hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794ea23ccef3098f4853ec0712ad36bd4fc2acca
285
py
Python
metaflow/datastore/__init__.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
null
null
null
metaflow/datastore/__init__.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
null
null
null
metaflow/datastore/__init__.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
null
null
null
from .inputs import Inputs from .flow_datastore import FlowDataStore from .datastore_set import TaskDataStoreSet from .task_datastore import TaskDataStore from .local_storage import LocalStorage from .s3_storage import S3Storage DATASTORES = {"local": LocalStorage, "s3": S3Storage}
28.5
53
0.831579
794ea43c6b915563d1c542455f60e2c2757c931f
272
py
Python
DataStorageSystems/BST.py
Nezgun/Exploring-Bees
25b6028b55a9dacd0d65c165848da2fe57c39a5a
[ "MIT" ]
null
null
null
DataStorageSystems/BST.py
Nezgun/Exploring-Bees
25b6028b55a9dacd0d65c165848da2fe57c39a5a
[ "MIT" ]
1
2019-07-26T04:52:12.000Z
2019-07-26T04:52:12.000Z
DataStorageSystems/BST.py
Nezgun/Exploring-Bees
25b6028b55a9dacd0d65c165848da2fe57c39a5a
[ "MIT" ]
null
null
null
class BST: def __init__(self): self.head = None self.size = 0 def addNode(self, data): return def deleteNode(self, Node): return def search(self, data): return def getSize(self): return self.size
16
31
0.536765
794ea514a735a14e95adaca4e39081ad1b9c7cf8
10,989
py
Python
build/lib/preview_generator/preview/builder/office__libreoffice.py
alounko/preview-generator-py2
604734ee3c18b0fcf87360022871b884132f71a0
[ "MIT" ]
null
null
null
build/lib/preview_generator/preview/builder/office__libreoffice.py
alounko/preview-generator-py2
604734ee3c18b0fcf87360022871b884132f71a0
[ "MIT" ]
null
null
null
build/lib/preview_generator/preview/builder/office__libreoffice.py
alounko/preview-generator-py2
604734ee3c18b0fcf87360022871b884132f71a0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from io import BytesIO import logging import os from subprocess import check_call from subprocess import DEVNULL from subprocess import STDOUT import time import typing from PyPDF2 import PdfFileReader from PyPDF2 import PdfFileWriter from preview_generator.exception import BuilderDependencyNotFound from preview_generator.exception import ExecutableNotFound from preview_generator.preview.generic_preview import PreviewBuilder from preview_generator.utils import check_executable_is_available from preview_generator.utils import ImgDims from preview_generator.preview.builder.image__wand import convert_pdf_to_jpeg class OfficePreviewBuilderLibreoffice(PreviewBuilder): @classmethod def get_supported_mimetypes(cls): return [ 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', # nopep8 'application/vnd.oasis.opendocument.text', 'application/vnd.oasis.opendocument.spreadsheet', 'application/msword', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', # nopep8 'application/vnd.openxmlformats-officedocument.wordprocessingml.template', # nopep8 'application/vnd.ms-word.document.macroEnabled.12', 'application/vnd.ms-excel', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', # nopep8 'application/vnd.openxmlformats-officedocument.spreadsheetml.template', # nopep8 'application/vnd.ms-excel.sheet.macroEnabled.12', 'application/vnd.ms-excel.template.macroEnabled.12', 'application/vnd.ms-excel.addin.macroEnabled.12', 'application/vnd.ms-excel.sheet.binary.macroEnabled.12', 'application/vnd.ms-powerpoint', 'application/vnd.openxmlformats-officedocument.presentationml.presentation', # nopep8 'application/vnd.openxmlformats-officedocument.presentationml.template', # nopep8 'application/vnd.openxmlformats-officedocument.presentationml.slideshow', # nopep8 'application/vnd.ms-powerpoint.addin.macroEnabled.12', 'application/vnd.ms-powerpoint.presentation.macroEnabled.12', 'application/vnd.ms-powerpoint.template.macroEnabled.12', 'application/vnd.ms-powerpoint.slideshow.macroEnabled.12', 'application/vnd.oasis.opendocument.spreadsheet', 'application/vnd.oasis.opendocument.text', 'application/vnd.oasis.opendocument.text-template', 'application/vnd.oasis.opendocument.text-web', 'application/vnd.oasis.opendocument.text-master', 'application/vnd.oasis.opendocument.graphics', 'application/vnd.oasis.opendocument.graphics-template', 'application/vnd.oasis.opendocument.presentation', 'application/vnd.oasis.opendocument.presentation-template', 'application/vnd.oasis.opendocument.spreadsheet-template', 'application/vnd.oasis.opendocument.chart', 'application/vnd.oasis.opendocument.chart', 'application/vnd.oasis.opendocument.formula', 'application/vnd.oasis.opendocument.database', 'application/vnd.oasis.opendocument.image', 'application/vnd.openofficeorg.extension', ] # type: typing.List[str] @classmethod def check_dependencies(cls): try: return check_executable_is_available('libreoffice') except ExecutableNotFound: raise BuilderDependencyNotFound( 'this builder requires libreoffice to be available' ) def build_jpeg_preview( self, file_path, preview_name, cache_path, page_id, extension = '.jpg', size=None ): with open(file_path, 'rb') as odt: if os.path.exists( '{path}{file_name}.pdf'.format( path=cache_path, file_name=preview_name )): input_pdf_stream = open( '{path}.pdf'.format( path=cache_path + preview_name, ), 'rb') else: if self.cache_file_process_already_running( cache_path + preview_name): time.sleep(2) return self.build_jpeg_preview( file_path=file_path, preview_name=preview_name, cache_path=cache_path, extension=extension, page_id=page_id ) else: input_pdf_stream = convert_office_document_to_pdf( odt, cache_path, preview_name ) input_pdf = PdfFileReader(input_pdf_stream) intermediate_pdf = PdfFileWriter() intermediate_pdf.addPage(input_pdf.getPage(int(page_id))) intermediate_pdf_stream = BytesIO() intermediate_pdf.write(intermediate_pdf_stream) intermediate_pdf_stream.seek(0, 0) jpeg_stream = convert_pdf_to_jpeg(intermediate_pdf_stream, size) jpeg_preview_path = '{path}{file_name}{extension}'.format( path=cache_path, file_name=preview_name, extension=extension ) with open(jpeg_preview_path, 'wb') as jpeg_output_stream: buffer = jpeg_stream.read(1024) while buffer: jpeg_output_stream.write(buffer) buffer = jpeg_stream.read(1024) def get_page_number(self, file_path, preview_name, cache_path): page_nb_file_path = cache_path + preview_name + '_page_nb' if not os.path.exists(page_nb_file_path): pdf_version_filepath = cache_path + preview_name + '.pdf' if not os.path.exists(pdf_version_filepath): self.build_pdf_preview( file_path=file_path, preview_name=preview_name, cache_path=cache_path ) with open(page_nb_file_path, 'w') as page_nb_file_stream: page_nb_file_stream.seek(0, 0) with open(pdf_version_filepath, 'rb') as pdf_stream: pdf_reader = PdfFileReader(pdf_stream) page_nb_file_stream.write(str(pdf_reader.numPages)) with open(page_nb_file_path, 'r') as page_nb_stream: page_nb = int(page_nb_stream.read()) return page_nb def has_pdf_preview(self): """ Override and return True if your builder allow PDF preview :return: """ return True def build_pdf_preview( self, file_path, preview_name, cache_path, extension = '.pdf', page_id = -1): intermediate_filename = preview_name.split('-page')[0] intermediate_pdf_file_path = os.path.join( cache_path, '{}.pdf'.format(intermediate_filename) ) if not os.path.exists(intermediate_pdf_file_path): if os.path.exists(intermediate_pdf_file_path + '_flag'): # Wait 2 seconds, then retry time.sleep(2) return self.build_pdf_preview( file_path=file_path, preview_name=preview_name, cache_path=cache_path, extension=extension, page_id=page_id ) with open(file_path, 'rb') as input_stream: # first step is to convert full document to full pdf convert_office_document_to_pdf( input_stream, cache_path, intermediate_filename ) if page_id < 0: return # in this case, the intermediate file is the requested one pdf_in = PdfFileReader(intermediate_pdf_file_path) output_file_path = os.path.join(cache_path, '{}{}'.format(preview_name, extension)) pdf_out = PdfFileWriter() pdf_out.addPage(pdf_in.getPage(page_id)) with open(output_file_path, 'wb') as output_file: pdf_out.write(output_file) def cache_file_process_already_running(self, file_name): if os.path.exists(file_name + '_flag'): return True else: return False def create_flag_file(filepath): # the flag is used to avoid concurrent build of same previews try: os.mkdir(filepath+'_flag') except OSError: pass def convert_office_document_to_pdf( file_content, cache_path, file_name ): cache_filename_path = cache_path + file_name create_flag_file(cache_filename_path) if not os.path.exists(cache_filename_path): with open('{path}{file_name}'.format( path=cache_path, file_name=file_name), 'wb') \ as odt_temp: file_content.seek(0, 0) buffer = file_content.read(1024) while buffer: odt_temp.write(buffer) buffer = file_content.read(1024) try: logging.info('Creation of directory' + cache_path) os.makedirs(cache_path) except OSError: pass # TODO There's probably a cleaner way to convert to pdf check_call( [ 'libreoffice', '--headless', '--convert-to', 'pdf:writer_pdf_Export', '{path}{extension}'.format(path=cache_path, extension=file_name), # nopep8 '--outdir', cache_path, '-env:UserInstallation=file:///tmp/LibreOffice_Conversion_${USER}', # nopep8 ], stdout=DEVNULL, stderr=STDOUT ) try: logging.info('Removing directory' + cache_path + file_name + '_flag') os.removedirs(cache_path + file_name + '_flag') except OSError: pass try: logging.info('Removing directory {path}{file_name}'.format( path=cache_path, file_name=file_name ) ) os.remove('{path}{file_name}'.format( path=cache_path, file_name=file_name ) ) except OSError: pass with open('{path}{file_name}.pdf'.format( path=cache_path, file_name=file_name ), 'rb') as pdf: pdf.seek(0, 0) content_as_bytes = pdf.read() output = BytesIO(content_as_bytes) output.seek(0, 0) return output
36.267327
98
0.590045
794ea607ea15bc54b31800cbb68c1934c3b54946
2,660
py
Python
scripts/plotNetWTP.py
aerospike/aerospike-benchmarks
97a18f669a8141d007a9458b750a102a89d1c4eb
[ "Apache-2.0" ]
3
2017-04-06T06:27:33.000Z
2019-02-09T15:36:24.000Z
scripts/plotNetWTP.py
aerospike-examples/aerospike-benchmarks
97a18f669a8141d007a9458b750a102a89d1c4eb
[ "Apache-2.0" ]
null
null
null
scripts/plotNetWTP.py
aerospike-examples/aerospike-benchmarks
97a18f669a8141d007a9458b750a102a89d1c4eb
[ "Apache-2.0" ]
1
2017-11-27T21:43:07.000Z
2017-11-27T21:43:07.000Z
#!/usr/bin/env /usr/local/bin/python # # Copyright 2012-2016 Aerospike, Inc. # # Portions may be licensed to Aerospike, Inc. under one or more contributor # license agreements WHICH ARE COMPATIBLE WITH THE APACHE LICENSE, VERSION 2.0. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ################################################################################# # # Purpose: This application graphs output from dstat. # Dstat must be used with the following options: # # dstat -Tcmndr --output dstat.out # ################################################################################# # import modules import json import math import glob import os import sys import getopt import time import datetime import numpy as np import csv import datetime import matplotlib as mlab mlab.use('Agg') import matplotlib.pyplot as plt def main(argv): # initialize some variable to be lists: i = 1 x1 = [] y1 = [] # Read command line args inputfile = '' outputfile = '' try: opts, args = getopt.getopt(argv,"hi:o:d:",["ifile=","ofile="]) except getopt.GetoptError: print 'plotNetWTP.py -i <inputfile> -o <outputfile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'plotNetWTP.py -i <inputfile> -o <outputfile>' sys.exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-o", "--ofile"): outputfile = arg elif opt in ("-d"): dbname = arg with open(inputfile,'r') as csvfile: plots = csv.reader(csvfile, delimiter=',') seconds = 0 for row in plots: x1.append(seconds) y1.append(float(row[12])) seconds +=1 fig = plt.figure(figsize=[10,9]) tmp_title = dbname.upper() + " Net Write Throughput" fig.suptitle(tmp_title, fontsize=18) plt.xlabel('Time(s)', fontsize=16) plt.ylabel('Bytes', fontsize=16) plt.tick_params(labelsize=10) plt.xticks(rotation=70) xv = np.array(x1) yv = np.array(y1) plt.plot(xv, yv,color=[0.0/255,0.0/255,255.0/255]) plt.savefig(outputfile) if __name__ == "__main__": main(sys.argv[1:])
27.142857
81
0.615038
794ea63f4952f74c669dcb01993e9bea1484b1fe
31
py
Python
module/__init__.py
TauWu/monitor_bot
637a13266a4841ecfdbcc455ecc9b094c07ffd94
[ "Apache-2.0" ]
3
2018-09-25T08:01:21.000Z
2021-02-02T10:12:41.000Z
module/__init__.py
TauWu/monitor_bot
637a13266a4841ecfdbcc455ecc9b094c07ffd94
[ "Apache-2.0" ]
null
null
null
module/__init__.py
TauWu/monitor_bot
637a13266a4841ecfdbcc455ecc9b094c07ffd94
[ "Apache-2.0" ]
1
2018-11-14T07:52:06.000Z
2018-11-14T07:52:06.000Z
# -*- coding:utf-8 -*- # module
15.5
22
0.516129
794ea6c316fa08eecd473a8133c03d68232b47a1
464
py
Python
data/scripts/templates/object/draft_schematic/bio_engineer/creature/shared_creature_roba.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/draft_schematic/bio_engineer/creature/shared_creature_roba.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/draft_schematic/bio_engineer/creature/shared_creature_roba.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Intangible() result.template = "object/draft_schematic/bio_engineer/creature/shared_creature_roba.iff" result.attribute_template_id = -1 result.stfName("string_id_table","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.294118
90
0.734914
794ea70638fda491863f96e6ae7938ec44ce71dc
3,464
py
Python
imwievaluation/semester_old.py
ESchae/IMWIEvaluation
2fa661711b7b65cba25c1fa9ba69e09e75c7655f
[ "MIT" ]
null
null
null
imwievaluation/semester_old.py
ESchae/IMWIEvaluation
2fa661711b7b65cba25c1fa9ba69e09e75c7655f
[ "MIT" ]
null
null
null
imwievaluation/semester_old.py
ESchae/IMWIEvaluation
2fa661711b7b65cba25c1fa9ba69e09e75c7655f
[ "MIT" ]
1
2019-10-19T10:11:17.000Z
2019-10-19T10:11:17.000Z
""" Copyrigh 2018 Author Elke Schaechtele """ from csv import DictReader from imwievaluation.utils import clean_string class Semester(object): def __init__(self, term): self.term = term self.lectures = [] self.lecturers = [] def read_survey_file(self, survey_file): with open(survey_file) as f: reader = DictReader(f, delimiter='\t') for row in reader: # make Lecture object and append it to self.lectures title = row['lecture title'].strip() name = row['lecturer'].strip() with_tutorial = row['tutorial'].strip() lecture = Lecture(self.term, title, name, with_tutorial) self.lectures.append(lecture) if name not in self.lecturer_names(): # add lecturer to self.lecturers mail = row['mail'].strip() gender = row['gender'].strip() lecturer = Lecturer(name, mail, gender) self.lecturers.append(lecturer) # add lecture to lecturer's lecture list for lecturer in self.lecturers: if lecturer.name == name: lecturer.add_lecture(lecture) def lecture_titles(self): lecture_titles = [] for lecture in self.lectures: lecture_titles.append(lecture.title) return lecture_titles def lecturer_names(self): lecturer_names = [] for lecturer in self.lecturers: lecturer_names.append(lecturer.name) return lecturer_names class Lecturer(object): def __init__(self, name, mail, gender): self.name = name self.mail = mail self.gender = gender self.lectures = [] def add_lecture(self, lecture): self.lectures.append(lecture) class Lecture(object): def __init__(self, term, title, lecturer, with_tutorial): self.term = term self.lecturer = lecturer self.title = title self.with_tutorial = with_tutorial self.participants = [] def get_evaluation_title(self): return 'Evaluation %s (%s) %s' % (self.title, self.lecturer, self.term) def get_filename(self, modus): lecturer = clean_string(self.lecturer) term = self.term.replace('/', '') # TODO: Maybe deprecated if modus == 'participants': title = clean_string(self.title).replace(' ', '_') return 'Teilnehmer_%s_%s_%s.csv' % (title, lecturer, term) elif modus == 'csv': title = clean_string(self.title).replace(' ', '_') return 'Ergebnisse_%s_%s_%s.csv' % (title, lecturer, term) elif modus == 'pdf': title = clean_string(self.title).replace(' ', '_') # fileending will be added automatically in latex.py return 'Ergebnisse_%s_%s_%s' % (title, lecturer, term) elif modus == 'evaluation': return 'Evaluation %s (%s) %s' % (self.title, self.lecturer, term) def parse_participants_csv_file(self, csv_file): with open(csv_file) as f: reader = DictReader(f) for row in reader: self.participants.append({ 'email': row['email'].strip(), 'lastname': row['lastname'].strip(), 'firstname': row['firstname'].strip() })
34.29703
79
0.565242
794ea70b51519ab8081f7f0963fc8960bbe9dc02
1,034
py
Python
jp.atcoder/abc252/abc252_d/31857223.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc252/abc252_d/31857223.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc252/abc252_d/31857223.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import collections import bisect def main() -> None: n = int(input()) a = list(map(int, input().split())) b = list(collections.Counter(a).values()) origin = sorted(set(b)) b = [bisect.bisect_left(origin, x) for x in b] mx = max(b) cc = [0] * (mx + 1) for c in b: cc[c] += 1 def choose_3(n): return n * (n - 1) * (n - 2) // 6 def choose_2(n): return n * (n - 1) // 2 tot = 0 for i in range(mx + 1): o = origin[i] tot += choose_3(cc[i]) * o**3 tot += choose_2(cc[i]) * o**2 * (n - cc[i] * o) s = [cc[i] * origin[i] for i in range(mx + 1)] for i in range(mx): s[i + 1] += s[i] for i in range(mx): oi = origin[i] for j in range(i + 1, mx + 1): if cc[i] == 0 or cc[j] == 0: continue oj = origin[j] tot += cc[i] * oi * cc[j] * oj * (n - s[j]) print(tot) if __name__ == "__main__": main()
21.541667
56
0.421663
794ea7326037da48e5aafbaf02f97d16015ff472
8,591
py
Python
spyder/app/solver.py
CodedX-cyber/spyder
57a0e206562b566ee565221ea20f46941bc00e00
[ "MIT" ]
1
2021-04-11T00:32:35.000Z
2021-04-11T00:32:35.000Z
spyder/app/solver.py
CodedX-cyber/spyder
57a0e206562b566ee565221ea20f46941bc00e00
[ "MIT" ]
null
null
null
spyder/app/solver.py
CodedX-cyber/spyder
57a0e206562b566ee565221ea20f46941bc00e00
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ Plugin dependency solver. """ import ast import importlib import logging import os import traceback import pkg_resources from spyder.api.exceptions import SpyderAPIError from spyder.api.plugins import ( SpyderDockablePlugin, SpyderPluginWidget, Plugins) from spyder.config.base import DEV, STDERR, running_under_pytest from spyder.utils.external.toposort import (CircularDependencyError, toposort_flatten) logger = logging.getLogger(__name__) def find_internal_plugins(): """ Find available plugins based on setup.py entry points. In DEV mode we parse the `setup.py` file directly. """ internal_plugins = {} # If DEV, look for entry points in setup.py file for internal plugins # and then look on the system for the rest HERE = os.path.abspath(os.path.dirname(__file__)) base_path = os.path.dirname(os.path.dirname(HERE)) setup_path = os.path.join(base_path, "setup.py") if (DEV is not None or running_under_pytest() and os.path.isfile(setup_path)): if not os.path.isfile(setup_path): raise Exception( 'No "setup.py" file found and running in DEV mode!') with open(setup_path, "r") as fh: lines = fh.read().split("\n") start = None end = None for idx, line in enumerate(lines): if line.startswith("spyder_plugins_entry_points"): start = idx + 1 continue if start is not None: if line.startswith("]"): end = idx + 1 break internal_plugins = {} entry_points_list = "[" + "\n".join(lines[start:end]) spyder_plugin_entry_points = ast.literal_eval(entry_points_list) for entry_point in spyder_plugin_entry_points: try: name, module = entry_point.split(" = ") name = name.strip() module = module.strip() module, class_name = module.split(":") except Exception: logger.error( '"setup.py" entry point "{entry_point}" is malformed!' "".format(entry_point=entry_point) ) try: mod = importlib.import_module(module) internal_plugins[name] = getattr(mod, class_name, None) except (ModuleNotFoundError, ImportError): pass else: import spyder.plugins as plugin_mod plugins_path = os.path.dirname(plugin_mod.__file__) for folder in os.listdir(plugins_path): plugin_path = os.path.join(plugins_path, folder) init_path = os.path.join(plugin_path, "__init__.py") if (os.path.isdir(plugin_path) and os.path.isfile(init_path) and not folder.startswith("io_")): spec = importlib.util.spec_from_file_location(folder, init_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) for plugin_class in getattr(module, "PLUGIN_CLASSES", []): internal_plugins[plugin_class.NAME] = plugin_class return internal_plugins def find_external_plugins(): """ Find available internal plugins based on setuptools entry points. """ internal_plugins = find_internal_plugins() plugins = [ entry_point for entry_point in pkg_resources.iter_entry_points("spyder.plugins") ] external_plugins = {} for entry_point in plugins: name = entry_point.name if name not in internal_plugins: try: class_name = entry_point.attrs[0] mod = importlib.import_module(entry_point.module_name) plugin_class = getattr(mod, class_name, None) # To display in dependencies dialog plugin_class._spyder_module_name = entry_point.module_name plugin_class._spyder_package_name = ( entry_point.dist.project_name) plugin_class._spyder_version = entry_point.dist.version external_plugins[name] = plugin_class if name != plugin_class.NAME: raise SpyderAPIError( "Entry point name '{0}' and plugin.NAME '{1}' " "do not match!".format(name, plugin_class.NAME) ) except (ModuleNotFoundError, ImportError) as error: print("%s: %s" % (name, str(error)), file=STDERR) traceback.print_exc(file=STDERR) return external_plugins def solve_plugin_dependencies(plugins): """ Return a list of plugins sorted by dependencies. Notes ----- * Prune the plugins for which required dependencies are not met * Prune the optional dependencies from the remaining plugins based on the remaining plugins available. * Group the remaining optional dependencies with the required dependencies. * Sort with toposort algorithm. """ # Back up dependencies for plugin in plugins: if plugin.REQUIRES is None: plugin.REQUIRES = [] if plugin.OPTIONAL is None: plugin.OPTIONAL = [] plugin._REQUIRES = plugin.REQUIRES.copy() plugin._OPTIONAL = plugin.OPTIONAL.copy() plugin_names = {plugin.NAME: plugin for plugin in plugins} dependencies_dict = {} # Prune plugins based on required dependencies or populate the dependencies # if using a wildcard i.e 'Plugins.All' or to add base dependencies for # example the Shortcuts plugin to all SpyderDockablePlugin's (shortcut for # the "switch to plugin" action). remaining_plugins = [] plugins_requiring_all_plugins = [] pruning_requires = True import copy while pruning_requires: pruning_requires = False remaining_plugins = [] current_plugins = copy.deepcopy(plugins) for plugin in current_plugins: if issubclass(plugin, (SpyderDockablePlugin, SpyderPluginWidget)): if Plugins.Shortcuts not in plugin.REQUIRES: plugin.REQUIRES.append(Plugins.Shortcuts) plugin._REQUIRES = plugin.REQUIRES.copy() for required in plugin.REQUIRES[:]: # Check self references if plugin.NAME == required: raise SpyderAPIError("Plugin is self referencing!") if (required == Plugins.All and len(plugin.REQUIRES) == 1): all_plugins = plugin_names.copy() all_plugins.pop(plugin.NAME) plugin.REQUIRES = list(all_plugins) plugin._REQUIRES = plugin.REQUIRES.copy() logger.info( "Added all plugins as dependencies to plugin: " + plugin.NAME) plugins_requiring_all_plugins.append(plugin) continue if required not in plugin_names: plugin_names.pop(plugin.NAME) plugins.remove(plugin) for plugin_req_all in plugins_requiring_all_plugins: plugin_req_all.REQUIRES = [Plugins.All] plugin_req_all._REQUIRES = [Plugins.All] logger.error("Pruned plugin: {}".format(plugin.NAME)) logger.error("Missing requirement: {}".format(required)) logger.error("Restart plugins pruning by REQUIRES check") pruning_requires = True break else: if plugin.NAME in plugin_names: remaining_plugins.append(plugin) # Prune optional dependencies from remaining plugins for plugin in remaining_plugins: for optional in plugin.OPTIONAL: if optional not in plugin_names: plugin._OPTIONAL.remove(optional) plugin._REQUIRES += plugin._OPTIONAL dependencies_dict[plugin.NAME] = set(plugin._REQUIRES) # Now use toposort with plugin._REQUIRES! deps = toposort_flatten(dependencies_dict) plugin_deps = [plugin_names[name] for name in deps] return plugin_deps
37.515284
79
0.598533
794ea842b0507dd37e2eaa693caec1e4e40f8d6a
32,052
py
Python
dgp_graph/impl_parallel.py
naiqili/DGPG-MLJ
65d566cc666a7ed43b5211e9b9c1af43ec8c0216
[ "MIT" ]
1
2022-01-05T11:17:44.000Z
2022-01-05T11:17:44.000Z
dgp_graph/impl_parallel.py
naiqili/DGPG-journal
2770ce58185091afff5eca8e295086b42f4d874e
[ "MIT" ]
null
null
null
dgp_graph/impl_parallel.py
naiqili/DGPG-journal
2770ce58185091afff5eca8e295086b42f4d874e
[ "MIT" ]
null
null
null
import tensorflow as tf import numpy as np from gpflow.mean_functions import Identity, Linear from gpflow import settings from gpflow import transforms from gpflow.misc import _broadcasting_elementwise_op float_type = settings.float_type from gpflow import params_as_tensors, params_as_tensors_for, ParamList from gpflow.mean_functions import Zero, MeanFunction from gpflow.kernels import Stationary, RBF, Kernel from compatible.ver_adaption import * from doubly_stochastic_dgp.dgp import DGP_Base, TWDGP_Base from doubly_stochastic_dgp.layers import Layer from jack_utils.common import time_it from gpflow.decors import autoflow from gpflow.transforms import LowerTriangular, Transform from dgp_graph.my_op import * IP3D = InducingPoints # IP is compatiable with 3d Z # todo auto mem inc(maybe done by gpflow) # config = tf.ConfigProto() # config.gpu_options.allow_growth=True # sess = tf.Session(config=config) class LowerTriangular3D(LowerTriangular): """ LowerTriangular Transform for 3D (4d actually) inputs It's a reshape wrapper to the original LowerTriangular but keeps computation efficiency. The node-fim must be at the first dim. """ def __init__(self, num_nodes, N, dim_out=1, **kwargs): super(LowerTriangular3D, self).__init__(N, num_nodes * dim_out, **kwargs) self.num_nodes = num_nodes self.dim_out = dim_out def forward(self, x): """ triangle -> vec each :param x: packed x(num_nodes, num_matrices, num_non_zero) :return: triangle matrices y(num_nodes, num_matrices, N, N) """ x_ = x.reshape(self.num_nodes*self.dim_out, -1) y = super(LowerTriangular3D, self).forward(x_).reshape(self.num_nodes, self.dim_out, self.N, self.N) return y def backward(self, y): """ triangle -> vec each :param y: (num_nodes, num_matrices, N, N) input triangle matrices :return: packed x(num_nodes, num_matrices, num_non_zero) """ y_ = y.reshape(self.num_nodes*self.dim_out, self.N, self.N) x = super(LowerTriangular3D, self).backward(y_).reshape(self.num_nodes, self.dim_out, -1) return x def forward_tensor(self, x): x_ = tf.reshape(x, (self.num_nodes * self.dim_out, -1)) y_ = super(LowerTriangular3D, self).forward_tensor(x_) y = tf.reshape(y_, (self.num_nodes, self.dim_out, self.N, self.N)) return y def backward_tensor(self, y): y_ = tf.reshape(y, (self.num_nodes * self.dim_out, self.N, self.N)) x_ = super(LowerTriangular3D, self).backward_tensor(y_) x = tf.reshape(x_, (self.num_nodes, self.dim_out, -1)) return x def __str__(self): return "LoTri_3d->matrix" @staticmethod def test(): nodes, dim_in, dim_out = 3, 2, 4 y = np.random.randint(1, 10, size=(dim_out, dim_in, dim_in)) * np.tri(dim_in) y_all = np.tile(y[None, ...], [nodes, 1, 1, 1]) trans = LowerTriangular(dim_in, num_matrices=dim_out) trans_3d = LowerTriangular3D(nodes, dim_in, dim_out) # np version assert np.array_equal(y, trans.forward(trans.backward(y))) assert np.array_equal(y_all, trans_3d.forward(trans_3d.backward(y_all))) x_all = trans_3d.backward(y_all) x_all_for = np.stack([trans.backward(y_all[i]) for i in range(nodes)], axis=0) assert np.array_equal(x_all, x_all_for) assert np.array_equal(trans_3d.forward(x_all), np.stack([trans.forward(x_all[i]) for i in range(nodes)], axis=0)) # tf version sess = tf.Session() sess.run(tf.assert_equal(y, trans.forward_tensor(trans.backward_tensor(y)))) sess.run(tf.assert_equal(y_all, trans_3d.forward_tensor(trans_3d.backward_tensor(y_all)))) x_all = trans_3d.backward_tensor(y_all) x_all_for = tf.stack([trans.backward_tensor(y_all[i]) for i in range(nodes)], axis=0) sess.run(tf.assert_equal(x_all, x_all_for)) sess.run(tf.assert_equal(trans_3d.forward_tensor(x_all), tf.stack([trans.forward_tensor(x_all[i]) for i in range(nodes)], axis=0))) class DGPG(DGP_Base): @time_it def __init__(self, X, Y, Z, input_dims, likelihood, adj, agg_op_name='concat3d', ARD=False, is_Z_forward=True, mean_trainable=False, out_mf0=True, kern_type='RBF', **kwargs): """ init layers for graph dgp model. :param X: (s1, n, d_in) :param Y: (s1, n, d_out) :param Z: (s2, n, d_in) :param kernels: [(n, d_in)...] length=L :param likelihood: todo :param adj: (n, n) :param is_Z_forward: whether Z should be aggregated and propagated among layers """ assert np.ndim(X) == 3 and np.ndim(Z) == 3 and np.ndim(Y) == 3 nb_agg = get_nbf_op(agg_op_name) num_nodes = adj.shape[0] raw_mask = adj.copy() # 1. constructing layers layers, X_running, Z_running = [], X.copy(), Z.copy() layer_n = 0 for dim_in, dim_out in zip(input_dims[:-1], input_dims[1:]): # get in->out dimension for current layer # constructing mean function W, fixed_nmf = FixedNMF.init(X_running, adj, dim_out, agg_op_name, mean_trainable) # constructing kernel if 'concat' in agg_op_name: mask_concat = neighbour_feats(raw_mask, np.ones((num_nodes, dim_in))) # (n, n*feat) kern = RBFNodes(num_nodes, num_nodes*dim_in, mask=mask_concat, ARD=ARD, layer_n=layer_n, kern_type=kern_type) else: kern = RBFNodes(num_nodes, dim_in, ARD=ARD, layer_n=layer_n, kern_type=kern_type) # init layer layers.append(SVGPG_Layer(fixed_nmf, kern, Z_running, adj, dim_out, agg_op_name, is_Z_forward)) print('input-output dim ({}(agg:{})->{})'.format(dim_in, kern.input_dim, dim_out)) # propagating X & Z if is_Z_forward: Z_running = nb_agg(adj, Z_running) # todo 若使用concat,Z不聚合时,不能和X共用同一个mean_function,需要重新搞一个维度转换用的W。 Z_running = FixedNMF.np_call(Z_running, W) # (s2, n, d_in) -> (s2, n, d_out) X_running = FixedNMF.np_call(nb_agg(adj, X_running), W) # (s1, n, d_in) -> (s1, n, d_out) layer_n += 1 # 2. constructing the last/output layer recording to the shape of Y # constructing mean function dim_in = input_dims[-1] if 'concat' in agg_op_name: mask_concat = neighbour_feats(raw_mask, np.ones((num_nodes, dim_in))) kern = RBFNodes(num_nodes, num_nodes * dim_in, mask=mask_concat, ARD=ARD, layer_n=layer_n, kern_type=kern_type) else: kern = RBFNodes(num_nodes, dim_in, ARD=ARD, layer_n=layer_n, kern_type=kern_type) mf = Zero() if out_mf0 else FixedNMF.init(X_running, adj, Y.shape[-1], agg_op_name, mean_trainable)[1] # init layer layers.append(SVGPG_Layer(mf, kern, Z_running, adj, Y.shape[-1], agg_op_name, is_Z_forward)) print('input-output dim ({}(agg:{})->{})'.format(dim_in, kern.input_dim, Y.shape[-1])) # 3. using layers to init the Base model with 2d inputs DGP_Base.__init__(self, X.reshape(X.shape[0], -1), Y.reshape(Y.shape[0], -1), likelihood, layers, name='DGPG', **kwargs) class TWDGPG(TWDGP_Base): @time_it def __init__(self, X, Y, Z, time_vec, input_dims, likelihood, adj, agg_op_name='concat3d', ARD=False, is_Z_forward=True, mean_trainable=False, out_mf0=True, kern_type='RBF', wfunc='exp', **kwargs): """ init layers for graph dgp model. :param X: (s1, n, d_in) :param Y: (s1, n, d_out) :param Z: (s2, n, d_in) :param kernels: [(n, d_in)...] length=L :param likelihood: todo :param adj: (n, n) :param is_Z_forward: whether Z should be aggregated and propagated among layers """ #assert np.ndim(X) == 3 and np.ndim(Z) == 3 and np.ndim(Y) == 3 nb_agg = get_nbf_op(agg_op_name) num_nodes = adj.shape[0] raw_mask = adj.copy() # 1. constructing layers layers, X_running, Z_running = [], X.copy(), Z.copy() layer_n = 0 for dim_in, dim_out in zip(input_dims[:-1], input_dims[1:]): # get in->out dimension for current layer # constructing mean function W, fixed_nmf = FixedNMF.init(X_running, adj, dim_out, agg_op_name, mean_trainable) # constructing kernel if 'concat' in agg_op_name: mask_concat = neighbour_feats(raw_mask, np.ones((num_nodes, dim_in))) # (n, n*feat) kern = RBFNodes(num_nodes, num_nodes*dim_in, mask=mask_concat, ARD=ARD, layer_n=layer_n, kern_type=kern_type) else: kern = RBFNodes(num_nodes, dim_in, ARD=ARD, layer_n=layer_n, kern_type=kern_type) # init layer layers.append(SVGPG_Layer(fixed_nmf, kern, Z_running, adj, dim_out, agg_op_name, is_Z_forward)) print('input-output dim ({}(agg:{})->{})'.format(dim_in, kern.input_dim, dim_out)) # propagating X & Z if is_Z_forward: Z_running = nb_agg(adj, Z_running) # todo 若使用concat,Z不聚合时,不能和X共用同一个mean_function,需要重新搞一个维度转换用的W。 Z_running = FixedNMF.np_call(Z_running, W) # (s2, n, d_in) -> (s2, n, d_out) X_running = FixedNMF.np_call(nb_agg(adj, X_running), W) # (s1, n, d_in) -> (s1, n, d_out) layer_n += 1 # 2. constructing the last/output layer recording to the shape of Y # constructing mean function dim_in = input_dims[-1] if 'concat' in agg_op_name: mask_concat = neighbour_feats(raw_mask, np.ones((num_nodes, dim_in))) kern = RBFNodes(num_nodes, num_nodes * dim_in, mask=mask_concat, ARD=ARD, layer_n=layer_n, kern_type=kern_type) else: kern = RBFNodes(num_nodes, dim_in, ARD=ARD, layer_n=layer_n, kern_type=kern_type) mf = Zero() if out_mf0 else FixedNMF.init(X_running, adj, Y.shape[-1], agg_op_name, mean_trainable)[1] # init layer layers.append(SVGPG_Layer(mf, kern, Z_running, adj, Y.shape[-1], agg_op_name, is_Z_forward)) print('input-output dim ({}(agg:{})->{})'.format(dim_in, kern.input_dim, Y.shape[-1])) if np.ndim(X) == 3: # 3. using layers to init the Base model with 2d inputs TWDGP_Base.__init__(self, X.reshape(X.shape[0], -1), Y.reshape(Y.shape[0], -1), time_vec, likelihood, layers, name='DGPG', wfunc=wfunc, **kwargs) else: TWDGP_Base.__init__(self, X.reshape(X.shape[0], X.shape[1], -1), Y.reshape(Y.shape[0], Y.shape[1], -1), time_vec, likelihood, layers, name='DGPG', wfunc=wfunc, **kwargs) class SVGPG_Layer(Layer): """ 实现单层SVGP-Graph: 1) 函数conditional_ND() - 计算q_f的均值和协方差 - 从q_f采样时被用到,以计算证据下界的第一项 2) 函数KL() - 计算q_u的KL散度 - 用以计算证据下界的第二项 """ def __init__(self, nodes_mf, kern, Z, adj, dim_per_out, agg_op_name='concat3d', is_Z_forward=True, **kwargs): assert np.ndim(Z) == 3 Layer.__init__(self, input_prop_dim=False, **kwargs) # agg_operation self.agg = get_nbf_op(agg_op_name) self.tf_agg = get_nbf_op(agg_op_name, is_tf=True) # shape variables self.adj = adj self.num_nodes = adj.shape[0] self.num_inducing = Z.shape[0] self.dim_per_out = dim_per_out self.num_outputs = self.num_nodes * dim_per_out # neighbour aggregation(e.g., sum, concat, mean) of Z Z_agg = self.agg(adj, Z) if is_Z_forward else Z # construct and init key Params: # func m: mean_function # func k: kern_function # q(u)~N(u|bf{m},bf{S}) # bf{m} : q_mu # bf{S} : q_sqrt @ q_sqrt.T self.mean_function = nodes_mf self.kern = kern self.q_mu = Parameter(np.zeros((self.num_nodes, self.num_inducing, dim_per_out))) # (n, s2, d_out) self.feature = IP3D(Z_agg) # constructing Param *q_sqrt* with cholesky(Kuu) Ku = kern.compute_K_symm(Z_agg) Ku += np.eye(self.num_inducing) * settings.jitter # k(Z, Z)+ I*jitter : (n, s2, s2) Lu = np.linalg.cholesky(Ku) # L = sqrt(k(Z,Z)) : (n, s2, s2) q_sqrt = np.tile(np.expand_dims(Lu, axis=1), [1, dim_per_out, 1, 1]) # (n, dim_out, s2, s2) self.q_sqrt = Parameter(q_sqrt, transform=LowerTriangular3D(self.num_nodes, self.num_inducing, dim_per_out)) self.needs_build_cholesky = True @params_as_tensors def build_cholesky_if_needed(self): # make sure we only compute this once if self.needs_build_cholesky: self.Ku = self.feature.Kzz(self.kern, jitter=settings.jitter) # (n, s2, s2) self.Lu = tf.linalg.cholesky(self.Ku) # (n, s2, s2) Low Triangle self.Ku_tiled = tf.tile(tf.expand_dims(self.Ku, 1), [1, self.dim_per_out, 1, 1]) # (n,d_out,s2,s2) self.Lu_tiled = tf.tile(tf.expand_dims(self.Lu, 1), [1, self.dim_per_out, 1, 1]) self.needs_build_cholesky = False def conditional_ND(self, X, full_cov=False): """ wrapper 2d and 3d input/output :param X: **2-dim** inputs with shape(samples1, nodes * dim_per_in) :param full_cov: not used currently :return: return 2-dim mean and variance """ # self.build_cholesky_if_needed() if tf.shape(X).shape[0] == 2: X = tf.reshape(X, [tf.shape(X)[0], self.num_nodes, -1]) # (s1, n*d_in) -> (s1, n, d_in) mean, var = self.conditional_ND_3D(X, full_cov=False) mean = tf.reshape(tf.transpose(mean, [1, 0, 2]), [tf.shape(X)[0], -1]) # (n,s1,d_out) ->(s1, n*d_out) var = tf.reshape(tf.transpose(var, [1, 0, 2]), [tf.shape(X)[0], -1]) return mean, var else: return self.conditional_ND_3D(X, full_cov=False) def conditional_ND_3D(self, X, full_cov=False): """ implementation of equation (7)(8) of paper DS-DGP :param X: input X (num_observation=s1, num_nodes=n, dim_per_in=d_in) :param full_cov: whether calculating the full covariance :return: mean, var """ if full_cov: raise NotImplementedError # 0. neighbour feat aggregation X_agg = self.tf_agg(self.adj, X) # (s1, n, d_in/n*d_in) # 1. calc alpha=k(Z,Z)^{-1}@k(Z, X) Kuf = self.feature.Kuf(self.kern, X_agg) # Kuf(n, s2, s1) alpha = tf.matrix_triangular_solve(self.Lu, Kuf, lower=True) # Lu(n, s2, s2), A(n, s2, s1) alpha = tf.matrix_triangular_solve(tf.transpose(self.Lu, [0, 2, 1]), alpha, lower=False) # the same as above alpha_tiled = tf.tile(tf.expand_dims(alpha, axis=1), [1, self.dim_per_out, 1, 1]) # (n, d_out, s2, s1) # 2. calc mean of q(f) # m(x) + alpha.T @ (mm - m(Z)), mm=0 here. m(Z):self.q_mu mean = tf.transpose(alpha, [0, 2, 1]) @ self.q_mu # (n, s1, s2)@(n, s2, d_out)=(n, s1, d_out) mean += tf.transpose(self.mean_function(X_agg), [1, 0, 2]) # (n, s1, d_out) + (s1, n, d_out).T(0,1) # 3.1 calc the the 2nd term of covariance # SK = -k(Z, Z) + S | Ku_tiled(n, d_out, s2, s2), q_sqrt(n, d_out, s2, s2) SK = -self.Ku_tiled + self.q_sqrt @ tf.transpose(self.q_sqrt, [0, 1, 3, 2]) # alpha(x).T @ SK @ alpha(x), 只计算对角线元素的cov,所以用此trick替代 @ delta_cov = tf.reduce_sum(alpha_tiled * (SK @ alpha_tiled), axis=2) # (n, d_out, s2, s1)-> (n, d_out, s1) # 3.2 calc cov = k(X, X) + delta_cov Kff = self.kern.Kdiag(X_agg) # (n, s1) var = tf.expand_dims(Kff, 1) + delta_cov # (n, 1, s1)+(n, d_out, s1) = (n, d_out, s1) var = tf.transpose(var, [0, 2, 1]) # (n, d_out, s1) -> (n, s1, d_out) return mean, var # (n, s1, d_out) both def KL(self): """ 分别计算每个节点的KL散度,再求和 <==> 每一个中间项都求和,最后累加 :return: KL divergence from N(q_mu, q_sqrt) to N(0, I), independently for each GP """ self.build_cholesky_if_needed() KL = -0.5 * self.num_inducing * self.num_nodes * self.dim_per_out # q_sqrt(n,d_out,s2,s2) -> diag:(n,d_out,s2)-> reduce_sum: (n,) KL -= 0.5 * tf.reduce_sum(tf.log(tf.square(tf.linalg.diag_part(self.q_sqrt)))) # Lu(n, s2, s2) -> diag(n, s2) -> reduce_sum(n,) KL += tf.reduce_sum(tf.log(tf.linalg.diag_part(self.Lu))) * self.dim_per_out # Lu_tiled(n, d_out, s2, s2) KL += 0.5 * tf.reduce_sum(tf.square(tf.matrix_triangular_solve(self.Lu_tiled, self.q_sqrt, lower=True))) Kinv_m = tf.cholesky_solve(self.Lu, self.q_mu) # (n, s2, s2),(n, s2, d_out) -> (n, s2, d_out) KL += 0.5 * tf.reduce_sum(self.q_mu * Kinv_m) return KL def conditional_SND(self, X, full_cov=False): """ A multisample conditional, where X is shape (S,N,D_out), independent over samples S if full_cov is True mean is (S,N,D_out), var is (S,N,N,D_out) if full_cov is False mean and var are both (S,N,D_out) :param X: The input locations (S,N,D_in) :param full_cov: Whether to calculate full covariance or just diagonal :return: mean (S,N,D_out), var (S,N,D_out or S,N,N,D_out) """ if full_cov is True: raise NotImplementedError else: S, N, D = tf.shape(X)[0], tf.shape(X)[1], tf.shape(X)[2] X_flat = tf.reshape(X, [S * N, D]) mean, var = self.conditional_ND(X_flat) return [tf.reshape(m, [S, N, self.num_outputs]) for m in [mean, var]] class RBFNodes(Kernel): def __init__(self, nodes, input_dim, mask=None, ARD=False, layer_n=0, name='RBFNode', kern_type='RBF'): """ rbf kernel for each node, computed parallel :param nodes: number of nodes :param input_dim: number of node features :param mask: 0-1 adj used to mask represent active dims of feats_dim. (nodes, feats) """ super().__init__(input_dim, active_dims=None, name=name+str(layer_n)) self.nodes = nodes self.mask = mask # init params self.variance = Parameter(np.ones(nodes), transform=transforms.positive, dtype=settings.float_type) if ARD: lengthscales = mask if mask is not None else np.ones((nodes, input_dim)) else: lengthscales = np.ones(nodes, dtype=settings.float_type) self.lengthscales = Parameter(lengthscales, transform=transforms.positive, dtype=settings.float_type) self.kern_type = kern_type self.build() # very important, it's a confusing point that this class can't be auto built. # auto flow 会自动创建张量图,获取session执行计算图并返回真实结果。省去执行相关代码的繁琐过程。 # 相当于tf2的eager excution @autoflow((settings.float_type, [None, None, None]), (settings.float_type, [None, None, None])) def compute_K(self, X, Z): return self.K(X, Z) @autoflow((settings.float_type, [None, None, None])) def compute_K_symm(self, X): return self.K(X) @autoflow((settings.float_type, [None, None, None])) def compute_Kdiag(self, X): return self.Kdiag(X) @staticmethod def rbf(args): """ :param args: tuples of [X:(s1/s2, d), X2:(s1/s2, d), LS:(d/1,), VAR(1,)] :return: rbf variance of X and X2. """ X, X2, lengthscales, variance = args #print(X.shape, lengthscales.shape) # calculate r2 X = X / lengthscales if X2 is None: Xs = tf.reduce_sum(tf.square(X), axis=-1, keepdims=True) dist = -2 * tf.matmul(X, X, transpose_b=True) dist += Xs + tf.transpose(Xs, [1, 0]) r2 = dist else: Xs = tf.reduce_sum(tf.square(X), axis=-1) X2 = X2 / lengthscales X2s = tf.reduce_sum(tf.square(X2), axis=-1) r2 = -2 * tf.tensordot(X, X2, [[-1], [-1]]) r2 += _broadcasting_elementwise_op(tf.add, Xs, X2s) # calculate rbf rbf = variance * tf.exp(-r2 / 2.) return rbf @staticmethod def r(X, X2, lengthscales): X = X / lengthscales if X2 is None: Xs = tf.reduce_sum(tf.square(X), axis=-1, keepdims=True) dist = -2 * tf.matmul(X, X, transpose_b=True) dist += Xs + tf.transpose(Xs, [1, 0]) r2 = dist else: Xs = tf.reduce_sum(tf.square(X), axis=-1) X2 = X2 / lengthscales X2s = tf.reduce_sum(tf.square(X2), axis=-1) r2 = -2 * tf.tensordot(X, X2, [[-1], [-1]]) r2 += _broadcasting_elementwise_op(tf.add, Xs, X2s) r = tf.sqrt(tf.maximum(r2, 1e-36)) return r @staticmethod def m12(args): X, X2, lengthscales, variance = args r = RBFNodes.r(X, X2, lengthscales) m12 = variance * tf.exp(-r) return m12 @staticmethod def m32(args): X, X2, lengthscales, variance = args r = RBFNodes.r(X, X2, lengthscales) sqrt3 = np.sqrt(3.) m32 = variance * (1. + sqrt3 * r) * tf.exp(-sqrt3 * r) return m32 @staticmethod def m52(args): X, X2, lengthscales, variance = args r = RBFNodes.r(X, X2, lengthscales) sqrt5 = np.sqrt(5.) m52 = variance * (1.0 + sqrt5 * r + 5. / 3. * tf.square(r)) * tf.exp(-sqrt5 * r) return m52 @staticmethod def poly(args): X, X2, lengthscales, variance = args X = X * (lengthscales) if X2 is None: ss = tf.matmul(X, X, transpose_b=True) else: X2 = X2 * (lengthscales) ss = tf.tensordot(X, X2, [[-1], [-1]]) dg = 2 #return ((ss+1)**dg) return (ss) @staticmethod def poly2(args): X, X2, lengthscales, variance = args X = X * (lengthscales) if X2 is None: ss = tf.matmul(X, X, transpose_b=True) else: X2 = X2 * (lengthscales) ss = tf.tensordot(X, X2, [[-1], [-1]]) dg = 2 return ((ss+1)**dg) #return (ss) @staticmethod def rbf_self(args): X, lengthscales, variance = args return RBFNodes.rbf([X, None, lengthscales, variance]) @staticmethod def m12_self(args): X, lengthscales, variance = args return RBFNodes.m12([X, None, lengthscales, variance]) @staticmethod def m32_self(args): X, lengthscales, variance = args return RBFNodes.m32([X, None, lengthscales, variance]) @staticmethod def m52_self(args): X, lengthscales, variance = args return RBFNodes.m52([X, None, lengthscales, variance]) @staticmethod def poly_self(args): X, lengthscales, variance = args return RBFNodes.poly([X, None, lengthscales, variance]) @staticmethod def poly_self2(args): X, lengthscales, variance = args return RBFNodes.poly2([X, None, lengthscales, variance]) @params_as_tensors def K(self, X, X2=None): """ calc rbf similarity for each node. nodes calc could be independent/the same/correlated how about employing adj? kernel matrix of different nodes have correlation. There are two ways to parallel: tf.map_fn(lambda x: scaled_square_dist(x[0], x[1]), (A, B), dtype=tf.float32) tf.vectorized_map(RBFNodes.rbf, (X_, X2_)) :param X: (s1, n, d) :param X2: (s2, n, d) :return: K(X, X2) = (n, s1, s2) """ assert tf.shape(X).shape[0] == 3 #print(X.shape, self.lengthscales.shape) X_ = tf.transpose(X, [1, 0, 2]) # (n, s1, d) if X2 is None: if self.kern_type == 'RBF': return tf.vectorized_map(RBFNodes.rbf_self, (X_, self.lengthscales, self.variance)) # (n, s1, s1) elif self.kern_type == 'Matern12': return tf.vectorized_map(RBFNodes.m12_self, (X_, self.lengthscales, self.variance)) # (n, s1, s1) elif self.kern_type == 'Matern32': return tf.vectorized_map(RBFNodes.m32_self, (X_, self.lengthscales, self.variance)) # (n, s1, s1) elif self.kern_type == 'Matern52': return tf.vectorized_map(RBFNodes.m52_self, (X_, self.lengthscales, self.variance)) # (n, s1, s1) elif self.kern_type == 'Poly1': return tf.vectorized_map(RBFNodes.poly_self, (X_, self.lengthscales, self.variance)) # (n, s1, s1) elif self.kern_type == 'Poly2': return tf.vectorized_map(RBFNodes.poly_self2, (X_, self.lengthscales, self.variance)) # (n, s1, s1) else: X2_ = tf.transpose(X2, [1, 0, 2]) # (n, s1, d) if self.kern_type == 'RBF': return tf.vectorized_map(RBFNodes.rbf, (X_, X2_, self.lengthscales, self.variance)) # (n, s1, s2) elif self.kern_type == 'Matern12': return tf.vectorized_map(RBFNodes.m12, (X_, X2_, self.lengthscales, self.variance)) # (n, s1, s2) elif self.kern_type == 'Matern32': return tf.vectorized_map(RBFNodes.m32, (X_, X2_, self.lengthscales, self.variance)) # (n, s1, s2) elif self.kern_type == 'Matern52': return tf.vectorized_map(RBFNodes.m52, (X_, X2_, self.lengthscales, self.variance)) # (n, s1, s2) elif self.kern_type == 'Poly1': return tf.vectorized_map(RBFNodes.poly, (X_, X2_, self.lengthscales, self.variance)) # (n, s1, s2) elif self.kern_type == 'Poly2': return tf.vectorized_map(RBFNodes.poly2, (X_, X2_, self.lengthscales, self.variance)) # (n, s1, s2) @params_as_tensors def Kdiag(self, X): """ calc diag covariance only :param X: (s1, n, d_in) :return: (n, s1) """ return tf.tile(tf.expand_dims(self.variance, axis=-1), [1, tf.shape(X)[0]]) # return tf.fill(tf.shape(X)[:-1], tf.squeeze(self.variance)) def singe_sparse_svd(sparse_matrix, mask, topk, k_apx=1000): """ sparse_matrix: (m, n*feats), mask(n*feats,) there are many zero columns in sparse_matrix, masked by mask array. return topk component of right singular matrix """ dense_matrix = sparse_matrix.T[np.where(mask > 0)].T # approximation if dense_matrix.shape[0] > k_apx: dense_matrix = dense_matrix[:k_apx] _, _, V = np.linalg.svd(dense_matrix) # V(nb*feats, nb*feats) result = np.zeros(shape=(sparse_matrix.shape[-1], topk)) result[np.where(mask > 0)] = V[:,:topk] return result vec_sparse_svd = np.vectorize(singe_sparse_svd, signature='(n,nf),(nf)->(nf,topk)', excluded=['topk']) def test_sparse_svd(): """ testing for sparse svd """ mask = np.random.randint(0, 2, size=(5, 5 * 4)) sparse_matrix = np.random.randint(1, 10, size=(5, 3, 5 * 4)) sparse_matrix = sparse_matrix * mask[:, None, :] topk = 2 # raw method results = [] for i in range(sparse_matrix.shape[0]): dense_matrix = sparse_matrix[i].T[np.where(mask[i] == 1)].T results.append(np.linalg.svd(dense_matrix)[-1][:, :topk]) y = results # masked & padded method x = vec_sparse_svd(sparse_matrix, mask, topk=topk) # assert almost equal (ignore extremely small numerical errors) for i in range(sparse_matrix.shape[0]): np.testing.assert_almost_equal(np.dot(sparse_matrix[i], x[i]), np.dot(sparse_matrix[i].T[np.where(mask[i] == 1)].T, y[i])) class FixedNMF(MeanFunction): """ Fixed Nodes Mean Function, The projection parameter W is fixed (i.e., non-trainable) """ def __init__(self, W, b, trainable=False): MeanFunction.__init__(self) self.W = Parameter(W, trainable=trainable) self.b = Parameter(b, trainable=trainable) self.trainable = trainable @staticmethod def init(graph_signal, adj, feat_out, agg_op_name='concat', trainable=False): assert np.ndim(graph_signal) == 3 # observations, nodes, feats agg_op = get_nbf_op(agg_op_name) s, n, feat_in = graph_signal.shape #aggregation = agg_op(adj, graph_signal) # (b, n, f_in/n*f_in) aggregation = agg_op(adj, graph_signal[:5000]) # approximate (b, n, f_in/n*f_in) feat_in_expand = aggregation.shape[-1] if feat_in_expand == feat_out: W = np.identity(feat_in_expand) elif feat_in_expand > feat_out: # calc svd for every node and extract the primary component. if 'concat' in agg_op_name: mask_concat = neighbour_feats(adj, np.ones((n, feat_in))) # (nodes, nodes*nbs) W = vec_sparse_svd(np.transpose(aggregation, [1, 0, 2]), mask_concat, topk=feat_out) # W: (nodes, nbs*feat_in, feat_out) else: _, _, V = np.linalg.svd(np.transpose(aggregation, [1, 0, 2])) # (nodes, feat_in, feat_in) W = np.transpose(V[:, :feat_out], [0, 2, 1]) # (nodes, feat_in, feat_out) else: # (f_in, f_out) W = np.concatenate([np.eye(feat_in_expand), np.zeros((feat_in_expand, feat_out - feat_in_expand))], 1) b = np.zeros(feat_out) mean_function = FixedNMF(W, b, trainable=trainable) return W, mean_function def __call__(self, X): """ calculate mean for every node recording to different dimension cases. :param input: X(s,n,f_in) or X(s, n*f_in) :return: mean(X) - (s, n, f_out) """ assert tf.shape(X).shape[0] == 3 if tf.shape(self.W).shape[0] == 2: # identity/padding mX = tf.tensordot(X, self.W, [[-1], [0]]) # X(s,n,f_in), W(f_in,f_out) padding case else: # transforming for each node separately with different mX = tf.expand_dims(X, axis=-2) @ self.W # X(s,n,1,f_in), W(n,f_in,f_out) pca case mX = tf.reduce_sum(mX, axis=-2) # mX(s,n,f_out) return mX + self.b @staticmethod def np_call(X, W): assert np.ndim(X) == 3 if np.ndim(W) == 2: # identity/padding mX = np.matmul(X, W) # X(s,n,f_in), W(f_in,f_out) padding case else: # transforming for each node separately with different mX = np.matmul(np.expand_dims(X, axis=-2), W) # X(s,n,1,f_in), W(n,f_in,f_out) pca case mX = np.sum(mX, axis=-2) # mX(s,n,f_out) return mX @staticmethod def test_agg(): gs = np.random.rand(4, 3, 2) adj = np.round(np.random.rand(3, 3), 0) agg = np.matmul(adj, gs) agg_for = np.stack([np.matmul(adj, gs[i]) for i in range(gs.shape[0])], axis=0) assert np.array_equal(agg, agg_for) @staticmethod def test_call(): x = tf.random.uniform((9, 3, 4)) # case 1: for f_in < f_out (padding) w = tf.random.uniform((4, 6)) xw = tf.tensordot(x, w, [[-1], [0]]) xw_for = tf.stack([x[i]@w for i in range(x.shape[0])], axis=0) tf.assert_equal(xw, xw_for) # case 2 for f_in > f_out (pca case, do pca for each node) x = tf.expand_dims(x, axis=-2) # (9, 3, 1, 4) w = tf.random.uniform((3, 4, 2)) xw = x@w xw_for = tf.stack([x[i]@w for i in range(x.shape[0])], axis=0) tf.assert_equal(xw, xw_for) if __name__ == '__main__': test_sparse_svd()
42.793057
146
0.588887
794ea932050165867b6b9d8983e1375f81ffd90b
9,538
py
Python
cryptofeed_werks/tests/test_calendar.py
globophobe/django-quant-werks
fc2f3eefccf03f4cb4df0abe6bb6c54cbd2e998d
[ "MIT" ]
7
2021-12-30T02:38:17.000Z
2022-03-08T16:14:35.000Z
cryptofeed_werks/tests/test_calendar.py
globophobe/fastapi-quant-candles
0bc95f6bb32071aa32a4951ca0a15521f67f7f97
[ "MIT" ]
null
null
null
cryptofeed_werks/tests/test_calendar.py
globophobe/fastapi-quant-candles
0bc95f6bb32071aa32a4951ca0a15521f67f7f97
[ "MIT" ]
1
2022-01-28T00:18:45.000Z
2022-01-28T00:18:45.000Z
from datetime import datetime, time, timezone from typing import List import pandas as pd from django.test import TestCase from cryptofeed_werks.lib import ( get_current_time, get_min_time, get_next_time, get_range, iter_missing, iter_timeframe, iter_window, parse_period_from_to, ) class GetMinTimeTestCase(TestCase): def test_get_min_time_1d(self): """Get start of current day.""" now = get_current_time() min_time = get_min_time(now, value="1d") self.assertEqual( min_time, datetime.combine(min_time.date(), time.min).replace(tzinfo=timezone.utc), ) class GetNexttimeTestCase(TestCase): def test_get_next_minute(self): """Get start of next day.""" now = get_current_time() tomorrow = get_next_time(now, value="1d") self.assertEqual( tomorrow, datetime.combine(tomorrow.date(), time.min).replace(tzinfo=timezone.utc), ) class GetRangeTestCase(TestCase): def setUp(self): now = get_current_time() self.timestamp_from = get_min_time(now, value="1d") def test_get_range_1m(self): """Get range, by 1 minute.""" one_minute = pd.Timedelta("1t") timestamp_to = get_next_time(self.timestamp_from, value="1d") - one_minute values = get_range(self.timestamp_from, timestamp_to) self.assertEqual(len(values), 1440) self.assertEqual(values[0], self.timestamp_from) self.assertEqual(values[-1], timestamp_to) def test_get_range_1d(self): """Get range, by 1 day.""" values = get_range(self.timestamp_from, self.timestamp_from, value="1d") self.assertEqual(len(values), 1) self.assertEqual(values[0], self.timestamp_from) class IterWindowTestCase(TestCase): def setUp(self): one_day = pd.Timedelta("1d") self.now = get_current_time() self.yesterday = self.now - one_day self.two_days_ago = self.yesterday - one_day def test_iter_window(self): """Iter window by days.""" values = [ value for value in iter_window(self.two_days_ago, self.now, value="1d") ] self.assertEqual(len(values), 2) self.assertEqual(values[0][0], get_min_time(self.two_days_ago, value="1d")) self.assertEqual(values[1][1], get_min_time(self.now, value="1d")) def test_iter_window_reverse(self): """Iter window by days, in reverse.""" values = [ value for value in iter_window( self.two_days_ago, self.now, value="1d", reverse=True ) ] self.assertEqual(len(values), 2) self.assertEqual(values[0][1], get_min_time(self.now, value="1d")) self.assertEqual(values[1][0], get_min_time(self.two_days_ago, value="1d")) class IterTimeframeTestCase(TestCase): def setUp(self): self.now = get_current_time() def get_values( self, timestamp_from: datetime, timestamp_to: datetime ) -> List[tuple]: """Get values for timeframe.""" return [ value for value in iter_timeframe(timestamp_from, timestamp_to, reverse=True) ] def test_iter_timeframe_with_head_and_no_body(self): """Current day only.""" date_from = self.now.date().isoformat() time_from = self.now.time().isoformat() timestamp_from, timestamp_to = parse_period_from_to( date_from=date_from, time_from=time_from ) values = self.get_values(timestamp_from, timestamp_to) self.assertEqual(len(values), 1) ts_from, ts_to = values[0] self.assertEqual(ts_from, get_min_time(timestamp_from, "1t")) self.assertEqual(ts_to, get_min_time(timestamp_to, "1t")) def test_iter_timeframe_with_tail_only(self): """Previous day only.""" yesterday = self.now - pd.Timedelta("1d") date_from = yesterday.date().isoformat() time_from = yesterday.time().isoformat() date_to = self.now.date().isoformat() timestamp_from, timestamp_to = parse_period_from_to( date_from=date_from, time_from=time_from, date_to=date_to ) values = self.get_values(timestamp_from, timestamp_to) self.assertEqual(len(values), 1) def test_iter_timeframe_with_head(self): """1 min after midnight yesterday, until today.""" yesterday = get_min_time(self.now, "2d") + pd.Timedelta("1m") today = get_min_time(self.now, "1d") timestamp_from, timestamp_to = parse_period_from_to( date_from=yesterday.date().isoformat(), time_from=yesterday.time().isoformat(), date_to=today.date().isoformat(), time_to=today.time().isoformat(), ) values = self.get_values(timestamp_from, timestamp_to) target = len(values) - 1 for index, value in enumerate(values): ts_from, ts_to = value if index != target: self.assertEqual(ts_from + pd.Timedelta("1d"), ts_to) else: self.assertEqual(ts_from, timestamp_from) self.assertEqual(ts_to, get_min_time(ts_to, value="1d")) def test_iter_timeframe_with_neither_head_nor_tail(self): """Two days ago until yesterday.""" yesterday = self.now - pd.Timedelta("1d") two_days_ago = self.now - pd.Timedelta("2d") timestamp_from, timestamp_to = parse_period_from_to( date_from=two_days_ago.date().isoformat(), date_to=yesterday.date().isoformat(), ) values = self.get_values(timestamp_from, timestamp_to) self.assertEqual(len(values), 1) self.assertEqual(values[0][0], timestamp_from) self.assertEqual(values[0][1], timestamp_to) def test_iter_timeframe_with_tail(self): """Yesterday, 1 minute to midnight.""" timestamp = get_min_time(self.now, "1d") - pd.Timedelta("1m") timestamp_from, timestamp_to = parse_period_from_to( date_to=timestamp.date().isoformat(), time_to=timestamp.time().isoformat() ) values = self.get_values(timestamp_from, timestamp_to) for index, value in enumerate(values): ts_from, ts_to = value if index == 0: self.assertEqual(ts_from, get_min_time(ts_from, value="1d")) self.assertEqual(ts_to, timestamp_to) else: self.assertEqual(ts_from + pd.Timedelta("1d"), ts_to) class IterMissingTestCase(TestCase): def setUp(self): self.one_minute = pd.Timedelta("1t") self.timestamp_from = get_min_time(get_current_time(), "1d") self.timestamp_to = self.timestamp_from + (self.one_minute * 5) self.timestamps = get_range(self.timestamp_from, self.timestamp_to) def test_iter_missing_with_no_missing(self): """No missing timestamps.""" values = [ value for value in iter_missing(self.timestamp_from, self.timestamp_to, []) ] self.assertEqual(len(values), 1) self.assertEqual(values[0][0], self.timestamp_from) self.assertEqual(values[-1][1], self.timestamp_to) def test_iter_missing_with_head(self): """First timestamp is OK.""" existing = self.timestamps[0] values = [ value for value in iter_missing( self.timestamp_from, self.timestamp_to, [existing] ) ] self.assertEqual(len(values), 1) self.assertEqual(values[0][0], self.timestamp_from + self.one_minute) self.assertEqual(values[-1][1], self.timestamp_to) def test_iter_missing_with_one_timestamp_ok(self): """Second timestamp is OK.""" existing = self.timestamps[1] values = [ value for value in iter_missing( self.timestamp_from, self.timestamp_to, [existing] ) ] self.assertEqual(len(values), 2) self.assertEqual(values[0][0], self.timestamp_from) self.assertEqual(values[0][1], existing) self.assertEqual(values[-1][0], existing + self.one_minute) self.assertEqual(values[-1][1], self.timestamp_to) def test_iter_missing_with_two_timestamps_ok(self): """Second and fourth timestamps are OK.""" existing_one = self.timestamps[1] existing_two = self.timestamps[3] values = [ value for value in iter_missing( self.timestamp_from, self.timestamp_to, [existing_one, existing_two] ) ] self.assertEqual(len(values), 3) self.assertEqual(values[0][0], self.timestamp_from) self.assertEqual(values[0][1], existing_one) self.assertEqual(values[1][0], existing_one + self.one_minute) self.assertEqual(values[1][1], existing_two) self.assertEqual(values[-1][0], existing_two + self.one_minute) self.assertEqual(values[-1][1], self.timestamp_to) def test_iter_missing_with_tail(self): """Last timestamp is OK.""" existing = self.timestamps[-1] values = [ value for value in iter_missing( self.timestamp_from, self.timestamp_to, [existing] ) ] self.assertEqual(len(values), 1) self.assertEqual(values[0][0], self.timestamp_from) self.assertEqual(values[0][1], self.timestamp_to)
37.849206
87
0.626337
794ea9d751c4f4e3f296f813809dd78ea7a413b9
16,287
py
Python
app/env/lib/python3.7/site-packages/twilio/rest/preview/sync/service/sync_map/sync_map_permission.py
siyaochen/Tier1Health
536591a7534bbb3fb27fe889bfed9de152ec1864
[ "MIT" ]
30
2018-06-12T12:00:53.000Z
2021-05-02T01:27:16.000Z
app/env/lib/python3.7/site-packages/twilio/rest/preview/sync/service/sync_map/sync_map_permission.py
siyaochen/Tier1Health
536591a7534bbb3fb27fe889bfed9de152ec1864
[ "MIT" ]
11
2019-12-26T17:21:03.000Z
2022-03-21T22:17:07.000Z
app/env/lib/python3.7/site-packages/twilio/rest/preview/sync/service/sync_map/sync_map_permission.py
siyaochen/Tier1Health
536591a7534bbb3fb27fe889bfed9de152ec1864
[ "MIT" ]
4
2018-06-12T14:14:20.000Z
2018-06-19T16:01:49.000Z
# coding=utf-8 """ This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class SyncMapPermissionList(ListResource): """ PLEASE NOTE that this class contains preview products that are subject to change. Use them with caution. If you currently do not have developer preview access, please contact help@twilio.com. """ def __init__(self, version, service_sid, map_sid): """ Initialize the SyncMapPermissionList :param Version version: Version that contains the resource :param service_sid: Sync Service Instance SID. :param map_sid: Sync Map SID. :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionList :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionList """ super(SyncMapPermissionList, self).__init__(version) # Path Solution self._solution = {'service_sid': service_sid, 'map_sid': map_sid, } self._uri = '/Services/{service_sid}/Maps/{map_sid}/Permissions'.format(**self._solution) def stream(self, limit=None, page_size=None): """ Streams SyncMapPermissionInstance records from the API as a generator stream. This operation lazily loads records as efficiently as possible until the limit is reached. The results are returned as a generator, so this operation is memory efficient. :param int limit: Upper limit for the number of records to return. stream() guarantees to never return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, stream() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance] """ limits = self._version.read_limits(limit, page_size) page = self.page(page_size=limits['page_size'], ) return self._version.stream(page, limits['limit'], limits['page_limit']) def list(self, limit=None, page_size=None): """ Lists SyncMapPermissionInstance records from the API as a list. Unlike stream(), this operation is eager and will load `limit` records into memory before returning. :param int limit: Upper limit for the number of records to return. list() guarantees never to return more than limit. Default is no limit :param int page_size: Number of records to fetch per request, when not set will use the default value of 50 records. If no page_size is defined but a limit is defined, list() will attempt to read the limit with the most efficient page size, i.e. min(limit, 1000) :returns: Generator that will yield up to limit results :rtype: list[twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance] """ return list(self.stream(limit=limit, page_size=page_size, )) def page(self, page_token=values.unset, page_number=values.unset, page_size=values.unset): """ Retrieve a single page of SyncMapPermissionInstance records from the API. Request is executed immediately :param str page_token: PageToken provided by the API :param int page_number: Page Number, this value is simply for client state :param int page_size: Number of records to return, defaults to 50 :returns: Page of SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionPage """ params = values.of({'PageToken': page_token, 'Page': page_number, 'PageSize': page_size, }) response = self._version.page( 'GET', self._uri, params=params, ) return SyncMapPermissionPage(self._version, response, self._solution) def get_page(self, target_url): """ Retrieve a specific page of SyncMapPermissionInstance records from the API. Request is executed immediately :param str target_url: API-generated URL for the requested results page :returns: Page of SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionPage """ response = self._version.domain.twilio.request( 'GET', target_url, ) return SyncMapPermissionPage(self._version, response, self._solution) def get(self, identity): """ Constructs a SyncMapPermissionContext :param identity: Identity of the user to whom the Sync Map Permission applies. :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext """ return SyncMapPermissionContext( self._version, service_sid=self._solution['service_sid'], map_sid=self._solution['map_sid'], identity=identity, ) def __call__(self, identity): """ Constructs a SyncMapPermissionContext :param identity: Identity of the user to whom the Sync Map Permission applies. :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext """ return SyncMapPermissionContext( self._version, service_sid=self._solution['service_sid'], map_sid=self._solution['map_sid'], identity=identity, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Preview.Sync.SyncMapPermissionList>' class SyncMapPermissionPage(Page): """ PLEASE NOTE that this class contains preview products that are subject to change. Use them with caution. If you currently do not have developer preview access, please contact help@twilio.com. """ def __init__(self, version, response, solution): """ Initialize the SyncMapPermissionPage :param Version version: Version that contains the resource :param Response response: Response from the API :param service_sid: Sync Service Instance SID. :param map_sid: Sync Map SID. :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionPage :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionPage """ super(SyncMapPermissionPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of SyncMapPermissionInstance :param dict payload: Payload response from the API :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance """ return SyncMapPermissionInstance( self._version, payload, service_sid=self._solution['service_sid'], map_sid=self._solution['map_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Preview.Sync.SyncMapPermissionPage>' class SyncMapPermissionContext(InstanceContext): """ PLEASE NOTE that this class contains preview products that are subject to change. Use them with caution. If you currently do not have developer preview access, please contact help@twilio.com. """ def __init__(self, version, service_sid, map_sid, identity): """ Initialize the SyncMapPermissionContext :param Version version: Version that contains the resource :param service_sid: The service_sid :param map_sid: Sync Map SID or unique name. :param identity: Identity of the user to whom the Sync Map Permission applies. :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext """ super(SyncMapPermissionContext, self).__init__(version) # Path Solution self._solution = {'service_sid': service_sid, 'map_sid': map_sid, 'identity': identity, } self._uri = '/Services/{service_sid}/Maps/{map_sid}/Permissions/{identity}'.format(**self._solution) def fetch(self): """ Fetch a SyncMapPermissionInstance :returns: Fetched SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return SyncMapPermissionInstance( self._version, payload, service_sid=self._solution['service_sid'], map_sid=self._solution['map_sid'], identity=self._solution['identity'], ) def delete(self): """ Deletes the SyncMapPermissionInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._version.delete('delete', self._uri) def update(self, read, write, manage): """ Update the SyncMapPermissionInstance :param bool read: Read access. :param bool write: Write access. :param bool manage: Manage access. :returns: Updated SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance """ data = values.of({'Read': read, 'Write': write, 'Manage': manage, }) payload = self._version.update( 'POST', self._uri, data=data, ) return SyncMapPermissionInstance( self._version, payload, service_sid=self._solution['service_sid'], map_sid=self._solution['map_sid'], identity=self._solution['identity'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Preview.Sync.SyncMapPermissionContext {}>'.format(context) class SyncMapPermissionInstance(InstanceResource): """ PLEASE NOTE that this class contains preview products that are subject to change. Use them with caution. If you currently do not have developer preview access, please contact help@twilio.com. """ def __init__(self, version, payload, service_sid, map_sid, identity=None): """ Initialize the SyncMapPermissionInstance :returns: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance """ super(SyncMapPermissionInstance, self).__init__(version) # Marshaled Properties self._properties = { 'account_sid': payload['account_sid'], 'service_sid': payload['service_sid'], 'map_sid': payload['map_sid'], 'identity': payload['identity'], 'read': payload['read'], 'write': payload['write'], 'manage': payload['manage'], 'url': payload['url'], } # Context self._context = None self._solution = { 'service_sid': service_sid, 'map_sid': map_sid, 'identity': identity or self._properties['identity'], } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: SyncMapPermissionContext for this SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionContext """ if self._context is None: self._context = SyncMapPermissionContext( self._version, service_sid=self._solution['service_sid'], map_sid=self._solution['map_sid'], identity=self._solution['identity'], ) return self._context @property def account_sid(self): """ :returns: Twilio Account SID. :rtype: unicode """ return self._properties['account_sid'] @property def service_sid(self): """ :returns: Sync Service Instance SID. :rtype: unicode """ return self._properties['service_sid'] @property def map_sid(self): """ :returns: Sync Map SID. :rtype: unicode """ return self._properties['map_sid'] @property def identity(self): """ :returns: Identity of the user to whom the Sync Map Permission applies. :rtype: unicode """ return self._properties['identity'] @property def read(self): """ :returns: Read access. :rtype: bool """ return self._properties['read'] @property def write(self): """ :returns: Write access. :rtype: bool """ return self._properties['write'] @property def manage(self): """ :returns: Manage access. :rtype: bool """ return self._properties['manage'] @property def url(self): """ :returns: URL of this Sync Map Permission. :rtype: unicode """ return self._properties['url'] def fetch(self): """ Fetch a SyncMapPermissionInstance :returns: Fetched SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance """ return self._proxy.fetch() def delete(self): """ Deletes the SyncMapPermissionInstance :returns: True if delete succeeds, False otherwise :rtype: bool """ return self._proxy.delete() def update(self, read, write, manage): """ Update the SyncMapPermissionInstance :param bool read: Read access. :param bool write: Write access. :param bool manage: Manage access. :returns: Updated SyncMapPermissionInstance :rtype: twilio.rest.preview.sync.service.sync_map.sync_map_permission.SyncMapPermissionInstance """ return self._proxy.update(read, write, manage, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Preview.Sync.SyncMapPermissionInstance {}>'.format(context)
35.561135
109
0.639958
794ea9ee2cf6ac4e80716ddddb5c293e77263be9
94,806
py
Python
sdks/python/apache_beam/dataframe/frames.py
elharo/beam
a86dc0609f0b1bcc0c450979363b27b2657418af
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
sdks/python/apache_beam/dataframe/frames.py
elharo/beam
a86dc0609f0b1bcc0c450979363b27b2657418af
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
sdks/python/apache_beam/dataframe/frames.py
elharo/beam
a86dc0609f0b1bcc0c450979363b27b2657418af
