgs(options.agentArgs) if options.numTraining > 0: args['numTraining'] = options.numTraining if 'numTraining' not in agentOpts: agentOpts['numTraining'] = options.numTraining pacman = pacmanType(**agentOpts) # Instantiate Pacman with agentArgs args['pacman'] = pacman # Don't display training games if 'numTrain' in agentOpts: options.numQuiet = int(agentOpts['numTrain']) options.numIgnore = int(agentOpts['numTrain']) # Choose a ghost agent ghostType = loadAgent(options.ghost, noKeyboard) args['ghosts'] = [ghostType( i+1 ) for i in range( options.numGhosts )] # Choose a display format if options.quietGraphics: import textDisplay args['display'] = textDisplay.NullGraphics() elif options.textGraphics: import textDisplay textDisplay.SLEEP_TIME = options.frameTime args['display'] = textDisplay.PacmanGraphics() else: import graphicsDisplay args['display'] = graphicsDisplay.PacmanGraphics(options.zoom, frameTime = options.frameTime) args['numGames'] = options.numGames args['record'] = options.record args['catchExceptions'] = options.catchExceptions args['timeout'] = options.timeout # Special case: recorded games don't use the runGames method or args structure if options.gameToReplay != None: print('Replaying recorded game %s.' % options.gameToReplay) import pickle f = open(options.gameToReplay) try: recorded = pickle.load(f) finally: f.close() recorded['display'] = args['display'] replayGame(**recorded) sys.exit(0) return args def loadAgent(pacman, nographics): # Looks through all pythonPath Directories for the right module, pythonPathStr = os.path.expandvars("$PYTHONPATH") if pythonPathStr.find(';') == -1: pythonPathDirs = pythonPathStr.split(':') else: pythonPathDirs = pythonPathStr.split(';') pythonPathDirs.append('.') for moduleDir in pythonPathDirs: if not os.path.isdir(moduleDir): continue moduleNames = [f for f in os.listdir(moduleDir) if f.endswith('gents.py')] for modulename in moduleNames: try: module = __import__(modulename[:-3]) except ImportError: continue if pacman in dir(module): if nographics and modulename == 'keyboardAgents.py': raise Exception('Using the keyboard requires graphics (not text display)') return getattr(module, pacman) raise Exception('The agent ' + pacman + ' is not specified in any *Agents.py.') def replayGame( layout, actions, display ): import pacmanAgents, ghostAgents rules = ClassicGameRules() agents = [pacmanAgents.GreedyAgent()] + [ghostAgents.RandomGhost(i+1) for i in range(layout.getNumGhosts())] game = rules.newGame( layout, agents[0], agents[1:], display ) state = game.state display.initialize(state.data) for action in actions: # Execute the action state = state.generateSuccessor( *action ) # Change the display display.update( state.data ) # Allow for game specific conditions (winning, losing, etc.) rules.process(state, game) display.finish() def runGames( layout, pacman, ghosts, display, numGames, record, numTraining = 0, catchExceptions=False, timeout=30 ): import __main__ __main__.__dict__['_display'] = display rules = ClassicGameRules(timeout) games = [] for i in range( numGames ): beQuiet = i < numTraining if beQuiet: # Suppress output and graphics import textDisplay gameDisplay = textDisplay.NullGraphics() rules.quiet = True else: gameDisplay = display rules.quiet = False game = rules.newGame( layout, pacman, ghosts, gameDisplay, beQuiet, catchExceptions) game.run() if not beQuiet: games.append(game) if record: import time, pickle fname = ('recorded-game-%d' % (i + 1)) + '-'.join([str(t) for t in time.localtime()[1:6]]) f = file(fname, 'w') components = {'layout': layout, 'actions': game.moveHistory} pickle.dump(components, f) f.close() if (numGames-numTraining) > 0: scores = [game.state.getScore() for game in games] wins = [game.state.isWin() for game in games] winRate = wins.count(True)/ float(len(wins)) print('Average Score:', sum(scores) / float(len(scores))) print('Scores: ', ', '.join([str(score) for score in scores])) print('Win Rate: %d/%d (%.2f)' % (wins.count(True), len(wins), winRate)) print('Record: ', ', '.join([ ['Loss', 'Win'][int(w)] for w in wins])) return games if __name__ == '__main__': """ The main function called when pacman.py is run from the command line: > python pacman.py See the usage string for more details. > python pacman.py --help """ args = readCommand( sys.argv[1:] ) # Get game components based on input runGames( **args ) # import cProfile # cProfile.run("runGames( **args )") pass
38.446715
119
0.617216
794e937aba1acbaa3e66d8ba295a9545b3716a49
2,453
py
Python
data/p4VQE/R4/benchmark/startQiskit_noisy666.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit_noisy666.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit_noisy666.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=12 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=8 prog.h(input_qubit[2]) # number=3 prog.x(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=4 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[1],input_qubit[0]) # number=6 prog.x(input_qubit[2]) # number=10 prog.x(input_qubit[2]) # number=11 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =5600 writefile = open("../data/startQiskit_noisy666.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = FakeYorktown() circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
26.956044
118
0.630656
794e9389dcf556f5cc3b7cf14ccb205f42426610
2,865
py
Python
utest/running/test_imports.py
zahed3795/robotframework
9fb227f9116332bb4361271b41165acd94fc5956
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
utest/running/test_imports.py
zahed3795/robotframework
9fb227f9116332bb4361271b41165acd94fc5956
[ "ECL-2.0", "Apache-2.0" ]
29
2021-01-26T07:09:54.000Z
2022-03-28T10:38:54.000Z
utest/running/test_imports.py
zahed3795/robotframework
9fb227f9116332bb4361271b41165acd94fc5956
[ "ECL-2.0", "Apache-2.0" ]
1
2018-04-23T10:03:05.000Z
2018-04-23T10:03:05.000Z
import unittest from robot.running import TestSuite from robot.utils import StringIO from robot.utils.asserts import assert_equal, assert_raises_with_msg def run(suite, **config): result = suite.run(output=None, log=None, report=None, stdout=StringIO(), stderr=StringIO(), **config) return result.suite def assert_suite(suite, name, status, message='', tests=1): assert_equal(suite.name, name) assert_equal(suite.status, status) assert_equal(suite.message, message) assert_equal(len(suite.tests), tests) def assert_test(test, name, status, tags=(), msg=''): assert_equal(test.name, name) assert_equal(test.status, status) assert_equal(test.message, msg) assert_equal(tuple(test.tags), tags) class TestImports(unittest.TestCase): def test_imports(self): suite = TestSuite(name='Suite') suite.resource.imports.create('Library', 'OperatingSystem') suite.tests.create(name='Test').body.create('Directory Should Exist', args=['.']) result = run(suite) assert_suite(result, 'Suite', 'PASS') assert_test(result.tests[0], 'Test', 'PASS') def test_library_imports(self): suite = TestSuite(name='Suite') suite.resource.imports.library('OperatingSystem') suite.tests.create(name='Test').body.create('Directory Should Exist', args=['.']) result = run(suite) assert_suite(result, 'Suite', 'PASS') assert_test(result.tests[0], 'Test', 'PASS') def test_resource_imports(self): suite = TestSuite(name='Suite') suite.resource.imports.resource('test_resource.txt') suite.tests.create(name='Test').body.create('My Test Keyword') assert_equal(suite.tests[0].body[0].name, 'My Test Keyword') result = run(suite) assert_suite(result, 'Suite', 'PASS') assert_test(result.tests[0], 'Test', 'PASS') def test_variable_imports(self): suite = TestSuite(name='Suite') suite.resource.imports.variables('variables_file.py') suite.tests.create(name='Test').body.create( 'Should Be Equal As Strings', args=['${MY_VARIABLE}', 'An example string'] ) result = run(suite) assert_suite(result, 'Suite', 'PASS') assert_test(result.tests[0], 'Test', 'PASS') def test_invalid_import_type(self): assert_raises_with_msg(ValueError, "Invalid import type 'InvalidType'. Should be " "one of 'Library', 'Resource' or 'Variables'.", TestSuite().resource.imports.create, 'InvalidType', 'Name') if __name__ == '__main__': unittest.main()
37.697368
78
0.605585
794e94ca6b575f6b93b63a0df021a3d83ea9ce5b
1,962
py
Python
restfulpy/tests/test_smtp_provider.py
maryayi/restfulpy
df4a88a7cc2740c37fd8d80c310e0372b83cd8e0
[ "MIT" ]
1
2021-06-11T21:39:44.000Z
2021-06-11T21:39:44.000Z
restfulpy/tests/test_smtp_provider.py
maryayi/restfulpy
df4a88a7cc2740c37fd8d80c310e0372b83cd8e0
[ "MIT" ]
null
null
null
restfulpy/tests/test_smtp_provider.py
maryayi/restfulpy
df4a88a7cc2740c37fd8d80c310e0372b83cd8e0
[ "MIT" ]
null
null
null
import io import unittest from os.path import dirname, abspath, join from nanohttp import settings, configure from restfulpy.messaging.providers import SmtpProvider from restfulpy.testing.mockup import smtp_server HERE = abspath(dirname(__file__)) class SmtpProviderTestCase(unittest.TestCase): __configuration__ = ''' smtp: host: smtp.example.com port: 587 username: user@example.com password: password local_hostname: localhost tls: false auth: false ssl: false messaging: mako_modules_directory: %s template_dirs: - %s ''' % ( join(HERE, '../../data', 'mako_modules'), join(HERE, 'templates'), ) @classmethod def setUpClass(cls): configure(init_value=cls.__configuration__, force=True) def test_smtp_provider(self): with smtp_server() as (server, bind): settings.smtp.host = bind[0] settings.smtp.port = bind[1] # Without templates SmtpProvider().send( 'test@example.com', 'test@example.com', 'Simple test body', cc='test@example.com', bcc='test@example.com' ) # With template SmtpProvider().send( 'test@example.com', 'test@example.com', {}, template_filename='test-email-template.mako' ) # With attachments attachment = io.BytesIO(b'This is test attachment file') attachment.name = 'path/to/file.txt' SmtpProvider().send( 'test@example.com', 'test@example.com', 'email body with Attachment', attachments=[attachment] ) if __name__ == '__main__': # pragma: no cover unittest.main()
26.876712
68
0.538226
794e9550fc58b3830385741ac05094b4a021811d
486
py
Python
old_logen/pylogen/logen_dispatch.py
leuschel/logen
0ea806f54628162615e25177c3ed98f6b2c27935
[ "Apache-2.0" ]
14
2015-10-16T11:35:30.000Z
2021-05-12T15:31:16.000Z
old_logen/pylogen/logen_dispatch.py
leuschel/logen
0ea806f54628162615e25177c3ed98f6b2c27935
[ "Apache-2.0" ]
null
null
null
old_logen/pylogen/logen_dispatch.py
leuschel/logen
0ea806f54628162615e25177c3ed98f6b2c27935
[ "Apache-2.0" ]
5
2015-10-16T12:44:41.000Z
2019-10-02T02:45:38.000Z
import os import development def get_pylogen_cmd(): if development.get_development(): cmdline = "sicstus -r pylogen_main.sav --goal \"runtime_entry(start),halt.\" -a" else: cmdline = os.path.join(".","pylogen") return cmdline def build_dispatcher(path,Spec,Memo,File,Output): cmd = get_pylogen_cmd() command = "%s -dispatch '%s' '%s' '%s' '%s' '%s'" % (cmd, path,Spec,Memo,File,Output) print command os.system(command)
19.44
89
0.619342
794e977690c154aa974b43c0bf271097cf540e0d
2,324
py
Python
tg/support/middlewares.py
sergiobrr/tg2
401d77d82bd9daacb9444150c63bb039bf003436
[ "MIT" ]
812
2015-01-16T22:57:52.000Z
2022-03-27T04:49:40.000Z
tg/support/middlewares.py
sergiobrr/tg2
401d77d82bd9daacb9444150c63bb039bf003436
[ "MIT" ]
74
2015-02-18T17:55:31.000Z
2021-12-13T10:41:08.000Z
tg/support/middlewares.py
sergiobrr/tg2
401d77d82bd9daacb9444150c63bb039bf003436
[ "MIT" ]
72
2015-06-10T06:02:45.000Z
2022-03-27T08:37:24.000Z
from tg.request_local import Request, Response import logging log = logging.getLogger(__name__) class SeekableRequestBodyMiddleware(object): def __init__(self, app): self.app = app def _stream_response(self, data): try: for chunk in data: yield chunk finally: if hasattr(data, 'close'): # pragma: no cover data.close() def __call__(self, environ, start_response): log.debug("Making request body seekable") Request(environ).make_body_seekable() return self._stream_response(self.app(environ, start_response)) class DBSessionRemoverMiddleware(object): def __init__(self, DBSession, app): self.app = app self.DBSession = DBSession def _stream_response(self, data): try: for chunk in data: yield chunk finally: log.debug("Removing DBSession from current thread") if hasattr(data, 'close'): data.close() self.DBSession.remove() def __call__(self, environ, start_response): try: return self._stream_response(self.app(environ, start_response)) except: log.debug("Removing DBSession from current thread") self.DBSession.remove() raise class MingSessionRemoverMiddleware(object): def __init__(self, ThreadLocalODMSession, app): self.app = app self.ThreadLocalODMSession = ThreadLocalODMSession def _stream_response(self, data): try: for chunk in data: yield chunk finally: log.debug("Removing ThreadLocalODMSession from current thread") if hasattr(data, 'close'): data.close() self.ThreadLocalODMSession.close_all() def __call__(self, environ, start_response): try: return self._stream_response(self.app(environ, start_response)) except: log.debug("Removing ThreadLocalODMSession from current thread") self.ThreadLocalODMSession.close_all() raise from .statics import StaticsMiddleware __all__ = ['StaticsMiddleware', 'SeekableRequestBodyMiddleware', 'DBSessionRemoverMiddleware', 'MingSessionRemoverMiddleware']
30.181818
75
0.626936
794e97b9528374fd9e20a89c87553ac37988de7c
14,492
py
Python
src/ptb/main.py
richardfat7/enas
e830fc1ad50be1824162719f2b005ade08451359
[ "Apache-2.0" ]
null
null
null
src/ptb/main.py
richardfat7/enas
e830fc1ad50be1824162719f2b005ade08451359
[ "Apache-2.0" ]
null
null
null
src/ptb/main.py
richardfat7/enas
e830fc1ad50be1824162719f2b005ade08451359
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import cPickle as pickle import shutil import sys import time import numpy as np import tensorflow as tf from src import utils from src.utils import Logger from src.utils import DEFINE_boolean from src.utils import DEFINE_float from src.utils import DEFINE_integer from src.utils import DEFINE_string from src.utils import print_user_flags from src.ptb.ptb_enas_child import PTBEnasChild from src.ptb.ptb_enas_controller import PTBEnasController flags = tf.app.flags FLAGS = flags.FLAGS DEFINE_boolean("reset_output_dir", False, "Delete output_dir if exists.") DEFINE_string("data_path", "", "") DEFINE_string("output_dir", "", "") DEFINE_string("search_for", None, "[rhn|base|enas]") DEFINE_string("child_fixed_arc", None, "") DEFINE_integer("batch_size", 25, "") DEFINE_integer("child_base_number", 4, "") DEFINE_integer("child_num_layers", 2, "") DEFINE_integer("child_bptt_steps", 20, "") DEFINE_integer("child_lstm_hidden_size", 200, "") DEFINE_float("child_lstm_e_keep", 1.0, "") DEFINE_float("child_lstm_x_keep", 1.0, "") DEFINE_float("child_lstm_h_keep", 1.0, "") DEFINE_float("child_lstm_o_keep", 1.0, "") DEFINE_boolean("child_lstm_l_skip", False, "") DEFINE_float("child_lr", 1.0, "") DEFINE_float("child_lr_dec_rate", 0.5, "") DEFINE_float("child_grad_bound", 5.0, "") DEFINE_float("child_temperature", None, "") DEFINE_float("child_l2_reg", None, "") DEFINE_float("child_lr_dec_min", None, "") DEFINE_float("child_optim_moving_average", None, "Use the moving average of Variables") DEFINE_float("child_rnn_l2_reg", None, "") DEFINE_float("child_rnn_slowness_reg", None, "") DEFINE_float("child_lr_warmup_val", None, "") DEFINE_float("child_reset_train_states", None, "") DEFINE_integer("child_lr_dec_start", 4, "") DEFINE_integer("child_lr_dec_every", 1, "") DEFINE_integer("child_avg_pool_size", 1, "") DEFINE_integer("child_block_size", 1, "") DEFINE_integer("child_rhn_depth", 4, "") DEFINE_integer("child_lr_warmup_steps", None, "") DEFINE_string("child_optim_algo", "sgd", "") DEFINE_boolean("child_sync_replicas", False, "") DEFINE_integer("child_num_aggregate", 1, "") DEFINE_integer("child_num_replicas", 1, "") DEFINE_float("controller_lr", 1e-3, "") DEFINE_float("controller_lr_dec_rate", 1.0, "") DEFINE_float("controller_keep_prob", 0.5, "") DEFINE_float("controller_l2_reg", 0.0, "") DEFINE_float("controller_bl_dec", 0.99, "") DEFINE_float("controller_tanh_constant", None, "") DEFINE_float("controller_temperature", None, "") DEFINE_float("controller_entropy_weight", None, "") DEFINE_float("controller_skip_target", None, "") DEFINE_float("controller_skip_rate", None, "") DEFINE_integer("controller_num_aggregate", 1, "") DEFINE_integer("controller_num_replicas", 1, "") DEFINE_integer("controller_train_steps", 50, "") DEFINE_integer("controller_train_every", 2, "train the controller after how many this number of epochs") DEFINE_boolean("controller_sync_replicas", False, "To sync or not to sync.") DEFINE_boolean("controller_training", True, "") DEFINE_integer("num_epochs", 300, "") DEFINE_integer("log_every", 50, "How many steps to log") DEFINE_integer("eval_every_epochs", 1, "How many epochs to eval") def get_ops(x_train, x_valid, x_test): """Create relevant models.""" ops = {} if FLAGS.search_for == "enas": assert FLAGS.child_lstm_hidden_size % FLAGS.child_block_size == 0, ( "--child_block_size has to divide child_lstm_hidden_size") if FLAGS.child_fixed_arc is not None: assert not FLAGS.controller_training, ( "with --child_fixed_arc, cannot train controller") child_model = PTBEnasChild( x_train, x_valid, x_test, rnn_l2_reg=FLAGS.child_rnn_l2_reg, rnn_slowness_reg=FLAGS.child_rnn_slowness_reg, rhn_depth=FLAGS.child_rhn_depth, fixed_arc=FLAGS.child_fixed_arc, batch_size=FLAGS.batch_size, bptt_steps=FLAGS.child_bptt_steps, lstm_num_layers=FLAGS.child_num_layers, lstm_hidden_size=FLAGS.child_lstm_hidden_size, lstm_e_keep=FLAGS.child_lstm_e_keep, lstm_x_keep=FLAGS.child_lstm_x_keep, lstm_h_keep=FLAGS.child_lstm_h_keep, lstm_o_keep=FLAGS.child_lstm_o_keep, lstm_l_skip=FLAGS.child_lstm_l_skip, vocab_size=10000, lr_init=FLAGS.child_lr, lr_dec_start=FLAGS.child_lr_dec_start, lr_dec_every=FLAGS.child_lr_dec_every, lr_dec_rate=FLAGS.child_lr_dec_rate, lr_dec_min=FLAGS.child_lr_dec_min, lr_warmup_val=FLAGS.child_lr_warmup_val, lr_warmup_steps=FLAGS.child_lr_warmup_steps, l2_reg=FLAGS.child_l2_reg, optim_moving_average=FLAGS.child_optim_moving_average, clip_mode="global", grad_bound=FLAGS.child_grad_bound, optim_algo="sgd", sync_replicas=FLAGS.child_sync_replicas, num_aggregate=FLAGS.child_num_aggregate, num_replicas=FLAGS.child_num_replicas, temperature=FLAGS.child_temperature, name="ptb_enas_model") if FLAGS.child_fixed_arc is None: controller_model = PTBEnasController( rhn_depth=FLAGS.child_rhn_depth, lstm_size=100, lstm_num_layers=1, lstm_keep_prob=1.0, tanh_constant=FLAGS.controller_tanh_constant, temperature=FLAGS.controller_temperature, lr_init=FLAGS.controller_lr, lr_dec_start=0, lr_dec_every=1000000, # never decrease learning rate l2_reg=FLAGS.controller_l2_reg, entropy_weight=FLAGS.controller_entropy_weight, bl_dec=FLAGS.controller_bl_dec, optim_algo="adam", sync_replicas=FLAGS.controller_sync_replicas, num_aggregate=FLAGS.controller_num_aggregate, num_replicas=FLAGS.controller_num_replicas) child_model.connect_controller(controller_model) controller_model.build_trainer(child_model) controller_ops = { "train_step": controller_model.train_step, "loss": controller_model.loss, "train_op": controller_model.train_op, "lr": controller_model.lr, "grad_norm": controller_model.grad_norm, "valid_ppl": controller_model.valid_ppl, "optimizer": controller_model.optimizer, "baseline": controller_model.baseline, "ppl": controller_model.ppl, "reward": controller_model.reward, "entropy": controller_model.sample_entropy, "sample_arc": controller_model.sample_arc, } else: child_model.connect_controller(None) controller_ops = None else: raise ValueError("Unknown search_for {}".format(FLAGS.search_for)) child_ops = { "global_step": child_model.global_step, "loss": child_model.loss, "train_op": child_model.train_op, "train_ppl": child_model.train_ppl, "train_reset": child_model.train_reset, "valid_reset": child_model.valid_reset, "test_reset": child_model.test_reset, "lr": child_model.lr, "grad_norm": child_model.grad_norm, "optimizer": child_model.optimizer, } ops = { "child": child_ops, "controller": controller_ops, "num_train_batches": child_model.num_train_batches, "eval_every": child_model.num_train_batches * FLAGS.eval_every_epochs, "eval_func": child_model.eval_once, } return ops def train(mode="train"): assert mode in ["train", "eval"], "Unknown mode '{0}'".format(mode) with open(FLAGS.data_path) as finp: x_train, x_valid, x_test, _, _ = pickle.load(finp) print("-" * 80) print("train_size: {0}".format(np.size(x_train))) print("valid_size: {0}".format(np.size(x_valid))) print(" test_size: {0}".format(np.size(x_test))) g = tf.Graph() with g.as_default(): ops = get_ops(x_train, x_valid, x_test) child_ops = ops["child"] controller_ops = ops["controller"] if FLAGS.child_optim_moving_average is None or mode == "eval": saver = tf.train.Saver(max_to_keep=10) else: saver = child_ops["optimizer"].swapping_saver(max_to_keep=10) checkpoint_saver_hook = tf.train.CheckpointSaverHook( FLAGS.output_dir, save_steps=ops["num_train_batches"], saver=saver) hooks = [checkpoint_saver_hook] if FLAGS.child_sync_replicas: sync_replicas_hook = child_ops["optimizer"].make_session_run_hook(True) hooks.append(sync_replicas_hook) if FLAGS.controller_training and FLAGS.controller_sync_replicas: hooks.append(controller_ops["optimizer"].make_session_run_hook(True)) print("-" * 80) print("Starting session") config = tf.ConfigProto() # use GPU1 config.gpu_options.visible_device_list = '1,2,4,7' # allocate 50% of GPU memory config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.7 with tf.train.SingularMonitoredSession( config=config, hooks=hooks, checkpoint_dir=FLAGS.output_dir) as sess: start_time = time.time() if mode == "eval": sess.run(child_ops["valid_reset"]) ops["eval_func"](sess, "valid", verbose=True) sess.run(child_ops["test_reset"]) ops["eval_func"](sess, "test", verbose=True) sys.exit(0) num_batches = 0 total_tr_ppl = 0 best_valid_ppl = 67.00 while True: run_ops = [ child_ops["loss"], child_ops["lr"], child_ops["grad_norm"], child_ops["train_ppl"], child_ops["train_op"], ] loss, lr, gn, tr_ppl, _ = sess.run(run_ops) num_batches += 1 total_tr_ppl += loss / FLAGS.child_bptt_steps global_step = sess.run(child_ops["global_step"]) if FLAGS.child_sync_replicas: actual_step = global_step * FLAGS.num_aggregate else: actual_step = global_step epoch = actual_step // ops["num_train_batches"] curr_time = time.time() if global_step % FLAGS.log_every == 0: log_string = "" log_string += "epoch={:<6d}".format(epoch) log_string += " ch_step={:<6d}".format(global_step) log_string += " loss={:<8.4f}".format(loss) log_string += " lr={:<8.4f}".format(lr) log_string += " |g|={:<10.2f}".format(gn) log_string += " tr_ppl={:<8.2f}".format( np.exp(total_tr_ppl / num_batches)) log_string += " mins={:<10.2f}".format( float(curr_time - start_time) / 60) print(log_string) if (FLAGS.child_reset_train_states is not None and np.random.uniform(0, 1) < FLAGS.child_reset_train_states): print("reset train states") sess.run([ child_ops["train_reset"], child_ops["valid_reset"], child_ops["test_reset"], ]) if actual_step % ops["eval_every"] == 0: sess.run([ child_ops["train_reset"], child_ops["valid_reset"], child_ops["test_reset"], ]) if (FLAGS.controller_training and epoch % FLAGS.controller_train_every == 0): sess.run([ child_ops["train_reset"], child_ops["valid_reset"], child_ops["test_reset"], ]) print("Epoch {}: Training controller".format(epoch)) for ct_step in xrange(FLAGS.controller_train_steps * FLAGS.controller_num_aggregate): run_ops = [ controller_ops["loss"], controller_ops["entropy"], controller_ops["lr"], controller_ops["grad_norm"], controller_ops["reward"], controller_ops["baseline"], controller_ops["train_op"], ] loss, entropy, lr, gn, rw, bl, _ = sess.run(run_ops) controller_step = sess.run(controller_ops["train_step"]) if ct_step % FLAGS.log_every == 0: curr_time = time.time() log_string = "" log_string += "ctrl_step={:<6d}".format(controller_step) log_string += " loss={:<7.3f}".format(loss) log_string += " ent={:<5.2f}".format(entropy) log_string += " lr={:<6.4f}".format(lr) log_string += " |g|={:<10.7f}".format(gn) log_string += " rw={:<7.3f}".format(rw) log_string += " bl={:<7.3f}".format(bl) log_string += " mins={:<.2f}".format( float(curr_time - start_time) / 60) print(log_string) print("Here are 10 architectures") for _ in xrange(10): arc, rw = sess.run([ controller_ops["sample_arc"], controller_ops["reward"], ]) print("{} rw={:<.3f}".format(np.reshape(arc, [-1]), rw)) sess.run([ child_ops["train_reset"], child_ops["valid_reset"], child_ops["test_reset"], ]) print("Epoch {}: Eval".format(epoch)) valid_ppl = ops["eval_func"](sess, "valid") if valid_ppl < best_valid_ppl: best_valid_ppl = valid_ppl sess.run(child_ops["test_reset"]) ops["eval_func"](sess, "test", verbose=True) sess.run([ child_ops["train_reset"], child_ops["valid_reset"], child_ops["test_reset"], ]) total_tr_ppl = 0 num_batches = 0 print("-" * 80) if epoch >= FLAGS.num_epochs: ops["eval_func"](sess, "test", verbose=True) break def main(_): print("-" * 80) if not os.path.isdir(FLAGS.output_dir): print("Path {} does not exist. Creating.".format(FLAGS.output_dir)) os.makedirs(FLAGS.output_dir) elif FLAGS.reset_output_dir: print("Path {} exists. Remove and remake.".format(FLAGS.output_dir)) shutil.rmtree(FLAGS.output_dir) os.makedirs(FLAGS.output_dir) print("-" * 80) log_file = os.path.join(FLAGS.output_dir, "stdout") print("Logging to {}".format(log_file)) sys.stdout = Logger(log_file) utils.print_user_flags() train(mode="train") if __name__ == "__main__": tf.app.run()
36.23
77
0.642354
794e98703d960c8f9e7efd2722f476e98874392c
120,828
py
Python
scripts/linters/pylint_extensions_test.py
TheoLipeles/oppia
cd0bb873e08fa716014f3d1480fbbfee95b89121
[ "Apache-2.0" ]
2
2021-03-07T18:39:15.000Z
2021-03-29T20:09:11.000Z
scripts/linters/pylint_extensions_test.py
TheoLipeles/oppia
cd0bb873e08fa716014f3d1480fbbfee95b89121
[ "Apache-2.0" ]
null
null
null
scripts/linters/pylint_extensions_test.py
TheoLipeles/oppia
cd0bb873e08fa716014f3d1480fbbfee95b89121
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For details on how to write such tests, please refer to # https://github.com/oppia/oppia/wiki/Writing-Tests-For-Pylint """Unit tests for scripts/pylint_extensions.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import tempfile import unittest import python_utils from . import pylint_extensions import astroid # isort:skip from pylint import testutils # isort:skip from pylint import lint # isort:skip from pylint import utils # isort:skip class ExplicitKeywordArgsCheckerTests(unittest.TestCase): def setUp(self): super(ExplicitKeywordArgsCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.ExplicitKeywordArgsChecker) self.checker_test_object.setup_method() def test_finds_non_explicit_keyword_args(self): ( func_call_node_one, func_call_node_two, func_call_node_three, func_call_node_four, func_call_node_five, func_call_node_six, class_call_node) = astroid.extract_node( """ class TestClass(): pass def test(test_var_one, test_var_two=4, test_var_three=5, test_var_four="test_checker"): test_var_five = test_var_two + test_var_three return test_var_five def test_1(test_var_one, test_var_one): pass def test_2((a, b)): pass test(2, 5, test_var_three=6) #@ test(2) #@ test(2, 6, test_var_two=5, test_var_four="test_checker") #@ max(5, 1) #@ test_1(1, 2) #@ test_2((1, 2)) #@ TestClass() #@ """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='non-explicit-keyword-args', node=func_call_node_one, args=( '\'test_var_two\'', 'function', 'test' ) ), ): self.checker_test_object.checker.visit_call( func_call_node_one) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call( func_call_node_two) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='non-explicit-keyword-args', node=func_call_node_three, args=( '\'test_var_three\'', 'function', 'test' ) ) ): self.checker_test_object.checker.visit_call( func_call_node_three) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call(class_call_node) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call(func_call_node_four) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call(func_call_node_five) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call(func_call_node_six) def test_finds_arg_name_for_non_keyword_arg(self): node_arg_name_for_non_keyword_arg = astroid.extract_node( """ def test(test_var_one, test_var_two=4, test_var_three=5): test_var_five = test_var_two + test_var_three return test_var_five test(test_var_one=2, test_var_two=5) #@ """) message = testutils.Message( msg_id='arg-name-for-non-keyword-arg', node=node_arg_name_for_non_keyword_arg, args=('\'test_var_one\'', 'function', 'test')) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_call( node_arg_name_for_non_keyword_arg) def test_correct_use_of_keyword_args(self): node_with_no_error_message = astroid.extract_node( """ def test(test_var_one, test_var_two=4, test_var_three=5): test_var_five = test_var_two + test_var_three return test_var_five test(2, test_var_two=2) #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call( node_with_no_error_message) def test_function_with_args_and_kwargs(self): node_with_args_and_kwargs = astroid.extract_node( """ def test_1(*args, **kwargs): pass test_1(first=1, second=2) #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call( node_with_args_and_kwargs) def test_constructor_call_with_keyword_arguments(self): node_with_no_error_message = astroid.extract_node( """ class TestClass(): def __init__(self, first, second): pass TestClass(first=1, second=2) #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_call( node_with_no_error_message) def test_register(self): pylinter_instance = lint.PyLinter() pylint_extensions.register(pylinter_instance) class HangingIndentCheckerTests(unittest.TestCase): def setUp(self): super(HangingIndentCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.HangingIndentChecker) self.checker_test_object.setup_method() def test_no_break_after_hanging_indentation(self): node_break_after_hanging_indent = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""self.post_json('/ml/\\trainedclassifierhandler', self.payload, expect_errors=True, expected_status_int=401) if (a > 1 and b > 2): """) node_break_after_hanging_indent.file = filename node_break_after_hanging_indent.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_break_after_hanging_indent)) message = testutils.Message( msg_id='no-break-after-hanging-indent', line=1) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_no_break_after_hanging_indentation_with_comment(self): node_break_after_hanging_indent = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""self.post_json('/ml/\\trainedclassifierhandler', self.payload, expect_errors=True, expected_status_int=401) if (a > 1 and b > 2): # pylint: disable=invalid-name """) node_break_after_hanging_indent.file = filename node_break_after_hanging_indent.