hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794e12b7a8a7f3219aaa8282ecd50af508712999
1,392
py
Python
macrodensity/__init__.py
Zarand3r/MacroDensity
dc1afd60e2c3e8f6f81ef0cad85619bc1469c7ea
[ "MIT" ]
57
2016-09-19T21:40:30.000Z
2022-02-24T03:39:51.000Z
macrodensity/__init__.py
Zarand3r/MacroDensity
dc1afd60e2c3e8f6f81ef0cad85619bc1469c7ea
[ "MIT" ]
21
2017-05-25T03:15:31.000Z
2021-11-04T16:08:18.000Z
macrodensity/__init__.py
Zarand3r/MacroDensity
dc1afd60e2c3e8f6f81ef0cad85619bc1469c7ea
[ "MIT" ]
29
2016-04-11T02:01:08.000Z
2022-01-24T21:22:06.000Z
############################################################################### # Copyright Keith Butler(2014) # # # # This file MacroDensity.__init__.py is free software: you can # # redistribute it and/or modify it under the terms of the GNU General Public # # License as published by the Free Software Foundation, either version 3 of # # the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # # more details. # # You should have received a copy of the GNU General Public License along with# # this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### import numpy import numpy as np import math from scipy import interpolate from macrodensity import vasp_tools from macrodensity import plotting_tools from macrodensity.density_tools import *
58
79
0.498563
794e13a475f041a82d733bbdc9e85698e4c514fa
15,454
py
Python
satflow/models/gan/generators.py
mfrasco/satflow
2e56b46dfd81a05670c6d2b1bda8c9eec38301a7
[ "MIT" ]
null
null
null
satflow/models/gan/generators.py
mfrasco/satflow
2e56b46dfd81a05670c6d2b1bda8c9eec38301a7
[ "MIT" ]
null
null
null
satflow/models/gan/generators.py
mfrasco/satflow
2e56b46dfd81a05670c6d2b1bda8c9eec38301a7
[ "MIT" ]
null
null
null
import functools import torch from torch import nn as nn from typing import Union from satflow.models.gan.common import get_norm_layer, init_net from satflow.models.utils import get_conv_layer import antialiased_cnns def define_generator( input_nc, output_nc, ngf, netG: Union[str, torch.nn.Module], norm="batch", use_dropout=False, init_type="normal", init_gain=0.02, ): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if isinstance(netG, torch.nn.Module): net = netG elif netG == "resnet_9blocks": net = ResnetGenerator( input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9 ) elif netG == "resnet_6blocks": net = ResnetGenerator( input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6 ) elif netG == "unet_128": net = UnetGenerator( input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout ) elif netG == "unet_256": net = UnetGenerator( input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout ) else: raise NotImplementedError("Generator model name [%s] is not recognized" % netG) return init_net(net, init_type, init_gain) class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__( self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type="reflect", conv_type: str = "standard", ): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert n_blocks >= 0 super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d conv2d = get_conv_layer(conv_type) model = [ nn.ReflectionPad2d(3), conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True), ] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i if conv_type == "antialiased": block = [ conv2d( ngf * mult, ngf * mult * 2, kernel_size=3, stride=1, padding=1, bias=use_bias, ), norm_layer(ngf * mult * 2), nn.ReLU(True), antialiased_cnns.BlurPool(ngf * mult * 2, stride=2), ] else: block = [ conv2d( ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias, ), norm_layer(ngf * mult * 2), nn.ReLU(True), ] model += block mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ ResnetBlock( ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias, ) ] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [ nn.ConvTranspose2d( ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias, ), norm_layer(int(ngf * mult / 2)), nn.ReLU(True), ] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__( self, dim, padding_type, norm_layer, use_dropout, use_bias, conv_type: str = "standard" ): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() conv2d = get_conv_layer(conv_type) self.conv_block = self.build_conv_block( dim, padding_type, norm_layer, use_dropout, use_bias, conv2d ) def build_conv_block( self, dim, padding_type, norm_layer, use_dropout, use_bias, conv2d: torch.nn.Module ): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [ conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True), ] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [ conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), ] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__( self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, conv_type: str = "standard", ): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock( ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True, conv_type=conv_type, ) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock( ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout, conv_type=conv_type, ) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock( ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, conv_type=conv_type, ) unet_block = UnetSkipConnectionBlock( ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer, conv_type=conv_type, ) unet_block = UnetSkipConnectionBlock( ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer, conv_type=conv_type, ) self.model = UnetSkipConnectionBlock( output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer, conv_type=conv_type, ) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__( self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False, conv_type: str = "standard", ): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc conv2d = get_conv_layer(conv_type) if conv_type == "antialiased": antialiased = True downconv = conv2d(input_nc, inner_nc, kernel_size=4, stride=1, padding=1, bias=use_bias) blurpool = antialiased_cnns.BlurPool(inner_nc, stride=2) else: antialiased = False downconv = conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d( inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias ) down = [downrelu, downconv, blurpool] if antialiased else [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d( inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias ) down = ( [downrelu, downconv, downnorm, blurpool] if antialiased else [downrelu, downconv, downnorm] ) up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1)
35.939535
132
0.55662
794e14e160852403b6dfeb22aed50ef6d8b97635
532
py
Python
Taller Estructura Control Secuencial/Ejercicio_8.py
DiegoC386/Algoritmos_Diego
bb22b765ca15cb6ced5e3daae45cec300c421c18
[ "MIT" ]
null
null
null
Taller Estructura Control Secuencial/Ejercicio_8.py
DiegoC386/Algoritmos_Diego
bb22b765ca15cb6ced5e3daae45cec300c421c18
[ "MIT" ]
null
null
null
Taller Estructura Control Secuencial/Ejercicio_8.py
DiegoC386/Algoritmos_Diego
bb22b765ca15cb6ced5e3daae45cec300c421c18
[ "MIT" ]
null
null
null
""" Entradas LongitudLado1-->float-->Lado1 LongitudLado2-->float-->Lado2 LongitudLado3-->float-->Lado3 Salidas Semiperimetro-->float-->S Area-->float-->A """ import math #ENTRADA Lado1=float(input("Ingrese la longitud del primer lado: ")) Lado2=float(input("Ingrese la longitud del segundo lado: ")) Lado3=float(input("Ingrese la longitud del tercer lado: ")) #CAJANEGRA S=(Lado1+Lado2+Lado3)/2 A=math.sqrt(S*(S-Lado1)*(S-Lado2)*(S-Lado3)) print("El Semiperimetro es: "+str(S)) print("El Area del triangulo es: "+"{:.3f}".format(A))
28
60
0.714286
794e15eb8b5e789f522fcade043e284c5f706f1b
792
py
Python
core/urls.py
nixonsparrow/BookWorm
0248334e4b5a40e9faad5ec485e1a0abbdfe0c7a
[ "Apache-2.0" ]
1
2022-01-17T17:47:26.000Z
2022-01-17T17:47:26.000Z
core/urls.py
nixonsparrow/BookWorm
0248334e4b5a40e9faad5ec485e1a0abbdfe0c7a
[ "Apache-2.0" ]
1
2022-01-17T19:23:19.000Z
2022-01-17T19:23:19.000Z
core/urls.py
nixonsparrow/BookWorm
0248334e4b5a40e9faad5ec485e1a0abbdfe0c7a
[ "Apache-2.0" ]
null
null
null
"""core URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('books.urls')), ]
34.434783
77
0.700758
794e163f3b2a7bd7df34b5370d68695cfedd93cd
1,560
py
Python
python/setup.py
yasushi-saito/wslink
25c7d3b2f6da25b100bc69efa4e06b1defe22ca1
[ "BSD-3-Clause" ]
null
null
null
python/setup.py
yasushi-saito/wslink
25c7d3b2f6da25b100bc69efa4e06b1defe22ca1
[ "BSD-3-Clause" ]
null
null
null
python/setup.py
yasushi-saito/wslink
25c7d3b2f6da25b100bc69efa4e06b1defe22ca1
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import re # import shutil import sys # import itertools from setuptools import setup, find_packages # from setuptools.command.install import install # from distutils.dir_util import copy_tree readme = "" with open("README.rst") as f: readme = f.read() setup( name="wslinklc", description="Python/JavaScript library for communicating over WebSocket, with workarounds to publish messages synchronously, by Luminary", long_description=readme, author="Kitware, Inc.", author_email="kitware@kitware.com", url="https://github.com/kitware/wslink", license="BSD-3-Clause", classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords="websocket javascript rpc pubsub", packages=find_packages("src", exclude=("tests.*", "tests")), package_dir={"": "src"}, install_requires=["aiohttp"], )
