hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794eee7a39da3031070e91ec81d62d5dadd3bb1e
471
py
Python
Lab_3/part_2.py
spencerperley/CPE_101
9ae3c5a0042780f824de5edee275b35cdb0bbaec
[ "MIT" ]
1
2022-01-12T21:48:23.000Z
2022-01-12T21:48:23.000Z
Lab_3/part_2.py
spencerperley/CPE_101
9ae3c5a0042780f824de5edee275b35cdb0bbaec
[ "MIT" ]
null
null
null
Lab_3/part_2.py
spencerperley/CPE_101
9ae3c5a0042780f824de5edee275b35cdb0bbaec
[ "MIT" ]
null
null
null
list_den = [2, 3, 4, 0, 5, 6, 8] list_num = [] results = [] entered = 0 i=0 for num in list_den: while True: entered = int(input("Enter a number greater than or equal to 10: ")) if entered >= 10: break else: print("Number must be greater than 10") list_num.append(entered) results.append((list_num[i]/list_den[i]) if (list_den[i] != 0) else (-1)) i += 1 print(results)
21.409091
77
0.524416
794ef040c3a7f25257f7612ec1f908c19e848ed0
2,424
py
Python
doc/sphinx/example-acoustics-1d/setplot_3.py
geoflows/geoclaw-4.x
c8879d25405017b38392aa3b1ea422ff3e3604ea
[ "BSD-3-Clause" ]
7
2016-11-13T03:11:51.000Z
2021-09-07T18:59:48.000Z
doc/sphinx/example-acoustics-1d/setplot_3.py
che-wenchao/D-Claw
8ab5d971c9a7a7130e03a447a4b8642e292f4e88
[ "BSD-3-Clause" ]
11
2020-01-14T18:00:37.000Z
2022-03-29T14:25:24.000Z
doc/sphinx/example-acoustics-1d/setplot_3.py
che-wenchao/D-Claw
8ab5d971c9a7a7130e03a447a4b8642e292f4e88
[ "BSD-3-Clause" ]
6
2020-01-14T17:15:42.000Z
2021-12-03T17:28:44.000Z
""" Single figure with two axes ============================= The pressure q[0] and q[1] are plotted on two sets of axes in a single figure. """ #-------------------------- def setplot(plotdata): #-------------------------- """ Specify what is to be plotted at each frame. Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData. Output: a modified version of plotdata. """ plotdata.clearfigures() # clear any old figures,axes,items data plotfigure = plotdata.new_plotfigure(name='Solution', figno=1) # Pressure: # Set up for axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(211)' plotaxes.xlimits = 'auto' plotaxes.ylimits = [-.5,1.1] plotaxes.title = 'Pressure' # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='1d') plotitem.plot_var = 0 plotitem.plotstyle = '-' plotitem.color = 'b' # Set up for second item on these axes: plotitem = plotaxes.new_plotitem(plot_type='1d') plotitem.plot_var = 0 plotitem.plotstyle = 'o' plotitem.color = '#ff00ff' # any color supported by matplotlib # Velocity: # Set up for second axes in this figure: plotaxes = plotfigure.new_plotaxes() plotaxes.axescmd = 'subplot(212)' plotaxes.xlimits = 'auto' plotaxes.ylimits = [-.5,.5] plotaxes.title = 'Velocity' # Set up for item on these axes: plotitem = plotaxes.new_plotitem(plot_type='1d') plotitem.plot_var = 1 plotitem.plotstyle = 'o-' plotitem.color = 'b' # Parameters used only when creating html and/or latex hardcopy # e.g., via pyclaw.plotters.frametools.printframes: plotdata.printfigs = True # print figures plotdata.print_format = 'png' # file format plotdata.print_framenos = 'all' # list of frames to print plotdata.print_fignos = 'all' # list of figures to print plotdata.html = True # create html files of plots? plotdata.html_homelink = '../README.html'# pointer for index page plotdata.latex = True # create latex file of plots? plotdata.latex_figsperline = 1 # layout of plots plotdata.latex_framesperline = 2 # layout of plots plotdata.latex_makepdf = True # also run pdflatex? return plotdata
31.076923
74
0.616749
794ef0926bc7ea5930935578d8207f5da587518d
1,374
py
Python
examples/linkedViews.py
nodedge/pyqtgraph
5a08650853a339c383281fd531fe059b74e1bbcd
[ "MIT" ]
1
2021-04-28T05:16:24.000Z
2021-04-28T05:16:24.000Z
examples/linkedViews.py
nodedge/pyqtgraph
5a08650853a339c383281fd531fe059b74e1bbcd
[ "MIT" ]
null
null
null
examples/linkedViews.py
nodedge/pyqtgraph
5a08650853a339c383281fd531fe059b74e1bbcd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ This example demonstrates the ability to link the axes of views together Views can be linked manually using the context menu, but only if they are given names. """ import initExample ## Add path to library (just for examples; you do not need this) from pyqtgraph.Qt import QtGui, QtCore import numpy as np import pyqtgraph as pg app = pg.mkQApp("Linked Views Example") #mw = QtGui.QMainWindow() #mw.resize(800,800) x = np.linspace(-50, 50, 1000) y = np.sin(x) / x win = pg.GraphicsLayoutWidget(show=True, title="pyqtgraph example: Linked Views") win.resize(800,600) win.addLabel("Linked Views", colspan=2) win.nextRow() p1 = win.addPlot(x=x, y=y, name="Plot1", title="Plot1") p2 = win.addPlot(x=x, y=y, name="Plot2", title="Plot2: Y linked with Plot1") p2.setLabel('bottom', "Label to test offset") p2.setYLink('Plot1') ## test linking by name ## create plots 3 and 4 out of order p4 = win.addPlot(x=x, y=y, name="Plot4", title="Plot4: X -> Plot3 (deferred), Y -> Plot1", row=2, col=1) p4.setXLink('Plot3') ## Plot3 has not been created yet, but this should still work anyway. p4.setYLink(p1) p3 = win.addPlot(x=x, y=y, name="Plot3", title="Plot3: X linked with Plot1", row=2, col=0) p3.setXLink(p1) p3.setLabel('left', "Label to test offset") #QtGui.QApplication.processEvents() if __name__ == '__main__': pg.mkQApp().exec_()
29.869565
104
0.699418
794ef1aab91c4c4546ee1703544ca5c10f7babb9
5,298
py
Python
onnx_tf/common/__init__.py
tanp5364/onnx-tensorflow
08e41de7b127a53d072a54730e4784fe50f8c7c3
[ "Apache-2.0" ]
56
2018-12-20T11:16:20.000Z
2022-01-26T08:22:49.000Z
onnx_tf/common/__init__.py
tanp5364/onnx-tensorflow
08e41de7b127a53d072a54730e4784fe50f8c7c3
[ "Apache-2.0" ]
16
2019-04-29T15:22:45.000Z
2021-04-22T16:05:09.000Z
onnx_tf/common/__init__.py
tanp5364/onnx-tensorflow
08e41de7b127a53d072a54730e4784fe50f8c7c3
[ "Apache-2.0" ]
59
2019-03-05T12:37:43.000Z
2021-11-08T11:01:18.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import inspect import re import sys import uuid import warnings import logging from onnx.backend.base import DeviceType from tensorflow.python.client import device_lib IS_PYTHON3 = sys.version_info > (3,) logger = logging.getLogger('onnx-tf') # create console handler and formatter for logger console = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') console.setFormatter(formatter) logger.addHandler(console) class Deprecated: """Add deprecated message when function is called. Usage: from onnx_tf.common import deprecated @deprecated def func(): pass UserWarning: func is deprecated. It will be removed in future release. @deprecated("Message") def func(): pass UserWarning: Message @deprecated({"arg": "Message", "arg_1": deprecated.MSG_WILL_REMOVE, "arg_2": "",}) def func(arg, arg_1, arg_2): pass UserWarning: Message UserWarning: arg_1 of func is deprecated. It will be removed in future release. UserWarning: arg_2 of func is deprecated. """ MSG_WILL_REMOVE = " It will be removed in future release." def __call__(self, *args, **kwargs): return self.deprecated_decorator(*args, **kwargs) @staticmethod def messages(): return {v for k, v in inspect.getmembers(Deprecated) if k.startswith("MSG")} @staticmethod def deprecated_decorator(arg=None): # deprecate function with default message MSG_WILL_REMOVE # @deprecated if inspect.isfunction(arg): def wrapper(*args, **kwargs): warnings.warn("{} is deprecated.{}".format( arg.__module__ + "." + arg.__name__, Deprecated.MSG_WILL_REMOVE)) return arg(*args, **kwargs) return wrapper deprecated_arg = arg if arg is not None else Deprecated.MSG_WILL_REMOVE def deco(func): # deprecate arg # @deprecated({...}) if isinstance(deprecated_arg, dict): for name, message in deprecated_arg.items(): if message in Deprecated.messages(): message = "{} of {} is deprecated.{}".format( name, func.__module__ + "." + func.__name__, message or "") warnings.warn(message) # deprecate function with message # @deprecated("message") elif isinstance(deprecated_arg, str): message = deprecated_arg if message in Deprecated.messages(): message = "{} is deprecated.{}".format( func.__module__ + "." + func.__name__, message) warnings.warn(message) return func return deco deprecated = Deprecated() # This function inserts an underscore before every upper # case letter and lowers that upper case letter except for # the first letter. def op_name_to_lower(name): return re.sub('(?<!^)(?=[A-Z])', '_', name).lower() def get_unique_suffix(): """ Get unique suffix by using first 8 chars from uuid.uuid4 to make unique identity name. :return: Unique suffix string. """ return str(uuid.uuid4())[:8] def get_perm_from_formats(from_, to_): """ Get perm from data formats. For example: get_perm_from_formats('NHWC', 'NCHW') = [0, 3, 1, 2] :param from_: From data format string. :param to_: To data format string. :return: Perm. Int list. """ return list(map(lambda x: from_.find(x), to_)) # TODO: allow more flexible placement def get_device_option(device): m = {DeviceType.CPU: '/cpu', DeviceType.CUDA: '/gpu'} return m[device.type] def get_data_format(x_rank): """ Get data format by input rank. Channel first if support CUDA. :param x_rank: Input rank. :return: Data format. """ sp_dim_names = ["D", "H", "W"] sp_dim_lst = [] for i in range(x_rank - 2): sp_dim_lst.append(sp_dim_names[-i - 1]) sp_dim_string = "".join(reversed(sp_dim_lst)) storage_format = "NC" + sp_dim_string if supports_device("CUDA"): compute_format = "NC" + sp_dim_string else: compute_format = "N" + sp_dim_string + "C" return storage_format, compute_format def supports_device(device): """ Check if support target device. :param device: CUDA or CPU. :return: If supports. """ if device == "CUDA": local_device_protos = device_lib.list_local_devices() return len([x.name for x in local_device_protos if x.device_type == 'GPU' ]) > 0 elif device == "CPU": return True return False @deprecated("onnx_tf.common.get_outputs_names is deprecated.{} {}".format( deprecated.MSG_WILL_REMOVE, "Use TensorflowGraph.get_outputs_names instead.")) def get_output_node_names(graph_def): """Get output node names from GraphDef. Args: graph_def: GraphDef object. Returns: List of output node names. """ nodes, input_names = dict(), set() for node in graph_def.node: nodes[node.name] = node input_names.update(set(node.input)) return list(set(nodes) - input_names) CONST_MINUS_ONE_INT32 = "_onnx_tf_internal_minus_one_int32" CONST_ZERO_INT32 = "_onnx_tf_internal_zero_int32" CONST_ONE_INT32 = "_onnx_tf_internal_one_int32" CONST_ONE_FP32 = "_onnx_tf_internal_one_fp32"
26.893401
83
0.68271
794ef211c9bcdfbf5f165e36dd0f985e905d1f6e
4,839
py
Python
prediction_utils/prediction_utils/extraction_utils/extract_features.py
som-shahlab/sepsis_transfer_learning_public
e41b3d1f43f0e59726e04215ea0da9c9919c0f68
[ "MIT" ]
9
2020-07-22T09:01:40.000Z
2022-02-03T18:44:15.000Z
prediction_utils/extraction_utils/extract_features.py
som-shahlab/fairness_benchmark
7d9e2619bf636acb2a9261ed7b4fdf59c105b8a1
[ "MIT" ]
null
null
null
prediction_utils/extraction_utils/extract_features.py
som-shahlab/fairness_benchmark
7d9e2619bf636acb2a9261ed7b4fdf59c105b8a1
[ "MIT" ]
2
2020-07-26T01:28:05.000Z
2021-12-07T13:16:52.000Z
import configargparse as argparse import os from prediction_utils.extraction_utils.featurizer import BigQueryOMOPFeaturizer parser = argparse.ArgumentParser(description="An extraction script") parser.add_argument( "--data_path", type=str, default="/share/pi/nigam/projects/spfohl/cohorts/admissions/starr_20200404", ) parser.add_argument( "--features_by_analysis_path", type=str, default="features_by_analysis" ) parser.add_argument( "--gcloud_storage_path", type=str, default="gs://feature_extraction_exports/cohorts/scratch/", ) parser.add_argument("--gcloud_project", type=str, default="som-nero-phi-nigam-starr") parser.add_argument("--dataset_project", type=str, default="") parser.add_argument("--rs_dataset_project", type=str, default="") parser.add_argument("--dataset", type=str, default="starr_omop_cdm5_deid_20200404") parser.add_argument("--rs_dataset", type=str, default="plp_cohort_tables") parser.add_argument("--features_dataset", type=str, default="temp_dataset") parser.add_argument("--features_prefix", type=str, default="features") parser.add_argument( "--cohort_name", type=str, default="admission_rollup_20200404_with_labels_sampled" ) parser.add_argument("--index_date_field", type=str, default="admit_date") parser.add_argument("--limit", type=int, default=None) parser.add_argument("--row_id_field", type=str, default="prediction_id") parser.add_argument( "--google_application_credentials", type=str, default=os.path.expanduser("~/.config/gcloud/application_default_credentials.json"), ) parser.add_argument("--dask_temp_dir", type=str, default=None) parser.add_argument("--time_bins", type=int, default=None, nargs="*") parser.add_argument("--time_bins_hourly", type=int, default=None, nargs="*") parser.add_argument("--analysis_ids", type=str, default=None, nargs="*") parser.add_argument("--exclude_analysis_ids", type=str, default=None, nargs="*") parser.add_argument("--merged_name", type=str, default="merged_features") parser.add_argument("--binary", dest="binary", action="store_true") parser.add_argument( "--featurize", dest="featurize", action="store_true", help="Whether to run the featurization", ) parser.add_argument( "--no_featurize", dest="featurize", action="store_false", help="Whether to run the featurization", ) parser.add_argument( "--cloud_storage", dest="cloud_storage", action="store_true", help="Whether to write the results to cloud storage", ) parser.add_argument( "--no_cloud_storage", dest="cloud_storage", action="store_false", help="Whether to write the results to cloud storage", ) parser.add_argument( "--merge_features", dest="merge_features", action="store_true", help="Whether to merge the features", ) parser.add_argument( "--no_merge_features", dest="merge_features", action="store_false", help="Whether to merge the features", ) parser.add_argument( "--create_parquet", dest="create_parquet", action="store_true", help="Whether to create parquet on merge", ) parser.add_argument( "--no_create_parquet", dest="create_parquet", action="store_false", help="Whether to create parquet on merge", ) parser.add_argument( "--create_sparse", dest="create_sparse", action="store_true", help="Whether to create sparse array on merge", ) parser.add_argument( "--no_create_sparse", dest="create_sparse", action="store_false", help="Whether to create sparse array on merge", ) parser.add_argument( "--overwrite", dest="overwrite", action="store_true", help="Whether to overwrite results", ) parser.set_defaults( merge_features=False, featurize=True, create_parquet=True, create_sparse=True, create_h5=False, binary=False, cloud_storage=False, overwrite=False, ) if __name__ == "__main__": args = parser.parse_args() featurizer = BigQueryOMOPFeaturizer( include_all_history=True, **args.__dict__ ) if args.featurize: if args.cloud_storage: featurizer.featurize_to_destination( analysis_ids=args.analysis_ids, exclude_analysis_ids=args.exclude_analysis_ids, merge_features=args.merge_features, ) else: featurizer.featurize( analysis_ids=args.analysis_ids, exclude_analysis_ids=args.exclude_analysis_ids, ) if args.merge_features: featurizer.merge_features( merged_name=args.merged_name, create_sparse=args.create_sparse, create_parquet=args.create_parquet, binary=args.binary, load_extension="parquet", dask_temp_dir=args.dask_temp_dir, )
27.651429
88
0.699525
794ef2528edf9b5f5698b833e0b50158d4ed9271
10,851
py
Python
collections/nemo_asr/nemo_asr/parts/jasper.py
petermartigny/NeMo
b20821e637314940e36b63d32c601c43d1b74051
[ "Apache-2.0" ]
1
2020-03-22T11:23:11.000Z
2020-03-22T11:23:11.000Z
collections/nemo_asr/nemo_asr/parts/jasper.py
petermartigny/NeMo
b20821e637314940e36b63d32c601c43d1b74051
[ "Apache-2.0" ]
null
null
null
collections/nemo_asr/nemo_asr/parts/jasper.py
petermartigny/NeMo
b20821e637314940e36b63d32c601c43d1b74051
[ "Apache-2.0" ]
1
2019-10-23T01:19:19.000Z
2019-10-23T01:19:19.000Z
# Taken straight from Patter https://github.com/ryanleary/patter # TODO: review, and copyright and fix/add comments import torch import torch.nn as nn jasper_activations = { "hardtanh": nn.Hardtanh, "relu": nn.ReLU, "selu": nn.SELU, } def init_weights(m, mode='xavier_uniform'): if isinstance(m, nn.Conv1d) or isinstance(m, MaskedConv1d): if mode == 'xavier_uniform': nn.init.xavier_uniform_(m.weight, gain=1.0) elif mode == 'xavier_normal': nn.init.xavier_normal_(m.weight, gain=1.0) elif mode == 'kaiming_uniform': nn.init.kaiming_uniform_(m.weight, nonlinearity="relu") elif mode == 'kaiming_normal': nn.init.kaiming_normal_(m.weight, nonlinearity="relu") else: raise ValueError("Unknown Initialization mode: {0}".format(mode)) elif isinstance(m, nn.BatchNorm1d): if m.track_running_stats: m.running_mean.zero_() m.running_var.fill_(1) m.num_batches_tracked.zero_() if m.affine: nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def get_same_padding(kernel_size, stride, dilation): if stride > 1 and dilation > 1: raise ValueError("Only stride OR dilation may be greater than 1") if dilation > 1: return (dilation * kernel_size) // 2 - 1 return kernel_size // 2 class MaskedConv1d(nn.Conv1d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, heads=-1, bias=False, use_mask=True): if not (heads == -1 or groups == in_channels): raise ValueError("Only use heads for depthwise convolutions") if heads != -1: self.real_out_channels = out_channels in_channels = heads out_channels = heads groups = heads super(MaskedConv1d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.use_mask = use_mask self.heads = heads def get_seq_len(self, lens): return ((lens + 2 * self.padding[0] - self.dilation[0] * ( self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) def forward(self, x, lens): if self.use_mask: lens = lens.to(dtype=torch.long) max_len = x.size(2) mask = torch.arange(max_len).to(lens.device)\ .expand(len(lens), max_len) >= lens.unsqueeze(1) x = x.masked_fill( mask.unsqueeze(1).type(torch.bool).to(device=x.device), 0 ) del mask lens = self.get_seq_len(lens) if self.heads != -1: sh = x.shape x = x.view(-1, self.heads, sh[-1]) out, lens = super(MaskedConv1d, self).forward(x), lens if self.heads != -1: out = out.view(sh[0], self.real_out_channels, -1) return out, lens class GroupShuffle(nn.Module): def __init__(self, groups, channels): super(GroupShuffle, self).__init__() self.groups = groups self.channels_per_group = channels // groups def forward(self, x): sh = x.shape x = x.view(-1, self.groups, self.channels_per_group, sh[-1]) x = torch.transpose(x, 1, 2).contiguous() x = x.view(-1, self.groups * self.channels_per_group, sh[-1]) return x class JasperBlock(nn.Module): def __init__(self, inplanes, planes, repeat=3, kernel_size=11, stride=1, dilation=1, padding='same', dropout=0.2, activation=None, residual=True, groups=1, separable=False, heads=-1, tied=False, normalization="batch", norm_groups=1, residual_mode='add', residual_panes=[], conv_mask=False): super(JasperBlock, self).__init__() if padding != "same": raise ValueError("currently only 'same' padding is supported") padding_val = get_same_padding(kernel_size[0], stride[0], dilation[0]) self.conv_mask = conv_mask self.separable = separable self.residual_mode = residual_mode self.conv = nn.ModuleList() inplanes_loop = inplanes if tied: rep_layer = self._get_conv_bn_layer( inplanes_loop, planes, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding_val, groups=groups, heads=heads, separable=separable, normalization=normalization, norm_groups=norm_groups) for _ in range(repeat - 1): if tied: self.conv.extend(rep_layer) else: self.conv.extend( self._get_conv_bn_layer( inplanes_loop, planes, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding_val, groups=groups, heads=heads, separable=separable, normalization=normalization, norm_groups=norm_groups)) self.conv.extend( self._get_act_dropout_layer( drop_prob=dropout, activation=activation)) inplanes_loop = planes if tied: self.conv.extend(rep_layer) else: self.conv.extend( self._get_conv_bn_layer( inplanes_loop, planes, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding_val, groups=groups, heads=heads, separable=separable, normalization=normalization, norm_groups=norm_groups)) self.res = nn.ModuleList() if residual else None res_panes = residual_panes.copy() self.dense_residual = residual if residual: if len(residual_panes) == 0: res_panes = [inplanes] self.dense_residual = False for ip in res_panes: self.res.append( nn.ModuleList( modules=self._get_conv_bn_layer( ip, planes, kernel_size=1, normalization=normalization, norm_groups=norm_groups))) self.out = nn.Sequential( * self._get_act_dropout_layer( drop_prob=dropout, activation=activation)) def _get_conv_bn_layer(self, in_channels, out_channels, kernel_size=11, stride=1, dilation=1, padding=0, bias=False, groups=1, heads=-1, separable=False, normalization="batch", norm_groups=1): if norm_groups == -1: norm_groups = out_channels if separable: layers = [ MaskedConv1d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, groups=in_channels, heads=heads, use_mask=self.conv_mask), MaskedConv1d(in_channels, out_channels, kernel_size=1, stride=1, dilation=1, padding=0, bias=bias, groups=groups, use_mask=self.conv_mask) ] else: layers = [ MaskedConv1d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, groups=groups, use_mask=self.conv_mask) ] if normalization == "group": layers.append(nn.GroupNorm( num_groups=norm_groups, num_channels=out_channels)) elif normalization == "instance": layers.append(nn.GroupNorm( num_groups=out_channels, num_channels=out_channels)) elif normalization == "layer": layers.append(nn.GroupNorm( num_groups=1, num_channels=out_channels)) elif normalization == "batch": layers.append(nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.1)) else: raise ValueError( f"Normalization method ({normalization}) does not match" f" one of [batch, layer, group, instance].") if groups > 1: layers.append(GroupShuffle(groups, out_channels)) return layers def _get_act_dropout_layer(self, drop_prob=0.2, activation=None): if activation is None: activation = nn.Hardtanh(min_val=0.0, max_val=20.0) layers = [ activation, nn.Dropout(p=drop_prob) ] return layers def forward(self, input_): xs, lens_orig = input_ # compute forward convolutions out = xs[-1] lens = lens_orig for i, l in enumerate(self.conv): # if we're doing masked convolutions, we need to pass in and # possibly update the sequence lengths # if (i % 4) == 0 and self.conv_mask: if isinstance(l, MaskedConv1d): out, lens = l(out, lens) else: out = l(out) # compute the residuals if self.res is not None: for i, layer in enumerate(self.res): res_out = xs[i] for j, res_layer in enumerate(layer): if isinstance(res_layer, MaskedConv1d): res_out, _ = res_layer(res_out, lens_orig) else: res_out = res_layer(res_out) if self.residual_mode == 'add': out = out + res_out else: out = torch.max(out, res_out) # compute the output out = self.out(out) if self.res is not None and self.dense_residual: return xs + [out], lens return [out], lens
35.230519
79
0.518017
794ef309cf2c12c6de54d781a2575bfe23e58b82
920
py
Python
examples/Python/jupyter_strip_output.py
yxlao/Open3D
59691600bc0dc07a0aa4a7355b0dc5cee32d3531
[ "MIT" ]
3
2019-06-13T21:51:14.000Z
2022-03-07T11:05:23.000Z
examples/Python/jupyter_strip_output.py
yxlao/Open3D
59691600bc0dc07a0aa4a7355b0dc5cee32d3531
[ "MIT" ]
1
2019-01-24T00:33:28.000Z
2019-06-11T00:44:32.000Z
examples/Python/jupyter_strip_output.py
yxlao/Open3D
59691600bc0dc07a0aa4a7355b0dc5cee32d3531
[ "MIT" ]
3
2018-11-19T16:13:06.000Z
2019-06-13T10:17:55.000Z
import nbformat import nbconvert from pathlib import Path import os if __name__ == "__main__": # Setting os.environ["CI"] will disable interactive (blocking) mode in # Jupyter notebooks os.environ["CI"] = "true" file_dir = Path(__file__).absolute().parent nb_paths = sorted((file_dir / "Basic").glob("*.ipynb")) nb_paths += sorted((file_dir / "Advanced").glob("*.ipynb")) for nb_path in nb_paths: print(f"Clean {nb_path.name}") with open(nb_path) as f: nb = nbformat.read(f, as_version=4) ep = nbconvert.preprocessors.ClearOutputPreprocessor(timeout=6000) try: ep.preprocess(nb, {"metadata": {"path": nb_path.parent}}) except nbconvert.preprocessors.execute.CellExecutionError: print(f"Cleaning of {nb_path.name} failed") with open(nb_path, "w", encoding="utf-8") as f: nbformat.write(nb, f)
34.074074
74
0.640217
794ef459aece9ffb5dabf04b8994f620291ecd65
2,180
py
Python
base/nn/pt/model.py
yd8534976/Personae
5da37a51c446275a5d2e2c9d745fbf24b736c340
[ "MIT" ]
null
null
null
base/nn/pt/model.py
yd8534976/Personae
5da37a51c446275a5d2e2c9d745fbf24b736c340
[ "MIT" ]
null
null
null
base/nn/pt/model.py
yd8534976/Personae
5da37a51c446275a5d2e2c9d745fbf24b736c340
[ "MIT" ]
null
null
null
# coding=utf-8 import numpy as np from abc import abstractmethod class BasePTModel(object): def __init__(self, env, **options): self.env = env try: self.learning_rate = options['learning_rate'] except KeyError: self.learning_rate = 0.001 try: self.batch_size = options['batch_size'] except KeyError: self.batch_size = 32 try: self.save_path = options["save_path"] except KeyError: self.save_path = None try: self.mode = options['mode'] except KeyError: self.mode = 'train' @abstractmethod def train(self): pass @abstractmethod def predict(self, a): pass @abstractmethod def restore(self): pass @abstractmethod def run(self): pass class BaseRLPTModel(BasePTModel): def __init__(self, env, a_space, s_space, **options): super(BaseRLPTModel, self).__init__(env, **options) self.env = env self.a_space, self.s_space = a_space, s_space try: self.episodes = options['episodes'] except KeyError: self.episodes = 30 try: self.gamma = options['gamma'] except KeyError: self.gamma = 0.9 try: self.tau = options['tau'] except KeyError: self.tau = 0.01 try: self.buffer_size = options['buffer_size'] except KeyError: self.buffer_size = 2000 try: self.mode = options['mode'] except KeyError: self.mode = 'train' @abstractmethod def _init_input(self, *args): pass @abstractmethod def _init_nn(self, *args): pass @abstractmethod def _init_op(self): pass @abstractmethod def save_transition(self, s, a, r, s_n): pass @abstractmethod def log_loss(self, episode): pass @staticmethod def get_a_indices(a): a = np.where(a > 1 / 3, 2, np.where(a < - 1 / 3, 1, 0)).astype(np.int32)[0].tolist() return a
19.818182
92
0.542202
794ef61c1c9e24c6c6a75527e09ffb1fca30eb50
303
py
Python
wafw00f/plugins/tencent.py
aqyoung/scan-wafw00f
a95a94253f138d5ef791232ef4d8371de41622b6
[ "BSD-3-Clause" ]
1
2019-08-01T11:19:55.000Z
2019-08-01T11:19:55.000Z
wafw00f/plugins/tencent.py
aqyoung/scan-wafw00f
a95a94253f138d5ef791232ef4d8371de41622b6
[ "BSD-3-Clause" ]
null
null
null
wafw00f/plugins/tencent.py
aqyoung/scan-wafw00f
a95a94253f138d5ef791232ef4d8371de41622b6
[ "BSD-3-Clause" ]
2
2017-12-27T15:56:15.000Z
2017-12-27T20:03:09.000Z
#!/usr/bin/env python NAME = 'Tencent Cloud Firewall (Tencent Technologies)' def is_waf(self): for attack in self.attacks: r = attack(self) if r is None: return _, page = r if b'waf.tencent-cloud.com/' in page: return True return False
20.2
54
0.570957
794efc1b8c69f15770db216885afe17bd00c0a87
13,876
py
Python
tensor2tensor/models/mtf_resnet.py
levskaya/tensor2tensor
4643800137f802693f880a1fab9e10de7ba32e66
[ "Apache-2.0" ]
1
2021-04-05T09:55:38.000Z
2021-04-05T09:55:38.000Z
tensor2tensor/models/mtf_resnet.py
levskaya/tensor2tensor
4643800137f802693f880a1fab9e10de7ba32e66
[ "Apache-2.0" ]
null
null
null
tensor2tensor/models/mtf_resnet.py
levskaya/tensor2tensor
4643800137f802693f880a1fab9e10de7ba32e66
[ "Apache-2.0" ]
1
2020-07-13T03:15:32.000Z
2020-07-13T03:15:32.000Z
# coding=utf-8 # Copyright 2019 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ResNet model with model and data parallelism using MTF. Integration of Mesh tensorflow with ResNet to do model parallelism. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import mesh_tensorflow as mtf from tensor2tensor.layers import common_hparams from tensor2tensor.utils import mtf_model from tensor2tensor.utils import registry import tensorflow as tf BATCH_NORM_DECAY = 0.9 BATCH_NORM_EPSILON = 1e-5 def batch_norm_relu(inputs, is_training, relu=True): """Block of batch norm and relu.""" inputs = mtf.layers.batch_norm( inputs, is_training, BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, init_zero=(not relu)) if relu: inputs = mtf.relu(inputs) return inputs def bottleneck_block(inputs, filters, is_training, strides, projection_shortcut=None, row_blocks_dim=None, col_blocks_dim=None): """Bottleneck block variant for residual networks with BN after convolutions. Args: inputs: a `mtf.Tensor` of shape `[batch_dim, row_blocks, col_blocks, rows, cols, in_channels]`. filters: `int` number of filters for the first two convolutions. Note that the third and final convolution will use 4 times as many filters. is_training: `bool` for whether the model is in training mode. strides: `int` block stride. If greater than 1, this block will ultimately downsample the input. projection_shortcut: `function` to use for projection shortcuts (typically a 1x1 convolution to match the filter dimensions). If None, no projection is used and the input is passed as unchanged through the shortcut connection. row_blocks_dim: a mtf.Dimension, row dimension which is spatially partitioned along mesh axis col_blocks_dim: a mtf.Dimension, row dimension which is spatially partitioned along mesh axis Returns: The output `Tensor` of the block. """ shortcut = inputs if projection_shortcut is not None: filters_dim = mtf.Dimension("filtersp", filters) shortcut = projection_shortcut(inputs, filters_dim) # First conv block inputs = mtf.layers.conv2d_with_blocks( inputs, mtf.Dimension("filters1", filters), filter_size=[1, 1], strides=[1, 1], padding="SAME", h_blocks_dim=None, w_blocks_dim=col_blocks_dim, name="conv0") # TODO(nikip): Add Dropout? inputs = batch_norm_relu(inputs, is_training) # Second conv block inputs = mtf.layers.conv2d_with_blocks( inputs, mtf.Dimension("filters2", 4 * filters), filter_size=[3, 3], strides=[1, 1], padding="SAME", h_blocks_dim=row_blocks_dim, w_blocks_dim=col_blocks_dim, name="conv1") inputs = batch_norm_relu(inputs, is_training) # Third wide conv filter block inputs = mtf.layers.conv2d_with_blocks( inputs, mtf.Dimension("filters3", filters), filter_size=[1, 1], strides=strides, padding="SAME", h_blocks_dim=None, w_blocks_dim=col_blocks_dim, name="conv2") # TODO(nikip): Althought the original resnet code has this batch norm, in our # setup this is causing no gradients to be passed. Investigate further. # inputs = batch_norm_relu(inputs, is_training, relu=True) # TODO(nikip): Maybe add residual with a projection? return mtf.relu( shortcut + mtf.rename_dimension( inputs, inputs.shape.dims[-1].name, shortcut.shape.dims[-1].name)) def block_layer(inputs, filters, blocks, strides, is_training, name, row_blocks_dim=None, col_blocks_dim=None): """Creates one layer of blocks for the ResNet model. Args: inputs: `Tensor` of size `[batch, channels, height, width]`. filters: `int` number of filters for the first convolution of the layer. blocks: `int` number of blocks contained in the layer. strides: `int` stride to use for the first convolution of the layer. If greater than 1, this layer will downsample the input. is_training: `bool` for whether the model is training. name: `str`name for the Tensor output of the block layer. row_blocks_dim: a mtf.Dimension, row dimension which is spatially partitioned along mesh axis col_blocks_dim: a mtf.Dimension, row dimension which is spatially partitioned along mesh axis Returns: The output `Tensor` of the block layer. """ with tf.variable_scope(name, default_name="block_layer"): # Only the first block per block_layer uses projection_shortcut and strides def projection_shortcut(inputs, output_dim): """Project identity branch.""" inputs = mtf.layers.conv2d_with_blocks( inputs, output_dim, filter_size=[1, 1], strides=strides, padding="SAME", h_blocks_dim=None, w_blocks_dim=col_blocks_dim, name="shortcut0") return batch_norm_relu( inputs, is_training, relu=False) inputs = bottleneck_block( inputs, filters, is_training, strides=strides, projection_shortcut=projection_shortcut, row_blocks_dim=row_blocks_dim, col_blocks_dim=col_blocks_dim) for i in range(1, blocks): with tf.variable_scope("bottleneck_%d" % i): inputs = bottleneck_block( inputs, filters, is_training, strides=[1, 1, 1, 1], projection_shortcut=None, row_blocks_dim=row_blocks_dim, col_blocks_dim=col_blocks_dim) return inputs @registry.register_model class MtfResNet(mtf_model.MtfModel): """ResNet in mesh_tensorflow.""" def set_activation_type(self): hparams = self._hparams if hparams.activation_dtype == "float32": activation_dtype = tf.float32 elif hparams.activation_dtype == "float16": activation_dtype = tf.float16 elif hparams.activation_dtype == "bfloat16": activation_dtype = tf.bfloat16 else: raise ValueError( "unknown hparams.activation_dtype %s" % hparams.activation_dtype) return activation_dtype def mtf_model_fn(self, features, mesh): features = copy.copy(features) tf.logging.info("features = %s" % features) hparams = self._hparams activation_dtype = self.set_activation_type() is_training = hparams.mode == tf.estimator.ModeKeys.TRAIN # Declare all the dimensions batch_dim = mtf.Dimension("batch", hparams.batch_size) hidden_dim = mtf.Dimension("hidden", hparams.hidden_size) filter_dim = mtf.Dimension("filters", hparams.filter_sizes[0]) rows_dim = mtf.Dimension("rows_size", hparams.rows_size) cols_dim = mtf.Dimension("cols_size", hparams.cols_size) row_blocks_dim = mtf.Dimension("row_blocks", hparams.row_blocks) col_blocks_dim = mtf.Dimension("col_blocks", hparams.col_blocks) classes_dim = mtf.Dimension("classes", 10) channels_dim = mtf.Dimension("channels", 3) one_channel_dim = mtf.Dimension("one_channel", 1) inputs = features["inputs"] x = mtf.import_tf_tensor( mesh, tf.reshape(inputs, [ hparams.batch_size, hparams.row_blocks, hparams.rows_size // hparams.row_blocks, hparams.col_blocks, hparams.num_channels*hparams.cols_size // hparams.col_blocks, hparams.num_channels]), mtf.Shape( [batch_dim, row_blocks_dim, rows_dim, col_blocks_dim, cols_dim, channels_dim])) x = mtf.transpose(x, [batch_dim, row_blocks_dim, col_blocks_dim, rows_dim, cols_dim, channels_dim]) x = mtf.to_float(x) x = mtf.layers.conv2d_with_blocks( x, filter_dim, filter_size=[3, 3], strides=[1, 1], padding="SAME", h_blocks_dim=None, w_blocks_dim=col_blocks_dim, name="initial_filter") x = batch_norm_relu(x, is_training) # Conv blocks # [block - strided block layer - strided block layer] x n for layer in range(hparams.num_layers): layer_name = "block_layer_%d" % layer with tf.variable_scope(layer_name): # Residual block layer x = block_layer( inputs=x, filters=hparams.filter_sizes[0], blocks=hparams.layer_sizes[0], strides=[1, 1], is_training=is_training, name="block_layer1", row_blocks_dim=None, col_blocks_dim=None) x = block_layer( inputs=x, filters=hparams.filter_sizes[1], blocks=hparams.layer_sizes[1], strides=[1, 1], is_training=is_training, name="block_layer2", row_blocks_dim=None, col_blocks_dim=None) x = block_layer( inputs=x, filters=hparams.filter_sizes[2], blocks=hparams.layer_sizes[2], strides=[1, 1], is_training=is_training, name="block_layer3", row_blocks_dim=None, col_blocks_dim=None) # Calculate the logits and loss. out = x outputs = mtf.layers.dense( out, hidden_dim, reduced_dims=out.shape.dims[-5:], activation=mtf.relu, name="dense") # We assume fixed vocab size for targets labels = tf.squeeze(tf.to_int32(features["targets"]), [2, 3]) labels = mtf.import_tf_tensor( mesh, tf.reshape(labels, [hparams.batch_size]), mtf.Shape([batch_dim])) logits = mtf.layers.dense(outputs, classes_dim, name="logits") soft_targets = mtf.one_hot(labels, classes_dim, dtype=activation_dtype) loss = mtf.layers.softmax_cross_entropy_with_logits( logits, soft_targets, classes_dim) # Reshape logits so it doesn't break inside t2t. logits = mtf.reshape( logits, mtf.Shape([batch_dim, one_channel_dim, classes_dim])) loss = mtf.reduce_mean(loss) return logits, loss @registry.register_hparams def mtf_resnet_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.no_data_parallelism = True hparams.use_fixed_batch_size = True hparams.batch_size = 32 hparams.max_length = 3072 hparams.hidden_size = 256 hparams.label_smoothing = 0.0 # 8-way model-parallelism hparams.add_hparam("mesh_shape", "batch:8") hparams.add_hparam("layout", "batch:batch") hparams.add_hparam("filter_size", 1024) hparams.add_hparam("num_layers", 6) # Share weights between input and target embeddings hparams.shared_embedding = True hparams.shared_embedding_and_softmax_weights = True hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" hparams.learning_rate_warmup_steps = 10000 hparams.add_hparam("d_kv", 32) # Image related hparams hparams.add_hparam("img_len", 32) hparams.add_hparam("num_channels", 3) hparams.add_hparam("row_blocks", 1) hparams.add_hparam("col_blocks", 1) hparams.add_hparam("rows_size", 32) hparams.add_hparam("cols_size", 32) # Model-specific parameters hparams.add_hparam("layer_sizes", [3, 4, 6, 3]) hparams.add_hparam("filter_sizes", [64, 64, 128, 256, 512]) hparams.add_hparam("is_cifar", False) # Variable init hparams.initializer = "normal_unit_scaling" hparams.initializer_gain = 2. # TODO(nikip): Change optimization scheme? hparams.learning_rate = 0.1 return hparams @registry.register_hparams def mtf_resnet_tiny(): """Catch bugs locally...""" hparams = mtf_resnet_base() hparams.num_layers = 2 hparams.hidden_size = 64 hparams.filter_size = 64 hparams.batch_size = 16 # data parallelism and model-parallelism hparams.col_blocks = 1 hparams.mesh_shape = "batch:2" hparams.layout = "batch:batch" hparams.layer_sizes = [1, 2, 3] hparams.filter_sizes = [64, 64, 64] return hparams @registry.register_hparams def mtf_resnet_single(): """Small single parameters.""" hparams = mtf_resnet_tiny() hparams.mesh_shape = "" hparams.layout = "" hparams.hidden_size = 32 hparams.filter_size = 32 hparams.batch_size = 1 hparams.num_encoder_layers = 1 hparams.num_layers = 1 hparams.block_length = 16 return hparams @registry.register_hparams def mtf_resnet_base_single(): """Small single parameters.""" hparams = mtf_resnet_base() hparams.num_layers = 6 hparams.filter_size = 256 hparams.block_length = 128 hparams.mesh_shape = "" hparams.layout = "" return hparams @registry.register_hparams def mtf_resnet_base_cifar(): """Data parallel CIFAR parameters.""" hparams = mtf_resnet_base() hparams.mesh_shape = "batch:32" hparams.layoyt = "batch:batch" hparams.batch_size = 8 hparams.num_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.learning_rate = 0.5 hparams.learning_rate_warmup_steps = 4000 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 hparams.unconditional = True return hparams
32.57277
79
0.679374
794efd079558e810e6448e15461f656d62951170
1,872
py
Python
connector/mysql.py
BranKein/Practice-for-Transporting-Image-by-Flask
22b4185ef3329a1c3408bd634dd85cc5e31edd0f
[ "MIT" ]
null
null
null
connector/mysql.py
BranKein/Practice-for-Transporting-Image-by-Flask
22b4185ef3329a1c3408bd634dd85cc5e31edd0f
[ "MIT" ]
null
null
null
connector/mysql.py
BranKein/Practice-for-Transporting-Image-by-Flask
22b4185ef3329a1c3408bd634dd85cc5e31edd0f
[ "MIT" ]
null
null
null
from config.mysql import host, port, username, password, database import pymysql class Transaction(object): def __init__(self, sql): self.sql = sql def start(self, level='REPEATABLE READ'): self.sql.query("SET AUTOCOMMIT=FALSE") self.sql.query(f"SET SESSION TRANSACTION ISOLATION LEVEL {level}") self.sql.query("SET innodb_lock_wait_timeout = 10") self.sql.query("START TRANSACTION") def commit(self): self.sql.query("COMMIT") self.sql.query("SET AUTOCOMMIT=TRUE") def rollback(self): self.sql.query("ROLLBACK") self.sql.query("SET AUTOCOMMIT=TRUE") class MySQL(object): def __init__(self, dict_cursor=False): try: self.__connInfo = pymysql.connect(host=host, port=port, user=username, password=password, db=database, charset='utf8') except Exception as e: self.__cursor = None raise e else: if dict_cursor: self.__cursor = self.__connInfo.cursor(pymysql.cursors.DictCursor) else: self.__cursor = self.__connInfo.cursor() self.query("SET AUTOCOMMIT=TRUE") self.query("SET TIME_ZONE='+09:00'") return def __del__(self): try: self.__connInfo.close() except: return False else: return True def query(self, query_string, *args): if query_string is None: return None if self.__cursor is None: return None self.__cursor.execute(query_string, *args) return self.__cursor.fetchall() def escape(self, string): return self.__connInfo.escape(string) @property def transaction(self): return Transaction(self) __all__ = ['MySQL']
28.363636
93
0.586538
794efd88c4c591016cc9be45d1d45757d02b47ff
4,887
py
Python
third_party/Paste/paste/translogger.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
third_party/Paste/paste/translogger.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
4,640
2015-07-08T16:19:08.000Z
2019-12-02T15:01:27.000Z
third_party/Paste/paste/translogger.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
# (c) 2005 Ian Bicking and contributors; written for Paste (http://pythonpaste.org) # Licensed under the MIT license: http://www.opensource.org/licenses/mit-license.php """ Middleware for logging requests, using Apache combined log format """ import logging import six import time from six.moves.urllib.parse import quote class TransLogger(object): """ This logging middleware will log all requests as they go through. They are, by default, sent to a logger named ``'wsgi'`` at the INFO level. If ``setup_console_handler`` is true, then messages for the named logger will be sent to the console. """ format = ('%(REMOTE_ADDR)s - %(REMOTE_USER)s [%(time)s] ' '"%(REQUEST_METHOD)s %(REQUEST_URI)s %(HTTP_VERSION)s" ' '%(status)s %(bytes)s "%(HTTP_REFERER)s" "%(HTTP_USER_AGENT)s"') def __init__(self, application, logger=None, format=None, logging_level=logging.INFO, logger_name='wsgi', setup_console_handler=True, set_logger_level=logging.DEBUG): if format is not None: self.format = format self.application = application self.logging_level = logging_level self.logger_name = logger_name if logger is None: self.logger = logging.getLogger(self.logger_name) if setup_console_handler: console = logging.StreamHandler() console.setLevel(logging.DEBUG) # We need to control the exact format: console.setFormatter(logging.Formatter('%(message)s')) self.logger.addHandler(console) self.logger.propagate = False if set_logger_level is not None: self.logger.setLevel(set_logger_level) else: self.logger = logger def __call__(self, environ, start_response): start = time.localtime() req_uri = quote(environ.get('SCRIPT_NAME', '') + environ.get('PATH_INFO', '')) if environ.get('QUERY_STRING'): req_uri += '?'+environ['QUERY_STRING'] method = environ['REQUEST_METHOD'] def replacement_start_response(status, headers, exc_info=None): # @@: Ideally we would count the bytes going by if no # content-length header was provided; but that does add # some overhead, so at least for now we'll be lazy. bytes = None for name, value in headers: if name.lower() == 'content-length': bytes = value self.write_log(environ, method, req_uri, start, status, bytes) return start_response(status, headers) return self.application(environ, replacement_start_response) def write_log(self, environ, method, req_uri, start, status, bytes): if bytes is None: bytes = '-' if time.daylight: offset = time.altzone / 60 / 60 * -100 else: offset = time.timezone / 60 / 60 * -100 if offset >= 0: offset = "+%0.4d" % (offset) elif offset < 0: offset = "%0.4d" % (offset) remote_addr = '-' if environ.get('HTTP_X_FORWARDED_FOR'): remote_addr = environ['HTTP_X_FORWARDED_FOR'] elif environ.get('REMOTE_ADDR'): remote_addr = environ['REMOTE_ADDR'] d = { 'REMOTE_ADDR': remote_addr, 'REMOTE_USER': environ.get('REMOTE_USER') or '-', 'REQUEST_METHOD': method, 'REQUEST_URI': req_uri, 'HTTP_VERSION': environ.get('SERVER_PROTOCOL'), 'time': time.strftime('%d/%b/%Y:%H:%M:%S ', start) + offset, 'status': status.split(None, 1)[0], 'bytes': bytes, 'HTTP_REFERER': environ.get('HTTP_REFERER', '-'), 'HTTP_USER_AGENT': environ.get('HTTP_USER_AGENT', '-'), } message = self.format % d self.logger.log(self.logging_level, message) def make_filter( app, global_conf, logger_name='wsgi', format=None, logging_level=logging.INFO, setup_console_handler=True, set_logger_level=logging.DEBUG): from paste.util.converters import asbool if isinstance(logging_level, (six.binary_type, six.text_type)): logging_level = logging._levelNames[logging_level] if isinstance(set_logger_level, (six.binary_type, six.text_type)): set_logger_level = logging._levelNames[set_logger_level] return TransLogger( app, format=format or None, logging_level=logging_level, logger_name=logger_name, setup_console_handler=asbool(setup_console_handler), set_logger_level=set_logger_level) make_filter.__doc__ = TransLogger.__doc__
39.731707
84
0.600982
794efd8d9f55c7a682c977d933372fde3793b48a
1,755
bzl
Python
build/rust_toolchains.bzl
jmillikin/rust-fuse
17ea55d66d171b44877fa1610365ea9e459be2a2
[ "Apache-2.0" ]
17
2020-08-07T10:36:45.000Z
2022-02-07T07:18:39.000Z
build/rust_toolchains.bzl
jmillikin/rust-fuse
17ea55d66d171b44877fa1610365ea9e459be2a2
[ "Apache-2.0" ]
11
2020-08-02T04:47:38.000Z
2020-08-19T06:40:02.000Z
build/rust_toolchains.bzl
jmillikin/rust-fuse
17ea55d66d171b44877fa1610365ea9e459be2a2
[ "Apache-2.0" ]
3
2021-02-28T03:58:44.000Z
2022-02-07T07:18:42.000Z
load("@io_bazel_rules_rust//rust:repositories.bzl", "rust_repository_set") _NIGHTLY_DATE = "2020-12-30" _SHA256S = { "2020-12-30/rust-nightly-x86_64-apple-darwin": "2b5b885694d0d1a9bdd0473d9e2df1f2c6eac88986e3135e6573e1d71e7824dc", "2020-12-30/llvm-tools-nightly-x86_64-apple-darwin": "8aca7ddf73983bf2db4846721787547fed16c2ad4dc5c260f7f05f6b93cea8e7", "2020-12-30/rust-std-nightly-x86_64-apple-darwin": "17912a6a5aa56daeb0aed5fca8698bacc54950351d9f91989a524588e37e41ca", "2020-12-30/rust-std-nightly-armv7-unknown-linux-musleabihf": "c7176fe7fccd6ab71535ce1abf81ab71c8cfdffbaa0f51f71d1d13b7f4526f22", "2020-12-30/rust-std-nightly-x86_64-unknown-linux-musl": "3802d2c7271cdd3fc35921b0d9f999b9b34ac9d888b62085b976453a8b113700", } def _rust_repository_set(**kwargs): rust_repository_set( edition = "2018", iso_date = _NIGHTLY_DATE, rustfmt_version = "1.4.20", sha256s = _SHA256S, version = "nightly", **kwargs ) def rust_toolchains(): _rust_repository_set( name = "rustc_armv7-unknown-linux-musleabihf_{}".format(_NIGHTLY_DATE), exec_triple = "armv7-unknown-linux-musleabihf", extra_target_triples = [ "x86_64-unknown-linux-musl", ], ) _rust_repository_set( name = "rustc_x86_64-unknown-linux-musl_{}".format(_NIGHTLY_DATE), exec_triple = "x86_64-unknown-linux-musl", extra_target_triples = [ "armv7-unknown-linux-musleabihf", ], ) _rust_repository_set( name = "rustc_x86_64-apple-darwin_{}".format(_NIGHTLY_DATE), exec_triple = "x86_64-apple-darwin", extra_target_triples = [ "armv7-unknown-linux-musleabihf", "x86_64-unknown-linux-musl", "x86_64-unknown-freebsd", ], )
37.340426
133
0.720228
794eff0da7b004c1e15458d9bef4c8ce05f54654
4,169
py
Python
app/service/auth_svc.py
IGchra/caldera
75f5a9c3f63139f8f3c6ee6e7cb4ce094e82b1b9
[ "Apache-2.0" ]
1
2020-01-27T00:48:03.000Z
2020-01-27T00:48:03.000Z
app/service/auth_svc.py
EmilioPanti/caldera
e743703b11883c08d415650e84bbc43bf6d9e9b7
[ "Apache-2.0" ]
null
null
null
app/service/auth_svc.py
EmilioPanti/caldera
e743703b11883c08d415650e84bbc43bf6d9e9b7
[ "Apache-2.0" ]
null
null
null
import base64 from collections import namedtuple from aiohttp import web from aiohttp.web_exceptions import HTTPUnauthorized, HTTPForbidden from aiohttp_security import SessionIdentityPolicy, check_permission, remember, forget from aiohttp_security import setup as setup_security from aiohttp_security.abc import AbstractAuthorizationPolicy from aiohttp_session import setup as setup_session from aiohttp_session.cookie_storage import EncryptedCookieStorage from cryptography import fernet from app.utility.base_service import BaseService def check_authorization(func): async def process(func, *args, **params): return await func(*args, **params) async def helper(*args, **params): await args[0].auth_svc.check_permissions(args[1]) result = await process(func, *args, **params) return result return helper class AuthService(BaseService): User = namedtuple('User', ['username', 'password', 'permissions']) def __init__(self, api_key): self.api_key = api_key self.user_map = dict() self.log = self.add_service('auth_svc', self) async def apply(self, app, users): """ Set up security on server boot :param app: :param users: :return: None """ for k, v in users.items(): self.user_map[k] = self.User(k, v, ('admin', 'user'),) app.user_map = self.user_map fernet_key = fernet.Fernet.generate_key() secret_key = base64.urlsafe_b64decode(fernet_key) storage = EncryptedCookieStorage(secret_key, cookie_name='API_SESSION') setup_session(app, storage) policy = SessionIdentityPolicy() setup_security(app, policy, DictionaryAuthorizationPolicy(self.user_map)) @staticmethod async def logout_user(request): """ Log the user out :param request: :return: None """ await forget(request, web.Response()) raise web.HTTPFound('/login') async def login_user(self, request): """ Log a user in and save the session :param request: :return: the response/location of where the user is trying to navigate """ data = await request.post() response = web.HTTPFound('/') verified = await self._check_credentials( request.app.user_map, data.get('username'), data.get('password')) if verified: await remember(request, response, data.get('username')) return response raise web.HTTPFound('/login') async def check_permissions(self, request): """ Check if a request is allowed based on the user permissions :param request: :return: None """ try: if request.headers.get('API_KEY') == self.api_key: return True elif 'localhost:' in request.host: return True await check_permission(request, 'admin') except (HTTPUnauthorized, HTTPForbidden): raise web.HTTPFound('/login') """ PRIVATE """ async def _check_credentials(self, user_map, username, password): self.log.debug('%s logging in' % username) user = user_map.get(username) if not user: return False return user.password == password class DictionaryAuthorizationPolicy(AbstractAuthorizationPolicy): def __init__(self, user_map): super().__init__() self.user_map = user_map async def authorized_userid(self, identity): """Retrieve authorized user id. Return the user_id of the user identified by the identity or 'None' if no user exists related to the identity. """ if identity in self.user_map: return identity async def permits(self, identity, permission, context=None): """Check user permissions. Return True if the identity is allowed the permission in the current context, else return False. """ user = self.user_map.get(identity) if not user: return False return permission in user.permissions
32.069231
86
0.6426
794f001d000687700b3233986b0bdb66d772c252
1,919
py
Python
tareas/2/ArvizuLuis/Asesorias_Luis.py
Miguelp-rez/sistop-2019-2
428444217ba0cc98030a9d84d8b415dcddad9b65
[ "CC-BY-4.0" ]
null
null
null
tareas/2/ArvizuLuis/Asesorias_Luis.py
Miguelp-rez/sistop-2019-2
428444217ba0cc98030a9d84d8b415dcddad9b65
[ "CC-BY-4.0" ]
null
null
null
tareas/2/ArvizuLuis/Asesorias_Luis.py
Miguelp-rez/sistop-2019-2
428444217ba0cc98030a9d84d8b415dcddad9b65
[ "CC-BY-4.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import time import threading global alumno alumno = 0 #contador para el alumno preguntas = 0 # ontador para las preguntas max_preguntas = 3 #maximo de preguntas realizadas por cada alumno max_alumnos = 5 #maximo de alumnos aceptados en el cubiculo mutex = threading.Semaphore (1) profesor = threading.Semaphore(0) def Asesoria(): #Profesor resuelve dudas a los alumnos time.sleep (1) print ' ---- Profesor resolviendo dudas a Alumnos ---- ' def Pregunta(): #Los alumnos hacen sus 3 preguntas al profesor global preguntas global alumno print ' \nAlumno preguntando ' print 'pregunta = 1' preguntas += 1 print 'pregunta = 2' preguntas += 1 print 'pregunta = 3' preguntas += 1 if preguntas == max_preguntas: #Si el alumno hace sus 3 preguntas print '\nSale el Alumno' #El alumno sale alumno -= 1 #DEja libre un espacio en el cubiculo print ' \nQuedan %d' %(alumno) + ' alumnos' if alumno >= 5: alumno ==-5 print 'Quedo vacio el cubiculo \n' print 'El profesor duerme... \n' def Profesor(): global alumno global preguntas while True: profesor.acquire() #El profesor despierta para dar las asesorias print '\n Profesor Despierto!' #mensaje que indica que el profesor desperto mutex.acquire() Pregunta() #los alumnos preguntan mutex.release() def Alumno(): global alumno global preguntas mutex.acquire() alumno += 1 #Añade a los alumnos que van llegandop al cubiculo print 'Llega un Alumno \n Total de Alumnos = %d' %(alumno) if alumno == max_alumnos: #Si son 5 alumnos, el profesor despierta profesor.release() print '\t\n 5 Alumnos... \n\n' + 'Despertando al profesor...' Asesoria() #inicia la asesoria Pregunta() #los alumnos preguntan mutex.release() threading.Thread(target = Profesor, args = []).start() while True: threading.Thread(target = Alumno, args = []).start() time.sleep(1)
24.602564
77
0.702449
794f010f3ab22c60fe35b9e00963f2bc4945c0d8
392
py
Python
database/migrations/0009_auto_20191227_1558.py
r0somak/inzynierka
9306f19fcce9ff1dbb3c7e47874d963769af7508
[ "MIT" ]
2
2020-01-08T11:42:08.000Z
2020-01-08T12:37:50.000Z
database/migrations/0009_auto_20191227_1558.py
r0somak/inzynierka
9306f19fcce9ff1dbb3c7e47874d963769af7508
[ "MIT" ]
10
2021-03-09T23:21:46.000Z
2022-02-26T20:12:59.000Z
database/migrations/0009_auto_20191227_1558.py
r0somak/inzynierka
9306f19fcce9ff1dbb3c7e47874d963769af7508
[ "MIT" ]
1
2020-02-17T08:27:09.000Z
2020-02-17T08:27:09.000Z
# Generated by Django 3.0 on 2019-12-27 15:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('database', '0008_auto_20191227_1302'), ] operations = [ migrations.AlterModelOptions( name='daneepidemiologiczne', options={'ordering': ('data', 'dane_statystyczne__wojewodztwo')}, ), ]
21.777778
77
0.630102
794f01f0e714722648f3cf9d4e2f18fa4b309235
496
py
Python
plotly/validators/scatterpolar/selected/marker/_color.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/scatterpolar/selected/marker/_color.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/scatterpolar/selected/marker/_color.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='color', parent_name='scatterpolar.selected.marker', **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'style'), role=kwargs.pop('role', 'style'), **kwargs )
26.105263
66
0.608871
794f0316b5c80f41d7e861646129285de950a733
1,052
py
Python
tests/setup_data.py
dmlerner/ynabassistant
8482a0cffb38dcb59c7d1ce00a524e07707e3ec1
[ "MIT" ]
19
2019-12-23T14:35:37.000Z
2021-04-07T03:37:40.000Z
tests/setup_data.py
jhult/assistantforynab
96a213c19f08190a2d352a8759f75f761a9a6089
[ "MIT" ]
1
2019-12-20T21:27:51.000Z
2019-12-20T21:27:51.000Z
tests/setup_data.py
jhult/assistantforynab
96a213c19f08190a2d352a8759f75f761a9a6089
[ "MIT" ]
4
2020-01-10T14:38:08.000Z
2021-05-09T00:15:50.000Z
from assistantforynab.ynab import ynab from assistantforynab import settings, utils from assistantforynab.assistant import Assistant ''' Restore state for start of tests: Test data has unlabeled/unsplit Annotated has labeled/split Chase Amazon is empty No other accounts ''' def delete_extra_accounts(): whitelist = list(map(Assistant.accounts.by_name, ('Test Data', 'Annotated'))) utils.log_info('WARNING: THIS WILL DELETE ALL ACCOUNTS EXCEPT %s!!!' % whitelist) confirm = input('Type "confirm" to confirm') == 'confirm' if not confirm: return to_delete = filter(lambda a: a not in whitelist, Assistant.accounts) ynab.queue_delete_accounts(to_delete) return whitelist def main(): ynab.api_client.init() Assistant.download_ynab(accounts=True, transactions=True) test_data, annotated = delete_extra_accounts() ynab.do() Assistant.download_ynab(accounts=True) ynab.queue_clone_account(test_data, settings.account_name) ynab.do() if __name__ == '__main__': main()
28.432432
85
0.726236
794f0353dbbc851cc1a50b03c6cf6a59d763e18b
9,733
py
Python
prody/trajectory/trajectory.py
RuJinlong/ProDy
cf23b96f147321e365b2c5fd2a527018c1babb67
[ "MIT" ]
1
2021-06-20T11:53:09.000Z
2021-06-20T11:53:09.000Z
prody/trajectory/trajectory.py
rujinlong/ProDy
cf23b96f147321e365b2c5fd2a527018c1babb67
[ "MIT" ]
null
null
null
prody/trajectory/trajectory.py
rujinlong/ProDy
cf23b96f147321e365b2c5fd2a527018c1babb67
[ "MIT" ]
1
2021-11-04T21:48:14.000Z
2021-11-04T21:48:14.000Z
# -*- coding: utf-8 -*- """This module defines a class for handling multiple trajectories.""" import os.path import numpy as np from .trajbase import TrajBase from .frame import Frame from prody.trajectory import openTrajFile __all__ = ['Trajectory'] class Trajectory(TrajBase): """A class for handling trajectories in multiple files.""" def __init__(self, name, **kwargs): """Trajectory can be instantiated with a *name* or a filename. When name is a valid path to a trajectory file it will be opened for reading.""" TrajBase.__init__(self, name) self._trajectory = None self._trajectories = [] self._filenames = set() self._n_files = 0 self._cfi = 0 # current file index assert 'mode' not in kwargs, 'mode is an invalid keyword argument' self._kwargs = kwargs if os.path.isfile(name): self.addFile(name) def __repr__(self): if self._closed: return '<Trajectory: {0} (closed)>'.format(self._title) link = '' if self._ag is not None: link = 'linked to ' + str(self._ag) + '; ' files = '' if self._n_files > 1: files = '{0} files; '.format(self._n_files) next = 'next {0} of {1} frames; '.format(self._nfi, self._n_csets) if self._indices is None: atoms = '{0} atoms'.format(self._n_atoms) else: atoms = 'selected {0} of {1} atoms'.format( self.numSelected(), self._n_atoms) return '<Trajectory: {0} ({1}{2}{3}{4})>'.format( self._title, link, files, next, atoms) def _nextFile(self): self._cfi += 1 if self._cfi < self._n_files: self._trajectory = self._trajectories[self._cfi] if self._trajectory.nextIndex() > 0: self._trajectory.reset() def _gotoFile(self, i): if i < self._n_files: self._cfi = i self._trajectory = self._trajectories[i] if self._trajectory.nextIndex() > 0: self._trajectory.reset() def setAtoms(self, atoms): for traj in self._trajectories: traj.setAtoms(atoms) TrajBase.setAtoms(self, atoms) setAtoms.__doc__ = TrajBase.setAtoms.__doc__ def link(self, *ag): if ag: TrajBase.link(self, *ag) for traj in self._trajectories: traj.link(*ag) else: return self._ag link.__doc__ = TrajBase.link.__doc__ def addFile(self, filename, **kwargs): """Add a file to the trajectory instance. Currently only DCD files are supported.""" if not isinstance(filename, str): raise ValueError('filename must be a string') if os.path.abspath(filename) in self._filenames: raise IOError('{0} is already added to the trajectory' .format(filename)) assert 'mode' not in kwargs, 'mode is an invalid keyword argument' traj = openTrajFile(filename, **(kwargs or self._kwargs)) n_atoms = self._n_atoms if n_atoms != 0 and n_atoms != traj.numAtoms(): raise IOError('{0} must have same number of atoms as ' 'previously loaded files'.format(traj.getTitle())) if self._n_files == 0: self._trajectory = traj self._title = traj.getTitle() if n_atoms == 0: self._n_atoms = traj.numAtoms() self._coords = traj._coords self._trajectories.append(traj) self._n_csets += traj.numFrames() self._n_files += 1 if self._ag is not None: traj.setAtoms(self._ag) def numFiles(self): """Return number of open trajectory files.""" return self._n_files def getFilenames(self, absolute=False): """Return list of filenames opened for reading.""" return [traj.getFilename(absolute) for traj in self._trajectories] def getFrame(self, index): if self._closed: raise ValueError('I/O operation on closed file') self.goto(index) return next(self) def getCoordsets(self, indices=None): if self._closed: raise ValueError('I/O operation on closed file') if indices is None: indices = np.arange(self._n_csets) elif isinstance(indices, int): indices = np.array([indices]) elif isinstance(indices, slice): indices = np.arange(*indices.indices(self._n_csets)) indices.sort() elif isinstance(indices, (list, np.ndarray)): indices = np.unique(indices) else: raise TypeError('indices must be an integer or a list of ' 'integers') nfi = self._nfi self.reset() coords = np.zeros((len(indices), self.numSelected(), 3), self._trajectories[0]._dtype) prev = 0 next = self.nextCoordset for i, index in enumerate(indices): diff = index - prev if diff > 1: self.skip(diff) coords[i] = next() prev = index self.goto(nfi) return coords getCoordsets.__doc__ = TrajBase.getCoordsets.__doc__ def __next__(self): if self._closed: raise ValueError('I/O operation on closed file') nfi = self._nfi if nfi < self._n_csets: traj = self._trajectory while traj._nfi == traj._n_csets: self._nextFile() traj = self._trajectory unitcell = traj._nextUnitcell() coords = traj._nextCoordset() if self._ag is None: frame = Frame(self, nfi, coords, unitcell) else: frame = self._frame Frame.__init__(frame, self, nfi, None, unitcell) self._ag.setACSLabel(self._title + ' frame ' + str(self._nfi)) self._nfi += 1 return frame __next__.__doc__ = TrajBase.__next__.__doc__ next = __next__ def nextCoordset(self): if self._closed: raise ValueError('I/O operation on closed file') if self._nfi < self._n_csets: traj = self._trajectory while traj._nfi == traj._n_csets: self._nextFile() traj = self._trajectory if self._ag is not None: self._ag.setACSLabel(self._title + ' frame ' + str(self._nfi)) traj = self._trajectory self._nfi += 1 #if self._indices is None: return traj.nextCoordset() #else: # return traj.nextCoordset()[self._indices] nextCoordset.__doc__ = TrajBase.nextCoordset.__doc__ def goto(self, n): if self._closed: raise ValueError('I/O operation on closed file') if not isinstance(n, int): raise ValueError('n must be an integer') n_csets = self._n_csets if n == 0: self.reset() else: if n < 0: n = n_csets + n if n < 0: n = 0 elif n > n_csets: n = n_csets nfi = n for which, traj in enumerate(self._trajectories): if traj._n_csets >= nfi: break else: nfi -= traj._n_csets self._gotoFile(which) self._trajectory.goto(nfi) self._nfi = n goto.__doc__ = TrajBase.goto.__doc__ def skip(self, n): if self._closed: raise ValueError('I/O operation on closed file') if not isinstance(n, int): raise ValueError('n must be an integer') left = self._n_csets - self._nfi if n > left: n = left while self._nfi < self._n_csets and n > 0: traj = self._trajectory skip = min(n, traj.numFrames() - traj.nextIndex()) traj.skip(skip) if n > skip: self._nextFile() self._nfi += skip n -= skip skip.__doc__ = TrajBase.skip.__doc__ def reset(self): if self._closed: raise ValueError('I/O operation on closed file') if self._trajectories: for traj in self._trajectories: traj.reset() self._trajectory = self._trajectories[0] self._cfi = 0 self._nfi = 0 reset.__doc__ = TrajBase.reset.__doc__ def close(self): for traj in self._trajectories: traj.close() self._closed = True close.__doc__ = TrajBase.close.__doc__ def hasUnitcell(self): return np.all([traj.hasUnitcell() for traj in self._trajectories]) hasUnitcell.__doc__ = TrajBase.hasUnitcell.__doc__ def getTimestep(self): """Return list of timestep sizes, one number from each file.""" return [traj.getTimestep() for traj in self._trajectories] def getFirstTimestep(self): """Return list of first timestep values, one number from each file.""" return [traj.getFirstTimestep() for traj in self._trajectories] def getFrameFreq(self): """Return list of timesteps between frames, one number from each file. """ return [traj.getFrameFreq() for traj in self._trajectories] def numFixed(self): """Return a list of fixed atom numbers, one from each file.""" return [traj.numFixed() for traj in self._trajectories]
31.095847
78
0.556355
794f0455ba734ec36e78e4619db2691e89c803fd
148
py
Python
umlawuli/apps.py
mrdvince/dgenie
0a901409a9c547d27212e330ad4fce31dc24de83
[ "Apache-2.0" ]
null
null
null
umlawuli/apps.py
mrdvince/dgenie
0a901409a9c547d27212e330ad4fce31dc24de83
[ "Apache-2.0" ]
null
null
null
umlawuli/apps.py
mrdvince/dgenie
0a901409a9c547d27212e330ad4fce31dc24de83
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig class UmlawuliConfig(AppConfig): default_auto_field = "django.db.models.BigAutoField" name = "umlawuli"
21.142857
56
0.763514
794f04e9fc3125e7cd6258b206f06f92be085308
596
py
Python
tests/test_kelly_criterion.py
leki75/kelly-criterion
15762531a241e8c6be876b3a72fad49d760b0b22
[ "BSD-3-Clause" ]
58
2015-08-13T05:10:19.000Z
2022-01-18T15:15:09.000Z
tests/test_kelly_criterion.py
leki75/kelly-criterion
15762531a241e8c6be876b3a72fad49d760b0b22
[ "BSD-3-Clause" ]
2
2019-06-13T20:23:37.000Z
2021-06-01T23:23:41.000Z
tests/test_kelly_criterion.py
leki75/kelly-criterion
15762531a241e8c6be876b3a72fad49d760b0b22
[ "BSD-3-Clause" ]
25
2015-08-13T05:10:23.000Z
2022-01-27T11:32:52.000Z
from datetime import date from pytest import approx from kelly_criterion import calc_kelly_leverages def test_kelly_criterion(): # Given a time period and multiple securities start_date = date(2018, 1, 1) end_date = date(2018, 12, 31) securities = {'AAPL', 'IBM'} # When we calculate kelly leverages actual_leverages = calc_kelly_leverages(securities, start_date, end_date) # Then the calculated leverages should match the actual ones expected_leverages = {'AAPL': 1.2944, 'IBM': -5.2150} assert expected_leverages == approx(actual_leverages, rel=1e-3)
28.380952
77
0.731544
794f054d621cdb1e5f002a2a601922c62b74f4cb
154
py
Python
Lib/site-packages/nclib/errors.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
57
2016-09-15T15:21:38.000Z
2022-02-23T03:48:05.000Z
nclib/errors.py
rhelmot/nclib
f18bedac43c2741b06a4e7c3c992b56ea4a2e5d9
[ "MIT" ]
20
2016-12-15T21:50:25.000Z
2022-01-27T22:27:50.000Z
Lib/site-packages/nclib/errors.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
11
2016-09-16T06:23:23.000Z
2020-07-03T19:24:31.000Z
import socket class NetcatError(Exception): pass class NetcatTimeout(NetcatError, socket.timeout): pass class NetcatEOF(NetcatError): pass
14
49
0.753247
794f05da8887761cc44bcc6552e37991eb737ce6
2,105
py
Python
tests/rw_all.py
killvxk/retrowrite
879bc668125f096914129e991fe5855c8f548516