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import inspect import math import re from typing import List from typing import Optional import numpy as np import pandas as pd from apache_beam.dataframe import expressions from apache_beam.dataframe import frame_base from apache_beam.dataframe import io from apache_beam.dataframe import partitionings def populate_not_implemented(pd_type): def wrapper(deferred_type): for attr in dir(pd_type): # Don't auto-define hidden methods or dunders if attr.startswith('_'): continue if not hasattr(deferred_type, attr): pd_value = getattr(pd_type, attr) if isinstance(pd_value, property) or inspect.isclass(pd_value): # Some of the properties on pandas types (cat, dt, sparse), are # actually attributes with class values, not properties setattr( deferred_type, attr, property(frame_base.not_implemented_method(attr))) elif callable(pd_value): setattr(deferred_type, attr, frame_base.not_implemented_method(attr)) return deferred_type return wrapper class DeferredDataFrameOrSeries(frame_base.DeferredFrame): def __array__(self, dtype=None): raise frame_base.WontImplementError( 'Conversion to a non-deferred a numpy array.') @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def drop(self, labels, axis, index, columns, errors, **kwargs): if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and 'index'/'columns'") if axis in (0, 'index'): index = labels columns = None elif axis in (1, 'columns'): index = None columns = labels else: raise ValueError( "axis must be one of (0, 1, 'index', 'columns'), " "got '%s'" % axis) if columns is not None: # Compute the proxy based on just the columns that are dropped. proxy = self._expr.proxy().drop(columns=columns, errors=errors) else: proxy = self._expr.proxy() if index is not None and errors == 'raise': # In order to raise an error about missing index values, we'll # need to collect the entire dataframe. requires = partitionings.Singleton() else: requires = partitionings.Arbitrary() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'drop', lambda df: df.drop( axis=axis, index=index, columns=columns, errors=errors, **kwargs), [self._expr], proxy=proxy, requires_partition_by=requires)) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def droplevel(self, level, axis): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'droplevel', lambda df: df.droplevel(level, axis=axis), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary() if axis in (1, 'column') else partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def fillna(self, value, method, axis, limit, **kwargs): # Default value is None, but is overriden with index. axis = axis or 'index' if method is not None and axis in (0, 'index'): raise frame_base.WontImplementError('order-sensitive') if isinstance(value, frame_base.DeferredBase): value_expr = value._expr else: value_expr = expressions.ConstantExpression(value) if limit is not None and method is None: # If method is not None (and axis is 'columns'), we can do limit in # a distributed way. Else, it is order sensitive. raise frame_base.WontImplementError('order-sensitive') return frame_base.DeferredFrame.wrap( # yapf: disable expressions.ComputedExpression( 'fillna', lambda df, value: df.fillna(value, method=method, axis=axis, **kwargs), [self._expr, value_expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def ffill(self, **kwargs): return self.fillna(method='ffill', **kwargs) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def bfill(self, **kwargs): return self.fillna(method='bfill', **kwargs) pad = ffill backfill = bfill @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def groupby(self, by, level, axis, as_index, group_keys, **kwargs): if not as_index: raise NotImplementedError('groupby(as_index=False)') if not group_keys: raise NotImplementedError('groupby(group_keys=False)') if axis in (1, 'columns'): return _DeferredGroupByCols( expressions.ComputedExpression( 'groupbycols', lambda df: df.groupby(by, axis=axis, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary())) if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") elif level is not None: if isinstance(level, (list, tuple)): grouping_indexes = level else: grouping_indexes = [level] grouping_columns = [] index = self._expr.proxy().index # Translate to level numbers only grouping_indexes = [ l if isinstance(l, int) else index.names.index(l) for l in grouping_indexes ] if index.nlevels == 1: to_group_with_index = self._expr to_group = self._expr else: levels_to_drop = [ i for i in range(index.nlevels) if i not in grouping_indexes ] # Reorder so the grouped indexes are first to_group_with_index = self.reorder_levels( grouping_indexes + levels_to_drop) grouping_indexes = list(range(len(grouping_indexes))) levels_to_drop = list(range(len(grouping_indexes), index.nlevels)) if levels_to_drop: to_group = to_group_with_index.droplevel(levels_to_drop)._expr else: to_group = to_group_with_index._expr to_group_with_index = to_group_with_index._expr elif callable(by): def map_index(df): df = df.copy() df.index = df.index.map(by) return df to_group = expressions.ComputedExpression( 'map_index', map_index, [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) orig_nlevels = self._expr.proxy().index.nlevels to_group_with_index = expressions.ComputedExpression( 'map_index_keep_orig', lambda df: df.set_index([df.index.map(by), df.index]), [self._expr], requires_partition_by=partitionings.Arbitrary(), # Partitioning by the original indexes is preserved preserves_partition_by=partitionings.Index( list(range(1, orig_nlevels + 1)))) grouping_columns = [] # The index we need to group by is the last one grouping_indexes = [0] elif isinstance(by, DeferredSeries): raise NotImplementedError( "grouping by a Series is not yet implemented. You can group by a " "DataFrame column by specifying its name.") elif isinstance(by, np.ndarray): raise frame_base.WontImplementError('order sensitive') elif isinstance(self, DeferredDataFrame): if not isinstance(by, list): by = [by] # Find the columns that we need to move into the index so we can group by # them column_names = self._expr.proxy().columns grouping_columns = list(set(by).intersection(column_names)) index_names = self._expr.proxy().index.names for label in by: if label not in index_names and label not in self._expr.proxy().columns: raise KeyError(label) grouping_indexes = list(set(by).intersection(index_names)) if grouping_indexes: if set(by) == set(index_names): to_group = self._expr elif set(by).issubset(index_names): to_group = self.droplevel(index_names.difference(by))._expr else: to_group = self.reset_index(grouping_indexes).set_index(by)._expr else: to_group = self.set_index(by)._expr if grouping_columns: # TODO(BEAM-11711): It should be possible to do this without creating an # expression manually, by using DeferredDataFrame.set_index, i.e.: # to_group_with_index = self.set_index([self.index] + # grouping_columns)._expr to_group_with_index = expressions.ComputedExpression( 'move_grouped_columns_to_index', lambda df: df.set_index([df.index] + grouping_columns), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Index( list(range(self._expr.proxy().index.nlevels)))) else: to_group_with_index = self._expr else: raise NotImplementedError(by) return DeferredGroupBy( expressions.ComputedExpression( 'groupbyindex', lambda df: df.groupby( level=list(range(df.index.nlevels)), **kwargs), [to_group], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Arbitrary()), kwargs, to_group, to_group_with_index, grouping_columns=grouping_columns, grouping_indexes=grouping_indexes) abs = frame_base._elementwise_method('abs') astype = frame_base._elementwise_method('astype') copy = frame_base._elementwise_method('copy') @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def tz_localize(self, ambiguous, **kwargs): if isinstance(ambiguous, np.ndarray): raise frame_base.WontImplementError( "ambiguous=ndarray is not supported, please use a deferred Series " "instead.") elif isinstance(ambiguous, frame_base.DeferredFrame): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'tz_localize', lambda df, ambiguous: df.tz_localize(ambiguous=ambiguous, **kwargs), [self._expr, ambiguous._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton())) elif ambiguous == 'infer': # infer attempts to infer based on the order of the timestamps raise frame_base.WontImplementError("order-sensitive") return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'tz_localize', lambda df: df.tz_localize(ambiguous=ambiguous, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton())) @property def size(self): sizes = expressions.ComputedExpression( 'get_sizes', # Wrap scalar results in a Series for easier concatenation later lambda df: pd.Series(df.size), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'sum_sizes', lambda sizes: sizes.sum(), [sizes], requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) @property def empty(self): empties = expressions.ComputedExpression( 'get_empties', # Wrap scalar results in a Series for easier concatenation later lambda df: pd.Series(df.empty), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'check_all_empty', lambda empties: empties.all(), [empties], requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) def bool(self): # Will throw if any partition has >1 element bools = expressions.ComputedExpression( 'get_bools', # Wrap scalar results in a Series for easier concatenation later lambda df: pd.Series([], dtype=bool) if df.empty else pd.Series([df.bool()]), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) with expressions.allow_non_parallel_operations(True): # Will throw if overall dataset has != 1 element return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'combine_all_bools', lambda bools: bools.bool(), [bools], proxy=bool(), requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) def equals(self, other): intermediate = expressions.ComputedExpression( 'equals_partitioned', # Wrap scalar results in a Series for easier concatenation later lambda df, other: pd.Series(df.equals(other)), [self._expr, other._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate_equals', lambda df: df.all(), [intermediate], requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def sort_values(self, axis, **kwargs): if axis in (0, 'index'): # axis=rows imposes an ordering on the DataFrame rows which we do not # support raise frame_base.WontImplementError("order-sensitive") else: # axis=columns will reorder the columns based on the data raise frame_base.WontImplementError("non-deferred column values") @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def sort_index(self, axis, **kwargs): if axis in (0, 'rows'): # axis=rows imposes an ordering on the DataFrame which we do not support raise frame_base.WontImplementError("order-sensitive") # axis=columns reorders the columns by name return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'sort_index', lambda df: df.sort_index(axis, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary(), )) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def where(self, cond, other, errors, **kwargs): requires = partitionings.Arbitrary() deferred_args = {} actual_args = {} # TODO(bhulette): This is very similar to the logic in # frame_base.elementwise_method, can we unify it? if isinstance(cond, frame_base.DeferredFrame): deferred_args['cond'] = cond requires = partitionings.Index() else: actual_args['cond'] = cond if isinstance(other, frame_base.DeferredFrame): deferred_args['other'] = other requires = partitionings.Index() else: actual_args['other'] = other if errors == "ignore": # We need all data in order to ignore errors and propagate the original # data. requires = partitionings.Singleton() actual_args['errors'] = errors def where_execution(df, *args): runtime_values = { name: value for (name, value) in zip(deferred_args.keys(), args) } return df.where(**runtime_values, **actual_args, **kwargs) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( "where", where_execution, [self._expr] + [df._expr for df in deferred_args.values()], requires_partition_by=requires, preserves_partition_by=partitionings.Index(), )) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def mask(self, cond, **kwargs): return self.where(~cond, **kwargs) @property def dtype(self): return self._expr.proxy().dtype isin = frame_base._elementwise_method('isin') @property def ndim(self): return self._expr.proxy().ndim def _get_index(self): return _DeferredIndex(self) index = property( _get_index, frame_base.not_implemented_method('index (setter)')) hist = frame_base.wont_implement_method('plot') attrs = property(frame_base.wont_implement_method('experimental')) first = last = frame_base.wont_implement_method('order-sensitive') head = tail = frame_base.wont_implement_method('order-sensitive') interpolate = frame_base.wont_implement_method('order-sensitive') reorder_levels = frame_base._proxy_method( 'reorder_levels', requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) @populate_not_implemented(pd.Series) @frame_base.DeferredFrame._register_for(pd.Series) class DeferredSeries(DeferredDataFrameOrSeries): @property def name(self): return self._expr.proxy().name @name.setter def name(self, value): def fn(s): s = s.copy() s.name = value return s self._expr = expressions.ComputedExpression( 'series_set_name', fn, [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()) @property def dtype(self): return self._expr.proxy().dtype dtypes = dtype def __getitem__(self, key): if _is_null_slice(key) or key is Ellipsis: return self elif (isinstance(key, int) or _is_integer_slice(key) ) and self._expr.proxy().index._should_fallback_to_positional(): raise frame_base.WontImplementError('order sensitive') elif isinstance(key, slice) or callable(key): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( # yapf: disable 'getitem', lambda df: df[key], [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary())) elif isinstance(key, DeferredSeries) and key._expr.proxy().dtype == bool: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( # yapf: disable 'getitem', lambda df, indexer: df[indexer], [self._expr, key._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Arbitrary())) elif pd.core.series.is_iterator(key) or pd.core.common.is_bool_indexer(key): raise frame_base.WontImplementError('order sensitive') else: # We could consider returning a deferred scalar, but that might # be more surprising than a clear error. raise frame_base.WontImplementError('non-deferred') def keys(self): return self.index @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def append(self, to_append, ignore_index, verify_integrity, **kwargs): if not isinstance(to_append, DeferredSeries): raise frame_base.WontImplementError( "append() only accepts DeferredSeries instances, received " + str(type(to_append))) if ignore_index: raise frame_base.WontImplementError( "append(ignore_index=True) is order sensitive") if verify_integrity: # verifying output has a unique index requires global index. # TODO(BEAM-11839): Attach an explanation to the Singleton partitioning # requirement, and include it in raised errors. requires = partitionings.Singleton() else: requires = partitionings.Arbitrary() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'append', lambda s, to_append: s.append( to_append, verify_integrity=verify_integrity, **kwargs), [self._expr, to_append._expr], requires_partition_by=requires, preserves_partition_by=partitionings.Arbitrary())) @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def align(self, other, join, axis, level, method, **kwargs): if level is not None: raise NotImplementedError('per-level align') if method is not None: raise frame_base.WontImplementError('order-sensitive') # We're using pd.concat here as expressions don't yet support # multiple return values. aligned = frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'align', lambda x, y: pd.concat([x, y], axis=1, join='inner'), [self._expr, other._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Arbitrary())) return aligned.iloc[:, 0], aligned.iloc[:, 1] array = property(frame_base.wont_implement_method('non-deferred value')) argmax = frame_base.wont_implement_method('order-sensitive') argmin = frame_base.wont_implement_method('order-sensitive') ravel = frame_base.wont_implement_method('non-deferred value') rename = frame_base._elementwise_method('rename') between = frame_base._elementwise_method('between') def dot(self, other): left = self._expr if isinstance(other, DeferredSeries): right = expressions.ComputedExpression( 'to_dataframe', pd.DataFrame, [other._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()) right_is_series = True elif isinstance(other, DeferredDataFrame): right = other._expr right_is_series = False else: raise frame_base.WontImplementError('non-deferred result') dots = expressions.ComputedExpression( 'dot', # Transpose so we can sum across rows. (lambda left, right: pd.DataFrame(left @ right).T), [left, right], requires_partition_by=partitionings.Index()) with expressions.allow_non_parallel_operations(True): sums = expressions.ComputedExpression( 'sum', lambda dots: dots.sum(), # [dots], requires_partition_by=partitionings.Singleton()) if right_is_series: result = expressions.ComputedExpression( 'extract', lambda df: df[0], [sums], requires_partition_by=partitionings.Singleton()) else: result = sums return frame_base.DeferredFrame.wrap(result) __matmul__ = dot def std(self, *args, **kwargs): # Compute variance (deferred scalar) with same args, then sqrt it return self.var(*args, **kwargs).apply(lambda var: math.sqrt(var)) @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def var(self, axis, skipna, level, ddof, **kwargs): if level is not None: raise NotImplementedError("per-level aggregation") if skipna is None or skipna: self = self.dropna() # pylint: disable=self-cls-assignment # See the online, numerically stable formulae at # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm # and # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm def compute_moments(x): n = len(x) m = x.std(ddof=0)**2 * n s = x.sum() return pd.DataFrame(dict(m=[m], s=[s], n=[n])) def combine_moments(data): m = s = n = 0.0 for datum in data.itertuples(): if datum.n == 0: continue elif n == 0: m, s, n = datum.m, datum.s, datum.n else: delta = s / n - datum.s / datum.n m += datum.m + delta**2 * n * datum.n / (n + datum.n) s += datum.s n += datum.n if n <= ddof: return float('nan') else: return m / (n - ddof) moments = expressions.ComputedExpression( 'compute_moments', compute_moments, [self._expr], requires_partition_by=partitionings.Arbitrary()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'combine_moments', combine_moments, [moments], requires_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def corr(self, other, method, min_periods): if method == 'pearson': # Note that this is the default. x, y = self.dropna().align(other.dropna(), 'inner') return x._corr_aligned(y, min_periods) else: # The rank-based correlations are not obviously parallelizable, though # perhaps an approximation could be done with a knowledge of quantiles # and custom partitioning. return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'corr', lambda df, other: df.corr(other, method=method, min_periods=min_periods), [self._expr, other._expr], # TODO(BEAM-11839): Attach an explanation to the Singleton # partitioning requirement, and include it in raised errors. requires_partition_by=partitionings.Singleton())) def _corr_aligned(self, other, min_periods): std_x = self.std() std_y = other.std() cov = self._cov_aligned(other, min_periods) return cov.apply( lambda cov, std_x, std_y: cov / (std_x * std_y), args=[std_x, std_y]) @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def cov(self, other, min_periods, ddof): x, y = self.dropna().align(other.dropna(), 'inner') return x._cov_aligned(y, min_periods, ddof) def _cov_aligned(self, other, min_periods, ddof=1): # Use the formulae from # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Covariance def compute_co_moments(x, y): n = len(x) if n <= 1: c = 0 else: c = x.cov(y) * (n - 1) sx = x.sum() sy = y.sum() return pd.DataFrame(dict(c=[c], sx=[sx], sy=[sy], n=[n])) def combine_co_moments(data): c = sx = sy = n = 0.0 for datum in data.itertuples(): if datum.n == 0: continue elif n == 0: c, sx, sy, n = datum.c, datum.sx, datum.sy, datum.n else: c += ( datum.c + (sx / n - datum.sx / datum.n) * (sy / n - datum.sy / datum.n) * n * datum.n / (n + datum.n)) sx += datum.sx sy += datum.sy n += datum.n if n < max(2, ddof, min_periods or 0): return float('nan') else: return c / (n - ddof) moments = expressions.ComputedExpression( 'compute_co_moments', compute_co_moments, [self._expr, other._expr], requires_partition_by=partitionings.Index()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'combine_co_moments', combine_co_moments, [moments], requires_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) @frame_base.maybe_inplace def dropna(self, **kwargs): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'dropna', lambda df: df.dropna(**kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary())) items = iteritems = frame_base.wont_implement_method('non-lazy') isnull = isna = frame_base._elementwise_method('isna') notnull = notna = frame_base._elementwise_method('notna') tolist = to_numpy = to_string = frame_base.wont_implement_method( 'non-deferred value') def aggregate(self, func, axis=0, *args, **kwargs): if isinstance(func, list) and len(func) > 1: # Aggregate each column separately, then stick them all together. rows = [self.agg([f], *args, **kwargs) for f in func] return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_aggregate', lambda *rows: pd.concat(rows), [row._expr for row in rows])) else: # We're only handling a single column. base_func = func[0] if isinstance(func, list) else func if _is_associative(base_func) and not args and not kwargs: intermediate = expressions.ComputedExpression( 'pre_aggregate', lambda s: s.agg([base_func], *args, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) allow_nonparallel_final = True else: intermediate = self._expr allow_nonparallel_final = None # i.e. don't change the value with expressions.allow_non_parallel_operations(allow_nonparallel_final): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate', lambda s: s.agg(func, *args, **kwargs), [intermediate], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Singleton())) agg = aggregate @property def axes(self): return [self.index] clip = frame_base._elementwise_method('clip') all = frame_base._agg_method('all') any = frame_base._agg_method('any') count = frame_base._agg_method('count') min = frame_base._agg_method('min') max = frame_base._agg_method('max') prod = product = frame_base._agg_method('prod') sum = frame_base._agg_method('sum') mean = frame_base._agg_method('mean') median = frame_base._agg_method('median') cummax = cummin = cumsum = cumprod = frame_base.wont_implement_method( 'order-sensitive') diff = frame_base.wont_implement_method('order-sensitive') filter = frame_base._elementwise_method('filter') memory_usage = frame_base.wont_implement_method('non-deferred value') # In Series __contains__ checks the index __contains__ = frame_base.wont_implement_method('non-deferred value') @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def nlargest(self, keep, **kwargs): # TODO(robertwb): Document 'any' option. # TODO(robertwb): Consider (conditionally) defaulting to 'any' if no # explicit keep parameter is requested. if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nlargest-per-partition', lambda df: df.nlargest(**kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nlargest', lambda df: df.nlargest(**kwargs), [per_partition], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) def nsmallest(self, keep, **kwargs): if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nsmallest-per-partition', lambda df: df.nsmallest(**kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nsmallest', lambda df: df.nsmallest(**kwargs), [per_partition], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Singleton())) @property def is_unique(self): def set_index(s): s = s[:] s.index = s return s self_index = expressions.ComputedExpression( 'set_index', set_index, [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton()) is_unique_distributed = expressions.ComputedExpression( 'is_unique_distributed', lambda s: pd.Series(s.is_unique), [self_index], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton()) with expressions.allow_non_parallel_operations(): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'combine', lambda s: s.all(), [is_unique_distributed], requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) plot = property(frame_base.wont_implement_method('plot')) pop = frame_base.wont_implement_method('non-lazy') rename_axis = frame_base._elementwise_method('rename_axis') @frame_base.args_to_kwargs(pd.Series) @frame_base.populate_defaults(pd.Series) @frame_base.maybe_inplace def replace(self, to_replace, value, limit, method, **kwargs): if method is not None and not isinstance(to_replace, dict) and value is None: # Can't rely on method for replacement, it's order-sensitive # pandas only relies on method if to_replace is not a dictionary, and # value is None raise frame_base.WontImplementError("order-sensitive") if limit is None: requires_partition_by = partitionings.Arbitrary() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'replace', lambda df: df.replace( to_replace=to_replace, value=value, limit=limit, method=method, **kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=requires_partition_by)) round = frame_base._elementwise_method('round') searchsorted = frame_base.wont_implement_method('order-sensitive') shift = frame_base.wont_implement_method('order-sensitive') take = frame_base.wont_implement_method('deprecated') to_dict = frame_base.wont_implement_method('non-deferred') to_frame = frame_base._elementwise_method('to_frame') def unique(self, as_series=False): if not as_series: raise frame_base.WontImplementError( 'pass as_series=True to get the result as a (deferred) Series') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'unique', lambda df: pd.Series(df.unique()), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton())) def update(self, other): self._expr = expressions.ComputedExpression( 'update', lambda df, other: df.update(other) or df, [self._expr, other._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Index()) unstack = frame_base.wont_implement_method('non-deferred column values') values = property(frame_base.wont_implement_method('non-deferred')) view = frame_base.wont_implement_method('memory sharing semantics') @property def str(self): return _DeferredStringMethods(self._expr) apply = frame_base._elementwise_method('apply') map = frame_base._elementwise_method('map') # TODO(BEAM-11636): Implement transform using type inference to determine the # proxy #transform = frame_base._elementwise_method('transform') @populate_not_implemented(pd.DataFrame) @frame_base.DeferredFrame._register_for(pd.DataFrame) class DeferredDataFrame(DeferredDataFrameOrSeries): @property def T(self): return self.transpose() @property def columns(self): return self._expr.proxy().columns @columns.setter def columns(self, columns): def set_columns(df): df = df.copy() df.columns = columns return df return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'set_columns', set_columns, [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary())) def keys(self): return self.columns def __getattr__(self, name): # Column attribute access. if name in self._expr.proxy().columns: return self[name] else: return object.__getattribute__(self, name) def __getitem__(self, key): # TODO: Replicate pd.DataFrame.__getitem__ logic if isinstance(key, DeferredSeries) and key._expr.proxy().dtype == bool: return self.loc[key] elif isinstance(key, frame_base.DeferredBase): # Fail early if key is a DeferredBase as it interacts surprisingly with # key in self._expr.proxy().columns raise NotImplementedError( "Indexing with a non-bool deferred frame is not yet supported. " "Consider using df.loc[...]") elif isinstance(key, slice): if _is_null_slice(key): return self elif _is_integer_slice(key): # This depends on the contents of the index. raise frame_base.WontImplementError( 'Use iloc or loc with integer slices.') else: return self.loc[key] elif ( (isinstance(key, list) and all(key_column in self._expr.proxy().columns for key_column in key)) or key in self._expr.proxy().columns): return self._elementwise(lambda df: df[key], 'get_column') else: raise NotImplementedError(key) def __contains__(self, key): # Checks if proxy has the given column return self._expr.proxy().__contains__(key) def __setitem__(self, key, value): if isinstance( key, str) or (isinstance(key, list) and all(isinstance(c, str) for c in key)) or (isinstance(key, DeferredSeries) and key._expr.proxy().dtype == bool): # yapf: disable return self._elementwise( lambda df, key, value: df.__setitem__(key, value), 'set_column', (key, value), inplace=True) else: raise NotImplementedError(key) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def align(self, other, join, axis, copy, level, method, **kwargs): if not copy: raise frame_base.WontImplementError('align(copy=False)') if method is not None: raise frame_base.WontImplementError('order-sensitive') if kwargs: raise NotImplementedError('align(%s)' % ', '.join(kwargs.keys())) if level is not None: # Could probably get by partitioning on the used levels. requires_partition_by = partitionings.Singleton() elif axis in ('columns', 1): requires_partition_by = partitionings.Arbitrary() else: requires_partition_by = partitionings.Index() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'align', lambda df, other: df.align(other, join=join, axis=axis), [self._expr, other._expr], requires_partition_by=requires_partition_by, preserves_partition_by=partitionings.Arbitrary())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def append(self, other, ignore_index, verify_integrity, sort, **kwargs): if not isinstance(other, DeferredDataFrame): raise frame_base.WontImplementError( "append() only accepts DeferredDataFrame instances, received " + str(type(other))) if ignore_index: raise frame_base.WontImplementError( "append(ignore_index=True) is order sensitive") if verify_integrity: raise frame_base.WontImplementError( "append(verify_integrity=True) produces an execution time error") return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'append', lambda s, other: s.append(other, sort=sort, **kwargs), [self._expr, other._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary() ) ) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def set_index(self, keys, **kwargs): if isinstance(keys, str): keys = [keys] if any(isinstance(k, (_DeferredIndex, frame_base.DeferredFrame)) for k in keys): raise NotImplementedError("set_index with Index or Series instances is " "not yet supported (BEAM-11711)") return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'set_index', lambda df: df.set_index(keys, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Singleton())) @property def loc(self): return _DeferredLoc(self) @property def iloc(self): return _DeferredILoc(self) @property def axes(self): return (self.index, self.columns) @property def dtypes(self): return self._expr.proxy().dtypes def assign(self, **kwargs): for name, value in kwargs.items(): if not callable(value) and not isinstance(value, DeferredSeries): raise frame_base.WontImplementError("Unsupported value for new " f"column '{name}': '{value}'. " "Only callables and Series " "instances are supported.") return frame_base._elementwise_method('assign')(self, **kwargs) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def explode(self, column, ignore_index): # ignoring the index will not preserve it preserves = (partitionings.Singleton() if ignore_index else partitionings.Index()) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'explode', lambda df: df.explode(column, ignore_index), [self._expr], preserves_partition_by=preserves, requires_partition_by=partitionings.Arbitrary())) def aggregate(self, func, axis=0, *args, **kwargs): if axis is None: # Aggregate across all elements by first aggregating across columns, # then across rows. return self.agg(func, *args, **dict(kwargs, axis=1)).agg( func, *args, **dict(kwargs, axis=0)) elif axis in (1, 'columns'): # This is an easy elementwise aggregation. return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate', lambda df: df.agg(func, axis=1, *args, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary())) elif len(self._expr.proxy().columns) == 0 or args or kwargs: # For these corner cases, just colocate everything. return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'aggregate', lambda df: df.agg(func, *args, **kwargs), [self._expr], requires_partition_by=partitionings.Singleton())) else: # In the general case, compute the aggregation of each column separately, # then recombine. if not isinstance(func, dict): col_names = list(self._expr.proxy().columns) func = {col: func for col in col_names} else: col_names = list(func.keys()) aggregated_cols = [] for col in col_names: funcs = func[col] if not isinstance(funcs, list): funcs = [funcs] aggregated_cols.append(self[col].agg(funcs, *args, **kwargs)) # The final shape is different depending on whether any of the columns # were aggregated by a list of aggregators. with expressions.allow_non_parallel_operations(): if any(isinstance(funcs, list) for funcs in func.values()): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_aggregate', lambda *cols: pd.DataFrame( {col: value for col, value in zip(col_names, cols)}), [col._expr for col in aggregated_cols], requires_partition_by=partitionings.Singleton())) else: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_aggregate', lambda *cols: pd.Series( {col: value[0] for col, value in zip(col_names, cols)}), [col._expr for col in aggregated_cols], requires_partition_by=partitionings.Singleton(), proxy=self._expr.proxy().agg(func, *args, **kwargs))) agg = aggregate applymap = frame_base._elementwise_method('applymap') memory_usage = frame_base.wont_implement_method('non-deferred value') info = frame_base.wont_implement_method('non-deferred value') clip = frame_base._elementwise_method( 'clip', restrictions={'axis': lambda axis: axis in (0, 'index')}) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def corr(self, method, min_periods): if method == 'pearson': proxy = self._expr.proxy().corr() columns = list(proxy.columns) args = [] arg_indices = [] for ix, col1 in enumerate(columns): for col2 in columns[ix+1:]: arg_indices.append((col1, col2)) # Note that this set may be different for each pair. no_na = self.loc[self[col1].notna() & self[col2].notna()] args.append( no_na[col1]._corr_aligned(no_na[col2], min_periods)) def fill_matrix(*args): data = collections.defaultdict(dict) for col in columns: data[col][col] = 1.0 for ix, (col1, col2) in enumerate(arg_indices): data[col1][col2] = data[col2][col1] = args[ix] return pd.DataFrame(data, columns=columns, index=columns) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'fill_matrix', fill_matrix, [arg._expr for arg in args], requires_partition_by=partitionings.Singleton(), proxy=proxy)) else: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'corr', lambda df: df.corr(method=method, min_periods=min_periods), [self._expr], requires_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def cov(self, min_periods, ddof): proxy = self._expr.proxy().corr() columns = list(proxy.columns) args = [] arg_indices = [] for col in columns: arg_indices.append((col, col)) std = self[col].std(ddof) args.append(std.apply(lambda x: x*x, 'square')) for ix, col1 in enumerate(columns): for col2 in columns[ix+1:]: arg_indices.append((col1, col2)) # Note that this set may be different for each pair. no_na = self.loc[self[col1].notna() & self[col2].notna()] args.append(no_na[col1]._cov_aligned(no_na[col2], min_periods, ddof)) def fill_matrix(*args): data = collections.defaultdict(dict) for ix, (col1, col2) in enumerate(arg_indices): data[col1][col2] = data[col2][col1] = args[ix] return pd.DataFrame(data, columns=columns, index=columns) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'fill_matrix', fill_matrix, [arg._expr for arg in args], requires_partition_by=partitionings.Singleton(), proxy=proxy)) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def corrwith(self, other, axis, drop, method): if axis not in (0, 'index'): raise NotImplementedError('corrwith(axis=%r)' % axis) if not isinstance(other, frame_base.DeferredFrame): other = frame_base.DeferredFrame.wrap( expressions.ConstantExpression(other)) if isinstance(other, DeferredSeries): proxy = self._expr.proxy().corrwith(other._expr.proxy(), method=method) self, other = self.align(other, axis=0, join='inner') col_names = proxy.index other_cols = [other] * len(col_names) elif isinstance(other, DeferredDataFrame): proxy = self._expr.proxy().corrwith( other._expr.proxy(), method=method, drop=drop) self, other = self.align(other, axis=0, join='inner') col_names = list( set(self.columns) .intersection(other.columns) .intersection(proxy.index)) other_cols = [other[col_name] for col_name in col_names] else: # Raise the right error. self._expr.proxy().corrwith(other._expr.proxy()) # Just in case something else becomes valid. raise NotImplementedError('corrwith(%s)' % type(other._expr.proxy)) # Generate expressions to compute the actual correlations. corrs = [ self[col_name].corr(other_col, method) for col_name, other_col in zip(col_names, other_cols)] # Combine the results def fill_dataframe(*args): result = proxy.copy(deep=True) for col, value in zip(proxy.index, args): result[col] = value return result with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'fill_dataframe', fill_dataframe, [corr._expr for corr in corrs], requires_partition_by=partitionings.Singleton(), proxy=proxy)) cummax = cummin = cumsum = cumprod = frame_base.wont_implement_method( 'order-sensitive') diff = frame_base.wont_implement_method('order-sensitive') def dot(self, other): # We want to broadcast the right hand side to all partitions of the left. # This is OK, as its index must be the same size as the columns set of self, # so cannot be too large. class AsScalar(object): def __init__(self, value): self.value = value if isinstance(other, frame_base.DeferredFrame): proxy = other._expr.proxy() with expressions.allow_non_parallel_operations(): side = expressions.ComputedExpression( 'as_scalar', lambda df: AsScalar(df), [other._expr], requires_partition_by=partitionings.Singleton()) else: proxy = pd.DataFrame(columns=range(len(other[0]))) side = expressions.ConstantExpression(AsScalar(other)) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'dot', lambda left, right: left @ right.value, [self._expr, side], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary(), proxy=proxy)) __matmul__ = dot def mode(self, axis=0, *args, **kwargs): if axis == 1 or axis == 'columns': # Number of columns is max(number mode values for each row), so we can't # determine how many there will be before looking at the data. raise frame_base.WontImplementError('non-deferred column values') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'mode', lambda df: df.mode(*args, **kwargs), [self._expr], #TODO(robertwb): Approximate? requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def dropna(self, axis, **kwargs): # TODO(robertwb): This is a common pattern. Generalize? if axis == 1 or axis == 'columns': requires_partition_by = partitionings.Singleton() else: requires_partition_by = partitionings.Arbitrary() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'dropna', lambda df: df.dropna(axis=axis, **kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=requires_partition_by)) def _eval_or_query(self, name, expr, inplace, **kwargs): for key in ('local_dict', 'global_dict', 'level', 'target', 'resolvers'): if key in kwargs: raise NotImplementedError(f"Setting '{key}' is not yet supported") # look for '@<py identifier>' if re.search(r'\@[^\d\W]\w*', expr, re.UNICODE): raise NotImplementedError("Accessing locals with @ is not yet supported " "(BEAM-11202)") result_expr = expressions.ComputedExpression( name, lambda df: getattr(df, name)(expr, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()) if inplace: self._expr = result_expr else: return frame_base.DeferredFrame.wrap(result_expr) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def eval(self, expr, inplace, **kwargs): return self._eval_or_query('eval', expr, inplace, **kwargs) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def query(self, expr, inplace, **kwargs): return self._eval_or_query('query', expr, inplace, **kwargs) isnull = isna = frame_base._elementwise_method('isna') notnull = notna = frame_base._elementwise_method('notna') items = itertuples = iterrows = iteritems = frame_base.wont_implement_method( 'non-lazy') def _cols_as_temporary_index(self, cols, suffix=''): original_index_names = list(self._expr.proxy().index.names) new_index_names = [ '__apache_beam_temp_%d_%s' % (ix, suffix) for (ix, _) in enumerate(original_index_names)] def reindex(df): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'reindex', lambda df: df.rename_axis(index=new_index_names, copy=False) .reset_index().set_index(cols), [df._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Arbitrary())) def revert(df): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join_restoreindex', lambda df: df.reset_index().set_index(new_index_names) .rename_axis(index=original_index_names, copy=False), [df._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Arbitrary())) return reindex, revert @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def join(self, other, on, **kwargs): if on is not None: reindex, revert = self._cols_as_temporary_index(on) return revert(reindex(self).join(other, **kwargs)) if isinstance(other, list): other_is_list = True else: other = [other] other_is_list = False placeholder = object() other_exprs = [ df._expr for df in other if isinstance(df, frame_base.DeferredFrame)] const_others = [ placeholder if isinstance(df, frame_base.DeferredFrame) else df for df in other] def fill_placeholders(values): values = iter(values) filled = [ next(values) if df is placeholder else df for df in const_others] if other_is_list: return filled else: return filled[0] return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'join', lambda df, *deferred_others: df.join( fill_placeholders(deferred_others), **kwargs), [self._expr] + other_exprs, preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Index())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def merge( self, right, on, left_on, right_on, left_index, right_index, suffixes, **kwargs): self_proxy = self._expr.proxy() right_proxy = right._expr.proxy() # Validate with a pandas call. _ = self_proxy.merge( right_proxy, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, **kwargs) if kwargs.get('how', None) == 'cross': raise NotImplementedError("cross join is not yet implemented (BEAM-9547)") if not any([on, left_on, right_on, left_index, right_index]): on = [col for col in self_proxy.columns if col in right_proxy.columns] if not left_on: left_on = on if left_on and not isinstance(left_on, list): left_on = [left_on] if not right_on: right_on = on if right_on and not isinstance(right_on, list): right_on = [right_on] if left_index: indexed_left = self else: indexed_left = self.set_index(left_on, drop=False) if right_index: indexed_right = right else: indexed_right = right.set_index(right_on, drop=False) if left_on and right_on: common_cols = set(left_on).intersection(right_on) if len(common_cols): # When merging on the same column name from both dfs, we need to make # sure only one df has the column. Otherwise we end up with # two duplicate columns, one with lsuffix and one with rsuffix. # It's safe to drop from either because the data has already been duped # to the index. indexed_right = indexed_right.drop(columns=common_cols) merged = frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'merge', lambda left, right: left.merge(right, left_index=True, right_index=True, suffixes=suffixes, **kwargs), [indexed_left._expr, indexed_right._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Index())) if left_index or right_index: return merged else: return merged.reset_index(drop=True) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def nlargest(self, keep, **kwargs): if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nlargest-per-partition', lambda df: df.nlargest(**kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nlargest', lambda df: df.nlargest(**kwargs), [per_partition], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def nsmallest(self, keep, **kwargs): if keep == 'any': keep = 'first' elif keep != 'all': raise frame_base.WontImplementError('order-sensitive') kwargs['keep'] = keep per_partition = expressions.ComputedExpression( 'nsmallest-per-partition', lambda df: df.nsmallest(**kwargs), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary()) with expressions.allow_non_parallel_operations(True): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nsmallest', lambda df: df.nsmallest(**kwargs), [per_partition], preserves_partition_by=partitionings.Singleton(), requires_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) def nunique(self, **kwargs): if kwargs.get('axis', None) in (1, 'columns'): requires_partition_by = partitionings.Arbitrary() preserves_partition_by = partitionings.Index() else: # TODO: This could be implemented in a distributed fashion requires_partition_by = partitionings.Singleton() preserves_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'nunique', lambda df: df.nunique(**kwargs), [self._expr], preserves_partition_by=preserves_partition_by, requires_partition_by=requires_partition_by)) plot = property(frame_base.wont_implement_method('plot')) def pop(self, item): result = self[item] self._expr = expressions.ComputedExpression( 'popped', lambda df: df.drop(columns=[item]), [self._expr], preserves_partition_by=partitionings.Arbitrary(), requires_partition_by=partitionings.Arbitrary()) return result @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def quantile(self, axis, **kwargs): if axis == 1 or axis == 'columns': raise frame_base.WontImplementError('non-deferred column values') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'quantile', lambda df: df.quantile(axis=axis, **kwargs), [self._expr], #TODO(robertwb): distributed approximate quantiles? requires_partition_by=partitionings.Singleton(), preserves_partition_by=partitionings.Singleton())) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.maybe_inplace def rename(self, **kwargs): rename_index = ( 'index' in kwargs or kwargs.get('axis', None) in (0, 'index') or ('columns' not in kwargs and 'axis' not in kwargs)) rename_columns = ( 'columns' in kwargs or kwargs.get('axis', None) in (1, 'columns')) if rename_index: # Technically, it's still partitioned by index, but it's no longer # partitioned by the hash of the index. preserves_partition_by = partitionings.Singleton() else: preserves_partition_by = partitionings.Index() if kwargs.get('errors', None) == 'raise' and rename_index: # Renaming index with checking requires global index. requires_partition_by = partitionings.Singleton() else: requires_partition_by = partitionings.Arbitrary() proxy = None if rename_index: # The proxy can't be computed by executing rename, it will error # renaming the index. if rename_columns: # Note if both are being renamed, index and columns must be specified # (not axis) proxy = self._expr.proxy().rename(**{k: v for (k, v) in kwargs.items() if not k == 'index'}) else: # No change in columns, reuse proxy proxy = self._expr.proxy() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'rename', lambda df: df.rename(**kwargs), [self._expr], proxy=proxy, preserves_partition_by=preserves_partition_by, requires_partition_by=requires_partition_by)) rename_axis = frame_base._elementwise_method('rename_axis') @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def replace(self, limit, **kwargs): if limit is None: requires_partition_by = partitionings.Arbitrary() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'replace', lambda df: df.replace(limit=limit, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by)) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) @frame_base.maybe_inplace def reset_index(self, level=None, **kwargs): # TODO: Docs should note that the index is not in the same order as it would # be with pandas. Technically an order-sensitive operation if level is not None and not isinstance(level, (tuple, list)): level = [level] if level is None or len(level) == self._expr.proxy().index.nlevels: # TODO: Could do distributed re-index with offsets. requires_partition_by = partitionings.Singleton() else: requires_partition_by = partitionings.Arbitrary() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'reset_index', lambda df: df.reset_index(level=level, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by)) @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def round(self, decimals, *args, **kwargs): if isinstance(decimals, frame_base.DeferredFrame): # Disallow passing a deferred Series in, our current partitioning model # prevents us from using it correctly. raise NotImplementedError("Passing a deferred series to round() is not " "supported, please use a concrete pd.Series " "instance or a dictionary") return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'round', lambda df: df.round(decimals, *args, **kwargs), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Index() ) ) select_dtypes = frame_base._elementwise_method('select_dtypes') @frame_base.args_to_kwargs(pd.DataFrame) @frame_base.populate_defaults(pd.DataFrame) def shift(self, axis, **kwargs): if 'freq' in kwargs: raise frame_base.WontImplementError('data-dependent') if axis == 1 or axis == 'columns': requires_partition_by = partitionings.Arbitrary() else: requires_partition_by = partitionings.Singleton() return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'shift', lambda df: df.shift(axis=axis, **kwargs), [self._expr], preserves_partition_by=partitionings.Singleton(), requires_partition_by=requires_partition_by)) @property def shape(self): raise frame_base.WontImplementError('scalar value') stack = frame_base._elementwise_method('stack') all = frame_base._agg_method('all') any = frame_base._agg_method('any') count = frame_base._agg_method('count') max = frame_base._agg_method('max') min = frame_base._agg_method('min') prod = product = frame_base._agg_method('prod') sum = frame_base._agg_method('sum') mean = frame_base._agg_method('mean') median = frame_base._agg_method('median') take = frame_base.wont_implement_method('deprecated') to_records = to_dict = to_numpy = to_string = ( frame_base.wont_implement_method('non-deferred value')) to_sparse = to_string # frame_base._elementwise_method('to_sparse') transpose = frame_base.wont_implement_method('non-deferred column values') def unstack(self, *args, **kwargs): if self._expr.proxy().index.nlevels == 1: return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'unstack', lambda df: df.unstack(*args, **kwargs), [self._expr], requires_partition_by=partitionings.Index())) else: raise frame_base.WontImplementError('non-deferred column values') update = frame_base._proxy_method( 'update', inplace=True, requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Arbitrary()) values = property(frame_base.wont_implement_method('non-deferred value')) for io_func in dir(io): if io_func.startswith('to_'): setattr(DeferredDataFrame, io_func, getattr(io, io_func)) setattr(DeferredSeries, io_func, getattr(io, io_func)) for meth in ('filter', ): setattr(DeferredDataFrame, meth, frame_base._elementwise_method(meth)) @populate_not_implemented(pd.core.groupby.generic.DataFrameGroupBy) class DeferredGroupBy(frame_base.DeferredFrame): def __init__(self, expr, kwargs, ungrouped: expressions.Expression, ungrouped_with_index: expressions.Expression, grouping_columns, grouping_indexes, projection=None): """This object represents the result of:: ungrouped.groupby(level=[grouping_indexes + grouping_columns], **kwargs)[projection] :param expr: An expression to compute a pandas GroupBy object. Convenient for unliftable aggregations. :param ungrouped: An expression to compute the DataFrame pre-grouping, the (Multi)Index contains only the grouping columns/indexes. :param ungrouped_with_index: Same as ungrouped, except the index includes all of the original indexes as well as any grouping columns. This is important for operations that expose the original index, e.g. .apply(), but we only use it when necessary to avoid unnessary data transfer and GBKs. :param grouping_columns: list of column labels that were in the original groupby(..) `by` parameter. Only relevant for grouped DataFrames. :param grouping_indexes: list of index names (or index level numbers) to be grouped. :param kwargs: Keywords args passed to the original groupby(..) call.""" super(DeferredGroupBy, self).__init__(expr) self._ungrouped = ungrouped self._ungrouped_with_index = ungrouped_with_index self._projection = projection self._grouping_columns = grouping_columns self._grouping_indexes = grouping_indexes self._kwargs = kwargs def __getattr__(self, name): return DeferredGroupBy( expressions.ComputedExpression( 'groupby_project', lambda gb: getattr(gb, name), [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()), self._kwargs, self._ungrouped, self._ungrouped_with_index, self._grouping_columns, self._grouping_indexes, projection=name) def __getitem__(self, name): return DeferredGroupBy( expressions.ComputedExpression( 'groupby_project', lambda gb: gb[name], [self._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()), self._kwargs, self._ungrouped, self._ungrouped_with_index, self._grouping_columns, self._grouping_indexes, projection=name) def agg(self, fn): if not callable(fn): # TODO: Add support for strings in (UN)LIFTABLE_AGGREGATIONS. Test by # running doctests for pandas.core.groupby.generic raise NotImplementedError('GroupBy.agg currently only supports callable ' 'arguments') return DeferredDataFrame( expressions.ComputedExpression( 'agg', lambda gb: gb.agg(fn), [self._expr], requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Singleton())) def apply(self, fn, *args, **kwargs): if self._grouping_columns and not self._projection: grouping_columns = self._grouping_columns def fn_wrapper(x, *args, **kwargs): # TODO(BEAM-11710): Moving a column to an index and back is lossy # since indexes dont support as many dtypes. We should keep the original # column in groupby() instead. We need it anyway in case the grouping # column is projected, which is allowed. # Move the columns back to columns x = x.assign(**{col: x.index.get_level_values(col) for col in grouping_columns}) x = x.droplevel(grouping_columns) return fn(x, *args, **kwargs) else: fn_wrapper = fn project = _maybe_project_func(self._projection) # Unfortunately pandas does not execute fn to determine the right proxy. # We run user fn on a proxy here to detect the return type and generate the # proxy. result = fn_wrapper(project(self._ungrouped_with_index.proxy())) if isinstance(result, pd.core.generic.NDFrame): proxy = result[:0] def index_to_arrays(index): return [index.get_level_values(level) for level in range(index.nlevels)] # The final result will have the grouped indexes + the indexes from the # result proxy.index = pd.MultiIndex.from_arrays( index_to_arrays(self._ungrouped.proxy().index) + index_to_arrays(proxy.index), names=self._ungrouped.proxy().index.names + proxy.index.names) else: # The user fn returns some non-pandas type. The expected result is a # Series where each element is the result of one user fn call. dtype = pd.Series([result]).dtype proxy = pd.Series([], dtype=dtype, index=self._ungrouped.proxy().index) levels = self._grouping_indexes + self._grouping_columns return DeferredDataFrame( expressions.ComputedExpression( 'apply', lambda df: project(df.groupby(level=levels)).apply( fn_wrapper, *args, **kwargs), [self._ungrouped_with_index], proxy=proxy, requires_partition_by=partitionings.Index(levels), preserves_partition_by=partitionings.Index(levels))) aggregate = agg hist = frame_base.wont_implement_method('plot') plot = frame_base.wont_implement_method('plot') first = frame_base.wont_implement_method('order sensitive') last = frame_base.wont_implement_method('order sensitive') head = frame_base.wont_implement_method('order sensitive') tail = frame_base.wont_implement_method('order sensitive') nth = frame_base.wont_implement_method('order sensitive') cumcount = frame_base.wont_implement_method('order sensitive') cummax = frame_base.wont_implement_method('order sensitive') cummin = frame_base.wont_implement_method('order sensitive') cumsum = frame_base.wont_implement_method('order sensitive') cumprod = frame_base.wont_implement_method('order sensitive') # TODO(robertwb): Consider allowing this for categorical keys. __len__ = frame_base.wont_implement_method('non-deferred') groups = property(frame_base.wont_implement_method('non-deferred')) def _maybe_project_func(projection: Optional[List[str]]): """ Returns identity func if projection is empty or None, else returns a function that projects the specified columns. """ if projection: return lambda df: df[projection] else: return lambda x: x def _liftable_agg(meth, postagg_meth=None): name, agg_func = frame_base.name_and_func(meth) if postagg_meth is None: post_agg_name, post_agg_func = name, agg_func else: post_agg_name, post_agg_func = frame_base.name_and_func(postagg_meth) def wrapper(self, *args, **kwargs): assert isinstance(self, DeferredGroupBy) to_group = self._ungrouped.proxy().index is_categorical_grouping = any(to_group.get_level_values(i).is_categorical() for i in self._grouping_indexes) groupby_kwargs = self._kwargs # Don't include un-observed categorical values in the preagg preagg_groupby_kwargs = groupby_kwargs.copy() preagg_groupby_kwargs['observed'] = True project = _maybe_project_func(self._projection) pre_agg = expressions.ComputedExpression( 'pre_combine_' + name, lambda df: agg_func(project( df.groupby(level=list(range(df.index.nlevels)), **preagg_groupby_kwargs), ), **kwargs), [self._ungrouped], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()) post_agg = expressions.ComputedExpression( 'post_combine_' + post_agg_name, lambda df: post_agg_func( df.groupby(level=list(range(df.index.nlevels)), **groupby_kwargs), **kwargs), [pre_agg], requires_partition_by=(partitionings.Singleton() if is_categorical_grouping else partitionings.Index()), preserves_partition_by=partitionings.Arbitrary()) return frame_base.DeferredFrame.wrap(post_agg) return wrapper def _unliftable_agg(meth): name, agg_func = frame_base.name_and_func(meth) def wrapper(self, *args, **kwargs): assert isinstance(self, DeferredGroupBy) to_group = self._ungrouped.proxy().index is_categorical_grouping = any(to_group.get_level_values(i).is_categorical() for i in self._grouping_indexes) groupby_kwargs = self._kwargs project = _maybe_project_func(self._projection) post_agg = expressions.ComputedExpression( name, lambda df: agg_func(project( df.groupby(level=list(range(df.index.nlevels)), **groupby_kwargs), ), **kwargs), [self._ungrouped], requires_partition_by=(partitionings.Singleton() if is_categorical_grouping else partitionings.Index()), preserves_partition_by=partitionings.Arbitrary()) return frame_base.DeferredFrame.wrap(post_agg) return wrapper LIFTABLE_AGGREGATIONS = ['all', 'any', 'max', 'min', 'prod', 'sum'] LIFTABLE_WITH_SUM_AGGREGATIONS = ['size', 'count'] UNLIFTABLE_AGGREGATIONS = ['mean', 'median', 'std', 'var'] for meth in LIFTABLE_AGGREGATIONS: setattr(DeferredGroupBy, meth, _liftable_agg(meth)) for meth in LIFTABLE_WITH_SUM_AGGREGATIONS: setattr(DeferredGroupBy, meth, _liftable_agg(meth, postagg_meth='sum')) for meth in UNLIFTABLE_AGGREGATIONS: setattr(DeferredGroupBy, meth, _unliftable_agg(meth)) def _is_associative(agg_func): return agg_func in LIFTABLE_AGGREGATIONS or ( getattr(agg_func, '__name__', None) in LIFTABLE_AGGREGATIONS and agg_func.__module__ in ('numpy', 'builtins')) @populate_not_implemented(pd.core.groupby.generic.DataFrameGroupBy) class _DeferredGroupByCols(frame_base.DeferredFrame): # It's not clear that all of these make sense in Pandas either... agg = aggregate = frame_base._elementwise_method('agg') any = frame_base._elementwise_method('any') all = frame_base._elementwise_method('all') boxplot = frame_base.wont_implement_method('plot') describe = frame_base.wont_implement_method('describe') diff = frame_base._elementwise_method('diff') fillna = frame_base._elementwise_method('fillna') filter = frame_base._elementwise_method('filter') first = frame_base.wont_implement_method('order sensitive') get_group = frame_base._elementwise_method('group') head = frame_base.wont_implement_method('order sensitive') hist = frame_base.wont_implement_method('plot') idxmax = frame_base._elementwise_method('idxmax') idxmin = frame_base._elementwise_method('idxmin') last = frame_base.wont_implement_method('order sensitive') mad = frame_base._elementwise_method('mad') max = frame_base._elementwise_method('max') mean = frame_base._elementwise_method('mean') median = frame_base._elementwise_method('median') min = frame_base._elementwise_method('min') nunique = frame_base._elementwise_method('nunique') plot = frame_base.wont_implement_method('plot') prod = frame_base._elementwise_method('prod') quantile = frame_base._elementwise_method('quantile') shift = frame_base._elementwise_method('shift') size = frame_base._elementwise_method('size') skew = frame_base._elementwise_method('skew') std = frame_base._elementwise_method('std') sum = frame_base._elementwise_method('sum') tail = frame_base.wont_implement_method('order sensitive') take = frame_base.wont_implement_method('deprectated') tshift = frame_base._elementwise_method('tshift') var = frame_base._elementwise_method('var') @property def groups(self): return self._expr.proxy().groups @property def indices(self): return self._expr.proxy().indices @property def ndim(self): return self._expr.proxy().ndim @property def ngroups(self): return self._expr.proxy().ngroups @populate_not_implemented(pd.core.indexes.base.Index) class _DeferredIndex(object): def __init__(self, frame): self._frame = frame @property def names(self): return self._frame._expr.proxy().index.names @names.setter def names(self, value): def set_index_names(df): df = df.copy() df.index.names = value return df self._frame._expr = expressions.ComputedExpression( 'set_index_names', set_index_names, [self._frame._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary()) @property def ndim(self): return self._frame._expr.proxy().index.ndim @property def nlevels(self): return self._frame._expr.proxy().index.nlevels def __getattr__(self, name): raise NotImplementedError('index.%s' % name) @populate_not_implemented(pd.core.indexing._LocIndexer) class _DeferredLoc(object): def __init__(self, frame): self._frame = frame def __getitem__(self, index): if isinstance(index, tuple): rows, cols = index return self[rows][cols] elif isinstance(index, list) and index and isinstance(index[0], bool): # Aligned by numerical index. raise NotImplementedError(type(index)) elif isinstance(index, list): # Select rows, but behaves poorly on missing values. raise NotImplementedError(type(index)) elif isinstance(index, slice): args = [self._frame._expr] func = lambda df: df.loc[index] elif isinstance(index, frame_base.DeferredFrame): args = [self._frame._expr, index._expr] func = lambda df, index: df.loc[index] elif callable(index): def checked_callable_index(df): computed_index = index(df) if isinstance(computed_index, tuple): row_index, _ = computed_index else: row_index = computed_index if isinstance(row_index, list) and row_index and isinstance( row_index[0], bool): raise NotImplementedError(type(row_index)) elif not isinstance(row_index, (slice, pd.Series)): raise NotImplementedError(type(row_index)) return computed_index args = [self._frame._expr] func = lambda df: df.loc[checked_callable_index] else: raise NotImplementedError(type(index)) return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'loc', func, args, requires_partition_by=( partitionings.Index() if len(args) > 1 else partitionings.Arbitrary()), preserves_partition_by=partitionings.Arbitrary())) __setitem__ = frame_base.not_implemented_method('loc.setitem') @populate_not_implemented(pd.core.indexing._iLocIndexer) class _DeferredILoc(object): def __init__(self, frame): self._frame = frame def __getitem__(self, index): if isinstance(index, tuple): rows, _ = index if rows != slice(None, None, None): raise frame_base.WontImplementError('order-sensitive') return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'iloc', lambda df: df.iloc[index], [self._frame._expr], requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary())) else: raise frame_base.WontImplementError('order-sensitive') __setitem__ = frame_base.wont_implement_method('iloc.setitem') class _DeferredStringMethods(frame_base.DeferredBase): @frame_base.args_to_kwargs(pd.core.strings.StringMethods) @frame_base.populate_defaults(pd.core.strings.StringMethods) def cat(self, others, join, **kwargs): if others is None: # Concatenate series into a single String requires = partitionings.Singleton() func = lambda df: df.str.cat(join=join, **kwargs) args = [self._expr] elif (isinstance(others, frame_base.DeferredBase) or (isinstance(others, list) and all(isinstance(other, frame_base.DeferredBase) for other in others))): if join is None: raise frame_base.WontImplementError("cat with others=Series or " "others=List[Series] requires " "join to be specified.") if isinstance(others, frame_base.DeferredBase): others = [others] requires = partitionings.Index() def func(*args): return args[0].str.cat(others=args[1:], join=join, **kwargs) args = [self._expr] + [other._expr for other in others] else: raise frame_base.WontImplementError("others must be None, Series, or " "List[Series]. List[str] is not " "supported.") return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'cat', func, args, requires_partition_by=requires, preserves_partition_by=partitionings.Arbitrary())) @frame_base.args_to_kwargs(pd.core.strings.StringMethods) def repeat(self, repeats): if isinstance(repeats, int): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'repeat', lambda series: series.str.repeat(repeats), [self._expr], # TODO(BEAM-11155): Defer to pandas to compute this proxy. # Currently it incorrectly infers dtype bool, may require upstream # fix. proxy=self._expr.proxy(), requires_partition_by=partitionings.Arbitrary(), preserves_partition_by=partitionings.Arbitrary())) elif isinstance(repeats, frame_base.DeferredBase): return frame_base.DeferredFrame.wrap( expressions.ComputedExpression( 'repeat', lambda series, repeats_series: series.str.repeat(repeats_series), [self._expr, repeats._expr], # TODO(BEAM-11155): Defer to pandas to compute this proxy. # Currently it incorrectly infers dtype bool, may require upstream # fix. proxy=self._expr.proxy(), requires_partition_by=partitionings.Index(), preserves_partition_by=partitionings.Arbitrary())) elif isinstance(repeats, list): raise frame_base.WontImplementError("repeats must be an integer or a " "Series.") get_dummies = frame_base.wont_implement_method('non-deferred column values') ELEMENTWISE_STRING_METHODS = [ 'capitalize', 'casefold', 'contains', 'count', 'endswith', 'extract', 'extractall', 'findall', 'fullmatch', 'get', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'islower', 'isnumeric', 'isspace', 'istitle', 'isupper', 'join', 'len', 'lower', 'lstrip', 'match', 'pad', 'partition', 'replace', 'rpartition', 'rsplit', 'rstrip', 'slice', 'slice_replace', 'split', 'startswith', 'strip', 'swapcase', 'title', 'upper', 'wrap', 'zfill', '__getitem__', ] def make_str_func(method): def func(df, *args, **kwargs): try: df_str = df.str except AttributeError: # If there's a non-string value in a Series passed to .str method, pandas # will generally just replace it with NaN in the result. However if # there are _only_ non-string values, pandas will raise: # # AttributeError: Can only use .str accessor with string values! # # This can happen to us at execution time if we split a partition that is # only non-strings. This branch just replaces all those values with NaN # in that case. return df.map(lambda _: np.nan) else: return getattr(df_str, method)(*args, **kwargs) return func for method in ELEMENTWISE_STRING_METHODS: setattr(_DeferredStringMethods, method, frame_base._elementwise_method(make_str_func(method))) for base in ['add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'divmod', 'pow', 'and', 'or']: for p in ['%s', 'r%s', '__%s__', '__r%s__']: # TODO: non-trivial level? name = p % base setattr( DeferredSeries, name, frame_base._elementwise_method(name, restrictions={'level': None})) setattr( DeferredDataFrame, name, frame_base._elementwise_method(name, restrictions={'level': None})) setattr( DeferredSeries, '__i%s__' % base, frame_base._elementwise_method('__i%s__' % base, inplace=True)) setattr( DeferredDataFrame, '__i%s__' % base, frame_base._elementwise_method('__i%s__' % base, inplace=True)) for name in ['lt', 'le', 'gt', 'ge', 'eq', 'ne']: for p in '%s', '__%s__': # Note that non-underscore name is used for both as the __xxx__ methods are # order-sensitive. setattr(DeferredSeries, p % name, frame_base._elementwise_method(name)) setattr(DeferredDataFrame, p % name, frame_base._elementwise_method(name)) for name in ['__neg__', '__pos__', '__invert__']: setattr(DeferredSeries, name, frame_base._elementwise_method(name)) setattr(DeferredDataFrame, name, frame_base._elementwise_method(name)) DeferredSeries.multiply = DeferredSeries.mul # type: ignore DeferredDataFrame.multiply = DeferredDataFrame.mul # type: ignore def _slice_parts(s): yield s.start yield s.stop yield s.step def _is_null_slice(s): return isinstance(s, slice) and all(x is None for x in _slice_parts(s)) def _is_integer_slice(s): return isinstance(s, slice) and all( x is None or isinstance(x, int) for x in _slice_parts(s)) and not _is_null_slice(s)
37.193409
98
0.656963
794eaad4cf24445c88cfb64a7f65072873f8d267
11,587
py
Python
scvi/module/_scanvae.py
jules-samaran/scvi-tools
7dcbb819cdc6a7991469fdca6b292276c59a946d
[ "BSD-3-Clause" ]
280
2020-09-18T06:26:28.000Z
2022-03-01T20:28:14.000Z
scvi/module/_scanvae.py
jules-samaran/scvi-tools
7dcbb819cdc6a7991469fdca6b292276c59a946d
[ "BSD-3-Clause" ]
594
2020-09-17T00:03:34.000Z
2022-03-02T21:45:17.000Z
scvi/module/_scanvae.py
jules-samaran/scvi-tools
7dcbb819cdc6a7991469fdca6b292276c59a946d
[ "BSD-3-Clause" ]
96
2020-09-19T21:26:00.000Z
2022-02-25T05:38:05.000Z
from typing import Iterable, Optional, Sequence import numpy as np import torch from torch.distributions import Categorical, Normal from torch.distributions import kl_divergence as kl from torch.nn import functional as F from scvi import _CONSTANTS from scvi._compat import Literal from scvi.module.base import LossRecorder, auto_move_data from scvi.nn import Decoder, Encoder from ._classifier import Classifier from ._utils import broadcast_labels from ._vae import VAE class SCANVAE(VAE): """ Single-cell annotation using variational inference. This is an implementation of the scANVI model described in [Xu21]_, inspired from M1 + M2 model, as described in (https://arxiv.org/pdf/1406.5298.pdf). Parameters ---------- n_input Number of input genes n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs n_continuous_cov Number of continuous covarites n_cats_per_cov Number of categories for each extra categorical covariate dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. gene_likelihood One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution y_prior If None, initialized to uniform probability over cell types labels_groups Label group designations use_labels_groups Whether to use the label groups use_batch_norm Whether to use batch norm in layers use_layer_norm Whether to use layer norm in layers **vae_kwargs Keyword args for :class:`~scvi.module.VAE` """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, n_continuous_cov: int = 0, n_cats_per_cov: Optional[Iterable[int]] = None, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, gene_likelihood: str = "zinb", y_prior=None, labels_groups: Sequence[int] = None, use_labels_groups: bool = False, classifier_parameters: dict = dict(), use_batch_norm: Literal["encoder", "decoder", "none", "both"] = "both", use_layer_norm: Literal["encoder", "decoder", "none", "both"] = "none", **vae_kwargs ): super().__init__( n_input, n_hidden=n_hidden, n_latent=n_latent, n_layers=n_layers, n_continuous_cov=n_continuous_cov, n_cats_per_cov=n_cats_per_cov, dropout_rate=dropout_rate, n_batch=n_batch, dispersion=dispersion, log_variational=log_variational, gene_likelihood=gene_likelihood, use_batch_norm=use_batch_norm, use_layer_norm=use_layer_norm, **vae_kwargs ) use_batch_norm_encoder = use_batch_norm == "encoder" or use_batch_norm == "both" use_batch_norm_decoder = use_batch_norm == "decoder" or use_batch_norm == "both" use_layer_norm_encoder = use_layer_norm == "encoder" or use_layer_norm == "both" use_layer_norm_decoder = use_layer_norm == "decoder" or use_layer_norm == "both" self.n_labels = n_labels # Classifier takes n_latent as input cls_parameters = { "n_layers": n_layers, "n_hidden": n_hidden, "dropout_rate": dropout_rate, } cls_parameters.update(classifier_parameters) self.classifier = Classifier( n_latent, n_labels=n_labels, use_batch_norm=use_batch_norm_encoder, use_layer_norm=use_layer_norm_encoder, **cls_parameters ) self.encoder_z2_z1 = Encoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, use_batch_norm=use_batch_norm_encoder, use_layer_norm=use_layer_norm_encoder, ) self.decoder_z1_z2 = Decoder( n_latent, n_latent, n_cat_list=[self.n_labels], n_layers=n_layers, n_hidden=n_hidden, use_batch_norm=use_batch_norm_decoder, use_layer_norm=use_layer_norm_decoder, ) self.y_prior = torch.nn.Parameter( y_prior if y_prior is not None else (1 / n_labels) * torch.ones(1, n_labels), requires_grad=False, ) self.use_labels_groups = use_labels_groups self.labels_groups = ( np.array(labels_groups) if labels_groups is not None else None ) if self.use_labels_groups: if labels_groups is None: raise ValueError("Specify label groups") unique_groups = np.unique(self.labels_groups) self.n_groups = len(unique_groups) if not (unique_groups == np.arange(self.n_groups)).all(): raise ValueError() self.classifier_groups = Classifier( n_latent, n_hidden, self.n_groups, n_layers, dropout_rate ) self.groups_index = torch.nn.ParameterList( [ torch.nn.Parameter( torch.tensor( (self.labels_groups == i).astype(np.uint8), dtype=torch.uint8, ), requires_grad=False, ) for i in range(self.n_groups) ] ) @auto_move_data def classify(self, x, batch_index=None): if self.log_variational: x = torch.log(1 + x) qz_m, _, z = self.z_encoder(x, batch_index) # We classify using the inferred mean parameter of z_1 in the latent space z = qz_m if self.use_labels_groups: w_g = self.classifier_groups(z) unw_y = self.classifier(z) w_y = torch.zeros_like(unw_y) for i, group_index in enumerate(self.groups_index): unw_y_g = unw_y[:, group_index] w_y[:, group_index] = unw_y_g / ( unw_y_g.sum(dim=-1, keepdim=True) + 1e-8 ) w_y[:, group_index] *= w_g[:, [i]] else: w_y = self.classifier(z) return w_y @auto_move_data def classification_loss(self, labelled_dataset): x = labelled_dataset[_CONSTANTS.X_KEY] y = labelled_dataset[_CONSTANTS.LABELS_KEY] batch_idx = labelled_dataset[_CONSTANTS.BATCH_KEY] classification_loss = F.cross_entropy( self.classify(x, batch_idx), y.view(-1).long() ) return classification_loss def loss( self, tensors, inference_outputs, generative_ouputs, feed_labels=False, kl_weight=1, labelled_tensors=None, classification_ratio=None, ): px_r = generative_ouputs["px_r"] px_rate = generative_ouputs["px_rate"] px_dropout = generative_ouputs["px_dropout"] qz1_m = inference_outputs["qz_m"] qz1_v = inference_outputs["qz_v"] z1 = inference_outputs["z"] x = tensors[_CONSTANTS.X_KEY] batch_index = tensors[_CONSTANTS.BATCH_KEY] if feed_labels: y = tensors[_CONSTANTS.LABELS_KEY] else: y = None is_labelled = False if y is None else True # Enumerate choices of label ys, z1s = broadcast_labels(y, z1, n_broadcast=self.n_labels) qz2_m, qz2_v, z2 = self.encoder_z2_z1(z1s, ys) pz1_m, pz1_v = self.decoder_z1_z2(z2, ys) reconst_loss = self.get_reconstruction_loss(x, px_rate, px_r, px_dropout) # KL Divergence mean = torch.zeros_like(qz2_m) scale = torch.ones_like(qz2_v) kl_divergence_z2 = kl( Normal(qz2_m, torch.sqrt(qz2_v)), Normal(mean, scale) ).sum(dim=1) loss_z1_unweight = -Normal(pz1_m, torch.sqrt(pz1_v)).log_prob(z1s).sum(dim=-1) loss_z1_weight = Normal(qz1_m, torch.sqrt(qz1_v)).log_prob(z1).sum(dim=-1) if not self.use_observed_lib_size: ql_m = inference_outputs["ql_m"] ql_v = inference_outputs["ql_v"] ( local_library_log_means, local_library_log_vars, ) = self._compute_local_library_params(batch_index) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_library_log_means, torch.sqrt(local_library_log_vars)), ).sum(dim=1) else: kl_divergence_l = 0.0 if is_labelled: loss = reconst_loss + loss_z1_weight + loss_z1_unweight kl_locals = { "kl_divergence_z2": kl_divergence_z2, "kl_divergence_l": kl_divergence_l, } if labelled_tensors is not None: classifier_loss = self.classification_loss(labelled_tensors) loss += classifier_loss * classification_ratio return LossRecorder( loss, reconst_loss, kl_locals, kl_global=torch.tensor(0.0), classification_loss=classifier_loss, n_labelled_tensors=labelled_tensors[_CONSTANTS.X_KEY].shape[0], ) return LossRecorder( loss, reconst_loss, kl_locals, kl_global=torch.tensor(0.0), ) probs = self.classifier(z1) reconst_loss += loss_z1_weight + ( (loss_z1_unweight).view(self.n_labels, -1).t() * probs ).sum(dim=1) kl_divergence = (kl_divergence_z2.view(self.n_labels, -1).t() * probs).sum( dim=1 ) kl_divergence += kl( Categorical(probs=probs), Categorical(probs=self.y_prior.repeat(probs.size(0), 1)), ) kl_divergence += kl_divergence_l loss = torch.mean(reconst_loss + kl_divergence * kl_weight) if labelled_tensors is not None: classifier_loss = self.classification_loss(labelled_tensors) loss += classifier_loss * classification_ratio return LossRecorder( loss, reconst_loss, kl_divergence, kl_global=torch.tensor(0.0), classification_loss=classifier_loss, n_labelled_tensors=labelled_tensors[_CONSTANTS.X_KEY].shape[0], ) return LossRecorder( loss, reconst_loss, kl_divergence, kl_global=torch.tensor(0.0) )
35.32622
88
0.590144
794eab1e146f8bd58d37afd22c84ccfe2d55d393
4,589
py
Python
airflow/operators/presto_check_operator.py
shuva10v/airflow
a6daeb544e815fe350a96d24ae3bb14aee4079a7
[ "Apache-2.0" ]
3
2019-10-03T21:38:59.000Z
2019-10-04T00:39:03.000Z
airflow/operators/presto_check_operator.py
shuva10v/airflow
a6daeb544e815fe350a96d24ae3bb14aee4079a7
[ "Apache-2.0" ]
7
2019-03-27T07:58:14.000Z
2020-02-12T17:42:33.000Z
airflow/operators/presto_check_operator.py
upjohnc/airflow-upjohn-k8s
caadbc1618d73e054de99138b0892cea3a9327c4
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
5
2017-06-19T19:55:47.000Z
2020-10-10T00:49:20.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.hooks.presto_hook import PrestoHook from airflow.operators.check_operator import CheckOperator, \ ValueCheckOperator, IntervalCheckOperator from airflow.utils.decorators import apply_defaults class PrestoCheckOperator(CheckOperator): """ Performs checks against Presto. The ``PrestoCheckOperator`` expects a sql query that will return a single row. Each value on that first row is evaluated using python ``bool`` casting. If any of the values return ``False`` the check is failed and errors out. Note that Python bool casting evals the following as ``False``: * ``False`` * ``0`` * Empty string (``""``) * Empty list (``[]``) * Empty dictionary or set (``{}``) Given a query like ``SELECT COUNT(*) FROM foo``, it will fail only if the count ``== 0``. You can craft much more complex query that could, for instance, check that the table has the same number of rows as the source table upstream, or that the count of today's partition is greater than yesterday's partition, or that a set of metrics are less than 3 standard deviation for the 7 day average. This operator can be used as a data quality check in your pipeline, and depending on where you put it in your DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and receive email alerts without stopping the progress of the DAG. :param sql: the sql to be executed :type sql: str :param presto_conn_id: reference to the Presto database :type presto_conn_id: str """ @apply_defaults def __init__( self, sql, presto_conn_id='presto_default', *args, **kwargs): super().__init__(sql=sql, *args, **kwargs) self.presto_conn_id = presto_conn_id self.sql = sql def get_db_hook(self): return PrestoHook(presto_conn_id=self.presto_conn_id) class PrestoValueCheckOperator(ValueCheckOperator): """ Performs a simple value check using sql code. :param sql: the sql to be executed :type sql: str :param presto_conn_id: reference to the Presto database :type presto_conn_id: str """ @apply_defaults def __init__( self, sql, pass_value, tolerance=None, presto_conn_id='presto_default', *args, **kwargs): super().__init__( sql=sql, pass_value=pass_value, tolerance=tolerance, *args, **kwargs) self.presto_conn_id = presto_conn_id def get_db_hook(self): return PrestoHook(presto_conn_id=self.presto_conn_id) class PrestoIntervalCheckOperator(IntervalCheckOperator): """ Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from days_back before. :param table: the table name :type table: str :param days_back: number of days between ds and the ds we want to check against. Defaults to 7 days :type days_back: int :param metrics_threshold: a dictionary of ratios indexed by metrics :type metrics_threshold: dict :param presto_conn_id: reference to the Presto database :type presto_conn_id: str """ @apply_defaults def __init__( self, table, metrics_thresholds, date_filter_column='ds', days_back=-7, presto_conn_id='presto_default', *args, **kwargs): super().__init__( table=table, metrics_thresholds=metrics_thresholds, date_filter_column=date_filter_column, days_back=days_back, *args, **kwargs) self.presto_conn_id = presto_conn_id def get_db_hook(self): return PrestoHook(presto_conn_id=self.presto_conn_id)
35.851563
75
0.695141
794eabbf04d496b50b2312950c483aa22958e82e
1,481
py
Python
1M/W4/11.py
allenalvin333/Hackerrank_Prep
26ed5b874daba4775d006824d36f9e82ea5ff1ea
[ "MIT" ]
2
2021-11-25T13:38:36.000Z
2021-11-25T13:42:56.000Z
1M/W4/11.py
allenalvin333/Hackerrank_Prep
26ed5b874daba4775d006824d36f9e82ea5ff1ea
[ "MIT" ]
null
null
null
1M/W4/11.py
allenalvin333/Hackerrank_Prep
26ed5b874daba4775d006824d36f9e82ea5ff1ea
[ "MIT" ]
1
2021-11-25T13:38:43.000Z
2021-11-25T13:38:43.000Z
# https://www.hackerrank.com/challenges/one-month-preparation-kit-tree-preorder-traversal/problem class Node: def __init__(self, info): self.info = info self.left = None self.right = None self.level = None def __str__(self): return str(self.info) class BinarySearchTree: def __init__(self): self.root = None def create(self, val): if self.root == None: self.root = Node(val) else: current = self.root while True: if val < current.info: if current.left: current = current.left else: current.left = Node(val) break elif val > current.info: if current.right: current = current.right else: current.right = Node(val) break else: break """ Node is defined as self.left (the left child of the node) self.right (the right child of the node) self.info (the value of the node) """ def preOrder(root): n = root if n is None: return print(n.info, end=' ') preOrder(n.left) preOrder(n.right) tree = BinarySearchTree() t = int(input()) arr = list(map(int, input().split())) for i in range(t): tree.create(arr[i]) preOrder(tree.root)
24.278689
97
0.501013
794eacbbf1f2cf1daf87d03af26460d9916ffd21
3,138
py