31.2
142
0.64359
794e166be9c5ab201424284bbe3f990d7b13fd11
491
py
Python
data/scripts/templates/object/tangible/ship/crafted/booster/shared_fast_charge_fuel_cell_mk3.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/ship/crafted/booster/shared_fast_charge_fuel_cell_mk3.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/ship/crafted/booster/shared_fast_charge_fuel_cell_mk3.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/ship/crafted/booster/shared_fast_charge_fuel_cell_mk3.iff" result.attribute_template_id = 8 result.stfName("space_crafting_n","fast_charge_fuel_cell_mk3") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28.882353
94
0.749491
794e16ae16a01b502f2df02442672a0f17f125c9
5,651
py
Python
src/sentinel/azext_sentinel/vendored_sdks/security_insights/operations/comments_operations.py
hpsan/azure-cli-extensions
be1589bb6dd23837796e088d28e65e873050171e
[ "MIT" ]
null
null
null
src/sentinel/azext_sentinel/vendored_sdks/security_insights/operations/comments_operations.py
hpsan/azure-cli-extensions
be1589bb6dd23837796e088d28e65e873050171e
[ "MIT" ]
null
null
null
src/sentinel/azext_sentinel/vendored_sdks/security_insights/operations/comments_operations.py
hpsan/azure-cli-extensions
be1589bb6dd23837796e088d28e65e873050171e
[ "MIT" ]
1
2020-07-16T23:49:49.000Z
2020-07-16T23:49:49.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.pipeline import ClientRawResponse from .. import models class CommentsOperations(object): """CommentsOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: API version for the operation. Constant value: "2019-01-01-preview". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.config = config self.api_version = "2019-01-01-preview" def list_by_case( self, resource_group_name, operational_insights_resource_provider, workspace_name, case_id, filter=None, orderby=None, top=None, skip_token=None, custom_headers=None, raw=False, **operation_config): """Gets all case comments. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param operational_insights_resource_provider: The namespace of workspaces resource provider- Microsoft.OperationalInsights. :type operational_insights_resource_provider: str :param workspace_name: The name of the workspace. :type workspace_name: str :param case_id: Case ID :type case_id: str :param filter: Filters the results, based on a Boolean condition. Optional. :type filter: str :param orderby: Sorts the results. Optional. :type orderby: str :param top: Returns only the first n results. Optional. :type top: int :param skip_token: Skiptoken is only used if a previous operation returned a partial result. If a previous response contains a nextLink element, the value of the nextLink element will include a skiptoken parameter that specifies a starting point to use for subsequent calls. Optional. :type skip_token: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: CaseCommentList or ClientRawResponse if raw=true :rtype: ~securityinsights.models.CaseCommentList or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudErrorException<securityinsights.models.CloudErrorException>` """ # Construct URL url = self.list_by_case.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str', pattern=r'^[0-9A-Fa-f]{8}-([0-9A-Fa-f]{4}-){3}[0-9A-Fa-f]{12}$'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'operationalInsightsResourceProvider': self._serialize.url("operational_insights_resource_provider", operational_insights_resource_provider, 'str'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str', max_length=90, min_length=1), 'caseId': self._serialize.url("case_id", case_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if orderby is not None: query_parameters['$orderby'] = self._serialize.query("orderby", orderby, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if skip_token is not None: query_parameters['$skipToken'] = self._serialize.query("skip_token", skip_token, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.CloudErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('CaseCommentList', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized list_by_case.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{operationalInsightsResourceProvider}/workspaces/{workspaceName}/providers/Microsoft.SecurityInsights/cases/{caseId}/comments'}