[ "MIT" ]
1
2021-08-07T15:14:04.000Z
2021-08-07T15:14:04.000Z
tests/rw_all.py
killvxk/retrowrite
879bc668125f096914129e991fe5855c8f548516
[ "MIT" ]
null
null
null
tests/rw_all.py
killvxk/retrowrite
879bc668125f096914129e991fe5855c8f548516
[ "MIT" ]
null
null
null
import argparse import json import subprocess import os from multiprocessing import Pool def do_test(cmd): print("[!] Running on {}".format(cmd)) try: subprocess.check_call(cmd, shell=True) except subprocess.CalledProcessError: print("[x] Failed {}".format(cmd)) def do_tests(tests, filter, args, outdir): assert not (args.ddbg and args.parallel) pool = Pool() for test in tests: if not filter(test): continue path = test["path"] binp = os.path.join(path, test["name"]) outp = os.path.join(outdir, test["name"] + ".s") if args.ddbg: outp = os.path.join(outdir, test["name"] + "_asan") cmd = "python -m debug.ddbg {} {}".format(binp, outp) elif args.asan: outp = os.path.join(outdir, test["name"] + "_asan") cmd = "python -m rwtools.asan.asantool {} {}".format(binp, outp) else: cmd = "python -m librw.rw {} {}".format(binp, outp) if args.parallel: pool.apply_async(do_test, args=(cmd, )) else: do_test(cmd) pool.close() pool.join() if __name__ == "__main__": argp = argparse.ArgumentParser() argp.add_argument("test_file", type=str, help="JSON file containing tests") argp.add_argument( "--targets", type=str, help="Only test build target, comma separated string of names") argp.add_argument( "--asan", action='store_true', help="Instrument with asan") argp.add_argument( "--ddbg", action='store_true', help="Do delta debugging") argp.add_argument( "--parallel", action='store_true', help="Do multiple tests in parallel") args = argp.parse_args() filter = lambda x: True if args.targets: filter = lambda x: x["name"] in args.targets.split(",") args.testfile = os.path.abspath(args.test_file) outdir = os.path.dirname(args.test_file) with open(args.test_file) as tfd: do_tests(json.load(tfd), filter, args, outdir)
27.337662
79
0.585748
794f06b00b5acea7f3b88571c0a2062e631bd492
2,312
py
Python
reactor_master/decorators.py
AdamTheAnalyst/openc2-reactor-master
a2688c7e7ea659c100f0093fa3d8403a95b2dc42
[ "MIT" ]
null
null
null
reactor_master/decorators.py
AdamTheAnalyst/openc2-reactor-master
a2688c7e7ea659c100f0093fa3d8403a95b2dc42
[ "MIT" ]
null
null
null
reactor_master/decorators.py
AdamTheAnalyst/openc2-reactor-master
a2688c7e7ea659c100f0093fa3d8403a95b2dc42
[ "MIT" ]
1
2020-04-16T12:35:58.000Z
2020-04-16T12:35:58.000Z
##################################################### #__________ __ # #\______ \ ____ _____ _____/ |_ ___________ # # | _// __ \\__ \ _/ ___\ __\/ _ \_ __ \ # # | | \ ___/ / __ \\ \___| | ( <_> ) | \/ # # |____|_ /\___ >____ /\___ >__| \____/|__| # # \/ \/ \/ \/ # ##################################################### import base64 from reactor_master.models import OpenC2Action from functools import wraps from django.contrib.auth import authenticate, login from django.http import HttpResponseForbidden # Logging import logging logger = logging.getLogger("console") def openc2_action(target_list, actuator_list=None): """ Decorator for OpenC2 target and actuator types. """ def register(function): name = function.__name__ current_def = function.__globals__.get(name) if current_def is None: current_def = OpenC2Action(name) # Generate all signatures for target in target_list: if actuator_list: for actuator in actuator_list: sig = {"action":name,"target":target,"actuator":actuator} logger.info("Registered %s name with signature %s" % (name,sig)) current_def.register(sig, function) else: sig = {"action":name,"target":target} logger.info("Registered %s name with signature %s" % (name,sig)) current_def.register(sig, function) return current_def return register def http_basic_auth(func): """ Use as a decorator for views that need to perform HTTP basic authorisation. """ @wraps(func) def _decorator(request, *args, **kwargs): if request.META.has_key('HTTP_AUTHORIZATION'): try: authmeth, auth = request.META['HTTP_AUTHORIZATION'].split(' ', 1) if authmeth.lower() == 'basic': auth = auth.strip().decode('base64') username, password = auth.split(':', 1) user = authenticate(username=username, password=password) if user: login(request, user) else: return HttpResponseForbidden() except ValueError: # Bad HTTP_AUTHORIZATION header return HttpResponseForbidden() return func(request, *args, **kwargs) return _decorator
25.977528
71
0.58045
794f06f797fba46cda7b16075d419cae37bbcc2c
9,687
py
Python
docs/conf.py
Nawarrr/wagtail
4db71de5a2af19086026605be8fcb92c4be623aa
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
Nawarrr/wagtail
4db71de5a2af19086026605be8fcb92c4be623aa
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
Nawarrr/wagtail
4db71de5a2af19086026605be8fcb92c4be623aa
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Wagtail documentation build configuration file, created by # sphinx-quickstart on Tue Jan 14 17:38:55 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys from datetime import datetime import django import sphinx_wagtail_theme from wagtail import VERSION, __version__ # on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org on_rtd = os.environ.get("READTHEDOCS", None) == "True" html_theme = "sphinx_wagtail_theme" html_theme_path = [sphinx_wagtail_theme.get_html_theme_path()] html_theme_options = { "project_name": "Wagtail Documentation", "github_url": "https://github.com/wagtail/wagtail/blob/main/docs/", } # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("..")) # Autodoc may need to import some models modules which require django settings # be configured os.environ["DJANGO_SETTINGS_MODULE"] = "wagtail.tests.settings" django.setup() # Use SQLite3 database engine so it doesn't attempt to use psycopg2 on RTD os.environ["DATABASE_ENGINE"] = "django.db.backends.sqlite3" # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.intersphinx", "myst_parser", "sphinx_wagtail_theme", ] if not on_rtd: extensions.append("sphinxcontrib.spelling") # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "Wagtail Documentation" copyright = f"{datetime.now().year}, Torchbox and contributors" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # The short X.Y version. version = "{}.{}".format(VERSION[0], VERSION[1]) # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build", "README.md"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "default" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # splhinxcontrib.spelling settings spelling_lang = "en_GB" spelling_word_list_filename = "spelling_wordlist.txt" # sphinx.ext.intersphinx settings intersphinx_mapping = { "django": ( "https://docs.djangoproject.com/en/stable/", "https://docs.djangoproject.com/en/stable/_objects/", ) } # -- Options for HTML output ---------------------------------------------- # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = 'logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. html_extra_path = ["robots.txt"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # Since we are implementing search with Algolia DocSearch, we do not need Sphinx to # generate its own index. It might not hurt to keep the Sphinx index, but it # could potentially speed up the build process. html_use_index = False # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "Wagtaildoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ("index", "Wagtail.tex", "Wagtail Documentation", "Torchbox", "manual"), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [("index", "wagtail", "Wagtail Documentation", ["Torchbox"], 1)] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "Wagtail", "Wagtail Documentation", "Torchbox", "Wagtail", "One line description of project.", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False def setup(app): app.add_js_file("js/banner.js")
32.182724
98
0.714876
794f07f1c1aaf581774906dc1c2214a3ca1637db
443
py
Python
src/algorithms/answers/binary_search_algorithm.py
Soumithri/coding_problems
b10820d81677ef0edc9a5f2b310720d8e1df6c76
[ "MIT" ]
null
null
null
src/algorithms/answers/binary_search_algorithm.py
Soumithri/coding_problems
b10820d81677ef0edc9a5f2b310720d8e1df6c76
[ "MIT" ]
8
2020-08-05T02:27:45.000Z
2021-04-20T20:48:50.000Z
src/algorithms/answers/binary_search_algorithm.py
Soumithri/coding_problems
b10820d81677ef0edc9a5f2b310720d8e1df6c76
[ "MIT" ]
null
null
null
def binary_search(target, num_list): if not target: raise Exception if not num_list: raise Exception left, right = 0, len(num_list)-1 mid = left + (right - left)//2 while left <= right: mid = left + (right - left)//2 if num_list[mid] == target: return True elif num_list[mid] < target: left = mid + 1 else: right = mid return False
22.15
38
0.525959
794f095941a7245fb29b9aece94ac7a04df80a90
13,191
py
Python
sql/views.py
linqining/Archery
334d9e003b1825f7ab9cad4911156f85480cf3a1
[ "Apache-2.0" ]
null
null
null
sql/views.py
linqining/Archery
334d9e003b1825f7ab9cad4911156f85480cf3a1
[ "Apache-2.0" ]
null
null
null
sql/views.py
linqining/Archery
334d9e003b1825f7ab9cad4911156f85480cf3a1
[ "Apache-2.0" ]
null
null
null
# -*- coding: UTF-8 -*- import traceback import simplejson as json import re from django.contrib.auth.decorators import permission_required from django.contrib.auth.models import Group from django.shortcuts import render, get_object_or_404 from django.http import HttpResponseRedirect from django.urls import reverse from common.config import SysConfig from sql.engines import get_engine from common.utils.permission import superuser_required from sql.engines.models import ReviewResult, ReviewSet from sql.utils.tasks import task_info from .models import Users, SqlWorkflow, QueryPrivileges, ResourceGroup, \ QueryPrivilegesApply, Config, SQL_WORKFLOW_CHOICES, InstanceTag from sql.utils.workflow_audit import Audit from sql.utils.sql_review import can_execute, can_timingtask, can_cancel from common.utils.const import Const, WorkflowDict from sql.utils.resource_group import user_groups, user_instances import logging logger = logging.getLogger('default') def index(request): index_path_url = SysConfig().get('index_path_url', 'sqlworkflow') return HttpResponseRedirect(f"/{index_path_url.strip('/')}/") def login(request): """登录页面""" if request.user and request.user.is_authenticated: return HttpResponseRedirect('/') return render(request, 'login.html') def sqlworkflow(request): """SQL上线工单列表页面""" return render(request, 'sqlworkflow.html', {'status_list': SQL_WORKFLOW_CHOICES}) # 提交SQL的页面 @permission_required('sql.sql_submit', raise_exception=True) def submit_sql(request): user = request.user # 获取组信息 group_list = user_groups(user) # 获取所有有效用户,通知对象 active_user = Users.objects.filter(is_active=1) # 获取系统配置 archer_config = SysConfig() # 主动创建标签 InstanceTag.objects.get_or_create(tag_code='can_write', defaults={'tag_name': '支持上线', 'active': True}) context = {'active_user': active_user, 'group_list': group_list, 'enable_backup_switch': archer_config.get('enable_backup_switch')} return render(request, 'sqlsubmit.html', context) # 展示SQL工单详细页面 def detail(request, workflow_id): workflow_detail = get_object_or_404(SqlWorkflow, pk=workflow_id) if workflow_detail.status in ['workflow_finish', 'workflow_exception']: rows = workflow_detail.sqlworkflowcontent.execute_result else: rows = workflow_detail.sqlworkflowcontent.review_content # 自动审批不通过的不需要获取下列信息 if workflow_detail.status != 'workflow_autoreviewwrong': # 获取当前审批和审批流程 audit_auth_group, current_audit_auth_group = Audit.review_info(workflow_id, 2) # 是否可审核 is_can_review = Audit.can_review(request.user, workflow_id, 2) # 是否可执行 is_can_execute = can_execute(request.user, workflow_id) # 是否可定时执行 is_can_timingtask = can_timingtask(request.user, workflow_id) # 是否可取消 is_can_cancel = can_cancel(request.user, workflow_id) # 获取审核日志 try: audit_id = Audit.detail_by_workflow_id(workflow_id=workflow_id, workflow_type=WorkflowDict.workflow_type['sqlreview']).audit_id last_operation_info = Audit.logs(audit_id=audit_id).latest('id').operation_info except Exception as e: logger.debug(f'无审核日志记录,错误信息{e}') last_operation_info = '' else: audit_auth_group = '系统自动驳回' current_audit_auth_group = '系统自动驳回' is_can_review = False is_can_execute = False is_can_timingtask = False is_can_cancel = False last_operation_info = None # 获取定时执行任务信息 if workflow_detail.status == 'workflow_timingtask': job_id = Const.workflowJobprefix['sqlreview'] + '-' + str(workflow_id) job = task_info(job_id) if job: run_date = job.next_run else: run_date = '' else: run_date = '' # 获取是否开启手工执行确认 manual = SysConfig().get('manual') review_result = ReviewSet() if rows: try: # 检验rows能不能正常解析 loaded_rows = json.loads(rows) # 兼容旧数据'[[]]'格式,转换为新格式[{}] if isinstance(loaded_rows[-1], list): for r in loaded_rows: review_result.rows += [ReviewResult(inception_result=r)] rows = review_result.json() except json.decoder.JSONDecodeError: review_result.rows += [ReviewResult( # 迫于无法单元测试这里加上英文报错信息 errormessage="Json decode failed." "执行结果Json解析失败, 请联系管理员" )] rows = review_result.json() else: rows = workflow_detail.sqlworkflowcontent.review_content if re.match(r"^select", workflow_detail.sqlworkflowcontent.sql_content.lower()): query_engine = get_engine(instance=workflow_detail.instance) select_result = query_engine.query(db_name=workflow_detail.db_name, sql=workflow_detail.sqlworkflowcontent.sql_content, limit_num=1000) column_list = select_result.column_list select_rows = select_result.rows else: column_list = [] select_rows = [] context = {'workflow_detail': workflow_detail, 'rows': rows, 'last_operation_info': last_operation_info, 'is_can_review': is_can_review, 'is_can_execute': is_can_execute, 'is_can_timingtask': is_can_timingtask, 'is_can_cancel': is_can_cancel, 'audit_auth_group': audit_auth_group, 'manual': manual, 'current_audit_auth_group': current_audit_auth_group, 'run_date': run_date, 'column_list': column_list, 'select_rows': select_rows} return render(request, 'detail.html', context) # 展示回滚的SQL页面 def rollback(request): workflow_id = request.GET['workflow_id'] if workflow_id == '' or workflow_id is None: context = {'errMsg': 'workflow_id参数为空.'} return render(request, 'error.html', context) workflow_id = int(workflow_id) workflow = SqlWorkflow.objects.get(id=workflow_id) try: query_engine = get_engine(instance=workflow.instance) list_backup_sql = query_engine.get_rollback(workflow=workflow) except Exception as msg: logger.error(traceback.format_exc()) context = {'errMsg': msg} return render(request, 'error.html', context) workflow_detail = SqlWorkflow.objects.get(id=workflow_id) workflow_title = workflow_detail.workflow_name rollback_workflow_name = "【回滚工单】原工单Id:%s ,%s" % (workflow_id, workflow_title) context = {'list_backup_sql': list_backup_sql, 'workflow_detail': workflow_detail, 'rollback_workflow_name': rollback_workflow_name} return render(request, 'rollback.html', context) @permission_required('sql.menu_sqlanalyze', raise_exception=True) def sqlanalyze(request): """ SQL分析页面 :param request: :return: """ # 获取实例列表 instances = [instance.instance_name for instance in user_instances(request.user, type='all', db_type='mysql')] return render(request, 'sqlanalyze.html', {'instances': instances}) # SQL文档页面 @permission_required('sql.menu_document', raise_exception=True) def dbaprinciples(request): return render(request, 'dbaprinciples.html') # dashboard页面 @permission_required('sql.menu_dashboard', raise_exception=True) def dashboard(request): return render(request, 'dashboard.html') # SQL在线查询页面 @permission_required('sql.menu_query', raise_exception=True) def sqlquery(request): # 获取实例支持查询的标签id tag_id = InstanceTag.objects.get_or_create( tag_code='can_read', defaults={'tag_name': '支持查询', 'active': True})[0].id # 获取用户关联实例列表 instances = [slave for slave in user_instances(request.user, type='all', db_type='all', tags=[tag_id])] context = {'instances': instances} return render(request, 'sqlquery.html', context) # SQL慢日志页面 @permission_required('sql.menu_slowquery', raise_exception=True) def slowquery(request): # 获取用户关联实例列表 instances = [instance.instance_name for instance in user_instances(request.user, type='all', db_type='mysql')] context = {'tab': 'slowquery', 'instances': instances} return render(request, 'slowquery.html', context) # SQL优化工具页面 @permission_required('sql.menu_sqladvisor', raise_exception=True) def sqladvisor(request): # 获取用户关联实例列表 instances = [instance.instance_name for instance in user_instances(request.user, type='all', db_type='mysql')] context = {'instances': instances} return render(request, 'sqladvisor.html', context) # 查询权限申请列表页面 @permission_required('sql.menu_queryapplylist', raise_exception=True) def queryapplylist(request): user = request.user # 获取资源组 group_list = user_groups(user) context = {'group_list': group_list} return render(request, 'queryapplylist.html', context) # 查询权限申请详情页面 def queryapplydetail(request, apply_id): workflow_detail = QueryPrivilegesApply.objects.get(apply_id=apply_id) # 获取当前审批和审批流程 audit_auth_group, current_audit_auth_group = Audit.review_info(apply_id, 1) # 是否可审核 is_can_review = Audit.can_review(request.user, apply_id, 1) # 获取审核日志 if workflow_detail.status == 2: try: audit_id = Audit.detail_by_workflow_id(workflow_id=apply_id, workflow_type=1).audit_id last_operation_info = Audit.logs(audit_id=audit_id).latest('id').operation_info except Exception as e: logger.debug(f'无审核日志记录,错误信息{e}') last_operation_info = '' else: last_operation_info = '' context = {'workflow_detail': workflow_detail, 'audit_auth_group': audit_auth_group, 'last_operation_info': last_operation_info, 'current_audit_auth_group': current_audit_auth_group, 'is_can_review': is_can_review} return render(request, 'queryapplydetail.html', context) # 用户的查询权限管理页面 def queryuserprivileges(request): # 获取所有用户 user_list = QueryPrivileges.objects.filter(is_deleted=0).values('user_display').distinct() context = {'user_list': user_list} return render(request, 'queryuserprivileges.html', context) # 会话管理页面 @permission_required('sql.menu_dbdiagnostic', raise_exception=True) def dbdiagnostic(request): # 获取用户关联实例列表 instances = [instance.instance_name for instance in user_instances(request.user, type='all', db_type='mysql')] context = {'tab': 'process', 'instances': instances} return render(request, 'dbdiagnostic.html', context) # 工作流审核列表页面 def workflows(request): return render(request, "workflow.html") # 工作流审核详情页面 def workflowsdetail(request, audit_id): # 按照不同的workflow_type返回不同的详情 audit_detail = Audit.detail(audit_id) if audit_detail.workflow_type == WorkflowDict.workflow_type['query']: return HttpResponseRedirect(reverse('sql:queryapplydetail', args=(audit_detail.workflow_id,))) elif audit_detail.workflow_type == WorkflowDict.workflow_type['sqlreview']: return HttpResponseRedirect(reverse('sql:detail', args=(audit_detail.workflow_id,))) # 配置管理页面 @superuser_required def config(request): # 获取所有资源组名称 group_list = ResourceGroup.objects.all() # 获取所有权限组 auth_group_list = Group.objects.all() # 获取所有配置项 all_config = Config.objects.all().values('item', 'value') sys_config = {} for items in all_config: sys_config[items['item']] = items['value'] context = {'group_list': group_list, 'auth_group_list': auth_group_list, 'config': sys_config, 'WorkflowDict': WorkflowDict} return render(request, 'config.html', context) # 资源组管理页面 @superuser_required def group(request): return render(request, 'group.html') # 资源组组关系管理页面 @superuser_required def groupmgmt(request, group_id): group = ResourceGroup.objects.get(group_id=group_id) return render(request, 'groupmgmt.html', {'group': group}) # 实例管理页面 @permission_required('sql.menu_instance', raise_exception=True) def instance(request): # 获取实例标签 tags = InstanceTag.objects.filter(active=True) return render(request, 'instance.html', {'tags': tags}) # 实例用户管理页面 @permission_required('sql.menu_instance', raise_exception=True) def instanceuser(request, instance_id): return render(request, 'instanceuser.html', {'instance_id': instance_id}) # 实例参数管理页面 @permission_required('sql.menu_param', raise_exception=True) def instance_param(request): # 获取用户关联实例列表 instances = user_instances(request.user, type='all', db_type=['mysql', 'inception', 'goinception']) context = {'tab': 'param_tab', 'instances': instances} return render(request, 'param.html', context) # binlog2sql页面 @permission_required('sql.menu_binlog2sql', raise_exception=True) def binlog2sql(request): # 获取实例列表 instances = [instance.instance_name for instance in user_instances(request.user, type='all', db_type='mysql')] return render(request, 'binlog2sql.html', {'instances': instances}) # 数据库差异对比页面 @permission_required('sql.menu_schemasync', raise_exception=True) def schemasync(request): # 获取实例列表 instances = [instance.instance_name for instance in user_instances(request.user, type='all', db_type='mysql')] return render(request, 'schemasync.html', {'instances': instances})
34.896825
146
0.70677
794f099a8fa0f21b1c87eeae82713a7cafbd7f42
2,100
py
Python
proxy/environment.py
gigimon/proxy-model.py
cf9112d299cfcd46f7d3ad716d34cc0300e2e494
[ "BSD-3-Clause" ]
null
null
null
proxy/environment.py
gigimon/proxy-model.py
cf9112d299cfcd46f7d3ad716d34cc0300e2e494
[ "BSD-3-Clause" ]
null
null
null
proxy/environment.py
gigimon/proxy-model.py
cf9112d299cfcd46f7d3ad716d34cc0300e2e494
[ "BSD-3-Clause" ]
null
null
null
import os import subprocess import logging from solana.publickey import PublicKey logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) solana_url = os.environ.get("SOLANA_URL", "http://localhost:8899") evm_loader_id = os.environ.get("EVM_LOADER") neon_cli_timeout = float(os.environ.get("NEON_CLI_TIMEOUT", "0.1")) class solana_cli: def call(self, *args): try: cmd = ["solana", "--url", solana_url, ] + list(args) logger.debug("Calling: " + " ".join(cmd)) return subprocess.check_output(cmd, universal_newlines=True) except subprocess.CalledProcessError as err: logger.debug("ERR: solana error {}".format(err)) raise class neon_cli: def call(self, *args): try: cmd = ["neon-cli", "--commitment=recent", "--url", solana_url, "--evm_loader={}".format(evm_loader_id), ] + list(args) logger.debug("Calling: " + " ".join(cmd)) return subprocess.check_output(cmd, timeout=neon_cli_timeout, universal_newlines=True) except subprocess.CalledProcessError as err: logger.debug("ERR: neon-cli error {}".format(err)) raise def version(self): try: cmd = ["neon-cli", "--version"] logger.debug("Calling: " + " ".join(cmd)) return subprocess.check_output(cmd, timeout=neon_cli_timeout, universal_newlines=True).split()[1] except subprocess.CalledProcessError as err: logger.debug("ERR: neon-cli error {}".format(err)) raise def read_elf_params(out_dict): for param in neon_cli().call("neon-elf-params").splitlines(): if param.startswith('NEON_') and '=' in param: v = param.split('=') out_dict[v[0]] = v[1] ELF_PARAMS = {} read_elf_params(ELF_PARAMS) COLLATERAL_POOL_BASE = ELF_PARAMS.get("NEON_POOL_BASE") ETH_TOKEN_MINT_ID: PublicKey = PublicKey(ELF_PARAMS.get("NEON_TOKEN_MINT"))
35
109
0.599524
794f0a0f858debb3d2f803d62bf84ee8c3e448ef
6,365
py
Python
publish/publish.py
chnuessli/wc-guide-data
4daca57c9183fa2677ad6d21fe5922f660727293
[ "MIT" ]
null
null
null
publish/publish.py
chnuessli/wc-guide-data
4daca57c9183fa2677ad6d21fe5922f660727293
[ "MIT" ]
null
null
null
publish/publish.py
chnuessli/wc-guide-data
4daca57c9183fa2677ad6d21fe5922f660727293
[ "MIT" ]
null
null
null
import argparse import json import os import requests def get_features(data): return data.get('features', []) def get_properties(feature): return feature.get('properties', {}) def get_type(properties): if is_type_iv(properties): return 'iv' if is_type_pissoir(properties): return 'pissoir' return 'normal' def is_type_pissoir(properties): is_urinal = has_urinal(properties) is_male = supports_male(properties) is_female = supports_female(properties) return is_urinal and is_male and not is_female def supports_male(properties): return properties.get("male", "no") == "yes" def supports_female(properties): return properties.get("female", "no") == "yes" def has_urinal(properties): return 'urinal' in properties.get('toilets:position', '') def is_type_iv(properties): return properties.get("wheelchair", "no") == "yes" def has_access(properties): access = properties.get("access", "no") return access == "yes" or access == "public" def has_changing_table(properties): return properties.get("changing_table", "no") == "yes" def requires_fee(properties): return properties.get("fee", "no") == "yes" def is_nette_toilette(properties): name = str(get_name(properties)).lower() description = str(get_description(properties)).lower() nette_toilette = 'nette toilette' return name == nette_toilette or description == nette_toilette def get_name(properties): return properties.get("name", None) def get_operator(properties): return properties.get("operator", None) def get_description(properties): return properties.get("description", None) def get_osm_id(feature): return feature.get("id", None) def get_geometry(feature): return feature.get("geometry", None) def get_line_string_center(coordinates): lon, lat = 0, 0 for coordinate in coordinates: lon += coordinate[0] lat += coordinate[1] return [lon / len(coordinates), lat / len(coordinates)] def get_polygon_center(coordinates): polygons = [get_line_string_center(polygon) for polygon in coordinates] return get_line_string_center(polygons) def get_multipolygon_center(coordinates): polygons = [get_polygon_center(polygon) for polygon in coordinates] return get_line_string_center(polygons) def geometry_to_point(geometry): geometry_type = str(geometry.get("type", None)).lower() coordinates = geometry.get("coordinates", None) if len(coordinates) == 0: return None if geometry_type == "point": return geometry if geometry_type == "linestring": return { "type": "Point", "coordinates": get_line_string_center(coordinates) } if geometry_type == "polygon": return { "type": "Point", "coordinates": get_polygon_center(coordinates) } if geometry_type == "multipolygon": return { "type": "Point", "coordinates": get_multipolygon_center(coordinates) } return None def transform_feature(feature): properties = get_properties(feature) geometry = get_geometry(feature=feature) return { "type": "Feature", "geometry": geometry_to_point(geometry), "properties": { "type": get_type(properties=properties), "id": get_osm_id(feature=feature), "description": get_description(properties=properties), "name": get_name(properties=properties), "operator": get_operator(properties=properties), "access": has_access(properties=properties), "features": { "wickeltisch": has_changing_table(properties=properties), "kostenpflichtig": requires_fee(properties=properties), "nettetoilette": is_nette_toilette(properties=properties) }, } } def transform_geojson(data): features = get_features(data=data) transformed_features = [transform_feature(feature) for feature in features] return { "type": "FeatureCollection", "features": transformed_features } def get_all_geojson_file_paths(folder_path): return [os.path.join(folder_path, file) for file in os.listdir(folder_path) if file.endswith(".geojson")] def get_raw_data(file_path): with open(file_path) as json_file: return json.load(json_file) def get_publish_name(file_path): file_name = os.path.basename(file_path) file_name_without_extension = os.path.splitext(file_name)[0] return file_name_without_extension.split('_')[1] def prepare(folder_path): file_paths = get_all_geojson_file_paths(folder_path) path_and_data = [(file_path, get_raw_data(file_path)) for file_path in file_paths] result = [] for path, raw_data in path_and_data: name = get_publish_name(path) data = transform_geojson(raw_data) result.append((name, data)) return result def put_to_data(url, data, username, password): print("Put", url) return requests.put(url=url, auth=(username, password), json=data) def publish(backend, data, username, password): for name, entry in data: url = f"{backend}/area/{name}/" response = put_to_data(url=url, data=entry, username=username, password=password) print("Response code", response.status_code) def run(): parser = argparse.ArgumentParser(description='Send GeoJSON to wc-guide-backend') parser.add_argument('-u', '--user', dest='user', type=str, required=True) parser.add_argument('-p', '--password', dest='password', type=str, required=True) parser.add_argument('-b', '--backend', dest='backend', type=str, required=True) parser.add_argument('-f', '--relative_folder_path', dest='relative_folder_path', type=str, required=True, help='../data/') parser.add_argument('-n', '--name', dest='name', type=str, required=False, help='Name used as primary key') args = parser.parse_args() dir_path = os.path.dirname(os.path.realpath(__file__)) folder_path = os.path.join(dir_path, args.relative_folder_path) data = prepare(folder_path) publish(backend=args.backend, data=data, username=args.user, password=args.password) if __name__ == "__main__": run()
28.931818
111
0.673841
794f0b0b5317180a3a680f16f3632b42cb1754cc
3,057
py
Python
modela/data/DataPipeline.py
metaprov/modela-python-sdk
45ed040a241d07351886f785e224ffb3615a8c94
[ "Apache-2.0" ]
1
2022-03-05T23:21:20.000Z
2022-03-05T23:21:20.000Z
modela/data/DataPipeline.py
metaprov/modela-python-sdk
45ed040a241d07351886f785e224ffb3615a8c94
[ "Apache-2.0" ]
null
null
null
modela/data/DataPipeline.py
metaprov/modela-python-sdk
45ed040a241d07351886f785e224ffb3615a8c94
[ "Apache-2.0" ]
null
null
null
import grpc from github.com.metaprov.modelaapi.pkg.apis.data.v1alpha1.generated_pb2 import DataPipeline as MDDataPipeline from github.com.metaprov.modelaapi.services.datapipeline.v1.datapipeline_pb2_grpc import DataPipelineServiceStub from github.com.metaprov.modelaapi.services.datapipeline.v1.datapipeline_pb2 import CreateDataPipelineRequest, \ UpdateDataPipelineRequest, \ DeleteDataPipelineRequest, GetDataPipelineRequest, ListDataPipelinesRequest from modela.Resource import Resource from modela.ModelaException import ModelaException from typing import List, Union class DataPipeline(Resource): def __init__(self, item: MDDataPipeline = MDDataPipeline(), client=None, namespace="", name="", version=Resource.DefaultVersion): super().__init__(item, client, namespace=namespace, name=name, version=version) class DataPipelineClient: def __init__(self, stub, modela): self.modela = modela self.__stub: DataPipelineServiceStub = stub def create(self, datapipeline: DataPipeline) -> bool: request = CreateDataPipelineRequest() request.datapipeline.CopyFrom(datapipeline.raw_message) try: response = self.__stub.CreateDataPipeline(request) return True except grpc.RpcError as err: error = err ModelaException.process_error(error) return False def update(self, datapipeline: DataPipeline) -> bool: request = UpdateDataPipelineRequest() request.datapipeline.CopyFrom(datapipeline.raw_message) try: self.__stub.UpdateDataPipeline(request) return True except grpc.RpcError as err: error = err ModelaException.process_error(error) return False def get(self, namespace: str, name: str) -> Union[DataPipeline, bool]: request = GetDataPipelineRequest() request.namespace = namespace request.name = name try: response = self.__stub.GetDataPipeline(request) return DataPipeline(response.datapipeline, self) except grpc.RpcError as err: error = err ModelaException.process_error(error) return False def delete(self, namespace: str, name: str) -> bool: request = DeleteDataPipelineRequest() request.namespace = namespace request.name = name try: response = self.__stub.DeleteDataPipeline(request) return True except grpc.RpcError as err: error = err ModelaException.process_error(error) return False def list(self, namespace: str) -> Union[List[DataPipeline], bool]: request = ListDataPipelinesRequest() request.namespace = namespace try: response = self.__stub.ListDataPipelines(request) return [DataPipeline(item, self) for item in response.datapipelines.items] except grpc.RpcError as err: error = err ModelaException.process_error(error) return False
35.546512
133
0.685967
794f0b15410e6b359b4cb2703d53eacfaaa88169
3,046
py
Python
bokeh/sampledata/periodic_table.py
goncaloperes/bokeh
b857d2d17d7c19779bb0a7be2601d8238fb1d5e9
[ "BSD-3-Clause" ]
1
2021-04-09T02:57:29.000Z
2021-04-09T02:57:29.000Z
bokeh/sampledata/periodic_table.py
goncaloperes/bokeh
b857d2d17d7c19779bb0a7be2601d8238fb1d5e9
[ "BSD-3-Clause" ]
5
2021-05-07T10:31:27.000Z
2021-05-07T10:33:37.000Z
bokeh/sampledata/periodic_table.py
goncaloperes/bokeh
b857d2d17d7c19779bb0a7be2601d8238fb1d5e9
[ "BSD-3-Clause" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide a periodic table data set. It exposes an attribute ``elements`` which is a pandas Dataframe with the following fields: .. code-block:: python elements['atomic Number'] (units: g/cm^3) elements['symbol'] elements['name'] elements['atomic mass'] (units: amu) elements['CPK'] (convention for molecular modeling color) elements['electronic configuration'] elements['electronegativity'] (units: Pauling) elements['atomic radius'] (units: pm) elements['ionic radius'] (units: pm) elements['van der waals radius'] (units: pm) elements['ionization enerygy'] (units: kJ/mol) elements['electron affinity'] (units: kJ/mol) elements['phase'] (standard state: solid, liquid, gas) elements['bonding type'] elements['melting point'] (units: K) elements['boiling point'] (units: K) elements['density'] (units: g/cm^3) elements['type'] (see below) elements['year discovered'] elements['group'] elements['period'] where element types are: actinoid alkali metal alkaline earth metal halogen, lanthanoid metal metalloid noble gas nonmetal transition metalloid ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Bokeh imports from ..util.sampledata import package_csv #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'elements', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- elements = package_csv('periodic_table', 'elements.csv')
35.011494
78
0.374918
794f0c24751f640429984d6fb34460bc2f4a226b
1,828
py
Python
src/python/dart/tool/migration/migrate_trigger_workflow_ids.py
RetailMeNotSandbox/dart
58a05f56c04fadd6741501262d92aeb143cd2f2e
[ "MIT" ]
18
2016-03-03T19:10:21.000Z
2021-07-14T22:37:35.000Z
src/python/dart/tool/migration/migrate_trigger_workflow_ids.py
RetailMeNotSandbox/dart
58a05f56c04fadd6741501262d92aeb143cd2f2e
[ "MIT" ]
62
2016-04-11T15:17:23.000Z
2017-09-08T17:18:53.000Z
src/python/dart/tool/migration/migrate_trigger_workflow_ids.py
RetailMeNotSandbox/dart
58a05f56c04fadd6741501262d92aeb143cd2f2e
[ "MIT" ]
15
2016-03-03T15:38:34.000Z
2019-03-27T19:33:08.000Z
import logging from dart.context.database import db from dart.model.orm import TriggerDao from dart.model.trigger import Trigger from dart.service.patcher import patch_difference from dart.tool.tool_runner import Tool _logger = logging.getLogger(__name__) class MigrateTriggerWorkflowIds(Tool): def __init__(self): super(MigrateTriggerWorkflowIds, self).__init__(_logger) def run(self): db.session.execute('ALTER TABLE trigger DISABLE TRIGGER trigger_update_timestamp') try: limit = 100 offset = 0 while True: _logger.info('starting batch with limit=%s offset=%s' % (limit, offset)) trigger_daos = TriggerDao.query.order_by(TriggerDao.created).limit(limit).offset(offset).all() if len(trigger_daos) == 0: _logger.info('done - no more entities left') break for trigger_dao in trigger_daos: workflow_id = trigger_dao.data.get('workflow_id') if workflow_id: trigger = trigger_dao.to_model() assert isinstance(trigger, Trigger) source_trigger = trigger.copy() trigger.data.workflow_ids = [workflow_id] patch_difference(TriggerDao, source_trigger, trigger, commit=False) db.session.commit() _logger.info('completed batch with limit=%s offset=%s' % (limit, offset)) offset += limit except Exception as e: db.session.rollback() raise e finally: db.session.execute('ALTER TABLE trigger ENABLE TRIGGER trigger_update_timestamp') if __name__ == '__main__': MigrateTriggerWorkflowIds().run()
35.843137
110
0.604486
794f0cfd6bdab69ad952230748b3de93ee1fc656
18,140
py
Python
oslo_service/loopingcall.py
openstack/oslo.service
7a62271de38d0b113cded110a40158689748e210
[ "Apache-2.0" ]
38
2015-05-28T11:44:28.000Z
2022-01-20T09:28:06.000Z
oslo_service/loopingcall.py
openstack/oslo.service
7a62271de38d0b113cded110a40158689748e210
[ "Apache-2.0" ]
1
2020-04-08T14:18:50.000Z
2020-04-08T14:18:50.000Z
oslo_service/loopingcall.py
openstack/oslo.service
7a62271de38d0b113cded110a40158689748e210
[ "Apache-2.0" ]
41
2015-07-01T08:32:00.000Z
2021-11-16T09:07:31.000Z
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools import random import sys import time from eventlet import event from eventlet import greenthread from oslo_log import log as logging from oslo_utils import eventletutils from oslo_utils import excutils from oslo_utils import reflection from oslo_utils import timeutils from oslo_service._i18n import _ LOG = logging.getLogger(__name__) class LoopingCallDone(Exception): """Exception to break out and stop a LoopingCallBase. The poll-function passed to LoopingCallBase can raise this exception to break out of the loop normally. This is somewhat analogous to StopIteration. An optional return-value can be included as the argument to the exception; this return-value will be returned by LoopingCallBase.wait() """ def __init__(self, retvalue=True): """:param retvalue: Value that LoopingCallBase.wait() should return.""" self.retvalue = retvalue class LoopingCallTimeOut(Exception): """Exception for a timed out LoopingCall. The LoopingCall will raise this exception when a timeout is provided and it is exceeded. """ pass def _safe_wrapper(f, kind, func_name): """Wrapper that calls into wrapped function and logs errors as needed.""" def func(*args, **kwargs): try: return f(*args, **kwargs) except LoopingCallDone: raise # let the outer handler process this except Exception: LOG.error('%(kind)s %(func_name)r failed', {'kind': kind, 'func_name': func_name}, exc_info=True) return 0 return func class LoopingCallBase(object): _KIND = _("Unknown looping call") _RUN_ONLY_ONE_MESSAGE = _("A looping call can only run one function" " at a time") def __init__(self, f=None, *args, **kw): self.args = args self.kw = kw self.f = f self._thread = None self.done = None self._abort = eventletutils.EventletEvent() @property def _running(self): return not self._abort.is_set() def stop(self): if self._running: self._abort.set() def wait(self): return self.done.wait() def _on_done(self, gt, *args, **kwargs): self._thread = None def _sleep(self, timeout): self._abort.wait(timeout) def _start(self, idle_for, initial_delay=None, stop_on_exception=True): """Start the looping :param idle_for: Callable that takes two positional arguments, returns how long to idle for. The first positional argument is the last result from the function being looped and the second positional argument is the time it took to calculate that result. :param initial_delay: How long to delay before starting the looping. Value is in seconds. :param stop_on_exception: Whether to stop if an exception occurs. :returns: eventlet event instance """ if self._thread is not None: raise RuntimeError(self._RUN_ONLY_ONE_MESSAGE) self.done = event.Event() self._abort.clear() self._thread = greenthread.spawn( self._run_loop, idle_for, initial_delay=initial_delay, stop_on_exception=stop_on_exception) self._thread.link(self._on_done) return self.done # NOTE(bnemec): This is just a wrapper function we can mock so we aren't # affected by other users of the StopWatch class. def _elapsed(self, watch): return watch.elapsed() def _run_loop(self, idle_for_func, initial_delay=None, stop_on_exception=True): kind = self._KIND func_name = reflection.get_callable_name(self.f) func = self.f if stop_on_exception else _safe_wrapper(self.f, kind, func_name) if initial_delay: self._sleep(initial_delay) try: watch = timeutils.StopWatch() while self._running: watch.restart() result = func(*self.args, **self.kw) watch.stop() if not self._running: break idle = idle_for_func(result, self._elapsed(watch)) LOG.trace('%(kind)s %(func_name)r sleeping ' 'for %(idle).02f seconds', {'func_name': func_name, 'idle': idle, 'kind': kind}) self._sleep(idle) except LoopingCallDone as e: self.done.send(e.retvalue) except Exception: exc_info = sys.exc_info() try: LOG.error('%(kind)s %(func_name)r failed', {'kind': kind, 'func_name': func_name}, exc_info=exc_info) self.done.send_exception(*exc_info) finally: del exc_info return else: self.done.send(True) class FixedIntervalLoopingCall(LoopingCallBase): """A fixed interval looping call.""" _RUN_ONLY_ONE_MESSAGE = _("A fixed interval looping call can only run" " one function at a time") _KIND = _('Fixed interval looping call') def start(self, interval, initial_delay=None, stop_on_exception=True): def _idle_for(result, elapsed): delay = round(elapsed - interval, 2) if delay > 0: func_name = reflection.get_callable_name(self.f) LOG.warning('Function %(func_name)r run outlasted ' 'interval by %(delay).2f sec', {'func_name': func_name, 'delay': delay}) return -delay if delay < 0 else 0 return self._start(_idle_for, initial_delay=initial_delay, stop_on_exception=stop_on_exception) class FixedIntervalWithTimeoutLoopingCall(LoopingCallBase): """A fixed interval looping call with timeout checking mechanism.""" _RUN_ONLY_ONE_MESSAGE = _("A fixed interval looping call with timeout" " checking and can only run one function at" " at a time") _KIND = _('Fixed interval looping call with timeout checking.') def start(self, interval, initial_delay=None, stop_on_exception=True, timeout=0): start_time = time.time() def _idle_for(result, elapsed): delay = round(elapsed - interval, 2) if delay > 0: func_name = reflection.get_callable_name(self.f) LOG.warning('Function %(func_name)r run outlasted ' 'interval by %(delay).2f sec', {'func_name': func_name, 'delay': delay}) elapsed_time = time.time() - start_time if timeout > 0 and elapsed_time > timeout: raise LoopingCallTimeOut( _('Looping call timed out after %.02f seconds') % elapsed_time) return -delay if delay < 0 else 0 return self._start(_idle_for, initial_delay=initial_delay, stop_on_exception=stop_on_exception) class DynamicLoopingCall(LoopingCallBase): """A looping call which sleeps until the next known event. The function called should return how long to sleep for before being called again. """ _RUN_ONLY_ONE_MESSAGE = _("A dynamic interval looping call can only run" " one function at a time") _TASK_MISSING_SLEEP_VALUE_MESSAGE = _( "A dynamic interval looping call should supply either an" " interval or periodic_interval_max" ) _KIND = _('Dynamic interval looping call') def start(self, initial_delay=None, periodic_interval_max=None, stop_on_exception=True): def _idle_for(suggested_delay, elapsed): delay = suggested_delay if delay is None: if periodic_interval_max is not None: delay = periodic_interval_max else: # Note(suro-patz): An application used to receive a # TypeError thrown from eventlet layer, before # this RuntimeError was introduced. raise RuntimeError( self._TASK_MISSING_SLEEP_VALUE_MESSAGE) else: if periodic_interval_max is not None: delay = min(delay, periodic_interval_max) return delay return self._start(_idle_for, initial_delay=initial_delay, stop_on_exception=stop_on_exception) class BackOffLoopingCall(LoopingCallBase): """Run a method in a loop with backoff on error. The passed in function should return True (no error, return to initial_interval), False (error, start backing off), or raise LoopingCallDone(retvalue=None) (quit looping, return retvalue if set). When there is an error, the call will backoff on each failure. The backoff will be equal to double the previous base interval times some jitter. If a backoff would put it over the timeout, it halts immediately, so the call will never take more than timeout, but may and likely will take less time. When the function return value is True or False, the interval will be multiplied by a random jitter. If min_jitter or max_jitter is None, there will be no jitter (jitter=1). If min_jitter is below 0.5, the code may not backoff and may increase its retry rate. If func constantly returns True, this function will not return. To run a func and wait for a call to finish (by raising a LoopingCallDone): timer = BackOffLoopingCall(func) response = timer.start().wait() :param initial_delay: delay before first running of function :param starting_interval: initial interval in seconds between calls to function. When an error occurs and then a success, the interval is returned to starting_interval :param timeout: time in seconds before a LoopingCallTimeout is raised. The call will never take longer than timeout, but may quit before timeout. :param max_interval: The maximum interval between calls during errors :param jitter: Used to vary when calls are actually run to avoid group of calls all coming at the exact same time. Uses random.gauss(jitter, 0.1), with jitter as the mean for the distribution. If set below .5, it can cause the calls to come more rapidly after each failure. :param min_interval: The minimum interval in seconds between calls to function. :raises: LoopingCallTimeout if time spent doing error retries would exceed timeout. """ _RNG = random.SystemRandom() _KIND = _('Dynamic backoff interval looping call') _RUN_ONLY_ONE_MESSAGE = _("A dynamic backoff interval looping call can" " only run one function at a time") def __init__(self, f=None, *args, **kw): super(BackOffLoopingCall, self).__init__(f=f, *args, **kw) self._error_time = 0 self._interval = 1 def start(self, initial_delay=None, starting_interval=1, timeout=300, max_interval=300, jitter=0.75, min_interval=0.001): if self._thread is not None: raise RuntimeError(self._RUN_ONLY_ONE_MESSAGE) # Reset any prior state. self._error_time = 0 self._interval = starting_interval def _idle_for(success, _elapsed): random_jitter = abs(self._RNG.gauss(jitter, 0.1)) if success: # Reset error state now that it didn't error... self._interval = starting_interval self._error_time = 0 return self._interval * random_jitter else: # Perform backoff, random jitter around the next interval # bounded by min_interval and max_interval. idle = max(self._interval * 2 * random_jitter, min_interval) idle = min(idle, max_interval) # Calculate the next interval based on the mean, so that the # backoff grows at the desired rate. self._interval = max(self._interval * 2 * jitter, min_interval) # Don't go over timeout, end early if necessary. If # timeout is 0, keep going. if timeout > 0 and self._error_time + idle > timeout: raise LoopingCallTimeOut( _('Looping call timed out after %.02f seconds') % (self._error_time + idle)) self._error_time += idle return idle return self._start(_idle_for, initial_delay=initial_delay) class RetryDecorator(object): """Decorator for retrying a function upon suggested exceptions. The decorated function is retried for the given number of times, and the sleep time between the retries is incremented until max sleep time is reached. If the max retry count is set to -1, then the decorated function is invoked indefinitely until an exception is thrown, and the caught exception is not in the list of suggested exceptions. """ def __init__(self, max_retry_count=-1, inc_sleep_time=10, max_sleep_time=60, exceptions=()): """Configure the retry object using the input params. :param max_retry_count: maximum number of times the given function must be retried when one of the input 'exceptions' is caught. When set to -1, it will be retried indefinitely until an exception is thrown and the caught exception is not in param exceptions. :param inc_sleep_time: incremental time in seconds for sleep time between retries :param max_sleep_time: max sleep time in seconds beyond which the sleep time will not be incremented using param inc_sleep_time. On reaching this threshold, max_sleep_time will be used as the sleep time. :param exceptions: suggested exceptions for which the function must be retried, if no exceptions are provided (the default) then all exceptions will be reraised, and no retrying will be triggered. """ self._max_retry_count = max_retry_count self._inc_sleep_time = inc_sleep_time self._max_sleep_time = max_sleep_time self._exceptions = exceptions self._retry_count = 0 self._sleep_time = 0 def __call__(self, f): func_name = reflection.get_callable_name(f) def _func(*args, **kwargs): result = None try: if self._retry_count: LOG.debug("Invoking %(func_name)s; retry count is " "%(retry_count)d.", {'func_name': func_name, 'retry_count': self._retry_count}) result = f(*args, **kwargs) except self._exceptions: with excutils.save_and_reraise_exception() as ctxt: LOG.debug("Exception which is in the suggested list of " "exceptions occurred while invoking function:" " %s.", func_name) if (self._max_retry_count != -1 and self._retry_count >= self._max_retry_count): LOG.debug("Cannot retry %(func_name)s upon " "suggested exception " "since retry count (%(retry_count)d) " "reached max retry count " "(%(max_retry_count)d).", {'retry_count': self._retry_count, 'max_retry_count': self._max_retry_count, 'func_name': func_name}) else: ctxt.reraise = False self._retry_count += 1 self._sleep_time += self._inc_sleep_time return self._sleep_time raise LoopingCallDone(result) @functools.wraps(f) def func(*args, **kwargs): loop = DynamicLoopingCall(_func, *args, **kwargs) evt = loop.start(periodic_interval_max=self._max_sleep_time) LOG.debug("Waiting for function %s to return.", func_name) return evt.wait() return func
41.321185
79
0.59151
794f0d30ddea85d733f4fa94de6749eb5a7ed8e3
9,191
py
Python
tests/snc/agents/activity_rate_to_mpc_actions/test_feedback_mip_feasible_mpc_policy.py
dmcnamee/snc
c2da8c1e9ecdc42c59b9de73224b3d50ee1c9786
[ "Apache-2.0" ]
5
2021-03-24T16:23:10.000Z
2021-11-17T12:44:51.000Z
tests/snc/agents/activity_rate_to_mpc_actions/test_feedback_mip_feasible_mpc_policy.py
dmcnamee/snc
c2da8c1e9ecdc42c59b9de73224b3d50ee1c9786
[ "Apache-2.0" ]
3
2021-03-26T01:16:08.000Z
2021-05-08T22:06:47.000Z
tests/snc/agents/activity_rate_to_mpc_actions/test_feedback_mip_feasible_mpc_policy.py
dmcnamee/snc
c2da8c1e9ecdc42c59b9de73224b3d50ee1c9786
[ "Apache-2.0" ]
2
2021-03-24T17:20:06.000Z
2021-04-19T09:01:12.000Z
import numpy as np from snc.agents.activity_rate_to_mpc_actions.feedback_mip_feasible_mpc_policy \ import FeedbackMipFeasibleMpcPolicy def get_mpc_policy_sirl(): # Simple reentrant line like environment. constituency_matrix = np.array([[1, 0, 1], [0, 1, 0]]) buffer_processing_matrix = np.array([[-1, 0, 0], [1, -1, 0], [0, 1, -1]]) return FeedbackMipFeasibleMpcPolicy(constituency_matrix, buffer_processing_matrix) def get_mpc_policy_routing(): constituency_matrix = np.eye(3) buffer_processing_matrix = np.array([[-1, -1, -1]]) return FeedbackMipFeasibleMpcPolicy(constituency_matrix, buffer_processing_matrix) def get_mpc_policy_simple_link_routing_from_book(): mu12 = 1 mu13 = 1 mu25 = 1 mu32 = 1 mu34 = 1 mu35 = 1 mu45 = 1 mu5 = 1 buffer_processing_matrix = np.array([[-mu12, -mu13, 0, 0, 0, 0, 0, 0], [mu12, 0, -mu25, mu32, 0, 0, 0, 0], [0, mu13, 0, -mu32, -mu34, -mu35, 0, 0], [0, 0, 0, 0, mu34, 0, -mu45, 0], [0, 0, mu25, 0, 0, mu35, mu45, -mu5]]) constituency_matrix = np.eye(8) return FeedbackMipFeasibleMpcPolicy(constituency_matrix, buffer_processing_matrix) def test_get_nonidling_resources_zero_action(): sum_actions = np.array([[0], [0], [0]]) mpc_policy = get_mpc_policy_sirl() nonidling_constituency_mat, nonidling_ones = mpc_policy.get_nonidling_resources(sum_actions) assert np.all(nonidling_constituency_mat == np.zeros((2, 3))) assert np.all(nonidling_ones == np.zeros((2, 1))) def test_get_nonidling_resources_zero_action_res_1(): sum_actions = np.array([[0], [1], [0]]) mpc_policy = get_mpc_policy_sirl() nonidling_constituency_mat, nonidling_ones = mpc_policy.get_nonidling_resources(sum_actions) assert np.all(nonidling_constituency_mat == np.array([[0, 0, 0], [0, 1, 0]])) assert np.all(nonidling_ones == np.array([[0], [1]])) def test_get_nonidling_resources_zero_action_res_2(): sum_actions = np.array([[1], [0], [0]]) mpc_policy = get_mpc_policy_sirl() nonidling_constituency_mat, nonidling_ones = mpc_policy.get_nonidling_resources(sum_actions) assert np.all(nonidling_constituency_mat == np.array([[1, 0, 1], [0, 0, 0]])) assert np.all(nonidling_ones == np.array([[1], [0]])) def test_get_nonidling_resources_both_active(): sum_actions = np.array([[0], [1], [1]]) mpc_policy = get_mpc_policy_sirl() nonidling_constituency_mat, nonidling_ones = mpc_policy.get_nonidling_resources(sum_actions) assert np.all(nonidling_constituency_mat == np.array([[1, 0, 1], [0, 1, 0]])) assert np.all(nonidling_ones == np.ones((2, 1))) def test_generate_actions_with_feedback_empty_buffers(): sum_actions = np.ones((3, 1)) state = np.zeros((3, 1)) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.zeros((3, 1))) def test_generate_actions_with_feedback_empty_buffer_1(): sum_actions = np.ones((3, 1)) state = np.array([[0], [1], [1]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.array([[0], [1], [1]])) def test_generate_actions_with_feedback_empty_buffer_1_no_action_buffer_2(): sum_actions = np.array([[1], [1], [0]]) state = np.array([[0], [1], [1]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.array([[0], [1], [1]])) def test_generate_actions_with_feedback_empty_buffers_1_and_3(): sum_actions = np.array([[0], [1], [0]]) state = np.array([[0], [1], [0]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.array([[0], [1], [0]])) def test_generate_actions_with_feedback_priority_buffer_1(): sum_actions = np.array([[1001], [1000], [1000]]) state = np.array([[1], [1], [1]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.array([[1], [1], [0]])) def test_generate_actions_with_feedback_priority_buffer_3(): sum_actions = np.array([[1000], [1000], [1001]]) state = np.array([[1], [1], [1]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.array([[0], [1], [1]])) def test_generate_actions_with_feedback_no_priority(): sum_actions = np.array([[1000], [1000], [1000]]) state = np.array([[1], [1], [1]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert action[1] == 1 assert action[0] == 1 or action[2] == 1 def test_generate_actions_with_feedback_priority_buffer_3_but_empty(): sum_actions = np.array([[1000], [1000], [1001]]) state = np.array([[1], [1], [0]]) mpc_policy = get_mpc_policy_sirl() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.array([[1], [1], [0]])) def test_generate_actions_with_feedback_routing_enough_items(): sum_actions = np.array([[1], [1], [1]]) state = np.array([[3]]) mpc_policy = get_mpc_policy_routing() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.all(action == np.ones((3, 1))) def test_generate_actions_with_feedback_routing_only_one_item(): sum_actions = np.array([[1], [1], [1]]) state = np.array([[1]]) mpc_policy = get_mpc_policy_routing() action = mpc_policy.generate_actions_with_feedback(sum_actions, state) assert np.sum(action) == 1 def test_get_actions_drain_each_buffer_routing(): mpc_policy = get_mpc_policy_routing() actions_drain_each_buffer = mpc_policy.get_actions_drain_each_buffer() assert np.all(actions_drain_each_buffer[0] == [np.array([0, 1, 2])]) def test_get_action_drain_each_buffer_simple_link_routing(): mpc_policy = get_mpc_policy_simple_link_routing_from_book() actions_drain_each_buffer = mpc_policy.get_actions_drain_each_buffer() assert np.all(actions_drain_each_buffer[0] == [np.array([0, 1])]) assert np.all(actions_drain_each_buffer[1] == [np.array([2])]) assert np.all(actions_drain_each_buffer[2] == [np.array([3, 4, 5])]) assert np.all(actions_drain_each_buffer[3] == [np.array([6])]) assert np.all(actions_drain_each_buffer[4] == [np.array([7])]) def test_update_bias_counter_routing_enough_items(): mpc_policy = get_mpc_policy_routing() state = np.array([[3]]) action = np.array([[1], [1], [1]]) sum_actions = np.ones((3, 1)) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.zeros((3, 1))) def test_update_bias_counter_routing_enough_items_not_required(): mpc_policy = get_mpc_policy_routing() state = np.array([[3]]) action = np.array([[1], [1], [1]]) sum_actions = np.zeros((3, 1)) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.zeros((3, 1))) def test_update_bias_counter_routing_not_enough_items_1(): mpc_policy = get_mpc_policy_routing() state = np.array([[2]]) action = np.array([[1], [1], [0]]) sum_actions = np.ones((3, 1)) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.array([[0], [0], [1]])) def test_update_bias_counter_routing_not_enough_items_1_not_required(): mpc_policy = get_mpc_policy_routing() state = np.array([[2]]) action = np.array([[1], [1], [0]]) sum_actions = np.array([[1], [1], [0]]) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.zeros((3, 1))) def test_update_bias_counter_routing_not_enough_items_1_other_action(): mpc_policy = get_mpc_policy_routing() state = np.array([[2]]) action = np.array([[0], [1], [1]]) sum_actions = np.ones((3, 1)) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.array([[1], [0], [0]])) def test_update_bias_counter_routing_not_enough_items_2(): mpc_policy = get_mpc_policy_routing() state = np.array([[1]]) action = np.array([[0], [1], [0]]) sum_actions = np.ones((3, 1)) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.array([[1], [0], [1]])) def test_update_bias_counter_simple_link_routing(): mpc_policy = get_mpc_policy_simple_link_routing_from_book() state = np.ones((5, 1)) action = np.array([1, 0, 1, 1, 0, 0, 1, 1])[:, None] sum_actions = np.ones_like(action) mpc_policy.update_bias_counter(state, action, sum_actions) assert np.all(mpc_policy._bias_counter.value == np.array([0, 1, 0, 0, 1, 1, 0, 0])[:, None])
40.311404
96
0.684909
794f0dca949134f9430a7fe401920522143f995f
8,552
py
Python
desktop/core/ext-py/Django-1.2.3/tests/runtests.py
digideskio/hortonworks-sandbox
dd8e95c91faee3daa094707baeb94c3953b41efa
[ "Apache-2.0" ]
19
2015-05-01T19:59:03.000Z
2021-12-09T08:03:16.000Z
desktop/core/ext-py/Django-1.2.3/tests/runtests.py
abayer/hue
27213bb8fe89cdf0547109081e9f29c03bcc8ca5
[ "Apache-2.0" ]
1
2018-01-03T15:26:49.000Z
2018-01-03T15:26:49.000Z
desktop/core/ext-py/Django-1.2.3/tests/runtests.py
abayer/hue
27213bb8fe89cdf0547109081e9f29c03bcc8ca5
[ "Apache-2.0" ]
30
2015-03-25T19:40:07.000Z
2021-05-28T22:59:26.000Z
#!/usr/bin/env python import os, sys, traceback import unittest import django.contrib as contrib CONTRIB_DIR_NAME = 'django.contrib' MODEL_TESTS_DIR_NAME = 'modeltests' REGRESSION_TESTS_DIR_NAME = 'regressiontests' TEST_TEMPLATE_DIR = 'templates' CONTRIB_DIR = os.path.dirname(contrib.__file__) MODEL_TEST_DIR = os.path.join(os.path.dirname(__file__), MODEL_TESTS_DIR_NAME) REGRESSION_TEST_DIR = os.path.join(os.path.dirname(__file__), REGRESSION_TESTS_DIR_NAME) REGRESSION_SUBDIRS_TO_SKIP = ['locale'] ALWAYS_INSTALLED_APPS = [ 'django.contrib.contenttypes', 'django.contrib.auth', 'django.contrib.sites', 'django.contrib.flatpages', 'django.contrib.redirects', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.comments', 'django.contrib.admin', 'django.contrib.admindocs', ] def get_test_models(): models = [] for loc, dirpath in (MODEL_TESTS_DIR_NAME, MODEL_TEST_DIR), (REGRESSION_TESTS_DIR_NAME, REGRESSION_TEST_DIR), (CONTRIB_DIR_NAME, CONTRIB_DIR): for f in os.listdir(dirpath): if f.startswith('__init__') or f.startswith('.') or \ f.startswith('sql') or f.startswith('invalid') or \ os.path.basename(f) in REGRESSION_SUBDIRS_TO_SKIP: continue models.append((loc, f)) return models def get_invalid_models(): models = [] for loc, dirpath in (MODEL_TESTS_DIR_NAME, MODEL_TEST_DIR), (REGRESSION_TESTS_DIR_NAME, REGRESSION_TEST_DIR), (CONTRIB_DIR_NAME, CONTRIB_DIR): for f in os.listdir(dirpath): if f.startswith('__init__') or f.startswith('.') or f.startswith('sql'): continue if f.startswith('invalid'): models.append((loc, f)) return models class InvalidModelTestCase(unittest.TestCase): def __init__(self, model_label): unittest.TestCase.__init__(self) self.model_label = model_label def runTest(self): from django.core.management.validation import get_validation_errors from django.db.models.loading import load_app from cStringIO import StringIO try: module = load_app(self.model_label) except Exception, e: self.fail('Unable to load invalid model module') # Make sure sys.stdout is not a tty so that we get errors without # coloring attached (makes matching the results easier). We restore # sys.stderr afterwards. orig_stdout = sys.stdout s = StringIO() sys.stdout = s count = get_validation_errors(s, module) sys.stdout = orig_stdout s.seek(0) error_log = s.read() actual = error_log.split('\n') expected = module.model_errors.split('\n') unexpected = [err for err in actual if err not in expected] missing = [err for err in expected if err not in actual] self.assert_(not unexpected, "Unexpected Errors: " + '\n'.join(unexpected)) self.assert_(not missing, "Missing Errors: " + '\n'.join(missing)) def django_tests(verbosity, interactive, failfast, test_labels): from django.conf import settings old_installed_apps = settings.INSTALLED_APPS old_root_urlconf = getattr(settings, "ROOT_URLCONF", "") old_template_dirs = settings.TEMPLATE_DIRS old_use_i18n = settings.USE_I18N old_login_url = settings.LOGIN_URL old_language_code = settings.LANGUAGE_CODE old_middleware_classes = settings.MIDDLEWARE_CLASSES # Redirect some settings for the duration of these tests. settings.INSTALLED_APPS = ALWAYS_INSTALLED_APPS settings.ROOT_URLCONF = 'urls' settings.TEMPLATE_DIRS = (os.path.join(os.path.dirname(__file__), TEST_TEMPLATE_DIR),) settings.USE_I18N = True settings.LANGUAGE_CODE = 'en' settings.LOGIN_URL = '/accounts/login/' settings.MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.common.CommonMiddleware', ) settings.SITE_ID = 1 # For testing comment-utils, we require the MANAGERS attribute # to be set, so that a test email is sent out which we catch # in our tests. settings.MANAGERS = ("admin@djangoproject.com",) # Load all the ALWAYS_INSTALLED_APPS. # (This import statement is intentionally delayed until after we # access settings because of the USE_I18N dependency.) from django.db.models.loading import get_apps, load_app get_apps() # Load all the test model apps. test_labels_set = set([label.split('.')[0] for label in test_labels]) for model_dir, model_name in get_test_models(): model_label = '.'.join([model_dir, model_name]) # if the model was named on the command line, or # no models were named (i.e., run all), import # this model and add it to the list to test. if not test_labels or model_name in test_labels_set: if verbosity >= 1: print "Importing model %s" % model_name mod = load_app(model_label) if mod: if model_label not in settings.INSTALLED_APPS: settings.INSTALLED_APPS.append(model_label) # Add tests for invalid models. extra_tests = [] for model_dir, model_name in get_invalid_models(): model_label = '.'.join([model_dir, model_name]) if not test_labels or model_name in test_labels: extra_tests.append(InvalidModelTestCase(model_label)) try: # Invalid models are not working apps, so we cannot pass them into # the test runner with the other test_labels test_labels.remove(model_name) except ValueError: pass # Run the test suite, including the extra validation tests. from django.test.utils import get_runner if not hasattr(settings, 'TEST_RUNNER'): settings.TEST_RUNNER = 'django.test.simple.DjangoTestSuiteRunner' TestRunner = get_runner(settings) if hasattr(TestRunner, 'func_name'): # Pre 1.2 test runners were just functions, # and did not support the 'failfast' option. import warnings warnings.warn( 'Function-based test runners are deprecated. Test runners should be classes with a run_tests() method.', PendingDeprecationWarning ) failures = TestRunner(test_labels, verbosity=verbosity, interactive=interactive, extra_tests=extra_tests) else: test_runner = TestRunner(verbosity=verbosity, interactive=interactive, failfast=failfast) failures = test_runner.run_tests(test_labels, extra_tests=extra_tests) if failures: sys.exit(bool(failures)) # Restore the old settings. settings.INSTALLED_APPS = old_installed_apps settings.ROOT_URLCONF = old_root_urlconf settings.TEMPLATE_DIRS = old_template_dirs settings.USE_I18N = old_use_i18n settings.LANGUAGE_CODE = old_language_code settings.LOGIN_URL = old_login_url settings.MIDDLEWARE_CLASSES = old_middleware_classes if __name__ == "__main__": from optparse import OptionParser usage = "%prog [options] [model model model ...]" parser = OptionParser(usage=usage) parser.add_option('-v','--verbosity', action='store', dest='verbosity', default='0', type='choice', choices=['0', '1', '2'], help='Verbosity level; 0=minimal output, 1=normal output, 2=all output') parser.add_option('--noinput', action='store_false', dest='interactive', default=True, help='Tells Django to NOT prompt the user for input of any kind.') parser.add_option('--failfast', action='store_true', dest='failfast', default=False, help='Tells Django to stop running the test suite after first failed test.') parser.add_option('--settings', help='Python path to settings module, e.g. "myproject.settings". If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.') options, args = parser.parse_args() if options.settings: os.environ['DJANGO_SETTINGS_MODULE'] = options.settings elif "DJANGO_SETTINGS_MODULE" not in os.environ: parser.error("DJANGO_SETTINGS_MODULE is not set in the environment. " "Set it or use --settings.") django_tests(int(options.verbosity), options.interactive, options.failfast, args)
41.921569
161
0.684167
794f0dfe5192e41a9135adc31c6165732eb6fad3
15,427
py
Python
src/zvt/contract/api.py
vishalbelsare/zvt
d55051147274c0a4157f08ec60908c781a323c8f
[ "MIT" ]
2,032
2019-04-16T14:10:32.000Z
2022-03-31T12:40:13.000Z
src/zvt/contract/api.py
vishalbelsare/zvt
d55051147274c0a4157f08ec60908c781a323c8f
[ "MIT" ]
162
2019-05-07T09:57:46.000Z
2022-03-25T16:23:08.000Z
src/zvt/contract/api.py
vishalbelsare/zvt
d55051147274c0a4157f08ec60908c781a323c8f
[ "MIT" ]
755
2019-04-30T10:25:16.000Z
2022-03-29T17:50:49.000Z