Python
xeneta_qualifier/nn.py
xeneta/LeadQualifier
931fa2ffc65625f6d61ffcd299b0679864449d8d
[ "MIT" ]
664
2016-06-07T14:23:32.000Z
2022-03-01T15:03:00.000Z
xeneta_qualifier/nn.py
VovkaZy/LeadQualifier
931fa2ffc65625f6d61ffcd299b0679864449d8d
[ "MIT" ]
8
2016-06-08T13:19:16.000Z
2021-02-04T02:12:59.000Z
xeneta_qualifier/nn.py
VovkaZy/LeadQualifier
931fa2ffc65625f6d61ffcd299b0679864449d8d
[ "MIT" ]
133
2016-06-03T13:40:58.000Z
2021-09-20T11:03:54.000Z
import tensorflow as tf import csv import numpy as np from random import randrange # This net is not working, as it predicts all 0's or all 1's at the moment. # variables for the net SEED = 3 FIRST_HIDDEN = 500 SECOND_HIDDEN = 50 FINAL_LAYER = 2 BATCH_SIZE = 100 def convertToFloat(lst): return np.array(lst).astype(np.float) def fetchData(path): labels = [] data = [] f = open(path) csv_f = csv.reader(f) for row in csv_f: labels.append(convertToFloat(row[0])) data.append(convertToFloat(row[1:])) f.close() return np.array(data), np.array(labels) def convertToOneHot(arr): labels = [] for n in arr: if n == 0: labels.append([1, 0]) elif n == 1: labels.append([0, 1]) return np.array(labels) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1, seed=SEED) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # create variables and placeholders for tensorflows computational graph x = tf.placeholder(tf.float32, shape=[None, 5000]) y_ = tf.placeholder(tf.float32, shape=[None, FINAL_LAYER]) W_1 = weight_variable([5000, FIRST_HIDDEN]) b_1 = bias_variable([FIRST_HIDDEN]) W_2 = weight_variable([FIRST_HIDDEN, SECOND_HIDDEN]) b_2 = bias_variable([SECOND_HIDDEN]) W_3 = weight_variable([SECOND_HIDDEN, FINAL_LAYER]) b_3 = bias_variable([FINAL_LAYER]) hidden_layer_1 = tf.nn.sigmoid(tf.matmul(x, W_1) + b_1) hidden_layer_2 = tf.nn.sigmoid(tf.matmul(hidden_layer_1, W_2) + b_2) y = tf.nn.softmax(tf.matmul(hidden_layer_2, W_3) + b_3) # Manually calculating the loss #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # Automatically calculating the loss cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(y, y_) ) # possible other loss function, if not one hot vector #loss = tf.reduce_mean(tf.abs(tf.sub(y_, y))) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # we need to initialize all variables init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) # fetch the training and testing data X_test, y_test = fetchData('data/test.csv') X_train, y_train = fetchData('data/train.csv') y_test = convertToOneHot(y_test) y_train = convertToOneHot(y_train) # loop through the data to run the regression and update the weights for i in range(1000): r = randrange(0, 1447) start = r stop = r + BATCH_SIZE x_train_batch = X_train[start: stop] y_train_batch = y_train[start: stop] sess.run(train_step, feed_dict={ x: x_train_batch, y_: y_train_batch }) if i % 100 == 0: cross_entropy_out = sess.run([cross_entropy], feed_dict={ x: X_test, y_: y_test }) print 'cross_entropy_out:', cross_entropy_out correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print 'accuracy: ', sess.run(accuracy, feed_dict={x: X_test, y_: y_test})
25.933884
86
0.695029
794ead6b57ac78738a56ff8dfa67ae4a6adf6cac
1,867
py
Python
actions/replaceCoreV1NamespacedServiceStatus.py
blinkops/stackstorm-kubernetes
3b4a15d42f603f3e700efaf534169e2ec361f5d2
[ "Apache-2.0" ]
20
2016-12-24T01:35:41.000Z
2022-03-06T08:32:16.000Z
actions/replaceCoreV1NamespacedServiceStatus.py
blinkops/stackstorm-kubernetes
3b4a15d42f603f3e700efaf534169e2ec361f5d2
[ "Apache-2.0" ]
16
2017-05-02T19:38:57.000Z
2021-06-17T08:31:17.000Z
actions/replaceCoreV1NamespacedServiceStatus.py
blinkops/stackstorm-kubernetes
3b4a15d42f603f3e700efaf534169e2ec361f5d2
[ "Apache-2.0" ]
18
2017-06-20T00:44:12.000Z
2022-03-30T08:41:42.000Z
import json from lib.k8s import K8sClient class replaceCoreV1NamespacedServiceStatus(K8sClient): def run( self, body, name, namespace, pretty=None, config_override=None): ret = False args = {} args['config_override'] = {} args['params'] = {} if config_override is not None: args['config_override'] = config_override if body is not None: args['body'] = body else: return (False, "body is a required parameter") if name is not None: args['name'] = name else: return (False, "name is a required parameter") if namespace is not None: args['namespace'] = namespace else: return (False, "namespace is a required parameter") if pretty is not None: args['params'].update({'pretty': pretty}) if 'body' in args: args['data'] = args['body'] args.pop('body') args['headers'] = {'Content-type': u'application/json', 'Accept': u'application/json, application/yaml, application/vnd.kubernetes.protobuf'} # noqa pylint: disable=line-too-long args['url'] = "api/v1/namespaces/{namespace}/services/{name}/status".format( # noqa pylint: disable=line-too-long body=body, name=name, namespace=namespace) args['method'] = "put" self.addArgs(**args) self.makeRequest() myresp = {} myresp['status_code'] = self.resp.status_code try: myresp['data'] = json.loads(self.resp.content.rstrip()) except ValueError: myresp['data'] = self.resp.content if myresp['status_code'] >= 200 and myresp['status_code'] <= 299: ret = True return (ret, myresp)
30.606557
187
0.552758
794eadbd3e376b7a1d6e2fb64ec0948283f72726
16,706
py
Python
examples/remarketing/set_up_remarketing.py
claudiapaveljlp/google-ads-python
c143e81804e237a9549dd5936503d921033c4e5a
[ "Apache-2.0" ]
null
null
null
examples/remarketing/set_up_remarketing.py
claudiapaveljlp/google-ads-python
c143e81804e237a9549dd5936503d921033c4e5a
[ "Apache-2.0" ]
null
null
null
examples/remarketing/set_up_remarketing.py
claudiapaveljlp/google-ads-python
c143e81804e237a9549dd5936503d921033c4e5a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Demonstrates various operations involved in remarketing. Operations include (a) creating a user list based on visitors to a website, (b) targeting a user list with an ad group criterion, (c) updating the bid modifier on an ad group criterion, (d) finding and removing all ad group criteria under a given campaign, (e) targeting a user list with a campaign criterion, and (f) updating the bid modifier on a campaign criterion. It is unlikely that users will need to perform all of these operations consecutively, and all of the operations contained herein are meant of for illustrative purposes. """ import argparse import sys from uuid import uuid4 from google.api_core import protobuf_helpers from google.ads.googleads.client import GoogleAdsClient from google.ads.googleads.errors import GoogleAdsException _DEFAULT_PAGE_SIZE = 10000 def main(client, customer_id, campaign_id, ad_group_id, bid_modifier_value): """The main method that creates all necessary entities for the example. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID used to create a user list and other various entities required for the example. campaign_id: a str ID for a campaign used to create an ad group criterion that targets members of a user list. ad_group_id: a str ID for an ad group used to create an ad group criterion that targets members of a user list. bid_modifier_value: a float that specifies a modifier on the bid amount for newly created ad group criterion. """ user_list_resource_name = _create_user_list(client, customer_id) ad_group_criterion_resource_name = _target_ads_in_ad_group_to_user_list( client, customer_id, ad_group_id, user_list_resource_name ) _modify_ad_group_bids( client, customer_id, ad_group_criterion_resource_name, bid_modifier_value, ) _remove_existing_criteria_from_ad_group(client, customer_id, campaign_id) campaign_criterion_resource_name = _target_ads_in_campaign_to_user_list( client, customer_id, campaign_id, user_list_resource_name ) _modify_campaign_bids( client, customer_id, campaign_criterion_resource_name, bid_modifier_value, ) # [START setup_remarketing] def _create_user_list(client, customer_id): """Creates a user list targeting users that have visited a given URL. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID used to create a user list. Returns: a str resource name for the newly created user list. """ # Creates a UserListOperation. user_list_operation = client.get_type("UserListOperation") # Creates a UserList. user_list = user_list_operation.create user_list.name = f"All visitors to example.com #{uuid4()}" user_list.description = "Any visitor to any page of example.com" user_list.membership_status = client.enums.UserListMembershipStatusEnum.OPEN user_list.membership_life_span = 365 # Optional: To include past users in the user list, set the # prepopulation_status to REQUESTED. user_list.rule_based_user_list.prepopulation_status = ( client.enums.UserListPrepopulationStatusEnum.REQUESTED ) # Specifies that the user list targets visitors of a page with a URL that # contains 'example.com'. user_list_rule_item_group_info = client.get_type( "UserListRuleItemGroupInfo" ) user_list_rule_item_info = client.get_type("UserListRuleItemInfo") # Uses a built-in parameter to create a domain URL rule. user_list_rule_item_info.name = "url__" user_list_rule_item_info.string_rule_item.operator = ( client.enums.UserListStringRuleItemOperatorEnum.CONTAINS ) user_list_rule_item_info.string_rule_item.value = "example.com" user_list_rule_item_group_info.rule_items.append(user_list_rule_item_info) user_list.rule_based_user_list.expression_rule_user_list.rule.rule_item_groups.append( user_list_rule_item_group_info ) user_list_service = client.get_service("UserListService") response = user_list_service.mutate_user_lists( customer_id=customer_id, operations=[user_list_operation] ) resource_name = response.results[0].resource_name print(f"Created user list with resource name: '{resource_name}'") return resource_name # [END setup_remarketing] # [START setup_remarketing_1] def _target_ads_in_ad_group_to_user_list( client, customer_id, ad_group_id, user_list_resource_name ): """Creates an ad group criterion that targets a user list with an ad group. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID used to create an ad group criterion. ad_group_id: a str ID for an ad group used to create an ad group criterion that targets members of a user list. user_list_resource_name: a str resource name for a user list. Returns: a str resource name for an ad group criterion. """ ad_group_criterion_operation = client.get_type("AdGroupCriterionOperation") # Creates the ad group criterion targeting members of the user list. ad_group_criterion = ad_group_criterion_operation.create ad_group_criterion.ad_group = client.get_service( "AdGroupService" ).ad_group_path(customer_id, ad_group_id) ad_group_criterion.user_list.user_list = user_list_resource_name ad_group_criterion_service = client.get_service("AdGroupCriterionService") response = ad_group_criterion_service.mutate_ad_group_criteria( customer_id=customer_id, operations=[ad_group_criterion_operation] ) resource_name = response.results[0].resource_name print( "Successfully created ad group criterion with resource name: " f"'{resource_name}' targeting user list with resource name: " f"'{user_list_resource_name}' and with ad group with ID " f"{ad_group_id}." ) return resource_name # [END setup_remarketing_1] def _modify_ad_group_bids( client, customer_id, ad_group_criterion_resource_name, bid_modifier_value ): """Updates the bid modifier on an ad group criterion. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID. ad_group_criterion_resoure_name: a str resource name for an ad group criterion. bid_modifier_value: a float value specifying an ad group criterion bid modifier. """ # Constructs an operation that will update the ad group criterion with the # specified resource name. ad_group_criterion_operation = client.get_type("AdGroupCriterionOperation") ad_group_criterion = ad_group_criterion_operation.update # Creates the ad group criterion with a bid modifier. You may alternatively # set the bid for the ad group criterion directly. ad_group_criterion.resource_name = ad_group_criterion_resource_name ad_group_criterion.bid_modifier = bid_modifier_value # Using the FieldMasks utility to derive the update mask tells the Google # Ads API which attributes of the ad group criterion you want to change. client.copy_from( ad_group_criterion_operation.update_mask, protobuf_helpers.field_mask(None, ad_group_criterion._pb), ) ad_group_criterion_service = client.get_service("AdGroupCriterionService") response = ad_group_criterion_service.mutate_ad_group_criteria( customer_id=customer_id, operations=[ad_group_criterion_operation] ) print( "Updated bid for ad group criterion with resource name: " f"'{response.results[0].resource_name}'" ) # [START setup_remarketing_3] def _remove_existing_criteria_from_ad_group(client, customer_id, campaign_id): """Removes all ad group criteria targeting a user list under a campaign. This is a necessary step before targeting a user list at the campaign level. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID. campaign_id: a str ID for a campaign that will have all ad group criteria that targets user lists removed. """ # Retrieves all of the ad group criteria under a campaign. all_ad_group_criteria = _get_user_list_ad_group_criteria( client, customer_id, campaign_id ) # Creates a list of remove operations. remove_operations = [] for ad_group_criterion_resource_name in all_ad_group_criteria: remove_operation = client.get_type("AdGroupCriterionOperation") remove_operation.remove = ad_group_criterion_resource_name remove_operations.append(remove_operation) ad_group_criterion_service = client.get_service("AdGroupCriterionService") response = ad_group_criterion_service.mutate_ad_group_criteria( customer_id=customer_id, operations=remove_operations ) print( "Successfully removed ad group criterion with resource name: " f"'{response.results[0].resource_name}'" ) # [END setup_remarketing_3] # [START setup_remarketing_2] def _get_user_list_ad_group_criteria(client, customer_id, campaign_id): """Finds all of user list ad group criteria under a campaign. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID. campaign_id: a str campaign ID. Returns: a list of ad group criterion resource names. """ # Creates a query that retrieves all of the ad group criteria under a # campaign. query = f""" SELECT ad_group_criterion.criterion_id FROM ad_group_criterion WHERE campaign.id = {campaign_id} AND ad_group_criterion.type = USER_LIST""" googleads_service = client.get_service("GoogleAdsService") search_request = client.get_type("SearchGoogleAdsRequest") search_request.customer_id = customer_id search_request.query = query search_request.page_size = _DEFAULT_PAGE_SIZE response = googleads_service.search(request=search_request) # Iterates over all rows in all pages. Prints the user list criteria and # adds the ad group criteria resource names to the list. user_list_criteria = [] for row in response: resource_name = row.ad_group_criterion.resource_name print( "Ad group criterion with resource name '{resource_name}' was " "found." ) user_list_criteria.append(resource_name) return user_list_criteria # [END setup_remarketing_2] # [START setup_remarketing_4] def _target_ads_in_campaign_to_user_list( client, customer_id, campaign_id, user_list_resource_name ): """Creates a campaign criterion that targets a user list with a campaign. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID used to create an campaign criterion. campaign_id: a str ID for a campaign used to create a campaign criterion that targets members of a user list. user_list_resource_name: a str resource name for a user list. Returns: a str resource name for a campaign criterion. """ campaign_criterion_operation = client.get_type("CampaignCriterionOperation") campaign_criterion = campaign_criterion_operation.create campaign_criterion.campaign = client.get_service( "CampaignService" ).campaign_path(customer_id, campaign_id) campaign_criterion.user_list.user_list = user_list_resource_name campaign_criterion_service = client.get_service("CampaignCriterionService") response = campaign_criterion_service.mutate_campaign_criteria( customer_id=customer_id, operations=[campaign_criterion_operation] ) resource_name = response.results[0].resource_name print( "Successfully created campaign criterion with resource name " f"'{resource_name}' targeting user list with resource name " f"'{user_list_resource_name}' with campaign with ID {campaign_id}" ) return resource_name # [END setup_remarketing_4] def _modify_campaign_bids( client, customer_id, campaign_criterion_resource_name, bid_modifier_value ): """Updates the bid modifier on a campaign criterion. Args: client: an initialized GoogleAdsClient instance. customer_id: a str client customer ID. campaign_criterion_resource_name: a str resource name for a campaign criterion. bid_modifier_value: a float value specifying a campaign criterion bid modifier. """ # Constructs an operation that will update the campaign criterion with the # specified resource name. campaign_criterion_operation = client.get_type("CampaignCriterionOperation") campaign_criterion = campaign_criterion_operation.update campaign_criterion.resource_name = campaign_criterion_resource_name campaign_criterion.bid_modifier = bid_modifier_value # Using the FieldMasks utility to derive the update mask tells the Google # Ads API which attributes of the campaign criterion you want to change. client.copy_from( campaign_criterion_operation.update_mask, protobuf_helpers.field_mask(None, campaign_criterion._pb), ) campaign_criterion_service = client.get_service("CampaignCriterionService") response = campaign_criterion_service.mutate_campaign_criteria( customer_id=customer_id, operations=[campaign_criterion_operation] ) print( "Successfully updated the bid for campaign criterion with resource " f"name: '{response.results[0].resource_name}'" ) if __name__ == "__main__": # GoogleAdsClient will read the google-ads.yaml configuration file in the # home directory if none is specified. googleads_client = GoogleAdsClient.load_from_storage(version="v9") parser = argparse.ArgumentParser( description="Demonstrates various operations involved in remarketing." ) # The following arguments are required to run the example. parser.add_argument( "-c", "--customer_id", type=str, required=True, help=( "A Google Ads customer ID used to create a user list and other " "various entities required for the example." ), ) parser.add_argument( "-i", "--campaign_id", type=str, required=True, help=( "The ID for a campaign that will have its ad group criteria " "modified to target user lists members." ), ) parser.add_argument( "-a", "--ad_group_id", type=str, required=True, help=( "The ID for an ad group used to create an ad group criterion " "that targets members of a user list." ), ) # The following argument is optional. parser.add_argument( "-b", "--bid_modifier_value", type=float, default=1.5, help=( "A float that specifies a modifier on the bid amount " "for newly created ad group criterion." ), ) args = parser.parse_args() try: main( googleads_client, args.customer_id, args.campaign_id, args.ad_group_id, args.bid_modifier_value, ) except GoogleAdsException as ex: print( f'Request with ID "{ex.request_id}" failed with status ' f'"{ex.error.code().name}" and includes the following errors:' ) for error in ex.failure.errors: print(f'\tError with message "{error.message}".') if error.location: for field_path_element in error.location.field_path_elements: print(f"\t\tOn field: {field_path_element.field_name}") sys.exit(1)
38.941725
90
0.717167
794eaec13ec1ac42a7aaf4aa60bab50131342446
5,259
py
Python
external_apps/docutils-snapshot/test/test_publisher.py
spreeker/democracygame
525139955cb739c295051f317ab670049511bcf8
[ "BSD-3-Clause" ]
2
2016-05-09T04:57:34.000Z
2017-03-03T14:22:24.000Z
external_apps/docutils-snapshot/test/test_publisher.py
spreeker/democracygame
525139955cb739c295051f317ab670049511bcf8
[ "BSD-3-Clause" ]
null
null
null
external_apps/docutils-snapshot/test/test_publisher.py
spreeker/democracygame
525139955cb739c295051f317ab670049511bcf8
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # $Id: test_publisher.py 5889 2009-04-01 20:00:21Z gbrandl $ # Author: Martin Blais <blais@furius.ca> # Copyright: This module has been placed in the public domain. """ Test the `Publisher` facade and the ``publish_*`` convenience functions. """ import pickle import DocutilsTestSupport # must be imported before docutils import docutils from docutils import core, nodes, io from docutils._compat import b, bytes, u_prefix test_document = """\ Test Document ============= This is a test document with a broken reference: nonexistent_ """ pseudoxml_output = b("""\ <document ids="test-document" names="test\ document" source="<string>" title="Test Document"> <title> Test Document <paragraph> This is a test document with a broken reference: \n\ <problematic ids="id2" refid="id1"> nonexistent_ <section classes="system-messages"> <title> Docutils System Messages <system_message backrefs="id2" ids="id1" level="3" line="4" source="<string>" type="ERROR"> <paragraph> Unknown target name: "nonexistent". """) exposed_pseudoxml_output = b("""\ <document ids="test-document" internal:refnames="{%s\'nonexistent\': [<reference: <#text: \'nonexistent\'>>]}" names="test\ document" source="<string>" title="Test Document"> <title> Test Document <paragraph> This is a test document with a broken reference: \n\ <problematic ids="id2" refid="id1"> nonexistent_ <section classes="system-messages"> <title> Docutils System Messages <system_message backrefs="id2" ids="id1" level="3" line="4" source="<string>" type="ERROR"> <paragraph> Unknown target name: "nonexistent". """ % u_prefix) class PublishDoctreeTestCase(DocutilsTestSupport.StandardTestCase, docutils.SettingsSpec): settings_default_overrides = { '_disable_config': 1, 'warning_stream': io.NullOutput()} def test_publish_doctree(self): # Test `publish_doctree` and `publish_from_doctree`. # Produce the document tree. doctree = core.publish_doctree( source=test_document, reader_name='standalone', parser_name='restructuredtext', settings_spec=self, settings_overrides={'expose_internals': ['refnames', 'do_not_expose'], 'report_level': 5}) self.assert_(isinstance(doctree, nodes.document)) # Confirm that transforms have been applied (in this case, the # DocTitle transform): self.assert_(isinstance(doctree[0], nodes.title)) self.assert_(isinstance(doctree[1], nodes.paragraph)) # Confirm that the Messages transform has not yet been applied: self.assertEquals(len(doctree), 2) # The `do_not_expose` attribute may not show up in the # pseudoxml output because the expose_internals transform may # not be applied twice. doctree.do_not_expose = 'test' # Write out the document: output = core.publish_from_doctree( doctree, writer_name='pseudoxml', settings_spec=self, settings_overrides={'expose_internals': ['refnames', 'do_not_expose'], 'report_level': 1}) self.assertEquals(output, exposed_pseudoxml_output) # Test publishing parts using document as the source. parts = core.publish_parts( reader_name='doctree', source_class=io.DocTreeInput, source=doctree, source_path='test', writer_name='html', settings_spec=self) self.assert_(isinstance(parts, dict)) def test_publish_pickle(self): # Test publishing a document tree with pickling and unpickling. # Produce the document tree. doctree = core.publish_doctree( source=test_document, reader_name='standalone', parser_name='restructuredtext', settings_spec=self) self.assert_(isinstance(doctree, nodes.document)) # Pickle the document. Note: if this fails, some unpickleable # reference has been added somewhere within the document tree. # If so, you need to fix that. # # Note: Please do not remove this test, this is an important # requirement, applications will be built on the assumption # that we can pickle the document. # Remove the reporter and the transformer before pickling. doctree.reporter = None doctree.transformer = None doctree_pickled = pickle.dumps(doctree) self.assert_(isinstance(doctree_pickled, bytes)) del doctree # Unpickle the document. doctree_zombie = pickle.loads(doctree_pickled) self.assert_(isinstance(doctree_zombie, nodes.document)) # Write out the document: output = core.publish_from_doctree( doctree_zombie, writer_name='pseudoxml', settings_spec=self) self.assertEquals(output, pseudoxml_output) if __name__ == '__main__': import unittest unittest.main()
37.035211
174
0.637764
794eaecb023e41ad2a04293753ad51a10f7f910a
8,532
py
Python
lib/tool_shed/webapp/api/tools.py
maikenp/galaxy
eb3f3c816f1f94bc328d092f30c8966d41a56a0d
[ "CC-BY-3.0" ]
1
2021-10-08T02:14:24.000Z
2021-10-08T02:14:24.000Z
lib/tool_shed/webapp/api/tools.py
maikenp/galaxy
eb3f3c816f1f94bc328d092f30c8966d41a56a0d
[ "CC-BY-3.0" ]
null
null
null
lib/tool_shed/webapp/api/tools.py
maikenp/galaxy
eb3f3c816f1f94bc328d092f30c8966d41a56a0d
[ "CC-BY-3.0" ]
null
null
null
import json import logging from collections import namedtuple from galaxy import ( exceptions, util, web ) from galaxy.tools.parameters import params_to_strings from galaxy.tools.repositories import ValidationContext from galaxy.web import expose_api_raw_anonymous_and_sessionless from galaxy.webapps.base.controller import BaseAPIController from tool_shed.dependencies.repository import relation_builder from tool_shed.tools import tool_validator from tool_shed.util import ( common_util, metadata_util, repository_util, shed_util_common as suc ) from tool_shed.utility_containers import ToolShedUtilityContainerManager from tool_shed.webapp.search.tool_search import ToolSearch log = logging.getLogger(__name__) class ToolsController(BaseAPIController): """RESTful controller for interactions with tools in the Tool Shed.""" @expose_api_raw_anonymous_and_sessionless def index(self, trans, **kwd): """ GET /api/tools Displays a collection of tools with optional criteria. :param q: (optional)if present search on the given query will be performed :type q: str :param page: (optional)requested page of the search :type page: int :param page_size: (optional)requested page_size of the search :type page_size: int :param jsonp: (optional)flag whether to use jsonp format response, defaults to False :type jsonp: bool :param callback: (optional)name of the function to wrap callback in used only when jsonp is true, defaults to 'callback' :type callback: str :returns dict: object containing list of results and metadata Examples: GET http://localhost:9009/api/tools GET http://localhost:9009/api/tools?q=fastq """ q = kwd.get('q', '') if not q: raise exceptions.NotImplemented('Listing of all the tools is not implemented. Provide parameter "q" to search instead.') else: page = kwd.get('page', 1) page_size = kwd.get('page_size', 10) try: page = int(page) page_size = int(page_size) except ValueError: raise exceptions.RequestParameterInvalidException('The "page" and "page_size" have to be integers.') return_jsonp = util.asbool(kwd.get('jsonp', False)) callback = kwd.get('callback', 'callback') search_results = self._search(trans, q, page, page_size) if return_jsonp: response = str('{}({});'.format(callback, json.dumps(search_results))) else: response = json.dumps(search_results) return response def _search(self, trans, q, page=1, page_size=10): """ Perform the search over TS tools index. Note that search works over the Whoosh index which you have to pre-create with scripts/tool_shed/build_ts_whoosh_index.sh manually. Also TS config option toolshed_search_on has to be True and whoosh_index_dir has to be specified. """ conf = self.app.config if not conf.toolshed_search_on: raise exceptions.ConfigDoesNotAllowException('Searching the TS through the API is turned off for this instance.') if not conf.whoosh_index_dir: raise exceptions.ConfigDoesNotAllowException('There is no directory for the search index specified. Please contact the administrator.') search_term = q.strip() if len(search_term) < 1: raise exceptions.RequestParameterInvalidException('The search term has to be at least one character long.') tool_search = ToolSearch() Boosts = namedtuple('Boosts', ['tool_name_boost', 'tool_description_boost', 'tool_help_boost', 'tool_repo_owner_username_boost']) boosts = Boosts(float(conf.get('tool_name_boost', 1.2)), float(conf.get('tool_description_boost', 0.6)), float(conf.get('tool_help_boost', 0.4)), float(conf.get('tool_repo_owner_username_boost', 0.3))) results = tool_search.search(trans, search_term, page, page_size, boosts) results['hostname'] = web.url_for('/', qualified=True) return results @expose_api_raw_anonymous_and_sessionless def json(self, trans, **kwd): """ GET /api/tools/json Get the tool form JSON for a tool in a repository. :param guid: the GUID of the tool :param guid: str :param tsr_id: the ID of the repository :param tsr_id: str :param changeset: the changeset at which to load the tool json :param changeset: str """ guid = kwd.get('guid', None) tsr_id = kwd.get('tsr_id', None) changeset = kwd.get('changeset', None) if None in [changeset, tsr_id, guid]: message = 'Changeset, repository ID, and tool GUID are all required parameters.' trans.response.status = 400 return {'status': 'error', 'message': message} tsucm = ToolShedUtilityContainerManager(trans.app) repository = repository_util.get_repository_in_tool_shed(self.app, tsr_id) repository_clone_url = common_util.generate_clone_url_for_repository_in_tool_shed(repository.user, repository) repository_metadata = metadata_util.get_repository_metadata_by_changeset_revision(trans.app, tsr_id, changeset) toolshed_base_url = str(web.url_for('/', qualified=True)).rstrip('/') rb = relation_builder.RelationBuilder(trans.app, repository, repository_metadata, toolshed_base_url) repository_dependencies = rb.get_repository_dependencies_for_changeset_revision() containers_dict = tsucm.build_repository_containers(repository, changeset, repository_dependencies, repository_metadata) found_tool = None for folder in containers_dict['valid_tools'].folders: if hasattr(folder, 'valid_tools'): for tool in folder.valid_tools: tool.id = tool.tool_id tool_guid = suc.generate_tool_guid(repository_clone_url, tool) if tool_guid == guid: found_tool = tool break if found_tool is None: message = f'Unable to find tool with guid {guid} in repository {repository.name}.' trans.response.status = 404 return {'status': 'error', 'message': message} with ValidationContext.from_app(trans.app) as validation_context: tv = tool_validator.ToolValidator(validation_context) repository, tool, valid, message = tv.load_tool_from_changeset_revision(tsr_id, changeset, found_tool.tool_config) if message or not valid: status = 'error' return dict(message=message, status=status) tool_help = '' if tool.help: tool_help = tool.help.render(static_path=web.url_for('/static'), host_url=web.url_for('/', qualified=True)) tool_help = util.unicodify(tool_help, 'utf-8') tool_dict = tool.to_dict(trans) tool_dict['inputs'] = {} tool.populate_model(trans, tool.inputs, {}, tool_dict['inputs']) tool_dict.update({ 'help': tool_help, 'citations': bool(tool.citations), 'requirements': [{'name': r.name, 'version': r.version} for r in tool.requirements], 'state_inputs': params_to_strings(tool.inputs, {}, trans.app), 'display': tool.display_interface, 'action': web.url_for(tool.action), 'method': tool.method, 'enctype': tool.enctype }) return json.dumps(tool_dict)
45.142857
147
0.597867
794eaeef5ccadd77634b7869f9f521a337446e86
11,687
py
Python
tensorflow_probability/python/distributions/plackett_luce.py
jakee417/probability-1
ae7117f37ac441bc7a888167ea23e5e620c5bcde
[ "Apache-2.0" ]
3,670
2018-02-14T03:29:40.000Z
2022-03-30T01:19:52.000Z
tensorflow_probability/python/distributions/plackett_luce.py
jakee417/probability-1
ae7117f37ac441bc7a888167ea23e5e620c5bcde
[ "Apache-2.0" ]
1,395
2018-02-24T02:28:49.000Z
2022-03-31T16:12:06.000Z
tensorflow_probability/python/distributions/plackett_luce.py
jakee417/probability-1
ae7117f37ac441bc7a888167ea23e5e620c5bcde
[ "Apache-2.0" ]
1,135
2018-02-14T01:51:10.000Z
2022-03-28T02:24:11.000Z
# Copyright 2019 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The PlackettLuce distribution class.""" import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import softplus as softplus_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import gumbel from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.internal import tensorshape_util class PlackettLuce(distribution.AutoCompositeTensorDistribution): """Plackett-Luce distribution over permutations. The Plackett-Luce distribution is defined over permutations of fixed length. It is parameterized by a positive score vector of same length. This class provides methods to create indexed batches of PlackettLuce distributions. If the provided `scores` is rank 2 or higher, for every fixed set of leading dimensions, the last dimension represents one single PlackettLuce distribution. When calling distribution functions (e.g. `dist.log_prob(x)`), `scores` and `x` are broadcast to the same shape (if possible). In all cases, the last dimension of `scores, x` represents single PlackettLuce distributions. #### Mathematical Details The Plackett-Luce is a distribution over permutation vectors `p` of length `k` where the permutation `p` is an arbitrary ordering of `k` indices `{0, 1, ..., k-1}`. The probability mass function (pmf) is, ```none pmf(p; s) = prod_i s_{p_i} / (Z - Z_i) Z = sum_{j=0}^{k-1} s_j Z_i = sum_{j=0}^{i-1} s_{p_j} for i>0 and 0 for i=0 ``` where: * `scores = s = [s_0, ..., s_{k-1}]`, `s_i >= 0`. Samples from Plackett-Luce distribution are generated sequentially as follows. Initialize normalization `N_0 = Z` For `i` in `{0, 1, ..., k-1}` 1. Sample i-th element of permutation `p_i ~ Categorical(probs=[s_0/N_i, ..., s_{k-1}/N_i])` 2. Update normalization `N_{i+1} = N_i-s_{p_i}` 3. Mask out sampled index for subsequent rounds `s_{p_i} = 0` Return p Alternately, an equivalent way to sample from this distribution is to sort Gumbel perturbed log-scores [1]. ```none p = argsort(log s + g) ~ PlackettLuce(s) g = [g_0, ..., g_{k-1}], g_i~ Gumbel(0, 1) ``` #### Examples ```python scores = [0.1, 2., 5.] dist = PlackettLuce(scores) ``` Creates a distribution over permutations of length 3, with the 3rd index likely to appear first in the permutation. The distribution function can be evaluated on permutations as follows. ```python # permutations same shape as scores. permutations = [2, 1, 0] dist.prob(permutations) # Shape [] # scores broadcast to [[0.1, 2.3, 5.], [0.1, 2.3, 5.]] to match permutations. permutations = [[2, 1, 0], [1, 0, 2]] dist.prob(permutations) # Shape [2] # scores broadcast to shape [5, 7, 3] to match permutations. permutations = [[...]] # Shape [5, 7, 3] dist.prob(permutaions) # Shape [5, 7] ``` Creates a 2-batch of 3-class distributions. ```python scores = [[0.1, 2.3, 5.], [4.2, 0.5, 3.1]] # Shape [2, 3] dist = PlackettLuce(scores) # permutations broadcast to [[2, 1, 0], [2, 1, 0]] to match shape of scores. permutations = [2, 1, 0] dist.prob(permutations) # Shape [2] ``` #### References [1]: Aditya Grover, Eric Wang, Aaron Zweig, Stefano Ermon. Stochastic Optimization of Sorting Networks via Continuous Relaxations. ICLR 2019. """ def __init__(self, scores, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='PlackettLuce'): """Initialize a batch of PlackettLuce distributions. Args: scores: An N-D `Tensor`, `N >= 1`, representing the scores of a set of elements to be permuted. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of scores for the elements. dtype: The type of the event samples (default: int32). validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with tf.name_scope(name) as name: self._scores = tensor_util.convert_nonref_to_tensor( scores, dtype_hint=tf.float32, name='scores') super(PlackettLuce, self).__init__( dtype=dtype, reparameterization_type=reparameterization.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype, num_classes=None): # pylint: disable=g-long-lambda return dict( scores=parameter_properties.ParameterProperties( event_ndims=1, default_constraining_bijector_fn=( lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype))))) # pylint: enable=g-long-lambda def _event_size(self, scores=None): if scores is None: scores = self._scores if scores.shape is not None: event_size = tf.compat.dimension_value(scores.shape[-1]) if event_size is not None: return event_size return tf.shape(scores)[-1] @property def scores(self): """Input argument `scores`. Each element is a non-negative value for which the sorted permutation is an ordering supported by this distribution. Returns: scores: A batch of scores used for initializing the distribution. """ return self._scores def _event_shape_tensor(self, scores=None): scores = self._scores if scores is None else scores return ps.shape(scores)[-1:] def _event_shape(self, scores=None): scores = self._scores if scores is None else scores return tensorshape_util.with_rank_at_least(scores.shape, 1)[-1:] def _mode(self): return tf.cast( tf.argsort(self.scores, axis=-1, direction='DESCENDING'), self.dtype) def _log_prob(self, x): scores = tf.convert_to_tensor(self.scores) event_size = self._event_size(scores) x = tf.cast(x, self.dtype) # Broadcast scores or x if need be. if (not tensorshape_util.is_fully_defined(x.shape) or not tensorshape_util.is_fully_defined(scores.shape) or x.shape != scores.shape): broadcast_shape = ps.broadcast_shape( ps.shape(scores), ps.shape(x)) scores = tf.broadcast_to(scores, broadcast_shape) x = tf.broadcast_to(x, broadcast_shape) scores_shape = ps.shape(scores)[:-1] scores_2d = tf.reshape(scores, [-1, event_size]) x_2d = tf.reshape(x, [-1, event_size]) rearranged_scores = tf.gather(scores_2d, x_2d, batch_dims=1) normalization_terms = tf.cumsum(rearranged_scores, axis=-1, reverse=True) ret = tf.math.reduce_sum( tf.math.log(rearranged_scores / normalization_terms), axis=-1) # Reshape back to user-supplied batch and sample dims prior to 2D reshape. ret = tf.reshape(ret, scores_shape) return ret def _sample_n(self, n, seed=None): scores = tf.convert_to_tensor(self.scores) sample_shape = ps.concat([[n], ps.shape(scores)], axis=0) gumbel_noise = gumbel.Gumbel(loc=0, scale=1).sample(sample_shape, seed=seed) noisy_log_scores = gumbel_noise + tf.math.log(scores) return tf.cast( tf.argsort(noisy_log_scores, axis=-1, direction='DESCENDING'), self.dtype) def scores_parameter(self, name=None): """Scores vec computed from non-`None` input arg (`scores`).""" with self._name_and_control_scope(name or 'scores_parameter'): return tf.identity(self._scores) def _default_event_space_bijector(self): return def _sample_control_dependencies(self, x): assertions = [] if not self.validate_args: return assertions assertions.append(assert_util.assert_equal( tf.range(self._event_size(), dtype=x.dtype), tf.sort(x, axis=-1), message='Sample must be a permutation of `{0, ..., k-1}`, where `k` is ' 'the size of the last dimension of `scores`.')) return assertions def _parameter_control_dependencies(self, is_init): assertions = [] scores = self._scores param, name = (scores, 'scores') # In init, we can always build shape and dtype checks because # we assume shape doesn't change for Variable backed args. if is_init: if not dtype_util.is_floating(param.dtype): raise TypeError('Argument `{}` must having floating type.'.format(name)) msg = 'Argument `{}` must have rank at least 1.'.format(name) shape_static = tensorshape_util.dims(param.shape) if shape_static is not None: if len(shape_static) < 1: raise ValueError(msg) elif self.validate_args: param = tf.convert_to_tensor(param) assertions.append( assert_util.assert_rank_at_least(param, 1, message=msg)) with tf.control_dependencies(assertions): param = tf.identity(param) msg1 = 'Argument `{}` must have final dimension >= 1.'.format(name) msg2 = 'Argument `{}` must have final dimension <= {}.'.format( name, dtype_util.max(tf.int32)) event_size = shape_static[-1] if shape_static is not None else None if event_size is not None: if event_size < 1: raise ValueError(msg1) if event_size > dtype_util.max(tf.int32): raise ValueError(msg2) elif self.validate_args: param = tf.convert_to_tensor(param) assertions.append(assert_util.assert_greater_equal( tf.shape(param)[-1], 1, message=msg1)) # NOTE: For now, we leave out a runtime assertion that # `tf.shape(param)[-1] <= tf.int32.max`. An earlier `tf.shape` call # will fail before we get to this point. if not self.validate_args: assert not assertions # Should never happen. return [] if is_init != tensor_util.is_ref(scores): scores = tf.convert_to_tensor(scores) assertions.extend([ assert_util.assert_positive(scores), ]) return assertions
37.338658
81
0.676735
794eb01f6087a7212cfeffbfc66120c9ffe00f3b
6,652
py
Python
bindings/python/ensmallen_graph/datasets/string/brucellamelitensis.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/brucellamelitensis.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/brucellamelitensis.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Brucella melitensis. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:05:09.129327 The undirected graph Brucella melitensis has 3176 nodes and 326751 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.06481 and has 5 connected components, where the component with most nodes has 3165 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 180, the mean node degree is 205.76, and the node degree mode is 2. The top 5 most central nodes are 224914.BMEI1825 (degree 1371), 224914.BMEI1606 (degree 1125), 224914.BMEII0887 (degree 1048), 224914.BMEII0040 (degree 1033) and 224914.BMEI1436 (degree 944). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import BrucellaMelitensis # Then load the graph graph = BrucellaMelitensis() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def BrucellaMelitensis( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Brucella melitensis graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Brucella melitensis graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:05:09.129327 The undirected graph Brucella melitensis has 3176 nodes and 326751 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.06481 and has 5 connected components, where the component with most nodes has 3165 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 180, the mean node degree is 205.76, and the node degree mode is 2. The top 5 most central nodes are 224914.BMEI1825 (degree 1371), 224914.BMEI1606 (degree 1125), 224914.BMEII0887 (degree 1048), 224914.BMEII0040 (degree 1033) and 224914.BMEI1436 (degree 944). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import BrucellaMelitensis # Then load the graph graph = BrucellaMelitensis() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="BrucellaMelitensis", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
35.195767
223
0.702195
794eb23a22817bb625551efaa59bd747dcc3650a
3,229
py
Python
scripts/gen_fh.py
ziqing26/nushackers-site
8d1d7814a7aa4df87829e5047f0c321d52bbbaa6
[ "MIT" ]
31
2015-02-19T17:51:52.000Z
2022-01-31T23:04:25.000Z
scripts/gen_fh.py
ziqing26/nushackers-site
8d1d7814a7aa4df87829e5047f0c321d52bbbaa6
[ "MIT" ]
278
2015-08-27T16:11:39.000Z
2022-01-26T03:41:24.000Z
scripts/gen_fh.py
ziqing26/nushackers-site
8d1d7814a7aa4df87829e5047f0c321d52bbbaa6
[ "MIT" ]
46
2015-10-08T13:20:13.000Z
2022-03-18T07:23:13.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Generate this week's friday hack # To generate some other FH pass in a number as argument # e.g python gen_fh.py 1 generates next week's # e.g python gen_fh.py 3 generates next next next week's # As for numbering, it will take the next number # (e.g. if the previous post is FH #1000, the generated one will be FH #1001) # Please first update data/friday_hacks.yml before running this import yaml from datetime import datetime, timedelta from os import listdir from os.path import isfile, join from sys import argv import re with open('../data/friday_hacks.yml', 'r') as fin: doc = yaml.load(fin) start_date = datetime.strptime(doc['start_date'], '%Y-%m-%d %H:%M:%S +0800') # Time delta fixes weird bug now = datetime.today() - timedelta(hours=3) # Sick undocumented feature if len(argv) > 1: now += timedelta(days=7 * int(argv[1])) hacks = doc['hacks'] cur = start_date next_hack = None next_date = None for hack in hacks: if cur > now: next_hack = hack next_date = cur break cur += timedelta(days=7) if not next_hack: print "Dude semester's over" quit() if not next_hack.get('topics'): print "Dude no hackz" quit() date = cur print "Creating FH post for " + str(cur) name = raw_input("Your name? ") # so future-proof it's sick fhre = re.compile( r'^20[0-9][0-9]-[01][0-9]-[0-3][0-9]-friday-hacks-([1-9][0-9]*)\.md$') num = 0 # so.. tempted... to... use lazy evaluation for f in listdir('../content/post/'): result = fhre.search(f) if result: cur = int(result.group(1)) if cur > num: num = cur num += 1 # In case you want to skip FH numbers BUT WHYYY!?!? # What is abstraction? # if len(argv) > 1: # num += int(argv[1]) print "Creating FH post for #" + str(num) + ", at " + str(date) # In case you want a different name, BUT WHYYY!?!? # name = raw_input("Your name? ") # now witness templating in raw string content = '''\ --- title: "Friday Hacks #{num}, {month} {day}" date: {now} author: {author} url: /{year}/{no_of_month}/friday-hacks-{num} --- --- say something as introduction --- {{{{< friday_hack_header venue="{venue}" date="{month} {day}" fb_event="#" >}}}} '''.format( num=num, now=datetime.today(), year=next_date.strftime("%Y"), month=next_date.strftime("%B"), no_of_month=next_date.strftime('%m'), day=next_date.day, author=name, venue=next_hack['venue']) + '\n'.join([ ''' ### {talk_name} #### Talk Description: --- describe ---- #### Speaker Profile --- describe ---- '''.format(talk_name=topic['title'].encode('utf-8')) for topic in next_hack['topics'] ]) filename = '../content/post/{now}-friday-hacks-{num}.md'.format( now=next_date.strftime("%Y-%m-%d"), num=num, month=next_date.strftime('%b'), day=next_date.day, ) with open(filename, 'a') as fout: fout.write(content)
26.252033
85
0.574172
794eb2a2521df23dca19204064241e74c2447439
6,416
py
Python
pytorch_lightning/accelerators/horovod_backend.py
GimmickNG/pytorch-lightning
b36c5e86d014671b0fa922d750b27420bc73b6f9
[ "Apache-2.0" ]
1
2021-03-10T20:13:50.000Z
2021-03-10T20:13:50.000Z
pytorch_lightning/accelerators/horovod_backend.py
GimmickNG/pytorch-lightning
b36c5e86d014671b0fa922d750b27420bc73b6f9
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/accelerators/horovod_backend.py
GimmickNG/pytorch-lightning
b36c5e86d014671b0fa922d750b27420bc73b6f9
[ "Apache-2.0" ]
1
2020-09-11T22:53:18.000Z
2020-09-11T22:53:18.000Z
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import ExitStack import torch from pytorch_lightning.core import LightningModule from pytorch_lightning.utilities import AMPType from pytorch_lightning.accelerators.base_backend import Accelerator from pytorch_lightning.utilities.distributed import rank_zero_only from torch.optim.lr_scheduler import _LRScheduler try: from apex import amp except ImportError: amp = None try: import horovod.torch as hvd except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True class HorovodBackend(Accelerator): amp_backend: AMPType def __init__(self, trainer): super().__init__(trainer) def setup(self, model): # call setup after the ddp process has connected self.trainer.call_setup_hook(model) if torch.cuda.is_available() and self.trainer.on_gpu: # Horovod: pin GPU to local rank assert self.trainer.root_gpu == hvd.local_rank() torch.cuda.set_device(self.trainer.root_gpu) model.cuda(self.trainer.root_gpu) # avoid duplicating progress bar if hvd.rank() != 0 and self.trainer.progress_bar_callback is not None: self.trainer.progress_bar_callback.disable() # CHOOSE OPTIMIZER # allow for lr schedulers as well optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model) self.trainer.optimizers = optimizers self.trainer.lr_schedulers = lr_schedulers self.trainer.optimizer_frequencies = optimizer_frequencies # Horovod: scale the learning rate by the number of workers to account for # increased total batch size for optimizer in self.trainer.optimizers: for param_group in optimizer.param_groups: param_group['lr'] *= hvd.size() # Horovod: adjust base LR used by schedulers to match scaled optimizer initial LR for scheduler in self.trainer.lr_schedulers: scheduler = scheduler['scheduler'] if isinstance(scheduler, _LRScheduler): scheduler.base_lrs = [lr * hvd.size() for lr in scheduler.base_lrs] # Horovod: broadcast parameters & optimizer state to ensure consistent initialization hvd.broadcast_parameters(model.state_dict(), root_rank=0) for optimizer in self.trainer.optimizers: hvd.broadcast_optimizer_state(optimizer, root_rank=0) def filter_named_parameters(model, optimizer): opt_params = set([p for group in optimizer.param_groups for p in group.get('params', [])]) return [(name, p) for name, p in model.named_parameters() if p in opt_params] # Horovod: wrap optimizers to perform gradient aggregation via allreduce self.trainer.optimizers = [ hvd.DistributedOptimizer(optimizer, named_parameters=filter_named_parameters(model, optimizer)) for optimizer in self.trainer.optimizers ] if self.trainer.amp_backend == AMPType.APEX: model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level) self.trainer.optimizers = optimizers self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers) # Update logger rank info from Horovod to avoid race conditions from different ranks # creating directories / writing files in the same locations. self.trainer.global_rank = hvd.rank() rank_zero_only.rank = self.trainer.global_rank self.trainer.model = model def train(self): with ExitStack() as stack: for optimizer in self.trainer.optimizers: # Synchronization will be performed explicitly following backward() stack.enter_context(optimizer.skip_synchronize()) # set up training routine self.trainer.setup_training(self.trainer.model) # train or test results = self.trainer.train_or_test() # Make sure all workers have finished training before returning to the user hvd.join() return results def teardown(self): pass def training_step(self, args): if self.trainer.on_gpu: batch = args[0] batch = self.batch_to_device(batch, hvd.local_rank()) args[0] = batch if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model.training_step(*args) else: output = self.trainer.model.training_step(*args) return output def validation_step(self, args): if self.trainer.on_gpu: batch = args[0] batch = self.batch_to_device(batch, hvd.local_rank()) args[0] = batch if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model.validation_step(*args) else: output = self.trainer.model.validation_step(*args) return output def test_step(self, args): if self.trainer.on_gpu: batch = args[0] batch = self.batch_to_device(batch, hvd.local_rank()) args[0] = batch if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model.test_step(*args) else: output = self.trainer.model.test_step(*args) return output def backward(self, closure_loss, optimizer, opt_idx): super().backward(closure_loss, optimizer, opt_idx) optimizer.synchronize() def on_train_epoch_end(self): hvd.join(hvd.local_rank() if self.trainer.on_gpu else -1)
38.190476
113
0.672537
794eb2d38319bf9366c3260216c46c9da1cab796
47,089
py
Python
decoding/IAD/fairseq/fairseq/models/transformer.py
maxpark/unilm
cd0cc7e7207dd029db9c8f11e3568fb385be6a29
[ "MIT" ]
1
2021-11-07T00:30:05.000Z
2021-11-07T00:30:05.000Z
decoding/IAD/fairseq/fairseq/models/transformer.py
maxpark/unilm
cd0cc7e7207dd029db9c8f11e3568fb385be6a29
[ "MIT" ]
null
null
null
decoding/IAD/fairseq/fairseq/models/transformer.py
maxpark/unilm
cd0cc7e7207dd029db9c8f11e3568fb385be6a29
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("transformer") class TransformerModel(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } def moses_fastbpe(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'fastbpe', } def spm(path): return { 'path': path, 'bpe': 'sentencepiece', 'tokenizer': 'space', } return { 'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'), 'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2', 'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'), 'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'), 'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'), 'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'), 'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'), 'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'), 'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'), 'transformer.wmt20.en-ta': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-ta.single.tar.gz'), 'transformer.wmt20.en-iu.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.news.single.tar.gz'), 'transformer.wmt20.en-iu.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.en-iu.nh.single.tar.gz'), 'transformer.wmt20.ta-en': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.ta-en.single.tar.gz'), 'transformer.wmt20.iu-en.news': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.news.single.tar.gz'), 'transformer.wmt20.iu-en.nh': spm('https://dl.fbaipublicfiles.com/fairseq/models/wmt20.iu-en.nh.single.tar.gz'), } # fmt: on def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args self.supports_align_args = True @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) # TorchScript doesn't support optional arguments with variable length (**kwargs). # Current workaround is to add union of all arguments in child classes. def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Run the forward pass for an encoder-decoder model. Copied from the base class, but without ``**kwargs``, which are not supported by TorchScript. """ encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) return decoder_out # Since get_normalized_probs is in the Fairseq Model which is not scriptable, # I rewrite the get_normalized_probs from Base Class to call the # helper function in the Base Class. @torch.jit.export def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.encoder_layerdrop = args.encoder_layerdrop embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [self.build_encoder_layer(args) for i in range(args.encoder_layers)] ) self.num_layers = len(self.layers) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def build_encoder_layer(self, args): layer = TransformerEncoderLayer(args) if getattr(args, "checkpoint_activations", False): layer = checkpoint_wrapper(layer) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) encoder_states = [] # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `foward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None self.cross_self_attention = getattr(args, "cross_self_attention", False) if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) self.num_layers = len(self.layers) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None self.output_projection = None if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif self.share_input_output_embed: self.output_projection = nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 ) def build_decoder_layer(self, args, no_encoder_attn=False): layer = TransformerDecoderLayer(args, no_encoder_attn) if getattr(args, "checkpoint_activations", False): layer = checkpoint_wrapper(layer) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, parallel_forward_start_pos: Optional[int] = None ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, parallel_forward_start_pos=parallel_forward_start_pos ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, parallel_forward_start_pos: Optional[int] = None ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, parallel_forward_start_pos ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, parallel_forward_start_pos: Optional[int] = None ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # mode incremental_state parallel_forward_start_pos # train None None # one-by-one inference not None None # aggressive inference not None not None if alignment_layer is None: alignment_layer = self.num_layers - 1 # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state if parallel_forward_start_pos is None else None ) if self.embed_positions is not None else None ) original_len = None if incremental_state is not None: # inference if parallel_forward_start_pos is None: # one-by-one prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] else: # aggressive original_len = prev_output_tokens.size(1) prev_output_tokens = prev_output_tokens[:, parallel_forward_start_pos:] if positions is not None: positions = positions[:, parallel_forward_start_pos:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): # train | aggressive inference if (incremental_state is None or parallel_forward_start_pos is not None) and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x, dim=original_len) if parallel_forward_start_pos is not None: self_attn_mask = self_attn_mask[parallel_forward_start_pos:] else: # one-by-one inference self_attn_mask = None x, layer_attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} def output_layer(self, features): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary return self.output_projection(features) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor, dim=None): # tensor: t, b, h if dim is None: dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @register_model_architecture("transformer", "transformer") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture("transformer", "transformer_iwslt_de_en") def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_architecture(args) @register_model_architecture("transformer", "transformer_wmt_en_de") def transformer_wmt_en_de(args): base_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big") def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big") def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture("transformer", "transformer_wmt_en_de_big") def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t") def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args)
43.600926
159
0.629553
794eb41377388ff6c5f36125fde35b8a7c9daf7c
539
py
Python
models/field/dict.py
RaenonX/Jelly-Bot-API
c7da1e91783dce3a2b71b955b3a22b68db9056cf
[ "MIT" ]
5
2020-08-26T20:12:00.000Z
2020-12-11T16:39:22.000Z
models/field/dict.py
RaenonX/Jelly-Bot
c7da1e91783dce3a2b71b955b3a22b68db9056cf
[ "MIT" ]
234
2019-12-14T03:45:19.000Z
2020-08-26T18:55:19.000Z
models/field/dict.py
RaenonX/Jelly-Bot-API
c7da1e91783dce3a2b71b955b3a22b68db9056cf
[ "MIT" ]
2
2019-10-23T15:21:15.000Z
2020-05-22T09:35:55.000Z
from ._base import BaseField class DictionaryField(BaseField): def __init__(self, key, **kwargs): """ Default Properties Overrided: - ``allow_none`` - ``False`` .. seealso:: Check the document of :class:`BaseField` for other default properties. """ if "allow_none" not in kwargs: kwargs["allow_none"] = False super().__init__(key, **kwargs) def none_obj(self): return {} @property def expected_types(self): return dict,
21.56
82
0.571429
794eb473f4efedff2f7988fadee49a633ce4c593
1,158
py
Python
src/plot_simulation.py
millengustavo/covid19-analytics
a4dfc0edd56b8a498c7fb318c9b3e75ed858dd9c
[ "MIT" ]
null
null
null
src/plot_simulation.py
millengustavo/covid19-analytics
a4dfc0edd56b8a498c7fb318c9b3e75ed858dd9c
[ "MIT" ]
null
null
null
src/plot_simulation.py
millengustavo/covid19-analytics
a4dfc0edd56b8a498c7fb318c9b3e75ed858dd9c
[ "MIT" ]
null
null
null
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import streamlit as st # plt.style.use("seaborn-whitegrid") def plot_simulation_output(df_simulated_data): df_simulated_data = df_simulated_data[["S", "E", "I", "R", "E+I", "E+I+R"]] fig1 = plt.figure() sns.despine() plt.grid() ax = sns.lineplot(data=df_simulated_data) ax.set_title("Visão Geral da Epidemia") fig2 = plt.figure() sns.despine() plt.grid() ax = sns.lineplot(data=df_simulated_data[["E", "I", "E+I", "E+I+R"]]) ax.set_title("Apenas Expostos e Infectados") zoom_length = 30 peak_date = df_simulated_data["I"].idxmax().date() zoom_on = (pd.Timestamp(peak_date) - pd.DateOffset(days=zoom_length)).date() zoom_end = (pd.Timestamp(peak_date) + pd.DateOffset(days=zoom_length)).date() fig3 = plt.figure() sns.despine() plt.grid() ax = sns.lineplot( data=df_simulated_data[["E", "I", "E+I"]][zoom_on:zoom_end], markers=True ) ax.set_title(f"Zoom (de {zoom_on} a {zoom_end})") plt.xticks(fontsize=8, rotation=30) return st.pyplot(fig1), st.pyplot(fig2), st.pyplot(fig3)
29.692308
81
0.65544
794eb54cdd64125d408be9ba90b7f78a7b4a0277
22,372
py
Python
electrum/bitcoin.py
IHIHIKI/electrum
5f527720cf2ae4c7aef1cfdcf4244dbceb54a5bc
[ "MIT" ]
1
2020-09-10T21:33:38.000Z
2020-09-10T21:33:38.000Z
electrum/bitcoin.py
lukechilds/electrum
7bcb59ffb5a30d3a116b086c9ae291bf4bb788f3
[ "MIT" ]
null
null
null
electrum/bitcoin.py
lukechilds/electrum
7bcb59ffb5a30d3a116b086c9ae291bf4bb788f3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Electrum - lightweight Bitcoin client # Copyright (C) 2011 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import hashlib from typing import List, Tuple, TYPE_CHECKING, Optional, Union import enum from enum import IntEnum, Enum from .util import bfh, bh2u, BitcoinException, assert_bytes, to_bytes, inv_dict from . import version from . import segwit_addr from . import constants from . import ecc from .crypto import sha256d, sha256, hash_160, hmac_oneshot if TYPE_CHECKING: from .network import Network ################################## transactions COINBASE_MATURITY = 100 COIN = 100000000 TOTAL_COIN_SUPPLY_LIMIT_IN_BTC = 21000000 NLOCKTIME_MIN = 0 NLOCKTIME_BLOCKHEIGHT_MAX = 500_000_000 - 1 NLOCKTIME_MAX = 2 ** 32 - 1 # supported types of transaction outputs # TODO kill these with fire TYPE_ADDRESS = 0 TYPE_PUBKEY = 1 TYPE_SCRIPT = 2 class opcodes(IntEnum): # push value OP_0 = 0x00 OP_FALSE = OP_0 OP_PUSHDATA1 = 0x4c OP_PUSHDATA2 = 0x4d OP_PUSHDATA4 = 0x4e OP_1NEGATE = 0x4f OP_RESERVED = 0x50 OP_1 = 0x51 OP_TRUE = OP_1 OP_2 = 0x52 OP_3 = 0x53 OP_4 = 0x54 OP_5 = 0x55 OP_6 = 0x56 OP_7 = 0x57 OP_8 = 0x58 OP_9 = 0x59 OP_10 = 0x5a OP_11 = 0x5b OP_12 = 0x5c OP_13 = 0x5d OP_14 = 0x5e OP_15 = 0x5f OP_16 = 0x60 # control OP_NOP = 0x61 OP_VER = 0x62 OP_IF = 0x63 OP_NOTIF = 0x64 OP_VERIF = 0x65 OP_VERNOTIF = 0x66 OP_ELSE = 0x67 OP_ENDIF = 0x68 OP_VERIFY = 0x69 OP_RETURN = 0x6a # stack ops OP_TOALTSTACK = 0x6b OP_FROMALTSTACK = 0x6c OP_2DROP = 0x6d OP_2DUP = 0x6e OP_3DUP = 0x6f OP_2OVER = 0x70 OP_2ROT = 0x71 OP_2SWAP = 0x72 OP_IFDUP = 0x73 OP_DEPTH = 0x74 OP_DROP = 0x75 OP_DUP = 0x76 OP_NIP = 0x77 OP_OVER = 0x78 OP_PICK = 0x79 OP_ROLL = 0x7a OP_ROT = 0x7b OP_SWAP = 0x7c OP_TUCK = 0x7d # splice ops OP_CAT = 0x7e OP_SUBSTR = 0x7f OP_LEFT = 0x80 OP_RIGHT = 0x81 OP_SIZE = 0x82 # bit logic OP_INVERT = 0x83 OP_AND = 0x84 OP_OR = 0x85 OP_XOR = 0x86 OP_EQUAL = 0x87 OP_EQUALVERIFY = 0x88 OP_RESERVED1 = 0x89 OP_RESERVED2 = 0x8a # numeric OP_1ADD = 0x8b OP_1SUB = 0x8c OP_2MUL = 0x8d OP_2DIV = 0x8e OP_NEGATE = 0x8f OP_ABS = 0x90 OP_NOT = 0x91 OP_0NOTEQUAL = 0x92 OP_ADD = 0x93 OP_SUB = 0x94 OP_MUL = 0x95 OP_DIV = 0x96 OP_MOD = 0x97 OP_LSHIFT = 0x98 OP_RSHIFT = 0x99 OP_BOOLAND = 0x9a OP_BOOLOR = 0x9b OP_NUMEQUAL = 0x9c OP_NUMEQUALVERIFY = 0x9d OP_NUMNOTEQUAL = 0x9e OP_LESSTHAN = 0x9f OP_GREATERTHAN = 0xa0 OP_LESSTHANOREQUAL = 0xa1 OP_GREATERTHANOREQUAL = 0xa2 OP_MIN = 0xa3 OP_MAX = 0xa4 OP_WITHIN = 0xa5 # crypto OP_RIPEMD160 = 0xa6 OP_SHA1 = 0xa7 OP_SHA256 = 0xa8 OP_HASH160 = 0xa9 OP_HASH256 = 0xaa OP_CODESEPARATOR = 0xab OP_CHECKSIG = 0xac OP_CHECKSIGVERIFY = 0xad OP_CHECKMULTISIG = 0xae OP_CHECKMULTISIGVERIFY = 0xaf # expansion OP_NOP1 = 0xb0 OP_CHECKLOCKTIMEVERIFY = 0xb1 OP_NOP2 = OP_CHECKLOCKTIMEVERIFY OP_CHECKSEQUENCEVERIFY = 0xb2 OP_NOP3 = OP_CHECKSEQUENCEVERIFY OP_NOP4 = 0xb3 OP_NOP5 = 0xb4 OP_NOP6 = 0xb5 OP_NOP7 = 0xb6 OP_NOP8 = 0xb7 OP_NOP9 = 0xb8 OP_NOP10 = 0xb9 OP_INVALIDOPCODE = 0xff def hex(self) -> str: return bytes([self]).hex() def rev_hex(s: str) -> str: return bh2u(bfh(s)[::-1]) def int_to_hex(i: int, length: int=1) -> str: """Converts int to little-endian hex string. `length` is the number of bytes available """ if not isinstance(i, int): raise TypeError('{} instead of int'.format(i)) range_size = pow(256, length) if i < -(range_size//2) or i >= range_size: raise OverflowError('cannot convert int {} to hex ({} bytes)'.format(i, length)) if i < 0: # two's complement i = range_size + i s = hex(i)[2:].rstrip('L') s = "0"*(2*length - len(s)) + s return rev_hex(s) def script_num_to_hex(i: int) -> str: """See CScriptNum in Bitcoin Core. Encodes an integer as hex, to be used in script. ported from https://github.com/bitcoin/bitcoin/blob/8cbc5c4be4be22aca228074f087a374a7ec38be8/src/script/script.h#L326 """ if i == 0: return '' result = bytearray() neg = i < 0 absvalue = abs(i) while absvalue > 0: result.append(absvalue & 0xff) absvalue >>= 8 if result[-1] & 0x80: result.append(0x80 if neg else 0x00) elif neg: result[-1] |= 0x80 return bh2u(result) def var_int(i: int) -> str: # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer # https://github.com/bitcoin/bitcoin/blob/efe1ee0d8d7f82150789f1f6840f139289628a2b/src/serialize.h#L247 # "CompactSize" assert i >= 0, i if i<0xfd: return int_to_hex(i) elif i<=0xffff: return "fd"+int_to_hex(i,2) elif i<=0xffffffff: return "fe"+int_to_hex(i,4) else: return "ff"+int_to_hex(i,8) def witness_push(item: str) -> str: """Returns data in the form it should be present in the witness. hex -> hex """ return var_int(len(item) // 2) + item def _op_push(i: int) -> str: if i < opcodes.OP_PUSHDATA1: return int_to_hex(i) elif i <= 0xff: return opcodes.OP_PUSHDATA1.hex() + int_to_hex(i, 1) elif i <= 0xffff: return opcodes.OP_PUSHDATA2.hex() + int_to_hex(i, 2) else: return opcodes.OP_PUSHDATA4.hex() + int_to_hex(i, 4) def push_script(data: str) -> str: """Returns pushed data to the script, automatically choosing canonical opcodes depending on the length of the data. hex -> hex ported from https://github.com/btcsuite/btcd/blob/fdc2bc867bda6b351191b5872d2da8270df00d13/txscript/scriptbuilder.go#L128 """ data = bfh(data) data_len = len(data) # "small integer" opcodes if data_len == 0 or data_len == 1 and data[0] == 0: return opcodes.OP_0.hex() elif data_len == 1 and data[0] <= 16: return bh2u(bytes([opcodes.OP_1 - 1 + data[0]])) elif data_len == 1 and data[0] == 0x81: return opcodes.OP_1NEGATE.hex() return _op_push(data_len) + bh2u(data) def add_number_to_script(i: int) -> bytes: return bfh(push_script(script_num_to_hex(i))) def relayfee(network: 'Network' = None) -> int: """Returns feerate in sat/kbyte.""" from .simple_config import FEERATE_DEFAULT_RELAY, FEERATE_MAX_RELAY if network and network.relay_fee is not None: fee = network.relay_fee else: fee = FEERATE_DEFAULT_RELAY # sanity safeguards, as network.relay_fee is coming from a server: fee = min(fee, FEERATE_MAX_RELAY) fee = max(fee, FEERATE_DEFAULT_RELAY) return fee def dust_threshold(network: 'Network' = None) -> int: """Returns the dust limit in satoshis.""" # Change <= dust threshold is added to the tx fee dust_lim = 182 * 3 * relayfee(network) # in msat # convert to sat, but round up: return (dust_lim // 1000) + (dust_lim % 1000 > 0) def hash_encode(x: bytes) -> str: return bh2u(x[::-1]) def hash_decode(x: str) -> bytes: return bfh(x)[::-1] ############ functions from pywallet ##################### def hash160_to_b58_address(h160: bytes, addrtype: int) -> str: s = bytes([addrtype]) + h160 s = s + sha256d(s)[0:4] return base_encode(s, base=58) def b58_address_to_hash160(addr: str) -> Tuple[int, bytes]: addr = to_bytes(addr, 'ascii') _bytes = DecodeBase58Check(addr) if len(_bytes) != 21: raise Exception(f'expected 21 payload bytes in base58 address. got: {len(_bytes)}') return _bytes[0], _bytes[1:21] def hash160_to_p2pkh(h160: bytes, *, net=None) -> str: if net is None: net = constants.net return hash160_to_b58_address(h160, net.ADDRTYPE_P2PKH) def hash160_to_p2sh(h160: bytes, *, net=None) -> str: if net is None: net = constants.net return hash160_to_b58_address(h160, net.ADDRTYPE_P2SH) def public_key_to_p2pkh(public_key: bytes, *, net=None) -> str: if net is None: net = constants.net return hash160_to_p2pkh(hash_160(public_key), net=net) def hash_to_segwit_addr(h: bytes, witver: int, *, net=None) -> str: if net is None: net = constants.net return segwit_addr.encode(net.SEGWIT_HRP, witver, h) def public_key_to_p2wpkh(public_key: bytes, *, net=None) -> str: if net is None: net = constants.net return hash_to_segwit_addr(hash_160(public_key), witver=0, net=net) def script_to_p2wsh(script: str, *, net=None) -> str: if net is None: net = constants.net return hash_to_segwit_addr(sha256(bfh(script)), witver=0, net=net) def p2wpkh_nested_script(pubkey: str) -> str: pkh = bh2u(hash_160(bfh(pubkey))) return '00' + push_script(pkh) def p2wsh_nested_script(witness_script: str) -> str: wsh = bh2u(sha256(bfh(witness_script))) return '00' + push_script(wsh) def pubkey_to_address(txin_type: str, pubkey: str, *, net=None) -> str: if net is None: net = constants.net if txin_type == 'p2pkh': return public_key_to_p2pkh(bfh(pubkey), net=net) elif txin_type == 'p2wpkh': return public_key_to_p2wpkh(bfh(pubkey), net=net) elif txin_type == 'p2wpkh-p2sh': scriptSig = p2wpkh_nested_script(pubkey) return hash160_to_p2sh(hash_160(bfh(scriptSig)), net=net) else: raise NotImplementedError(txin_type) # TODO this method is confusingly named def redeem_script_to_address(txin_type: str, scriptcode: str, *, net=None) -> str: if net is None: net = constants.net if txin_type == 'p2sh': # given scriptcode is a redeem_script return hash160_to_p2sh(hash_160(bfh(scriptcode)), net=net) elif txin_type == 'p2wsh': # given scriptcode is a witness_script return script_to_p2wsh(scriptcode, net=net) elif txin_type == 'p2wsh-p2sh': # given scriptcode is a witness_script redeem_script = p2wsh_nested_script(scriptcode) return hash160_to_p2sh(hash_160(bfh(redeem_script)), net=net) else: raise NotImplementedError(txin_type) def script_to_address(script: str, *, net=None) -> str: from .transaction import get_address_from_output_script return get_address_from_output_script(bfh(script), net=net) def address_to_script(addr: str, *, net=None) -> str: if net is None: net = constants.net if not is_address(addr, net=net): raise BitcoinException(f"invalid bitcoin address: {addr}") witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr) if witprog is not None: if not (0 <= witver <= 16): raise BitcoinException(f'impossible witness version: {witver}') script = bh2u(add_number_to_script(witver)) script += push_script(bh2u(bytes(witprog))) return script addrtype, hash_160_ = b58_address_to_hash160(addr) if addrtype == net.ADDRTYPE_P2PKH: script = pubkeyhash_to_p2pkh_script(bh2u(hash_160_)) elif addrtype == net.ADDRTYPE_P2SH: script = opcodes.OP_HASH160.hex() script += push_script(bh2u(hash_160_)) script += opcodes.OP_EQUAL.hex() else: raise BitcoinException(f'unknown address type: {addrtype}') return script class OnchainOutputType(Enum): """Opaque types of scriptPubKeys. In case of p2sh, p2wsh and similar, no knowledge of redeem script, etc. """ P2PKH = enum.auto() P2SH = enum.auto() WITVER0_P2WPKH = enum.auto() WITVER0_P2WSH = enum.auto() def address_to_hash(addr: str, *, net=None) -> Tuple[OnchainOutputType, bytes]: """Return (type, pubkey hash / witness program) for an address.""" if net is None: net = constants.net if not is_address(addr, net=net): raise BitcoinException(f"invalid bitcoin address: {addr}") witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr) if witprog is not None: if witver != 0: raise BitcoinException(f"not implemented handling for witver={witver}") if len(witprog) == 20: return OnchainOutputType.WITVER0_P2WPKH, bytes(witprog) elif len(witprog) == 32: return OnchainOutputType.WITVER0_P2WSH, bytes(witprog) else: raise BitcoinException(f"unexpected length for segwit witver=0 witprog: len={len(witprog)}") addrtype, hash_160_ = b58_address_to_hash160(addr) if addrtype == net.ADDRTYPE_P2PKH: return OnchainOutputType.P2PKH, hash_160_ elif addrtype == net.ADDRTYPE_P2SH: return OnchainOutputType.P2SH, hash_160_ raise BitcoinException(f"unknown address type: {addrtype}") def address_to_scripthash(addr: str) -> str: script = address_to_script(addr) return script_to_scripthash(script) def script_to_scripthash(script: str) -> str: h = sha256(bfh(script))[0:32] return bh2u(bytes(reversed(h))) def public_key_to_p2pk_script(pubkey: str) -> str: return push_script(pubkey) + opcodes.OP_CHECKSIG.hex() def pubkeyhash_to_p2pkh_script(pubkey_hash160: str) -> str: script = bytes([opcodes.OP_DUP, opcodes.OP_HASH160]).hex() script += push_script(pubkey_hash160) script += bytes([opcodes.OP_EQUALVERIFY, opcodes.OP_CHECKSIG]).hex() return script __b58chars = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' assert len(__b58chars) == 58 __b43chars = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:' assert len(__b43chars) == 43 def base_encode(v: bytes, *, base: int) -> str: """ encode v, which is a string of bytes, to base58.""" assert_bytes(v) if base not in (58, 43): raise ValueError('not supported base: {}'.format(base)) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 power_of_base = 1 for c in v[::-1]: # naive but slow variant: long_value += (256**i) * c long_value += power_of_base * c power_of_base <<= 8 result = bytearray() while long_value >= base: div, mod = divmod(long_value, base) result.append(chars[mod]) long_value = div result.append(chars[long_value]) # Bitcoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == 0x00: nPad += 1 else: break result.extend([chars[0]] * nPad) result.reverse() return result.decode('ascii') def base_decode(v: Union[bytes, str], *, base: int, length: int = None) -> Optional[bytes]: """ decode v into a string of len bytes.""" # assert_bytes(v) v = to_bytes(v, 'ascii') if base not in (58, 43): raise ValueError('not supported base: {}'.format(base)) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 power_of_base = 1 for c in v[::-1]: digit = chars.find(bytes([c])) if digit == -1: raise ValueError('Forbidden character {} for base {}'.format(c, base)) # naive but slow variant: long_value += digit * (base**i) long_value += digit * power_of_base power_of_base *= base result = bytearray() while long_value >= 256: div, mod = divmod(long_value, 256) result.append(mod) long_value = div result.append(long_value) nPad = 0 for c in v: if c == chars[0]: nPad += 1 else: break result.extend(b'\x00' * nPad) if length is not None and len(result) != length: return None result.reverse() return bytes(result) class InvalidChecksum(Exception): pass def EncodeBase58Check(vchIn: bytes) -> str: hash = sha256d(vchIn) return base_encode(vchIn + hash[0:4], base=58) def DecodeBase58Check(psz: Union[bytes, str]) -> bytes: vchRet = base_decode(psz, base=58) payload = vchRet[0:-4] csum_found = vchRet[-4:] csum_calculated = sha256d(payload)[0:4] if csum_calculated != csum_found: raise InvalidChecksum(f'calculated {bh2u(csum_calculated)}, found {bh2u(csum_found)}') else: return payload # backwards compat # extended WIF for segwit (used in 3.0.x; but still used internally) # the keys in this dict should be a superset of what Imported Wallets can import WIF_SCRIPT_TYPES = { 'p2pkh':0, 'p2wpkh':1, 'p2wpkh-p2sh':2, 'p2sh':5, 'p2wsh':6, 'p2wsh-p2sh':7 } WIF_SCRIPT_TYPES_INV = inv_dict(WIF_SCRIPT_TYPES) def is_segwit_script_type(txin_type: str) -> bool: return txin_type in ('p2wpkh', 'p2wpkh-p2sh', 'p2wsh', 'p2wsh-p2sh') def serialize_privkey(secret: bytes, compressed: bool, txin_type: str, *, internal_use: bool = False) -> str: # we only export secrets inside curve range secret = ecc.ECPrivkey.normalize_secret_bytes(secret) if internal_use: prefix = bytes([(WIF_SCRIPT_TYPES[txin_type] + constants.net.WIF_PREFIX) & 255]) else: prefix = bytes([constants.net.WIF_PREFIX]) suffix = b'\01' if compressed else b'' vchIn = prefix + secret + suffix base58_wif = EncodeBase58Check(vchIn) if internal_use: return base58_wif else: return '{}:{}'.format(txin_type, base58_wif) def deserialize_privkey(key: str) -> Tuple[str, bytes, bool]: if is_minikey(key): return 'p2pkh', minikey_to_private_key(key), False txin_type = None if ':' in key: txin_type, key = key.split(sep=':', maxsplit=1) if txin_type not in WIF_SCRIPT_TYPES: raise BitcoinException('unknown script type: {}'.format(txin_type)) try: vch = DecodeBase58Check(key) except BaseException: neutered_privkey = str(key)[:3] + '..' + str(key)[-2:] raise BitcoinException("cannot deserialize privkey {}" .format(neutered_privkey)) if txin_type is None: # keys exported in version 3.0.x encoded script type in first byte prefix_value = vch[0] - constants.net.WIF_PREFIX try: txin_type = WIF_SCRIPT_TYPES_INV[prefix_value] except KeyError: raise BitcoinException('invalid prefix ({}) for WIF key (1)'.format(vch[0])) else: # all other keys must have a fixed first byte if vch[0] != constants.net.WIF_PREFIX: raise BitcoinException('invalid prefix ({}) for WIF key (2)'.format(vch[0])) if len(vch) not in [33, 34]: raise BitcoinException('invalid vch len for WIF key: {}'.format(len(vch))) compressed = False if len(vch) == 34: if vch[33] == 0x01: compressed = True else: raise BitcoinException(f'invalid WIF key. length suggests compressed pubkey, ' f'but last byte is {vch[33]} != 0x01') if is_segwit_script_type(txin_type) and not compressed: raise BitcoinException('only compressed public keys can be used in segwit scripts') secret_bytes = vch[1:33] # we accept secrets outside curve range; cast into range here: secret_bytes = ecc.ECPrivkey.normalize_secret_bytes(secret_bytes) return txin_type, secret_bytes, compressed def is_compressed_privkey(sec: str) -> bool: return deserialize_privkey(sec)[2] def address_from_private_key(sec: str) -> str: txin_type, privkey, compressed = deserialize_privkey(sec) public_key = ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed) return pubkey_to_address(txin_type, public_key) def is_segwit_address(addr: str, *, net=None) -> bool: if net is None: net = constants.net try: witver, witprog = segwit_addr.decode(net.SEGWIT_HRP, addr) except Exception as e: return False return witprog is not None def is_b58_address(addr: str, *, net=None) -> bool: if net is None: net = constants.net try: # test length, checksum, encoding: addrtype, h = b58_address_to_hash160(addr) except Exception as e: return False if addrtype not in [net.ADDRTYPE_P2PKH, net.ADDRTYPE_P2SH]: return False return True def is_address(addr: str, *, net=None) -> bool: if net is None: net = constants.net return is_segwit_address(addr, net=net) \ or is_b58_address(addr, net=net) def is_private_key(key: str, *, raise_on_error=False) -> bool: try: deserialize_privkey(key) return True except BaseException as e: if raise_on_error: raise return False ########### end pywallet functions ####################### def is_minikey(text: str) -> bool: # Minikeys are typically 22 or 30 characters, but this routine # permits any length of 20 or more provided the minikey is valid. # A valid minikey must begin with an 'S', be in base58, and when # suffixed with '?' have its SHA256 hash begin with a zero byte. # They are widely used in Casascius physical bitcoins. return (len(text) >= 20 and text[0] == 'S' and all(ord(c) in __b58chars for c in text) and sha256(text + '?')[0] == 0x00) def minikey_to_private_key(text: str) -> bytes: return sha256(text)