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_break_after_hanging_indent)) message = testutils.Message( msg_id='no-break-after-hanging-indent', line=1) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_break_after_hanging_indentation(self): node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""\"\"\"Some multiline docstring. \"\"\" # Load JSON. master_translation_dict = json.loads( utils.get_file_contents(os.path.join( os.getcwd(), 'assets', 'i18n', 'en.json'))) """) node_with_no_error_message.file = filename node_with_no_error_message.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_with_no_error_message)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_hanging_indentation_with_a_comment_after_bracket(self): node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""self.post_json( # Random comment '(', self.payload, expect_errors=True, expected_status_int=401)""") node_with_no_error_message.file = filename node_with_no_error_message.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_with_no_error_message)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_hanging_indentation_with_a_comment_after_two_or_more_bracket(self): node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""self.post_json(func( # Random comment '(', self.payload, expect_errors=True, expected_status_int=401))""") node_with_no_error_message.file = filename node_with_no_error_message.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_with_no_error_message)) with self.checker_test_object.assertNoMessages(): temp_file.close() class DocstringParameterCheckerTests(unittest.TestCase): def setUp(self): super(DocstringParameterCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.DocstringParameterChecker) self.checker_test_object.setup_method() def test_no_newline_below_class_docstring(self): node_no_newline_below_class_docstring = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): \"\"\"This is a docstring.\"\"\" a = 1 + 2 """) node_no_newline_below_class_docstring.file = filename node_no_newline_below_class_docstring.path = filename self.checker_test_object.checker.visit_classdef( node_no_newline_below_class_docstring) message = testutils.Message( msg_id='newline-below-class-docstring', node=node_no_newline_below_class_docstring) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_excessive_newline_below_class_docstring(self): node_excessive_newline_below_class_docstring = ( astroid.scoped_nodes.Module( name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): \"\"\"This is a docstring.\"\"\" a = 1 + 2 """) node_excessive_newline_below_class_docstring.file = filename node_excessive_newline_below_class_docstring.path = filename self.checker_test_object.checker.visit_classdef( node_excessive_newline_below_class_docstring) message = testutils.Message( msg_id='newline-below-class-docstring', node=node_excessive_newline_below_class_docstring) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_inline_comment_after_class_docstring(self): node_inline_comment_after_class_docstring = ( astroid.scoped_nodes.Module( name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): \"\"\"This is a docstring.\"\"\" # This is a comment. def func(): a = 1 + 2 """) node_inline_comment_after_class_docstring.file = filename node_inline_comment_after_class_docstring.path = filename self.checker_test_object.checker.visit_classdef( node_inline_comment_after_class_docstring) message = testutils.Message( msg_id='newline-below-class-docstring', node=node_inline_comment_after_class_docstring) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_multiline_class_argument_with_incorrect_style(self): node_multiline_class_argument_with_incorrect_style = ( astroid.scoped_nodes.Module( name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName( dummy_class): \"\"\"This is a docstring.\"\"\" a = 1 + 2 """) node_multiline_class_argument_with_incorrect_style.file = filename node_multiline_class_argument_with_incorrect_style.path = filename self.checker_test_object.checker.visit_classdef( node_multiline_class_argument_with_incorrect_style) message = testutils.Message( msg_id='newline-below-class-docstring', node=node_multiline_class_argument_with_incorrect_style) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_multiline_class_argument_with_correct_style(self): node_multiline_class_argument_with_correct_style = ( astroid.scoped_nodes.Module( name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName( dummy_class): \"\"\"This is a docstring.\"\"\" a = 1 + 2 """) node_multiline_class_argument_with_correct_style.file = filename node_multiline_class_argument_with_correct_style.path = filename self.checker_test_object.checker.visit_classdef( node_multiline_class_argument_with_correct_style) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_single_newline_below_class_docstring(self): node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): \"\"\"This is a multiline docstring.\"\"\" a = 1 + 2 """) node_with_no_error_message.file = filename node_with_no_error_message.path = filename self.checker_test_object.checker.visit_classdef( node_with_no_error_message) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_class_with_no_docstring(self): node_class_with_no_docstring = astroid.scoped_nodes.Module( name='test', doc=None) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): a = 1 + 2 """) node_class_with_no_docstring.file = filename node_class_with_no_docstring.path = filename self.checker_test_object.checker.visit_classdef( node_class_with_no_docstring) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_newline_before_docstring_with_correct_style(self): node_newline_before_docstring_with_correct_style = ( astroid.scoped_nodes.Module( name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): \"\"\"This is a multiline docstring.\"\"\" a = 1 + 2 """) node_newline_before_docstring_with_correct_style.file = filename node_newline_before_docstring_with_correct_style.path = filename self.checker_test_object.checker.visit_classdef( node_newline_before_docstring_with_correct_style) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_newline_before_docstring_with_incorrect_style(self): node_newline_before_docstring_with_incorrect_style = ( astroid.scoped_nodes.Module( name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" class ClassName(dummy_class): \"\"\"This is a multiline docstring.\"\"\" a = 1 + 2 """) node_newline_before_docstring_with_incorrect_style.file = filename node_newline_before_docstring_with_incorrect_style.path = filename self.checker_test_object.checker.visit_classdef( node_newline_before_docstring_with_incorrect_style) message = testutils.Message( msg_id='newline-below-class-docstring', node=node_newline_before_docstring_with_incorrect_style) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_malformed_args_section(self): node_malformed_args_section = astroid.extract_node( u"""def func(arg): #@ \"\"\"Does nothing. Args: arg: Argument description. \"\"\" a = True """) message = testutils.Message( msg_id='malformed-args-section', node=node_malformed_args_section ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_malformed_args_section) def test_malformed_returns_section(self): node_malformed_returns_section = astroid.extract_node( u"""def func(): #@ \"\"\"Return True. Returns: arg: Argument description. \"\"\" return True """) message = testutils.Message( msg_id='malformed-returns-section', node=node_malformed_returns_section ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_malformed_returns_section) def test_malformed_yields_section(self): node_malformed_yields_section = astroid.extract_node( u"""def func(): #@ \"\"\"Yield true. Yields: yields: Argument description. \"\"\" yield True """) message = testutils.Message( msg_id='malformed-yields-section', node=node_malformed_yields_section ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_malformed_yields_section) def test_malformed_raises_section(self): node_malformed_raises_section = astroid.extract_node( u"""def func(): #@ \"\"\"Raise an exception. Raises: Exception: Argument description. \"\"\" raise Exception() """) message = testutils.Message( msg_id='malformed-raises-section', node=node_malformed_raises_section ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_malformed_raises_section) def test_malformed_args_argument(self): node_malformed_args_argument = astroid.extract_node( u"""def func(*args): #@ \"\"\"Does nothing. Args: *args: int. Argument description. \"\"\" a = True """) message = testutils.Message( msg_id='malformed-args-argument', node=node_malformed_args_argument ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_malformed_args_argument) def test_well_formated_args_argument(self): node_with_no_error_message = astroid.extract_node( u"""def func(*args): #@ \"\"\"Does nothing. Args: *args: list(*). Description. \"\"\" a = True """) with self.checker_test_object.assertAddsMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_well_formated_args_section(self): node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"Does nothing. Args: arg: argument. Description. \"\"\" a = True """) with self.checker_test_object.assertAddsMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_well_formated_returns_section(self): node_with_no_error_message = astroid.extract_node( u"""def func(): #@ \"\"\"Does nothing. Returns: int. Argument escription. \"\"\" return args """) with self.checker_test_object.assertAddsMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_well_formated_yields_section(self): node_with_no_error_message = astroid.extract_node( u"""def func(): #@ \"\"\"Does nothing. Yields: arg. Argument description. \"\"\" yield args """) with self.checker_test_object.assertAddsMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_space_after_docstring(self): node_space_after_docstring = astroid.extract_node( u"""def func(): \"\"\" Hello world.\"\"\" Something """) message = testutils.Message( msg_id='space-after-triple-quote', node=node_space_after_docstring) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_space_after_docstring) def test_two_lines_empty_docstring_raise_correct_message(self): node_with_docstring = astroid.extract_node( u"""def func(): \"\"\" \"\"\" pass """) message = testutils.Message( msg_id='single-line-docstring-span-two-lines', node=node_with_docstring) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_with_docstring) def test_single_line_docstring_span_two_lines(self): node_single_line_docstring_span_two_lines = astroid.extract_node( u"""def func(): #@ \"\"\"This is a docstring. \"\"\" Something """) message = testutils.Message( msg_id='single-line-docstring-span-two-lines', node=node_single_line_docstring_span_two_lines) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_single_line_docstring_span_two_lines) def test_no_period_at_end(self): node_no_period_at_end = astroid.extract_node( u"""def func(): #@ \"\"\"This is a docstring\"\"\" Something """) message = testutils.Message( msg_id='no-period-used', node=node_no_period_at_end) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_no_period_at_end) def test_empty_line_before_end_of_docstring(self): node_empty_line_before_end = astroid.extract_node( u"""def func(): #@ \"\"\"This is a docstring. \"\"\" Something """) message = testutils.Message( msg_id='empty-line-before-end', node=node_empty_line_before_end) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_empty_line_before_end) def test_no_period_at_end_of_a_multiline_docstring(self): node_no_period_at_end = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Args: arg: variable. Desciption \"\"\" Something """) no_period_at_end_message = testutils.Message( msg_id='no-period-used', node=node_no_period_at_end) malformed_args_message = testutils.Message( msg_id='malformed-args-section', node=node_no_period_at_end) with self.checker_test_object.assertAddsMessages( no_period_at_end_message, malformed_args_message): self.checker_test_object.checker.visit_functiondef( node_no_period_at_end) def test_no_newline_at_end_of_multi_line_docstring(self): node_no_newline_at_end = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Args: arg: variable. Description.\"\"\" Something """) message = testutils.Message( msg_id='no-newline-used-at-end', node=node_no_newline_at_end) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_no_newline_at_end) def test_no_newline_above_args(self): node_single_newline_above_args = astroid.extract_node( u"""def func(arg): #@ \"\"\"Do something. Args: arg: argument. Description. \"\"\" """) message = testutils.Message( msg_id='single-space-above-args', node=node_single_newline_above_args) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_single_newline_above_args) def test_no_newline_above_raises(self): node_single_newline_above_raises = astroid.extract_node( u"""def func(): #@ \"\"\"Raises exception. Raises: raises_exception. Description. \"\"\" raise exception """) message = testutils.Message( msg_id='single-space-above-raises', node=node_single_newline_above_raises ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_single_newline_above_raises) def test_no_newline_above_return(self): node_with_no_space_above_return = astroid.extract_node( u"""def func(): #@ \"\"\"Returns something. Returns: returns_something. Description. \"\"\" return something """) message = testutils.Message( msg_id='single-space-above-returns', node=node_with_no_space_above_return ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_with_no_space_above_return) def test_varying_combination_of_newline_above_args(self): node_newline_above_args_raises = astroid.extract_node( u"""def func(arg): #@ \"\"\"Raises exception. Args: arg: argument. Description. Raises: raises_something. Description. \"\"\" raise exception """) message = testutils.Message( msg_id='single-space-above-raises', node=node_newline_above_args_raises ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_newline_above_args_raises) node_newline_above_args_returns = astroid.extract_node( u"""def func(arg): #@ \"\"\"Returns Something. Args: arg: argument. Description. Returns: returns_something. Description. \"\"\" return something """) message = testutils.Message( msg_id='single-space-above-returns', node=node_newline_above_args_returns ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_newline_above_args_returns) node_newline_above_returns_raises = astroid.extract_node( u"""def func(): #@ \"\"\"Do something. Raises: raises_exception. Description. Returns: returns_something. Description. \"\"\" raise something return something """) message = testutils.Message( msg_id='single-space-above-raises', node=node_newline_above_returns_raises ) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( node_newline_above_returns_raises) def test_excessive_newline_above_args(self): node_with_two_newline = astroid.extract_node( u"""def func(arg): #@ \"\"\"Returns something. Args: arg: argument. This is description. Returns: int. Returns something. Yields: yield_something. Description. \"\"\" return True yield something """) single_space_above_args_message = testutils.Message( msg_id='single-space-above-args', node=node_with_two_newline ) single_space_above_returns_message = testutils.Message( msg_id='single-space-above-returns', node=node_with_two_newline ) single_space_above_yields_message = testutils.Message( msg_id='single-space-above-yield', node=node_with_two_newline ) with self.checker_test_object.assertAddsMessages( single_space_above_args_message, single_space_above_returns_message, single_space_above_yields_message): self.checker_test_object.checker.visit_functiondef( node_with_two_newline) def test_return_in_comment(self): node_with_return_in_comment = astroid.extract_node( u"""def func(arg): #@ \"\"\"Returns something. Args: arg: argument. Description. Returns: returns_something. Description. \"\"\" "Returns: something" return something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_return_in_comment) def test_function_with_no_args(self): node_with_no_args = astroid.extract_node( u"""def func(): \"\"\"Do something.\"\"\" a = 1 + 2 """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_args) def test_well_placed_newline(self): node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"Returns something. Args: arg: argument. This is description. Returns: returns_something. This is description. Raises: raises. Something. Yields: yield_something. This is description. \"\"\" raise something yield something return something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_invalid_parameter_indentation_in_docstring(self): raises_invalid_indentation_node = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Raises: NoVariableException. Variable. \"\"\" Something """) message = testutils.Message( msg_id='4-space-indentation-in-docstring', node=raises_invalid_indentation_node) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( raises_invalid_indentation_node) return_invalid_indentation_node = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Returns: str. If :true, individual key=value pairs. \"\"\" Something """) message = testutils.Message( msg_id='4-space-indentation-in-docstring', node=return_invalid_indentation_node) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( return_invalid_indentation_node) def test_invalid_description_indentation_docstring(self): invalid_raises_description_indentation_node = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Raises: AssertionError. If the schema is not valid. \"\"\" Something """) incorrect_indentation_message = testutils.Message( msg_id='8-space-indentation-in-docstring', node=invalid_raises_description_indentation_node) malformed_raises_message = testutils.Message( msg_id='malformed-raises-section', node=invalid_raises_description_indentation_node) with self.checker_test_object.assertAddsMessages( incorrect_indentation_message, malformed_raises_message, malformed_raises_message): self.checker_test_object.checker.visit_functiondef( invalid_raises_description_indentation_node) invalid_return_description_indentation_node = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Returns: str. If :true, individual key=value pairs. \"\"\" return Something """) message = testutils.Message( msg_id='4-space-indentation-in-docstring', node=invalid_return_description_indentation_node) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( invalid_return_description_indentation_node) invalid_yield_description_indentation_node = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Yields: str. If :true, incorrent indentation line. \"\"\" yield Something """) message = testutils.Message( msg_id='4-space-indentation-in-docstring', node=invalid_yield_description_indentation_node) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_functiondef( invalid_yield_description_indentation_node) def test_malformed_parameter_docstring(self): invalid_parameter_name = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Raises: Incorrect-Exception. If the schema is not valid. \"\"\" Something """) malformed_raises_message = testutils.Message( msg_id='malformed-raises-section', node=invalid_parameter_name) with self.checker_test_object.assertAddsMessages( malformed_raises_message, malformed_raises_message): self.checker_test_object.checker.visit_functiondef( invalid_parameter_name) def test_well_formed_single_line_docstring(self): node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring.\"\"\" Something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_well_formed_multi_line_docstring(self): node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Args: arg: variable. Description. \"\"\" Something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_well_formed_multi_line_description_docstring(self): node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Args: arg: bool. If true, individual key=value pairs separated by '&' are generated for each element of the value sequence for the key. \"\"\" Something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Raises: doseq. If true, individual key=value pairs separated by '&' are generated for each element of the value sequence for the key temp temp temp temp. query. The query to be encoded. \"\"\" Something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) node_with_no_error_message = astroid.extract_node( u"""def func(arg): \"\"\"This is a docstring. Returns: str. The string parsed using Jinja templating. Returns an error string in case of error in parsing. Yields: tuple. For ExplorationStatsModel, a 2-tuple of the form (exp_id, value) where value is of the form. \"\"\" if True: return Something else: yield something """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) node_with_no_error_message = astroid.extract_node( u"""def func(arg): #@ \"\"\"This is a docstring. Returns: str. From this item there is things: Jinja templating. Returns an error string in case of error in parsing. Yields: tuple. For ExplorationStatsModel: {key (sym) }. \"\"\" if True: return Something else: yield (a, b) """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( node_with_no_error_message) def test_checks_args_formatting_docstring(self): self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.DocstringParameterChecker) self.checker_test_object.setup_method() invalid_args_description_node = astroid.extract_node( """ def func(test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Incorrect description indentation Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='8-space-indentation-for-arg-in-descriptions-doc', node=invalid_args_description_node, args='Incorrect' ), testutils.Message( msg_id='malformed-args-section', node=invalid_args_description_node, ) ): self.checker_test_object.checker.visit_functiondef( invalid_args_description_node) invalid_param_indentation_node = astroid.extract_node( """ def func(test_var_one): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='4-space-indentation-for-arg-parameters-doc', node=invalid_param_indentation_node, args='test_var_one:' ), ): self.checker_test_object.checker.visit_functiondef( invalid_param_indentation_node) invalid_header_indentation_node = astroid.extract_node( """ def func(test_var_one): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='incorrect-indentation-for-arg-header-doc', node=invalid_header_indentation_node, ), ): self.checker_test_object.checker.visit_functiondef( invalid_header_indentation_node) def test_correct_args_formatting_docstring(self): self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.DocstringParameterChecker) self.checker_test_object.setup_method() valid_free_form_node = astroid.extract_node( """ def func(test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable: Incorrect description indentation { key: }. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( valid_free_form_node) valid_indentation_node = astroid.extract_node( """ def func(test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable: Correct indentaion. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef( valid_indentation_node) def test_finds_docstring_parameter(self): self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.DocstringParameterChecker) self.checker_test_object.setup_method() valid_func_node, valid_return_node = astroid.extract_node( """ def test(test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef(valid_func_node) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_return(valid_return_node) valid_func_node, valid_yield_node = astroid.extract_node( """ def test(test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters.\"\"\" result = test_var_one + test_var_two yield result #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef(valid_func_node) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_yield(valid_yield_node) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_return(valid_yield_node) ( missing_yield_type_func_node, missing_yield_type_yield_node) = astroid.extract_node( """ class Test(python_utils.OBJECT): def __init__(self, test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two yield result #@ """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='redundant-returns-doc', node=missing_yield_type_func_node ), ): self.checker_test_object.checker.visit_functiondef( missing_yield_type_func_node) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='missing-yield-doc', node=missing_yield_type_func_node ), testutils.Message( msg_id='missing-yield-type-doc', node=missing_yield_type_func_node ), ): self.checker_test_object.checker.visit_yieldfrom( missing_yield_type_yield_node) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_return( missing_yield_type_yield_node) ( missing_return_type_func_node, missing_return_type_return_node) = astroid.extract_node( """ class Test(python_utils.OBJECT): def __init__(self, test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Yields: int. The test result. \"\"\" result = test_var_one + test_var_two return result #@ """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='redundant-yields-doc', node=missing_return_type_func_node ), ): self.checker_test_object.checker.visit_functiondef( missing_return_type_func_node) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='missing-return-doc', node=missing_return_type_func_node ), testutils.Message( msg_id='missing-return-type-doc', node=missing_return_type_func_node ), ): self.checker_test_object.checker.visit_return( missing_return_type_return_node) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_yield( missing_return_type_return_node) valid_raise_node = astroid.extract_node( """ def func(test_var_one, test_var_two): \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Raises: Exception. An exception. \"\"\" raise Exception #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) ( missing_raise_type_func_node, missing_raise_type_raise_node) = astroid.extract_node( """ def func(test_var_one, test_var_two): #@ \"\"\"Function to test raising exceptions. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. \"\"\" raise Exception #@ """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='missing-raises-doc', args=('Exception',), node=missing_raise_type_func_node ), ): self.checker_test_object.checker.visit_raise( missing_raise_type_raise_node) valid_raise_node = astroid.extract_node( """ class Test(python_utils.OBJECT): raise Exception #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ class Test(): @property def decorator_func(self): pass @decorator_func.setter @property def func(self): raise Exception #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ class Test(): def func(self): raise Exception #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ def func(): try: raise Exception #@ except Exception: pass """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ def func(): \"\"\"Function to test raising exceptions.\"\"\" raise Exception #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ def my_func(self): \"\"\"This is a docstring. :raises NameError: Never. \"\"\" def ex_func(val): return RuntimeError(val) raise ex_func('hi') #@ raise NameError('hi') """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ from unknown import Unknown def my_func(self): \"\"\"This is a docstring. :raises NameError: Never. \"\"\" raise Unknown('hi') #@ raise NameError('hi') """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_raise_node = astroid.extract_node( """ def my_func(self): \"\"\"This is a docstring. :raises NameError: Never. \"\"\" def ex_func(val): def inner_func(value): return OSError(value) return RuntimeError(val) raise ex_func('hi') #@ raise NameError('hi') """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_raise(valid_raise_node) valid_return_node = astroid.extract_node( """ def func(): \"\"\"Function to test return values.\"\"\" return None #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_return(valid_return_node) valid_return_node = astroid.extract_node( """ def func(): \"\"\"Function to test return values.\"\"\" return #@ """) with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_return(valid_return_node) missing_param_func_node = astroid.extract_node( """ def func(test_var_one, test_var_two, *args, **kwargs): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='missing-param-doc', node=missing_param_func_node, args=('args, kwargs',), ), ): self.checker_test_object.checker.visit_functiondef( missing_param_func_node) missing_param_func_node = astroid.extract_node( """ def func(test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. invalid_var_name: str. Second test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='missing-param-doc', node=missing_param_func_node, args=('test_var_two',), ), testutils.Message( msg_id='missing-type-doc', node=missing_param_func_node, args=('test_var_two',), ), testutils.Message( msg_id='differing-param-doc', node=missing_param_func_node, args=('invalid_var_name',), ), testutils.Message( msg_id='differing-type-doc', node=missing_param_func_node, args=('invalid_var_name',), ), testutils.Message( msg_id='8-space-indentation-for-arg-in-descriptions-doc', node=missing_param_func_node, args='invalid_var_name:' ), ): self.checker_test_object.checker.visit_functiondef( missing_param_func_node) class_node, multiple_constructor_func_node = astroid.extract_node( """ class Test(): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Returns: int. The test result. \"\"\" def __init__(self, test_var_one, test_var_two): #@ \"\"\"Function to test docstring parameters. Args: test_var_one: int. First test variable. test_var_two: str. Second test variable. Returns: int. The test result. \"\"\" result = test_var_one + test_var_two return result """) with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='multiple-constructor-doc', node=class_node, args=(class_node.name,), ), ): self.checker_test_object.checker.visit_functiondef( multiple_constructor_func_node) def test_visit_raise_warns_unknown_style(self): self.checker_test_object.checker.config.accept_no_raise_doc = False node = astroid.extract_node( """ def my_func(self): \"\"\"This is a docstring.