# -*- coding: utf-8 -*- import logging import os import platform from typing import List, Union, Type import pandas as pd from sqlalchemy import create_engine from sqlalchemy import func, exists, and_ from sqlalchemy.engine import Engine from sqlalchemy.ext.declarative import DeclarativeMeta from sqlalchemy.orm import Query from sqlalchemy.orm import sessionmaker, Session from zvt import zvt_env from zvt.contract import IntervalLevel from zvt.contract import zvt_context from zvt.contract.schema import Mixin, TradableEntity from zvt.utils.pd_utils import pd_is_not_null, index_df from zvt.utils.time_utils import to_pd_timestamp logger = logging.getLogger(__name__) def get_db_name(data_schema: DeclarativeMeta) -> str: """ get db name of the domain schema :param data_schema: :type data_schema: :return: :rtype: """ for db_name, base in zvt_context.dbname_map_base.items(): if issubclass(data_schema, base): return db_name def get_db_engine( provider: str, db_name: str = None, data_schema: object = None, data_path: str = zvt_env["data_path"] ) -> Engine: """ get db engine of the (provider,db_name) or (provider,data_schema) :param data_path: :param provider: :type provider: :param db_name: :type db_name: :param data_schema: :type data_schema: :return: :rtype: """ if data_schema: db_name = get_db_name(data_schema=data_schema) db_path = os.path.join(data_path, "{}_{}.db?check_same_thread=False".format(provider, db_name)) engine_key = "{}_{}".format(provider, db_name) db_engine = zvt_context.db_engine_map.get(engine_key) if not db_engine: db_engine = create_engine("sqlite:///" + db_path, echo=False) zvt_context.db_engine_map[engine_key] = db_engine return db_engine def get_schemas(provider: str) -> List[DeclarativeMeta]: """ get domain schemas supported by the provider :param provider: :type provider: :return: :rtype: """ schemas = [] for provider1, dbs in zvt_context.provider_map_dbnames.items(): if provider == provider1: for dbname in dbs: schemas1 = zvt_context.dbname_map_schemas.get(dbname) if schemas1: schemas += schemas1 return schemas def get_db_session(provider: str, db_name: str = None, data_schema: object = None, force_new: bool = False) -> Session: """ get db session of the (provider,db_name) or (provider,data_schema) :param provider: :type provider: :param db_name: :type db_name: :param data_schema: :type data_schema: :param force_new: :type force_new: :return: :rtype: """ if data_schema: db_name = get_db_name(data_schema=data_schema) session_key = "{}_{}".format(provider, db_name) if force_new: return get_db_session_factory(provider, db_name, data_schema)() session = zvt_context.sessions.get(session_key) if not session: session = get_db_session_factory(provider, db_name, data_schema)() zvt_context.sessions[session_key] = session return session def get_db_session_factory(provider: str, db_name: str = None, data_schema: object = None): """ get db session factory of the (provider,db_name) or (provider,data_schema) :param provider: :type provider: :param db_name: :type db_name: :param data_schema: :type data_schema: :return: :rtype: """ if data_schema: db_name = get_db_name(data_schema=data_schema) session_key = "{}_{}".format(provider, db_name) session = zvt_context.db_session_map.get(session_key) if not session: session = sessionmaker() zvt_context.db_session_map[session_key] = session return session def get_entity_schema(entity_type: str) -> Type[TradableEntity]: """ get entity schema from name :param entity_type: :type entity_type: :return: :rtype: """ return zvt_context.tradable_schema_map[entity_type] def get_schema_by_name(name: str) -> DeclarativeMeta: """ get domain schema by the name :param name: :type name: :return: :rtype: """ for schema in zvt_context.schemas: if schema.__name__ == name: return schema def get_schema_columns(schema: DeclarativeMeta) -> List[str]: """ get all columns of the domain schema :param schema: :type schema: :return: :rtype: """ return schema.__table__.columns.keys() def common_filter( query: Query, data_schema, start_timestamp=None, end_timestamp=None, filters=None, order=None, limit=None, time_field="timestamp", ): assert data_schema is not None time_col = eval("data_schema.{}".format(time_field)) if start_timestamp: query = query.filter(time_col >= to_pd_timestamp(start_timestamp)) if end_timestamp: query = query.filter(time_col <= to_pd_timestamp(end_timestamp)) if filters: for filter in filters: query = query.filter(filter) if order is not None: query = query.order_by(order) else: query = query.order_by(time_col.asc()) if limit: query = query.limit(limit) return query def del_data(data_schema: Type[Mixin], filters: List = None, provider=None): if not provider: provider = data_schema.providers[0] session = get_db_session(provider=provider, data_schema=data_schema) query = session.query(data_schema) if filters: for f in filters: query = query.filter(f) query.delete() session.commit() def get_one(data_schema, id: str, provider: str = None, session: Session = None): if "providers" not in data_schema.__dict__: logger.error("no provider registered for: {}", data_schema) if not provider: provider = data_schema.providers[0] if not session: session = get_db_session(provider=provider, data_schema=data_schema) return session.query(data_schema).get(id) def get_data( data_schema: Type[Mixin], ids: List[str] = None, entity_ids: List[str] = None, entity_id: str = None, codes: List[str] = None, code: str = None, level: Union[IntervalLevel, str] = None, provider: str = None, columns: List = None, col_label: dict = None, return_type: str = "df", start_timestamp: Union[pd.Timestamp, str] = None, end_timestamp: Union[pd.Timestamp, str] = None, filters: List = None, session: Session = None, order=None, limit: int = None, index: Union[str, list] = None, drop_index_col=False, time_field: str = "timestamp", ): if "providers" not in data_schema.__dict__: logger.error("no provider registered for: {}", data_schema) if not provider: provider = data_schema.providers[0] if not session: session = get_db_session(provider=provider, data_schema=data_schema) time_col = eval("data_schema.{}".format(time_field)) if columns: # support str if type(columns[0]) == str: columns_ = [] for col in columns: if isinstance(col, str): columns_.append(eval("data_schema.{}".format(col))) else: columns_.append(col) columns = columns_ # make sure get timestamp if time_col not in columns: columns.append(time_col) if col_label: columns_ = [] for col in columns: if col.name in col_label: columns_.append(col.label(col_label.get(col.name))) else: columns_.append(col) columns = columns_ query = session.query(*columns) else: query = session.query(data_schema) if entity_id: query = query.filter(data_schema.entity_id == entity_id) if entity_ids: query = query.filter(data_schema.entity_id.in_(entity_ids)) if code: query = query.filter(data_schema.code == code) if codes: query = query.filter(data_schema.code.in_(codes)) if ids: query = query.filter(data_schema.id.in_(ids)) # we always store different level in different schema,the level param is not useful now if level: try: # some schema has no level,just ignore it data_schema.level if type(level) == IntervalLevel: level = level.value query = query.filter(data_schema.level == level) except Exception as e: pass query = common_filter( query, data_schema=data_schema, start_timestamp=start_timestamp, end_timestamp=end_timestamp, filters=filters, order=order, limit=limit, time_field=time_field, ) if return_type == "df": df = pd.read_sql(query.statement, query.session.bind) if pd_is_not_null(df): if index: df = index_df(df, index=index, drop=drop_index_col, time_field=time_field) return df elif return_type == "domain": return query.all() elif return_type == "dict": return [item.__dict__ for item in query.all()] def data_exist(session, schema, id): return session.query(exists().where(and_(schema.id == id))).scalar() def get_data_count(data_schema, filters=None, session=None): query = session.query(data_schema) if filters: for filter in filters: query = query.filter(filter) count_q = query.statement.with_only_columns([func.count(data_schema.id)]).order_by(None) count = session.execute(count_q).scalar() return count def get_group(provider, data_schema, column, group_func=func.count, session=None): if not session: session = get_db_session(provider=provider, data_schema=data_schema) if group_func: query = session.query(column, group_func(column)).group_by(column) else: query = session.query(column).group_by(column) df = pd.read_sql(query.statement, query.session.bind) return df def decode_entity_id(entity_id: str): result = entity_id.split("_") entity_type = result[0] exchange = result[1] code = "".join(result[2:]) return entity_type, exchange, code def get_entity_type(entity_id: str): entity_type, _, _ = decode_entity_id(entity_id) return entity_type def get_entity_exchange(entity_id: str): _, exchange, _ = decode_entity_id(entity_id) return exchange def get_entity_code(entity_id: str): _, _, code = decode_entity_id(entity_id) return code def df_to_db( df: pd.DataFrame, data_schema: DeclarativeMeta, provider: str, force_update: bool = False, sub_size: int = 5000, drop_duplicates: bool = True, ) -> object: """ FIXME:improve store the df to db :param df: :param data_schema: :param provider: :param force_update: :param sub_size: :param drop_duplicates: :return: """ if not pd_is_not_null(df): return 0 if drop_duplicates and df.duplicated(subset="id").any(): logger.warning(f"remove duplicated:{df[df.duplicated()]}") df = df.drop_duplicates(subset="id", keep="last") db_engine = get_db_engine(provider, data_schema=data_schema) schema_cols = get_schema_columns(data_schema) cols = set(df.columns.tolist()) & set(schema_cols) if not cols: print("wrong cols") return 0 df = df[cols] size = len(df) if platform.system() == "Windows": sub_size = 900 if size >= sub_size: step_size = int(size / sub_size) if size % sub_size: step_size = step_size + 1 else: step_size = 1 saved = 0 for step in range(step_size): df_current = df.iloc[sub_size * step : sub_size * (step + 1)] if force_update: session = get_db_session(provider=provider, data_schema=data_schema) ids = df_current["id"].tolist() if len(ids) == 1: sql = f'delete from `{data_schema.__tablename__}` where id = "{ids[0]}"' else: sql = f"delete from `{data_schema.__tablename__}` where id in {tuple(ids)}" session.execute(sql) session.commit() else: current = get_data( data_schema=data_schema, columns=[data_schema.id], provider=provider, ids=df_current["id"].tolist() ) if pd_is_not_null(current): df_current = df_current[~df_current["id"].isin(current["id"])] if pd_is_not_null(df_current): saved = saved + len(df_current) df_current.to_sql(data_schema.__tablename__, db_engine, index=False, if_exists="append") return saved def get_entities( entity_schema: Type[TradableEntity] = None, entity_type: str = None, exchanges: List[str] = None, ids: List[str] = None, entity_ids: List[str] = None, entity_id: str = None, codes: List[str] = None, code: str = None, provider: str = None, columns: List = None, col_label: dict = None, return_type: str = "df", start_timestamp: Union[pd.Timestamp, str] = None, end_timestamp: Union[pd.Timestamp, str] = None, filters: List = None, session: Session = None, order=None, limit: int = None, index: Union[str, list] = "code", ) -> List: if not entity_schema: entity_schema = zvt_context.tradable_schema_map[entity_type] if not provider: provider = entity_schema.providers[0] if not order: order = entity_schema.code.asc() if exchanges: if filters: filters.append(entity_schema.exchange.in_(exchanges)) else: filters = [entity_schema.exchange.in_(exchanges)] return get_data( data_schema=entity_schema, ids=ids, entity_ids=entity_ids, entity_id=entity_id, codes=codes, code=code, level=None, provider=provider, columns=columns, col_label=col_label, return_type=return_type, start_timestamp=start_timestamp, end_timestamp=end_timestamp, filters=filters, session=session, order=order, limit=limit, index=index, ) def get_entity_ids( entity_type="stock", entity_schema: TradableEntity = None, exchanges=None, codes=None, provider=None, filters=None ): df = get_entities( entity_type=entity_type, entity_schema=entity_schema, exchanges=exchanges, codes=codes, provider=provider, filters=filters, ) if pd_is_not_null(df): return df["entity_id"].to_list() return None # the __all__ is generated __all__ = [ "get_db_name", "get_db_engine", "get_schemas", "get_db_session", "get_db_session_factory", "get_entity_schema", "get_schema_by_name", "get_schema_columns", "common_filter", "del_data", "get_one", "get_data", "data_exist", "get_data_count", "get_group", "decode_entity_id", "get_entity_type", "get_entity_exchange", "get_entity_code", "df_to_db", "get_entities", "get_entity_ids", ]
27.112478
119
0.636546
794f0f6aba28285d1ce0fda808c3b6c1abf11f9b
285
py
Python
anjuke/items.py
awolfly9/anjuke
80ed47db05a032a66284073134d2649312201d02
[ "MIT" ]
null
null
null
anjuke/items.py
awolfly9/anjuke
80ed47db05a032a66284073134d2649312201d02
[ "MIT" ]
null
null
null
anjuke/items.py
awolfly9/anjuke
80ed47db05a032a66284073134d2649312201d02
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class AnjukeItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
19
51
0.684211
794f112c0b160fdccf438b6edbce4a895acacd77
431
py
Python
apps/coupon/migrations/0002_alter_coupon_id.py
FusionArc/retrodev_2
8b1e09f54ae0fb268dc7842718a014bc961a4dd7
[ "MIT" ]
null
null
null
apps/coupon/migrations/0002_alter_coupon_id.py
FusionArc/retrodev_2
8b1e09f54ae0fb268dc7842718a014bc961a4dd7
[ "MIT" ]
null
null
null
apps/coupon/migrations/0002_alter_coupon_id.py
FusionArc/retrodev_2
8b1e09f54ae0fb268dc7842718a014bc961a4dd7
[ "MIT" ]
null
null
null
# Generated by Django 3.2.4 on 2021-06-28 09:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('coupon', '0001_initial'), ] operations = [ migrations.AlterField( model_name='coupon', name='id', field=models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID'), ), ]
22.684211
111
0.614849
794f13098729848c1bfc438be78e99beb938f872
2,789
py
Python
2018/puzzle_03/puzzle_03.py
alexanderson/advent-of-code
92bb34353f430e420869797cff3604046e1f1192
[ "MIT" ]
null
null
null
2018/puzzle_03/puzzle_03.py
alexanderson/advent-of-code
92bb34353f430e420869797cff3604046e1f1192
[ "MIT" ]
null
null
null
2018/puzzle_03/puzzle_03.py
alexanderson/advent-of-code
92bb34353f430e420869797cff3604046e1f1192
[ "MIT" ]
null
null
null
import collections import re CUTOUT_RE = re.compile( r'#(?P<id>\d+) @ (?P<x>\d+),(?P<y>\d+): (?P<width>\d+)x(?P<height>\d+)' ) Cutout = collections.namedtuple('Cutout', 'id x y width height') class Fabric: def __init__(self, width, height): self._width = width self._height = height self._grid = [ [set() for _ in range(self._width)] for _ in range(self._height) ] def add_cutout(self, cutout): for y, x in coords(cutout): self._grid[y][x].add(cutout.id) def overlaps(self): overlaps = 0 for row in self._grid: for cell in row: if len(cell) > 1: overlaps += 1 return overlaps def isolated_cutouts(self): all_ids = set() overlapping_ids = set() for row in self._grid: for cell in row: all_ids |= cell if len(cell) > 1: overlapping_ids |= cell return all_ids - overlapping_ids def get_cutouts(): with open('input.txt') as input_file: instructions = input_file.readlines() lines = (line.rstrip('\n') for line in instructions) return [ parse(line) for line in lines if line ] def parse(cutout): match = CUTOUT_RE.match(cutout) assert match, cutout groups = match.groupdict() return Cutout( id=int(groups['id']), x=int(groups['x']), y=int(groups['y']), width=int(groups['width']), height=int(groups['height']), ) def grid_size(cutouts): width = 0 height = 0 for cutout in cutouts: width = max(width, cutout.x + cutout.width) height = max(height, cutout.y + cutout.height) return ( width + 1, height + 1 ) def coords(cutout): for y in range(cutout.y, cutout.y + cutout.height): for x in range(cutout.x, cutout.x + cutout.width): yield y, x def test_overlap(): fabric = Fabric(8, 8) instructions = ( '#1 @ 1,3: 4x4', '#2 @ 3,1: 4x4', '#3 @ 5,5: 2x2', ) for instruction in instructions: cutout = parse(instruction) fabric.add_cutout(cutout) overlaps = fabric.overlaps() assert overlaps == 4, '{} != 4'.format(overlaps) isolated_cutouts = fabric.isolated_cutouts() assert isolated_cutouts == {3}, isolated_cutouts if __name__ == '__main__': test_overlap() cutouts = get_cutouts() width, height = grid_size(cutouts) fabric = Fabric(width, height) for cutout in cutouts: fabric.add_cutout(cutout) overlaps = fabric.overlaps() print(overlaps) isolated_cutouts = fabric.isolated_cutouts() print(isolated_cutouts)
23.635593
75
0.562567
794f13bbfb6b10ca07f1f3a1e6b2aca8859eb39e
132,771
py
Python
pandas/core/indexes/multi.py
mujtahidalam/pandas
526468c8fe6fc5157aaf2fce327c5ab2a3350f49
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
1
2021-12-07T13:37:31.000Z
2021-12-07T13:37:31.000Z
pandas/core/indexes/multi.py
mujtahidalam/pandas
526468c8fe6fc5157aaf2fce327c5ab2a3350f49
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/indexes/multi.py
mujtahidalam/pandas
526468c8fe6fc5157aaf2fce327c5ab2a3350f49
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
from __future__ import annotations from functools import wraps from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Collection, Hashable, Iterable, List, Sequence, Tuple, cast, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import ( algos as libalgos, index as libindex, lib, ) from pandas._libs.hashtable import duplicated_int64 from pandas._typing import ( AnyArrayLike, DtypeObj, Scalar, Shape, ) from pandas.compat.numpy import function as nv from pandas.errors import ( InvalidIndexError, PerformanceWarning, UnsortedIndexError, ) from pandas.util._decorators import ( Appender, cache_readonly, doc, ) from pandas.core.dtypes.cast import coerce_indexer_dtype from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_categorical_dtype, is_hashable, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeIndex, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import ( array_equivalent, isna, ) import pandas.core.algorithms as algos from pandas.core.arrays import Categorical from pandas.core.arrays.categorical import factorize_from_iterables import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, _index_shared_docs, ensure_index, get_unanimous_names, ) from pandas.core.indexes.frozen import FrozenList from pandas.core.indexes.numeric import Int64Index from pandas.core.ops.invalid import make_invalid_op from pandas.core.sorting import ( get_group_index, indexer_from_factorized, lexsort_indexer, ) from pandas.io.formats.printing import ( format_object_attrs, format_object_summary, pprint_thing, ) if TYPE_CHECKING: from pandas import ( CategoricalIndex, DataFrame, Series, ) _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update( {"klass": "MultiIndex", "target_klass": "MultiIndex or list of tuples"} ) class MultiIndexUIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.UInt64Engine): """ This class manages a MultiIndex by mapping label combinations to positive integers. """ _base = libindex.UInt64Engine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one uint64 (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- scalar or 1-dimensional array, of dtype uint64 Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits: codes <<= self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer: if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) class MultiIndexPyIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.ObjectEngine): """ This class manages those (extreme) cases in which the number of possible label combinations overflows the 64 bits integers, and uses an ObjectEngine containing Python integers. """ _base = libindex.ObjectEngine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one Python integer (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- int, or 1-dimensional array of dtype object Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits. Since this can overflow uint64, first make sure we are # working with Python integers: codes = codes.astype("object") << self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer (per row): if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) def names_compat(meth): """ A decorator to allow either `name` or `names` keyword but not both. This makes it easier to share code with base class. """ @wraps(meth) def new_meth(self_or_cls, *args, **kwargs): if "name" in kwargs and "names" in kwargs: raise TypeError("Can only provide one of `names` and `name`") elif "name" in kwargs: kwargs["names"] = kwargs.pop("name") return meth(self_or_cls, *args, **kwargs) return new_meth class MultiIndex(Index): """ A multi-level, or hierarchical, index object for pandas objects. Parameters ---------- levels : sequence of arrays The unique labels for each level. codes : sequence of arrays Integers for each level designating which label at each location. .. versionadded:: 0.24.0 sortorder : optional int Level of sortedness (must be lexicographically sorted by that level). names : optional sequence of objects Names for each of the index levels. (name is accepted for compat). copy : bool, default False Copy the meta-data. verify_integrity : bool, default True Check that the levels/codes are consistent and valid. Attributes ---------- names levels codes nlevels levshape Methods ------- from_arrays from_tuples from_product from_frame set_levels set_codes to_frame to_flat_index sortlevel droplevel swaplevel reorder_levels remove_unused_levels get_locs See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Create a MultiIndex from the cartesian product of iterables. MultiIndex.from_tuples : Convert list of tuples to a MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Index : The base pandas Index type. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html>`__ for more. Examples -------- A new ``MultiIndex`` is typically constructed using one of the helper methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product` and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``): >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods. """ _hidden_attrs = Index._hidden_attrs | frozenset() # initialize to zero-length tuples to make everything work _typ = "multiindex" _names = FrozenList() _levels = FrozenList() _codes = FrozenList() _comparables = ["names"] rename = Index.set_names sortorder: int | None # -------------------------------------------------------------------- # Constructors def __new__( cls, levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity: bool = True, ): # compat with Index if name is not None: names = name if levels is None or codes is None: raise TypeError("Must pass both levels and codes") if len(levels) != len(codes): raise ValueError("Length of levels and codes must be the same.") if len(levels) == 0: raise ValueError("Must pass non-zero number of levels/codes") result = object.__new__(cls) result._cache = {} # we've already validated levels and codes, so shortcut here result._set_levels(levels, copy=copy, validate=False) result._set_codes(codes, copy=copy, validate=False) result._names = [None] * len(levels) if names is not None: # handles name validation result._set_names(names) if sortorder is not None: result.sortorder = int(sortorder) else: result.sortorder = sortorder if verify_integrity: new_codes = result._verify_integrity() result._codes = new_codes result._reset_identity() return result def _validate_codes(self, level: list, code: list): """ Reassign code values as -1 if their corresponding levels are NaN. Parameters ---------- code : list Code to reassign. level : list Level to check for missing values (NaN, NaT, None). Returns ------- new code where code value = -1 if it corresponds to a level with missing values (NaN, NaT, None). """ null_mask = isna(level) if np.any(null_mask): code = np.where(null_mask[code], -1, code) return code def _verify_integrity(self, codes: list | None = None, levels: list | None = None): """ Parameters ---------- codes : optional list Codes to check for validity. Defaults to current codes. levels : optional list Levels to check for validity. Defaults to current levels. Raises ------ ValueError If length of levels and codes don't match, if the codes for any level would exceed level bounds, or there are any duplicate levels. Returns ------- new codes where code value = -1 if it corresponds to a NaN level. """ # NOTE: Currently does not check, among other things, that cached # nlevels matches nor that sortorder matches actually sortorder. codes = codes or self.codes levels = levels or self.levels if len(levels) != len(codes): raise ValueError( "Length of levels and codes must match. NOTE: " "this index is in an inconsistent state." ) codes_length = len(codes[0]) for i, (level, level_codes) in enumerate(zip(levels, codes)): if len(level_codes) != codes_length: raise ValueError( f"Unequal code lengths: {[len(code_) for code_ in codes]}" ) if len(level_codes) and level_codes.max() >= len(level): raise ValueError( f"On level {i}, code max ({level_codes.max()}) >= length of " f"level ({len(level)}). NOTE: this index is in an " "inconsistent state" ) if len(level_codes) and level_codes.min() < -1: raise ValueError(f"On level {i}, code value ({level_codes.min()}) < -1") if not level.is_unique: raise ValueError( f"Level values must be unique: {list(level)} on level {i}" ) if self.sortorder is not None: if self.sortorder > _lexsort_depth(self.codes, self.nlevels): raise ValueError( "Value for sortorder must be inferior or equal to actual " f"lexsort_depth: sortorder {self.sortorder} " f"with lexsort_depth {_lexsort_depth(self.codes, self.nlevels)}" ) codes = [ self._validate_codes(level, code) for level, code in zip(levels, codes) ] new_codes = FrozenList(codes) return new_codes @classmethod def from_arrays(cls, arrays, sortorder=None, names=lib.no_default) -> MultiIndex: """ Convert arrays to MultiIndex. Parameters ---------- arrays : list / sequence of array-likes Each array-like gives one level's value for each data point. len(arrays) is the number of levels. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ error_msg = "Input must be a list / sequence of array-likes." if not is_list_like(arrays): raise TypeError(error_msg) elif is_iterator(arrays): arrays = list(arrays) # Check if elements of array are list-like for array in arrays: if not is_list_like(array): raise TypeError(error_msg) # Check if lengths of all arrays are equal or not, # raise ValueError, if not for i in range(1, len(arrays)): if len(arrays[i]) != len(arrays[i - 1]): raise ValueError("all arrays must be same length") codes, levels = factorize_from_iterables(arrays) if names is lib.no_default: names = [getattr(arr, "name", None) for arr in arrays] return cls( levels=levels, codes=codes, sortorder=sortorder, names=names, verify_integrity=False, ) @classmethod @names_compat def from_tuples( cls, tuples: Iterable[tuple[Hashable, ...]], sortorder: int | None = None, names: Sequence[Hashable] | None = None, ) -> MultiIndex: """ Convert list of tuples to MultiIndex. Parameters ---------- tuples : list / sequence of tuple-likes Each tuple is the index of one row/column. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> tuples = [(1, 'red'), (1, 'blue'), ... (2, 'red'), (2, 'blue')] >>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ if not is_list_like(tuples): raise TypeError("Input must be a list / sequence of tuple-likes.") elif is_iterator(tuples): tuples = list(tuples) tuples = cast(Collection[Tuple[Hashable, ...]], tuples) arrays: list[Sequence[Hashable]] if len(tuples) == 0: if names is None: raise TypeError("Cannot infer number of levels from empty list") arrays = [[]] * len(names) elif isinstance(tuples, (np.ndarray, Index)): if isinstance(tuples, Index): tuples = np.asarray(tuples._values) arrays = list(lib.tuples_to_object_array(tuples).T) elif isinstance(tuples, list): arrays = list(lib.to_object_array_tuples(tuples).T) else: arrs = zip(*tuples) arrays = cast(List[Sequence[Hashable]], arrs) return cls.from_arrays(arrays, sortorder=sortorder, names=names) @classmethod def from_product( cls, iterables, sortorder=None, names=lib.no_default ) -> MultiIndex: """ Make a MultiIndex from the cartesian product of multiple iterables. Parameters ---------- iterables : list / sequence of iterables Each iterable has unique labels for each level of the index. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. .. versionchanged:: 1.0.0 If not explicitly provided, names will be inferred from the elements of iterables if an element has a name attribute Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> numbers = [0, 1, 2] >>> colors = ['green', 'purple'] >>> pd.MultiIndex.from_product([numbers, colors], ... names=['number', 'color']) MultiIndex([(0, 'green'), (0, 'purple'), (1, 'green'), (1, 'purple'), (2, 'green'), (2, 'purple')], names=['number', 'color']) """ from pandas.core.reshape.util import cartesian_product if not is_list_like(iterables): raise TypeError("Input must be a list / sequence of iterables.") elif is_iterator(iterables): iterables = list(iterables) codes, levels = factorize_from_iterables(iterables) if names is lib.no_default: names = [getattr(it, "name", None) for it in iterables] # codes are all ndarrays, so cartesian_product is lossless codes = cartesian_product(codes) return cls(levels, codes, sortorder=sortorder, names=names) @classmethod def from_frame(cls, df: DataFrame, sortorder=None, names=None) -> MultiIndex: """ Make a MultiIndex from a DataFrame. .. versionadded:: 0.24.0 Parameters ---------- df : DataFrame DataFrame to be converted to MultiIndex. sortorder : int, optional Level of sortedness (must be lexicographically sorted by that level). names : list-like, optional If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence. Returns ------- MultiIndex The MultiIndex representation of the given DataFrame. See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. Examples -------- >>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip >>> pd.MultiIndex.from_frame(df) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b']) Using explicit names, instead of the column names >>> pd.MultiIndex.from_frame(df, names=['state', 'observation']) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation']) """ if not isinstance(df, ABCDataFrame): raise TypeError("Input must be a DataFrame") column_names, columns = zip(*df.items()) names = column_names if names is None else names return cls.from_arrays(columns, sortorder=sortorder, names=names) # -------------------------------------------------------------------- @cache_readonly def _values(self) -> np.ndarray: # We override here, since our parent uses _data, which we don't use. values = [] for i in range(self.nlevels): vals = self._get_level_values(i) if is_categorical_dtype(vals.dtype): vals = cast("CategoricalIndex", vals) vals = vals._data._internal_get_values() if isinstance(vals.dtype, ExtensionDtype) or isinstance( vals, (ABCDatetimeIndex, ABCTimedeltaIndex) ): vals = vals.astype(object) # error: Incompatible types in assignment (expression has type "ndarray", # variable has type "Index") vals = np.array(vals, copy=False) # type: ignore[assignment] values.append(vals) arr = lib.fast_zip(values) return arr @property def values(self) -> np.ndarray: return self._values @property def array(self): """ Raises a ValueError for `MultiIndex` because there's no single array backing a MultiIndex. Raises ------ ValueError """ raise ValueError( "MultiIndex has no single backing array. Use " "'MultiIndex.to_numpy()' to get a NumPy array of tuples." ) @cache_readonly def dtypes(self) -> Series: """ Return the dtypes as a Series for the underlying MultiIndex """ from pandas import Series return Series( { f"level_{idx}" if level.name is None else level.name: level.dtype for idx, level in enumerate(self.levels) } ) def __len__(self) -> int: return len(self.codes[0]) # -------------------------------------------------------------------- # Levels Methods @cache_readonly def levels(self) -> FrozenList: # Use cache_readonly to ensure that self.get_locs doesn't repeatedly # create new IndexEngine # https://github.com/pandas-dev/pandas/issues/31648 result = [x._rename(name=name) for x, name in zip(self._levels, self._names)] for level in result: # disallow midx.levels[0].name = "foo" level._no_setting_name = True return FrozenList(result) def _set_levels( self, levels, level=None, copy: bool = False, validate: bool = True, verify_integrity: bool = False, ) -> None: # This is NOT part of the levels property because it should be # externally not allowed to set levels. User beware if you change # _levels directly if validate: if len(levels) == 0: raise ValueError("Must set non-zero number of levels.") if level is None and len(levels) != self.nlevels: raise ValueError("Length of levels must match number of levels.") if level is not None and len(levels) != len(level): raise ValueError("Length of levels must match length of level.") if level is None: new_levels = FrozenList( ensure_index(lev, copy=copy)._view() for lev in levels ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_levels_list = list(self._levels) for lev_num, lev in zip(level_numbers, levels): new_levels_list[lev_num] = ensure_index(lev, copy=copy)._view() new_levels = FrozenList(new_levels_list) if verify_integrity: new_codes = self._verify_integrity(levels=new_levels) self._codes = new_codes names = self.names self._levels = new_levels if any(names): self._set_names(names) self._reset_cache() def set_levels( self, levels, level=None, inplace=None, verify_integrity: bool = True ): """ Set new levels on MultiIndex. Defaults to returning new index. Parameters ---------- levels : sequence or list of sequence New level(s) to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. .. deprecated:: 1.2.0 verify_integrity : bool, default True If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) or None The same type as the caller or None if ``inplace=True``. Examples -------- >>> idx = pd.MultiIndex.from_tuples( ... [ ... (1, "one"), ... (1, "two"), ... (2, "one"), ... (2, "two"), ... (3, "one"), ... (3, "two") ... ], ... names=["foo", "bar"] ... ) >>> idx MultiIndex([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two'), (3, 'one'), (3, 'two')], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2]]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b', 'c'], level=0) MultiIndex([('a', 'one'), ('a', 'two'), ('b', 'one'), ('b', 'two'), ('c', 'one'), ('c', 'two')], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b'], level='bar') MultiIndex([(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')], names=['foo', 'bar']) If any of the levels passed to ``set_levels()`` exceeds the existing length, all of the values from that argument will be stored in the MultiIndex levels, though the values will be truncated in the MultiIndex output. >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]).levels FrozenList([['a', 'b', 'c'], [1, 2, 3, 4]]) """ if inplace is not None: warnings.warn( "inplace is deprecated and will be removed in a future version.", FutureWarning, stacklevel=2, ) else: inplace = False if is_list_like(levels) and not isinstance(levels, Index): levels = list(levels) level, levels = _require_listlike(level, levels, "Levels") if inplace: idx = self else: idx = self._view() idx._reset_identity() idx._set_levels( levels, level=level, validate=True, verify_integrity=verify_integrity ) if not inplace: return idx @property def nlevels(self) -> int: """ Integer number of levels in this MultiIndex. Examples -------- >>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']]) >>> mi MultiIndex([('a', 'b', 'c')], ) >>> mi.nlevels 3 """ return len(self._levels) @property def levshape(self) -> Shape: """ A tuple with the length of each level. Examples -------- >>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']]) >>> mi MultiIndex([('a', 'b', 'c')], ) >>> mi.levshape (1, 1, 1) """ return tuple(len(x) for x in self.levels) # -------------------------------------------------------------------- # Codes Methods @property def codes(self): return self._codes def _set_codes( self, codes, level=None, copy: bool = False, validate: bool = True, verify_integrity: bool = False, ) -> None: if validate: if level is None and len(codes) != self.nlevels: raise ValueError("Length of codes must match number of levels") if level is not None and len(codes) != len(level): raise ValueError("Length of codes must match length of levels.") if level is None: new_codes = FrozenList( _coerce_indexer_frozen(level_codes, lev, copy=copy).view() for lev, level_codes in zip(self._levels, codes) ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_codes_list = list(self._codes) for lev_num, level_codes in zip(level_numbers, codes): lev = self.levels[lev_num] new_codes_list[lev_num] = _coerce_indexer_frozen( level_codes, lev, copy=copy ) new_codes = FrozenList(new_codes_list) if verify_integrity: new_codes = self._verify_integrity(codes=new_codes) self._codes = new_codes self._reset_cache() def set_codes(self, codes, level=None, inplace=None, verify_integrity: bool = True): """ Set new codes on MultiIndex. Defaults to returning new index. .. versionadded:: 0.24.0 New name for deprecated method `set_labels`. Parameters ---------- codes : sequence or list of sequence New codes to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. .. deprecated:: 1.2.0 verify_integrity : bool, default True If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) or None The same type as the caller or None if ``inplace=True``. Examples -------- >>> idx = pd.MultiIndex.from_tuples( ... [(1, "one"), (1, "two"), (2, "one"), (2, "two")], names=["foo", "bar"] ... ) >>> idx MultiIndex([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([1, 0, 1, 0], level=0) MultiIndex([(2, 'one'), (1, 'two'), (2, 'one'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([0, 0, 1, 1], level='bar') MultiIndex([(1, 'one'), (1, 'one'), (2, 'two'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]], level=[0, 1]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) """ if inplace is not None: warnings.warn( "inplace is deprecated and will be removed in a future version.", FutureWarning, stacklevel=2, ) else: inplace = False level, codes = _require_listlike(level, codes, "Codes") if inplace: idx = self else: idx = self._view() idx._reset_identity() idx._set_codes(codes, level=level, verify_integrity=verify_integrity) if not inplace: return idx # -------------------------------------------------------------------- # Index Internals @cache_readonly def _engine(self): # Calculate the number of bits needed to represent labels in each # level, as log2 of their sizes (including -1 for NaN): sizes = np.ceil(np.log2([len(level) + 1 for level in self.levels])) # Sum bit counts, starting from the _right_.... lev_bits = np.cumsum(sizes[::-1])[::-1] # ... in order to obtain offsets such that sorting the combination of # shifted codes (one for each level, resulting in a unique integer) is # equivalent to sorting lexicographically the codes themselves. Notice # that each level needs to be shifted by the number of bits needed to # represent the _previous_ ones: offsets = np.concatenate([lev_bits[1:], [0]]).astype("uint64") # Check the total number of bits needed for our representation: if lev_bits[0] > 64: # The levels would overflow a 64 bit uint - use Python integers: return MultiIndexPyIntEngine(self.levels, self.codes, offsets) return MultiIndexUIntEngine(self.levels, self.codes, offsets) @property def _constructor(self) -> Callable[..., MultiIndex]: return type(self).from_tuples @doc(Index._shallow_copy) def _shallow_copy(self, values: np.ndarray, name=lib.no_default) -> MultiIndex: names = name if name is not lib.no_default else self.names return type(self).from_tuples(values, sortorder=None, names=names) def _view(self) -> MultiIndex: result = type(self)( levels=self.levels, codes=self.codes, sortorder=self.sortorder, names=self.names, verify_integrity=False, ) result._cache = self._cache.copy() result._cache.pop("levels", None) # GH32669 return result # -------------------------------------------------------------------- def copy( self, names=None, dtype=None, levels=None, codes=None, deep=False, name=None, ): """ Make a copy of this object. Names, dtype, levels and codes can be passed and will be set on new copy. Parameters ---------- names : sequence, optional dtype : numpy dtype or pandas type, optional .. deprecated:: 1.2.0 levels : sequence, optional .. deprecated:: 1.2.0 codes : sequence, optional .. deprecated:: 1.2.0 deep : bool, default False name : Label Kept for compatibility with 1-dimensional Index. Should not be used. Returns ------- MultiIndex Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. This could be potentially expensive on large MultiIndex objects. """ names = self._validate_names(name=name, names=names, deep=deep) if levels is not None: warnings.warn( "parameter levels is deprecated and will be removed in a future " "version. Use the set_levels method instead.", FutureWarning, stacklevel=2, ) if codes is not None: warnings.warn( "parameter codes is deprecated and will be removed in a future " "version. Use the set_codes method instead.", FutureWarning, stacklevel=2, ) if deep: from copy import deepcopy if levels is None: levels = deepcopy(self.levels) if codes is None: codes = deepcopy(self.codes) levels = levels if levels is not None else self.levels codes = codes if codes is not None else self.codes new_index = type(self)( levels=levels, codes=codes, sortorder=self.sortorder, names=names, verify_integrity=False, ) new_index._cache = self._cache.copy() new_index._cache.pop("levels", None) # GH32669 if dtype: warnings.warn( "parameter dtype is deprecated and will be removed in a future " "version. Use the astype method instead.", FutureWarning, stacklevel=2, ) new_index = new_index.astype(dtype) return new_index def __array__(self, dtype=None) -> np.ndarray: """ the array interface, return my values """ return self.values def view(self, cls=None): """ this is defined as a copy with the same identity """ result = self.copy() result._id = self._id return result @doc(Index.__contains__) def __contains__(self, key: Any) -> bool: hash(key) try: self.get_loc(key) return True except (LookupError, TypeError, ValueError): return False @cache_readonly def dtype(self) -> np.dtype: return np.dtype("O") def _is_memory_usage_qualified(self) -> bool: """ return a boolean if we need a qualified .info display """ def f(level): return "mixed" in level or "string" in level or "unicode" in level return any(f(level) for level in self._inferred_type_levels) @doc(Index.memory_usage) def memory_usage(self, deep: bool = False) -> int: # we are overwriting our base class to avoid # computing .values here which could materialize # a tuple representation unnecessarily return self._nbytes(deep) @cache_readonly def nbytes(self) -> int: """ return the number of bytes in the underlying data """ return self._nbytes(False) def _nbytes(self, deep: bool = False) -> int: """ return the number of bytes in the underlying data deeply introspect the level data if deep=True include the engine hashtable *this is in internal routine* """ # for implementations with no useful getsizeof (PyPy) objsize = 24 level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels) label_nbytes = sum(i.nbytes for i in self.codes) names_nbytes = sum(getsizeof(i, objsize) for i in self.names) result = level_nbytes + label_nbytes + names_nbytes # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # -------------------------------------------------------------------- # Rendering Methods def _formatter_func(self, tup): """ Formats each item in tup according to its level's formatter function. """ formatter_funcs = [level._formatter_func for level in self.levels] return tuple(func(val) for func, val in zip(formatter_funcs, tup)) def _format_data(self, name=None) -> str: """ Return the formatted data as a unicode string """ return format_object_summary( self, self._formatter_func, name=name, line_break_each_value=True ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self, include_dtype=False) def _format_native_types(self, na_rep="nan", **kwargs): new_levels = [] new_codes = [] # go through the levels and format them for level, level_codes in zip(self.levels, self.codes): level_strs = level._format_native_types(na_rep=na_rep, **kwargs) # add nan values, if there are any mask = level_codes == -1 if mask.any(): nan_index = len(level_strs) # numpy 1.21 deprecated implicit string casting level_strs = level_strs.astype(str) level_strs = np.append(level_strs, na_rep) assert not level_codes.flags.writeable # i.e. copy is needed level_codes = level_codes.copy() # make writeable level_codes[mask] = nan_index new_levels.append(level_strs) new_codes.append(level_codes) if len(new_levels) == 1: # a single-level multi-index return Index(new_levels[0].take(new_codes[0]))._format_native_types() else: # reconstruct the multi-index mi = MultiIndex( levels=new_levels, codes=new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) return mi._values def format( self, name: bool | None = None, formatter: Callable | None = None, na_rep: str | None = None, names: bool = False, space: int = 2, sparsify=None, adjoin: bool = True, ) -> list: if name is not None: names = name if len(self) == 0: return [] stringified_levels = [] for lev, level_codes in zip(self.levels, self.codes): na = na_rep if na_rep is not None else _get_na_rep(lev.dtype.type) if len(lev) > 0: formatted = lev.take(level_codes).format(formatter=formatter) # we have some NA mask = level_codes == -1 if mask.any(): formatted = np.array(formatted, dtype=object) formatted[mask] = na formatted = formatted.tolist() else: # weird all NA case formatted = [ pprint_thing(na if isna(x) else x, escape_chars=("\t", "\r", "\n")) for x in algos.take_nd(lev._values, level_codes) ] stringified_levels.append(formatted) result_levels = [] for lev, lev_name in zip(stringified_levels, self.names): level = [] if names: level.append( pprint_thing(lev_name, escape_chars=("\t", "\r", "\n")) if lev_name is not None else "" ) level.extend(np.array(lev, dtype=object)) result_levels.append(level) if sparsify is None: sparsify = get_option("display.multi_sparse") if sparsify: sentinel = "" # GH3547 use value of sparsify as sentinel if it's "Falsey" assert isinstance(sparsify, bool) or sparsify is lib.no_default if sparsify in [False, lib.no_default]: sentinel = sparsify # little bit of a kludge job for #1217 result_levels = sparsify_labels( result_levels, start=int(names), sentinel=sentinel ) if adjoin: from pandas.io.formats.format import get_adjustment adj = get_adjustment() return adj.adjoin(space, *result_levels).split("\n") else: return result_levels # -------------------------------------------------------------------- # Names Methods def _get_names(self) -> FrozenList: return FrozenList(self._names) def _set_names(self, names, level=None, validate: bool = True): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None validate : bool, default True validate that the names match level lengths Raises ------ TypeError if each name is not hashable. Notes ----- sets names on levels. WARNING: mutates! Note that you generally want to set this *after* changing levels, so that it only acts on copies """ # GH 15110 # Don't allow a single string for names in a MultiIndex if names is not None and not is_list_like(names): raise ValueError("Names should be list-like for a MultiIndex") names = list(names) if validate: if level is not None and len(names) != len(level): raise ValueError("Length of names must match length of level.") if level is None and len(names) != self.nlevels: raise ValueError( "Length of names must match number of levels in MultiIndex." ) if level is None: level = range(self.nlevels) else: level = [self._get_level_number(lev) for lev in level] # set the name for lev, name in zip(level, names): if name is not None: # GH 20527 # All items in 'names' need to be hashable: if not is_hashable(name): raise TypeError( f"{type(self).__name__}.name must be a hashable type" ) # error: Cannot determine type of '__setitem__' self._names[lev] = name # type: ignore[has-type] # If .levels has been accessed, the names in our cache will be stale. self._reset_cache() names = property( fset=_set_names, fget=_get_names, doc=""" Names of levels in MultiIndex. Examples -------- >>> mi = pd.MultiIndex.from_arrays( ... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z']) >>> mi MultiIndex([(1, 3, 5), (2, 4, 6)], names=['x', 'y', 'z']) >>> mi.names FrozenList(['x', 'y', 'z']) """, ) # -------------------------------------------------------------------- @doc(Index._get_grouper_for_level) def _get_grouper_for_level(self, mapper, level): indexer = self.codes[level] level_index = self.levels[level] if mapper is not None: # Handle group mapping function and return level_values = self.levels[level].take(indexer) grouper = level_values.map(mapper) return grouper, None, None codes, uniques = algos.factorize(indexer, sort=True) if len(uniques) > 0 and uniques[0] == -1: # Handle NAs mask = indexer != -1 ok_codes, uniques = algos.factorize(indexer[mask], sort=True) codes = np.empty(len(indexer), dtype=indexer.dtype) codes[mask] = ok_codes codes[~mask] = -1 if len(uniques) < len(level_index): # Remove unobserved levels from level_index level_index = level_index.take(uniques) else: # break references back to us so that setting the name # on the output of a groupby doesn't reflect back here. level_index = level_index.copy() if level_index._can_hold_na: grouper = level_index.take(codes, fill_value=True) else: grouper = level_index.take(codes) return grouper, codes, level_index @cache_readonly def inferred_type(self) -> str: return "mixed" def _get_level_number(self, level) -> int: count = self.names.count(level) if (count > 1) and not is_integer(level): raise ValueError( f"The name {level} occurs multiple times, use a level number" ) try: level = self.names.index(level) except ValueError as err: if not is_integer(level): raise KeyError(f"Level {level} not found") from err elif level < 0: level += self.nlevels if level < 0: orig_level = level - self.nlevels raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"{orig_level} is not a valid level number" ) from err # Note: levels are zero-based elif level >= self.nlevels: raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"not {level + 1}" ) from err return level @property def _has_complex_internals(self) -> bool: # used to avoid libreduction code paths, which raise or require conversion return True @cache_readonly def is_monotonic_increasing(self) -> bool: """ return if the index is monotonic increasing (only equal or increasing) values. """ if any(-1 in code for code in self.codes): return False if all(level.is_monotonic for level in self.levels): # If each level is sorted, we can operate on the codes directly. GH27495 return libalgos.is_lexsorted( [x.astype("int64", copy=False) for x in self.codes] ) # reversed() because lexsort() wants the most significant key last. values = [ self._get_level_values(i)._values for i in reversed(range(len(self.levels))) ] try: sort_order = np.lexsort(values) return Index(sort_order).is_monotonic except TypeError: # we have mixed types and np.lexsort is not happy return Index(self._values).is_monotonic @cache_readonly def is_monotonic_decreasing(self) -> bool: """ return if the index is monotonic decreasing (only equal or decreasing) values. """ # monotonic decreasing if and only if reverse is monotonic increasing return self[::-1].is_monotonic_increasing @cache_readonly def _inferred_type_levels(self) -> list[str]: """ return a list of the inferred types, one for each level """ return [i.inferred_type for i in self.levels] @doc(Index.duplicated) def duplicated(self, keep="first") -> np.ndarray: shape = map(len, self.levels) ids = get_group_index(self.codes, shape, sort=False, xnull=False) return duplicated_int64(ids, keep) # error: Cannot override final attribute "_duplicated" # (previously declared in base class "IndexOpsMixin") _duplicated = duplicated # type: ignore[misc] def fillna(self, value=None, downcast=None): """ fillna is not implemented for MultiIndex """ raise NotImplementedError("isna is not defined for MultiIndex") @doc(Index.dropna) def dropna(self, how: str = "any") -> MultiIndex: nans = [level_codes == -1 for level_codes in self.codes] if how == "any": indexer = np.any(nans, axis=0) elif how == "all": indexer = np.all(nans, axis=0) else: raise ValueError(f"invalid how option: {how}") new_codes = [level_codes[~indexer] for level_codes in self.codes] return self.set_codes(codes=new_codes) def _get_level_values(self, level: int, unique: bool = False) -> Index: """ Return vector of label values for requested level, equal to the length of the index **this is an internal method** Parameters ---------- level : int unique : bool, default False if True, drop duplicated values Returns ------- Index """ lev = self.levels[level] level_codes = self.codes[level] name = self._names[level] if unique: level_codes = algos.unique(level_codes) filled = algos.take_nd(lev._values, level_codes, fill_value=lev._na_value) return lev._shallow_copy(filled, name=name) def get_level_values(self, level): """ Return vector of label values for requested level. Length of returned vector is equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index Values is a level of this MultiIndex converted to a single :class:`Index` (or subclass thereof). Examples -------- Create a MultiIndex: >>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def'))) >>> mi.names = ['level_1', 'level_2'] Get level values by supplying level as either integer or name: >>> mi.get_level_values(0) Index(['a', 'b', 'c'], dtype='object', name='level_1') >>> mi.get_level_values('level_2') Index(['d', 'e', 'f'], dtype='object', name='level_2') """ level = self._get_level_number(level) values = self._get_level_values(level) return values @doc(Index.unique) def unique(self, level=None): if level is None: return super().unique() else: level = self._get_level_number(level) return self._get_level_values(level=level, unique=True) def to_frame(self, index: bool = True, name=None) -> DataFrame: """ Create a DataFrame with the levels of the MultiIndex as columns. Column ordering is determined by the DataFrame constructor with data as a dict. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original MultiIndex. name : list / sequence of str, optional The passed names should substitute index level names. Returns ------- DataFrame : a DataFrame containing the original MultiIndex data. See Also -------- DataFrame : Two-dimensional, size-mutable, potentially heterogeneous tabular data. Examples -------- >>> mi = pd.MultiIndex.from_arrays([['a', 'b'], ['c', 'd']]) >>> mi MultiIndex([('a', 'c'), ('b', 'd')], ) >>> df = mi.to_frame() >>> df 0 1 a c a c b d b d >>> df = mi.to_frame(index=False) >>> df 0 1 0 a c 1 b d >>> df = mi.to_frame(name=['x', 'y']) >>> df x y a c a c b d b d """ from pandas import DataFrame if name is not None: if not is_list_like(name): raise TypeError("'name' must be a list / sequence of column names.") if len(name) != len(self.levels): raise ValueError( "'name' should have same length as number of levels on index." ) idx_names = name else: idx_names = self.names # Guarantee resulting column order - PY36+ dict maintains insertion order result = DataFrame( { (level if lvlname is None else lvlname): self._get_level_values(level) for lvlname, level in zip(idx_names, range(len(self.levels))) }, copy=False, ) if index: result.index = self return result def to_flat_index(self) -> Index: """ Convert a MultiIndex to an Index of Tuples containing the level values. .. versionadded:: 0.24.0 Returns ------- pd.Index Index with the MultiIndex data represented in Tuples. See Also -------- MultiIndex.from_tuples : Convert flat index back to MultiIndex. Notes ----- This method will simply return the caller if called by anything other than a MultiIndex. Examples -------- >>> index = pd.MultiIndex.from_product( ... [['foo', 'bar'], ['baz', 'qux']], ... names=['a', 'b']) >>> index.to_flat_index() Index([('foo', 'baz'), ('foo', 'qux'), ('bar', 'baz'), ('bar', 'qux')], dtype='object') """ return Index(self._values, tupleize_cols=False) @property def _is_all_dates(self) -> bool: return False def is_lexsorted(self) -> bool: warnings.warn( "MultiIndex.is_lexsorted is deprecated as a public function, " "users should use MultiIndex.is_monotonic_increasing instead.", FutureWarning, stacklevel=2, ) return self._is_lexsorted() def _is_lexsorted(self) -> bool: """ Return True if the codes are lexicographically sorted. Returns ------- bool Examples -------- In the below examples, the first level of the MultiIndex is sorted because a<b<c, so there is no need to look at the next level. >>> pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['d', 'e', 'f']]).is_lexsorted() True >>> pd.MultiIndex.from_arrays([['a', 'b', 'c'], ['d', 'f', 'e']]).is_lexsorted() True In case there is a tie, the lexicographical sorting looks at the next level of the MultiIndex. >>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'b', 'c']]).is_lexsorted() True >>> pd.MultiIndex.from_arrays([[0, 1, 1], ['a', 'c', 'b']]).is_lexsorted() False >>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], ... ['aa', 'bb', 'aa', 'bb']]).is_lexsorted() True >>> pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], ... ['bb', 'aa', 'aa', 'bb']]).is_lexsorted() False """ return self._lexsort_depth == self.nlevels @property def lexsort_depth(self): warnings.warn( "MultiIndex.is_lexsorted is deprecated as a public function, " "users should use MultiIndex.is_monotonic_increasing instead.", FutureWarning, stacklevel=2, ) return self._lexsort_depth @cache_readonly def _lexsort_depth(self) -> int: """ Compute and return the lexsort_depth, the number of levels of the MultiIndex that are sorted lexically Returns ------- int """ if self.sortorder is not None: return self.sortorder return _lexsort_depth(self.codes, self.nlevels) def _sort_levels_monotonic(self) -> MultiIndex: """ This is an *internal* function. Create a new MultiIndex from the current to monotonically sorted items IN the levels. This does not actually make the entire MultiIndex monotonic, JUST the levels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.sort_values() MultiIndex([('a', 'aa'), ('a', 'bb'), ('b', 'aa'), ('b', 'bb')], ) """ if self._is_lexsorted() and self.is_monotonic: return self new_levels = [] new_codes = [] for lev, level_codes in zip(self.levels, self.codes): if not lev.is_monotonic: try: # indexer to reorder the levels indexer = lev.argsort() except TypeError: pass else: lev = lev.take(indexer) # indexer to reorder the level codes indexer = ensure_platform_int(indexer) ri = lib.get_reverse_indexer(indexer, len(indexer)) level_codes = algos.take_nd(ri, level_codes) new_levels.append(lev) new_codes.append(level_codes) return MultiIndex( new_levels, new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def remove_unused_levels(self) -> MultiIndex: """ Create new MultiIndex from current that removes unused levels. Unused level(s) means levels that are not expressed in the labels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex.from_product([range(2), list('ab')]) >>> mi MultiIndex([(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')], ) >>> mi[2:] MultiIndex([(1, 'a'), (1, 'b')], ) The 0 from the first level is not represented and can be removed >>> mi2 = mi[2:].remove_unused_levels() >>> mi2.levels FrozenList([[1], ['a', 'b']]) """ new_levels = [] new_codes = [] changed = False for lev, level_codes in zip(self.levels, self.codes): # Since few levels are typically unused, bincount() is more # efficient than unique() - however it only accepts positive values # (and drops order): uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1 has_na = int(len(uniques) and (uniques[0] == -1)) if len(uniques) != len(lev) + has_na: if lev.isna().any() and len(uniques) == len(lev): break # We have unused levels changed = True # Recalculate uniques, now preserving order. # Can easily be cythonized by exploiting the already existing # "uniques" and stop parsing "level_codes" when all items # are found: uniques = algos.unique(level_codes) if has_na: na_idx = np.where(uniques == -1)[0] # Just ensure that -1 is in first position: uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]] # codes get mapped from uniques to 0:len(uniques) # -1 (if present) is mapped to last position code_mapping = np.zeros(len(lev) + has_na) # ... and reassigned value -1: code_mapping[uniques] = np.arange(len(uniques)) - has_na level_codes = code_mapping[level_codes] # new levels are simple lev = lev.take(uniques[has_na:]) new_levels.append(lev) new_codes.append(level_codes) result = self.view() if changed: result._reset_identity() result._set_levels(new_levels, validate=False) result._set_codes(new_codes, validate=False) return result # -------------------------------------------------------------------- # Pickling Methods def __reduce__(self): """Necessary for making this object picklable""" d = { "levels": list(self.levels), "codes": list(self.codes), "sortorder": self.sortorder, "names": list(self.names), } return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- def __getitem__(self, key): if is_scalar(key): key = com.cast_scalar_indexer(key, warn_float=True) retval = [] for lev, level_codes in zip(self.levels, self.codes): if level_codes[key] == -1: retval.append(np.nan) else: retval.append(lev[level_codes[key]]) return tuple(retval) else: # in general cannot be sure whether the result will be sorted sortorder = None if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) sortorder = self.sortorder elif isinstance(key, slice): if key.step is None or key.step > 0: sortorder = self.sortorder elif isinstance(key, Index): key = np.asarray(key) new_codes = [level_codes[key] for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, sortorder=sortorder, verify_integrity=False, ) def _getitem_slice(self: MultiIndex, slobj: slice) -> MultiIndex: """ Fastpath for __getitem__ when we know we have a slice. """ sortorder = None if slobj.step is None or slobj.step > 0: sortorder = self.sortorder new_codes = [level_codes[slobj] for level_codes in self.codes] return type(self)( levels=self.levels, codes=new_codes, names=self._names, sortorder=sortorder, verify_integrity=False, ) @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take( self: MultiIndex, indices, axis: int = 0, allow_fill: bool = True, fill_value=None, **kwargs, ) -> MultiIndex: nv.validate_take((), kwargs) indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value allow_fill = self._maybe_disallow_fill(allow_fill, fill_value, indices) na_value = -1 taken = [lab.take(indices) for lab in self.codes] if allow_fill: mask = indices == -1 if mask.any(): masked = [] for new_label in taken: label_values = new_label label_values[mask] = na_value masked.append(np.asarray(label_values)) taken = masked return MultiIndex( levels=self.levels, codes=taken, names=self.names, verify_integrity=False ) def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ if not isinstance(other, (list, tuple)): other = [other] if all( (isinstance(o, MultiIndex) and o.nlevels >= self.nlevels) for o in other ): arrays = [] for i in range(self.nlevels): label = self._get_level_values(i) appended = [o._get_level_values(i) for o in other] arrays.append(label.append(appended)) return MultiIndex.from_arrays(arrays, names=self.names) to_concat = (self._values,) + tuple(k._values for k in other) new_tuples = np.concatenate(to_concat) # if all(isinstance(x, MultiIndex) for x in other): try: return MultiIndex.from_tuples(new_tuples, names=self.names) except (TypeError, IndexError): return Index(new_tuples) def argsort(self, *args, **kwargs) -> np.ndarray: return self._values.argsort(*args, **kwargs) @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats: int, axis=None) -> MultiIndex: nv.validate_repeat((), {"axis": axis}) # error: Incompatible types in assignment (expression has type "ndarray", # variable has type "int") repeats = ensure_platform_int(repeats) # type: ignore[assignment] return MultiIndex( levels=self.levels, codes=[ level_codes.view(np.ndarray).astype(np.intp).repeat(repeats) for level_codes in self.codes ], names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def drop(self, codes, level=None, errors="raise"): """ Make new MultiIndex with passed list of codes deleted Parameters ---------- codes : array-like Must be a list of tuples when level is not specified level : int or level name, default None errors : str, default 'raise' Returns ------- dropped : MultiIndex """ if level is not None: return self._drop_from_level(codes, level, errors) if not isinstance(codes, (np.ndarray, Index)): try: codes = com.index_labels_to_array(codes, dtype=np.dtype("object")) except ValueError: pass inds = [] for level_codes in codes: try: loc = self.get_loc(level_codes) # get_loc returns either an integer, a slice, or a boolean # mask if isinstance(loc, int): inds.append(loc) elif isinstance(loc, slice): step = loc.step if loc.step is not None else 1 inds.extend(range(loc.start, loc.stop, step)) elif com.is_bool_indexer(loc): if self._lexsort_depth == 0: warnings.warn( "dropping on a non-lexsorted multi-index " "without a level parameter may impact performance.", PerformanceWarning, stacklevel=3, ) loc = loc.nonzero()[0] inds.extend(loc) else: msg = f"unsupported indexer of type {type(loc)}" raise AssertionError(msg) except KeyError: if errors != "ignore": raise return self.delete(inds) def _drop_from_level(self, codes, level, errors="raise") -> MultiIndex: codes = com.index_labels_to_array(codes) i = self._get_level_number(level) index = self.levels[i] values = index.get_indexer(codes) # If nan should be dropped it will equal -1 here. We have to check which values # are not nan and equal -1, this means they are missing in the index nan_codes = isna(codes) values[(np.equal(nan_codes, False)) & (values == -1)] = -2 if index.shape[0] == self.shape[0]: values[np.equal(nan_codes, True)] = -2 not_found = codes[values == -2] if len(not_found) != 0 and errors != "ignore": raise KeyError(f"labels {not_found} not found in level") mask = ~algos.isin(self.codes[i], values) return self[mask] def swaplevel(self, i=-2, j=-1) -> MultiIndex: """ Swap level i with level j. Calling this method does not change the ordering of the values. Parameters ---------- i : int, str, default -2 First level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. j : int, str, default -1 Second level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. Returns ------- MultiIndex A new MultiIndex. See Also -------- Series.swaplevel : Swap levels i and j in a MultiIndex. Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a particular axis. Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.swaplevel(0, 1) MultiIndex([('bb', 'a'), ('aa', 'a'), ('bb', 'b'), ('aa', 'b')], ) """ new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) i = self._get_level_number(i) j = self._get_level_number(j) new_levels[i], new_levels[j] = new_levels[j], new_levels[i] new_codes[i], new_codes[j] = new_codes[j], new_codes[i] new_names[i], new_names[j] = new_names[j], new_names[i] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def reorder_levels(self, order) -> MultiIndex: """ Rearrange levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex.from_arrays([[1, 2], [3, 4]], names=['x', 'y']) >>> mi MultiIndex([(1, 3), (2, 4)], names=['x', 'y']) >>> mi.reorder_levels(order=[1, 0]) MultiIndex([(3, 1), (4, 2)], names=['y', 'x']) >>> mi.reorder_levels(order=['y', 'x']) MultiIndex([(3, 1), (4, 2)], names=['y', 'x']) """ order = [self._get_level_number(i) for i in order] if len(order) != self.nlevels: raise AssertionError( f"Length of order must be same as number of levels ({self.nlevels}), " f"got {len(order)}" ) new_levels = [self.levels[i] for i in order] new_codes = [self.codes[i] for i in order] new_names = [self.names[i] for i in order] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def _get_codes_for_sorting(self) -> list[Categorical]: """ we are categorizing our codes by using the available categories (all, not just observed) excluding any missing ones (-1); this is in preparation for sorting, where we need to disambiguate that -1 is not a valid valid """ def cats(level_codes): return np.arange( np.array(level_codes).max() + 1 if len(level_codes) else 0, dtype=level_codes.dtype, ) return [ Categorical.from_codes(level_codes, cats(level_codes), ordered=True) for level_codes in self.codes ] def sortlevel( self, level=0, ascending: bool = True, sort_remaining: bool = True ) -> tuple[MultiIndex, np.ndarray]: """ Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level. Parameters ---------- level : list-like, int or str, default 0 If a string is given, must be a name of the level. If list-like must be names or ints of levels. ascending : bool, default True False to sort in descending order. Can also be a list to specify a directed ordering. sort_remaining : sort by the remaining levels after level Returns ------- sorted_index : pd.MultiIndex Resulting index. indexer : np.ndarray Indices of output values in original index. Examples -------- >>> mi = pd.MultiIndex.from_arrays([[0, 0], [2, 1]]) >>> mi MultiIndex([(0, 2), (0, 1)], ) >>> mi.sortlevel() (MultiIndex([(0, 1), (0, 2)], ), array([1, 0])) >>> mi.sortlevel(sort_remaining=False) (MultiIndex([(0, 2), (0, 1)], ), array([0, 1])) >>> mi.sortlevel(1) (MultiIndex([(0, 1), (0, 2)], ), array([1, 0])) >>> mi.sortlevel(1, ascending=False) (MultiIndex([(0, 2), (0, 1)], ), array([0, 1])) """ if isinstance(level, (str, int)): level = [level] level = [self._get_level_number(lev) for lev in level] sortorder = None # we have a directed ordering via ascending if isinstance(ascending, list): if not len(level) == len(ascending): raise ValueError("level must have same length as ascending") indexer = lexsort_indexer( [self.codes[lev] for lev in level], orders=ascending ) # level ordering else: codes = list(self.codes) shape = list(self.levshape) # partition codes and shape primary = tuple(codes[lev] for lev in level) primshp = tuple(shape[lev] for lev in level) # Reverse sorted to retain the order of # smaller indices that needs to be removed for lev in sorted(level, reverse=True): codes.pop(lev) shape.pop(lev) if sort_remaining: primary += primary + tuple(codes) primshp += primshp + tuple(shape) else: sortorder = level[0] indexer = indexer_from_factorized(primary, primshp, compress=False) if not ascending: indexer = indexer[::-1] indexer = ensure_platform_int(indexer) new_codes = [level_codes.take(indexer) for level_codes in self.codes] new_index = MultiIndex( codes=new_codes, levels=self.levels, names=self.names, sortorder=sortorder, verify_integrity=False, ) return new_index, indexer def reindex( self, target, method=None, level=None, limit=None, tolerance=None ) -> tuple[MultiIndex, np.ndarray | None]: """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.MultiIndex Resulting index indexer : np.ndarray[np.intp] or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "names") if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") # GH7774: preserve dtype/tz if target is empty and not an Index. # target may be an iterator target = ibase.ensure_has_len(target) if len(target) == 0 and not isinstance(target, Index): idx = self.levels[level] attrs = idx._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq target = type(idx)._simple_new(np.empty(0, dtype=idx.dtype), **attrs) else: target = ensure_index(target) target, indexer, _ = self._join_level( target, level, how="right", keep_order=False ) else: target = ensure_index(target) if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: raise ValueError("cannot handle a non-unique multi-index!") if not isinstance(target, MultiIndex): if indexer is None: target = self elif (indexer >= 0).all(): target = self.take(indexer) else: # hopefully? target = MultiIndex.from_tuples(target) if ( preserve_names and target.nlevels == self.nlevels and target.names != self.names ): target = target.copy(deep=False) target.names = self.names return target, indexer # -------------------------------------------------------------------- # Indexing Methods def _check_indexing_error(self, key): if not is_hashable(key) or is_iterator(key): # We allow tuples if they are hashable, whereas other Index # subclasses require scalar. # We have to explicitly exclude generators, as these are hashable. raise InvalidIndexError(key) def _should_fallback_to_positional(self) -> bool: """ Should integer key(s) be treated as positional? """ # GH#33355 return self.levels[0]._should_fallback_to_positional() def _get_values_for_loc(self, series: Series, loc, key): """ Do a positional lookup on the given Series, returning either a scalar or a Series. Assumes that `series.index is self` """ new_values = series._values[loc] if is_scalar(loc): return new_values if len(new_values) == 1 and not self.nlevels > 1: # If more than one level left, we can not return a scalar return new_values[0] new_index = self[loc] new_index = maybe_droplevels(new_index, key) new_ser = series._constructor(new_values, index=new_index, name=series.name) return new_ser.__finalize__(series) def _convert_listlike_indexer(self, keyarr): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ indexer, keyarr = super()._convert_listlike_indexer(keyarr) # are we indexing a specific level if indexer is None and len(keyarr) and not isinstance(keyarr[0], tuple): level = 0 _, indexer = self.reindex(keyarr, level=level) # take all if indexer is None: indexer = np.arange(len(self)) check = self.levels[0].get_indexer(keyarr) mask = check == -1 if mask.any(): raise KeyError(f"{keyarr[mask]} not in index") return indexer, keyarr def _get_partial_string_timestamp_match_key(self, key): """ Translate any partial string timestamp matches in key, returning the new key. Only relevant for MultiIndex. """ # GH#10331 if isinstance(key, str) and self.levels[0]._supports_partial_string_indexing: # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = (key,) + (slice(None),) * (len(self.levels) - 1) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and self.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key def _get_indexer( self, target: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # returned ndarray is np.intp # empty indexer if not len(target): return ensure_platform_int(np.array([])) if not isinstance(target, MultiIndex): try: target = MultiIndex.from_tuples(target) except (TypeError, ValueError): # let's instead try with a straight Index if method is None: return Index(self._values).get_indexer( target, method=method, limit=limit, tolerance=tolerance ) # TODO: explicitly raise here? we only have one test that # gets here, and it is checking that we raise with method="nearest" if method == "pad" or method == "backfill": if tolerance is not None: raise NotImplementedError( "tolerance not implemented yet for MultiIndex" ) # TODO: get_indexer_with_fill docstring says values must be _sorted_ # but that doesn't appear to be enforced indexer = self._engine.get_indexer_with_fill( target=target._values, values=self._values, method=method, limit=limit ) elif method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet " "for MultiIndex; see GitHub issue 9365" ) else: indexer = self._engine.get_indexer(target._values) # Note: we only get here (in extant tests at least) with # target.nlevels == self.nlevels return ensure_platform_int(indexer) def get_slice_bound( self, label: Hashable | Sequence[Hashable], side: str, kind: str ) -> int: """ For an ordered MultiIndex, compute slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if `side=='right') position of given label. Parameters ---------- label : object or tuple of objects side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- int Index of label. Notes ----- This method only works if level 0 index of the MultiIndex is lexsorted. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbc'), list('gefd')]) Get the locations from the leftmost 'b' in the first level until the end of the multiindex: >>> mi.get_slice_bound('b', side="left", kind="loc") 1 Like above, but if you get the locations from the rightmost 'b' in the first level and 'f' in the second level: >>> mi.get_slice_bound(('b','f'), side="right", kind="loc") 3 See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ if not isinstance(label, tuple): label = (label,) return self._partial_tup_index(label, side=side) def slice_locs(self, start=None, end=None, step=None, kind=None): """ For an ordered MultiIndex, compute the slice locations for input labels. The input labels can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple. Parameters ---------- start : label or tuple, default None If None, defaults to the beginning end : label or tuple If None, defaults to the end step : int or None Slice step kind : string, optional, defaults None Returns ------- (start, end) : (int, int) Notes ----- This method only works if the MultiIndex is properly lexsorted. So, if only the first 2 levels of a 3-level MultiIndex are lexsorted, you can only pass two levels to ``.slice_locs``. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')], ... names=['A', 'B']) Get the slice locations from the beginning of 'b' in the first level until the end of the multiindex: >>> mi.slice_locs(start='b') (1, 4) Like above, but stop at the end of 'b' in the first level and 'f' in the second level: >>> mi.slice_locs(start='b', end=('b', 'f')) (1, 3) See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ # This function adds nothing to its parent implementation (the magic # happens in get_slice_bound method), but it adds meaningful doc. return super().slice_locs(start, end, step, kind=kind) def _partial_tup_index(self, tup, side="left"): if len(tup) > self._lexsort_depth: raise UnsortedIndexError( f"Key length ({len(tup)}) was greater than MultiIndex lexsort depth " f"({self._lexsort_depth})" ) n = len(tup) start, end = 0, len(self) zipped = zip(tup, self.levels, self.codes) for k, (lab, lev, labs) in enumerate(zipped): section = labs[start:end] if lab not in lev and not isna(lab): if not lev.is_type_compatible(lib.infer_dtype([lab], skipna=False)): raise TypeError(f"Level type mismatch: {lab}") # short circuit loc = lev.searchsorted(lab, side=side) if side == "right" and loc >= 0: loc -= 1 return start + section.searchsorted(loc, side=side) idx = self._get_loc_single_level_index(lev, lab) if isinstance(idx, slice) and k < n - 1: # Get start and end value from slice, necessary when a non-integer # interval is given as input GH#37707 start = idx.start end = idx.stop elif k < n - 1: end = start + section.searchsorted(idx, side="right") start = start + section.searchsorted(idx, side="left") elif isinstance(idx, slice): idx = idx.start return start + section.searchsorted(idx, side=side) else: return start + section.searchsorted(idx, side=side) def _get_loc_single_level_index(self, level_index: Index, key: Hashable) -> int: """ If key is NA value, location of index unify as -1. Parameters ---------- level_index: Index key : label Returns ------- loc : int If key is NA value, loc is -1 Else, location of key in index. See Also -------- Index.get_loc : The get_loc method for (single-level) index. """ if is_scalar(key) and isna(key): return -1 else: return level_index.get_loc(key) def get_loc(self, key, method=None): """ Get location for a label or a tuple of labels. The location is returned as an integer/slice or boolean mask. Parameters ---------- key : label or tuple of labels (one for each level) method : None Returns ------- loc : int, slice object or boolean mask If the key is past the lexsort depth, the return may be a boolean mask array, otherwise it is always a slice or int. See Also -------- Index.get_loc : The get_loc method for (single-level) index. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Notes ----- The key cannot be a slice, list of same-level labels, a boolean mask, or a sequence of such. If you want to use those, use :meth:`MultiIndex.get_locs` instead. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_loc('b') slice(1, 3, None) >>> mi.get_loc(('b', 'e')) 1 """ if method is not None: raise NotImplementedError( "only the default get_loc method is " "currently supported for MultiIndex" ) hash(key) def _maybe_to_slice(loc): """convert integer indexer to boolean mask or slice if possible""" if not isinstance(loc, np.ndarray) or loc.dtype != np.intp: return loc loc = lib.maybe_indices_to_slice(loc, len(self)) if isinstance(loc, slice): return loc mask = np.empty(len(self), dtype="bool") mask.fill(False) mask[loc] = True return mask if not isinstance(key, tuple): loc = self._get_level_indexer(key, level=0) return _maybe_to_slice(loc) keylen = len(key) if self.nlevels < keylen: raise KeyError( f"Key length ({keylen}) exceeds index depth ({self.nlevels})" ) if keylen == self.nlevels and self.is_unique: return self._engine.get_loc(key) # -- partial selection or non-unique index # break the key into 2 parts based on the lexsort_depth of the index; # the first part returns a continuous slice of the index; the 2nd part # needs linear search within the slice i = self._lexsort_depth lead_key, follow_key = key[:i], key[i:] start, stop = ( self.slice_locs(lead_key, lead_key) if lead_key else (0, len(self)) ) if start == stop: raise KeyError(key) if not follow_key: return slice(start, stop) warnings.warn( "indexing past lexsort depth may impact performance.", PerformanceWarning, stacklevel=10, ) loc = np.arange(start, stop, dtype=np.intp) for i, k in enumerate(follow_key, len(lead_key)): mask = self.codes[i][loc] == self._get_loc_single_level_index( self.levels[i], k ) if not mask.all(): loc = loc[mask] if not len(loc): raise KeyError(key) return _maybe_to_slice(loc) if len(loc) != stop - start else slice(start, stop) def get_loc_level(self, key, level=0, drop_level: bool = True): """ Get location and sliced index for requested label(s)/level(s). Parameters ---------- key : label or sequence of labels level : int/level name or list thereof, optional drop_level : bool, default True If ``False``, the resulting index will not drop any level. Returns ------- loc : A 2-tuple where the elements are: Element 0: int, slice object or boolean array Element 1: The resulting sliced multiindex/index. If the key contains all levels, this will be ``None``. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')], ... names=['A', 'B']) >>> mi.get_loc_level('b') (slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B')) >>> mi.get_loc_level('e', level='B') (array([False, True, False]), Index(['b'], dtype='object', name='A')) >>> mi.get_loc_level(['b', 'e']) (1, None) """ if not isinstance(level, (list, tuple)): level = self._get_level_number(level) else: level = [self._get_level_number(lev) for lev in level] return self._get_loc_level(key, level=level, drop_level=drop_level) def _get_loc_level(self, key, level: int | list[int] = 0, drop_level: bool = True): """ get_loc_level but with `level` known to be positional, not name-based. """ # different name to distinguish from maybe_droplevels def maybe_mi_droplevels(indexer, levels, drop_level: bool): if not drop_level: return self[indexer] # kludge around orig_index = new_index = self[indexer] for i in sorted(levels, reverse=True): try: new_index = new_index._drop_level_numbers([i]) except ValueError: # no dropping here return orig_index return new_index if isinstance(level, (tuple, list)): if len(key) != len(level): raise AssertionError( "Key for location must have same length as number of levels" ) result = None for lev, k in zip(level, key): loc, new_index = self._get_loc_level(k, level=lev) if isinstance(loc, slice): mask = np.zeros(len(self), dtype=bool) mask[loc] = True loc = mask result = loc if result is None else result & loc return result, maybe_mi_droplevels(result, level, drop_level) # kludge for #1796 if isinstance(key, list): key = tuple(key) if isinstance(key, tuple) and level == 0: try: if key in self.levels[0]: indexer = self._get_level_indexer(key, level=level) new_index = maybe_mi_droplevels(indexer, [0], drop_level) return indexer, new_index except (TypeError, InvalidIndexError): pass if not any(isinstance(k, slice) for k in key): # partial selection # optionally get indexer to avoid re-calculation def partial_selection(key, indexer=None): if indexer is None: indexer = self.get_loc(key) ilevels = [ i for i in range(len(key)) if key[i] != slice(None, None) ] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) if len(key) == self.nlevels and self.is_unique: # Complete key in unique index -> standard get_loc try: return (self._engine.get_loc(key), None) except KeyError as e: raise KeyError(key) from e else: return partial_selection(key) else: indexer = None for i, k in enumerate(key): if not isinstance(k, slice): k = self._get_level_indexer(k, level=i) if isinstance(k, slice): # everything if k.start == 0 and k.stop == len(self): k = slice(None, None) else: k_index = k if isinstance(k, slice): if k == slice(None, None): continue else: raise TypeError(key) if indexer is None: indexer = k_index else: # pragma: no cover indexer &= k_index if indexer is None: indexer = slice(None, None) ilevels = [i for i in range(len(key)) if key[i] != slice(None, None)] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) else: indexer = self._get_level_indexer(key, level=level) return indexer, maybe_mi_droplevels(indexer, [level], drop_level) def _get_level_indexer(self, key, level: int = 0, indexer=None): # `level` kwarg is _always_ positional, never name # return an indexer, boolean array or a slice showing where the key is # in the totality of values # if the indexer is provided, then use this level_index = self.levels[level] level_codes = self.codes[level] def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes): # given the inputs and the codes/indexer, compute an indexer set # if we have a provided indexer, then this need not consider # the entire labels set if step is not None and step < 0: # Switch elements for negative step size start, stop = stop - 1, start - 1 r = np.arange(start, stop, step) if indexer is not None and len(indexer) != len(codes): # we have an indexer which maps the locations in the labels # that we have already selected (and is not an indexer for the # entire set) otherwise this is wasteful so we only need to # examine locations that are in this set the only magic here is # that the result are the mappings to the set that we have # selected from pandas import Series mapper = Series(indexer) indexer = codes.take(ensure_platform_int(indexer)) result = Series(Index(indexer).isin(r).nonzero()[0]) m = result.map(mapper) # error: Incompatible types in assignment (expression has type # "ndarray", variable has type "Series") m = np.asarray(m) # type: ignore[assignment] else: # error: Incompatible types in assignment (expression has type # "ndarray", variable has type "Series") m = np.zeros(len(codes), dtype=bool) # type: ignore[assignment] m[np.in1d(codes, r, assume_unique=Index(codes).is_unique)] = True return m if isinstance(key, slice): # handle a slice, returning a slice if we can # otherwise a boolean indexer try: if key.start is not None: start = level_index.get_loc(key.start) else: start = 0 if key.stop is not None: stop = level_index.get_loc(key.stop) elif isinstance(start, slice): stop = len(level_index) else: stop = len(level_index) - 1 step = key.step except KeyError: # we have a partial slice (like looking up a partial date # string) start = stop = level_index.slice_indexer( key.start, key.stop, key.step, kind="loc" ) step = start.step if isinstance(start, slice) or isinstance(stop, slice): # we have a slice for start and/or stop # a partial date slicer on a DatetimeIndex generates a slice # note that the stop ALREADY includes the stopped point (if # it was a string sliced) start = getattr(start, "start", start) stop = getattr(stop, "stop", stop) return convert_indexer(start, stop, step) elif level > 0 or self._lexsort_depth == 0 or step is not None: # need to have like semantics here to right # searching as when we are using a slice # so include the stop+1 (so we include stop) return convert_indexer(start, stop + 1, step) else: # sorted, so can return slice object -> view i = level_codes.searchsorted(start, side="left") j = level_codes.searchsorted(stop, side="right") return slice(i, j, step) else: idx = self._get_loc_single_level_index(level_index, key) if level > 0 or self._lexsort_depth == 0: # Desired level is not sorted locs = np.array(level_codes == idx, dtype=bool, copy=False) if not locs.any(): # The label is present in self.levels[level] but unused: raise KeyError(key) return locs if isinstance(idx, slice): start = idx.start end = idx.stop else: start = level_codes.searchsorted(idx, side="left") end = level_codes.searchsorted(idx, side="right") if start == end: # The label is present in self.levels[level] but unused: raise KeyError(key) return slice(start, end) def get_locs(self, seq): """ Get location for a sequence of labels. Parameters ---------- seq : label, slice, list, mask or a sequence of such You should use one of the above for each level. If a level should not be used, set it to ``slice(None)``. Returns ------- numpy.ndarray NumPy array of integers suitable for passing to iloc. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_locs('b') # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([slice(None), ['e', 'f']]) # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([[True, False, True], slice('e', 'f')]) # doctest: +SKIP array([2], dtype=int64) """ # must be lexsorted to at least as many levels true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s] if true_slices and true_slices[-1] >= self._lexsort_depth: raise UnsortedIndexError( "MultiIndex slicing requires the index to be lexsorted: slicing " f"on levels {true_slices}, lexsort depth {self._lexsort_depth}" ) # indexer # this is the list of all values that we want to select n = len(self) indexer = None def _convert_to_indexer(r) -> Int64Index: # return an indexer if isinstance(r, slice): m = np.zeros(n, dtype=bool) m[r] = True r = m.nonzero()[0] elif com.is_bool_indexer(r): if len(r) != n: raise ValueError( "cannot index with a boolean indexer " "that is not the same length as the " "index" ) r = r.nonzero()[0] return Int64Index(r) def _update_indexer(idxr: Index | None, indexer: Index | None, key) -> Index: if indexer is None: indexer = Index(np.arange(n)) if idxr is None: return indexer indexer_intersection = indexer.intersection(idxr) if indexer_intersection.empty and not idxr.empty and not indexer.empty: raise KeyError(key) return indexer_intersection for i, k in enumerate(seq): if com.is_bool_indexer(k): # a boolean indexer, must be the same length! k = np.asarray(k) indexer = _update_indexer( _convert_to_indexer(k), indexer=indexer, key=seq ) elif is_list_like(k): # a collection of labels to include from this level (these # are or'd) indexers: Int64Index | None = None for x in k: try: idxrs = _convert_to_indexer( self._get_level_indexer(x, level=i, indexer=indexer) ) indexers = (idxrs if indexers is None else indexers).union( idxrs, sort=False ) except KeyError: # ignore not founds continue if indexers is not None: indexer = _update_indexer(indexers, indexer=indexer, key=seq) else: # no matches we are done return np.array([], dtype=np.int64) elif com.is_null_slice(k): # empty slice indexer = _update_indexer(None, indexer=indexer, key=seq) elif isinstance(k, slice): # a slice, include BOTH of the labels indexer = _update_indexer( _convert_to_indexer( self._get_level_indexer(k, level=i, indexer=indexer) ), indexer=indexer, key=seq, ) else: # a single label indexer = _update_indexer( _convert_to_indexer( self.get_loc_level(k, level=i, drop_level=False)[0] ), indexer=indexer, key=seq, ) # empty indexer if indexer is None: return np.array([], dtype=np.int64) assert isinstance(indexer, Int64Index), type(indexer) indexer = self._reorder_indexer(seq, indexer) return indexer._values # -------------------------------------------------------------------- def _reorder_indexer( self, seq: tuple[Scalar | Iterable | AnyArrayLike, ...], indexer: Int64Index, ) -> Int64Index: """ Reorder an indexer of a MultiIndex (self) so that the label are in the same order as given in seq Parameters ---------- seq : label/slice/list/mask or a sequence of such indexer: an Int64Index indexer of self Returns ------- indexer : a sorted Int64Index indexer of self ordered as seq """ # If the index is lexsorted and the list_like label in seq are sorted # then we do not need to sort if self._is_lexsorted(): need_sort = False for i, k in enumerate(seq): if is_list_like(k): if not need_sort: k_codes = self.levels[i].get_indexer(k) k_codes = k_codes[k_codes >= 0] # Filter absent keys # True if the given codes are not ordered need_sort = (k_codes[:-1] > k_codes[1:]).any() elif isinstance(k, slice) and k.step is not None and k.step < 0: need_sort = True # Bail out if both index and seq are sorted if not need_sort: return indexer n = len(self) keys: tuple[np.ndarray, ...] = () # For each level of the sequence in seq, map the level codes with the # order they appears in a list-like sequence # This mapping is then use to reorder the indexer for i, k in enumerate(seq): if is_scalar(k): # GH#34603 we want to treat a scalar the same as an all equal list k = [k] if com.is_bool_indexer(k): new_order = np.arange(n)[indexer] elif is_list_like(k): # Generate a map with all level codes as sorted initially key_order_map = np.ones(len(self.levels[i]), dtype=np.uint64) * len( self.levels[i] ) # Set order as given in the indexer list level_indexer = self.levels[i].get_indexer(k) level_indexer = level_indexer[level_indexer >= 0] # Filter absent keys key_order_map[level_indexer] = np.arange(len(level_indexer)) new_order = key_order_map[self.codes[i][indexer]] elif isinstance(k, slice) and k.step is not None and k.step < 0: new_order = np.arange(n)[k][indexer] elif isinstance(k, slice) and k.start is None and k.stop is None: # slice(None) should not determine order GH#31330 new_order = np.ones((n,))[indexer] else: # For all other case, use the same order as the level new_order = np.arange(n)[indexer] keys = (new_order,) + keys # Find the reordering using lexsort on the keys mapping ind = np.lexsort(keys) return indexer[ind] def truncate(self, before=None, after=None) -> MultiIndex: """ Slice index between two labels / tuples, return new MultiIndex Parameters ---------- before : label or tuple, can be partial. Default None None defaults to start after : label or tuple, can be partial. Default None None defaults to end Returns ------- truncated : MultiIndex """ if after and before and after < before: raise ValueError("after < before") i, j = self.levels[0].slice_locs(before, after) left, right = self.slice_locs(before, after) new_levels = list(self.levels) new_levels[0] = new_levels[0][i:j] new_codes = [level_codes[left:right] for level_codes in self.codes] new_codes[0] = new_codes[0] - i return MultiIndex( levels=new_levels, codes=new_codes, names=self._names, verify_integrity=False, ) def equals(self, other: object) -> bool: """ Determines if two MultiIndex objects have the same labeling information (the levels themselves do not necessarily have to be the same) See Also -------- equal_levels """ if self.is_(other): return True if not isinstance(other, Index): return False if len(self) != len(other): return False if not isinstance(other, MultiIndex): # d-level MultiIndex can equal d-tuple Index if not self._should_compare(other): # object Index or Categorical[object] may contain tuples return False return array_equivalent(self._values, other._values) if self.nlevels != other.nlevels: return False for i in range(self.nlevels): self_codes = self.codes[i] other_codes = other.codes[i] self_mask = self_codes == -1 other_mask = other_codes == -1 if not np.array_equal(self_mask, other_mask): return False self_codes = self_codes[~self_mask] self_values = self.levels[i]._values.take(self_codes) other_codes = other_codes[~other_mask] other_values = other.levels[i]._values.take(other_codes) # since we use NaT both datetime64 and timedelta64 we can have a # situation where a level is typed say timedelta64 in self (IOW it # has other values than NaT) but types datetime64 in other (where # its all NaT) but these are equivalent if len(self_values) == 0 and len(other_values) == 0: continue if not array_equivalent(self_values, other_values): return False return True def equal_levels(self, other: MultiIndex) -> bool: """ Return True if the levels of both MultiIndex objects are the same """ if self.nlevels != other.nlevels: return False for i in range(self.nlevels): if not self.levels[i].equals(other.levels[i]): return False return True # -------------------------------------------------------------------- # Set Methods def _union(self, other, sort) -> MultiIndex: other, result_names = self._convert_can_do_setop(other) # We could get here with CategoricalIndex other rvals = other._values.astype(object, copy=False) uniq_tuples = lib.fast_unique_multiple([self._values, rvals], sort=sort) return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: return is_object_dtype(dtype) def _get_reconciled_name_object(self, other) -> MultiIndex: """ If the result of a set operation will be self, return self, unless the names change, in which case make a shallow copy of self. """ names = self._maybe_match_names(other) if self.names != names: return self.rename(names) return self def _maybe_match_names(self, other): """ Try to find common names to attach to the result of an operation between a and b. Return a consensus list of names if they match at least partly or list of None if they have completely different names. """ if len(self.names) != len(other.names): return [None] * len(self.names) names = [] for a_name, b_name in zip(self.names, other.names): if a_name == b_name: names.append(a_name) else: # TODO: what if they both have np.nan for their names? names.append(None) return names def _intersection(self, other, sort=False) -> MultiIndex: other, result_names = self._convert_can_do_setop(other) other = other.astype(object, copy=False) uniq_tuples = None # flag whether _inner_indexer was successful if self.is_monotonic and other.is_monotonic: try: inner_tuples = self._inner_indexer(other)[0] sort = False # inner_tuples is already sorted except TypeError: pass else: uniq_tuples = algos.unique(inner_tuples) if uniq_tuples is None: left_unique = self.drop_duplicates() indexer = left_unique.get_indexer(other.drop_duplicates()) uniq_tuples = left_unique.take(np.sort(indexer[indexer != -1])) if sort is None: uniq_tuples = sorted(uniq_tuples) if len(uniq_tuples) == 0: return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def _difference(self, other, sort) -> MultiIndex: other, result_names = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) difference = this._values.take(label_diff) if sort is None: difference = sorted(difference) if len(difference) == 0: return MultiIndex( levels=[[]] * self.nlevels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_tuples(difference, sortorder=0, names=result_names) def _convert_can_do_setop(self, other): result_names = self.names if not isinstance(other, Index): if len(other) == 0: return self[:0], self.names else: msg = "other must be a MultiIndex or a list of tuples" try: other = MultiIndex.from_tuples(other, names=self.names) except (ValueError, TypeError) as err: # ValueError raised by tuples_to_object_array if we # have non-object dtype raise TypeError(msg) from err else: result_names = get_unanimous_names(self, other) return other, result_names def symmetric_difference(self, other, result_name=None, sort=None): # On equal symmetric_difference MultiIndexes the difference is empty. # Therefore, an empty MultiIndex is returned GH13490 tups = Index.symmetric_difference(self, other, result_name, sort) if len(tups) == 0: return type(self)( levels=[[] for _ in range(self.nlevels)], codes=[[] for _ in range(self.nlevels)], names=tups.name, ) return type(self).from_tuples(tups, names=tups.name) # -------------------------------------------------------------------- @doc(Index.astype) def astype(self, dtype, copy: bool = True): dtype = pandas_dtype(dtype) if is_categorical_dtype(dtype): msg = "> 1 ndim Categorical are not supported at this time" raise NotImplementedError(msg) elif not is_object_dtype(dtype): raise TypeError( "Setting a MultiIndex dtype to anything other than object " "is not supported" ) elif copy is True: return self._view() return self def _validate_fill_value(self, item): if not isinstance(item, tuple): # Pad the key with empty strings if lower levels of the key # aren't specified: item = (item,) + ("",) * (self.nlevels - 1) elif len(item) != self.nlevels: raise ValueError("Item must have length equal to number of levels.") return item def insert(self, loc: int, item) -> MultiIndex: """ Make new MultiIndex inserting new item at location Parameters ---------- loc : int item : tuple Must be same length as number of levels in the MultiIndex Returns ------- new_index : Index """ item = self._validate_fill_value(item) new_levels = [] new_codes = [] for k, level, level_codes in zip(item, self.levels, self.codes): if k not in level: # have to insert into level # must insert at end otherwise you have to recompute all the # other codes lev_loc = len(level) level = level.insert(lev_loc, k) else: lev_loc = level.get_loc(k) new_levels.append(level) new_codes.append(np.insert(ensure_int64(level_codes), loc, lev_loc)) return MultiIndex( levels=new_levels, codes=new_codes, names=self.names, verify_integrity=False ) def delete(self, loc) -> MultiIndex: """ Make new index with passed location deleted Returns ------- new_index : MultiIndex """ new_codes = [np.delete(level_codes, loc) for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, verify_integrity=False, ) @doc(Index.isin) def isin(self, values, level=None) -> np.ndarray: if level is None: values = MultiIndex.from_tuples(values, names=self.names)._values return algos.isin(self._values, values) else: num = self._get_level_number(level) levs = self.get_level_values(num) if levs.size == 0: return np.zeros(len(levs), dtype=np.bool_) return levs.isin(values) # --------------------------------------------------------------- # Arithmetic/Numeric Methods - Disabled __add__ = make_invalid_op("__add__") __radd__ = make_invalid_op("__radd__") __iadd__ = make_invalid_op("__iadd__") __sub__ = make_invalid_op("__sub__") __rsub__ = make_invalid_op("__rsub__") __isub__ = make_invalid_op("__isub__") __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") # Unary methods disabled __neg__ = make_invalid_op("__neg__") __pos__ = make_invalid_op("__pos__") __abs__ = make_invalid_op("__abs__") __inv__ = make_invalid_op("__inv__") def _lexsort_depth(codes: list[np.ndarray], nlevels: int) -> int: """Count depth (up to a maximum of `nlevels`) with which codes are lexsorted.""" int64_codes = [ensure_int64(level_codes) for level_codes in codes] for k in range(nlevels, 0, -1): if libalgos.is_lexsorted(int64_codes[:k]): return k return 0 def sparsify_labels(label_list, start: int = 0, sentinel=""): pivoted = list(zip(*label_list)) k = len(label_list) result = pivoted[: start + 1] prev = pivoted[start] for cur in pivoted[start + 1 :]: sparse_cur = [] for i, (p, t) in enumerate(zip(prev, cur)): if i == k - 1: sparse_cur.append(t) result.append(sparse_cur) break if p == t: sparse_cur.append(sentinel) else: sparse_cur.extend(cur[i:]) result.append(sparse_cur) break prev = cur return list(zip(*result)) def _get_na_rep(dtype) -> str: return {np.datetime64: "NaT", np.timedelta64: "NaT"}.get(dtype, "NaN") def maybe_droplevels(index: Index, key) -> Index: """ Attempt to drop level or levels from the given index. Parameters ---------- index: Index key : scalar or tuple Returns ------- Index """ # drop levels original_index = index if isinstance(key, tuple): for _ in key: try: index = index._drop_level_numbers([0]) except ValueError: # we have dropped too much, so back out return original_index else: try: index = index._drop_level_numbers([0]) except ValueError: pass return index def _coerce_indexer_frozen(array_like, categories, copy: bool = False) -> np.ndarray: """ Coerce the array_like indexer to the smallest integer dtype that can encode all of the given categories. Parameters ---------- array_like : array-like categories : array-like copy : bool Returns ------- np.ndarray Non-writeable. """ array_like = coerce_indexer_dtype(array_like, categories) if copy: array_like = array_like.copy() array_like.flags.writeable = False return array_like def _require_listlike(level, arr, arrname: str): """ Ensure that level is either None or listlike, and arr is list-of-listlike. """ if level is not None and not is_list_like(level): if not is_list_like(arr): raise TypeError(f"{arrname} must be list-like") if is_list_like(arr[0]): raise TypeError(f"{arrname} must be list-like") level = [level] arr = [arr] elif level is None or is_list_like(level): if not is_list_like(arr) or not is_list_like(arr[0]): raise TypeError(f"{arrname} must be list of lists-like") return level, arr
33.775375
88
0.534808
794f1436947ca7836b9de996790b97c40a5b88e3
2,060
py
Python
wwpdb/utils/nmr/CifToNmrStar.py
wwPDB/py-wwpdb_utils_nmr
531f1cf5dba0c1fb4e5d710d740c3ee05d34dafb
[ "Apache-2.0" ]
null
null
null
wwpdb/utils/nmr/CifToNmrStar.py
wwPDB/py-wwpdb_utils_nmr
531f1cf5dba0c1fb4e5d710d740c3ee05d34dafb
[ "Apache-2.0" ]
null
null
null
wwpdb/utils/nmr/CifToNmrStar.py
wwPDB/py-wwpdb_utils_nmr
531f1cf5dba0c1fb4e5d710d740c3ee05d34dafb
[ "Apache-2.0" ]
1
2021-06-21T10:46:22.000Z
2021-06-21T10:46:22.000Z
## # File: CifToNmrStar.py # Date: 19-Jul-2021 # # Updates: # 13-Oct-2021 M. Yokochi - code revision according to PEP8 using Pylint (DAOTHER-7389, issue #5) ## """ Wrapper class for CIF to NMR-STAR converter. @author: Masashi Yokochi """ import sys import os import os.path import pynmrstar from wwpdb.utils.nmr.io.mmCIFUtil import mmCIFUtil class CifToNmrStar: """ Simple CIF to NMR-STAR converter. """ def __init__(self, log=sys.stderr): self.__lfh = log def convert(self, cifPath=None, strPath=None): """ Convert CIF to NMR-STAR for re-upload without CS data """ if cifPath is None or strPath is None: return False try: cifObj = mmCIFUtil(filePath=cifPath) block_name_list = cifObj.GetBlockIDList() strObj = pynmrstar.Entry.from_scratch(os.path.basename(cifPath)) for block_name in block_name_list: sf = pynmrstar.Saveframe.from_scratch(block_name) dict_list = cifObj.GetDataBlock(block_name) has_sf_category = False for category, itVals in dict_list.items(): if not has_sf_category: sf.set_tag_prefix(category) for item, value in zip(itVals['Items'], itVals['Values'][0]): sf.add_tag(item, block_name if item == 'Sf_framecode' else value) has_sf_category = True else: lp = pynmrstar.Loop.from_scratch(category) for item in itVals['Items']: lp.add_tag(item) for row in itVals['Values']: lp.add_data(row) sf.add_loop(lp) strObj.add_saveframe(sf) strObj.write_to_file(strPath, skip_empty_tags=False) except Exception as e: self.__lfh.write(f"+ERROR- CifToNmrStar.convert() {str(e)}\n") return False
26.075949
97
0.558252
794f14567a0eba710792faf7f2218156a6ac21a8
397
py
Python
openai/deepq/__init__.py
niksaz/dota2-expert-demo
b46ce6fc2c9223f07d91db78633c7d20c36f4653
[ "MIT" ]
17
2018-12-26T10:18:35.000Z
2021-11-04T02:49:29.000Z
openai/deepq/__init__.py
niksaz/dota2-expert-demo
b46ce6fc2c9223f07d91db78633c7d20c36f4653
[ "MIT" ]
null
null
null
openai/deepq/__init__.py
niksaz/dota2-expert-demo
b46ce6fc2c9223f07d91db78633c7d20c36f4653
[ "MIT" ]
5
2019-01-26T06:10:15.000Z
2021-11-04T02:49:30.000Z
from openai.deepq import models # noqa from openai.deepq.build_graph import build_act, build_train # noqa from openai.deepq.deepq import learn, load_act # noqa from openai.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa def wrap_atari_dqn(env): from baselines.common.atari_wrappers import wrap_deepmind return wrap_deepmind(env, frame_stack=True, scale=False)
44.111111
84
0.811083
794f14a6162211e376244e0ac44ddae2d98cb7f7
1,239
py
Python
agents/random_agents_test.py
lavanyashukla/ml-fairness-gym
fb68b379d4284b7af746b2a051d518b3bd45ab00
[ "Apache-2.0" ]
null
null
null
agents/random_agents_test.py
lavanyashukla/ml-fairness-gym
fb68b379d4284b7af746b2a051d518b3bd45ab00
[ "Apache-2.0" ]
null
null
null
agents/random_agents_test.py
lavanyashukla/ml-fairness-gym
fb68b379d4284b7af746b2a051d518b3bd45ab00
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2019 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for fairness_gym.agents.random_agents.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest import test_util from agents import random_agents class RandomAgentsTest(absltest.TestCase): def test_can_run_with_env(self): env = test_util.DummyEnv() agent = random_agents.RandomAgent( action_space=env.action_space, observation_space=env.observation_space, reward_fn=None) test_util.run_test_simulation(env=env, agent=agent) if __name__ == '__main__': absltest.main()
30.219512
74
0.76594
794f14c189536db6d356f14982383559ef5589e4
144
py
Python
queries/query_organization/query.py
akarapun/elearning
fe116d5815925269819061ea183cbfdb773844cf
[ "MIT" ]
1
2020-03-14T11:00:14.000Z
2020-03-14T11:00:14.000Z
queries/query_organization/query.py
akarapun/elearning
fe116d5815925269819061ea183cbfdb773844cf
[ "MIT" ]
null
null
null
queries/query_organization/query.py
akarapun/elearning
fe116d5815925269819061ea183cbfdb773844cf
[ "MIT" ]
null
null
null
import graphene from query_organization.getAllOrg import GetAllOrg class OrganizationQuery( GetAllOrg, graphene.ObjectType): pass
16
50
0.784722
794f15031a3947f8a56bb058759a9a49fc085b14
393
py
Python
website1/wsgi.py
sandykaka/vroombaby
61222390c24c44b50cf2771a38bbfb243f5ecb11
[ "MIT" ]
null
null
null
website1/wsgi.py
sandykaka/vroombaby
61222390c24c44b50cf2771a38bbfb243f5ecb11
[ "MIT" ]
3
2020-02-11T23:08:19.000Z
2021-06-10T20:48:00.000Z
website1/wsgi.py
sandykaka/vroombaby
61222390c24c44b50cf2771a38bbfb243f5ecb11
[ "MIT" ]
null
null
null
""" WSGI config for website1 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'website1.settings') application = get_wsgi_application()
23.117647
78
0.78626
794f15d74ee0465affc367ea8d74bc8d20a0a7f6
29
py
Python
tests/test_iex.py
lkire/share-dash
4c94ea8e72c88b3d3976247ef9718560b63da67d
[ "MIT" ]
null
null
null
tests/test_iex.py
lkire/share-dash
4c94ea8e72c88b3d3976247ef9718560b63da67d
[ "MIT" ]
null
null
null
tests/test_iex.py
lkire/share-dash
4c94ea8e72c88b3d3976247ef9718560b63da67d
[ "MIT" ]
null
null
null
from dashboards.iex import *
14.5
28
0.793103
794f164f98e5ad2949c2cca6bdcbaba9aff82023
6,392
py
Python
asposewordscloud/models/requests/delete_table_cell_request.py
rizwanniazigroupdocs/aspose-words-cloud-python
b943384a1e3c0710cc84df74119e6edf7356037e
[ "MIT" ]
null
null
null
asposewordscloud/models/requests/delete_table_cell_request.py
rizwanniazigroupdocs/aspose-words-cloud-python
b943384a1e3c0710cc84df74119e6edf7356037e
[ "MIT" ]
null
null
null
asposewordscloud/models/requests/delete_table_cell_request.py
rizwanniazigroupdocs/aspose-words-cloud-python
b943384a1e3c0710cc84df74119e6edf7356037e
[ "MIT" ]
null
null
null
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose" file="delete_table_cell_request.py"> # Copyright (c) 2020 Aspose.Words for Cloud # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- from six.moves.urllib.parse import quote class DeleteTableCellRequest(object): """ Request model for delete_table_cell operation. Initializes a new instance. :param name The filename of the input document. :param table_row_path The path to the table row in the document tree. :param index Object index. :param folder Original document folder. :param storage Original document storage. :param load_encoding Encoding that will be used to load an HTML (or TXT) document if the encoding is not specified in HTML. :param password Password for opening an encrypted document. :param dest_file_name Result path of the document after the operation. If this parameter is omitted then result of the operation will be saved as the source document. :param revision_author Initials of the author to use for revisions.If you set this parameter and then make some changes to the document programmatically, save the document and later open the document in MS Word you will see these changes as revisions. :param revision_date_time The date and time to use for revisions. """ def __init__(self, name, table_row_path, index, folder=None, storage=None, load_encoding=None, password=None, dest_file_name=None, revision_author=None, revision_date_time=None): self.name = name self.table_row_path = table_row_path self.index = index self.folder = folder self.storage = storage self.load_encoding = load_encoding self.password = password self.dest_file_name = dest_file_name self.revision_author = revision_author self.revision_date_time = revision_date_time def create_http_request(self, api_client): # verify the required parameter 'name' is set if self.name is None: raise ValueError("Missing the required parameter `name` when calling `delete_table_cell`") # noqa: E501 # verify the required parameter 'table_row_path' is set if self.table_row_path is None: raise ValueError("Missing the required parameter `table_row_path` when calling `delete_table_cell`") # noqa: E501 # verify the required parameter 'index' is set if self.index is None: raise ValueError("Missing the required parameter `index` when calling `delete_table_cell`") # noqa: E501 path = '/v4.0/words/{name}/{tableRowPath}/cells/{index}' path_params = {} if self.name is not None: path_params['name'] = self.name # noqa: E501 else: path_params['name'] = '' # noqa: E501 if self.table_row_path is not None: path_params['tableRowPath'] = self.table_row_path # noqa: E501 else: path_params['tableRowPath'] = '' # noqa: E501 if self.index is not None: path_params['index'] = self.index # noqa: E501 else: path_params['index'] = '' # noqa: E501 # path parameters collection_formats = {} if path_params: path_params = api_client.sanitize_for_serialization(path_params) path_params = api_client.parameters_to_tuples(path_params, collection_formats) for k, v in path_params: # specified safe chars, encode everything path = path.replace( '{%s}' % k, quote(str(v), safe=api_client.configuration.safe_chars_for_path_param) ) # remove optional path parameters path = path.replace('//', '/') query_params = [] if self.folder is not None: query_params.append(('folder', self.folder)) # noqa: E501 if self.storage is not None: query_params.append(('storage', self.storage)) # noqa: E501 if self.load_encoding is not None: query_params.append(('loadEncoding', self.load_encoding)) # noqa: E501 if self.password is not None: query_params.append(('password', self.password)) # noqa: E501 if self.dest_file_name is not None: query_params.append(('destFileName', self.dest_file_name)) # noqa: E501 if self.revision_author is not None: query_params.append(('revisionAuthor', self.revision_author)) # noqa: E501 if self.revision_date_time is not None: query_params.append(('revisionDateTime', self.revision_date_time)) # noqa: E501 header_params = {} form_params = [] body_params = None return { "method": "DELETE", "path": path, "query_params": query_params, "header_params": header_params, "form_params": form_params, "body": body_params, "collection_formats": collection_formats, "response_type": None # noqa: E501 } def get_response_type(self): return None # noqa: E501
48.793893
255
0.649718
794f194ecc5c8f0324cab6af5afd05837cda6521
11,749
py
Python
hihope_neptune-oh_hid/00_src/v0.1/test/xts/tools/lite/build/utils.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
1
2022-02-15T08:51:55.000Z
2022-02-15T08:51:55.000Z
hihope_neptune-oh_hid/00_src/v0.3/test/xts/tools/lite/build/utils.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
null
null
null
hihope_neptune-oh_hid/00_src/v0.3/test/xts/tools/lite/build/utils.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright (c) 2021 Huawei Device Co., Ltd. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import fnmatch import sys import argparse import json import platform import subprocess import distutils.dir_util as dir_util import distutils.file_util as file_util from distutils.errors import DistutilsError # all sub system list, must be lowercase. _SUB_SYSTEM_LIST = [ "kernel", "hiviewdfx", "communication", "security", "update", "sstsutils", "utils", "uikit", "multimedia", "hdf", "appexecfwk", "distributed_schedule", "startup", "sensors", "sample", "iot_hardware", "open_posix_testsuite", "graphic", "ace", "applications", "ai", "global", "telephony", "dcts" ] _NO_FILTE_SUB_SYSTEM_LIST = [ "kernel", "open_posix_testsuite", "sample", "telephony", "dcts" ] def main(): parser = argparse.ArgumentParser() parser.add_argument('--method_name', help='', required=True) parser.add_argument('--arguments', help='', required=True) # format key=value#key=value args = parser.parse_args() this_module = sys.modules[__name__] method = getattr(this_module, args.method_name) arguments = {} for argument in args.arguments.split("#"): key_value = argument.strip().split("=") if len(key_value) != 2: raise ValueError( "The arguments' format is 'key=value#key=value'. Wrong format:" " " + argument) arguments.setdefault(key_value[0].strip(), key_value[1].strip()) method(**arguments) return 0 def read_file(input_file): if not os.path.exists(input_file): return "" with open(input_file, 'r') as input_f: content = input_f.read().strip() return content def write_file(output_file, content, append): file_dir = os.path.dirname(os.path.abspath(output_file)) if not os.path.exists(file_dir): os.makedirs(file_dir) mode = 'a+' if append else 'w' with open(output_file, mode) as output_f: output_f.write("%s\n" % content) def copy_file(output, sources="", source_dirs="", to_dir=True): """ copy source files or source dir to output. if sources is not empty, the output can be file(will be created automatically) or directory(must be exist). :param output: If source_dirs is not empty, output must be directory. :param sources: source files is separated by dot :param source_dirs: source directory is separated by dot :param to_dir: output is directory or not :return: """ if not sources and not source_dirs: raise Exception( "sources or source_dirs parameter must be specified one") _output = output.strip() _sources = sources.strip() _source_dirs = source_dirs.strip() _parent_output = os.path.dirname(_output) try: if to_dir and not os.path.exists(_output): os.makedirs(_output) if not to_dir and not os.path.exists(_parent_output): os.makedirs(_parent_output) except OSError: if not os.path.isdir(_output): raise try: if _sources: _copy_files(_sources.split(","), _output) if _source_dirs: _copy_dir(_source_dirs.split(","), _output) except DistutilsError: print("ignore file exist error") return 0 def _copy_files(sources, output): copy_set = set() for source_file in sources: source_file = source_file.strip() if os.path.isfile(source_file) and os.path.exists(source_file): # if same file name exist, add dir path if os.path.basename(source_file) in copy_set: new_output = os.path.join(output, os.path.dirname(source_file). split(os.sep)[-1]) if not os.path.exists(new_output): os.makedirs(new_output) file_util.copy_file(source_file, new_output) else: file_util.copy_file(source_file, output) copy_set.add(os.path.basename(source_file)) def _copy_dir(sources, output): for source_file in sources: source_file = source_file.strip() if os.path.isdir(source_file): dir_util.copy_tree(source_file, output) def gen_suite_out(suite_output_prefix, suite_names, out_suffix): outputs = [] _suite_output_prefix = suite_output_prefix.strip() _dirname_suffix = out_suffix.strip().rstrip(os.sep) for suite in suite_names.split(","): path = "%s%s/%s" % ( _suite_output_prefix, suite.strip(), _dirname_suffix) outputs.append(path) print(path) return outputs def get_subsystem_name(path): subsystem_name = "" for subsystem in _SUB_SYSTEM_LIST: subsystem_path = "/" + subsystem + "/" _path = path.lower() if subsystem_path in _path: subsystem_name = subsystem break subsystem_path = "/" + subsystem + "_lite/" if subsystem_path in _path: subsystem_name = subsystem break sys.stdout.write(subsystem_name) return subsystem_name def get_modulename_by_buildtarget(module_list_file, build_target): if not os.path.exists(module_list_file): return "" with open(module_list_file, "r") as module_file: module_info_data = json.load(module_file) for module in module_info_data: if module_info_data[module]["build_target_name"] == build_target: sys.stdout.write(module) return module return "" def glob(path, filename_pattern): files = [] for dir_path, _, files in os.walk(path): for filename in fnmatch.filter(files, filename_pattern): files.append(os.path.join(dir_path, filename)) return files def filter_by_subsystem(testsuites, product_json): product_info = {} filtered_features = [] subsystem_names = set() # parses product json to obtain all the subsystem name if os.path.exists(product_json): try: with open(product_json, 'r') as product_info: product_info = json.load(product_info) except ValueError: print("NO json object could be decoded.") subsystem_info = product_info.get("subsystems") for subsystem in subsystem_info: subsystem_names.add(subsystem.get("subsystem")) feature_list = testsuites.split(",") for feature in feature_list: # if subsytem name match subsystem = get_subsystem_name_no_output(feature) if subsystem in _NO_FILTE_SUB_SYSTEM_LIST or \ subsystem in subsystem_names: filtered_features.append(feature) print(feature) return filtered_features def get_subsystem_name_no_output(path): subsystem_name = "" for subsystem in _SUB_SYSTEM_LIST: subsystem_path = "/" + subsystem _path = path.lower() if subsystem_path in _path: subsystem_name = subsystem break subsystem_path = "/" + subsystem + "_lite" if subsystem_path in _path: subsystem_name = subsystem break return subsystem_name def get_python_cmd(): major, _, _ = platform.python_version_tuple() if major == "3": return "python" else: return "python3" def record_testmodule_info(build_target_name, module_name, subsystem_name, suite_out_dir, same_file=False): if not build_target_name or not subsystem_name: print( 'build_target_name or subsystem_name of testmodule "%s" ' 'is invalid!' % module_name) return if same_file: module_info_list_file = os.path.join(suite_out_dir, 'module_info.json') else: module_info_list_file = os.path.join(suite_out_dir, '{}_module_info.json'.format (build_target_name)) module_info_data = {} if os.path.exists(module_info_list_file): try: with open(module_info_list_file, 'r') as module_file: module_info_data = json.load(module_file) except ValueError: print("NO json object could be decoded but continue") module_info = {'subsystem': subsystem_name, 'build_target_name': build_target_name} module_info_data[module_name] = module_info with open(module_info_list_file, 'w') as out_file: json.dump(module_info_data, out_file) def record_test_component_info(out_dir, version): if not os.path.exists(out_dir): os.makedirs(out_dir) all_module_file = os.path.join(out_dir, 'module_info.json') all_module_data = {} for root, dirs, files in os.walk(out_dir): for file in files: if file.endswith("module_info.json"): with open(os.path.join(root, file), 'r') as json_data: module_data = json.load(json_data) all_module_data.update(module_data) os.remove(os.path.join(root, file)) with open(all_module_file, 'w') as out_file: json.dump(all_module_data, out_file) test_component_file = os.path.join(out_dir, 'test_component.json') test_component_data = {'version': version, } with open(test_component_file, 'w') as out_file: json.dump(test_component_data, out_file) def get_target_modules(all_features): feature_list = [] if all_features: for feature in all_features.split(","): if feature: feature_list.append(feature) print(feature) return feature_list def cmd_popen(cmd): proc = subprocess.Popen(cmd) proc.wait() ret_code = proc.returncode if ret_code != 0: raise Exception("{} failed, return code is {}".format(cmd, ret_code)) def build_js_hap(project_path, out_put_dir, hap_name): if not check_env(): return gradle_dir = os.path.join(project_path, "gradle") os.chdir(gradle_dir) build_clean = ["gradle", "clean"] cmd_popen(build_clean) build_cmd = ["gradle", "entry:packageDebugHap"] cmd_popen(build_cmd) gralde_output_dir = os.path.join(gradle_dir, "entry", "build", "outputs") if os.path.exists(gralde_output_dir): for root, _, files in os.walk(gralde_output_dir): for file in files: if file.endswith(".hap"): file_util.copy_file(os.path.join(root, file), os.path.join(out_put_dir.rstrip(','), hap_name)) return def check_env(): """ check all the env for js hap build return: return true if all env ready, otherwise return false """ env_list = ['OHOS_SDK_HOME', 'NODE_HOME', 'GRADLE_HOME'] for env in env_list: if not os.environ.get(env): print("the env {} not set, skip build!".format(env)) return False else: return True if __name__ == '__main__': sys.exit(main())
31.92663
79
0.631288
794f1a2d4558eba652b2f10da4b0068d53e926dc
15,614
py
Python
napari/plugins/io.py
noisysky/napari
6a3e11aa717e7928a0a5a3c7693577729a466ef1
[ "BSD-3-Clause" ]
null
null
null
napari/plugins/io.py
noisysky/napari
6a3e11aa717e7928a0a5a3c7693577729a466ef1
[ "BSD-3-Clause" ]
null
null
null
napari/plugins/io.py
noisysky/napari
6a3e11aa717e7928a0a5a3c7693577729a466ef1
[ "BSD-3-Clause" ]
null
null
null
from __future__ import annotations import os import pathlib import warnings from logging import getLogger from typing import TYPE_CHECKING, Any, List, Optional, Sequence, Tuple, Union from napari_plugin_engine import HookImplementation, PluginCallError from ..layers import Layer from ..types import LayerData from ..utils.misc import abspath_or_url from ..utils.translations import trans from . import _npe2, plugin_manager logger = getLogger(__name__) if TYPE_CHECKING: from npe2.manifest.contributions import WriterContribution def read_data_with_plugins( path: Union[str, Sequence[str]], plugin: Optional[str] = None, ) -> Tuple[Optional[List[LayerData]], Optional[HookImplementation]]: """Iterate reader hooks and return first non-None LayerData or None. This function returns as soon as the path has been read successfully, while catching any plugin exceptions, storing them for later retrieval, providing useful error messages, and re-looping until either a read operation was successful, or no valid readers were found. Exceptions will be caught and stored as PluginErrors (in plugins.exceptions.PLUGIN_ERRORS) Parameters ---------- path : str The path (file, directory, url) to open plugin : str, optional Name of a plugin to use. If provided, will force ``path`` to be read with the specified ``plugin``. If the requested plugin cannot read ``path``, a PluginCallError will be raised. Returns ------- LayerData : list of tuples, or None LayerData that can be passed to :func:`Viewer._add_layer_from_data() <napari.components.viewer_model.ViewerModel._add_layer_from_data>`. ``LayerData`` is a list tuples, where each tuple is one of ``(data,)``, ``(data, meta)``, or ``(data, meta, layer_type)`` . If no reader plugins were found (or they all failed), returns ``None`` Raises ------ PluginCallError If ``plugin`` is specified but raises an Exception while reading. """ hookimpl: Optional[HookImplementation] res = _npe2.read(path, plugin) if res is not None: _ld, hookimpl = res return [] if _is_null_layer_sentinel(_ld) else _ld, hookimpl hook_caller = plugin_manager.hook.napari_get_reader path = abspath_or_url(path, must_exist=True) if not plugin and isinstance(path, (str, pathlib.Path)): extension = os.path.splitext(path)[-1] plugin = plugin_manager.get_reader_for_extension(extension) hookimpl = None if plugin: if plugin not in plugin_manager.plugins: names = {i.plugin_name for i in hook_caller.get_hookimpls()} raise ValueError( trans._( "There is no registered plugin named '{plugin}'.\nNames of plugins offering readers are: {names}", deferred=True, plugin=plugin, names=names, ) ) reader = hook_caller._call_plugin(plugin, path=path) if not callable(reader): raise ValueError( trans._( 'Plugin {plugin!r} does not support file {path}', deferred=True, plugin=plugin, path=path, ) ) hookimpl = hook_caller.get_plugin_implementation(plugin) layer_data = reader(path) # if the reader returns a "null layer" sentinel indicating an empty # file, return an empty list, otherwise return the result or None if _is_null_layer_sentinel(layer_data): return [], hookimpl return layer_data or None, hookimpl layer_data = None result = hook_caller.call_with_result_obj(path=path) reader = result.result # will raise exceptions if any occurred try: layer_data = reader(path) # try to read data hookimpl = result.implementation except Exception as exc: raise PluginCallError(result.implementation, cause=exc) if not layer_data: # if layer_data is empty, it means no plugin could read path # we just want to provide some useful feedback, which includes # whether or not paths were passed to plugins as a list. if isinstance(path, (tuple, list)): message = trans._( 'No plugin found capable of reading [{repr_path}, ...] as stack.', deferred=True, repr_path=path[0], ) else: message = trans._( 'No plugin found capable of reading {repr_path}.', deferred=True, repr_path=repr(path), ) # TODO: change to a warning notification in a later PR raise ValueError(message) # if the reader returns a "null layer" sentinel indicating an empty file, # return an empty list, otherwise return the result or None _data = [] if _is_null_layer_sentinel(layer_data) else layer_data or None return _data, hookimpl def save_layers( path: str, layers: List[Layer], *, plugin: Optional[str] = None, _writer: Optional[WriterContribution] = None, ) -> List[str]: """Write list of layers or individual layer to a path using writer plugins. If ``plugin`` is not provided and only one layer is passed, then we directly call ``plugin_manager.hook.napari_write_<layer>()`` which will loop through implementations and stop when the first one returns a non-None result. The order in which implementations are called can be changed with the hook ``bring_to_front`` method, for instance: ``plugin_manager.hook.napari_write_points.bring_to_front`` If ``plugin`` is not provided and multiple layers are passed, then we call ``plugin_manager.hook.napari_get_writer()`` which loops through plugins to find the first one that knows how to handle the combination of layers and is able to write the file. If no plugins offer ``napari_get_writer`` for that combination of layers then the builtin ``napari_get_writer`` implementation will create a folder and call ``napari_write_<layer>`` for each layer using the ``layer.name`` variable to modify the path such that the layers are written to unique files in the folder. If ``plugin`` is provided and a single layer is passed, then we call the ``napari_write_<layer_type>`` for that plugin, and if it fails we error. If a ``plugin`` is provided and multiple layers are passed, then we call we call ``napari_get_writer`` for that plugin, and if it doesn’t return a WriterFunction we error, otherwise we call it and if that fails if it we error. Parameters ---------- path : str A filepath, directory, or URL to open. layers : List[layers.Layer] List of layers to be saved. If only a single layer is passed then we use the hook specification corresponding to its layer type, ``napari_write_<layer_type>``. If multiple layers are passed then we use the ``napari_get_writer`` hook specification. plugin : str, optional Name of the plugin to use for saving. If None then all plugins corresponding to appropriate hook specification will be looped through to find the first one that can save the data. Returns ------- list of str File paths of any files that were written. """ if len(layers) > 1: written = _write_multiple_layers_with_plugins( path, layers, plugin_name=plugin, _writer=_writer ) elif len(layers) == 1: _written = _write_single_layer_with_plugins( path, layers[0], plugin_name=plugin, _writer=_writer ) written = [_written] if _written else [] else: written = [] if not written: # if written is empty, it means no plugin could write the # path/layers combination # we just want to provide some useful feedback warnings.warn( trans._( 'No data written! There may be no plugins capable of writing these {length} layers to {path}.', deferred=True, length=len(layers), path=path, ) ) return written def _is_null_layer_sentinel(layer_data: Any) -> bool: """Checks if the layer data returned from a reader function indicates an empty file. The sentinel value used for this is ``[(None,)]``. Parameters ---------- layer_data : LayerData The layer data returned from a reader function to check Returns ------- bool True, if the layer_data indicates an empty file, False otherwise """ return ( isinstance(layer_data, list) and len(layer_data) == 1 and isinstance(layer_data[0], tuple) and len(layer_data[0]) == 1 and layer_data[0][0] is None ) def _write_multiple_layers_with_plugins( path: str, layers: List[Layer], *, plugin_name: Optional[str] = None, _writer: Optional[WriterContribution] = None, ) -> List[str]: """Write data from multiple layers data with a plugin. If a ``plugin_name`` is not provided we loop through plugins to find the first one that knows how to handle the combination of layers and is able to write the file. If no plugins offer ``napari_get_writer`` for that combination of layers then the default ``napari_get_writer`` will create a folder and call ``napari_write_<layer>`` for each layer using the ``layer.name`` variable to modify the path such that the layers are written to unique files in the folder. If a ``plugin_name`` is provided, then call ``napari_get_writer`` for that plugin. If it doesn’t return a ``WriterFunction`` we error, otherwise we call it and if that fails if it we error. Exceptions will be caught and stored as PluginErrors (in plugins.exceptions.PLUGIN_ERRORS) Parameters ---------- path : str The path (file, directory, url) to write. layers : List of napari.layers.Layer List of napari layers to write. plugin_name : str, optional If provided, force the plugin manager to use the ``napari_get_writer`` from the requested ``plugin_name``. If none is available, or if it is incapable of handling the layers, this function will fail. Returns ------- list of str A list of filenames, if any, that were written. """ # Try to use NPE2 first written_paths = _npe2.write_layers(path, layers, plugin_name, _writer) if written_paths: return written_paths logger.debug("Falling back to original plugin engine.") layer_data = [layer.as_layer_data_tuple() for layer in layers] layer_types = [ld[2] for ld in layer_data] if not plugin_name and isinstance(path, (str, pathlib.Path)): extension = os.path.splitext(path)[-1] plugin_name = plugin_manager.get_writer_for_extension(extension) hook_caller = plugin_manager.hook.napari_get_writer path = abspath_or_url(path) logger.debug(f"Writing to {path}. Hook caller: {hook_caller}") if plugin_name: # if plugin has been specified we just directly call napari_get_writer # with that plugin_name. if plugin_name not in plugin_manager.plugins: names = {i.plugin_name for i in hook_caller.get_hookimpls()} raise ValueError( trans._( "There is no registered plugin named '{plugin_name}'.\nNames of plugins offering writers are: {names}", deferred=True, plugin_name=plugin_name, names=names, ) ) implementation = hook_caller.get_plugin_implementation(plugin_name) writer_function = hook_caller( _plugin=plugin_name, path=path, layer_types=layer_types ) else: result = hook_caller.call_with_result_obj( path=path, layer_types=layer_types, _return_impl=True ) writer_function = result.result implementation = result.implementation if not callable(writer_function): if plugin_name: msg = trans._( 'Requested plugin "{plugin_name}" is not capable of writing this combination of layer types: {layer_types}', deferred=True, plugin_name=plugin_name, layer_types=layer_types, ) else: msg = trans._( 'Unable to find plugin capable of writing this combination of layer types: {layer_types}', deferred=True, layer_types=layer_types, ) raise ValueError(msg) try: return writer_function(abspath_or_url(path), layer_data) except Exception as exc: raise PluginCallError(implementation, cause=exc) def _write_single_layer_with_plugins( path: str, layer: Layer, *, plugin_name: Optional[str] = None, _writer: Optional[WriterContribution] = None, ) -> Optional[str]: """Write single layer data with a plugin. If ``plugin_name`` is not provided then we just directly call ``plugin_manager.hook.napari_write_<layer>()`` which will loop through implementations and stop when the first one returns a non-None result. The order in which implementations are called can be changed with the implementation sorter/disabler. If ``plugin_name`` is provided, then we call the ``napari_write_<layer_type>`` for that plugin, and if it fails we error. Exceptions will be caught and stored as PluginErrors (in plugins.exceptions.PLUGIN_ERRORS) Parameters ---------- path : str The path (file, directory, url) to write. layer : napari.layers.Layer Layer to be written out. plugin_name : str, optional Name of the plugin to write data with. If None then all plugins corresponding to appropriate hook specification will be looped through to find the first one that can write the data. Returns ------- path : str or None If data is successfully written, return the ``path`` that was written. Otherwise, if nothing was done, return ``None``. """ # Try to use NPE2 first written_paths = _npe2.write_layers(path, [layer], plugin_name, _writer) if written_paths: return written_paths[0] logger.debug("Falling back to original plugin engine.") hook_caller = getattr( plugin_manager.hook, f'napari_write_{layer._type_string}' ) if not plugin_name and isinstance(path, (str, pathlib.Path)): extension = os.path.splitext(path)[-1] plugin_name = plugin_manager.get_writer_for_extension(extension) logger.debug(f"Writing to {path}. Hook caller: {hook_caller}") if plugin_name and (plugin_name not in plugin_manager.plugins): names = {i.plugin_name for i in hook_caller.get_hookimpls()} raise ValueError( trans._( "There is no registered plugin named '{plugin_name}'.\nPlugins capable of writing layer._type_string layers are: {names}", deferred=True, plugin_name=plugin_name, names=names, ) ) # Call the hook_caller return hook_caller( _plugin=plugin_name, path=abspath_or_url(path), data=layer.data, meta=layer._get_state(), )