47.487395
241
0.668554
794e16b975142922d7dcc1b1c516bfe2b1090f7e
500
py
Python
RecoTauTag/RecoTau/python/PFRecoTauDiscriminationByIsolationUsingLeadingPion_cfi.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
RecoTauTag/RecoTau/python/PFRecoTauDiscriminationByIsolationUsingLeadingPion_cfi.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
3
2018-08-23T13:40:24.000Z
2019-12-05T21:16:03.000Z
RecoTauTag/RecoTau/python/PFRecoTauDiscriminationByIsolationUsingLeadingPion_cfi.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
import FWCore.ParameterSet.Config as cms import copy from RecoTauTag.RecoTau.PFRecoTauDiscriminationByIsolation_cfi import pfRecoTauDiscriminationByIsolation from RecoTauTag.RecoTau.TauDiscriminatorTools import requireLeadPion pfRecoTauDiscriminationByIsolationUsingLeadingPion = copy.deepcopy(pfRecoTauDiscriminationByIsolation) # Require a lead pion (charged OR neutral) instead of strictly a leading track pfRecoTauDiscriminationByIsolationUsingLeadingPion.Prediscriminants = requireLeadPion
41.666667
105
0.892
794e16eb28d32f4b7ab0992ea30b6080991ffc77
141
py
Python
lib/db.py
hygoni/CNUNotifier
964a7b080ab3ec1caa3769d4c5b164fbae5161ba
[ "MIT" ]
4
2019-08-13T12:09:25.000Z
2021-05-29T15:33:55.000Z
lib/db.py
hygoni/CNUNotifier
964a7b080ab3ec1caa3769d4c5b164fbae5161ba
[ "MIT" ]
1
2019-08-18T07:59:54.000Z
2019-08-19T12:20:45.000Z
lib/db.py
hygoni/CNUNotifier
964a7b080ab3ec1caa3769d4c5b164fbae5161ba
[ "MIT" ]
1
2019-08-10T10:32:42.000Z
2019-08-10T10:32:42.000Z
import pymysql def getConn(): conn = pymysql.connect(host='localhost', user='cnunoti', password='cnunoti', db='cnunoti') return conn
23.5
92
0.702128
794e179f841bd8c4954241cef2dbc4f62f132d8e
6,166
py
Python
env/lib/python3.8/site-packages/plotly/graph_objs/volume/slices/_y.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/volume/slices/_y.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/volume/slices/_y.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Y(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "volume.slices" _path_str = "volume.slices.y" _valid_props = {"fill", "locations", "locationssrc", "show"} # fill # ---- @property def fill(self): """ Sets the fill ratio of the `slices`. The default fill value of the `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'fill' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["fill"] @fill.setter def fill(self, val): self["fill"] = val # locations # --------- @property def locations(self): """ Specifies the location(s) of slices on the axis. When not specified slices would be created for all points of the axis y except start and end. The 'locations' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["locations"] @locations.setter def locations(self, val): self["locations"] = val # locationssrc # ------------ @property def locationssrc(self): """ Sets the source reference on Chart Studio Cloud for locations . The 'locationssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["locationssrc"] @locationssrc.setter def locationssrc(self, val): self["locationssrc"] = val # show # ---- @property def show(self): """ Determines whether or not slice planes about the y dimension are drawn. The 'show' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["show"] @show.setter def show(self, val): self["show"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ fill Sets the fill ratio of the `slices`. The default fill value of the `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. locations Specifies the location(s) of slices on the axis. When not specified slices would be created for all points of the axis y except start and end. locationssrc Sets the source reference on Chart Studio Cloud for locations . show Determines whether or not slice planes about the y dimension are drawn. """ def __init__( self, arg=None, fill=None, locations=None, locationssrc=None, show=None, **kwargs ): """ Construct a new Y object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.volume.slices.Y` fill Sets the fill ratio of the `slices`. The default fill value of the `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. locations Specifies the location(s) of slices on the axis. When not specified slices would be created for all points of the axis y except start and end. locationssrc Sets the source reference on Chart Studio Cloud for locations . show Determines whether or not slice planes about the y dimension are drawn. Returns ------- Y """ super(Y, self).__init__("y") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.volume.slices.Y constructor must be a dict or an instance of :class:`plotly.graph_objs.volume.slices.Y`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("fill", None) _v = fill if fill is not None else _v if _v is not None: self["fill"] = _v _v = arg.pop("locations", None) _v = locations if locations is not None else _v if _v is not None: self["locations"] = _v _v = arg.pop("locationssrc", None) _v = locationssrc if locationssrc is not None else _v if _v is not None: self["locationssrc"] = _v _v = arg.pop("show", None) _v = show if show is not None else _v if _v is not None: self["show"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