30.857931
125
0.655596
794eb60bd2fa12dce74139bbb540ecd554888ec0
67,691
py
Python
armi/reactor/tests/test_blocks.py
crisobg1/armi
38d9febdbec7ab8a67dd9b8e50780e11ea127022
[ "Apache-2.0" ]
1
2020-07-07T16:58:43.000Z
2020-07-07T16:58:43.000Z
armi/reactor/tests/test_blocks.py
crisobg1/armi
38d9febdbec7ab8a67dd9b8e50780e11ea127022
[ "Apache-2.0" ]
null
null
null
armi/reactor/tests/test_blocks.py
crisobg1/armi
38d9febdbec7ab8a67dd9b8e50780e11ea127022
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Tests blocks.py""" import copy import math import os import unittest import numpy from numpy.testing import assert_allclose from armi.reactor import blocks from armi.reactor import components import armi.runLog as runLog import armi.settings as settings from armi.reactor.components import UnshapedComponent from armi import materials from armi.nucDirectory import nucDir, nuclideBases from armi.utils.units import MOLES_PER_CC_TO_ATOMS_PER_BARN_CM from armi.tests import TEST_ROOT from armi.utils import units from armi.utils import hexagon from armi.reactor.flags import Flags from armi import tests from armi.reactor import grids from armi.reactor.tests.test_assemblies import makeTestAssembly from armi.tests import ISOAA_PATH from armi.nuclearDataIO import isotxs from armi.reactor import geometry def loadTestBlock(cold=True): """Build an annular test block for evaluating unit tests.""" caseSetting = settings.Settings() settings.setMasterCs(caseSetting) caseSetting["xsKernel"] = "MC2v2" runLog.setVerbosity("error") caseSetting["nCycles"] = 1 r = tests.getEmptyHexReactor() assemNum = 3 block = blocks.HexBlock("TestHexBlock") block.setType("defaultType") block.p.nPins = 217 Assembly = makeTestAssembly(assemNum, 1, r=r) # NOTE: temperatures are supposed to be in C coldTemp = 25.0 hotTempCoolant = 430.0 hotTempStructure = 25.0 if cold else hotTempCoolant hotTempFuel = 25.0 if cold else 600.0 fuelDims = { "Tinput": coldTemp, "Thot": hotTempFuel, "od": 0.84, "id": 0.6, "mult": 217.0, } fuel = components.Circle("fuel", "UZr", **fuelDims) bondDims = { "Tinput": coldTemp, "Thot": hotTempCoolant, "od": "fuel.id", "id": 0.3, "mult": 217.0, } bondDims["components"] = {"fuel": fuel} bond = components.Circle("bond", "Sodium", **bondDims) annularVoidDims = { "Tinput": hotTempStructure, "Thot": hotTempStructure, "od": "bond.id", "id": 0.0, "mult": 217.0, } annularVoidDims["components"] = {"bond": bond} annularVoid = components.Circle("annular void", "Void", **annularVoidDims) innerLinerDims = { "Tinput": coldTemp, "Thot": hotTempStructure, "od": 0.90, "id": 0.85, "mult": 217.0, } innerLiner = components.Circle("inner liner", "Graphite", **innerLinerDims) fuelLinerGapDims = { "Tinput": hotTempStructure, "Thot": hotTempStructure, "od": "inner liner.id", "id": "fuel.od", "mult": 217.0, } fuelLinerGapDims["components"] = {"inner liner": innerLiner, "fuel": fuel} fuelLinerGap = components.Circle("gap1", "Void", **fuelLinerGapDims) outerLinerDims = { "Tinput": coldTemp, "Thot": hotTempStructure, "od": 0.95, "id": 0.90, "mult": 217.0, } outerLiner = components.Circle("outer liner", "HT9", **outerLinerDims) linerLinerGapDims = { "Tinput": hotTempStructure, "Thot": hotTempStructure, "od": "outer liner.id", "id": "inner liner.od", "mult": 217.0, } linerLinerGapDims["components"] = { "outer liner": outerLiner, "inner liner": innerLiner, } linerLinerGap = components.Circle("gap2", "Void", **linerLinerGapDims) claddingDims = { "Tinput": coldTemp, "Thot": hotTempStructure, "od": 1.05, "id": 0.95, "mult": 217.0, } cladding = components.Circle("clad", "HT9", **claddingDims) linerCladGapDims = { "Tinput": hotTempStructure, "Thot": hotTempStructure, "od": "clad.id", "id": "outer liner.od", "mult": 217.0, } linerCladGapDims["components"] = {"clad": cladding, "outer liner": outerLiner} linerCladGap = components.Circle("gap3", "Void", **linerCladGapDims) wireDims = { "Tinput": coldTemp, "Thot": hotTempStructure, "od": 0.1, "id": 0.0, "axialPitch": 30.0, "helixDiameter": 1.1, "mult": 217.0, } wire = components.Helix("wire", "HT9", **wireDims) coolantDims = {"Tinput": hotTempCoolant, "Thot": hotTempCoolant} coolant = components.DerivedShape("coolant", "Sodium", **coolantDims) ductDims = { "Tinput": coldTemp, "Thot": hotTempStructure, "ip": 16.6, "op": 17.3, "mult": 1.0, } duct = components.Hexagon("duct", "HT9", **ductDims) interDims = { "Tinput": hotTempCoolant, "Thot": hotTempCoolant, "op": 17.8, "ip": "duct.op", "mult": 1.0, } interDims["components"] = {"duct": duct} interSodium = components.Hexagon("interCoolant", "Sodium", **interDims) block.addComponent(annularVoid) block.addComponent(bond) block.addComponent(fuel) block.addComponent(fuelLinerGap) block.addComponent(innerLiner) block.addComponent(linerLinerGap) block.addComponent(outerLiner) block.addComponent(linerCladGap) block.addComponent(cladding) block.addComponent(wire) block.addComponent(coolant) block.addComponent(duct) block.addComponent(interSodium) block.getVolumeFractions() # TODO: remove, should be no-op when removed self.cached block.setHeight(16.0) Assembly.add(block) r.core.add(Assembly) return block # pylint: disable=protected-access def applyDummyData(block): """Add some dummy data to a block for physics-like tests.""" # typical SFR-ish flux in 1/cm^2/s flux = [ 161720716762.12997, 2288219224332.647, 11068159130271.139, 26473095948525.742, 45590249703180.945, 78780459664094.23, 143729928505629.06, 224219073208464.06, 229677567456769.22, 267303906113313.16, 220996878365852.22, 169895433093246.28, 126750484612975.31, 143215138794766.53, 74813432842005.5, 32130372366225.85, 21556243034771.582, 6297567411518.368, 22365198294698.45, 12211256796917.86, 5236367197121.363, 1490736020048.7847, 1369603135573.731, 285579041041.55945, 73955783965.98692, 55003146502.73623, 18564831886.20426, 4955747691.052108, 3584030491.076041, 884015567.3986057, 4298964991.043116, 1348809158.0353086, 601494405.293505, ] xslib = isotxs.readBinary(ISOAA_PATH) # slight hack here because the test block was created # by hand rather than via blueprints and so elemental expansion # of isotopics did not occur. But, the ISOTXS library being used # did go through an isotopic expansion, so we map nuclides here. xslib._nuclides["NAAA"] = xslib._nuclides["NA23AA"] xslib._nuclides["WAA"] = xslib._nuclides["W184AA"] xslib._nuclides["MNAA"] = xslib._nuclides["MN55AA"] block.p.mgFlux = flux block.r.core.lib = xslib def getComponentDataFromBlock(component, block): density = 0.0 for nuc in component.getNuclides(): density += ( component.getNumberDensity(nuc) * nucDir.getAtomicWeight(nuc) / units.MOLES_PER_CC_TO_ATOMS_PER_BARN_CM ) volume = component.getVolume() mass = component.getMass() return component, density, volume, mass class Block_TestCase(unittest.TestCase): def setUp(self): self.Block = loadTestBlock() self._hotBlock = loadTestBlock(cold=False) self.r = self.Block.r def test_getSmearDensity(self): cur = self.Block.getSmearDensity() ref = ( self.Block.getDim(Flags.FUEL, "od") ** 2 - self.Block.getDim(Flags.FUEL, "id") ** 2 ) / self.Block.getDim(Flags.LINER, "id") ** 2 places = 10 self.assertAlmostEqual(cur, ref, places=places) # test with liner instead of clad ref = ( self.Block.getDim(Flags.FUEL, "od") ** 2 - self.Block.getDim(Flags.FUEL, "id") ** 2 ) / self.Block.getDim(Flags.LINER, "id") ** 2 cur = self.Block.getSmearDensity() self.assertAlmostEqual( cur, ref, places=places, msg="Incorrect getSmearDensity with liner. Got {0}. Should be {1}".format( cur, ref ), ) # test with annular fuel. fuelDims = { "Tinput": 273.0, "Thot": 273.0, "od": 0.87, "id": 0.2, "mult": 271.0, } self.fuelComponent = components.Circle("fuel", "UZr", **fuelDims) ref = ( self.Block.getDim(Flags.FUEL, "od") ** 2 - self.Block.getDim(Flags.FUEL, "id") ** 2 ) / self.Block.getDim(Flags.LINER, "id") ** 2 cur = self.Block.getSmearDensity() self.assertAlmostEqual( cur, ref, places=places, msg="Incorrect getSmearDensity with annular fuel. Got {0}. Should be {1}".format( cur, ref ), ) def test_getSmearDensityMultipleLiner(self): numLiners = sum( 1 for c in self.Block if "liner" in c.name and "gap" not in c.name ) self.assertEqual( numLiners, 2, "self.Block needs at least 2 liners for this test to be functional.", ) cur = self.Block.getSmearDensity() ref = ( self.Block.getDim(Flags.FUEL, "od") ** 2 - self.Block.getDim(Flags.FUEL, "id") ** 2 ) / self.Block.getDim(Flags.INNER | Flags.LINER, "id") ** 2 self.assertAlmostEqual(cur, ref, places=10) def test_timeNodeParams(self): self.Block.p["avgFuelTemp", 3] = 2.0 self.assertEqual(2.0, self.Block.p[("avgFuelTemp", 3)]) def test_getType(self): ref = "plenum pin" self.Block.setType(ref) cur = self.Block.getType() self.assertEqual(cur, ref) self.assertTrue(self.Block.hasFlags(Flags.PLENUM)) self.assertTrue(self.Block.hasFlags(Flags.PLENUM | Flags.PIN)) self.assertTrue(self.Block.hasFlags(Flags.PLENUM | Flags.PIN, exact=True)) self.assertFalse(self.Block.hasFlags(Flags.PLENUM, exact=True)) def test_hasFlags(self): self.Block.setType("feed fuel") cur = self.Block.hasFlags(Flags.FEED | Flags.FUEL) self.assertTrue(cur) cur = self.Block.hasFlags(Flags.PLENUM) self.assertFalse(cur) def test_setType(self): self.Block.setType("igniter fuel") self.assertEqual("igniter fuel", self.Block.getType()) self.assertTrue(self.Block.hasFlags(Flags.IGNITER | Flags.FUEL)) self.Block.adjustUEnrich(0.0001) self.Block.setType("feed fuel") self.assertTrue(self.Block.hasFlags(Flags.FEED | Flags.FUEL)) self.assertTrue(self.Block.hasFlags(Flags.FUEL)) self.assertFalse(self.Block.hasFlags(Flags.IGNITER | Flags.FUEL)) def test_duplicate(self): Block2 = copy.deepcopy(self.Block) originalComponents = self.Block.getComponents() newComponents = Block2.getComponents() for c1, c2 in zip(originalComponents, newComponents): self.assertEqual(c1.getName(), c2.getName()) a1, a2 = c1.getArea(), c2.getArea() self.assertIsNot(c1, c2) self.assertAlmostEqual( a1, a2, msg="The area of {0}={1} but " "the area of {2} in the copy={3}".format(c1, a1, c2, a2), ) for key in c2.DIMENSION_NAMES: dim = c2.p[key] if isinstance(dim, tuple): self.assertNotIn(dim[0], originalComponents) self.assertIn(dim[0], newComponents) ref = self.Block.getMass() cur = Block2.getMass() places = 6 self.assertAlmostEqual(ref, cur, places=places) ref = self.Block.getArea() cur = Block2.getArea() places = 6 self.assertAlmostEqual(ref, cur, places=places) ref = self.Block.getHeight() cur = Block2.getHeight() places = 6 self.assertAlmostEqual(ref, cur, places=places) def test_getXsType(self): self.cs = settings.getMasterCs() self.cs["loadingFile"] = os.path.join(TEST_ROOT, "refSmallReactor.yaml") self.Block.p.xsType = "B" cur = self.Block.p.xsType ref = "B" self.assertEqual(cur, ref) oldBuGroups = self.cs["buGroups"] self.cs["buGroups"] = [100] self.Block.p.xsType = "BB" cur = self.Block.p.xsType ref = "BB" self.assertEqual(cur, ref) self.cs["buGroups"] = oldBuGroups def test27b_setBuGroup(self): type_ = "A" self.Block.p.buGroup = type_ cur = self.Block.p.buGroupNum ref = ord(type_) - 65 self.assertEqual(cur, ref) typeNumber = 25 self.Block.p.buGroupNum = typeNumber cur = self.Block.p.buGroup ref = chr(typeNumber + 65) self.assertEqual(cur, ref) def test_clearDensity(self): self.Block.clearNumberDensities() for nuc in self.Block.getNuclides(): cur = self.Block.getNumberDensity(nuc) ref = 0.0 places = 5 self.assertAlmostEqual(cur, ref, places=places) def test_getNumberDensity(self): refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W182": 1.09115150103e-05, "W183": 5.89214392093e-06, "W184": 1.26159558164e-05, "W186": 1.17057432664e-05, "ZR": 0.00709003962772, } self.Block.setNumberDensities(refDict) for nuc in refDict.keys(): cur = self.Block.getNumberDensity(nuc) ref = refDict[nuc] places = 6 self.assertAlmostEqual(ref, cur, places=places) def test_setNumberDensity(self): ref = 0.05 self.Block.setNumberDensity("U235", ref) cur = self.Block.getNumberDensity("U235") places = 5 self.assertAlmostEqual(cur, ref, places=places) def test_setNumberDensities(self): """Make sure we can set multiple number densities at once.""" b = self.Block b.setNumberDensity("NA", 0.5) refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W": 1.09115150103e-05, "ZR": 0.00709003962772, } b.setNumberDensities(refDict) for nuc in refDict.keys(): cur = self.Block.getNumberDensity(nuc) ref = refDict[nuc] places = 6 self.assertAlmostEqual(cur, ref, places=places) nucBase = nuclideBases.byName[nuc] self.assertAlmostEqual( b.p[nucBase.getDatabaseName()], ref ) # required for DB viewing/loading # make sure U235 stayed fully contained in the fuel component fuelC = b.getComponent(Flags.FUEL) self.assertAlmostEqual( b.getNumberDensity("U235"), fuelC.getNumberDensity("U235") * fuelC.getVolumeFraction(), ) # make sure other vals were zeroed out self.assertAlmostEqual(b.getNumberDensity("NA23"), 0.0) def test_getMass(self): self.Block.setHeight(100.0) nucName = "U235" d = self.Block.getNumberDensity(nucName) v = self.Block.getVolume() A = nucDir.getAtomicWeight(nucName) ref = d * v * A / MOLES_PER_CC_TO_ATOMS_PER_BARN_CM cur = self.Block.getMass(nucName) places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_setMass(self): self.Block.setHeight(100.0) mass = 100.0 nuc = "U238" self.Block.setMass(nuc, mass) cur = self.Block.getMass(nuc) ref = mass places = 6 self.assertAlmostEqual(cur, ref, places=places) cur = self.Block.getNumberDensity(nuc) v = self.Block.getVolume() A = nucDir.getAtomicWeight(nuc) ref = MOLES_PER_CC_TO_ATOMS_PER_BARN_CM * mass / (v * A) places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_getTotalMass(self): self.Block.setHeight(100.0) self.Block.clearNumberDensities() refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W182": 1.09115150103e-05, "W183": 5.89214392093e-06, "W184": 1.26159558164e-05, "W186": 1.17057432664e-05, "ZR": 0.00709003962772, } self.Block.setNumberDensities(refDict) cur = self.Block.getMass() tot = 0.0 for nucName in refDict.keys(): d = refDict[nucName] A = nucDir.getAtomicWeight(nucName) tot += d * A v = self.Block.getVolume() ref = tot * v / MOLES_PER_CC_TO_ATOMS_PER_BARN_CM places = 9 self.assertAlmostEqual(cur, ref, places=places) def test_replaceBlockWithBlock(self): r""" Tests conservation of mass flag in replaceBlockWithBlock """ block = self.Block ductBlock = block.__class__("duct") ductBlock.addComponent(block.getComponent(Flags.COOLANT, exact=True)) ductBlock.addComponent(block.getComponent(Flags.DUCT, exact=True)) ductBlock.addComponent(block.getComponent(Flags.INTERCOOLANT, exact=True)) # get reference data refLoc = block.spatialLocator refName = block.name refHeight = block.p.height ductBlock.p.height = 99 * block.p.height self.assertGreater(len(block), 3) block.replaceBlockWithBlock(ductBlock) self.assertEqual(block.spatialLocator, refLoc) self.assertEqual(refName, block.name) self.assertEqual(3, len(block)) self.assertEqual(block.p.height, refHeight) def test_getWettedPerimeter(self): cur = self.Block.getWettedPerimeter() ref = math.pi * ( self.Block.getDim(Flags.CLAD, "od") + self.Block.getDim(Flags.WIRE, "od") ) + 6 * self.Block.getDim(Flags.DUCT, "ip") / math.sqrt(3) / self.Block.getDim( Flags.CLAD, "mult" ) self.assertAlmostEqual(cur, ref) def test_getFlowAreaPerPin(self): area = self.Block.getComponent(Flags.COOLANT).getArea() nPins = self.Block.getNumPins() cur = self.Block.getFlowAreaPerPin() ref = area / nPins self.assertAlmostEqual(cur, ref) def test_getHydraulicDiameter(self): cur = self.Block.getHydraulicDiameter() ref = 4.0 * self.Block.getFlowAreaPerPin() / self.Block.getWettedPerimeter() self.assertAlmostEqual(cur, ref) def test_getCladdingOR(self): cur = self.Block.getCladdingOR() ref = self.Block.getDim(Flags.CLAD, "od") / 2.0 self.assertAlmostEqual(cur, ref) def test_getCladdingIR(self): cur = self.Block.getCladdingIR() ref = self.Block.getDim(Flags.CLAD, "id") / 2.0 self.assertAlmostEqual(cur, ref) def test_getFuelRadius(self): cur = self.Block.getFuelRadius() ref = self.Block.getDim(Flags.FUEL, "od") / 2.0 self.assertAlmostEqual(cur, ref) def test_adjustCladThicknessByOD(self): thickness = 0.05 clad = self.Block.getComponent(Flags.CLAD) ref = clad.getDimension("id", cold=True) + 2.0 * thickness self.Block.adjustCladThicknessByOD(thickness) cur = clad.getDimension("od", cold=True) curThickness = ( clad.getDimension("od", cold=True) - clad.getDimension("id", cold=True) ) / 2.0 self.assertAlmostEqual(cur, ref) self.assertAlmostEqual(curThickness, thickness) def test_adjustCladThicknessByID(self): thickness = 0.05 clad = self.Block.getComponent(Flags.CLAD) ref = clad.getDimension("od", cold=True) - 2.0 * thickness self.Block.adjustCladThicknessByID(thickness) cur = clad.getDimension("id", cold=True) curThickness = ( clad.getDimension("od", cold=True) - clad.getDimension("id", cold=True) ) / 2.0 self.assertAlmostEqual(cur, ref) self.assertAlmostEqual(curThickness, thickness) def test_adjustUEnrich(self): self.Block.setHeight(100.0) ref = 0.25 self.Block.adjustUEnrich(ref) cur = self.Block.getComponent(Flags.FUEL).getEnrichment() places = 5 self.assertAlmostEqual(cur, ref, places=places) def test_setLocation(self): b = self.Block # a bit obvious, but location is a property now... i, j = grids.getIndicesFromRingAndPos(2, 3) b.spatialLocator = b.core.spatialGrid[i, j, 0] self.assertEqual(b.getLocation(), "A2003A") self.assertEqual(0, b.spatialLocator.k) self.assertEqual(b.getSymmetryFactor(), 1.0) # now if we don't specify axial, it will move to the new xy, location and have original z index i, j = grids.getIndicesFromRingAndPos(4, 4) b.spatialLocator = b.core.spatialGrid[i, j, 0] self.assertEqual(0, b.spatialLocator.k) self.assertEqual(b.getSymmetryFactor(), 1.0) # center blocks have a different symmetry factor for 1/3rd core for symmetry, powerMult in ( (geometry.FULL_CORE, 1), (geometry.THIRD_CORE + geometry.PERIODIC, 3), ): self.r.core.symmetry = symmetry i, j = grids.getIndicesFromRingAndPos(1, 1) b.spatialLocator = b.core.spatialGrid[i, j, 0] self.assertEqual(0, b.spatialLocator.k) self.assertEqual(b.getSymmetryFactor(), powerMult) def test_setBuLimitInfo(self): cs = settings.getMasterCs() self.Block.adjustUEnrich(0.1) self.Block.setType("igniter fuel") self.Block.setBuLimitInfo(cs) cur = self.Block.p.buLimit ref = 0.0 self.assertEqual(cur, ref) def test_getTotalNDens(self): self.Block.setType("fuel") self.Block.clearNumberDensities() refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W182": 1.09115150103e-05, "W183": 5.89214392093e-06, "W184": 1.26159558164e-05, "W186": 1.17057432664e-05, "ZR": 0.00709003962772, } self.Block.setNumberDensities(refDict) cur = self.Block.getTotalNDens() tot = 0.0 for nucName in refDict.keys(): ndens = self.Block.getNumberDensity(nucName) tot += ndens ref = tot places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_getHMDens(self): self.Block.setType("fuel") self.Block.clearNumberDensities() refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W182": 1.09115150103e-05, "W183": 5.89214392093e-06, "W184": 1.26159558164e-05, "W186": 1.17057432664e-05, "ZR": 0.00709003962772, } self.Block.setNumberDensities(refDict) cur = self.Block.getHMDens() hmDens = 0.0 for nuclide in refDict.keys(): if nucDir.isHeavyMetal(nuclide): # then nuclide is a HM hmDens += self.Block.getNumberDensity(nuclide) ref = hmDens places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_getFissileMassEnrich(self): fuelDims = {"Tinput": 273.0, "Thot": 273.0, "od": 0.76, "id": 0.0, "mult": 1.0} self.fuelComponent = components.Circle("fuel", "UZr", **fuelDims) self.Block.addComponent(self.fuelComponent) self.Block.setHeight(100.0) self.Block.clearNumberDensities() refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W182": 1.09115150103e-05, "W183": 5.89214392093e-06, "W184": 1.26159558164e-05, "W186": 1.17057432664e-05, "ZR": 0.00709003962772, } self.Block.setNumberDensities(refDict) cur = self.Block.getFissileMassEnrich() ref = self.Block.getFissileMass() / self.Block.getHMMass() places = 4 self.assertAlmostEqual(cur, ref, places=places) self.Block.removeComponent(self.fuelComponent) def test_getUraniumMassEnrich(self): self.Block.adjustUEnrich(0.25) ref = 0.25 self.Block.adjustUEnrich(ref) cur = self.Block.getUraniumMassEnrich() places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_getUraniumNumEnrich(self): self.Block.adjustUEnrich(0.25) cur = self.Block.getUraniumNumEnrich() u8 = self.Block.getNumberDensity("U238") u5 = self.Block.getNumberDensity("U235") ref = u5 / (u8 + u5) places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_getNumberOfAtoms(self): self.Block.clearNumberDensities() refDict = { "U235": 0.00275173784234, "U238": 0.0217358415457, "W182": 1.09115150103e-05, "W183": 5.89214392093e-06, "W184": 1.26159558164e-05, "W186": 1.17057432664e-05, "ZR": 0.00709003962772, } self.Block.setNumberDensities(refDict) nucName = "U238" moles = ( self.Block.getNumberOfAtoms(nucName) / units.AVOGADROS_NUMBER ) # about 158 moles refMoles = ( refDict["U238"] * self.Block.getVolume() / (units.MOLES_PER_CC_TO_ATOMS_PER_BARN_CM) ) self.assertAlmostEqual(moles, refMoles) def test_getPuN(self): fuel = self.Block.getComponent(Flags.FUEL) vFrac = fuel.getVolumeFraction() refDict = { "AM241": 2.695633500634074e-05, "U238": 0.015278429635341755, "O16": 0.04829586365251901, "U235": 0.004619446966056436, "PU239": 0.0032640382635406515, "PU238": 4.266845903720035e-06, "PU240": 0.000813669265183342, "PU241": 0.00011209296581262849, "PU242": 2.3078961257395204e-05, } fuel.setNumberDensities({nuc: v / vFrac for nuc, v in refDict.items()}) cur = self.Block.getPuN() ndens = 0.0 for nucName in refDict.keys(): if nucName in ["PU238", "PU239", "PU240", "PU241", "PU242"]: ndens += self.Block.getNumberDensity(nucName) ref = ndens places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_getPuMass(self): fuel = self.Block.getComponent(Flags.FUEL) refDict = { "AM241": 2.695633500634074e-05, "U238": 0.015278429635341755, "O16": 0.04829586365251901, "U235": 0.004619446966056436, "PU239": 0.0032640382635406515, "PU238": 4.266845903720035e-06, "PU240": 0.000813669265183342, "PU241": 0.00011209296581262849, "PU242": 2.3078961257395204e-05, } fuel.setNumberDensities(refDict) cur = self.Block.getPuMass() pu = 0.0 for nucName in refDict.keys(): if nucName in ["PU238", "PU239", "PU240", "PU241", "PU242"]: pu += self.Block.getMass(nucName) self.assertAlmostEqual(cur, pu) def test_adjustDensity(self): u235Dens = 0.003 u238Dens = 0.010 self.Block.setNumberDensity("U235", u235Dens) self.Block.setNumberDensity("U238", u238Dens) mass1 = self.Block.getMass(["U235", "U238"]) densAdj = 0.9 nucList = ["U235", "U238"] massDiff = self.Block.adjustDensity(densAdj, nucList, returnMass=True) mass2 = self.Block.getMass(["U235", "U238"]) cur = self.Block.getNumberDensity("U235") ref = densAdj * u235Dens places = 6 self.assertAlmostEqual(cur, ref, places=places) cur = self.Block.getNumberDensity("U238") ref = densAdj * u238Dens self.assertAlmostEqual(cur, ref, places=places) self.assertAlmostEqual(mass2 - mass1, massDiff) def test_completeInitialLoading(self): area = self.Block.getArea() height = 2.0 self.Block.setHeight(height) self.Block.clearNumberDensities() self.Block.setNumberDensities( { "U238": 0.018518936996911595, "ZR": 0.006040713762820692, "U235": 0.0023444806416701184, "NA23": 0.009810163826158255, } ) self.Block.completeInitialLoading() cur = self.Block.p.molesHmBOL ref = self.Block.getHMDens() / MOLES_PER_CC_TO_ATOMS_PER_BARN_CM * height * area places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_addComponent(self): numComps = len(self.Block.getComponents()) fuelDims = {"Tinput": 25.0, "Thot": 600, "od": 0.76, "id": 0.00, "mult": 127.0} newComp = components.Circle("fuel", "UZr", **fuelDims) self.Block.addComponent(newComp) self.assertEqual(numComps + 1, len(self.Block.getComponents())) self.assertIn(newComp, self.Block.getComponents()) self.Block.removeComponent(newComp) def test_hasComponents(self): self.assertTrue(self.Block.hasComponents([Flags.FUEL, Flags.CLAD])) self.assertTrue(self.Block.hasComponents(Flags.FUEL)) self.assertFalse( self.Block.hasComponents([Flags.FUEL, Flags.CLAD, Flags.DUMMY]) ) def test_getComponentNames(self): cur = self.Block.getComponentNames() ref = set( [ "annular void", "bond", "fuel", "gap1", "inner liner", "gap2", "outer liner", "gap3", "clad", "wire", "coolant", "duct", "interCoolant", ] ) self.assertEqual(cur, ref) def test_getComponents(self): cur = self.Block.getComponents(Flags.FUEL) self.assertEqual(len(cur), 1) comps = self.Block.getComponents(Flags.FUEL) + self.Block.getComponents( Flags.CLAD ) self.assertEqual(len(comps), 2) inter = self.Block.getComponents(Flags.INTERCOOLANT) self.assertEqual(len(inter), 1) inter = self.Block.getComponents( Flags.INTERCOOLANT, exact=True ) # case insensitive self.assertEqual(inter, [self.Block.getComponent(Flags.INTERCOOLANT)]) cool = self.Block.getComponents(Flags.COOLANT, exact=True) self.assertEqual(len(cool), 1) def test_getComponent(self): cur = self.Block.getComponent(Flags.FUEL) self.assertIsInstance(cur, components.Component) inter = self.Block.getComponent(Flags.INTERCOOLANT) self.assertIsInstance(inter, components.Component) with self.assertRaises(KeyError): # this really isnt the responsibility of block, more of Flags, but until this refactor # is over... inter = self.Block.getComponent( Flags.fromString("intercoolantlala"), exact=True ) cool = self.Block.getComponent(Flags.COOLANT, exact=True) self.assertIsInstance(cool, components.Component) def test_getComponentsOfShape(self): ref = [ "annular void", "bond", "fuel", "gap1", "inner liner", "gap2", "outer liner", "gap3", "clad", ] cur = [c.name for c in self.Block.getComponentsOfShape(components.Circle)] self.assertEqual(sorted(ref), sorted(cur)) def test_getComponentsOfMaterial(self): cur = self.Block.getComponentsOfMaterial(materials.UZr()) ref = self.Block.getComponent(Flags.FUEL) self.assertEqual(cur[0], ref) self.assertEqual( self.Block.getComponentsOfMaterial(materials.HT9()), [ self.Block.getComponent(Flags.OUTER | Flags.LINER), self.Block.getComponent(Flags.CLAD), self.Block.getComponent(Flags.WIRE), self.Block.getComponent(Flags.DUCT), ], ) def test_getComponentByName(self): self.assertIsNone( self.Block.getComponentByName("not the droid youre looking for") ) self.assertIsNotNone(self.Block.getComponentByName("annular void")) def test_getSortedComponentsInsideOfComponent(self): """Test that components can be sorted within a block and returned in the correct order.""" expected = [ self.Block.getComponentByName(c) for c in [ "annular void", "bond", "fuel", "gap1", "inner liner", "gap2", "outer liner", "gap3", ] ] clad = self.Block.getComponent(Flags.CLAD) actual = self.Block.getSortedComponentsInsideOfComponent(clad) self.assertListEqual(actual, expected) def test_getSortedComponentsInsideOfComponentSpecifiedTypes(self): expected = [ self.Block.getComponentByName(c) for c in [ "annular void", "bond", "fuel", "gap1", "inner liner", "gap2", "outer liner", "gap3", ] ] clad = self.Block.getComponent(Flags.CLAD) actual = self.Block.getSortedComponentsInsideOfComponent(clad) self.assertListEqual(actual, expected) def test_getNumComponents(self): cur = self.Block.getNumComponents(Flags.FUEL) ref = self.Block.getDim(Flags.FUEL, "mult") self.assertEqual(cur, ref) self.assertEqual(ref, self.Block.getNumComponents(Flags.CLAD)) self.assertEqual(1, self.Block.getNumComponents(Flags.DUCT)) def test_getNumPins(self): cur = self.Block.getNumPins() ref = self.Block.getDim(Flags.FUEL, "mult") self.assertEqual(cur, ref) emptyBlock = blocks.HexBlock("empty") self.assertEqual(emptyBlock.getNumPins(), 0) def test_getComponentAreaFrac(self): def calcFracManually(names): tFrac = 0.0 for n in names: for c, frac in fracs: if c.getName() == n: tFrac += frac return tFrac self.Block.setHeight(2.0) refList = [Flags.BOND, Flags.COOLANT] cur = self.Block.getComponentAreaFrac(refList) fracs = self.Block.getVolumeFractions() ref = calcFracManually(("bond", "coolant")) places = 6 self.assertAlmostEqual(cur, ref, places=places) # allow inexact for things like fuel1, fuel2 or clad vs. cladding val = self.Block.getComponentAreaFrac( [Flags.COOLANT, Flags.INTERCOOLANT], exact=False ) ref = calcFracManually(["coolant", "interCoolant"]) refWrong = calcFracManually( ["coolant", "interCoolant", "clad"] ) # can't use 'clad' b/c ``calcFracManually`` is exact only self.assertAlmostEqual(ref, val) self.assertNotAlmostEqual(refWrong, val) def test100_getPinPitch(self): cur = self.Block.getPinPitch() ref = self.Block.getDim(Flags.CLAD, "od") + self.Block.getDim(Flags.WIRE, "od") places = 6 self.assertAlmostEqual(cur, ref, places=places) def test101_getPitch(self): cur = self.Block.getPitch(returnComp=True) ref = ( self.Block.getDim(Flags.INTERCOOLANT, "op"), self.Block.getComponent(Flags.INTERCOOLANT), ) self.assertEqual(cur, ref) newb = copy.deepcopy(self.Block) p1, c1 = self.Block.getPitch(returnComp=True) p2, c2 = newb.getPitch(returnComp=True) self.assertTrue(c1 is not c2) self.assertTrue(newb.getLargestComponent("op") is c2) self.assertTrue(p1 == p2) def test102_setPitch(self): pitch = 17.5 self.Block.setPitch(pitch) cur = self.Block.getPitch() self.assertEqual(cur, pitch) self.assertEqual( self.Block.getComponent(Flags.INTERCOOLANT).getDimension("op"), pitch ) def test106_getAreaFractions(self): cur = self.Block.getVolumeFractions() tot = 0.0 areas = [] for c in self.Block.getComponents(): a = c.getArea() tot += a areas.append((c, a)) fracs = {} for c, a in areas: fracs[c.getName()] = a / tot places = 6 for (c, a) in cur: self.assertAlmostEqual(a, fracs[c.getName()], places=places) self.assertAlmostEqual(sum(fracs.values()), sum([a for c, a in cur])) def test_rotatePins(self): b = self.Block b.setRotationNum(0) index = b.rotatePins(0, justCompute=True) self.assertEqual(b.getRotationNum(), 0) self.assertEqual(index[5], 5) self.assertEqual(index[2], 2) # pin 1 is center and never rotates. index = b.rotatePins(1) self.assertEqual(b.getRotationNum(), 1) self.assertEqual(index[2], 3) index = b.rotatePins(1) self.assertEqual(b.getRotationNum(), 2) self.assertEqual(index[2], 4) index = b.rotatePins(4) # back to 0 self.assertEqual(b.getRotationNum(), 0) self.assertEqual(index[2], 2) self.assertRaises(ValueError, b.rotatePins, -1) self.assertRaises(ValueError, b.rotatePins, 10) self.assertRaises((ValueError, TypeError), b.rotatePins, None) self.assertRaises((ValueError, TypeError), b.rotatePins, "a") def test_expandElementalToIsotopics(self): r""" Tests the expand to elementals capability. """ initialN = {} initialM = {} elementals = [nuclideBases.byName[nn] for nn in ["FE", "CR", "SI", "V", "MO"]] for elemental in elementals: initialN[elemental] = self.Block.getNumberDensity( elemental.name ) # homogenized initialM[elemental] = self.Block.getMass(elemental.name) for elemental in elementals: self.Block.expandElementalToIsotopics(elemental) newDens = 0.0 newMass = 0.0 for natNuc in elemental.getNaturalIsotopics(): newDens += self.Block.getNumberDensity(natNuc.name) newMass += self.Block.getMass(natNuc.name) self.assertAlmostEqual( initialN[elemental], newDens, msg="Isotopic {2} ndens does not add up to {0}. It adds to {1}" "".format(initialN[elemental], newDens, elemental), ) self.assertAlmostEqual( initialM[elemental], newMass, msg="Isotopic {2} mass does not add up to {0} g. " "It adds to {1}".format(initialM[elemental], newMass, elemental), ) def test_setPitch(self): r""" Checks consistency after adjusting pitch Needed to verify fix to Issue #165. """ b = self.Block moles1 = b.p.molesHmBOL b.setPitch(17.5) moles2 = b.p.molesHmBOL self.assertAlmostEqual(moles1, moles2) b.setPitch(20.0) moles3 = b.p.molesHmBOL self.assertAlmostEqual(moles2, moles3) def test_getMfp(self): """Test mean free path.""" applyDummyData(self.Block) # These are unverified numbers, just the result of this calculation. mfp, mfpAbs, diffusionLength = self.Block.getMfp() # no point testing these number to high accuracy. assert_allclose(3.9, mfp, rtol=0.1) assert_allclose(235.0, mfpAbs, rtol=0.1) assert_allclose(17.0, diffusionLength, rtol=0.1) def test_consistentMassDensityVolumeBetweenColdBlockAndColdComponents(self): block = self.Block expectedData = [] actualData = [] for c in block: expectedData.append(getComponentDataFromBlock(c, block)) actualData.append( (c, c.density(), c.getVolume(), c.density() * c.getVolume()) ) for expected, actual in zip(expectedData, actualData): msg = "Data (component, density, volume, mass) for component {} does not match. Expected: {}, Actual: {}".format( expected[0], expected, actual ) for expectedVal, actualVal in zip(expected, actual): self.assertAlmostEqual(expectedVal, actualVal, msg=msg) def test_consistentMassDensityVolumeBetweenHotBlockAndHotComponents(self): block = self._hotBlock expectedData = [] actualData = [] for c in block: expectedData.append(getComponentDataFromBlock(c, block)) actualData.append( (c, c.density(), c.getVolume(), c.density() * c.getVolume()) ) for expected, actual in zip(expectedData, actualData): msg = "Data (component, density, volume, mass) for component {} does not match. Expected: {}, Actual: {}".format( expected[0], expected, actual ) for expectedVal, actualVal in zip(expected, actual): self.assertAlmostEqual(expectedVal, actualVal, msg=msg) def test_consistentAreaWithOverlappingComponents(self): """ Test that negative gap areas correctly account for area overlapping upon thermal expansion. Notes ----- This test calculates a reference coolant area by subtracting the areas of the intercoolant, duct, wire wrap, and pins from the total hex block area. The area of the pins is calculated using only the outer radius of the clad. This avoids the use of negative areas as implemented in Block.getVolumeFractions. Na-23 mass will not be conserved as when duct/clad expands sodium is evacuated See Also -------- armi.reactor.blocks.Block.getVolumeFractions """ numFE56 = self.Block.getNumberOfAtoms("FE56") numU235 = self.Block.getNumberOfAtoms("U235") for c in self.Block: c.setTemperature(800) hasNegativeArea = any(c.getArea() < 0 for c in self.Block) self.assertTrue(hasNegativeArea) self.Block.getVolumeFractions() # sets coolant area self._testDimensionsAreLinked() # linked dimensions are needed for this test to work blockPitch = self.Block.getPitch() self.assertAlmostEqual( blockPitch, self.Block.getComponent(Flags.INTERCOOLANT).getDimension("op") ) totalHexArea = blockPitch ** 2 * math.sqrt(3) / 2.0 clad = self.Block.getComponent(Flags.CLAD) pinArea = ( math.pi / 4.0 * clad.getDimension("od") ** 2 * clad.getDimension("mult") ) ref = ( totalHexArea - self.Block.getComponent(Flags.INTERCOOLANT).getArea() - self.Block.getComponent(Flags.DUCT).getArea() - self.Block.getComponent(Flags.WIRE).getArea() - pinArea ) self.assertAlmostEqual(totalHexArea, self.Block.getArea()) self.assertAlmostEqual(ref, self.Block.getComponent(Flags.COOLANT).getArea()) self.assertTrue(numpy.allclose(numFE56, self.Block.getNumberOfAtoms("FE56"))) self.assertTrue(numpy.allclose(numU235, self.Block.getNumberOfAtoms("U235"))) def _testDimensionsAreLinked(self): prevC = None for c in self.Block.getComponentsOfShape(components.Circle): if prevC: self.assertAlmostEqual(prevC.getDimension("od"), c.getDimension("id")) prevC = c self.assertAlmostEqual( self.Block.getComponent(Flags.DUCT).getDimension("op"), self.Block.getComponent(Flags.INTERCOOLANT).getDimension("ip"), ) def test_breakFuelComponentsIntoIndividuals(self): fuel = self.Block.getComponent(Flags.FUEL) mult = fuel.getDimension("mult") self.assertGreater(mult, 1.0) self.Block.completeInitialLoading() self.Block.breakFuelComponentsIntoIndividuals() self.assertEqual(fuel.getDimension("mult"), 1.0) def test_plotFlux(self): try: xslib = isotxs.readBinary(ISOAA_PATH) self.Block.r.core.lib = xslib self.Block.p.mgFlux = range(33) self.Block.plotFlux(self.Block.r.core, fName="flux.png", bList=[self.Block]) self.assertTrue(os.path.exists("flux.png")) finally: os.remove("flux.txt") # secondarily created during the call. os.remove("flux.png") # created during the call. def test_pinMgFluxes(self): """ Test setting/getting of pin-wise fluxes. .. warning:: This will likely be pushed to the component level. """ fluxes = numpy.ones((33, 10)) self.Block.setPinMgFluxes(fluxes, 10) self.Block.setPinMgFluxes(fluxes * 2, 10, adjoint=True) self.Block.setPinMgFluxes(fluxes * 3, 10, gamma=True) self.assertEqual(self.Block.p.pinMgFluxes[0][2], 1.0) self.assertEqual(self.Block.p.pinMgFluxesAdj[0][2], 2.0) self.assertEqual(self.Block.p.pinMgFluxesGamma[0][2], 3.0) def test_getComponentsInLinkedOrder(self): comps = self.Block.getComponentsInLinkedOrder() self.assertEqual(len(comps), len(self.Block)) comps.pop(0) with self.assertRaises(RuntimeError): comps2 = self.Block.getComponentsInLinkedOrder(comps) def test_mergeWithBlock(self): fuel1 = self.Block.getComponent(Flags.FUEL) fuel1.setNumberDensity("CM246", 0.0) block2 = loadTestBlock() fuel2 = block2.getComponent(Flags.FUEL) fuel2.setNumberDensity("CM246", 0.02) self.assertEqual(self.Block.getNumberDensity("CM246"), 0.0) self.Block.mergeWithBlock(block2, 0.1) self.assertGreater(self.Block.getNumberDensity("CM246"), 0.0) self.assertLess(self.Block.getNumberDensity("CM246"), 0.02) def test_getDimensions(self): dims = self.Block.getDimensions("od") self.assertIn(self.Block.getComponent(Flags.FUEL).p.od, dims) class HexBlock_TestCase(unittest.TestCase): def setUp(self): caseSetting = settings.Settings() self.HexBlock = blocks.HexBlock("TestHexBlock") hexDims = {"Tinput": 273.0, "Thot": 273.0, "op": 70.6, "ip": 70.0, "mult": 1.0} self.hexComponent = components.Hexagon("duct", "UZr", **hexDims) self.HexBlock.addComponent(self.hexComponent) self.HexBlock.addComponent( components.Circle( "clad", "HT9", Tinput=273.0, Thot=273.0, od=0.1, mult=169.0 ) ) self.HexBlock.addComponent( components.Circle( "wire", "HT9", Tinput=273.0, Thot=273.0, od=0.01, mult=169.0 ) ) self.HexBlock.addComponent( components.DerivedShape("coolant", "Sodium", Tinput=273.0, Thot=273.0) ) r = tests.getEmptyHexReactor() a = makeTestAssembly(1, 1) a.add(self.HexBlock) loc1 = r.core.spatialGrid[0, 1, 0] r.core.add(a, loc1) def test_getArea(self): cur = self.HexBlock.getArea() ref = math.sqrt(3) / 2.0 * 70.6 ** 2 places = 6 self.assertAlmostEqual(cur, ref, places=places) def test_coords(self): r = self.HexBlock.r a = self.HexBlock.parent loc1 = r.core.spatialGrid[0, 1, 0] a.spatialLocator = loc1 x0, y0 = self.HexBlock.coords() a.spatialLocator = r.core.spatialGrid[0, -1, 0] # symmetric x2, y2 = self.HexBlock.coords() a.spatialLocator = loc1 self.HexBlock.p.displacementX = 0.01 self.HexBlock.p.displacementY = 0.02 x1, y1 = self.HexBlock.coords() # make sure displacements are working self.assertAlmostEqual(x1 - x0, 1.0) self.assertAlmostEqual(y1 - y0, 2.0) # make sure location symmetry is working self.assertAlmostEqual(x0, -x2) self.assertAlmostEqual(y0, -y2) def test_getNumPins(self): self.assertEqual(self.HexBlock.getNumPins(), 169) def testSymmetryFactor(self): self.HexBlock.spatialLocator = self.HexBlock.r.core.spatialGrid[ 2, 0, 0 ] # full hex self.HexBlock.clearCache() self.assertEqual(1.0, self.HexBlock.getSymmetryFactor()) a0 = self.HexBlock.getArea() v0 = self.HexBlock.getVolume() m0 = self.HexBlock.getMass() self.HexBlock.spatialLocator = self.HexBlock.r.core.spatialGrid[ 0, 0, 0 ] # 1/3 symmetric self.HexBlock.clearCache() self.assertEqual(3.0, self.HexBlock.getSymmetryFactor()) self.assertEqual(a0 / 3.0, self.HexBlock.getArea()) self.assertEqual(v0 / 3.0, self.HexBlock.getVolume()) self.assertAlmostEqual(m0 / 3.0, self.HexBlock.getMass()) def test_retainState(self): """Ensure retainState restores params and spatialGrids.""" self.HexBlock.spatialGrid = grids.HexGrid.fromPitch(1.0) self.HexBlock.setType("intercoolant") with self.HexBlock.retainState(): self.HexBlock.setType("fuel") self.HexBlock.spatialGrid.changePitch(2.0) self.assertEqual(self.HexBlock.spatialGrid.pitch, 1.0) self.assertTrue(self.HexBlock.hasFlags(Flags.INTERCOOLANT)) def test_getPinCoords(self): xyz = self.HexBlock.getPinCoordinates() x, y, _z = zip(*xyz) self.assertAlmostEqual( y[1], y[2] ) # first two pins should be side by side on top. self.assertNotAlmostEqual(x[1], x[2]) self.assertEqual(len(xyz), self.HexBlock.getNumPins()) def test_getPitchHomogenousBlock(self): """ Demonstrate how to communicate pitch on a hex block with unshaped components. Notes ----- This assumes there are 3 materials in the homogeneous block, one with half the area fraction, and 2 with 1/4 each. """ desiredPitch = 14.0 hexTotalArea = hexagon.area(desiredPitch) compArgs = {"Tinput": 273.0, "Thot": 273.0} areaFractions = [0.5, 0.25, 0.25] materials = ["HT9", "UZr", "Sodium"] # There are 2 ways to do this, the first is to pick a component to be the pitch # defining component, and given it the shape of a hexagon to define the pitch # The hexagon outer pitch (op) is defined by the pitch of the block/assembly. # the ip is defined by whatever thickness is necessary to have the desired area # fraction. The second way is shown in the second half of this test. hexBlock = blocks.HexBlock("TestHexBlock") hexComponentArea = areaFractions[0] * hexTotalArea # Picking 1st material to use for the hex component here, but really the choice # is arbitrary. # area grows quadratically with op ipNeededForCorrectArea = desiredPitch * areaFractions[0] ** 0.5 self.assertEqual( hexComponentArea, hexTotalArea - hexagon.area(ipNeededForCorrectArea) ) hexArgs = {"op": desiredPitch, "ip": ipNeededForCorrectArea, "mult": 1.0} hexArgs.update(compArgs) pitchDefiningComponent = components.Hexagon( "pitchComp", materials[0], **hexArgs ) hexBlock.addComponent(pitchDefiningComponent) # hex component is added, now add the rest as unshaped. for aFrac, material in zip(areaFractions[1:], materials[1:]): unshapedArgs = {"area": hexTotalArea * aFrac} unshapedArgs.update(compArgs) name = f"unshaped {material}" comp = components.UnshapedComponent(name, material, **unshapedArgs) hexBlock.addComponent(comp) self.assertEqual(desiredPitch, hexBlock.getPitch()) self.assertAlmostEqual(hexTotalArea, hexBlock.getMaxArea()) self.assertAlmostEqual(sum(c.getArea() for c in hexBlock), hexTotalArea) # For this second way, we will simply define the 3 components as unshaped, with # the desired area fractions, and make a 4th component that is an infinitely # thin hexagon with the the desired pitch. The downside of this method is that # now the block has a fourth component with no volume. hexBlock = blocks.HexBlock("TestHexBlock") for aFrac, material in zip(areaFractions, materials): unshapedArgs = {"area": hexTotalArea * aFrac} unshapedArgs.update(compArgs) name = f"unshaped {material}" comp = components.UnshapedComponent(name, material, **unshapedArgs) hexBlock.addComponent(comp) # We haven't set a pitch defining component this time so set it now with 0 area. pitchDefiningComponent = components.Hexagon( "pitchComp", "Void", op=desiredPitch, ip=desiredPitch, mult=1, **compArgs ) hexBlock.addComponent(pitchDefiningComponent) self.assertEqual(desiredPitch, hexBlock.getPitch()) self.assertAlmostEqual(hexTotalArea, hexBlock.getMaxArea()) self.assertAlmostEqual(sum(c.getArea() for c in hexBlock), hexTotalArea) class CartesianBlock_TestCase(unittest.TestCase): """Tests for blocks with rectangular/square outer shape.""" PITCH = 70 def setUp(self): caseSetting = settings.Settings() self.cartesianBlock = blocks.CartesianBlock("TestCartesianBlock", caseSetting) self.cartesianComponent = components.HoledSquare( "duct", "UZr", Tinput=273.0, Thot=273.0, holeOD=68.0, widthOuter=self.PITCH, mult=1.0, ) self.cartesianBlock.addComponent(self.cartesianComponent) self.cartesianBlock.addComponent( components.Circle( "clad", "HT9", Tinput=273.0, Thot=273.0, od=68.0, mult=169.0 ) ) def test_getPitchSquare(self): self.assertEqual(self.cartesianBlock.getPitch(), (self.PITCH, self.PITCH)) def test_getPitchHomogenousBlock(self): """ Demonstrate how to communicate pitch on a hex block with unshaped components. Notes ----- This assumes there are 3 materials in the homogeneous block, one with half the area fraction, and 2 with 1/4 each. """ desiredPitch = (10.0, 12.0) rectTotalArea = desiredPitch[0] * desiredPitch[1] compArgs = {"Tinput": 273.0, "Thot": 273.0} areaFractions = [0.5, 0.25, 0.25] materials = ["HT9", "UZr", "Sodium"] # There are 2 ways to do this, the first is to pick a component to be the pitch # defining component, and given it the shape of a rectangle to define the pitch # The rectangle outer dimensions is defined by the pitch of the block/assembly. # the inner dimensions is defined by whatever thickness is necessary to have # the desired area fraction. # The second way is to define all physical material components as unshaped, and # add an additional infinitely thin Void component (no area) that defines pitch. # See second part of HexBlock_TestCase.test_getPitchHomogenousBlock for # demonstration. cartBlock = blocks.CartesianBlock("TestCartBlock") hexComponentArea = areaFractions[0] * rectTotalArea # Picking 1st material to use for the hex component here, but really the choice # is arbitrary. # area grows quadratically with outer dimensions. # Note there are infinitely many inner dims that would preserve area, # this is just one of them. innerDims = [dim * areaFractions[0] ** 0.5 for dim in desiredPitch] self.assertAlmostEqual( hexComponentArea, rectTotalArea - innerDims[0] * innerDims[1] ) rectArgs = { "lengthOuter": desiredPitch[0], "lengthInner": innerDims[0], "widthOuter": desiredPitch[1], "widthInner": innerDims[1], "mult": 1.0, } rectArgs.update(compArgs) pitchDefiningComponent = components.Rectangle( "pitchComp", materials[0], **rectArgs ) cartBlock.addComponent(pitchDefiningComponent) # Rectangle component is added, now add the rest as unshaped. for aFrac, material in zip(areaFractions[1:], materials[1:]): unshapedArgs = {"area": rectTotalArea * aFrac} unshapedArgs.update(compArgs) name = f"unshaped {material}" comp = components.UnshapedComponent(name, material, **unshapedArgs) cartBlock.addComponent(comp) self.assertEqual(desiredPitch, cartBlock.getPitch()) self.assertAlmostEqual(rectTotalArea, cartBlock.getMaxArea()) self.assertAlmostEqual(sum(c.getArea() for c in cartBlock), rectTotalArea) class MassConservationTests(unittest.TestCase): r""" Tests designed to verify mass conservation during thermal expansion """ def setUp(self): # build a block that has some basic components in it. self.b = blocks.HexBlock("fuel", height=10.0) fuelDims = {"Tinput": 25.0, "Thot": 600, "od": 0.76, "id": 0.00, "mult": 127.0} cladDims = {"Tinput": 25.0, "Thot": 450, "od": 0.80, "id": 0.77, "mult": 127.0} ductDims = {"Tinput": 25.0, "Thot": 400, "op": 16, "ip": 15.3, "mult": 1.0} coolDims = {"Tinput": 25.0, "Thot": 400} fuel = components.Circle("fuel", "UZr", **fuelDims) clad = components.Circle("clad", "HT9", **cladDims) duct = components.Hexagon("duct", "HT9", **ductDims) coolant = components.DerivedShape("coolant", "Sodium", **coolDims) self.b.addComponent(fuel) self.b.addComponent(clad) self.b.addComponent(duct) self.b.addComponent(coolant) self.b.getVolumeFractions() # TODO: remove, should be no-op when removed self.cached def test_adjustSmearDensity(self): r""" Tests the getting, setting, and getting of smear density functions """ bolBlock = copy.deepcopy(self.b) s = self.b.getSmearDensity(cold=False) fuel = self.b.getComponent(Flags.FUEL) clad = self.b.getComponent(Flags.CLAD) self.assertAlmostEqual( s, (fuel.getDimension("od") ** 2) / clad.getDimension("id") ** 2, 8 ) self.b.adjustSmearDensity(self.b.getSmearDensity(), bolBlock=bolBlock) s2 = self.b.getSmearDensity(cold=False) self.assertAlmostEqual(s, s2, 8) self.b.adjustSmearDensity(0.733, bolBlock=bolBlock) self.assertAlmostEqual(0.733, self.b.getSmearDensity(), 8) # try annular fuel clad = self.b.getComponent(Flags.CLAD) fuel = self.b.getComponent(Flags.FUEL) fuel.setDimension("od", clad.getDimension("id", cold=True)) fuel.setDimension("id", 0.0001) self.b.adjustSmearDensity(0.733, bolBlock=bolBlock) self.assertAlmostEqual(0.733, self.b.getSmearDensity(), 8) def test_heightExpansionDifferences(self): r""" The point of this test is to determine if the number densities stay the same with two different heights of the same block. Since we want to expand a block from cold temperatures to hot using the fuel expansion coefficient (most important neutronicall), other components are not grown correctly. This means that on the block level, axial expansion will NOT conserve mass of non-fuel components. However, the excess mass is simply added to the top of the reactor in the plenum regions (or any non fueled region). """ # assume the default block height is 'cold' height. Now we must determine # what the hot height should be based on thermal expansion. Change the height # of the block based on the different thermal expansions of the components then # see the effect on the number densities. fuel = self.b.getComponent(Flags.FUEL) height = self.b.getHeight() Thot = fuel.temperatureInC Tcold = fuel.inputTemperatureInC dllHot = fuel.getProperties().linearExpansionFactor(Tc=Thot, T0=Tcold) hotFuelHeight = height * (1 + dllHot) self.b.setHeight(hotFuelHeight) hotFuelU238 = self.b.getNumberDensity("U238") hotFuelIRON = self.b.getNumberDensity("FE") # look at clad clad = self.b.getComponent(Flags.CLAD) Thot = clad.temperatureInC Tcold = clad.inputTemperatureInC dllHot = fuel.getProperties().linearExpansionFactor(Tc=Thot, T0=Tcold) hotCladHeight = height * (1 + dllHot) self.b.setHeight(hotCladHeight) hotCladU238 = self.b.getNumberDensity("U238") hotCladIRON = self.b.getNumberDensity("FE") self.assertAlmostEqual( hotFuelU238, hotCladU238, 10, "Number Density of fuel in one height ({0}) != number density of fuel at another height {1}. Number density conservation " "violated during thermal expansion".format(hotFuelU238, hotCladU238), ) self.assertAlmostEqual( hotFuelIRON, hotCladIRON, 10, "Number Density of clad in one height ({0}) != number density of clad at another height {1}. Number density conservation " "violated during thermal expansion".format(hotFuelIRON, hotCladIRON), ) def test_massFuelHeatup(self): fuel = self.b.getComponent(Flags.FUEL) massCold = fuel.getMass() fuel.setTemperature(100) massHot = fuel.getMass() self.assertAlmostEqual( massCold, massHot, 10, "Cold mass of fuel ({0}) != hot mass {1}. Mass conservation " "violated during thermal expansion".format(massCold, massHot), ) def test_massCladHeatup(self): cladding = self.b.getComponent(Flags.CLAD) massCold = cladding.getMass() cladding.setTemperature(100) massHot = cladding.getMass() self.assertAlmostEqual( massCold, massHot, 10, "Cold mass of clad ({0}) != hot mass {1}. Mass conservation " "violated during thermal expansion".format(massCold, massHot), ) def test_massDuctHeatup(self): duct = self.b.getComponent(Flags.DUCT) massCold = duct.getMass() duct.setTemperature(100) massHot = duct.getMass() self.assertAlmostEqual( massCold, massHot, 10, "Cold mass of duct ({0}) != hot mass {1}. Mass conservation " "violated during thermal expansion".format(massCold, massHot), ) def test_massCoolHeatup(self): """Make sure mass of coolant goes down when it heats up.""" coolant = self.b.getComponent(Flags.COOLANT) massCold = coolant.getMass() coolant.setTemperature(coolant.temperatureInC + 100) massHot = coolant.getMass() self.assertGreater( massCold, massHot, "Cold mass of coolant ({0}) <= hot mass {1}. Mass conservation " "not violated during thermal expansion of coolant".format( massCold, massHot ), ) def test_dimensionDuctHeatup(self): duct = self.b.getComponent(Flags.DUCT) pitchCold = duct.getDimension("op", cold=True) duct.setTemperature(100) pitchHot = duct.getDimension("op") dLL = duct.getProperties().linearExpansionFactor(100, 25) correctHot = pitchCold * (1 + dLL) self.assertAlmostEqual( correctHot, pitchHot, 10, "Theoretical pitch of duct ({0}) != hot pitch {1}. Linear expansion " "violated during heatup. \nTc={tc} Tref={tref} dLL={dLL} cold={pcold}".format( correctHot, pitchHot, tc=duct.temperatureInC, tref=duct.inputTemperatureInC, dLL=dLL, pcold=pitchCold, ), ) def test_coldMass(self): """ Verify that the cold mass is what it should be, even though the hot height is input. At the cold temperature (but with hot height), the mass should be the same as at hot temperature and hot height. """ fuel = self.b.getComponent(Flags.FUEL) # set ref (input/cold) temperature. Thot = fuel.temperatureInC Tcold = fuel.inputTemperatureInC fuel.setTemperature(Tcold) massCold = fuel.getMass() fuelArea = fuel.getArea() height = self.b.getHeight() # hot height. rho = fuel.getProperties().density(Tc=Tcold) dllHot = fuel.getProperties().linearExpansionFactor(Tc=Thot, T0=Tcold) coldHeight = height / (1 + dllHot) theoreticalMass = fuelArea * coldHeight * rho self.assertAlmostEqual( massCold, theoreticalMass, 7, "Cold mass of fuel ({0}) != theoretical mass {1}. " "Check calculation of cold mass".format(massCold, theoreticalMass), ) def test_massConsistency(self): r""" Verify that the sum of the component masses equals the total mass. """ tMass = 0.0 for child in self.b: tMass += child.getMass() bMass = self.b.getMass() self.assertAlmostEqual( tMass, bMass, 10, "Sum of component mass {0} != total block mass {1}. ".format(tMass, bMass), ) if __name__ == "__main__": # import sys;sys.argv = ['', '-f'] unittest.main()
34.946309
134
0.601631
794eb619f3b50a8fd8d5302c7fc00901f29e9b6f
113
py
Python
src/pycounts_rr/__init__.py
rrrohit1/pycounts_rr
c86167bf0175bf82fcd470526cdb780e74907c13
[ "MIT" ]
null
null
null
src/pycounts_rr/__init__.py
rrrohit1/pycounts_rr
c86167bf0175bf82fcd470526cdb780e74907c13
[ "MIT" ]
null
null
null
src/pycounts_rr/__init__.py
rrrohit1/pycounts_rr
c86167bf0175bf82fcd470526cdb780e74907c13
[ "MIT" ]
null
null
null
# read version from installed package from importlib.metadata import version __version__ = version("pycounts_rr")
37.666667
38
0.831858
794eb6b0f0e36d35c78cafd7d5c4c2e15356e667
2,628
py
Python
play/number_theory/utils.py
MuggleWei/Hakuna_Matata
6a3a012dc2a5942599098d94e90e9381d660500d
[ "WTFPL" ]
null
null
null
play/number_theory/utils.py
MuggleWei/Hakuna_Matata
6a3a012dc2a5942599098d94e90e9381d660500d
[ "WTFPL" ]
30
2020-03-04T21:59:09.000Z
2022-01-04T16:46:52.000Z
play/number_theory/utils.py
MuggleWei/Hakuna_Matata
6a3a012dc2a5942599098d94e90e9381d660500d
[ "WTFPL" ]
null
null
null
from sympy import symbols, Poly def is_square(n): """ 判断n是否是平方数 :param n: :return: True或False """ low = 1 high = n while low <= high: mid = int((low + high) / 2) power = mid * mid if power > n: high = mid - 1 elif power < n: low = mid + 1 else: return True return False def euclidean_gcd(a, b): """ 使用欧几里得算法, 计算两个数的最大公约数 :param a: :param b: :return: gcd(a,b) """ if a == 0 and b == 0: return 0 elif a == 0 and b != 0: return b elif a != 0 and b == 0: return a while b != 0: # 不使用 % , 因为 % 在不同的编程语言中的结果可能是不同的(虽然都是同余的) # a, b = b, a % b q = int(a / b) r = a - q * b a, b = b, r return a def euclidean_linear_combination(a, b, show_trace=False): """ 求线性方程的 ax + by = gcd(a,b) 的一个解 (x1, y1) 根据线性方程定理, 方程的一般解可由 (x1 + k * (b / g), y1 - k * (a / g)) 得到 其中 g = gcd(a,b), k为任意整数 :param a: :param b: :param show_trace: 显示计算过程 :return: 返回 x1, y1, gcd(a,b) """ if a == 0 and b == 0: return 0, 0, 0 elif a == 0 and b != 0: return 0, 1, b elif a != 0 and b == 0: return 1, 0, a # 使用欧几里得算法求最大公约数并记录中间过程的除数与余数 q_list = [] r_list = [a, b] while b != 0: q = int(a / b) r = a - q * b q_list.append(q) a, b = b, r r_list.append(r) g = a # 递推获取得到解的方程 a, b = symbols('a b') eq_list = [] eq_list.append(a) eq_list.append(b) len_list = len(q_list) - 1 for i in range(len_list): eq_list.append(eq_list[i] - q_list[i] * eq_list[i + 1]) if show_trace is True: print("{} = {} * {} + {} => {} = {}".format( r_list[i], q_list[i], r_list[i + 1], r_list[i + 2], r_list[i + 2], eq_list[-1])) # 获取方程中a, b的系数 p = Poly(eq_list[-1]) x1 = None y1 = None for monom, coeff in p.as_dict().items(): if monom[0] == 1: x1 = coeff elif monom[1] == 1: y1 = coeff else: continue return x1, y1, g def linear_congruence(a, c, m): """ 求线性同余方程 ax=c(mod m) 的解 :param a: :param c: :param m: :return: 解的列表 """ if a == 0 or m == 0: raise Exception("linear congruence input invalid arguments") u, v, g = euclidean_linear_combination(a, m) if int(c / g) * g != c: return [] sol_list = [] x0 = int(u * c / g) for k in range(0, g): sol_list.append(x0 + int(k * m / g)) return sol_list
21.719008
96
0.465753
794eb7d6cd9290dbe957f861502a7db156fe7366
59,861
py
Python
official/benchmark/keras_imagenet_benchmark.py
MaverickLegacy/FollowDetect
29331b13fa74e6fe1a8efa370f2e3de082b20fc6
[ "Apache-2.0" ]
1
2020-08-14T18:16:22.000Z
2020-08-14T18:16:22.000Z
official/benchmark/keras_imagenet_benchmark.py
MaverickLegacy/FollowDetect
29331b13fa74e6fe1a8efa370f2e3de082b20fc6
[ "Apache-2.0" ]
7
2020-09-26T01:03:33.000Z
2022-02-10T01:30:14.000Z
official/benchmark/keras_imagenet_benchmark.py
MaverickLegacy/FollowDetect
29331b13fa74e6fe1a8efa370f2e3de082b20fc6
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Executes Keras benchmarks and accuracy tests.""" # pylint: disable=line-too-long from __future__ import print_function import json import os import time from typing import Any, MutableMapping, Optional from absl import flags import tensorflow as tf # pylint: disable=g-bad-import-order from official.benchmark import benchmark_wrappers from official.benchmark import keras_benchmark from official.benchmark.models import resnet_imagenet_main from official.vision.image_classification import classifier_trainer MIN_TOP_1_ACCURACY = 0.76 MAX_TOP_1_ACCURACY = 0.77 MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65 MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68 # Range of top-1 accracies for model optimization techniques. # Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY). MODEL_OPTIMIZATION_TOP_1_ACCURACY = { 'RESNET50_FINETUNE_PRUNING': (0.76, 0.77), 'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68), } FLAGS = flags.FLAGS def _get_classifier_parameters( num_gpus: int = 0, builder: str = 'records', skip_eval: bool = False, distribution_strategy: str = 'mirrored', per_replica_batch_size: int = 128, epochs: int = 90, steps: int = 0, epochs_between_evals: int = 1, dtype: str = 'float32', enable_xla: bool = False, run_eagerly: bool = False, gpu_thread_mode: Optional[str] = None, dataset_num_private_threads: Optional[int] = None, loss_scale: Optional[str] = None) -> MutableMapping[str, Any]: """Gets classifier trainer's ResNet parameters.""" return { 'runtime': { 'num_gpus': num_gpus, 'distribution_strategy': distribution_strategy, 'run_eagerly': run_eagerly, 'enable_xla': enable_xla, 'dataset_num_private_threads': dataset_num_private_threads, 'gpu_thread_mode': gpu_thread_mode, 'loss_scale': loss_scale, }, 'train_dataset': { 'builder': builder, 'use_per_replica_batch_size': True, 'batch_size': per_replica_batch_size, 'image_size': 224, 'dtype': dtype, }, 'validation_dataset': { 'builder': builder, 'batch_size': per_replica_batch_size, 'use_per_replica_batch_size': True, 'image_size': 224, 'dtype': dtype, }, 'train': { 'epochs': epochs, 'steps': steps, 'callbacks': { 'enable_tensorboard': False, 'enable_checkpoint_and_export': False, 'enable_time_history': True, }, }, 'model': { 'loss': { 'label_smoothing': 0.1, }, }, 'evaluation': { 'epochs_between_evals': epochs_between_evals, 'skip_eval': skip_eval, }, } class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark): """Benchmark accuracy tests for ResNet50 in Keras.""" def __init__(self, output_dir: Optional[str] = None, root_data_dir: Optional[str] = None, **kwargs): """A benchmark class. Args: output_dir: directory where to output e.g. log files root_data_dir: directory under which to look for dataset **kwargs: arbitrary named arguments. This is needed to make the constructor forward compatible in case PerfZero provides more named arguments before updating the constructor. """ flag_methods = [classifier_trainer.define_classifier_flags] self.data_dir = os.path.join(root_data_dir, 'imagenet') super(Resnet50KerasAccuracy, self).__init__( output_dir=output_dir, flag_methods=flag_methods) @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark( self, experiment_name: str, top_1_min: float = MIN_TOP_1_ACCURACY, top_1_max: float = MAX_TOP_1_ACCURACY, num_gpus: int = 0, distribution_strategy: str = 'mirrored', per_replica_batch_size: int = 128, epochs: int = 90, steps: int = 0, epochs_between_evals: int = 1, dtype: str = 'float32', enable_xla: bool = False, run_eagerly: bool = False, gpu_thread_mode: Optional[str] = None, dataset_num_private_threads: Optional[int] = None, loss_scale: Optional[str] = None): """Runs and reports the benchmark given the provided configuration.""" FLAGS.model_type = 'resnet' FLAGS.dataset = 'imagenet' FLAGS.mode = 'train_and_eval' FLAGS.data_dir = self.data_dir FLAGS.model_dir = self._get_model_dir(experiment_name) parameters = _get_classifier_parameters( num_gpus=num_gpus, distribution_strategy=distribution_strategy, per_replica_batch_size=per_replica_batch_size, epochs=epochs, steps=steps, epochs_between_evals=epochs_between_evals, dtype=dtype, enable_xla=enable_xla, run_eagerly=run_eagerly, gpu_thread_mode=gpu_thread_mode, dataset_num_private_threads=dataset_num_private_threads, loss_scale=loss_scale) FLAGS.params_override = json.dumps(parameters) total_batch_size = num_gpus * per_replica_batch_size start_time_sec = time.time() stats = classifier_trainer.run(flags.FLAGS) wall_time_sec = time.time() - start_time_sec super(Resnet50KerasAccuracy, self)._report_benchmark( stats, wall_time_sec, top_1_min=top_1_min, top_1_max=top_1_max, total_batch_size=total_batch_size, log_steps=100) def benchmark_8_gpu(self): """Tests Keras model with eager, dist_strat and 8 GPUs.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu', num_gpus=8, per_replica_batch_size=128, epochs=90, epochs_between_evals=10, dtype='float32') def benchmark_8_gpu_fp16(self): """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu_fp16', num_gpus=8, per_replica_batch_size=256, epochs=90, epochs_between_evals=10, dtype='float16') def benchmark_xla_8_gpu_fp16(self): """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_fp16', num_gpus=8, per_replica_batch_size=256, epochs=90, epochs_between_evals=10, dtype='float16', enable_xla=True) def benchmark_xla_8_gpu_fp16_dynamic(self): """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_fp16_dynamic', top_1_min=0.736, num_gpus=8, per_replica_batch_size=256, epochs=90, epochs_between_evals=10, dtype='float16', loss_scale='dynamic') def _get_model_dir(self, folder_name): return os.path.join(self.output_dir, folder_name) class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark): """Benchmark accuracy tests for MobilenetV1 in Keras.""" def __init__(self, output_dir=None, root_data_dir=None, **kwargs): """A benchmark class. Args: output_dir: directory where to output e.g. log files root_data_dir: directory under which to look for dataset **kwargs: arbitrary named arguments. This is needed to make the constructor forward compatible in case PerfZero provides more named arguments before updating the constructor. """ flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags] self.data_dir = os.path.join(root_data_dir, 'imagenet') super(MobilenetV1KerasAccuracy, self).__init__( output_dir=output_dir, flag_methods=flag_methods, default_flags={ 'model': 'mobilenet', 'optimizer': 'mobilenet_default', 'initial_learning_rate_per_sample': 0.00039, }) def benchmark_8_gpu(self): """Test Keras model with eager, dist_strat and 8 GPUs.""" self._setup() FLAGS.num_gpus = 8 FLAGS.data_dir = self.data_dir FLAGS.batch_size = 128 * 8 FLAGS.train_epochs = 90 FLAGS.epochs_between_evals = 10 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') FLAGS.dtype = 'fp32' FLAGS.enable_eager = True self._run_and_report_benchmark() @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY, top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY): start_time_sec = time.time() stats = resnet_imagenet_main.run(flags.FLAGS) wall_time_sec = time.time() - start_time_sec super(MobilenetV1KerasAccuracy, self)._report_benchmark( stats, wall_time_sec, top_1_min=top_1_min, top_1_max=top_1_max, total_batch_size=FLAGS.batch_size, log_steps=100) def _get_model_dir(self, folder_name): return os.path.join(self.output_dir, folder_name) class Resnet50KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark): """Resnet50 (classifier_trainer) benchmarks.""" def __init__(self, output_dir=None, default_flags=None, tpu=None, dataset_builder='records', train_epochs=1, train_steps=110, data_dir=None): flag_methods = [classifier_trainer.define_classifier_flags] self.dataset_builder = dataset_builder self.train_epochs = train_epochs self.train_steps = train_steps self.data_dir = data_dir super(Resnet50KerasClassifierBenchmarkBase, self).__init__( output_dir=output_dir, flag_methods=flag_methods, default_flags=default_flags, tpu=tpu) @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark( self, experiment_name: str, skip_steps: Optional[int] = None, top_1_min: float = MIN_TOP_1_ACCURACY, top_1_max: float = MAX_TOP_1_ACCURACY, num_gpus: int = 0, num_tpus: int = 0, distribution_strategy: str = 'mirrored', per_replica_batch_size: int = 128, epochs_between_evals: int = 1, dtype: str = 'float32', enable_xla: bool = False, run_eagerly: bool = False, gpu_thread_mode: Optional[str] = None, dataset_num_private_threads: Optional[int] = None, loss_scale: Optional[str] = None): """Runs and reports the benchmark given the provided configuration.""" FLAGS.model_type = 'resnet' FLAGS.dataset = 'imagenet' FLAGS.mode = 'train_and_eval' FLAGS.data_dir = self.data_dir FLAGS.model_dir = self._get_model_dir(experiment_name) parameters = _get_classifier_parameters( builder=self.dataset_builder, skip_eval=True, num_gpus=num_gpus, distribution_strategy=distribution_strategy, per_replica_batch_size=per_replica_batch_size, epochs=self.train_epochs, steps=self.train_steps, epochs_between_evals=epochs_between_evals, dtype=dtype, enable_xla=enable_xla, gpu_thread_mode=gpu_thread_mode, dataset_num_private_threads=dataset_num_private_threads, loss_scale=loss_scale) FLAGS.params_override = json.dumps(parameters) if distribution_strategy == 'tpu': total_batch_size = num_tpus * per_replica_batch_size else: total_batch_size = num_gpus * per_replica_batch_size start_time_sec = time.time() stats = classifier_trainer.run(flags.FLAGS) wall_time_sec = time.time() - start_time_sec # Number of logged step time entries that are excluded in performance # report. We keep results from last 100 batches, or skip the steps based on # input skip_steps. warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps super(Resnet50KerasClassifierBenchmarkBase, self)._report_benchmark( stats, wall_time_sec, total_batch_size=total_batch_size, log_steps=FLAGS.log_steps, warmup=warmup, start_time_sec=start_time_sec) def benchmark_1_gpu_no_dist_strat(self): """Tests Keras model with 1 GPU, no distribution strategy.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_1_gpu_no_dist_strat', num_gpus=1, distribution_strategy='off', per_replica_batch_size=128) def benchmark_1_gpu_no_dist_strat_run_eagerly(self): """Tests Keras model with 1 GPU, no distribution strategy, run eagerly.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly', num_gpus=1, run_eagerly=True, distribution_strategy='off', per_replica_batch_size=64) def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self): """Tests with 1 GPU, no distribution strategy, fp16, run eagerly.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16', num_gpus=1, run_eagerly=True, distribution_strategy='off', dtype='float16', per_replica_batch_size=128) def benchmark_1_gpu(self): """Tests Keras model with 1 GPU.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_1_gpu', num_gpus=1, distribution_strategy='one_device', per_replica_batch_size=128) def benchmark_xla_1_gpu(self): """Tests Keras model with XLA and 1 GPU.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_1_gpu', num_gpus=1, enable_xla=True, distribution_strategy='one_device', per_replica_batch_size=128) def benchmark_1_gpu_fp16(self): """Tests Keras model with 1 GPU and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_1_gpu_fp16', num_gpus=1, distribution_strategy='one_device', dtype='float16', per_replica_batch_size=256) def benchmark_1_gpu_fp16_dynamic(self): """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_1_gpu_fp16_dynamic', num_gpus=1, distribution_strategy='one_device', dtype='float16', per_replica_batch_size=256, loss_scale='dynamic') def benchmark_xla_1_gpu_fp16(self): """Tests Keras model with XLA, 1 GPU and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_1_gpu_fp16', num_gpus=1, enable_xla=True, distribution_strategy='one_device', dtype='float16', per_replica_batch_size=256) def benchmark_xla_1_gpu_fp16_tweaked(self): """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_1_gpu_fp16_tweaked', num_gpus=1, enable_xla=True, distribution_strategy='one_device', dtype='float16', per_replica_batch_size=256, gpu_thread_mode='gpu_private') def benchmark_xla_1_gpu_fp16_dynamic(self): """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_1_gpu_fp16_dynamic', num_gpus=1, enable_xla=True, distribution_strategy='one_device', dtype='float16', per_replica_batch_size=256, loss_scale='dynamic') def benchmark_8_gpu(self): """Tests Keras model with 8 GPUs.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu', num_gpus=8, distribution_strategy='mirrored', per_replica_batch_size=128) def benchmark_8_gpu_tweaked(self): """Tests Keras model with manual config tuning and 8 GPUs.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu_tweaked', num_gpus=8, distribution_strategy='mirrored', per_replica_batch_size=128, dataset_num_private_threads=14) def benchmark_xla_8_gpu(self): """Tests Keras model with XLA and 8 GPUs.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu', num_gpus=8, enable_xla=True, distribution_strategy='mirrored', per_replica_batch_size=128) def benchmark_xla_8_gpu_tweaked(self): """Tests Keras model with manual config tuning, 8 GPUs, and XLA.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_tweaked', num_gpus=8, enable_xla=True, distribution_strategy='mirrored', per_replica_batch_size=128, gpu_thread_mode='gpu_private', dataset_num_private_threads=24) def benchmark_8_gpu_fp16(self): """Tests Keras model with 8 GPUs and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu_fp16', num_gpus=8, dtype='float16', distribution_strategy='mirrored', per_replica_batch_size=256) def benchmark_8_gpu_fp16_tweaked(self): """Tests Keras model with 8 GPUs, fp16, and manual config tuning.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu_fp16_tweaked', num_gpus=8, dtype='float16', distribution_strategy='mirrored', per_replica_batch_size=256, gpu_thread_mode='gpu_private', dataset_num_private_threads=40) def benchmark_8_gpu_fp16_dynamic_tweaked(self): """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked', num_gpus=8, dtype='float16', distribution_strategy='mirrored', per_replica_batch_size=256, loss_scale='dynamic', gpu_thread_mode='gpu_private', dataset_num_private_threads=40) def benchmark_xla_8_gpu_fp16(self): """Tests Keras model with XLA, 8 GPUs and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_fp16', dtype='float16', num_gpus=8, enable_xla=True, distribution_strategy='mirrored', per_replica_batch_size=256) def benchmark_xla_8_gpu_fp16_tweaked(self): """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_fp16_tweaked', dtype='float16', num_gpus=8, enable_xla=True, distribution_strategy='mirrored', per_replica_batch_size=256, gpu_thread_mode='gpu_private', dataset_num_private_threads=48) def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self): """Tests with manual config tuning, XLA, 8 GPUs and fp16. Delay performance measurement for stable performance on 96 vCPU platforms. """ self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure', dtype='float16', num_gpus=8, enable_xla=True, distribution_strategy='mirrored', per_replica_batch_size=256, gpu_thread_mode='gpu_private', dataset_num_private_threads=48, steps=310) def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self): """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked', dtype='float16', num_gpus=8, enable_xla=True, distribution_strategy='mirrored', per_replica_batch_size=256, gpu_thread_mode='gpu_private', loss_scale='dynamic', dataset_num_private_threads=48) def benchmark_2x2_tpu_bf16(self): """Test Keras model with 2x2 TPU, bf16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_2x2_tpu_bf16', dtype='bfloat16', num_tpus=8, distribution_strategy='tpu', per_replica_batch_size=128) def benchmark_4x4_tpu_bf16(self): """Test Keras model with 4x4 TPU, bf16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_4x4_tpu_bf16', dtype='bfloat16', num_tpus=32, distribution_strategy='tpu', per_replica_batch_size=128) def benchmark_8x8_tpu_bf16(self): """Test Keras model with 8x8 TPU, bf16.""" self._setup() self._run_and_report_benchmark( experiment_name='benchmark_8x8_tpu_bf16', dtype='bfloat16', num_tpus=128, distribution_strategy='tpu', per_replica_batch_size=64) def fill_report_object(self, stats): super(Resnet50KerasClassifierBenchmarkBase, self).fill_report_object( stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps) class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark): """Resnet50 benchmarks.""" def __init__(self, output_dir=None, default_flags=None, tpu=None): flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags] super(Resnet50KerasBenchmarkBase, self).__init__( output_dir=output_dir, flag_methods=flag_methods, default_flags=default_flags, tpu=tpu) @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, skip_steps=None): start_time_sec = time.time() stats = resnet_imagenet_main.run(FLAGS) wall_time_sec = time.time() - start_time_sec # Number of logged step time entries that are excluded in performance # report. We keep results from last 100 batches, or skip the steps based on # input skip_steps. warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps super(Resnet50KerasBenchmarkBase, self)._report_benchmark( stats, wall_time_sec, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps, warmup=warmup, start_time_sec=start_time_sec) def benchmark_1_gpu_no_dist_strat(self): """Test Keras model with 1 GPU, no distribution strategy.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat') FLAGS.batch_size = 128 self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly(self): """Test Keras model with 1 GPU, no distribution strategy, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly') FLAGS.batch_size = 64 self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self): """Test Keras model with 1 GPU, no distribution strategy, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.explicit_gpu_placement = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked') FLAGS.batch_size = 64 self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self): """Test with 1 GPU, no distribution strategy, fp16, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16') FLAGS.dtype = 'fp16' FLAGS.batch_size = 128 self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self): """Test with 1 GPU, no distribution strategy, fp16, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.explicit_gpu_placement = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked') FLAGS.dtype = 'fp16' FLAGS.batch_size = 128 self._run_and_report_benchmark() def benchmark_1_gpu(self): """Test Keras model with 1 GPU.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') FLAGS.batch_size = 128 self._run_and_report_benchmark() def benchmark_1_gpu_amp(self): """Test Keras model with 1 GPU with automatic mixed precision.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.dtype = 'fp16' FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp') FLAGS.batch_size = 256 self._run_and_report_benchmark() def benchmark_xla_1_gpu(self): """Test Keras model with XLA and 1 GPU.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu') FLAGS.batch_size = 128 self._run_and_report_benchmark() def benchmark_xla_1_gpu_amp(self): """Test Keras model with XLA and 1 GPU with automatic mixed precision.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.dtype = 'fp16' FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp') FLAGS.batch_size = 256 self._run_and_report_benchmark() def benchmark_1_gpu_fp16(self): """Test Keras model with 1 GPU and fp16.