37.17619
138
0.650442
794f1b43a667b97b377cd18a5d5468013bf620d9
228
py
Python
website/models.py
cangkevin/asain-show-rss-website-wrapper
ca7953e2b764705d1a78c691e1920b2f632e6bc9
[ "MIT" ]
null
null
null
website/models.py
cangkevin/asain-show-rss-website-wrapper
ca7953e2b764705d1a78c691e1920b2f632e6bc9
[ "MIT" ]
46
2018-12-16T02:38:34.000Z
2021-06-01T22:44:45.000Z
website/models.py
cangkevin/asain-show-rss-website-wrapper
ca7953e2b764705d1a78c691e1920b2f632e6bc9
[ "MIT" ]
1
2019-01-06T04:13:51.000Z
2019-01-06T04:13:51.000Z
"""Models used throughout the application. This module holds various model classes that are intended for internal use. """ from collections import namedtuple RssResponse = namedtuple("RssResponse", "title items paginations")
22.8
66
0.79386
794f1cc7cc35108f8e9898b87780b14987e66811
4,296
py
Python
releasetool/circleci.py
michaelbausor/releasetool
5bac8a5ab8f9d993c0b52312ff04e847c322d525
[ "Apache-2.0" ]
23
2018-10-09T15:14:21.000Z
2022-01-24T12:18:57.000Z
releasetool/circleci.py
quartzmo/releasetool
fca57b9e6caefe013444fa576bc3bba514942f97
[ "Apache-2.0" ]
160
2018-09-21T22:16:02.000Z
2022-03-30T21:51:35.000Z
releasetool/circleci.py
quartzmo/releasetool
fca57b9e6caefe013444fa576bc3bba514942f97
[ "Apache-2.0" ]
19
2018-10-08T20:39:39.000Z
2021-07-28T15:17:14.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Iterator, Optional import time from datetime import datetime import requests _CIRCLE_ROOT: str = "https://circleci.com/api/v1.1" class CircleCI: def __init__(self, repository: str, vcs: str = "github") -> None: self.session: requests.Session = requests.Session() self.vcs = vcs self.repo = repository def get_latest_build_by_tag(self, tag: str, retries: int = 15) -> Optional[dict]: url = f"{_CIRCLE_ROOT}/project/{self.vcs}/{self.repo}" for retry in range(1, retries): response = self.session.get(url) response.raise_for_status() for build in response.json(): if "branch" in build.keys() and build["vcs_tag"] == tag: return build time.sleep(retry) return None def get_latest_build_by_branch(self, branch_name: str) -> Optional[dict]: url = f"{_CIRCLE_ROOT}/project/{self.vcs}/{self.repo}" response = self.session.get(url) response.raise_for_status() for build in response.json(): if "branch" in build.keys() and build["branch"] == branch_name: return build return None def get_fresh_build_by_branch( self, branch_name: str, seconds_fresh: int = 60, retries: int = 15 ) -> Optional[dict]: """ Find a build that is less than seconds_fresh old. Useful if you need to find a build that isn't an old run """ for retry in range(1, retries): build = self.get_latest_build_by_branch(branch_name) if not build: continue build_queued = build["queued_at"] queued_time = datetime.strptime(build_queued, "%Y-%m-%dT%H:%M:%S.%fZ") time_delta = datetime.utcnow() - queued_time if time_delta.total_seconds() <= seconds_fresh: return build # we either didn't find a build (hasn't been queued) or we # found a build but it was stale. Wait for new build to be queued. time.sleep(retry) return None def get_build(self, build_num: str) -> dict: url = f"{_CIRCLE_ROOT}/project/{self.vcs}/{self.repo}/{build_num}" response = self.session.get(url) response.raise_for_status() return response.json() def get_link_to_build(self, build_num: int): # API vcs and FE vcs are different vcs_map = {"github": "gh"} if self.vcs in vcs_map.keys(): url_vcs = vcs_map[self.vcs] else: # if we don't have it in the mapping provide it directly. url_vcs = self.vcs # https://circleci.com/gh/GitHubUser/RepositoryName/1234 return f"https://circleci.com/{url_vcs}/{self.repo}/{build_num}" def get_build_status_generator(self, build_num: str) -> Iterator[str]: """ Returns a generator that polls circle for the status of a branch. It continues to return results until it enters a finished state """ """ lifecycle_states = [ "queued", "scheduled", "not_run", "not_running", "running", "finished" ] build_status_states = [ "retried", "canceled", "infrastructure_fail", "timedout", "not_run", "running", "failed", "queued", "scheduled", "not_running", "no_tests", "fixed", "success" ] """ build = self.get_build(build_num) while "lifecycle" in build.keys() and build["lifecycle"] != "finished": yield build["status"] time.sleep(10) build = self.get_build(build_num) yield build["status"] return
37.034483
85
0.61406
794f1ce20e19ec8121eaa524481d526904e9285f
2,776
py
Python
sonic_installer/bootloader/grub.py
monipko/sonic-utilities
ad801bfb81633812b4aa25f45bdd555a27121845
[ "Apache-2.0" ]
1
2021-02-03T06:28:38.000Z
2021-02-03T06:28:38.000Z
sonic_installer/bootloader/grub.py
monipko/sonic-utilities
ad801bfb81633812b4aa25f45bdd555a27121845
[ "Apache-2.0" ]
5
2020-02-27T09:19:52.000Z
2021-05-24T16:04:51.000Z
sonic_installer/bootloader/grub.py
monipko/sonic-utilities
ad801bfb81633812b4aa25f45bdd555a27121845
[ "Apache-2.0" ]
null
null
null
""" Bootloader implementation for grub based platforms """ import os import re import subprocess import click from ..common import ( HOST_PATH, IMAGE_DIR_PREFIX, IMAGE_PREFIX, run_command, ) from .onie import OnieInstallerBootloader class GrubBootloader(OnieInstallerBootloader): NAME = 'grub' def get_installed_images(self): images = [] config = open(HOST_PATH + '/grub/grub.cfg', 'r') for line in config: if line.startswith('menuentry'): image = line.split()[1].strip("'") if IMAGE_PREFIX in image: images.append(image) config.close() return images def get_next_image(self): images = self.get_installed_images() grubenv = subprocess.check_output(["/usr/bin/grub-editenv", HOST_PATH + "/grub/grubenv", "list"], text=True) m = re.search(r"next_entry=(\d+)", grubenv) if m: next_image_index = int(m.group(1)) else: m = re.search(r"saved_entry=(\d+)", grubenv) if m: next_image_index = int(m.group(1)) else: next_image_index = 0 return images[next_image_index] def set_default_image(self, image): images = self.get_installed_images() command = 'grub-set-default --boot-directory=' + HOST_PATH + ' ' + str(images.index(image)) run_command(command) return True def set_next_image(self, image): images = self.get_installed_images() command = 'grub-reboot --boot-directory=' + HOST_PATH + ' ' + str(images.index(image)) run_command(command) return True def install_image(self, image_path): run_command("bash " + image_path) run_command('grub-set-default --boot-directory=' + HOST_PATH + ' 0') def remove_image(self, image): click.echo('Updating GRUB...') config = open(HOST_PATH + '/grub/grub.cfg', 'r') old_config = config.read() menuentry = re.search("menuentry '" + image + "[^}]*}", old_config).group() config.close() config = open(HOST_PATH + '/grub/grub.cfg', 'w') # remove menuentry of the image in grub.cfg config.write(old_config.replace(menuentry, "")) config.close() click.echo('Done') image_dir = image.replace(IMAGE_PREFIX, IMAGE_DIR_PREFIX) click.echo('Removing image root filesystem...') subprocess.call(['rm','-rf', HOST_PATH + '/' + image_dir]) click.echo('Done') run_command('grub-set-default --boot-directory=' + HOST_PATH + ' 0') click.echo('Image removed') @classmethod def detect(cls): return os.path.isfile(os.path.join(HOST_PATH, 'grub/grub.cfg'))
31.908046
116
0.600865
794f1d69f1013ddcb5af85d315fab6bfa7272c9b
1,774
py
Python
ems/context_processors.py
fetux/django-ems
ac581ea3573c5fc9976303320f278bc2fa7cea6f
[ "MIT" ]
null
null
null
ems/context_processors.py
fetux/django-ems
ac581ea3573c5fc9976303320f278bc2fa7cea6f
[ "MIT" ]
null
null
null
ems/context_processors.py
fetux/django-ems
ac581ea3573c5fc9976303320f278bc2fa7cea6f
[ "MIT" ]
null
null
null
from django.db.models import Q from django.conf import settings from ems import utils from ems.crm.forms import QuickSearchForm from ems.crm.models import Project from ems.entries.models import Entry def quick_search(request): return { 'quick_search_form': QuickSearchForm(), } def quick_clock_in(request): user = request.user work_projects = [] leave_projects = [] if user.is_authenticated() and user.is_active: # Display all active paid leave projects that the user is assigned to. leave_ids = utils.get_setting('EMS_PAID_LEAVE_PROJECTS').values() #TODO: Fix Project User relationship lq = Q(user=user) & Q(id__in=leave_ids) lq = Q(id__in=leave_ids) leave_projects = Project.trackable.filter(lq).order_by('name') # Get all projects this user has clocked in to. entries = Entry.objects.filter(user=user) project_ids = list(entries.values_list('project', flat=True)) # Narrow to projects which can still be clocked in to. pq = Q(id__in=project_ids) valid_projects = Project.trackable.filter(pq).exclude(id__in=leave_ids) valid_ids = list(valid_projects.values_list('id', flat=True)) # Display the 10 projects this user most recently clocked into. work_ids = [] for i in project_ids: if len(work_ids) > 10: break if i in valid_ids and i not in work_ids: work_ids.append(i) work_projects = [valid_projects.get(pk=i) for i in work_ids] return { 'leave_projects': leave_projects, 'work_projects': work_projects, } def extra_settings(request): return { 'COMPRESS_ENABLED': settings.COMPRESS_ENABLED, }
30.586207
79
0.660654
794f1dd058bebe483cfbac06c96103a22cf1d4ae
11,459
py
Python
src/outlier_hub/datasets/odr/preprocessor.py
ichbk/outlierhub
5cb1ac80a9ea73b5144644d82ba695f3574e6815
[ "Apache-2.0" ]
null
null
null
src/outlier_hub/datasets/odr/preprocessor.py
ichbk/outlierhub
5cb1ac80a9ea73b5144644d82ba695f3574e6815
[ "Apache-2.0" ]
null
null
null
src/outlier_hub/datasets/odr/preprocessor.py
ichbk/outlierhub
5cb1ac80a9ea73b5144644d82ba695f3574e6815
[ "Apache-2.0" ]
null
null
null
import os import sys import tempfile import h5py import glob import csv import numpy as np import pandas as pd import io from natsort import natsorted, ns from PIL import Image, ImageFile from pathlib import Path from typing import Tuple, List, Any from data_stack.io.resources import StreamedResource, ResourceFactory from data_stack.io.storage_connectors import StorageConnector from data_stack.util.logger import logger def _load_sample_paths(samples_identifier: str) -> List[str]: """ function to load folder content into arrays and then it returns that same array @param samples_identifier: path to samples, here i.e. images @return: sorted list of paths of raw samples """ # Put file paths into lists and return them: raw_samples_paths = [] for file in sorted(glob.glob(samples_identifier + '/*.jpg')): raw_samples_paths.append(file) logger.debug(f'Length Check of raw sample paths, should be 7000 and result is: \n {len(raw_samples_paths)}') logger.debug(f'raw_samples_paths on point 10: \n {raw_samples_paths[10]}') return raw_samples_paths def _load_metadata(targets_identifier: str) -> List[np.ndarray]: """ loads xlsx file, and creates a list - each item is a list with 15 items @param: targets_identifier: path to data.xlsx file @return: list of lists containing 15 items """ # Use pandas to read and manipulate metadata: data_xls = pd.read_excel(targets_identifier, 'Sheet1', index_col=None, engine='openpyxl') # merge diagnostics data_xls["diagnostics"] = data_xls["Left-Diagnostic Keywords"] + ', ' + data_xls["Right-Diagnostic Keywords"] data_xls.drop("Left-Diagnostic Keywords", inplace=True, axis=1) data_xls.drop("Right-Diagnostic Keywords", inplace=True, axis=1) # rearrange columns cols = data_xls.columns.tolist() columns = ['ID', 'Patient Age', 'Patient Sex', 'Left-Fundus', 'Right-Fundus', 'diagnostics', 'N', 'D', 'G', 'C', 'A', 'H', 'M', 'O'] data_xls = data_xls[columns] # get a list of metadata data_values = data_xls.values.tolist() return data_values def _get_most_common_res(samples: List[str]) -> Tuple[int, int]: samples_amount = len(samples) histo = list(range(samples_amount)) for entry in range(samples_amount): with Image.open(samples[entry]) as img: width, height = img.size histo[entry] = (width, height) most_common = max(histo, key=histo.count) return most_common def _get_clean_split_samples(resolution, split_samples) -> List[str]: cleaned_split_samples = [] for entry in split_samples: with Image.open(entry) as img: if img.size == resolution: cleaned_split_samples.append(entry) return cleaned_split_samples def _create_temp_list(split_targets, split_samples) -> List[Any]: # comprehension list to initiate temp_list with meta data temp_list = [[entry, [None, None]] for entry in split_targets] for item in temp_list: for sample_item in split_samples: file = Path(sample_item).name if file == item[0][3]: item[1][0] = sample_item elif file == item[0][4]: item[1][1] = sample_item return temp_list def _clean_temp_list(temp_list): clean_temp_list = [] for item in temp_list: if not (item[1] == [None, None]): clean_temp_list.append(item) return clean_temp_list def _preprocess_split(h5py_file: h5py.File, split_name: str, samples_identifier: str, targets_identifier: str): logger.debug(f"calling load_sample_paths(samples_identifier)") split_samples = _load_sample_paths(samples_identifier) logger.debug(f"calling load_metadata(targets_identifier)") split_targets = _load_metadata(targets_identifier) # sample information are paths to images # samples are at the end images here, which can be interpreted as numpy 3D-arrays: # so a colored image has height*width pixels, each pixel contains three values representing RGB-Color # Each color of RGB is a so called channel [height, width, RGB-Value] # necessary: find only samples, where the resolution is the same and the target is provided # 1) find resolution and filter samples with estimated resolution # 2) create new temp List for indexing targets to associated samples [meta,(sample1,sample2)] # 3) clean temp List from empty samples # 4) divide temp list into target and samples # 5) create csv files for manual verification of data # 6) prepare hdf datasets # 7) enrich datasets with data # 1) find resolution # samples resolution are not equal -> get the most common resolution logger.debug(f"calling _get_most_common_res(split_samples)") resolution = _get_most_common_res(split_samples) logger.debug(f"resolution {resolution}") # filter split_samples, so only wanted resolution is provided logger.debug(f"_get_clean_split_samples(resolution, split_samples) starts") cleaned_split_samples = _get_clean_split_samples(resolution, split_samples) logger.debug(f"len(cleaned_split_samples):{len(cleaned_split_samples)}") # 2) create temp list : [meta,(sample1,sample2)] # 1. item contains meta info, 2. info is a tuple inheriting associated sample paths logger.debug(f"length & type of split_targets: {len(split_targets)}, {type(split_targets)} ") logger.debug(f"function calling: _create_temp_list(split_targets)") temp_list = _create_temp_list(split_targets, cleaned_split_samples) # 3) clean temp List from empty samples print(f"clean temp_list from empty targets without samples") print(f"length of temp_list: {len(temp_list)}") logger.debug(f"calling _clean_temp_list") clean_temp_list = _clean_temp_list(temp_list) print(f"length of clean_temp_list: {len(clean_temp_list)}") # 4) divide the list into target and sample list targets_list = [entry[0] for entry in clean_temp_list] samples_list = [entry[1] for entry in clean_temp_list] logger.debug(f"Create Pandas dataframe of clean_temp_list list and save it as csv") df = pd.DataFrame(temp_list) df.to_csv('clean_temp_list.csv', index=False, header=False) # 5) create csv file with pandas - this is for manual verification logger.debug(f"Create Pandas dataframe of target and samples list and save it as csv") df = pd.DataFrame(targets_list) df.to_csv('targets_list.csv', index=False, header=False) df = pd.DataFrame(samples_list) df.to_csv('samples_list.csv', index=False, header=False) # create h5py groups, one for target and one for samples, every entry will be a dataset then logger.debug(f"Create h5py groups") sample_group = h5py_file.create_group('samples') target_group = h5py_file.create_group('targets') # saving the images in samples group counter = 0 for entry in samples_list: eyepair_sample_group = sample_group.create_group(str(counter)) counter = counter + 1 img_path_1 = entry[0] img_name_1 = Path(entry[0]).name img_path_2 = entry[1] img_name_2 = Path(entry[1]).name # open image, behind the path with open(img_path_1, 'rb') as img: binary_data_1 = img.read() with open(img_path_2, 'rb') as img: binary_data_2 = img.read() binary_data_np_1 = np.asarray(binary_data_1) binary_data_np_2 = np.asarray(binary_data_2) # save it in the subgroup. each eyepair_sample_group contains images from one patient. h5py_file = eyepair_sample_group.create_dataset(img_name_1, data=binary_data_np_1) h5py_file = eyepair_sample_group.create_dataset(img_name_2, data=binary_data_np_2) # saving the targets in targets group # h5py cannot save np.ndarrays with strings by default, costum dtype must be created utf8_type = h5py.string_dtype('utf-8') # metadata_info_amount = 14 counter = 0 for entry in targets_list: entry = [str(item) for item in entry] h5py_file = target_group.create_dataset(str(counter), data=entry, dtype=utf8_type) counter = counter + 1 ''' # paths for h5py sample_location = os.path.join(split_name, "samples") target_location = os.path.join(split_name, "targets") # 6) prepare hdf datasets # with open(samples_list[0][0], 'rb') as image: # type_reference = image.read() # print(f'type(image.read(): {type(image.read())}') # data_shape = np.asarray(image.read()) # sample_dset = h5py_file.create_dataset(sample_location, # shape=(len(clean_temp_list), [data_shape, data_shape]), # dtype=np.void(type_reference)) # 7) enrich datasets with data sample_dset = h5py_file.create_dataset(sample_location, data=samples_list) for cnt, sample in enumerate(samples_list): tmp_sample_list = [] with open(sample[0], 'rb') as image_sample: sample_left_bytes = image_sample.read() tmp_sample_list.append(sample_left_bytes) with open(sample[1], 'rb') as image_sample: sample_right_bytes = image_sample.read() tmp_sample_list.append(sample_right_bytes) sample_pair_np = np.asarray(tmp_sample_list) sample_dset[cnt, 1] = sample_pair_np #logger.debug(f" testimage") #sample_np = sample_dset[cnt, 1] #sample_bytes = sample_np.tobytes() #sample_bytes = io.BytesIO(sample_bytes) #sample = Image.open(sample_bytes) #sample.show() for cnt, target in enumerate(targets_list): target_dset[cnt] = np.array(target) ''' class ODRPreprocessor: def __init__(self, storage_connector: StorageConnector): self.storage_connector = storage_connector self.split_names = ["raw"] def preprocess(self, dataset_identifier: str, samples_identifier: str, targets_identifier: str) -> StreamedResource: logger.debug(f"preprocess(dataset/samples/targets - identifier) starts" f"{dataset_identifier, samples_identifier, targets_identifier}") with tempfile.TemporaryFile() as temp_file: with h5py.File(temp_file, 'w') as h5py_file: for split_name in self.split_names: _preprocess_split(h5py_file, split_name, samples_identifier, targets_identifier) h5py_file.flush() temp_file.flush() logger.debug(f"ResourceFactory.get_resource(dataset_identifier, temp_file) starts" f"{dataset_identifier, samples_identifier, targets_identifier}") streamed_resource = ResourceFactory.get_resource(dataset_identifier, temp_file) self.storage_connector.set_resource(dataset_identifier, streamed_resource) streamed_resource = self.storage_connector.get_resource(dataset_identifier) return streamed_resource
38.844068
113
0.669517
794f1ea232cc9a9f0a9c4465c521331ebbf5e3a7
391
py
Python
config/components/database.py
HanSaloZu/drf-blog-api
966776e59ed7699a9e94aeb85fdd6785c2532a3a
[ "MIT" ]
null
null
null
config/components/database.py
HanSaloZu/drf-blog-api
966776e59ed7699a9e94aeb85fdd6785c2532a3a
[ "MIT" ]
null
null
null
config/components/database.py
HanSaloZu/drf-blog-api
966776e59ed7699a9e94aeb85fdd6785c2532a3a
[ "MIT" ]
null
null
null
DATABASES = { "default": { "ENGINE": environ.get("DB_ENGINE", "django.db.backends.sqlite3"), "NAME": environ.get("DB_DATABASE", BASE_DIR / "db.sqlite3"), "USER": environ.get("DB_USER", "user"), "PASSWORD": environ.get("DB_PASSWORD", "password"), "HOST": environ.get("DB_HOST", "localhost"), "PORT": environ.get("DB_PORT", "5432"), } }
35.545455
73
0.570332
794f1f4aea4cdc28e87ddcae810625d3908c2f6a
3,213
py
Python
venv/lib/python2.7/site-packages/ansible/utils/jsonrpc.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
37
2017-08-15T15:02:43.000Z
2021-07-23T03:44:31.000Z
venv/lib/python2.7/site-packages/ansible/utils/jsonrpc.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
12
2018-01-10T05:25:25.000Z
2021-11-28T06:55:48.000Z
venv/lib/python2.7/site-packages/ansible/utils/jsonrpc.py
haind27/test01
7f86c0a33eb0874a6c3f5ff9a923fd0cfc8ef852
[ "MIT" ]
49
2017-08-15T09:52:13.000Z
2022-03-21T17:11:54.000Z
# (c) 2017, Peter Sprygada <psprygad@redhat.com> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import json import traceback from ansible.module_utils._text import to_text from ansible.module_utils.six import binary_type try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() class JsonRpcServer(object): _objects = set() def handle_request(self, request): request = json.loads(to_text(request, errors='surrogate_then_replace')) method = request.get('method') if method.startswith('rpc.') or method.startswith('_'): error = self.invalid_request() return json.dumps(error) params = request.get('params') setattr(self, '_identifier', request.get('id')) args = [] kwargs = {} if all((params, isinstance(params, list))): args = params elif all((params, isinstance(params, dict))): kwargs = params rpc_method = None for obj in self._objects: rpc_method = getattr(obj, method, None) if rpc_method: break if not rpc_method: error = self.method_not_found() response = json.dumps(error) else: try: result = rpc_method(*args, **kwargs) except Exception as exc: display.vvv(traceback.format_exc()) error = self.internal_error(data=to_text(exc, errors='surrogate_then_replace')) response = json.dumps(error) else: if isinstance(result, dict) and 'jsonrpc' in result: response = result else: response = self.response(result) response = json.dumps(response) delattr(self, '_identifier') return response def register(self, obj): self._objects.add(obj) def header(self): return {'jsonrpc': '2.0', 'id': self._identifier} def response(self, result=None): response = self.header() if isinstance(result, binary_type): result = to_text(result) response['result'] = result return response def error(self, code, message, data=None): response = self.header() error = {'code': code, 'message': message} if data: error['data'] = data response['error'] = error return response # json-rpc standard errors (-32768 .. -32000) def parse_error(self, data=None): return self.error(-32700, 'Parse error', data) def method_not_found(self, data=None): return self.error(-32601, 'Method not found', data) def invalid_request(self, data=None): return self.error(-32600, 'Invalid request', data) def invalid_params(self, data=None): return self.error(-32602, 'Invalid params', data) def internal_error(self, data=None): return self.error(-32603, 'Internal error', data)
29.477064
95
0.601618
794f1f86e43b548f1d0cc91e168dc27a48517eec
433
py
Python
rest/conference/list-get-example-1/list-get-example-1.6.x.py
azaddeveloper/api-snippets
f88b153cd7186fa70b33733b205886502db0d1f2
[ "MIT" ]
3
2020-05-05T10:01:02.000Z
2021-02-06T14:23:13.000Z
rest/conference/list-get-example-1/list-get-example-1.6.x.py
azaddeveloper/api-snippets
f88b153cd7186fa70b33733b205886502db0d1f2
[ "MIT" ]
null
null
null
rest/conference/list-get-example-1/list-get-example-1.6.x.py
azaddeveloper/api-snippets
f88b153cd7186fa70b33733b205886502db0d1f2
[ "MIT" ]
1
2019-10-02T14:36:36.000Z
2019-10-02T14:36:36.000Z
# Download the Python helper library from twilio.com/docs/python/install from twilio.rest import Client # Your Account Sid and Auth Token from twilio.com/user/account account_sid = "ACXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" auth_token = "your_auth_token" client = Client(account_sid, auth_token) # A list of conference objects with the properties described above for conference in client.conferences.list(): print(conference.status)
36.083333
72
0.810624
794f20a73b3f7eda01019bf7d1ee57e6394b37e1
1,770
py
Python
tests/test_paths.py
cuihantao/Andes
6cdc057986c4a8382194ef440b6e92b8dfb77e25
[ "Apache-2.0" ]
16
2017-06-16T14:21:04.000Z
2018-08-18T08:52:27.000Z
tests/test_paths.py
cuihantao/Andes
6cdc057986c4a8382194ef440b6e92b8dfb77e25
[ "Apache-2.0" ]
1
2017-12-12T07:51:16.000Z
2017-12-12T07:51:16.000Z
tests/test_paths.py
cuihantao/Andes
6cdc057986c4a8382194ef440b6e92b8dfb77e25
[ "Apache-2.0" ]
7
2017-12-10T07:32:36.000Z
2018-09-19T16:38:30.000Z
import os import unittest import andes from andes.utils.paths import list_cases class TestPaths(unittest.TestCase): def setUp(self) -> None: self.kundur = 'kundur/' self.matpower = 'matpower/' self.ieee14 = andes.get_case("ieee14/ieee14.raw") def test_tree(self): list_cases(self.kundur, no_print=True) list_cases(self.matpower, no_print=True) def test_addfile_path(self): path, case = os.path.split(self.ieee14) ss = andes.load('ieee14.raw', addfile='ieee14.dyr', input_path=path, default_config=True, ) self.assertNotEqual(ss, None) ss = andes.run('ieee14.raw', addfile='ieee14.dyr', input_path=path, no_output=True, default_config=True, ) self.assertNotEqual(ss, None) def test_relative_path(self): ss = andes.run('ieee14.raw', input_path=andes.get_case('ieee14/', check=False), no_output=True, default_config=True, ) self.assertNotEqual(ss, None) def test_pert_file(self): """Test path of pert file""" path, case = os.path.split(self.ieee14) # --- with pert file --- ss = andes.run('ieee14.raw', pert='pert.py', input_path=path, no_output=True, default_config=True, ) ss.TDS.init() self.assertIsNotNone(ss.TDS.callpert) # --- without pert file --- ss = andes.run('ieee14.raw', input_path=path, no_output=True, default_config=True, ) ss.TDS.init() self.assertIsNone(ss.TDS.callpert)
32.181818
76
0.547458
794f20c9eb7d3ac8bbaccfb73e8096a4b349a8b6
1,972
py
Python
src/App/avt_main.py
schmouk/ArcheryVideoTraining
8c7f5fadc485e0b3a0851d0227a26bd799d3eb69
[ "MIT" ]
null
null
null
src/App/avt_main.py
schmouk/ArcheryVideoTraining
8c7f5fadc485e0b3a0851d0227a26bd799d3eb69
[ "MIT" ]
65
2021-01-25T22:27:55.000Z
2021-03-05T10:19:49.000Z
src/App/avt_main.py
schmouk/ArcheryVideoTraining
8c7f5fadc485e0b3a0851d0227a26bd799d3eb69
[ "MIT" ]
null
null
null
""" Copyright (c) 2021 Philippe Schmouker Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ #============================================================================= import cv2 from src.Display.main_window import MainWindow #============================================================================= def avt_main(): """This is the main function of the Archery Video Training application. """ #-- creates the main window main_window = MainWindow() #-- shows the main window main_window.draw() #-- starts the cameras acquisition main_window.run_views() #-- interactions w. mouse and keyboard while True: if cv2.waitKey( 20 ) == 27: break #-- stops cameras acquisition main_window.stop_views() #-- releases all allocated resources cv2.destroyAllWindows() print( "\n-- done!" ) #===== end of src.App.avt_main =====#
34.596491
78
0.647566
794f218820dd397b924dfdb0b326990ab382ee14
50,039
py
Python
panel/pane/vtk/synchronizable_serializer.py
datalayer-contrib/holoviz-panel
c97b57e8eaff4b5f542add41f496395da2483b23
[ "BSD-3-Clause" ]
1
2020-02-01T07:14:16.000Z
2020-02-01T07:14:16.000Z
panel/pane/vtk/synchronizable_serializer.py
datalayer-contrib/holoviz-panel
c97b57e8eaff4b5f542add41f496395da2483b23
[ "BSD-3-Clause" ]
null
null
null
panel/pane/vtk/synchronizable_serializer.py
datalayer-contrib/holoviz-panel
c97b57e8eaff4b5f542add41f496395da2483b23
[ "BSD-3-Clause" ]
null
null
null
import base64 import hashlib import io import struct import sys import time import zipfile from vtk.vtkCommonCore import vtkTypeUInt32Array, vtkTypeInt32Array from vtk.vtkFiltersGeometry import vtkCompositeDataGeometryFilter, vtkGeometryFilter from vtk.vtkRenderingCore import vtkColorTransferFunction from vtk.vtkCommonDataModel import vtkDataObject from .enums import TextPosition # ----------------------------------------------------------------------------- # Python compatibility handling 2.6, 2.7, 3+ # ----------------------------------------------------------------------------- py3 = sys.version_info >= (3, 0) if py3: def iteritems(d, **kwargs): return iter(d.items(**kwargs)) else: def iteritems(d, **kwargs): return d.iteritems(**kwargs) if sys.version_info >= (2, 7): buffer = memoryview base64Encode = lambda x: base64.b64encode(x).decode('utf-8') else: buffer = buffer base64Encode = lambda x: x.encode('base64') # ----------------------------------------------------------------------------- # Array helpers # ----------------------------------------------------------------------------- arrayTypesMapping = [ ' ', # VTK_VOID 0 ' ', # VTK_BIT 1 'b', # VTK_CHAR 2 'B', # VTK_UNSIGNED_CHAR 3 'h', # VTK_SHORT 4 'H', # VTK_UNSIGNED_SHORT 5 'i', # VTK_INT 6 'I', # VTK_UNSIGNED_INT 7 'l', # VTK_LONG 8 'L', # VTK_UNSIGNED_LONG 9 'f', # VTK_FLOAT 10 'd', # VTK_DOUBLE 11 'L', # VTK_ID_TYPE 12 ' ', # VTK_STRING 13 ' ', # VTK_OPAQUE 14 ' ', # UNDEFINED 'l', # VTK_LONG_LONG 16 'L', # VTK_UNSIGNED_LONG_LONG 17 ] javascriptMapping = { 'b': 'Int8Array', 'B': 'Uint8Array', 'h': 'Int16Array', 'H': 'UInt16Array', 'i': 'Int32Array', 'I': 'Uint32Array', 'l': 'Int32Array', 'L': 'Uint32Array', 'f': 'Float32Array', 'd': 'Float64Array' } def hashDataArray(dataArray): return hashlib.md5(buffer(dataArray)).hexdigest() def getJSArrayType(dataArray): return javascriptMapping[arrayTypesMapping[dataArray.GetDataType()]] def zipCompression(name, data): with io.BytesIO() as in_memory: with zipfile.ZipFile(in_memory, mode="w") as zf: zf.writestr('data/%s' % name, data, zipfile.ZIP_DEFLATED) in_memory.seek(0) return in_memory.read() def dataTableToList(dataTable): dataType = arrayTypesMapping[dataTable.GetDataType()] elementSize = struct.calcsize(dataType) nbValues = dataTable.GetNumberOfValues() nbComponents = dataTable.GetNumberOfComponents() nbytes = elementSize * nbValues if dataType != ' ': with io.BytesIO(buffer(dataTable)) as stream: data = list(struct.unpack(dataType*nbValues ,stream.read(nbytes))) return [data[idx*nbComponents:(idx+1)*nbComponents] for idx in range(nbValues//nbComponents)] def getScalars(mapper, dataset): scalars = None cell_flag = 0 scalar_mode = mapper.GetScalarMode() array_access_mode = mapper.GetArrayAccessMode() array_id = mapper.GetArrayId() array_name = mapper.GetArrayName() pd = dataset.GetPointData() cd = dataset.GetCellData() fd = dataset.GetFieldData() if scalar_mode == 0: # VTK_SCALAR_MODE_DEFAULT scalars = pd.GetScalars() cell_flag = 0 if scalars is None: scalars = cd.GetScalars() cell_flag = 1 elif scalar_mode == 1: # VTK_SCALAR_MODE_USE_POINT_DATA scalars = pd.GetScalars() cell_flag = 0 elif scalar_mode == 2: # VTK_SCALAR_MODE_USE_CELL_DATA scalars = cd.GetScalars() cell_flag = 1 elif scalar_mode == 3: # VTK_SCALAR_MODE_USE_POINT_FIELD_DATA if array_access_mode == 0: # VTK_GET_ARRAY_BY_ID scalars = pd.GetAbstractArray(array_id) else: # VTK_GET_ARRAY_BY_NAME scalars = pd.GetAbstractArray(array_name) cell_flag = 0 elif scalar_mode == 4: # VTK_SCALAR_MODE_USE_CELL_FIELD_DATA if array_access_mode == 0: # VTK_GET_ARRAY_BY_ID scalars = cd.GetAbstractArray(array_id) else: # VTK_GET_ARRAY_BY_NAME scalars = cd.GetAbstractArray(array_name) cell_flag = 1 else: # VTK_SCALAR_MODE_USE_FIELD_DATA if array_access_mode == 0: # VTK_GET_ARRAY_BY_ID scalars = fd.GetAbstractArray(array_id) else: # VTK_GET_ARRAY_BY_NAME scalars = fd.GetAbstractArray(array_name) cell_flag = 2 return scalars, cell_flag def retrieveArrayName(mapper_instance, scalar_mode): colorArrayName = None try: ds = [deps for deps in mapper_instance['dependencies'] if deps['id'].endswith('dataset')][0] location = "pointData" if scalar_mode in (1, 3) else "cellData" for arrayMeta in ds['properties']['fields']: if arrayMeta["location"] == location and arrayMeta.get("registration", None) == "setScalars": colorArrayName = arrayMeta["name"] except Exception: pass return colorArrayName def linspace(start, stop, num): delta = (stop - start)/(num-1) return [start + i*delta for i in range(num)] # ----------------------------------------------------------------------------- # Convenience class for caching data arrays, storing computed sha sums, keeping # track of valid actors, etc... # ----------------------------------------------------------------------------- class SynchronizationContext(): def __init__(self, id_root=None, serialize_all_data_arrays=False, debug=False): self.serializeAllDataArrays = serialize_all_data_arrays self.dataArrayCache = {} self.lastDependenciesMapping = {} self.ingoreLastDependencies = False self.idRoot = id_root self.debugSerializers = debug self.debugAll = debug self.annotations = {} def getReferenceId(self, instance): if not self.idRoot or (hasattr(instance, 'IsA') and instance.IsA('vtkCamera')): return getReferenceId(instance) else: return self.idRoot + getReferenceId(instance) def addAnnotation(self, parent, prop, propId): if prop.GetClassName() == "vtkCornerAnnotation": annotation = { "id": propId, "viewport": parent.GetViewport(), "fontSize": prop.GetLinearFontScaleFactor() * 2, "fontFamily": prop.GetTextProperty().GetFontFamilyAsString(), "color": prop.GetTextProperty().GetColor(), **{pos.name: prop.GetText(pos.value) for pos in TextPosition} } if self.annotations is None: self.annotations = {propId: annotation} else: self.annotations.update({propId: annotation}) def getAnnotations(self): return list(self.annotations.values()) def setIgnoreLastDependencies(self, force): self.ingoreLastDependencies = force def cacheDataArray(self, pMd5, data): self.dataArrayCache[pMd5] = data def getCachedDataArray(self, pMd5, binary=False, compression=False): cacheObj = self.dataArrayCache[pMd5] array = cacheObj['array'] cacheTime = cacheObj['mTime'] if cacheTime != array.GetMTime(): if context.debugAll: print(' ***** ERROR: you asked for an old cache key! ***** ') if array.GetDataType() in (12, 16, 17): arraySize = array.GetNumberOfTuples() * array.GetNumberOfComponents() if array.GetDataType() in (12, 17): # IdType and unsigned long long need to be converted to Uint32 newArray = vtkTypeUInt32Array() else: # long long need to be converted to Int32 newArray = vtkTypeInt32Array() newArray.SetNumberOfTuples(arraySize) for i in range(arraySize): newArray.SetValue(i, -1 if array.GetValue(i) < 0 else array.GetValue(i)) pBuffer = buffer(newArray) else: pBuffer = buffer(array) if binary: # Convert the vtkUnsignedCharArray into a bytes object, required by # Autobahn websockets return pBuffer.tobytes() if not compression else zipCompression(pMd5, pBuffer.tobytes()) return base64Encode(pBuffer if not compression else zipCompression(pMd5, pBuffer.tobytes())) def checkForArraysToRelease(self, timeWindow=20): cutOffTime = time.time() - timeWindow shasToDelete = [] for sha in self.dataArrayCache: record = self.dataArrayCache[sha] array = record['array'] count = array.GetReferenceCount() if count == 1 and record['ts'] < cutOffTime: shasToDelete.append(sha) for sha in shasToDelete: del self.dataArrayCache[sha] def getLastDependencyList(self, idstr): lastDeps = [] if idstr in self.lastDependenciesMapping and not self.ingoreLastDependencies: lastDeps = self.lastDependenciesMapping[idstr] return lastDeps def setNewDependencyList(self, idstr, depList): self.lastDependenciesMapping[idstr] = depList def buildDependencyCallList(self, idstr, newList, addMethod, removeMethod): oldList = self.getLastDependencyList(idstr) calls = [] calls += [[addMethod, [wrapId(x)]] for x in newList if x not in oldList] calls += [[removeMethod, [wrapId(x)]] for x in oldList if x not in newList] self.setNewDependencyList(idstr, newList) return calls # ----------------------------------------------------------------------------- # Global variables # ----------------------------------------------------------------------------- SERIALIZERS = {} context = None # ----------------------------------------------------------------------------- # Global API # ----------------------------------------------------------------------------- def registerInstanceSerializer(name, method): global SERIALIZERS SERIALIZERS[name] = method # ----------------------------------------------------------------------------- def serializeInstance(parent, instance, instanceId, context, depth): instanceType = instance.GetClassName() serializer = SERIALIZERS[ instanceType] if instanceType in SERIALIZERS else None if serializer: return serializer(parent, instance, instanceId, context, depth) if context.debugSerializers: print('%s!!!No serializer for %s with id %s' % (pad(depth), instanceType, instanceId)) # ----------------------------------------------------------------------------- def initializeSerializers(): # Annotations registerInstanceSerializer('vtkCornerAnnotation', annotationSerializer) # Actors/viewProps registerInstanceSerializer('vtkImageSlice', genericProp3DSerializer) registerInstanceSerializer('vtkVolume', genericProp3DSerializer) registerInstanceSerializer('vtkOpenGLActor', genericActorSerializer) registerInstanceSerializer('vtkFollower', genericActorSerializer) registerInstanceSerializer('vtkPVLODActor', genericActorSerializer) # Mappers registerInstanceSerializer( 'vtkOpenGLPolyDataMapper', genericPolyDataMapperSerializer) registerInstanceSerializer( 'vtkCompositePolyDataMapper2', genericPolyDataMapperSerializer) registerInstanceSerializer('vtkDataSetMapper', genericPolyDataMapperSerializer) registerInstanceSerializer( 'vtkFixedPointVolumeRayCastMapper', genericVolumeMapperSerializer) registerInstanceSerializer( 'vtkSmartVolumeMapper', genericVolumeMapperSerializer) registerInstanceSerializer( 'vtkOpenGLImageSliceMapper', imageSliceMapperSerializer) registerInstanceSerializer( 'vtkOpenGLGlyph3DMapper', glyph3DMapperSerializer) # LookupTables/TransferFunctions registerInstanceSerializer('vtkLookupTable', lookupTableSerializer) registerInstanceSerializer( 'vtkPVDiscretizableColorTransferFunction', colorTransferFunctionSerializer) registerInstanceSerializer( 'vtkColorTransferFunction', colorTransferFunctionSerializer) # opacityFunctions registerInstanceSerializer( 'vtkPiecewiseFunction', piecewiseFunctionSerializer) # Textures registerInstanceSerializer('vtkOpenGLTexture', textureSerializer) # Property registerInstanceSerializer('vtkOpenGLProperty', propertySerializer) registerInstanceSerializer('vtkVolumeProperty', volumePropertySerializer) registerInstanceSerializer('vtkImageProperty', imagePropertySerializer) # Datasets registerInstanceSerializer('vtkPolyData', polydataSerializer) registerInstanceSerializer('vtkImageData', imageDataSerializer) registerInstanceSerializer( 'vtkStructuredGrid', mergeToPolydataSerializer) registerInstanceSerializer( 'vtkUnstructuredGrid', mergeToPolydataSerializer) registerInstanceSerializer( 'vtkMultiBlockDataSet', mergeToPolydataSerializer) # RenderWindows registerInstanceSerializer('vtkCocoaRenderWindow', renderWindowSerializer) registerInstanceSerializer( 'vtkXOpenGLRenderWindow', renderWindowSerializer) registerInstanceSerializer( 'vtkWin32OpenGLRenderWindow', renderWindowSerializer) registerInstanceSerializer('vtkEGLRenderWindow', renderWindowSerializer) registerInstanceSerializer('vtkOpenVRRenderWindow', renderWindowSerializer) registerInstanceSerializer( 'vtkGenericOpenGLRenderWindow', renderWindowSerializer) registerInstanceSerializer( 'vtkOSOpenGLRenderWindow', renderWindowSerializer) registerInstanceSerializer('vtkOpenGLRenderWindow', renderWindowSerializer) registerInstanceSerializer('vtkIOSRenderWindow', renderWindowSerializer) registerInstanceSerializer( 'vtkExternalOpenGLRenderWindow', renderWindowSerializer) # Renderers registerInstanceSerializer('vtkOpenGLRenderer', rendererSerializer) # Cameras registerInstanceSerializer('vtkOpenGLCamera', cameraSerializer) # ----------------------------------------------------------------------------- # Helper functions # ----------------------------------------------------------------------------- def pad(depth): padding = '' for _ in range(depth): padding += ' ' return padding # ----------------------------------------------------------------------------- def wrapId(idStr): return 'instance:${%s}' % idStr # ----------------------------------------------------------------------------- def getReferenceId(ref): if ref: try: return ref.__this__[1:17] except Exception: idStr = str(ref)[-12:-1] print('====> fallback ID %s for %s' % (idStr, ref)) return idStr return '0x0' # ----------------------------------------------------------------------------- dataArrayShaMapping = {} def digest(array): objId = getReferenceId(array) record = None if objId in dataArrayShaMapping: record = dataArrayShaMapping[objId] if record and record['mtime'] == array.GetMTime(): return record['sha'] record = { 'sha': hashDataArray(array), 'mtime': array.GetMTime() } dataArrayShaMapping[objId] = record return record['sha'] # ----------------------------------------------------------------------------- def getRangeInfo(array, component): r = array.GetRange(component) compRange = {} compRange['min'] = r[0] compRange['max'] = r[1] compRange['component'] = array.GetComponentName(component) return compRange # ----------------------------------------------------------------------------- def getArrayDescription(array, context): if not array: return None pMd5 = digest(array) context.cacheDataArray(pMd5, { 'array': array, 'mTime': array.GetMTime(), 'ts': time.time() }) root = {} root['hash'] = pMd5 root['vtkClass'] = 'vtkDataArray' root['name'] = array.GetName() root['dataType'] = getJSArrayType(array) root['numberOfComponents'] = array.GetNumberOfComponents() root['size'] = array.GetNumberOfComponents() * array.GetNumberOfTuples() root['ranges'] = [] if root['numberOfComponents'] > 1: for i in range(root['numberOfComponents']): root['ranges'].append(getRangeInfo(array, i)) root['ranges'].append(getRangeInfo(array, -1)) else: root['ranges'].append(getRangeInfo(array, 0)) return root # ----------------------------------------------------------------------------- def extractAllDataArrays(extractedFields, dataset, context): pointData = dataset.GetPointData() for id_arr in range(pointData.GetNumberOfArrays()): arrayMeta = getArrayDescription(pointData.GetArray(id_arr), context) if arrayMeta: arrayMeta['location'] = 'pointData' extractedFields.append(arrayMeta) cellData = dataset.GetCellData() for id_arr in range(cellData.GetNumberOfArrays()): arrayMeta = getArrayDescription(cellData.GetArray(id_arr), context) if arrayMeta: arrayMeta['location'] = 'cellData' extractedFields.append(arrayMeta) fieldData = dataset.GetCellData() for id_arr in range(fieldData.GetNumberOfArrays()): arrayMeta = getArrayDescription(fieldData.GetArray(id_arr), context) if arrayMeta: arrayMeta['location'] = 'fieldData' extractedFields.append(arrayMeta) # ----------------------------------------------------------------------------- def extractRequiredFields(extractedFields, parent, dataset, context, requestedFields=['Normals', 'TCoords']): # FIXME should evolve and support funky mapper which leverage many arrays if any(parent.IsA(cls) for cls in ['vtkMapper', 'vtkVolumeMapper', 'vtkImageSliceMapper', 'vtkTexture']): if parent.IsA("vtkAbstractMapper"): # GetScalars method should exists scalarVisibility = 1 if not hasattr(parent, "GetScalarVisibility") else parent.GetScalarVisibility() scalars, cell_flag = getScalars(parent, dataset) if context.serializeAllDataArrays: extractAllDataArrays(extractedFields, dataset, context) if scalars: for arrayMeta in extractedFields: if arrayMeta['name'] == scalars.GetName(): arrayMeta['registration'] = 'setScalars' elif scalars and scalarVisibility and not context.serializeAllDataArrays: arrayMeta = getArrayDescription(scalars, context) if cell_flag == 0: arrayMeta['location'] = 'pointData' elif cell_flag == 1: arrayMeta['location'] = 'cellData' else: raise NotImplementedError("Scalars on field data not handled") arrayMeta['registration'] = 'setScalars' extractedFields.append(arrayMeta) elif dataset.GetPointData().GetScalars(): arrayMeta = getArrayDescription(dataset.GetPointData().GetScalars(), context) arrayMeta['location'] = 'pointData' arrayMeta['registration'] = 'setScalars' extractedFields.append(arrayMeta) if parent.IsA("vtkGlyph3DMapper") and not context.serializeAllDataArrays: scaleArrayName = parent.GetInputArrayInformation(parent.SCALE).Get(vtkDataObject.FIELD_NAME()) if scaleArrayName is not None and scaleArrayName not in [field['name'] for field in extractedFields]: arrayMeta = getArrayDescription(dataset.GetPointData().GetAbstractArray(scaleArrayName), context) if arrayMeta is not None: arrayMeta['location'] = 'pointData' arrayMeta['registration'] = 'addArray' extractedFields.append(arrayMeta) scaleOrientationArrayName = parent.GetInputArrayInformation(parent.ORIENTATION).Get(vtkDataObject.FIELD_NAME()) if scaleOrientationArrayName is not None and scaleOrientationArrayName not in [field['name'] for field in extractedFields]: arrayMeta = getArrayDescription(dataset.GetPointData().GetAbstractArray(scaleOrientationArrayName), context) if arrayMeta is not None: arrayMeta['location'] = 'pointData' arrayMeta['registration'] = 'addArray' extractedFields.append(arrayMeta) # Normal handling if 'Normals' in requestedFields: normals = dataset.GetPointData().GetNormals() if normals: arrayMeta = getArrayDescription(normals, context) if arrayMeta: arrayMeta['location'] = 'pointData' arrayMeta['registration'] = 'setNormals' extractedFields.append(arrayMeta) # TCoord handling if 'TCoords' in requestedFields: tcoords = dataset.GetPointData().GetTCoords() if tcoords: arrayMeta = getArrayDescription(tcoords, context) if arrayMeta: arrayMeta['location'] = 'pointData' arrayMeta['registration'] = 'setTCoords' extractedFields.append(arrayMeta) # ----------------------------------------------------------------------------- # Concrete instance serializers # ----------------------------------------------------------------------------- def annotationSerializer(parent, prop, propId, context, depth): if context.debugSerializers: print('%s!!!Annotations are not handled directly by vtk.js but by bokeh model' % pad(depth)) context.addAnnotation(parent, prop, propId) return None def genericPropSerializer(parent, prop, popId, context, depth): # This kind of actor has two "children" of interest, a property and a # mapper (optionnaly a texture) mapperInstance = None propertyInstance = None calls = [] dependencies = [] mapper = None if not hasattr(prop, 'GetMapper'): if context.debugAll: print('This volume does not have a GetMapper method') else: mapper = prop.GetMapper() if mapper: mapperId = context.getReferenceId(mapper) mapperInstance = serializeInstance( prop, mapper, mapperId, context, depth + 1) if mapperInstance: dependencies.append(mapperInstance) calls.append(['setMapper', [wrapId(mapperId)]]) properties = None if hasattr(prop, 'GetProperty'): properties = prop.GetProperty() else: if context.debugAll: print('This image does not have a GetProperty method') if properties: propId = context.getReferenceId(properties) propertyInstance = serializeInstance( prop, properties, propId, context, depth + 1) if propertyInstance: dependencies.append(propertyInstance) calls.append(['setProperty', [wrapId(propId)]]) # Handle texture if any texture = None if hasattr(prop, 'GetTexture'): texture = prop.GetTexture() if texture: textureId = context.getReferenceId(texture) textureInstance = serializeInstance( prop, texture, textureId, context, depth + 1) if textureInstance: dependencies.append(textureInstance) calls.append(['addTexture', [wrapId(textureId)]]) return { 'parent': context.getReferenceId(parent), 'id': popId, 'type': prop.GetClassName(), 'properties': { # vtkProp 'visibility': prop.GetVisibility(), 'pickable': prop.GetPickable(), 'dragable': prop.GetDragable(), 'useBounds': prop.GetUseBounds(), }, 'calls': calls, 'dependencies': dependencies } # ----------------------------------------------------------------------------- def genericProp3DSerializer(parent, prop3D, prop3DId, context, depth): # This kind of actor has some position properties to add instance = genericPropSerializer(parent, prop3D, prop3DId, context, depth) if not instance: return instance['properties'].update({ # vtkProp3D 'origin': prop3D.GetOrigin(), 'position': prop3D.GetPosition(), 'scale': prop3D.GetScale(), 'orientation': prop3D.GetOrientation(), }) if prop3D.GetUserMatrix(): instance['properties'].update({ 'userMatrix': [prop3D.GetUserMatrix().GetElement(i%4,i//4) for i in range(16)], }) return instance # ----------------------------------------------------------------------------- def genericActorSerializer(parent, actor, actorId, context, depth): # may have texture and instance = genericProp3DSerializer(parent, actor, actorId, context, depth) if not instance: return # # actor may have a backface property instance (not used by vtkjs rendering) # # https://github.com/Kitware/vtk-js/issues/1545 # backfaceProperties = actor.GetBackfaceProperty() # if backfaceProperties: # backfacePropId = context.getReferenceId(backfaceProperties) # backPropertyInstance = serializeInstance( # actor, backfaceProperties, backfacePropId, context, depth + 1) # if backPropertyInstance: # instance['dependencies'].append(backPropertyInstance) # instance['calls'].append(['setBackfaceProperty', [wrapId(backfacePropId)]]) instance['properties'].update({ # vtkActor 'forceOpaque': actor.GetForceOpaque(), 'forceTranslucent': actor.GetForceTranslucent() }) if actor.IsA('vtkFollower'): camera = actor.GetCamera() cameraId = context.getReferenceId(camera) cameraInstance = serializeInstance( actor, camera, cameraId, context, depth + 1) if cameraInstance: instance['dependencies'].append(cameraInstance) instance['calls'].append(['setCamera', [wrapId(cameraId)]]) return instance # ----------------------------------------------------------------------------- def genericMapperSerializer(parent, mapper, mapperId, context, depth): # This kind of mapper requires us to get 2 items: input data and lookup # table dataObject = None dataObjectInstance = None lookupTableInstance = None calls = [] dependencies = [] if not hasattr(mapper, 'GetInputDataObject'): if context.debugAll: print('This mapper does not have GetInputDataObject method') else: for port in range(mapper.GetNumberOfInputPorts()): # Glyph3DMapper can define input data objects on 2 ports (input, source) dataObject = mapper.GetInputDataObject(port, 0) if dataObject: dataObjectId = '%s-dataset-%d' % (mapperId, port) if parent.IsA('vtkActor') and not mapper.IsA('vtkTexture'): # vtk-js actors can render only surfacic datasets # => we ensure to convert the dataset in polydata dataObjectInstance = mergeToPolydataSerializer( mapper, dataObject, dataObjectId, context, depth + 1) else: dataObjectInstance = serializeInstance( mapper, dataObject, dataObjectId, context, depth + 1) if dataObjectInstance: dependencies.append(dataObjectInstance) calls.append(['setInputData', [wrapId(dataObjectId), port]]) lookupTable = None if hasattr(mapper, 'GetLookupTable'): lookupTable = mapper.GetLookupTable() elif parent.IsA('vtkActor'): if context.debugAll: print('This mapper actor not have GetLookupTable method') if lookupTable: lookupTableId = context.getReferenceId(lookupTable) lookupTableInstance = serializeInstance( mapper, lookupTable, lookupTableId, context, depth + 1) if lookupTableInstance: dependencies.append(lookupTableInstance) calls.append(['setLookupTable', [wrapId(lookupTableId)]]) if dataObjectInstance: return { 'parent': context.getReferenceId(parent), 'id': mapperId, 'properties': {}, 'calls': calls, 'dependencies': dependencies } # ----------------------------------------------------------------------------- def genericPolyDataMapperSerializer(parent, mapper, mapperId, context, depth): instance = genericMapperSerializer(parent, mapper, mapperId, context, depth) if not instance: return instance['type'] = mapper.GetClassName() instance['properties'].update({ 'resolveCoincidentTopology': mapper.GetResolveCoincidentTopology(), 'renderTime': mapper.GetRenderTime(), 'arrayAccessMode': 1, # since we can't set mapper arrayId on vtkjs, we force acess mode by name and use retrieve name function 'scalarRange': mapper.GetScalarRange(), 'useLookupTableScalarRange': 1 if mapper.GetUseLookupTableScalarRange() else 0, 'scalarVisibility': mapper.GetScalarVisibility(), 'colorByArrayName': retrieveArrayName(instance, mapper.GetScalarMode()), 'colorMode': mapper.GetColorMode(), 'scalarMode': mapper.GetScalarMode(), 'interpolateScalarsBeforeMapping': 1 if mapper.GetInterpolateScalarsBeforeMapping() else 0 }) return instance # ----------------------------------------------------------------------------- def genericVolumeMapperSerializer(parent, mapper, mapperId, context, depth): instance = genericMapperSerializer(parent, mapper, mapperId, context, depth) if not instance: return imageSampleDistance = ( mapper.GetImageSampleDistance() if hasattr(mapper, 'GetImageSampleDistance') else 1 ) instance['type'] = mapper.GetClassName() instance['properties'].update({ 'sampleDistance': mapper.GetSampleDistance(), 'imageSampleDistance': imageSampleDistance, # 'maximumSamplesPerRay', 'autoAdjustSampleDistances': mapper.GetAutoAdjustSampleDistances(), 'blendMode': mapper.GetBlendMode(), }) return instance # ----------------------------------------------------------------------------- def glyph3DMapperSerializer(parent, mapper, mapperId, context, depth): instance = genericPolyDataMapperSerializer(parent, mapper, mapperId, context, depth) if not instance: return instance['type'] = mapper.GetClassName() instance['properties'].update({ 'orient': mapper.GetOrient(), 'orientationMode': mapper.GetOrientationMode(), 'scaling': mapper.GetScaling(), 'scaleFactor': mapper.GetScaleFactor(), 'scaleMode': mapper.GetScaleMode(), 'scaleArray': mapper.GetInputArrayInformation(mapper.SCALE).Get(vtkDataObject.FIELD_NAME()), 'orientationArray': mapper.GetInputArrayInformation(mapper.ORIENTATION).Get(vtkDataObject.FIELD_NAME()), }) return instance # ----------------------------------------------------------------------------- def textureSerializer(parent, texture, textureId, context, depth): instance = genericMapperSerializer(parent, texture, textureId, context, depth) if not instance: return instance['type'] = texture.GetClassName() instance['properties'].update({ 'interpolate': texture.GetInterpolate(), 'repeat': texture.GetRepeat(), 'edgeClamp': texture.GetEdgeClamp(), }) return instance # ----------------------------------------------------------------------------- def imageSliceMapperSerializer(parent, mapper, mapperId, context, depth): # On vtkjs side : vtkImageMapper connected to a vtkImageReslice filter instance = genericMapperSerializer(parent, mapper, mapperId, context, depth) if not instance: return instance['type'] = mapper.GetClassName() return instance # ----------------------------------------------------------------------------- def lookupTableSerializer(parent, lookupTable, lookupTableId, context, depth): # No children in this case, so no additions to bindings and return empty list # But we do need to add instance arrays = [] lookupTableRange = lookupTable.GetRange() lookupTableHueRange = [0.5, 0] if hasattr(lookupTable, 'GetHueRange'): try: lookupTable.GetHueRange(lookupTableHueRange) except Exception: pass lutSatRange = lookupTable.GetSaturationRange() # lutAlphaRange = lookupTable.GetAlphaRange() if lookupTable.GetTable(): arrayMeta = getArrayDescription(lookupTable.GetTable(), context) if arrayMeta: arrayMeta['registration'] = 'setTable' arrays.append(arrayMeta) return { 'parent': context.getReferenceId(parent), 'id': lookupTableId, 'type': lookupTable.GetClassName(), 'properties': { 'numberOfColors': lookupTable.GetNumberOfColors(), 'valueRange': lookupTableRange, 'range': lookupTableRange, 'hueRange': lookupTableHueRange, # 'alphaRange': lutAlphaRange, # Causes weird rendering artifacts on client 'saturationRange': lutSatRange, 'nanColor': lookupTable.GetNanColor(), 'belowRangeColor': lookupTable.GetBelowRangeColor(), 'aboveRangeColor': lookupTable.GetAboveRangeColor(), 'useAboveRangeColor': True if lookupTable.GetUseAboveRangeColor() else False, 'useBelowRangeColor': True if lookupTable.GetUseBelowRangeColor() else False, 'alpha': lookupTable.GetAlpha(), 'vectorSize': lookupTable.GetVectorSize(), 'vectorComponent': lookupTable.GetVectorComponent(), 'vectorMode': lookupTable.GetVectorMode(), 'indexedLookup': lookupTable.GetIndexedLookup(), }, 'arrays': arrays, } # ----------------------------------------------------------------------------- def lookupTableToColorTransferFunction(lookupTable): dataTable = lookupTable.GetTable() table = dataTableToList(dataTable) if table: ctf = vtkColorTransferFunction() tableRange = lookupTable.GetTableRange() points = linspace(*tableRange, num=len(table)) for x, rgba in zip(points, table): ctf.AddRGBPoint(x, *[x/255 for x in rgba[:3]]) return ctf # ----------------------------------------------------------------------------- def lookupTableSerializer2(parent, lookupTable, lookupTableId, context, depth): ctf = lookupTableToColorTransferFunction(lookupTable) if ctf: return colorTransferFunctionSerializer(parent, ctf, lookupTableId, context, depth) # ----------------------------------------------------------------------------- def propertySerializer(parent, propObj, propObjId, context, depth): representation = propObj.GetRepresentation() if hasattr( propObj, 'GetRepresentation') else 2 colorToUse = propObj.GetDiffuseColor() if hasattr( propObj, 'GetDiffuseColor') else [1, 1, 1] if representation == 1 and hasattr(propObj, 'GetColor'): colorToUse = propObj.GetColor() return { 'parent': context.getReferenceId(parent), 'id': propObjId, 'type': propObj.GetClassName(), 'properties': { 'representation': representation, 'diffuseColor': colorToUse, 'color': propObj.GetColor(), 'ambientColor': propObj.GetAmbientColor(), 'specularColor': propObj.GetSpecularColor(), 'edgeColor': propObj.GetEdgeColor(), 'ambient': propObj.GetAmbient(), 'diffuse': propObj.GetDiffuse(), 'specular': propObj.GetSpecular(), 'specularPower': propObj.GetSpecularPower(), 'opacity': propObj.GetOpacity(), 'interpolation': propObj.GetInterpolation(), 'edgeVisibility': 1 if propObj.GetEdgeVisibility() else 0, 'backfaceCulling': 1 if propObj.GetBackfaceCulling() else 0, 'frontfaceCulling': 1 if propObj.GetFrontfaceCulling() else 0, 'pointSize': propObj.GetPointSize(), 'lineWidth': propObj.GetLineWidth(), 'lighting': 1 if propObj.GetLighting() else 0, } } # ----------------------------------------------------------------------------- def volumePropertySerializer(parent, propObj, propObjId, context, depth): dependencies = [] calls = [] # TODO: for the moment only component 0 handle #OpactiyFunction ofun = propObj.GetScalarOpacity() if ofun: ofunId = context.getReferenceId(ofun) ofunInstance = serializeInstance( propObj, ofun, ofunId, context, depth + 1) if ofunInstance: dependencies.append(ofunInstance) calls.append(['setScalarOpacity', [0, wrapId(ofunId)]]) # ColorTranferFunction ctfun = propObj.GetRGBTransferFunction() if ctfun: ctfunId = context.getReferenceId(ctfun) ctfunInstance = serializeInstance( propObj, ctfun, ctfunId, context, depth + 1) if ctfunInstance: dependencies.append(ctfunInstance) calls.append(['setRGBTransferFunction', [0, wrapId(ctfunId)]]) calls += [ ['setScalarOpacityUnitDistance', [0, propObj.GetScalarOpacityUnitDistance(0)]], ['setComponentWeight', [0, propObj.GetComponentWeight(0)]], ['setUseGradientOpacity', [0, int(not propObj.GetDisableGradientOpacity())]], ] return { 'parent': context.getReferenceId(parent), 'id': propObjId, 'type': propObj.GetClassName(), 'properties': { 'independentComponents': propObj.GetIndependentComponents(), 'interpolationType': propObj.GetInterpolationType(), 'ambient': propObj.GetAmbient(), 'diffuse': propObj.GetDiffuse(), 'shade': propObj.GetShade(), 'specular': propObj.GetSpecular(0), 'specularPower': propObj.GetSpecularPower(), }, 'dependencies': dependencies, 'calls': calls, } # ----------------------------------------------------------------------------- def imagePropertySerializer(parent, propObj, propObjId, context, depth): calls = [] dependencies = [] lookupTable = propObj.GetLookupTable() if lookupTable: ctfun = lookupTableToColorTransferFunction(lookupTable) ctfunId = context.getReferenceId(ctfun) ctfunInstance = serializeInstance( propObj, ctfun, ctfunId, context, depth + 1) if ctfunInstance: dependencies.append(ctfunInstance) calls.append(['setRGBTransferFunction', [wrapId(ctfunId)]]) return { 'parent': context.getReferenceId(parent), 'id': propObjId, 'type': propObj.GetClassName(), 'properties': { 'interpolationType': propObj.GetInterpolationType(), 'colorWindow': propObj.GetColorWindow(), 'colorLevel': propObj.GetColorLevel(), 'ambient': propObj.GetAmbient(), 'diffuse': propObj.GetDiffuse(), 'opacity': propObj.GetOpacity(), }, 'dependencies': dependencies, 'calls': calls, } # ----------------------------------------------------------------------------- def imageDataSerializer(parent, dataset, datasetId, context, depth): datasetType = dataset.GetClassName() if hasattr(dataset, 'GetDirectionMatrix'): direction = [dataset.GetDirectionMatrix().GetElement(0, i) for i in range(9)] else: direction = [1, 0, 0, 0, 1, 0, 0, 0, 1] # Extract dataset fields arrays = [] extractRequiredFields(arrays, parent, dataset, context) return { 'parent': context.getReferenceId(parent), 'id': datasetId, 'type': datasetType, 'properties': { 'spacing': dataset.GetSpacing(), 'origin': dataset.GetOrigin(), 'dimensions': dataset.GetDimensions(), 'direction': direction, }, 'arrays': arrays } # ----------------------------------------------------------------------------- def polydataSerializer(parent, dataset, datasetId, context, depth): datasetType = dataset.GetClassName() if dataset and dataset.GetPoints(): properties = {} # Points points = getArrayDescription(dataset.GetPoints().GetData(), context) points['vtkClass'] = 'vtkPoints' properties['points'] = points # Verts if dataset.GetVerts() and dataset.GetVerts().GetData().GetNumberOfTuples() > 0: _verts = getArrayDescription(dataset.GetVerts().GetData(), context) properties['verts'] = _verts properties['verts']['vtkClass'] = 'vtkCellArray' # Lines if dataset.GetLines() and dataset.GetLines().GetData().GetNumberOfTuples() > 0: _lines = getArrayDescription(dataset.GetLines().GetData(), context) properties['lines'] = _lines properties['lines']['vtkClass'] = 'vtkCellArray' # Polys if dataset.GetPolys() and dataset.GetPolys().GetData().GetNumberOfTuples() > 0: _polys = getArrayDescription(dataset.GetPolys().GetData(), context) properties['polys'] = _polys properties['polys']['vtkClass'] = 'vtkCellArray' # Strips if dataset.GetStrips() and dataset.GetStrips().GetData().GetNumberOfTuples() > 0: _strips = getArrayDescription( dataset.GetStrips().GetData(), context) properties['strips'] = _strips properties['strips']['vtkClass'] = 'vtkCellArray' # Fields properties['fields'] = [] extractRequiredFields(properties['fields'], parent, dataset, context) return { 'parent': context.getReferenceId(parent), 'id': datasetId, 'type': datasetType, 'properties': properties } if context.debugAll: print('This dataset has no points!') # ----------------------------------------------------------------------------- def mergeToPolydataSerializer(parent, dataObject, dataObjectId, context, depth): dataset = None if dataObject.IsA('vtkCompositeDataSet'): gf = vtkCompositeDataGeometryFilter() gf.SetInputData(dataObject) gf.Update() dataset = gf.GetOutput() elif (dataObject.IsA('vtkUnstructuredGrid') or dataObject.IsA('vtkStructuredGrid') or dataObject.IsA('vtkImageData')): gf = vtkGeometryFilter() gf.SetInputData(dataObject) gf.Update() dataset = gf.GetOutput() else: dataset = dataObject return polydataSerializer(parent, dataset, dataObjectId, context, depth) # ----------------------------------------------------------------------------- def colorTransferFunctionSerializer(parent, instance, objId, context, depth): nodes = [] for i in range(instance.GetSize()): # x, r, g, b, midpoint, sharpness node = [0, 0, 0, 0, 0, 0] instance.GetNodeValue(i, node) nodes.append(node) return { 'parent': context.getReferenceId(parent), 'id': objId, 'type': instance.GetClassName(), 'properties': { 'clamping': 1 if instance.GetClamping() else 0, 'colorSpace': instance.GetColorSpace(), 'hSVWrap': 1 if instance.GetHSVWrap() else 0, # 'nanColor': instance.GetNanColor(), # Breaks client # 'belowRangeColor': instance.GetBelowRangeColor(), # Breaks client # 'aboveRangeColor': instance.GetAboveRangeColor(), # Breaks client # 'useAboveRangeColor': 1 if instance.GetUseAboveRangeColor() else 0, # 'useBelowRangeColor': 1 if instance.GetUseBelowRangeColor() else 0, 'allowDuplicateScalars': 1 if instance.GetAllowDuplicateScalars() else 0, 'alpha': instance.GetAlpha(), 'vectorComponent': instance.GetVectorComponent(), 'vectorSize': instance.GetVectorSize(), 'vectorMode': instance.GetVectorMode(), 'indexedLookup': instance.GetIndexedLookup(), 'nodes': nodes } } # ----------------------------------------------------------------------------- def piecewiseFunctionSerializer(parent, instance, objId, context, depth): nodes = [] for i in range(instance.GetSize()): # x, y, midpoint, sharpness node = [0, 0, 0, 0] instance.GetNodeValue(i, node) nodes.append(node) return { 'parent': context.getReferenceId(parent), 'id': objId, 'type': instance.GetClassName(), 'properties': { 'clamping': instance.GetClamping(), 'allowDuplicateScalars': instance.GetAllowDuplicateScalars(), 'nodes': nodes, } } # ----------------------------------------------------------------------------- def rendererSerializer(parent, instance, objId, context, depth): dependencies = [] viewPropIds = [] calls = [] # Camera camera = instance.GetActiveCamera() cameraId = context.getReferenceId(camera) cameraInstance = serializeInstance( instance, camera, cameraId, context, depth + 1) if cameraInstance: dependencies.append(cameraInstance) calls.append(['setActiveCamera', [wrapId(cameraId)]]) # View prop as representation containers viewPropCollection = instance.GetViewProps() for rpIdx in range(viewPropCollection.GetNumberOfItems()): viewProp = viewPropCollection.GetItemAsObject(rpIdx) viewPropId = context.getReferenceId(viewProp) viewPropInstance = serializeInstance( instance, viewProp, viewPropId, context, depth + 1) if viewPropInstance: dependencies.append(viewPropInstance) viewPropIds.append(viewPropId) calls += context.buildDependencyCallList('%s-props' % objId, viewPropIds, 'addViewProp', 'removeViewProp') return { 'parent': context.getReferenceId(parent), 'id': objId, 'type': instance.GetClassName(), 'properties': { 'background': instance.GetBackground(), 'background2': instance.GetBackground2(), 'viewport': instance.GetViewport(), # These commented properties do not yet have real setters in vtk.js # 'gradientBackground': instance.GetGradientBackground(), # 'aspect': instance.GetAspect(), # 'pixelAspect': instance.GetPixelAspect(), # 'ambient': instance.GetAmbient(), 'twoSidedLighting': instance.GetTwoSidedLighting(), 'lightFollowCamera': instance.GetLightFollowCamera(), 'layer': instance.GetLayer(), 'preserveColorBuffer': instance.GetPreserveColorBuffer(), 'preserveDepthBuffer': instance.GetPreserveDepthBuffer(), 'nearClippingPlaneTolerance': instance.GetNearClippingPlaneTolerance(), 'clippingRangeExpansion': instance.GetClippingRangeExpansion(), 'useShadows': instance.GetUseShadows(), 'useDepthPeeling': instance.GetUseDepthPeeling(), 'occlusionRatio': instance.GetOcclusionRatio(), 'maximumNumberOfPeels': instance.GetMaximumNumberOfPeels(), 'interactive': instance.GetInteractive(), }, 'dependencies': dependencies, 'calls': calls } # ----------------------------------------------------------------------------- def cameraSerializer(parent, instance, objId, context, depth): return { 'parent': context.getReferenceId(parent), 'id': objId, 'type': instance.GetClassName(), 'properties': { 'focalPoint': instance.GetFocalPoint(), 'position': instance.GetPosition(), 'viewUp': instance.GetViewUp(), 'clippingRange': instance.GetClippingRange(), } } # ----------------------------------------------------------------------------- def renderWindowSerializer(parent, instance, objId, context, depth): dependencies = [] rendererIds = [] rendererCollection = instance.GetRenderers() for rIdx in range(rendererCollection.GetNumberOfItems()): # Grab the next vtkRenderer renderer = rendererCollection.GetItemAsObject(rIdx) rendererId = context.getReferenceId(renderer) rendererInstance = serializeInstance( instance, renderer, rendererId, context, depth + 1) if rendererInstance: dependencies.append(rendererInstance) rendererIds.append(rendererId) calls = context.buildDependencyCallList( objId, rendererIds, 'addRenderer', 'removeRenderer') return { 'parent': context.getReferenceId(parent), 'id': objId, 'type': instance.GetClassName(), 'properties': { 'numberOfLayers': instance.GetNumberOfLayers() }, 'dependencies': dependencies, 'calls': calls, 'mtime': instance.GetMTime(), }