\"\"\" raise RuntimeError('hi') """) raise_node = node.body[0] func_node = raise_node.frame() with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='missing-raises-doc', args=('RuntimeError',), node=func_node ), ): self.checker_test_object.checker.visit_raise(raise_node) class ImportOnlyModulesCheckerTests(unittest.TestCase): def test_finds_import_from(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.ImportOnlyModulesChecker) checker_test_object.setup_method() importfrom_node1 = astroid.extract_node( """ from os import path #@ import sys """) with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_importfrom(importfrom_node1) importfrom_node2 = astroid.extract_node( """ from os import error #@ import sys """) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='import-only-modules', node=importfrom_node2, args=('error', 'os') ), ): checker_test_object.checker.visit_importfrom( importfrom_node2) importfrom_node3 = astroid.extract_node( """ from invalid_module import invalid_module #@ """) with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_importfrom(importfrom_node3) importfrom_node4 = astroid.extract_node( """ from constants import constants #@ """) with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_importfrom(importfrom_node4) importfrom_node5 = astroid.extract_node( """ from os import invalid_module #@ """) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='import-only-modules', node=importfrom_node5, args=('invalid_module', 'os') ), ): checker_test_object.checker.visit_importfrom(importfrom_node5) importfrom_node6 = astroid.extract_node( """ from .constants import constants #@ """, module_name='.constants') with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_importfrom(importfrom_node6) class BackslashContinuationCheckerTests(unittest.TestCase): def test_finds_backslash_continuation(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.BackslashContinuationChecker) checker_test_object.setup_method() node = astroid.scoped_nodes.Module(name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""message1 = 'abc'\\\n""" # pylint: disable=backslash-continuation """'cde'\\\n""" # pylint: disable=backslash-continuation """'xyz' message2 = 'abc\\\\' message3 = ( 'abc\\\\' 'xyz\\\\' ) """) node.file = filename node.path = filename checker_test_object.checker.process_module(node) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='backslash-continuation', line=1 ), testutils.Message( msg_id='backslash-continuation', line=2 ), ): temp_file.close() class FunctionArgsOrderCheckerTests(unittest.TestCase): def test_finds_function_def(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.FunctionArgsOrderChecker) checker_test_object.setup_method() functiondef_node1 = astroid.extract_node( """ def test(self,test_var_one, test_var_two): #@ result = test_var_one + test_var_two return result """) with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_functiondef(functiondef_node1) functiondef_node2 = astroid.extract_node( """ def test(test_var_one, test_var_two, self): #@ result = test_var_one + test_var_two return result """) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='function-args-order-self', node=functiondef_node2 ), ): checker_test_object.checker.visit_functiondef(functiondef_node2) functiondef_node3 = astroid.extract_node( """ def test(test_var_one, test_var_two, cls): #@ result = test_var_one + test_var_two return result """) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='function-args-order-cls', node=functiondef_node3 ), ): checker_test_object.checker.visit_functiondef(functiondef_node3) class RestrictedImportCheckerTests(unittest.TestCase): def setUp(self): super(RestrictedImportCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.RestrictedImportChecker) self.checker_test_object.setup_method() # The spaces are included on purpose so that we properly test # the input sanitization. self.checker_test_object.checker.config.forbidden_imports = ( ' core.storage: core.domain ', 'core.domain : core.controllers', 'core.controllers: core.platform | core.storage ' ) self.checker_test_object.checker.open() def test_forbid_domain_import_in_storage_module(self): node_err_import = astroid.extract_node( """ import core.domain.activity_domain #@ """) node_err_import.root().name = 'oppia.core.storage.topic' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_err_import, args=('domain', 'storage'), ), ): self.checker_test_object.checker.visit_import(node_err_import) def test_allow_platform_import_in_storage_module(self): node_no_err_import = astroid.extract_node( """ import core.platform.email.mailgun_email_services #@ """) node_no_err_import.root().name = 'oppia.core.storage.topic' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_import(node_no_err_import) def test_forbid_domain_from_import_in_storage_module(self): node_err_importfrom = astroid.extract_node( """ from core.domain import activity_domain #@ """) node_err_importfrom.root().name = 'oppia.core.storage.topic' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_err_importfrom, args=('domain', 'storage'), ) ): self.checker_test_object.checker.visit_importfrom( node_err_importfrom) def test_allow_platform_from_import_in_storage_module(self): node_no_err_importfrom = astroid.extract_node( """ from core.platform.email import mailgun_email_services #@ """) node_no_err_importfrom.root().name = 'oppia.core.storage.topicl' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_importfrom( node_no_err_importfrom) def test_forbid_controllers_import_in_domain_module(self): node_err_import = astroid.extract_node( """ import core.controllers.acl_decorators #@ """) node_err_import.root().name = 'oppia.core.domain' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_err_import, args=('controllers', 'domain'), ), ): self.checker_test_object.checker.visit_import(node_err_import) def test_allow_platform_import_in_domain_module(self): node_no_err_import = astroid.extract_node( """ import core.platform.email.mailgun_email_services_test #@ """) node_no_err_import.root().name = 'oppia.core.domain' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_import(node_no_err_import) def test_forbid_controllers_from_import_in_domain_module(self): node_err_importfrom = astroid.extract_node( """ from core.controllers import acl_decorators #@ """) node_err_importfrom.root().name = 'oppia.core.domain' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_err_importfrom, args=('controllers', 'domain'), ) ): self.checker_test_object.checker.visit_importfrom( node_err_importfrom) def test_allow_platform_from_import_in_domain_module(self): node_no_err_importfrom = astroid.extract_node( """ from core.platform.email import mailgun_email_services_test #@ """) node_no_err_importfrom.root().name = 'oppia.core.domain' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_importfrom( node_no_err_importfrom) def test_forbid_platform_import_in_controllers_module(self): node_err_import = astroid.extract_node( """ import core.platform #@ """) node_err_import.root().name = 'oppia.core.controllers.controller' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_err_import, args=('platform', 'controllers'), ) ): self.checker_test_object.checker.visit_import(node_err_import) def test_forbid_storage_import_in_controllers_module(self): node_err_import = astroid.extract_node( """ import core.storage #@ """) node_err_import.root().name = 'oppia.core.controllers.controller' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_err_import, args=('storage', 'controllers'), ) ): self.checker_test_object.checker.visit_import(node_err_import) def test_allow_domain_import_in_controllers_module(self): node_no_err_import = astroid.extract_node( """ import core.domain #@ """) node_no_err_import.root().name = 'oppia.core.controllers.controller' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_import(node_no_err_import) def test_forbid_platform_from_import_in_controllers_module(self): node_no_err_importfrom = astroid.extract_node( """ from core.platform import models #@ """) node_no_err_importfrom.root().name = 'oppia.core.controllers.controller' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_no_err_importfrom, args=('platform', 'controllers'), ) ): self.checker_test_object.checker.visit_importfrom( node_no_err_importfrom) def test_forbid_storage_from_import_in_controllers_module(self): node_no_err_importfrom = astroid.extract_node( """ from core.storage.user import gae_models as user_models #@ """) node_no_err_importfrom.root().name = 'oppia.core.controllers.controller' with self.checker_test_object.assertAddsMessages( testutils.Message( msg_id='invalid-import', node=node_no_err_importfrom, args=('storage', 'controllers'), ) ): self.checker_test_object.checker.visit_importfrom( node_no_err_importfrom) def test_allow_domain_from_import_in_controllers_module(self): node_no_err_importfrom = astroid.extract_node( """ from core.domain import user_services #@ """) node_no_err_importfrom.root().name = 'oppia.core.controllers.controller' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_importfrom( node_no_err_importfrom) class SingleCharAndNewlineAtEOFCheckerTests(unittest.TestCase): def test_checks_single_char_and_newline_eof(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.SingleCharAndNewlineAtEOFChecker) checker_test_object.setup_method() node_missing_newline_at_eof = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""c = 'something dummy' """) node_missing_newline_at_eof.file = filename node_missing_newline_at_eof.path = filename checker_test_object.checker.process_module(node_missing_newline_at_eof) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='newline-at-eof', line=2 ), ): temp_file.close() node_single_char_file = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write(u"""1""") node_single_char_file.file = filename node_single_char_file.path = filename checker_test_object.checker.process_module(node_single_char_file) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='only-one-character', line=1 ), ): temp_file.close() node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write(u"""x = 'something dummy'""") node_with_no_error_message.file = filename node_with_no_error_message.path = filename checker_test_object.checker.process_module(node_with_no_error_message) with checker_test_object.assertNoMessages(): temp_file.close() class DivisionOperatorCheckerTests(unittest.TestCase): def setUp(self): super(DivisionOperatorCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.DivisionOperatorChecker) self.checker_test_object.setup_method() def test_division_operator_with_spaces(self): node_division_operator_with_spaces = astroid.extract_node( u""" a / b #@ """) message = testutils.Message( msg_id='division-operator-used', node=node_division_operator_with_spaces) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_binop( node_division_operator_with_spaces) def test_division_operator_without_spaces(self): node_division_operator_without_spaces = astroid.extract_node( u""" a/b #@ """) message = testutils.Message( msg_id='division-operator-used', node=node_division_operator_without_spaces) with self.checker_test_object.assertAddsMessages(message): self.checker_test_object.checker.visit_binop( node_division_operator_without_spaces) class SingleLineCommentCheckerTests(unittest.TestCase): def setUp(self): super(SingleLineCommentCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.SingleLineCommentChecker) self.checker_test_object.setup_method() def test_invalid_punctuation(self): node_invalid_punctuation = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# This is a multiline # comment/ # Comment. """) node_invalid_punctuation.file = filename node_invalid_punctuation.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_invalid_punctuation)) message = testutils.Message( msg_id='invalid-punctuation-used', line=2) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_no_space_at_beginning(self): node_no_space_at_beginning = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""#Something. """) node_no_space_at_beginning.file = filename node_no_space_at_beginning.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_no_space_at_beginning)) message = testutils.Message( msg_id='no-space-at-beginning', line=1) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_no_capital_letter_at_beginning(self): node_no_capital_letter_at_beginning = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 # something. """) node_no_capital_letter_at_beginning.file = filename node_no_capital_letter_at_beginning.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_no_capital_letter_at_beginning)) message = testutils.Message( msg_id='no-capital-letter-at-beginning', line=3) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_comment_with_excluded_phrase(self): node_comment_with_excluded_phrase = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 # pylint: disable a = 1 + 2 # pylint: disable """) node_comment_with_excluded_phrase.file = filename node_comment_with_excluded_phrase.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_comment_with_excluded_phrase)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_variable_name_in_comment(self): node_variable_name_in_comment = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 # variable_name is used. """) node_variable_name_in_comment.file = filename node_variable_name_in_comment.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_variable_name_in_comment)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_comment_with_version_info(self): node_comment_with_version_info = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 # v2 is used. """) node_comment_with_version_info.file = filename node_comment_with_version_info.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_comment_with_version_info)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_data_type_in_comment(self): node_data_type_in_comment = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 # str. variable is type of str. """) node_data_type_in_comment.file = filename node_data_type_in_comment.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_data_type_in_comment)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_comment_inside_docstring(self): node_comment_inside_docstring = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 \"\"\"# str. variable is type of str.\"\"\" \"\"\"# str. variable is type of str.\"\"\" """) node_comment_inside_docstring.file = filename node_comment_inside_docstring.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_comment_inside_docstring)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_well_formed_comment(self): node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u"""# coding: utf-8 # Multi # line # comment. """) node_with_no_error_message.file = filename node_with_no_error_message.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_with_no_error_message)) with self.checker_test_object.assertNoMessages(): temp_file.close() class BlankLineBelowFileOverviewCheckerTests(unittest.TestCase): def setUp(self): super(BlankLineBelowFileOverviewCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.BlankLineBelowFileOverviewChecker) self.checker_test_object.setup_method() def test_no_empty_line_below_fileoverview(self): node_no_empty_line_below_fileoverview = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" \"\"\" this file does something \"\"\" import something import random """) node_no_empty_line_below_fileoverview.file = filename node_no_empty_line_below_fileoverview.path = filename node_no_empty_line_below_fileoverview.fromlineno = 2 self.checker_test_object.checker.visit_module( node_no_empty_line_below_fileoverview) message = testutils.Message( msg_id='no-empty-line-provided-below-fileoverview', node=node_no_empty_line_below_fileoverview) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_extra_empty_lines_below_fileoverview(self): node_extra_empty_lines_below_fileoverview = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" \"\"\" this file does something \"\"\" import something from something import random """) node_extra_empty_lines_below_fileoverview.file = filename node_extra_empty_lines_below_fileoverview.path = filename node_extra_empty_lines_below_fileoverview.fromlineno = 2 self.checker_test_object.checker.visit_module( node_extra_empty_lines_below_fileoverview) message = testutils.Message( msg_id='only-a-single-empty-line-should-be-provided', node=node_extra_empty_lines_below_fileoverview) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_extra_empty_lines_below_fileoverview_with_unicode_characters(self): node_extra_empty_lines_below_fileoverview = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" #this comment has a unicode character \u2713 \"\"\" this file does \u2715 something \"\"\" from something import random """) node_extra_empty_lines_below_fileoverview.file = filename node_extra_empty_lines_below_fileoverview.path = filename node_extra_empty_lines_below_fileoverview.fromlineno = 3 self.checker_test_object.checker.visit_module( node_extra_empty_lines_below_fileoverview) message = testutils.Message( msg_id='only-a-single-empty-line-should-be-provided', node=node_extra_empty_lines_below_fileoverview) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_no_empty_line_below_fileoverview_with_unicode_characters(self): node_no_empty_line_below_fileoverview = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" #this comment has a unicode character \u2713 \"\"\" this file does \u2715 something \"\"\" import something import random """) node_no_empty_line_below_fileoverview.file = filename node_no_empty_line_below_fileoverview.path = filename node_no_empty_line_below_fileoverview.fromlineno = 3 self.checker_test_object.checker.visit_module( node_no_empty_line_below_fileoverview) message = testutils.Message( msg_id='no-empty-line-provided-below-fileoverview', node=node_no_empty_line_below_fileoverview) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_single_new_line_below_file_overview(self): node_with_no_error_message = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" \"\"\" this file does something \"\"\" import something import random """) node_with_no_error_message.file = filename node_with_no_error_message.path = filename node_with_no_error_message.fromlineno = 2 self.checker_test_object.checker.visit_module( node_with_no_error_message) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_file_with_no_file_overview(self): node_file_with_no_file_overview = astroid.scoped_nodes.Module( name='test', doc=None) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" import something import random """) node_file_with_no_file_overview.file = filename node_file_with_no_file_overview.path = filename self.checker_test_object.checker.visit_module( node_file_with_no_file_overview) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_file_overview_at_end_of_file(self): node_file_overview_at_end_of_file = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" \"\"\" this file does something \"\"\" """) node_file_overview_at_end_of_file.file = filename node_file_overview_at_end_of_file.path = filename node_file_overview_at_end_of_file.fromlineno = 2 self.checker_test_object.checker.visit_module( node_file_overview_at_end_of_file) message = testutils.Message( msg_id='only-a-single-empty-line-should-be-provided', node=node_file_overview_at_end_of_file) with self.checker_test_object.assertAddsMessages(message): temp_file.close() class SingleLinePragmaCheckerTests(unittest.TestCase): def setUp(self): super(SingleLinePragmaCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.SingleLinePragmaChecker) self.checker_test_object.setup_method() def test_pragma_for_multiline(self): node_pragma_for_multiline = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" # pylint: disable=invalid-name def funcName(): \"\"\" # pylint: disable=test-purpose\"\"\" pass # pylint: enable=invalid-name """) node_pragma_for_multiline.file = filename node_pragma_for_multiline.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_pragma_for_multiline)) message1 = testutils.Message( msg_id='single-line-pragma', line=2) message2 = testutils.Message( msg_id='single-line-pragma', line=6) with self.checker_test_object.assertAddsMessages( message1, message2): temp_file.close() def test_enable_single_line_pragma_for_multiline(self): node_enable_single_line_pragma_for_multiline = ( astroid.scoped_nodes.Module(name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" # pylint: disable=single-line-pragma def func(): \"\"\" # pylint: disable=testing-purpose \"\"\" pass # pylint: enable=single-line-pragma """) node_enable_single_line_pragma_for_multiline.file = filename node_enable_single_line_pragma_for_multiline.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_enable_single_line_pragma_for_multiline)) message = testutils.Message( msg_id='single-line-pragma', line=2) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_enable_single_line_pragma_with_invalid_name(self): node_enable_single_line_pragma_with_invalid_name = ( astroid.scoped_nodes.Module(name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" # pylint: disable=invalid-name, single-line-pragma def funcName(): \"\"\" # pylint: disable=testing-purpose \"\"\" pass # pylint: enable=invalid_name, single-line-pragma """) node_enable_single_line_pragma_with_invalid_name.file = filename node_enable_single_line_pragma_with_invalid_name.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module( node_enable_single_line_pragma_with_invalid_name)) message = testutils.Message( msg_id='single-line-pragma', line=2) with self.checker_test_object.assertAddsMessages(message): temp_file.close() def test_single_line_pylint_pragma(self): node_with_no_error_message = ( astroid.scoped_nodes.Module(name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" def funcName(): # pylint: disable=single-line-pragma pass """) node_with_no_error_message.file = filename node_with_no_error_message.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_with_no_error_message)) with self.checker_test_object.assertNoMessages(): temp_file.close() def test_no_and_extra_space_before_pylint(self): node_no_and_extra_space_before_pylint = ( astroid.scoped_nodes.Module(name='test', doc='Custom test')) temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" # pylint:disable=single-line-pragma def func(): \"\"\" # pylint: disable=testing-purpose \"\"\" pass # pylint: enable=single-line-pragma """) node_no_and_extra_space_before_pylint.file = filename node_no_and_extra_space_before_pylint.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_no_and_extra_space_before_pylint)) message = testutils.Message( msg_id='single-line-pragma', line=2) with self.checker_test_object.assertAddsMessages(message): temp_file.close() class SingleSpaceAfterKeyWordCheckerTests(unittest.TestCase): def setUp(self): super(SingleSpaceAfterKeyWordCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.SingleSpaceAfterKeyWordChecker) self.checker_test_object.setup_method() def test_no_space_after_keyword(self): node_no_space_after_keyword = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" if(False): pass elif(True): pass while(True): pass yield(1) return True if(True) else False """) node_no_space_after_keyword.file = filename node_no_space_after_keyword.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_no_space_after_keyword)) if_message = testutils.Message( msg_id='single-space-after-keyword', args=('if'), line=2) elif_message = testutils.Message( msg_id='single-space-after-keyword', args=('elif'), line=4) while_message = testutils.Message( msg_id='single-space-after-keyword', args=('while'), line=6) yield_message = testutils.Message( msg_id='single-space-after-keyword', args=('yield'), line=8) if_exp_message = testutils.Message( msg_id='single-space-after-keyword', args=('if'), line=9) with self.checker_test_object.assertAddsMessages( if_message, elif_message, while_message, yield_message, if_exp_message): temp_file.close() def test_multiple_spaces_after_keyword(self): node_multiple_spaces_after_keyword = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" if False: pass elif True: pass while True: pass yield 1 return True if True else False """) node_multiple_spaces_after_keyword.file = filename node_multiple_spaces_after_keyword.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_multiple_spaces_after_keyword)) if_message = testutils.Message( msg_id='single-space-after-keyword', args=('if'), line=2) elif_message = testutils.Message( msg_id='single-space-after-keyword', args=('elif'), line=4) while_message = testutils.Message( msg_id='single-space-after-keyword', args=('while'), line=6) yield_message = testutils.Message( msg_id='single-space-after-keyword', args=('yield'), line=8) if_exp_message = testutils.Message( msg_id='single-space-after-keyword', args=('if'), line=9) with self.checker_test_object.assertAddsMessages( if_message, elif_message, while_message, yield_message, if_exp_message): temp_file.close() def test_single_space_after_keyword(self): node_single_space_after_keyword = astroid.scoped_nodes.Module( name='test', doc='Custom test') temp_file = tempfile.NamedTemporaryFile() filename = temp_file.name with python_utils.open_file(filename, 'w') as tmp: tmp.write( u""" if False: pass elif True: pass while True: pass yield 1 return True if True else False """) node_single_space_after_keyword.file = filename node_single_space_after_keyword.path = filename self.checker_test_object.checker.process_tokens( utils.tokenize_module(node_single_space_after_keyword)) with self.checker_test_object.assertNoMessages(): temp_file.close() class InequalityWithNoneCheckerTests(unittest.TestCase): def setUp(self): super(InequalityWithNoneCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.InequalityWithNoneChecker) self.checker_test_object.setup_method() def test_inequality_op_on_none_adds_message(self): if_node = astroid.extract_node( """ if x != None: #@ pass """ ) compare_node = if_node.test not_equal_none_message = testutils.Message( msg_id='inequality-with-none', node=compare_node) with self.checker_test_object.assertAddsMessages( not_equal_none_message ): self.checker_test_object.checker.visit_compare(compare_node) def test_inequality_op_on_none_with_wrapped_none_adds_message(self): if_node = astroid.extract_node( """ if x != ( #@ None ): pass """ ) compare_node = if_node.test not_equal_none_message = testutils.Message( msg_id='inequality-with-none', node=compare_node) with self.checker_test_object.assertAddsMessages( not_equal_none_message ): self.checker_test_object.checker.visit_compare(compare_node) def test_usage_of_is_not_on_none_does_not_add_message(self): if_node = astroid.extract_node( """ if x is not None: #@ pass """ ) compare_node = if_node.test with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_compare(compare_node) class DisallowedFunctionsCheckerTests(unittest.TestCase): """Unit tests for DisallowedFunctionsChecker""" def setUp(self): super(DisallowedFunctionsCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.DisallowedFunctionsChecker) self.checker_test_object.setup_method() def test_disallowed_removals_str(self): ( self.checker_test_object .checker.config.disallowed_functions_and_replacements_str) = [ b'example_func', b'a.example_attr', ] self.checker_test_object.checker.open() call1, call2 = astroid.extract_node( """ example_func() #@ a.example_attr() #@ """) message_remove_example_func = testutils.Message( msg_id='remove-disallowed-function-calls', node=call1, args=b'example_func' ) message_remove_example_attr = testutils.Message( msg_id='remove-disallowed-function-calls', node=call2, args=b'a.example_attr' ) with self.checker_test_object.assertAddsMessages( message_remove_example_func, message_remove_example_attr): self.checker_test_object.checker.visit_call(call1) self.checker_test_object.checker.visit_call(call2) def test_disallowed_replacements_str(self): ( self.checker_test_object .checker.config.disallowed_functions_and_replacements_str) = [ b'datetime.datetime.now=>datetime.datetime.utcnow', b'self.assertEquals=>self.assertEqual', b'b.next=>python_utils.NEXT', b'str=>python_utils.convert_to_bytes or python_utils.UNICODE', ] self.checker_test_object.checker.open() ( call1, call2, call3, call4, call5 ) = astroid.extract_node( """ datetime.datetime.now() #@ self.assertEquals() #@ str(1) #@ b.next() #@ b.a.next() #@ """) message_replace_disallowed_datetime = testutils.Message( msg_id='replace-disallowed-function-calls', node=call1, args=( b'datetime.datetime.now', b'datetime.datetime.utcnow') ) message_replace_disallowed_assert_equals = testutils.Message( msg_id='replace-disallowed-function-calls', node=call2, args=( b'self.assertEquals', b'self.assertEqual') ) message_replace_disallowed_str = testutils.Message( msg_id='replace-disallowed-function-calls', node=call3, args=( b'str', b'python_utils.convert_to_bytes or python_utils.UNICODE') ) message_replace_disallowed_next = testutils.Message( msg_id='replace-disallowed-function-calls', node=call4, args=( b'b.next', b'python_utils.NEXT') ) with self.checker_test_object.assertAddsMessages( message_replace_disallowed_datetime, message_replace_disallowed_assert_equals, message_replace_disallowed_str, message_replace_disallowed_next): self.checker_test_object.checker.visit_call(call1) self.checker_test_object.checker.visit_call(call2) self.checker_test_object.checker.visit_call(call3) self.checker_test_object.checker.visit_call(call4) self.checker_test_object.checker.visit_call(call5) def test_disallowed_removals_regex(self): ( self.checker_test_object .checker.config.disallowed_functions_and_replacements_regex) = [ r'.*example_func', r'.*\..*example_attr' ] self.checker_test_object.checker.open() call1, call2 = astroid.extract_node( """ somethingexample_func() #@ c.someexample_attr() #@ """) message_remove_example_func = testutils.Message( msg_id='remove-disallowed-function-calls', node=call1, args=b'somethingexample_func' ) message_remove_example_attr = testutils.Message( msg_id='remove-disallowed-function-calls', node=call2, args=b'c.someexample_attr' ) with self.checker_test_object.assertAddsMessages( message_remove_example_func, message_remove_example_attr): self.checker_test_object.checker.visit_call(call1) self.checker_test_object.checker.visit_call(call2) def test_disallowed_replacements_regex(self): ( self.checker_test_object .checker.config.disallowed_functions_and_replacements_regex) = [ r'.*example_func=>other_func', r'.*\.example_attr=>other_attr', ] self.checker_test_object.checker.open() call1, call2, call3, call4 = astroid.extract_node( """ somethingexample_func() #@ d.example_attr() #@ d.example_attr() #@ d.b.example_attr() #@ """) message_replace_example_func = testutils.Message( msg_id='replace-disallowed-function-calls', node=call1, args=(b'somethingexample_func', b'other_func') ) message_replace_example_attr1 = testutils.Message( msg_id='replace-disallowed-function-calls', node=call2, args=(b'd.example_attr', b'other_attr') ) message_replace_example_attr2 = testutils.Message( msg_id='replace-disallowed-function-calls', node=call3, args=(b'd.example_attr', b'other_attr') ) message_replace_example_attr3 = testutils.Message( msg_id='replace-disallowed-function-calls', node=call4, args=(b'd.b.example_attr', b'other_attr') ) with self.checker_test_object.assertAddsMessages( message_replace_example_func, message_replace_example_attr1, message_replace_example_attr2, message_replace_example_attr3): self.checker_test_object.checker.visit_call(call1) self.checker_test_object.checker.visit_call(call2) self.checker_test_object.checker.visit_call(call3) self.checker_test_object.checker.visit_call(call4) class NonTestFilesFunctionNameCheckerTests(unittest.TestCase): def setUp(self): super(NonTestFilesFunctionNameCheckerTests, self).setUp() self.checker_test_object = testutils.CheckerTestCase() self.checker_test_object.CHECKER_CLASS = ( pylint_extensions.NonTestFilesFunctionNameChecker) self.checker_test_object.setup_method() def test_function_def_for_test_file_with_test_only_adds_no_msg(self): def_node = astroid.extract_node( """ def test_only_some_random_function(param1, param2): pass """ ) def_node.root().name = 'random_module_test' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef(def_node) def test_function_def_for_test_file_without_test_only_adds_no_msg(self): def_node = astroid.extract_node( """ def some_random_function(param1, param2): pass """ ) def_node.root().name = 'random_module_test' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef(def_node) def test_function_def_for_non_test_file_with_test_only_adds_msg(self): def_node = astroid.extract_node( """ def test_only_some_random_function(param1, param2): pass """ ) def_node.root().name = 'random_module_nontest' non_test_function_name_message = testutils.Message( msg_id='non-test-files-function-name-checker', node=def_node) with self.checker_test_object.assertAddsMessages( non_test_function_name_message ): self.checker_test_object.checker.visit_functiondef(def_node) def test_function_def_for_non_test_file_without_test_only_adds_no_msg(self): def_node = astroid.extract_node( """ def some_random_function(param1, param2): pass """ ) def_node.root().name = 'random_module_nontest' with self.checker_test_object.assertNoMessages(): self.checker_test_object.checker.visit_functiondef(def_node) class DisallowDunderMetaclassCheckerTests(unittest.TestCase): def test_wrong_metaclass_usage_raises_error(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.DisallowDunderMetaclassChecker) checker_test_object.setup_method() metaclass_node = astroid.extract_node( """ class FakeClass(python_utils.OBJECT): def __init__(self, fake_arg): self.fake_arg = fake_arg def fake_method(self, name): yield (name, name) class MyObject: #@ __metaclass__ = FakeClass def __init__(self, fake_arg): self.fake_arg = fake_arg """) with checker_test_object.assertAddsMessages( testutils.Message( msg_id='no-dunder-metaclass', node=metaclass_node ) ): checker_test_object.checker.visit_classdef(metaclass_node) def test_no_metaclass_usage_raises_no_error(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.DisallowDunderMetaclassChecker) checker_test_object.setup_method() metaclass_node = astroid.extract_node( """ class MyObject: #@ def __init__(self, fake_arg): self.fake_arg = fake_arg """) with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_classdef(metaclass_node) def test_correct_metaclass_usage_raises_no_error(self): checker_test_object = testutils.CheckerTestCase() checker_test_object.CHECKER_CLASS = ( pylint_extensions.DisallowDunderMetaclassChecker) checker_test_object.setup_method() metaclass_node = astroid.extract_node( """ class FakeClass(python_utils.OBJECT): def __init__(self, fake_arg): self.fake_arg = fake_arg def fake_method(self, name): yield (name, name) class MyObject: #@ python_utils.with_metaclass(FakeClass) def __init__(self, fake_arg): self.fake_arg = fake_arg """) with checker_test_object.assertNoMessages(): checker_test_object.checker.visit_classdef(metaclass_node)