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 self._run_and_report_benchmark() def benchmark_1_gpu_fp16_dynamic(self): """Test Keras model with 1 GPU, fp16, and dynamic loss scaling.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() def benchmark_xla_1_gpu_fp16(self): """Test Keras model with XLA, 1 GPU and fp16.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 self._run_and_report_benchmark() def benchmark_xla_1_gpu_fp16_tweaked(self): """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 FLAGS.tf_gpu_thread_mode = 'gpu_private' self._run_and_report_benchmark() def benchmark_xla_1_gpu_fp16_dynamic(self): """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 FLAGS.loss_scale = 'dynamic' self._run_and_report_benchmark() def benchmark_8_gpu(self): """Test Keras model with 8 GPUs.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') FLAGS.batch_size = 128 * 8 # 8 GPUs self._run_and_report_benchmark() def benchmark_8_gpu_amp(self): """Test Keras model with 8 GPUs with automatic mixed precision.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.dtype = 'fp16' FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp') FLAGS.batch_size = 256 * 8 # 8 GPUs self._run_and_report_benchmark() def benchmark_8_gpu_tweaked(self): """Test Keras model with manual config tuning and 8 GPUs.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked') FLAGS.batch_size = 128 * 8 # 8 GPUs FLAGS.datasets_num_private_threads = 14 self._run_and_report_benchmark() def benchmark_xla_8_gpu(self): """Test Keras model with XLA and 8 GPUs.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu') FLAGS.batch_size = 128 * 8 # 8 GPUs self._run_and_report_benchmark() def benchmark_xla_8_gpu_amp(self): """Test Keras model with XLA and 8 GPUs with automatic mixed precision.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.dtype = 'fp16' FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp') FLAGS.batch_size = 256 * 8 # 8 GPUs self._run_and_report_benchmark() def benchmark_xla_8_gpu_tweaked(self): """Test Keras model with manual config tuning, 8 GPUs, and XLA.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked') FLAGS.batch_size = 128 * 8 FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 24 self._run_and_report_benchmark() def benchmark_8_gpu_fp16(self): """Test Keras model with 8 GPUs and fp16.""" self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16') FLAGS.batch_size = 256 * 8 # 8 GPUs self._run_and_report_benchmark() def benchmark_8_gpu_fp16_tweaked(self): """Test Keras model with 8 GPUs, fp16, and manual config tuning.""" self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked') FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.dataset_num_private_threads = 40 self._run_and_report_benchmark() def benchmark_8_gpu_fp16_dynamic_tweaked(self): """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned.""" self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir( 'benchmark_8_gpu_fp16_dynamic_tweaked') FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.loss_scale = 'dynamic' FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.dataset_num_private_threads = 40 self._run_and_report_benchmark() def benchmark_xla_8_gpu_fp16(self): """Test Keras model with XLA, 8 GPUs and fp16.""" self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16') FLAGS.batch_size = 256 * 8 # 8 GPUs self._run_and_report_benchmark() def benchmark_xla_8_gpu_fp16_tweaked(self): """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16.""" self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked') FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 48 self._run_and_report_benchmark() def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self): """Test with manual config tuning, XLA, 8 GPUs and fp16. Delay performance measurement for stable performance on 96 vCPU platforms. """ self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir( 'benchmark_xla_8_gpu_fp16_tweaked_delay_measure') FLAGS.batch_size = 256 * 8 FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 48 FLAGS.train_steps = 310 self._run_and_report_benchmark() def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self): """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16.""" self._setup() FLAGS.num_gpus = 8 FLAGS.dtype = 'fp16' FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'mirrored' FLAGS.model_dir = self._get_model_dir( 'benchmark_xla_8_gpu_fp16_dynamic_tweaked') FLAGS.batch_size = 256 * 8 # 8 GPUs FLAGS.loss_scale = 'dynamic' FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 48 self._run_and_report_benchmark() def benchmark_2x2_tpu_bf16(self): """Test Keras model with 2x2 TPU, bf16.""" self._setup() FLAGS.dtype = 'bf16' FLAGS.distribution_strategy = 'tpu' FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16') FLAGS.batch_size = 1024 self._run_and_report_benchmark() def benchmark_4x4_tpu_bf16(self): """Test Keras model with 4x4 TPU, bf16.""" self._setup() FLAGS.dtype = 'bf16' FLAGS.distribution_strategy = 'tpu' FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16') FLAGS.batch_size = 4096 self._run_and_report_benchmark() def benchmark_8x8_tpu_bf16(self): """Test Keras model with 8x8 TPU, bf16.""" self._setup() FLAGS.dtype = 'bf16' FLAGS.distribution_strategy = 'tpu' FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16') FLAGS.batch_size = 8192 self._run_and_report_benchmark() def fill_report_object(self, stats): super(Resnet50KerasBenchmarkBase, self).fill_report_object( stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps) class Resnet50KerasBenchmarkSynth(Resnet50KerasClassifierBenchmarkBase): """Resnet50 synthetic benchmark tests.""" def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs): def_flags = {} def_flags['log_steps'] = 10 super(Resnet50KerasBenchmarkSynth, self).__init__( output_dir=output_dir, default_flags=def_flags, tpu=tpu, dataset_builder='synthetic', train_epochs=1, train_steps=110) class Resnet50KerasBenchmarkReal(Resnet50KerasClassifierBenchmarkBase): """Resnet50 real data benchmark tests.""" def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs): data_dir = os.path.join(root_data_dir, 'imagenet') def_flags = {} def_flags['log_steps'] = 10 super(Resnet50KerasBenchmarkReal, self).__init__( output_dir=output_dir, default_flags=def_flags, tpu=tpu, dataset_builder='records', train_epochs=1, train_steps=110, data_dir=data_dir) class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase): """Resnet50 real data (stored in remote storage) benchmark tests.""" def __init__(self, output_dir=None, root_data_dir=None, **kwargs): def_flags = {} def_flags['skip_eval'] = True def_flags['report_accuracy_metrics'] = False def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet') # Defining multiple epochs overrides the train_steps setting in benchmarks. def_flags['train_epochs'] = 2 # Cache dataset so performance is stable after the first epoch. def_flags['training_dataset_cache'] = True def_flags['log_steps'] = 100 # Note that for single GPU and pure eager tests which are less likely to be # input bound and more stable, these tests will run for shorter time by # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark # methods, and skip_steps in _run_and_report_benchmark(). super(Resnet50KerasBenchmarkRemoteData, self).__init__( output_dir=output_dir, default_flags=def_flags) def _override_flags_to_run_test_shorter(self): FLAGS.train_epochs = 1 FLAGS.train_steps = 300 FLAGS.log_steps = 10 def benchmark_1_gpu_no_dist_strat(self): """Test Keras model with 1 GPU, no distribution strategy.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat') FLAGS.batch_size = 128 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly(self): """Test Keras model with 1 GPU, no distribution strategy, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly') FLAGS.batch_size = 64 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self): """Test Keras model with 1 GPU, no distribution strategy, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.explicit_gpu_placement = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked') FLAGS.batch_size = 64 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self): """Test with 1 GPU, no distribution strategy, fp16, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16') FLAGS.dtype = 'fp16' FLAGS.batch_size = 128 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self): """Test with 1 GPU, no distribution strategy, fp16, run eagerly.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.run_eagerly = True FLAGS.explicit_gpu_placement = True FLAGS.distribution_strategy = 'off' FLAGS.model_dir = self._get_model_dir( 'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked') FLAGS.dtype = 'fp16' FLAGS.batch_size = 128 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu(self): """Test Keras model with 1 GPU.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu') FLAGS.batch_size = 128 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_amp(self): """Test Keras model with 1 GPU with automatic mixed precision.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.dtype = 'fp16' FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp') FLAGS.batch_size = 256 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_xla_1_gpu(self): """Test Keras model with XLA and 1 GPU.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu') FLAGS.batch_size = 128 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_xla_1_gpu_amp(self): """Test Keras model with XLA and 1 GPU with automatic mixed precision.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.dtype = 'fp16' FLAGS.fp16_implementation = 'graph_rewrite' FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp') FLAGS.batch_size = 256 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_fp16(self): """Test Keras model with 1 GPU and fp16.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_1_gpu_fp16_dynamic(self): """Test Keras model with 1 GPU, fp16, and dynamic loss scaling.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 FLAGS.loss_scale = 'dynamic' self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_xla_1_gpu_fp16(self): """Test Keras model with XLA, 1 GPU and fp16.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_xla_1_gpu_fp16_tweaked(self): """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 FLAGS.tf_gpu_thread_mode = 'gpu_private' self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() def benchmark_xla_1_gpu_fp16_dynamic(self): """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling.""" self._setup() FLAGS.num_gpus = 1 FLAGS.enable_eager = True FLAGS.enable_xla = True FLAGS.distribution_strategy = 'one_device' FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic') FLAGS.dtype = 'fp16' FLAGS.batch_size = 256 FLAGS.loss_scale = 'dynamic' self._override_flags_to_run_test_shorter() self._run_and_report_benchmark() @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self): if FLAGS.num_gpus == 1 or FLAGS.run_eagerly: # For single GPU and pure eager tests which are less likely to be input # bound and more stable, run for shorter time and use the default # skip_steps. skip_steps = None else: # skip the first epoch for performance measurement. skip_steps = 600 super(Resnet50KerasBenchmarkRemoteData, self)._run_and_report_benchmark(skip_steps=skip_steps) class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark): """Trivial model with real data benchmark tests.""" def __init__(self, output_dir=None, root_data_dir=None, **kwargs): flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags] def_flags = {} def_flags['use_trivial_model'] = True def_flags['skip_eval'] = True def_flags['report_accuracy_metrics'] = False def_flags['dtype'] = 'fp16' def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet') def_flags['train_steps'] = 600 def_flags['log_steps'] = 100 def_flags['distribution_strategy'] = 'mirrored' super(TrivialKerasBenchmarkReal, self).__init__( output_dir=output_dir, flag_methods=flag_methods, default_flags=def_flags) @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self): start_time_sec = time.time() stats = resnet_imagenet_main.run(FLAGS) wall_time_sec = time.time() - start_time_sec super(TrivialKerasBenchmarkReal, self)._report_benchmark( stats, wall_time_sec, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps) def benchmark_8_gpu_warmup(self): """Dummy test that runs over an epoch to warmup the machine.""" self._setup() FLAGS.num_gpus = 8 FLAGS.enable_eager = True FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup') FLAGS.batch_size = 256 * 8 FLAGS.train_steps = 700 self._run_and_report_benchmark() def fill_report_object(self, stats): super(TrivialKerasBenchmarkReal, self).fill_report_object( stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps) class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark): """Resnet50 distributed accuracy tests with multiple workers.""" def __init__(self, output_dir=None, root_data_dir=None, **kwargs): flag_methods = [classifier_trainer.define_imagenet_keras_flags] self.data_dir = os.path.join(root_data_dir, 'imagenet') super(Resnet50MultiWorkerKerasAccuracy, self).__init__( output_dir=output_dir, flag_methods=flag_methods) def _benchmark_common(self, eager, num_workers, all_reduce_alg): """Common to all benchmarks in this class.""" self._setup() num_gpus = 8 FLAGS.num_gpus = num_gpus FLAGS.data_dir = self.data_dir FLAGS.train_epochs = 90 FLAGS.epochs_between_evals = 10 FLAGS.dtype = 'fp16' FLAGS.enable_eager = eager FLAGS.enable_xla = False FLAGS.distribution_strategy = 'multi_worker_mirrored' FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 32 FLAGS.model_dir = self._get_model_dir( 'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format( 'eager' if eager else 'graph', num_workers, all_reduce_alg)) FLAGS.batch_size = 256 * num_gpus * num_workers FLAGS.all_reduce_alg = all_reduce_alg self._run_and_report_benchmark() @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, top_1_min=MIN_TOP_1_ACCURACY, top_1_max=MAX_TOP_1_ACCURACY): start_time_sec = time.time() stats = classifier_trainer.run(flags.FLAGS) wall_time_sec = time.time() - start_time_sec super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark( stats, wall_time_sec, top_1_min=top_1_min, top_1_max=top_1_max, total_batch_size=FLAGS.batch_size, log_steps=100) def _get_model_dir(self, folder_name): return os.path.join(self.output_dir, folder_name) def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self): """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce.""" self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring') def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self): """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce.""" self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl') def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self): """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce.""" self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring') def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self): """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce.""" self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl') class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase): """Resnet50 distributed benchmark tests with multiple workers.""" def __init__(self, output_dir=None, default_flags=None): super(Resnet50MultiWorkerKerasBenchmark, self).__init__( output_dir=output_dir, default_flags=default_flags) def _benchmark_common(self, eager, num_workers, all_reduce_alg): """Common to all benchmarks in this class.""" self._setup() num_gpus = 8 FLAGS.num_gpus = num_gpus FLAGS.dtype = 'fp16' FLAGS.enable_eager = eager FLAGS.enable_xla = False FLAGS.distribution_strategy = 'multi_worker_mirrored' FLAGS.tf_gpu_thread_mode = 'gpu_private' FLAGS.datasets_num_private_threads = 32 FLAGS.model_dir = self._get_model_dir( 'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format( 'eager' if eager else 'graph', num_workers, all_reduce_alg)) FLAGS.batch_size = 256 * num_gpus * num_workers FLAGS.all_reduce_alg = all_reduce_alg self._run_and_report_benchmark() def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self): """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce.""" self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring') def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self): """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce.""" self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl') def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self): """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce.""" self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring') def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self): """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce.""" self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl') def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self): """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce.""" self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring') def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self): """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce.""" self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl') class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark): """Resnet50 multi-worker synthetic data benchmark tests.""" def __init__(self, output_dir=None, root_data_dir=None, **kwargs): def_flags = {} def_flags['skip_eval'] = True def_flags['report_accuracy_metrics'] = False def_flags['use_synthetic_data'] = True def_flags['train_steps'] = 110 def_flags['log_steps'] = 10 super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__( output_dir=output_dir, default_flags=def_flags) class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark): """Resnet50 multi-worker real data benchmark tests.""" def __init__(self, output_dir=None, root_data_dir=None, **kwargs): def_flags = {} def_flags['skip_eval'] = True def_flags['report_accuracy_metrics'] = False def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet') def_flags['train_steps'] = 110 def_flags['log_steps'] = 10 super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__( output_dir=output_dir, default_flags=def_flags) # TODO(kimjaehong): It also should be also cover other metheods of model # optimization techniques. In that time, this class will change to something # like 'KerasModelOptimizationAccuracyBase'. class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark): """Benchmark accuracy tests for pruning method.""" def __init__(self, output_dir=None, root_data_dir=None, default_flags=None, **kwargs): """A accuracy benchmark class for pruning method. Args: output_dir: directory where to output e.g. log files root_data_dir: directory under which to look for dataset default_flags: default flags **kwargs: arbitrary named arguments. This is needed to make the constructor forward compatible in case PerfZero provides more named arguments before updating the constructor. """ if default_flags is None: default_flags = {} default_flags['pruning_method'] = 'polynomial_decay' default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet') flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags] super(KerasPruningAccuracyBase, self).__init__( output_dir=output_dir, flag_methods=flag_methods, default_flags=default_flags, **kwargs) def benchmark_8_gpu(self): """Test Keras model with eager, dist_strat and 8 GPUs.""" self._setup() FLAGS.num_gpus = 8 FLAGS.batch_size = 32 * 8 FLAGS.train_epochs = 90 FLAGS.epochs_between_evals = 10 FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu') FLAGS.dtype = 'fp32' FLAGS.enable_eager = True self._run_and_report_benchmark() @benchmark_wrappers.enable_runtime_flags def _run_and_report_benchmark(self, top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[ 'RESNET50_FINETUNE_PRUNING'][0], top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[ 'RESNET50_FINETUNE_PRUNING'][1]): start_time_sec = time.time() stats = resnet_imagenet_main.run(flags.FLAGS) wall_time_sec = time.time() - start_time_sec super(KerasPruningAccuracyBase, self)._report_benchmark( stats, wall_time_sec, top_1_min=top_1_min, top_1_max=top_1_max, total_batch_size=FLAGS.batch_size, log_steps=100) class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase): """Benchmark accuracy tests for MobilenetV1 with pruning method.""" def __init__(self, root_data_dir=None, **kwargs): default_flags = { 'model': 'mobilenet', 'optimizer': 'mobilenet_default', 'initial_learning_rate_per_sample': 0.00007, 'pretrained_filepath': tf.train.latest_checkpoint( os.path.join(root_data_dir, 'mobilenet_v1')), 'pruning_begin_step': 0, 'pruning_end_step': 100000, 'pruning_initial_sparsity': 0.0, 'pruning_final_sparsity': 0.5, 'pruning_frequency': 100, } super(MobilenetV1KerasPruningAccuracy, self).__init__( root_data_dir=root_data_dir, default_flags=default_flags, **kwargs) def _run_and_report_benchmark(self): super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark( top_1_min=\ MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0], top_1_max=\ MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1]) class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase): """Benchmark accuracy tests for resnet50 with pruning method.""" def __init__(self, root_data_dir=None, **kwargs): default_flags = { 'model': 'resnet50_v1.5', 'optimizer': 'mobilenet_default', 'initial_learning_rate_per_sample': 0.0000039, 'pretrained_filepath': tf.train.latest_checkpoint( os.path.join(root_data_dir, 'resnet50')), 'pruning_begin_step': 0, 'pruning_end_step': 50000, 'pruning_initial_sparsity': 0.0, 'pruning_final_sparsity': 0.5, 'pruning_frequency': 100, } super(Resnet50KerasPruningAccuracy, self).__init__( root_data_dir=root_data_dir, default_flags=default_flags, **kwargs) def _run_and_report_benchmark(self): super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark( top_1_min=\ MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0], top_1_max=\ MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1]) class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase): """Pruning method benchmarks.""" def __init__(self, root_data_dir=None, default_flags=None, **kwargs): if default_flags is None: default_flags = {} default_flags.update({ 'skip_eval': True, 'report_accuracy_metrics': False, 'data_dir': os.path.join(root_data_dir, 'imagenet'), 'train_steps': 110, 'log_steps': 10, 'pruning_method': 'polynomial_decay', 'pruning_begin_step': 0, 'pruning_end_step': 50000, 'pruning_initial_sparsity': 0, 'pruning_final_sparsity': 0.5, 'pruning_frequency': 100, }) super(KerasPruningBenchmarkRealBase, self).__init__( default_flags=default_flags, **kwargs) class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase): """Pruning method benchmarks for MobilenetV1.""" def __init__(self, **kwargs): default_flags = { 'model': 'mobilenet', 'optimizer': 'mobilenet_default', } super(MobilenetV1KerasPruningBenchmarkReal, self).__init__( default_flags=default_flags, **kwargs) class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase): """Pruning method benchmarks for resnet50.""" def __init__(self, **kwargs): default_flags = { 'model': 'resnet50_v1.5', 'optimizer': 'mobilenet_default', } super(Resnet50KerasPruningBenchmarkReal, self).__init__( default_flags=default_flags, **kwargs) if __name__ == '__main__': tf.test.main()
34.863716
80
0.705551
794eb8898f5e374d904e881a3263ce190b882e25
3,108
py
Python
spyne/util/__init__.py
PyGuDev/spyne
1076f5301c2381b8c077577e3c87855bbe9541fd
[ "BSD-3-Clause" ]
786
2015-01-04T10:46:28.000Z
2022-03-31T19:24:35.000Z
spyne/util/__init__.py
uallasleles/spyne
1076f5301c2381b8c077577e3c87855bbe9541fd
[ "BSD-3-Clause" ]
248
2015-01-01T21:52:47.000Z
2022-03-09T08:55:04.000Z
spyne/util/__init__.py
uallasleles/spyne
1076f5301c2381b8c077577e3c87855bbe9541fd
[ "BSD-3-Clause" ]
210
2015-01-10T14:20:31.000Z
2022-03-09T08:38:43.000Z
# # spyne - Copyright (C) Spyne contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # import logging logger = logging.getLogger(__name__) from spyne.util import six from spyne.util.coopmt import keepfirst from spyne.util.coopmt import coroutine from spyne.util.coopmt import Break from spyne.util.memo import memoize from spyne.util.memo import memoize_first from spyne.util.memo import memoize_ignore from spyne.util.memo import memoize_ignore_none from spyne.util.memo import memoize_id from spyne.util.attrdict import AttrDict from spyne.util.attrdict import AttrDictColl from spyne.util.attrdict import DefaultAttrDict from spyne.util._base import utctime from spyne.util._base import get_version try: import thread from urllib import splittype, splithost, quote, urlencode from urllib2 import urlopen, Request, HTTPError except ImportError: # Python 3 import _thread as thread from urllib.parse import splittype, splithost, quote, urlencode from urllib.request import urlopen, Request from urllib.error import HTTPError def split_url(url): """Splits a url into (uri_scheme, host[:port], path)""" scheme, remainder = splittype(url) host, path = splithost(remainder) return scheme.lower(), host, path def sanitize_args(a): try: args, kwargs = a if isinstance(args, tuple) and isinstance(kwargs, dict): return args, dict(kwargs) except (TypeError, ValueError): args, kwargs = (), {} if a is not None: if isinstance(a, dict): args = tuple() kwargs = a elif isinstance(a, tuple): if isinstance(a[-1], dict): args, kwargs = a[0:-1], a[-1] else: args = a kwargs = {} return args, kwargs if six.PY2: def _bytes_join(val, joiner=''): return joiner.join(val) else: def _bytes_join(val, joiner=b''): if isinstance(val, six.binary_type): return val return joiner.join(val) def utf8(s): if isinstance(s, bytes): return s.decode('utf8') if isinstance(s, list): return [utf8(ss) for ss in s] if isinstance(s, tuple): return tuple([utf8(ss) for ss in s]) if isinstance(s, set): return {utf8(ss) for ss in s} if isinstance(s, frozenset): return frozenset([utf8(ss) for ss in s]) return s
27.026087
75
0.682754
794ebb0850ab5b204f40200028f5352af96f80ec
1,284
py
Python
recipes/sota/2019/raw_lm_corpus/filter_distances.py
Zilv1128/test1
49fbb1392e69b5194c077df9847505ec995b4e3d
[ "BSD-3-Clause" ]
5,921
2017-12-29T17:04:46.000Z
2021-04-16T00:37:35.000Z
recipes/sota/2019/raw_lm_corpus/filter_distances.py
piEYj/wav2letter
49fbb1392e69b5194c077df9847505ec995b4e3d
[ "BSD-3-Clause" ]
949
2018-01-01T06:36:58.000Z
2021-04-16T06:49:05.000Z
recipes/sota/2019/raw_lm_corpus/filter_distances.py
piEYj/wav2letter
49fbb1392e69b5194c077df9847505ec995b4e3d
[ "BSD-3-Clause" ]
1,032
2017-12-30T09:47:51.000Z
2021-04-11T11:40:00.000Z
import argparse import os import sys def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def run(filename, score, distance_ratio): eprint("Starting with filename ", filename) with open(filename, "r") as f: done = 0 for line in f: done += 1 str1, str2, scoreRaw = line.split("|") distance = float(scoreRaw) len1 = len(str1.split()) len2 = len(str2.split()) maxlen = max(len1, len2) minlen = min(len1, len2) if ( maxlen - minlen ) / minlen < distance_ratio and distance <= score * maxlen: print("{s1}|{s2}|{d}".format(s1=str1, s2=str2, d=scoreRaw.strip())) if done % 1000000 == 0: eprint(done) if __name__ == "__main__": parser = argparse.ArgumentParser("Filters levenshtein scored title pairs") parser.add_argument("--infile", type=str, required=True) parser.add_argument("--score", type=float, required=True) parser.add_argument("--distance_ratio", type=float, required=True) args = parser.parse_args() if not os.path.exists(args.infile): raise ValueError("infile not found") run(args.infile, args.score, args.distance_ratio)
30.571429
83
0.588006
794ebc26607374dd7365ea54c929b5620dbb5993
14,294
py
Python
tests/inspectdb/tests.py
JayTechX/django
cede5111bbeea1f02a7d35941a4264c7ff95df0a
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/inspectdb/tests.py
JayTechX/django
cede5111bbeea1f02a7d35941a4264c7ff95df0a
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/inspectdb/tests.py
JayTechX/django
cede5111bbeea1f02a7d35941a4264c7ff95df0a
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
import re from io import StringIO from unittest import mock, skipUnless from django.core.management import call_command from django.db import connection from django.db.backends.base.introspection import TableInfo from django.test import TestCase, TransactionTestCase, skipUnlessDBFeature from .models import ColumnTypes def inspectdb_tables_only(table_name): """ Limit introspection to tables created for models of this app. Some databases such as Oracle are extremely slow at introspection. """ return table_name.startswith('inspectdb_') def special_table_only(table_name): return table_name.startswith('inspectdb_special') class InspectDBTestCase(TestCase): def test_stealth_table_name_filter_option(self): out = StringIO() call_command('inspectdb', table_name_filter=inspectdb_tables_only, stdout=out) error_message = "inspectdb has examined a table that should have been filtered out." # contrib.contenttypes is one of the apps always installed when running # the Django test suite, check that one of its tables hasn't been # inspected self.assertNotIn("class DjangoContentType(models.Model):", out.getvalue(), msg=error_message) def test_table_option(self): """ inspectdb can inspect a subset of tables by passing the table names as arguments. """ out = StringIO() call_command('inspectdb', 'inspectdb_people', stdout=out) output = out.getvalue() self.assertIn('class InspectdbPeople(models.Model):', output) self.assertNotIn("InspectdbPeopledata", output) def make_field_type_asserter(self): """Call inspectdb and return a function to validate a field type in its output""" out = StringIO() call_command('inspectdb', 'inspectdb_columntypes', stdout=out) output = out.getvalue() def assertFieldType(name, definition): out_def = re.search(r'^\s*%s = (models.*)$' % name, output, re.MULTILINE).groups()[0] self.assertEqual(definition, out_def) return assertFieldType def test_field_types(self): """Test introspection of various Django field types""" assertFieldType = self.make_field_type_asserter() # Inspecting Oracle DB doesn't produce correct results (#19884): # - it reports fields as blank=True when they aren't. if not connection.features.interprets_empty_strings_as_nulls: assertFieldType('char_field', "models.CharField(max_length=10)") assertFieldType('null_char_field', "models.CharField(max_length=10, blank=True, null=True)") assertFieldType('email_field', "models.CharField(max_length=254)") assertFieldType('file_field', "models.CharField(max_length=100)") assertFieldType('file_path_field', "models.CharField(max_length=100)") assertFieldType('slug_field', "models.CharField(max_length=50)") assertFieldType('text_field', "models.TextField()") assertFieldType('url_field', "models.CharField(max_length=200)") assertFieldType('date_field', "models.DateField()") assertFieldType('date_time_field', "models.DateTimeField()") if connection.features.can_introspect_ip_address_field: assertFieldType('gen_ip_address_field', "models.GenericIPAddressField()") elif not connection.features.interprets_empty_strings_as_nulls: assertFieldType('gen_ip_address_field', "models.CharField(max_length=39)") if connection.features.can_introspect_time_field: assertFieldType('time_field', "models.TimeField()") if connection.features.has_native_uuid_field: assertFieldType('uuid_field', "models.UUIDField()") elif not connection.features.interprets_empty_strings_as_nulls: assertFieldType('uuid_field', "models.CharField(max_length=32)") def test_number_field_types(self): """Test introspection of various Django field types""" assertFieldType = self.make_field_type_asserter() if not connection.features.can_introspect_autofield: assertFieldType('id', "models.IntegerField(primary_key=True) # AutoField?") if connection.features.can_introspect_big_integer_field: assertFieldType('big_int_field', "models.BigIntegerField()") else: assertFieldType('big_int_field', "models.IntegerField()") bool_field = ColumnTypes._meta.get_field('bool_field') bool_field_type = connection.features.introspected_boolean_field_type(bool_field) assertFieldType('bool_field', "models.{}()".format(bool_field_type)) null_bool_field = ColumnTypes._meta.get_field('null_bool_field') null_bool_field_type = connection.features.introspected_boolean_field_type(null_bool_field) if 'BooleanField' in null_bool_field_type: assertFieldType('null_bool_field', "models.{}()".format(null_bool_field_type)) else: assertFieldType('null_bool_field', "models.{}(blank=True, null=True)".format(null_bool_field_type)) if connection.features.can_introspect_decimal_field: assertFieldType('decimal_field', "models.DecimalField(max_digits=6, decimal_places=1)") else: # Guessed arguments on SQLite, see #5014 assertFieldType('decimal_field', "models.DecimalField(max_digits=10, decimal_places=5) " "# max_digits and decimal_places have been guessed, " "as this database handles decimal fields as float") assertFieldType('float_field', "models.FloatField()") assertFieldType('int_field', "models.IntegerField()") if connection.features.can_introspect_positive_integer_field: assertFieldType('pos_int_field', "models.PositiveIntegerField()") else: assertFieldType('pos_int_field', "models.IntegerField()") if connection.features.can_introspect_positive_integer_field: if connection.features.can_introspect_small_integer_field: assertFieldType('pos_small_int_field', "models.PositiveSmallIntegerField()") else: assertFieldType('pos_small_int_field', "models.PositiveIntegerField()") else: if connection.features.can_introspect_small_integer_field: assertFieldType('pos_small_int_field', "models.SmallIntegerField()") else: assertFieldType('pos_small_int_field', "models.IntegerField()") if connection.features.can_introspect_small_integer_field: assertFieldType('small_int_field', "models.SmallIntegerField()") else: assertFieldType('small_int_field', "models.IntegerField()") @skipUnlessDBFeature('can_introspect_foreign_keys') def test_attribute_name_not_python_keyword(self): out = StringIO() call_command('inspectdb', table_name_filter=inspectdb_tables_only, stdout=out) output = out.getvalue() error_message = "inspectdb generated an attribute name which is a python keyword" # Recursive foreign keys should be set to 'self' self.assertIn("parent = models.ForeignKey('self', models.DO_NOTHING)", output) self.assertNotIn( "from = models.ForeignKey(InspectdbPeople, models.DO_NOTHING)", output, msg=error_message, ) # As InspectdbPeople model is defined after InspectdbMessage, it should be quoted self.assertIn( "from_field = models.ForeignKey('InspectdbPeople', models.DO_NOTHING, db_column='from_id')", output, ) self.assertIn( "people_pk = models.ForeignKey(InspectdbPeople, models.DO_NOTHING, primary_key=True)", output, ) self.assertIn( "people_unique = models.ForeignKey(InspectdbPeople, models.DO_NOTHING, unique=True)", output, ) def test_digits_column_name_introspection(self): """Introspection of column names consist/start with digits (#16536/#17676)""" out = StringIO() call_command('inspectdb', 'inspectdb_digitsincolumnname', stdout=out) output = out.getvalue() error_message = "inspectdb generated a model field name which is a number" self.assertNotIn(" 123 = models.CharField", output, msg=error_message) self.assertIn("number_123 = models.CharField", output) error_message = "inspectdb generated a model field name which starts with a digit" self.assertNotIn(" 4extra = models.CharField", output, msg=error_message) self.assertIn("number_4extra = models.CharField", output) self.assertNotIn(" 45extra = models.CharField", output, msg=error_message) self.assertIn("number_45extra = models.CharField", output) def test_special_column_name_introspection(self): """ Introspection of column names containing special characters, unsuitable for Python identifiers """ out = StringIO() call_command('inspectdb', table_name_filter=special_table_only, stdout=out) output = out.getvalue() base_name = 'field' if connection.features.uppercases_column_names else 'Field' self.assertIn("field = models.IntegerField()", output) self.assertIn("field_field = models.IntegerField(db_column='%s_')" % base_name, output) self.assertIn("field_field_0 = models.IntegerField(db_column='%s__')" % base_name, output) self.assertIn("field_field_1 = models.IntegerField(db_column='__field')", output) self.assertIn("prc_x = models.IntegerField(db_column='prc(%) x')", output) self.assertIn("tamaño = models.IntegerField()", output) def test_table_name_introspection(self): """ Introspection of table names containing special characters, unsuitable for Python identifiers """ out = StringIO() call_command('inspectdb', table_name_filter=special_table_only, stdout=out) output = out.getvalue() self.assertIn("class InspectdbSpecialTableName(models.Model):", output) def test_managed_models(self): """By default the command generates models with `Meta.managed = False` (#14305)""" out = StringIO() call_command('inspectdb', 'inspectdb_columntypes', stdout=out) output = out.getvalue() self.longMessage = False self.assertIn(" managed = False", output, msg='inspectdb should generate unmanaged models.') def test_unique_together_meta(self): out = StringIO() call_command('inspectdb', 'inspectdb_uniquetogether', stdout=out) output = out.getvalue() unique_re = re.compile(r'.*unique_together = \((.+),\).*') unique_together_match = re.findall(unique_re, output) # There should be one unique_together tuple. self.assertEqual(len(unique_together_match), 1) fields = unique_together_match[0] # Fields with db_column = field name. self.assertIn("('field1', 'field2')", fields) # Fields from columns whose names are Python keywords. self.assertIn("('field1', 'field2')", fields) # Fields whose names normalize to the same Python field name and hence # are given an integer suffix. self.assertIn("('non_unique_column', 'non_unique_column_0')", fields) @skipUnless(connection.vendor == 'sqlite', "Only patched sqlite's DatabaseIntrospection.data_types_reverse for this test") def test_custom_fields(self): """ Introspection of columns with a custom field (#21090) """ out = StringIO() orig_data_types_reverse = connection.introspection.data_types_reverse try: connection.introspection.data_types_reverse = { 'text': 'myfields.TextField', 'bigint': 'BigIntegerField', } call_command('inspectdb', 'inspectdb_columntypes', stdout=out) output = out.getvalue() self.assertIn("text_field = myfields.TextField()", output) self.assertIn("big_int_field = models.BigIntegerField()", output) finally: connection.introspection.data_types_reverse = orig_data_types_reverse def test_introspection_errors(self): """ Introspection errors should not crash the command, and the error should be visible in the output. """ out = StringIO() with mock.patch('django.db.connection.introspection.get_table_list', return_value=[TableInfo(name='nonexistent', type='t')]): call_command('inspectdb', stdout=out) output = out.getvalue() self.assertIn("# Unable to inspect table 'nonexistent'", output) # The error message depends on the backend self.assertIn("# The error was:", output) class InspectDBTransactionalTests(TransactionTestCase): available_apps = None def test_include_views(self): """inspectdb --include-views creates models for database views.""" with connection.cursor() as cursor: cursor.execute( 'CREATE VIEW inspectdb_people_view AS ' 'SELECT id, name FROM inspectdb_people' ) out = StringIO() view_model = 'class InspectdbPeopleView(models.Model):' view_managed = 'managed = False # Created from a view.' try: call_command('inspectdb', table_name_filter=inspectdb_tables_only, stdout=out) no_views_output = out.getvalue() self.assertNotIn(view_model, no_views_output) self.assertNotIn(view_managed, no_views_output) call_command('inspectdb', table_name_filter=inspectdb_tables_only, include_views=True, stdout=out) with_views_output = out.getvalue() self.assertIn(view_model, with_views_output) self.assertIn(view_managed, with_views_output) finally: with connection.cursor() as cursor: cursor.execute('DROP VIEW inspectdb_people_view')
48.454237
111
0.673779
794ebc357b4d1f0900f6df7bc0c1a4ed3fdc3c63
5,903
py
Python
tests/test_appelb.py
nyetsche/cloud-custodian
e4e3e538f1242a7f5516b557f91d269035141b06
[ "Apache-2.0" ]
null
null
null
tests/test_appelb.py
nyetsche/cloud-custodian
e4e3e538f1242a7f5516b557f91d269035141b06
[ "Apache-2.0" ]
null
null
null
tests/test_appelb.py
nyetsche/cloud-custodian
e4e3e538f1242a7f5516b557f91d269035141b06
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .common import BaseTest from c7n.executor import MainThreadExecutor from c7n.resources.appelb import AppELB class AppELBTest(BaseTest): def test_appelb_simple(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_simple') p = self.load_policy({ 'name': 'appelb-simple', 'resource': 'app-elb'}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 2) def test_appelb_simple_filter(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_simple') p = self.load_policy({ 'name': 'appelb-simple-filter', 'resource': 'app-elb', 'filters': [ {'type': 'value', 'key': 'LoadBalancerName', 'value': 'alb-1'}]}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 1) def test_appelb_tags_filter(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_simple') p = self.load_policy({ 'name': 'appelb-tags-filter', 'resource': 'app-elb', 'filters': [{"tag:KEY1": "VALUE1"}]}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 1) p = self.load_policy({ 'name': 'appelb-tags-filter', 'resource': 'app-elb', 'filters': [{"tag:KEY1": "VALUE2"}]}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 0) def test_appelb_is_ssl_filter(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_simple') p = self.load_policy({ 'name': 'appelb-is-ssl-filter', 'resource': 'app-elb', 'filters': ['is-ssl']}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 0) def test_appelb_default_vpc_filter(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_simple') p = self.load_policy({ 'name': 'appelb-default-vpc-filter', 'resource': 'app-elb', 'filters': ['default-vpc']}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 0) def test_appelb_add_tag(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_add_tag') p = self.load_policy({ 'name': 'appelb-add-tag', 'resource': 'app-elb', 'filters': [ {'type': 'value', 'key': 'LoadBalancerName', 'value': 'alb-1'}], 'actions': [ {'type': 'tag', 'key': 'KEY42', 'value': 'VALUE99'}] }, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 1) def test_appelb_remove_tag(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_remove_tag') p = self.load_policy({ 'name': 'appelb-remove-tag', 'resource': 'app-elb', 'filters': [ {'type': 'value', 'key': 'LoadBalancerName', 'value': 'alb-1'}], 'actions': [ {'type': 'remove-tag', 'tags': ['KEY42']}] }, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 1) def test_appelb_mark_for_delete(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_mark_for_delete') p = self.load_policy({ 'name': 'appelb-mark-for-delete', 'resource': 'app-elb', 'filters': [ {'type': 'value', 'key': 'LoadBalancerName', 'value': 'alb-1'}], 'actions': [ {'type': 'mark-for-op', 'op': 'delete', 'tag': 'custodian_next', 'days': 1}] }, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 1) def test_appelb_delete(self): self.patch(AppELB, 'executor_factory', MainThreadExecutor) session_factory = self.replay_flight_data('test_appelb_delete') p = self.load_policy({ 'name': 'appelb-delete', 'resource': 'app-elb', 'filters': [ {'type': 'value', 'key': 'LoadBalancerName', 'value': 'alb-2'}], 'actions': [ {'type': 'delete'}]}, session_factory=session_factory) resources = p.run() self.assertEqual(len(resources), 1)
38.835526
80
0.579028
794ebc837fd4165c92820a7ecf52810baf357cb9
6,403
py
Python
examples/offline/atari_cql.py
BFAnas/tianshou
6e86a0bed7d1117c5ad6a421b483b45a6adfe336
[ "MIT" ]
null
null
null
examples/offline/atari_cql.py
BFAnas/tianshou
6e86a0bed7d1117c5ad6a421b483b45a6adfe336
[ "MIT" ]
null
null
null
examples/offline/atari_cql.py
BFAnas/tianshou
6e86a0bed7d1117c5ad6a421b483b45a6adfe336
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import datetime import os import pickle import pprint import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from examples.atari.atari_network import QRDQN from examples.atari.atari_wrapper import make_atari_env from examples.offline.utils import load_buffer from tianshou.data import Collector, VectorReplayBuffer from tianshou.policy import DiscreteCQLPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger, WandbLogger def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="PongNoFrameskip-v4") parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--eps-test", type=float, default=0.001) parser.add_argument("--lr", type=float, default=0.0001) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--num-quantiles", type=int, default=200) parser.add_argument("--n-step", type=int, default=1) parser.add_argument("--target-update-freq", type=int, default=500) parser.add_argument("--min-q-weight", type=float, default=10.) parser.add_argument("--epoch", type=int, default=100) parser.add_argument("--update-per-epoch", type=int, default=10000) parser.add_argument("--batch-size", type=int, default=32) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[512]) parser.add_argument("--test-num", type=int, default=10) parser.add_argument("--frames-stack", type=int, default=4) parser.add_argument("--scale-obs", type=int, default=0) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.) parser.add_argument("--resume-path", type=str, default=None) parser.add_argument("--resume-id", type=str, default=None) parser.add_argument( "--logger", type=str, default="tensorboard", choices=["tensorboard", "wandb"], ) parser.add_argument("--wandb-project", type=str, default="offline_atari.benchmark") parser.add_argument( "--watch", default=False, action="store_true", help="watch the play of pre-trained policy only" ) parser.add_argument("--log-interval", type=int, default=100) parser.add_argument( "--load-buffer-name", type=str, default="./expert_DQN_PongNoFrameskip-v4.hdf5" ) parser.add_argument( "--buffer-from-rl-unplugged", action="store_true", default=False ) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu" ) args = parser.parse_known_args()[0] return args def test_discrete_cql(args=get_args()): # envs env, _, test_envs = make_atari_env( args.task, args.seed, 1, args.test_num, scale=args.scale_obs, frame_stack=args.frames_stack, ) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # should be N_FRAMES x H x W print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # model net = QRDQN(*args.state_shape, args.action_shape, args.num_quantiles, args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) # define policy policy = DiscreteCQLPolicy( net, optim, args.gamma, args.num_quantiles, args.n_step, args.target_update_freq, min_q_weight=args.min_q_weight, ).to(args.device) # load a previous policy if args.resume_path: policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # buffer if args.buffer_from_rl_unplugged: buffer = load_buffer(args.load_buffer_name) else: assert os.path.exists(args.load_buffer_name), \ "Please run atari_dqn.py first to get expert's data buffer." if args.load_buffer_name.endswith(".pkl"): buffer = pickle.load(open(args.load_buffer_name, "rb")) elif args.load_buffer_name.endswith(".hdf5"): buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name) else: print(f"Unknown buffer format: {args.load_buffer_name}") exit(0) print("Replay buffer size:", len(buffer), flush=True) # collector test_collector = Collector(policy, test_envs, exploration_noise=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "cql" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): return False # watch agent's performance def watch(): print("Setup test envs ...") policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) print("Testing agent ...") test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) pprint.pprint(result) rew = result["rews"].mean() print(f'Mean reward (over {result["n/ep"]} episodes): {rew}') if args.watch: watch() exit(0) result = offline_trainer( policy, buffer, test_collector, args.epoch, args.update_per_epoch, args.test_num, args.batch_size, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ) pprint.pprint(result) watch() if __name__ == "__main__": test_discrete_cql(get_args())
34.058511
87
0.658129
794ebda12bc12785e1d67a516bc488f2cac0229b
424
py
Python
setup_s3_bucket.py
chambridge/aws-cost-mgmt-access
994d3ed62601469d2d68a67e6806a3601178328a
[ "MIT" ]
null
null
null
setup_s3_bucket.py
chambridge/aws-cost-mgmt-access
994d3ed62601469d2d68a67e6806a3601178328a
[ "MIT" ]
null
null
null
setup_s3_bucket.py
chambridge/aws-cost-mgmt-access
994d3ed62601469d2d68a67e6806a3601178328a
[ "MIT" ]
null
null
null
import os from cloud.aws_service import AwsService def main(): """Execute script.""" region = os.environ.get('REGION', 'us-east-1') s3_bucket = os.environ.get('S3_BUCKET', 'costmgmtacct1234') aws = AwsService() result = aws.create_bucket(s3_bucket, region) if result: print(f'S3 bucket {s3_bucket} was created.') else: print(f'Failed creating S3 bucket {s3_bucket}.') main()
22.315789
63
0.653302
794ebdfc927609f7662ade182d468e4428489b2d
2,839
py
Python
test/SConscript/SConscriptChdir.py
EmanueleCannizzaro/scons
6baa4e65cdf4df6951473545b69435711864e509
[ "MIT" ]
1
2019-09-18T06:37:02.000Z
2019-09-18T06:37:02.000Z
test/SConscript/SConscriptChdir.py
EmanueleCannizzaro/scons
6baa4e65cdf4df6951473545b69435711864e509
[ "MIT" ]
null
null
null
test/SConscript/SConscriptChdir.py
EmanueleCannizzaro/scons
6baa4e65cdf4df6951473545b69435711864e509
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "test/SConscript/SConscriptChdir.py rel_2.5.1:3735:9dc6cee5c168 2016/11/03 14:02:02 bdbaddog" import TestSCons test = TestSCons.TestSCons() test.subdir('dir1', 'dir2', 'dir3', 'dir4', 'dir5') test.write('SConstruct', """ env = Environment() SConscript('dir1/SConscript') SConscriptChdir(1) SConscript('dir2/SConscript') SConscriptChdir(0) SConscript('dir3/SConscript') env.SConscriptChdir(1) SConscript('dir4/SConscript') env.SConscriptChdir(0) SConscript('dir5/SConscript') """) test.write(['dir1', 'SConscript'], """ exec(open("create_test.py", 'rU').read()) """) test.write(['dir2', 'SConscript'], """ exec(open("create_test.py", 'rU').read()) """) test.write(['dir3', 'SConscript'], """ import os.path name = os.path.join('dir3', 'create_test.py') exec(open(name, 'rU').read()) """) test.write(['dir4', 'SConscript'], """ exec(open("create_test.py", 'rU').read()) """) test.write(['dir5', 'SConscript'], """ import os.path name = os.path.join('dir5', 'create_test.py') exec(open(name, 'rU').read()) """) for dir in ['dir1', 'dir2', 'dir3','dir4', 'dir5']: test.write([dir, 'create_test.py'], r""" f = open("test.txt", "ab") f.write("This is the %s test.\n") f.close() """ % dir) test.run(arguments=".", stderr=None) test.fail_test(test.read(['dir1', 'test.txt']) != "This is the dir1 test.\n") test.fail_test(test.read(['dir2', 'test.txt']) != "This is the dir2 test.\n") test.fail_test(test.read('test.txt') != "This is the dir3 test.\nThis is the dir5 test.\n") test.fail_test(test.read(['dir4', 'test.txt']) != "This is the dir4 test.\n") test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
31.197802
108
0.704826
794ebea621c445d8ac4a72921d8c8a8062157255
719
py
Python
tests/__init__.py
gwu-libraries/sfm-web-harvester
6959cae698328cd344f569dead594d70749aea39
[ "MIT" ]
3
2016-03-15T20:22:02.000Z
2020-09-15T12:25:20.000Z
tests/__init__.py
gwu-libraries/sfm-web-harvester
6959cae698328cd344f569dead594d70749aea39
[ "MIT" ]
3
2016-10-09T23:23:10.000Z
2017-04-05T15:15:55.000Z
tests/__init__.py
gwu-libraries/sfm-web-harvester
6959cae698328cd344f569dead594d70749aea39
[ "MIT" ]
1
2020-09-15T09:43:28.000Z
2020-09-15T09:43:28.000Z
import logging import unittest import os import socket mq_port_available = True s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect(("mq", 5672)) except socket.error: mq_port_available = False heritrix_port_available = True s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect(("heritrix", 8443)) except socket.error: heritrix_port_available = False mq_username = os.environ.get("RABBITMQ_USER") mq_password = os.environ.get("RABBITMQ_PASSWORD") integration_env_available = mq_port_available and heritrix_port_available class TestCase(unittest.TestCase): logging.basicConfig(level=logging.DEBUG) logging.getLogger("web_harvester").setLevel(logging.DEBUG)
23.966667
73
0.781641
794ebf3929e8f6b93cd25f1f5794264c90269d3e
1,612
py
Python
instructions/base/instruction.py
kimi641/pyJVM
9e2b2392044a8ddd41ff8dda18a26e307776ae34
[ "MIT" ]
null
null
null
instructions/base/instruction.py
kimi641/pyJVM
9e2b2392044a8ddd41ff8dda18a26e307776ae34
[ "MIT" ]
1
2021-01-21T09:38:24.000Z
2021-01-21T09:38:24.000Z
instructions/base/instruction.py
kimi641/pyJVM
9e2b2392044a8ddd41ff8dda18a26e307776ae34
[ "MIT" ]
null
null
null
import struct from abc import ABCMeta, abstractmethod class BytecodeReader: def Reset(self, code, pc:int): self.code = code self.pc = pc def ReadUint8(self): i = self.code[self.pc] self.pc += 1 return i def ReadInt8(self): byte = struct.pack('>B',self.ReadUint8()) return struct.unpack('>b',byte)[0] def ReadUint16(self): bits = self.code[self.pc:self.pc+2] self.pc += 2 return struct.unpack('>H',bits)[0] def ReadInt16(self): bits = self.code[self.pc:self.pc+2] self.pc += 2 return struct.unpack('>h',bits)[0] def ReadInt32(self): bits = self.code[self.pc:self.pc+4] self.pc += 4 return struct.unpack('>i',bits)[0] def ReadInt32s(self): pass def SkipPadding(self): pass @property def PC(self): return self.pc class Instruction(metaclass=ABCMeta): @abstractmethod def FetchOperands(self, reader:BytecodeReader): pass @abstractmethod def Execute(self, frame): pass class NoOperandsInstruction(Instruction): def FetchOperands(self, reader:BytecodeReader): pass class BranchInstruction(Instruction): def FetchOperands(self, reader:BytecodeReader): self.Offset = reader.ReadInt16() class Index8Instruction(Instruction): def FetchOperands(self, reader:BytecodeReader): self.Index = reader.ReadUint8() class Index16Instruction(Instruction): def FetchOperands(self, reader:BytecodeReader): self.Index = reader.ReadUint16()
23.705882
51
0.625931
794ebff01c952c7fa43eb426af3eabb14b3e914d
1,777
py
Python
src/rogerthat/bizz/communities/homescreen/models.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/rogerthat/bizz/communities/homescreen/models.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/rogerthat/bizz/communities/homescreen/models.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.5@@ from google.appengine.ext import ndb from rogerthat.bizz.communities.models import Community from rogerthat.models import NdbModel class CommunityHomeScreen(NdbModel): data = ndb.JsonProperty() # See oca.models.HomeScreen update_date = ndb.DateTimeProperty(auto_now=True) community_id = ndb.IntegerProperty() @property def id(self): return self.key.id() @classmethod def create_key(cls, community_id, home_screen_id): return ndb.Key(cls, home_screen_id, parent=Community.create_key(community_id)) @classmethod def list_by_community(cls, community_id): return cls.query().filter(cls.community_id == community_id) class HomeScreenTestUser(NdbModel): reset_date = ndb.DateTimeProperty(required=True) community_id = ndb.IntegerProperty(required=True) home_screen_id = ndb.StringProperty(required=True) @property def user_email(self): return self.key.id() @classmethod def create_key(cls, user_id): return ndb.Key(cls, user_id) @classmethod def list_expired(cls, date): return cls.query().filter(cls.reset_date < date)
31.175439
86
0.728194
794ec05fbfab3684fd001f166134ec61a8324527
250
py
Python
FS/Pre-FS_programs/Day11~26Oct-2021_Mon/tep.py
Balaji-Ganesh/CompetitiveProgramming
8a5b44202e3d98e507a6ac27007273145d7fd56f
[ "MIT" ]
null
null
null
FS/Pre-FS_programs/Day11~26Oct-2021_Mon/tep.py
Balaji-Ganesh/CompetitiveProgramming
8a5b44202e3d98e507a6ac27007273145d7fd56f
[ "MIT" ]
null
null
null
FS/Pre-FS_programs/Day11~26Oct-2021_Mon/tep.py
Balaji-Ganesh/CompetitiveProgramming
8a5b44202e3d98e507a6ac27007273145d7fd56f
[ "MIT" ]
null
null
null
#`num_salaries = int(input()); salaries = sorted(set(input().split(' '))); print(salaries[::-1]); if(len(salaries) < 3): print(salaries[::-1][-1]); else: print(salaries[::-1][2]); """ Integer n1 = 10 n2 = 10 n1 = n1+ 5 sol(n1+n2); """
15.625
43
0.544
794ec05ff421e48eb7607244e84d071e3411a7d6
667
py
Python
backend/manage.py
DRP-33/drp-name-in-progress
47518bb77090a9fbd87561c4fc37850008e1c782
[ "MIT" ]
null
null
null
backend/manage.py
DRP-33/drp-name-in-progress
47518bb77090a9fbd87561c4fc37850008e1c782
[ "MIT" ]
null
null
null
backend/manage.py
DRP-33/drp-name-in-progress
47518bb77090a9fbd87561c4fc37850008e1c782
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'website.settings.dev') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
29
75
0.67916
794ec0eb75dd5e81b6891e29ada939c059b4aeef
533
py
Python
server/insertHabit.py
asaadielhassan/revue
ed12d2d63db35f6bb510c88660d904a0eb0e916d
[ "MIT" ]
null
null
null
server/insertHabit.py
asaadielhassan/revue
ed12d2d63db35f6bb510c88660d904a0eb0e916d
[ "MIT" ]
null
null
null
server/insertHabit.py
asaadielhassan/revue
ed12d2d63db35f6bb510c88660d904a0eb0e916d
[ "MIT" ]
1
2021-04-06T22:44:30.000Z
2021-04-06T22:44:30.000Z
import pymongo import habits def connectDB(): try: conn = MongoClient() print("Successfully connected") except: print("Could not connect") db = conn.database def insertHabit(user, habit): entry = { "user":user, "name":habit.getName(), "description":habit.getDescription(), "days":habit.getDays(), "start_Day":habit.getStartDay(), "start_Date":habit.getStartDate(), "end_Date":habit.getEndDate() } db.habits.insert_one(entry)
21.32
45
0.594747
794ec1ba4396ff8166481d09f4b4546fb2363f10
1,208
py
Python
grouper/fe/handlers/group_leave.py
lfaraone/grouper
7df5eda8003a0b4a9ba7f0dcb044ae1e4710b171
[ "Apache-2.0" ]
null
null
null
grouper/fe/handlers/group_leave.py
lfaraone/grouper
7df5eda8003a0b4a9ba7f0dcb044ae1e4710b171
[ "Apache-2.0" ]
1
2016-02-18T18:55:29.000Z
2016-02-18T18:55:29.000Z
grouper/fe/handlers/group_leave.py
lfaraone/grouper
7df5eda8003a0b4a9ba7f0dcb044ae1e4710b171
[ "Apache-2.0" ]
null
null
null
from grouper.fe.util import GrouperHandler from grouper.model_soup import Group from grouper.models.audit_log import AuditLog from grouper.user import user_role class GroupLeave(GrouperHandler): def get(self, group_id=None, name=None): group = Group.get(self.session, group_id, name) if not group: return self.notfound() members = group.my_members() if not user_role(self.current_user, members): return self.forbidden() return self.render( "group-leave.html", group=group ) def post(self, group_id=None, name=None): group = Group.get(self.session, group_id, name) if not group: return self.notfound() members = group.my_members() if not user_role(self.current_user, members): return self.forbidden() group.revoke_member(self.current_user, self.current_user, "User self-revoked.") AuditLog.log(self.session, self.current_user.id, 'leave_group', '{} left the group.'.format(self.current_user.name), on_group_id=group.id) return self.redirect("/groups/{}?refresh=yes".format(group.name))
32.648649
87
0.640728
794ec449bd8ecfc16514c7942b9e9f20b2fee367
6,385
py
Python
rest_framework_datatables/filters.py
BenjiWilson/django-rest-framework-datatables
213b344b8159445703152b93856d034a59bb56eb
[ "MIT" ]
null
null
null
rest_framework_datatables/filters.py
BenjiWilson/django-rest-framework-datatables
213b344b8159445703152b93856d034a59bb56eb
[ "MIT" ]
null
null
null
rest_framework_datatables/filters.py
BenjiWilson/django-rest-framework-datatables
213b344b8159445703152b93856d034a59bb56eb
[ "MIT" ]
null
null
null
import re from copy import deepcopy from django.db.models import Q from rest_framework.filters import BaseFilterBackend class DatatablesFilterBackend(BaseFilterBackend): """ Filter that works with datatables params. """ def filter_queryset(self, request, queryset, view): if request.accepted_renderer.format != 'datatables': return queryset # total_count = view.get_queryset().count() total_count = 100000000 if len(getattr(view, 'filter_backends', [])) > 1: # case of a view with more than 1 filter backend # filtered_count_before = queryset.count() filtered_count_before = 100000000 else: filtered_count_before = total_count # set the queryset count as an attribute of the view for later # TODO: find a better way than this hack setattr(view, '_datatables_total_count', total_count) # parse params if request.method == 'POST': request_data = request.data else: request_data = request.query_params getter = request_data.get fields = self.get_fields(getter) ordering = self.get_ordering(getter, fields) search_value = getter('search[value]') search_regex = getter('search[regex]') == 'true' # filter queryset q = Q() for f in fields: if not f['searchable']: continue if search_value and search_value != 'false': if search_regex: if self.is_valid_regex(search_value): # iterate through the list created from the 'name' # param and create a string of 'ior' Q() objects. for x in f['name']: q |= Q(**{'%s__iregex' % x: search_value}) else: # same as above. for x in f['name']: q |= Q(**{'%s__icontains' % x: search_value}) f_search_value = f.get('search_value') f_search_regex = f.get('search_regex') == 'true' if f_search_value: if f_search_regex: if self.is_valid_regex(f_search_value): # create a temporary q variable to hold the Q() # objects adhering to the field's name criteria. temp_q = Q() for x in f['name']: temp_q |= Q(**{'%s__iregex' % x: f_search_value}) # Use deepcopy() to transfer them to the global Q() # object. Deepcopy() necessary, since the var will be # reinstantiated next iteration. q = q & deepcopy(temp_q) else: temp_q = Q() for x in f['name']: temp_q |= Q(**{'%s__icontains' % x: f_search_value}) q = q & deepcopy(temp_q) if q: queryset = queryset.filter(q) # filtered_count = queryset.count() filtered_count = 1000000000 else: filtered_count = filtered_count_before # set the queryset count as an attribute of the view for later # TODO: maybe find a better way than this hack ? setattr(view, '_datatables_filtered_count', filtered_count) # order queryset if len(ordering): if hasattr(view, 'datatables_additional_order_by'): additional = view.datatables_additional_order_by # Django will actually only take the first occurrence if the # same column is added multiple times in an order_by, but it # feels cleaner to double check for duplicate anyway. if not any((o[1:] if o[0] == '-' else o) == additional for o in ordering): ordering.append(additional) queryset = queryset.order_by(*ordering) return queryset def get_fields(self, getter): fields = [] i = 0 while True: col = 'columns[%d][%s]' data = getter(col % (i, 'data')) if data == "": # null or empty string on datatables (JS) side fields.append({'searchable': False, 'orderable': False}) i += 1 continue # break out only when there are no more fields to get. if data is None: break name = getter(col % (i, 'name')) if not name: name = data search_col = col % (i, 'search') # to be able to search across multiple fields (e.g. to search # through concatenated names), we create a list of the name field, # replacing dot notation with double-underscores and splitting # along the commas. field = { 'name': [ n.lstrip() for n in name.replace('.', '__').split(',') ], 'data': data, 'searchable': getter(col % (i, 'searchable')) == 'true', 'orderable': getter(col % (i, 'orderable')) == 'true', 'search_value': getter('%s[%s]' % (search_col, 'value')), 'search_regex': getter('%s[%s]' % (search_col, 'regex')), } fields.append(field) i += 1 return fields def get_ordering(self, getter, fields): ordering = [] i = 0 while True: col = 'order[%d][%s]' idx = getter(col % (i, 'column')) if idx is None: break try: field = fields[int(idx)] except IndexError: i += 1 continue if not field['orderable']: i += 1 continue dir_ = getter(col % (i, 'dir'), 'asc') ordering.append('%s%s' % ( '-' if dir_ == 'desc' else '', field['name'][0] )) i += 1 return ordering def is_valid_regex(cls, regex): try: re.compile(regex) return True except re.error: return False
38.463855
78
0.499139
794ec4d645a1941953fc6cc2596c347f252cf4c4
2,388
py
Python
roblox/members.py
Warhawk947/ro.py
dac29116ef72f577d2e086e3297a79201d58c895
[ "MIT" ]
1
2021-11-25T02:29:12.000Z
2021-11-25T02:29:12.000Z
roblox/members.py
Warhawk947/ro.py
dac29116ef72f577d2e086e3297a79201d58c895
[ "MIT" ]
null
null
null
roblox/members.py
Warhawk947/ro.py
dac29116ef72f577d2e086e3297a79201d58c895
[ "MIT" ]
null
null
null
""" This module contains classes intended to parse and deal with data from Roblox group member endpoints. """ from __future__ import annotations from typing import Union, TYPE_CHECKING from .bases.baseuser import BaseUser from .partials.partialrole import PartialRole from .utilities.shared import ClientSharedObject if TYPE_CHECKING: from .bases.basegroup import BaseGroup from .bases.baserole import BaseRole class MemberRelationship(BaseUser): """ Represents a relationship between a user and a group. """ def __init__(self, shared: ClientSharedObject, user: Union[BaseUser, int], group: Union[BaseGroup, int]): self._shared: ClientSharedObject = shared super().__init__(shared=self._shared, user_id=int(user)) self.group: BaseGroup if isinstance(group, int): self.group = BaseGroup(shared=self._shared, group_id=group) else: self.group = group async def set_role(self, role: BaseRole): """ Sets this member's role. Arguments: role: The new role this member should be assigned. """ await self.group.set_role(self, role) async def set_rank(self, rank: int): """ Sets this member's rank. Arguments: rank: The new rank this member should be assigned. Should be in the range of 0-255. """ await self.group.set_rank(self, rank) async def kick(self): """ Kicks this member from the group. """ await self.group.kick_user(self) class Member(MemberRelationship): """ Represents a group member. Attributes: _shared: The shared object. role: The member's role. group: The member's group. """ def __init__(self, shared: ClientSharedObject, data: dict, group: BaseGroup): self._shared: ClientSharedObject = shared self.id: int = data["user"]["userId"] self.name: str = data["user"]["username"] self.display_name: str = data["user"]["displayName"] super().__init__(shared=self._shared, user=self.id, group=group) self.role: PartialRole = PartialRole(shared=self._shared, data=data["role"]) self.group: BaseGroup = group def __repr__(self): return f"<{self.__class__.__name__} id={self.id} name={self.name!r} role={self.role}>"
28.094118
109
0.646566
794ec4ef4bb22ee9ec8b1c2f9e55232e581736c8
40,998
py
Python
RecoLuminosity/LumiDB/python/matplotRender.py
bisnupriyasahu/cmssw
6cf37ca459246525be0e8a6f5172c6123637d259
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
RecoLuminosity/LumiDB/python/matplotRender.py
bisnupriyasahu/cmssw
6cf37ca459246525be0e8a6f5172c6123637d259
[ "Apache-2.0" ]
3
2018-08-23T13:40:24.000Z
2019-12-05T21:16:03.000Z
RecoLuminosity/LumiDB/python/matplotRender.py
bisnupriyasahu/cmssw
6cf37ca459246525be0e8a6f5172c6123637d259
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