28.67907
82
0.541194
794e18468d7c43b4aaf696656dd6b4236b913101
51
py
Python
vesselregistration/moduleone.py
mjirik/vesselregistration
ed0686625560ebb69a7f2fdf527b8d1ab21ae503
[ "MIT" ]
null
null
null
vesselregistration/moduleone.py
mjirik/vesselregistration
ed0686625560ebb69a7f2fdf527b8d1ab21ae503
[ "MIT" ]
null
null
null
vesselregistration/moduleone.py
mjirik/vesselregistration
ed0686625560ebb69a7f2fdf527b8d1ab21ae503
[ "MIT" ]
null
null
null
def print_hello(name): print("Hello " + name)
12.75
26
0.627451
794e191b6141569729ce5dc653dc5e9b9fd131a4
6,079
py
Python
tests/pfcwd/test_pfcwd_all_port_storm.py
shubav/sonic-mgmt
0ff71b907a55489bb4ed7d17b1682380fd459bf2
[ "Apache-2.0" ]
132
2016-10-19T12:34:44.000Z
2022-03-16T09:00:39.000Z
tests/pfcwd/test_pfcwd_all_port_storm.py
shubav/sonic-mgmt
0ff71b907a55489bb4ed7d17b1682380fd459bf2
[ "Apache-2.0" ]
3,152
2016-09-21T23:05:58.000Z
2022-03-31T23:29:08.000Z
tests/pfcwd/test_pfcwd_all_port_storm.py
shubav/sonic-mgmt
0ff71b907a55489bb4ed7d17b1682380fd459bf2
[ "Apache-2.0" ]
563
2016-09-20T01:00:15.000Z
2022-03-31T22:43:54.000Z
import logging import os import pytest from tests.common.fixtures.conn_graph_facts import fanout_graph_facts from tests.common.helpers.pfc_storm import PFCMultiStorm from tests.common.plugins.loganalyzer.loganalyzer import LogAnalyzer from .files.pfcwd_helper import start_wd_on_ports TEMPLATES_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "templates") EXPECT_PFC_WD_DETECT_RE = ".* detected PFC storm .*" EXPECT_PFC_WD_RESTORE_RE = ".*storm restored.*" pytestmark = [ pytest.mark.disable_loganalyzer, pytest.mark.topology('any') ] logger = logging.getLogger(__name__) @pytest.fixture(scope='class', autouse=True) def stop_pfcwd(duthosts, rand_one_dut_hostname): """ Fixture that stops PFC Watchdog before each test run Args: duthost (AnsibleHost): DUT instance """ duthost = duthosts[rand_one_dut_hostname] logger.info("--- Stop Pfcwd --") duthost.command("pfcwd stop") @pytest.fixture(scope='class', autouse=True) def storm_test_setup_restore(setup_pfc_test, fanout_graph_facts, duthosts, rand_one_dut_hostname, fanouthosts): """ Fixture that inits the test vars, start PFCwd on ports and cleans up after the test run Args: setup_pfc_test (fixture): module scoped, autouse PFC fixture fanout_graph_facts (fixture): fanout graph info duthost (AnsibleHost): DUT instance fanouthosts (AnsibleHost): fanout instance Yields: storm_hndle (PFCStorm): class PFCStorm instance """ duthost = duthosts[rand_one_dut_hostname] setup_info = setup_pfc_test neighbors = setup_info['neighbors'] port_list = setup_info['port_list'] ports = (" ").join(port_list) pfc_queue_index = 3 pfc_frames_number = 10000000 pfc_wd_detect_time = 200 pfc_wd_restore_time = 200 pfc_wd_restore_time_large = 30000 peer_params = populate_peer_info(port_list, neighbors, pfc_queue_index, pfc_frames_number) storm_hndle = set_storm_params(duthost, fanout_graph_facts, fanouthosts, peer_params) start_wd_on_ports(duthost, ports, pfc_wd_restore_time, pfc_wd_detect_time) yield storm_hndle logger.info("--- Storm test cleanup ---") storm_hndle.stop_pfc_storm() def populate_peer_info(port_list, neighbors, q_idx, frames_cnt): """ Build the peer_info map which will be used by the storm generation class Args: port_list (list): set of ports on which the PFC storm needs to be generated neighbors (dict): fanout info for each DUT port q_idx (int): queue on which PFC frames need to be generated frames_cnt (int): Number of PFC frames to generate Returns: peer_params (dict): all PFC params needed for each fanout for storm generation """ peer_port_map = dict() for port in port_list: peer_dev = neighbors[port]['peerdevice'] peer_port = neighbors[port]['peerport'] peer_port_map.setdefault(peer_dev, []).append(peer_port) peer_params = dict() for peer_dev in peer_port_map: peer_port_map[peer_dev] = (',').join(peer_port_map[peer_dev]) peer_params[peer_dev] = {'pfc_frames_number': frames_cnt, 'pfc_queue_index': q_idx, 'intfs': peer_port_map[peer_dev] } return peer_params def set_storm_params(duthost, fanout_graph, fanouthosts, peer_params): """ Setup storm parameters Args: duthost (AnsibleHost): DUT instance fanout_graph (fixture): fanout info fanouthosts (AnsibleHost): fanout instance peer_params (dict): all PFC params needed for each fanout for storm generation Returns: storm_hndle (PFCMultiStorm): class PFCMultiStorm intance """ storm_hndle = PFCMultiStorm(duthost, fanout_graph, fanouthosts, peer_params) storm_hndle.set_storm_params() return storm_hndle @pytest.mark.usefixtures('stop_pfcwd', 'storm_test_setup_restore') class TestPfcwdAllPortStorm(object): """ PFC storm test class """ def run_test(self, duthost, storm_hndle, expect_regex, syslog_marker, action): """ Storm generation/restoration on all ports and verification Args: duthost (AnsibleHost): DUT instance storm_hndle (PFCMultiStorm): class PFCMultiStorm intance expect_regex (list): list of expect regexs to be matched in the syslog syslog_marker (string): marker prefix written to the syslog action (string): storm/restore action """ loganalyzer = LogAnalyzer(ansible_host=duthost, marker_prefix=syslog_marker) ignore_file = os.path.join(TEMPLATES_DIR, "ignore_pfc_wd_messages") reg_exp = loganalyzer.parse_regexp_file(src=ignore_file) loganalyzer.ignore_regex.extend(reg_exp) loganalyzer.expect_regex = [] loganalyzer.expect_regex.extend(expect_regex) loganalyzer.match_regex = [] with loganalyzer: if action == "storm": storm_hndle.start_pfc_storm() elif action == "restore": storm_hndle.stop_pfc_storm() time.sleep(5) def test_all_port_storm_restore(self, duthosts, rand_one_dut_hostname, storm_test_setup_restore): """ Tests PFC storm/restore on all ports Args: duthost (AnsibleHost): DUT instance storm_test_setup_restore (fixture): class scoped autouse setup fixture """ duthost = duthosts[rand_one_dut_hostname] storm_hndle = storm_test_setup_restore logger.info("--- Testing if PFC storm is detected on all ports ---") self.run_test(duthost, storm_hndle, expect_regex=[EXPECT_PFC_WD_DETECT_RE], syslog_marker="all_port_storm", action="storm") logger.info("--- Testing if PFC storm is restored on all ports ---") self.run_test(duthost, storm_hndle, expect_regex=[EXPECT_PFC_WD_RESTORE_RE], syslog_marker="all_port_storm_restore", action="restore")
38.232704
124
0.691232
794e198ec6d97e867e51117264495da76ac669ad
57,633
py
Python
python/ccxt/async_support/bibox.py
ebarti/ccxt
da2770a5ec3fa6b18e789f202cdebdab71925f64
[ "MIT" ]
null
null
null
python/ccxt/async_support/bibox.py
ebarti/ccxt
da2770a5ec3fa6b18e789f202cdebdab71925f64
[ "MIT" ]
null
null
null
python/ccxt/async_support/bibox.py
ebarti/ccxt
da2770a5ec3fa6b18e789f202cdebdab71925f64
[ "MIT" ]
1
2022-03-14T18:27:32.000Z
2022-03-14T18:27:32.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib import math import json from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import DDoSProtection from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.precise import Precise class bibox(Exchange): def describe(self): return self.deep_extend(super(bibox, self).describe(), { 'id': 'bibox', 'name': 'Bibox', 'countries': ['CN', 'US', 'KR'], 'version': 'v1', 'hostname': 'bibox.com', 'has': { 'CORS': None, 'spot': True, 'margin': None, # has but unimplemented 'swap': None, # has but unimplemented 'future': None, 'option': None, 'cancelOrder': True, 'createMarketOrder': None, # or they will return https://github.com/ccxt/ccxt/issues/2338 'createOrder': True, 'fetchBalance': True, 'fetchBorrowRate': False, 'fetchBorrowRates': False, 'fetchClosedOrders': True, 'fetchCurrencies': True, 'fetchDepositAddress': True, 'fetchDeposits': True, 'fetchFundingFees': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTrades': True, 'fetchWithdrawals': True, 'withdraw': True, }, 'timeframes': { '1m': '1min', '5m': '5min', '15m': '15min', '30m': '30min', '1h': '1hour', '2h': '2hour', '4h': '4hour', '6h': '6hour', '12h': '12hour', '1d': 'day', '1w': 'week', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/51840849/77257418-3262b000-6c85-11ea-8fb8-20bdf20b3592.jpg', 'api': 'https://api.