37.426328
134
0.597514
794f21beebbfd584cdf47f89d5186426ae2e226b
35,040
py
Python
tests/unit/modules/test_zpool.py
alexey-zhukovin/salt
87382072abf353f3da62ae4e2d9fe1ba14344efa
[ "Apache-2.0" ]
1
2021-09-06T00:14:04.000Z
2021-09-06T00:14:04.000Z
tests/unit/modules/test_zpool.py
alexey-zhukovin/salt
87382072abf353f3da62ae4e2d9fe1ba14344efa
[ "Apache-2.0" ]
2
2021-04-30T21:17:57.000Z
2021-12-13T20:40:23.000Z
tests/unit/modules/test_zpool.py
Kamatera/salt
ac960a3308617657d9d039dae9108e0045ab3929
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tests for salt.modules.zpool :codeauthor: Nitin Madhok <nmadhok@clemson.edu>, Jorge Schrauwen <sjorge@blackdot.be> :maintainer: Jorge Schrauwen <sjorge@blackdot.be> :maturity: new :depends: salt.utils.zfs :platform: illumos,freebsd,linux """ # Import Python libs from __future__ import absolute_import, print_function, unicode_literals # Import Salt Utils import salt.loader import salt.modules.zpool as zpool import salt.utils.decorators import salt.utils.decorators.path # Import Salt Execution module to test import salt.utils.zfs from salt.utils.odict import OrderedDict from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock, patch from tests.support.unit import TestCase, skipIf # Import Salt Testing libs from tests.support.zfs import ZFSMockData # Skip this test case if we don't have access to mock! class ZpoolTestCase(TestCase, LoaderModuleMockMixin): """ This class contains a set of functions that test salt.modules.zpool module """ def setup_loader_modules(self): self.opts = opts = salt.config.DEFAULT_MINION_OPTS.copy() self.utils_patch = ZFSMockData().get_patched_utils() for key in ("opts", "utils_patch"): self.addCleanup(delattr, self, key) utils = salt.loader.utils( opts, whitelist=["zfs", "args", "systemd", "path", "platform"] ) zpool_obj = {zpool: {"__opts__": opts, "__utils__": utils}} return zpool_obj @skipIf(True, "SLOWTEST skip") def test_exists_success(self): """ Tests successful return of exists function """ ret = {} ret["stdout"] = ( "NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT\n" "myzpool 149G 128K 149G 0% 1.00x ONLINE -" ) ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): self.assertTrue(zpool.exists("myzpool")) @skipIf(True, "SLOWTEST skip") def test_exists_failure(self): """ Tests failure return of exists function """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'myzpool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): self.assertFalse(zpool.exists("myzpool")) def test_healthy(self): """ Tests successful return of healthy function """ ret = {} ret["stdout"] = "all pools are healthy" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): self.assertTrue(zpool.healthy()) def test_status(self): """ Tests successful return of status function """ ret = {} ret["stdout"] = "\n".join( [ " pool: mypool", " state: ONLINE", " scan: scrub repaired 0 in 0h6m with 0 errors on Mon Dec 21 02:06:17 2015", "config:", "", "\tNAME STATE READ WRITE CKSUM", "\tmypool ONLINE 0 0 0", "\t mirror-0 ONLINE 0 0 0", "\t c2t0d0 ONLINE 0 0 0", "\t c2t1d0 ONLINE 0 0 0", "", "errors: No known data errors", ] ) ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.status() self.assertEqual("ONLINE", ret["mypool"]["state"]) @skipIf(True, "SLOWTEST skip") def test_iostat(self): """ Tests successful return of iostat function """ ret = {} ret["stdout"] = "\n".join( [ " capacity operations bandwidth", "pool alloc free read write read write", "---------- ----- ----- ----- ----- ----- -----", "mypool 46.7G 64.3G 4 19 113K 331K", " mirror 46.7G 64.3G 4 19 113K 331K", " c2t0d0 - - 1 10 114K 334K", " c2t1d0 - - 1 10 114K 334K", "---------- ----- ----- ----- ----- ----- -----", ] ) ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.iostat("mypool", parsable=False) self.assertEqual("46.7G", ret["mypool"]["capacity-alloc"]) def test_iostat_parsable(self): """ Tests successful return of iostat function .. note: The command output is the same as the non parsable! There is no -p flag for zpool iostat, but our type conversions can handle this! """ ret = {} ret["stdout"] = "\n".join( [ " capacity operations bandwidth", "pool alloc free read write read write", "---------- ----- ----- ----- ----- ----- -----", "mypool 46.7G 64.3G 4 19 113K 331K", " mirror 46.7G 64.3G 4 19 113K 331K", " c2t0d0 - - 1 10 114K 334K", " c2t1d0 - - 1 10 114K 334K", "---------- ----- ----- ----- ----- ----- -----", ] ) ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.iostat("mypool", parsable=True) self.assertEqual(50143743180, ret["mypool"]["capacity-alloc"]) def test_list(self): """ Tests successful return of list function """ ret = {} ret["stdout"] = "mypool\t1.81T\t661G\t1.17T\t35%\t11%\tONLINE" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.list_(parsable=False) res = OrderedDict( [ ( "mypool", OrderedDict( [ ("size", "1.81T"), ("alloc", "661G"), ("free", "1.17T"), ("cap", "35%"), ("frag", "11%"), ("health", "ONLINE"), ] ), ) ] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_list_parsable(self): """ Tests successful return of list function with parsable output """ ret = {} ret["stdout"] = "mypool\t1.81T\t661G\t1.17T\t35%\t11%\tONLINE" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.list_(parsable=True) res = OrderedDict( [ ( "mypool", OrderedDict( [ ("size", 1990116046274), ("alloc", 709743345664), ("free", 1286428604497), ("cap", "35%"), ("frag", "11%"), ("health", "ONLINE"), ] ), ) ] ) self.assertEqual(ret, res) def test_get(self): """ Tests successful return of get function """ ret = {} ret["stdout"] = "mypool\tsize\t1.81T\t-\n" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.get("mypool", "size", parsable=False) res = OrderedDict(OrderedDict([("size", "1.81T")])) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_get_parsable(self): """ Tests successful return of get function with parsable output """ ret = {} ret["stdout"] = "mypool\tsize\t1.81T\t-\n" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.get("mypool", "size", parsable=True) res = OrderedDict(OrderedDict([("size", 1990116046274)])) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_get_whitespace(self): """ Tests successful return of get function with a string with whitespaces """ ret = {} ret["stdout"] = "mypool\tcomment\tmy testing pool\t-\n" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.get("mypool", "comment") res = OrderedDict(OrderedDict([("comment", "my testing pool")])) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_scrub_start(self): """ Tests start of scrub """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) mock_exists = MagicMock(return_value=True) with patch.dict(zpool.__salt__, {"zpool.exists": mock_exists}), patch.dict( zpool.__salt__, {"cmd.run_all": mock_cmd} ), patch.dict(zpool.__utils__, self.utils_patch): ret = zpool.scrub("mypool") res = OrderedDict(OrderedDict([("scrubbing", True)])) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_scrub_pause(self): """ Tests pause of scrub """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) mock_exists = MagicMock(return_value=True) with patch.dict(zpool.__salt__, {"zpool.exists": mock_exists}), patch.dict( zpool.__salt__, {"cmd.run_all": mock_cmd} ), patch.dict(zpool.__utils__, self.utils_patch): ret = zpool.scrub("mypool", pause=True) res = OrderedDict(OrderedDict([("scrubbing", False)])) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_scrub_stop(self): """ Tests pauze of scrub """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) mock_exists = MagicMock(return_value=True) with patch.dict(zpool.__salt__, {"zpool.exists": mock_exists}), patch.dict( zpool.__salt__, {"cmd.run_all": mock_cmd} ), patch.dict(zpool.__utils__, self.utils_patch): ret = zpool.scrub("mypool", stop=True) res = OrderedDict(OrderedDict([("scrubbing", False)])) self.assertEqual(ret, res) def test_split_success(self): """ Tests split on success """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.split("datapool", "backuppool") res = OrderedDict([("split", True)]) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_split_exist_new(self): """ Tests split on exising new pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "Unable to split datapool: pool already exists" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.split("datapool", "backuppool") res = OrderedDict( [ ("split", False), ("error", "Unable to split datapool: pool already exists"), ] ) self.assertEqual(ret, res) def test_split_missing_pool(self): """ Tests split on missing source pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'datapool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.split("datapool", "backuppool") res = OrderedDict( [("split", False), ("error", "cannot open 'datapool': no such pool")] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_split_not_mirror(self): """ Tests split on source pool is not a mirror """ ret = {} ret["stdout"] = "" ret[ "stderr" ] = "Unable to split datapool: Source pool must be composed only of mirrors" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.split("datapool", "backuppool") res = OrderedDict( [ ("split", False), ( "error", "Unable to split datapool: Source pool must be composed only of mirrors", ), ] ) self.assertEqual(ret, res) def test_labelclear_success(self): """ Tests labelclear on succesful label removal """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.labelclear("/dev/rdsk/c0t0d0", force=False) res = OrderedDict([("labelcleared", True)]) self.assertEqual(ret, res) def test_labelclear_nodevice(self): """ Tests labelclear on non existing device """ ret = {} ret["stdout"] = "" ret["stderr"] = "failed to open /dev/rdsk/c0t0d0: No such file or directory" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.labelclear("/dev/rdsk/c0t0d0", force=False) res = OrderedDict( [ ("labelcleared", False), ( "error", "failed to open /dev/rdsk/c0t0d0: No such file or directory", ), ] ) self.assertEqual(ret, res) def test_labelclear_cleared(self): """ Tests labelclear on device with no label """ ret = {} ret["stdout"] = "" ret["stderr"] = "failed to read label from /dev/rdsk/c0t0d0" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.labelclear("/dev/rdsk/c0t0d0", force=False) res = OrderedDict( [ ("labelcleared", False), ("error", "failed to read label from /dev/rdsk/c0t0d0"), ] ) self.assertEqual(ret, res) def test_labelclear_exported(self): """ Tests labelclear on device with from exported pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "\n".join( [ "use '-f' to override the following error:", '/dev/rdsk/c0t0d0 is a member of exported pool "mypool"', ] ) ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.labelclear("/dev/rdsk/c0t0d0", force=False) res = OrderedDict( [ ("labelcleared", False), ( "error", "use 'force=True' to override the following error:\n/dev/rdsk/c0t0d0 is a member of exported pool \"mypool\"", ), ] ) self.assertEqual(ret, res) @skipIf(not salt.utils.path.which("mkfile"), "Cannot find mkfile executable") def test_create_file_vdev_success(self): """ Tests create_file_vdev when out of space """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.create_file_vdev("64M", "/vdisks/disk0") res = OrderedDict([("/vdisks/disk0", "created")]) self.assertEqual(ret, res) @skipIf(not salt.utils.path.which("mkfile"), "Cannot find mkfile executable") def test_create_file_vdev_nospace(self): """ Tests create_file_vdev when out of space """ ret = {} ret["stdout"] = "" ret[ "stderr" ] = "/vdisks/disk0: initialized 10424320 of 67108864 bytes: No space left on device" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.create_file_vdev("64M", "/vdisks/disk0") res = OrderedDict( [ ("/vdisks/disk0", "failed"), ( "error", OrderedDict( [ ( "/vdisks/disk0", " initialized 10424320 of 67108864 bytes: No space left on device", ), ] ), ), ] ) self.assertEqual(ret, res) def test_export_success(self): """ Tests export """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.export("mypool") res = OrderedDict([("exported", True)]) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_export_nopool(self): """ Tests export when the pool does not exists """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'mypool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.export("mypool") res = OrderedDict( [("exported", False), ("error", "cannot open 'mypool': no such pool")] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_import_success(self): """ Tests import """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.import_("mypool") res = OrderedDict([("imported", True)]) self.assertEqual(ret, res) def test_import_duplicate(self): """ Tests import with already imported pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "\n".join( [ "cannot import 'mypool': a pool with that name already exists", "use the form 'zpool import <pool | id> <newpool>' to give it a new name", ] ) ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.import_("mypool") res = OrderedDict( [ ("imported", False), ( "error", "cannot import 'mypool': a pool with that name already exists\nuse the form 'zpool import <pool | id> <newpool>' to give it a new name", ), ] ) self.assertEqual(ret, res) def test_import_nopool(self): """ Tests import """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot import 'mypool': no such pool available" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.import_("mypool") res = OrderedDict( [ ("imported", False), ("error", "cannot import 'mypool': no such pool available"), ] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_online_success(self): """ Tests online """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.online("mypool", "/dev/rdsk/c0t0d0") res = OrderedDict([("onlined", True)]) self.assertEqual(ret, res) def test_online_nodevice(self): """ Tests online """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot online /dev/rdsk/c0t0d1: no such device in pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.online("mypool", "/dev/rdsk/c0t0d1") res = OrderedDict( [ ("onlined", False), ("error", "cannot online /dev/rdsk/c0t0d1: no such device in pool"), ] ) self.assertEqual(ret, res) def test_offline_success(self): """ Tests offline """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.offline("mypool", "/dev/rdsk/c0t0d0") res = OrderedDict([("offlined", True)]) self.assertEqual(ret, res) def test_offline_nodevice(self): """ Tests offline """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot offline /dev/rdsk/c0t0d1: no such device in pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.offline("mypool", "/dev/rdsk/c0t0d1") res = OrderedDict( [ ("offlined", False), ( "error", "cannot offline /dev/rdsk/c0t0d1: no such device in pool", ), ] ) self.assertEqual(ret, res) def test_offline_noreplica(self): """ Tests offline """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot offline /dev/rdsk/c0t0d1: no valid replicas" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.offline("mypool", "/dev/rdsk/c0t0d1") res = OrderedDict( [ ("offlined", False), ("error", "cannot offline /dev/rdsk/c0t0d1: no valid replicas"), ] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_reguid_success(self): """ Tests reguid """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.reguid("mypool") res = OrderedDict([("reguided", True)]) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_reguid_nopool(self): """ Tests reguid with missing pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'mypool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.reguid("mypool") res = OrderedDict( [("reguided", False), ("error", "cannot open 'mypool': no such pool")] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_reopen_success(self): """ Tests reopen """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.reopen("mypool") res = OrderedDict([("reopened", True)]) self.assertEqual(ret, res) def test_reopen_nopool(self): """ Tests reopen with missing pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'mypool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.reopen("mypool") res = OrderedDict( [("reopened", False), ("error", "cannot open 'mypool': no such pool")] ) self.assertEqual(ret, res) def test_upgrade_success(self): """ Tests upgrade """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.upgrade("mypool") res = OrderedDict([("upgraded", True)]) self.assertEqual(ret, res) def test_upgrade_nopool(self): """ Tests upgrade with missing pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'mypool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.upgrade("mypool") res = OrderedDict( [("upgraded", False), ("error", "cannot open 'mypool': no such pool")] ) self.assertEqual(ret, res) @skipIf(True, "SLOWTEST skip") def test_history_success(self): """ Tests history """ ret = {} ret["stdout"] = "\n".join( [ "History for 'mypool':", "2018-01-18.16:56:12 zpool create -f mypool /dev/rdsk/c0t0d0", "2018-01-19.16:01:55 zpool attach -f mypool /dev/rdsk/c0t0d0 /dev/rdsk/c0t0d1", ] ) ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.history("mypool") res = OrderedDict( [ ( "mypool", OrderedDict( [ ( "2018-01-18.16:56:12", "zpool create -f mypool /dev/rdsk/c0t0d0", ), ( "2018-01-19.16:01:55", "zpool attach -f mypool /dev/rdsk/c0t0d0 /dev/rdsk/c0t0d1", ), ] ), ), ] ) self.assertEqual(ret, res) def test_history_nopool(self): """ Tests history with missing pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'mypool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.history("mypool") res = OrderedDict([("error", "cannot open 'mypool': no such pool")]) self.assertEqual(ret, res) def test_clear_success(self): """ Tests clear """ ret = {} ret["stdout"] = "" ret["stderr"] = "" ret["retcode"] = 0 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.clear("mypool") res = OrderedDict([("cleared", True)]) self.assertEqual(ret, res) def test_clear_nopool(self): """ Tests clear with missing pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "cannot open 'mypool': no such pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.clear("mypool") res = OrderedDict( [("cleared", False), ("error", "cannot open 'mypool': no such pool")] ) def test_clear_nodevice(self): """ Tests clear with non existign device """ ret = {} ret["stdout"] = "" ret[ "stderr" ] = "cannot clear errors for /dev/rdsk/c0t0d0: no such device in pool" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, self.utils_patch ): ret = zpool.clear("mypool", "/dev/rdsk/c0t0d0") res = OrderedDict( [ ("cleared", False), ( "error", "cannot clear errors for /dev/rdsk/c0t0d0: no such device in pool", ), ] ) self.assertEqual(ret, res)
33.887814
160
0.486159
794f21de9ffe991ca10d143789420aa4397dfae3
5,038
py
Python
magenta/models/performance_rnn/performance_rnn_train.py
mikiec84/magenta
f10c6a52e22b9694542b419d20b64f2ace32ad70
[ "Apache-2.0" ]
1
2020-03-22T09:02:26.000Z
2020-03-22T09:02:26.000Z
magenta/models/performance_rnn/performance_rnn_train.py
mikiec84/magenta
f10c6a52e22b9694542b419d20b64f2ace32ad70
[ "Apache-2.0" ]
null
null
null
magenta/models/performance_rnn/performance_rnn_train.py
mikiec84/magenta
f10c6a52e22b9694542b419d20b64f2ace32ad70
[ "Apache-2.0" ]
1
2019-11-30T17:51:10.000Z
2019-11-30T17:51:10.000Z
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train and evaluate a performance RNN model.""" import os # internal imports import tensorflow as tf import magenta from magenta.models.performance_rnn import performance_model from magenta.models.shared import events_rnn_graph from magenta.models.shared import events_rnn_train FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('run_dir', '/tmp/performance_rnn/logdir/run1', 'Path to the directory where checkpoints and ' 'summary events will be saved during training and ' 'evaluation. Separate subdirectories for training ' 'events and eval events will be created within ' '`run_dir`. Multiple runs can be stored within the ' 'parent directory of `run_dir`. Point TensorBoard ' 'to the parent directory of `run_dir` to see all ' 'your runs.') tf.app.flags.DEFINE_string('config', 'performance', 'The config to use') tf.app.flags.DEFINE_string('sequence_example_file', '', 'Path to TFRecord file containing ' 'tf.SequenceExample records for training or ' 'evaluation.') tf.app.flags.DEFINE_integer('num_training_steps', 0, 'The the number of global training steps your ' 'model should take before exiting training. ' 'Leave as 0 to run until terminated manually.') tf.app.flags.DEFINE_integer('num_eval_examples', 0, 'The number of evaluation examples your model ' 'should process for each evaluation step.' 'Leave as 0 to use the entire evaluation set.') tf.app.flags.DEFINE_integer('summary_frequency', 10, 'A summary statement will be logged every ' '`summary_frequency` steps during training or ' 'every `summary_frequency` seconds during ' 'evaluation.') tf.app.flags.DEFINE_integer('num_checkpoints', 10, 'The number of most recent checkpoints to keep in ' 'the training directory. Keeps all if 0.') tf.app.flags.DEFINE_boolean('eval', False, 'If True, this process only evaluates the model ' 'and does not update weights.') tf.app.flags.DEFINE_string('log', 'INFO', 'The threshold for what messages will be logged ' 'DEBUG, INFO, WARN, ERROR, or FATAL.') tf.app.flags.DEFINE_string( 'hparams', '', 'Comma-separated list of `name=value` pairs. For each pair, the value of ' 'the hyperparameter named `name` is set to `value`. This mapping is merged ' 'with the default hyperparameters.') def main(unused_argv): tf.logging.set_verbosity(FLAGS.log) if not FLAGS.run_dir: tf.logging.fatal('--run_dir required') return if not FLAGS.sequence_example_file: tf.logging.fatal('--sequence_example_file required') return sequence_example_file_paths = tf.gfile.Glob( os.path.expanduser(FLAGS.sequence_example_file)) run_dir = os.path.expanduser(FLAGS.run_dir) config = performance_model.default_configs[FLAGS.config] config.hparams.parse(FLAGS.hparams) mode = 'eval' if FLAGS.eval else 'train' graph = events_rnn_graph.build_graph( mode, config, sequence_example_file_paths) train_dir = os.path.join(run_dir, 'train') tf.gfile.MakeDirs(train_dir) tf.logging.info('Train dir: %s', train_dir) if FLAGS.eval: eval_dir = os.path.join(run_dir, 'eval') tf.gfile.MakeDirs(eval_dir) tf.logging.info('Eval dir: %s', eval_dir) num_batches = ( (FLAGS.num_eval_examples if FLAGS.num_eval_examples else magenta.common.count_records(sequence_example_file_paths)) // config.hparams.batch_size) events_rnn_train.run_eval(graph, train_dir, eval_dir, num_batches) else: events_rnn_train.run_training(graph, train_dir, FLAGS.num_training_steps, FLAGS.summary_frequency, checkpoints_to_keep=FLAGS.num_checkpoints) def console_entry_point(): tf.app.run(main) if __name__ == '__main__': console_entry_point()
43.059829
80
0.63557
794f234bc6ac828332479f3322cabff49ec56819
4,786
py
Python
v1.0.0.test/toontown/suit/DistributedSuitPlanner.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-01T15:46:43.000Z
2021-07-23T16:26:48.000Z
v1.0.0.test/toontown/suit/DistributedSuitPlanner.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
1
2019-06-29T03:40:05.000Z
2021-06-13T01:15:16.000Z
v1.0.0.test/toontown/suit/DistributedSuitPlanner.py
TTOFFLINE-LEAK/ttoffline
bb0e91704a755d34983e94288d50288e46b68380
[ "MIT" ]
4
2019-07-28T21:18:46.000Z
2021-02-25T06:37:25.000Z
from panda3d.core import * from direct.distributed import DistributedObject import SuitPlannerBase from toontown.toonbase import ToontownGlobals class DistributedSuitPlanner(DistributedObject.DistributedObject, SuitPlannerBase.SuitPlannerBase): def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) SuitPlannerBase.SuitPlannerBase.__init__(self) self.suitList = [] self.buildingList = [0, 0, 0, 0] self.pathViz = None return def generate(self): self.notify.info('DistributedSuitPlanner %d: generating' % self.getDoId()) DistributedObject.DistributedObject.generate(self) base.cr.currSuitPlanner = self def disable(self): self.notify.info('DistributedSuitPlanner %d: disabling' % self.getDoId()) self.hidePaths() DistributedObject.DistributedObject.disable(self) base.cr.currSuitPlanner = None return def d_suitListQuery(self): self.sendUpdate('suitListQuery') def suitListResponse(self, suitList): self.suitList = suitList messenger.send('suitListResponse') def d_buildingListQuery(self): self.sendUpdate('buildingListQuery') def buildingListResponse(self, buildingList): self.buildingList = buildingList messenger.send('buildingListResponse') def hidePaths(self): if self.pathViz: self.pathViz.detachNode() self.pathViz = None return def showPaths(self): self.hidePaths() vizNode = GeomNode(self.uniqueName('PathViz')) lines = LineSegs() self.pathViz = render.attachNewNode(vizNode) points = self.frontdoorPointList + self.sidedoorPointList + self.cogHQDoorPointList + self.streetPointList while len(points) > 0: self.__doShowPoints(vizNode, lines, None, points) cnode = CollisionNode('battleCells') cnode.setCollideMask(BitMask32.allOff()) for zoneId, cellPos in self.battlePosDict.items(): cnode.addSolid(CollisionSphere(cellPos, 9)) text = '%s' % zoneId self.__makePathVizText(text, cellPos[0], cellPos[1], cellPos[2] + 9, (1, 1, 1, 1)) self.pathViz.attachNewNode(cnode).show() return def __doShowPoints(self, vizNode, lines, p, points): if p == None: pi = len(points) - 1 if pi < 0: return p = points[pi] del points[pi] else: if p not in points: return pi = points.index(p) del points[pi] text = '%s' % p.getIndex() pos = p.getPos() if p.getPointType() == DNASuitPoint.FRONTDOORPOINT: color = (1, 0, 0, 1) else: if p.getPointType() == DNASuitPoint.SIDEDOORPOINT: color = (0, 0, 1, 1) else: color = (0, 1, 0, 1) self.__makePathVizText(text, pos[0], pos[1], pos[2], color) adjacent = self.dnaStore.getAdjacentPoints(p) numPoints = adjacent.getNumPoints() for i in xrange(numPoints): qi = adjacent.getPointIndex(i) q = self.dnaStore.getSuitPointWithIndex(qi) pp = p.getPos() qp = q.getPos() v = Vec3(qp - pp) v.normalize() c = v.cross(Vec3.up()) p1a = pp + v * 2 + c * 0.5 p1b = pp + v * 3 p1c = pp + v * 2 - c * 0.5 lines.reset() lines.moveTo(pp) lines.drawTo(qp) lines.moveTo(p1a) lines.drawTo(p1b) lines.drawTo(p1c) lines.create(vizNode, 0) self.__doShowPoints(vizNode, lines, q, points) return def __makePathVizText(self, text, x, y, z, color): if not hasattr(self, 'debugTextNode'): self.debugTextNode = TextNode('debugTextNode') self.debugTextNode.setAlign(TextNode.ACenter) self.debugTextNode.setFont(ToontownGlobals.getSignFont()) self.debugTextNode.setTextColor(*color) self.debugTextNode.setText(text) np = self.pathViz.attachNewNode(self.debugTextNode.generate()) np.setPos(x, y, z + 1) np.setScale(1.0) np.setBillboardPointEye(2) np.node().setAttrib(TransparencyAttrib.make(TransparencyAttrib.MDual), 2)
36.815385
114
0.552027
794f23d8a11d09db2958a3850747d42a582a0070
6,242
py
Python
datasets.py
ymym3412/textcnn-conv-deconv-pytorch
f0101160b8bd2de0f2a0718a9053ad85dc5f695f
[ "Apache-2.0" ]
60
2018-01-24T19:01:43.000Z
2021-10-09T08:44:17.000Z
datasets.py
ymym3412/textcnn-conv-deconv-pytorch
f0101160b8bd2de0f2a0718a9053ad85dc5f695f
[ "Apache-2.0" ]
3
2018-02-23T15:35:07.000Z
2020-04-19T12:17:09.000Z
datasets.py
ymym3412/textcnn-conv-deconv-pytorch
f0101160b8bd2de0f2a0718a9053ad85dc5f695f
[ "Apache-2.0" ]
14
2018-02-18T17:33:18.000Z
2021-07-14T04:45:58.000Z
from torch.utils.data import Dataset import torch import numpy as np from tqdm import tqdm from collections import Counter from copy import deepcopy def load_hotel_review_data(path, sentence_len): """ Load Hotel Reviews data from pickle distributed in https://drive.google.com/file/d/0B52eYWrYWqIpQzhBNkVxaV9mMjQ/view This file is published in https://github.com/dreasysnail/textCNN_public :param path: pickle path :return: """ import _pickle as cPickle with open(path, "rb") as f: data = cPickle.load(f, encoding="latin1") train_data, test_data = HotelReviewsDataset(data[0], deepcopy(data[2]), deepcopy(data[3]), sentence_len, transform=ToTensor()), \ HotelReviewsDataset(data[1], deepcopy(data[2]), deepcopy(data[3]), sentence_len, transform=ToTensor()) return train_data, test_data class HotelReviewsDataset(Dataset): """ Hotel Reviews Dataset """ def __init__(self, data_list, word2index, index2word, sentence_len, transform=None): self.word2index = word2index self.index2word = index2word self.n_words = len(self.word2index) self.data = data_list self.sentence_len = sentence_len self.transform = transform self.word2index["<PAD>"] = self.n_words self.index2word[self.n_words] = "<PAD>" self.n_words += 1 temp_list = [] for sentence in tqdm(self.data): if len(sentence) > self.sentence_len: # truncate sentence if sentence length is longer than `sentence_len` temp_list.append(np.array(sentence[:self.sentence_len])) else: # pad sentence with '<PAD>' token if sentence length is shorter than `sentence_len` sent_array = np.lib.pad(np.array(sentence), (0, self.sentence_len - len(sentence)), "constant", constant_values=(self.n_words-1, self.n_words-1)) temp_list.append(sent_array) self.data = np.array(temp_list, dtype=np.int32) def __len__(self): return len(self.data) def __getitem__(self, idx): data = self.data[idx] if self.transform: data = self.transform(data) return data def vocab_lennght(self): return len(self.word2index) class TextClassificationDataset(Dataset): def __init__(self, data_path, label_path, tokenized, sentence_len=60, transoform=None): self.word2index = {"<PAD>": 0, "<UNK>": 1} self.index2word = {0: "<PAD>", 1: "<UNK>"} self.n_words = 2 self.sentence_len = sentence_len # Data load with open(data_path, encoding="utf-8") as f: data = [line.split() for line in f] if tokenized == "mecab": # replace low frequency word to UNK token word_bucket = [] for sentence in data: word_bucket.extend(sentence) cnt = Counter(word_bucket) rare_word = [] for common in cnt.most_common(): if common[1] <= 2: rare_word.append(common[0]) print("Rare word") rare_word = set(rare_word) print(len(rare_word)) for sentence in data: for word in sentence: if word in rare_word: continue elif word not in self.word2index: self.word2index[word] = self.n_words self.index2word[self.n_words] = word self.n_words += 1 # Transform to idx self.data = np.array([[self.word2index[word] if word not in rare_word else self.word2index["<UNK>"] for word in sentence] for sentence in tqdm(data)]) elif tokenized == "sentencepiece": for sentence in data: # remove meta symbol # TODO:this process remove blank which in sentene. Are there other method? for word in map(lambda word: word.replace("▁", ""), sentence): if word not in self.word2index: self.word2index[word] = self.n_words self.index2word[self.n_words] = word self.n_words += 1 self.data = np.array([[self.word2index[word] for word in map(lambda word: word.replace("▁", ""), sentence)] for sentence in tqdm(data)]) temp_list = [] for sentence in self.data: if len(sentence) > self.sentence_len: # truncate sentence if sentence length is longer than `sentence_len` temp_list.append(np.array(sentence[:self.sentence_len])) else: # pad sentence with '<PAD>' token if sentence length is shorter than `sentence_len` sent_array = np.lib.pad(np.array(sentence), (0, self.sentence_len - len(sentence)), "constant", constant_values=(0, 0)) temp_list.append(sent_array) self.data = np.array(temp_list, dtype=np.int32) with open(label_path, encoding="utf-8") as f: self.labels = np.array([np.array([int(label)]) for label in f], dtype=np.int32) self.transform = transoform def __len__(self): return len(self.data) def __getitem__(self, idx): sentence = self.data[idx] label = self.labels[idx] sample = {"sentence": sentence, "label": label} if self.transform: sample = {"sentence": self.transform(sample["sentence"]), "label": self.transform(sample["label"])} return sample def vocab_length(self): return self.n_words class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, data): return torch.from_numpy(data).type(torch.LongTensor)
39.757962
133
0.559116
794f23df763e33e7ae39cadd8c8878b31853fa0b
3,854
py
Python
Study_5/Main.py
LeeDaeil/PyQt5_study
ecdd22ce2809ce6f01c8691a7ca75ef1771b7202
[ "MIT" ]
1
2020-03-22T14:35:11.000Z
2020-03-22T14:35:11.000Z
Study_5/Main.py
LeeDaeil/PyQt5_study
ecdd22ce2809ce6f01c8691a7ca75ef1771b7202
[ "MIT" ]
null
null
null
Study_5/Main.py
LeeDaeil/PyQt5_study
ecdd22ce2809ce6f01c8691a7ca75ef1771b7202
[ "MIT" ]
null
null
null
from collections import deque from multiprocessing import Manager from Study_5.CNS_UDP import * from Study_5.CNS_Fun import * # from .CNS_GFun import * # 인터페이스 설계로 인한 제외 from Study_5.CNS_CFun import * class body: def __init__(self): #==== Initial part for testing===========================================================# self.a3c_test_mode = True self.shut_up = True #========================================================================================# self.shared_mem = generate_mem().make_mem_structure() self.UDP_net = [UDPSocket(self.shared_mem, IP='', Port=7001, shut_up=self.shut_up)] if self.a3c_test_mode: self.process_list = [ clean_mem(self.shared_mem, shut_up=self.shut_up), interface_function(self.shared_mem), # function1(self.shared_mem), # function2(self.shared_mem), # function3(self.shared_mem), # gfunction(self.shared_mem), # 인터페이스 설계로 인한 제외 # gfunction2(self.shared_mem), # 인터페이스 설계로 인한 제외 ] else: self.process_list = [ clean_mem(self.shared_mem, shut_up=self.shut_up), ] def start(self): print('A3C test mode : {}'.format(self.a3c_test_mode)) job_list = [] for __ in self.UDP_net: __.start() job_list.append(__) time.sleep(1) for __ in self.process_list: __.start() job_list.append(__) for job in job_list: job.join() class generate_mem: def make_test_mem(self): memory_dict = {'Test': 0, 'List_Test': []} return memory_dict def make_test_list_mem(self): memory_list = [] return memory_list def make_CNS_time_mem(self): memory_list = [] return memory_list def make_clean_mem(self): memory_dict = {'Clean': True} return memory_dict def make_main_mem_structure(self, max_len_deque=10, show_main_mem=False): memory_dict = {} with open('./db.txt', 'r') as f: while True: temp_ = f.readline().split('\t') if temp_[0] == '': # if empty space -> break break sig = 0 if temp_[1] == 'INTEGER' else 1 memory_dict[temp_[0]] = {'V': 0, 'L': [], 'D': deque(maxlen=max_len_deque), "type": sig} # memory_dict[temp_[0]] = {'V': 0, 'L': [], 'D': deque(maxlen=max_len_deque), "type": sig, # 'N_V': 0, 'N_L': [], 'N_D': deque(maxlen=max_len_deque)} # Noise parameter if show_main_mem: print(memory_dict) return memory_dict def make_mem_structure(self, show_mem_list=False): memory_list = [Manager().dict(self.make_main_mem_structure(max_len_deque=10)), # [0] Manager().dict(self.make_test_mem()), Manager().list(self.make_test_list_mem()), Manager().list(self.make_CNS_time_mem()), # [-2] Manager().dict(self.make_clean_mem()), # [-1] ] ''' 개인이 설계한 메모리를 추가로 집어 넣을 것. ex) memory_list = [Manager().dict(self.make_main_mem_structure(max_len_deque=10)), Manager().dict(자신이 설계한 메모리 구조)), ... Manager().dict(self.make_clean_mem()),] ''' if show_mem_list: i = 0 for __ in memory_list: print('{}번째 리스트|{}'.format(i, __)) i += 1 return memory_list if __name__ == '__main__': main_process = body() main_process.start()
36.704762
118
0.504152
794f2413f52881a6abf70b233ba26dd2f9341036
280
py
Python
Mundo 1/Tratando Dados e fazendo contas/Desafio#11.py
kaio358/Python
16f55e6ff056d97b2f28e68f95eafc9ab7d4e2b1
[ "MIT" ]
null
null
null
Mundo 1/Tratando Dados e fazendo contas/Desafio#11.py
kaio358/Python
16f55e6ff056d97b2f28e68f95eafc9ab7d4e2b1
[ "MIT" ]
null
null
null
Mundo 1/Tratando Dados e fazendo contas/Desafio#11.py
kaio358/Python
16f55e6ff056d97b2f28e68f95eafc9ab7d4e2b1
[ "MIT" ]
null
null
null
largura = float(input("Insira a largura da parede : ")) altura = float(input("Insira a altura da parede : ")) print("O tamanho da parede e de {} X {} e sua area é de {} m²".format(largura, altura,altura*largura)) print ('A tinta gasta será de {} l'.format((altura*largura)/2))
56
78
0.675
794f25c0806df93c1da8fcda5cadc68c588aa667
6,777
py
Python
metadata-ingestion/src/datahub/emitter/mce_builder.py
shakti-garg-saxo/datahub
ed38168f54dd96b2b237f5df30a43769df4ec400
[ "Apache-2.0" ]
1
2021-04-29T17:40:02.000Z
2021-04-29T17:40:02.000Z
metadata-ingestion/src/datahub/emitter/mce_builder.py
shakti-garg-saxo/datahub
ed38168f54dd96b2b237f5df30a43769df4ec400
[ "Apache-2.0" ]
4
2022-03-02T03:01:24.000Z
2022-03-23T00:57:33.000Z
metadata-ingestion/src/datahub/emitter/mce_builder.py
Affirm/datahub
bd5e3b174a82b6d2b0d3fc9c036570dfd5bbadd0
[ "Apache-2.0" ]
null
null
null
"""Convenience functions for creating MCEs""" import logging import re import time from typing import List, Optional, Type, TypeVar, cast, get_type_hints import typing_inspect from avrogen.dict_wrapper import DictWrapper from datahub.metadata.com.linkedin.pegasus2avro.metadata.key import DatasetKey from datahub.metadata.schema_classes import ( DatasetLineageTypeClass, DatasetSnapshotClass, MetadataChangeEventClass, OwnershipTypeClass, UpstreamClass, UpstreamLineageClass, ) DEFAULT_ENV = "PROD" DEFAULT_FLOW_CLUSTER = "prod" UNKNOWN_USER = "urn:li:corpuser:unknown" logger = logging.getLogger(__name__) def get_sys_time() -> int: # TODO deprecate this return int(time.time() * 1000) def _check_data_platform_name(platform_name: str) -> None: if not platform_name.isalpha(): logger.warning(f"improperly formatted data platform: {platform_name}") def make_data_platform_urn(platform: str) -> str: if platform.startswith("urn:li:dataPlatform:"): return platform _check_data_platform_name(platform) return f"urn:li:dataPlatform:{platform}" def make_dataset_urn(platform: str, name: str, env: str = DEFAULT_ENV) -> str: return f"urn:li:dataset:({make_data_platform_urn(platform)},{name},{env})" def dataset_urn_to_key(dataset_urn: str) -> Optional[DatasetKey]: pattern = r"urn:li:dataset:\(urn:li:dataPlatform:(.*),(.*),(.*)\)" results = re.search(pattern, dataset_urn) if results is not None: return DatasetKey( platform=results.group(1), name=results.group(2), origin=results.group(3) ) return None def make_user_urn(username: str) -> str: return f"urn:li:corpuser:{username}" def make_group_urn(groupname: str) -> str: return f"urn:li:corpGroup:{groupname}" def make_tag_urn(tag: str) -> str: return f"urn:li:tag:{tag}" def make_data_flow_urn( orchestrator: str, flow_id: str, cluster: str = DEFAULT_FLOW_CLUSTER ) -> str: return f"urn:li:dataFlow:({orchestrator},{flow_id},{cluster})" def make_data_job_urn_with_flow(flow_urn: str, job_id: str) -> str: return f"urn:li:dataJob:({flow_urn},{job_id})" def make_data_job_urn( orchestrator: str, flow_id: str, job_id: str, cluster: str = DEFAULT_FLOW_CLUSTER ) -> str: return make_data_job_urn_with_flow( make_data_flow_urn(orchestrator, flow_id, cluster), job_id ) def make_dashboard_urn(platform: str, name: str) -> str: # FIXME: dashboards don't currently include data platform urn prefixes. _check_data_platform_name(platform) return f"urn:li:dashboard:({platform},{name})" def make_chart_urn(platform: str, name: str) -> str: # FIXME: charts don't currently include data platform urn prefixes. _check_data_platform_name(platform) return f"urn:li:chart:({platform},{name})" def make_ml_primary_key_urn(feature_table_name: str, primary_key_name: str) -> str: return f"urn:li:mlPrimaryKey:({feature_table_name},{primary_key_name})" def make_ml_feature_urn( feature_table_name: str, feature_name: str, ) -> str: return f"urn:li:mlFeature:({feature_table_name},{feature_name})" def make_ml_feature_table_urn(platform: str, feature_table_name: str) -> str: return f"urn:li:mlFeatureTable:({make_data_platform_urn(platform)},{feature_table_name})" def make_ml_model_urn(platform: str, model_name: str, env: str) -> str: return f"urn:li:mlModel:({make_data_platform_urn(platform)},{model_name},{env})" def make_ml_model_deployment_urn(platform: str, deployment_name: str, env: str) -> str: return f"urn:li:mlModelDeployment:({make_data_platform_urn(platform)},{deployment_name},{env})" def make_ml_model_group_urn(platform: str, group_name: str, env: str) -> str: return ( f"urn:li:mlModelGroup:({make_data_platform_urn(platform)},{group_name},{env})" ) def is_valid_ownership_type(ownership_type: Optional[str]) -> bool: return ownership_type is not None and ownership_type in [ OwnershipTypeClass.DEVELOPER, OwnershipTypeClass.DATAOWNER, OwnershipTypeClass.DELEGATE, OwnershipTypeClass.PRODUCER, OwnershipTypeClass.CONSUMER, OwnershipTypeClass.STAKEHOLDER, ] def validate_ownership_type(ownership_type: Optional[str]) -> str: if is_valid_ownership_type(ownership_type): return cast(str, ownership_type) else: raise ValueError(f"Unexpected ownership type: {ownership_type}") def make_lineage_mce( upstream_urns: List[str], downstream_urn: str, lineage_type: str = DatasetLineageTypeClass.TRANSFORMED, ) -> MetadataChangeEventClass: mce = MetadataChangeEventClass( proposedSnapshot=DatasetSnapshotClass( urn=downstream_urn, aspects=[ UpstreamLineageClass( upstreams=[ UpstreamClass( dataset=upstream_urn, type=lineage_type, ) for upstream_urn in upstream_urns ] ) ], ) ) return mce # This bound isn't tight, but it's better than nothing. Aspect = TypeVar("Aspect", bound=DictWrapper) def can_add_aspect(mce: MetadataChangeEventClass, AspectType: Type[Aspect]) -> bool: SnapshotType = type(mce.proposedSnapshot) constructor_annotations = get_type_hints(SnapshotType.__init__) aspect_list_union = typing_inspect.get_args(constructor_annotations["aspects"])[0] if not isinstance(aspect_list_union, tuple): supported_aspect_types = typing_inspect.get_args(aspect_list_union) else: # On Python 3.6, the union type is represented as a tuple, where # the first item is typing.Union and the subsequent elements are # the types within the union. supported_aspect_types = aspect_list_union[1:] return issubclass(AspectType, supported_aspect_types) def get_aspect_if_available( mce: MetadataChangeEventClass, AspectType: Type[Aspect] ) -> Optional[Aspect]: assert can_add_aspect(mce, AspectType) all_aspects = mce.proposedSnapshot.aspects aspects: List[Aspect] = [ aspect for aspect in all_aspects if isinstance(aspect, AspectType) ] if len(aspects) > 1: raise ValueError( f"MCE contains multiple aspects of type {AspectType}: {aspects}" ) if aspects: return aspects[0] return None def get_or_add_aspect(mce: MetadataChangeEventClass, default: Aspect) -> Aspect: existing = get_aspect_if_available(mce, type(default)) if existing is not None: return existing mce.proposedSnapshot.aspects.append(default) # type: ignore return default
30.945205
99
0.701343
794f26698d1104ff54a38dfa17617709ef4f72fe
218
py
Python
rtcclient/exception.py
sadikkuzu-mba/rtcclient
831d9eef57f0daca86728ea38743925f6db017fc
[ "Apache-2.0" ]
37
2015-07-31T03:21:55.000Z
2021-08-04T10:30:13.000Z
rtcclient/exception.py
sadikkuzu-mba/rtcclient
831d9eef57f0daca86728ea38743925f6db017fc
[ "Apache-2.0" ]
94
2015-07-29T14:27:13.000Z
2022-03-10T16:53:30.000Z
rtcclient/exception.py
sadikkuzu-mba/rtcclient
831d9eef57f0daca86728ea38743925f6db017fc
[ "Apache-2.0" ]
37
2015-11-11T15:06:39.000Z
2022-03-01T12:21:48.000Z
class RTCException(Exception): """Base exception class for all errors """ pass class BadValue(RTCException): pass class NotFound(RTCException): pass class EmptyAttrib(RTCException): pass
12.111111
42
0.688073
794f272b6059f4e70da3e79674aa72c6390f024d
8,856
py
Python
qa/rpc-tests/rawtransactions.py
ericramos1980/energi
aadc44f714f9d52433ab3595a9f33a61433c60c9
[ "MIT" ]
2
2021-12-28T21:47:07.000Z
2022-02-09T21:04:29.000Z
qa/rpc-tests/rawtransactions.py
reddragon34/energi
4cc6c426d9d4b6b9053912de9b2197eba071201e
[ "MIT" ]
null
null
null
qa/rpc-tests/rawtransactions.py
reddragon34/energi
4cc6c426d9d4b6b9053912de9b2197eba071201e
[ "MIT" ]
1
2019-10-07T19:17:55.000Z
2019-10-07T19:17:55.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Energi Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """rawtranscation RPCs QA test. # Tests the following RPCs: # - createrawtransaction # - signrawtransaction # - sendrawtransaction # - decoderawtransaction # - getrawtransaction """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 3 def setup_network(self, split=False): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir) #connect to a local machine for debugging #url = "http://bitcoinrpc:DP6DvqZtqXarpeNWyN3LZTFchCCyCUuHwNF7E8pX99x1@%s:%d" % ('127.0.0.1', 18332) #proxy = AuthServiceProxy(url) #proxy.url = url # store URL on proxy for info #self.nodes.append(proxy) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) self.is_network_split=False self.sync_all() def run_test(self): #prepare some coins for multiple *rawtransaction commands self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0) self.sync_all() self.nodes[0].generate(5) self.sync_all() ######################################### # sendrawtransaction with missing input # ######################################### inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1}] #won't exists outputs = { self.nodes[0].getnewaddress() : 4.998 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = self.nodes[2].signrawtransaction(rawtx) try: rawtx = self.nodes[2].sendrawtransaction(rawtx['hex']) except JSONRPCException as e: assert("Missing inputs" in e.error['message']) else: assert(False) ######################### # RAW TX MULTISIG TESTS # ######################### # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) mSigObjValid = self.nodes[2].validateaddress(mSigObj) #use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BTC to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[2].getbalance(), bal+Decimal('1.20000000')) #node2 has both keys of the 2of2 ms addr., tx should affect the balance # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) addr3Obj = self.nodes[2].validateaddress(addr3) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']]) mSigObjValid = self.nodes[2].validateaddress(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) sPK = rawTx['vout'][0]['scriptPubKey']['hex'] self.sync_all() self.nodes[0].generate(1) self.sync_all() #THIS IS A INCOMPLETE FEATURE #NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION assert_equal(self.nodes[2].getbalance(), bal) #for now, assume the funds of a 2of3 multisig tx are not marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex']}] outputs = { self.nodes[0].getnewaddress() : 2.19 } rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransaction(rawTx, inputs) assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx rawTxSigned = self.nodes[2].signrawtransaction(rawTx, inputs) assert_equal(rawTxSigned['complete'], True) #node2 can sign the tx compl., own two of three keys self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal+Decimal('500.00000000')+Decimal('2.19000000')) #block reward + tx # getrawtransaction tests # 1. valid parameters - only supply txid txHash = rawTx["txid"] assert_equal(self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction(txHash, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, True)["hex"], rawTxSigned['hex']) # 6. invalid parameters - supply txid and string "Flase" assert_raises(JSONRPCException, self.nodes[0].getrawtransaction, txHash, "Flase") # 7. invalid parameters - supply txid and empty array assert_raises(JSONRPCException, self.nodes[0].getrawtransaction, txHash, []) # 8. invalid parameters - supply txid and empty dict assert_raises(JSONRPCException, self.nodes[0].getrawtransaction, txHash, {}) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx= self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}] outputs = { self.nodes[0].getnewaddress() : 1 } assert_raises(JSONRPCException, self.nodes[0].createrawtransaction, inputs, outputs) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}] outputs = { self.nodes[0].getnewaddress() : 1 } assert_raises(JSONRPCException, self.nodes[0].createrawtransaction, inputs, outputs) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx= self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) if __name__ == '__main__': RawTransactionsTest().main()
44.954315
147
0.647245
794f2833ee6d6df6702c546a201816fb89d00b11
1,159
py
Python
nipype/interfaces/slicer/filtering/tests/test_auto_GrayscaleFillHoleImageFilter.py
Conxz/nipype
1281723ae56eacd103597ff4081a205583706e62
[ "Apache-2.0" ]
null
null
null
nipype/interfaces/slicer/filtering/tests/test_auto_GrayscaleFillHoleImageFilter.py
Conxz/nipype
1281723ae56eacd103597ff4081a205583706e62
[ "Apache-2.0" ]
2
2017-10-05T21:08:38.000Z
2018-10-09T23:01:23.000Z
nipype/interfaces/slicer/filtering/tests/test_auto_GrayscaleFillHoleImageFilter.py
Conxz/nipype
1281723ae56eacd103597ff4081a205583706e62
[ "Apache-2.0" ]
1
2016-10-11T19:18:53.000Z
2016-10-11T19:18:53.000Z
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from .....testing import assert_equal from ..morphology import GrayscaleFillHoleImageFilter def test_GrayscaleFillHoleImageFilter_inputs(): input_map = dict(args=dict(argstr='%s', ), environ=dict(nohash=True, usedefault=True, ), ignore_exception=dict(nohash=True, usedefault=True, ), inputVolume=dict(argstr='%s', position=-2, ), outputVolume=dict(argstr='%s', hash_files=False, position=-1, ), terminal_output=dict(nohash=True, ), ) inputs = GrayscaleFillHoleImageFilter.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): yield assert_equal, getattr(inputs.traits()[key], metakey), value def test_GrayscaleFillHoleImageFilter_outputs(): output_map = dict(outputVolume=dict(position=-1, ), ) outputs = GrayscaleFillHoleImageFilter.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): yield assert_equal, getattr(outputs.traits()[key], metakey), value
28.268293
78
0.679896
794f285d9ce646d199aab7912f7713f032f5b0ce
4,230
py
Python
temboo/core/Library/RunKeeper/Nutrition/RetrieveLatestEntry.py
jordanemedlock/psychtruths
52e09033ade9608bd5143129f8a1bfac22d634dd
[ "Apache-2.0" ]
7
2016-03-07T02:07:21.000Z
2022-01-21T02:22:41.000Z
temboo/core/Library/RunKeeper/Nutrition/RetrieveLatestEntry.py
jordanemedlock/psychtruths
52e09033ade9608bd5143129f8a1bfac22d634dd
[ "Apache-2.0" ]
null
null
null
temboo/core/Library/RunKeeper/Nutrition/RetrieveLatestEntry.py
jordanemedlock/psychtruths
52e09033ade9608bd5143129f8a1bfac22d634dd
[ "Apache-2.0" ]
8
2016-06-14T06:01:11.000Z
2020-04-22T09:21:44.000Z
# -*- coding: utf-8 -*- ############################################################################### # # RetrieveLatestEntry # Returns the lastest entry from a user's nutrition history. # # Python versions 2.6, 2.7, 3.x # # Copyright 2014, Temboo Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. # # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class RetrieveLatestEntry(Choreography): def __init__(self, temboo_session): """ Create a new instance of the RetrieveLatestEntry Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ super(RetrieveLatestEntry, self).__init__(temboo_session, '/Library/RunKeeper/Nutrition/RetrieveLatestEntry') def new_input_set(self): return RetrieveLatestEntryInputSet() def _make_result_set(self, result, path): return RetrieveLatestEntryResultSet(result, path) def _make_execution(self, session, exec_id, path): return RetrieveLatestEntryChoreographyExecution(session, exec_id, path) class RetrieveLatestEntryInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the RetrieveLatestEntry Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_AccessToken(self, value): """ Set the value of the AccessToken input for this Choreo. ((required, string) The Access Token retrieved after the final step in the OAuth process.) """ super(RetrieveLatestEntryInputSet, self)._set_input('AccessToken', value) class RetrieveLatestEntryResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the RetrieveLatestEntry Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. ((json) The response from RunKeeper.) """ return self._output.get('Response', None) def get_Calories(self): """ Retrieve the value for the "Calories" output from this Choreo execution. ((integer) The number of calories associated with the latest nutrition entry.) """ return self._output.get('Calories', None) def get_Meal(self): """ Retrieve the value for the "Meal" output from this Choreo execution. ((string) The meal name of the latest nutrition entry.) """ return self._output.get('Meal', None) def get_Timestamp(self): """ Retrieve the value for the "Timestamp" output from this Choreo execution. ((date) The timestamp of the entry.) """ return self._output.get('Timestamp', None) def get_URI(self): """ Retrieve the value for the "URI" output from this Choreo execution. ((string) TThe URI of the nutrition entry.) """ return self._output.get('URI', None) def get_Water(self): """ Retrieve the value for the "Water" output from this Choreo execution. ((decimal) The water measurement from the latest nutrition entry.) """ return self._output.get('Water', None) class RetrieveLatestEntryChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return RetrieveLatestEntryResultSet(response, path)
39.166667
159
0.680851
794f28d29c760733ddb2d94c9c5345e470ce41a6
22,515
py
Python
pythran/tests/test_optimizations.py
sthagen/serge-sans-paille-pythran
fe41dcd069404a75ff56b537b7ac87a0e3c04dc2
[ "BSD-3-Clause" ]
null
null
null
pythran/tests/test_optimizations.py
sthagen/serge-sans-paille-pythran
fe41dcd069404a75ff56b537b7ac87a0e3c04dc2
[ "BSD-3-Clause" ]
null
null
null
pythran/tests/test_optimizations.py
sthagen/serge-sans-paille-pythran
fe41dcd069404a75ff56b537b7ac87a0e3c04dc2
[ "BSD-3-Clause" ]
null
null
null