''' Specs: -- We use matplotlib OO class level api, we do not use its high-level helper modules. Favor endured stability over simplicity. -- PNG as default batch file format -- we support http mode by sending string buf via meme type image/png. Sending a premade static plot to webserver is considered a uploading process instead of http dynamic graphical mode. ''' from __future__ import print_function from builtins import range import sys,os import numpy,datetime import matplotlib from RecoLuminosity.LumiDB import CommonUtil,lumiTime,csvReporter batchonly=False if 'DISPLAY' not in os.environ or not os.environ['DISPLAY']: batchonly=True matplotlib.use('Agg',warn=False) else: try: from RecoLuminosity.LumiDB import lumiQTWidget except ImportError: print('unable to import GUI backend, switch to batch only mode') matplotlib.use('Agg',warn=False) batchonly=True from matplotlib.backends.backend_agg import FigureCanvasAgg as CanvasBackend from matplotlib.figure import Figure from matplotlib.font_manager import fontManager,FontProperties matplotlib.rcParams['lines.linewidth']=1.5 matplotlib.rcParams['grid.linewidth']=0.2 matplotlib.rcParams['xtick.labelsize']=11 matplotlib.rcParams['ytick.labelsize']=11 matplotlib.rcParams['legend.fontsize']=10 matplotlib.rcParams['axes.labelsize']=11 matplotlib.rcParams['font.weight']=567 def guessInstLumiUnit(t): ''' input : largest total lumivalue output: (unitstring,denomitor) ''' unitstring='$\mu$b$^{-1}$s$^{-1}$' denomitor=1.0 if t>=1.0e3 and t<1.0e06: denomitor=1.0e3 unitstring='nb$^{-1}$s$^{-1}$' elif t>=1.0e6 and t<1.0e9: denomitor=1.0e6 unitstring='pb$^{-1}$s$^{-1}$' elif t>=1.0e9 and t<1.0e12: denomitor=1.0e9 unitstring='fb$^{-1}$s$^{-1}$' elif t>=1.0e12 and t<1.0e15: denomitor=1.0e12 unitstring='ab$^{-1}$s$^{-1}$' elif t<=1.0e-3 and t>1.0e-6: #left direction denomitor=1.0e-3 unitstring='mb$^{-1}$s$^{-1}$' elif t<=1.0e-6 and t>1.0e-9: denomitor=1.0e-6 unitstring='b$^{-1}$s$^{-1}$' elif t<=1.0e-9 and t>1.0e-12: denomitor=1.0e-9 unitstring='kb$^{-1}$s$^{-1}$' return (unitstring,denomitor) def guessLumiUnit(t): ''' input : largest total lumivalue output: (unitstring,denomitor) ''' unitstring='$\mu$b$^{-1}$' denomitor=1.0 if t>=1.0e3 and t<1.0e06: denomitor=1.0e3 unitstring='nb$^{-1}$' elif t>=1.0e6 and t<1.0e9: denomitor=1.0e6 unitstring='pb$^{-1}$' elif t>=1.0e9 and t<1.0e12: denomitor=1.0e9 unitstring='fb$^{-1}$' elif t>=1.0e12 and t<1.0e15: denomitor=1.0e12 unitstring='ab$^{-1}$' elif t<=1.0e-3 and t>1.0e-6: #left direction denomitor=1.0e-3 unitstring='mb$^{-1}$' elif t<=1.0e-6 and t>1.0e-9: denomitor=1.0e-6 unitstring='b$^{-1}$' elif t<=1.0e-9 and t>1.0e-12: denomitor=1.0e-9 unitstring='kb$^{-1}$' return (unitstring,denomitor) class matplotRender(): def __init__(self,fig): self.__fig=fig self.__canvas='' self.colormap={} self.colormap['Delivered']='r' self.colormap['Recorded']='b' self.colormap['Effective']='g' self.colormap['Max Inst']='r' def plotSumX_Run(self,rawdata={},resultlines=[],minRun=None,maxRun=None,nticks=6,yscale='linear',withannotation=False,referenceLabel='Delivered',labels=['Delivered','Recorded'],textoutput=None): ''' input: rawdata = {'Delivered':[(runnumber,lumiperrun),..],'Recorded':[(runnumber,lumiperrun),..]} resultlines = [[runnumber,dellumiperrun,reclumiperrun],[runnumber,dellumiperrun,reclumiperrun],] minRun : minimal runnumber required maxRun : max runnumber required yscale: linear,log or both withannotation: wheather the boundary points should be annotated referenceLabel: the one variable that decides the total unit and the plot x-axis range labels: labels of the variables to plot textoutput: text output file name. ''' ypoints={} ytotal={} for r in resultlines:#parse old text data runnumber=int(r[0]) if rawdata and runnumber in [t[0] for t in rawdata[referenceLabel]]:continue#use text input only if not in selected data if minRun and runnumber<minRun: continue if maxRun and runnumber>maxRun: continue for i,lab in enumerate(labels) : v=float(r[-(len(labels)-i)-1])#the values to plot are always the last n fields rawdata.setdefault(lab,[]).append((runnumber,v)) if not rawdata: print('[WARNING]: no data to plot , exit') return tot=sum([t[1] for t in rawdata[referenceLabel]]) (unitstring,denomitor)=guessLumiUnit(tot) csvreport=None rows=[] flat=[] for label,yvalues in rawdata.items(): yvalues.sort() flat.append([t[1] for t in yvalues]) ypoints[label]=[] ytotal[label]=0.0 lumivals=[t[1] for t in yvalues] for i,val in enumerate(lumivals): ypoints[label].append(sum(lumivals[0:i+1])/denomitor)#integrated lumi ytotal[label]=sum(lumivals)/denomitor xpoints=[t[0] for t in rawdata[referenceLabel]] ax=self.__fig.add_subplot(111) if yscale=='linear': ax.set_yscale('linear') elif yscale=='log': ax.set_yscale('log') else: raise RuntimeError('unsupported yscale '+yscale) ax.set_xlabel(r'Run',position=(0.95,0)) ax.set_ylabel(r'L '+unitstring,position=(0,0.9)) xticklabels=ax.get_xticklabels() for tx in xticklabels: tx.set_rotation(30) majorLocator=matplotlib.ticker.LinearLocator( nticks ) majorFormatter=matplotlib.ticker.FormatStrFormatter('%d') minorLocator=matplotlib.ticker.LinearLocator(numticks=4*nticks) ax.xaxis.set_major_locator(majorLocator) ax.xaxis.set_major_formatter(majorFormatter) ax.xaxis.set_minor_locator(minorLocator) ax.set_xbound(lower=xpoints[0],upper=xpoints[-1]) ax.grid(True) keylist=sorted(ypoints.keys()) keylist.insert(0,keylist.pop(keylist.index(referenceLabel)))#move refereceLabel to front from now on legendlist=[] head=['#Run'] textsummaryhead=['#TotalRun'] textsummaryline=['#'+str(len(xpoints))] for ylabel in keylist: cl='k' if ylabel in self.colormap: cl=self.colormap[ylabel] ax.plot(xpoints,ypoints[ylabel],label=ylabel,color=cl,drawstyle='steps') legendlist.append(ylabel+' '+'%.3f'%(ytotal[ylabel])+' '+unitstring) textsummaryhead.append('Total'+ylabel) textsummaryline.append('%.3f'%(ytotal[ylabel])+' '+unitstring) head.append(ylabel) if textoutput: csvreport=csvReporter.csvReporter(textoutput) csvreport.writeRow(head) allruns=[int(t[0]) for t in rawdata[referenceLabel]] flat.insert(0,allruns) rows=list(zip(*flat)) csvreport.writeRows([list(t) for t in rows]) csvreport.writeRow(textsummaryhead) csvreport.writeRow(textsummaryline) #font=FontProperties(size='medium',weight='demibold') #legend ax.legend(tuple(legendlist),loc='upper left') #adjust self.__fig.subplots_adjust(bottom=0.18,left=0.1) #annotations if withannotation: trans=matplotlib.transforms.BlendedGenericTransform(ax.transData,ax.transAxes) ax.text(xpoints[0],1.025,str(xpoints[0]),transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.text(xpoints[-1],1.025,str(xpoints[-1]),transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) def plotSumX_Fill(self,rawdata={},resultlines=[],minFill=None,maxFill=None,nticks=6,yscale='linear',withannotation=False,referenceLabel='Delivered',labels=['Delivered','Recorded'],textoutput=None): ''' input: rawdata = {'Delivered':[(fill,runnumber,lumiperrun)],'Recorded':[(fill,runnumber,lumiperrun)]} resultlines = [[fillnumber,runnumber,dellumiperrun,reclumiperrun],[fillnumber,runnumber,dellumiperrun,reclumiperrun],] minFill : min fill to draw maxFill : max fill to draw yscale: linear,log or both withannotation: wheather the boundary points should be annotated textoutput: text output file name. ''' ytotal={} ypoints={} for r in resultlines: #parse old text data fillnum=int(r[0]) runnum=int(r[1]) if rawdata and (fillnum,runnum) in [(t[0],t[1]) for t in rawdata[referenceLabel]]:continue if minFill and fillnum<minFill:continue if maxFill and fillnum>maxFill:continue for i,lab in enumerate(labels) : v=float(r[-(len(labels)-i)])#the values to plot are always the last n fields rawdata.setdefault(lab,[]).append((fillnum,runnum,v)) #print 'fillrunDict ',fillrunDict if not rawdata: print('[WARNING]: no data, do nothing') return tot=sum([t[2] for t in rawdata[referenceLabel]]) beginfo='' endinfo='' (unitstring,denomitor)=guessLumiUnit(tot) csvreport=None rows=[] flat=[] for label,yvalues in rawdata.items(): yvalues.sort() flat.append([t[2] for t in yvalues]) ypoints[label]=[] ytotal[label]=0.0 lumivals=[t[2] for t in yvalues] for i,val in enumerate(lumivals): ypoints[label].append(sum(lumivals[0:i+1])/denomitor) ytotal[label]=sum(lumivals)/denomitor xpoints=[t[0] for t in rawdata[referenceLabel]]#after sort ax=self.__fig.add_subplot(111) ax.set_xlabel(r'LHC Fill Number',position=(0.84,0)) ax.set_ylabel(r'L '+unitstring,position=(0,0.9)) ax.set_xbound(lower=xpoints[0],upper=xpoints[-1]) if yscale=='linear': ax.set_yscale('linear') elif yscale=='log': ax.set_yscale('log') else: raise RuntimeError('unsupported yscale '+yscale) xticklabels=ax.get_xticklabels() majorLocator=matplotlib.ticker.LinearLocator( nticks ) majorFormatter=matplotlib.ticker.FormatStrFormatter('%d') #minorLocator=matplotlib.ticker.MultipleLocator(sampleinterval) ax.xaxis.set_major_locator(majorLocator) ax.xaxis.set_major_formatter(majorFormatter) #ax.xaxis.set_minor_locator(minorLocator) ax.grid(True) keylist=sorted(ypoints.keys()) keylist.insert(0,keylist.pop(keylist.index(referenceLabel)))#move refereceLabel to front from now on legendlist=[] head=['#fill','run'] textsummaryhead=['#TotalFill'] textsummaryline=['#'+str(len(xpoints))] for ylabel in keylist: cl='k' if ylabel in self.colormap: cl=self.colormap[ylabel] ax.plot(xpoints,ypoints[ylabel],label=ylabel,color=cl,drawstyle='steps') legendlist.append(ylabel+' '+'%.3f'%(ytotal[ylabel])+' '+unitstring) textsummaryhead.append('Total'+ylabel) textsummaryline.append('%.3f'%(ytotal[ylabel])+' '+unitstring) head.append(ylabel) if textoutput: csvreport=csvReporter.csvReporter(textoutput) allfills=[int(t[0]) for t in rawdata[referenceLabel]] allruns=[int(t[1]) for t in rawdata[referenceLabel]] flat.insert(0,allfills) flat.insert(1,allruns) rows=list(zip(*flat)) csvreport.writeRow(head) csvreport.writeRows([list(t) for t in rows]) csvreport.writeRow(textsummaryhead) csvreport.writeRow(textsummaryline) #font=FontProperties(size='medium',weight='demibold') #annotations if withannotation: trans=matplotlib.transforms.BlendedGenericTransform(ax.transData,ax.transAxes) ax.text(xpoints[0],1.025,beginfo,transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.text(xpoints[-1],1.025,endinfo,transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) #legend ax.legend(tuple(legendlist),loc='upper left') #adjust self.__fig.subplots_adjust(bottom=0.1,left=0.1) def plotSumX_Time(self,rawdata={},resultlines=[],minTime=None,maxTime=None,nticks=6,yscale='linear',withannotation=False,referenceLabel='Delivered',labels=['Delivered','Recorded'],textoutput=None): ''' input: rawdata = {'Delivered':[(runnumber,starttimestamp,stoptimestamp,lumiperrun)],'Recorded':[(runnumber,starttimestamp,stoptimestamp,lumiperrun)]} resultlines = [[runnumber,starttimestampStr,stoptimestampStr,dellumiperrun,reclumiperrun],[runnumber,starttimestampStr,stoptimestampStr,dellumiperrun,reclumiperrun],] minTime (python DateTime) : min *begin* time to draw: format %m/%d/%y %H:%M:%S maxTime (python DateTime): max *begin* time to draw %m/%d/%y %H:%M:%S yscale: linear,log or both withannotation: wheather the boundary points should be annotated referenceLabel: the one variable that decides the total unit and the plot x-axis range labels: labels of the variables to plot ''' xpoints=[] ypoints={} ytotal={} lut=lumiTime.lumiTime() if not minTime: minTime='03/01/10 00:00:00' minTime=lut.StrToDatetime(minTime,customfm='%m/%d/%y %H:%M:%S') if not maxTime: maxTime=datetime.datetime.utcnow() else: maxTime=lut.StrToDatetime(maxTime,customfm='%m/%d/%y %H:%M:%S') for r in resultlines: runnumber=int(r[0]) starttimeStr=r[1].split('.')[0] starttime=lut.StrToDatetime(starttimeStr,customfm='%Y-%m-%d %H:%M:%S') stoptimeStr=r[2].split('.')[0] stoptime=lut.StrToDatetime(stoptimeStr,customfm='%Y-%m-%d %H:%M:%S') if rawdata and runnumber in [t[0] for t in rawdata[referenceLabel]]:continue if starttime<minTime:continue if starttime>maxTime:continue for i,lab in enumerate(labels): v=float(r[-(len(labels)-i)]) rawdata.setdefault(lab,[]).append((runnumber,starttime,stoptime,v)) if not rawdata: print('[WARNING]: no data, do nothing') return tot=sum([t[3] for t in rawdata[referenceLabel]]) (unitstring,denomitor)=guessLumiUnit(tot) csvreport=None rows=[] flat=[] for label,yvalues in rawdata.items(): yvalues.sort() flat.append([t[3] for t in yvalues]) if label==referenceLabel: minTime=yvalues[0][1] maxTime=yvalues[-1][1] ypoints[label]=[] lumivals=[t[3] for t in yvalues] for i,val in enumerate(lumivals): ypoints[label].append(sum(lumivals[0:i+1])/denomitor) ytotal[label]=sum(lumivals)/denomitor xpoints=[matplotlib.dates.date2num(t[1]) for t in rawdata[referenceLabel]] ax=self.__fig.add_subplot(111) ax.set_yscale(yscale) yearStrMin=minTime.strftime('%Y') yearStrMax=maxTime.strftime('%Y') if yearStrMin==yearStrMax: dateFmt=matplotlib.dates.DateFormatter('%d/%m') else: dateFmt=matplotlib.dates.DateFormatter('%d/%m/%y') majorLoc=matplotlib.ticker.LinearLocator(numticks=nticks) ax.xaxis.set_major_locator(majorLoc) minorLoc=matplotlib.ticker.LinearLocator(numticks=nticks*4) ax.xaxis.set_major_formatter(dateFmt) ax.set_xlabel(r'Date',position=(0.84,0)) ax.set_ylabel(r'L '+unitstring,position=(0,0.9)) ax.xaxis.set_minor_locator(minorLoc) ax.set_xbound(lower=xpoints[0],upper=xpoints[-1]) xticklabels=ax.get_xticklabels() for tx in xticklabels: tx.set_horizontalalignment('left') ax.grid(True) keylist=sorted(ypoints.keys()) keylist.insert(0,keylist.pop(keylist.index(referenceLabel)))#move refereceLabel to front from now on legendlist=[] head=['#Run','StartTime','StopTime'] textsummaryhead=['#TotalRun'] textsummaryline=['#'+str(len(xpoints))] for ylabel in keylist: cl='k' if ylabel in self.colormap: cl=self.colormap[ylabel] ax.plot(xpoints,ypoints[ylabel],label=ylabel,color=cl,drawstyle='steps') legendlist.append(ylabel+' '+'%.3f'%(ytotal[ylabel])+' '+unitstring) textsummaryhead.append('Total'+ylabel) textsummaryline.append('%.3f'%(ytotal[ylabel])+' '+unitstring) head.append(ylabel) if textoutput: csvreport=csvReporter.csvReporter(textoutput) csvreport.writeRow(head) allruns=[int(t[0]) for t in rawdata[referenceLabel]] allstarts=[ lut.DatetimeToStr(t[1],customfm='%Y-%m-%d %H:%M:%S') for t in rawdata[referenceLabel] ] allstops=[ lut.DatetimeToStr(t[2],customfm='%Y-%m-%d %H:%M:%S') for t in rawdata[referenceLabel] ] flat.insert(0,allruns) flat.insert(1,allstarts) flat.insert(2,allstops) rows=list(zip(*flat)) csvreport.writeRows([list(t) for t in rows]) csvreport.writeRow(textsummaryhead) csvreport.writeRow(textsummaryline) #annotations trans=matplotlib.transforms.BlendedGenericTransform(ax.transData,ax.transAxes) #print 'run boundary ',runs[0],runs[-1] #print 'xpoints boundary ',xpoints[0],xpoints[-1] #annotation if withannotation: runs=[t[0] for t in rawdata[referenceLabel]] ax.text(xpoints[0],1.025,str(runs[0]),transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.text(xpoints[-1],1.025,str(runs[-1]),transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) if yearStrMin==yearStrMax: firsttimeStr=rawdata[referenceLabel][1][1].strftime('%b %d %H:%M') #time range(start) in the title is the first run beg time lasttimeStr=rawdata[referenceLabel][-1][2].strftime('%b %d %H:%M') #time range(stop) in the tile is the last run stop time #firstimeStr=minTime.strftime('%b %d %H:%M') #lasttimeStr=maxTime.strftime('%b %d %H:%M') #ax.set_title('CMS Total Integrated Luminosity '+yearStrMin+' ('+firstimeStr+' - '+lasttimeStr+' UTC)',size='small',family='fantasy') ax.set_title('CMS Total Integrated Luminosity '+yearStrMin+' ('+firsttimeStr+' - '+lasttimeStr+' UTC)',size='small') else: #ax.set_title('CMS Total Integrated Luminosity '+yearStrMin+'-'+yearStrMax,size='small',family='fantasy') ax.set_title('CMS Total Integrated Luminosity '+yearStrMin+'-'+yearStrMax,size='small') ax.legend(tuple(legendlist),loc='upper left') ax.autoscale_view(tight=True,scalex=True,scaley=False) self.__fig.autofmt_xdate(bottom=0.18,rotation=15,ha='right') self.__fig.subplots_adjust(bottom=0.2,left=0.15) def plotPerdayX_Time(self,rawdata={},resultlines=[],minTime=None,maxTime=None,nticks=6,yscale='linear',withannotation=False,referenceLabel='Delivered',labels=['Delivered','Recorded'],textoutput=None): ''' Input: rawdata={'Delivered':[(day,begrun:ls,endrun:ls,lumi)],'Recorded':[(dayofyear,begrun:ls,endrun:ls,lumi)]} resultlines=[[day,begrun:ls,endrun:ls,deliveredperday,recordedperday],[]] minTime (python DateTime) : min *begin* time to draw: format %m/%d/%y %H:%M:%S maxTime (python DateTime): max *begin* time to draw %m/%d/%y %H:%M:%S withannotation: wheather the boundary points should be annotated referenceLabel: the one variable that decides the total unit and the plot x-axis range labels: labels of the variables to plot ''' xpoints=[] ypoints={} ymax={} lut=lumiTime.lumiTime() if not minTime: minTime='03/01/10 00:00:00' minTime=lut.StrToDatetime(minTime,customfm='%m/%d/%y %H:%M:%S') if not maxTime: maxTime=datetime.datetime.utcnow() else: maxTime=lut.StrToDatetime(maxTime,customfm='%m/%d/%y %H:%M:%S') for r in resultlines: day=int(r[0]) begrunls=r[1] endrunls=r[2] #[begrun,begls]=[int(s) for s in r[1].split(':')] if rawdata and day in [t[0] for t in rawdata[referenceLabel]]:continue if day < minTime.date().toordinal():continue if day > maxTime.date().toordinal():continue for i,lab in enumerate(labels): v=float(r[-(len(labels)-i)-1]) rawdata.setdefault(lab,[]).append((day,begrunls,endrunls,v)) if not rawdata: print('[WARNING]: no data, do nothing') return maxlum=max([t[3] for t in rawdata[referenceLabel]]) minlum=min([t[3] for t in rawdata[referenceLabel] if t[3]>0]) #used only for log scale, fin the non-zero bottom (unitstring,denomitor)=guessLumiUnit(maxlum) csvreport=None rows=[] flat=[] MinDay=minTime.date().toordinal() MaxDay=maxTime.date().toordinal() fulldays=list(range(MinDay,MaxDay+1)) allstarts=[] allstops=[] for label,yvalues in rawdata.items(): yvalues.sort() flat.append([t[3] for t in yvalues]) alldays=[t[0] for t in yvalues] alldates=[str(datetime.date.fromordinal(t)) for t in alldays] ypoints[label]=[] lumivals=[t[3] for t in yvalues] for d in fulldays: if not d in alldays: ypoints[label].append(0.0) else: thisdaylumi=[t[3] for t in yvalues if t[0]==d][0] if yscale=='log': if thisdaylumi<minlum: thisdaylumi=minlum/denomitor else: thisdaylumi=thisdaylumi/denomitor else: thisdaylumi=thisdaylumi/denomitor ypoints[label].append(thisdaylumi) ymax[label]=max(lumivals)/denomitor xpoints=fulldays if textoutput: csvreport=csvReporter.csvReporter(textoutput) head=['#day','begrunls','endrunls','delivered','recorded','date'] csvreport.writeRow(head) flat.insert(0,alldays) allstarts=[ t[1] for t in rawdata[referenceLabel]] allstops=[ t[2] for t in rawdata[referenceLabel]] #print 'allstarts ',allstarts flat.insert(1,allstarts) flat.insert(2,allstops) flat.append(alldates) rows=list(zip(*flat)) csvreport.writeRows([list(t) for t in rows]) yearStrMin=minTime.strftime('%Y') yearStrMax=maxTime.strftime('%Y') if yearStrMin==yearStrMax: dateFmt=matplotlib.dates.DateFormatter('%d/%m') else: dateFmt=matplotlib.dates.DateFormatter('%d/%m/%y') ax=self.__fig.add_subplot(111) if yscale=='linear': ax.set_yscale('linear') elif yscale=='log': ax.set_yscale('log') else: raise RuntimeError('unsupported yscale '+yscale) majorLoc=matplotlib.ticker.LinearLocator(numticks=nticks) minorLoc=matplotlib.ticker.LinearLocator(numticks=nticks*4) ax.xaxis.set_major_formatter(dateFmt) ax.set_xlabel(r'Date',position=(0.84,0)) ax.xaxis.set_major_locator(majorLoc) ax.xaxis.set_minor_locator(minorLoc) xticklabels=ax.get_xticklabels() for tx in xticklabels: tx.set_horizontalalignment('right') ax.grid(True) legendlist=[] ax.set_ylabel(r'L '+unitstring,position=(0,0.9)) textsummaryhead=['#TotalRunningDays'] textsummaryline=['#'+str(len(alldays))] for ylabel in labels: cl='k' if ylabel in self.colormap: cl=self.colormap[ylabel] ax.plot(xpoints,ypoints[ylabel],label=ylabel,color=cl,drawstyle='steps') legendlist.append(ylabel+' Max '+'%.3f'%(ymax[ylabel])+' '+unitstring) textsummaryhead.append('Max'+ylabel) textsummaryline.append('%.3f'%(ymax[ylabel])+' '+unitstring) if textoutput: csvreport.writeRow(textsummaryhead) csvreport.writeRow(textsummaryline) ax.legend(tuple(legendlist),loc='upper left') ax.set_xbound(lower=matplotlib.dates.date2num(minTime),upper=matplotlib.dates.date2num(maxTime)) #if withannotation: # begtime=boundaryInfo[0][0] # beginfo=boundaryInfo[0][1] # endtime=boundaryInfo[1][0] # endinfo=boundaryInfo[1][1] # #annotations # trans=matplotlib.transforms.BlendedGenericTransform(ax.transData,ax.transAxes) # ax.text(matplotlib.dates.date2num(begtime),1.025,beginfo,transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) # ax.text(matplotlib.dates.date2num(endtime),1.025,endinfo,transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) firstday=datetime.date.fromordinal(rawdata[referenceLabel][0][0]) lastday=datetime.date.fromordinal(rawdata[referenceLabel][-1][0]) firstdayStr=firstday.strftime('%Y %b %d') lastdayStr=lastday.strftime('%Y %b %d') ax.set_title('CMS Integrated Luminosity/Day ('+firstdayStr+' - '+lastdayStr+')',size='small') #ax.autoscale(tight=True) ax.autoscale_view(tight=True,scalex=True,scaley=False) #ax.set_xmargin(0.015) self.__fig.autofmt_xdate(bottom=0.18,rotation=15,ha='right') self.__fig.subplots_adjust(bottom=0.2,left=0.15) def plotPeakPerday_Time(self,rawdata={},resultlines=[],minTime=None,maxTime=None,nticks=6,withannotation=False,yscale='linear',referenceLabel='Delivered',labels=['Delivered'],textoutput=None): ''' THIS PLOT IS DELIVERED ONLY Input: rawdata={'Delivered':[(day,run,ls,instlumi)]} resultlines=[[day,run,ls,maxinstlum],[]] minTime (python DateTime) : min *begin* time to draw: format %m/%d/%y %H:%M:%S maxTime (python DateTime): max *begin* time to draw %m/%d/%y %H:%M:%S withannotation: wheather the boundary points should be annotated referenceLabel: the one variable that decides the total unit and the plot x-axis range labels: labels of the variables to plot ''' xpoints=[] ypoints={} legendlist=[] maxinfo='' ymax={} lut=lumiTime.lumiTime() if not minTime: minTime='03/01/10 00:00:00' minTime=lut.StrToDatetime(minTime,customfm='%m/%d/%y %H:%M:%S') if not maxTime: maxTime=datetime.datetime.utcnow() else: maxTime=lut.StrToDatetime(maxTime,customfm='%m/%d/%y %H:%M:%S') for r in resultlines: day=int(r[0]) runnumber=int(r[1]) lsnum=int(r[2].split('.')[0]) if rawdata and day in [int(t[0]) for t in rawdata[referenceLabel]]:continue if day < minTime.date().toordinal():continue if day > maxTime.date().toordinal():continue for i,lab in enumerate(labels): v=float(r[-(len(labels)-i)-1]) rawdata.setdefault(lab,[]).append((day,runnumber,lsnum,v)) if not rawdata: print('[WARNING]: no data, do nothing') return maxlum=max([t[3] for t in rawdata[referenceLabel]]) minlum=min([t[3] for t in rawdata[referenceLabel] if t[3]>0]) #used only for log scale, fin the non-zero bottom (unitstring,denomitor)=guessInstLumiUnit(maxlum) csvreport=None rows=[] flat=[] MinDay=minTime.date().toordinal() MaxDay=maxTime.date().toordinal() fulldays=list(range(MinDay,MaxDay+1)) for label in rawdata.keys(): yvalues=sorted(rawdata[label]) alldays=[t[0] for t in yvalues] alldates=[str(datetime.date.fromordinal(t)) for t in alldays] ypoints[label]=[] lumivals=[t[3] for t in yvalues] flat.append(lumivals) for d in fulldays: if not d in alldays: ypoints[label].append(0.0) else: thisdaylumi=[t[3] for t in yvalues if t[0]==d][0] if yscale=='log': if thisdaylumi<minlum: thisdaylumi=minlum/denomitor else: thisdaylumi=thisdaylumi/denomitor else: thisdaylumi=thisdaylumi/denomitor ypoints[label].append(thisdaylumi) ymax[label]=max(lumivals)/denomitor 'ymax ',max(lumivals) xpoints=fulldays if textoutput: csvreport=csvReporter.csvReporter(textoutput) head=['#day','run','lsnum','maxinstlumi','date'] csvreport.writeRow(head) flat.insert(0,alldays) allruns=[ t[1] for t in rawdata[referenceLabel]] allls=[ t[2] for t in rawdata[referenceLabel]] flat.insert(1,allruns) flat.insert(2,allls) flat.append(alldates) rows=list(zip(*flat)) csvreport.writeRows([list(t) for t in rows]) yearStrMin=minTime.strftime('%Y') yearStrMax=maxTime.strftime('%Y') if yearStrMin==yearStrMax: dateFmt=matplotlib.dates.DateFormatter('%d/%m') else: dateFmt=matplotlib.dates.DateFormatter('%d/%m/%y') ax=self.__fig.add_subplot(111) if yscale=='linear': ax.set_yscale('linear') elif yscale=='log': ax.set_yscale('log') else: raise RuntimeError('unsupported yscale '+yscale) majorLoc=matplotlib.ticker.LinearLocator(numticks=nticks) minorLoc=matplotlib.ticker.LinearLocator(numticks=nticks*4) ax.xaxis.set_major_formatter(dateFmt) ax.set_xlabel(r'Date',position=(0.84,0)) ax.set_ylabel(r'L '+unitstring,position=(0,0.9)) ax.xaxis.set_major_locator(majorLoc) ax.xaxis.set_minor_locator(minorLoc) xticklabels=ax.get_xticklabels() for tx in xticklabels: tx.set_horizontalalignment('right') ax.grid(True) cl=self.colormap['Max Inst'] textsummaryhead=['#TotalRunningDays'] textsummaryline=['#'+str(len(alldays))] for ylabel in labels: cl='k' if ylabel in self.colormap: cl=self.colormap[ylabel] ax.plot(xpoints,ypoints[ylabel],label='Max Inst',color=cl,drawstyle='steps') legendlist.append('Max Inst %.3f'%(ymax[ylabel])+' '+unitstring) textsummaryhead.append('Max Inst'+ylabel) textsummaryline.append('%.3f'%(ymax[ylabel])+' '+unitstring) if textoutput: csvreport.writeRow(textsummaryhead) csvreport.writeRow(textsummaryline) ax.legend(tuple(legendlist),loc='upper left') ax.set_xbound(lower=matplotlib.dates.date2num(minTime),upper=matplotlib.dates.date2num(maxTime)) if withannotation: #annotations trans=matplotlib.transforms.BlendedGenericTransform(ax.transData,ax.transAxes) ax.text(xpoints[0],1.025,beginfo,transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.text(xpoints[-1],1.025,endinfo,transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.annotate(maxinfo,xy=(xmax,ymax),xycoords='data',xytext=(0,13),textcoords='offset points',arrowprops=dict(facecolor='green',shrink=0.05),size='x-small',horizontalalignment='center',color='green',bbox=dict(facecolor='white')) firstday=datetime.date.fromordinal(rawdata[referenceLabel][0][0]) lastday=datetime.date.fromordinal(rawdata[referenceLabel][-1][0]) firstdayStr=firstday.strftime('%Y %b %d') lastdayStr=lastday.strftime('%Y %b %d') ax.set_title('CMS Peak Luminosity/Day ('+firstdayStr+' - '+lastdayStr+')',size='small') #ax.autoscale(tight=True) ax.autoscale_view(tight=True,scalex=True,scaley=False) #ax.set_xmargin(0.015) self.__fig.autofmt_xdate(bottom=0.18,rotation=15,ha='right') self.__fig.subplots_adjust(bottom=0.2,left=0.15) def plotInst_RunLS(self,rawxdata,rawydata,nticks=6,textoutput=None): ''' Input: rawxdata [run,fill,starttime,stoptime,totalls,ncmsls] rawydata {label:[lumi]} ''' lslength=23.357 lut=lumiTime.lumiTime() runnum=rawxdata[0] fill=rawxdata[1] starttime=lut.DatetimeToStr(rawxdata[2],customfm='%m/%d/%y %H:%M:%S') stoptime=lut.DatetimeToStr(rawxdata[3],customfm='%m/%d/%y %H:%M:%S') totalls=rawxdata[-2] ncmsls=rawxdata[-1] peakinst=max(rawydata['Delivered'])/lslength totaldelivered=sum(rawydata['Delivered']) totalrecorded=sum(rawydata['Recorded']) xpoints=list(range(1,totalls+1)) #print len(xpoints) ypoints={} ymax={} for ylabel,yvalue in rawydata.items(): ypoints[ylabel]=[y/lslength for y in yvalue] ymax[ylabel]=max(yvalue)/lslength left=0.15 width=0.7 bottom=0.1 height=0.65 bottom_h=bottom+height rect_scatter=[left,bottom,width,height] rect_table=[left,bottom_h,width,0.25] nullfmt=matplotlib.ticker.NullFormatter() nullloc=matplotlib.ticker.NullLocator() axtab=self.__fig.add_axes(rect_table,frameon=False) axtab.set_axis_off() axtab.xaxis.set_major_formatter(nullfmt) axtab.yaxis.set_major_formatter(nullfmt) axtab.xaxis.set_major_locator(nullloc) axtab.yaxis.set_major_locator(nullloc) ax=self.__fig.add_axes(rect_scatter) majorLoc=matplotlib.ticker.LinearLocator(numticks=nticks) minorLoc=matplotlib.ticker.LinearLocator(numticks=nticks*4) ax.set_xlabel(r'LS',position=(0.96,0)) ax.set_ylabel(r'L $\mu$b$^{-1}$s$^{-1}$',position=(0,0.9)) ax.xaxis.set_major_locator(majorLoc) ax.xaxis.set_minor_locator(minorLoc) ax.set_xbound(lower=xpoints[0],upper=xpoints[-1]) xticklabels=ax.get_xticklabels() for tx in xticklabels: tx.set_horizontalalignment('right') ax.grid(True) keylist=sorted(ypoints.keys()) legendlist=[] for ylabel in keylist: cl='k' if ylabel in self.colormap: cl=self.colormap[ylabel] ax.plot(xpoints,ypoints[ylabel],'.',label=ylabel,color=cl) legendlist.append(ylabel) #ax.axhline(0,color='green',linewidth=0.2) ax.axvline(xpoints[ncmsls-1],color='green',linewidth=0.2) (unitstring,denomitor)=guessLumiUnit(totaldelivered) colLabels=('run','fill','max inst(/$\mu$b/s)','delivered('+unitstring+')','recorded('+unitstring+')') cellText=[[str(runnum),str(fill),'%.3f'%(peakinst),'%.3f'%(totaldelivered/denomitor),'%.3f'%(totalrecorded/denomitor)]] sumtable=axtab.table(cellText=cellText,colLabels=colLabels,colWidths=[0.12,0.1,0.27,0.27,0.27],cellLoc='center',loc='center') trans=matplotlib.transforms.BlendedGenericTransform(ax.transData,ax.transAxes) axtab.add_table(sumtable) ax.text(xpoints[0],1.02,starttime[0:17],transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.text(xpoints[ncmsls-1],1.02,stoptime[0:17],transform=trans,horizontalalignment='left',size='x-small',color='green',bbox=dict(facecolor='white')) ax.legend(tuple(legendlist),loc='upper right',numpoints=1) def drawHTTPstring(self): self.__canvas=CanvasBackend(self.__fig) cherrypy.response.headers['Content-Type']='image/png' buf=StringIO() self.__canvas.print_png(buf) return buf.getvalue() def drawPNG(self,filename): self.__canvas=CanvasBackend(self.__fig) self.__canvas.print_figure(filename) def drawInteractive(self): if batchonly: print('interactive mode is not available for your setup, exit') sys.exit() aw=lumiQTWidget.ApplicationWindow(fig=self.__fig) aw.show() aw.destroy() if __name__=='__main__': import csv print('=====testing plotSumX_Run======') f=open('/afs/cern.ch/cms/lumi/www/plots/operation/totallumivsrun-2011.csv','r') reader=csv.reader(f,delimiter=',') resultlines=[] for row in reader: if not row[0].isdigit():continue resultlines.append(row) #print resultlines fig=Figure(figsize=(7.2,5.4),dpi=120) m=matplotRender(fig) m.plotSumX_Run(rawdata={},resultlines=resultlines,minRun=None,maxRun=None,nticks=6,yscale='linear',withannotation=False) #m.drawPNG('totallumivsrun-2011test.png') m.drawInteractive() print('DONE') ''' print '=====testing plotSumX_Fill======' f=open('/afs/cern.ch/cms/lumi/www/plots/operation/totallumivsfill-2011.csv','r') reader=csv.reader(f,delimiter=',') resultlines=[] for row in reader: if not row[0].isdigit():continue resultlines.append(row) #print resultlines fig=Figure(figsize=(7.2,5.4),dpi=120) m=matplotRender(fig) m.plotSumX_Fill(rawdata={},resultlines=resultlines,minFill=None,maxFill=None,nticks=6,yscale='linear',withannotation=True) m.drawPNG('totallumivsfill-2011test.png') print 'DONE' print '=====testing plotSumX_Time======' f=open('/afs/cern.ch/cms/lumi/www/publicplots/totallumivstime-2011.csv','r') reader=csv.reader(f,delimiter=',') resultlines=[] for row in reader: if not row[0].isdigit():continue resultlines.append(row) #print resultlines fig=Figure(figsize=(7.25,5.4),dpi=120) m=matplotRender(fig) m.plotSumX_Time(rawdata={},resultlines=resultlines,minTime="03/14/11 09:00:00",maxTime=None,nticks=6,yscale='linear',withannotation=False) m.drawPNG('totallumivstime-2011test.png') print 'DONE' print '=====testing plotPerdayX_Time======' f=open('/afs/cern.ch/cms/lumi/www/publicplots/lumiperday-2011.csv','r') reader=csv.reader(f,delimiter=',') resultlines=[] for row in reader: if not row[0].isdigit():continue resultlines.append(row) #print resultlines fig=Figure(figsize=(7.25,5.4),dpi=120) m=matplotRender(fig) m.plotPerdayX_Time(rawdata={},resultlines=resultlines,minTime="03/14/11 09:00:00",maxTime=None,nticks=6,yscale='linear',withannotation=False) m.drawPNG('lumiperday-2011test.png') print 'DONE' print '=====testing plotPeakPerday_Time======' f=open('/afs/cern.ch/cms/lumi/www/publicplots/lumipeak-2011.csv','r') reader=csv.reader(f,delimiter=',') resultlines=[] for row in reader: if not row[0].isdigit():continue resultlines.append(row) #print resultlines fig=Figure(figsize=(7.25,5.4),dpi=120) m=matplotRender(fig) m.plotPeakPerday_Time(rawdata={},resultlines=resultlines,minTime="03/14/11 09:00:00",maxTime=None,nticks=6,yscale='linear',withannotation=False) m.drawPNG('lumipeak-2011test.png') print 'DONE' '''
46.273138
237
0.614371
794ec531581a19d82a65bb898d97840d53fcbb69
2,511
py
Python
app/migrations/0002_auto_20210405_1851.py
dorothymuhonja/awwards
3e689e2f6dc059cc146d577327ee45b170115f92
[ "MIT" ]
null
null
null
app/migrations/0002_auto_20210405_1851.py
dorothymuhonja/awwards
3e689e2f6dc059cc146d577327ee45b170115f92
[ "MIT" ]
null
null
null
app/migrations/0002_auto_20210405_1851.py
dorothymuhonja/awwards
3e689e2f6dc059cc146d577327ee45b170115f92
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-04-05 15:51 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('app', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='rating', name='profile', ), migrations.RemoveField( model_name='rating', name='project', ), migrations.AddField( model_name='rating', name='content_average', field=models.FloatField(blank=True, default=0), ), migrations.AddField( model_name='rating', name='design_average', field=models.FloatField(blank=True, default=0), ), migrations.AddField( model_name='rating', name='post', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='ratings', to='app.project'), ), migrations.AddField( model_name='rating', name='score', field=models.FloatField(blank=True, default=0), ), migrations.AddField( model_name='rating', name='usability_average', field=models.FloatField(blank=True, default=0), ), migrations.AddField( model_name='rating', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='rater', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='rating', name='content', field=models.IntegerField(blank=True, choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')]), ), migrations.AlterField( model_name='rating', name='design', field=models.IntegerField(blank=True, choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')], default=0), ), migrations.AlterField( model_name='rating', name='usability', field=models.IntegerField(blank=True, choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')]), ), ]
35.871429
173
0.526483
794ec5ec452833a4487441a0ef9c0daeead18fca
390
py
Python
gerapy/server/server/wsgi.py
toyourheart163/Gerapy
de1971ab953b09225072bb9f895492f9f51a0f60
[ "MIT" ]
null
null
null
gerapy/server/server/wsgi.py
toyourheart163/Gerapy
de1971ab953b09225072bb9f895492f9f51a0f60
[ "MIT" ]
null
null
null
gerapy/server/server/wsgi.py
toyourheart163/Gerapy
de1971ab953b09225072bb9f895492f9f51a0f60
[ "MIT" ]
null
null
null
''' WSGI config for server project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ ''' import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'heroku_settings') application = get_wsgi_application()
22.941176
78
0.787179
794ec71cb75c10e56b8d4fe48d94e208d97eb568
4,584
py
Python
penguindome/client.py
jikamens/PenguinDome
4efd8c6cb758a78857a5dbd5817b78eef79e7f32
[ "Apache-2.0" ]
81
2017-07-30T18:40:13.000Z
2022-02-23T23:04:54.000Z
penguindome/client.py
jikamens/PenguinDome
4efd8c6cb758a78857a5dbd5817b78eef79e7f32
[ "Apache-2.0" ]
18
2017-10-24T00:20:49.000Z
2021-06-08T12:12:34.000Z
penguindome/client.py
jikamens/PenguinDome
4efd8c6cb758a78857a5dbd5817b78eef79e7f32
[ "Apache-2.0" ]
22
2017-09-12T20:22:29.000Z
2021-11-11T18:45:04.000Z
# Quantopian, Inc. licenses this file to you under the Apache License, Version # 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from functools import partial import getpass import json import os import requests import sys from tempfile import NamedTemporaryFile from penguindome import ( load_settings, get_setting as main_get_setting, set_setting as main_set_setting, get_logger as main_get_logger, save_settings as main_save_settings, get_selectors as main_get_selectors, encrypt_document as main_encrypt_document, client_gpg_version, gpg_command as main_gpg_command, top_dir, ) gpg_command = partial(main_gpg_command, with_user_id=True, minimum_version=client_gpg_version) session = None def get_setting(setting, default=None, check_defaults=True): """Fetch a setting from `client/settings.xml` `setting` is a colon-separated list of keys and to transit to fetch the desired setting. For example, `logging:handler` fetches the type Logbook handler configured on the client. `default` is the value to return if the setting does not exist. `check_defaults` indicates whether `client/default-settings.yml` should be checked if the specified setting isn't in `client/settings.xml`. Returns None if the setting does not exist. """ return main_get_setting(load_settings('client'), setting, default, check_defaults) def set_setting(setting, value): return main_set_setting(load_settings('client'), setting, value) def save_settings(): main_save_settings('client') def get_logger(name): return main_get_logger(get_setting, name, fail_to_local=True) def get_selectors(): return main_get_selectors(get_setting) def encrypt_document(*args, **kwargs): return main_encrypt_document(get_setting, *args, **kwargs) def server_request(cmd, data=None, data_path=None, exit_on_connection_error=False, logger=None, # Clients should never need to use these. They are for # internal use on the server. local_port=None, signed=True): global session if session is None: session = requests.Session() server_url = 'http://127.0.0.1:{}'.format(local_port) if local_port \ else get_setting('server_url') if data and data_path: raise Exception('Both data and data_path specified') with NamedTemporaryFile('w+') as temp_data_file, \ NamedTemporaryFile('w+') as signature_file: if data_path: data = open(data_path).read() else: data = json.dumps(data) temp_data_file.write(data) temp_data_file.flush() data_path = temp_data_file.name post_data = {'data': data} if signed: gpg_command('--armor', '--detach-sign', '-o', signature_file.name, data_path, log=logger) signature_file.seek(0) post_data['signature'] = signature_file.read() kwargs = { 'data': post_data, 'timeout': 30, } if not local_port: ca_path = get_setting('ssl:ca_path') if ca_path: if not ca_path.startswith('/'): ca_path = os.path.join(top_dir, ca_path) kwargs['verify'] = ca_path try: while True: response = session.post('{}{}'.format(server_url, cmd), **kwargs) if response.status_code == 401 and os.isatty(sys.stderr.fileno()): username = input('Username:') pw = getpass.getpass('Password:') kwargs['auth'] = (username, pw) continue response.raise_for_status() if 'auth' in kwargs and logger: logger.info('Authenticated {} to {}', kwargs['auth'][0], cmd) break except (requests.exceptions.ConnectionError, requests.exceptions.ReadTimeout): if exit_on_connection_error: sys.exit('Connection error posting to {}'.format(server_url)) raise return response
33.955556
79
0.657286
794ec76515f83520494079e4287d157782ae3f2f
4,461
py
Python
Google/benchmarks/ssd/implementations/tpu-v3-512-ssd/ssd/utils.py
mengkai94/training_results_v0.6
43dc3e250f8da47b5f8833197d74cb8cf1004fc9
[ "Apache-2.0" ]
42
2019-07-11T18:23:52.000Z
2021-09-14T08:21:09.000Z
Google/benchmarks/ssd/implementations/tpu-v3-512-ssd/ssd/utils.py
mengkai94/training_results_v0.6
43dc3e250f8da47b5f8833197d74cb8cf1004fc9
[ "Apache-2.0" ]
23
2019-07-29T05:21:52.000Z
2020-08-31T18:51:42.000Z
Google/benchmarks/ssd/implementations/tpu-v3-512-ssd/ssd/utils.py
mengkai94/training_results_v0.6
43dc3e250f8da47b5f8833197d74cb8cf1004fc9
[ "Apache-2.0" ]
51
2019-07-12T05:10:25.000Z
2021-07-28T16:19:06.000Z
# Copyright 2018 Google. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils for SSD train/eval with low level API.""" from absl import flags import tensorflow as tf FLAGS = flags.FLAGS def wrap_computation_in_while_loop(op_fn, n, host_name): """Wraps the ops generated by `op_fn` in tf.while_loop.""" def computation(i): ops = op_fn() if not isinstance(ops, list): ops = [ops] with tf.control_dependencies(ops): return i + 1 with tf.device(device_for_host(host_name)): return tf.while_loop( lambda i: tf.less(i, n), computation, [tf.constant(0)], parallel_iterations=1) def device_for_host(host_name): return host_name + '/device:CPU:0' def device_for_tpu_core(host_name, core=0): return host_name + '/device:TPU_REPLICATED_CORE:%d' % core def tpu_ordinal_fn(shard_index_in_host): """Return the TPU ordinal associated with a shard.""" return shard_index_in_host % FLAGS.num_shards_per_host class InputDimsFlattener(object): """"Flatten input_partition_dims for spatial partition.""" def __init__(self, input_partition_dims): self._initialized = False self._flattened_input_dims = None # This should have been validated in TPUConfig. assert len(input_partition_dims) <= 2, 'must have 1 or 2 elements.' if len(input_partition_dims) == 2: self._feature_dims, self._label_dims = input_partition_dims else: self._feature_dims = input_partition_dims[0] self._label_dims = None assert self._feature_dims is not None, ('input_partition_dims[0] must not ' 'be None') @property def flattened_input_dims(self): assert self._initialized, 'InputsStructureRecorder is not initialized.' return self._flattened_input_dims def validate_and_flatten_input_dims(self, features, labels): """Flatten input dims with the same order as flattened input tensors.""" def _extract_key_names(tensor_or_dict): if isinstance(tensor_or_dict, dict): return sorted(tensor_or_dict.keys()) return [] if self._initialized: return self._flattened_input_dims has_labels = labels is not None feature_names = _extract_key_names(features) label_names = _extract_key_names(labels) feature_dims_names = _extract_key_names(self._feature_dims) if feature_dims_names != feature_names: raise ValueError('TPUConfig.input_partition_dims[0] mismatched feature' ' keys. Expected {}, got {}'.format( feature_names, feature_dims_names)) label_dims_names = _extract_key_names(self._label_dims) if self._label_dims is not None and label_dims_names != label_names: raise ValueError('TPUConfig.input_partition_dims[1] mismatched label' ' keys. Expected {}, got {}'.format( label_names, label_dims_names)) flattened_input_dims = [] if feature_dims_names: # We need a fixed ordering for matching the tensors in features. flattened_input_dims.extend( [self._feature_dims[name] for name in feature_dims_names]) else: flattened_input_dims.append(self._feature_dims) if label_dims_names: # We need a fixed ordering for matching the tensors in labels. flattened_input_dims.extend( [self._label_dims[name] for name in label_dims_names]) else: if label_names: num_tensors_in_label = len(label_names) else: num_tensors_in_label = int(has_labels) # Setting `None` in input_partition_dims[1] will apply `None` to # all the tensors in labels, regardless of internal structure. flattened_input_dims.extend([self._label_dims] * num_tensors_in_label) self._flattened_input_dims = flattened_input_dims self._initialized = True
35.404762
80
0.694239
794ec7fe10f3be35e04670c341fbde6db91a82e5
400
py
Python
examples/move_husky.py
Robotics-Club-IIT-BHU/LaRoboLiga_PS2Arena
8fddadb7b7078368ec2e8d6c99d7a5c4a60e8f44
[ "MIT" ]
1
2022-02-14T11:01:48.000Z
2022-02-14T11:01:48.000Z
examples/move_husky.py
Robotics-Club-IIT-BHU/LaRoboLiga_PS2Arena
8fddadb7b7078368ec2e8d6c99d7a5c4a60e8f44
[ "MIT" ]
null
null
null
examples/move_husky.py
Robotics-Club-IIT-BHU/LaRoboLiga_PS2Arena
8fddadb7b7078368ec2e8d6c99d7a5c4a60e8f44
[ "MIT" ]
13
2022-02-14T12:57:06.000Z
2022-03-02T11:57:23.000Z
# Example to use the move_husky() function import gym import LRL_main_arena import time import pybullet as p import pybullet_data import cv2 import os if __name__ == "__main__": parent_path = os.path.dirname(os.getcwd()) os.chdir(parent_path) env = gym.make("la_robo_liga_arena-v0") time.sleep(2) while True: p.stepSimulation() env.move_husky(0.2, 0.2, 0.2, 0.2)
22.222222
46
0.695
794ec9884a93f96ca6dafa1b90d61c95c5835060
149
py
Python
configs/hrnet/htc_hrnetv2p_w40_28e_coco_05.py
anley1/Swin-Transformer-Object-Detection
0f26c7979ee2360acd359a5789cd8d52527e0d64
[ "Apache-2.0" ]
null
null
null
configs/hrnet/htc_hrnetv2p_w40_28e_coco_05.py
anley1/Swin-Transformer-Object-Detection
0f26c7979ee2360acd359a5789cd8d52527e0d64
[ "Apache-2.0" ]
null
null
null
configs/hrnet/htc_hrnetv2p_w40_28e_coco_05.py
anley1/Swin-Transformer-Object-Detection
0f26c7979ee2360acd359a5789cd8d52527e0d64
[ "Apache-2.0" ]
null
null
null
_base_ = './htc_hrnetv2p_w40_20e_coco_05.py' # learning policy lr_config = dict(step=[24, 27]) runner = dict(type='EpochBasedRunner', max_epochs=28)
29.8
53
0.758389
794ecbbac52bbc61e3c69a373b79ae4333d01901
2,912
py
Python
transform_funcs.py
Institute-Web-Science-and-Technologies/community-trust-opensourced
704185c6bc40564815b39d024a829b077bf65777
[ "Apache-2.0" ]
null
null
null
transform_funcs.py
Institute-Web-Science-and-Technologies/community-trust-opensourced
704185c6bc40564815b39d024a829b077bf65777
[ "Apache-2.0" ]
null
null
null
transform_funcs.py
Institute-Web-Science-and-Technologies/community-trust-opensourced
704185c6bc40564815b39d024a829b077bf65777
[ "Apache-2.0" ]
null
null
null
from __future__ import division import igraph import numpy as np import powerlaw from scipy.stats import binom # no transformation def no_transform(feature, **kwargs): return np.array(feature) # tranform feature to quantile def quantile_transform(feature, **kwargs): total = len(feature) feature = np.array(feature) # feature - quantile mapping D = {} for f in np.unique(feature): D[f] = len(feature[feature < f]) / total quantile = [D[f] for f in feature] return np.array(quantile) # divide-by-average transformation def average_transform(degree, **kwargs): return np.array(degree) / np.mean(degree) # degree transformation def degree_transform(degree, **kwargs): # pre-processing degree = np.array(degree) # fitting power-law distribution fit = powerlaw.Fit(degree, discrete=True, xmin=(1,6)) alpha = fit.alpha x_min = fit.xmin n = len(degree) total = len(degree[degree >= x_min]) c = (alpha - 1) * total / n T = {} for d in np.unique(degree): if (d <= x_min): T[d] = d else: T[d] = np.power(d/x_min, alpha-1) * x_min degree = np.round([ T[d] for d in degree ]) return degree # degree transformation with fallback def degree_transform_with_fallback(degree, **kwargs): # pre-processing degree = np.array(degree) total = len(degree[degree < 0]) # fitting power-law distribution fit = powerlaw.Fit(degree, discrete=True) alpha = fit.alpha sigma = fit.sigma x_min = min(6, fit.xmin) P = {}; D = {}; T = {} for d in np.unique(degree): P[d] = len(degree[degree >= d]) / total D[d] = d if d <= 1 else 1/P[d] # fallback if (sigma > 0.05): print 'sigma =', sigma, ', fallback!' return degree c = (alpha - 1) * total / len(degree) for d in np.unique(degree): if (d <= 1): T[d] = d else: P_r = len(degree[degree == d]) / total P_p = np.power(d, -alpha) * c T_d = np.power(d, alpha-1) if (sigma > 0.05): T[d] = (d*(P_r-P_p) + D[d]*P_p) / P_r if d < x_min else D[d] else: T[d] = (d*(P_r-P_p) + c/d) / P_r if d < x_min else T_d degree = np.array([ T[d] for d in degree ]) return degree # transform local clustering coeffient def lcc_transform(lcc, degree): degree, lcc = np.array(degree), np.array(lcc) s = (degree * (degree - 1) / 2).astype(np.int) t = np.round(lcc * s).astype(np.int) if sum(s) == 0: return lcc P = {} for S in np.unique(s): t_s = t[s == S] p0 = len(t_s[t_s == 0]) / len(t_s) for T in np.unique(t_s): P[(T,S)] = (len(t_s[t_s <= T]) / len(t_s) - p0) / (1 - p0) if p0 < 1 else 0 lcc = np.array([ P[(t[i], s[i])] for i in range(len(degree)) ]) return lcc
25.769912
87
0.562157
794ecc208ee65d310b2573f32ab437d91072efe4
2,500
py
Python
aliyun-python-sdk-openanalytics-open/aliyunsdkopenanalytics_open/request/v20180619/ResetMainPasswordRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-openanalytics-open/aliyunsdkopenanalytics_open/request/v20180619/ResetMainPasswordRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-openanalytics-open/aliyunsdkopenanalytics_open/request/v20180619/ResetMainPasswordRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkopenanalytics_open.endpoint import endpoint_data class ResetMainPasswordRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'openanalytics-open', '2018-06-19', 'ResetMainPassword','openanalytics') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ExternalUid(self): return self.get_body_params().get('ExternalUid') def set_ExternalUid(self,ExternalUid): self.add_body_params('ExternalUid', ExternalUid) def get_InitPassword(self): return self.get_body_params().get('InitPassword') def set_InitPassword(self,InitPassword): self.add_body_params('InitPassword', InitPassword) def get_ExternalAliyunUid(self): return self.get_body_params().get('ExternalAliyunUid') def set_ExternalAliyunUid(self,ExternalAliyunUid): self.add_body_params('ExternalAliyunUid', ExternalAliyunUid) def get_UseRandomPassword(self): return self.get_body_params().get('UseRandomPassword') def set_UseRandomPassword(self,UseRandomPassword): self.add_body_params('UseRandomPassword', UseRandomPassword) def get_EnableKMS(self): return self.get_body_params().get('EnableKMS') def set_EnableKMS(self,EnableKMS): self.add_body_params('EnableKMS', EnableKMS) def get_ExternalBizAliyunUid(self): return self.get_body_params().get('ExternalBizAliyunUid') def set_ExternalBizAliyunUid(self,ExternalBizAliyunUid): self.add_body_params('ExternalBizAliyunUid', ExternalBizAliyunUid)
36.764706
101
0.7796
794eccb14075105cb5351c1591f40de421114620
426
py
Python
macropy/logging.py
CyberFlameGO/macropy
a815f5a58231d8fa65386cd71ff0d15d09fe9fa3
[ "Unlicense", "MIT" ]
2,061
2015-01-02T16:53:18.000Z
2022-03-31T12:01:07.000Z
macropy/logging.py
CyberFlameGO/macropy
a815f5a58231d8fa65386cd71ff0d15d09fe9fa3
[ "Unlicense", "MIT" ]
41
2015-02-25T02:54:46.000Z
2022-01-28T19:08:45.000Z
macropy/logging.py
CyberFlameGO/macropy
a815f5a58231d8fa65386cd71ff0d15d09fe9fa3
[ "Unlicense", "MIT" ]
151
2015-01-01T22:07:55.000Z
2022-03-03T07:55:20.000Z
# -*- coding: utf-8 -*- # :Project: macropy3 -- enable basic logging # :Created: gio 01 mar 2018 02:43:14 CET # :Author: Alberto Berti <alberto@metapensiero.it> # :License: GNU General Public License version 3 or later # :Copyright: © 2018 Alberto Berti # import logging log = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) logging.getLogger().setLevel(logging.DEBUG) log.debug('Log started')
28.4
59
0.725352
794ecd1e2deaca7603bcf2c33f35adcbc7f451db
3,434
py
Python
desktop/core/ext-py/parquet-1.3.1/parquet/converted_types.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
desktop/core/ext-py/parquet-1.3.1/parquet/converted_types.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
desktop/core/ext-py/parquet-1.3.1/parquet/converted_types.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
# -#- coding: utf-8 -#- """ Deal with parquet logical types (aka converted types), higher-order things built from primitive types. The implementations in this class are pure python for the widest compatibility, but they're not necessarily the most performant. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import codecs import datetime import json import logging import os import struct import sys from decimal import Decimal import thriftpy2 as thriftpy THRIFT_FILE = os.path.join(os.path.dirname(__file__), "parquet.thrift") parquet_thrift = thriftpy.load(THRIFT_FILE, module_name=str("parquet_thrift")) # pylint: disable=invalid-name logger = logging.getLogger('parquet') # pylint: disable=invalid-name bson = None # pylint: disable=invalid-name try: import bson except ImportError: pass PY3 = sys.version_info.major > 2 # define bytes->int for non 2, 4, 8 byte ints if PY3: def intbig(data): """Convert big ints using python 3's built-in support.""" return int.from_bytes(data, 'big', signed=True) else: def intbig(data): """Convert big ints using a hack of encoding bytes as hex and decoding to int.""" return int(codecs.encode(data, 'hex'), 16) DAYS_TO_MILLIS = 86400000000000 """Number of millis in a day. Used to convert a Date to a date""" def _convert_unsigned(data, fmt): """Convert data from signed to unsigned in bulk.""" num = len(data) return struct.unpack( "{}{}".format(num, fmt.upper()).encode("utf-8"), struct.pack("{}{}".format(num, fmt).encode("utf-8"), *data) ) def convert_column(data, schemae): """Convert known types from primitive to rich.""" ctype = schemae.converted_type if ctype == parquet_thrift.ConvertedType.DECIMAL: scale_factor = Decimal("10e-{}".format(schemae.scale)) if schemae.type == parquet_thrift.Type.INT32 or schemae.type == parquet_thrift.Type.INT64: return [Decimal(unscaled) * scale_factor for unscaled in data] return [Decimal(intbig(unscaled)) * scale_factor for unscaled in data] if ctype == parquet_thrift.ConvertedType.DATE: return [datetime.date.fromordinal(d) for d in data] if ctype == parquet_thrift.ConvertedType.TIME_MILLIS: return [datetime.timedelta(milliseconds=d) for d in data] if ctype == parquet_thrift.ConvertedType.TIMESTAMP_MILLIS: return [datetime.datetime.utcfromtimestamp(d / 1000.0) for d in data] if ctype == parquet_thrift.ConvertedType.UTF8: return [codecs.decode(item, "utf-8") for item in data] if ctype == parquet_thrift.ConvertedType.UINT_8: return _convert_unsigned(data, 'b') if ctype == parquet_thrift.ConvertedType.UINT_16: return _convert_unsigned(data, 'h') if ctype == parquet_thrift.ConvertedType.UINT_32: return _convert_unsigned(data, 'i') if ctype == parquet_thrift.ConvertedType.UINT_64: return _convert_unsigned(data, 'q') if ctype == parquet_thrift.ConvertedType.JSON: return [json.loads(s) for s in codecs.iterdecode(data, "utf-8")] if ctype == parquet_thrift.ConvertedType.BSON and bson: return [bson.BSON(s).decode() for s in data] logger.info("Converted type '%s'' not handled", parquet_thrift.ConvertedType._VALUES_TO_NAMES[ctype]) # pylint:disable=protected-access return data
37.736264
110
0.699767
794ecd1eb6a41ac96430052375378ebc1b7ebd57
117
py
Python
tasks/admin.py
Hernandes-Silva/To-do-list-API
fff8e4c3a795285f659d63363d1d0c66f018b357
[ "MIT" ]
null
null
null
tasks/admin.py
Hernandes-Silva/To-do-list-API
fff8e4c3a795285f659d63363d1d0c66f018b357
[ "MIT" ]
null
null
null
tasks/admin.py
Hernandes-Silva/To-do-list-API
fff8e4c3a795285f659d63363d1d0c66f018b357
[ "MIT" ]
null
null
null
from django.contrib import admin from tasks.models import Task # Register your models here. admin.site.register(Task)
29.25
32
0.820513
794ecec1c3a19c7a20ffb850054b220fda3ed946
919
py
Python
user/vistas/widgets/header.py
ZerpaTechnology/occoa
a8c0bd2657bc058801a883109c0ec0d608d04ccc
[ "Apache-2.0" ]
null
null
null
user/vistas/widgets/header.py
ZerpaTechnology/occoa
a8c0bd2657bc058801a883109c0ec0d608d04ccc
[ "Apache-2.0" ]
null
null
null
user/vistas/widgets/header.py
ZerpaTechnology/occoa
a8c0bd2657bc058801a883109c0ec0d608d04ccc
[ "Apache-2.0" ]
null
null
null
doc+=''' <header id="header" style="background-image: url(''' try: doc+=str(data['base_url']+'static/img/') except Exception, e: doc+=str(e) doc+='''logo_unexpo_blanco.png) !important;"> <!--Menu--> <div class="content-menu"> <div class="container"> <div class="row web-cross-center"> <div class="col-lg-4"> <div class="logo"> <img class="logo__img" src="''' try: doc+=str(data['base_url']+'static/img/') except Exception, e: doc+=str(e) doc+='''logo_unexpo.png" alt="logo"> </div> </div> <div class="col-lg-8"> <ul class="menu"> <li><a href="#">Home</a></li> <li><a href="#">About</a></li> <li><a href="portafolio.html">Portafolio</a></li> <li><a href="#">Blog</a></li> <li><a href="#">Contacto</a></li> </ul> </div> </div> </div> </div> <!--end Menu--> </header>'''
29.645161
58
0.508161
794ecf0d4e6d1f337d24f44f9d8055f22b72f867
18,073
py
Python
cloud_storage/YandexDisk.py
coolworld2049/Social-media-file-downloader
45d2238f29dfcd049f4ecf610390b67af7dc8827
[ "MIT" ]
1
2022-03-28T02:49:56.000Z
2022-03-28T02:49:56.000Z
cloud_storage/YandexDisk.py
coolworld2049/Social-media-file-downloader
45d2238f29dfcd049f4ecf610390b67af7dc8827
[ "MIT" ]
1
2022-03-28T03:14:37.000Z
2022-03-28T03:15:02.000Z
cloud_storage/YandexDisk.py
coolworld2049/Social-media-file-downloader
45d2238f29dfcd049f4ecf610390b67af7dc8827
[ "MIT" ]
null
null
null
import asyncio import os import time from abc import abstractmethod from typing import TextIO import nest_asyncio from aiohttp import ClientSession as clientSession, ClientConnectorError from tqdm.contrib.telegram import tqdm from core import users_db, logger class YandexDisk: def __init__(self): self.__RESOURCES_URL = 'https://cloud-api.yandex.net/v1/disk/resources' self.__ROOT_FOLDER = 'Saved from tg' # ----authorization--- @staticmethod @abstractmethod def link(): link = f'https://oauth.yandex.ru/authorize?&response_type=code' \ f'&client_id={os.environ.get("ya_client_id")}' return link @staticmethod @abstractmethod async def auth(user_id, ya_token: str): if len(ya_token) == 7: async with clientSession() as session: async with session.post('https://oauth.yandex.ru/token', data={ 'grant_type': 'authorization_code', 'code': ya_token, 'client_id': os.environ.get('ya_client_id'), 'client_secret': os.environ.get('ya_client_secret') }) as resp: get_access_token = await resp.json() if resp.status == 200: users_db["user"].upsert( { "user_id": user_id, "y_api_token": get_access_token['access_token'], "ya_user_authorized": True, }, pk='user_id') return 'Вы успешно авторизовались в Яндекс диске!' else: return f'Ошибка авторизации: {resp.status} в Яндекс диске!' else: return f'Вы ввели некорректную информацию' @staticmethod async def __request_upload_worker(url: str, params: dict, data: str, headers: dict): async with clientSession() as session: async with session.post(url=url, params=params, data=data, headers=headers): await session.close() @staticmethod async def __wrapper(delay, coro): await asyncio.sleep(delay) return await coro async def __multitask_post_requests(self, user_id: int, data: dict, folder_name: str, overwrite: bool = False): counter = 0 subfolder_path = f'{self.__ROOT_FOLDER}/{folder_name}' requests_dict = {} for url, ext in data.items(): requests_dict[counter] = { 'url': f"{self.__RESOURCES_URL}/upload", 'params': { 'path': f'{subfolder_path}/{counter + 1}_file{ext}', 'url': url, 'fields': 'href', 'overwrite': f'{overwrite}'}, 'data': None, 'headers': { 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}'} } counter += 1 chunk_size = 10 requests_list = [value for key, value in requests_dict.items()] list_of_chunks = [requests_list[i:i + chunk_size] for i in range(0, len(requests_list), chunk_size)] if len(requests_dict) >= chunk_size: tasks = [] nest_asyncio.apply() loop = asyncio.get_running_loop() for i in tqdm(range(len(list_of_chunks)), token=os.environ.get("BOT_TOKEN"), chat_id=user_id): for ch_items in list_of_chunks[i]: tasks.append(loop.create_task( self.__wrapper(0.03, self.__request_upload_worker(ch_items['url'], ch_items['params'], ch_items['data'], ch_items['headers'])))) await asyncio.sleep(1.1) for k in range(len(tasks)): await tasks[i] # logger.info(f'user_id {user_id}. Task {i} await: {tasks[i]}') # ----yandex disk api requests---- async def __request_create_folder(self, user_id, folder_name, recreate_folder): status = 0 count = 0 while status != 201 or status not in (400, 401, 503, 507): try: async with clientSession() as session: async with session.put(f'{self.__RESOURCES_URL}?', params={ 'path': folder_name }, data=None, headers={ 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}' }) as resp: status = resp.status count += 1 # logger.info(f'user_id: {user_id}. Try create dir "{folder_name}" in cloud storage.' # f' Response code: {str(resp.status)}. Message: {await resp.json()}') match status: case 0: pass case 201: return True case 423: continue case 429: await asyncio.sleep(0.05) case 404: await self.__request_create_folder(user_id, self.__ROOT_FOLDER, recreate_folder) case 409: if folder_name == self.__ROOT_FOLDER: return True elif not recreate_folder: return True else: await self.__request_delete_folder(user_id, folder_name) case _: return False except ClientConnectorError as cce: logger.info(f'__request_create_folder(user_id: {user_id}) ClientConnectorError' + str(cce.args)) await asyncio.sleep(0.1) continue async def __request_delete_folder(self, user_id, folder_name): status = 0 count = 0 while status != 200 or 202 or 204: try: await asyncio.sleep(0.05) async with clientSession() as session: async with session.delete(f'{self.__RESOURCES_URL}?', params={ 'path': f'{folder_name}', 'permanently': 'True' }, headers={ 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}' }) as resp: status = resp.status count += 1 # logger.info(f'user_id: {user_id}. Try delete dir "{folder_name}" in cloud storage.' # f' Response code: {str(resp.status)}. Message: {await resp.json()}') match status: case 200 | 202 | 204: return True case 423: continue case _: return False except ClientConnectorError as cce: logger.info(f'__request_delete_folder(user_id: {user_id}) ClientConnectorError' + str(cce.args)) await asyncio.sleep(0.1) continue async def request_publish(self, user_id, folder_name: str): if users_db["user"].get(user_id).get("ya_upload_completed"): try: async with clientSession() as session: async with session.put(f"{self.__RESOURCES_URL}/publish", params={ 'path': f"{self.__ROOT_FOLDER}/{folder_name}" }, data=None, headers={ 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}' }) as put_resp: logger.info(f'user_id: {user_id}. Publish folder: {self.__ROOT_FOLDER}/{folder_name}.' f' Response: {put_resp.status}') except KeyError as ke: logger.info(f'get_link_file(user_id: {user_id}) KeyError' + str(ke.args)) return f'get_link_file() KeyError {ke.args}' finally: published = await self.__request_public(user_id, folder_name) if published: for item in published['items']: if item['name'] == folder_name: return item['public_url'] else: return 'При получении ссылки на опубликованный ресурс произошла ошибка' else: return f'get_link_file(user_id: {user_id}): ya_upload_completed: 0' async def __request_public(self, user_id, folder_name: str = ''): """get_published_file""" async with clientSession() as session: async with session.get(f"{self.__RESOURCES_URL}/public", params={ 'path': f"{self.__ROOT_FOLDER}/{folder_name}", 'type': 'dir', 'preview_crop': 'true' }, headers={ 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}' }) as resp: logger.info(f'user_id: {user_id}. Get published folder: {self.__ROOT_FOLDER}/{folder_name}.' f' Response: {resp.status}') if resp.status == 200: return await resp.json() else: error = await resp.json() return error['descriptions'] async def request_download(self, user_id, folder_name: str = '', file: str = '', ext: str = ''): """get link to file or folder""" if users_db["user"].get(user_id).get("ya_upload_completed"): try: async with clientSession() as session: async with session.get(f"{self.__RESOURCES_URL}/download", params={ 'path': f"{self.__ROOT_FOLDER}/{folder_name}/{file}{ext}" }, headers={ 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}' }) as resp: logger.info(f'user_id: {user_id}. Download folder: {self.__ROOT_FOLDER}/{folder_name}.' f' Response: {resp.status}') except KeyError as ke: logger.info(f'download_file(user_id: {user_id}) KeyError' + str(ke.args)) return f'download_file() KeyError {ke.args}' except ClientConnectorError as cce: logger.info(f'download_file(user_id: {user_id}) ClientConnectorError' + str(cce.args)) return f'download_file() ClientConnectorError {cce.args}' finally: href = await resp.json() if resp.status == 200: return href['href'] else: return 'При получении ссылки на загрузку файла произошла ошибка' else: return f'download_file(user_id: {user_id}): ya_upload_completed: 0' # ----processing response from yandex disk api---- async def request_upload_file(self, user_id: int, data: dict, folder_name: str, overwrite: bool = False): counter = 0 subfolder_path = f'{self.__ROOT_FOLDER}/{folder_name}' mininterval = len(data) / 1000 async with clientSession() as session: async for url, ext in tqdm(data.items(), mininterval=mininterval, token=os.environ.get("BOT_TOKEN"), chat_id=user_id): try: async with session.post(f"{self.__RESOURCES_URL}/upload", params={ 'path': f'{subfolder_path}/{counter + 1}_file{ext}', 'url': url, 'overwrite': str(overwrite) }, data=None, headers={ 'Content-Type': 'application/json', 'Accept': 'application/json', 'Authorization': f'OAuth {users_db["user"].get(user_id).get("y_api_token")}' }) as resp: counter += 1 # logger.info(f" user_id: {user_id} | album: {subfolder_path} | status: {resp.status}") except ClientConnectorError: await asyncio.sleep(0.07) continue await session.close() users_db['user'].upsert( { "user_id": user_id, "total_number_uploaded_file": users_db["user"].get(user_id).get("total_number_uploaded_file") + counter }, pk="user_id") logger.info(f'uploaded {counter}') return counter async def __create_directory(self, user_id, folder_name, recreate_folder): users_db['user'].upsert( { "user_id": user_id, "ya_upload_completed": False, }, pk="user_id") start_create_dir = time.perf_counter() logger.info(f'user_id: {user_id}. Try create dir "{folder_name}" in cloud storage.') if await self.__request_create_folder(user_id, self.__ROOT_FOLDER, recreate_folder=False): if await self.__request_create_folder(user_id, f'{self.__ROOT_FOLDER}/{folder_name}', recreate_folder): end_create_dir = time.perf_counter() logger.info(f'user_id: {user_id}. Directory creation was done in ' f'{end_create_dir - start_create_dir:0.4f} seconds') return True else: end_create_dir = time.perf_counter() logger.info(f'user_id: {user_id}. Directory overwrite was done in ' f'{end_create_dir - start_create_dir:0.4f} seconds') return True async def upload_file(self, user_id: int, data: dict | TextIO, folder_name: str, overwrite: bool = False, recreate_folder: bool = True): start = time.perf_counter() if isinstance(data, dict): if await self.__create_directory(user_id, folder_name, recreate_folder): if (1 <= len(data) <= 10) and (len(data) / await self.request_upload_file( user_id, data, folder_name, overwrite)) < 1.11111111111: users_db["user"].upsert( { "user_id": user_id, "ya_upload_completed": True, }, pk='user_id') else: await self.__multitask_post_requests(user_id, data, folder_name, overwrite) users_db["user"].upsert( { "user_id": user_id, "ya_upload_completed": True, }, pk='user_id') elif isinstance(data, TextIO): pass end = time.perf_counter() logger.info(f'upload_file(user_id: {user_id}) was completed in {end - start:0.4f} seconds')
50.909859
126
0.44857
794ecf75475e6a86e7d2b17bb6b8396ce12af170
108
py
Python
chevah/compat/tests/elevated/testing/__init__.py
chevah/compat
d22e5f551a628f8a1652c9f2eea306e17930cb8f
[ "BSD-3-Clause" ]
5
2016-12-03T22:54:50.000Z
2021-11-17T11:17:39.000Z
chevah/compat/tests/elevated/testing/__init__.py
chevah/compat
d22e5f551a628f8a1652c9f2eea306e17930cb8f
[ "BSD-3-Clause" ]
76
2015-01-22T16:00:31.000Z
2022-02-09T22:13:34.000Z
chevah/compat/tests/elevated/testing/__init__.py
chevah/compat
d22e5f551a628f8a1652c9f2eea306e17930cb8f
[ "BSD-3-Clause" ]
1
2016-12-10T15:57:31.000Z
2016-12-10T15:57:31.000Z
# Copyright (c) 2012 Adi Roiban. # See LICENSE for details. """ Tests executed under elevated accounts. """
18
39
0.712963
794ed1041eb290b3474b38d9361d8918f8ff488c
2,087
py
Python
may-solution/generator.py
maygnificent/story-prompt
ed6af00532bd76dc0187504830f8c5f735661f15
[ "Apache-2.0" ]
null
null
null
may-solution/generator.py
maygnificent/story-prompt
ed6af00532bd76dc0187504830f8c5f735661f15
[ "Apache-2.0" ]
null
null
null
may-solution/generator.py
maygnificent/story-prompt
ed6af00532bd76dc0187504830f8c5f735661f15
[ "Apache-2.0" ]
null
null
null
import sys import json if __name__ == '__main__': # convert input to dictionary inputString = sys.argv[1] inputDict = json.loads(inputString) # check for missing inputs while len(inputDict) < 5: missingInput = '' try: if 'number' not in inputDict: missingInput = 'number' inputDict['number'] = int(input("Please enter a number: ")) if 'unit_of_measure' not in inputDict: missingInput = 'unit_of_measure' inputDict['unit_of_measure'] = input("Please enter a unit of measure: ") if 'place' not in inputDict: missingInput = 'place' inputDict['place'] = input("Please enter a place: ") if 'adjective' not in inputDict: missingInput = 'adjective' inputDict['adjective'] = input("Please enter an adjective: ") if 'noun' not in inputDict: missingInput = 'noun' inputDict['noun'] = input("Please enter a noun: ") except ValueError: print(f"Invalid input. Please enter a(n) {missingInput}: ") continue else: break # check string input length for item in inputDict: # checks for strings with over 100 chars or empty strings / strings with just spaces if item != 'number' and (len(inputDict[item]) > 100 or not(inputDict[item] and not inputDict[item].isspace())): inputDict[item] = input(f"Please enter another {item} (max 100 characters): ") # archive inputs to 'record' file archive = open("record.txt", "a") # archive.write(str(inputDict) + '\n') archive.write(json.dumps(inputDict) + '\n') archive.close # place each input into template output = f"One day Anna was walking her {inputDict['number']} {inputDict['unit_of_measure']} commute to {inputDict['place']} and found a {inputDict['adjective']} {inputDict['noun']} on the ground." print (output)
37.267857
201
0.576425
794ed13c13414d3d48bcf2ada5953841f44a0871
1,038
py
Python
Python3/0407-Trapping-Rain-Water-II/soln.py
wyaadarsh/LeetCode-Solutions
3719f5cb059eefd66b83eb8ae990652f4b7fd124
[ "MIT" ]
5
2020-07-24T17:48:59.000Z
2020-12-21T05:56:00.000Z
Python3/0407-Trapping-Rain-Water-II/soln.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
null
null
null
Python3/0407-Trapping-Rain-Water-II/soln.py
zhangyaqi1989/LeetCode-Solutions
2655a1ffc8678ad1de6c24295071308a18c5dc6e
[ "MIT" ]
2
2020-07-24T17:49:01.000Z
2020-08-31T19:57:35.000Z
class Solution: def trapRainWater(self, heightMap): """ :type heightMap: List[List[int]] :rtype: int """ if not heightMap or not heightMap[0]: return 0 heap = [] m, n = len(heightMap), len(heightMap[0]) seen = [[0] * n for _ in range(m)] for i in range(m): for j in range(n): if i == 0 or j == 0 or i == m - 1 or j == n - 1: heapq.heappush(heap, (heightMap[i][j], i, j)) seen[i][j] = 1 ans = 0 while heap: height, i, j = heapq.heappop(heap) for di, dj in ((-1, 0), (1, 0), (0, 1), (0, -1)): newi, newj = i + di, j + dj if 0 <= newi < m and 0 <= newj < n and seen[newi][newj] == 0: seen[newi][newj] = 1 ans += max(0, height - heightMap[newi][newj]) heapq.heappush(heap, (max(heightMap[newi][newj], height), newi, newj)) return ans
38.444444
90
0.425819
794ed1729fc71aa3a2ae360ec2116df2220db6c0
18,823
py
Python
jase_im/blog/views.py
chenomg/blog.jase.im_v0.1
41e77fae1435f2c16701d982bd71fddbd399508e
[ "MIT" ]
2
2019-02-22T16:09:35.000Z
2019-11-27T10:22:49.000Z
jase_im/blog/views.py
chenomg/blog.jase.im_v0.1
41e77fae1435f2c16701d982bd71fddbd399508e
[ "MIT" ]
3
2018-12-22T13:40:15.000Z
2020-06-05T19:26:48.000Z
jase_im/blog/views.py
chenomg/blog.jase.im_v0.1
41e77fae1435f2c16701d982bd71fddbd399508e
[ "MIT" ]
null
null
null
import datetime import json import logging from markdown import markdown, Markdown from markdown.extensions.toc import TocExtension from django.core.paginator import Paginator from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.core.urlresolvers import reverse from django.db.models import Q from django.utils.text import slugify from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from django.contrib.sessions.models import Session from django.views.generic.edit import UpdateView from registration.backends.simple.views import RegistrationView from rest_framework.decorators import api_view, permission_classes from rest_framework.response import Response from rest_framework import permissions, status from blog.forms import CommentForm, UserProfileForm, UserUpdateForm, MDEditorModelForm from blog.serializers import PostGetSerializer, PostAddSerializer from blog.models import Category, Tag, Post, Comment, Page, UserProfile md = Markdown(extensions=[ 'markdown.extensions.extra', 'markdown.extensions.codehilite', TocExtension(slugify=slugify), ]) def get_remote_ip(request): return request.META.get('HTTP_X_FORWARDED_FOR', request.META.get('REMOTE_ADDR')) def index(request): login_user = get_login_user(request) query = request.GET.get('query') if query: logging.info('用户: {}, IP: {}, 打开主页, query={}'.format( login_user, get_remote_ip(request), query)) posts = Post.objects.filter( Q(title__icontains=query) | Q(publish_content__icontains=query)).order_by('-modified_time') else: logging.info('用户: {}, IP: {}, 打开主页'.format( login_user, get_remote_ip(request))) posts = Post.objects.filter(is_publish=True).order_by('-modified_time') for post in posts: post.publish_excerpt = md.convert(post.publish_excerpt) posts_per_page = 4 paginator = Paginator(posts, posts_per_page) pages_count = paginator.num_pages page_id = int(request.GET.get('page', '1')) page_previous_id = 1 page_next_id = pages_count if page_id == 1: page_previous = False else: page_previous = True page_previous_id = page_id - 1 if page_id == pages_count: page_next = False else: page_next = True page_next_id = page_id + 1 if page_id > pages_count: page_id = pages_count selected_page = paginator.page(page_id) context_dic = { 'login_user': login_user, 'posts': selected_page, 'pages_total': pages_count, 'page_current': page_id, 'page_previous': page_previous, 'page_previous_id': page_previous_id, 'page_next': page_next, 'page_next_id': page_next_id, 'query': query, } return render(request, 'blog/index.html', context=context_dic) def about(request): login_user = get_login_user(request) logging.info('用户: {}, IP: {}, 打开about'.format(login_user, get_remote_ip(request))) page = get_object_or_404(Page, slug='about') page.views += 1 page.save() page.content = md.convert(page.content) page.toc = md.toc context_dic = {'page': page, 'login_user': login_user} return render(request, 'blog/about.html', context=context_dic) def post_detail(request, slug): login_user = get_login_user(request) post = get_object_or_404(Post, slug=slug) logging.info('用户: {}, IP: {}, 打开post: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) post.views = post.views + 1 post.save() post.publish_content = md.convert(post.publish_content) # post.content = md.convert(post.content) post.toc = md.toc comments = post.comment_set.all() tags = post.tags.all().order_by('slug') context = { 'post': post, 'comments': comments, 'tags': tags, 'login_user': login_user, } form = CommentForm() context['form'] = form return render(request, 'blog/post_detail.html', context=context) def comment_submit(request): post_slug = request.POST['post_slug'] post = get_object_or_404(Post, slug=post_slug) logging.debug('用户: {}, IP: {}, 评论-准备接收, post: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) if request.method == 'POST': form = CommentForm(request.POST) response_data = { 'success': False, 'name': form['name'], 'content': form['content'], } if form.is_valid(): logging.debug('用户: {}, IP: {}, 评论-接收有效, post: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) name = form.cleaned_data['name'] email = form.cleaned_data['email'] content = form.cleaned_data['content'] comment = Comment.objects.create( name=name, content=content, email=email, post=post) response_data['success'] = True response_data['name'] = name response_data['content'] = content logging.info( '用户: {}, IP: {}, 评论-成功, post: {} - {}, comment-id: {}'.format( comment.id, login_user, get_remote_ip(request), post.id, post.slug)) else: logging.warn('用户: {}, IP: {}, 评论-数据无效, post: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) return HttpResponse( json.dumps(response_data), content_type='application/json') def category(request): login_user = get_login_user(request) logging.info('用户: {}, IP: {}, 打开Category'.format( login_user, get_remote_ip(request))) categories = Category.objects.all().order_by('-name') posts = Post.objects.filter(is_publish=True) context = { 'categories': categories, 'posts': posts, 'login_user': login_user } return render(request, 'blog/category.html', context=context) def archive(request): login_user = get_login_user(request) logging.info('用户: {}, IP: {}, 打开存档'.format(login_user, get_remote_ip(request))) posts = Post.objects.filter(is_publish=True).order_by('-created_time') dates = set([(p.created_time.year, p.created_time.month) for p in posts]) # 存档页面月份倒序 dates = sorted( [datetime.date(dt[0], dt[1], 1) for dt in dates], reverse=True) context = {'posts': posts, 'dates': dates, 'login_user': login_user} return render(request, 'blog/archive.html', context=context) def tag_list_show(request): login_user = get_login_user(request) logging.info('用户: {}, IP: {}, 打开tag_list_show'.format( login_user, get_remote_ip(request))) tags = Tag.objects.all().order_by('slug') context = {'tags': tags, 'login_user': login_user} return render(request, 'blog/tags_list_show.html', context=context) def tag_show(request, tag_slug): login_user = get_login_user(request) try: tag = Tag.objects.get(slug=tag_slug) logging.info('用户: {}, IP: {}, 打开tag: {}'.format( login_user, get_remote_ip(request), tag.slug)) posts = Tag.objects.get(slug=tag_slug).post_set.filter(is_publish=True) for p in posts: p.publish_excerpt = md.convert(p.publish_excerpt) except Exception as e: logging.warn('用户: {}, IP: {}, 打开tag失败: {}'.format( get_remote_ip(request), tag_slug, login_user)) tag = False posts = None context = { 'tag': tag, 'tag_slug': tag_slug, 'posts': posts, 'login_user': login_user } return render(request, 'blog/tag_show.html', context=context) @login_required def register_profile(request): """ 用于展示目前登陆用户的信息,并且可以更新部分信息, 未完成 """ login_user = get_login_user(request) logging.info('用户: {}, IP: {}, 打开登陆用户信息编辑'.format( login_user, get_remote_ip(request))) if UserProfile.objects.filter(user=login_user): userprofile = UserProfile.objects.get(user=login_user) else: logging.warn('用户: {}, IP: {}, 登陆用户信息详情暂无, 即将生成'.format( login_user, get_remote_ip(request))) userprofile = UserProfile(user=login_user) userprofile.save() userform = UserUpdateForm({ 'email': login_user.email, 'website': userprofile.website }) if request.method == 'POST': logging.info('用户: {}, IP: {}, 用户信息变更提交'.format( login_user, get_remote_ip(request))) userform = UserUpdateForm(request.POST) if userform.is_valid(): logging.info('用户: {}, IP: {}, 用户信息变更提交有效'.format( login_user, get_remote_ip(request))) login_user.email = userform.cleaned_data['email'] login_user.save() userprofile.website = userform.cleaned_data['website'] picture = request.FILES.get('avator') if picture: logging.info('用户: {}, IP: {}, 用户信息变更照片提交有效'.format( login_user, get_remote_ip(request))) userprofile.picture = picture userprofile.save() context = { 'login_user': login_user, 'userprofile': userprofile, 'userform': userform } return render(request, 'blog/register_profile.html', context=context) @login_required def update_post(request, slug): login_user = get_login_user(request) post = get_object_or_404(Post, slug=slug, author=login_user) logging.info('用户: {}, IP: {}, 更新开始: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) post_form = MDEditorModelForm(instance=post) context = {'post_form': post_form, 'post': post, 'login_user': login_user} if request.method == 'POST': logging.info('用户: {}, IP: {}, 更新提交: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) form = MDEditorModelForm(request.POST) context['post_form'] = form if form.is_valid(): logging.info('用户: {}, IP: {}, 更新提交有效: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) update_is_publish = request.POST.getlist('is_publish') if post.title != form.cleaned_data['title']: post.slug = '' post.title = form.cleaned_data['title'] logging.info('用户: {}, IP: {}, 更新标题变更: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) post.content = form.cleaned_data['content'] post.excerpt = form.cleaned_data['excerpt'] if update_is_publish: logging.info('用户: {}, IP: {}, 更新完成时将同时发布: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) post.is_publish = True post.publish_content = post.content post.publish_excerpt = post.excerpt post.category = Category.objects.get( name=form.cleaned_data['category']) post.save() post.tags = form.cleaned_data['tags'] add_tags = form.cleaned_data['add_tags'] if add_tags: tgs = [i.strip() for i in add_tags.split(',')] for t in tgs: try: tag = Tag(name=t) tag.save() except exception as e: logging.warn( '用户: {}, IP: {}, tag: {} 已存在,不需要新建. 文章: {} - {}'. format(login_user, get_remote_ip(request), t, post.id, post.slug)) tag = Tag.objects.get(name=t) post.tags.add(tag) post.modified_time = datetime.datetime.now() post.save() if update_is_publish: logging.info('用户: {}, IP: {}, 更新发布: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) return HttpResponseRedirect(reverse('blog:index')) else: # 后续使用ajax实现 logging.info('用户: {}, IP: {}, 更新保存: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) return HttpResponseRedirect( reverse('blog:update_post', args=[post.slug])) else: logging.warn('用户: {}, IP: {}, 更新提交无效: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) return render(request, 'blog/post_update_form.html', context=context) @login_required def add_post(request): login_user = get_login_user(request) logging.info('用户: {}, IP: {}, Add_Post开始'.format( login_user, get_remote_ip(request))) post_form = MDEditorModelForm() context = {'post_form': post_form, 'login_user': login_user} if request.method == 'POST': logging.info('用户: {}, IP: {}, Add_Post提交'.format( login_user, get_remote_ip(request))) form = MDEditorModelForm(request.POST) context['post_form'] = form if form.is_valid(): logging.info('用户: {}, IP: {}, Add_Post提交信息有效'.format( login_user, get_remote_ip(request))) is_publish = request.POST.getlist('is_publish') post = Post() post.title = form.cleaned_data['title'] post.author = login_user post.content = form.cleaned_data['content'] post.excerpt = form.cleaned_data['excerpt'] post.category = Category.objects.get( name=form.cleaned_data['category']) # 保存后excerpt若为空值则自动生成 post.save() logging.info('用户: {}, IP: {}, Add_Post提交已保存: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) post.tags = form.cleaned_data['tags'] add_tags = form.cleaned_data['add_tags'] if add_tags: ts = [i.strip() for i in add_tags.split(',')] for t in ts: try: tag = Tag(name=t) tag.save() except exception as e: logging.warn( '用户: {}, IP: {}, Add_Post标签 {} 已存在: 文章: {} - {}'. format(login_user, get_remote_ip(request), t, post.id, post.slug)) tag = Tag.objects.get(name=t) post.tags.add(tag) post.save() logging.info('用户: {}, IP: {}, Add_Post标签已保存: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) if is_publish: post.is_publish = True post.publish_content = post.content post.publish_excerpt = post.excerpt post.save() logging.info('用户: {}, IP: {}, Add_Post已发布: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) return HttpResponseRedirect(reverse('blog:index')) else: logging.info('用户: {}, IP: {}, Add_Post已保存: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) # 后续使用ajax实现 return HttpResponseRedirect( reverse('blog:update_post', args=[post.slug])) else: logging.warn('用户: {}, IP: {}, Add_Post提交无效: 文章: {} - {}'.format( login_user, get_remote_ip(request), post.id, post.slug)) return render(request, 'blog/add_post.html', context=context) @login_required def user_show(request, username): login_user = get_login_user(request) show_user = get_object_or_404(User, username=username) logging.info('用户: {}, IP: {}, 用户展示, 正在查看: {}'.format( login_user, get_remote_ip(request), show_user)) if UserProfile.objects.filter(user=show_user): userprofile = UserProfile.objects.get(user=show_user) else: userprofile = UserProfile(user=show_user) userprofile.save() posts = Post.objects.filter(author=show_user).order_by('-created_time') context = { 'show_user': show_user, 'login_user': login_user, 'posts': posts, 'userprofile': userprofile, 'is_current_user': False } if login_user == show_user: context['is_current_user'] = True return render(request, 'blog/user_show.html', context=context) def page_not_found(request): login_user = get_login_user(request) page = Page.objects.get(slug='404') page.views += 1 page.save() page.content = md.convert(page.content) page.toc = md.toc context_dic = {'page': page, 'login_user': login_user} return render(request, 'blog/404.html', {'page': page}) def get_login_user(request): if request.user.is_authenticated: return User.objects.get(username=request.user.username) else: return None @api_view(['GET', 'POST']) @permission_classes((permissions.AllowAny, )) def post_collection(request): if request.method == 'GET': # posts = Post.objects.all() posts = Post.objects.filter(is_publish=True).order_by('-modified_time') serializer = PostGetSerializer(posts, many=True) return Response(serializer.data) elif request.method == 'POST': data = { 'title': request.DATA.get('title'), 'author': request.user.pk, 'content': request.DATA.get('content'), 'excerpt': request.DATA.get('excerpt'), 'category': request.DATA.get('category'), 'tags': request.DATA.get('tags'), 'is_publish': request.DATA.get('is_publish') } serializer = PostAddSerializer(data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET']) @permission_classes((permissions.AllowAny, )) def post_element(request, pk): try: post = Post.objects.get(pk=pk) except Post.DoesNotExist: return HttpResponse(status=404) if request.method == 'GET': serializer = PostGetSerializer(post) return Response(serializer.data)
39.963907
86
0.593582
794ed1796a22358b940d6bfa87af1ebd8c0a419d
9,236
py
Python
test/performance/legion/analysis_performance/process.py
stkaplan/legion
ad82a1c1f39ed20a16df29aa331428d42c0ecfb6
[ "Apache-2.0" ]
null
null
null
test/performance/legion/analysis_performance/process.py
stkaplan/legion
ad82a1c1f39ed20a16df29aa331428d42c0ecfb6
[ "Apache-2.0" ]
null
null
null
test/performance/legion/analysis_performance/process.py
stkaplan/legion