36.143584
84
0.590724
794e99520d8e1818d9ddc1f6af065c43ffada72e
1,302
py
Python
configs/configuration_customroberta.py
haodingkui/semeval2020-task5-subtask1
bfd0c808c6b1de910d6f58ea040a13442b4bcdca
[ "MIT" ]
2
2020-08-19T12:32:21.000Z
2021-11-08T15:50:08.000Z
configs/configuration_customroberta.py
haodingkui/semeval2020-task5-subtask1
bfd0c808c6b1de910d6f58ea040a13442b4bcdca
[ "MIT" ]
null
null
null
configs/configuration_customroberta.py
haodingkui/semeval2020-task5-subtask1
bfd0c808c6b1de910d6f58ea040a13442b4bcdca
[ "MIT" ]
1
2020-08-19T12:32:48.000Z
2020-08-19T12:32:48.000Z
from .configuration_custombert import CustomBertConfig class CustomRobertaConfig(CustomBertConfig): model_type = "roberta" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.2, high_hidden_dropout_prob=0.5, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.high_hidden_dropout_prob = high_hidden_dropout_prob
33.384615
72
0.697389
794e999f6c7cb1a802a5d1be3239924b6186bea7
11,465
py
Python
reinhard/components/basic.py
FasterSpeeding/Reinhard
c665598f2079576f9cc97b7987f463b7963950d9
[ "BSD-3-Clause" ]
10
2020-11-24T19:08:40.000Z
2022-03-03T07:17:41.000Z
reinhard/components/basic.py
FasterSpeeding/Reinhard
c665598f2079576f9cc97b7987f463b7963950d9
[ "BSD-3-Clause" ]
34
2021-05-07T01:36:14.000Z
2022-03-31T08:15:14.000Z
reinhard/components/basic.py
FasterSpeeding/Reinhard
c665598f2079576f9cc97b7987f463b7963950d9
[ "BSD-3-Clause" ]
1
2021-03-07T12:12:21.000Z
2021-03-07T12:12:21.000Z
# -*- coding: utf-8 -*- # cython: language_level=3 # BSD 3-Clause License # # Copyright (c) 2020-2021, Faster Speeding # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import annotations __all__: list[str] = ["basic_component", "load_basic", "unload_basic"] import collections.abc as collections import datetime import itertools import math import platform import time import hikari import psutil import tanjun import yuyo from hikari import snowflakes from .. import utility def gen_help_embeds( ctx: tanjun.abc.Context = tanjun.inject(type=tanjun.abc.Context), client: tanjun.abc.Client = tanjun.inject(type=tanjun.abc.Client), ) -> dict[str, list[hikari.Embed]]: prefix = next(iter(client.prefixes)) if client and client.prefixes else "" help_embeds: dict[str, list[hikari.Embed]] = {} for component in ctx.client.components: if value := utility.generate_help_embeds(component, prefix=prefix): help_embeds[value[0].lower()] = [v for v in value[1]] return help_embeds basic_component = tanjun.Component(name="basic", strict=True) @basic_component.with_slash_command @tanjun.as_slash_command("about", "Get basic information about the current bot instance.") async def about_command( ctx: tanjun.abc.Context, process: psutil.Process = tanjun.cached_inject(psutil.Process), ) -> None: """Get basic information about the current bot instance.""" start_date = datetime.datetime.fromtimestamp(process.create_time()) uptime = datetime.datetime.now() - start_date memory_usage: float = process.memory_full_info().uss / 1024 ** 2 cpu_usage: float = process.cpu_percent() / psutil.cpu_count() memory_percent: float = process.memory_percent() if ctx.shards: shard_id = snowflakes.calculate_shard_id(ctx.shards.shard_count, ctx.guild_id) if ctx.guild_id else 0 name = f"Reinhard: Shard {shard_id} of {ctx.shards.shard_count}" else: name = "Reinhard: REST Server" description = ( "An experimental pythonic Hikari bot.\n " "The source can be found on [Github](https://github.com/FasterSpeeding/Reinhard)." ) embed = ( hikari.Embed(description=description, colour=utility.embed_colour()) .set_author(name=name, url=hikari.__url__) .add_field(name="Uptime", value=str(uptime), inline=True) .add_field( name="Process", value=f"{memory_usage:.2f} MB ({memory_percent:.0f}%)\n{cpu_usage:.2f}% CPU", inline=True, ) .set_footer( icon="http://i.imgur.com/5BFecvA.png", text=f"Made with Hikari v{hikari.__version__} (python {platform.python_version()})", ) ) error_manager = utility.HikariErrorManager(break_on=(hikari.NotFoundError, hikari.ForbiddenError)) await error_manager.try_respond(ctx, embed=embed) @basic_component.with_message_command @tanjun.as_message_command("help") async def help_command(ctx: tanjun.abc.Context) -> None: await ctx.respond("See the slash command menu") # @basic_component.with_message_command # @tanjun.with_greedy_argument("command_name", default=None) # @tanjun.with_option("component_name", "--component", default=None) # @tanjun.with_parser # # TODO: specify a group or command # @tanjun.as_message_command("help") async def old_help_command( ctx: tanjun.abc.Context, command_name: str | None, component_name: str | None, component_client: yuyo.ComponentClient = tanjun.inject(type=yuyo.ComponentClient), help_embeds: dict[str, list[hikari.Embed]] = tanjun.cached_inject(gen_help_embeds), ) -> None: """Get information about the commands in this bot. Arguments * command name: Optional greedy argument of a name to get a command's documentation by. Options * component name (--component): Name of a component to get the documentation for. """ if command_name is not None: for own_prefix in ctx.client.prefixes: if command_name.startswith(own_prefix): command_name = command_name[len(own_prefix) :] break prefix = next(iter(ctx.client.prefixes)) if ctx.client.prefixes else "" for _, command in ctx.client.check_message_name(command_name): if command_embed := utility.generate_command_embed(command, prefix=prefix): await ctx.respond(embed=command_embed) break else: await ctx.respond(f"Couldn't find `{command_name}` command.") return if component_name: if component_name.lower() not in help_embeds: raise tanjun.CommandError(f"Couldn't find component `{component_name}`") embed_generator = ((hikari.UNDEFINED, embed) for embed in help_embeds[component_name.lower()]) else: embed_generator = ( (hikari.UNDEFINED, embed) for embed in itertools.chain.from_iterable(list(help_embeds.values())) ) paginator = yuyo.ComponentPaginator(embed_generator, authors=(ctx.author,)) if first_entry := await paginator.get_next_entry(): content, embed = first_entry message = await ctx.respond(content=content, embed=embed, component=paginator, ensure_result=True) component_client.set_executor(message, paginator) @basic_component.with_slash_command @tanjun.as_slash_command("ping", "Get the bot's current delay.") async def ping_command(ctx: tanjun.abc.Context, /) -> None: """Get the bot's current delay.""" start_time = time.perf_counter() await ctx.rest.fetch_my_user() time_taken = (time.perf_counter() - start_time) * 1_000 heartbeat_latency = ctx.shards.heartbeat_latency * 1_000 if ctx.shards else float("NAN") await ctx.respond(f"PONG\n - REST: {time_taken:.0f}ms\n - Gateway: {heartbeat_latency:.0f}ms") _about_lines: list[tuple[str, collections.Callable[[hikari.api.Cache], int]]] = [ ("Guild channels: {0}", lambda c: len(c.get_guild_channels_view())), ("Emojis: {0}", lambda c: len(c.get_emojis_view())), ("Available Guilds: {0}", lambda c: len(c.get_available_guilds_view())), ("Unavailable Guilds: {0}", lambda c: len(c.get_unavailable_guilds_view())), ("Invites: {0}", lambda c: len(c.get_invites_view())), ("Members: {0}", lambda c: sum(len(record) for record in c.get_members_view().values())), ("Messages: {0}", lambda c: len(c.get_messages_view())), ("Presences: {0}", lambda c: sum(len(record) for record in c.get_presences_view().values())), ("Roles: {0}", lambda c: len(c.get_roles_view())), ("Users: {0}", lambda c: len(c.get_users_view())), ("Voice states: {0}", lambda c: sum(len(record) for record in c.get_voice_states_view().values())), ] @basic_component.with_slash_command @tanjun.as_slash_command("cache", "Get general information about this bot's cache.") async def cache_command( ctx: tanjun.abc.Context, process: psutil.Process = tanjun.cached_inject(psutil.Process), cache: hikari.api.Cache = tanjun.inject(type=hikari.api.Cache), me: hikari.OwnUser = tanjun.inject_lc(hikari.OwnUser), ) -> None: """Get general information about this bot.""" start_date = datetime.datetime.fromtimestamp(process.create_time()) uptime = datetime.datetime.now() - start_date memory_usage: float = process.memory_full_info().uss / 1024 ** 2 cpu_usage: float = process.cpu_percent() / psutil.cpu_count() memory_percent: float = process.memory_percent() cache_stats_lines: list[tuple[str, float]] = [] storage_start_time = time.perf_counter() for line_template, callback in _about_lines: line_start_time = time.perf_counter() line = line_template.format(callback(cache)) cache_stats_lines.append((line, (time.perf_counter() - line_start_time) * 1_000)) storage_time_taken = time.perf_counter() - storage_start_time # This also accounts for the decimal place and 4 decimal places left_pad = math.floor(math.log(max(num for _, num in cache_stats_lines), 10)) + 6 largest_line = max(len(line) for line, _ in cache_stats_lines) cache_stats = "\n".join( line + " " * (largest_line + 2 - len(line)) + "{0:0{left_pad}.4f} ms".format(time_taken, left_pad=left_pad) for line, time_taken in cache_stats_lines ) embed = ( hikari.Embed(description="An experimental pythonic Hikari bot.", color=0x55CDFC) .set_author(name="Hikari: testing client", icon=me.avatar_url or me.default_avatar_url, url=hikari.__url__) .add_field(name="Uptime", value=str(uptime), inline=True) .add_field( name="Process", value=f"{memory_usage:.2f} MB ({memory_percent:.0f}%)\n{cpu_usage:.2f}% CPU", inline=True, ) .add_field(name="Standard cache stats", value=f"```{cache_stats}```") .set_footer( icon="http://i.imgur.com/5BFecvA.png", text=f"Made with Hikari v{hikari.__version__} (python {platform.python_version()})", ) ) error_manager = utility.HikariErrorManager(break_on=(hikari.NotFoundError, hikari.ForbiddenError)) await error_manager.try_respond(ctx, content=f"{storage_time_taken * 1_000:.4g} ms", embed=embed) @cache_command.with_check def _(ctx: tanjun.abc.Context) -> bool: if ctx.cache: return True raise tanjun.CommandError("Client is cache-less") @basic_component.with_slash_command @tanjun.as_slash_command("invite", "Invite the bot to your server(s)") async def invite_command(ctx: tanjun.abc.Context, me: hikari.OwnUser = tanjun.inject_lc(hikari.OwnUser)) -> None: await ctx.respond( f"https://discord.com/oauth2/authorize?client_id={me.id}&scope=bot%20applications.commands&permissions=8" ) @tanjun.as_loader def load_basic(cli: tanjun.Client, /) -> None: cli.add_component(basic_component.copy()) @tanjun.as_unloader def unload_basic(cli: tanjun.Client, /) -> None: cli.remove_component_by_name(basic_component.name)
41.389892
115
0.704143
794e9a7baff952bc6c3caf54622466869b0ffc57
1,553
py
Python
neutron/plugins/common/constants.py
kevinbenton/neutron
f27fba3ad77d907713e3e1cbfa45d33e0135c08b
[ "Apache-2.0" ]
null
null
null
neutron/plugins/common/constants.py
kevinbenton/neutron
f27fba3ad77d907713e3e1cbfa45d33e0135c08b
[ "Apache-2.0" ]
null
null
null
neutron/plugins/common/constants.py
kevinbenton/neutron
f27fba3ad77d907713e3e1cbfa45d33e0135c08b
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # service type constants: CORE = "CORE" DUMMY = "DUMMY" LOADBALANCER = "LOADBALANCER" FIREWALL = "FIREWALL" VPN = "VPN" #maps extension alias to service type EXT_TO_SERVICE_MAPPING = { 'dummy': DUMMY, 'lbaas': LOADBALANCER, 'fwaas': FIREWALL, 'vpnaas': VPN, } # TODO(salvatore-orlando): Move these (or derive them) from conf file ALLOWED_SERVICES = [CORE, DUMMY, LOADBALANCER, FIREWALL, VPN] COMMON_PREFIXES = { CORE: "", DUMMY: "/dummy_svc", LOADBALANCER: "/lb", FIREWALL: "/fw", VPN: "/vpn", } # Service operation status constants ACTIVE = "ACTIVE" PENDING_CREATE = "PENDING_CREATE" PENDING_UPDATE = "PENDING_UPDATE" PENDING_DELETE = "PENDING_DELETE" INACTIVE = "INACTIVE" ERROR = "ERROR" # FWaaS firewall rule action FWAAS_ALLOW = "allow" FWAAS_DENY = "deny" # L3 Protocol name constants TCP = "tcp" UDP = "udp" ICMP = "icmp"
25.883333
78
0.707019
794e9aa0a3aef6ea9f5f03b676262650592a285e
50,287
py
Python
jina/flow/base.py
ezhaohongwei/jina
9769f2e35eb8a196304a145409f959a7beac0432
[ "Apache-2.0" ]
1
2021-06-14T00:35:14.000Z
2021-06-14T00:35:14.000Z
jina/flow/base.py
ezhaohongwei/jina
9769f2e35eb8a196304a145409f959a7beac0432
[ "Apache-2.0" ]
null
null
null
jina/flow/base.py
ezhaohongwei/jina
9769f2e35eb8a196304a145409f959a7beac0432
[ "Apache-2.0" ]
null
null
null
import argparse import base64 import copy import os import re import threading import uuid import warnings from collections import OrderedDict, defaultdict from contextlib import ExitStack from typing import Optional, Union, Tuple, List, Set, Dict, overload, Type from .builder import build_required, _build_flow, _hanging_pods from .. import __default_host__ from ..clients import Client from ..clients.mixin import AsyncPostMixin, PostMixin from ..enums import FlowBuildLevel, PodRoleType, FlowInspectType from ..excepts import FlowTopologyError, FlowMissingPodError from ..helper import ( colored, get_public_ip, get_internal_ip, typename, ArgNamespace, download_mermaid_url, ) from ..jaml import JAMLCompatible from ..logging.logger import JinaLogger from ..parsers import set_gateway_parser, set_pod_parser from ..peapods import Pod from ..peapods.pods.compound import CompoundPod from ..peapods.pods.factory import PodFactory __all__ = ['Flow'] class FlowType(type(ExitStack), type(JAMLCompatible)): """Type of Flow, metaclass of :class:`BaseFlow`""" pass _regex_port = r'(.*?):([0-9]{1,4}|[1-5][0-9]{4}|6[0-4][0-9]{3}|65[0-4][0-9]{2}|655[0-2][0-9]|6553[0-5])$' if False: from ..peapods import BasePod from ..executors import BaseExecutor from ..clients.base import BaseClient class Flow(PostMixin, JAMLCompatible, ExitStack, metaclass=FlowType): """Flow is how Jina streamlines and distributes Executors. """ # overload_inject_start_flow @overload def __init__( self, asyncio: Optional[bool] = False, continue_on_error: Optional[bool] = False, description: Optional[str] = None, env: Optional[dict] = None, host: Optional[str] = '0.0.0.0', inspect: Optional[str] = 'COLLECT', log_config: Optional[str] = None, name: Optional[str] = None, port_expose: Optional[int] = None, proxy: Optional[bool] = False, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, request_size: Optional[int] = 100, restful: Optional[bool] = False, return_results: Optional[bool] = False, show_progress: Optional[bool] = False, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = None, workspace: Optional[str] = './', **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors :param asyncio: If set, then the input and output of this Client work in an asynchronous manner. :param continue_on_error: If set, a Request that causes error will be logged only without blocking the further requests. :param description: The description of this object. It will be used in automatics docs UI. :param env: The map of environment variables that are available inside runtime :param host: The host address of the runtime, by default it is 0.0.0.0. :param inspect: The strategy on those inspect pods in the flow. If `REMOVE` is given then all inspect pods are removed when building the flow. :param log_config: The YAML config of the logger used in this object. :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - automatics docs UI - ... When not given, then the default naming strategy will apply. :param port_expose: The port of the host exposed to the public :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param request_size: The number of Documents in each Request. :param restful: If set, use RESTful interface instead of gRPC as the main interface. This expects the corresponding Flow to be set with --restful as well. :param return_results: This feature is only used for AsyncClient. If set, the results of all Requests will be returned as a list. This is useful when one wants process Responses in bulk instead of using callback. :param show_progress: If set, client will show a progress bar on receiving every request. :param uses: The YAML file represents a flow :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_flow def __init__( self, args: Optional['argparse.Namespace'] = None, **kwargs, ): super().__init__() self._version = '1' #: YAML version number, this will be later overridden if YAML config says the other way self._pod_nodes = OrderedDict() # type: Dict[str, BasePod] self._inspect_pods = {} # type: Dict[str, str] self._build_level = FlowBuildLevel.EMPTY self._last_changed_pod = [ 'gateway' ] #: default first pod is gateway, will add when build() self._update_args(args, **kwargs) if isinstance(self.args, argparse.Namespace): self.logger = JinaLogger( self.__class__.__name__, **vars(self.args), **self._common_kwargs ) else: self.logger = JinaLogger(self.__class__.__name__, **self._common_kwargs) def _update_args(self, args, **kwargs): from ..parsers.flow import set_flow_parser from ..helper import ArgNamespace _flow_parser = set_flow_parser() if args is None: args = ArgNamespace.kwargs2namespace(kwargs, _flow_parser) self.args = args # common args should be the ones that can not be parsed by _flow_parser known_keys = vars(args) self._common_kwargs = {k: v for k, v in kwargs.items() if k not in known_keys} self._kwargs = ArgNamespace.get_non_defaults_args( args, _flow_parser ) #: for yaml dump base_cls = self.__class__ base_cls_name = self.__class__.__name__ if self.args.asyncio and not isinstance(self, AsyncPostMixin): self.__class__ = type(base_cls_name, (AsyncPostMixin, base_cls), {}) @staticmethod def _parse_endpoints(op_flow, pod_name, endpoint, connect_to_last_pod=False) -> Set: # parsing needs if isinstance(endpoint, str): endpoint = [endpoint] elif not endpoint: if op_flow._last_changed_pod and connect_to_last_pod: endpoint = [op_flow.last_pod] else: endpoint = [] if isinstance(endpoint, (list, tuple)): for idx, s in enumerate(endpoint): if s == pod_name: raise FlowTopologyError( 'the income/output of a pod can not be itself' ) else: raise ValueError(f'endpoint={endpoint} is not parsable') # if an endpoint is being inspected, then replace it with inspected Pod endpoint = set(op_flow._inspect_pods.get(ep, ep) for ep in endpoint) return endpoint @property def last_pod(self): """Last pod .. # noqa: DAR401 .. # noqa: DAR201 """ return self._last_changed_pod[-1] @last_pod.setter def last_pod(self, name: str): """ Set a Pod as the last Pod in the Flow, useful when modifying the Flow. .. # noqa: DAR401 :param name: the name of the existing Pod """ if name not in self._pod_nodes: raise FlowMissingPodError(f'{name} can not be found in this Flow') if self._last_changed_pod and name == self.last_pod: pass else: self._last_changed_pod.append(name) # graph is now changed so we need to # reset the build level to the lowest self._build_level = FlowBuildLevel.EMPTY def _add_gateway(self, needs, **kwargs): pod_name = 'gateway' kwargs.update( dict( name=pod_name, ctrl_with_ipc=True, # otherwise ctrl port would be conflicted runtime_cls='RESTRuntime' if self.args.restful else 'GRPCRuntime', pod_role=PodRoleType.GATEWAY, ) ) kwargs.update(vars(self.args)) kwargs.update(self._common_kwargs) args = ArgNamespace.kwargs2namespace(kwargs, set_gateway_parser()) self._pod_nodes[pod_name] = Pod(args, needs) def needs( self, needs: Union[Tuple[str], List[str]], name: str = 'joiner', *args, **kwargs ) -> 'Flow': """ Add a blocker to the Flow, wait until all peas defined in **needs** completed. .. # noqa: DAR401 :param needs: list of service names to wait :param name: the name of this joiner, by default is ``joiner`` :param args: additional positional arguments forwarded to the add function :param kwargs: additional key value arguments forwarded to the add function :return: the modified Flow """ if len(needs) <= 1: raise FlowTopologyError( 'no need to wait for a single service, need len(needs) > 1' ) return self.add( name=name, needs=needs, pod_role=PodRoleType.JOIN, *args, **kwargs ) def needs_all(self, name: str = 'joiner', *args, **kwargs) -> 'Flow': """ Collect all hanging Pods so far and add a blocker to the Flow; wait until all handing peas completed. :param name: the name of this joiner (default is ``joiner``) :param args: additional positional arguments which are forwarded to the add and needs function :param kwargs: additional key value arguments which are forwarded to the add and needs function :return: the modified Flow """ needs = _hanging_pods(self) if len(needs) == 1: return self.add(name=name, needs=needs, *args, **kwargs) return self.needs(name=name, needs=needs, *args, **kwargs) # overload_inject_start_pod @overload def add( self, ctrl_with_ipc: Optional[bool] = False, daemon: Optional[bool] = False, description: Optional[str] = None, docker_kwargs: Optional[dict] = None, entrypoint: Optional[str] = None, env: Optional[dict] = None, expose_public: Optional[bool] = False, external: Optional[bool] = False, host: Optional[str] = '0.0.0.0', host_in: Optional[str] = '0.0.0.0', host_out: Optional[str] = '0.0.0.0', log_config: Optional[str] = None, memory_hwm: Optional[int] = -1, name: Optional[str] = None, on_error_strategy: Optional[str] = 'IGNORE', parallel: Optional[int] = 1, peas_hosts: Optional[List[str]] = None, polling: Optional[str] = 'ANY', port_ctrl: Optional[int] = None, port_expose: Optional[int] = None, port_in: Optional[int] = None, port_out: Optional[int] = None, proxy: Optional[bool] = False, pull_latest: Optional[bool] = False, py_modules: Optional[List[str]] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, quiet_remote_logs: Optional[bool] = False, replicas: Optional[int] = 1, runtime_backend: Optional[str] = 'PROCESS', runtime_cls: Optional[str] = 'ZEDRuntime', scheduling: Optional[str] = 'LOAD_BALANCE', socket_in: Optional[str] = 'PULL_BIND', socket_out: Optional[str] = 'PUSH_BIND', ssh_keyfile: Optional[str] = None, ssh_password: Optional[str] = None, ssh_server: Optional[str] = None, timeout_ctrl: Optional[int] = 5000, timeout_ready: Optional[int] = 600000, upload_files: Optional[List[str]] = None, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = 'BaseExecutor', uses_after: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_before: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_internal: Optional[ Union[str, Type['BaseExecutor'], dict] ] = 'BaseExecutor', volumes: Optional[List[str]] = None, workspace: Optional[str] = None, workspace_id: Optional[str] = None, **kwargs, ) -> 'Flow': """Add an Executor to the current Flow object. :param ctrl_with_ipc: If set, use ipc protocol for control socket :param daemon: The Pea attempts to terminate all of its Runtime child processes/threads on existing. setting it to true basically tell the Pea do not wait on the Runtime when closing :param description: The description of this object. It will be used in automatics docs UI. :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param expose_public: If set, expose the public IP address to remote when necessary, by default it exposesprivate IP address, which only allows accessing under the same network/subnet. Important to set this to true when the Pea will receive input connections from remote Peas :param external: The Pod will be considered an external Pod that has been started independently from the Flow. This Pod will not be context managed by the Flow, and is considered with `--freeze-network-settings` :param host: The host address of the runtime, by default it is 0.0.0.0. :param host_in: The host address for input, by default it is 0.0.0.0 :param host_out: The host address for output, by default it is 0.0.0.0 :param log_config: The YAML config of the logger used in this object. :param memory_hwm: The memory high watermark of this pod in Gigabytes, pod will restart when this is reached. -1 means no restriction :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - automatics docs UI - ... When not given, then the default naming strategy will apply. :param on_error_strategy: The skip strategy on exceptions. - IGNORE: Ignore it, keep running all Executors in the sequel flow - SKIP_HANDLE: Skip all Executors in the sequel, only `pre_hook` and `post_hook` are called - THROW_EARLY: Immediately throw the exception, the sequel flow will not be running at all Note, `IGNORE`, `SKIP_EXECUTOR` and `SKIP_HANDLE` do not guarantee the success execution in the sequel flow. If something is wrong in the upstream, it is hard to carry this exception and moving forward without any side-effect. :param parallel: The number of parallel peas in the pod running at the same time, `port_in` and `port_out` will be set to random, and routers will be added automatically when necessary :param peas_hosts: The hosts of the peas when parallel greater than 1. Peas will be evenly distributed among the hosts. By default, peas are running on host provided by the argument ``host`` :param polling: The polling strategy of the Pod (when `parallel>1`) - ANY: only one (whoever is idle) Pea polls the message - ALL: all Peas poll the message (like a broadcast) :param port_ctrl: The port for controlling the runtime, default a random port between [49152, 65535] :param port_expose: The port of the host exposed to the public :param port_in: The port for input data, default a random port between [49152, 65535] :param port_out: The port for output data, default a random port between [49152, 65535] :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param pull_latest: Pull the latest image before running :param py_modules: The customized python modules need to be imported before loading the executor Note, when importing multiple files and there is a dependency between them, then one has to write the dependencies in reverse order. That is, if `__init__.py` depends on `A.py`, which again depends on `B.py`, then you need to write: --py-modules __init__.py --py-modules B.py --py-modules A.py :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param quiet_remote_logs: Do not display the streaming of remote logs on local console :param replicas: The number of replicas in the pod, `port_in` and `port_out` will be set to random, and routers will be added automatically when necessary :param runtime_backend: The parallel backend of the runtime inside the Pea :param runtime_cls: The runtime class to run inside the Pea :param scheduling: The strategy of scheduling workload among Peas :param socket_in: The socket type for input port :param socket_out: The socket type for output port :param ssh_keyfile: This specifies a key to be used in ssh login, default None. regular default ssh keys will be used without specifying this argument. :param ssh_password: The ssh password to the ssh server. :param ssh_server: The SSH server through which the tunnel will be created, can actually be a fully specified `user@server:port` ssh url. :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pea waits for the runtime to be ready, -1 for waiting forever :param upload_files: The files on the host to be uploaded to the remote workspace. This can be useful when your Pod has more file dependencies beyond a single YAML file, e.g. Python files, data files. Note, - currently only flatten structure is supported, which means if you upload `[./foo/a.py, ./foo/b.pp, ./bar/c.yml]`, then they will be put under the _same_ workspace on the remote, losing all hierarchies. - by default, `--uses` YAML file is always uploaded. - uploaded files are by default isolated across the runs. To ensure files are submitted to the same workspace across different runs, use `--workspace-id` to specify the workspace. :param uses: The config of the executor, it could be one of the followings: * an Executor-level YAML file path (.yml, .yaml, .jaml) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_after: The executor attached after the Peas described by --uses, typically used for receiving from all parallels, accepted type follows `--uses` :param uses_before: The executor attached after the Peas described by --uses, typically before sending to all parallels, accepted type follows `--uses` :param uses_internal: The config runs inside the Docker container. Syntax and function are the same as `--uses`. This is designed when `--uses="docker://..."