{hostname}', 'www': 'https://www.bibox365.com', 'doc': [ 'https://biboxcom.github.io/en/', ], 'fees': 'https://bibox.zendesk.com/hc/en-us/articles/360002336133', 'referral': 'https://w2.bibox365.com/login/register?invite_code=05Kj3I', }, 'api': { 'public': { 'post': [ # TODO: rework for full endpoint/cmd paths here 'mdata', ], 'get': [ 'cquery', 'mdata', 'cdata', 'orderpending', ], }, 'private': { 'post': [ 'cquery', 'ctrade', 'user', 'orderpending', 'transfer', ], }, 'v2private': { 'post': [ 'assets/transfer/spot', ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'taker': self.parse_number('0.001'), 'maker': self.parse_number('0.0008'), }, 'funding': { 'tierBased': False, 'percentage': False, 'withdraw': {}, 'deposit': {}, }, }, 'exceptions': { '2011': AccountSuspended, # Account is locked '2015': AuthenticationError, # Google authenticator is wrong '2021': InsufficientFunds, # Insufficient balance available for withdrawal '2027': InsufficientFunds, # Insufficient balance available(for trade) '2033': OrderNotFound, # operation failed! Orders have been completed or revoked '2065': InvalidOrder, # Precatory price is exorbitant, please reset '2066': InvalidOrder, # Precatory price is low, please reset '2067': InvalidOrder, # Does not support market orders '2068': InvalidOrder, # The number of orders can not be less than '2078': InvalidOrder, # unvalid order price '2085': InvalidOrder, # Order quantity is too small '2091': RateLimitExceeded, # request is too frequency, please try again later '2092': InvalidOrder, # Minimum amount not met '2131': InvalidOrder, # The order quantity cannot be greater than '3000': BadRequest, # Requested parameter incorrect '3002': BadRequest, # Parameter cannot be null '3012': AuthenticationError, # invalid apiKey '3016': BadSymbol, # Trading pair error '3024': PermissionDenied, # wrong apikey permissions '3025': AuthenticationError, # signature failed '4000': ExchangeNotAvailable, # current network is unstable '4003': DDoSProtection, # server busy please try again later }, 'commonCurrencies': { 'APENFT(NFT)': 'NFT', 'BOX': 'DefiBox', 'BPT': 'BlockPool Token', 'GTC': 'Game.com', 'KEY': 'Bihu', 'MTC': 'MTC Mesh Network', # conflict with MTC Docademic doc.com Token https://github.com/ccxt/ccxt/issues/6081 https://github.com/ccxt/ccxt/issues/3025 'NFT': 'NFT Protocol', 'PAI': 'PCHAIN', 'REVO': 'Revo Network', 'STAR': 'Starbase', 'TERN': 'Ternio-ERC20', }, }) async def fetch_markets(self, params={}): request = { 'cmd': 'pairList', } response = await self.publicGetMdata(self.extend(request, params)) # # { # "result": [ # { # "id":1, # "pair":"BIX_BTC", # "pair_type":0, # "area_id":7, # "is_hide":0, # "decimal":8, # "amount_scale":4 # } # ], # "cmd":"pairList", # "ver":"1.1" # } # markets = self.safe_value(response, 'result') request2 = { 'cmd': 'tradeLimit', } response2 = await self.publicGetOrderpending(self.extend(request2, params)) # # { # result: { # min_trade_price: {default: '0.00000001', USDT: '0.0001', DAI: '0.0001'}, # min_trade_amount: {default: '0.0001'}, # min_trade_money: { # USDT: '1', # USDC: '1', # DAI: '1', # GUSD: '1', # BIX: '3', # BTC: '0.0002', # ETH: '0.005' # } # }, # cmd: 'tradeLimit' # } # result2 = self.safe_value(response2, 'result', {}) minCosts = self.safe_value(result2, 'min_trade_money', {}) result = [] for i in range(0, len(markets)): market = markets[i] numericId = self.safe_integer(market, 'id') id = self.safe_string(market, 'pair') baseId = None quoteId = None if id is not None: parts = id.split('_') baseId = self.safe_string(parts, 0) quoteId = self.safe_string(parts, 1) base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote type = 'spot' spot = True areaId = self.safe_integer(market, 'area_id') if areaId == 16: # TODO: update to v3 api continue result.append({ 'id': id, 'numericId': numericId, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': None, 'baseId': baseId, 'quoteId': quoteId, 'settleId': None, 'type': type, 'spot': spot, 'margin': False, 'swap': False, 'future': False, 'option': False, 'active': None, 'contract': False, 'linear': None, 'inverse': None, 'contractSize': None, 'expiry': None, 'expiryDatetime': None, 'strike': None, 'optionType': None, 'precision': { 'amount': self.safe_integer(market, 'amount_scale'), 'price': self.safe_integer(market, 'decimal'), }, 'limits': { 'leverage': { 'min': None, 'max': None, }, 'amount': { 'min': None, 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(minCosts, quoteId), 'max': None, }, }, 'info': market, }) return result def parse_ticker(self, ticker, market=None): # we don't set values that are not defined by the exchange timestamp = self.safe_integer(ticker, 'timestamp') symbol = None if market is not None: symbol = market['symbol'] else: baseId = self.safe_string(ticker, 'coin_symbol') quoteId = self.safe_string(ticker, 