from pythran.tests import TestEnv from pythran.typing import List import unittest import pythran class TestOptimization(TestEnv): def test_constant_fold_nan(self): code = "def constant_fold_nan(a): from numpy import nan; a[0] = nan; return a" self.run_test(code, [1., 2.], constant_fold_nan=[List[float]]) def test_constant_fold_empty_array(self): code = "def constant_fold_empty_array(): from numpy import ones; return ones((0,0,0)).shape" self.run_test(code, constant_fold_empty_array=[]) def test_constant_fold_divide_by_zero(self): code = "def constant_fold_divide_by_zero(): return 1/0" with self.assertRaises(pythran.syntax.PythranSyntaxError): self.check_ast(code, "syntax error anyway", ["pythran.optimizations.ConstantFolding"]) def test_genexp(self): self.run_test("def test_genexp(n): return sum((x*x for x in range(n)))", 5, test_genexp=[int]) def test_genexp_2d(self): self.run_test("def test_genexp_2d(n1, n2): return sum((x*y for x in range(n1) for y in range(n2)))", 2, 3, test_genexp_2d=[int, int]) def test_genexp_if(self): self.run_test("def test_genexp_if(n): return sum((x*x for x in range(n) if x < 4))", 5, test_genexp_if=[int]) def test_genexp_mixedif(self): self.run_test("def test_genexp_mixedif(m, n): return sum((x*y for x in range(m) for y in range(n) if x < 4))", 2, 3, test_genexp_mixedif=[int, int]) def test_genexp_triangular(self): self.run_test("def test_genexp_triangular(n): return sum((x*y for x in range(n) for y in range(x)))", 2, test_genexp_triangular=[int]) def test_aliased_readonce(self): self.run_test(""" def foo(f,l): return map(f,l[1:]) def alias_readonce(n): map = foo return list(map(lambda t: (t[0]*t[1] < 50), list(zip(range(n), range(n))))) """, 10, alias_readonce=[int]) def test_replace_aliased_map(self): self.run_test(""" def alias_replaced(n): map = filter return list(map(lambda x : x < 5, range(n))) """, 10, alias_replaced=[int]) def test_listcomptomap_alias(self): self.run_test(""" def foo(f,l): return map(f,l[3:]) def listcomptomap_alias(n): map = foo return list([x for x in range(n)]) """, 10, listcomptomap_alias=[int]) def test_readonce_nested_calls(self): self.run_test(""" def readonce_nested_calls(Lq): import numpy as np return np.prod(np.sign(Lq)) """, [-5.], readonce_nested_calls=[List[float]]) def test_readonce_return(self): self.run_test(""" def foo(l): return l def readonce_return(n): l = list(foo(range(n))) return l[:] """, 5, readonce_return=[int]) def test_readonce_assign(self): self.run_test(""" def foo(l): l[2] = 5 return list(range(10)) def readonce_assign(n): return foo(list(range(n))) """, 5, readonce_assign=[int]) def test_readonce_assignaug(self): self.run_test(""" def foo(l): l += [2,3] return range(10) def readonce_assignaug(n): return list(foo(list(range(n)))) """, 5, readonce_assignaug=[int]) def test_readonce_for(self): self.run_test(""" def foo(l): s = [] for x in range(10): s.extend(list(l)) return s def readonce_for(n): return foo(range(n)) """, 5, readonce_for=[int]) def test_readonce_2for(self): self.run_test(""" def foo(l): s = 0 for x in l: s += x for x in l: s += x return list(range(s)) def readonce_2for(n): return foo(range(n)) """, 5, readonce_2for=[int]) def test_readonce_while(self): self.run_test(""" def foo(l): r = [] while (len(r) < 50): r.extend(list(l)) return r def readonce_while(n): return foo(range(n)) """, 5, readonce_while=[int]) def test_readonce_if(self): self.run_test(""" def h(l): return sum(l) def g(l): return sum(l) def foo(l): if True: return g(l) else: return h(l) def readonce_if(n): return foo(range(n)) """, 5, readonce_if=[int]) def test_readonce_if2(self): self.run_test(""" def h(l): return sum(l) def g(l): return max(l[1:]) def foo(l): if True: return g(l) else: return h(l) def readonce_if2(n): return foo(list(range(n))) """, 5, readonce_if2=[int]) def test_readonce_slice(self): self.run_test(""" def foo(l): return list(l[:]) def readonce_slice(n): return foo(list(range(n))) """, 5, readonce_slice=[int]) def test_readonce_listcomp(self): self.run_test(""" def foo(l): return [z for x in l for y in l for z in range(x+y)] def readonce_listcomp(n): return foo(range(n)) """, 5, readonce_listcomp=[int]) def test_readonce_genexp(self): self.run_test(""" def foo(l): return (z for x in l for y in l for z in range(x+y)) def readonce_genexp(n): return list(foo(range(n))) """, 5, readonce_genexp=[int]) def test_readonce_recursive(self): self.run_test(""" def foo(l,n): if n < 5: return foo(l,n+1) else: return sum(l) def readonce_recursive(n): return foo(range(n),0) """, 5, readonce_recursive=[int]) def test_readonce_recursive2(self): self.run_test(""" def foo(l,n): if n < 5: return foo(l,n+1) else: return sum(l[1:]) def readonce_recursive2(n): return foo(list(range(n)),0) """, 5, readonce_recursive2=[int]) def test_readonce_cycle(self): self.run_test(""" def foo(l,n): if n < 5: return bar(l,n) else: return sum(l) def bar(l,n): return foo(l, n+1) def readonce_cycle(n): return foo(range(n),0) """, 5, readonce_cycle=[int]) def test_readonce_cycle2(self): self.run_test(""" def foo(l,n): if n < 5: return bar(l,n) else: return sum(l) def bar(l,n): return foo(l, n+1) def readonce_cycle2(n): return foo(range(n),0) """, 5, readonce_cycle2=[int]) def test_readonce_list(self): init = "def foo(l): return sum(list(l))" ref = """def foo(l): return builtins.sum(l)""" self.check_ast(init, ref, ["pythran.optimizations.IterTransformation"]) def test_readonce_tuple(self): init = "def foo(l): return sum(tuple(l))" ref = """def foo(l): return builtins.sum(l)""" self.check_ast(init, ref, ["pythran.optimizations.IterTransformation"]) def test_readonce_array(self): init = "def foo(l): import numpy as np; return sum(np.array(l))" ref = """import numpy as __pythran_import_numpy def foo(l): return builtins.sum(l)""" self.check_ast(init, ref, ["pythran.optimizations.IterTransformation"]) def test_readonce_np_sum_copy(self): init = "def foo(l): import numpy as np; return np.sum(np.copy(l))" ref = """import numpy as __pythran_import_numpy def foo(l): return __pythran_import_numpy.sum(l)""" self.check_ast(init, ref, ["pythran.optimizations.IterTransformation"]) def test_omp_forwarding(self): init = """ def foo(): a = 2 #omp parallel if 1: builtins.print(a) """ ref = """\ def foo(): a = 2 'omp parallel' if 1: builtins.print(a) return builtins.None""" self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution"]) def test_omp_forwarding2(self): init = """ def foo(): #omp parallel if 1: a = 2 builtins.print(a) """ ref = """\ def foo(): 'omp parallel' if 1: pass builtins.print(2) return builtins.None""" self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution"]) def test_omp_forwarding3(self): init = """ def foo(): #omp parallel if 1: a = 2 builtins.print(a) """ ref = """\ def foo(): 'omp parallel' if 1: a = 2 builtins.print(a) return builtins.None""" self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution"]) def test_forwarding0(self): init = ''' def foo(x): for i in x: if i: j = i return j''' ref = init self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution"]) def test_forwarding1(self): init = 'def f(i):\n while i:\n if i > 3: x=1; continue\n x=2\n return x' ref = 'def f(i):\n while i:\n if (i > 3):\n x = 1\n continue\n x = 2\n return x' self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution"]) def test_full_unroll0(self): init = """ def full_unroll0(): k = [] for i,j in zip([1,2,3],[4,5,6]): k.append((i,j)) return k""" ref = '''def full_unroll0(): k = [] __tuple0 = (1, 4) j = __tuple0[1] i = __tuple0[0] builtins.list.append(k, (i, j)) __tuple0 = (2, 5) j = __tuple0[1] i = __tuple0[0] builtins.list.append(k, (i, j)) __tuple0 = (3, 6) j = __tuple0[1] i = __tuple0[0] builtins.list.append(k, (i, j)) return k''' self.check_ast(init, ref, ["pythran.optimizations.ConstantFolding", "pythran.optimizations.LoopFullUnrolling"]) def test_full_unroll1(self): self.run_test(""" def full_unroll1(): c = 0 for i in range(3): for j in range(3): for k in range(3): for l in range(3): c += 1 return c""", full_unroll1=[]) def test_deadcodeelimination(self): init = """ def bar(a): builtins.print(a) return 10 def foo(a): if 1 < bar(a): b = 2 return b""" ref = """\ def bar(a): builtins.print(a) return 10 def foo(a): (1 < bar(a)) return 2""" self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution", "pythran.optimizations.DeadCodeElimination"]) def test_deadcodeelimination2(self): init = """ def foo(a): if 1 < max(a, 2): b = 2 return b""" ref = """def foo(a): return 2""" self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution", "pythran.optimizations.DeadCodeElimination"]) def test_deadcodeelimination3(self): init = """ def bar(a): return a def foo(a): "omp flush" bar(a) return 2""" ref = """def bar(a): return a def foo(a): 'omp flush' pass return 2""" self.check_ast(init, ref, ["pythran.optimizations.DeadCodeElimination"]) def test_deadcodeelimination4(self): init = 'def noeffect(i): a=[];b=[a]; builtins.list.append(b[0],i); return 1' ref = 'def noeffect(i):\n return 1' self.check_ast(init, ref, ["pythran.optimizations.ForwardSubstitution", "pythran.optimizations.ConstantFolding", "pythran.optimizations.DeadCodeElimination"]) def test_patternmatching(self): init = """ def foo(a): return len(set(range(len(set(a)))))""" ref = """def foo(a): return builtins.pythran.len_set(builtins.range(builtins.pythran.len_set(a)))""" self.check_ast(init, ref, ["pythran.optimizations.PatternTransform"]) def test_patternmatching2(self): init = """ def foo(a): return reversed(range(len(set(a))))""" ref = """def foo(a): return builtins.range((builtins.pythran.len_set(a) - 1), (-1), (-1))""" self.check_ast(init, ref, ["pythran.optimizations.PatternTransform"]) def test_patternmatching3(self): init = """ def foo(a): return a * a""" ref = """def foo(a): return (a ** 2)""" self.check_ast(init, ref, ["pythran.optimizations.PatternTransform"]) def test_patternmatching4(self): init = """ def foo(a): return a ** .5""" ref = """import numpy as __pythran_import_numpy def foo(a): return __pythran_import_numpy.sqrt(a)""" self.check_ast(init, ref, ["pythran.optimizations.PatternTransform"]) def test_patternmatching5(self): init = """ def foo(a): return a ** (1./3.)""" ref = """import numpy as __pythran_import_numpy def foo(a): return __pythran_import_numpy.cbrt(a)""" self.check_ast(init, ref, ["pythran.optimizations.ConstantFolding", "pythran.optimizations.PatternTransform"]) def test_lambda_patterns0(self): init = """ def foo(a): return lambda x, y: x + y""" ref = """import operator as __pythran_import_operator def foo(a): return __pythran_import_operator.add""" self.check_ast(init, ref, ["pythran.transformations.RemoveLambdas"]) def test_lambda_patterns1(self): init = """ def foo(a): return (lambda x, y: x + 1), (lambda z, w: z + 1)""" ref = """def foo(a): return (foo_lambda0, foo_lambda0) def foo_lambda0(x, y): return (x + 1)""" self.check_ast(init, ref, ["pythran.transformations.RemoveLambdas"]) def test_inline_builtins_broadcasting0(self): init = """ import numpy as np def foo(a): return np.array([a, 1]) == 1""" ref = """import numpy as __pythran_import_numpy def foo(a): return __pythran_import_numpy.array(((a == 1), (1 == 1)))""" self.check_ast(init, ref, ["pythran.optimizations.InlineBuiltins"]) def test_inline_builtins_broadcasting1(self): init = """ import numpy as np def foo(a): return np.asarray([a, 1]) + 1""" ref = """import numpy as __pythran_import_numpy def foo(a): return __pythran_import_numpy.array(((a + 1), (1 + 1)))""" self.check_ast(init, ref, ["pythran.optimizations.InlineBuiltins"]) def test_inline_builtins_broadcasting2(self): init = """ import numpy as np def foo(a): return - np.asarray([a, 1])""" ref = """import numpy as __pythran_import_numpy def foo(a): return __pythran_import_numpy.array(((- a), (- (1))))""" self.check_ast(init, ref, ["pythran.optimizations.InlineBuiltins"]) def test_inline_builtins_broadcasting3(self): init = """ import numpy as np def foo(a): return np.asarray([a, 1]) + (3, 3)""" ref = """import numpy as __pythran_import_numpy def foo(a): return __pythran_import_numpy.array(((a + 3), (1 + 3)))""" self.check_ast(init, ref, ["pythran.optimizations.InlineBuiltins"]) def test_patternmatching3(self): init = """ def foo(a): return a * a""" ref = """def foo(a): return (a ** 2)""" self.check_ast(init, ref, ["pythran.optimizations.PatternTransform"]) class TestConstantUnfolding(TestEnv): def test_constant_folding_int_literals(self): self.run_test("def constant_folding_int_literals(): return 1+2*3.5", constant_folding_int_literals=[]) def test_constant_folding_str_literals(self): self.run_test("def constant_folding_str_literals(): return \"1\"+'2'*3", constant_folding_str_literals=[]) def test_constant_folding_list_literals(self): self.run_test("def constant_folding_list_literals(): return [1]+[2]*3", constant_folding_list_literals=[]) def test_constant_folding_set_literals(self): self.run_test("def constant_folding_set_literals(): return {1,2,3,3}", constant_folding_set_literals=[]) def test_constant_folding_builtins(self): self.run_test("def constant_folding_builtins(): return list(map(len,zip(range(2), range(2))))", constant_folding_builtins=[]) def test_constant_folding_imported_functions(self): self.run_test("def constant_folding_imported_functions(): from math import cos ; return float(int(10*cos(1)))", constant_folding_imported_functions=[]) def test_constant_folding_list_method_calls(self): self.run_test("def foo(n): l=[] ; l.append(n) ; return l\ndef constant_folding_list_method_calls(n): return foo(n)", 1, constant_folding_list_method_calls=[int]) def test_constant_folding_complex_calls(self): self.run_test("def constant_folding_complex_calls(): return complex(1,1)", constant_folding_complex_calls=[]) def test_constant_folding_expansive_calls(self): self.run_test("def constant_folding_expansive_calls(): return list(range(2**6))", constant_folding_expansive_calls=[]) def test_constant_folding_too_expansive_calls(self): self.run_test("def constant_folding_too_expansive_calls(): return list(range(2**16))", constant_folding_too_expansive_calls=[]) def test_constant_folding_bool_array(self): self.run_test("def constant_folding_bool_array(): import numpy as np; return np.concatenate([np.array([True]),np.array([True])])", constant_folding_bool_array=[]) class TestAnalyses(TestEnv): def test_imported_ids_shadow_intrinsic(self): self.run_test("def imported_ids_shadow_intrinsic(range): return [ i*range for i in [1,2,3] ]", 2, imported_ids_shadow_intrinsic=[int]) def test_shadowed_variables(self): self.run_test("def shadowed_variables(a): b=1 ; b+=a ; a= 2 ; b+=a ; return a,b", 18, shadowed_variables=[int]) def test_decl_shadow_intrinsic(self): self.run_test("def decl_shadow_intrinsic(l): len=lambda l:1 ; return len(l)", [1,2,3], decl_shadow_intrinsic=[List[int]]) def test_used_def_chains(self): self.run_test("def use_def_chain(a):\n i=a\n for i in range(4):\n print(i)\n i=5.4\n print(i)\n break\n i = 4\n return i", 3, use_def_chain=[int]) def test_used_def_chains2(self): self.run_test("def use_def_chain2(a):\n i=a\n for i in range(4):\n print(i)\n i='lala'\n print(i)\n i = 4\n return i", 3, use_def_chain2=[int]) @unittest.skip("Variable defined in a branch in loops are not accepted.") def test_importedids(self): self.run_test("def importedids(a):\n i=a\n for i in range(4):\n if i==0:\n b = []\n else:\n b.append(i)\n return b", 3, importedids=[int]) def test_falsepoly(self): self.run_test("def falsepoly():\n i = 2\n if i:\n i='ok'\n else:\n i='lolo'\n return i", falsepoly=[]) def test_global_effects_unknown(self): code = ''' def bb(x): return x[0]() def ooo(a): def aa(): return a return aa, def global_effects_unknown(a): return bb(ooo(a))''' self.run_test(code, 1, global_effects_unknown=[int]) def test_argument_effects_unknown(self): code = ''' def int_datatype(n): return list, str, n def list_datatype(parent): def parser(value): return parent[0](value) def formatter(value): return parent[1](value) return parser, formatter def argument_effects_unknown(n): list_datatype(int_datatype(n))''' self.run_test(code, 1, argument_effects_unknown=[int]) def test_inlining_globals_side_effect(self): code = ''' import random r = random.random() def inlining_globals_side_effect(): return r == r == r ''' self.run_test(code, inlining_globals_side_effect=[]) def test_subscript_function_aliasing(self): code = ''' SP = 0x20 STX = 0x02 ETX = 0x03 def _div_tuple(base, div): a = base // div b = base % div return a, b def number_datatype(base, dc, fs=6): def parser(value): if not value.isdigit(): raise ValueError("Invalid number") value = int(value) ret = [] while value > 0: a, b = _div_tuple(value, len(base)) ret.insert(0, ord(base[b])) value = a ret = [ord('0')] * (dc - len(ret)) + ret ret = [SP] * (fs - len(ret)) + ret return ret def formatter(v): ret = 0 for a in [chr(c) for c in v][-dc:]: ret = ret * len(base) + base.index(a) return str(int(ret)) return parser, formatter def int_datatype(dc, fs=6): return number_datatype(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], dc, fs) def hex_datatype(dc, fs=6): return number_datatype(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'], dc, fs) simple_commands = [('aa', 107, int_datatype(4)), ('bb', 112, int_datatype(1)), ] str_commands = {c: (c, v, f) for c, v, f in simple_commands} def subscript_function_aliasing(id, ai, pfc, value): data = [0x0] * 16 _, pfc, fcts = str_commands[pfc] data[5:9] = int_datatype(4, 4)[0](str(pfc)) data[9:15] = fcts[0](value) return data''' self.run_test(code, 'aa', 2, 'bb', '3', subscript_function_aliasing=[str, int, str, str]) def test_range_simplify_jl(self): code = ''' import numpy as np silent = 0 def B(n): TS = 10 outSig = [] while n: outSamps = np.zeros((10, 2)) outSig.append(outSamps.copy()) outSamps = np.zeros((10, 2)) outSig.append(outSamps.copy()) return outSig, TS def range_simplify_jl(n): outSignal, TS = B(n) return (outSignal)''' self.run_test(code, 0, range_simplify_jl=[int]) def test_range_simplify_subscript(self): code = ''' def LooperMaster___init__(): self_userUseTempo = 1 self = [self_userUseTempo] return self def range_simplify_subscript(n): ML = LooperMaster___init__() ML[0] = n return ML''' self.run_test(code, 1, range_simplify_subscript=[int]) def test_insert_none0(self): code = ''' def insert_none0(x): for ii in range(len(x)): if x[ii]: return x[ii] else: return 0''' self.run_test(code, [], insert_none0=[List[int]])
30.50813
170
0.587608
794f2b4d157d2b7e2e2778c0c492ba5af4fa657b
1,712
py
Python
configs/swinunetv2gtv8crossattentionupsample/swinunetv2_g10_gtv8_cross_attention_upsample_patch_expand_base_patch4_window7_512x512_160k_ade20k.py
Myyyr/transseg2d
7664653dec0bf63d96ad3c76fc225d2d7f607e41
[ "Apache-2.0" ]
null
null
null
configs/swinunetv2gtv8crossattentionupsample/swinunetv2_g10_gtv8_cross_attention_upsample_patch_expand_base_patch4_window7_512x512_160k_ade20k.py
Myyyr/transseg2d
7664653dec0bf63d96ad3c76fc225d2d7f607e41
[ "Apache-2.0" ]
null
null
null
configs/swinunetv2gtv8crossattentionupsample/swinunetv2_g10_gtv8_cross_attention_upsample_patch_expand_base_patch4_window7_512x512_160k_ade20k.py
Myyyr/transseg2d
7664653dec0bf63d96ad3c76fc225d2d7f607e41
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/models/swin_unet_v2_gtv8_cross_attention_upsample.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] model = dict( backbone=dict( embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7, ape=False, drop_path_rate=0.3, patch_norm=True, use_checkpoint=False, num_classes=150, use_cross_attention_by_layer=[True, True, True, True], residual_patch_expand=True, gt_num=10 ), decode_head=dict( embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7, ape=False, drop_path_rate=0.3, patch_norm=True, use_checkpoint=False, num_classes=150 ) #, # auxiliary_head=dict( # in_channels=512, # num_classes=150 # ) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2)
31.127273
101
0.568925
794f2b5d089da1680cfa6520c43a30396b24a03a
15,879
py
Python
pybind/slxos/v16r_1_00b/interface/port_channel/spanning_tree/vlan/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/interface/port_channel/spanning_tree/vlan/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v16r_1_00b/interface/port_channel/spanning_tree/vlan/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import guard class vlan(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-interface - based on the path /interface/port-channel/spanning-tree/vlan. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__id','__cost','__priority','__guard',) _yang_name = 'vlan' _rest_name = 'vlan' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__priority = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..240']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Port priority for a bridge', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) self.__guard = YANGDynClass(base=guard.guard, is_container='container', presence=False, yang_name="guard", rest_name="guard", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u"Change an interface's spanning tree guard \nmode", u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='container', is_config=True) self.__cost = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..200000000']}), is_leaf=True, yang_name="cost", rest_name="cost", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Path cost for a port', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) self.__id = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4090']}), is_leaf=True, yang_name="id", rest_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None, u'cli-suppress-no': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'interface', u'port-channel', u'spanning-tree', u'vlan'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'interface', u'Port-channel', u'spanning-tree', u'vlan'] def _get_id(self): """ Getter method for id, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/id (uint32) """ return self.__id def _set_id(self, v, load=False): """ Setter method for id, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/id (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_id() directly. """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4090']}), is_leaf=True, yang_name="id", rest_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None, u'cli-suppress-no': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """id must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4090']}), is_leaf=True, yang_name="id", rest_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None, u'cli-suppress-no': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True)""", }) self.__id = t if hasattr(self, '_set'): self._set() def _unset_id(self): self.__id = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..4090']}), is_leaf=True, yang_name="id", rest_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-suppress-range': None, u'cli-suppress-no': None}}, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) def _get_cost(self): """ Getter method for cost, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/cost (uint32) """ return self.__cost def _set_cost(self, v, load=False): """ Setter method for cost, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/cost (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_cost is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cost() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..200000000']}), is_leaf=True, yang_name="cost", rest_name="cost", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Path cost for a port', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """cost must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..200000000']}), is_leaf=True, yang_name="cost", rest_name="cost", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Path cost for a port', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True)""", }) self.__cost = t if hasattr(self, '_set'): self._set() def _unset_cost(self): self.__cost = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..200000000']}), is_leaf=True, yang_name="cost", rest_name="cost", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Path cost for a port', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) def _get_priority(self): """ Getter method for priority, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/priority (uint32) """ return self.__priority def _set_priority(self, v, load=False): """ Setter method for priority, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/priority (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_priority is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_priority() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..240']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Port priority for a bridge', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """priority must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..240']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Port priority for a bridge', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True)""", }) self.__priority = t if hasattr(self, '_set'): self._set() def _unset_priority(self): self.__priority = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'0..240']}), is_leaf=True, yang_name="priority", rest_name="priority", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Port priority for a bridge', u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='uint32', is_config=True) def _get_guard(self): """ Getter method for guard, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/guard (container) """ return self.__guard def _set_guard(self, v, load=False): """ Setter method for guard, mapped from YANG variable /interface/port_channel/spanning_tree/vlan/guard (container) If this variable is read-only (config: false) in the source YANG file, then _set_guard is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_guard() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=guard.guard, is_container='container', presence=False, yang_name="guard", rest_name="guard", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u"Change an interface's spanning tree guard \nmode", u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """guard must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=guard.guard, is_container='container', presence=False, yang_name="guard", rest_name="guard", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u"Change an interface's spanning tree guard \nmode", u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='container', is_config=True)""", }) self.__guard = t if hasattr(self, '_set'): self._set() def _unset_guard(self): self.__guard = YANGDynClass(base=guard.guard, is_container='container', presence=False, yang_name="guard", rest_name="guard", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u"Change an interface's spanning tree guard \nmode", u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-xstp', defining_module='brocade-xstp', yang_type='container', is_config=True) id = __builtin__.property(_get_id, _set_id) cost = __builtin__.property(_get_cost, _set_cost) priority = __builtin__.property(_get_priority, _set_priority) guard = __builtin__.property(_get_guard, _set_guard) _pyangbind_elements = {'id': id, 'cost': cost, 'priority': priority, 'guard': guard, }
67.858974
582
0.720071
794f2b621831af6296c973bddca62e641eaa072e
4,421
py
Python
xarray/core/dtypes.py
DocOtak/xarray
01a9baa01b1378cbf3f324ea3c27150a3860d3d1
[ "Apache-2.0" ]
1
2020-09-14T02:32:54.000Z
2020-09-14T02:32:54.000Z
xarray/core/dtypes.py
DocOtak/xarray
01a9baa01b1378cbf3f324ea3c27150a3860d3d1
[ "Apache-2.0" ]
null
null
null
xarray/core/dtypes.py
DocOtak/xarray
01a9baa01b1378cbf3f324ea3c27150a3860d3d1
[ "Apache-2.0" ]
2
2019-08-22T21:07:03.000Z
2020-03-30T10:25:00.000Z
import functools import numpy as np from . import utils # Use as a sentinel value to indicate a dtype appropriate NA value. NA = utils.ReprObject('<NA>') @functools.total_ordering class AlwaysGreaterThan: def __gt__(self, other): return True def __eq__(self, other): return isinstance(other, type(self)) @functools.total_ordering class AlwaysLessThan: def __lt__(self, other): return True def __eq__(self, other): return isinstance(other, type(self)) # Equivalence to np.inf (-np.inf) for object-type INF = AlwaysGreaterThan() NINF = AlwaysLessThan() # Pairs of types that, if both found, should be promoted to object dtype # instead of following NumPy's own type-promotion rules. These type promotion # rules match pandas instead. For reference, see the NumPy type hierarchy: # https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.scalars.html PROMOTE_TO_OBJECT = [ {np.number, np.character}, # numpy promotes to character {np.bool_, np.character}, # numpy promotes to character {np.bytes_, np.unicode_}, # numpy promotes to unicode ] def maybe_promote(dtype): """Simpler equivalent of pandas.core.common._maybe_promote Parameters ---------- dtype : np.dtype Returns ------- dtype : Promoted dtype that can hold missing values. fill_value : Valid missing value for the promoted dtype. """ # N.B. these casting rules should match pandas if np.issubdtype(dtype, np.floating): fill_value = np.nan elif np.issubdtype(dtype, np.timedelta64): # See https://github.com/numpy/numpy/issues/10685 # np.timedelta64 is a subclass of np.integer # Check np.timedelta64 before np.integer fill_value = np.timedelta64('NaT') elif np.issubdtype(dtype, np.integer): if dtype.itemsize <= 2: dtype = np.float32 else: dtype = np.float64 fill_value = np.nan elif np.issubdtype(dtype, np.complexfloating): fill_value = np.nan + np.nan * 1j elif np.issubdtype(dtype, np.datetime64): fill_value = np.datetime64('NaT') else: dtype = object fill_value = np.nan return np.dtype(dtype), fill_value NAT_TYPES = (np.datetime64('NaT'), np.timedelta64('NaT')) def get_fill_value(dtype): """Return an appropriate fill value for this dtype. Parameters ---------- dtype : np.dtype Returns ------- fill_value : Missing value corresponding to this dtype. """ _, fill_value = maybe_promote(dtype) return fill_value def get_pos_infinity(dtype): """Return an appropriate positive infinity for this dtype. Parameters ---------- dtype : np.dtype Returns ------- fill_value : positive infinity value corresponding to this dtype. """ if issubclass(dtype.type, (np.floating, np.integer)): return np.inf if issubclass(dtype.type, np.complexfloating): return np.inf + 1j * np.inf return INF def get_neg_infinity(dtype): """Return an appropriate positive infinity for this dtype. Parameters ---------- dtype : np.dtype Returns ------- fill_value : positive infinity value corresponding to this dtype. """ if issubclass(dtype.type, (np.floating, np.integer)): return -np.inf if issubclass(dtype.type, np.complexfloating): return -np.inf - 1j * np.inf return NINF def is_datetime_like(dtype): """Check if a dtype is a subclass of the numpy datetime types """ return (np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)) def result_type(*arrays_and_dtypes): """Like np.result_type, but with type promotion rules matching pandas. Examples of changed behavior: number + string -> object (not string) bytes + unicode -> object (not unicode) Parameters ---------- *arrays_and_dtypes : list of arrays and dtypes The dtype is extracted from both numpy and dask arrays. Returns ------- numpy.dtype for the result. """ types = {np.result_type(t).type for t in arrays_and_dtypes} for left, right in PROMOTE_TO_OBJECT: if (any(issubclass(t, left) for t in types) and any(issubclass(t, right) for t in types)): return np.dtype(object) return np.result_type(*arrays_and_dtypes)
26.005882
77
0.654377
794f2b66c200b853e36fd5fbb5b5ea8eb9c2a6b4
179
py
Python
tests/utils.py
black-cape/cast-iron-worker
023df792ade1813ff2fe851d39cba76d3a12e770
[ "MIT" ]
1
2021-04-28T21:32:49.000Z
2021-04-28T21:32:49.000Z
tests/utils.py
black-cape/cast-iron-worker
023df792ade1813ff2fe851d39cba76d3a12e770
[ "MIT" ]
5
2021-04-29T14:20:53.000Z
2022-01-06T17:09:13.000Z
tests/utils.py
black-cape/cast-iron-worker
023df792ade1813ff2fe851d39cba76d3a12e770
[ "MIT" ]
null
null
null
"""Common test module""" class DummyClass: def setup(self, **kwargs): pass def run(self, data, **kwargs): pass def test_run(data, **kwargs): pass
12.785714
34
0.569832
794f2dd075b8a4570c986f0a28f5b8541b381398
1,350
py
Python
candle.py
damonthecricket/py-stock
469ba6a53e091f36b336e39c5b6b6934adfab1cd
[ "MIT" ]
null
null
null
candle.py
damonthecricket/py-stock
469ba6a53e091f36b336e39c5b6b6934adfab1cd
[ "MIT" ]
8
2019-08-10T20:57:43.000Z
2019-08-15T15:06:14.000Z
candle.py
damonthecricket/pystock
469ba6a53e091f36b336e39c5b6b6934adfab1cd
[ "MIT" ]
null
null
null
import csv # Candle def create(date, open, high, low, close, volume): return Candle(date, open, high, low, close, volume) class Candle: def __init__(self, date, open_, high, low, close, volume): self._date = date self._open = open_ self._high = high self._low = low self._close = close self._volume = volume def date(self): return self._date def open(self): return self._open def high(self): return self._high def low(self): return self._low def close(self): return self._close def volume(self): return self._volume def is_bullish(self): return self._low < self._high def is_bearish(self): return self._low > self._high def is_unit(self): return self._low == self._high def current(self): if self.is_bullish(): return self._high elif self.is_bearish(): return self._low else: return self._high def __eq__(self, other): return self._date == other.date() and self._open == other.open() and self._high == other.high() and \ self._low == other.low() and self._close == other.close() and self._volume == other.volume() and \ self._volume == other.volume() def __str__(self): return "Japan candle, data: %s, open: %s, high: %s, low: %s, close: %s, volume: %s" % \ (self._date, self._open, self._high, self._low, self._close, self._volume)
16.875
103
0.660741
794f2dec6a07b2e30f788fb6de0f58d4220e2d83
918
py
Python
tests/test_optimizers/test_parameter/test_stochastic_hill_climbing_para_init.py
gtr8/Gradient-Free-Optimizers
19dcde35d93f048721bac3600f33696ca21ec669
[ "MIT" ]
860
2020-06-10T08:53:41.000Z
2022-03-30T14:22:20.000Z
tests/test_optimizers/test_parameter/test_stochastic_hill_climbing_para_init.py
gtr8/Gradient-Free-Optimizers
19dcde35d93f048721bac3600f33696ca21ec669
[ "MIT" ]
24
2021-01-25T08:06:54.000Z
2022-01-24T13:46:48.000Z
tests/test_optimizers/test_parameter/test_stochastic_hill_climbing_para_init.py
gtr8/Gradient-Free-Optimizers
19dcde35d93f048721bac3600f33696ca21ec669
[ "MIT" ]
52
2020-06-25T09:36:15.000Z
2022-03-18T18:11:52.000Z
# Author: Simon Blanke # Email: simon.blanke@yahoo.com # License: MIT License import pytest import numpy as np from gradient_free_optimizers import StochasticHillClimbingOptimizer from .test_hill_climbing_para_init import hill_climbing_para from ._base_para_test import _base_para_test_func def objective_function(para): score = -para["x1"] * para["x1"] return score search_space = {"x1": np.arange(-100, 101, 1)} stochastic_hill_climbing_para = hill_climbing_para + [ ({"p_accept": 0.01}), ({"p_accept": 0.5}), ({"p_accept": 1}), ({"p_accept": 10}), ({"norm_factor": 0.1}), ({"norm_factor": 0.5}), ({"norm_factor": 0.9}), ({"norm_factor": "adaptive"}), ] pytest_wrapper = ("opt_para", stochastic_hill_climbing_para) @pytest.mark.parametrize(*pytest_wrapper) def test_hill_climbing_para(opt_para): _base_para_test_func(opt_para, StochasticHillClimbingOptimizer)
23.538462
68
0.715686
794f2f69b9b7678cacd02f5655016bfc47b2d4a6
1,230
py
Python
redlure-client.py
redlure/redlure-client
4441950ac41c16830d1bfea7b9fc98025429c38a
[ "BSD-3-Clause" ]
5
2020-08-09T16:09:58.000Z
2020-11-01T13:45:03.000Z
redlure-client.py
redlure/redlure-client
4441950ac41c16830d1bfea7b9fc98025429c38a
[ "BSD-3-Clause" ]
19
2021-04-01T12:25:50.000Z
2022-03-02T13:25:32.000Z
redlure-client.py
redlure/redlure-client
4441950ac41c16830d1bfea7b9fc98025429c38a
[ "BSD-3-Clause" ]
2
2020-12-09T05:00:54.000Z
2022-01-13T15:48:50.000Z
#!/usr/bin/env python3 from config import Config import subprocess import os import shlex def gen_certs(): proc = subprocess.Popen(shlex.split('openssl req -x509 -newkey rsa:4096 -nodes -subj "/" -out redlure-cert.pem -keyout redlure-key.pem -days 365')) proc.wait() def main(): # base ng command that will start the client cmd = f'ng serve --disable-host-check --host {Config.HOST} --port {Config.PORT}' # if SSL add ssl flag if Config.SSL: cmd += f' --ssl --ssl-cert {Config.CERT_PATH} --ssl-key {Config.KEY_PATH}' if Config.CERT_PATH == 'redlure-cert.pem' and Config.KEY_PATH == 'redlure-key.pem': # if not generated, run OpenSSL if not os.path.isfile('redlure-cert.pem') or not os.path.isfile('redlure-key.pem'): gen_certs() else: if not os.path.isfile(Config.CERT_PATH) or not os.path.isfile(Config.KEY_PATH): print('[!] CERT_PATH or KEY_PATH file does not exist') exit() try: # start the webserver client = subprocess.Popen(shlex.split(cmd)) client.wait() except KeyboardInterrupt: pass if __name__ == '__main__': main()
29.285714
151
0.611382
794f2f8791b2b8b3850c1eae1b3db050aa76e192
2,799
py
Python
tests/unit/test_rdf_utils.py
gouttegd/kgx
1efa0bfaf62113855ffc1d002903236e4ff8706a
[ "BSD-3-Clause" ]
32
2020-10-21T17:35:27.000Z
2022-03-17T02:40:08.000Z
tests/unit/test_rdf_utils.py
gouttegd/kgx
1efa0bfaf62113855ffc1d002903236e4ff8706a
[ "BSD-3-Clause" ]
136
2018-04-24T02:15:39.000Z
2020-10-02T00:14:13.000Z
tests/unit/test_rdf_utils.py
gouttegd/kgx
1efa0bfaf62113855ffc1d002903236e4ff8706a
[ "BSD-3-Clause" ]
19
2018-05-03T17:03:08.000Z
2020-07-15T22:12:40.000Z
import os import pytest from rdflib import URIRef, Graph from kgx.prefix_manager import PrefixManager from kgx.utils.rdf_utils import infer_category, process_predicate from tests import RESOURCE_DIR @pytest.mark.parametrize( "query", [ (URIRef("http://purl.obolibrary.org/obo/GO_0007267"), "biological_process"), (URIRef("http://purl.obolibrary.org/obo/GO_0019899"), "molecular_function"), (URIRef("http://purl.obolibrary.org/obo/GO_0005739"), "cellular_component"), ], ) def test_infer_category(query): """ Test inferring of biolink category for a given IRI. """ graph = Graph() graph.parse(os.path.join(RESOURCE_DIR, "goslim_generic.owl")) [c] = infer_category(query[0], graph) assert c == query[1] @pytest.mark.parametrize( "query", [ ( "http://purl.org/oban/association_has_object", "biolink:object", "rdf:object", "OBAN:association_has_object", "association_has_object", ), ( "http://www.w3.org/1999/02/22-rdf-syntax-ns#type", "biolink:type", "rdf:type", "rdf:type", "type", ), ( "https://monarchinitiative.org/frequencyOfPhenotype", None, None, "MONARCH:frequencyOfPhenotype", "frequencyOfPhenotype", ), ( "http://purl.obolibrary.org/obo/RO_0002200", "biolink:has_phenotype", "biolink:has_phenotype", "RO:0002200", "0002200", ), ( "http://www.w3.org/2002/07/owl#equivalentClass", "biolink:same_as", "biolink:same_as", "owl:equivalentClass", "equivalentClass", ), ( "https://www.example.org/UNKNOWN/new_prop", None, None, ":new_prop", "new_prop", ), ( "http://purl.obolibrary.org/obo/RO_0000091", None, None, "RO:0000091", "0000091", ), ("RO:0000091", None, None, "RO:0000091", "0000091"), ("category", "biolink:category", "biolink:category", ":category", "category"), ("predicate", "biolink:predicate", "rdf:predicate", ":predicate", "predicate"), ("type", "biolink:type", "rdf:type", ":type", "type"), ("name", "biolink:name", "rdfs:label", ":name", "name"), ], ) def test_process_predicate(query): """ Test behavior of process_predicate method. """ pm = PrefixManager() x = process_predicate(pm, query[0]) assert x[0] == query[1] assert x[1] == query[2] assert x[2] == query[3] assert x[3] == query[4]
28.85567
87
0.538049
794f2f884908b33449a379effe4ce4343f0dd322
5,830
py
Python
random-forests.py
saksham-mittal/CS6510-Kaggle-Challenge
01cf220a826649fc7341c057a2175c98acf025ba
[ "MIT" ]
null
null
null
random-forests.py
saksham-mittal/CS6510-Kaggle-Challenge
01cf220a826649fc7341c057a2175c98acf025ba
[ "MIT" ]
null
null
null
random-forests.py
saksham-mittal/CS6510-Kaggle-Challenge
01cf220a826649fc7341c057a2175c98acf025ba
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.ensemble import RandomForestClassifier training_set = pd.read_csv("train.csv") # Extracting labels from training set training_labels = training_set['pricing_category'] print(training_labels) # Dropping the last column and id from training set training_set = training_set.drop(labels='pricing_category', axis=1) training_set = training_set.drop(labels='id', axis=1) # print(training_set) training_set['taxi_type'].fillna('O', inplace=True) training_set['customer_score'].fillna(training_set['customer_score'].mean(), inplace=True) training_set['customer_score_confidence'].fillna('O', inplace=True) training_set['months_of_activity'].fillna(0.0, inplace=True) labelEnc = LabelEncoder() male = labelEnc.fit_transform(training_set['sex']) oneHotEnc = OneHotEncoder(categorical_features=[0]) male = oneHotEnc.fit_transform(male.reshape(-1, 1)).toarray() # print(male) training_temp = {} for i in range(len(training_set.taxi_type.unique())): training_temp["taxi_type_{}".format(sorted(training_set.taxi_type.unique())[i])] = np.zeros(training_set.shape[0], dtype="float32") for i, taxi in enumerate(training_set['taxi_type']): training_temp['taxi_type_{}'.format(taxi)][i] = 1.0 for key in training_temp.keys(): training_set[key] = training_temp[key] training_set = training_set.drop(labels='taxi_type', axis=1) training_temp = {} for i in range(len(training_set.customer_score_confidence.unique())): training_temp["customer_score_confidence_{}".format(sorted(training_set.customer_score_confidence.unique())[i])] = np.zeros(training_set.shape[0], dtype="float32") for i, taxi in enumerate(training_set['customer_score_confidence']): training_temp['customer_score_confidence_{}'.format(taxi)][i] = 1.0 for key in training_temp.keys(): training_set[key] = training_temp[key] training_set = training_set.drop(labels='customer_score_confidence', axis=1) training_temp = {} for i in range(len(training_set.drop_location_type.unique())): training_temp["drop_location_type_{}".format(sorted(training_set.drop_location_type.unique())[i])] = np.zeros(training_set.shape[0], dtype="float32") for i, taxi in enumerate(training_set['drop_location_type']): training_temp['drop_location_type_{}'.format(taxi)][i] = 1.0 for key in training_temp.keys(): training_set[key] = training_temp[key] training_set = training_set.drop(labels='drop_location_type', axis=1) training_set = training_set.drop(labels='sex', axis=1) training_set.insert(training_set.shape[1], "male", male[:, 0], True) training_set.insert(training_set.shape[1], "female", male[:, 1], True) print(training_set) training_set1 = training_set training_set['anon_var_1'].fillna(training_set['anon_var_1'].mean(), inplace=True) # print(training_set) training_set1 = training_set1.drop(labels='anon_var_1', axis=1) # print(training_set1) test_set = pd.read_csv("test.csv") # Dropping is column test_id = test_set['id'] test_id = np.asarray(test_id) test_set = test_set.drop(labels='id', axis=1) test_set['taxi_type'].fillna('O', inplace=True) test_set['customer_score'].fillna(training_set['customer_score'].mean(), inplace=True) test_set['customer_score_confidence'].fillna('O', inplace=True) test_set['months_of_activity'].fillna(0.0, inplace=True) labelEnc = LabelEncoder() male = labelEnc.fit_transform(test_set['sex']) oneHotEnc = OneHotEncoder(categorical_features=[0]) male = oneHotEnc.fit_transform(male.reshape(-1, 1)).toarray() # print(male) test_temp = {} for i in range(len(test_set.taxi_type.unique())): test_temp["taxi_type_{}".format(sorted(test_set.taxi_type.unique())[i])] = np.zeros(test_set.shape[0], dtype="float32") for i, taxi in enumerate(test_set['taxi_type']): test_temp['taxi_type_{}'.format(taxi)][i] = 1.0 for key in test_temp.keys(): test_set[key] = test_temp[key] test_set = test_set.drop(labels='taxi_type', axis=1) test_temp = {} for i in range(len(test_set.customer_score_confidence.unique())): test_temp["customer_score_confidence_{}".format(sorted(test_set.customer_score_confidence.unique())[i])] = np.zeros(test_set.shape[0], dtype="float32") for i, taxi in enumerate(test_set['customer_score_confidence']): test_temp['customer_score_confidence_{}'.format(taxi)][i] = 1.0 for key in test_temp.keys(): test_set[key] = test_temp[key] test_set = test_set.drop(labels='customer_score_confidence', axis=1) test_temp = {} for i in range(len(test_set.drop_location_type.unique())): test_temp["drop_location_type_{}".format(sorted(test_set.drop_location_type.unique())[i])] = np.zeros(test_set.shape[0], dtype="float32") for i, taxi in enumerate(test_set['drop_location_type']): test_temp['drop_location_type_{}'.format(taxi)][i] = 1.0 for key in test_temp.keys(): test_set[key] = test_temp[key] test_set = test_set.drop(labels='drop_location_type', axis=1) test_set = test_set.drop(labels='sex', axis=1) test_set.insert(test_set.shape[1], "male", male[:, 0], True) test_set.insert(test_set.shape[1], "female", male[:, 1], True) test_set1 = test_set print(test_set) test_set['anon_var_1'].fillna(test_set['anon_var_1'].mean(), inplace=True) test_set1 = test_set1.drop(labels='anon_var_1', axis=1) print(training_labels.sum(axis=0)) # Using sklearn random forest classifier clf = RandomForestClassifier(n_estimators=1000) # Fitting the training data clf.fit(training_set, training_labels) print("Data fitting completed") ans = clf.predict(test_set) print("Data prediction completed") print(test_id.shape) print(ans.shape) print(ans) with open("output-random-forests.csv", "w") as fp: fp.write("id,pricing_category\n") for i in range(test_id.shape[0]): fp.write("{},{}.0\n".format(test_id[i], ans[i]))
34.294118
167
0.750943
794f2fd2dd74d546dd881e0abc0fca6f405f1a94
6,707
py
Python
utilities/get_ifmtu.py
xod442/hpe-composable-fabric-sidekick
55c20b082c2ecacd8633bf3d085159100802ec2b
[ "Apache-2.0" ]
null
null
null
utilities/get_ifmtu.py
xod442/hpe-composable-fabric-sidekick
55c20b082c2ecacd8633bf3d085159100802ec2b
[ "Apache-2.0" ]
3
2019-06-27T18:29:44.000Z
2020-02-04T23:40:14.000Z
utilities/get_ifmtu.py
xod442/hpe-composable-fabric-sidekick
55c20b082c2ecacd8633bf3d085159100802ec2b
[ "Apache-2.0" ]
2
2019-06-02T23:04:39.000Z
2019-08-07T17:20:08.000Z
# -*-coding: utf-8 -*- # (C) Copyright 2019 Hewlett Packard Enterprise Development LP. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # __author__ = "@netwookie" # __credits__ = ["Rick Kauffman"] # __license__ = "Apache2.0" # __version__ = "1.0.0" # __maintainer__ = "Rick Kauffman" # __email__ = "rick.a.kauffman@hpe.com" #SNMPv2c # Send SNMP GET request using the following options: #* with SNMPv2c, community 'public' # * over IPv4/UDP # * to an Agent at demo.snmplabs.com:161 # * for two OIDs in string form # Functionally similar to: # | $ snmpget -v2c -c public demo.snmplabs.com 1.3.6.1.2.1.1.1.0 1.3.6.1.2.1.1.6.0 from pysnmp.hlapi import * from pysnmp.smi import * from pysnmp.proto import * from pysnmp.entity import * from pysnmp.carrier import * def get_ifMtu_oids(switch_ipaddress): counter=0 ifmtu_list=[] errorIndication, errorStatus, errorIndex, varBinds = next( getCmd(SnmpEngine(), CommunityData('public'), UdpTransportTarget((switch_ipaddress, 161)), ContextData(), # THis OID gets the number of interfaces ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.4')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.5')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.6')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.7')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.8')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.9')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.10')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.11')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.12')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.13')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.14')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.15')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.16')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.17')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.18')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.19')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.20')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.21')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.22')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.23')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.24')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.25')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.26')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.27')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.28')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.29')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.30')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.31')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.32')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.33')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.34')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.35')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.36')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.37')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.38')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.39')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.40')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.41')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.42')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.43')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.44')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.45')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.46')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.47')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.48')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.49')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.50')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.51')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.52')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.53')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.54')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.55')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.56')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.57')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.58')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.59')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.60')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.61')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.62')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.63')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.64')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.65')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.66')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.67')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.68')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.69')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.70')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.71')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.72')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.73')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.74')), ObjectType(ObjectIdentity('1.3.6.1.2.1.2.2.1.4.75')) ) ) if errorIndication: print(errorIndication) elif errorStatus: print('%s at %s' % (errorStatus.prettyPrint(),errorIndex and varBinds[int(errorIndex) - 1][0] or '?')) else: for varBind in varBinds: ifmtu_list.append(str(varBinds[counter][1])) counter=counter+1 return ifmtu_list
49.316176
110
0.586104
794f2fe458f7a6d4ce34c809346d6c32c6818ddf
899
py
Python
torchbenchmark/util/framework/timm/timm_config.py
LaudateCorpus1/benchmark
2a8528f91dfbbd880e514b4deefa692a48c32af8
[ "BSD-3-Clause" ]
null
null
null
torchbenchmark/util/framework/timm/timm_config.py
LaudateCorpus1/benchmark
2a8528f91dfbbd880e514b4deefa692a48c32af8
[ "BSD-3-Clause" ]
null
null
null
torchbenchmark/util/framework/timm/timm_config.py
LaudateCorpus1/benchmark
2a8528f91dfbbd880e514b4deefa692a48c32af8
[ "BSD-3-Clause" ]
null
null
null
import torch.nn as nn import dataclasses from timm.optim import create_optimizer @dataclasses.dataclass class OptimizerOption: lr: float opt: str weight_decay: float momentum: float class TimmConfig: def __init__(self, model, device): self.model = model self.device = device # Configurations self.num_classes = self.model.num_classes self.loss = nn.CrossEntropyLoss().to(self.device) self.target_shape = tuple() self.input_size = self.model.default_cfg["input_size"] # Default optimizer configurations borrowed from: # https://github.com/rwightman/pytorch-image-models/blob/779107b693010934ac87c8cecbeb65796e218488/timm/optim/optim_factory.py#L78 opt_args = OptimizerOption(lr=1e-4, opt="sgd", weight_decay = 0.0001, momentum = 0.9) self.optimizer = create_optimizer(opt_args, self.model)
35.96
137
0.707453
794f31047c5e87cabab1108511ed44da753531e1
14,383
py
Python
django/utils/functional.py
Dragon2zhao/Study
397b3705c5f762b359cdb494f9447c8a60685adf
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/utils/functional.py
Dragon2zhao/Study
397b3705c5f762b359cdb494f9447c8a60685adf
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/utils/functional.py
Dragon2zhao/Study
397b3705c5f762b359cdb494f9447c8a60685adf
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
import copy import operator from functools import total_ordering, wraps from django.utils import six # You can't trivially replace this with `functools.partial` because this binds # to classes and returns bound instances, whereas functools.partial (on # CPython) is a type and its instances don't bind. def curry(_curried_func, *args, **kwargs): def _curried(*moreargs, **morekwargs): return _curried_func(*(args + moreargs), **dict(kwargs, **morekwargs)) return _curried class cached_property(object): """ Decorator that converts a method with a single self argument into a property cached on the instance. Optional ``name`` argument allows you to make cached properties of other methods. (e.g. url = cached_property(get_absolute_url, name='url') ) """ def __init__(self, func, name=None): self.func = func self.__doc__ = getattr(func, '__doc__') self.name = name or func.__name__ def __get__(self, instance, cls=None): if instance is None: return self res = instance.__dict__[self.name] = self.func(instance) return res class Promise(object): """ This is just a base class for the proxy class created in the closure of the lazy function. It can be used to recognize promises in code. """ pass def lazy(func, *resultclasses): """ Turns any callable into a lazy evaluated callable. You need to give result classes or types -- at least one is needed so that the automatic forcing of the lazy evaluation code is triggered. Results are not memoized; the function is evaluated on every access. """ @total_ordering class __proxy__(Promise): """ Encapsulate a function call and act as a proxy for methods that are called on the result of that function. The function is not evaluated until one of the methods on the result is called. """ __prepared = False def __init__(self, args, kw): self.__args = args self.__kw = kw if not self.__prepared: self.__prepare_class__() self.__prepared = True def __reduce__(self): return ( _lazy_proxy_unpickle, (func, self.__args, self.__kw) + resultclasses ) def __repr__(self): return repr(self.__cast()) @classmethod def __prepare_class__(cls): for resultclass in resultclasses: for type_ in resultclass.mro(): for method_name in type_.__dict__.keys(): # All __promise__ return the same wrapper method, they # look up the correct implementation when called. if hasattr(cls, method_name): continue meth = cls.__promise__(method_name) setattr(cls, method_name, meth) cls._delegate_bytes = bytes in resultclasses cls._delegate_text = six.text_type in resultclasses assert not (cls._delegate_bytes and cls._delegate_text), ( "Cannot call lazy() with both bytes and text return types.") if cls._delegate_text: if six.PY3: cls.__str__ = cls.__text_cast else: cls.__unicode__ = cls.__text_cast cls.__str__ = cls.__bytes_cast_encoded elif cls._delegate_bytes: if six.PY3: cls.__bytes__ = cls.__bytes_cast else: cls.__str__ = cls.__bytes_cast @classmethod def __promise__(cls, method_name): # Builds a wrapper around some magic method def __wrapper__(self, *args, **kw): # Automatically triggers the evaluation of a lazy value and # applies the given magic method of the result type. res = func(*self.__args, **self.__kw) return getattr(res, method_name)(*args, **kw) return __wrapper__ def __text_cast(self): return func(*self.__args, **self.__kw) def __bytes_cast(self): return bytes(func(*self.__args, **self.__kw)) def __bytes_cast_encoded(self): return func(*self.__args, **self.__kw).encode('utf-8') def __cast(self): if self._delegate_bytes: return self.__bytes_cast() elif self._delegate_text: return self.__text_cast() else: return func(*self.__args, **self.__kw) def __str__(self): # object defines __str__(), so __prepare_class__() won't overload # a __str__() method from the proxied class. return str(self.__cast()) def __ne__(self, other): if isinstance(other, Promise): other = other.__cast() return self.__cast() != other def __eq__(self, other): if isinstance(other, Promise): other = other.__cast() return self.__cast() == other def __lt__(self, other): if isinstance(other, Promise): other = other.__cast() return self.__cast() < other def __hash__(self): return hash(self.__cast()) def __mod__(self, rhs): if self._delegate_bytes and six.PY2: return bytes(self) % rhs elif self._delegate_text: return six.text_type(self) % rhs return self.__cast() % rhs def __deepcopy__(self, memo): # Instances of this class are effectively immutable. It's just a # collection of functions. So we don't need to do anything # complicated for copying. memo[id(self)] = self return self @wraps(func) def __wrapper__(*args, **kw): # Creates the proxy object, instead of the actual value. return __proxy__(args, kw) return __wrapper__ def _lazy_proxy_unpickle(func, args, kwargs, *resultclasses): return lazy(func, *resultclasses)(*args, **kwargs) def lazystr(text): """ Shortcut for the common case of a lazy callable that returns str. """ from django.utils.encoding import force_text # Avoid circular import return lazy(force_text, six.text_type)(text) def keep_lazy(*resultclasses): """ A decorator that allows a function to be called with one or more lazy arguments. If none of the args are lazy, the function is evaluated immediately, otherwise a __proxy__ is returned that will evaluate the function when needed. """ if not resultclasses: raise TypeError("You must pass at least one argument to keep_lazy().") def decorator(func): lazy_func = lazy(func, *resultclasses) @wraps(func) def wrapper(*args, **kwargs): for arg in list(args) + list(six.itervalues(kwargs)): if isinstance(arg, Promise): break else: return func(*args, **kwargs) return lazy_func(*args, **kwargs) return wrapper return decorator def keep_lazy_text(func): """ A decorator for functions that accept lazy arguments and return text. """ return keep_lazy(six.text_type)(func) empty = object() def new_method_proxy(func): def inner(self, *args): if self._wrapped is empty: self._setup() return func(self._wrapped, *args) return inner class LazyObject(object): """ A wrapper for another class that can be used to delay instantiation of the wrapped class. By subclassing, you have the opportunity to intercept and alter the instantiation. If you don't need to do that, use SimpleLazyObject. """ # Avoid infinite recursion when tracing __init__ (#19456). _wrapped = None def __init__(self): # Note: if a subclass overrides __init__(), it will likely need to # override __copy__() and __deepcopy__() as well. self._wrapped = empty __getattr__ = new_method_proxy(getattr) def __setattr__(self, name, value): if name == "_wrapped": # Assign to __dict__ to avoid infinite __setattr__ loops. self.__dict__["_wrapped"] = value else: if self._wrapped is empty: self._setup() setattr(self._wrapped, name, value) def __delattr__(self, name): if name == "_wrapped": raise TypeError("can't delete _wrapped.") if self._wrapped is empty: self._setup() delattr(self._wrapped, name) def _setup(self): """ Must be implemented by subclasses to initialize the wrapped object. """ raise NotImplementedError('subclasses of LazyObject must provide a _setup() method') # Because we have messed with __class__ below, we confuse pickle as to what # class we are pickling. We're going to have to initialize the wrapped # object to successfully pickle it, so we might as well just pickle the # wrapped object since they're supposed to act the same way. # # Unfortunately, if we try to simply act like the wrapped object, the ruse # will break down when pickle gets our id(). Thus we end up with pickle # thinking, in effect, that we are a distinct object from the wrapped # object, but with the same __dict__. This can cause problems (see #25389). # # So instead, we define our own __reduce__ method and custom unpickler. We # pickle the wrapped object as the unpickler's argument, so that pickle # will pickle it normally, and then the unpickler simply returns its # argument. def __reduce__(self): if self._wrapped is empty: self._setup() return (unpickle_lazyobject, (self._wrapped,)) def __getstate__(self): """ Prevent older versions of pickle from trying to pickle the __dict__ (which in the case of a SimpleLazyObject may contain a lambda). The value will be ignored by __reduce__() and the custom unpickler. """ return {} def __copy__(self): if self._wrapped is empty: # If uninitialized, copy the wrapper. Use type(self), not # self.__class__, because the latter is proxied. return type(self)() else: # If initialized, return a copy of the wrapped object. return copy.copy(self._wrapped) def __deepcopy__(self, memo): if self._wrapped is empty: # We have to use type(self), not self.__class__, because the # latter is proxied. result = type(self)() memo[id(self)] = result return result return copy.deepcopy(self._wrapped, memo) if six.PY3: __bytes__ = new_method_proxy(bytes) __str__ = new_method_proxy(str) __bool__ = new_method_proxy(bool) else: __str__ = new_method_proxy(str) __unicode__ = new_method_proxy(unicode) # NOQA: unicode undefined on PY3 __nonzero__ = new_method_proxy(bool) # Introspection support __dir__ = new_method_proxy(dir) # Need to pretend to be the wrapped class, for the sake of objects that # care about this (especially in equality tests) __class__ = property(new_method_proxy(operator.attrgetter("__class__"))) __eq__ = new_method_proxy(operator.eq) __ne__ = new_method_proxy(operator.ne) __hash__ = new_method_proxy(hash) # List/Tuple/Dictionary methods support __getitem__ = new_method_proxy(operator.getitem) __setitem__ = new_method_proxy(operator.setitem) __delitem__ = new_method_proxy(operator.delitem) __iter__ = new_method_proxy(iter) __len__ = new_method_proxy(len) __contains__ = new_method_proxy(operator.contains) def unpickle_lazyobject(wrapped): """ Used to unpickle lazy objects. Just return its argument, which will be the wrapped object. """ return wrapped class SimpleLazyObject(LazyObject): """ A lazy object initialized from any function. Designed for compound objects of unknown type. For builtins or objects of known type, use django.utils.functional.lazy. """ def __init__(self, func): """ Pass in a callable that returns the object to be wrapped. If copies are made of the resulting SimpleLazyObject, which can happen in various circumstances within Django, then you must ensure that the callable can be safely run more than once and will return the same value. """ self.__dict__['_setupfunc'] = func super(SimpleLazyObject, self).__init__() def _setup(self): self._wrapped = self._setupfunc() # Return a meaningful representation of the lazy object for debugging # without evaluating the wrapped object. def __repr__(self): if self._wrapped is empty: repr_attr = self._setupfunc else: repr_attr = self._wrapped return '<%s: %r>' % (type(self).__name__, repr_attr) def __copy__(self): if self._wrapped is empty: # If uninitialized, copy the wrapper. Use SimpleLazyObject, not # self.__class__, because the latter is proxied. return SimpleLazyObject(self._setupfunc) else: # If initialized, return a copy of the wrapped object. return copy.copy(self._wrapped) def __deepcopy__(self, memo): if self._wrapped is empty: # We have to use SimpleLazyObject, not self.__class__, because the # latter is proxied. result = SimpleLazyObject(self._setupfunc) memo[id(self)] = result return result return copy.deepcopy(self._wrapped, memo) def partition(predicate, values): """ Splits the values into two sets, based on the return value of the function (True/False). e.g.: >>> partition(lambda x: x > 3, range(5)) [0, 1, 2, 3], [4] """ results = ([], []) for item in values: results[predicate(item)].append(item) return results
34.491607
92
0.619203
794f3112b8c60e538c72f065c7bcf110f84a45b5
1,151
py
Python
cappa/private/pip3.py
Captricity/cappa
6fa541e145c7fac7c499a63f7625be0dc8d3ea5d
[ "MIT" ]
3
2016-12-10T23:10:01.000Z
2017-12-28T19:38:49.000Z
cappa/private/pip3.py
Captricity/cappa
6fa541e145c7fac7c499a63f7625be0dc8d3ea5d
[ "MIT" ]
33
2015-01-08T01:32:39.000Z
2020-04-01T21:46:17.000Z
cappa/private/pip3.py
Captricity/cappa
6fa541e145c7fac7c499a63f7625be0dc8d3ea5d
[ "MIT" ]
1
2019-12-13T19:53:32.000Z
2019-12-13T19:53:32.000Z
from __future__ import print_function, absolute_import import os from ..pip3 import Pip3 class PrivatePip3(Pip3): def __init__(self, org, *flags): super(PrivatePip3, self).__init__(*flags) self.org = org def install(self, packages): packages = self._private_package_dict(packages) super(PrivatePip3, self).install(packages) def _private_package_dict(self, packages): def repo_url(repo_string): repo_split = repo_string.split('@') if len(repo_split) > 1: repo, version = repo_split else: repo = repo_split[0] version = 'master' if self.private_https_oauth: # Use https with oauth. Pulls token from env token = os.environ['GITHUB_TOKEN'] return 'git+https://{}@github.com/{}/{}.git@{}'.format(token, self.org, repo, version) else: return 'git+ssh://git@github.com/{}/{}.git@{}'.format(self.org, repo, version) private_package_dict = {repo_url(repo): None for repo in packages} return private_package_dict
32.885714
102
0.596003
794f321c650bb51e2ee8ee6b0a927d3afe0ca254
937
py
Python
submission/migrations/0028_auto_20181108_2301.py
jxtxzzw/eoj3
468c16ed6de8b9b542972d0e83b02fd2cfa35e4f
[ "MIT" ]
1
2020-11-17T13:08:07.000Z
2020-11-17T13:08:07.000Z
submission/migrations/0028_auto_20181108_2301.py
zerolfx/eoj3
156060399d1c3e5f7bcdbf34eaffbe2be66e1b20
[ "MIT" ]
2
2020-09-23T21:27:55.000Z
2021-06-25T15:24:46.000Z
submission/migrations/0028_auto_20181108_2301.py
zerolfx/eoj3
156060399d1c3e5f7bcdbf34eaffbe2be66e1b20
[ "MIT" ]
1
2019-07-13T00:44:39.000Z
2019-07-13T00:44:39.000Z
# Generated by Django 2.1.3 on 2018-11-08 23:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('submission', '0027_auto_20181106_1212'), ] operations = [ migrations.AddField( model_name='submission', name='contest_time', field=models.DurationField(blank=True, null=True), ), migrations.AlterField( model_name='submission', name='status', field=models.IntegerField(choices=[(-4, 'Submitted'), (-3, 'In queue'), (-2, 'Running'), (-1, 'Wrong answer'), (0, 'Accepted'), (1, 'Time limit exceeded'), (2, 'Idleness limit exceeded'), (3, 'Memory limit exceeded'), (4, 'Runtime error'), (5, 'Denial of judgement'), (6, 'Compilation error'), (7, 'Partial score'), (10, 'Rejected'), (11, 'Checker error'), (12, 'Pretest passed')], db_index=True, default=-4), ), ]
39.041667
421
0.595518
794f3282f5414773851a73482ee0b1b5bca5b17d
305
py
Python
examples/example_1.py
tgsmith61591/gh_automation
2c2168019571e4f8c6f71bc00ee092cf2240ccfd
[ "MIT" ]
null
null
null
examples/example_1.py
tgsmith61591/gh_automation
2c2168019571e4f8c6f71bc00ee092cf2240ccfd
[ "MIT" ]
null
null
null
examples/example_1.py
tgsmith61591/gh_automation
2c2168019571e4f8c6f71bc00ee092cf2240ccfd
[ "MIT" ]
null
null
null
""" ======= Example ======= Here is an example "example" script (so meta!). You'd create examples like this and the documentation Makefile will run them during the doc build. .. raw:: html <br/> """ print(__doc__) # Author: Taylor Smith <taylor.smith@alkaline-ml.com> print("Here's an example!")
16.052632
79
0.665574
794f33150646f19bef216142286d69c2e3a66798
547
py
Python
buzzer.py
stijojoseph/SMART-AI-BLIND-STICK-WITH-OBJECT-RECOGNITION-VOICEFEEDBACK-USING-RASPBERRY-PI
a41e4c3fb88edafbae98649af09471485e9bcdd7
[ "MIT" ]
3
2020-06-05T07:57:42.000Z
2021-11-11T19:00:10.000Z
buzzer.py
stijojoseph/SMART-AI-BLIND-STICK-WITH-OBJECT-RECOGNITION-VOICEFEEDBACK-USING-RASPBERRY-PI
a41e4c3fb88edafbae98649af09471485e9bcdd7
[ "MIT" ]
1
2022-02-19T08:44:56.000Z
2022-02-19T13:42:15.000Z
buzzer.py
stijojoseph/SMART-AI-BLIND-STICK-WITH-OBJECT-RECOGNITION-VOICEFEEDBACK-USING-RASPBERRY-PI
a41e4c3fb88edafbae98649af09471485e9bcdd7
[ "MIT" ]
3
2020-11-04T15:02:06.000Z
2022-02-19T13:44:00.000Z
import RPi.GPIO as GPIO from time import sleep import time #Disable warnings (optional) GPIO.setmode(GPIO.BCM) # choose BCM or BOARD numbering schemes. I use BCM GPIO.setup(25, GPIO.OUT)# set GPIO 25 as an output. You can use any GPIO port p = GPIO.PWM(25, 50) # create an object p for PWM on port 25 at 50 Hertz def buz(): p.start(70) # start the PWM on 70 percent duty cycle p.ChangeFrequency(800) time.sleep(1) # change the frequency to x Hz ( def buztop(): p.stop() # stop the PWM output
30.388889
79
0.661792
794f33c2c4a771c15046b94c39103212954cb617
36
py
Python
Hello_World_NFT.py
tbotskina/Hello_World_NFT
c4f06f17a776c605c7eb1649464929d9fe6a34fe
[ "Apache-2.0" ]
null
null
null
Hello_World_NFT.py
tbotskina/Hello_World_NFT
c4f06f17a776c605c7eb1649464929d9fe6a34fe
[ "Apache-2.0" ]
null
null
null
Hello_World_NFT.py
tbotskina/Hello_World_NFT
c4f06f17a776c605c7eb1649464929d9fe6a34fe
[ "Apache-2.0" ]
null
null
null
print("Hello Decentralised World!")