ad82a1c1f39ed20a16df29aa331428d42c0ecfb6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # # Copyright 2020 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from legion_serializer import LegionProfASCIIDeserializer noop = lambda **kwargs: None id_to_task_group = {} task_groups = {} num_task_groups = 0 summaries = [] versioning_ops = set([]) last_op_id = None class Interval(object): def __init__(self, start, end): self.start = start self.end = end def length(self): return self.end - self.start def __repr__(self): return "[" + str(self.start) + ", " + str(self.end) + "] : " + \ str(self.length()) + "us" def __add__(self, other): return Interval(min(self.start, other.start), max(self.end, other.end)) def itv_sum(l): return reduce(lambda x, y: x + y, l) class Summary(object): def __init__(self, span): self.span = span self.num_tasks = 0 self.logical_analysis = 0 self.physical_analysis = 0 self.post_end = 0 self.prepipeline = 0 self.versioning = 0 self.sum = 0 self.ctx_switch = 0 def cache(self): self.sum = self.logical_analysis + self.physical_analysis + \ self.post_end + self.prepipeline + self.versioning self.ctx_switch = self.span.length() - self.sum def __add__(self, other): result = Summary(None) result.num_tasks = self.num_tasks + other.num_tasks result.logical_analysis = self.logical_analysis + other.logical_analysis result.physical_analysis = self.physical_analysis + other.physical_analysis result.post_end = self.post_end + other.post_end result.prepipeline = self.prepipeline + other.prepipeline result.versioning = self.versioning + other.versioning result.span = self.span + other.span result.sum = self.sum + other.sum result.ctx_switch = self.ctx_switch + other.ctx_switch return result def __repr__(self): num_tasks = float(self.num_tasks) s = "* total overhead: " + str(self.span.length() / num_tasks) + "\n" s = s + "* number of tasks: " + str(self.num_tasks) + "\n" s = s + "* logical analysis: " + str(self.logical_analysis / num_tasks) + "\n" s = s + "* physical analysis: " + str(self.physical_analysis / num_tasks) + "\n" s = s + "* post end task: " + str(self.post_end / num_tasks) + "\n" s = s + "* prepipeline: " + str(self.prepipeline / num_tasks) + "\n" s = s + "* close/open/advance: " + str(self.versioning / num_tasks) + "\n" s = s + "* context switch: " + str(self.ctx_switch / num_tasks) return s class TaskGroupInfo(object): def __init__(self): self.tasks = set([]) self.logical_analysis = set([]) self.physical_analysis = set([]) self.post_end = set([]) self.prepipeline = set([]) self.versioning_ops = set([]) self.last_interval = None self.variant_id = None def add_task(self, task_id): self.tasks.add(task_id) def add_interval(self, interval, op_kind): if op_kind == 17 or op_kind == 14 or op_kind == 15: self.physical_analysis.add(interval) elif op_kind == 1: self.post_end.add(interval) elif op_kind == 12: self.logical_analysis.add(interval) elif op_kind == 11: self.prepipeline.add(interval) else: return self.last_interval = interval def add_wait_interval(self, wait_interval, op_kind): assert(self.last_interval != None) if op_kind == 17 or op_kind == 14 or op_kind == 15: target = self.physical_analysis elif op_kind == 1: target = self.post_end elif op_kind == 12: target = self.logical_analysis elif op_kind == 11: target = self.prepipeline else: return target.remove(self.last_interval) before_wait = Interval(self.last_interval.start, wait_interval.start) after_wait = Interval(wait_interval.end, self.last_interval.end) if before_wait.length() > 0: target.add(before_wait) if after_wait.length() > 0: target.add(after_wait) self.last_interval = after_wait def add_versioning_op(self, interval): self.versioning_ops.add(interval) def get_summary(self): span = itv_sum(self.logical_analysis) + itv_sum(self.physical_analysis) + \ itv_sum(self.post_end) + itv_sum(self.prepipeline) summary = Summary(span) summary.num_tasks = len(self.tasks) summary.logical_analysis = \ sum([i.length() for i in self.logical_analysis]) summary.physical_analysis = \ sum([i.length() for i in self.physical_analysis]) summary.post_end = \ sum([i.length() for i in self.post_end]) summary.prepipeline = \ sum([i.length() for i in self.prepipeline]) summary.versioning = \ sum([i.length() for i in self.versioning_ops]) summary.cache() return summary def add_new_task_group(task_id): global num_task_groups task_group = TaskGroupInfo() num_task_groups = num_task_groups + 1 task_groups[num_task_groups] = task_group id_to_task_group[task_id] = task_group return task_group def gather_slice_owners(parent_id, op_id): if parent_id not in id_to_task_group: task_group = add_new_task_group(parent_id) else: task_group = id_to_task_group[parent_id] id_to_task_group[op_id] = task_group def gather_meta_info(op_id, lg_id, proc_id, create, ready, start, stop): global last_op_id if op_id in versioning_ops: assert(last_op_id != None) task_group = id_to_task_group[last_op_id] task_group.add_versioning_op(Interval(start, stop)) elif op_id == 0 or op_id not in id_to_task_group: return else: task_group = id_to_task_group[op_id] task_group.add_interval(Interval(start, stop), lg_id) last_op_id = op_id def gather_meta_wait_info(op_id, lg_id, wait_start, wait_ready, wait_end): if op_id == 0 or op_id not in id_to_task_group: return task_group = id_to_task_group[op_id] task_group.add_wait_interval(Interval(wait_start, wait_end), lg_id) def gather_task_info(op_id, variant_id, proc_id, create, ready, start, stop): if op_id not in id_to_task_group: task_group = add_new_task_group(op_id) else: task_group = id_to_task_group[op_id] task_group.add_task(op_id) task_group.variant_id = variant_id def mark_versioning_ops(op_id, kind): if 5 <= kind and kind <= 8: versioning_ops.add(op_id) callbacks = { "MessageDesc": noop, "MapperCallDesc": noop, "RuntimeCallDesc": noop, "MetaDesc": noop, "OpDesc": noop, "ProcDesc": noop, "MemDesc": noop, "TaskKind": noop, "TaskVariant": noop, "OperationInstance": mark_versioning_ops, "MultiTask": noop, "SliceOwner": gather_slice_owners, "TaskWaitInfo": noop, "MetaWaitInfo": gather_meta_wait_info, "TaskInfo": gather_task_info, "MetaInfo": gather_meta_info, "CopyInfo": noop, "FillInfo": noop, "InstCreateInfo": noop, "InstUsageInfo": noop, "InstTimelineInfo": noop, "MessageInfo": noop, "MapperCallInfo": noop, "RuntimeCallInfo": noop, "ProfTaskInfo": noop } class Dummy(object): def __init__(self): self.has_spy_data = False def main(): global task_groups global summaries parser = argparse.ArgumentParser() # usage: python3 process.py <logfiles> parser.add_argument(dest='filenames', nargs='+', help='input Legion Prof log filenames') args = parser.parse_args() deserializer = LegionProfASCIIDeserializer(Dummy(), callbacks) if args.filenames is None: print("You must pass in a logfile!") exit(-1) has_matches = False for file_name in args.filenames: matches = deserializer.parse(file_name, True) has_matches = has_matches or matches > 0 if not has_matches: print('No matches found! Exiting...') return # filter only the tasks of interest task_group_ids = set(task_groups.iterkeys()) for i in task_group_ids: if task_groups[i].variant_id != 2: del task_groups[i] for i, grp in task_groups.iteritems(): summaries.append(grp.get_summary()) # filter out the first and last 5% as they are mostly abnormal outliers = len(summaries) / 10 summaries = summaries[outliers:-outliers] print(itv_sum(summaries)) if __name__ == "__main__": main()
33.585455
88
0.647791
794ed4a30826674e9f19b8dc49db55c1bada5aca
2,891
py
Python
tb_rest_client/models/models_ce/user_id.py
jernkuan/thingsboard-python-rest-client
3fb25272507494e6d494b27ca2380d3c543562e5
[ "Apache-2.0" ]
null
null
null
tb_rest_client/models/models_ce/user_id.py
jernkuan/thingsboard-python-rest-client
3fb25272507494e6d494b27ca2380d3c543562e5
[ "Apache-2.0" ]
null
null
null
tb_rest_client/models/models_ce/user_id.py
jernkuan/thingsboard-python-rest-client
3fb25272507494e6d494b27ca2380d3c543562e5
[ "Apache-2.0" ]
1
2021-11-26T11:24:56.000Z
2021-11-26T11:24:56.000Z
# coding: utf-8 """ ThingsBoard REST API For instructions how to authorize requests please visit <a href='http://thingsboard.io/docs/reference/rest-api/'>REST API documentation page</a>. # noqa: E501 OpenAPI spec version: 2.0 Contact: info@thingsboard.io Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from .entity_id import EntityId class UserId(EntityId): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ def __init__(self, entity_type, id=None): # noqa: E501 """UserId - a model defined in Swagger""" # noqa: E501 super().__init__(entity_type, id) @property def id(self): """Gets the id of this UserId. # noqa: E501 :return: The id of this UserId. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this UserId. :param id: The id of this UserId. # noqa: E501 :type: str """ self._id = id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(UserId, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UserId): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.067961
163
0.55275
794ed4d13a26a83e374c41157fab1fed5e2490cc
11,968
py
Python
sdks/python/apache_beam/runners/worker/data_plane.py
mwylde/beam
9d0b03ad736797c33fbd6a4eb13155fa91367779
[ "Apache-2.0" ]
null
null
null
sdks/python/apache_beam/runners/worker/data_plane.py
mwylde/beam
9d0b03ad736797c33fbd6a4eb13155fa91367779
[ "Apache-2.0" ]
null
null
null
sdks/python/apache_beam/runners/worker/data_plane.py
mwylde/beam
9d0b03ad736797c33fbd6a4eb13155fa91367779
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Implementation of DataChannels for communicating across the data plane.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import logging import queue import sys import threading from builtins import object from builtins import range import grpc from future import standard_library from future.utils import raise_ from future.utils import with_metaclass from apache_beam.coders import coder_impl from apache_beam.portability.api import beam_fn_api_pb2 from apache_beam.portability.api import beam_fn_api_pb2_grpc from apache_beam.runners.worker.worker_id_interceptor import WorkerIdInterceptor standard_library.install_aliases() # This module is experimental. No backwards-compatibility guarantees. _DEFAULT_FLUSH_THRESHOLD = 10 << 20 # 10MB class ClosableOutputStream(type(coder_impl.create_OutputStream())): """A Outputstream for use with CoderImpls that has a close() method.""" def __init__(self, close_callback=None, flush_callback=None, flush_threshold=_DEFAULT_FLUSH_THRESHOLD): super(ClosableOutputStream, self).__init__() self._close_callback = close_callback self._flush_callback = flush_callback self._flush_threshold = flush_threshold # This must be called explicitly to avoid flushing partial elements. def maybe_flush(self): if self._flush_callback and self.size() > self._flush_threshold: self._flush_callback(self.get()) self._clear() def close(self): if self._close_callback: self._close_callback(self.get()) class DataChannel(with_metaclass(abc.ABCMeta, object)): """Represents a channel for reading and writing data over the data plane. Read from this channel with the input_elements method:: for elements_data in data_channel.input_elements(instruction_id, targets): [process elements_data] Write to this channel using the output_stream method:: out1 = data_channel.output_stream(instruction_id, target1) out1.write(...) out1.close() When all data for all instructions is written, close the channel:: data_channel.close() """ @abc.abstractmethod def input_elements(self, instruction_id, expected_targets): """Returns an iterable of all Element.Data bundles for instruction_id. This iterable terminates only once the full set of data has been recieved for each of the expected targets. It may block waiting for more data. Args: instruction_id: which instruction the results must belong to expected_targets: which targets to wait on for completion """ raise NotImplementedError(type(self)) @abc.abstractmethod def output_stream(self, instruction_id, target): """Returns an output stream writing elements to target. Args: instruction_id: which instruction this stream belongs to target: the target of the returned stream """ raise NotImplementedError(type(self)) @abc.abstractmethod def close(self): """Closes this channel, indicating that all data has been written. Data can continue to be read. If this channel is shared by many instructions, should only be called on worker shutdown. """ raise NotImplementedError(type(self)) class InMemoryDataChannel(DataChannel): """An in-memory implementation of a DataChannel. This channel is two-sided. What is written to one side is read by the other. The inverse() method returns the other side of a instance. """ def __init__(self, inverse=None): self._inputs = [] self._inverse = inverse or InMemoryDataChannel(self) def inverse(self): return self._inverse def input_elements(self, instruction_id, unused_expected_targets=None): for data in self._inputs: if data.instruction_reference == instruction_id: yield data def output_stream(self, instruction_id, target): def add_to_inverse_output(data): self._inverse._inputs.append( # pylint: disable=protected-access beam_fn_api_pb2.Elements.Data( instruction_reference=instruction_id, target=target, data=data)) return ClosableOutputStream( add_to_inverse_output, flush_callback=add_to_inverse_output) def close(self): pass class _GrpcDataChannel(DataChannel): """Base class for implementing a BeamFnData-based DataChannel.""" _WRITES_FINISHED = object() def __init__(self): self._to_send = queue.Queue() self._received = collections.defaultdict(queue.Queue) self._receive_lock = threading.Lock() self._reads_finished = threading.Event() self._closed = False self._exc_info = None def close(self): self._to_send.put(self._WRITES_FINISHED) self._closed = True def wait(self, timeout=None): self._reads_finished.wait(timeout) def _receiving_queue(self, instruction_id): with self._receive_lock: return self._received[instruction_id] def _clean_receiving_queue(self, instruction_id): with self._receive_lock: self._received.pop(instruction_id) def input_elements(self, instruction_id, expected_targets): """ Generator to retrieve elements for an instruction_id input_elements should be called only once for an instruction_id Args: instruction_id(str): instruction_id for which data is read expected_targets(collection): expected targets """ received = self._receiving_queue(instruction_id) done_targets = [] try: while len(done_targets) < len(expected_targets): try: data = received.get(timeout=1) except queue.Empty: if self._exc_info: t, v, tb = self._exc_info raise_(t, v, tb) else: if not data.data and data.target in expected_targets: done_targets.append(data.target) else: assert data.target not in done_targets yield data finally: # Instruction_ids are not reusable so Clean queue once we are done with # an instruction_id self._clean_receiving_queue(instruction_id) def output_stream(self, instruction_id, target): def add_to_send_queue(data): if data: self._to_send.put( beam_fn_api_pb2.Elements.Data( instruction_reference=instruction_id, target=target, data=data)) def close_callback(data): add_to_send_queue(data) # End of stream marker. self._to_send.put( beam_fn_api_pb2.Elements.Data( instruction_reference=instruction_id, target=target, data='')) return ClosableOutputStream( close_callback, flush_callback=add_to_send_queue) def _write_outputs(self): done = False while not done: data = [self._to_send.get()] try: # Coalesce up to 100 other items. for _ in range(100): data.append(self._to_send.get_nowait()) except queue.Empty: pass if data[-1] is self._WRITES_FINISHED: done = True data.pop() if data: yield beam_fn_api_pb2.Elements(data=data) def _read_inputs(self, elements_iterator): # TODO(robertwb): Pushback/throttling to avoid unbounded buffering. try: for elements in elements_iterator: for data in elements.data: self._receiving_queue(data.instruction_reference).put(data) except: # pylint: disable=bare-except if not self._closed: logging.exception('Failed to read inputs in the data plane') self._exc_info = sys.exc_info() raise finally: self._reads_finished.set() def _start_reader(self, elements_iterator): reader = threading.Thread( target=lambda: self._read_inputs(elements_iterator), name='read_grpc_client_inputs') reader.daemon = True reader.start() class GrpcClientDataChannel(_GrpcDataChannel): """A DataChannel wrapping the client side of a BeamFnData connection.""" def __init__(self, data_stub): super(GrpcClientDataChannel, self).__init__() self._start_reader(data_stub.Data(self._write_outputs())) class GrpcServerDataChannel( beam_fn_api_pb2_grpc.BeamFnDataServicer, _GrpcDataChannel): """A DataChannel wrapping the server side of a BeamFnData connection.""" def Data(self, elements_iterator, context): self._start_reader(elements_iterator) for elements in self._write_outputs(): yield elements class DataChannelFactory(with_metaclass(abc.ABCMeta, object)): """An abstract factory for creating ``DataChannel``.""" @abc.abstractmethod def create_data_channel(self, remote_grpc_port): """Returns a ``DataChannel`` from the given RemoteGrpcPort.""" raise NotImplementedError(type(self)) @abc.abstractmethod def close(self): """Close all channels that this factory owns.""" raise NotImplementedError(type(self)) class GrpcClientDataChannelFactory(DataChannelFactory): """A factory for ``GrpcClientDataChannel``. Caches the created channels by ``data descriptor url``. """ def __init__(self, credentials=None): self._data_channel_cache = {} self._lock = threading.Lock() self._credentials = None if credentials is not None: logging.info('Using secure channel creds.') self._credentials = credentials def create_data_channel(self, remote_grpc_port): url = remote_grpc_port.api_service_descriptor.url if url not in self._data_channel_cache: with self._lock: if url not in self._data_channel_cache: logging.info('Creating channel for %s', url) # Options to have no limits (-1) on the size of the messages # received or sent over the data plane. The actual buffer size # is controlled in a layer above. channel_options = [("grpc.max_receive_message_length", -1), ("grpc.max_send_message_length", -1)] grpc_channel = None if self._credentials is None: grpc_channel = grpc.insecure_channel(url, options=channel_options) else: grpc_channel = grpc.secure_channel( url, self._credentials, options=channel_options) # Add workerId to the grpc channel grpc_channel = grpc.intercept_channel(grpc_channel, WorkerIdInterceptor()) self._data_channel_cache[url] = GrpcClientDataChannel( beam_fn_api_pb2_grpc.BeamFnDataStub(grpc_channel)) return self._data_channel_cache[url] def close(self): logging.info('Closing all cached grpc data channels.') for _, channel in self._data_channel_cache.items(): channel.close() self._data_channel_cache.clear() class InMemoryDataChannelFactory(DataChannelFactory): """A singleton factory for ``InMemoryDataChannel``.""" def __init__(self, in_memory_data_channel): self._in_memory_data_channel = in_memory_data_channel def create_data_channel(self, unused_remote_grpc_port): return self._in_memory_data_channel def close(self): pass
32.699454
80
0.709726
794ed5066cd6e20f53cb7138a64a5abec58d4392
1,694
py
Python
csxextract/extractors/parscit.py
SeerLabs/new-csx-extractor
84de9276988e7d61cdf24a410d9fe1724dfaea9d
[ "Apache-2.0" ]
9
2015-04-17T22:19:21.000Z
2021-08-03T08:27:30.000Z
csxextract/extractors/parscit.py
SeerLabs/new-csx-extractor
84de9276988e7d61cdf24a410d9fe1724dfaea9d
[ "Apache-2.0" ]
2
2015-06-02T12:47:51.000Z
2015-06-26T18:45:47.000Z
csxextract/extractors/parscit.py
SeerLabs/new-csx-extractor
84de9276988e7d61cdf24a410d9fe1724dfaea9d
[ "Apache-2.0" ]
8
2015-04-10T18:11:11.000Z
2018-07-14T21:09:37.000Z
from extraction.runnables import Extractor, RunnableError, ExtractorResult import extraction.utils import csxextract.config as config import csxextract.interfaces as interfaces import csxextract.filters as filters import csxextract.utils as utils import defusedxml.ElementTree as safeET import xml.etree.ElementTree as ET import subprocess32 as subprocess import requests import os import shutil import glob import re import tempfile # Takes a plain text version of a PDF and uses ParsCit to extract citations # Returns an xml document of citation info in CSX format class ParsCitCitationExtractor(interfaces.CSXCitationExtractor): dependencies = frozenset([interfaces.PlainTextExtractor, filters.AcademicPaperFilter]) result_file_name = '.cite' def extract(self, data, dependency_results): # Get the plain text file of the PDF and write it to a temporary location pdf_text = dependency_results[interfaces.PlainTextExtractor].files['.txt'] text_file_path = extraction.utils.temp_file(pdf_text) # Run parscit on the text file to extract citations try: status, stdout, stderr = extraction.utils.external_process(['perl', config.PARSCIT_PATH, text_file_path], timeout=20) except subprocess.TimeoutExpired as te: raise RunnableError('ParsCit timed out while processing document') finally: os.remove(text_file_path) if status != 0: raise RunnableError('ParsCit Failure. Possible error:\n' + stderr) # ParsCit will give us a string representing an xml doc # convert from string type into an xml object xml = safeET.fromstring(stdout) return ExtractorResult(xml_result=xml)
36.042553
126
0.762692
794ed574fe6b6e9fb13fbae99c5c88b921952a8b
2,442
py
Python
gen_dataset.py
soravux/jambokoko
e9b2460cf0dcd5eab397aeefc60cfd4bc4821028
[ "0BSD" ]
null
null
null
gen_dataset.py
soravux/jambokoko
e9b2460cf0dcd5eab397aeefc60cfd4bc4821028
[ "0BSD" ]
null
null
null
gen_dataset.py
soravux/jambokoko
e9b2460cf0dcd5eab397aeefc60cfd4bc4821028
[ "0BSD" ]
null
null
null
# coding: utf-8 import fnmatch import os import random import pickle import numpy as np from hdrio import imread, imsave from envmap import EnvironmentMap from scipy.ndimage.interpolation import zoom from matplotlib import pyplot as plt STACK_FILENAME = 'stack.exr' TARGET_SIZE = (256, 256) def getAvailableData(root_path, filename=STACK_FILENAME): """Get all the stacks images available.""" matches = [] for root, dirnames, filenames in os.walk(root_path): for filename in fnmatch.filter(filenames, filename): matches.append(os.path.join(root, filename)) return matches def generateLDRfromHDR(im_path, out_prefix): """Convert an HDR image into a clipped 0-255 value ("simulating" a camera)""" print('Processing: ', im_path) im = imread(im_path) h, w, c = im.shape im = im[:, w/2 - h/2:w/2 + h/2] envmap = EnvironmentMap(im, 'SkyAngular').convertTo('LatLong', TARGET_SIZE[0]) im = envmap.data valid = (im > 0) & (~np.isnan(im)) im_median = np.median(im[valid]) im_low = np.percentile(im[valid], 3) im_high = np.percentile(im[valid], 95) #scales = (TARGET_SIZE[0]/im.shape[0], TARGET_SIZE[1]/im.shape[1]) #im = zoom(im, [scales[0], scales[1], 1]) with open(out_prefix + "_hdr.pkl", 'wb') as fhdl: pickle.dump(im, fhdl, pickle.HIGHEST_PROTOCOL) imsave(out_prefix + '_hdr.exr', im) # 20th percentile -> value 5 # 80th percentile -> value 250 #print("Ratio:", (im_high - im_low)) ratio = im_high - im_low if ratio < 0.1: ratio = 0.1 im_ldr = (im - im_low) * 250. / ratio + 5 im_ldr = np.clip(im_ldr, 0, 255).astype('uint8') imsave(out_prefix + '_ldr.jpg', im_ldr) plt.figure() plt.subplot(1,2,1); plt.hist(im.ravel()[im.ravel()<im_high], 50) plt.subplot(1,2,2); plt.hist(im_ldr.ravel()[im_ldr.ravel()>0], 50) plt.savefig(out_prefix + 'debug.png') plt.close() def main(): im_paths = getAvailableData('/gel/rachmaninoff/data/pictures/master/skycam/') im_paths = random.sample(im_paths, 1000) for im_path in im_paths: root_path = os.path.dirname(im_path) out_path = os.path.join('data', "_".join(root_path.split(os.sep)[-2:])) try: generateLDRfromHDR(im_path, out_path) except Exception as e: print("Error happened:", e) if __name__ == '__main__': main()
28.729412
82
0.634316
794ed6fd770032e7c934c61f166f0aeed9329dbf
10,209
py
Python
tests/inspectdb/tests.py
deployed/django
9db4271bd11ac23a5a5652bbcdf8fb6d4b997651
[ "BSD-3-Clause" ]
1
2018-12-10T12:21:40.000Z
2018-12-10T12:21:40.000Z
tests/inspectdb/tests.py
avkryukov/django
f90be002d9d3c10b87c74741986e2cbf9f2b858e
[ "BSD-3-Clause" ]
null
null
null
tests/inspectdb/tests.py
avkryukov/django
f90be002d9d3c10b87c74741986e2cbf9f2b858e
[ "BSD-3-Clause" ]
null
null
null
# -*- encoding: utf-8 -*- from __future__ import unicode_literals import re from unittest import expectedFailure, skipUnless from django.core.management import call_command from django.db import connection from django.test import TestCase, skipUnlessDBFeature from django.utils.six import PY3, StringIO if connection.vendor == 'oracle': expectedFailureOnOracle = expectedFailure else: expectedFailureOnOracle = lambda f: f class InspectDBTestCase(TestCase): def test_stealth_table_name_filter_option(self): out = StringIO() # Lets limit the introspection to tables created for models of this # application call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_'), stdout=out) error_message = "inspectdb has examined a table that should have been filtered out." # contrib.contenttypes is one of the apps always installed when running # the Django test suite, check that one of its tables hasn't been # inspected self.assertNotIn("class DjangoContentType(models.Model):", out.getvalue(), msg=error_message) def make_field_type_asserter(self): """Call inspectdb and return a function to validate a field type in its output""" out = StringIO() call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_columntypes'), stdout=out) output = out.getvalue() def assertFieldType(name, definition): out_def = re.search(r'^\s*%s = (models.*)$' % name, output, re.MULTILINE).groups()[0] self.assertEqual(definition, out_def) return assertFieldType # Inspecting oracle DB doesn't produce correct results, see #19884 @expectedFailureOnOracle def test_field_types(self): """Test introspection of various Django field types""" assertFieldType = self.make_field_type_asserter() assertFieldType('char_field', "models.CharField(max_length=10)") assertFieldType('comma_separated_int_field', "models.CharField(max_length=99)") assertFieldType('date_field', "models.DateField()") assertFieldType('date_time_field', "models.DateTimeField()") assertFieldType('email_field', "models.CharField(max_length=75)") assertFieldType('file_field', "models.CharField(max_length=100)") assertFieldType('file_path_field', "models.CharField(max_length=100)") if connection.vendor == 'postgresql': # Only PostgreSQL has a specific type assertFieldType('ip_address_field', "models.GenericIPAddressField()") assertFieldType('gen_ip_adress_field', "models.GenericIPAddressField()") else: assertFieldType('ip_address_field', "models.CharField(max_length=15)") assertFieldType('gen_ip_adress_field', "models.CharField(max_length=39)") assertFieldType('slug_field', "models.CharField(max_length=50)") assertFieldType('text_field', "models.TextField()") assertFieldType('time_field', "models.TimeField()") assertFieldType('url_field', "models.CharField(max_length=200)") def test_number_field_types(self): """Test introspection of various Django field types""" assertFieldType = self.make_field_type_asserter() if not connection.features.can_introspect_autofield: assertFieldType('id', "models.IntegerField(primary_key=True) # AutoField?") assertFieldType('big_int_field', "models.BigIntegerField()") if connection.vendor == 'mysql': # No native boolean type on MySQL assertFieldType('bool_field', "models.IntegerField()") assertFieldType('null_bool_field', "models.IntegerField(blank=True, null=True)") else: assertFieldType('bool_field', "models.BooleanField()") assertFieldType('null_bool_field', "models.NullBooleanField()") if connection.vendor == 'sqlite': # Guessed arguments, see #5014 assertFieldType('decimal_field', "models.DecimalField(max_digits=10, decimal_places=5) " "# max_digits and decimal_places have been guessed, " "as this database handles decimal fields as float") else: assertFieldType('decimal_field', "models.DecimalField(max_digits=6, decimal_places=1)") assertFieldType('float_field', "models.FloatField()") assertFieldType('int_field', "models.IntegerField()") if connection.vendor == 'sqlite': assertFieldType('pos_int_field', "models.PositiveIntegerField()") assertFieldType('pos_small_int_field', "models.PositiveSmallIntegerField()") else: # 'unsigned' property undetected on other backends assertFieldType('pos_int_field', "models.IntegerField()") if connection.vendor == 'postgresql': assertFieldType('pos_small_int_field', "models.SmallIntegerField()") else: assertFieldType('pos_small_int_field', "models.IntegerField()") if connection.vendor in ('sqlite', 'postgresql'): assertFieldType('small_int_field', "models.SmallIntegerField()") else: assertFieldType('small_int_field', "models.IntegerField()") @skipUnlessDBFeature('can_introspect_foreign_keys') def test_attribute_name_not_python_keyword(self): out = StringIO() # Lets limit the introspection to tables created for models of this # application call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_'), stdout=out) output = out.getvalue() error_message = "inspectdb generated an attribute name which is a python keyword" # Recursive foreign keys should be set to 'self' self.assertIn("parent = models.ForeignKey('self')", output) self.assertNotIn("from = models.ForeignKey(InspectdbPeople)", output, msg=error_message) # As InspectdbPeople model is defined after InspectdbMessage, it should be quoted self.assertIn("from_field = models.ForeignKey('InspectdbPeople', db_column='from_id')", output) self.assertIn("people_pk = models.ForeignKey(InspectdbPeople, primary_key=True)", output) self.assertIn("people_unique = models.ForeignKey(InspectdbPeople, unique=True)", output) def test_digits_column_name_introspection(self): """Introspection of column names consist/start with digits (#16536/#17676)""" out = StringIO() # Lets limit the introspection to tables created for models of this # application call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_'), stdout=out) output = out.getvalue() error_message = "inspectdb generated a model field name which is a number" self.assertNotIn(" 123 = models.CharField", output, msg=error_message) self.assertIn("number_123 = models.CharField", output) error_message = "inspectdb generated a model field name which starts with a digit" self.assertNotIn(" 4extra = models.CharField", output, msg=error_message) self.assertIn("number_4extra = models.CharField", output) self.assertNotIn(" 45extra = models.CharField", output, msg=error_message) self.assertIn("number_45extra = models.CharField", output) def test_special_column_name_introspection(self): """ Introspection of column names containing special characters, unsuitable for Python identifiers """ out = StringIO() call_command('inspectdb', stdout=out) output = out.getvalue() base_name = 'Field' if connection.vendor != 'oracle' else 'field' self.assertIn("field = models.IntegerField()", output) self.assertIn("field_field = models.IntegerField(db_column='%s_')" % base_name, output) self.assertIn("field_field_0 = models.IntegerField(db_column='%s__')" % base_name, output) self.assertIn("field_field_1 = models.IntegerField(db_column='__field')", output) self.assertIn("prc_x = models.IntegerField(db_column='prc(%) x')", output) if PY3: # Python 3 allows non-ascii identifiers self.assertIn("tamaño = models.IntegerField()", output) else: self.assertIn("tama_o = models.IntegerField(db_column='tama\\xf1o')", output) def test_managed_models(self): """Test that by default the command generates models with `Meta.managed = False` (#14305)""" out = StringIO() call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_columntypes'), stdout=out) output = out.getvalue() self.longMessage = False self.assertIn(" managed = False", output, msg='inspectdb should generate unmanaged models.') @skipUnless(connection.vendor == 'sqlite', "Only patched sqlite's DatabaseIntrospection.data_types_reverse for this test") def test_custom_fields(self): """ Introspection of columns with a custom field (#21090) """ out = StringIO() orig_data_types_reverse = connection.introspection.data_types_reverse try: connection.introspection.data_types_reverse = { 'text': 'myfields.TextField', 'bigint': 'BigIntegerField', } call_command('inspectdb', table_name_filter=lambda tn: tn.startswith('inspectdb_columntypes'), stdout=out) output = out.getvalue() self.assertIn("text_field = myfields.TextField()", output) self.assertIn("big_int_field = models.BigIntegerField()", output) finally: connection.introspection.data_types_reverse = orig_data_types_reverse
50.539604
107
0.654325
794ed8eb6af4aee3be2d7005206a89256d50c0bd
1,584
py
Python
pyforce/memory/memory.py
olemeyer/pyforce
f0432ada7974419d40cce229cd875ce6ae4270b9
[ "Apache-2.0" ]
4
2020-03-27T06:46:49.000Z
2020-07-01T20:55:32.000Z
pyforce/memory/memory.py
olemeyer/pyforce
f0432ada7974419d40cce229cd875ce6ae4270b9
[ "Apache-2.0" ]
null
null
null
pyforce/memory/memory.py
olemeyer/pyforce
f0432ada7974419d40cce229cd875ce6ae4270b9
[ "Apache-2.0" ]
null
null
null
import numpy as np import torch class Memory(): def __init__(self,device="cpu",data=None,ordered=True): self.device=device self.data=data if data is not None else {} self.ordered=ordered def clear(self): self.data={} def __len__(self): keys=self.keys() if len(keys)==0: return 0 else: k=keys[0] if isinstance(self.data[k],dict): keys2=[k for k in self.data[k]] return self.data[k][keys2[0]].shape[0] else: return self.data[k].shape[0] def keys(self): keys=[k for k in self.data] return keys def append(self,**data): for k in data: if not isinstance(data[k],dict): data[k]={"_value":data[k]} new_data={i:data[k][i] for i in data[k]} if k in self.data: existing_data=self.data[k] new_data={i:torch.cat([existing_data[i],new_data[i]]) for i in new_data} self.data[k]=new_data def to(self,device): self.device=device for k in self.data: self.data[k]={i:self.data[k].to(self.device) for i in self.data[k]} return self def sample(self,n): k=list(self.data.keys())[0] max_i=len(self.data[k]) idx=np.random.choice(max_i,n,replace=n>max_i) data={} for k in self.data: data[k]={i:self.data[k][i][idx] for i in self.data[k]} return Memory(device=self.device,data=data,ordered=False) def __getattr__(self,name): if name not in self.data: return [] if len(self.data[name])==1 and "_value" in self.data[name]: return self.data[name]["_value"] return self.data[name]
26.4
80
0.613005
794ed900b185270d20a04d8954dada28c961cdc9
8,219
py
Python
assignment2/q1_classifier.py
tavaresdong/stanford_cs224n
09936ce5d994bb25bb45d19fd363c37198b6eda2
[ "MIT" ]
null
null
null
assignment2/q1_classifier.py
tavaresdong/stanford_cs224n
09936ce5d994bb25bb45d19fd363c37198b6eda2
[ "MIT" ]
null
null
null
assignment2/q1_classifier.py
tavaresdong/stanford_cs224n
09936ce5d994bb25bb45d19fd363c37198b6eda2
[ "MIT" ]
null
null
null
import time import numpy as np import tensorflow as tf from q1_softmax import softmax from q1_softmax import cross_entropy_loss from model import Model from utils.general_utils import get_minibatches class Config(object): """Holds model hyperparams and data information. The config class is used to store various hyperparameters and dataset information parameters. Model objects are passed a Config() object at instantiation. They can then call self.config.<hyperparameter_name> to get the hyperparameter settings. """ n_samples = 1024 n_features = 100 n_classes = 5 batch_size = 64 n_epochs = 50 lr = 1e-3 class SoftmaxModel(Model): """Implements a Softmax classifier with cross-entropy loss.""" def add_placeholders(self): """Generates placeholder variables to represent the input tensors. These placeholders are used as inputs by the rest of the model building and will be fed data during training. Adds following nodes to the computational graph input_placeholder: Input placeholder tensor of shape (batch_size, n_features), type tf.float32 labels_placeholder: Labels placeholder tensor of shape (batch_size, n_classes), type tf.int32 Add these placeholders to self as the instance variables self.input_placeholder self.labels_placeholder """ ### YOUR CODE HERE self.input_placeholder = tf.placeholder(tf.float32, shape=(self.config.batch_size, self.config.n_features)) self.labels_placeholder = tf.placeholder(tf.int32, shape=(self.config.batch_size, self.config.n_classes)) ### END YOUR CODE def create_feed_dict(self, inputs_batch, labels_batch=None): """Creates the feed_dict for training the given step. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } If label_batch is None, then no labels are added to feed_dict. Hint: The keys for the feed_dict should be the placeholder tensors created in add_placeholders. Args: inputs_batch: A batch of input data. labels_batch: A batch of label data. Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ ### YOUR CODE HERE feed_dict = { self.input_placeholder: inputs_batch } if labels_batch is not None: feed_dict[self.labels_placeholder] = labels_batch ### END YOUR CODE return feed_dict def add_prediction_op(self): """Adds the core transformation for this model which transforms a batch of input data into a batch of predictions. In this case, the transformation is a linear layer plus a softmax transformation: yhat = softmax(xW + b) Hint: The input x will be passed in through self.input_placeholder. Each ROW of self.input_placeholder is a single example. This is usually best-practice for tensorflow code. Hint: Make sure to create tf.Variables as needed. Hint: For this simple use-case, it's sufficient to initialize both weights W and biases b with zeros. Returns: pred: A tensor of shape (batch_size, n_classes) """ ### YOUR CODE HERE self.W = tf.Variable(tf.truncated_normal(shape=(self.config.n_features, self.config.n_classes))) self.b = tf.Variable(tf.zeros([self.config.n_classes])) self.yhat = tf.matmul(self.input_placeholder, self.W) + self.b pred = softmax(self.yhat) ### END YOUR CODE return pred def add_loss_op(self, pred): """Adds cross_entropy_loss ops to the computational graph. Hint: Use the cross_entropy_loss function we defined. This should be a very short function. Args: pred: A tensor of shape (batch_size, n_classes) Returns: loss: A 0-d tensor (scalar) """ ### YOUR CODE HERE loss = cross_entropy_loss(self.labels_placeholder, pred) ### END YOUR CODE return loss def add_training_op(self, loss): """Sets up the training Ops. Creates an optimizer and applies the gradients to all trainable variables. The Op returned by this function is what must be passed to the `sess.run()` call to cause the model to train. See https://www.tensorflow.org/api_docs/python/tf/train/Optimizer for more information. Use the learning rate from self.config. Hint: Use tf.train.GradientDescentOptimizer to get an optimizer object. Calling optimizer.minimize() will return a train_op object. Args: loss: Loss tensor, from cross_entropy_loss. Returns: train_op: The Op for training. """ ### YOUR CODE HERE train_op = tf.train.GradientDescentOptimizer(learning_rate=self.config.lr).minimize(loss) ### END YOUR CODE return train_op def run_epoch(self, sess, inputs, labels): """Runs an epoch of training. Args: sess: tf.Session() object inputs: np.ndarray of shape (n_samples, n_features) labels: np.ndarray of shape (n_samples, n_classes) Returns: average_loss: scalar. Average minibatch loss of model on epoch. """ n_minibatches, total_loss = 0, 0 for input_batch, labels_batch in get_minibatches([inputs, labels], self.config.batch_size): n_minibatches += 1 total_loss += self.train_on_batch(sess, input_batch, labels_batch) return total_loss / n_minibatches def fit(self, sess, inputs, labels): """Fit model on provided data. Args: sess: tf.Session() inputs: np.ndarray of shape (n_samples, n_features) labels: np.ndarray of shape (n_samples, n_classes) Returns: losses: list of loss per epoch """ losses = [] for epoch in range(self.config.n_epochs): start_time = time.time() average_loss = self.run_epoch(sess, inputs, labels) duration = time.time() - start_time print('Epoch {:}: loss = {:.2f} ({:.3f} sec)'.format(epoch, average_loss, duration)) losses.append(average_loss) return losses def __init__(self, config): """Initializes the model. Args: config: A model configuration object of type Config """ self.config = config self.build() def test_softmax_model(): """Train softmax model for a number of steps.""" config = Config() # Generate random data to train the model on np.random.seed(1234) inputs = np.random.rand(config.n_samples, config.n_features) labels = np.zeros((config.n_samples, config.n_classes), dtype=np.int32) labels[:, 0] = 1 # Tell TensorFlow that the model will be built into the default Graph. # (not required but good practice) with tf.Graph().as_default() as graph: # Build the model and add the variable initializer op model = SoftmaxModel(config) init_op = tf.global_variables_initializer() # Finalizing the graph causes tensorflow to raise an exception if you try to modify the graph # further. This is good practice because it makes explicit the distinction between building and # running the graph. graph.finalize() # Create a session for running ops in the graph with tf.Session(graph=graph) as sess: # Run the op to initialize the variables. sess.run(init_op) # Fit the model losses = model.fit(sess, inputs, labels) # If ops are implemented correctly, the average loss should fall close to zero # rapidly. assert losses[-1] < .5 print("Basic (non-exhaustive) classifier tests pass") if __name__ == "__main__": test_softmax_model()
36.691964
115
0.639129
794ed90cecf5388cb3cf5ec69902d1270f94139e
1,604
py
Python
python/problems/minimum_cost_for_tickets.py
vivaxy/algorithms
b2e49476ed2ad1fd82a1183f656d1907a666c347
[ "MIT" ]
1
2019-05-04T13:21:41.000Z
2019-05-04T13:21:41.000Z
python/problems/minimum_cost_for_tickets.py
vivaxy/algorithms
b2e49476ed2ad1fd82a1183f656d1907a666c347
[ "MIT" ]
1
2021-08-30T09:34:58.000Z
2021-08-30T09:34:58.000Z
python/problems/minimum_cost_for_tickets.py
vivaxy/algorithms
b2e49476ed2ad1fd82a1183f656d1907a666c347
[ "MIT" ]
null
null
null
from functools import lru_cache import unittest """ https://leetcode.com/problems/minimum-cost-for-tickets/ https://leetcode.com/submissions/detail/227086131/ """ from typing import List class Solution1: def mincostTickets(self, days: List[int], costs: List[int]) -> int: self.memo = dict() # dp(i) = min(dp(i + 1) + costs[0], dp(i + 7) + costs[1], dp[i + 30] + costs[2]) def dp(day: int) -> int: if day in self.memo: return self.memo[day] if day > 365: return 0 if day in days: ans = min( dp(day + 1) + costs[0], dp(day + 7) + costs[1], dp(day + 30) + costs[2]) self.memo[day] = ans return ans ans = dp(day + 1) self.memo[day] = ans return ans return dp(1) class Solution: def mincostTickets(self, days: List[int], costs: List[int]) -> int: @lru_cache(None) def dp(day: int) -> int: if day <= 0: return 0 if day in days: return min(dp(day - 1) + costs[0], dp(day - 7) + costs[1], dp(day - 30) + costs[2]) return dp(day - 1) return dp(365) class Test(unittest.TestCase): def test(self): solution = Solution() self.assertEqual(solution.mincostTickets( [1, 4, 6, 7, 8, 20], [2, 7, 15]), 11) self.assertEqual(solution.mincostTickets( [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [2, 7, 15]), 17) if __name__ == '__main__': unittest.main()
28.140351
99
0.503741
794eda182f9e0dac032216b095e8a6fcdd126eb0
2,532
py
Python
vnpy/gateway/loopringv36/exceptions.py
dos2004/vnpy
8f2af5ff8c737adf32aaf4021ceb5bea1eea6ec4
[ "MIT" ]
21
2020-07-15T07:06:25.000Z
2021-12-19T07:33:02.000Z
vnpy/gateway/loopringv36/exceptions.py
dos2004/vnpy
8f2af5ff8c737adf32aaf4021ceb5bea1eea6ec4
[ "MIT" ]
2
2020-08-25T08:04:49.000Z
2020-10-04T11:55:07.000Z
vnpy/gateway/loopringv36/exceptions.py
dos2004/vnpy
8f2af5ff8c737adf32aaf4021ceb5bea1eea6ec4
[ "MIT" ]
5
2020-08-03T02:46:19.000Z
2021-09-19T15:35:44.000Z
# coding=utf-8 class LoopringAPIException(Exception): def __init__(self, response): # self.code = 0 # try: # json_res = response.json() # except ValueError: # self.message = 'Invalid JSON error message from Loopring: {}'.format(response.text) # else: # self.code = json_res['code'] # self.message = json_res['msg'] self.status_code = response.status_code self.response = response self.request = getattr(response, 'request', None) def __str__(self): # pragma: no cover return self.response.text class LoopringRequestException(Exception): def __init__(self, message): self.message = message def __str__(self): return 'LoopringRequestException: %s' % self.message class LoopringOrderException(Exception): def __init__(self, code, message): self.code = code self.message = message def __str__(self): return 'LoopringOrderException(code=%s): %s' % (self.code, self.message) class LoopringOrderMinAmountException(LoopringOrderException): def __init__(self, value): message = "Amount must be a multiple of %s" % value super(LoopringOrderMinAmountException, self).__init__(-1013, message) class LoopringOrderMinPriceException(LoopringOrderException): def __init__(self, value): message = "Price must be at least %s" % value super(LoopringOrderMinPriceException, self).__init__(-1013, message) class LoopringOrderMinTotalException(LoopringOrderException): def __init__(self, value): message = "Total must be at least %s" % value super(LoopringOrderMinTotalException, self).__init__(-1013, message) class LoopringOrderUnknownSymbolException(LoopringOrderException): def __init__(self, value): message = "Unknown symbol %s" % value super(LoopringOrderUnknownSymbolException, self).__init__(-1013, message) class LoopringOrderInactiveSymbolException(LoopringOrderException): def __init__(self, value): message = "Attempting to trade an inactive symbol %s" % value super(LoopringOrderInactiveSymbolException, self).__init__(-1013, message) class LoopringWithdrawException(Exception): def __init__(self, message): if message == u'参数异常': message = 'Withdraw to this address through the website first' self.message = message def __str__(self): return 'LoopringWithdrawException: %s' % self.message
30.142857
97
0.68207
794eda383f6f8c6d4e88e020290bc1b8a0d35af1
6,426
py
Python
test/functional/rpc_bind.py
eloncoingit/eloncoin
20c0d1166e8c1e094f684654e8b4c80fc0c89ef7
[ "MIT" ]
1
2021-02-28T07:14:09.000Z
2021-02-28T07:14:09.000Z
test/functional/rpc_bind.py
eloncoingit/eloncoin
20c0d1166e8c1e094f684654e8b4c80fc0c89ef7
[ "MIT" ]
null
null
null
test/functional/rpc_bind.py
eloncoingit/eloncoin
20c0d1166e8c1e094f684654e8b4c80fc0c89ef7
[ "MIT" ]
1
2021-05-01T00:14:29.000Z
2021-05-01T00:14:29.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test running eloncoind with the -rpcbind and -rpcallowip options.""" import sys from test_framework.netutil import all_interfaces, addr_to_hex, get_bind_addrs, test_ipv6_local from test_framework.test_framework import BitcoinTestFramework, SkipTest from test_framework.util import assert_equal, assert_raises_rpc_error, get_rpc_proxy, rpc_port, rpc_url class RPCBindTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.bind_to_localhost_only = False self.num_nodes = 1 def setup_network(self): self.add_nodes(self.num_nodes, None) def add_options(self, parser): parser.add_argument("--ipv4", action='store_true', dest="run_ipv4", help="Run ipv4 tests only", default=False) parser.add_argument("--ipv6", action='store_true', dest="run_ipv6", help="Run ipv6 tests only", default=False) parser.add_argument("--nonloopback", action='store_true', dest="run_nonloopback", help="Run non-loopback tests only", default=False) def run_bind_test(self, allow_ips, connect_to, addresses, expected): ''' Start a node with requested rpcallowip and rpcbind parameters, then try to connect, and check if the set of bound addresses matches the expected set. ''' self.log.info("Bind test for %s" % str(addresses)) expected = [(addr_to_hex(addr), port) for (addr, port) in expected] base_args = ['-disablewallet', '-nolisten'] if allow_ips: base_args += ['-rpcallowip=' + x for x in allow_ips] binds = ['-rpcbind='+addr for addr in addresses] self.nodes[0].rpchost = connect_to self.start_node(0, base_args + binds) pid = self.nodes[0].process.pid assert_equal(set(get_bind_addrs(pid)), set(expected)) self.stop_nodes() def run_allowip_test(self, allow_ips, rpchost, rpcport): ''' Start a node with rpcallow IP, and request getnetworkinfo at a non-localhost IP. ''' self.log.info("Allow IP test for %s:%d" % (rpchost, rpcport)) node_args = \ ['-disablewallet', '-nolisten'] + \ ['-rpcallowip='+x for x in allow_ips] + \ ['-rpcbind='+addr for addr in ['127.0.0.1', "%s:%d" % (rpchost, rpcport)]] # Bind to localhost as well so start_nodes doesn't hang self.nodes[0].rpchost = None self.start_nodes([node_args]) # connect to node through non-loopback interface node = get_rpc_proxy(rpc_url(self.nodes[0].datadir, 0, "%s:%d" % (rpchost, rpcport)), 0, coveragedir=self.options.coveragedir) node.getnetworkinfo() self.stop_nodes() def run_test(self): # due to OS-specific network stats queries, this test works only on Linux if sum([self.options.run_ipv4, self.options.run_ipv6, self.options.run_nonloopback]) > 1: raise AssertionError("Only one of --ipv4, --ipv6 and --nonloopback can be set") self.log.info("Check for linux") if not sys.platform.startswith('linux'): raise SkipTest("This test can only be run on linux.") self.log.info("Check for ipv6") have_ipv6 = test_ipv6_local() if not have_ipv6 and not (self.options.run_ipv4 or self.options.run_nonloopback): raise SkipTest("This test requires ipv6 support.") self.log.info("Check for non-loopback interface") self.non_loopback_ip = None for name,ip in all_interfaces(): if ip != '127.0.0.1': self.non_loopback_ip = ip break if self.non_loopback_ip is None and self.options.run_nonloopback: raise SkipTest("This test requires a non-loopback ip address.") self.defaultport = rpc_port(0) if not self.options.run_nonloopback: self._run_loopback_tests() if not self.options.run_ipv4 and not self.options.run_ipv6: self._run_nonloopback_tests() def _run_loopback_tests(self): if self.options.run_ipv4: # check only IPv4 localhost (explicit) self.run_bind_test(['127.0.0.1'], '127.0.0.1', ['127.0.0.1'], [('127.0.0.1', self.defaultport)]) # check only IPv4 localhost (explicit) with alternative port self.run_bind_test(['127.0.0.1'], '127.0.0.1:32171', ['127.0.0.1:32171'], [('127.0.0.1', 32171)]) # check only IPv4 localhost (explicit) with multiple alternative ports on same host self.run_bind_test(['127.0.0.1'], '127.0.0.1:32171', ['127.0.0.1:32171', '127.0.0.1:32172'], [('127.0.0.1', 32171), ('127.0.0.1', 32172)]) else: # check default without rpcallowip (IPv4 and IPv6 localhost) self.run_bind_test(None, '127.0.0.1', [], [('127.0.0.1', self.defaultport), ('::1', self.defaultport)]) # check default with rpcallowip (IPv4 and IPv6 localhost) self.run_bind_test(['127.0.0.1'], '127.0.0.1', [], [('127.0.0.1', self.defaultport), ('::1', self.defaultport)]) # check only IPv6 localhost (explicit) self.run_bind_test(['[::1]'], '[::1]', ['[::1]'], [('::1', self.defaultport)]) # check both IPv4 and IPv6 localhost (explicit) self.run_bind_test(['127.0.0.1'], '127.0.0.1', ['127.0.0.1', '[::1]'], [('127.0.0.1', self.defaultport), ('::1', self.defaultport)]) def _run_nonloopback_tests(self): self.log.info("Using interface %s for testing" % self.non_loopback_ip) # check only non-loopback interface self.run_bind_test([self.non_loopback_ip], self.non_loopback_ip, [self.non_loopback_ip], [(self.non_loopback_ip, self.defaultport)]) # Check that with invalid rpcallowip, we are denied self.run_allowip_test([self.non_loopback_ip], self.non_loopback_ip, self.defaultport) assert_raises_rpc_error(-342, "non-JSON HTTP response with '403 Forbidden' from server", self.run_allowip_test, ['1.1.1.1'], self.non_loopback_ip, self.defaultport) if __name__ == '__main__': RPCBindTest().main()
49.430769
172
0.633209
794edb1576915509131366ea42a0d0ed8d685fed
6,929
py
Python
project/social_login.py
tomjuggler/login_system
c3341e218a1a7e5da033b52fb56416521fd256e3
[ "MIT" ]
28
2020-12-30T23:54:35.000Z
2022-03-26T07:37:00.000Z
project/social_login.py
tomjuggler/login_system
c3341e218a1a7e5da033b52fb56416521fd256e3
[ "MIT" ]
1
2021-05-31T19:14:20.000Z
2021-05-31T21:00:08.000Z
project/social_login.py
tomjuggler/login_system
c3341e218a1a7e5da033b52fb56416521fd256e3
[ "MIT" ]
10
2021-02-02T00:59:41.000Z
2022-03-02T09:35:06.000Z
from flask import Flask, render_template, redirect, url_for, flash, Blueprint from flask_login import current_user, login_user, login_required from flask_dance.contrib.github import make_github_blueprint, github from flask_dance.contrib.google import make_google_blueprint, google from flask_dance.contrib.facebook import make_facebook_blueprint, facebook from flask_dance.consumer import oauth_authorized, oauth_error from flask_dance.consumer.storage.sqla import SQLAlchemyStorage from sqlalchemy.orm.exc import NoResultFound from . import db from .models import User, OAuth github_blueprint = make_github_blueprint(client_id = 'YOUR CLIENT ID', client_secret = 'YOUR CLIENT SECRET') google_blueprint = make_google_blueprint(client_id= "YOUR CLIENT ID", client_secret= "YOUR CLIENT SECRET", scope=[ "openid", "https://www.googleapis.com/auth/userinfo.email", "https://www.googleapis.com/auth/userinfo.profile", ] ) facebook_blueprint = make_facebook_blueprint(client_id= "YOUR CLIENT ID", client_secret= "YOUR CLIENT SECRET", scope = [ "email" ] ) github_bp = make_github_blueprint(storage = SQLAlchemyStorage(OAuth, db.session, user = current_user)) google_bp = make_google_blueprint(storage = SQLAlchemyStorage(OAuth, db.session, user = current_user)) facebook_bp = make_facebook_blueprint(storage = SQLAlchemyStorage(OAuth, db.session, user = current_user)) @oauth_authorized.connect_via(github_blueprint) def github_logged_in(blueprint, token): if not token: flash("Failed to log in with GitHub.", category = "error") return resp = blueprint.session.get("/user") if not resp.ok: msg = "Failed to fecth user info from GitHub." flash(msg, category= "error") return github_name = resp.json()["name"] github_user_id = resp.json()["id"] query = OAuth.query.filter_by( provider = blueprint.name, provider_user_id = github_user_id) try: oauth = query.one() except NoResultFound: github_user_login = github_name oauth = OAuth( provider = blueprint.name, provider_user_id = github_user_id, provider_user_login = github_user_login, token = token, ) if current_user.is_anonymous: if oauth.user: login_user(oauth.user) # flash("Successfully signed in with GitHub.", 'success') else: user = User(username = github_name) oauth.user = user db.session.add_all([user, oauth]) db.session.commit() login_user(user) # flash("Successfully signed in with GitHub.", 'success') else: if oauth.user: if current_user != oauth.user: url = url_for("auth.merge", username = oauth.user.username) return redirect(url) else: oauth.user =current_user db.session.add(oauth) db.session.commit() # flash("Successfully linked GitHub account.", 'success') return redirect(url_for("main.profile")) @oauth_error.connect_via(github_blueprint) def github_error(blueprint, message, response): msg = ("OAuth error from {name}! " "message={message} response = {response}").format( name = blueprint.name, message = message, response = response ) flash(msg, category="error") @oauth_authorized.connect_via(google_blueprint) def google_logged_in(blueprint, token): if not token: flask("Failed to log in.", category="error") return resp = blueprint.session.get("/oauth2/v2/userinfo") if not resp.ok: msg = "Failed to fetch user info." flash(msg, category="error") return google_name = resp.json()["name"] google_user_id = resp.json()["id"] query = OAuth.query.filter_by( provider = blueprint.name, provider_user_id = google_user_id ) try: oauth = query.one() except NoResultFound: google_user_login = google_name oauth = OAuth( provider=blueprint.name, provider_user_id=google_user_id, provider_user_login=google_user_login, token=token, ) if current_user.is_anonymous: if oauth.user: login_user(oauth.user) # flash("Successfully signed in with Google.", 'success') else: user = User(username = google_name) oauth.user = user db.session.add_all([user, oauth]) db.session.commit() login_user(user) # flash("Successfully signed in with Google.", 'success') else: if oauth.user: if current_user != oauth.user: url = url_for("auth.merge", username=oauth.user.username) return redirect(url) else: oauth.user = current_user db.session.add(oauth) db.commit() # flash("Successfully linked Google account.") return redirect(url_for("main.profile")) @oauth_error.connect_via(google_blueprint) def google_error(blueprint, message, response): msg = ("OAuth error from {name}! " "message={message} response={response}").format( name=blueprint.name, message = message, response = response ) flash(msg, category = "error") @oauth_authorized.connect_via(facebook_blueprint) def facebook_logged_in(blueprint,token): if not token: flash("Failed to log in.", category="error") return resp = blueprint.session.get("/me") if not resp.ok: msg = "Failed to fetch user info." flash(msg, category="error") return facebook_name = resp.json()["name"] facebook_user_id = resp.json()["id"] query = OAuth.query.filter_by( provider = blueprint.name, provider_user_id = facebook_user_id ) try: oauth = query.one() except NoResultFound: oauth = OAuth( provider = blueprint.name, provider_user_id = facebook_user_id, token = token ) if oauth.user: login_user(oauth.user) # flash("Successfully signed in with Facebook.", 'success') else: user = User(username = facebook_name) oauth.user = user db.session.add_all([user, oauth]) db.session.commit() login_user(user) # flash("Successfully signed in with Facebook.", 'success') return redirect(url_for("main.profile")) @oauth_error.connect_via(facebook_blueprint) def facebook_error(blueprint, message, response): msg = ("OAuth error from {name}! " "message={message} response={response}").format( name=blueprint.name, message=message, response=response ) flash(msg, category="error")
35.352041
120
0.634002
794edb7f62435552f6580e7977fb459be4fde2a0
4,229
py
Python
city_scrapers/spiders/pa_liquorboard.py
maxachis/city-scrapers-pitt
63150a522a512d35b64e4068e25169cf46875598
[ "MIT" ]
16
2019-02-22T23:43:06.000Z
2020-01-13T04:41:50.000Z
city_scrapers/spiders/pa_liquorboard.py
maxachis/city-scrapers-pitt
63150a522a512d35b64e4068e25169cf46875598
[ "MIT" ]
109
2020-02-09T21:42:36.000Z
2021-03-06T21:41:18.000Z
city_scrapers/spiders/pa_liquorboard.py
maxachis/city-scrapers-pitt
63150a522a512d35b64e4068e25169cf46875598
[ "MIT" ]
62
2019-01-25T23:55:58.000Z
2020-01-17T00:53:55.000Z
import re from datetime import datetime from city_scrapers_core.constants import BOARD from city_scrapers_core.items import Meeting from city_scrapers_core.spiders import CityScrapersSpider class PaLiquorboardSpider(CityScrapersSpider): """Spider is a class that scapy provides to us, this spider will inherit properties from the base spider class """ name = "pa_liquorboard" # How we refer to the spider when we want to run it agency = "Pennsylvania Liquor Control Board" timezone = "America/New_York" allowed_domains = ["www.lcb.pa.gov"] start_urls = ["https://www.lcb.pa.gov/About-Us/Board/Pages/Public-Meetings.aspx"] BUILDING_NAME = "Pennsylvania Liquor Control Board Headquarters" ADDRESS = "Room 117, 604 Northwest Office Building, Harrisburg, PA 17124" EXPECTED_START_HOUR = "11:00" # List of urls that we are going to scrape content from # We are extracting the entire html content -- all of the html content and saving it def parse(self, response): """ `parse` should always `yield` Meeting items. Change the `_parse_id`, `_parse_name`, etc methods to fit your scraping needs. """ sel_id = "ctl00_PlaceHolderMain_PageContent__ControlWrapper_RichHtmlField" sel_path = "/blockquote/font/text()" sel_path2 = "/blockquote/div/span/text()" select_txt = "//*[@id='" + sel_id + "']" + sel_path select_txt2 = "//*[@id='" + sel_id + "']" + sel_path2 # Identify CSS node or XPath you're interested in meetings = response.xpath(select_txt).extract() # Make variable of that text meetings += response.xpath(select_txt2).extract() container = response.xpath('//*[@id="container"]').extract() match = re.search(r"(\d{2}:\d{2}) ?(AM|PM)", container[0]) time = match.group(1) if match else EXPECTED_START_HOUR for item in meetings: meeting = Meeting( title=self._parse_title(item), description=self._parse_description(item), classification=self._parse_classification(item), start=self._parse_start(item, time), end=self._parse_end(item), all_day=self._parse_all_day(item), time_notes=self._parse_time_notes(item), location=self._parse_location(item), links=self._parse_links(item), source=self._parse_source(response), ) meeting["status"] = self._get_status(meeting) meeting["id"] = self._get_id(meeting) yield meeting def _parse_title(self, item): """Parse or generate meeting title.""" return "" def _parse_description(self, item): """Parse or generate meeting description.""" return "" def _parse_classification(self, item): """Parse or generate classification from allowed options.""" return BOARD def _parse_start(self, item: str, start_time: int): """Parse start datetime as a naive datetime object.""" # Remove garbage from our date item: date_split = item.split(",") date_string = "".join(date_split[1:])[1:] start_datetime = datetime.strptime( date_string + " " + start_time + ":00", "%B %d %Y %H:%M:%S" ) return start_datetime def _parse_end(self, item): """Parse end datetime as a naive datetime object. Added by pipeline if None""" return None def _parse_time_notes(self, item): """Parse any additional notes on the timing of the meeting""" return "" def _parse_all_day(self, item): """Parse or generate all-day status. Defaults to False.""" return False def _parse_location(self, item): # Put function to get location """Parse or generate location.""" return { "address": self.ADDRESS, "name": self.BUILDING_NAME, } def _parse_links(self, item): """Parse or generate links.""" return [{"href": "", "title": ""}] def _parse_source(self, response): """Parse or generate source.""" return response.url
37.758929
88
0.624261
794edba706aa6e447e89d1034059e591be3cfa3e
1,190
py
Python
chinilla/wallet/settings/user_settings.py
Chinilla/chinilla-blockchain
59bebcf94e65b74fbb53ad4929bbd79cb28be619
[ "Apache-2.0" ]
null
null
null
chinilla/wallet/settings/user_settings.py
Chinilla/chinilla-blockchain
59bebcf94e65b74fbb53ad4929bbd79cb28be619
[ "Apache-2.0" ]
null
null
null
chinilla/wallet/settings/user_settings.py
Chinilla/chinilla-blockchain
59bebcf94e65b74fbb53ad4929bbd79cb28be619
[ "Apache-2.0" ]
null
null
null
from typing import Any, Dict from chinilla.wallet.key_val_store import KeyValStore from chinilla.wallet.settings.default_settings import default_settings from chinilla.wallet.settings.settings_objects import BackupInitialized class UserSettings: settings: Dict[str, Any] basic_store: KeyValStore @staticmethod async def create( store: KeyValStore, name: str = None, ): self = UserSettings() self.basic_store = store self.settings = {} await self.load_store() return self def _keys(self): all_keys = [BackupInitialized] return all_keys async def load_store(self): keys = self._keys() for setting in keys: name = setting.__name__ object = await self.basic_store.get_object(name, BackupInitialized) if object is None: object = default_settings[name] assert object is not None self.settings[name] = object async def setting_updated(self, setting: Any): name = setting.__class__.__name__ await self.basic_store.set_object(name, setting) self.settings[name] = setting
28.333333
79
0.652941
794ee016c60f657148360bcf8a5e6f91e778f00d
378
py
Python
Lab1/q3.py
ViniciusRCortez/Monitoria-de-metodos-numericos-com-python
85678fe8907752533d0dc97dc83550411ba079f0
[ "MIT" ]
null
null
null
Lab1/q3.py
ViniciusRCortez/Monitoria-de-metodos-numericos-com-python
85678fe8907752533d0dc97dc83550411ba079f0
[ "MIT" ]
null
null
null
Lab1/q3.py
ViniciusRCortez/Monitoria-de-metodos-numericos-com-python
85678fe8907752533d0dc97dc83550411ba079f0
[ "MIT" ]
null
null
null
""" Objetivo: Resolver questão 3 do primeiro laboratorio. """ def conta(a): #retorna a expressão desejada para cada valor de i numerador = ((a ** 3) + 1) ** 2 denominador = (a ** 2) + 2 return numerador / denominador x = [-1.6, -1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2] for i in x: #i = cada valor de x individualmente y = conta(i) print(f'y = {y}')
23.625
70
0.566138
794ee06e7bd109b02f0212d0caf7b66d2ab5db80
4,524
py
Python
examples/run_sim_and_calc_resp_v2.py
willdickson/sys_id_utils
5dbf95e04e27377dcabed2f672f5fa788b0860d3
[ "MIT" ]
null
null
null
examples/run_sim_and_calc_resp_v2.py
willdickson/sys_id_utils
5dbf95e04e27377dcabed2f672f5fa788b0860d3
[ "MIT" ]
null
null
null
examples/run_sim_and_calc_resp_v2.py
willdickson/sys_id_utils
5dbf95e04e27377dcabed2f672f5fa788b0860d3
[ "MIT" ]
null
null
null
import warnings import numpy as np import scipy as sp import matplotlib.pyplot as plt import sys_id_utils num_pts = 5000 t0 = 0.0 # Start time t1 = 20.0 # End time # Yaw dynamics + controller model parameters model_param = { 'inertia' : 1.0, 'damping' : 0.0, 'pro_gain' : 5.0, 'int_gain' : 20.0, 'int_leak' : 1.0, 'noise' : 1.1, } # Input signal parameters for chirp function input_param_chrip = { 'type' : 'chirp', 'method' : 'logarithmic', 'min_freq' : 0.1, 'max_freq' : 10.0, } # Input signal parameters for step function input_param_step = { 'type' : 'step', 'value_start' : 0.0, 'value_final' : 1.0, 't_step' : 10.0, } nperseg = num_pts/4 # Number of points per segment for power spectral density calculation f_cutoff = 8.0 # Cut off frequency for analysis fit = True # If True fits parametric model of transfer function to frequency response # Create input and output data t, input_sig, output_sig, state = sys_id_utils.lpi_yaw_model(t0, t1, num_pts, model_param, input_param_chrip) f_sample = 1.0/(t[1] - t[0]) # Compute gain and phase as funtion of frequency from input/output data - as if we were performing an experiment. f, gain_db, phase_deg = sys_id_utils.freq_response(input_sig, output_sig, f_sample, f_cutoff, nperseg) # Create state space model to get theoretical frequncy response ss_model = sys_id_utils.create_lpi_ss_model(model_param) f_model = np.linspace(0.0, f_cutoff, num_pts) with warnings.catch_warnings(): warnings.simplefilter("ignore") _, gain_db_model, phase_deg_model = sp.signal.bode(ss_model,w=f_model*2.0*np.pi) # Fit state space models if fit: if 0: d_fit, gp_fit, fit_info = sys_id_utils.fit_p_yaw_model(t, input_sig, output_sig, op_param={'disp':True}) print('fit: d {}, gp {}'.format(d_fit, gp_fit)) model_param_fit = { 'inertia' : model_param['inertia'], 'damping' : model_param['inertia']*d_fit, 'pro_gain' : model_param['inertia']*gp_fit, 'int_gain' : 0.0, 'int_leak' : 0.0, 'noise' : 0.0, } if 0: d_fit, gp_fit, gi_fit, fit_info = sys_id_utils.fit_pi_yaw_model(t, input_sig, output_sig, op_param={'disp':True}) print('fit: d {}, gp {}, gi {}'.format(d_fit, gp_fit, gi_fit)) model_param_fit = { 'inertia' : model_param['inertia'], 'damping' : model_param['inertia']*d_fit, 'pro_gain' : model_param['inertia']*gp_fit, 'int_gain' : model_param['inertia']*gi_fit, 'int_leak' : 0.0, 'noise' : 0.0, } if 1: d_fit, gp_fit, gi_fit, c_fit, fit_info = sys_id_utils.fit_lpi_yaw_model(t, input_sig, output_sig, op_param={'disp':True}) print('fit: d {}, gp {}, gi {}, c {}'.format(d_fit, gp_fit, gi_fit, c_fit)) model_param_fit = { 'inertia' : model_param['inertia'], 'damping' : model_param['inertia']*d_fit, 'pro_gain' : model_param['inertia']*gp_fit, 'int_gain' : model_param['inertia']*gi_fit, 'int_leak' : c_fit, 'noise' : 0.0, } ss_model_fit = sys_id_utils.create_lpi_ss_model(model_param_fit) f_fit = f_model with warnings.catch_warnings(): warnings.simplefilter("ignore") _, gain_db_fit, phase_deg_fit = sp.signal.bode(ss_model_fit,w=f_fit*2.0*np.pi) # Plot input and output data fig1, ax1 = plt.subplots(1,1) h_input, = ax1.plot(t,input_sig,'b') h_output, = ax1.plot(t, output_sig ,'r') ax1.set_xlabel('t (sec)') ax1.set_ylabel('velocity (rad/sec)') ax1.grid(True) plt.figlegend((h_input, h_output), ('input', 'output'), 'upper right') # Plot frequency response (Bode plot) fig2, ax2 = plt.subplots(2,1,sharex=True) fig2.suptitle('Frequency Response') ax2[0].semilogx(f_model, gain_db_model,'b') if fit: ax2[0].semilogx(f_fit, gain_db_fit,'g') ax2[0].semilogx(f, gain_db,'or') ax2[0].grid(True, which='both', axis='both') ax2[0].set_ylabel('gain (dB)') ax2[1].semilogx(f_model, phase_deg_model,'b') if fit: ax2[1].semilogx(f_fit, phase_deg_fit, 'g') ax2[1].semilogx(f, phase_deg,'or') ax2[1].grid(True, which='both', axis='both') ax2[1].set_ylabel('phase lag (deg)') ax2[1].set_xlabel('f (Hz)') plt.show()
35.069767
129
0.612953
794ee1a767ccb5aa4e8a8cd6047727bb5d676853
5,990
py
Python
bg_biz/service/user_service.py
sluggard6/bgirl
3c9fa895189ef16442694830d0c05cf60ee5187b
[ "Apache-2.0" ]
null
null
null
bg_biz/service/user_service.py
sluggard6/bgirl
3c9fa895189ef16442694830d0c05cf60ee5187b
[ "Apache-2.0" ]
null
null
null
bg_biz/service/user_service.py
sluggard6/bgirl
3c9fa895189ef16442694830d0c05cf60ee5187b
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- from datetime import datetime, timedelta from bg_biz.orm.sysconfig import SysConfig from bg_biz.orm.user import User, UserVcode, ExchangeWifiRecord, UserHit from bg_biz.service.tool_service import ToolService from sharper.flaskapp.orm.base import transaction, db from sharper.lib.error import AppError from sharper.lib.validator import is_mobile from sharper.util.string import random_number from sharper.util.app_util import get_app_name from bg_biz.orm.app_log import SmsLog from bg_biz.orm.admin import AdminLog, AdminAction __author__ = [ "sluggrd" ] @transaction def send_user_vcode(phone, category, app=UserVcode.App.ANDROID, mac=None): vcode = random_number(4) sms_config = SysConfig.get_json("reg_sms_config") limit_times = sms_config.get('limit_times', 10) # 如果指定时间内发送过同类型的验证码,并且未使用过,则发送相同验证码 keep_time = datetime.now() - timedelta(minutes=sms_config.get('keep_minutes', 30)) delay_time = datetime.now() - timedelta(minutes=1) vcode_today = UserVcode.query.filter_by(phone=phone).filter( "date(create_time)='%s'" % datetime.now().strftime("%Y-%m-%d")).all() vcode_today = sum([x.times for x in vcode_today]) if vcode_today > 9: raise AppError(u"今日获取短信过多,已关闭验证码发送") vcode_latest_log = UserVcode.query.with_lockmode("update").filter_by(phone=phone).filter_by( category=category).filter_by(app=app).filter( UserVcode.modify_time > delay_time.strftime("%Y-%m-%d %H:%M:%S")).first() if vcode_latest_log: raise AppError(u"获取短信过于频繁,请稍后再试") vcode_log = UserVcode.query.filter_by(phone=phone).filter_by(category=category).filter_by(app=app).filter_by( status=UserVcode.Status.INIT).filter( UserVcode.create_time > keep_time.strftime("%Y-%m-%d %H:%M:%S")).first() if vcode_log: if vcode_log.times > limit_times: raise AppError(u"获取次数过多,请稍后再试") vcode = vcode_log.vcode vcode_log.times = vcode_log.times + 1 vcode_log.update() else: vcode_log = UserVcode() vcode_log.phone = phone vcode_log.category = category vcode_log.vcode = vcode vcode_log.mac = mac vcode_log.app = app vcode_log.insert() content = '' if not is_mobile(phone): raise AppError(u"请输入正确的手机号码") if category == UserVcode.Category.REGISTER: content = u"您在%s的验证码是:%s 。 请不要把验证码泄露给其他人。如非本人操作,可不用理会!" % (get_app_name(), vcode) elif category == UserVcode.Category.FORGET_PASS: content = u"您的验证码为:%s " % vcode # elif category == UserVcode.Category.CHANGE_PHONE_OLD: # content = u"您的验证码为:%s " % vcode # elif category == UserVcode.Category.CHANGE_PHONE_NEW: # content = u"您的验证码为:%s " % vcode else: content = u"您的验证码为:%s " % vcode need_switch = True # if category in [UserVcode.Category.CHANGE_PHONE_OLD, UserVcode.Category.CHANGE_PHONE_NEW]: # need_switch = False print vcode_log ToolService.send_sms(phone, content, need_switch=need_switch, app=app, scene=SmsLog.Scene.VCODE) return vcode class UserService: @classmethod def add_hit(cls, user_hit): sql = 'insert into user_hit (user_id,pic_id,status) values (%s,%s,%s) ON DUPLICATE KEY UPDATE status=%s' % (user_hit.user_id,user_hit.pic_id,user_hit.status,user_hit.status) print sql return db.engine.execute(sql) @classmethod @transaction def register(cls, phone, password): if User.query.filter_by(phone=phone).first(): return AppError(msg=u'该手机号码已经被注册。') u = User.register(phone, password) return u @classmethod @transaction def delay_wifi(cls, user, day=None, seconds=None, admin_log_info="", category=None, obj_id=None): now = datetime.now() vipend = user.vipend if user: if vipend > now: if day: net_end = vipend + timedelta(days=int(day)) else: net_end = vipend + timedelta(seconds=int(seconds)) else: if day: net_end = now + timedelta(days=int(day)) else: net_end = now + timedelta(seconds=int(seconds)) user.vipend = net_end record = ExchangeWifiRecord() record.before_net_end = vipend record.category = category record.obj_id = obj_id if day: record.days = day elif seconds: record.seconds = seconds record.user_id = user.id record.after_net_end = net_end record.insert() user.update() if not admin_log_info: admin_log_info = '空' if not day: log = AdminLog.write(AdminAction.DelayNetEnd, user.id, ip="", key1=user.id, key2=admin_log_info, key3=seconds) else: log = AdminLog.write(AdminAction.DelayNetEnd, user.id, ip="", key1=user.id, key2=admin_log_info, key3=day) return True @classmethod def build_user_hit(cls, hits): dic = dict() for hit in hits: dic[str(hit.pic_id)] = hit.status return dic def validate_vcode(phone, code, category): """ 验证码验证 """ record = UserVcode.query.filter_by(phone=phone).filter_by(vcode=code).filter_by(category=category).first() print record limit_time = datetime.now() - timedelta(minutes=60) if record and record.status == UserVcode.Status.INIT and record.create_time > limit_time: record.status = UserVcode.Status.VERIFIED record.update() return True return False
37.911392
182
0.611352
794ee1cb7e573cec9fa7f6a6e54bc6cb6800d725
4,352
py
Python
customSDK/servicefabric/models/application_upgrade_rollback_started_event.py
hans-olav/service-fabric-cli
baf27342ad4b9f74dee1954e60ed5b40ebcf039d
[ "MIT" ]
null
null
null
customSDK/servicefabric/models/application_upgrade_rollback_started_event.py
hans-olav/service-fabric-cli
baf27342ad4b9f74dee1954e60ed5b40ebcf039d
[ "MIT" ]
null
null
null
customSDK/servicefabric/models/application_upgrade_rollback_started_event.py
hans-olav/service-fabric-cli
baf27342ad4b9f74dee1954e60ed5b40ebcf039d
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .application_event import ApplicationEvent class ApplicationUpgradeRollbackStartedEvent(ApplicationEvent): """Application Upgrade Rollback Started event. :param event_instance_id: The identifier for the FabricEvent instance. :type event_instance_id: str :param category: The category of event. :type category: str :param time_stamp: The time event was logged. :type time_stamp: datetime :param has_correlated_events: Shows there is existing related events available. :type has_correlated_events: bool :param kind: Constant filled by server. :type kind: str :param application_id: The identity of the application. This is an encoded representation of the application name. This is used in the REST APIs to identify the application resource. Starting in version 6.0, hierarchical names are delimited with the "\\~" character. For example, if the application name is "fabric:/myapp/app1", the application identity would be "myapp\\~app1" in 6.0+ and "myapp/app1" in previous versions. :type application_id: str :param application_type_name: Application type name. :type application_type_name: str :param current_application_type_version: Current Application type version. :type current_application_type_version: str :param application_type_version: Target Application type version. :type application_type_version: str :param failure_reason: Describes reason of failure. :type failure_reason: str :param overall_upgrade_elapsed_time_in_ms: Overall upgrade time in milli-seconds. :type overall_upgrade_elapsed_time_in_ms: float """ _validation = { 'event_instance_id': {'required': True}, 'time_stamp': {'required': True}, 'kind': {'required': True}, 'application_id': {'required': True}, 'application_type_name': {'required': True}, 'current_application_type_version': {'required': True}, 'application_type_version': {'required': True}, 'failure_reason': {'required': True}, 'overall_upgrade_elapsed_time_in_ms': {'required': True}, } _attribute_map = { 'event_instance_id': {'key': 'EventInstanceId', 'type': 'str'}, 'category': {'key': 'Category', 'type': 'str'}, 'time_stamp': {'key': 'TimeStamp', 'type': 'iso-8601'}, 'has_correlated_events': {'key': 'HasCorrelatedEvents', 'type': 'bool'}, 'kind': {'key': 'Kind', 'type': 'str'}, 'application_id': {'key': 'ApplicationId', 'type': 'str'}, 'application_type_name': {'key': 'ApplicationTypeName', 'type': 'str'}, 'current_application_type_version': {'key': 'CurrentApplicationTypeVersion', 'type': 'str'}, 'application_type_version': {'key': 'ApplicationTypeVersion', 'type': 'str'}, 'failure_reason': {'key': 'FailureReason', 'type': 'str'}, 'overall_upgrade_elapsed_time_in_ms': {'key': 'OverallUpgradeElapsedTimeInMs', 'type': 'float'}, } def __init__(self, event_instance_id, time_stamp, application_id, application_type_name, current_application_type_version, application_type_version, failure_reason, overall_upgrade_elapsed_time_in_ms, category=None, has_correlated_events=None): super(ApplicationUpgradeRollbackStartedEvent, self).__init__(event_instance_id=event_instance_id, category=category, time_stamp=time_stamp, has_correlated_events=has_correlated_events, application_id=application_id) self.application_type_name = application_type_name self.current_application_type_version = current_application_type_version self.application_type_version = application_type_version self.failure_reason = failure_reason self.overall_upgrade_elapsed_time_in_ms = overall_upgrade_elapsed_time_in_ms self.kind = 'ApplicationUpgradeRollbackStarted'
51.809524
248
0.697151
794ee1e97c43619c87f8fdc20a2ec5574e9e57d6
5,755
py
Python
testfile/test_CornerNetPureBar.py
Yunnglin/Chart-to-text
86f3291930289a4739f658c590e208771759ee50
[ "BSD-3-Clause" ]
30
2021-03-03T02:16:30.000Z
2022-02-23T10:46:36.000Z
testfile/test_CornerNetPureBar.py
Yunnglin/Chart-to-text
86f3291930289a4739f658c590e208771759ee50
[ "BSD-3-Clause" ]
16
2021-03-30T07:50:03.000Z
2022-03-03T04:56:30.000Z
testfile/test_CornerNetPureBar.py
Yunnglin/Chart-to-text
86f3291930289a4739f658c590e208771759ee50
[ "BSD-3-Clause" ]
15
2021-03-03T06:21:19.000Z
2022-02-25T10:01:36.000Z