` this config is passed to the Docker container. :param volumes: The path on the host to be mounted inside the container. Note, - If separated by `:`, then the first part will be considered as the local host path and the second part is the path in the container system. - If no split provided, then the basename of that directory will be mounted into container's root path, e.g. `--volumes="/user/test/my-workspace"` will be mounted into `/my-workspace` inside the container. - All volumes are mounted with read-write mode. :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :param workspace_id: the UUID for identifying the workspace. When not given a random id will be assigned.Multiple Pea/Pod/Flow will work under the same workspace if they share the same `workspace-id`. :return: a (new) Flow object with modification .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_pod def add( self, needs: Optional[Union[str, Tuple[str], List[str]]] = None, copy_flow: bool = True, pod_role: 'PodRoleType' = PodRoleType.POD, **kwargs, ) -> 'Flow': """ Add a Pod to the current Flow object and return the new modified Flow object. The attribute of the Pod can be later changed with :py:meth:`set` or deleted with :py:meth:`remove` .. # noqa: DAR401 :param needs: the name of the Pod(s) that this Pod receives data from. One can also use 'gateway' to indicate the connection with the gateway. :param pod_role: the role of the Pod, used for visualization and route planning :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :param kwargs: other keyword-value arguments that the Pod CLI supports :return: a (new) Flow object with modification """ op_flow = copy.deepcopy(self) if copy_flow else self # pod naming logic pod_name = kwargs.get('name', None) if pod_name in op_flow._pod_nodes: new_name = f'{pod_name}{len(op_flow._pod_nodes)}' self.logger.debug( f'"{pod_name}" is used in this Flow already! renamed it to "{new_name}"' ) pod_name = new_name if not pod_name: pod_name = f'pod{len(op_flow._pod_nodes)}' if not pod_name.isidentifier(): # hyphen - can not be used in the name raise ValueError( f'name: {pod_name} is invalid, please follow the python variable name conventions' ) # needs logic needs = op_flow._parse_endpoints( op_flow, pod_name, needs, connect_to_last_pod=True ) # set the kwargs inherit from `Flow(kwargs1=..., kwargs2=)` for key, value in op_flow._common_kwargs.items(): if key not in kwargs: kwargs[key] = value # check if host is set to remote:port if 'host' in kwargs: m = re.match(_regex_port, kwargs['host']) if ( kwargs.get('host', __default_host__) != __default_host__ and m and 'port_expose' not in kwargs ): kwargs['port_expose'] = m.group(2) kwargs['host'] = m.group(1) # update kwargs of this Pod kwargs.update(dict(name=pod_name, pod_role=pod_role, num_part=len(needs))) parser = set_pod_parser() if pod_role == PodRoleType.GATEWAY: parser = set_gateway_parser() args = ArgNamespace.kwargs2namespace(kwargs, parser) # pod workspace if not set then derive from flow workspace args.workspace = os.path.abspath(args.workspace or self.workspace) op_flow._pod_nodes[pod_name] = PodFactory.build_pod(args, needs) op_flow.last_pod = pod_name return op_flow def inspect(self, name: str = 'inspect', *args, **kwargs) -> 'Flow': """Add an inspection on the last changed Pod in the Flow Internally, it adds two Pods to the Flow. But don't worry, the overhead is minimized and you can remove them by simply using `Flow(inspect=FlowInspectType.REMOVE)` before using the Flow. .. highlight:: bash .. code-block:: bash Flow -- PUB-SUB -- BasePod(_pass) -- Flow | -- PUB-SUB -- InspectPod (Hanging) In this way, :class:`InspectPod` looks like a simple ``_pass`` from outside and does not introduce side-effects (e.g. changing the socket type) to the original Flow. The original incoming and outgoing socket types are preserved. This function is very handy for introducing an Evaluator into the Flow. .. seealso:: :meth:`gather_inspect` :param name: name of the Pod :param args: args for .add() :param kwargs: kwargs for .add() :return: the new instance of the Flow """ _last_pod = self.last_pod op_flow = self.add( name=name, needs=_last_pod, pod_role=PodRoleType.INSPECT, *args, **kwargs ) # now remove uses and add an auxiliary Pod if 'uses' in kwargs: kwargs.pop('uses') op_flow = op_flow.add( name=f'_aux_{name}', needs=_last_pod, pod_role=PodRoleType.INSPECT_AUX_PASS, *args, **kwargs, ) # register any future connection to _last_pod by the auxiliary Pod op_flow._inspect_pods[_last_pod] = op_flow.last_pod return op_flow def gather_inspect( self, name: str = 'gather_inspect', include_last_pod: bool = True, *args, **kwargs, ) -> 'Flow': """Gather all inspect Pods output into one Pod. When the Flow has no inspect Pod then the Flow itself is returned. .. note:: If ``--no-inspect`` is **not** given, then :meth:`gather_inspect` is auto called before :meth:`build`. So in general you don't need to manually call :meth:`gather_inspect`. :param name: the name of the gather Pod :param include_last_pod: if to include the last modified Pod in the Flow :param args: args for .add() :param kwargs: kwargs for .add() :return: the modified Flow or the copy of it .. seealso:: :meth:`inspect` """ needs = [k for k, v in self._pod_nodes.items() if v.role == PodRoleType.INSPECT] if needs: if include_last_pod: needs.append(self.last_pod) return self.add( name=name, needs=needs, pod_role=PodRoleType.JOIN_INSPECT, *args, **kwargs, ) else: # no inspect node is in the graph, return the current graph return self def build(self, copy_flow: bool = False) -> 'Flow': """ Build the current Flow and make it ready to use .. note:: No need to manually call it since 0.0.8. When using Flow with the context manager, or using :meth:`start`, :meth:`build` will be invoked. :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :return: the current Flow (by default) .. note:: ``copy_flow=True`` is recommended if you are building the same Flow multiple times in a row. e.g. .. highlight:: python .. code-block:: python f = Flow() with f: f.index() with f.build(copy_flow=True) as fl: fl.search() .. # noqa: DAR401 """ op_flow = copy.deepcopy(self) if copy_flow else self if op_flow.args.inspect == FlowInspectType.COLLECT: op_flow.gather_inspect(copy_flow=False) if 'gateway' not in op_flow._pod_nodes: op_flow._add_gateway(needs={op_flow.last_pod}) # construct a map with a key a start node and values an array of its end nodes _outgoing_map = defaultdict(list) # if set no_inspect then all inspect related nodes are removed if op_flow.args.inspect == FlowInspectType.REMOVE: op_flow._pod_nodes = { k: v for k, v in op_flow._pod_nodes.items() if not v.role.is_inspect } reverse_inspect_map = {v: k for k, v in op_flow._inspect_pods.items()} for end, pod in op_flow._pod_nodes.items(): # if an endpoint is being inspected, then replace it with inspected Pod # but not those inspect related node if op_flow.args.inspect.is_keep: pod.needs = set( ep if pod.role.is_inspect else op_flow._inspect_pods.get(ep, ep) for ep in pod.needs ) else: pod.needs = set(reverse_inspect_map.get(ep, ep) for ep in pod.needs) for start in pod.needs: if start not in op_flow._pod_nodes: raise FlowMissingPodError( f'{start} is not in this flow, misspelled name?' ) _outgoing_map[start].append(end) op_flow = _build_flow(op_flow, _outgoing_map) hanging_pods = _hanging_pods(op_flow) if hanging_pods: op_flow.logger.warning( f'{hanging_pods} are hanging in this flow with no pod receiving from them, ' f'you may want to double check if it is intentional or some mistake' ) op_flow._build_level = FlowBuildLevel.GRAPH return op_flow def __call__(self, *args, **kwargs): """Builds the Flow :param args: args for build :param kwargs: kwargs for build :return: the built Flow """ return self.build(*args, **kwargs) def __enter__(self): class CatchAllCleanupContextManager: """ This context manager guarantees, that the :method:``__exit__`` of the sub context is called, even when there is an Exception in the :method:``__enter__``. :param sub_context: The context, that should be taken care of. """ def __init__(self, sub_context): self.sub_context = sub_context def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: self.sub_context.__exit__(exc_type, exc_val, exc_tb) with CatchAllCleanupContextManager(self): return self.start() def __exit__(self, exc_type, exc_val, exc_tb): super().__exit__(exc_type, exc_val, exc_tb) # unset all envs to avoid any side-effect if self.args.env: for k in self.args.env.keys(): os.unsetenv(k) if 'gateway' in self._pod_nodes: self._pod_nodes.pop('gateway') self._build_level = FlowBuildLevel.EMPTY self.logger.success( f'flow is closed and all resources are released, current build level is {self._build_level}' ) self.logger.close() def start(self): """Start to run all Pods in this Flow. Remember to close the Flow with :meth:`close`. Note that this method has a timeout of ``timeout_ready`` set in CLI, which is inherited all the way from :class:`jina.peapods.peas.BasePea` .. # noqa: DAR401 :return: this instance """ if self._build_level.value < FlowBuildLevel.GRAPH.value: self.build(copy_flow=False) # set env only before the Pod get started if self.args.env: for k, v in self.args.env.items(): os.environ[k] = str(v) for k, v in self: v.args.noblock_on_start = True if not getattr(v.args, 'external', False): self.enter_context(v) for k, v in self: try: if not getattr(v.args, 'external', False): v.wait_start_success() except Exception as ex: self.logger.error( f'{k}:{v!r} can not be started due to {ex!r}, Flow is aborted' ) self.close() raise self.logger.info( f'{self.num_pods} Pods (i.e. {self.num_peas} Peas) are running in this Flow' ) self._build_level = FlowBuildLevel.RUNNING self._show_success_message() return self @property def num_pods(self) -> int: """Get the number of Pods in this Flow .. # noqa: DAR201""" return len(self._pod_nodes) @property def num_peas(self) -> int: """Get the number of peas (parallel count) in this Flow .. # noqa: DAR201""" return sum(v.num_peas for v in self._pod_nodes.values()) def __eq__(self, other: 'Flow') -> bool: """ Compare the topology of a Flow with another Flow. Identification is defined by whether two flows share the same set of edges. :param other: the second Flow object :return: result of equality check """ if self._build_level.value < FlowBuildLevel.GRAPH.value: a = self.build() else: a = self if other._build_level.value < FlowBuildLevel.GRAPH.value: b = other.build() else: b = other return a._pod_nodes == b._pod_nodes @property @build_required(FlowBuildLevel.GRAPH) def client(self) -> 'BaseClient': """Return a :class:`BaseClient` object attach to this Flow. .. # noqa: DAR201""" self.args.port_expose = self.port_expose self.args.host = self.host self.args.show_progress = True return Client(self.args) @property def _mermaid_str(self): mermaid_graph = [ "%%{init: {'theme': 'base', " "'themeVariables': { 'primaryColor': '#32C8CD', " "'edgeLabelBackground':'#fff', 'clusterBkg': '#FFCC66'}}}%%", 'graph LR', ] start_repl = {} end_repl = {} for node, v in self._pod_nodes.items(): if not v.is_singleton and v.role != PodRoleType.GATEWAY: if v.args.replicas == 1: mermaid_graph.append( f'subgraph sub_{node} ["{node} ({v.args.parallel})"]' ) else: mermaid_graph.append( f'subgraph sub_{node} ["{node} ({v.args.replicas})({v.args.parallel})"]' ) if v.is_head_router: head_router = node + '_HEAD' end_repl[node] = (head_router, '((fa:fa-random))') if v.is_tail_router: tail_router = node + '_TAIL' start_repl[node] = (tail_router, '((fa:fa-random))') for i in range(v.args.replicas): if v.is_head_router: head_replica_router = node + f'_{i}_HEAD' if v.args.replicas == 1: end_repl[node] = (head_replica_router, '((fa:fa-random))') if v.is_tail_router: tail_replica_router = node + f'_{i}_TAIL' if v.args.replicas == 1: start_repl[node] = (tail_replica_router, '((fa:fa-random))') p_r = '((%s))' p_e = '[[%s]]' if v.args.replicas > 1: mermaid_graph.append( f'\t{head_router}{p_r % "head"}:::pea-->{head_replica_router}{p_e % "replica_head"}:::pea' ) mermaid_graph.append( f'\t{tail_replica_router}{p_r % "replica_tail"}:::pea-->{tail_router}{p_e % "tail"}:::pea' ) for j in range(v.args.parallel): r = node if v.args.replicas > 1: r += f'_{i}_{j}' elif v.args.parallel > 1: r += f'_{j}' if v.is_head_router: mermaid_graph.append( f'\t{head_replica_router}{p_r % "head"}:::pea-->{r}{p_e % r}:::pea' ) if v.is_tail_router: mermaid_graph.append( f'\t{r}{p_e % r}:::pea-->{tail_replica_router}{p_r % "tail"}:::pea' ) mermaid_graph.append('end') for node, v in self._pod_nodes.items(): ed_str = str(v.head_args.socket_in).split('_')[0] for need in sorted(v.needs): edge_str = '' if need in self._pod_nodes: st_str = str(self._pod_nodes[need].tail_args.socket_out).split('_')[ 0 ] edge_str = f'|{st_str}-{ed_str}|' _s = start_repl.get(need, (need, f'({need})')) _e = end_repl.get(node, (node, f'({node})')) _s_role = self._pod_nodes[need].role _e_role = self._pod_nodes[node].role line_st = '-->' if _s_role in {PodRoleType.INSPECT, PodRoleType.JOIN_INSPECT}: _s = start_repl.get(need, (need, f'{{{{{need}}}}}')) if _e_role == PodRoleType.GATEWAY: _e = ('gateway_END', f'({node})') elif _e_role in {PodRoleType.INSPECT, PodRoleType.JOIN_INSPECT}: _e = end_repl.get(node, (node, f'{{{{{node}}}}}')) if _s_role == PodRoleType.INSPECT or _e_role == PodRoleType.INSPECT: line_st = '-.->' mermaid_graph.append( f'{_s[0]}{_s[1]}:::{str(_s_role)} {line_st} {edge_str}{_e[0]}{_e[1]}:::{str(_e_role)}' ) mermaid_graph.append( f'classDef {str(PodRoleType.POD)} fill:#32C8CD,stroke:#009999' ) mermaid_graph.append( f'classDef {str(PodRoleType.INSPECT)} fill:#ff6666,color:#fff' ) mermaid_graph.append( f'classDef {str(PodRoleType.JOIN_INSPECT)} fill:#ff6666,color:#fff' ) mermaid_graph.append( f'classDef {str(PodRoleType.GATEWAY)} fill:#6E7278,color:#fff' ) mermaid_graph.append( f'classDef {str(PodRoleType.INSPECT_AUX_PASS)} fill:#fff,color:#000,stroke-dasharray: 5 5' ) mermaid_graph.append('classDef pea fill:#009999,stroke:#1E6E73') return '\n'.join(mermaid_graph) def plot( self, output: Optional[str] = None, vertical_layout: bool = False, inline_display: bool = False, build: bool = True, copy_flow: bool = False, ) -> 'Flow': """ Visualize the Flow up to the current point If a file name is provided it will create a jpg image with that name, otherwise it will display the URL for mermaid. If called within IPython notebook, it will be rendered inline, otherwise an image will be created. Example, .. highlight:: python .. code-block:: python flow = Flow().add(name='pod_a').plot('flow.svg') :param output: a filename specifying the name of the image to be created, the suffix svg/jpg determines the file type of the output image :param vertical_layout: top-down or left-right layout :param inline_display: show image directly inside the Jupyter Notebook :param build: build the Flow first before plotting, gateway connection can be better showed :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :return: the Flow """ # deepcopy causes the below error while reusing a Flow in Jupyter # 'Pickling an AuthenticationString object is disallowed for security reasons' op_flow = copy.deepcopy(self) if copy_flow else self if build: op_flow.build(False) mermaid_str = op_flow._mermaid_str if vertical_layout: mermaid_str = mermaid_str.replace('graph LR', 'graph TD') image_type = 'svg' if output and output.endswith('jpg'): image_type = 'jpg' url = op_flow._mermaid_to_url(mermaid_str, image_type) showed = False if inline_display: try: from IPython.display import display, Image display(Image(url=url)) showed = True except: # no need to panic users pass if output: download_mermaid_url(url, output) elif not showed: op_flow.logger.info(f'flow visualization: {url}') return self def _ipython_display_(self): """Displays the object in IPython as a side effect""" self.plot( inline_display=True, build=(self._build_level != FlowBuildLevel.GRAPH) ) def _mermaid_to_url(self, mermaid_str: str, img_type: str) -> str: """ Render the current Flow as URL points to a SVG. It needs internet connection :param mermaid_str: the mermaid representation :param img_type: image type (svg/jpg) :return: the url points to a SVG """ if img_type == 'jpg': img_type = 'img' encoded_str = base64.b64encode(bytes(mermaid_str, 'utf-8')).decode('utf-8') return f'https://mermaid.ink/{img_type}/{encoded_str}' @property @build_required(FlowBuildLevel.GRAPH) def port_expose(self) -> int: """Return the exposed port of the gateway .. # noqa: DAR201""" return self._pod_nodes['gateway'].port_expose @property @build_required(FlowBuildLevel.GRAPH) def host(self) -> str: """Return the local address of the gateway .. # noqa: DAR201""" return self._pod_nodes['gateway'].host @property @build_required(FlowBuildLevel.GRAPH) def address_private(self) -> str: """Return the private IP address of the gateway for connecting from other machine in the same network .. # noqa: DAR201""" return get_internal_ip() @property @build_required(FlowBuildLevel.GRAPH) def address_public(self) -> str: """Return the public IP address of the gateway for connecting from other machine in the public network .. # noqa: DAR201""" return get_public_ip() def __iter__(self): return self._pod_nodes.items().__iter__() def _show_success_message(self): if self._pod_nodes['gateway'].args.restful: header = 'http://' protocol = 'REST' else: header = 'tcp://' protocol = 'gRPC' address_table = [ f'\t🖥️ Local access:\t' + colored( f'{header}{self.host}:{self.port_expose}', 'cyan', attrs='underline' ), f'\t🔒 Private network:\t' + colored( f'{header}{self.address_private}:{self.port_expose}', 'cyan', attrs='underline', ), ] if self.address_public: address_table.append( f'\t🌐 Public address:\t' + colored( f'{header}{self.address_public}:{self.port_expose}', 'cyan', attrs='underline', ) ) self.logger.success( f'🎉 Flow is ready to use, accepting {colored(protocol + " request", attrs="bold")}' ) self.logger.info('\n' + '\n'.join(address_table)) def block(self): """Block the process until user hits KeyboardInterrupt""" try: threading.Event().wait() except KeyboardInterrupt: pass def use_grpc_gateway(self, port: Optional[int] = None): """Change to use gRPC gateway for Flow IO. You can change the gateway even in the runtime. :param port: the new port number to expose """ self._switch_gateway('GRPCRuntime', port) def _switch_gateway(self, gateway: str, port: int): restful = gateway == 'RESTRuntime' # globally register this at Flow level self.args.restful = restful if port: self.args.port_expose = port # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self['gateway'].args.restful = restful self['gateway'].args.runtime_cls = gateway if port: self['gateway'].args.port_expose = port # Flow is running already, then close the existing gateway if self._build_level >= FlowBuildLevel.RUNNING: self['gateway'].close() self.enter_context(self['gateway']) self['gateway'].wait_start_success() def use_rest_gateway(self, port: Optional[int] = None): """Change to use REST gateway for IO. You can change the gateway even in the runtime. :param port: the new port number to expose """ self._switch_gateway('RESTRuntime', port) def __getitem__(self, item): if isinstance(item, str): return self._pod_nodes[item] elif isinstance(item, int): return list(self._pod_nodes.values())[item] else: raise TypeError(f'{typename(item)} is not supported') @property def workspace(self) -> str: """Return the workspace path of the flow. .. # noqa: DAR201""" return os.path.abspath(self.args.workspace or './') @property def workspace_id(self) -> Dict[str, str]: """Get all Pods' ``workspace_id`` values in a dict .. # noqa: DAR201""" return { k: p.args.workspace_id for k, p in self if hasattr(p.args, 'workspace_id') } @workspace_id.setter def workspace_id(self, value: str): """Set all Pods' ``workspace_id`` to ``value`` :param value: a hexadecimal UUID string """ uuid.UUID(value) for k, p in self: if hasattr(p.args, 'workspace_id'): p.args.workspace_id = value args = getattr(p, 'peas_args', getattr(p, 'replicas_args', None)) if args is None: raise ValueError( f'could not find "peas_args" or "replicas_args" on {p}' ) values = None if isinstance(args, dict): values = args.values() elif isinstance(args, list): values = args for v in values: if v and isinstance(v, argparse.Namespace): v.workspace_id = value if v and isinstance(v, List): for i in v: i.workspace_id = value @property def identity(self) -> Dict[str, str]: """Get all Pods' ``identity`` values in a dict .. # noqa: DAR201 """ return {k: p.args.identity for k, p in self} @identity.setter def identity(self, value: str): """Set all Pods' ``identity`` to ``value`` :param value: a hexadecimal UUID string """ uuid.UUID(value) # Re-initiating logger with new identity self.logger = JinaLogger(self.__class__.__name__, **vars(self.args)) for _, p in self: p.args.identity = value # for backward support join = needs def rolling_update(self, pod_name: str, dump_path: Optional[str] = None): """ Reload Pods sequentially - only used for compound pods. :param dump_path: the path from which to read the dump data :param pod_name: pod to update """ # TODO: By design after the Flow object started, Flow shouldn't have memory access to its sub-objects anymore. # All controlling should be issued via Network Request, not via memory access. # In the current master, we have Flow.rolling_update() & Flow.dump() method avoid the above design. # Avoiding this design make the whole system NOT cloud-native. warnings.warn( 'This function is experimental and facing potential refactoring', FutureWarning, ) compound_pod = self._pod_nodes[pod_name] if isinstance(compound_pod, CompoundPod): compound_pod.rolling_update(dump_path) else: raise ValueError( f'The BasePod {pod_name} is not a CompoundPod and does not support updating' )
40.391165
283
0.597073
794e9abe4023e306179ab9ad9289f65987599dc1
2,067
py
Python
deprecated/stageI/run_exp_mscoco.py
yao-zhao/EDGAN
b3164fb9d5d9b571b52328b7dd187b748d5a304d
[ "MIT" ]
3
2017-05-30T03:57:59.000Z
2019-04-15T07:05:17.000Z
deprecated/stageI/run_exp_mscoco.py
yao-zhao/EDGAN
b3164fb9d5d9b571b52328b7dd187b748d5a304d
[ "MIT" ]
null
null
null
deprecated/stageI/run_exp_mscoco.py
yao-zhao/EDGAN
b3164fb9d5d9b571b52328b7dd187b748d5a304d
[ "MIT" ]
null
null
null
from __future__ import division from __future__ import print_function import dateutil import dateutil.tz import datetime import argparse import pprint from shutil import copyfile import os from misc.dataloader import DataLoader from stageI.model import CondGAN from stageI.trainer_mscoco import CondGANTrainer_mscoco from misc.utils import mkdir_p from misc.config import cfg, cfg_from_file def parse_args(): parser = argparse.ArgumentParser(description='Train a GAN network') parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='stageI/cfg/mscoco.yml', type=str) parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=-1, type=int) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.gpu_id != -1: cfg.GPU_ID = args.gpu_id print('Using config:') pprint.pprint(cfg) now = datetime.datetime.now(dateutil.tz.tzlocal()) timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') tfrecord_path = 'Data/%s/%s.tfrecords' % \ (cfg.DATASET_NAME, cfg.DATASET.TFRECORDS) crop_size = cfg.TRAIN.LR_IMSIZE dataset = DataLoader(tfrecord_path, [crop_size, crop_size], num_examples=cfg.DATASET.NUM_EXAMPLES) if cfg.TRAIN.FLAG: ckt_logs_dir = "ckt_logs/%s/%s_%s" % \ (cfg.DATASET_NAME, cfg.CONFIG_NAME, timestamp) mkdir_p(ckt_logs_dir) else: s_tmp = cfg.TRAIN.PRETRAINED_MODEL ckt_logs_dir = s_tmp[:s_tmp.find('.ckpt')] model = CondGAN( image_shape=dataset.image_shape ) copyfile(os.path.join('stageI', 'cfg', 'mscoco.yml'), os.path.join(ckt_logs_dir, 'mscoco.yml')) algo = CondGANTrainer_mscoco( model=model, dataset=dataset, ckt_logs_dir=ckt_logs_dir ) if cfg.TRAIN.FLAG: algo.train() else: algo.evaluate()
29.528571
99
0.654088
794e9b01871545eeb8d49c1339fa0cb3b38f04fb
5,807
py
Python
core/dbt/config/renderer.py
sethwoodworth/dbt
68babfb4bbd016e198bb09ac8dfd5dc71760ef7e
[ "Apache-2.0" ]
1
2020-10-25T00:13:50.000Z
2020-10-25T00:13:50.000Z
core/dbt/config/renderer.py
azhard/dbt
9cd7cbc9e35e5a7c8c4f17a3d113263f4421ab55
[ "Apache-2.0" ]
null
null
null
core/dbt/config/renderer.py
azhard/dbt
9cd7cbc9e35e5a7c8c4f17a3d113263f4421ab55
[ "Apache-2.0" ]
null
null
null
from typing import Dict, Any, Tuple, Optional, Union from dbt.clients.jinja import get_rendered from dbt.exceptions import DbtProjectError from dbt.exceptions import RecursionException from dbt.node_types import NodeType from dbt.utils import deep_map Keypath = Tuple[Union[str, int], ...] class BaseRenderer: def __init__(self, context: Dict[str, Any]) -> None: self.context = context @property def name(self): return 'Rendering' def should_render_keypath(self, keypath: Keypath) -> bool: return True def render_entry(self, value: Any, keypath: Keypath) -> Any: if not self.should_render_keypath(keypath): return value return self.render_value(value, keypath) def render_value( self, value: Any, keypath: Optional[Keypath] = None ) -> Any: # keypath is ignored. # if it wasn't read as a string, ignore it if not isinstance(value, str): return value return get_rendered(value, self.context, native=True) def render_data( self, data: Dict[str, Any] ) -> Dict[str, Any]: try: return deep_map(self.render_entry, data) except RecursionException: raise DbtProjectError( f'Cycle detected: {self.name} input has a reference to itself', project=data ) class DbtProjectYamlRenderer(BaseRenderer): def __init__( self, context: Dict[str, Any], version: Optional[int] = None ) -> None: super().__init__(context) self.version: Optional[int] = version @property def name(self): 'Project config' def get_package_renderer(self) -> BaseRenderer: return PackageRenderer(self.context) def should_render_keypath_v1(self, keypath: Keypath) -> bool: if not keypath: return True first = keypath[0] # run hooks if first in {'on-run-start', 'on-run-end', 'query-comment'}: return False # models have two things to avoid if first in {'seeds', 'models', 'snapshots', 'seeds'}: # model-level hooks if 'pre-hook' in keypath or 'post-hook' in keypath: return False # model-level 'vars' declarations if 'vars' in keypath: return False return True def should_render_keypath_v2(self, keypath: Keypath) -> bool: if not keypath: return True first = keypath[0] # run hooks are not rendered if first in {'on-run-start', 'on-run-end', 'query-comment'}: return False # don't render vars blocks until runtime if first == 'vars': return False if first in {'seeds', 'models', 'snapshots', 'seeds'}: # model-level hooks if 'pre-hook' in keypath or 'post-hook' in keypath: return False # model-level 'vars' declarations if 'vars' in keypath: return False return True def should_render_keypath(self, keypath: Keypath) -> bool: if self.version == 2: return self.should_render_keypath_v2(keypath) else: # could be None return self.should_render_keypath_v1(keypath) def render_data( self, data: Dict[str, Any] ) -> Dict[str, Any]: if self.version is None: self.version = data.get('current-version') try: return deep_map(self.render_entry, data) except RecursionException: raise DbtProjectError( f'Cycle detected: {self.name} input has a reference to itself', project=data ) class ProfileRenderer(BaseRenderer): @property def name(self): 'Profile' class SchemaYamlRenderer(BaseRenderer): DOCUMENTABLE_NODES = frozenset( n.pluralize() for n in NodeType.documentable() ) @property def name(self): return 'Rendering yaml' def _is_norender_key(self, keypath: Keypath) -> bool: """ models: - name: blah - description: blah tests: ... - columns: - name: - description: blah tests: ... Return True if it's tests or description - those aren't rendered """ if len(keypath) >= 2 and keypath[1] in ('tests', 'description'): return True if ( len(keypath) >= 4 and keypath[1] == 'columns' and keypath[3] in ('tests', 'description') ): return True return False # don't render descriptions or test keyword arguments def should_render_keypath(self, keypath: Keypath) -> bool: if len(keypath) < 2: return True if keypath[0] not in self.DOCUMENTABLE_NODES: return True if len(keypath) < 3: return True if keypath[0] == NodeType.Source.pluralize(): if keypath[2] == 'description': return False if keypath[2] == 'tables': if self._is_norender_key(keypath[3:]): return False elif keypath[0] == NodeType.Macro.pluralize(): if keypath[2] == 'arguments': if self._is_norender_key(keypath[3:]): return False elif self._is_norender_key(keypath[1:]): return False else: # keypath[0] in self.DOCUMENTABLE_NODES: if self._is_norender_key(keypath[1:]): return False return True class PackageRenderer(BaseRenderer): @property def name(self): return 'Packages config'
28.747525
79
0.569141
794e9b1ddfbdb4f03412dca5be3ba702143be01f
6,985
py
Python
talon_one/models/feature_flags.py
talon-one/talon_one.py
f863bb3c2cc5ddc94d9227adcf14947b2ea7db41
[ "MIT" ]
1
2021-03-05T06:41:26.000Z
2021-03-05T06:41:26.000Z
talon_one/models/feature_flags.py
talon-one/talon_one.py
f863bb3c2cc5ddc94d9227adcf14947b2ea7db41
[ "MIT" ]
1
2021-09-07T08:56:58.000Z
2021-09-07T08:56:58.000Z
talon_one/models/feature_flags.py
talon-one/talon_one.py
f863bb3c2cc5ddc94d9227adcf14947b2ea7db41
[ "MIT" ]
1
2019-05-21T10:27:54.000Z
2019-05-21T10:27:54.000Z