18
35
0.777778
794f34866d1852bae90774cf16ba4a69e4eaac77
5,968
py
Python
src/ingest-pipeline/airflow/dags/validate_upload.py
AustinHartman/ingest-pipeline
788d9310792c9396a38650deda3dad11483b368c
[ "MIT" ]
6
2020-02-18T19:09:59.000Z
2021-10-07T20:38:46.000Z
src/ingest-pipeline/airflow/dags/validate_upload.py
AustinHartman/ingest-pipeline
788d9310792c9396a38650deda3dad11483b368c
[ "MIT" ]
324
2020-02-06T22:08:50.000Z
2022-03-24T20:44:33.000Z
src/ingest-pipeline/airflow/dags/validate_upload.py
AustinHartman/ingest-pipeline
788d9310792c9396a38650deda3dad11483b368c
[ "MIT" ]
2
2020-07-20T14:43:49.000Z
2021-10-29T18:24:36.000Z
import sys import os import ast import json from pathlib import Path from pprint import pprint from datetime import datetime, timedelta from airflow import DAG from airflow.configuration import conf as airflow_conf from airflow.operators.python_operator import PythonOperator from airflow.operators.bash_operator import BashOperator from airflow.exceptions import AirflowException from airflow.hooks.http_hook import HttpHook import utils from utils import ( get_tmp_dir_path, get_auth_tok, map_queue_name, pythonop_get_dataset_state, localized_assert_json_matches_schema as assert_json_matches_schema ) sys.path.append(airflow_conf.as_dict()['connections']['SRC_PATH'] .strip("'").strip('"')) from submodules import (ingest_validation_tools_upload, # noqa E402 ingest_validation_tools_error_report, ingest_validation_tests) sys.path.pop() # Following are defaults which can be overridden later on default_args = { 'owner': 'hubmap', 'depends_on_past': False, 'start_date': datetime(2019, 1, 1), 'email': ['joel.welling@gmail.com'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=1), 'xcom_push': True, 'queue': map_queue_name('general') } with DAG('validate_upload', schedule_interval=None, is_paused_upon_creation=False, user_defined_macros={'tmp_dir_path' : get_tmp_dir_path}, default_args=default_args, ) as dag: def find_uuid(**kwargs): uuid = kwargs['dag_run'].conf['uuid'] def my_callable(**kwargs): return uuid ds_rslt = pythonop_get_dataset_state( dataset_uuid_callable=my_callable, http_conn_id='ingest_api_connection', **kwargs ) if not ds_rslt: raise AirflowException(f'Invalid uuid/doi for group: {uuid}') print('ds_rslt:') pprint(ds_rslt) for key in ['status', 'uuid', 'data_types', 'local_directory_full_path']: assert key in ds_rslt, f"Dataset status for {uuid} has no {key}" if False: # not ds_rslt['status'] in ['Processing']: raise AirflowException(f'Dataset {uuid} is not Processing') lz_path = ds_rslt['local_directory_full_path'] uuid = ds_rslt['uuid'] # 'uuid' may actually be a DOI print(f'Finished uuid {uuid}') print(f'lz path: {lz_path}') kwargs['ti'].xcom_push(key='lz_path', value=lz_path) kwargs['ti'].xcom_push(key='uuid', value=uuid) t_find_uuid = PythonOperator( task_id='find_uuid', python_callable=find_uuid, provide_context=True, op_kwargs={ } ) def run_validation(**kwargs): lz_path = kwargs['ti'].xcom_pull(key='lz_path') uuid = kwargs['ti'].xcom_pull(key='uuid') plugin_path = [path for path in ingest_validation_tests.__path__][0] ignore_globs = [uuid, 'extras', '*metadata.tsv', 'validation_report.txt'] # # Uncomment offline=True below to avoid validating orcid_id URLs &etc # upload = ingest_validation_tools_upload.Upload( directory_path=Path(lz_path), dataset_ignore_globs=ignore_globs, upload_ignore_globs='*', plugin_directory=plugin_path, #offline=True, # noqa E265 add_notes=False ) # Scan reports an error result report = ingest_validation_tools_error_report.ErrorReport( upload.get_errors(plugin_kwargs=kwargs) ) validation_file_path = Path(get_tmp_dir_path(kwargs['run_id'])) / 'validation_report.txt' with open(validation_file_path, 'w') as f: f.write(report.as_text()) kwargs['ti'].xcom_push(key='validation_file_path', value=str(validation_file_path)) t_run_validation = PythonOperator( task_id='run_validation', python_callable=run_validation, provide_context=True, queue=utils.map_queue_name('validate'), op_kwargs={ } ) def send_status_msg(**kwargs): validation_file_path = Path(kwargs['ti'].xcom_pull(key='validation_file_path')) uuid = kwargs['ti'].xcom_pull(key='uuid') conn_id = '' endpoint = f'/entities/{uuid}' headers = { 'authorization': 'Bearer ' + get_auth_tok(**kwargs), 'X-Hubmap-Application':'ingest-pipeline', 'content-type': 'application/json', } extra_options = [] http_conn_id='entity_api_connection' http_hook = HttpHook('PUT', http_conn_id=http_conn_id) with open(validation_file_path) as f: report_txt = f.read() if report_txt.startswith('No errors!'): data = { "status":"Valid", } else: data = { "status":"Invalid", "validation_message" : report_txt } print('data: ') pprint(data) response = http_hook.run( endpoint, json.dumps(data), headers, extra_options, ) print('response: ') pprint(response.json()) t_send_status = PythonOperator( task_id='send_status', python_callable=send_status_msg, provide_context=True, op_kwargs={ } ) t_create_tmpdir = BashOperator( task_id='create_temp_dir', bash_command='mkdir {{tmp_dir_path(run_id)}}' ) t_cleanup_tmpdir = BashOperator( task_id='cleanup_temp_dir', bash_command='rm -r {{tmp_dir_path(run_id)}}', trigger_rule='all_success' ) (dag >> t_create_tmpdir >> t_find_uuid >> t_run_validation >> t_send_status >> t_cleanup_tmpdir)
32.434783
97
0.614779
794f34c2cc2fd73295d7684e3dc2a1b416e6fc8d
5,028
py
Python
augmentation/proxy_rep_augmentation.py
akashsengupta1997/STRAPS-3DHumanShapePose
f649a5790cd1ace15d2fa2e06908f0633ee24097
[ "MIT" ]
118
2020-08-08T06:35:12.000Z
2022-03-27T09:55:45.000Z
augmentation/proxy_rep_augmentation.py
akashsengupta1997/STRAPS-3DHumanShapePose
f649a5790cd1ace15d2fa2e06908f0633ee24097
[ "MIT" ]
23
2020-09-25T09:29:00.000Z
2022-02-16T07:51:33.000Z
augmentation/proxy_rep_augmentation.py
akashsengupta1997/STRAPS-3DHumanShapePose
f649a5790cd1ace15d2fa2e06908f0633ee24097
[ "MIT" ]
17
2020-08-16T16:47:41.000Z
2022-03-27T09:35:07.000Z
import torch import numpy as np def random_verts2D_deviation(vertices, delta_verts2d_dev_range=[-0.01, 0.01]): """ Randomly add 2D uniform noise to vertices to create silhouettes/part segmentations with corrupted edges. :param vertices: (bs, 6890, 3) :param delta_verts2d_dev_range: range of uniform noise. """ batch_size = vertices.shape[0] num_verts = vertices.shape[1] device = vertices.device noisy_vertices = vertices.clone() l, h = delta_verts2d_dev_range delta_verts2d_dev = (h - l) * torch.rand(batch_size, num_verts, 2, device=device) + l noisy_vertices[:, :, :2] = noisy_vertices[:, :, :2] + delta_verts2d_dev return noisy_vertices def random_joints2D_deviation(joints2D, delta_j2d_dev_range=[-5, 5], delta_j2d_hip_dev_range=[-15, 15]): """ Deviate 2D joint locations with uniform random noise. :param joints2D: (bs, num joints, num joints) :param delta_j2d_dev_range: uniform noise range. :param delta_j2d_hip_dev_range: uniform noise range for hip joints. You may wish to make this bigger than for other joints since hip joints are semantically hard to localise and can be predicted inaccurately by joint detectors. """ hip_joints = [11, 12] other_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14,15, 16] batch_size = joints2D.shape[0] device = joints2D.device l, h = delta_j2d_dev_range delta_j2d_dev = (h - l) * torch.rand(batch_size, len(other_joints), 2, device=device) + l joints2D[:, other_joints, :] = joints2D[:, other_joints, :] + delta_j2d_dev l, h = delta_j2d_hip_dev_range delta_j2d_hip_dev_range = (h - l) * torch.rand(batch_size, len(hip_joints), 2, device=device) + l joints2D[:, hip_joints, :] = joints2D[:, hip_joints, :] + delta_j2d_hip_dev_range return joints2D def random_remove_bodyparts(seg, classes_to_remove, probabilities_to_remove): """ Randomly remove bodyparts from silhouette/segmentation (i.e. set pixels to background class). :param seg: (bs, wh, wh) :param classes_to_remove: list of classes to remove. Classes are integers (as defined in nmr_renderer.py). :param probabilities_to_remove: probability of removal for each class. """ assert len(classes_to_remove) == len(probabilities_to_remove) batch_size = seg.shape[0] for i in range(len(classes_to_remove)): class_to_remove = classes_to_remove[i] prob_to_remove = probabilities_to_remove[i] # Determine which samples to augment in the batch rand_vec = np.random.rand(batch_size) < prob_to_remove samples_to_augment = seg[rand_vec].clone() samples_to_augment[samples_to_augment == class_to_remove] = 0 seg[rand_vec] = samples_to_augment return seg def random_occlude(seg, occlude_probability=0.5, occlude_box_dim=48): """ Randomly occlude silhouette/part segmentation with boxes. :param seg: (bs, wh, wh) """ batch_size = seg.shape[0] seg_wh = seg.shape[-1] seg_centre = seg_wh/2 x_h, x_l = seg_centre - 0.3*seg_wh/2, seg_centre + 0.3*seg_wh/2 y_h, y_l = seg_centre - 0.3*seg_wh/2, seg_centre + 0.3*seg_wh/2 x = (x_h - x_l) * np.random.rand(batch_size) + x_l y = (y_h - y_l) * np.random.rand(batch_size) + y_l box_x1 = (x - occlude_box_dim / 2).astype(np.int16) box_x2 = (x + occlude_box_dim / 2).astype(np.int16) box_y1 = (y - occlude_box_dim / 2).astype(np.int16) box_y2 = (y + occlude_box_dim / 2).astype(np.int16) rand_vec = np.random.rand(batch_size) for i in range(batch_size): if rand_vec[i] < occlude_probability: seg[i, box_x1[i]:box_x2[i], box_y1[i]:box_y2[i]] = 0 return seg def augment_proxy_representation(orig_segs, orig_joints2D, proxy_rep_augment_params): new_segs = orig_segs.clone() new_joints2D = orig_joints2D.clone() if proxy_rep_augment_params['remove_appendages']: new_segs = random_remove_bodyparts(new_segs, classes_to_remove=proxy_rep_augment_params['remove_appendages_classes'], probabilities_to_remove=proxy_rep_augment_params['remove_appendages_probabilities']) if proxy_rep_augment_params['occlude_seg']: new_segs = random_occlude(new_segs, occlude_probability=proxy_rep_augment_params['occlude_probability'], occlude_box_dim=proxy_rep_augment_params['occlude_box_dim']) if proxy_rep_augment_params['deviate_joints2D']: new_joints2D = random_joints2D_deviation(new_joints2D, delta_j2d_dev_range=proxy_rep_augment_params['delta_j2d_dev_range'], delta_j2d_hip_dev_range=proxy_rep_augment_params['delta_j2d_hip_dev_range']) return new_segs, new_joints2D
39.590551
127
0.665672
794f35999545c0ac62c9e932e8c994b38ccb923d
1,883
py
Python
test.py
russlamb/file_convert
bcae13390da4728515304288951e9bd3ada8ce06
[ "MIT" ]
null
null
null
test.py
russlamb/file_convert
bcae13390da4728515304288951e9bd3ada8ce06
[ "MIT" ]
null
null
null
test.py
russlamb/file_convert
bcae13390da4728515304288951e9bd3ada8ce06
[ "MIT" ]
null
null
null
import os import unittest from csv_to_xlsx.convert import FileConvert def delete_files_if_exists(path_list): for path in path_list: if os.path.exists(path): os.remove(path) class TestConvert(unittest.TestCase): def setUp(self): delete_files_if_exists(["samples/FL_insurance_sample.csv.tsv", "samples/FL_insurance_sample.csv.tsv.xlsx", "samples/FL_insurance_sample.csv.xlsx", "samples/my_tsv.tsv","samples/my_output.xlsx"]) def tearDown(self): delete_files_if_exists(["samples/FL_insurance_sample.csv.tsv", "samples/FL_insurance_sample.csv.tsv.xlsx", "samples/FL_insurance_sample.csv.xlsx", "samples/my_tsv.tsv","samples/my_output.xlsx"]) def test_convert_csv_xl(self): csv = "samples/FL_insurance_sample.csv" converter = FileConvert(csv) tsv_file = converter.save_csv_as_tsv() self.assertTrue (os.path.exists(tsv_file)) self.assertTrue (tsv_file==(csv+".tsv")) converter = FileConvert(tsv_file) xlsx_file = converter.save_tsv_as_xlsx() self.assertTrue (os.path.exists(xlsx_file)) self.assertTrue (xlsx_file==(tsv_file+".xlsx")) def test_with_output_path(self): csv = "samples/FL_insurance_sample.csv" converter = FileConvert(csv) tsv_file = converter.save_csv_as_tsv(output_path="samples/my_tsv.tsv") self.assertTrue (os.path.exists(tsv_file)) self.assertFalse ((tsv_file==(csv+".tsv"))) converter = FileConvert(tsv_file) xlsx_file = converter.save_tsv_as_xlsx(output_path="samples/my_output.xlsx") self.assertTrue (os.path.exists(xlsx_file)) self.assertFalse ((xlsx_file==(tsv_file+".xlsx"))) if __name__ == "__main__": unittest.main()
35.528302
114
0.651089
794f35a7f8dbf9bdcfd57830c3d34e365fbe607f
3,307
py
Python
personality/personality_classifiers.py
Datalab-AUTH/MSc---Lampridis---MANIFEST
9c13018313f2681dd27ef56ac0eb8470319a1749
[ "Apache-2.0" ]
3
2021-03-28T20:13:11.000Z
2021-08-23T05:52:27.000Z
personality/personality_classifiers.py
Datalab-AUTH/MSc---Lampridis---MANIFEST
9c13018313f2681dd27ef56ac0eb8470319a1749
[ "Apache-2.0" ]
null
null
null
personality/personality_classifiers.py
Datalab-AUTH/MSc---Lampridis---MANIFEST
9c13018313f2681dd27ef56ac0eb8470319a1749
[ "Apache-2.0" ]
null
null
null
import pickle import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from skmultilearn.problem_transform import ClassifierChain from utils.preprocessing import clean_text def list2string(list): return ','.join(map(str, list)) file_tweets = "new_personality_combined.csv" file_personalities = "personality-data.txt" data_tweets = pd.read_csv(file_tweets, sep=",", encoding="utf8", index_col=0) data_personalities = pd.read_csv(file_personalities, sep="\t", encoding="utf8", index_col=10) print(data_tweets) # Join the two dataframes together merged_df = pd.merge(data_tweets, data_personalities, on='twitter_uid', how='inner') merged_df.reset_index(drop=True, inplace=True) # Drop the statues (the text) personality_categories = list(merged_df.columns.values)[2:] # Print dataset statistics print("Final number of data in personality dataset =", merged_df.shape[0]) print("Number of personality categories =", len(personality_categories)) print("Personality categories =", ', '.join(personality_categories)) print(merged_df['statuses']) merged_df['statuses'] = merged_df.statuses.apply(clean_text) print(merged_df['statuses']) merged_df['statuses'] = [list2string(list) for list in merged_df['statuses']] # Split the personality categories into 3 quantiles to convert the problem to classification bins = 3 labels = [0, 1, 2] merged_df['ADMIRATION'] = pd.cut(merged_df['ADMIRATION'], bins, labels=labels) merged_df['AGRE'] = pd.cut(merged_df['AGRE'], bins, labels=labels) merged_df['ANXIETY'] = pd.cut(merged_df['ANXIETY'], bins, labels=labels) merged_df['AVOIDANCE'] = pd.cut(merged_df['AVOIDANCE'], bins, labels=labels) merged_df['CONS'] = pd.cut(merged_df['CONS'], bins, labels=labels) merged_df['EXTR'] = pd.cut(merged_df['EXTR'], bins, labels=labels) merged_df['NARCISSISM'] = pd.cut(merged_df['NARCISSISM'], bins, labels=labels) merged_df['NEUR'] = pd.cut(merged_df['NEUR'], bins, labels=labels) merged_df['OPEN'] = pd.cut(merged_df['OPEN'], bins, labels=labels) merged_df['RIVALRY'] = pd.cut(merged_df['RIVALRY'], bins, labels=labels) print(merged_df) # Split the data to train and test train, test = train_test_split(merged_df, random_state=42, test_size=0.25) x_train = train['statuses'] x_test = test['statuses'] y_train = train.drop(labels=['statuses', 'tweets'], axis=1).to_numpy(dtype=int) y_test = test.drop(labels=['statuses', 'tweets'], axis=1).to_numpy(dtype=int) print(y_train) print(type(x_train)) print(type(y_train)) # Classifier Chains approach print("---Classifier Chains---") classifier_chains = Pipeline([ ('tfidf', TfidfVectorizer(encoding='utf-8', ngram_range=(1, 3))), ('clf', ClassifierChain(LinearSVC())), ]) classifier_chains.fit(x_train, y_train) predictions_chains = classifier_chains.predict(x_test) predictions_chains = predictions_chains.toarray().astype(dtype=int) print("predictions: ", predictions_chains) print(y_test) # print("accuracy_score:", accuracy_score(y_test, predictions_chains)) # print("Hamming_loss:", hamming_loss(y_test, predictions_chains)) directory = '../classifiers/personality' pickle.dump(classifier_chains, open(directory + '/classifier_chains_SVC', 'wb'))
35.180851
93
0.761415
794f36490fce422761e56c03de5937f389891839
2,713
py
Python
unported scripts/magnification.py
KirovskiXVI/dicom-sr-qi
810f367d0845f4f47c3ee914502cf973b4f9b336
[ "BSD-2-Clause" ]
null
null
null
unported scripts/magnification.py
KirovskiXVI/dicom-sr-qi
810f367d0845f4f47c3ee914502cf973b4f9b336
[ "BSD-2-Clause" ]
null
null
null
unported scripts/magnification.py
KirovskiXVI/dicom-sr-qi
810f367d0845f4f47c3ee914502cf973b4f9b336
[ "BSD-2-Clause" ]
null
null
null
"""Makes box plots for DAP and exposure vs magnification. Can change some things in line to change the data source (bjh vs. slch) and to decide between graphing DAP and Exposure """ import my_utils import srdata import csv import matplotlib def build_table(): procs = srdata.process_file(my_utils.BJH_XML_FILE, my_utils.BJH_SYNGO_FILES) procs = procs + srdata.process_file(my_utils.SLCH_XML_FILE, my_utils.SLCH_SYNGO_FILES) #procs = srdata.process_file(my_utils.SLCH_XML_FILE, my_utils.SLCH_SYNGO_FILES) dose_lookup = {} exposure_lookup = {} DAP_lookup = {} for proc in procs: for e in proc.events: if e.is_valid() and e.Irradiation_Event_Type == "Fluoroscopy": if not e.iiDiameter in dose_lookup: dose_lookup[e.iiDiameter] = [] exposure_lookup[e.iiDiameter] = [] DAP_lookup[e.iiDiameter] = [] dose_lookup[e.iiDiameter].append(e.Dose_RP/e.Number_of_Pulses) exposure_lookup[e.iiDiameter].append(e.Exposure/e.Number_of_Pulses) DAP_lookup[e.iiDiameter].append(e.Dose_Area_Product/e.Number_of_Pulses) return (dose_lookup, exposure_lookup, DAP_lookup) def write_csv(lookup): table = [] for diameter, exposures in lookup.iteritems(): row = [str(diameter)] row = row + [e for e in exposures] table.append(row) table = my_utils.transposed(table) with open("temp.csv",'wb') as f: w = csv.writer(f) w.writerows(table) import matplotlib.pyplot as plt def plot(lookup): data = [] for iiDiameter in sorted(lookup.keys()): data.append(lookup[iiDiameter]) plt.boxplot(data, sym='') plt.setp(plt.gca(),'xticklabels',sorted(lookup.keys())) plt.show() def setup_DAP_axes(): plt.title("DAP vs. Magnification") plt.xlabel("iiDiameter") plt.ylabel("DAP (Gy*m^2)") def setup_exposure_axes(): plt.title("Exposure vs. Magnification") plt.xlabel("iiDiameter") plt.ylabel("Exposure (uAs)") def main(): dose_lookup,exposure_lookup,DAP_lookup = build_table() plt.figure(1) #setup_DAP_axes() #plot(DAP_lookup) setup_exposure_axes() plot(exposure_lookup) #write_csv(DAP_lookup) if __name__ == "__main__": main()
36.662162
104
0.563583
794f36736e145f45ce11d87afd1e4629f3557275
1,562
py
Python
ossim/mat/views.py
hrithikbhat019/OS-Simulation
76521b130c41aae3ba157b3f07e54f7db4ab374d
[ "MIT" ]
8
2019-03-09T14:53:33.000Z
2021-06-06T11:22:59.000Z
ossim/mat/views.py
hrithikbhat019/OS-Simulation
76521b130c41aae3ba157b3f07e54f7db4ab374d
[ "MIT" ]
1
2019-12-01T23:14:27.000Z
2019-12-01T23:14:27.000Z
ossim/mat/views.py
hrithikbhat019/OS-Simulation
76521b130c41aae3ba157b3f07e54f7db4ab374d
[ "MIT" ]
10
2017-05-11T13:45:40.000Z
2020-03-28T06:25:50.000Z
from django.shortcuts import render # Create your views here. from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse from django.template import loader import json def home_page(request): return render(request, 'mat/index.html') def mat_mft_get_data(request): variables = ['total_memory', 'no_of_blocks'] submitted = True context = {} block_size = [0,1,2,3,4,5,6,7,8,0,1,1,1,1,1] context['invalid_data'] = False for x in variables: submitted = request.POST.get(x,False) if submitted is False: print("Hello") break else: try: context[x] = int(request.POST.get(x)) except ValueError: context['invalid_data'] = True break if context['invalid_data'] is False and submitted: for i in range(1, context['no_of_blocks']+1): block_size[i] = request.POST.get('block_size_' + str(i)) context['block_size'] = json.dumps(block_size) if submitted is False or context['invalid_data'] is True: return render(request, 'mat/mft/get_data.html', context) else: return render(request, 'mat/mft/show_demo.html', context) def mat_mvt_get_data(request): if request.POST: context = { 'totalMemory' : request.POST['total_memory'], 'inputMemory' : request.POST['input_memory'] } return render(request, 'mat/mvt/show_demo.html', context) return render(request, 'mat/mvt/get_data.html')
31.877551
68
0.629962
794f36dd47d275d417360dca6fd88f55ddf2f57f
729
py
Python
account/migrations/0003_auto_20190816_1426.py
lilianwaweru/Bank
05ef2b86beec98d1cf31f3da168bbf32efaa1e3f
[ "MIT" ]
null
null
null
account/migrations/0003_auto_20190816_1426.py
lilianwaweru/Bank
05ef2b86beec98d1cf31f3da168bbf32efaa1e3f
[ "MIT" ]
7
2020-02-12T02:30:17.000Z
2021-10-06T02:49:08.000Z
account/migrations/0003_auto_20190816_1426.py
lilianwaweru/Bank
05ef2b86beec98d1cf31f3da168bbf32efaa1e3f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-08-16 14:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0002_banks'), ] operations = [ migrations.CreateModel( name='Access', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('transaction_access', models.CharField(max_length=70)), ], ), migrations.AlterField( model_name='history', name='Name', field=models.CharField(max_length=70), ), ]
26.035714
114
0.577503
794f378662d023a782bb07fe1d16cb6df422dc5e
35,835
py
Python
quantum_heom/quantum_system.py
jwa7/h.e.o.m-quantum
e8835ba56f59a7e70aacc988cdba541fa085cf7e
[ "MIT" ]
8
2020-03-19T23:37:37.000Z
2021-11-17T11:35:20.000Z
quantum_heom/quantum_system.py
jwa7/quantum-HEOM
e8835ba56f59a7e70aacc988cdba541fa085cf7e
[ "MIT" ]
3
2019-12-17T09:48:34.000Z
2021-05-17T05:17:27.000Z
quantum_heom/quantum_system.py
jwa7/quantum-HEOM
e8835ba56f59a7e70aacc988cdba541fa085cf7e
[ "MIT" ]
3
2020-03-19T23:37:29.000Z
2021-07-11T06:33:34.000Z
"""Module for setting up a quantum system. Contains the QuantumSystem class.""" from scipy import constants import numpy as np from quantum_heom import evolution as evo from quantum_heom import hamiltonian as ham from quantum_heom import heom from quantum_heom import lindbladian as lind from quantum_heom.bath import SPECTRAL_DENSITIES from quantum_heom.evolution import (TEMP_DEP_MODELS, DYNAMICS_MODELS) from quantum_heom.hamiltonian import INTERACTION_MODELS from quantum_heom.lindbladian import LINDBLAD_MODELS class QuantumSystem: """ Class where the properties of the quantum system are defined. Parameters ---------- sites : int (required) The number of sites in the system. interaction_model : str (required) How to model the interactions between sites. Must be one of ['nearest neighbour linear', 'nearest neighbour cyclic', 'FMO', 'spin-boson']. FMO is only valid for 7-site systems and spin-boson only for 2. dynamics_model : str (required) The model used to describe the system dynamics. Must be one of ['local dephasing lindblad', 'local thermalising lindblad', 'global thermalising lindblad', 'HEOM']. **settings init_site_pop : list of int The sites in which to place initial population. For example, to place equal population in sites 1 and 6 (in a 7-site system), the user should pass [1, 6]. To place twice as much initial population in 3 as in 4, pass [3, 3, 4]. Default value is [1], which populates only site 1. alpha_beta : tuple of float The values of alpha and beta (respectively) to use in Hamiltonian construction. Alpha sets the value of the site energies (diagonals), while beta sets the strength of the interaction between sites. Default value is (0., -15.5) in units of rad ps^-1. epsi_delta : tuple of float The (epsi, delta) values used to construct the system Hamiltonian for the 'spin-boson' model. Must be passed in units of rad ps^-1. epsi corresponds to the total energy of the 2-site system, whilst delta corresponds to strength of tunnelling between sites. Default is (0., -31.0). time_interval : float The time interval between timesteps at which the system density matrix is evaluated, in units of femtoseconds. Default time interval is 5 fs. timesteps : int The number of timesteps for which the time evolution of the system is evaluated. Default value is 500. temperature : float The temperature of the thermal bath, in Kelvin. Default value is 300 K. spectral_density : str The spectral density used to described the interaction of the system with the bath modes. Must be either 'debye', 'ohmic', or 'renger-marcus'. Systems with HEOM dynamics can currently only be described by Debye spectral densities. deph_rate : float The dephasing rate constant of the system, in units of rad ps^-1, used in the local dephasing lindblad model. reorg_energy : float The scale factor used to match thermalisation rates between dynamics models in units of rad ps^-1. Default value is 11.87 rad ps^-1. Used in thermalising Lindblad models. cutoff_freq : float The cutoff frequency used in calculating the spectral density, in rad ps^-1. Default value is 6.024 rad ps^-1. mastsubara_terms : int The number of matubara terms, i.e. the number of exponentials to include in evaluation of the correlation function. Default value is 2. matsubara_coeffs : np.ndarray The matsubara coefficients c_k used in calculating the spectral density for the HEOM approach. Must be in order (largest -> smallest), where the nth coefficient corresponds to the nth matsubara term. Default is None; QuTiP's HEOMSolver automatically generates them. matsubara_freqs : np.ndarray The matsubara frequencies v_k used in calculating the spectral density for the HEOM approach, in units of rad ps^-1. Must be in order (smallest -> largest), where the kth frequency corresponds to the kth matsubara term. Default is None; QuTiP's HEOMSolver automatically generates them. bath_cutoff : int The number of bath terms to include in the HEOM evaluation of the system dynamics. Default value is 20. """ def __init__(self, sites, interaction_model, dynamics_model, **settings): # SITES SETTINGS self.sites = sites if settings.get('init_site_pop') is not None: self._init_site_pop = settings.get('init_site_pop') else: self._init_site_pop = [1] # initial excitation on site 1 # INTERACTIONS SETTINGS self.interaction_model = interaction_model if self.interaction_model.startswith('nearest'): if settings.get('alpha_beta') is not None: self.alpha_beta = settings.get('alpha_beta') else: self.alpha_beta = (20., -15.5) # rad ps^-1 if self.interaction_model == 'spin-boson': if settings.get('epsi_delta') is not None: self.epsi_delta = settings.get('epsi_delta') else: self.epsi_delta = (20., 40.) # rad ps^-1 # DYNAMICS SETTINGS self.dynamics_model = dynamics_model if settings.get('time_interval'): self.time_interval = settings.get('time_interval') # seconds else: self.time_interval = 5. # 5 fs if settings.get('timesteps'): self.timesteps = settings.get('timesteps') else: self.timesteps = 500 # SETTINGS FOR LINDBLAD MODELS if self.dynamics_model in LINDBLAD_MODELS: if settings.get('deph_rate') is not None: self.deph_rate = settings.get('deph_rate') else: self.deph_rate = 11 # rad ps^-1 # SETTINGS FOR TEMPERATURE DEPENDENT MODELS if self.dynamics_model in TEMP_DEP_MODELS: if settings.get('temperature') is not None: self.temperature = settings.get('temperature') else: self.temperature = 300. # Kelvin if settings.get('cutoff_freq') is not None: self.cutoff_freq = settings.get('cutoff_freq') else: self.cutoff_freq = 6.024 # rad ps^-1 if settings.get('reorg_energy') is not None: self.reorg_energy = settings.get('reorg_energy') else: self.reorg_energy = 1.391 # rad ps^-1 if settings.get('spectral_density') is not None: self.spectral_density = settings.get('spectral_density') else: self.spectral_density = 'debye' if self.spectral_density == 'ohmic': if settings.get('ohmic_exponent') is not None: self.ohmic_exponent = settings.get('ohmic_exponent') else: # Default to normal Ohmic, rather than sub- or super-Ohmic. self.ohmic_exponent = 1. # SETTINGS FOR HEOM (TEMP DEPENDENT) if self.dynamics_model == 'HEOM': if settings.get('matsubara_terms') is not None: self.matsubara_terms = settings.get('matsubara_terms') else: self.matsubara_terms = 2 if settings.get('matsubara_coeffs') is not None: self.matsubara_coeffs = settings.get('matsubara_coeffs') else: self.matsubara_coeffs = None if settings.get('matsubara_freqs') is not None: self.matsubara_freqs = settings.get('matsubara_freqs') else: self.matsubara_freqs = None if settings.get('bath_cutoff') is not None: self.bath_cutoff = settings.get('bath_cutoff') else: self.bath_cutoff = 20 # ------------------------------------------------------------------- # SITES + INITIAL DENSITY MATRIX FUNCTIONS # ------------------------------------------------------------------- @property def sites(self) -> int: """ Gets or sets the number of sites in the QuantumSystem Raises ------ ValueError If the number of sites set to a non-positive integer. Returns ------- int The number of sites in the QuantumSystem """ return self._sites @sites.setter def sites(self, sites: int): if sites < 1: raise ValueError('Number of sites must be a positive integer') self._sites = sites @property def init_site_pop(self) -> list: """ Get or set the site populations in the initial denisty matrix. Must be passed as a list of integers which indicate the sites of the system that should be equally populated. Raises ------ ValueError If invalid site numbers (i.e. less than 1 or greater than the number of sites) are passed. Returns ------- list of int The site numbers that will be initially and equally populated. """ return self._init_site_pop @init_site_pop.setter def init_site_pop(self, init_site_pop: list): for site in init_site_pop: if site < 1 or site > self.sites: raise ValueError('Invalid site number.') self._init_site_pop = init_site_pop @property def initial_density_matrix(self) -> np.ndarray: """ Returns an N x N 2D array corresponding to the density matrix of the system at time t=0, where N is the number of sites. Site populations are split equally between the sites specified in 'QuantumSystem.init_site_pop' setting. Returns ------- np.ndarray N x N 2D array (where N is the number of sites) for the initial density matrix. """ return evo.initial_density_matrix(self.sites, self.init_site_pop) # ------------------------------------------------------------------- # INTERACTIONS FUNCTIONS # ------------------------------------------------------------------- @property def interaction_model(self) -> str: """ Gets or sets the model used for interaction between sites. Raises ------ ValueError If attempting to set to an invalid model. Returns ------- str The interaction model being used. """ return self._interaction_model @interaction_model.setter def interaction_model(self, model: str): if model not in INTERACTION_MODELS: raise ValueError('Must choose an interaction model from ' + str(INTERACTION_MODELS)) if model == 'FMO': assert self.sites == 7, ( 'The FMO model is only valid for 7-site systems.') if model == 'spin-boson': assert self.sites == 2, ( 'The spin-boson model is only valid for 2-site systems.') self._interaction_model = model @property def hamiltonian(self) -> np.ndarray: """ Builds an interaction Hamiltonian for the QuantumSystem, in units of rad ps^-1. The FMO Hamiltonian is for 7-site systems only, and has a form constructed using parameters from Adolphs, J.; Renger, T. Biophysical Journal 2006, 91, 2778–2797. The spin-boson model is only applicable to 2- site systems, and has the form: .. math:: H_{sys} = \\frac{\\epsilon}{2} \\sigma_z + \\frac{\\Delta}{2} \\sigma_x as shown in J. Chem. Phys. 144, 044110 (2016); https://doi.org/10.1063/1.4940218. The nearest neighbour models are applicable to any number of sites and are given by: .. math :: H_{sys} = \\alpha I + \\beta A where A is the adjacency matrix as built in the method adjacency_matrix(). Returns ------- np.ndarray An N x N 2D array that represents the interactions between sites in the quantum system, where N is the number of sites. In units of rad ps^-1. """ return ham.system_hamiltonian(self.sites, self.interaction_model, self.alpha_beta, self.epsi_delta) @property def hamiltonian_superop(self) -> np.ndarray: """ Builds the Hamiltonian superoperator in rad ps^-1, given by: .. math:: H_{sup} = -i(H \\otimes I - I \\otimes H^{\\dagger}) Returns ------- np.ndarray The (N^2) x (N^2) 2D array representing the Hamiltonian superoperator, in units of rad ps^-1. """ return ham.hamiltonian_superop(self.hamiltonian) @property def alpha_beta(self) -> tuple: """ Get or set the values of alpha and beta used to construct the system Hamiltonian for 'nearest neighbour' interaction models. Alpha sets the value of the site energies (diagonals), assuming all site energies are equal, while beta sets the strength of the interaction between sites (off-diagonals), also assumed to be of equal strength for sites that interact (according to the adjacency matrix used in the nearest neighbour model). Returns ------- tuple of float The values of alpha and beta (respectively) to use in Hamiltonian construction. """ if self.interaction_model.startswith('nearest'): return self._alpha_beta @alpha_beta.setter def alpha_beta(self, alpha_beta: tuple): assert isinstance(alpha_beta, tuple), ('alpha_beta must be passed as' ' a tuple.') assert len(alpha_beta) == 2, 'Must pass as 2 float values in a tuple.' self._alpha_beta = alpha_beta @property def epsi_delta(self) -> tuple: """ Get/set the values of epsilon and delta used to construct the 'spin-boson' system Hamiltonian for a 2-site system. Epsilon sets the value of the total system energy (i.e. the sum of the energies of site 1 and 2), while delta sets the tunnelling strength between the 2 sites. Returns ------- tuple of float The values of alpha and beta (respectively) to use in Hamiltonian construction. """ if self.interaction_model == 'spin-boson': return self._epsi_delta @epsi_delta.setter def epsi_delta(self, epsi_delta: tuple): assert isinstance(epsi_delta, tuple), ('epsi_delta must be passed as' ' a tuple.') assert len(epsi_delta) == 2, 'Must pass as 2 float values in a tuple.' assert self.sites == 2, 'spin-boson model only valid for 2-site systems' self._epsi_delta = epsi_delta # ------------------------------------------------------------------- # DYNAMICS PROPERTIES # ------------------------------------------------------------------- @property def dynamics_model(self) -> str: """ Gets or sets the type of model used to describe the dynamics of the quantum system. Currently only 'local dephasing lindblad', 'global thermalising lindblad', 'local thermalising lindblad' and 'HEOM' are implemented in quantum_HEOM. Raises ----- ValueError If trying to set the dynamics model to an invalid option. Returns ------- str The dynamics model being used. """ return self._dynamics_model @dynamics_model.setter def dynamics_model(self, model: str): if model not in DYNAMICS_MODELS: raise ValueError('Must choose an dynamics model from ' + str(DYNAMICS_MODELS)) if model == 'HEOM': assert self.sites == 2, ( 'Currently HEOM can only be run for 2-site systems.') assert self.interaction_model == 'spin-boson', ( 'Currently only a spin-boson interaction model can be used in' ' in conjunction with HEOM dynamics.') self._dynamics_model = model @property def equilibrium_state(self) -> np.ndarray: """ Returns the equilibirum density matrix of the system. For systems described by thermalising models, this is the themal equilibirum state, given by: .. math:: \\rho^{(eq)} = \\frac{e^{- H / k_B T}}{tr(e^{- H / k_B T})} however for the 'local dephasing lindblad' model, this is the maximally mixed state: .. math:: \\rho_{mm}^{eq} = \\frac{1}{N} \\sum_{i=1}^N \\ket{i} \\bra{i} where N is the dimension (i.e. number of sites) of the system. This also corresponds to the thermal equilibrium state in the infinite temperature limit. Returns ------- np.ndarray A 2D square density matrix for the system's equilibrium state. """ return evo.equilibrium_state(self.dynamics_model, self.sites, self.hamiltonian, self.temperature) # ------------------------------------------------------------------- # TIME-EVOLUTION FUNCTIONS # ------------------------------------------------------------------- @property def time_interval(self) -> float: """ Gets or sets the time interval value used in evaluating the density matrix evolution, in femtoseconds. Returns ------- float The time interval being used, in femtoseconds. """ return self._time_interval # fs @time_interval.setter def time_interval(self, time_interval: float): if isinstance(time_interval, int): time_interval = float(time_interval) assert isinstance(time_interval, float), ('time_interval must be' ' passed as a float.') assert time_interval > 0., 'time_interval must be positive.' self._time_interval = time_interval @property def timesteps(self) -> int: """ Gets or sets the number of timesteps over which the evolution of the QuantumSystem's density matrix should be evaluated. Raises ------ ValueError If the number of timesteps is being set to a non- positive integer. Returns ------- int The number of timesteps used in evaluation of the QuantumSystem's evolution. """ return self._timesteps @timesteps.setter def timesteps(self, timesteps: int): if timesteps: assert isinstance(timesteps, int), 'Must pass timesteps as an int' if timesteps <= 0: raise ValueError('Number of timesteps must be a positive' ' integer') self._timesteps = timesteps @property def time_evolution(self) -> np.ndarray: """ Evaluates the density operator of the system at n_steps forward in time, spaced by time_interval. Raises ------ AttributeError If trying to access this property without having set values for time_interval, timesteps, and deph_rate. Returns ------- evolution : np.ndarray An array of length corresponding to the number of timesteps the evolution is evaluated for. Each element is a tuple of the form (time, matrix, squared, distance), where 'time' is the time at which the density matrix - 'matrix' - is evaluted, 'squared' is the trace of 'matrix' squared, and 'distance' is the trace distance of 'matrix' from the system's equilibrium state. """ # LINDBLAD DYNAMICS if self.dynamics_model in LINDBLAD_MODELS: superop = self.hamiltonian_superop + self.lindbladian_superop return evo.time_evo_lindblad(self.initial_density_matrix, superop, # rad ps^-1 self.timesteps, self.time_interval, # fs self.dynamics_model, self.hamiltonian, # rad ps^-1 self.temperature # Kelvin ) # HEOM DYNAMICS if self.dynamics_model == 'HEOM': # Units of temperature must match units of Hamiltonian # Quantity quantum_HEOM ----> QuTiP Conversion # ------------------------------------------------------------- # hamiltonian: rad ps^-1 rad ps^-1 - # time: fs ps * 1e-3 # temperature: K rad ps^-1 * k / (hbar * 1e12) # coup_strength: rad ps^-1 rad ps^-1 / 2pi # cutoff_freq: rad ps^-1 rad ps^-1 / 2pi # planck: = 1.0 # boltzmann: = 1.0 # matsu coeffs: unitless unitless - # matsu freqs: rad ps^-1 ps^-1 / 2pi # Perform conversions temperature = (self.temperature * 1e-12 * (constants.k / constants.hbar)) # K ---> rad ps^-1 tmp = evo.time_evo_heom(self.initial_density_matrix, # dimensionless self.timesteps, # dimensionless self.time_interval * 1e-3, # fs --> ps self.hamiltonian, # rad ps^-1 self.coupling_op, # dimensionless self.reorg_energy, # rad ps^-1 temperature, # rad ps^-1 self.bath_cutoff, # dimensionless self.matsubara_terms, # dimensionless self.cutoff_freq, # rad ps^-1 self.matsubara_coeffs, # dimensionless self.matsubara_freqs # rad ps^-1 ) # Unpack the data, retrieving the evolution data, and setting # the QuantumSystem's matsubara coefficients and frequencies # to those returned by the function (as set by QuTiP's HEOMSolver). evolution, self.matsubara_coeffs, self.matsubara_freqs = tmp return evolution # ------------------------------------------------------------------- # LINDBLAD-SPECIFIC PROPERTIES # ------------------------------------------------------------------- @property def deph_rate(self) -> float: """ Gets or sets the dephasing rate of the quantum system, in units of rad ps^-1. Used in the local dephasing lindblad model. Returns ------- float The decay rate of the density matrix elements, in units of rad ps^-1. """ if self.dynamics_model in LINDBLAD_MODELS: return self._deph_rate @deph_rate.setter def deph_rate(self, deph_rate: float): assert isinstance(deph_rate, (int, float)), ( 'deph_rate must be passed as either an int or float') if deph_rate < 0.: raise ValueError('Dephasing rate must be a non-negative float' ' in units of rad s^-1.') self._deph_rate = deph_rate @property def lindbladian_superop(self) -> np.ndarray: """ Builds the Lindbladian superoperator for the system, either using the local dephasing, local thermalising, or global thermalising lindblad description of the dynamics. Returns ------- np.ndarray The (N^2) x (N^2) 2D array representing the Lindbladian superoperator, in rad ps^-1. """ # Assumes any deph_rate, cutoff_freq, reorg_energy in rad ps^-1 if self.dynamics_model in LINDBLAD_MODELS: return lind.lindbladian_superop(self.sites, self.dynamics_model, self.hamiltonian, # rad ps^-1 self.deph_rate, # rad ps^-1 self.cutoff_freq, # rad ps^-1 self.reorg_energy, # rad ps^-1 self.temperature, # Kelvin self.spectral_density, self.ohmic_exponent) # rad ps^-1 raise ValueError( 'Can only build a Lindbladian superoperator for systems defined' ' with Lindblad dynamics. Choose from ' + str(LINDBLAD_MODELS)) # ------------------------------------------------------------------- # HEOM-SPECIFIC PROPERTIES # ------------------------------------------------------------------- @property def matsubara_terms(self) -> int: """ Get or set the number of Matsubara terms to include in the HEOM approach to solving the system dynamics. Raises ------ ValueError If being set to a non-positive integer. Returns ------- int The number of Matsubara terms HEOM is evaluated for. """ if self.dynamics_model == 'HEOM': return self._matsubara_terms @matsubara_terms.setter def matsubara_terms(self, terms: int): if terms < 0: raise ValueError('The number of Matsubara terms must be a positive' ' integer.') self._matsubara_terms = terms @property def matsubara_coeffs(self) -> np.ndarray: """ Get or set the matsubara coefficients used in HEOM dynamics Raises ------ ValueError If the number of coefficients being set exceeds the number of matsubara terms set. Returns ------- np.ndarray An array of matsubara coefficients, in order, corresponding to the first n matsubara terms. """ if self.dynamics_model == 'HEOM': return self._matsubara_coeffs @matsubara_coeffs.setter def matsubara_coeffs(self, coeffs: np.ndarray): try: if len(coeffs) > self.matsubara_terms: raise ValueError('The number of coefficients being set exceeds' ' the number of matsubara terms') if isinstance(coeffs, list): coeffs = np.array(coeffs) check = [isinstance(i, (float, complex)) for i in coeffs] assert (isinstance(coeffs, np.ndarray) and check.count(True) == len(check)), ( 'matsubara_coeffs must be passed as a np.ndarray' ' with all elements as floats.') self._matsubara_coeffs = coeffs except TypeError: self._matsubara_coeffs = None @property def matsubara_freqs(self) -> np.ndarray: """ Get or set the matsubara frequencies used in HEOM dynamics, in units of s^-1. Raises ------ ValueError If the number of frequencies being set exceeds the number of matsubara terms set. Returns ------- np.ndarray An array of matsubara frequencies, in order, corresponding to the first n matsubara terms, in units of s^-1. """ if self.dynamics_model == 'HEOM': return self._matsubara_freqs @matsubara_freqs.setter def matsubara_freqs(self, freqs: np.ndarray): try: if len(freqs) > self.matsubara_terms: raise ValueError('The number of frequencies being set exceeds' ' the number of matsubara terms') if isinstance(freqs, list): freqs = np.array(freqs) check = [isinstance(i, (float, complex)) for i in freqs] assert (isinstance(freqs, np.ndarray) and check.count(True) == len(check)), ( 'matsubara_freqs must be passed as a np.ndarray' ' with all elements as floats.') self._matsubara_freqs = freqs except TypeError: self._matsubara_freqs = None @property def bath_cutoff(self) -> int: """ Get or set the cutoff for the number of bath terms included in the HEOM evaluation of the system dynamics. Raises ------ ValueError If being set to a non-positive integer. Returns ------- int The number of bath terms HEOM is evaluated for. """ if self.dynamics_model == 'HEOM': return self._bath_cutoff @bath_cutoff.setter def bath_cutoff(self, bath_cutoff: int): if bath_cutoff < 0: raise ValueError('The number of bath terms must be a positive' ' integer.') self._bath_cutoff = bath_cutoff @property def coupling_op(self) -> np.ndarray: """ Get the operator describing the coupling between the system and bath modes, used in the HEOM model of the dynamics. Returns ------- np.ndarray of complex 2D square array of size N x N (where N is the number of sites) that represents the coupling operator. """ return heom.system_bath_coupling_op(self.sites) # ------------------------------------------------------------------- # BATH + THERMAL PROPERTIES # ------------------------------------------------------------------- @property def temperature(self) -> float: """ Get or set the temperature of the thermal bath in Kelvin. Raises ------ ValueError If the temperature is being set to a negative value. Returns ------- float The temperature of the system, in Kelvin. """ if self.dynamics_model in TEMP_DEP_MODELS: return self._temperature @temperature.setter def temperature(self, temperature: float): if isinstance(temperature, int): temperature = float(temperature) if temperature <= 0. or not isinstance(temperature, float): raise ValueError('Temperature must be a positive float value' ' in Kelvin.') self._temperature = temperature @property def cutoff_freq(self) -> float: """ Get or set the cutoff frequency used in calculating the spectral density, in units of rad ps^-1. Raises ------ ValueError If the cutoff frequency is being set to a non-positive value. Returns ------- float The cutoff frequency being used, in rad ps^-1. """ if self.dynamics_model in TEMP_DEP_MODELS: return self._cutoff_freq @cutoff_freq.setter def cutoff_freq(self, cutoff_freq: float): if isinstance(cutoff_freq, int): cutoff_freq = float(cutoff_freq) if cutoff_freq <= 0.: raise ValueError('Cutoff frequency must be a positive float.') self._cutoff_freq = cutoff_freq @property def reorg_energy(self) -> float: """ Get or set the scale factor used in scaling the spectral density, in units of rad ps^-1. Raises ------ ValueError If the value being set is non-positive. Returns ------- float The thermalisation scale factor being used, in units of rad ps^-1. """ if self.dynamics_model in TEMP_DEP_MODELS: return self._reorg_energy @reorg_energy.setter def reorg_energy(self, reorg_energy: float): if isinstance(reorg_energy, int): reorg_energy = float(reorg_energy) assert isinstance(reorg_energy, float), ( 'reorg_energy must be passed as a float') if reorg_energy < 0.: raise ValueError('Scale factor must be a non-negative float in rad' ' s^-1.') self._reorg_energy = reorg_energy @property def spectral_density(self) -> str: """ Get or set the spectral density used to describe the interaction of the system with bath modes. Returns ------- str The spectral density beign used. Either 'debye', 'ohmic', or 'renger-marcus' """ if self.dynamics_model in TEMP_DEP_MODELS: return self._spectral_density @spectral_density.setter def spectral_density(self, spectral_density: str): assert spectral_density in SPECTRAL_DENSITIES, ( 'Must choose a spectral density from ' + str(SPECTRAL_DENSITIES) + '. Other spectral densities not yet implemented in quantum_HEOM.') if self.dynamics_model == 'HEOM' and spectral_density != 'debye': raise NotImplementedError( 'Currently systems described by HEOM dynamics can only be' ' evaluated for Debye spectral densities.') self._spectral_density = spectral_density @property def ohmic_exponent(self) -> float: """ Get or set the exponent used in calculation of the Ohmic spectral density. Spectral density is described as Ohmic if the exponent is equal to 1, sub-Ohmic if < 1, and super-Ohmic is > 1. Returns ------- float The exponent used in calculation of the Ohmic spectral density. Raises ------ ValueError If trying to set the exponent to a non-postive float. """ if (self.spectral_density == 'ohmic' and self.dynamics_model in TEMP_DEP_MODELS): return self._ohmic_exponent @ohmic_exponent.setter def ohmic_exponent(self, exponent): if exponent > 0.: self._ohmic_exponent = exponent
35.656716
81
0.54804
794f378bfcc2685e0745c6a72bb3ad65073023ad
25,621
py
Python
quant/platform/okex_swap.py
yfjelley/thenextquant
5a2c4324ea390b513632ed2cc64d53314624e4ba
[ "MIT" ]
2
2021-09-22T08:41:55.000Z
2021-11-05T01:45:27.000Z
quant/platform/okex_swap.py
mrganer/thenextquant
52fb22f5df20d43cb275a08adad81dc97f25a712
[ "MIT" ]
1
2019-10-25T05:25:28.000Z
2019-10-25T05:25:28.000Z
quant/platform/okex_swap.py
mrganer/thenextquant
52fb22f5df20d43cb275a08adad81dc97f25a712
[ "MIT" ]
4
2019-11-29T03:12:34.000Z
2021-09-19T02:59:29.000Z
# -*- coding:utf-8 -*- """ OKEx Swap Trade module https://www.okex.me/docs/zh/ NOTE: Only Cross Margin Mode is supported in Trade module currently. Please change Margin Mode to `Cross`, not `Fixed`! Author: HuangTao Date: 2019/01/19 Email: huangtao@ifclover.com """ import time import zlib import json import copy import hmac import base64 from urllib.parse import urljoin from quant.error import Error from quant.order import Order from quant.utils import tools from quant.utils import logger from quant.tasks import SingleTask from quant.position import Position from quant.const import OKEX_SWAP from quant.utils.websocket import Websocket from quant.asset import Asset, AssetSubscribe from quant.utils.http_client import AsyncHttpRequests from quant.utils.decorator import async_method_locker from quant.order import ORDER_ACTION_BUY, ORDER_ACTION_SELL, ORDER_TYPE_LIMIT, ORDER_TYPE_MARKET from quant.order import ORDER_STATUS_SUBMITTED, ORDER_STATUS_PARTIAL_FILLED, ORDER_STATUS_FILLED, \ ORDER_STATUS_CANCELED, ORDER_STATUS_FAILED __all__ = ("OKExSwapRestAPI", "OKExSwapTrade", ) class OKExSwapRestAPI: """ OKEx Swap REST API client. Attributes: host: HTTP request host. access_key: Account's ACCESS KEY. secret_key: Account's SECRET KEY. passphrase: API KEY Passphrase. """ def __init__(self, host, access_key, secret_key, passphrase): """initialize REST API client.""" self._host = host self._access_key = access_key self._secret_key = secret_key self._passphrase = passphrase async def get_user_account(self): """ Get the perpetual swap account info of all tokens. Margin ratio set as 10,000 when users have no open position. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ success, error = await self.request("GET", "/api/swap/v3/accounts", auth=True) return success, error async def get_position(self, instrument_id): """ Get the information of holding positions of a contract. Args: instrument_id: Contract ID, e.g. BTC-USD-SWAP. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ uri = "/api/swap/v3/{instrument_id}/position".format(instrument_id=instrument_id) success, error = await self.request("GET", uri, auth=True) return success, error async def create_order(self, instrument_id, trade_type, price, size, match_price=0, order_type=0): """ Create an order. Args: instrument_id: Contract ID, e.g. BTC-USD-SWAP. trade_type: 1: open long, 2: open short, 3: close long, 4: close short. price: Price of each contract. size: The buying or selling quantity. match_price: Order at best counter party price? (0: no, 1: yes), When posting orders at best bid price, order_type can only be 0 (regular order). order_type: Fill in number for parameter, 0: Normal limit order (Unfilled and 0 represent normal limit order) 1: Post only, 2: Fill Or Kill, 3: Immediately Or Cancel. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ uri = "/api/swap/v3/order" body = { "instrument_id": instrument_id, "type": str(trade_type), "price": price, "size": size, "match_price": match_price, "order_type": order_type } success, error = await self.request("POST", uri, body=body, auth=True) return success, error async def revoke_order(self, instrument_id, order_id): """ Cancelling an unfilled order. Args: instrument_id: Contract ID, e.g. BTC-USD-SWAP. order_id: order ID. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ uri = "/api/swap/v3/cancel_order/{instrument_id}/{order_id}".format(instrument_id=instrument_id, order_id=order_id) success, error = await self.request("POST", uri, auth=True) if error: return None, error if not success["result"]: return None, success return success, None async def revoke_orders(self, instrument_id, order_ids): """ Cancelling multiple open orders with order_id,Maximum 10 orders can be cancelled at a time for each trading pair. Args: instrument_id: Contract ID, e.g. BTC-USD-SWAP. order_ids: order ID list. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ assert isinstance(order_ids, list) if len(order_ids) > 10: logger.warn("order id list too long! no more than 10!", caller=self) uri = "/api/swap/v3/cancel_batch_orders/{instrument_id}".format(instrument_id=instrument_id) body = { "ids": order_ids } success, error = await self.request("POST", uri, body=body, auth=True) if error: return None, error if not success["result"]: return None, success return success, None async def get_order_info(self, instrument_id, order_id): """ Get order details by order ID. Canceled unfilled orders will be kept in record for 2 hours only. Args: instrument_id: Contract ID, e.g. BTC-USD-SWAP. order_id: order ID. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ uri = "/api/swap/v3/orders/{instrument_id}/{order_id}".format(instrument_id=instrument_id, order_id=order_id) success, error = await self.request("GET", uri, auth=True) return success, error async def get_order_list(self, instrument_id, state, limit=100): """ List your orders. This API can retrieve the latest 20000 entries of data this week. Args: instrument_id: Contract ID, e.g. BTC-USD-SWAP. state: Order state for filter. ("-2": Failed, "-1": Cancelled, "0": Open , "1": Partially Filled, "2": Fully Filled, "3": Submitting, "4": Cancelling, "6": Incomplete(open + partially filled), "7": Complete(cancelled + fully filled)). limit: Number of results per request. Maximum 100. (default 100) Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. TODO: Add args `from` & `to`. """ uri = "/api/swap/v3/orders/{instrument_id}".format(instrument_id=instrument_id) params = { "state": state, "limit": limit } success, error = await self.request("GET", uri, params=params, auth=True) return success, error async def request(self, method, uri, params=None, body=None, headers=None, auth=False): """ Do HTTP request. Args: method: HTTP request method. GET, POST, DELETE, PUT. uri: HTTP request uri. params: HTTP query params. body: HTTP request body. headers: HTTP request headers. auth: If this request requires authentication. Returns: success: Success results, otherwise it's None. error: Error information, otherwise it's None. """ if params: query = "&".join(["{}={}".format(k, params[k]) for k in sorted(params.keys())]) uri += "?" + query url = urljoin(self._host, uri) # Add signature for authentication. if auth: timestamp = str(time.time()).split(".")[0] + "." + str(time.time()).split(".")[1][:3] if body: body = json.dumps(body) else: body = "" message = str(timestamp) + str.upper(method) + uri + str(body) mac = hmac.new(bytes(self._secret_key, encoding="utf8"), bytes(message, encoding="utf-8"), digestmod="sha256") d = mac.digest() sign = base64.b64encode(d) if not headers: headers = {} headers["Content-Type"] = "application/json" headers["OK-ACCESS-KEY"] = self._access_key.encode().decode() headers["OK-ACCESS-SIGN"] = sign.decode() headers["OK-ACCESS-TIMESTAMP"] = str(timestamp) headers["OK-ACCESS-PASSPHRASE"] = self._passphrase _, success, error = await AsyncHttpRequests.fetch(method, url, body=body, headers=headers, timeout=10) if error: return None, error if not isinstance(success, dict): # If response data is not dict format, convert it to json format. success = json.loads(success) return success, None class OKExSwapTrade(Websocket): """ OKEx Swap Trade module. You can initialize trade object with some attributes in kwargs. Attributes: account: Account name for this trade exchange. strategy: What's name would you want to created for you strategy. symbol: Symbol name for your trade. host: HTTP request host. (default "https://www.okex.com") wss: Websocket address. (default "wss://real.okex.com:8443") access_key: Account's ACCESS KEY. secret_key Account's SECRET KEY. passphrase API KEY Passphrase. asset_update_callback: You can use this param to specific a async callback function when you initializing Trade object. `asset_update_callback` is like `async def on_asset_update_callback(asset: Asset): pass` and this callback function will be executed asynchronous when received AssetEvent. order_update_callback: You can use this param to specific a async callback function when you initializing Trade object. `order_update_callback` is like `async def on_order_update_callback(order: Order): pass` and this callback function will be executed asynchronous when some order state updated. position_update_callback: You can use this param to specific a async callback function when you initializing Trade object. `position_update_callback` is like `async def on_position_update_callback(order: Position): pass` and this callback function will be executed asynchronous when some position state updated. init_success_callback: You can use this param to specific a async callback function when you initializing Trade object. `init_success_callback` is like `async def on_init_success_callback(success: bool, error: Error, **kwargs): pass` and this callback function will be executed asynchronous after Trade module object initialized successfully. """ def __init__(self, **kwargs): """Initialize.""" e = None if not kwargs.get("account"): e = Error("param account miss") if not kwargs.get("strategy"): e = Error("param strategy miss") if not kwargs.get("symbol"): e = Error("param symbol miss") if not kwargs.get("host"): kwargs["host"] = "https://www.okex.com" if not kwargs.get("wss"): kwargs["wss"] = "wss://real.okex.com:8443" if not kwargs.get("access_key"): e = Error("param access_key miss") if not kwargs.get("secret_key"): e = Error("param secret_key miss") if not kwargs.get("passphrase"): e = Error("param passphrase miss") if e: logger.error(e, caller=self) if kwargs.get("init_success_callback"): SingleTask.run(kwargs["init_success_callback"], False, e) return self._account = kwargs["account"] self._strategy = kwargs["strategy"] self._platform = OKEX_SWAP self._symbol = kwargs["symbol"] self._host = kwargs["host"] self._wss = kwargs["wss"] self._access_key = kwargs["access_key"] self._secret_key = kwargs["secret_key"] self._passphrase = kwargs["passphrase"] self._asset_update_callback = kwargs.get("asset_update_callback") self._order_update_callback = kwargs.get("order_update_callback") self._position_update_callback = kwargs.get("position_update_callback") self._init_success_callback = kwargs.get("init_success_callback") url = self._wss + "/ws/v3" super(OKExSwapTrade, self).__init__(url, send_hb_interval=5) self.heartbeat_msg = "ping" self._assets = {} # Asset object. e.g. {"BTC": {"free": "1.1", "locked": "2.2", "total": "3.3"}, ... } self._orders = {} # Order objects. e.g. {"order_no": Order, ... } self._position = Position(self._platform, self._account, self._strategy, self._symbol) # Subscribing our channels. self._order_channel = "swap/order:{symbol}".format(symbol=self._symbol) self._position_channel = "swap/position:{symbol}".format(symbol=self._symbol) # If our channels that subscribed successfully. self._subscribe_order_ok = False self._subscribe_position_ok = False # Initializing our REST API client. self._rest_api = OKExSwapRestAPI(self._host, self._access_key, self._secret_key, self._passphrase) # Subscribing our asset event. if self._asset_update_callback: AssetSubscribe(self._platform, self._account, self.on_event_asset_update) self.initialize() @property def assets(self): return copy.copy(self._assets) @property def orders(self): return copy.copy(self._orders) @property def position(self): return copy.copy(self._position) @property def rest_api(self): return self._rest_api async def connected_callback(self): """After websocket connection created successfully, we will send a message to server for authentication.""" timestamp = str(time.time()).split(".")[0] + "." + str(time.time()).split(".")[1][:3] message = str(timestamp) + "GET" + "/users/self/verify" mac = hmac.new(bytes(self._secret_key, encoding="utf8"), bytes(message, encoding="utf8"), digestmod="sha256") d = mac.digest() signature = base64.b64encode(d).decode() data = { "op": "login", "args": [self._access_key, self._passphrase, timestamp, signature] } await self.ws.send_json(data) @async_method_locker("OKExSwapTrade.process_binary.locker") async def process_binary(self, raw): """ Process binary message that received from websocket. Args: raw: Binary message received from websocket. Returns: None. """ decompress = zlib.decompressobj(-zlib.MAX_WBITS) msg = decompress.decompress(raw) msg += decompress.flush() msg = msg.decode() # Heartbeat message received. if msg == "pong": return logger.debug("msg:", msg, caller=self) msg = json.loads(msg) # Authorization message received. if msg.get("event") == "login": if not msg.get("success"): e = Error("Websocket connection authorized failed: {}".format(msg)) logger.error(e, caller=self) SingleTask.run(self._init_success_callback, False, e) return logger.info("Websocket connection authorized successfully.", caller=self) # Fetch orders from server. (open + partially filled) result, error = await self._rest_api.get_order_list(self._symbol, 6) if error: e = Error("get open orders error: {}".format(error)) SingleTask.run(self._init_success_callback, False, e) return if len(result) > 100: logger.warn("order length too long! (more than 100)", caller=self) for order_info in result["order_info"]: self._update_order(order_info) # Fetch positions from server. position, error = await self._rest_api.get_position(self._symbol) if error: e = Error("get position error: {}".format(error)) SingleTask.run(self._init_success_callback, False, e) return self._update_position(position) # Subscribe order channel and position channel. data = { "op": "subscribe", "args": [self._order_channel, self._position_channel] } await self.ws.send_json(data) return # Subscribe response message received. if msg.get("event") == "subscribe": if msg.get("channel") == self._order_channel: self._subscribe_order_ok = True if msg.get("channel") == self._position_channel: self._subscribe_position_ok = True if self._subscribe_order_ok and self._subscribe_position_ok: SingleTask.run(self._init_success_callback, True, None) return # Order update message received. if msg.get("table") == "swap/order": for data in msg["data"]: self._update_order(data) return # Position update message receive. if msg.get("table") == "swap/position": for data in msg["data"]: self._update_position(data) async def create_order(self, action, price, quantity, order_type=ORDER_TYPE_LIMIT, match_price=0, *args, **kwargs): """ Create an order. Args: action: Trade direction, `BUY` or `SELL`. price: Price of each contract. quantity: The buying or selling quantity. order_type: Order type, `MARKET` or `LIMIT`. match_price: Order at best counter party price? (0: no, 1: yes), When posting orders at best bid price, order_type can only be 0 (regular order). order_type: Fill in number for parameter, 0: Normal limit order (Unfilled and 0 represent normal limit order) 1: Post only, 2: Fill Or Kill, 3: Immediately Or Cancel. Returns: order_no: Order ID if created successfully, otherwise it's None. error: Error information, otherwise it's None. """ if int(quantity) > 0: if action == ORDER_ACTION_BUY: trade_type = "1" else: trade_type = "3" else: if action == ORDER_ACTION_BUY: trade_type = "4" else: trade_type = "2" quantity = abs(int(quantity)) if order_type == ORDER_TYPE_LIMIT: order_type_2 = 0 elif order_type == ORDER_TYPE_MARKET: order_type_2 = 2 else: return None, "order type error" result, error = await self._rest_api.create_order(self._symbol, trade_type, price, quantity, match_price, order_type_2) if error: return None, error order_no = result["order_id"] return order_no, None async def revoke_order(self, *order_nos): """ Revoke (an) order(s). Args: order_nos: Order id list, you can set this param to 0 or multiple items. If you set 0 param, you can cancel all orders for this symbol(initialized in Trade object). If you set 1 param, you can cancel an order. If you set multiple param, you can cancel multiple orders. Do not set param length more than 100. Returns: Success or error, see bellow. """ # If len(order_nos) == 0, you will cancel all orders for this symbol(initialized in Trade object). if len(order_nos) == 0: result, error = await self._rest_api.get_order_list(self._symbol, 6) if error: return False, error if len(result) > 100: logger.warn("order length too long! (more than 100)", caller=self) for order_info in result["order_info"]: order_no = order_info["order_id"] _, error = await self._rest_api.revoke_order(self._symbol, order_no) if error: return False, error return True, None # If len(order_nos) == 1, you will cancel an order. if len(order_nos) == 1: success, error = await self._rest_api.revoke_order(self._symbol, order_nos[0]) if error: return order_nos[0], error else: return order_nos[0], None # If len(order_nos) > 1, you will cancel multiple orders. if len(order_nos) > 1: success, error = [], [] for order_no in order_nos: _, e = await self._rest_api.revoke_order(self._symbol, order_no) if e: error.append((order_no, e)) else: success.append(order_no) return success, error async def get_open_order_nos(self): """ Get open order id list. Args: None. Returns: order_nos: Open order id list, otherwise it's None. error: Error information, otherwise it's None. """ success, error = await self._rest_api.get_order_list(self._symbol, 6) if error: return None, error else: if len(success) > 100: logger.warn("order length too long! (more than 100)", caller=self) order_nos = [] for order_info in success["order_info"]: order_nos.append(order_info["order_id"]) return order_nos, None def _update_order(self, order_info): """ Order update. Args: order_info: Order information. Returns: None. """ order_no = str(order_info["order_id"]) state = order_info["state"] remain = int(order_info["size"]) - int(order_info["filled_qty"]) ctime = tools.utctime_str_to_mts(order_info["timestamp"]) if state == "-2": status = ORDER_STATUS_FAILED elif state == "-1": status = ORDER_STATUS_CANCELED elif state == "0": status = ORDER_STATUS_SUBMITTED elif state == "1": status = ORDER_STATUS_PARTIAL_FILLED elif state == "2": status = ORDER_STATUS_FILLED else: return None order = self._orders.get(order_no) if not order: info = { "platform": self._platform, "account": self._account, "strategy": self._strategy, "order_no": order_no, "action": ORDER_ACTION_BUY if order_info["type"] in ["1", "4"] else ORDER_ACTION_SELL, "symbol": self._symbol, "price": order_info["price"], "quantity": order_info["size"], "trade_type": int(order_info["type"]) } order = Order(**info) order.remain = remain order.status = status order.avg_price = order_info["price_avg"] order.ctime = ctime order.utime = ctime self._orders[order_no] = order SingleTask.run(self._order_update_callback, copy.copy(order)) if status in [ORDER_STATUS_FAILED, ORDER_STATUS_CANCELED, ORDER_STATUS_FILLED]: self._orders.pop(order_no) def _update_position(self, position_info): """ Position update. Args: position_info: Position information. Returns: None. """ if len(position_info["holding"]) == 0: # When the length of `holding` is 0, specific all the position is closed self._position.update(0, 0, 0, 0, 0) return for item in position_info["holding"]: if item["side"] == "long": self._position.liquid_price = item["liquidation_price"] self._position.long_quantity = int(item["position"]) self._position.long_avg_price = item["avg_cost"] elif item["side"] == "short": self._position.short_quantity = int(item["position"]) self._position.short_avg_price = item["avg_cost"] else: continue self._position.utime = tools.utctime_str_to_mts(item["timestamp"]) SingleTask.run(self._position_update_callback, copy.copy(self.position)) async def on_event_asset_update(self, asset: Asset): """ Asset event data callback. Args: asset: Asset object callback from EventCenter. Returns: None. """ self._assets = asset SingleTask.run(self._asset_update_callback, asset)
40.348031
133
0.595878
794f3907a50c729a817f794d56f53e2b2e413047
97
py
Python
admin_object_actions/__init__.py
bjuretko/django-admin-object-actions
2c80ffcbb53b3d585f191d1fe662daf36fa7e204
[ "BSD-3-Clause" ]
null
null
null
admin_object_actions/__init__.py
bjuretko/django-admin-object-actions
2c80ffcbb53b3d585f191d1fe662daf36fa7e204
[ "BSD-3-Clause" ]
null
null
null
admin_object_actions/__init__.py
bjuretko/django-admin-object-actions
2c80ffcbb53b3d585f191d1fe662daf36fa7e204
[ "BSD-3-Clause" ]
null
null
null
__version__ = '0.1.5' default_app_config = 'admin_object_actions.apps.AdminObjectActionsConfig'
24.25
73
0.824742
794f398ae8272c803d342f2febc1e780945d475e
14,297
py
Python
scripts/imapServer.py
idiotic-geek/roundup-mirror-via-github-import
8b6956ff319092a18202882be41cf31860cfb787
[ "MIT" ]
20
2016-06-16T15:34:21.000Z
2021-11-17T10:02:09.000Z
scripts/imapServer.py
idiotic-geek/roundup-mirror-via-github-import
8b6956ff319092a18202882be41cf31860cfb787
[ "MIT" ]
2
2018-12-02T01:32:22.000Z
2021-12-09T20:30:04.000Z
scripts/imapServer.py
idiotic-geek/roundup-mirror-via-github-import
8b6956ff319092a18202882be41cf31860cfb787
[ "MIT" ]
8
2016-12-08T09:21:05.000Z
2021-02-04T05:13:14.000Z
#!/usr/bin/env python """\ This script is a wrapper around the mailgw.py script that exists in roundup. It runs as service instead of running as a one-time shot. It also connects to a secure IMAP server. The main reasons for this script are: 1) The roundup-mailgw script isn't designed to run as a server. It expects that you either run it by hand, and enter the password each time, or you supply the password on the command line. I prefer to run a server that I initialize with the password, and then it just runs. I don't want to have to pass it on the command line, so running through crontab isn't a possibility. (This wouldn't be a problem on a local machine running through a mailspool.) 2) mailgw.py somehow screws up SSL support so IMAP4_SSL doesn't work. So hopefully running that work outside of the mailgw will allow it to work. 3) I wanted to be able to check multiple projects at the same time. roundup-mailgw is only for 1 mailbox and 1 project. *TODO*: For the first round, the program spawns a new roundup-mailgw for each imap message that it finds and pipes the result in. In the future it might be more practical to actually include the roundup files and run the appropriate commands using python. *TODO*: Look into supporting a logfile instead of using 2>/logfile *TODO*: Add an option for changing the uid/gid of the running process. """ from __future__ import print_function import getpass import logging import imaplib import optparse import os import re import time from roundup.anypy.my_input import my_input logging.basicConfig() log = logging.getLogger('roundup.IMAPServer') version = '0.1.2' class RoundupMailbox: """This contains all the info about each mailbox. Username, Password, server, security, roundup database """ def __init__(self, dbhome='', username=None, password=None, mailbox=None , server=None, protocol='imaps'): self.username = username self.password = password self.mailbox = mailbox self.server = server self.protocol = protocol self.dbhome = dbhome try: if not self.dbhome: self.dbhome = my_input('Tracker home: ') if not os.path.exists(self.dbhome): raise ValueError('Invalid home address: ' \ 'directory "%s" does not exist.' % self.dbhome) if not self.server: self.server = my_input('Server: ') if not self.server: raise ValueError('No Servername supplied') protocol = my_input('protocol [imaps]? ') self.protocol = protocol if not self.username: self.username = my_input('Username: ') if not self.username: raise ValueError('Invalid Username') if not self.password: print('For server %s, user %s' % (self.server, self.username)) self.password = getpass.getpass() # password can be empty because it could be superceeded # by a later entry #if self.mailbox is None: # self.mailbox = my_input('Mailbox [INBOX]: ') # # We allow an empty mailbox because that will # # select the INBOX, whatever it is called except (KeyboardInterrupt, EOFError): raise ValueError('Canceled by User') def __str__(self): return 'Mailbox{ server:%(server)s, protocol:%(protocol)s, ' \ 'username:%(username)s, mailbox:%(mailbox)s, ' \ 'dbhome:%(dbhome)s }' % self.__dict__ # [als] class name is misleading. this is imap client, not imap server class IMAPServer: """IMAP mail gatherer. This class runs as a server process. It is configured with a list of mailboxes to connect to, along with the roundup database directories that correspond with each email address. It then connects to each mailbox at a specified interval, and if there are new messages it reads them, and sends the result to the roundup.mailgw. *TODO*: Try to be smart about how you access the mailboxes so that you can connect once, and access multiple mailboxes and possibly multiple usernames. *NOTE*: This assumes that if you are using the same user on the same server, you are using the same password. (the last one supplied is used.) Empty passwords are ignored. Only the last protocol supplied is used. """ def __init__(self, pidfile=None, delay=5, daemon=False): #This is sorted by servername, then username, then mailboxes self.mailboxes = {} self.delay = float(delay) self.pidfile = pidfile self.daemon = daemon def setDelay(self, delay): self.delay = delay def addMailbox(self, mailbox): """ The linkage is as follows: servers -- users - mailbox:dbhome So there can be multiple servers, each with multiple users. Each username can be associated with multiple mailboxes. each mailbox is associated with 1 database home """ log.info('Adding mailbox %s', mailbox) if mailbox.server not in self.mailboxes: self.mailboxes[mailbox.server] = {'protocol':'imaps', 'users':{}} server = self.mailboxes[mailbox.server] if mailbox.protocol: server['protocol'] = mailbox.protocol if mailbox.username not in server['users']: server['users'][mailbox.username] = {'password':'', 'mailboxes':{}} user = server['users'][mailbox.username] if mailbox.password: user['password'] = mailbox.password if mailbox.mailbox in user['mailboxes']: raise ValueError('Mailbox is already defined') user['mailboxes'][mailbox.mailbox] = mailbox.dbhome def _process(self, message, dbhome): """Actually process one of the email messages""" child = os.popen('roundup-mailgw %s' % dbhome, 'wb') child.write(message) child.close() #print message def _getMessages(self, serv, count, dbhome): """This assumes that you currently have a mailbox open, and want to process all messages that are inside. """ for n in range(1, count+1): (t, data) = serv.fetch(n, '(RFC822)') if t == 'OK': self._process(data[0][1], dbhome) serv.store(n, '+FLAGS', r'(\Deleted)') def checkBoxes(self): """This actually goes out and does all the checking. Returns False if there were any errors, otherwise returns true. """ noErrors = True for server in self.mailboxes: log.info('Connecting to server: %s', server) s_vals = self.mailboxes[server] try: for user in s_vals['users']: u_vals = s_vals['users'][user] # TODO: As near as I can tell, you can only # login with 1 username for each connection to a server. protocol = s_vals['protocol'].lower() if protocol == 'imaps': serv = imaplib.IMAP4_SSL(server) elif protocol == 'imap': serv = imaplib.IMAP4(server) else: raise ValueError('Unknown protocol %s' % protocol) password = u_vals['password'] try: log.info('Connecting as user: %s', user) serv.login(user, password) for mbox in u_vals['mailboxes']: dbhome = u_vals['mailboxes'][mbox] log.info('Using mailbox: %s, home: %s', mbox, dbhome) #access a specific mailbox if mbox: (t, data) = serv.select(mbox) else: # Select the default mailbox (INBOX) (t, data) = serv.select() try: nMessages = int(data[0]) except ValueError: nMessages = 0 log.info('Found %s messages', nMessages) if nMessages: self._getMessages(serv, nMessages, dbhome) serv.expunge() # We are done with this mailbox serv.close() except: log.exception('Exception with server %s user %s', server, user) noErrors = False serv.logout() serv.shutdown() del serv except: log.exception('Exception while connecting to %s', server) noErrors = False return noErrors def makeDaemon(self): """Turn this process into a daemon. - make our parent PID 1 Write our new PID to the pidfile. From A.M. Kuuchling (possibly originally Greg Ward) with modification from Oren Tirosh, and finally a small mod from me. Originally taken from roundup.scripts.roundup_server.py """ log.info('Running as Daemon') # Fork once if os.fork() != 0: os._exit(0) # Create new session os.setsid() # Second fork to force PPID=1 pid = os.fork() if pid: if self.pidfile: pidfile = open(self.pidfile, 'w') pidfile.write(str(pid)) pidfile.close() os._exit(0) def run(self): """Run email gathering daemon. This spawns itself as a daemon, and then runs continually, just sleeping inbetween checks. It is recommended that you run checkBoxes once first before you select run. That way you can know if there were any failures. """ if self.daemon: self.makeDaemon() while True: time.sleep(self.delay * 60.0) log.info('Time: %s', time.strftime('%Y-%m-%d %H:%M:%S')) self.checkBoxes() def getItems(s): """Parse a string looking for userame@server""" myRE = re.compile( r'((?P<protocol>[^:]+)://)?'#You can supply a protocol if you like r'(' #The username part is optional r'(?P<username>[^:]+)' #You can supply the password as r'(:(?P<password>.+))?' #username:password@server r'@)?' r'(?P<server>[^/]+)' r'(/(?P<mailbox>.+))?$' ) m = myRE.match(s) if m: return m.groupdict() else: return None def main(): """This is what is called if run at the prompt""" parser = optparse.OptionParser( version=('%prog ' + version), usage="""usage: %prog [options] (home server)... So each entry has a home, and then the server configuration. Home is just a path to the roundup issue tracker. The server is something of the form: imaps://user:password@server/mailbox If you don't supply the protocol, imaps is assumed. Without user or password, you will be prompted for them. The server must be supplied. Without mailbox the INBOX is used. Examples: %prog /home/roundup/trackers/test imaps://test@imap.example.com/test %prog /home/roundup/trackers/test imap.example.com \ /home/roundup/trackers/test2 imap.example.com/test2 """ ) parser.add_option('-d', '--delay', dest='delay', type='float', metavar='<sec>', default=5, help="Set the delay between checks in minutes. (default 5)" ) parser.add_option('-p', '--pid-file', dest='pidfile', metavar='<file>', default=None, help="The pid of the server process will be written to <file>" ) parser.add_option('-n', '--no-daemon', dest='daemon', action='store_false', default=True, help="Do not fork into the background after running the first check." ) parser.add_option('-v', '--verbose', dest='verbose', action='store_const', const=logging.INFO, help="Be more verbose in letting you know what is going on." " Enables informational messages." ) parser.add_option('-V', '--very-verbose', dest='verbose', action='store_const', const=logging.DEBUG, help="Be very verbose in letting you know what is going on." " Enables debugging messages." ) parser.add_option('-q', '--quiet', dest='verbose', action='store_const', const=logging.ERROR, help="Be less verbose. Ignores warnings, only prints errors." ) parser.add_option('-Q', '--very-quiet', dest='verbose', action='store_const', const=logging.CRITICAL, help="Be much less verbose. Ignores warnings and errors." " Only print CRITICAL messages." ) (opts, args) = parser.parse_args() if (len(args) == 0) or (len(args) % 2 == 1): parser.error('Invalid number of arguments. ' 'Each site needs a home and a server.') if opts.verbose == None: opts.verbose = logging.WARNING log.setLevel(opts.verbose) myServer = IMAPServer(delay=opts.delay, pidfile=opts.pidfile, daemon=opts.daemon) for i in range(0,len(args),2): home = args[i] server = args[i+1] if not os.path.exists(home): parser.error('Home: "%s" does not exist' % home) info = getItems(server) if not info: parser.error('Invalid server string: "%s"' % server) myServer.addMailbox( RoundupMailbox(dbhome=home, mailbox=info['mailbox'] , username=info['username'], password=info['password'] , server=info['server'], protocol=info['protocol'] ) ) if myServer.checkBoxes(): myServer.run() if __name__ == '__main__': main() # vim: et ft=python si sts=4 sw=4
36.658974
79
0.576345