import os import cv2 import json import numpy as np import torch import matplotlib.pyplot as plt from tqdm import tqdm from config import system_configs from utils import crop_image, normalize_ import external.nms as nms def _rescale_points(dets, ratios, borders, sizes): xs, ys = dets[:, :, 2], dets[:, :, 3] xs /= ratios[0, 1] ys /= ratios[0, 0] xs -= borders[0, 2] ys -= borders[0, 0] np.clip(xs, 0, sizes[0, 1], out=xs) np.clip(ys, 0, sizes[0, 0], out=ys) def save_image(data, fn): sizes = np.shape(data) height = float(sizes[0]) width = float(sizes[1]) fig = plt.figure() fig.set_size_inches(width/height, 1, forward=False) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(data) plt.savefig(fn, dpi = height) plt.close() def kp_decode(nnet, images, K, ae_threshold=0.5, kernel=3): with torch.no_grad(): detections_tl_detections_br, time_backbone, time_psn = nnet.test([images], ae_threshold=ae_threshold, K=K, kernel=kernel) detections_tl = detections_tl_detections_br[0] detections_br = detections_tl_detections_br[1] detections_tl = detections_tl.data.cpu().numpy().transpose((2, 1, 0)) detections_br = detections_br.data.cpu().numpy().transpose((2, 1, 0)) return detections_tl, detections_br, True def kp_detection(image, db, nnet, debug=False, decode_func=kp_decode, cuda_id=0): K = db.configs["top_k"] ae_threshold = db.configs["ae_threshold"] nms_kernel = db.configs["nms_kernel"] categories = db.configs["categories"] nms_threshold = db.configs["nms_threshold"] max_per_image = db.configs["max_per_image"] if True: height, width = image.shape[0:2] detections_point_tl = [] detections_point_br = [] scale = 1.0 new_height = int(height * scale) new_width = int(width * scale) new_center = np.array([new_height // 2, new_width // 2]) inp_height = new_height | 127 inp_width = new_width | 127 images = np.zeros((1, 3, inp_height, inp_width), dtype=np.float32) ratios = np.zeros((1, 2), dtype=np.float32) borders = np.zeros((1, 4), dtype=np.float32) sizes = np.zeros((1, 2), dtype=np.float32) out_height, out_width = (inp_height + 1) // 4, (inp_width + 1) // 4 height_ratio = out_height / inp_height width_ratio = out_width / inp_width resized_image = cv2.resize(image, (new_width, new_height)) resized_image, border, offset = crop_image(resized_image, new_center, [inp_height, inp_width]) resized_image = resized_image / 255. #normalize_(resized_image, db.mean, db.std) images[0] = resized_image.transpose((2, 0, 1)) borders[0] = border sizes[0] = [int(height * scale), int(width * scale)] ratios[0] = [height_ratio, width_ratio] if torch.cuda.is_available(): images = torch.from_numpy(images).cuda(cuda_id) else: images = torch.from_numpy(images) dets_tl, dets_br, flag = decode_func(nnet, images, K, ae_threshold=ae_threshold, kernel=nms_kernel) offset = (offset + 1) * 100 _rescale_points(dets_tl, ratios, borders, sizes) _rescale_points(dets_br, ratios, borders, sizes) detections_point_tl.append(dets_tl) detections_point_br.append(dets_br) detections_point_tl = np.concatenate(detections_point_tl, axis=1) detections_point_br = np.concatenate(detections_point_br, axis=1) #print('1') #print(detections_point.shape) classes_p_tl = detections_point_tl[:, 0, 1] classes_p_br = detections_point_br[:, 0, 1] #print('2') #print(classes_p.shape) # reject detections with negative scores keep_inds_p = (detections_point_tl[:, 0, 0] > 0) detections_point_tl = detections_point_tl[keep_inds_p, 0] classes_p_tl = classes_p_tl[keep_inds_p] keep_inds_p = (detections_point_br[:, 0, 0] > 0) detections_point_br = detections_point_br[keep_inds_p, 0] classes_p_br = classes_p_br[keep_inds_p] #print('3') #print(detections_point.shape) top_points_tl = {} top_points_br = {} for j in range(categories): keep_inds_p = (classes_p_tl == j) top_points_tl[j + 1] = detections_point_tl[keep_inds_p].astype(np.float32) keep_inds_p = (classes_p_br == j) top_points_br[j + 1] = detections_point_br[keep_inds_p].astype(np.float32) #print(top_points[image_id][j + 1][0]) scores = np.hstack([ top_points_tl[j][:, 0] for j in range(1, categories + 1) ]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, categories + 1): keep_inds = (top_points_tl[j][:, 0] >= thresh) top_points_tl[j] = top_points_tl[j][keep_inds] scores = np.hstack([ top_points_br[j][:, 0] for j in range(1, categories + 1) ]) if len(scores) > max_per_image: kth = len(scores) - max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, categories + 1): keep_inds = (top_points_br[j][:, 0] >= thresh) top_points_br[j] = top_points_br[j][keep_inds] return top_points_tl, top_points_br def testing(image, db, nnet, debug=False): return globals()[system_configs.sampling_function](image, db, nnet, debug=debug)
36.424051
133
0.618593
794ee295d6220f6577f353b0a518e9ecdf243583
430
py
Python
tests/nlu_core_tests/component_tests/classifier_tests/cyber_tests.py
milyiyo/nlu
d209ed11c6a84639c268f08435552248391c5573
[ "Apache-2.0" ]
480
2020-08-24T02:36:40.000Z
2022-03-30T08:09:43.000Z
tests/nlu_core_tests/component_tests/classifier_tests/cyber_tests.py
milyiyo/nlu
d209ed11c6a84639c268f08435552248391c5573
[ "Apache-2.0" ]
28
2020-09-26T18:55:43.000Z
2022-03-26T01:05:45.000Z
tests/nlu_core_tests/component_tests/classifier_tests/cyber_tests.py
milyiyo/nlu
d209ed11c6a84639c268f08435552248391c5573
[ "Apache-2.0" ]
76
2020-09-25T22:55:12.000Z
2022-03-17T20:25:52.000Z
import unittest from nlu import * class TestCyber(unittest.TestCase): def test_cyber_model(self): import pandas as pd pipe = nlu.load('cyberbullying',verbose=True) df = pipe.predict(['Peter love pancaces. I hate Mondays', 'I love Fridays'], output_level='token',drop_irrelevant_cols=False, metadata=True, ) for c in df.columns: print(df[c]) if __name__ == '__main__': unittest.main()
25.294118
150
0.67907
794ee3a32ede6449a2c1c65a30d241f886e1bc64
791
py
Python
python/hw2/bfs.py
jeremy24/494-graph-algos
031a90e46304f405829bad7658965aae215833e1
[ "MIT" ]
null
null
null
python/hw2/bfs.py
jeremy24/494-graph-algos
031a90e46304f405829bad7658965aae215833e1
[ "MIT" ]
null
null
null
python/hw2/bfs.py
jeremy24/494-graph-algos
031a90e46304f405829bad7658965aae215833e1
[ "MIT" ]
null
null
null
from __future__ import print_function import sys from graph import Graph from graph import make from graph import GraphException from graph import Matrix def go(): if ( len(sys.argv) == 3 ): filename = str(sys.argv[1]) start = int (sys.argv[2]) graph = make( filename ) visited = graph.bfs(start) out = "" for item in visited: out += str(object=item) + " " out += "\n" print (out) # print ("Max Degree: " + str(graph.degree("max"))) # print ("Min Degree: " + str(graph.degree("min"))) # print ("Density: " + str(graph.density())) # graph.output() else: print (GraphException("You must supply a valid graph file")) go()
21.378378
69
0.533502
794ee3cce054643651dd16950e32464e9de8e074
401
py
Python
torch2trt/__init__.py
NVIDIA-AI-IOT-private/torch2trt
953d60039e0c81e90eea467c3df2e6e3f7040242
[ "MIT" ]
null
null
null
torch2trt/__init__.py
NVIDIA-AI-IOT-private/torch2trt
953d60039e0c81e90eea467c3df2e6e3f7040242
[ "MIT" ]
null
null
null
torch2trt/__init__.py
NVIDIA-AI-IOT-private/torch2trt
953d60039e0c81e90eea467c3df2e6e3f7040242
[ "MIT" ]
null
null
null
from .torch2trt import * from .converters import * import tensorrt as trt def load_plugins(): import torch2trt.torch_plugins registry = trt.get_plugin_registry() torch2trt_creators = [c for c in registry.plugin_creator_list if c.plugin_namespace == 'torch2trt'] for c in torch2trt_creators: registry.register_creator(c, 'torch2trt') try: load_plugins() except: pass
23.588235
103
0.733167
794ee3f47f77570be81f168a9fa8735017a7898a
11,448
py
Python
data/molecules.py
ihounie/benchmarking-gnns
b62268b162b2506630028d92123826694f6bb018
[ "MIT" ]
null
null
null
data/molecules.py
ihounie/benchmarking-gnns
b62268b162b2506630028d92123826694f6bb018
[ "MIT" ]
null
null
null
data/molecules.py
ihounie/benchmarking-gnns
b62268b162b2506630028d92123826694f6bb018
[ "MIT" ]
null
null
null
import torch import pickle import torch.utils.data import time import os import numpy as np import csv import dgl from scipy import sparse as sp import numpy as np # *NOTE # The dataset pickle and index files are in ./zinc_molecules/ dir # [<split>.pickle and <split>.index; for split 'train', 'val' and 'test'] class MoleculeDGL(torch.utils.data.Dataset): def __init__(self, data_dir, split, num_graphs=None): self.data_dir = data_dir self.split = split self.num_graphs = num_graphs with open(data_dir + "/%s.pickle" % self.split,"rb") as f: self.data = pickle.load(f) if self.num_graphs in [10000, 1000]: # loading the sampled indices from file ./zinc_molecules/<split>.index with open(data_dir + "/%s.index" % self.split,"r") as f: data_idx = [list(map(int, idx)) for idx in csv.reader(f)] self.data = [ self.data[i] for i in data_idx[0] ] assert len(self.data)==num_graphs, "Sample num_graphs again; available idx: train/val/test => 10k/1k/1k" """ data is a list of Molecule dict objects with following attributes molecule = data[idx] ; molecule['num_atom'] : nb of atoms, an integer (N) ; molecule['atom_type'] : tensor of size N, each element is an atom type, an integer between 0 and num_atom_type ; molecule['bond_type'] : tensor of size N x N, each element is a bond type, an integer between 0 and num_bond_type ; molecule['logP_SA_cycle_normalized'] : the chemical property to regress, a float variable """ self.graph_lists = [] self.graph_labels = [] self.n_samples = len(self.data) self._prepare() def _prepare(self): print("preparing %d graphs for the %s set..." % (self.num_graphs, self.split.upper())) for molecule in self.data: node_features = molecule['atom_type'].long() adj = molecule['bond_type'] #print(adj) edge_list = (adj != 0).nonzero() # converting adj matrix to edge_list #print(edge_list) edge_idxs_in_adj = edge_list.split(1, dim=1) #print(edge_idxs_in_adj) #assert(0) edge_features = adj[edge_idxs_in_adj].reshape(-1).long() # Create the DGL Graph g = dgl.DGLGraph() g.add_nodes(molecule['num_atom']) g.ndata['feat'] = node_features for src, dst in edge_list: g.add_edges(src.item(), dst.item()) g.edata['feat'] = edge_features self.graph_lists.append(g) self.graph_labels.append(molecule['logP_SA_cycle_normalized']) def __len__(self): """Return the number of graphs in the dataset.""" return self.n_samples def __getitem__(self, idx): """ Get the idx^th sample. Parameters --------- idx : int The sample index. Returns ------- (dgl.DGLGraph, int) DGLGraph with node feature stored in `feat` field And its label. """ return self.graph_lists[idx], self.graph_labels[idx] class MoleculeDatasetDGL(torch.utils.data.Dataset): def __init__(self, name='Zinc'): t0 = time.time() self.name = name self.num_atom_type = 28 # known meta-info about the zinc dataset; can be calculated as well self.num_bond_type = 4 # known meta-info about the zinc dataset; can be calculated as well data_dir='./data/molecules' if self.name == 'ZINC-full': data_dir='./data/molecules/zinc_full' self.train = MoleculeDGL(data_dir, 'train', num_graphs=220011) self.val = MoleculeDGL(data_dir, 'val', num_graphs=24445) self.test = MoleculeDGL(data_dir, 'test', num_graphs=5000) else: self.train = MoleculeDGL(data_dir, 'train', num_graphs=10000) self.val = MoleculeDGL(data_dir, 'val', num_graphs=1000) self.test = MoleculeDGL(data_dir, 'test', num_graphs=1000) print("Time taken: {:.4f}s".format(time.time()-t0)) def self_loop(g): """ Utility function only, to be used only when necessary as per user self_loop flag : Overwriting the function dgl.transform.add_self_loop() to not miss ndata['feat'] and edata['feat'] This function is called inside a function in MoleculeDataset class. """ new_g = dgl.DGLGraph() new_g.add_nodes(g.number_of_nodes()) new_g.ndata['feat'] = g.ndata['feat'] src, dst = g.all_edges(order="eid") src = dgl.backend.zerocopy_to_numpy(src) dst = dgl.backend.zerocopy_to_numpy(dst) non_self_edges_idx = src != dst nodes = np.arange(g.number_of_nodes()) new_g.add_edges(src[non_self_edges_idx], dst[non_self_edges_idx]) new_g.add_edges(nodes, nodes) # This new edata is not used since this function gets called only for GCN, GAT # However, we need this for the generic requirement of ndata and edata new_g.edata['feat'] = torch.zeros(new_g.number_of_edges()) return new_g def positional_encoding(g, pos_enc_dim): """ Graph positional encoding v/ Laplacian eigenvectors """ # Laplacian A = g.adjacency_matrix_scipy(return_edge_ids=False).astype(float) N = sp.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1) ** -0.5, dtype=float) L = sp.eye(g.number_of_nodes()) - N * A * N # Eigenvectors with numpy EigVal, EigVec = np.linalg.eig(L.toarray()) idx = EigVal.argsort() # increasing order EigVal, EigVec = EigVal[idx], np.real(EigVec[:,idx]) g.ndata['pos_enc'] = torch.from_numpy(EigVec[:,1:pos_enc_dim+1]).float() # # Eigenvectors with scipy # EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR') # EigVec = EigVec[:, EigVal.argsort()] # increasing order # g.ndata['pos_enc'] = torch.from_numpy(np.abs(EigVec[:,1:pos_enc_dim+1])).float() return g class MoleculeDataset(torch.utils.data.Dataset): def __init__(self, name): """ Loading SBM datasets """ start = time.time() print("[I] Loading dataset %s..." % (name)) self.name = name data_dir = 'data/molecules/' with open(data_dir+name+'.pkl',"rb") as f: f = pickle.load(f) self.train = f[0] self.val = f[1] self.test = f[2] self.num_atom_type = f[3] self.num_bond_type = f[4] print('train, test, val sizes :',len(self.train),len(self.test),len(self.val)) print("[I] Finished loading.") print("[I] Data load time: {:.4f}s".format(time.time()-start)) # form a mini batch from a given list of samples = [(graph, label) pairs] def collate(self, samples): # The input samples is a list of pairs (graph, label). graphs, labels = map(list, zip(*samples)) labels = torch.tensor(np.array(labels)).unsqueeze(1) #tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))] #tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ] #snorm_n = torch.cat(tab_snorm_n).sqrt() #tab_sizes_e = [ graphs[i].number_of_edges() for i in range(len(graphs))] #tab_snorm_e = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_e ] #snorm_e = torch.cat(tab_snorm_e).sqrt() batched_graph = dgl.batch(graphs) return batched_graph, labels # prepare dense tensors for GNNs using them; such as RingGNN, 3WLGNN def collate_dense_gnn(self, samples, edge_feat): # The input samples is a list of pairs (graph, label). graphs, labels = map(list, zip(*samples)) labels = torch.tensor(np.array(labels)).unsqueeze(1) #tab_sizes_n = [ graphs[i].number_of_nodes() for i in range(len(graphs))] #tab_snorm_n = [ torch.FloatTensor(size,1).fill_(1./float(size)) for size in tab_sizes_n ] #snorm_n = tab_snorm_n[0][0].sqrt() #batched_graph = dgl.batch(graphs) g = graphs[0] adj = self._sym_normalize_adj(g.adjacency_matrix().to_dense()) """ Adapted from https://github.com/leichen2018/Ring-GNN/ Assigning node and edge feats:: we have the adjacency matrix in R^{n x n}, the node features in R^{d_n} and edge features R^{d_e}. Then we build a zero-initialized tensor, say T, in R^{(1 + d_n + d_e) x n x n}. T[0, :, :] is the adjacency matrix. The diagonal T[1:1+d_n, i, i], i = 0 to n-1, store the node feature of node i. The off diagonal T[1+d_n:, i, j] store edge features of edge(i, j). """ zero_adj = torch.zeros_like(adj) if edge_feat: # use edge feats also to prepare adj adj_with_edge_feat = torch.stack([zero_adj for j in range(self.num_atom_type + self.num_bond_type)]) adj_with_edge_feat = torch.cat([adj.unsqueeze(0), adj_with_edge_feat], dim=0) us, vs = g.edges() for idx, edge_label in enumerate(g.edata['feat']): adj_with_edge_feat[edge_label.item()+1+self.num_atom_type][us[idx]][vs[idx]] = 1 for node, node_label in enumerate(g.ndata['feat']): adj_with_edge_feat[node_label.item()+1][node][node] = 1 x_with_edge_feat = adj_with_edge_feat.unsqueeze(0) return None, x_with_edge_feat, labels else: # use only node feats to prepare adj adj_no_edge_feat = torch.stack([zero_adj for j in range(self.num_atom_type)]) adj_no_edge_feat = torch.cat([adj.unsqueeze(0), adj_no_edge_feat], dim=0) for node, node_label in enumerate(g.ndata['feat']): adj_no_edge_feat[node_label.item()+1][node][node] = 1 x_no_edge_feat = adj_no_edge_feat.unsqueeze(0) return x_no_edge_feat, None, labels def _sym_normalize_adj(self, adj): deg = torch.sum(adj, dim = 0)#.squeeze() deg_inv = torch.where(deg>0, 1./torch.sqrt(deg), torch.zeros(deg.size())) deg_inv = torch.diag(deg_inv) return torch.mm(deg_inv, torch.mm(adj, deg_inv)) def _add_self_loops(self): # function for adding self loops # this function will be called only if self_loop flag is True self.train.graph_lists = [self_loop(g) for g in self.train.graph_lists] self.val.graph_lists = [self_loop(g) for g in self.val.graph_lists] self.test.graph_lists = [self_loop(g) for g in self.test.graph_lists] def _add_positional_encodings(self, pos_enc_dim): # Graph positional encoding v/ Laplacian eigenvectors self.train.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.train.graph_lists] self.val.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.val.graph_lists] self.test.graph_lists = [positional_encoding(g, pos_enc_dim) for g in self.test.graph_lists]
39.475862
127
0.604385
794ee47bbdd20abbf3c979aa78624ea349e97ef7
1,614
py
Python
nexus/examples/qmcpack/afqmc_pyscf/08_diamond_2x2x2_kpoint_sym/diamond_afqmc.py
prckent/qmcpack
127caf219ee99c2449b803821fcc8b1304b66ee1
[ "NCSA" ]
null
null
null
nexus/examples/qmcpack/afqmc_pyscf/08_diamond_2x2x2_kpoint_sym/diamond_afqmc.py
prckent/qmcpack
127caf219ee99c2449b803821fcc8b1304b66ee1
[ "NCSA" ]
null
null
null
nexus/examples/qmcpack/afqmc_pyscf/08_diamond_2x2x2_kpoint_sym/diamond_afqmc.py
prckent/qmcpack
127caf219ee99c2449b803821fcc8b1304b66ee1
[ "NCSA" ]
null
null
null
#! /usr/bin/env python from nexus import settings,job,run_project,obj from nexus import generate_physical_system from nexus import generate_pyscf from nexus import generate_pyscf_to_afqmc from nexus import generate_qmcpack settings( results = '', sleep = 3, machine = 'ws16', ) a = 3.6 system = generate_physical_system( units = 'A', axes = [[ 0, a/2, a/2 ], [ a/2, 0, a/2 ], [ a/2, a/2, 0 ]], elem = ('C','C'), pos = [[ 0, 0, 0 ], [ a/4, a/4, a/4 ]], tiling = (2,2,2), kgrid = (1,1,1), kshift = (0,0,0), ) scf = generate_pyscf( identifier = 'scf', path = 'rhf', job = job(serial=True), template = './scf_template.py', system = system, cell = obj( basis = 'gth-szv', pseudo = 'gth-pade', mesh = [25,25,25], verbose = 5, ), checkpoint = True, ) p2a = generate_pyscf_to_afqmc( identifier = 'p2a', path = 'rhf', job = job(serial=True), cholesky_threshold = 1e-5, ao = True, kpoint = True, verbose = True, dependencies = (scf,'wavefunction'), ) qmc = generate_qmcpack( identifier = 'qmc', path = 'afqmc', job = job(cores=1,app='qmcpack'), system = system, input_type = 'basic_afqmc', blocks = 100, timestep = 0.01, dependencies = (p2a,'wavefunction'), ) run_project()
23.735294
46
0.475217
794ee4bef4e62bc5a0149e39d2c7342882b1765d
1,559
py
Python
bglcapi/bgapi/gatt/parse.py
edgebr/python-bgapi
0aeb525edf605e892b20f5c3fb11269cce0c5bdf
[ "MIT" ]
null
null
null
bglcapi/bgapi/gatt/parse.py
edgebr/python-bgapi
0aeb525edf605e892b20f5c3fb11269cce0c5bdf
[ "MIT" ]
null
null
null
bglcapi/bgapi/gatt/parse.py
edgebr/python-bgapi
0aeb525edf605e892b20f5c3fb11269cce0c5bdf
[ "MIT" ]
null
null
null
from struct import (unpack_from, calcsize) from bglcapi.types import MessageType from . import rsp from . import evt PARSE_MAP = { MessageType.COMMAND_RESPONSE: { 0x03: rsp.discover_characteristics, 0x04: rsp.discover_characteristics_by_uuid, 0x06: rsp.discover_descriptors, 0x01: rsp.discover_primary_services, 0x02: rsp.discover_primary_services_by_uuid, 0x0c: rsp.execute_characteristic_value_write, 0x10: rsp.find_included_services, 0x13: rsp.prepare_characteristic_value_reliable_write, 0x0b: rsp.prepare_characteristic_value_write, 0x07: rsp.read_characteristic_value, 0x08: rsp.read_characteristic_value_by_uuid, 0x12: rsp.read_characteristic_value_from_offset, 0x0e: rsp.read_descriptor_value, 0x11: rsp.read_multiple_characteristic_values, 0x0d: rsp.send_characteristic_confirmation, 0x05: rsp.set_characteristic_notification, 0x00: rsp.set_max_mtu, 0x09: rsp.write_characteristic_value, 0x0a: rsp.write_characteristic_value_without_response, 0x0f: rsp.write_descriptor_value, }, MessageType.EVENT: { 0x02: evt.characteristic, 0x04: evt.characteristic_value, 0x03: evt.descriptor, 0x05: evt.descriptor_value, 0x00: evt.mtu_exchanged, 0x06: evt.procedure_completed, 0x01: evt.service, }, } def from_binary(msg_type: int, msg_id: int, data: bytes, offset: int): return PARSE_MAP[msg_type][msg_id](data, offset)
34.644444
70
0.710712
794ee50af211b2ef7d89826609589befe66e556d
6,869
py
Python
uibcdf_systems/systems/attic/alanine_dipeptide.py
uibcdf/Molecular-Systems
74c4313ae25584ad24bea65f961280f187eda9cb
[ "MIT" ]
null
null
null
uibcdf_systems/systems/attic/alanine_dipeptide.py
uibcdf/Molecular-Systems
74c4313ae25584ad24bea65f961280f187eda9cb
[ "MIT" ]
null
null
null
uibcdf_systems/systems/attic/alanine_dipeptide.py
uibcdf/Molecular-Systems
74c4313ae25584ad24bea65f961280f187eda9cb
[ "MIT" ]
null
null
null
import openmm.unit as unit class AlanineDipeptideVacuum(): """Alanine dipeptide in vacuum Alanine dipeptide same as OpenMMTools Attributes ---------- system Xxx xxx Methods ------- """ def __init__(self, forcefield='AMBER14', constraints='h_bonds', hydrogen_mass=None): """XXX A new test system is returned with the openmm system of particles in an external double well potential. Parameters ---------- forcefield: xxx XXX constraints: app.Hbonds XXX hydrogen_mass: None XXX Examples -------- >>> from uibcdf_test_systems.systems import AlanineDipeptideVacuum >>> from openmm import unit >>> dialanine = AlanineDipeptideVacuum(forcefield='xxx') Notes ----- See `corresponding documentation in the user guide regarding this class <../../systems/dialanine.html>`_. """ # Parameters self.parameters={} self.parameters['forcefield']=forcefield self.parameters['constraints']=constraints self.parameters['hydrogen_mass']=hydrogen_mass # openmm.Modeller from molsysmt import convert from .files import alanine_dipeptide file_pdb = alanine_dipeptide['vacuum.pdb'] item_modeller = convert(file_pdb, to_form='openmm.Modeller') # OpenMM topology self.topology = item_modeller.topology # Coordinates self.coordinates = item_modeller.positions # OpenMM system self.system = convert(item_modeller, to_form='openmm.System', forcefield=forcefield, constraints=constraints, hydrogen_mass=hydrogen_mass, implicit_solvent=None, non_bonded_method='no_cutoff') class AlanineDipeptideImplicitSolvent(): """Alanine dipeptide in implicit solvent Alanine dipeptide same as OpenMMTools Attributes ---------- system Xxx xxx positions Xxx xxx topology Xxx xxx Methods ------- """ def __init__(self, forcefield='AMBER14', implicit_solvent='OBC1', solute_dielectric=1.0, solvent_dielectric=78.3, implicit_solvent_kappa=0.0/unit.nanometer, implicit_solvent_salt_conc=0.0*unit.mole/unit.liter, constraints='h_bonds', hydrogen_mass=None): """Creating a new instance of AlanineDipeptideImplicitSolvent ... Parameters ---------- forcefield: xxx XXX constraints: app.Hbonds XXX hydrogen_mass: None XXX Examples -------- >>> from uibcdf_test_systems.systems import AlanineDipeptideImplicitSolvent >>> from openmm import unit >>> dialanine = AlanineDipeptideImplicitSolvent(forcefield='xxx') Notes ----- See `corresponding documentation in the user guide regarding this class <../../systems/dialanine.html>`_. """ # Parameters self.parameters={} self.parameters['forcefield']=forcefield self.parameters['implicit_solvent']=implicit_solvent self.parameters['solute_dielectric']=solute_dielectric self.parameters['solvent_dielectric']=solvent_dielectric self.parameters['implicit_solvent_kappa']=implicit_solvent_kappa self.parameters['implicit_solvent_salt_conc']=implicit_solvent_salt_conc self.parameters['constraints']=constraints self.parameters['hydrogen_mass']=hydrogen_mass # openmm.Modeller from molsysmt import convert from .files import alanine_dipeptide file_pdb = alanine_dipeptide['vacuum.pdb'] item_modeller = convert(file_pdb, to_form='openmm.Modeller') # OpenMM topology self.topology = item_modeller.topology # Coordinates self.coordinates = item_modeller.positions # OpenMM system self.system = convert(item_modeller, to_form='openmm.System', forcefield=forcefield, constraints=constraints, hydrogen_mass=hydrogen_mass, non_bonded_method='no_cutoff', implicit_solvent=implicit_solvent, solute_dielectric=solute_dielectric, solvent_dielectric=solvent_dielectric, implicit_solvent_kappa=implicit_solvent_kappa, implicit_solvent_salt_conc=implicit_solvent_salt_conc ) class AlanineDipeptideExplicitSolvent(): """Alanine dipeptide in explicit solvent Alanine dipeptide same as OpenMMTools Attributes ---------- system Xxx xxx positions Xxx xxx topology Xxx xxx Methods ------- """ def __init__(self, forcefield = 'AMBER14', water_model = 'TIP3P', rigid_water = True, constraints = 'h_bonds', hydrogen_mass = None, non_bonded_method = 'PME', non_bonded_cutoff = 10.0 * unit.angstroms, switch_distance = 8.5 * unit.angstroms, use_dispersion_correction = True, ewald_error_tolerance = 1.0e-5): """Creating a new instance of AlanineDipeptideExplicitSolvent Parameters ---------- forcefield: xxx XXX constraints: app.Hbonds XXX hydrogen_mass: None XXX Examples -------- >>> from uibcdf_test_systems.systems import AlanineDipeptideExplicitSolvent >>> from openmm import unit >>> dialanine = AlanineDipeptideExplicitSolvent() Notes ----- See `corresponding documentation in the user guide regarding this class <../../systems/dialanine.html>`_. """ # openmm.Modeller from molsysmt import convert from .files import alanine_dipeptide file_pdb = alanine_dipeptide['octahedral_14.pdb'] item_modeller = convert(file_pdb, to_form='openmm.Modeller') # OpenMM topology self.topology = item_modeller.topology # Coordinates self.coordinates = item_modeller.positions # OpenMM system self.system = convert(item_modeller, to_form='openmm.System', forcefield=forcefield, water_model=water_model, rigid_water=rigid_water, constraints=constraints, hydrogen_mass=hydrogen_mass, non_bonded_method=non_bonded_method, non_bonded_cutoff=non_bonded_cutoff, switch_distance=switch_distance, use_dispersion_correction=use_dispersion_correction, ewald_error_tolerance=ewald_error_tolerance)
27.697581
136
0.614646
794ee5d664506e2c6c727910a769443e84d644a0
459
py
Python
client/core/movement/__init__.py
krerkkiat/space-invader
428b1041c9246b55cb63bc6c0b2ec20beb7a32ed
[ "MIT" ]
null
null
null
client/core/movement/__init__.py
krerkkiat/space-invader
428b1041c9246b55cb63bc6c0b2ec20beb7a32ed
[ "MIT" ]
null
null
null
client/core/movement/__init__.py
krerkkiat/space-invader
428b1041c9246b55cb63bc6c0b2ec20beb7a32ed
[ "MIT" ]
null
null
null
from core.movement.paths import SpiralPath class Movement: def __init__(self, path, start=0): self._path = path self._currentPos = start-1 def move(self): self._currentPos += 1 if self._currentPos >= self._path.length: self._currentPos = 0 if self._currentPos >= 0: return (self._path.x(self._currentPos), self._path.y(self._currentPos)) else: return (-100, -100)
27
83
0.59695
794ee746a270782dd0d78013bf73b6ea5b0b1a33
2,664
py
Python
src/japronto/protocol/tracing.py
kzh3ka/japronto
a526277a2f59100388c9f39d4ca22bfb4909955b
[ "MIT" ]
9,472
2017-01-31T13:22:02.000Z
2022-03-31T13:15:46.000Z
src/japronto/protocol/tracing.py
zishenWang/japronto
f501c9f59fc83d0e4ab928ecdacf1735a2cc5cb6
[ "MIT" ]
170
2017-01-31T18:50:13.000Z
2022-03-17T13:32:04.000Z
src/japronto/protocol/tracing.py
zishenWang/japronto
f501c9f59fc83d0e4ab928ecdacf1735a2cc5cb6
[ "MIT" ]
739
2017-01-31T17:42:03.000Z
2022-02-24T05:10:32.000Z
from functools import partial from parser.libpicohttpparser import ffi from request import HttpRequest class TracingProtocol: def __init__(self, on_headers_adapter: callable, on_body_adapter: callable): self.requests = [] self.error = None self.on_headers_adapter = on_headers_adapter self.on_body_adapter = on_body_adapter self.on_headers_call_count = 0 self.on_body_call_count = 0 self.on_error_call_count = 0 def on_headers(self, *args): self.request = self.on_headers_adapter(*args) self.requests.append(self.request) self.on_headers_call_count += 1 def on_body(self, body): self.request.body = self.on_body_adapter(body) self.on_body_call_count += 1 def on_error(self, error: str): self.error = error self.on_error_call_count += 1 def _request_from_cprotocol(method: memoryview, path: memoryview, version: int, headers: memoryview): method = method.tobytes().decode('ascii') path = path.tobytes().decode('ascii') version = "1.0" if version == 0 else "1.1" headers_len = headers.nbytes // ffi.sizeof("struct phr_header") headers_cdata = ffi.from_buffer(headers) headers_cdata = ffi.cast( 'struct phr_header[{}]'.format(headers_len), headers_cdata) headers = _extract_headers(headers_cdata) return HttpRequest(method, path, version, headers) def _body_from_cprotocol(body: memoryview): return None if body is None else body.tobytes() def _request_from_cffiprotocol(method: "char[]", path: "char[]", version: int, headers: "struct phr_header[]"): method = ffi.buffer(method)[:].decode('ascii') path = ffi.buffer(path)[:].decode('ascii') version = "1.0" if version == 0 else "1.1" headers = _extract_headers(headers) return HttpRequest(method, path, version, headers) def _body_from_cffiprotocol(body: "char[]"): return None if body is None else ffi.buffer(body)[:] def _extract_headers(headers_cdata: "struct phr_header[]"): headers = {} for header in headers_cdata: name = ffi.string(header.name, header.name_len).decode('ascii').title() value = ffi.string(header.value, header.value_len).decode('latin1') headers[name] = value return headers CTracingProtocol = partial( TracingProtocol, on_headers_adapter=_request_from_cprotocol, on_body_adapter=_body_from_cprotocol) CffiTracingProtocol = partial( TracingProtocol, on_headers_adapter=_request_from_cffiprotocol, on_body_adapter=_body_from_cffiprotocol)
29.6
79
0.683934
794ee96595b1601bbcd3f60c4dfd2af5ee969ab3
40,294
py
Python
tests/orm/test_model.py
fenestron/lorator
1966f095a67ae65e816b1c8f7359b9f203cd5c4f
[ "MIT" ]
null
null
null
tests/orm/test_model.py
fenestron/lorator
1966f095a67ae65e816b1c8f7359b9f203cd5c4f
[ "MIT" ]
null
null
null
tests/orm/test_model.py
fenestron/lorator
1966f095a67ae65e816b1c8f7359b9f203cd5c4f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import simplejson as json import hashlib import time import datetime from pendulum import Pendulum from flexmock import flexmock, flexmock_teardown from .. import OratorTestCase, mock from ..utils import MockModel, MockQueryBuilder, MockConnection, MockProcessor from lorator.query.builder import QueryBuilder from lorator.query.grammars import QueryGrammar from lorator.query.processors import QueryProcessor from lorator.orm.builder import Builder from lorator.orm.model import Model from lorator.orm.utils import mutator, accessor from lorator.exceptions.orm import ModelNotFound, MassAssignmentError from lorator.orm.collection import Collection from lorator.connections import Connection from lorator import DatabaseManager from lorator.utils import basestring from lorator.events import Event class OrmModelTestCase(OratorTestCase): def tearDown(self): flexmock_teardown() def test_attributes_manipulation(self): model = OrmModelStub() model.name = "foo" self.assertEqual("foo", model.name) del model.name self.assertFalse(hasattr(model, "name")) model.list_items = {"name": "john"} self.assertEqual({"name": "john"}, model.list_items) attributes = model.get_attributes() self.assertEqual(json.dumps({"name": "john"}), attributes["list_items"]) def test_dirty_attributes(self): model = OrmModelStub(foo="1", bar=2, baz=3) model.foo = 1 model.bar = 20 model.baz = 30 self.assertTrue(model.is_dirty()) self.assertTrue(model.is_dirty("foo")) self.assertTrue(model.is_dirty("bar")) self.assertTrue(model.is_dirty("baz")) self.assertTrue(model.is_dirty("foo", "bar", "baz")) def test_calculated_attributes(self): model = OrmModelStub() model.password = "secret" attributes = model.get_attributes() self.assertFalse("password" in attributes) self.assertEqual("******", model.password) self.assertEqual( "5ebe2294ecd0e0f08eab7690d2a6ee69", attributes["password_hash"] ) self.assertEqual("5ebe2294ecd0e0f08eab7690d2a6ee69", model.password_hash) def test_new_instance_returns_instance_wit_attributes_set(self): model = OrmModelStub() instance = model.new_instance({"name": "john"}) self.assertIsInstance(instance, OrmModelStub) self.assertEqual("john", instance.name) def test_hydrate_creates_collection_of_models(self): data = [{"name": "john"}, {"name": "jane"}] collection = OrmModelStub.hydrate(data, "foo_connection") self.assertIsInstance(collection, Collection) self.assertEqual(2, len(collection)) self.assertIsInstance(collection[0], OrmModelStub) self.assertIsInstance(collection[1], OrmModelStub) self.assertEqual(collection[0].get_attributes(), collection[0].get_original()) self.assertEqual(collection[1].get_attributes(), collection[1].get_original()) self.assertEqual("john", collection[0].name) self.assertEqual("jane", collection[1].name) self.assertEqual("foo_connection", collection[0].get_connection_name()) self.assertEqual("foo_connection", collection[1].get_connection_name()) def test_hydrate_raw_makes_raw_query(self): model = OrmModelHydrateRawStub() connection = MockConnection().prepare_mock() connection.select.return_value = [] model.get_connection = mock.MagicMock(return_value=connection) def _set_connection(name): model.__connection__ = name return model OrmModelHydrateRawStub.set_connection = mock.MagicMock( side_effect=_set_connection ) collection = OrmModelHydrateRawStub.hydrate_raw("SELECT ?", ["foo"]) self.assertEqual("hydrated", collection) connection.select.assert_called_once_with("SELECT ?", ["foo"]) def test_create_saves_new_model(self): model = OrmModelSaveStub.create(name="john") self.assertTrue(model.get_saved()) self.assertEqual("john", model.name) def test_find_method_calls_query_builder_correctly(self): result = OrmModelFindStub.find(1) self.assertEqual("foo", result) def test_find_use_write_connection(self): OrmModelFindWithWriteConnectionStub.on_write_connection().find(1) def test_find_with_list_calls_query_builder_correctly(self): result = OrmModelFindManyStub.find([1, 2]) self.assertEqual("foo", result) def test_destroy_method_calls_query_builder_correctly(self): OrmModelDestroyStub.destroy(1, 2, 3) def test_with_calls_query_builder_correctly(self): result = OrmModelWithStub.with_("foo", "bar") self.assertEqual("foo", result) def test_update_process(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args({"name": "john"}) model = OrmModelStub() model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model._update_timestamps = mock.MagicMock() events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updating: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updated: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "saved: %s" % model.__class__.__name__, model ).and_return(True) model.id = 1 model.foo = "bar" model.sync_original() model.name = "john" model.set_exists(True) self.assertTrue(model.save()) model.new_query.assert_called_once_with() model._update_timestamps.assert_called_once_with() def test_update_process_does_not_override_timestamps(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args( {"created_at": "foo", "updated_at": "bar"} ) model = OrmModelStub() model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model._update_timestamps = mock.MagicMock() events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updating: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updated: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "saved: %s" % model.__class__.__name__, model ).and_return(True) model.id = 1 model.sync_original() model.created_at = "foo" model.updated_at = "bar" model.set_exists(True) self.assertTrue(model.save()) model.new_query.assert_called_once_with() self.assertTrue(model._update_timestamps.called) def test_creating_with_only_created_at_column(self): query_builder = flexmock(QueryBuilder) query_builder.should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model = flexmock(OrmModelCreatedAt()) model.should_receive("new_query").and_return( Builder(QueryBuilder(None, None, None)) ) model.should_receive("set_created_at").once() model.should_receive("set_updated_at").never() model.name = "john" model.save() def test_creating_with_only_updated_at_column(self): query_builder = flexmock(QueryBuilder) query_builder.should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model = flexmock(OrmModelUpdatedAt()) model.should_receive("new_query").and_return( Builder(QueryBuilder(None, None, None)) ) model.should_receive("set_created_at").never() model.should_receive("set_updated_at").once() model.name = "john" model.save() def test_updating_with_only_created_at_column(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args({"name": "john"}) model = flexmock(OrmModelCreatedAt()) model.id = 1 model.sync_original() model.set_exists(True) model.should_receive("new_query").and_return( Builder(QueryBuilder(None, None, None)) ) model.should_receive("set_created_at").never() model.should_receive("set_updated_at").never() model.name = "john" model.save() def test_updating_with_only_updated_at_column(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args({"name": "john"}) model = flexmock(OrmModelUpdatedAt()) model.id = 1 model.sync_original() model.set_exists(True) model.should_receive("new_query").and_return( Builder(QueryBuilder(None, None, None)) ) model.should_receive("set_created_at").never() model.should_receive("set_updated_at").once() model.name = "john" model.save() def test_update_is_cancelled_if_updating_event_returns_false(self): model = flexmock(OrmModelStub()) query = flexmock(Builder(flexmock(QueryBuilder(None, None, None)))) model.should_receive("new_query_without_scopes").once().and_return(query) events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updating: %s" % model.__class__.__name__, model ).and_return(False) model.set_exists(True) model.foo = "bar" self.assertFalse(model.save()) def test_update_process_without_timestamps(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args({"name": "john"}) model = flexmock(OrmModelStub()) model.__timestamps__ = False model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model._update_timestamps = mock.MagicMock() events = flexmock(Event()) model.__dispatcher__ = events model.should_receive("_fire_model_event").and_return(True) model.id = 1 model.sync_original() model.name = "john" model.set_exists(True) self.assertTrue(model.save()) model.new_query.assert_called_once_with() self.assertFalse(model._update_timestamps.called) def test_update_process_uses_old_primary_key(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args({"id": 2, "name": "john"}) model = OrmModelStub() model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model._update_timestamps = mock.MagicMock() events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updating: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "updated: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "saved: %s" % model.__class__.__name__, model ).and_return(True) model.id = 1 model.sync_original() model.id = 2 model.name = "john" model.set_exists(True) self.assertTrue(model.save()) model.new_query.assert_called_once_with() self.assertTrue(model._update_timestamps.called) def test_timestamps_are_returned_as_objects(self): model = Model() model.set_raw_attributes( {"created_at": "2015-03-24", "updated_at": "2015-03-24"} ) self.assertIsInstance(model.created_at, Pendulum) self.assertIsInstance(model.updated_at, Pendulum) def test_timestamps_are_returned_as_objects_from_timestamps_and_datetime(self): model = Model() model.set_raw_attributes( {"created_at": datetime.datetime.utcnow(), "updated_at": time.time()} ) self.assertIsInstance(model.created_at, Pendulum) self.assertIsInstance(model.updated_at, Pendulum) def test_timestamps_are_returned_as_objects_on_create(self): model = Model() model.unguard() timestamps = { "created_at": datetime.datetime.now(), "updated_at": datetime.datetime.now(), } instance = model.new_instance(timestamps) self.assertIsInstance(instance.created_at, Pendulum) self.assertIsInstance(instance.updated_at, Pendulum) model.reguard() def test_timestamps_return_none_if_set_to_none(self): model = Model() model.unguard() timestamps = { "created_at": datetime.datetime.now(), "updated_at": datetime.datetime.now(), } instance = model.new_instance(timestamps) instance.created_at = None self.assertIsNone(instance.created_at) model.reguard() def test_insert_process(self): query = flexmock(Builder) model = OrmModelStub() query_builder = flexmock(QueryBuilder) query_builder.should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model._update_timestamps = mock.MagicMock() events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "creating: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "created: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "saved: %s" % model.__class__.__name__, model ).and_return(True) model.name = "john" model.set_exists(False) self.assertTrue(model.save()) self.assertEqual(1, model.id) self.assertTrue(model.exists) self.assertTrue(model._update_timestamps.called) model = OrmModelStub() query_builder.should_receive("insert").once().with_args({"name": "john"}) model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model._update_timestamps = mock.MagicMock() model.set_incrementing(False) events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "creating: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "created: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "saved: %s" % model.__class__.__name__, model ).and_return(True) model.name = "john" model.set_exists(False) self.assertTrue(model.save()) self.assertFalse(hasattr(model, "id")) self.assertTrue(model.exists) self.assertTrue(model._update_timestamps.called) def test_insert_is_cancelled_if_creating_event_returns_false(self): model = flexmock(OrmModelStub()) query = flexmock(Builder(flexmock(QueryBuilder(None, None, None)))) model.should_receive("new_query_without_scopes").once().and_return(query) events = flexmock(Event()) model.__dispatcher__ = events events.should_receive("fire").once().with_args( "saving: %s" % model.__class__.__name__, model ).and_return(True) events.should_receive("fire").once().with_args( "creating: %s" % model.__class__.__name__, model ).and_return(False) self.assertFalse(model.save()) self.assertFalse(model.exists) def test_delete_properly_deletes_model(self): model = OrmModelStub() builder = flexmock(Builder(QueryBuilder(None, None, None))) builder.should_receive("where").once().with_args("id", 1).and_return(builder) builder.should_receive("delete").once() model.new_query = mock.MagicMock(return_value=builder) model.touch_owners = mock.MagicMock() model.set_exists(True) model.id = 1 model.delete() self.assertTrue(model.touch_owners.called) def test_push_no_relations(self): model = flexmock(Model()) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model.should_receive("new_query").once().and_return(builder) model.should_receive("_update_timestamps").once() model.name = "john" model.set_exists(False) self.assertTrue(model.push()) self.assertEqual(1, model.id) self.assertTrue(model.exists) def test_push_empty_one_relation(self): model = flexmock(Model()) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model.should_receive("new_query").once().and_return(builder) model.should_receive("_update_timestamps").once() model.name = "john" model.set_exists(False) model.set_relation("relation_one", None) self.assertTrue(model.push()) self.assertEqual(1, model.id) self.assertTrue(model.exists) self.assertIsNone(model.relation_one) def test_push_one_relation(self): related1 = flexmock(Model()) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "related1"}, "id" ).and_return(2) related1.should_receive("new_query").once().and_return(builder) related1.should_receive("_update_timestamps").once() related1.name = "related1" related1.set_exists(False) model = flexmock(Model()) model.should_receive("resolve_connection").and_return( MockConnection().prepare_mock() ) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model.should_receive("new_query").once().and_return(builder) model.should_receive("_update_timestamps").once() model.name = "john" model.set_exists(False) model.set_relation("relation_one", related1) self.assertTrue(model.push()) self.assertEqual(1, model.id) self.assertTrue(model.exists) self.assertEqual(2, model.relation_one.id) self.assertTrue(model.relation_one.exists) self.assertEqual(2, related1.id) self.assertTrue(related1.exists) def test_push_empty_many_relation(self): model = flexmock(Model()) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model.should_receive("new_query").once().and_return(builder) model.should_receive("_update_timestamps").once() model.name = "john" model.set_exists(False) model.set_relation("relation_many", Collection([])) self.assertTrue(model.push()) self.assertEqual(1, model.id) self.assertTrue(model.exists) self.assertEqual(0, len(model.relation_many)) def test_push_many_relation(self): related1 = flexmock(Model()) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "related1"}, "id" ).and_return(2) related1.should_receive("new_query").once().and_return(builder) related1.should_receive("_update_timestamps").once() related1.name = "related1" related1.set_exists(False) related2 = flexmock(Model()) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "related2"}, "id" ).and_return(3) related2.should_receive("new_query").once().and_return(builder) related2.should_receive("_update_timestamps").once() related2.name = "related2" related2.set_exists(False) model = flexmock(Model()) model.should_receive("resolve_connection").and_return( MockConnection().prepare_mock() ) query = flexmock( QueryBuilder( MockConnection().prepare_mock(), QueryGrammar(), QueryProcessor() ) ) builder = Builder(query) builder.get_query().should_receive("insert_get_id").once().with_args( {"name": "john"}, "id" ).and_return(1) model.should_receive("new_query").once().and_return(builder) model.should_receive("_update_timestamps").once() model.name = "john" model.set_exists(False) model.set_relation("relation_many", Collection([related1, related2])) self.assertTrue(model.push()) self.assertEqual(1, model.id) self.assertTrue(model.exists) self.assertEqual(2, len(model.relation_many)) self.assertEqual([2, 3], model.relation_many.lists("id")) def test_new_query_returns_orator_query_builder(self): conn = flexmock(Connection) grammar = flexmock(QueryGrammar) processor = flexmock(QueryProcessor) conn.should_receive("get_query_grammar").and_return(grammar) conn.should_receive("get_post_processor").and_return(processor) resolver = flexmock(DatabaseManager) resolver.should_receive("connection").and_return(Connection(None)) OrmModelStub.set_connection_resolver(DatabaseManager({})) model = OrmModelStub() builder = model.new_query() self.assertIsInstance(builder, Builder) def test_get_and_set_table(self): model = OrmModelStub() self.assertEqual("stub", model.get_table()) model.set_table("foo") self.assertEqual("foo", model.get_table()) def test_get_key_returns_primary_key_value(self): model = OrmModelStub() model.id = 1 self.assertEqual(1, model.get_key()) self.assertEqual("id", model.get_key_name()) def test_connection_management(self): resolver = flexmock(DatabaseManager) resolver.should_receive("connection").once().with_args("foo").and_return("bar") OrmModelStub.set_connection_resolver(DatabaseManager({})) model = OrmModelStub() model.set_connection("foo") self.assertEqual("bar", model.get_connection()) def test_serialize(self): model = OrmModelStub() model.name = "foo" model.age = None model.password = "password1" model.set_hidden(["password"]) model.set_relation( "names", Collection([OrmModelStub(bar="baz"), OrmModelStub(bam="boom")]) ) model.set_relation("partner", OrmModelStub(name="jane")) model.set_relation("group", None) model.set_relation("multi", Collection()) d = model.serialize() self.assertIsInstance(d, dict) self.assertEqual("foo", d["name"]) self.assertEqual("baz", d["names"][0]["bar"]) self.assertEqual("boom", d["names"][1]["bam"]) self.assertEqual("jane", d["partner"]["name"]) self.assertIsNone(d["group"]) self.assertEqual([], d["multi"]) self.assertIsNone(d["age"]) self.assertNotIn("password", d) model.set_appends(["appendable"]) d = model.to_dict() self.assertEqual("appended", d["appendable"]) def test_to_dict_includes_default_formatted_timestamps(self): model = Model() model.set_raw_attributes( {"created_at": "2015-03-24", "updated_at": "2015-03-25"} ) d = model.to_dict() self.assertEqual("2015-03-24T00:00:00+00:00", d["created_at"]) self.assertEqual("2015-03-25T00:00:00+00:00", d["updated_at"]) def test_to_dict_includes_custom_formatted_timestamps(self): class Stub(Model): def get_date_format(self): return "%d-%m-%-y" flexmock(Stub).should_receive("_boot_columns").and_return( ["created_at", "updated_at"] ) model = Stub() model.set_raw_attributes( {"created_at": "2015-03-24", "updated_at": "2015-03-25"} ) d = model.to_dict() self.assertEqual("24-03-15", d["created_at"]) self.assertEqual("25-03-15", d["updated_at"]) def test_visible_creates_dict_whitelist(self): model = OrmModelStub() model.set_visible(["name"]) model.name = "John" model.age = 28 d = model.to_dict() self.assertEqual({"name": "John"}, d) def test_hidden_can_also_exclude_relationships(self): model = OrmModelStub() model.name = "John" model.set_relation("foo", ["bar"]) model.set_hidden(["foo", "list_items", "password"]) d = model.to_dict() self.assertEqual({"name": "John"}, d) def test_to_dict_uses_mutators(self): model = OrmModelStub() model.list_items = [1, 2, 3] d = model.to_dict() self.assertEqual([1, 2, 3], d["list_items"]) model = OrmModelStub(list_items=[1, 2, 3]) d = model.to_dict() self.assertEqual([1, 2, 3], d["list_items"]) def test_hidden_are_ignored_when_visible(self): model = OrmModelStub(name="john", age=28, id="foo") model.set_visible(["name", "id"]) model.set_hidden(["name", "age"]) d = model.to_dict() self.assertIn("name", d) self.assertIn("id", d) self.assertNotIn("age", d) def test_fillable(self): model = OrmModelStub() model.fillable(["name", "age"]) model.fill(name="foo", age=28) self.assertEqual("foo", model.name) self.assertEqual(28, model.age) def test_fill_with_dict(self): model = OrmModelStub() model.fill({"name": "foo", "age": 28}) self.assertEqual("foo", model.name) self.assertEqual(28, model.age) def test_unguard_allows_anything(self): model = OrmModelStub() model.unguard() model.guard(["*"]) model.fill(name="foo", age=28) self.assertEqual("foo", model.name) self.assertEqual(28, model.age) model.reguard() def test_underscore_properties_are_not_filled(self): model = OrmModelStub() model.fill(_foo="bar") self.assertEqual({}, model.get_attributes()) def test_guarded(self): model = OrmModelStub() model.guard(["name", "age"]) model.fill(name="foo", age="bar", foo="bar") self.assertFalse(hasattr(model, "name")) self.assertFalse(hasattr(model, "age")) self.assertEqual("bar", model.foo) def test_fillable_overrides_guarded(self): model = OrmModelStub() model.guard(["name", "age"]) model.fillable(["age", "foo"]) model.fill(name="foo", age="bar", foo="bar") self.assertFalse(hasattr(model, "name")) self.assertEqual("bar", model.age) self.assertEqual("bar", model.foo) def test_global_guarded(self): model = OrmModelStub() model.guard(["*"]) self.assertRaises( MassAssignmentError, model.fill, name="foo", age="bar", foo="bar" ) # TODO: test relations def test_models_assumes_their_name(self): model = OrmModelNoTableStub() self.assertEqual("orm_model_no_table_stubs", model.get_table()) def test_mutator_cache_is_populated(self): model = OrmModelStub() expected_attributes = sorted(["list_items", "password", "appendable"]) self.assertEqual( expected_attributes, sorted(list(model._get_mutated_attributes().keys())) ) def test_fresh_method(self): model = flexmock(OrmModelStub()) model.id = 1 model.set_exists(True) flexmock(Builder) q = flexmock(QueryBuilder(None, None, None)) query = flexmock(Builder(q)) query.should_receive("where").and_return(query) query.get_query().should_receive("take").and_return(query) query.should_receive("get").and_return(Collection([])) model.should_receive("with_").once().with_args("foo", "bar").and_return(query) model.fresh(["foo", "bar"]) model.should_receive("with_").once().with_args().and_return(query) model.fresh() def test_clone_model_makes_a_fresh_copy(self): model = OrmModelStub() model.id = 1 model.set_exists(True) model.first = "john" model.last = "doe" model.created_at = model.fresh_timestamp() model.updated_at = model.fresh_timestamp() # TODO: relation clone = model.replicate() self.assertFalse(hasattr(clone, "id")) self.assertFalse(clone.exists) self.assertEqual("john", clone.first) self.assertEqual("doe", clone.last) self.assertFalse(hasattr(clone, "created_at")) self.assertFalse(hasattr(clone, "updated_at")) # TODO: relation clone.first = "jane" self.assertEqual("john", model.first) self.assertEqual("jane", clone.first) def test_get_attribute_raise_attribute_error(self): model = OrmModelStub() try: relation = model.incorrect_relation self.fail("AttributeError not raised") except AttributeError: pass def test_increment(self): query = flexmock() model_mock = flexmock(OrmModelStub, new_query=lambda: query) model = OrmModelStub() model.set_exists(True) model.id = 1 model.sync_original_attribute("id") model.foo = 2 model_mock.should_receive("new_query").and_return(query) query.should_receive("where").and_return(query) query.should_receive("increment") model.public_increment("foo") self.assertEqual(3, model.foo) self.assertFalse(model.is_dirty()) # TODO: relationship touch_owners is propagated # TODO: relationship touch_owners is not propagated if no relationship result def test_timestamps_are_not_update_with_timestamps_false_save_option(self): query = flexmock(Builder) query.should_receive("where").once().with_args("id", 1) query.should_receive("update").once().with_args({"name": "john"}) model = OrmModelStub() model.new_query = mock.MagicMock( return_value=Builder(QueryBuilder(None, None, None)) ) model.id = 1 model.sync_original() model.name = "john" model.set_exists(True) self.assertTrue(model.save({"timestamps": False})) self.assertFalse(hasattr(model, "updated_at")) model.new_query.assert_called_once_with() def test_casts(self): model = OrmModelCastingStub() model.first = "3" model.second = "4.0" model.third = 2.5 model.fourth = 1 model.fifth = 0 model.sixth = {"foo": "bar"} model.seventh = ["foo", "bar"] model.eighth = {"foo": "bar"} self.assertIsInstance(model.first, int) self.assertIsInstance(model.second, float) self.assertIsInstance(model.third, basestring) self.assertIsInstance(model.fourth, bool) self.assertIsInstance(model.fifth, bool) self.assertIsInstance(model.sixth, dict) self.assertIsInstance(model.seventh, list) self.assertIsInstance(model.eighth, dict) self.assertTrue(model.fourth) self.assertFalse(model.fifth) self.assertEqual({"foo": "bar"}, model.sixth) self.assertEqual({"foo": "bar"}, model.eighth) self.assertEqual(["foo", "bar"], model.seventh) d = model.to_dict() self.assertIsInstance(d["first"], int) self.assertIsInstance(d["second"], float) self.assertIsInstance(d["third"], basestring) self.assertIsInstance(d["fourth"], bool) self.assertIsInstance(d["fifth"], bool) self.assertIsInstance(d["sixth"], dict) self.assertIsInstance(d["seventh"], list) self.assertIsInstance(d["eighth"], dict) self.assertTrue(d["fourth"]) self.assertFalse(d["fifth"]) self.assertEqual({"foo": "bar"}, d["sixth"]) self.assertEqual({"foo": "bar"}, d["eighth"]) self.assertEqual(["foo", "bar"], d["seventh"]) def test_casts_preserve_null(self): model = OrmModelCastingStub() model.first = None model.second = None model.third = None model.fourth = None model.fifth = None model.sixth = None model.seventh = None model.eighth = None self.assertIsNone(model.first) self.assertIsNone(model.second) self.assertIsNone(model.third) self.assertIsNone(model.fourth) self.assertIsNone(model.fifth) self.assertIsNone(model.sixth) self.assertIsNone(model.seventh) self.assertIsNone(model.eighth) d = model.to_dict() self.assertIsNone(d["first"]) self.assertIsNone(d["second"]) self.assertIsNone(d["third"]) self.assertIsNone(d["fourth"]) self.assertIsNone(d["fifth"]) self.assertIsNone(d["sixth"]) self.assertIsNone(d["seventh"]) self.assertIsNone(d["eighth"]) def test_get_foreign_key(self): model = OrmModelStub() model.set_table("stub") self.assertEqual("stub_id", model.get_foreign_key()) def test_default_values(self): model = OrmModelDefaultAttributes() self.assertEqual("bar", model.foo) def test_get_morph_name(self): model = OrmModelStub() self.assertEqual("stub", model.get_morph_name()) class OrmModelStub(Model): __table__ = "stub" __guarded__ = [] @accessor def list_items(self): return json.loads(self.get_raw_attribute("list_items")) @list_items.mutator def set_list_items(self, value): self.set_raw_attribute("list_items", json.dumps(value)) @mutator def password(self, value): self.set_raw_attribute("password_hash", hashlib.md5(value.encode()).hexdigest()) @password.accessor def get_password(self): return "******" @accessor def appendable(self): return "appended" def public_increment(self, column, amount=1): return self._increment(column, amount) def get_dates(self): return [] class OrmModelHydrateRawStub(Model): @classmethod def hydrate(cls, items, connection=None): return "hydrated" class OrmModelWithStub(Model): def new_query(self): mock = flexmock(Builder(None)) mock.should_receive("with_").once().with_args("foo", "bar").and_return("foo") return mock class OrmModelSaveStub(Model): __table__ = "save_stub" __guarded__ = [] def save(self, options=None): self.__saved = True def set_incrementing(self, value): self.__incrementing__ = value def get_saved(self): return self.__saved class OrmModelFindStub(Model): def new_query(self): flexmock(Builder).should_receive("find").once().with_args(1, ["*"]).and_return( "foo" ) return Builder(None) class OrmModelFindWithWriteConnectionStub(Model): def new_query(self): mock = flexmock(Builder) mock_query = flexmock(QueryBuilder) mock_query.should_receive("use_write_connection").once().and_return(flexmock) mock.should_receive("find").once().with_args(1).and_return("foo") return Builder(QueryBuilder(None, None, None)) class OrmModelFindManyStub(Model): def new_query(self): mock = flexmock(Builder) mock.should_receive("find").once().with_args([1, 2], ["*"]).and_return("foo") return Builder(QueryBuilder(None, None, None)) class OrmModelDestroyStub(Model): def new_query(self): mock = flexmock(Builder) model = flexmock() mock_query = flexmock(QueryBuilder) mock_query.should_receive("where_in").once().with_args( "id", [1, 2, 3] ).and_return(flexmock) mock.should_receive("get").once().and_return([model]) model.should_receive("delete").once() return Builder(QueryBuilder(None, None, None)) class OrmModelNoTableStub(Model): pass class OrmModelCastingStub(Model): __casts__ = { "first": "int", "second": "float", "third": "str", "fourth": "bool", "fifth": "boolean", "sixth": "dict", "seventh": "list", "eighth": "json", } class OrmModelCreatedAt(Model): __timestamps__ = ["created_at"] class OrmModelUpdatedAt(Model): __timestamps__ = ["updated_at"] class OrmModelDefaultAttributes(Model): __attributes__ = {"foo": "bar"}
34.118544
88
0.628257
794eea13e6104bcf2bfc238686d4c884b7f954e0
166
py
Python
src/smart_beta_strategies/algo_type.py
WQU-MScFE-Capstone-MGS/retail-investor-strategies
b8e9c791b3bd71cbe0d0f2c6c9b7de30a9b72100
[ "MIT" ]
12
2020-01-25T12:53:50.000Z
2021-09-21T18:02:16.000Z
src/smart_beta_strategies/algo_type.py
WQU-MScFE-Capstone-MGS/retail-investor-strategies
b8e9c791b3bd71cbe0d0f2c6c9b7de30a9b72100
[ "MIT" ]
null
null
null
src/smart_beta_strategies/algo_type.py
WQU-MScFE-Capstone-MGS/retail-investor-strategies
b8e9c791b3bd71cbe0d0f2c6c9b7de30a9b72100
[ "MIT" ]
13
2020-01-23T11:45:18.000Z
2021-09-12T22:06:07.000Z
from enum import Enum class MLAlgoType(Enum): ''' Enum to define ML algorithms which are supported by strategy ''' ADABOOST = 1 RANDOMFOREST = 2
18.444444
64
0.662651
794eeb0976cce9226b6d404dcd7d34223a0c3d83
585
py
Python
work/find-unknowns.py
tuomassalo/wikipedia-voikko-analyzer
712b6f14a2cac3a15f940c671f4d462c46417d67
[ "MIT" ]
null
null
null
work/find-unknowns.py
tuomassalo/wikipedia-voikko-analyzer
712b6f14a2cac3a15f940c671f4d462c46417d67
[ "MIT" ]
null
null
null
work/find-unknowns.py
tuomassalo/wikipedia-voikko-analyzer
712b6f14a2cac3a15f940c671f4d462c46417d67
[ "MIT" ]
null
null
null
import regex # from extractor import extract_words from analyzer import analyze_word from plaintextreader import get_split_articles for (page_id, occurrences) in get_split_articles(): # count the number of occurrence in this article word_occurrence = dict() for (word, properness, sentence) in occurrences: if(len(word) >= 5): analysis = analyze_word(word) if(len(analysis) == 0): word_occurrence[word] = word_occurrence.get(word, 0) + 1 for (word, cnt) in word_occurrence.items(): print(page_id, cnt, word)
29.25
72
0.675214
794eec3ba823777a1df9aafbd546d3347ce193d7
18,017
py
Python
tensorflow_addons/image/dense_image_warp.py
stnava/addons
faa5cee641127926c266932296d4ece60783f62a
[ "Apache-2.0" ]
null
null
null
tensorflow_addons/image/dense_image_warp.py
stnava/addons
faa5cee641127926c266932296d4ece60783f62a
[ "Apache-2.0" ]
null
null
null
tensorflow_addons/image/dense_image_warp.py
stnava/addons
faa5cee641127926c266932296d4ece60783f62a
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Image warping using per-pixel flow vectors.""" import tensorflow as tf from tensorflow_addons.utils import types from typing import Optional @tf.function def interpolate_bilinear( grid: types.TensorLike, query_points: types.TensorLike, indexing: str = "ij", name: Optional[str] = None, ) -> tf.Tensor: """Similar to Matlab's interp2 function. Finds values for query points on a grid using bilinear interpolation. Args: grid: a 4-D float `Tensor` of shape `[batch, height, width, channels]`. query_points: a 3-D float `Tensor` of N points with shape `[batch, N, 2]`. indexing: whether the query points are specified as row and column (ij), or Cartesian coordinates (xy). name: a name for the operation (optional). Returns: values: a 3-D `Tensor` with shape `[batch, N, channels]` Raises: ValueError: if the indexing mode is invalid, or if the shape of the inputs invalid. """ if indexing != "ij" and indexing != "xy": raise ValueError("Indexing mode must be 'ij' or 'xy'") with tf.name_scope(name or "interpolate_bilinear"): grid = tf.convert_to_tensor(grid) query_points = tf.convert_to_tensor(query_points) # grid shape checks grid_static_shape = grid.shape grid_shape = tf.shape(grid) if grid_static_shape.dims is not None: if len(grid_static_shape) != 4: raise ValueError("Grid must be 4D Tensor") if grid_static_shape[1] is not None and grid_static_shape[1] < 2: raise ValueError("Grid height must be at least 2.") if grid_static_shape[2] is not None and grid_static_shape[2] < 2: raise ValueError("Grid width must be at least 2.") # query_points shape checks query_static_shape = query_points.shape query_shape = tf.shape(query_points) if query_static_shape.dims is not None: if len(query_static_shape) != 3: raise ValueError("Query points must be 3 dimensional.") query_hw = query_static_shape[2] if query_hw is not None and query_hw != 2: raise ValueError("Query points last dimension must be 2.") batch_size, height, width, channels = ( grid_shape[0], grid_shape[1], grid_shape[2], grid_shape[3], ) num_queries = query_shape[1] query_type = query_points.dtype grid_type = grid.dtype alphas = [] floors = [] ceils = [] index_order = [0, 1] if indexing == "ij" else [1, 0] unstacked_query_points = tf.unstack(query_points, axis=2, num=2) for i, dim in enumerate(index_order): with tf.name_scope("dim-" + str(dim)): queries = unstacked_query_points[dim] size_in_indexing_dimension = grid_shape[i + 1] # max_floor is size_in_indexing_dimension - 2 so that max_floor + 1 # is still a valid index into the grid. max_floor = tf.cast(size_in_indexing_dimension - 2, query_type) min_floor = tf.constant(0.0, dtype=query_type) floor = tf.math.minimum( tf.math.maximum(min_floor, tf.math.floor(queries)), max_floor ) int_floor = tf.cast(floor, tf.dtypes.int32) floors.append(int_floor) ceil = int_floor + 1 ceils.append(ceil) # alpha has the same type as the grid, as we will directly use alpha # when taking linear combinations of pixel values from the image. alpha = tf.cast(queries - floor, grid_type) min_alpha = tf.constant(0.0, dtype=grid_type) max_alpha = tf.constant(1.0, dtype=grid_type) alpha = tf.math.minimum(tf.math.maximum(min_alpha, alpha), max_alpha) # Expand alpha to [b, n, 1] so we can use broadcasting # (since the alpha values don't depend on the channel). alpha = tf.expand_dims(alpha, 2) alphas.append(alpha) flattened_grid = tf.reshape(grid, [batch_size * height * width, channels]) batch_offsets = tf.reshape( tf.range(batch_size) * height * width, [batch_size, 1] ) # This wraps tf.gather. We reshape the image data such that the # batch, y, and x coordinates are pulled into the first dimension. # Then we gather. Finally, we reshape the output back. It's possible this # code would be made simpler by using tf.gather_nd. def gather(y_coords, x_coords, name): with tf.name_scope("gather-" + name): linear_coordinates = batch_offsets + y_coords * width + x_coords gathered_values = tf.gather(flattened_grid, linear_coordinates) return tf.reshape(gathered_values, [batch_size, num_queries, channels]) # grab the pixel values in the 4 corners around each query point top_left = gather(floors[0], floors[1], "top_left") top_right = gather(floors[0], ceils[1], "top_right") bottom_left = gather(ceils[0], floors[1], "bottom_left") bottom_right = gather(ceils[0], ceils[1], "bottom_right") # now, do the actual interpolation with tf.name_scope("interpolate"): interp_top = alphas[1] * (top_right - top_left) + top_left interp_bottom = alphas[1] * (bottom_right - bottom_left) + bottom_left interp = alphas[0] * (interp_bottom - interp_top) + interp_top return interp @tf.function def interpolate_trilinear( grid: types.TensorLike, query_points: types.TensorLike, indexing: str = "ijk", name: Optional[str] = None, ) -> tf.Tensor: """Similar to Matlab's interp2 function. Finds values for query points on a grid using bilinear interpolation. Args: grid: a 4-D float `Tensor` of shape `[batch, height, width, depth, channels]`. query_points: a 3-D float `Tensor` of N points with shape `[batch, N, 3]`. indexing: whether the query points are specified as row and column (ijk), or Cartesian coordinates (xyz). name: a name for the operation (optional). Returns: values: a 3-D `Tensor` with shape `[batch, N, channels]` Raises: ValueError: if the indexing mode is invalid, or if the shape of the inputs invalid. """ if indexing != "ijk" and indexing != "xyz": raise ValueError("Indexing mode must be 'ijk' or 'xyz'") with tf.name_scope(name or "interpolate_trilinear"): grid = tf.convert_to_tensor(grid) query_points = tf.convert_to_tensor(query_points) # grid shape checks grid_static_shape = grid.shape grid_shape = tf.shape(grid) if grid_static_shape.dims is not None: if len(grid_static_shape) != 5: raise ValueError("Grid must be 5D Tensor") if grid_static_shape[1] is not None and grid_static_shape[1] < 2: raise ValueError("Grid height must be at least 2.") if grid_static_shape[2] is not None and grid_static_shape[2] < 2: raise ValueError("Grid width must be at least 2.") else: with tf.control_dependencies( [ tf.debugging.assert_greater_equal( grid_shape[1], 2, message="Grid height must be at least 2." ), tf.debugging.assert_greater_equal( grid_shape[2], 2, message="Grid width must be at least 2." ), tf.debugging.assert_less_equal( tf.cast( grid_shape[0] * grid_shape[1] * grid_shape[2]* grid_shape[3], dtype=tf.dtypes.float32, ), np.iinfo(np.int32).max / 8.0, message="The image size or batch size is sufficiently " "large that the linearized addresses used by " "tf.gather may exceed the int32 limit.", ), ] ): pass # query_points shape checks query_static_shape = query_points.shape query_shape = tf.shape(query_points) if query_static_shape.dims is not None: if len(query_static_shape) != 3: raise ValueError("Query points must be 3 dimensional.") query_hw = query_static_shape[2] if query_hw is not None and query_hw != 3: raise ValueError("Query points last dimension must be 3.") else: with tf.control_dependencies( [ tf.debugging.assert_equal( query_shape[2], 3, message="Query points last dimension must be 3.", ) ] ): pass batch_size, height, width, depth, channels = ( grid_shape[0], grid_shape[1], grid_shape[2], grid_shape[3], grid_shape[4], ) num_queries = query_shape[1] query_type = query_points.dtype grid_type = grid.dtype alphas = [] floors = [] ceils = [] index_order = [0, 1, 2 ] if indexing == "ijk" else [2, 1, 0] # FIXME - was axis=2, num=2 unstacked_query_points = tf.unstack(query_points, axis=2, num=3) for i, dim in enumerate(index_order): with tf.name_scope("dim-" + str(dim)): queries = unstacked_query_points[dim] size_in_indexing_dimension = grid_shape[i + 1] # max_floor is size_in_indexing_dimension - 2 so that max_floor + 1 # is still a valid index into the grid. max_floor = tf.cast(size_in_indexing_dimension - 2, query_type) min_floor = tf.constant(0.0, dtype=query_type) floor = tf.math.minimum( tf.math.maximum(min_floor, tf.math.floor(queries)), max_floor ) int_floor = tf.cast(floor, tf.dtypes.int32) floors.append(int_floor) ceil = int_floor + 1 ceils.append(ceil) # alpha has the same type as the grid, as we will directly use alpha # when taking linear combinations of pixel values from the image. alpha = tf.cast(queries - floor, grid_type) min_alpha = tf.constant(0.0, dtype=grid_type) max_alpha = tf.constant(1.0, dtype=grid_type) alpha = tf.math.minimum(tf.math.maximum(min_alpha, alpha), max_alpha) # Expand alpha to [b, n, 1] so we can use broadcasting # (since the alpha values don't depend on the channel). alpha = tf.expand_dims(alpha, 2) alphas.append(alpha) flattened_grid = tf.reshape(grid, [batch_size * height * width * depth, channels]) batch_offsets = tf.reshape( tf.range(batch_size) * height * width * depth, [batch_size, 1] ) # This wraps tf.gather. We reshape the image data such that the # batch, y, and x coordinates are pulled into the first dimension. # Then we gather. Finally, we reshape the output back. It's possible this # code would be made simpler by using tf.gather_nd. def gather(z_coords, y_coords, x_coords, name): with tf.name_scope("gather-" + name): linear_coordinates = batch_offsets + z_coords * width * height + y_coords * width + x_coords gathered_values = tf.gather(flattened_grid, linear_coordinates) return tf.reshape(gathered_values, [batch_size, num_queries, channels]) # grab the pixel values in the 4 corners around each query point top_left_d = gather(floors[0], floors[1], floors[2], "top_left_d") top_right_d = gather(floors[0], ceils[1], floors[2], "top_right_d") bottom_left_d = gather(ceils[0], floors[1], floors[2], "bottom_left_d") bottom_right_d = gather(ceils[0], ceils[1], floors[2], "bottom_right_d") top_left_u = gather(floors[0], floors[1], ceils[2], "top_left_u") top_right_u = gather(floors[0], ceils[1], ceils[2], "top_right_u") bottom_left_u = gather(ceils[0], floors[1], ceils[2], "bottom_left_u") bottom_right_u = gather(ceils[0], ceils[1], ceils[2], "bottom_right_u") # now, do the actual interpolation FIXME NOT RIGHT YET with tf.name_scope("interpolate"): interp_top_d = alphas[1] * (top_right_d - top_left_d) + top_left_d interp_bottom_d = alphas[1] * (bottom_right_d - bottom_left_d) + bottom_left_d interp_d = alphas[0] * (interp_bottom_d - interp_top_d) + interp_top_d interp_top_u = alphas[2] * (top_right_u - top_left_u) + top_left_u interp_bottom_u = alphas[2] * (bottom_right_u - bottom_left_u) + bottom_left_u interp_u = alphas[1] * (interp_bottom_u - interp_top_u) + interp_top_u interp = alphas[2] * interp_u + alphas[1] * interp_d return interp def _get_dim(x, idx): if x.shape.ndims is None: return tf.shape(x)[idx] return x.shape[idx] or tf.shape(x)[idx] @tf.function def dense_image_warp( image: types.TensorLike, flow: types.TensorLike, name: Optional[str] = None ) -> tf.Tensor: """Image warping using per-pixel flow vectors. Apply a non-linear warp to the image, where the warp is specified by a dense flow field of offset vectors that define the correspondences of pixel values in the output image back to locations in the source image. Specifically, the pixel value at `output[b, j, i, c]` is `images[b, j - flow[b, j, i, 0], i - flow[b, j, i, 1], c]`. The locations specified by this formula do not necessarily map to an int index. Therefore, the pixel value is obtained by bilinear interpolation of the 4 nearest pixels around `(b, j - flow[b, j, i, 0], i - flow[b, j, i, 1])`. For locations outside of the image, we use the nearest pixel values at the image boundary. NOTE: The definition of the flow field above is different from that of optical flow. This function expects the negative forward flow from output image to source image. Given two images `I_1` and `I_2` and the optical flow `F_12` from `I_1` to `I_2`, the image `I_1` can be reconstructed by `I_1_rec = dense_image_warp(I_2, -F_12)`. Args: image: 4-D float `Tensor` with shape `[batch, height, width, channels]`. flow: A 4-D float `Tensor` with shape `[batch, height, width, 2]`. name: A name for the operation (optional). Note that image and flow can be of type `tf.half`, `tf.float32`, or `tf.float64`, and do not necessarily have to be the same type. Returns: A 4-D float `Tensor` with shape`[batch, height, width, channels]` and same type as input image. Raises: ValueError: if `height < 2` or `width < 2` or the inputs have the wrong number of dimensions. """ with tf.name_scope(name or "dense_image_warp"): image = tf.convert_to_tensor(image) flow = tf.convert_to_tensor(flow) batch_size, height, width, channels = ( _get_dim(image, 0), _get_dim(image, 1), _get_dim(image, 2), _get_dim(image, 3), ) # The flow is defined on the image grid. Turn the flow into a list of query # points in the grid space. grid_x, grid_y = tf.meshgrid(tf.range(width), tf.range(height)) stacked_grid = tf.cast(tf.stack([grid_y, grid_x], axis=2), flow.dtype) batched_grid = tf.expand_dims(stacked_grid, axis=0) query_points_on_grid = batched_grid - flow query_points_flattened = tf.reshape( query_points_on_grid, [batch_size, height * width, 2] ) # Compute values at the query points, then reshape the result back to the # image grid. interpolated = interpolate_bilinear(image, query_points_flattened) interpolated = tf.reshape(interpolated, [batch_size, height, width, channels]) return interpolated @tf.function(experimental_implements="addons:DenseImageWarp") def dense_image_warp_annotated( image: types.TensorLike, flow: types.TensorLike, name: Optional[str] = None ) -> tf.Tensor: """Similar to dense_image_warp but annotated with experimental_implements. IMPORTANT: This is a temporary function and will be removed after TensorFlow's next release. This annotation make the serialized function detectable by the TFLite MLIR converter and allow the converter to convert it to corresponding TFLite op. However, with the annotation, this function cannot be used with backprop under `tf.GradientTape` objects. """ return dense_image_warp(image, flow, name)
42.897619
108
0.607371
794eee26125bb42e95137792eca3db452f524b65
4,271
py
Python
tests/test/generic/basic.py
mace84/script-languages
d586cbe212bbb4efbfb39e095183729c65489360
[ "MIT" ]
6
2019-01-09T11:55:15.000Z
2021-06-25T19:52:42.000Z
tests/test/generic/basic.py
mace84/script-languages
d586cbe212bbb4efbfb39e095183729c65489360
[ "MIT" ]
65
2018-12-12T08:40:38.000Z
2022-02-28T09:19:45.000Z
tests/test/generic/basic.py
mace84/script-languages
d586cbe212bbb4efbfb39e095183729c65489360
[ "MIT" ]
9
2018-11-23T08:59:09.000Z
2020-02-04T12:56:35.000Z
#!/usr/bin/env python2.7 import os import sys sys.path.append(os.path.realpath(__file__ + '/../../../lib')) import udf from udf import requires class BasicTest(udf.TestCase): @requires('BASIC_RANGE') def test_basic_scalar_emits(self): rows = self.query(''' SELECT fn1.basic_range(3) FROM DUAL ''') self.assertRowsEqual([(x,) for x in range(3)], sorted(rows)) @requires('BASIC_SUM') def test_basic_set_returns(self): rows = self.query(''' SELECT fn1.basic_sum(3) FROM DUAL ''') self.assertRowsEqual([(3,)], rows) @requires('BASIC_EMIT_TWO_INTS') def test_emit_two_ints(self): rows = self.query(''' SELECT fn1.basic_emit_two_ints() FROM DUAL''') self.assertRowsEqual([(1, 2)], rows) @requires('BASIC_SUM') @requires('BASIC_NTH_PARTIAL_SUM') @requires('BASIC_RANGE') def test_simple_combination(self): rows = self.query(''' SELECT fn1.basic_sum(psum) FROM ( SELECT fn1.basic_nth_partial_sum(n) AS PSUM FROM ( SELECT fn1.basic_range(10) FROM DUAL ) )''') self.assertRowsEqual([(165,)], rows) @requires('BASIC_SUM_GRP') @requires('BASIC_NTH_PARTIAL_SUM') @requires('BASIC_RANGE') def test_simple_combination_grouping(self): rows = self.query(''' SELECT fn1.BASIC_SUM_GRP(psum) FROM ( SELECT MOD(N, 3) AS n, fn1.basic_nth_partial_sum(n) AS psum FROM ( SELECT fn1.basic_range(10) FROM DUAL ) ) GROUP BY n ORDER BY 1''') self.assertRowsEqual([(39.0,), (54.0,), (72.0,)], rows) @requires('BASIC_EMIT_SEVERAL_GROUPS') @requires('BASIC_TEST_RESET') def test_reset(self): rows = self.query(''' SELECT fn1.basic_test_reset(i, j) FROM (SELECT fn1.basic_emit_several_groups(16, 8) FROM DUAL) GROUP BY i ORDER BY 1''') self.assertRowsEqual([(0.0,), (0.0,), (0.0,), (0.0,), (1.0,), (1.0,), (1.0,), (1.0,), (2.0,)], rows[:9]) @requires('PERFORMANCE_REDUCE_CHARACTERS') @requires('PERFORMANCE_MAP_CHARACTERS') def test_order_by_clause(self): rows = self.query(''' SELECT fn1.performance_reduce_characters(w, c) FROM ( SELECT fn1.performance_map_characters('hello hello hello abc') FROM DUAL ) GROUP BY w ORDER BY c DESC''') unsorted_list = [tuple(x) for x in rows] sorted_list = sorted(unsorted_list, key=lambda x: x[1], reverse=True) #for x in zip(unsorted_list, sorted_list): # print x self.assertEqual(sorted_list, unsorted_list) class SetWithEmptyInput(udf.TestCase): def setUp(self): self.query('DROP SCHEMA FN2 CASCADE', ignore_errors=True) self.query('CREATE SCHEMA FN2') self.query('CREATE TABLE FN2.empty_table(c int)') @requires('SET_RETURNS_HAS_EMPTY_INPUT') def test_set_returns_has_empty_input_group_by(self): self.query("""select FN1.set_returns_has_empty_input(c) from empty_table group by 'X'""") self.assertEqual(0, self.rowcount()) @requires('SET_RETURNS_HAS_EMPTY_INPUT') def test_set_returns_has_empty_input_no_group_by(self): rows = self.query('''select FN1.set_returns_has_empty_input(c) from empty_table''') self.assertRowsEqual([(None,)], rows) @requires('SET_EMITS_HAS_EMPTY_INPUT') def test_set_emits_has_empty_input_group_by(self): self.query("""select FN1.set_emits_has_empty_input(c) from empty_table group by 'X'""") self.assertEqual(0, self.rowcount()) @requires('SET_EMITS_HAS_EMPTY_INPUT') def test_set_emits_has_empty_input_no_group_by(self): rows = self.query('''select FN1.set_emits_has_empty_input(c) from empty_table''') self.assertRowsEqual([(None,None)], rows) if __name__ == '__main__': udf.main() # vim: ts=4:sts=4:sw=4:et:fdm=indent
32.112782
112
0.592835