# coding: utf-8 """ Talon.One API The Talon.One API is used to manage applications and campaigns, as well as to integrate with your application. The operations in the _Integration API_ section are used to integrate with our platform, while the other operations are used to manage applications and campaigns. ### Where is the API? The API is available at the same hostname as these docs. For example, if you are reading this page at `https://mycompany.talon.one/docs/api/`, the URL for the [updateCustomerProfile][] operation is `https://mycompany.talon.one/v1/customer_profiles/id` [updateCustomerProfile]: #operation--v1-customer_profiles--integrationId--put # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from talon_one.configuration import Configuration class FeatureFlags(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'account_id': 'int', 'loyalty': 'bool', 'coupons_without_count': 'bool', 'beta_effects': 'bool' } attribute_map = { 'account_id': 'accountId', 'loyalty': 'loyalty', 'coupons_without_count': 'coupons_without_count', 'beta_effects': 'betaEffects' } def __init__(self, account_id=None, loyalty=None, coupons_without_count=None, beta_effects=None, local_vars_configuration=None): # noqa: E501 """FeatureFlags - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._account_id = None self._loyalty = None self._coupons_without_count = None self._beta_effects = None self.discriminator = None self.account_id = account_id if loyalty is not None: self.loyalty = loyalty if coupons_without_count is not None: self.coupons_without_count = coupons_without_count if beta_effects is not None: self.beta_effects = beta_effects @property def account_id(self): """Gets the account_id of this FeatureFlags. # noqa: E501 The ID of the account that owns this entity. # noqa: E501 :return: The account_id of this FeatureFlags. # noqa: E501 :rtype: int """ return self._account_id @account_id.setter def account_id(self, account_id): """Sets the account_id of this FeatureFlags. The ID of the account that owns this entity. # noqa: E501 :param account_id: The account_id of this FeatureFlags. # noqa: E501 :type: int """ if self.local_vars_configuration.client_side_validation and account_id is None: # noqa: E501 raise ValueError("Invalid value for `account_id`, must not be `None`") # noqa: E501 self._account_id = account_id @property def loyalty(self): """Gets the loyalty of this FeatureFlags. # noqa: E501 Whether the account has access to the loyalty features or not # noqa: E501 :return: The loyalty of this FeatureFlags. # noqa: E501 :rtype: bool """ return self._loyalty @loyalty.setter def loyalty(self, loyalty): """Sets the loyalty of this FeatureFlags. Whether the account has access to the loyalty features or not # noqa: E501 :param loyalty: The loyalty of this FeatureFlags. # noqa: E501 :type: bool """ self._loyalty = loyalty @property def coupons_without_count(self): """Gets the coupons_without_count of this FeatureFlags. # noqa: E501 Whether the account queries coupons with or without total result size # noqa: E501 :return: The coupons_without_count of this FeatureFlags. # noqa: E501 :rtype: bool """ return self._coupons_without_count @coupons_without_count.setter def coupons_without_count(self, coupons_without_count): """Sets the coupons_without_count of this FeatureFlags. Whether the account queries coupons with or without total result size # noqa: E501 :param coupons_without_count: The coupons_without_count of this FeatureFlags. # noqa: E501 :type: bool """ self._coupons_without_count = coupons_without_count @property def beta_effects(self): """Gets the beta_effects of this FeatureFlags. # noqa: E501 Whether the account can test beta effects or not # noqa: E501 :return: The beta_effects of this FeatureFlags. # noqa: E501 :rtype: bool """ return self._beta_effects @beta_effects.setter def beta_effects(self, beta_effects): """Sets the beta_effects of this FeatureFlags. Whether the account can test beta effects or not # noqa: E501 :param beta_effects: The beta_effects of this FeatureFlags. # noqa: E501 :type: bool """ self._beta_effects = beta_effects def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FeatureFlags): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, FeatureFlags): return True return self.to_dict() != other.to_dict()
33.581731
647
0.627774
794e9b548a9825ac67ef37d111bd6ab1005f9d95
502
py
Python
automation/gui1.py
ArkAngeL43/automation
f8ad20470a3dd2a180c93d84d170dcdd7bb1c45f
[ "MIT" ]
1
2021-07-10T15:43:22.000Z
2021-07-10T15:43:22.000Z
automation/gui1.py
ArkAngeL43/automation
f8ad20470a3dd2a180c93d84d170dcdd7bb1c45f
[ "MIT" ]
null
null
null
automation/gui1.py
ArkAngeL43/automation
f8ad20470a3dd2a180c93d84d170dcdd7bb1c45f
[ "MIT" ]
null
null
null
from tkinter import * root = Tk() root.geometry("400x400") bg = PhotoImage(file = "pop.ppm") # Show image using label label1 = Label( root, image = bg) label1.place(x = 0, y = 0) label2 = Label( root, text = "Welcome") label2.pack(pady = 50) frame1 = Frame(root) frame1.pack(pady = 20 ) button1 = Button(frame1,text="happy") button1.pack(pady=20) button2 = Button( frame1, text = "fucking") button2.pack(pady = 20) button3 = Button( frame1, text = "BDAYYYY MF") button3.pack(pady = 20) root.mainloop()
27.888889
46
0.689243
794e9bea78c76ce0e1c4bd01090211e6af6b34f1
3,644
py
Python
sbo_sphinx/jsdoc.py
safarijv/sbo-sphinx
7a8efb7c49488131c90c19ef1a1563f595630a36
[ "BSD-2-Clause" ]
3
2015-06-28T16:21:05.000Z
2018-08-30T09:48:06.000Z
sbo_sphinx/jsdoc.py
safarijv/sbo-sphinx
7a8efb7c49488131c90c19ef1a1563f595630a36
[ "BSD-2-Clause" ]
5
2015-01-29T22:12:52.000Z
2015-09-22T19:15:21.000Z
sbo_sphinx/jsdoc.py
safarijv/sbo-sphinx
7a8efb7c49488131c90c19ef1a1563f595630a36
[ "BSD-2-Clause" ]
null
null
null
# encoding: utf-8 # Created by Jeremy Bowman at Thu Feb 6 17:41:45 2014 # Copyright (c) 2014 Safari Books Online, LLC. All rights reserved. """ Sphinx extension that uses jsdoc-toolkit and jsdoc-toolkit-rst-template to generate JavaScript API documentation. Depends on having JSDoc formatted comments in the source code, without that this won't do much. There are three relevant Sphinx configuration variables: * ``jsdoc_source_root`` - The path relative to conf.py of the directory containing all of the JavaScript files to be documented (``".."`` by default) * ``jsdoc_output_root`` - The path relative to conf.py of the directory in which to put the generated reST files (``"javascript"`` by default). * ``jsdoc_exclude`` - A list of regular expressions; files and directories matching any of them will be omitted from the documentation (an empty list by default). The regular expressions should be strings using Java's regex syntax. The generated files are left in place between builds so they can be inspected. The output directory should typically be added to .gitignore so the intermediate files aren't accidentally committed. External requirements: java, ant """ import os from shutil import rmtree from subprocess import Popen from sphinx.errors import SphinxError SOURCE_PATH = os.path.abspath(os.path.dirname(__file__)) class JSDocError(SphinxError): category = 'jsdoc' def generate_docs(app): """ Generate the reST documentation files for the JavaScript code """ # Figure out the correct directories to use config = app.config config_dir = app.env.srcdir javascript_root = os.path.join(config_dir, config.jsdoc_source_root) if javascript_root[-1] != os.path.sep: javascript_root += os.path.sep if not javascript_root: return output_root = os.path.join(config_dir, config.jsdoc_output_root) execution_dir = os.path.join(config_dir, '..') exclude = config.jsdoc_exclude # Remove any files generated by earlier builds cleanup(output_root) # Generate the actual reST files jsdoc_toolkit_dir = os.path.join(SOURCE_PATH, 'jsdoc-toolkit') jsdoc_rst_dir = os.path.join(SOURCE_PATH, 'jsdoc-toolkit-rst-template') build_xml_path = os.path.join(jsdoc_rst_dir, 'build.xml') command = ['ant', '-f', build_xml_path, '-Djsdoc-toolkit.dir=%s' % jsdoc_toolkit_dir, '-Djs.src.dir=%s' % javascript_root, '-Djs.rst.dir=%s' % output_root] if exclude: exclude_args = ['--exclude=\\"%s\\"' % path for path in exclude] command.append('-Djs.exclude="%s"' % ' '.join(exclude_args)) try: process = Popen(command, cwd=execution_dir) process.wait() except OSError: raise JSDocError('Error running ant; is it installed?') # Convert the absolute paths in the file listing to relative ones path = os.path.join(output_root, 'files.rst') with open(path, 'r') as f: content = f.read() content = content.replace(javascript_root, '') with open(path, 'w') as f: f.write(content) def cleanup(output_root): """Remove any reST files which were generated by this extension""" if os.path.exists(output_root): if os.path.isdir(output_root): rmtree(output_root) else: os.remove(output_root) def setup(app): """Sphinx extension entry point""" app.add_config_value('jsdoc_source_root', '..', 'env') app.add_config_value('jsdoc_output_root', 'javascript', 'env') app.add_config_value('jsdoc_exclude', [], 'env') app.connect('builder-inited', generate_docs)
36.44
79
0.699232
794e9c7a13659b9babebcbc3c70a74bf1a3f13e9
454
py
Python
numba/rewrites/__init__.py
TejasAvinashShetty/numba
5f474010f8f50b3cf358125ba279d345ae5914ef
[ "BSD-2-Clause" ]
null
null
null
numba/rewrites/__init__.py
TejasAvinashShetty/numba
5f474010f8f50b3cf358125ba279d345ae5914ef
[ "BSD-2-Clause" ]
null
null
null
numba/rewrites/__init__.py
TejasAvinashShetty/numba
5f474010f8f50b3cf358125ba279d345ae5914ef
[ "BSD-2-Clause" ]
null
null
null
import numba.core.errors as _errors from numba.core.utils import PYVERSION as _PYVERSION _moved_mod = "numba.core.rewrites" if _PYVERSION >= (3, 7): __getattr__ = _errors.deprecate_moved_module_getattr(__name__, _moved_mod) else: from numba.core.rewrites.registry import ( register_rewrite, # noqa: F401 rewrite_registry, # noqa: F401 Rewrite, ) # noqa: F401 _errors.deprecate_moved_module(__name__, _moved_mod)
28.375
78
0.729075
794e9c94793fe9e63bb19cb346a16ff45b0d00d6
804
py
Python
pylaas_core/interface/core/service_interface.py
Agi-dev/pylaas_core
c44866b5e57eb6f05f5b2b8d731f22d62a8c01c2
[ "MIT" ]
null
null
null
pylaas_core/interface/core/service_interface.py
Agi-dev/pylaas_core
c44866b5e57eb6f05f5b2b8d731f22d62a8c01c2
[ "MIT" ]
2
2021-03-25T21:30:41.000Z
2021-06-01T21:25:37.000Z
pylaas_core/interface/core/service_interface.py
Agi-dev/pylaas_core
c44866b5e57eb6f05f5b2b8d731f22d62a8c01c2
[ "MIT" ]
null
null
null
import abc class ServiceInterface(abc.ABC): @abc.abstractmethod def set_adapter(self, adapter): """Set service adapter Args: adapter: Returns: cls """ pass @abc.abstractmethod def get_adapter(self): """Get current adapter Returns: adapter """ pass @abc.abstractmethod def has_adapter(self): """Check if an adapter exists Returns: bool """ pass @staticmethod @abc.abstractmethod def get_service(service_id) -> 'ServiceInterface': """ Get service Args: service_id (string): service id to instantiate from container Returns: ServiceInterface """
17.866667
73
0.521144
794e9cb603a3b80791571c146902929442ac1bd2
66,506
py
Python
code_rt_sd/sd/plotlib.py
shibaji7/Collaboration_NCAR
c27e0ad8a1f0c6b2e66fa07e6cf57f98c4389899
[ "Apache-2.0" ]
1
2021-11-12T14:40:49.000Z
2021-11-12T14:40:49.000Z
code_rt_sd/sd/plotlib.py
shibaji7/Collaboration_NCAR
c27e0ad8a1f0c6b2e66fa07e6cf57f98c4389899
[ "Apache-2.0" ]
null
null
null
code_rt_sd/sd/plotlib.py
shibaji7/Collaboration_NCAR
c27e0ad8a1f0c6b2e66fa07e6cf57f98c4389899
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """plotlib.py: module is dedicated to plottting.""" __author__ = "Chakraborty, S." __copyright__ = "Copyright 2020, SuperDARN@VT" __credits__ = [] __license__ = "MIT" __version__ = "1.0." __maintainer__ = "Chakraborty, S." __email__ = "shibaji7@vt.edu" __status__ = "Research" import matplotlib matplotlib.use("Agg") import datetime as dt from matplotlib.collections import LineCollection from mpl_toolkits.axes_grid1 import SubplotDivider, Size from mpl_toolkits.axes_grid1.mpl_axes import Axes import matplotlib.pyplot as plt from pylab import gca, gcf import numpy as np from matplotlib.transforms import Affine2D, Transform import mpl_toolkits.axisartist.floating_axes as floating_axes from matplotlib.projections import polar from mpl_toolkits.axisartist.grid_finder import FixedLocator, DictFormatter from types import MethodType import glob import pandas as pd from dateutil import tz from scipy.io import loadmat import copy from scipy.stats import skewnorm from scipy.integrate import trapz from scipy import signal import sys sys.path.append("sd_cartopy/") import rad_fov from fov import * #from PyIF import te_compute as te #from sklearn.feature_selection import mutual_info_regression as MIR #from SALib.sample import saltelli #from SALib.analyze import sobol #from SALib.analyze import rbd_fast import itertools from math import pi from matplotlib.legend_handler import HandlerPatch font = {'size' : 8} matplotlib.rc('font', **font) class HandlerCircle(HandlerPatch): def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent p = plt.Circle(xy=center, radius=orig_handle.radius) self.update_prop(p, orig_handle, legend) p.set_transform(trans) return [p] INT_F = 300 INT_R = 300 import utils def textHighlighted(xy, text, ax=None, color="k", fontsize=None, xytext=(0,0), zorder=None, text_alignment=(0,0), xycoords="data", textcoords="offset points", **kwargs): """ Plot highlighted annotation (with a white lining) Parameters ---------- xy : position of point to annotate text : str text to show ax : Optional[ ] color : Optional[char] text color; deafult is "k" fontsize : Optional [ ] text font size; default is None xytext : Optional[ ] text position; default is (0, 0) zorder : text zorder; default is None text_alignment : Optional[ ] xycoords : Optional[ ] xy coordinate[1]; default is "data" textcoords : Optional[ ] text coordinate[2]; default is "offset points" **kwargs : Notes ----- Belongs to class rbspFp. References ---------- [1] see `matplotlib.pyplot.annotate <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.annotate>`) [2] see `matplotlib.pyplot.annotate <http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.annotate>`) """ if ax is None: ax = gca() text_path = mp.text.TextPath((0, 0), text, size=fontsize, **kwargs) p1 = matplotlib.patches.PathPatch(text_path, ec="w", lw=4, fc="w", alpha=0.7, zorder=zorder, transform=mp.transforms.IdentityTransform()) p2 = matplotlib.patches.PathPatch(text_path, ec="none", fc=color, zorder=zorder, transform=mp.transforms.IdentityTransform()) offsetbox2 = matplotlib.offsetbox.AuxTransformBox(mp.transforms.IdentityTransform()) offsetbox2.add_artist(p1) offsetbox2.add_artist(p2) ab = mp.offsetbox.AnnotationBbox(offsetbox2, xy, xybox=xytext, xycoords=xycoords, boxcoords=textcoords, box_alignment=text_alignment, frameon=False) ab.set_zorder(zorder) ax.add_artist(ab) return def addColorbar(mappable, ax): """ Append colorbar to axes Parameters ---------- mappable : a mappable object ax : an axes object Returns ------- cbax : colorbar axes object Notes ----- This is mostly useful for axes created with :func:`curvedEarthAxes`. """ fig1 = ax.get_figure() divider = SubplotDivider(fig1, *ax.get_geometry(), aspect=True) # axes for colorbar cbax = Axes(fig1, divider.get_position()) h = [Size.AxesX(ax), # main axes Size.Fixed(0.05), # padding Size.Fixed(0.1)] # colorbar v = [Size.AxesY(ax)] _ = divider.set_horizontal(h) _ = divider.set_vertical(v) _ = ax.set_axes_locator(divider.new_locator(nx=0, ny=0)) _ = cbax.set_axes_locator(divider.new_locator(nx=2, ny=0)) _ = fig1.add_axes(cbax) _ = cbax.axis["left"].toggle(all=False) _ = cbax.axis["top"].toggle(all=False) _ = cbax.axis["bottom"].toggle(all=False) _ = cbax.axis["right"].toggle(ticklabels=True, label=True) _ = plt.colorbar(mappable, cax=cbax, shrink=0.1) return cbax def curvedEarthAxes(rect=111, fig=None, minground=0., maxground=2000, minalt=0, maxalt=500, Re=6371., nyticks=5, nxticks=4): """ Create curved axes in ground-range and altitude Parameters ---------- rect : Optional[int] subplot spcification fig : Optional[pylab.figure object] (default to gcf) minground : Optional[float] maxground : Optional[int] maximum ground range [km] minalt : Optional[int] lowest altitude limit [km] maxalt : Optional[int] highest altitude limit [km] Re : Optional[float] Earth radius in kilometers nyticks : Optional[int] Number of y axis tick marks; default is 5 nxticks : Optional[int] Number of x axis tick marks; deafult is 4 Returns ------- ax : matplotlib.axes object containing formatting aax : matplotlib.axes objec containing data """ ang = maxground / Re minang = minground / Re angran = ang - minang angle_ticks = [(0, "{:.0f}".format(minground))] while angle_ticks[-1][0] < angran: tang = angle_ticks[-1][0] + 1./nxticks*angran angle_ticks.append((tang, "{:.0f}".format((tang-minang)*Re))) grid_locator1 = FixedLocator([v for v, s in angle_ticks]) tick_formatter1 = DictFormatter(dict(angle_ticks)) altran = float(maxalt - minalt) alt_ticks = [(minalt+Re, "{:.0f}".format(minalt))] while alt_ticks[-1][0] < Re+maxalt: alt_ticks.append((altran / float(nyticks) + alt_ticks[-1][0], "{:.0f}".format(altran / float(nyticks) + alt_ticks[-1][0] - Re))) _ = alt_ticks.pop() grid_locator2 = FixedLocator([v for v, s in alt_ticks]) tick_formatter2 = DictFormatter(dict(alt_ticks)) tr_rotate = Affine2D().rotate(np.pi/2-ang/2) tr_shift = Affine2D().translate(0, Re) tr = polar.PolarTransform() + tr_rotate grid_helper = floating_axes.GridHelperCurveLinear(tr, extremes=(0, angran, Re+minalt, Re+maxalt), grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=tick_formatter2,) if not fig: fig = plt.figure(figsize=(5,3), dpi=240) ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper) # adjust axis print("adjust ax") ax1.set_ylabel(r"Height, $km$", fontdict={"size":2}) ax1.set_xlabel(r"Ground Range, $km$", fontdict={"size":2}) ax1.invert_xaxis() ax1.minground = minground ax1.maxground = maxground ax1.minalt = minalt ax1.maxalt = maxalt ax1.Re = Re fig.add_subplot(ax1, transform=tr) # create a parasite axes whose transData in RA, cz aux_ax = ax1.get_aux_axes(tr) # for aux_ax to have a clip path as in ax aux_ax.patch = ax1.patch # but this has a side effect that the patch is drawn twice, and possibly # over some other artists. So, we decrease the zorder a bit to prevent this. ax1.patch.zorder=0.9 return ax1, aux_ax def plot_edens(time, beam=None, maxground=2000, maxalt=500, nel_cmap="jet", nel_lim=[10, 12], title=False, fig=None, rect=111, ax=None, aax=None,plot_colorbar=True, nel_rasterize=False): """ Plot electron density profile Parameters ---------- time : datetime.datetime time of profile beam : Optional[ ] beam number maxground : Optional[int] maximum ground range [km] maxalt : Optional[int] highest altitude limit [km] nel_cmap : Optional[str] color map name for electron density index coloring nel_lim : Optional[list, int] electron density index plotting limits title : Optional[bool] Show default title fig : Optional[pylab.figure] object (default to gcf) rect : Optional[int] subplot spcification ax : Optional[ ] Existing main axes aax : Optional[ ] Existing auxialary axes plot_colorbar : Optional[bool] Plot a colorbar nel_rasterize : Optional[bool] Rasterize the electron density plot Returns ------- ax : matplotlib.axes object containing formatting aax : matplotlib.axes object containing data cbax : matplotlib.axes object containing colorbar """ return def get_polar(d, Re=6371.): """ Convert to polar coordinates """ th = d.grange / Re r = d.height + Re dop, sth, dth = d.dop, d.sth, d.dth return th, r, dop, sth, dth def plot_rays(dic, time, ti, beam, case, txt, maxground=2000, maxalt=500, step=1, showrefract=False, nr_cmap="jet_r", nr_lim=[0.0, .1], raycolor="0.3", title=True, zorder=2, alpha=1, fig=None, rect=111, ax=None, aax=None): """ Plot ray paths Parameters ---------- dic: str location of the data files time: datetime.datetime time of rays ti: int time index beam: beam number maxground : Optional[int] maximum ground range [km] maxalt : Optional[int] highest altitude limit [km] step : Optional[int] step between each plotted ray (in number of ray steps) showrefract : Optional[bool] show refractive index along ray paths (supersedes raycolor) nr_cmap : Optional[str] color map name for refractive index coloring nr_lim : Optional[list, float] refractive index plotting limits raycolor : Optional[float] color of ray paths title : Optional[bool] Show default title zorder : Optional[int] alpha : Optional[int] fig : Optional[pylab.figure] object (default to gcf) rect : Optional[int] subplot spcification ax : Optional[ ] Existing main axes aax : Optional[ ] Existing auxialary axes Returns ------- ax : matplotlib.axes object containing formatting aax : matplotlib.axes object containing data cbax : matplotlib.axes object containing colorbar """ if not ax and not aax: ax, aax = curvedEarthAxes(fig=fig, rect=rect, maxground=maxground, maxalt=maxalt) else: if hasattr(ax, "time"): time = ax.time if hasattr(ax, "beam"): beam = ax.beam files = glob.glob(dic + "ti({ti}).bm({bm}).elv(*).{case}.csv".format(ti=ti, bm=beam, case=case)) files.sort() for f in files: th, r, v, _, _ = get_polar(pd.read_csv(f)) if not showrefract: aax.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha) else: points = np.array([th, r]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lcol = LineCollection( segments, zorder=zorder, alpha=alpha) _ = lcol.set_cmap( nr_cmap ) _ = lcol.set_norm( plt.Normalize(*nr_lim) ) _ = lcol.set_array( v ) _ = aax.add_collection( lcol ) if title: stitle = "%s UT"%time.strftime("%Y-%m-%d %H:%M") ax.set_title( stitle ) ax.text(1.05, 0.5, txt, horizontalalignment="center", verticalalignment="center", transform=ax.transAxes, rotation=90) if showrefract: cbax = addColorbar(lcol, ax) _ = cbax.set_ylabel(r"$\Delta$ f") else: cbax = None ax.beam = beam fig = ax.get_figure() fig.savefig(dic + "rt.ti({ti}).bm({bm}).{case}.png".format(ti=ti, bm=beam, case=case), bbox_inches="tight") plt.close() return ax, aax, cbax def plot_exp_rays(dic, time, beam, cat="bgc", maxground=2000, maxalt=300, step=1, showrefract=False, nr_cmap="jet_r", nr_lim=[0.8, 1.], raycolor="0.3", title=False, zorder=2, alpha=1, fig=None, rect=111, ax=None, aax=None): """ Plot ray paths (previous method) """ if not ax and not aax: ax, aax = curvedEarthAxes(fig=fig, rect=rect, maxground=maxground, maxalt=maxalt) else: if hasattr(ax, "time"): time = ax.time if hasattr(ax, "beam"): beam = ax.beam files = glob.glob(dic + "exp.{cat}.bm({bm}).elv(*).csv".format(cat=cat, bm=beam)) files.sort() for f in files: th, r, v, _, _ = get_polar(pd.read_csv(f)) if not showrefract: aax.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha) else: points = np.array([th, r]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lcol = LineCollection( segments, zorder=zorder, alpha=alpha) _ = lcol.set_cmap( nr_cmap ) _ = lcol.set_norm( plt.Normalize(*nr_lim) ) _ = lcol.set_array( v ) _ = aax.add_collection( lcol ) if title: stitle = "" ax.set_title( stitle ) if showrefract: cbax = addColorbar(lcol, ax) _ = cbax.set_ylabel(r"$\Delta$ f") else: cbax = None ax.beam = beam fig = ax.get_figure() fig.savefig(dic + "rt.exp.{cat}.bm({bm}).png".format(cat=cat, bm=beam), bbox_inches="tight") plt.close() return ax, aax, cbax def plot_radstn(p,f,pz,fz,fname,lat,lon,t,zone="America/New_York"): """ Plot radar vertical dataset """ fig = plt.figure(figsize=(4,4), dpi=120) ax = fig.add_subplot(111) ax.set_ylabel("Alt. [km]") ax.set_xlabel(r"EDens [$cm^{-3}$]") ax.semilogx(p, pz, "r") ax.semilogx(f, fz, "r--") ax.set_ylim(50, 130) ax.set_xlim(1e2, 1e7) sza = utils.calculate_sza(t, lat, lon, alt=300) l = t.replace(tzinfo=tz.gettz("UTC")).astimezone(tz.gettz("America/New_York")) ax.set_title(r"UT-%s"%(t.strftime("%Y-%m-%d %H:%M"))) ax.text(1.05, 0.5, "Loc:(%.1f,%.1f), $\chi$-%.1f, LT-%s"%(lat, lon, sza, l.strftime("%H:%M")), horizontalalignment="center", verticalalignment="center", transform=ax.transAxes, rotation=90) fig.savefig(fname,bbox_inches="tight") plt.close() return def plot_velocity_ts(dn, rad, bmnum): """ Plot velocity TS data """ fig = plt.figure(figsize=(6,6), dpi=150) axs = [fig.add_subplot(311), fig.add_subplot(312), fig.add_subplot(313)] mkeys = ["vn", "vh", "vt"] fmt = matplotlib.dates.DateFormatter("%H:%M") fname = "data/sim/{dn}/{rad}/velocity.ts.csv".format(dn=dn.strftime("%Y.%m.%d.%H.%M"), rad=rad) sdat = pd.read_csv(fname, parse_dates=["dn"]) axs[0].set_title("%s UT, Radar - %s, Beam - %d"%(dn.strftime("%Y.%m.%d.%H.%M"), rad, bmnum)) cols = ["r", "b", "k"] labs = [r"$V_{d\eta}$", r"$V_{dh}$", r"$V_{t}$"] I = 0 fname = "data/sim/{dn}/{rad}/sd_data.csv.gz".format(dn=dn.strftime("%Y.%m.%d.%H.%M"), rad=rad) dat = utils.get_sd_data(fname, 15).dropna() dat = dat.groupby("time").mean().reset_index() for ax, mkey, col, lab in zip(axs, mkeys, cols, labs): ax.set_ylabel(r"Velocity, $ms^{-1}$") ax.set_xlabel("Time, UT") ax.xaxis.set_major_formatter(fmt) yerr = np.array([(mn, mx) for mn, mx in zip(sdat[mkey+"_min"], sdat[mkey+"_max"])]).T ax.errorbar(sdat.dn, sdat[mkey], yerr=yerr, mec=col, mfc=col, fmt="r^", ms=1.5, ls="None", ecolor=col, capsize=1, capthick=.4, elinewidth=0.4, alpha=0.5, label=lab) if I == 2: ax.plot(dat.time, dat.v, color="darkgreen", marker="o", alpha=0.3, ls="None", markersize=0.5, label=r"$V_{sd}^{los}$") ax.plot(dat.time, dat.v, color="darkred", marker="o", alpha=0.3, ls="None", markersize=0.8) ax.axhline(0, color="gray", ls="--", lw=0.6) ax.legend(loc=1) ax.set_ylim(10*int((np.min(sdat[mkey]+sdat[mkey+"_min"])/10)-1), 10*int((np.max(sdat[mkey]+sdat[mkey+"_max"])/10)+1)) ax.set_xlim(sdat.dn.tolist()[0], sdat.dn.tolist()[-1]) I += 1 fname = "data/sim/{dn}/{rad}/velocity.ts.png".format(dn=dn.strftime("%Y.%m.%d.%H.%M"), rad=rad) fig.savefig(fname,bbox_inches="tight") return def plot_radstn_base(b,p,f,ht,fname,lat,lon,t,zone="America/New_York"): """ Plot radar vertical dataset """ fig = plt.figure(figsize=(4,4), dpi=120) ax = fig.add_subplot(111) ax.set_ylabel("Alt. [km]") ax.set_xlabel(r"EDens [$cm^{-3}$]") ax.semilogx(b, ht, "k", label="Background") ax.semilogx(p, ht, "r", label=r"$UT_{-1}$") ax.semilogx(f, ht, "r--", label="UT") ax.legend(loc=4) ax.set_ylim(50, 130) ax.set_xlim(1e2, 1e7) sza = utils.calculate_sza(t, lat, lon, alt=300) l = t.replace(tzinfo=tz.gettz("UTC")).astimezone(tz.gettz("America/New_York")) ax.set_title(r"UT-%s"%(t.strftime("%Y-%m-%d %H:%M"))) ax.text(1.05, 0.5, "Loc:(%.1f,%.1f), $\chi$-%.1f, LT-%s"%(lat, lon, sza, l.strftime("%H:%M")), horizontalalignment="center", verticalalignment="center", transform=ax.transAxes, rotation=90) fig.savefig(fname,bbox_inches="tight") plt.close() return def plot_rays_base(dic, time, ti, beam, case, txt, maxground=2000, maxalt=500, step=1, showrefract=False, nr_cmap="Blues", nr_lim=[-0.5, 0.5], raycolor="0.3", title=True, zorder=2, alpha=1, fig=None, rect=111, ax=None, aax=None, freq=12.): """ Plot ray paths Parameters ---------- dic: str location of the data files time: datetime.datetime time of rays ti: int time index beam: beam number maxground : Optional[int] maximum ground range [km] maxalt : Optional[int] highest altitude limit [km] step : Optional[int] step between each plotted ray (in number of ray steps) showrefract : Optional[bool] show refractive index along ray paths (supersedes raycolor) nr_cmap : Optional[str] color map name for refractive index coloring nr_lim : Optional[list, float] refractive index plotting limits raycolor : Optional[float] color of ray paths title : Optional[bool] Show default title zorder : Optional[int] alpha : Optional[int] fig : Optional[pylab.figure] object (default to gcf) rect : Optional[int] subplot spcification ax : Optional[ ] Existing main axes aax : Optional[ ] Existing auxialary axes Returns ------- ax : matplotlib.axes object containing formatting aax : matplotlib.axes object containing data cbax : matplotlib.axes object containing colorbar """ if not ax and not aax: ax, aax = curvedEarthAxes(fig=fig, rect=rect, maxground=maxground, maxalt=maxalt) else: if hasattr(ax, "time"): time = ax.time if hasattr(ax, "beam"): beam = ax.beam files = glob.glob(dic + "ti({ti})_elv(*)_{case}.csv".format(ti="%02d"%ti, case=case)) files.sort() Re = 6371. for f in files: th, r, v, _, _ = get_polar(pd.read_csv(f)) v = (0.5 * v * 3e8 / (freq * 1e6)) if not showrefract: aax.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha) else: points = np.array([th, r]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lcol = LineCollection( segments, zorder=zorder, alpha=alpha) _ = lcol.set_cmap( nr_cmap ) _ = lcol.set_norm( plt.Normalize(*nr_lim) ) _ = lcol.set_array( utils.smooth(v, window_len=21) ) _ = aax.add_collection( lcol ) aax.plot(np.arange(0,2000)/Re, np.ones(2000)*60+Re, color="b", ls="--", lw=0.5) aax.plot(np.arange(0,2000)/Re, np.ones(2000)*95+Re, color="orange", ls="--", lw=0.5) aax.plot(np.arange(0,2000)/Re, np.ones(2000)*130+Re, color="r", ls="--", lw=0.5) if not showrefract and title: stitle = "%s UT"%time.strftime("%Y-%m-%d %H:%M") ax.set_title( stitle ) ax.text(1.05, 0.5, txt, horizontalalignment="center", verticalalignment="center", transform=ax.transAxes, rotation=90) if showrefract: cbax = addColorbar(lcol, ax) _ = cbax.set_ylabel(r"$\Delta$ V (m/s)") stitle = "%s UT"%time.strftime("%Y-%m-%d %H:%M")+ "\n" + "Radar: BKS, Beam: %02d"%beam + "\n" +\ "Frequency: %.1f MHz"%freq + "\n" ax.text(0.5, 0.8, stitle + txt + "(m/s)", horizontalalignment="center", verticalalignment="center", transform=ax.transAxes) else: cbax = None ax.beam = beam fig = ax.get_figure() #fig.savefig(dic + "rt.ti({ti}).{case}.png".format(ti="%02d"%ti, case=case), bbox_inches="tight") fig.savefig(dic + "rt.ti({ti}).{case}.png".format(ti="%02d"%ti, case=case)) plt.close() return ax, aax, cbax def plot_region_distribution(vd, ve, vf): from scipy import stats fig = plt.figure(figsize=(4,4), dpi=120) ax = fig.add_subplot(111) ax.hist(vd, bins=np.arange(0,1,.01), color="r", alpha=0.5, density=True, label=r"$\frac{v_D}{v_T}$", histtype="step") ax.hist(ve, bins=np.arange(0,1,.01), color="b", alpha=0.5, density=True, label=r"$\frac{v_E}{v_T}$", histtype="step") ax.hist(vf, bins=np.arange(0,1,.01), color="g", alpha=0.5, density=True, label=r"$\frac{v_F}{v_T}$", histtype="step") ax.set_xlim(0,1) ax.legend(loc=1) ax.set_ylabel(r"Density ($\frac{V_x}{V_T}$)") ax.set_xlabel(r"$\frac{V_x}{V_T}$") fig.savefig("data/hist_reg.png", bbox_inches="tight") return def plot_distribution(vn, vf): from scipy import stats fig = plt3figure(figsize=(4,4), dpi=120) ax = fig.add_subplot(111) ax.hist(vn, bins=np.arange(0,1,.01), color="r", alpha=0.5, density=True, label=r"$\frac{V_{d\eta}}{V_T}$", histtype="step") ax.hist(vf, bins=np.arange(0,1,.01), color="b", alpha=0.5, density=True, label=r"$\frac{V_{dh}}{V_T}$", histtype="step") ax.set_xlim(0,1) ax.legend(loc=1) ax.set_ylabel(r"Density $(\frac{V_x}{V_T})$") ax.set_xlabel(r"$\frac{V_x}{V_T}$") fig.savefig("data/hist.png", bbox_inches="tight") return def plot_htstogram(vd, ve, vf, vn, vh): from scipy.stats import beta fig = plt.figure(figsize=(6,3), dpi=150) ax = fig.add_subplot(121) #x = np.arange(0,1,0.001) #a, b, _, _ = beta.fit(vn,floc=0,fscale=1) ax.hist(vn, bins=np.arange(0,1,.01), color="r", alpha=0.5, density=True, label=r"$\frac{V_{d\eta}}{V_T}[\mu=%.2f]$"%np.mean(vn) , histtype="step") #ax.plot(x, beta.pdf(x, a, b), color="r", lw=0.8, label=r"$\frac{V_{d\eta}}{V_T}[\mu=%.2f]$"%(a/(a+b))) ax.axvline(np.mean(vn), ls="--", color="r", lw=0.6) #a, b, _, _ = beta.fit(vh,floc=0,fscale=1) #ax.plot(x, beta.pdf(x, a, b), color="b", lw=0.8, label=r"$\frac{V_{dh}}{V_T}[\mu=%.2f]$"%(a/(a+b))) ax.axvline(np.mean(vh), ls="--", color="b", lw=0.6) ax.hist(vh, bins=np.arange(0,1,.01), color="b", alpha=0.5, density=True, label=r"$\frac{V_{dh}}{V_T}[\mu=%.2f]$"%np.mean(vh), histtype="step") ax.text(0.1,0.9, "(a)", horizontalalignment="center", verticalalignment="center", transform=ax.transAxes) ax.set_xlim(0,1) ax.set_ylim(0,20) ax.legend(loc=1, prop={"size": 8}) ax.set_ylabel(r"Density $\left(\frac{V_x}{V_T}\right)$") ax.set_xlabel(r"$\frac{V_x}{V_T}$") ax = fig.add_subplot(122) #a, b, _, _ = beta.fit(vd,floc=0,fscale=1) #ax.plot(x, beta.pdf(x, a, b), color="r", lw=0.8, label=r"$\frac{V_D}{V_T}[\mu=%.2f]$"%(a/(a+b))) ax.axvline(np.mean(vd), ls="--", color="r", lw=0.6) ax.hist(vd, bins=np.arange(0,1,.01), color="r", alpha=0.5, density=True, label=r"$\frac{V_D}{V_T}[\mu=%.2f]$"%np.mean(vd), histtype="step") #a, b, _, _ = beta.fit(ve,floc=0,fscale=1) #ax.plot(x, beta.pdf(x, a, b), color="g", lw=0.8, label=r"$\frac{V_E}{V_T}[\mu=%.2f]$"%(a/(a+b))) ax.axvline(np.mean(ve), ls="--", color="g", lw=0.6) ax.hist(ve, bins=np.arange(0,1,.01), color="g", alpha=0.5, density=True, label=r"$\frac{V_E}{V_T}[\mu=%.2f]$"%np.mean(ve), histtype="step") #a, b, _, _ = beta.fit(vf,floc=0,fscale=1) #ax.plot(x, beta.pdf(x, a, b), color="b", lw=0.8, label=r"$\frac{V_F}{V_T}[\mu=%.2f]$"%(a/(a+b))) ax.axvline(np.mean(vf), ls="--", color="b", lw=0.6) ax.hist(vf, bins=np.arange(0,1,.01), color="b", alpha=0.5, density=True, label=r"$\frac{V_F}{V_T}[\mu=%.2f]$"%np.mean(vf), histtype="step") ax.set_ylim(0,50) #ax.hist(vd, bins=np.arange(0,1,.01), color="r", alpha=0.5, density=True, label=r"$\frac{v_D}{v_T}$", histtype="step") #ax.hist(ve, bins=np.arange(0,1,.01), color="b", alpha=0.5, density=True, label=r"$\frac{v_E}{v_T}$", histtype="step") #ax.hist(vf, bins=np.arange(0,1,.01), color="g", alpha=0.5, density=True, label=r"$\frac{v_F}{v_T}$", histtype="step") ax.text(0.1,0.9, "(b)", horizontalalignment="center", verticalalignment="center", transform=ax.transAxes) ax.set_xlim(0,1) ax.legend(loc=1, prop={"size": 8}) ax.set_xlabel(r"$\frac{V_x}{V_T}$") fig.savefig("data/hist.png", bbox_inches="tight") return class FanPlot(object): """ Plot Fan Dataset """ def __init__(self, nrange=75, nbeam=24, r0=180, dr=45, dtheta=3.24, theta0=None): """ Initialize the fanplot do a certain size. :param nrange: number of range gates :param nbeam: number of beams :param r0: initial beam distance - any distance unit as long as it"s consistent with dr :param dr: length of each radar - any distance unit as long as it"s consistent with r0 :param dtheta: degrees per beam gate, degrees (default 3.24 degrees) """ # Set member variables self.nrange = int(nrange) self.nbeam = int(nbeam) self.r0 = r0 self.dr = dr self.dtheta = dtheta # Initial angle (from X, polar coordinates) for beam 0 if theta0 == None: self.theta0 = (90 - dtheta * nbeam / 2) # By default, point fanplot towards 90 deg else: self.theta0 = theta0 return def add_axis(self, fig, subplot): ax = fig.add_subplot(subplot, polar=True) # Set up ticks and labels self.r_ticks = range(self.r0, self.r0 + (self.nrange+1) * self.dr, self.dr) self.theta_ticks = [self.theta0 + self.dtheta * b for b in range(self.nbeam+1)][::4] rlabels = [""] * len(self.r_ticks) for i in range(0, len(rlabels), 5): rlabels[i] = i plt.rgrids(self.r_ticks, rlabels) plt.thetagrids(self.theta_ticks, range(self.nbeam+1)[::4]) return ax def plot(self, ax, beams, gates, color="blue"): """ Add some data to the plot in a single color at positions given by "beams" and "gates". :param beams: a list/array of beams :param gates: a list/array of gates - same length as beams :param color: a Matplotlib color """ for i, (beam, gate) in enumerate(zip(beams, gates)): theta = (self.theta0 + beam * self.dtheta) * np.pi / 180 # radians r = (self.r0 + gate * self.dr) # km width = self.dtheta * np.pi / 180 # radians height = self.dr # km x1, x2 = theta, theta + width y1, y2 = r, r + height x = x1, x2, x2, x1 y = y1, y1, y2, y2 ax.fill(x, y, color=color) self._scale_plot(ax) return def _add_colorbar(self, fig, ax, bounds, colormap, label=""): """ Add a colorbar to the right of an axis. Similar to the function in RangeTimePlot, but positioned differently fanplots. :param fig: :param ax: :param bounds: :param colormap: :param label: :return: """ import matplotlib as mpl pos = ax.get_position() cpos = [pos.x1 + 0.025, pos.y0 + 0.25*pos.height, 0.01, pos.height * 0.5] # this list defines (left, bottom, width, height) cax = fig.add_axes(cpos) norm = mpl.colors.BoundaryNorm(bounds[::2], colormap.N) cb2 = mpl.colorbar.ColorbarBase(cax, cmap=colormap, norm=norm, ticks=bounds[::2], spacing="uniform", orientation="vertical") cb2.set_label(label) # Remove the outer bounds in tick labels ticks = [str(i) for i in bounds[::2]] ticks[0], ticks[-1] = "", "" cb2.ax.set_yticklabels(ticks) return def text(self, text, beam, gate, fontsize=8): theta = (self.theta0 + beam * self.dtheta + 0.8 * self.dtheta) * np.pi / 180 r = (self.r0 + gate * self.dr) plt.text(theta, r, text, fontsize=fontsize) return def save(self, filepath): plt.tight_layout() plt.savefig(filepath) plt.close() return def _scale_plot(self, ax): # Scale min-max ax.set_thetamin(self.theta_ticks[0]) ax.set_thetamax(self.theta_ticks[-1]) ax.set_rmin(0) ax.set_rmax(self.r_ticks[-1]) return def _monotonically_increasing(self, vec): if len(vec) < 2: return True return all(x <= y for x, y in zip(vec[:-1], vec[1:])) def plot_geo_fov(self, rad, data_dict, scans, name, start, data, skip=1, vel_max=100, vel_step=10, save=True, base_filepath=""): import pydarn import cartopy hdw = pydarn.read_hdw_file(rad) rf = rad_fov.CalcFov(hdw=hdw, ngates=self.nrange, nbeams=self.nbeam) lons, lats = rf.lonFull, rf.latFull vel_ranges = list(range(-vel_max, vel_max + 1, vel_step)) vel_ranges.insert(0, -9999) vel_ranges.append(9999) vel_cmap = plt.get_cmap("Spectral") # use "viridis" colormap to make this redgreen colorblind proof vel_colors = vel_cmap(np.linspace(0, 1, len(vel_ranges))) for i in scans: scan_time = start + dt.timedelta(minutes=i) fig = plt.figure(figsize=(10, 5), dpi=150) dat_ax = fig.add_subplot(121, projection="fovcarto",coords="geo", rad=rad, plot_date=scan_time) dat_ax.coastlines() dat_ax.overlay_radar() dat_ax.overlay_fov(beamLimits=[7,8], lineColor="darkred", lineWidth=0.5, ls="--") dat_ax.overlay_fov() dat_ax.grid_on() dat_ax.enum(bounds=[(int(np.min(lons)/10)-1)*10, (int(np.max(lons)/10)+1)*10, 25, 70]) vel_ax = fig.add_subplot(122, projection="fovcarto",coords="geo", rad=rad, plot_date=scan_time) vel_ax.coastlines() vel_ax.overlay_radar() vel_ax.overlay_fov(beamLimits=[7,8], lineColor="darkred", lineWidth=0.5, ls="--") vel_ax.overlay_fov() vel_ax.grid_on() vel_ax.enum() Vx = np.zeros((self.nbeam, self.nrange))*np.nan idbs, idgs = data_dict["beam"][i], data_dict["gate"][i] vels = data_dict["vel"][i] for idb, idg, vel in zip(idbs, idgs, vels): Vx[idb, np.round(idg).astype(int)] = vel Vx = np.ma.masked_invalid(Vx) dat_ax.pcolormesh(lons, lats, Vx, transform=cartopy.crs.PlateCarree(), cmap=plt.get_cmap("Spectral"), vmax=vel_max, vmin=-vel_max) dat_ax.text(1.02, 0.15, "Simulation", horizontalalignment="center", verticalalignment="center", transform=dat_ax.transAxes, fontdict={"color":"red"}, rotation=90) Vmod = np.copy(Vx) Vx = np.zeros((self.nbeam, self.nrange))*np.nan idbs, idgs = data["beam"][i], data["gate"][i] vels = data["vel"][i] for idb, idg, vel in zip(idbs, idgs, vels): idb = np.array(idb)[np.array(idg) < self.nrange] vel = np.array(vel)[np.array(idg) < self.nrange] idg = np.array(idg)[np.array(idg) < self.nrange] if len(vel) > 0: Vx[idb, np.round(idg).astype(int)] = vel Vx = np.ma.masked_invalid(Vx) vel_ax.pcolormesh(lons, lats, Vx, transform=cartopy.crs.PlateCarree(), cmap=plt.get_cmap("Spectral"), vmax=vel_max, vmin=-vel_max) vel_ax.text(1.02, 0.15, "Observations", horizontalalignment="center", verticalalignment="center", transform=vel_ax.transAxes, fontdict={"color":"red"}, rotation=90) vel_ax.enum(bounds=[(int(np.min(lons)/10)-1)*10, (int(np.max(lons)/10)+1)*10, 25, 70]) vel_ax = fig.add_subplot(122, projection="fovcarto",coords="geo", rad=rad, plot_date=scan_time) rmse = np.sqrt(np.ma.sum((Vx-Vmod)**2)/np.ma.count(Vmod)) perror = np.ma.sum(np.abs((Vx-Vmod)/Vmod)/np.ma.count(Vmod)) * 100. print(rmse, perror) if rmse>0:vel_ax.text(0.3, 0.2, r"RMdSE: %.2f $ms^{-1}$"%rmse + "\n" + r"$\delta: %.2f$"%perror + "%", horizontalalignment="center", verticalalignment="center", transform=vel_ax.transAxes, fontdict={"color":"red"}) self._add_colorbar(fig, vel_ax, vel_ranges, vel_cmap, label="Velocity [m/s]") if save: filepath = "%s/geo_%s.png" % (base_filepath, "%02d"%i) fig.savefig(filepath) fig.clf() plt.close() return def plot_fov(self, data_dict, scans, name, start, data, skip=1, vel_max=100, vel_step=10, save=True, base_filepath=""): vel_ranges = list(range(-vel_max, vel_max + 1, vel_step)) vel_ranges.insert(0, -9999) vel_ranges.append(9999) vel_cmap = plt.cm.jet_r # use "viridis" colormap to make this redgreen colorblind proof vel_colors = vel_cmap(np.linspace(0, 1, len(vel_ranges))) for i in scans: fig = plt.figure(figsize=(8,4), dpi=120) vel_ax = self.add_axis(fig, 122) dat_ax = self.add_axis(fig, 121) vels = data_dict["vel"][i] beams = data_dict["beam"][i] gates = data_dict["gate"][i] print("----------", i, skip, int(i/skip)) d_vels = data["vel"][int(i/skip)] d_beams = data["beam"][int(i/skip)] d_gates = data["gate"][int(i/skip)] for k, (beam, gate, vel) in enumerate(zip(beams, gates, vels)): beam, gate, vel = np.array([beam]), np.array([gate]), np.array([vel]) for s in range(len(vel_ranges) - 1): step_mask = (vel >= vel_ranges[s]) & (vel <= vel_ranges[s + 1]) beam_s = beam[step_mask] gate_s = gate[step_mask] self.plot(vel_ax, beam_s, gate_s, vel_colors[s]) # Add data for k, (vel, beam, gate) in enumerate(zip(d_vels, d_beams, d_gates)): beam, gate, vel = np.array([beam]), np.array([gate]), np.array([vel]) for s in range(len(vel_ranges) - 1): step_mask = (vel >= vel_ranges[s]) & (vel <= vel_ranges[s + 1]) beam_s = beam[step_mask] gate_s = gate[step_mask] self.plot(dat_ax, beam_s, gate_s, vel_colors[s]) self._add_colorbar(fig, vel_ax, vel_ranges, vel_cmap, label="Velocity [m/s]") scan_time = start + dt.timedelta(minutes=i) plt.suptitle("%s \n Scan time %s UT \n Velocity" % (name, scan_time)) if save: filepath = "%s_%s.png" % (base_filepath, "%02d"%i) self.save(filepath) fig.clf() plt.close() return def plot_velocity_ts_beam(dn, rad, bmnum, model, start, end): """ Plot velocity TS data """ fig = plt.figure(figsize=(5,6), dpi=150) axs = [fig.add_subplot(311), fig.add_subplot(312), fig.add_subplot(313)] mkeys = ["vd", "vf", "vt"] fmt = matplotlib.dates.DateFormatter("%H:%M") dic = "data/op/{dn}/{model}/{rad}/bm.{bm}/".format(dn=dn.strftime("%Y.%m.%d.%H.%M"), rad=rad, model=model, bm="%02d"%bmnum) fstr = glob.glob(dic + "/velocity_ti*mat") fstr.sort() #axs[0].set_title("%s UT, Radar - %s, Beam - %d, Model - %s"%(dn.strftime("%Y.%m.%d.%H.%M"), rad, bmnum, model)) #axs[0].set_title("%s UT, Radar - %s, Beam - %d"%(dn.strftime("%Y.%m.%d.%H.%M"), rad, bmnum)) axs[0].text(0.98, 1.05, r"Date: %s UT"%dn.strftime("%Y-%m-%d %H:%M"), horizontalalignment="right", verticalalignment="center", transform=axs[0].transAxes) axs[0].text(0.02, 1.05, "Rad: %s, Beam: %02d"%(rad, bmnum), horizontalalignment="left", verticalalignment="center", transform=axs[0].transAxes) cols = ["r", "b", "k"] labs = [r"$V_{d\eta}$", r"$V_{dh}$", r"$V_{T}$"] fname = "data/op/{dn}/{model}/sd_{rad}_data.csv.gz".format(dn=dn.strftime("%Y.%m.%d.%H.%M"), rad=rad, model=model) dat = utils.get_sd_data(fname, bmnum).dropna() mean, std = dat.groupby("time").mean().reset_index(), dat.groupby("time").std().reset_index() I = 0 for ax, mkey, col, lab in zip(axs, mkeys, cols, labs): ax.set_ylabel(r"Velocity, $ms^{-1}$") ax.set_xlabel("Time, UT") ax.xaxis.set_major_formatter(fmt) v, vmax, vmin, vstd, time = [], [], [], [], [] for i, f in enumerate(fstr): sdat = loadmat(f) if mkey == "vt": v.append(np.median(sdat["vd"]+sdat["vf"])) vmax.append((sdat["vd"]+sdat["vf"]).max()) vmin.append((sdat["vd"]+sdat["vf"]).min()) vstd.append(1.96*np.std(sdat["vd"]+sdat["vf"])) else: v.append(np.median(sdat[mkey])) vmax.append(sdat[mkey].max()) vmin.append(sdat[mkey].min()) vstd.append(1.96*np.std(sdat[mkey])) time.append(start + dt.timedelta(minutes=i)) yerr = np.array([(mn, mx) for mn, mx in zip(vmin, vmax)]).T ax.errorbar(time, v, yerr=vstd, mec=col, mfc=col, fmt="r^", ms=1.5, ls="None", ecolor=col, capsize=1, capthick=.4, elinewidth=0.4, alpha=0.5, label=lab) if I == 2: ax.errorbar(mean.time, mean.v, yerr=std.v, mec="r", mfc="r", fmt="o", ms=1.5, ls="None", ecolor="r", capsize=1, capthick=.4, elinewidth=0.4,alpha=0.5, label=r"$V_{sd}^{los}$") if len(mean.v) > 50: from scipy import signal vmx = signal.resample(mean.v, len(v)) rmse = np.sqrt(np.median((vmx - np.array(v))**2)) perror = np.mean(np.abs((vmx - np.array(v))/np.array(v))) ax.text(0.2, 0.85, r"RMdSE: %.2f $ms^{-1}$"%rmse + "\n" + r"$\delta: %.2f$"%perror+"%", ha="center", va="center", transform=ax.transAxes, fontdict={"color":"red", "size":8}) print(rmse, perror) ax.axhline(0, color="gray", ls="--", lw=0.6) ax.legend(loc=1) ax.set_ylim(-100, 200) ax.set_xlim(start, end) I += 1 fname = "data/op/{dn}/{model}/{rad}/bm{bm}.png".format(dn=dn.strftime("%Y.%m.%d.%H.%M"), rad=rad, model=model, bm="%02d"%bmnum) fig.autofmt_xdate() fig.savefig(fname,bbox_inches="tight") return class SensitivityAnalysis(object): """ Sensitivity Analysis """ def __init__(self, problem, ds): """ Initialize parameters """ self.problem = problem self.ds = ds return def _hist_(self): """ Histogram of outputs """ fig, ax = plt.subplots(figsize=(9,3), nrows=1, ncols=3, sharey=True) labels = [r"$V_{d\eta}$ [m/s]", r"$V_{dh}$ [m/s]", r"$V_{t}$ [m/s]"] params = ["vd_mean", "vf_mean", "vt_mean"] for i, lab, pm in zip(range(3), labels, params): ax[i].hist(self.ds.variables[pm][:].ravel(), 20) ax[i].set_xlabel(lab) ax[0].set_ylabel("Counts") fig.subplots_adjust(wspace=0.1) fig.savefig("data/sim/histogram.png", bbox_inches="tight") return def _regression_(self): """ Regression Analysis """ import scipy import seaborn as sns ylabels = [r"$V_{d\eta}$ [m/s]", r"$V_{dh}$ [m/s]", r"$V_{t}$ [m/s]"] xlabels = [r"$Ratio_{D}$", r"$Ratio_{E}$", r"Ratio_{F}"] yparam = ["vd_mean", "vf_mean", "vt_mean"] xparam = ["d_ratio", "e_ratio", "f_ratio"] print(self.ds.variables["parameters"][:].shape) for i, ylab, yp in zip(range(3), ylabels, yparam): fig, ax = plt.subplots(1, 3, sharey=True) y = self.ds.variables[yp][:].ravel() for j, xlab, xp, a in zip(range(3), xlabels, xparam, ax): x = self.ds.variables["parameters"][:][:,j] sns.regplot(x, y, ax=a, ci=None, color="k",scatter_kws={"alpha":0.2, "s":4, "color":"gray"}) pearson = scipy.stats.pearsonr(x, y) a.annotate("r: {:6.3f}".format(pearson[0]), xy=(0.15, 0.85), xycoords="axes fraction",fontsize=13) a.set_xlabel(xlab) if j==0: a.set_ylabel(ylab) fig.savefig("data/sim/reg_{pm}.png".format(pm=yp), bbox_inches="tight") plt.close() return def _normalize_(self, x, xmin, xmax): return (x-xmin)/(xmax-xmin) def _plot_circles_(self, ax, locs, names, max_s, stats, smax, smin, fc, ec, lw, zorder): s = np.asarray([stats[name] for name in names]) s = 0.01 + max_s * np.sqrt(self._normalize_(s, smin, smax)) fill = True for loc, name, si in zip(locs, names, s): if fc=="w": fill=False else: ec="none" x = np.cos(loc) y = np.sin(loc) circle = plt.Circle((x,y), radius=si, ec=ec, fc=fc, transform=ax.transData._b, zorder=zorder, lw=lw, fill=True) ax.add_artist(circle) return def _filter_(self, sobol_indices, names, locs, criterion, threshold): if criterion in ["ST", "S1", "S2"]: data = sobol_indices[criterion] data = np.abs(data) data = data.flatten() # flatten in case of S2 # TODO:: remove nans filtered = ([(name, locs[i]) for i, name in enumerate(names) if data[i]>threshold]) filtered_names, filtered_locs = zip(*filtered) elif criterion in ["ST_conf", "S1_conf", "S2_conf"]: raise NotImplementedError else: raise ValueError("unknown value for criterion") return filtered_names, filtered_locs def _legend_(self, ax): some_identifiers = [plt.Circle((0,0), radius=5, color="k", fill=False, lw=1), plt.Circle((0,0), radius=5, color="k", fill=True), plt.Line2D([0,0.5], [0,0.5], lw=8, color="darkgray")] ax.legend(some_identifiers, ["ST", "S1", "S2"], loc=(1,0.75), borderaxespad=0.1, mode="expand", handler_map={plt.Circle: HandlerCircle()}) return def _plot_sobol_indices_(self, sobol_indices, criterion="ST", threshold=0.01): max_linewidth_s2 = 15#25*1.8 max_s_radius = 0.3 sobol_stats = {key:sobol_indices[key] for key in ["ST", "S1"]} sobol_stats = pd.DataFrame(sobol_stats, index=self.problem["names"]) smax = sobol_stats.max().max() smin = sobol_stats.min().min() s2 = pd.DataFrame(sobol_indices["S2"], index=self.problem["names"], columns=self.problem["names"]) s2[s2<0.0]=0. #Set negative values to 0 (artifact from small sample sizes) s2max = s2.max().max() s2min = s2.min().min() names = self.problem["names"] n = len(names) ticklocs = np.linspace(0, 2*pi, n+1) locs = ticklocs[0:-1] filtered_names, filtered_locs = self._filter_(sobol_indices, names, locs, criterion, threshold) # setup figure xnames = copy.copy(names) xnames.extend(["D-Ratio"]) fig = plt.figure() ax = fig.add_subplot(111, polar=True) ax.grid(False) ax.spines["polar"].set_visible(False) ax.set_xticks(ticklocs) ax.set_xticklabels(xnames) ax.set_yticklabels([]) ax.set_ylim(top=1.4) self._legend_(ax) # plot ST self._plot_circles_(ax, filtered_locs, filtered_names, max_s_radius, sobol_stats["ST"], smax, smin, "w", "k", 1, 9) # plot S1 self._plot_circles_(ax, filtered_locs, filtered_names, max_s_radius, sobol_stats["S1"], smax, smin, "k", "k", 1, 10) # plot S2 for name1, name2 in itertools.combinations(zip(filtered_names, filtered_locs), 2): name1, loc1 = name1 name2, loc2 = name2 weight = s2.loc[name1, name2] lw = 0.5+max_linewidth_s2*self._normalize_(weight, s2min, s2max) ax.plot([loc1, loc2], [1,1], c="darkgray", lw=lw, zorder=1) return fig def analyze(self, regs=False): """ Analyze and plots sensitivity test results """ self._hist_() if regs: print("None")#self._regression_() else: labels = [r"$V_{d\eta}$ [m/s]", r"$V_{dh}$ [m/s]", r"$V_{t}$ [m/s]"] params = ["vd_mean", "vf_mean", "vt_mean"] for i, lab, pm in zip(range(3), labels, params): Si = sobol.analyze(self.problem, self.ds.variables[pm][:].ravel(), calc_second_order=True, print_to_console=False) Si_filter = {k:Si[k] for k in ["ST","ST_conf","S1","S1_conf"]} Si_df = pd.DataFrame(Si_filter, index=self.problem["names"]) fig, ax = plt.subplots(1) indices = Si_df[["S1","ST"]] err = Si_df[["S1_conf","ST_conf"]] indices.plot.bar(yerr=err.values.T,ax=ax) fig.set_size_inches(4,4) fig.savefig("data/sim/sens_{pm}.png".format(pm=pm), bbox_inches="tight") plt.close() fig = self._plot_sobol_indices_(Si, criterion="ST", threshold=0.005) fig.set_size_inches(4,4) fig.savefig("data/sim/intv_{pm}.png".format(pm=pm), bbox_inches="tight") plt.close() return class ModelSensitivity(object): """ Sensitivity Analysis """ def __init__(self, ds): """ Initialize parameters """ self.problem = { "num_vars": 3, "names": ["D-Ratio", "E-Ratio", "F-Ratio"], "bounds": [[np.min(ds.variables["d_ratio"][:]), np.max(ds.variables["d_ratio"][:])], [np.min(ds.variables["e_ratio"][:]), np.max(ds.variables["e_ratio"][:])], [np.min(ds.variables["f_ratio"][:]), np.min(ds.variables["f_ratio"][:])]] } self.ds = ds print(ds.variables.keys()) return def _hist_(self): """ Histogram of outputs """ fig, ax = plt.subplots(figsize=(9,9), nrows=3, ncols=3, sharey=True, sharex=False) labels = [[r"$V_{d\eta}$ [m/s]", r"$V_{dh}$ [m/s]", r"$V_{t}$ [m/s]"], [r"$V_{d\eta}^{max}$ [m/s]", r"$V_{dh}^{max}$ [m/s]", r"$V_{t}^{max}$ [m/s]"], [r"$V_{d\eta}^{min}$ [m/s]", r"$V_{dh}^{min}$ [m/s]", r"$V_{t}^{min}$ [m/s]"]] params = [["vn", "vh", "vt"], ["vn_max", "vh_max", "vt_max"], ["vn_min", "vh_min", "vt_min"]] bins = range(-10,110,4) nx = np.arange(-20,160) for i, labs, pms in zip(range(3), labels, params): for j, lab, pm in zip(range(3), labs, pms): u,loc,scale = skewnorm.fit(3*self.ds.variables[pm][:].ravel(), floc=np.mean(3*self.ds.variables[pm][:].ravel()), fscale=np.std(3*self.ds.variables[pm][:].ravel())) ax[i,j].hist(3*self.ds.variables[pm][:].ravel(), bins=bins) am = ax[i,j].twinx() am.set_yticklabels([]) am.plot(nx, skewnorm.pdf(nx, a=u, loc=loc, scale=scale), "r", lw=1.5) ax[i,j].set_xlabel(lab) ax[i,j].set_xlim(-20, 160) ax[i,0].set_ylabel("Counts") fig.subplots_adjust(wspace=0.1, hspace=0.3) fig.savefig("data/sim/histogram.png", bbox_inches="tight") return def _regression_(self): """ Regression Analysis """ import scipy import seaborn as sns ylabels = [r"$V_{d\eta}$ [m/s]", r"$V_{dh}$ [m/s]", r"$V_{t}$ [m/s]"] xlabels = [r"$Ratio_{D}$", r"$Ratio_{E}$", r"$Ratio_{F}$", r"$Rate_{D}$", r"$Rate_{E}$", r"$Rate_{F}$", r"$Frequency$", "SZA"] xlabels = [r"$R_{D}$", r"$R_{E}$", r"$R_{F}$", r"$R^r_{D}$", r"$R^r_{E}$", r"$R^r_{F}$", r"$Frequency$", "SZA"] yparam = ["vn", "vh", "vt"] xparam = ["d_ratio", "e_ratio", "f_ratio", "d_rate", "e_rate", "f_rate", "frequency", "sza"] token = ["(a)", "(b)", "(c)", "(d)", "(e)", "(f)", "(g)", "(h)"] Xx = np.array([self.ds.variables["d_ratio"][:], self.ds.variables["e_ratio"][:], self.ds.variables["f_ratio"][:], self.ds.variables["d_rate"][:], self.ds.variables["e_rate"][:], self.ds.variables["f_rate"][:], self.ds.variables["frequency"][:]/1000, self.ds.variables["sza"][:]]).T for i, ylab, yp in zip(range(3), ylabels, yparam): fig, ax = plt.subplots(2, 4, sharey=True, figsize=(10,5)) y = 3*self.ds.variables[yp][:].ravel() minfo = MIR(Xx,y) for j, xlab, xp in zip(range(8), xlabels, xparam): a = ax[np.mod(j,2), int(j/2)] x = Xx[:,j]#self.ds.variables["parameters"][:][:,j] #print(te.te_compute(x, np.array(y), k=1, embedding=1, safetyCheck=False, GPU=False)) sns.regplot(x, y, ax=a, ci=95, color="k",scatter_kws={"alpha":0.2, "s":1.5, "color":"red"}) pearson = scipy.stats.pearsonr(x, y) a.annotate("r: {:1.2f}, MI: {:1.2f}".format(pearson[0], minfo[j]), xy=(0.15, 0.85), xycoords="axes fraction",fontsize=10) a.set_xlabel(xlab) a.text(0.9, 0.9, token[j], horizontalalignment="center", verticalalignment="center", transform=a.transAxes) if j==0: a.set_ylabel(ylab) fig.subplots_adjust(wspace=0.1, hspace=0.5) fig.savefig("data/sim/reg_{pm}.png".format(pm=yp), bbox_inches="tight") plt.close() return def _normalize_(self, x, xmin, xmax): return (x-xmin)/(xmax-xmin) def _plot_circles_(self, ax, locs, names, max_s, stats, smax, smin, fc, ec, lw, zorder): s = np.asarray([stats[name] for name in names]) s = 0.01 + max_s * np.sqrt(self._normalize_(s, smin, smax)) fill = True for loc, name, si in zip(locs, names, s): if fc=="w": fill=False else: ec="none" x = np.cos(loc) y = np.sin(loc) circle = plt.Circle((x,y), radius=si, ec=ec, fc=fc, transform=ax.transData._b, zorder=zorder, lw=lw, fill=True) ax.add_artist(circle) return def _filter_(self, sobol_indices, names, locs, criterion, threshold): if criterion in ["ST", "S1", "S2"]: data = sobol_indices[criterion] data = np.abs(data) data = data.flatten() # flatten in case of S2 # TODO:: remove nans filtered = ([(name, locs[i]) for i, name in enumerate(names) if data[i]>threshold]) filtered_names, filtered_locs = zip(*filtered) elif criterion in ["ST_conf", "S1_conf", "S2_conf"]: raise NotImplementedError else: raise ValueError("unknown value for criterion") return filtered_names, filtered_locs def _legend_(self, ax): some_identifiers = [plt.Circle((0,0), radius=5, color="k", fill=False, lw=1), plt.Circle((0,0), radius=5, color="k", fill=True), plt.Line2D([0,0.5], [0,0.5], lw=8, color="darkgray")] ax.legend(some_identifiers, ["ST", "S1", "S2"], loc=(1,0.75), borderaxespad=0.1, mode="expand", handler_map={plt.Circle: HandlerCircle()}) return def _plot_sobol_indices_(self, sobol_indices, criterion="ST", threshold=0.01): max_linewidth_s2 = 15#25*1.8 max_s_radius = 0.3 sobol_stats = {key:sobol_indices[key] for key in ["ST", "S1"]} sobol_stats = pd.DataFrame(sobol_stats, index=self.problem["names"]) smax = sobol_stats.max().max() smin = sobol_stats.min().min() s2 = pd.DataFrame(sobol_indices["S2"], index=self.problem["names"], columns=self.problem["names"]) s2[s2<0.0]=0. #Set negative values to 0 (artifact from small sample sizes) s2max = s2.max().max() s2min = s2.min().min() names = self.problem["names"] n = len(names) ticklocs = np.linspace(0, 2*pi, n+1) locs = ticklocs[0:-1] filtered_names, filtered_locs = self._filter_(sobol_indices, names, locs, criterion, threshold) # setup figure xnames = copy.copy(names) xnames.extend(["D-Ratio"]) fig = plt.figure() ax = fig.add_subplot(111, polar=True) ax.grid(False) ax.spines["polar"].set_visible(False) ax.set_xticks(ticklocs) ax.set_xticklabels(xnames) ax.set_yticklabels([]) ax.set_ylim(top=1.4) self._legend_(ax) # plot ST self._plot_circles_(ax, filtered_locs, filtered_names, max_s_radius, sobol_stats["ST"], smax, smin, "w", "k", 1, 9) # plot S1 self._plot_circles_(ax, filtered_locs, filtered_names, max_s_radius, sobol_stats["S1"], smax, smin, "k", "k", 1, 10) # plot S2 for name1, name2 in itertools.combinations(zip(filtered_names, filtered_locs), 2): name1, loc1 = name1 name2, loc2 = name2 weight = s2.loc[name1, name2] lw = 0.5+max_linewidth_s2*self._normalize_(weight, s2min, s2max) ax.plot([loc1, loc2], [1,1], c="darkgray", lw=lw, zorder=1) return fig def analyze(self, regs=True): """ Analyze and plots sensitivity test results """ self._hist_() if not regs: print("None") self._regression_() else: print(regs) labels = [r"$V_{d\eta}$ [m/s]", r"$V_{dh}$ [m/s]", r"$V_{t}$ [m/s]"] params = ["vn", "vh", "vt"] for i, lab, pm in zip(range(3), labels, params): v = self.ds.variables[pm][:].ravel() x = np.array([self.ds.variables["d_rate"][:], self.ds.variables["e_rate"][:], self.ds.variables["f_rate"][:]]).T print(v.shape, x.shape) #Si = rbd_fast.analyze(self.problem, x, v, M=10, print_to_console=False) #print(Si) Si = sobol.analyze(self.problem, self.ds.variables[pm][:].ravel(), calc_second_order=True, print_to_console=False) #print(Si) Si_filter = {k:Si[k] for k in ["ST","ST_conf","S1","S1_conf"]} Si_df = pd.DataFrame(Si_filter, index=self.problem["names"]) fig, ax = plt.subplots(1) indices = Si_df[["S1","ST"]] err = Si_df[["S1_conf","ST_conf"]] indices.plot.bar(yerr=err.values.T,ax=ax) fig.set_size_inches(4,4) fig.savefig("data/sim/sens_{pm}.png".format(pm=pm), bbox_inches="tight") plt.close() #fig = self._plot_sobol_indices_(Si, criterion="ST", threshold=0.005) #fig.set_size_inches(4,4) #fig.savefig("data/sim/intv_{pm}.png".format(pm=pm), bbox_inches="tight") #plt.close() return def plot_edens_versus_height(eDensPC, eDensAC, ylim=[50,350]): fig, axes = plt.subplots(figsize=(15,6), nrows=2, ncols=5, sharey=True, sharex=False) from scipy import stats for i in range(5): x, y = np.array(eDensPC[i+16]), np.array(eDensAC[i+16]) xmean, ymean = np.quantile(x, q=.56, axis=0), np.quantile(y, q=.56, axis=0) #np.median(x, axis=0), np.median(y, axis=0) xstd, ystd = 0.3*stats.median_absolute_deviation(x, axis=0), 0.3*stats.median_absolute_deviation(y, axis=0) xl, xu = utils.smooth(np.quantile(x, q=.5, axis=0), window_len=51),\ utils.smooth(np.quantile(x, q=.62, axis=0), window_len=51) yl, yu = utils.smooth(np.quantile(y, q=.5, axis=0), window_len=51),\ utils.smooth(np.quantile(y, q=.62, axis=0), window_len=51) xmean, ymean = utils.smooth(xmean, window_len=51), utils.smooth(ymean, window_len=51) ax = axes[0, i] ax.semilogx(xmean, np.arange(50,350,1).ravel(), "ro", lw=0.8, markersize=1) ax.fill_betweenx(np.arange(50,350,1).ravel(), x1=xl, x2=xu, alpha=0.3, color="r") ax.set_xlim(.01, 10) if i==0: ax.set_ylabel("Height, km") ax.set_xlabel("Percentage Change") ax = axes[1, i] ax.semilogx(ymean, np.arange(50,350,1).ravel(), "ro", lw=0.8, markersize=1) ax.fill_betweenx(np.arange(50,350,1).ravel(), x1=yl, x2=yu, alpha=0.3, color="r") ax.set_xlim(.1, 10000) if i==0: ax.set_ylabel("Height, km") ax.set_xlabel("Absolute Change") fig.subplots_adjust(hspace=0.3) fig.savefig("data/sens.png", bbox_inches="tight") return def plot_ssi_versus_bins(irr, wavelength, ylim=[50,350]): fig, ax = plt.subplots(figsize=(4,4), nrows=1, ncols=1, sharey=True, sharex=False) xmean = np.mean(irr, axis=0)#np.quantile(irr, q=.56, axis=0) std = np.std(irr, axis=0) print(xmean.shape) ax.loglog(wavelength, xmean, "ro", lw=0.8, markersize=1) ax.errorbar(wavelength, xmean, yerr=std, capthick=1, elinewidth=0.8, capsize=1, ecolor="r", marker="o", ls="None", ms=1, mfc="k", mec="k") ax.set_ylim(1e5,1e12) ax.set_xlabel(r"$\Lambda$ (A)") ax.set_ylabel(r"$I_{o}$ ($Wm^{-2}$)") fig.savefig("data/sens.b.png", bbox_inches="tight") return def plot_ray_edens(ev=dt.datetime(2015,5,5,21,51), rad="bks", time=18, maxground=1500, maxalt=300, step=1, showrefract=True, nr_cmap="jet_r", nr_lim=[-0.5, 0.5], raycolor="0.3", title=True, zorder=2, alpha=1, fig=None, rect=111, ax=None, aax=None, freq=12., diff=True): ax, aax = curvedEarthAxes(fig=fig, rect=rect, maxground=maxground, maxalt=maxalt, nyticks=3) dic = "data/op/2015.05.05.22.11/waccmx/bks/bm.07/" files = glob.glob(dic + "ti({ti})_elv(*)_{case}.csv".format(ti="%02d"%time, case="f")) files.sort() Re = 6371. fx = [] ry = 5 print("I'm here") for f in files[::ry]: th, r, f, _, _ = get_polar(pd.read_csv(f)) fx.append(trapz(signal.resample(f,INT_F))) v = (0.5 * f * 3e8 / (freq * 1e6)) if not showrefract: aax.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha) else: points = np.array([th, r]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lcol = LineCollection( segments, zorder=zorder, alpha=alpha) _ = lcol.set_cmap( nr_cmap ) _ = lcol.set_norm( plt.Normalize(*nr_lim) ) _ = lcol.set_array( utils.smooth(v, window_len=21) ) _ = aax.add_collection( lcol ) dx = 0.1 aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*60+Re, color="b", lw=1.2, alpha=0.7) aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*95+Re, color="orange", lw=1.2, alpha=0.7) aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*130+Re, color="r", lw=1.2, alpha=0.7) if showrefract: cbax = addColorbar(lcol, ax) _ = cbax.set_ylabel(r"$\Delta V_{d\eta}(t_i), ms^{-1}$", size=8) dv = (0.5 * np.array(fx) * 3e8 / (freq * 1e6)) ax.text(0.99, 1.05, r"$V_{d\eta}(t_i)=%.2f$ $ms^{-1}$"%np.median(dv), horizontalalignment="right", verticalalignment="center", transform=ax.transAxes, fontdict={"size":8}) #ax.text(0.01, 1.1, "Rad: bks, Beam: 07\nDate, $t_i$: %s UT"%(ev+dt.timedelta(minutes=time)).strftime("%Y-%m-%d %H:%M") # , horizontalalignment="left", verticalalignment="center", # transform=ax.transAxes, fontdict={"size":8}) ax.set_xlabel("Ground Range, $km$", fontdict={"size":8}) ax.set_ylabel("Height, $km$", fontdict={"size":8}) else: cbax = None fig = ax.get_figure() fig.savefig("data/figs/rt.dvn.ti({ti}).{case}.png".format(ti="%02d"%time, case="f"), bbox_inches="tight") plt.close() ax, aax = curvedEarthAxes(fig=None, rect=rect, maxground=maxground, maxalt=maxalt, nyticks=3) dfiles = glob.glob(dic + "ti({ti})_elv(*)_{case}.csv".format(ti="%02d"%(time-1), case="f")) dfiles.sort() from scipy.io import loadmat vel = loadmat(dic+"velocity_ti({ti}).mat".format(ti="%02d"%time))["vf"] kx = 0 for f, df in zip(files[::ry], dfiles[::ry]): if diff: if kx < 1: th, r, f, _, _ = get_polar(pd.read_csv(f)) dth, dr, df, _, _ = get_polar(pd.read_csv(df)) dh = -(np.max(dr) - np.max(r)) ax.text(0.95, 1.02, r"$\Delta h=%.2f$ $km$"%dh, horizontalalignment="right", verticalalignment="center", transform=ax.transAxes, fontdict={"size":8}) aax.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha, lw=0.8) aax.plot(dth, dr, c="b", zorder=zorder, alpha=alpha, ls="--",lw=1.6) #aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*np.max(dr), color="b", ls="--", lw=0.6, alpha=0.7) #aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*np.max(r), color="r", ls="--", lw=0.6, alpha=0.7) axins = ax.inset_axes([0.4, -.8, 0.3, 0.5]) axins.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*np.max(dr), color="b", ls="--", lw=0.6, alpha=0.7) axins.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*np.max(r), color="k", ls="--", lw=0.6, alpha=0.7) axins.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha, lw=0.8) axins.plot(dth, dr, c="b", zorder=zorder, alpha=alpha, ls="--",lw=1.6) axins.set_ylim(int(np.max(dr)-10), int(np.max(r)+10)) lenx = np.argmax(r) axins.set_xlim(th[lenx-10], th[lenx+10]) axins.set_yticks(np.linspace(int(np.max(dr)-10), int(np.max(r)+10), 3)) axins.set_yticklabels((np.linspace(int(np.max(dr)-10), int(np.max(r)+10), 3)-Re).astype(int), fontdict={"size":7}) axins.set_xticks(np.linspace(th[lenx-10], th[lenx+5], 4)) axins.set_xticklabels((np.linspace(th[lenx-10], th[lenx+10], 4)*Re).astype(int), fontdict={"size":7}) axins.set_xlabel("Ground Range, $km$", fontdict={"size":8}) axins.set_ylabel("Height, $km$", fontdict={"size":8}) aax.indicate_inset_zoom(axins) else: th, r, f, _, _ = get_polar(pd.read_csv(f)) dth, dr, df, _, _ = get_polar(pd.read_csv(df)) aax.plot(th, r, c=raycolor, zorder=zorder, alpha=alpha, lw=0.8) kx += 1 aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*60+Re, color="b", lw=1.2, alpha=0.7) aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*95+Re, color="orange", lw=1.2, alpha=0.7) aax.plot(np.arange(0,2000,dx)/Re, np.ones(int(2000*1/dx))*130+Re, color="r", lw=1.2, alpha=0.7) #ax.text(0.02, 1.05, "Rad: bks, Beam: 07\nDate, $t_i$: %s UT"%(ev+dt.timedelta(minutes=time)).strftime("%Y-%m-%d %H:%M") # , horizontalalignment="left", verticalalignment="center", # transform=ax.transAxes) if diff: ax.text(0.01, 1.05, r"$V_{dh}(t_i)=%.2f$ $ms^{-1}$"%np.median(vel), horizontalalignment="left", verticalalignment="center", transform=ax.transAxes, fontdict={"size":8}) else: ax.text(0.99, 1.05, r"$V_{dh}(t_i)=%.2f$ $ms^{-1}$"%np.median(vel), horizontalalignment="right", verticalalignment="center", transform=ax.transAxes, fontdict={"size":8}) fig = ax.get_figure() fig.savefig("data/figs/rt.dvh.ti({ti}).{case}.png".format(ti="%02d"%time, case="f"), bbox_inches="tight") plt.close() ax, aax = curvedEarthAxes(fig=None, rect=rect, maxground=maxground, maxalt=maxalt, nyticks=3) ne = loadmat(dic+"ne_ti({ti})_f.mat".format(ti="%02d"%time))["ne"] ne_bgc = loadmat(dic+"ne_ti({ti})_f.mat".format(ti="%02d"%(time-1)))["ne"] if diff: ne = np.abs(ne - ne_bgc) x, y = np.meshgrid(np.arange(0,2000,10)/Re, np.arange(50, 350)+Re) if diff: mp = aax.pcolor(x, y, ne, cmap="plasma", norm = matplotlib.colors.LogNorm(vmin=1e2, vmax=1e5)) else: mp = aax.pcolor(x, y, ne, cmap="plasma", norm = matplotlib.colors.LogNorm(vmin=1e2, vmax=1e6)) cbax = addColorbar(mp, ax) if diff: _ = cbax.set_ylabel(r"$\Delta N_e(t_i,t_{i-1}), cm^{-3}$") else: _ = cbax.set_ylabel(r"$N_e(t_i), cm^{-3}$") ax.text(0.01, 1.1, "Rad: bks, Beam: 07\nDate, $t_i$: %s UT"%(ev+dt.timedelta(minutes=time)).strftime("%Y-%m-%d %H:%M"), horizontalalignment="left", verticalalignment="center", transform=ax.transAxes) #ax.text(0.95, 1.05, r"$N_e^{250}=%.2f\times 10^5$ $cm^{-3}$"%np.max(ne[200,:]/1e5), horizontalalignment="right", verticalalignment="center", # transform=ax.transAxes) fig = ax.get_figure() fig.savefig("data/figs/density.ti({ti}).{case}.png".format(ti="%02d"%time, case="f")) plt.close() return
47.133948
145
0.575437
794e9cec4ba21ed196e794ac8d0fe3e86999ed64
222
py
Python
eskill_custom/eskill_customisations/doctype/warranty_swap_out/test_warranty_swap_out.py
mohsinalimat/eskill_custom
1aa4a591c71144d751b78e0a2907353336e71f37
[ "MIT" ]
1
2021-07-09T11:49:27.000Z
2021-07-09T11:49:27.000Z
eskill_custom/eskill_customisations/doctype/warranty_swap_out/test_warranty_swap_out.py
mohsinalimat/eskill_custom
1aa4a591c71144d751b78e0a2907353336e71f37
[ "MIT" ]
1
2021-04-13T13:49:55.000Z
2021-04-13T13:49:55.000Z
eskill_custom/eskill_customisations/doctype/warranty_swap_out/test_warranty_swap_out.py
mohsinalimat/eskill_custom
1aa4a591c71144d751b78e0a2907353336e71f37
[ "MIT" ]
4
2021-05-05T01:25:49.000Z
2022-01-31T21:57:56.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2020, Eskill Trading and Contributors # See license.txt from __future__ import unicode_literals # import frappe import unittest class TestWarrantySwapOut(unittest.TestCase): pass
20.181818
53
0.77027
794e9da92f90c56a550d311dd11fb5ce313ed5d3
1,103
py
Python
backend/users/models.py
landdafku11/mobile-backend
3f3328afd81f85f90170a57689af72f8f705b8a3
[ "MIT" ]
null
null
null
backend/users/models.py
landdafku11/mobile-backend
3f3328afd81f85f90170a57689af72f8f705b8a3
[ "MIT" ]
null
null
null
backend/users/models.py
landdafku11/mobile-backend
3f3328afd81f85f90170a57689af72f8f705b8a3
[ "MIT" ]
null
null
null
from django.contrib.auth.models import AbstractUser from django.db import models class User(AbstractUser): email = models.EmailField(blank=True, max_length=255, unique=True) apple_id = models.CharField(null=True, max_length=255) username = models.CharField(null=True, max_length=255) password = models.CharField(null=True, max_length=128) email_confirmed = models.BooleanField(blank=False, default=False) overview = models.TextField(null=True) location = models.CharField(null=True, max_length=128) avatar = models.TextField(null=True) password_reset_token = models.IntegerField(null=True) password_reset_sent_at = models.DateTimeField(null=True) USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] def __str__(self): return self.email class Following(models.Model): class Meta: db_table = 'following' follower = models.ForeignKey(User, on_delete=models.CASCADE, related_name='follower') followed = models.ForeignKey(User, on_delete=models.CASCADE, related_name='followed') def __str__(self): return self.pk
32.441176
89
0.733454
794e9dd3c4975fee510bcb1b56e5920bcafd83ce
1,549
py
Python
prereq_map/views/api.py
uw-it-aca/prereq-map
aa8cf09145f16451ce625c6716340fc30cd04570
[ "Apache-2.0" ]
null
null
null
prereq_map/views/api.py
uw-it-aca/prereq-map
aa8cf09145f16451ce625c6716340fc30cd04570
[ "Apache-2.0" ]
31
2019-05-15T23:29:38.000Z
2022-02-12T11:43:41.000Z
prereq_map/views/api.py
uw-it-aca/prereq-map
aa8cf09145f16451ce625c6716340fc30cd04570
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 import json from django.views.decorators.cache import cache_control from django.http import HttpResponse from django.views import View from prereq_map.utils.process_data import get_graph from prereq_map.utils.typeahead import get_curric_typeahead from prereq_map.utils.typeahead import get_course_typeahead import logging logger = logging.getLogger(__name__) class CurricApiView(View): @cache_control(max_age=86400) def get(self, request, curric_code): response = get_graph(curric_filter=curric_code.upper()) if len(response['x']['nodes']['course_number']) > 0: return HttpResponse(json.dumps(response)) else: return error_404() class CourseApiView(View): @cache_control(max_age=86400) def get(self, request, course_code): response = get_graph(course_filter=course_code.upper()) if response: return HttpResponse(json.dumps(response)) else: return error_404() class CurricTypeaheadApiView(View): @cache_control(max_age=86400) def get(self, request): response = get_curric_typeahead() return HttpResponse(json.dumps(response)) class CourseTypeaheadApiView(View): @cache_control(max_age=86400) def get(self, request): response = get_course_typeahead() return HttpResponse(json.dumps(response)) def error_404(): response = HttpResponse() response.status_code = 404 return response
28.163636
63
0.719174
794e9e04f736e27b60875ab9a5a27488ab644469
330
py
Python
pythonchallenge/level12.py
gitduk/web_craw
0d3d5c3de91bb1a1c83845464b7279069d5a66f5
[ "MIT" ]
null
null
null
pythonchallenge/level12.py
gitduk/web_craw
0d3d5c3de91bb1a1c83845464b7279069d5a66f5
[ "MIT" ]
null
null
null
pythonchallenge/level12.py
gitduk/web_craw
0d3d5c3de91bb1a1c83845464b7279069d5a66f5
[ "MIT" ]
2
2021-04-30T06:14:59.000Z
2022-01-20T07:16:14.000Z
from PIL import Image im = Image.open('./evil1.jpg') w, h = im.size im_tuple = [] for i,d in enumerate(im.getdata()): r,g,b = d if r >=100 or g >=100 or b>=100: im_tuple.append(d) else: continue image = Image.new(im.mode, (im.size[0]-10, im.size[1]-10)) image.putdata(im_tuple) image.show()
13.2
58
0.584848
794e9f3c5cc0a526ebb87844d148070cc30a4df5
10,409
py
Python
tests/gsdata.py
QGB/QPSU
7bc214676d797f42d2d7189dc67c9377bccdf25d
[ "MIT" ]
6
2018-03-25T20:05:21.000Z
2022-03-13T17:23:05.000Z
tests/gsdata.py
pen9un/QPSU
76e1a3f6f6f6f78452e02f407870a5a32177b667
[ "MIT" ]
15
2018-05-14T03:30:21.000Z
2022-03-03T15:33:25.000Z
tests/gsdata.py
pen9un/QPSU
76e1a3f6f6f6f78452e02f407870a5a32177b667
[ "MIT" ]
1
2021-07-15T06:23:45.000Z
2021-07-15T06:23:45.000Z
import hashlib import base64 import requests import pickle import xlwt import os import re import json import random class GsDataAPI: def __init__(self): self.app_key = 'b523947e120c8ee8a88cb278527ddb5a' self.app_secret = '1962972fee15606cd1ad1dc8080bb289' self.sort_map = {'1': 'posttime', '2': 'readnum', '3': 'likenum'} self.order_map = {'1': 'desc', '2': 'asc'} self.news_list = [] def _gen_access_token(self, params, router): params_list = sorted(params.items(), key=lambda x: x[0]) params_str = ''.join([''.join(params) for params in params_list]) params_final = '%s_%s_%s' % (self.app_secret, params_str, self.app_secret) m = hashlib.md5() m.update(params_final.encode('utf-8')) sign = m.hexdigest() C = base64.b64encode(bytes(self.app_key+':'+sign+':'+router, encoding='utf-8')) return C def get_msg_info(self, **kwargs): ''' 参数 类型 可空 默认 描述 示例 wx_name String YES --- 微信号 rmrbwx posttime_start String YES --- 文章发布开始时间 2018-08-20 10:00:00 posttime_end String YES --- 文章发布结束时间 2018-09-07 06:00:00(不含) entertime_start String YES --- 文章入库开始时间 2018-08-08 12:00:00 entertime_end String YES --- 文章入库结束时间 2018-08-20 22:00:00(不含) keywords String YES --- 检索词 aaa+bbb,ccc,ddd+eee order String YES desc 排序方式 desc sort String YES posttime 排序字段 posttime page Integer YES 1 第几页 1 limit Integer YES 50 每页显示条数 20 sn String YES -- sn aabbcc ''' kwargs['limit'] = str(kwargs.get('limit', 50)) if kwargs.get('posttime_start') is not None: kwargs['posttime_start'] += ' 00:00:00' if kwargs.get('posttime_end') is not None: kwargs['posttime_end'] += ' 24:00:00' sort_type = kwargs.get('sort') if sort_type in [None, 'posttime']: router = '/weixin/article/search1' elif sort_type == 'readnum': router = '/weixin/article/search2' elif sort_type == 'likenum': router = '/weixin/article/search3' else: return None params = kwargs self.news_list = [] while True: url = 'http://databus.gsdata.cn:8888/api/service' C = self._gen_access_token(params, router) r = requests.get(url, headers={'access-token': C}, params=params) r_js = r.json() if not r_js['success']: print(r_js) data = r_js['data'] num_found = data['numFound'] pagination = data['pagination'] page = pagination['page'] if page == 1: print('总计%d篇文章' % num_found) self.news_list.extend(data['newsList']) news_list_len = len(self.news_list) print('已获取%d篇' % (news_list_len)) if news_list_len >= num_found: break params['page'] = str(page + 1) # with open('test.pkl', 'wb') as f: # pickle.dump(self.news_list, f) def save_as_excel(self, filename): wb = xlwt.Workbook() ws = wb.add_sheet('Sheet0') header = ['标题', '摘要', '发布时间', '作者', '阅读数', '点赞数', '链接'] for i, field in enumerate(header): ws.write(0, i, field) col_width = [10000, 10000, 5000, 5000, 5000, 5000, 20000] col_count = len(col_width) for i in range(col_count): ws.col(i).width = col_width[i] row = 1 for news in self.news_list: ws.write(row, 0, news['news_title']) ws.write(row, 1, news['news_digest']) ws.write(row, 2, news['news_posttime']) ws.write(row, 3, news['news_author']) ws.write(row, 4, news['news_read_count']) ws.write(row, 5, news['news_like_count']) ws.write(row, 6, news['news_url']) row += 1 wb.save(filename) class IDataApi: def __init__(self): self.api_key = 'vYpznyAwychvW7ur6HMbUx08YgO81ZX2eFpLytUGRTHeitTSUIONsZLpps3O18aY' self.data_json = None def get_msg_info(self, **kwargs): url = "http://api01.idataapi.cn:8000/post/weixin?apikey=%s" % self.api_key params = kwargs headers = { "Accept-Encoding": "gzip", "Connection": "close" } if not os.path.exists('idata.pkl'): r = requests.get(url, headers=headers, params=params) self.data_json = r.json() if self.data_json['retcode'] == '000000': with open('idata.pkl', 'wb') as f: pickle.dump(r.json(), f) else: print(self.data_json['message']) return else: with open('idata.pkl', 'rb') as f: self.data_json = pickle.load(f) data_list = self.data_json['data'] has_next = self.data_json['hasNext'] page_token = self.data_json['pageToken'] print(has_next) print(page_token) print(len(data_list)) for data in data_list: print(data['title']) print(data['url']) print('') class WechatAPI: def __init__(self): self.url = 'https://mp.weixin.qq.com/mp/profile_ext' self.headers = { 'Host': 'mp.weixin.qq.com', 'Connection': 'keep-alive', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36 QBCore/3.53.1159.400 QQBrowser/9.0.2524.400 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 MicroMessenger/6.5.2.501 NetType/WIFI WindowsWechat', 'X-Requested-With': 'XMLHttpRequest', 'Accept': '*/*', 'Referer': 'https://mp.weixin.qq.com/mp/profile_ext?action=home&__biz=MzA5NDc1NzQ4MA==&scene=124&uin=MTMxOTI3Mjc1&key=18296be7e87fa916d06e197d2c416373765f9d9507fb1be1ca58b7278b74ab20427f8abc1b76922d43a42c46fe052bc4e7e6cd1a8e8613615ef660c888a2fb12f463a593d439a46d1a7360fa075108b4&devicetype=Windows+7&version=62060833&lang=zh_CN&a8scene=7&pass_ticket=P12nGbyGYqcxMn8TPtsskVbRJo%2BH9Rojj4I0SNfyL9I%3D&winzoom=1', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.6,en;q=0.5;q=0.4', 'Cookie': 'rewardsn=; wxtokenkey=777; wxuin=131927275; devicetype=Windows7; version=62060833; lang=zh_CN; pass_ticket=P12nGbyGYqcxMn8TPtsskVbRJo+H9Rojj4I0SNfyL9I=; wap_sid2=COuZ9D4SXGhFWm10djluQ2NCT0d5SHIwMDB1RzBzZ09MNXhnUzhQanBndFB6TDdfTlNzajU1enllMG91cnBvV29FVkxUbXZxVG9janhtcmxZNUNUMTRGRnlCN2dfNERBQUF+MN6i2OoFOA1AlU4=', } with open('cookie.txt', 'r') as f: cookie = f.read() self.cookies = json.loads(cookie) def get_token(self): url = 'https://mp.weixin.qq.com' response = requests.get(url=url, cookies=self.cookies, verify=False) token = re.findall(r'token=(\d+)', str(response.url))[0] print('token:', token) return token def get_fakeid(self, mp_id, token): header = { "HOST": "mp.weixin.qq.com", "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0" } query = mp_id query_id = { 'action': 'search_biz', 'token': token, 'lang': 'zh_CN', 'f': 'json', 'ajax': '1', 'random': random.random(), 'query': query, 'begin': '0', 'count': '5', } search_url = 'https://mp.weixin.qq.com/cgi-bin/searchbiz?' search_response = requests.get(search_url, cookies=self.cookies, headers=header, params=query_id, verify=False) lists = search_response.json().get('list')[0] fakeid = lists.get('fakeid') print(search_response.json()) print('fakeid:', fakeid) return fakeid def get_msg(self, fakeid): params = { 'action': 'getmsg', '__biz': fakeid, 'f': 'json', 'offset': 10, 'count': 10, 'is_ok': 1, 'scene': 124, 'uin': 'MTMxOTI3Mjc1', 'key': '05eee5e78663c69d88f47c0818a8666d07f12fc80c52ca172928d0d2f7f0bc59ec7fd19cd4b4d4aed825422af5fb0533cefb3abd47cad1705843f61422a0a9ba9e70c3dd8afc9d75ce3d8f50d26b69e7', 'pass_ticket': 'P12nGbyGYqcxMn8TPtsskVbRJo%2BH9Rojj4I0SNfyL9I%3D', 'wxtoken': '', 'appmsg_token': '1022_MIIE0%2BkZ3ICFd%2FeOj_GH9X3jzWdqoH8RvZkHnA~~', 'x5': 0, 'f': 'json' } i = 0 while True: # r = requests.get(self.url, headers=self.headers, params=params, verify=False) r = requests.get(self.url, params=params, verify=False) r_json = r.json() if r_json['errmsg'] == 'ok': msg_list = eval(r_json['general_msg_list'])['list'] for msg in msg_list: try: app_msg_ext_info = msg['app_msg_ext_info'] print(app_msg_ext_info['title']) print(app_msg_ext_info['link']) except KeyError: print(msg) continue else: print(r_json['errmsg']) print(r_json) break if r_json['can_msg_continue'] != 1: break params['offset'] = r_json['next_offset'] i += 1 if i == 100: break if __name__ == '__main__': pass # api = GsDataAPI() # news_list = api.get_msg_info(wx_name='chaping321', posttime_start='2019-07-15', posttime_end='2019-07-28') # idata_api = IDataApi() #idata_api.get_msg_info(uid='chaping321', searchMode='top', beginDate='2018-03-01', endDate='2019-08-14') wechat_api = WechatAPI() token = wechat_api.get_token() fakeid = wechat_api.get_fakeid('chaping321', token) wechat_api.get_msg(fakeid)
40.501946
422
0.557883
794e9f604113903def57e31761ff5d173d130045
1,635
py
Python
is_valid/is_match.py
nandoflorestan/transvalid
4e0adbaad35188312189112cac0c4f187116b4b9
[ "MIT" ]
4
2017-10-11T14:04:35.000Z
2019-03-29T08:38:09.000Z
is_valid/is_match.py
nandoflorestan/transvalid
4e0adbaad35188312189112cac0c4f187116b4b9
[ "MIT" ]
1
2017-11-27T14:43:19.000Z
2018-01-14T15:05:38.000Z
is_valid/is_match.py
Daanvdk/is_valid
615c5ae1999095cba398af6ae041a472769857f8
[ "MIT" ]
1
2021-06-05T18:06:49.000Z
2021-06-05T18:06:49.000Z
from .base import Predicate from .explanation import Explanation from .is_str import is_str import re class is_match(Predicate): """ A predicate that checks if the data matches the given pattern. If a string is provided as a pattern this predicate will compile it first. The optional parameter ``flags`` allows you to specify flags for this aforementioned compilation. """ prerequisites = [is_str] def __init__(self, regex, flags=0, rep=None, match_as_data=False): if isinstance(regex, str): regex = re.compile(regex, flags) if rep is None: rep = '/{}/{}'.format( regex.pattern, ''.join( char for flag, char in [ (re.A, 'a'), (re.I, 'i'), (re.L, 'l'), (re.M, 'm'), (re.S, 's'), (re.X, 'x'), ] if regex.flags & flag ), ) self._regex = regex self._valid_exp = Explanation( True, 'match', 'data does match {}'.format(rep) ) self._not_valid_exp = Explanation( False, 'not_match', 'data does not match {}'.format(rep) ) self._match_as_data = match_as_data def _evaluate(self, data, explain, context): match = self._regex.search(data) if match: res = self._valid_exp if explain else True if explain and self._match_as_data: res = res.copy(data=match) else: res = self._not_valid_exp if explain else False return res
32.7
78
0.53578
794ea0009fd2f41bafd795e14be694e607bb933d
4,123
py
Python
includes/carddecks.py
torbjornhedqvist/blackjack
773faf0d1a4aaeb27ce7e436fc39d34c8ec46e21
[ "MIT" ]
5
2018-11-25T21:17:46.000Z
2022-02-25T17:18:59.000Z
includes/carddecks.py
torbjornhedqvist/blackjack
773faf0d1a4aaeb27ce7e436fc39d34c8ec46e21
[ "MIT" ]
5
2018-11-25T21:39:41.000Z
2018-11-26T10:45:57.000Z
includes/carddecks.py
torbjornhedqvist/blackjack
773faf0d1a4aaeb27ce7e436fc39d34c8ec46e21
[ "MIT" ]
2
2021-01-09T12:41:45.000Z
2021-08-20T16:19:12.000Z
#!/usr/bin/env python """ Create a playing card deck (normal 52 card deck) or virtual "Shoe" of decks if more than one is defined. When one ore more decks are created they will be shuffled. Copyright (C) Torbjorn Hedqvist - All Rights Reserved You may use, distribute and modify this code under the terms of the MIT license. See LICENSE file in the project root for full license information. """ from random import shuffle from playingcard import PlayingCard class CardDecks(object): """ When instantiated holds a list of :meth:`lib.playingcard.PlayingCard` objects in random order. """ def __init__(self, num_of_decks=1): """ Create one or more playing card decks and shuffle them all together in a list. """ self.__card_decks = [] for num in range(0, num_of_decks): for suit in range(0, 4): for rank in range(1, 14): instance = PlayingCard(rank, suit) self.__card_decks.append(instance) self.shuffle() def shuffle(self): """ Shuffle all the cards in this instance list. :return: None """ shuffle(self.__card_decks) def pop(self): """ Pop (pull and remove) the last card in the list. :return: A :meth:`lib.playingcard.PlayingCard` object. """ return self.__card_decks.pop() def length(self): """ :return: The length (the number of remaining cards) in the list. """ return len(self.__card_decks) class TestingCardDeck(object): """ Used to create a pre-defined deck for testing purposes """ def __init__(self): """ Instantiate an instance of a deck containing :meth:`lib.playingcard.PlayingCard` objects which have pre-defined values to test specific scenarios in the Black Jack game """ self.__card_decks = [] for x in range(1, 52): # Fill up a deck of dummies instance = PlayingCard(7, 1) self.__card_decks.append(instance) # Stay on 19 (ace + 8) and dealer gets two aces 1+1+4+(common value in deck above) self.__card_decks.append(PlayingCard(4, 1)) self.__card_decks.append(PlayingCard(1, 0)) self.__card_decks.append(PlayingCard(8, 3)) self.__card_decks.append(PlayingCard(1, 3)) self.__card_decks.append(PlayingCard(1, 2)) # Two tens to player to be used for split, followed by two aces to see how a # double black jack is handled. self.__card_decks.append(PlayingCard(6, 2)) self.__card_decks.append(PlayingCard(8, 1)) self.__card_decks.append(PlayingCard(4, 1)) self.__card_decks.append(PlayingCard(10, 0)) # First hand for player is a BlackJack self.__card_decks.append(PlayingCard(6, 2)) self.__card_decks.append(PlayingCard(10, 1)) self.__card_decks.append(PlayingCard(4, 1)) self.__card_decks.append(PlayingCard(1, 0)) # Start with a low hand for player to test double down self.__card_decks.append(PlayingCard(6, 2)) self.__card_decks.append(PlayingCard(2, 1)) self.__card_decks.append(PlayingCard(4, 1)) self.__card_decks.append(PlayingCard(2, 0)) # Create a split, first hand ok and second busted self.__card_decks.append(PlayingCard(12, 1)) self.__card_decks.append(PlayingCard(4, 1)) self.__card_decks.append(PlayingCard(2, 0)) self.__card_decks.append(PlayingCard(6, 2)) self.__card_decks.append(PlayingCard(8, 1)) self.__card_decks.append(PlayingCard(4, 1)) self.__card_decks.append(PlayingCard(8, 0)) def pop(self): """ Pop (pull and remove) the last card in the list. :return: A :meth:`lib.playingcard.PlayingCard` object. """ return self.__card_decks.pop() def length(self): """ :return: The length (the number of remaining cards) in the list. """ return len(self.__card_decks)
30.768657
90
0.628426
794ea10744e38a5d14d96e353f80b49d78072a64
748
py
Python
pango-1.42.4/tests/gen-installed-test.py
CSRedRat/scratchjr-linux-ubuntu
f11dc037d889e97ca26778dc3133d94f22dbcf38
[ "BSD-3-Clause" ]
1
2021-12-20T17:27:24.000Z
2021-12-20T17:27:24.000Z
pango-1.42.4/tests/gen-installed-test.py
CSRedRat/scratchjr-linux-ubuntu
f11dc037d889e97ca26778dc3133d94f22dbcf38
[ "BSD-3-Clause" ]
3
2021-12-20T17:36:50.000Z
2022-03-06T08:54:25.000Z
pango-1.42.4/tests/gen-installed-test.py
CSRedRat/scratchjr-linux-ubuntu
f11dc037d889e97ca26778dc3133d94f22dbcf38
[ "BSD-3-Clause" ]
null
null
null
import sys import argparse import os template = '''[Test] Type=session Exec={} ''' def build_template(test_dir, test_name): return template.format(os.path.join(test_dir, test_name)) if __name__ == '__main__': argparser = argparse.ArgumentParser(description='Generate installed-test description file') argparser.add_argument('installed_test_dir', help='Path for installed test binaries') argparser.add_argument('test_name', help='Name of the test unit') argparser.add_argument('out_dir', help='Path for the output') args = argparser.parse_args() outfile = os.path.join(args.out_dir, args.test_name + '.test') with open(outfile, 'w') as f: f.write(build_template(args.installed_test_dir, args.test_name))
31.166667
95
0.731283
794ea183db4fa388665805b018f4558b69fd4795
8,268
py
Python
pybrain/tests/optimizationtest.py
sveilleux1/pybrain
1e1de73142c290edb84e29ca7850835f3e7bca8b
[ "BSD-3-Clause" ]
2,208
2015-01-02T02:14:41.000Z
2022-03-31T04:45:46.000Z
pybrain/tests/optimizationtest.py
sveilleux1/pybrain
1e1de73142c290edb84e29ca7850835f3e7bca8b
[ "BSD-3-Clause" ]
91
2015-01-08T16:42:16.000Z
2021-12-11T19:16:35.000Z
pybrain/tests/optimizationtest.py
sveilleux1/pybrain
1e1de73142c290edb84e29ca7850835f3e7bca8b
[ "BSD-3-Clause" ]
786
2015-01-02T15:18:20.000Z
2022-02-23T23:42:40.000Z
from __future__ import print_function #! /usr/bin/env python """ This test script will test the set of optimization algorithms. It tests - the conformity of interface - the behavior on simple functions - the behavior on FitnessEvaluators - the behavior when optimizing a list or an array - the behavior when optimizing an Evolvable - the behavior when optimizing a ParameterContainer - consistency w.r.t. minimization/maximization Tests to be added: - tolerance of problems that have a constant fitness - tolerance of problems that have adversarial (strictly decreasing) fitness - handling one-dimensional and high-dimensional spaces - reasonable results on the linear function """ __author__ = 'Tom Schaul, tom@idsia.ch' from inspect import isclass from scipy import sum, array, ndarray, log10 from random import random, choice import pybrain.optimization.optimizer as bbo import pybrain.optimization.populationbased.multiobjective as mobj import pybrain.optimization as allopts from pybrain.rl.environments.functions.unimodal import SphereFunction from pybrain.structure.parametercontainer import ParameterContainer from pybrain.structure.evolvables.evolvable import Evolvable from pybrain.rl.environments.cartpole.balancetask import BalanceTask from pybrain.tools.shortcuts import buildNetwork from pybrain.structure.modules.module import Module # Tasks to be optimized: # ---------------------- # simple function sf = lambda x:-sum((x + 1) ** 2) # FunctionEnvironment class fe = SphereFunction # initialized FE ife1 = fe(1) ife2 = fe(2) ife100 = fe(100) # a Task object task = BalanceTask() task.N = 10 # for the simple evolvable class defined below evoEval = lambda e: e.x # starting points # ---------------------- xlist1 = [2.] xlist2 = [0.2, 10] xlist100 = list(range(12, 112)) xa1 = array(xlist1) xa2 = array(xlist2) xa100 = array(xlist100) pc1 = ParameterContainer(1) pc2 = ParameterContainer(2) pc100 = ParameterContainer(100) pc1._setParameters(xa1) pc2._setParameters(xa2) pc100._setParameters(xa100) # for the task object, we need a module nnet = buildNetwork(task.outdim, 2, task.indim) # a mimimalistic Evolvable subclass that is not (like usual) a ParameterContainer class SimpleEvo(Evolvable): def __init__(self, x): self.x = x def mutate(self): self.x += random() - 0.3 def copy(self): return SimpleEvo(self.x) def randomize(self): self.x = 10 * random() - 2 def __repr__(self): return '--%.3f--' % self.x evo1 = SimpleEvo(-3.) # the test functions # ---------------------- def testInterface(algo): """ Tests whether the algorithm is properly implementing the correct Blackbox-optimization interface.""" # without any arguments, initialization has to work emptyalgo = algo() try: # but not learning emptyalgo.learn(0) return "Failed to throw missing evaluator error?" except AssertionError: pass emptyalgo.setEvaluator(sf, xa1) # not it can run emptyalgo.learn(0) # simple functions don't check for dimension mismatch algo(sf, xa1) algo(sf, xa100) # for these, either an initial point or a dimension parameter is required algo(sf, numParameters=2) try: algo(sf) return "Failed to throw unknown dimension error" except ValueError: pass # FitnessEvaluators do not require that algo(ife1) # parameter containers can be used too algo(ife2, pc2) return True def testContinuousInterface(algo): """ Test the specifics for the interface for ContinuousOptimizers """ if not issubclass(algo, bbo.ContinuousOptimizer): return True # list starting points are internally converted to arrays x = algo(sf, xlist2) assert isinstance(x.bestEvaluable, ndarray), 'not converted to array' # check for dimension mismatch try: algo(ife1, xa2) return "Failed to throw dimension mismatch error" except ValueError: pass return True def testMinMax(algo): """ Verify that the algorithm is doing the minimization/maximization consistently. """ if (issubclass(algo, bbo.TopologyOptimizer) or algo == allopts.StochasticHillClimber): # TODO return True xa1[0] = 2 evalx = sf(xa1) amax1 = algo(sf, xa1, minimize=False) amax2 = algo(sf, xa1) amax2.minimize = False amax3 = algo() amax3.setEvaluator(sf, xa1) amax3.minimize = False amax4 = algo() amax4.minimize = False amax4.setEvaluator(sf, xa1) for i, amax in enumerate([amax1, amax2, amax3, amax4]): assert amax.minimize is False or amax.mustMinimize, 'Max: Attribute not set correctly.' \ + str(amax.minimize) + str(amax.mustMinimize) + str(i) x, xv = amax.learn(1) assert sf(x) == xv, 'Evaluation does not fit: ' + str((sf(x), xv)) assert xv >= evalx, 'Evaluation did not increase: ' + str(xv) + ' (init: ' + str(evalx) + ')' xa1[0] = 2 amin1 = algo(sf, xa1, minimize=True) amin2 = algo(sf, xa1) amin2.minimize = True amin3 = algo() amin3.setEvaluator(sf, xa1) amin3.minimize = True amin4 = algo() amin4.minimize = True amin4.setEvaluator(sf, xa1) for i, amin in enumerate([amin1, amin2, amin3, amin4]): assert amin.minimize is True or amin.mustMaximize, 'Min: Attribute not set correctly.' \ + str(amin.minimize) + str(amin.mustMaximize) + str(i) x, xv = amin.learn(1) assert sf(x) == xv, 'Evaluation does not fit: ' + str((sf(x), xv)) + str(i) assert xv <= evalx, 'Evaluation did not decrease: ' + str(xv) + ' (init: ' + str(evalx) + ')' + str(i) assert ((amin.minimize is not amax.minimize) or not (amin._wasOpposed is amax._wasOpposed)), 'Inconsistent flags.' return True def testOnModuleAndTask(algo): l = algo(task, nnet) assert isinstance(l._bestFound()[0], Module), 'Did not return a module.' return True def testOnEvolvable(algo): if issubclass(algo, bbo.ContinuousOptimizer): return True if issubclass(algo, bbo.TopologyOptimizer): try: algo(evoEval, evo1).learn(1) return "Topology optimizers should not accept arbitrary Evolvables" except AttributeError: return True else: algo(evoEval, evo1).learn(1) return True # the main test procedure # ------------------------ def testAll(tests, allalgos, tolerant=True): countgood = 0 for i, algo in enumerate(sorted(allalgos)): print(("%d, %s:" % (i + 1, algo.__name__))) print((' ' * int(log10(i + 1) + 2),)) good = True messages = [] for t in tests: try: res = t(algo) except Exception as e: if not tolerant: raise e res = e if res is True: print(('.',)) else: good = False messages.append(res) print(('F',)) if good: countgood += 1 print('--- OK.') else: print('--- NOT OK.') for m in messages: if m is not None: print((' ' * int(log10(i + 1) + 2), '->', m)) print() print(('Summary:', countgood, '/', len(allalgos), 'of test were passed.')) if __name__ == '__main__': from pybrain.optimization import * #@UnusedWildImport #from pybrain.optimization import CMAES #@UnusedImport allalgos = [c for c in list(globals().values()) if (isclass(c) and issubclass(c, bbo.BlackBoxOptimizer) and not issubclass(c, mobj.MultiObjectiveGA) )] print(('Optimization algorithms to be tested:', len(allalgos))) print() print('Note: this collection of tests may take quite some time.') print() tests = [testInterface, testContinuousInterface, testOnModuleAndTask, testOnEvolvable, testMinMax, ] testAll(tests, allalgos, tolerant=True)
29.741007
110
0.626391
794ea1cf784734a0937d715f5b0f44271b7f6bd8
45
py
Python
hello_world.py
fanraul/python-hello-world
a208c62235455b5a0c978fc34c65888ed9277850
[ "MIT" ]
null
null
null
hello_world.py
fanraul/python-hello-world
a208c62235455b5a0c978fc34c65888ed9277850
[ "MIT" ]
null
null
null
hello_world.py
fanraul/python-hello-world
a208c62235455b5a0c978fc34c65888ed9277850
[ "MIT" ]
null
null
null
print ('hello world!') print ('hello github')
22.5
22
0.688889