'currency_symbol') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote last = self.safe_string(ticker, 'last') change = self.safe_string(ticker, 'change') baseVolume = self.safe_string_2(ticker, 'vol', 'vol24H') percentage = self.safe_string(ticker, 'percent') if percentage is not None: percentage = percentage.replace('%', '') return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_string(ticker, 'high'), 'low': self.safe_string(ticker, 'low'), 'bid': self.safe_string(ticker, 'buy'), 'bidVolume': self.safe_string(ticker, 'buy_amount'), 'ask': self.safe_string(ticker, 'sell'), 'askVolume': self.safe_string(ticker, 'sell_amount'), 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': percentage, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': self.safe_string(ticker, 'amount'), 'info': ticker, }, market, False) async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'cmd': 'ticker', 'pair': market['id'], } response = await self.publicGetMdata(self.extend(request, params)) return self.parse_ticker(response['result'], market) async def fetch_tickers(self, symbols=None, params={}): request = { 'cmd': 'marketAll', } response = await self.publicGetMdata(self.extend(request, params)) tickers = self.parse_tickers(response['result'], symbols) result = self.index_by(tickers, 'symbol') return self.filter_by_array(result, 'symbol', symbols) def parse_trade(self, trade, market=None): timestamp = self.safe_integer_2(trade, 'time', 'createdAt') side = self.safe_integer_2(trade, 'side', 'order_side') side = 'buy' if (side == 1) else 'sell' symbol = None if market is None: marketId = self.safe_string(trade, 'pair') if marketId is None: baseId = self.safe_string(trade, 'coin_symbol') quoteId = self.safe_string(trade, 'currency_symbol') if (baseId is not None) and (quoteId is not None): marketId = baseId + '_' + quoteId if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] fee = None feeCostString = self.safe_string(trade, 'fee') feeCurrency = self.safe_string(trade, 'fee_symbol') if feeCurrency is not None: if feeCurrency in self.currencies_by_id: feeCurrency = self.currencies_by_id[feeCurrency]['code'] else: feeCurrency = self.safe_currency_code(feeCurrency) feeRate = None # todo: deduce from market if market is defined priceString = self.safe_string(trade, 'price') amountString = self.safe_string(trade, 'amount') if feeCostString is not None: fee = { 'cost': Precise.string_neg(feeCostString), 'currency': feeCurrency, 'rate': feeRate, } id = self.safe_string(trade, 'id') return self.safe_trade({ 'info': trade, 'id': id, 'order': None, # Bibox does not have it(documented) yet 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': 'limit', 'takerOrMaker': None, 'side': side, 'price': priceString, 'amount': amountString, 'cost': None, 'fee': fee, }, market) async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'cmd': 'deals', 'pair': market['id'], } if limit is not None: request['size'] = limit # default = 200 response = await self.publicGetMdata(self.extend(request, params)) return self.parse_trades(response['result'], market, since, limit) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'cmd': 'depth', 'pair': market['id'], } if limit is not None: request['size'] = limit # default = 200 response = await self.publicGetMdata(self.extend(request, params)) return self.parse_order_book(response['result'], symbol, self.safe_number(response['result'], 'update_time'), 'bids', 'asks', 'price', 'volume') def parse_ohlcv(self, ohlcv, market=None): # # { # "time":1591448220000, # "open":"0.02507029", # "high":"0.02507029", # "low":"0.02506349", # "close":"0.02506349", # "vol":"5.92000000" # } # return [ self.safe_integer(ohlcv, 'time'), self.safe_number(ohlcv, 'open'), self.safe_number(ohlcv, 'high'), self.safe_number(ohlcv, 'low'), self.safe_number(ohlcv, 'close'), self.safe_number(ohlcv, 'vol'), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=1000, params={}): await self.load_markets() market = self.market(symbol) request = { 'cmd': 'kline', 'pair': market['id'], 'period': self.timeframes[timeframe], 'size': limit, } response = await self.publicGetMdata(self.extend(request, params)) # # { # "result":[ # {"time":1591448220000,"open":"0.02507029","high":"0.02507029","low":"0.02506349","close":"0.02506349","vol":"5.92000000"}, # {"time":1591448280000,"open":"0.02506449","high":"0.02506975","low":"0.02506108","close":"0.02506843","vol":"5.72000000"}, # {"time":1591448340000,"open":"0.02506698","high":"0.02506698","low":"0.02506452","close":"0.02506519","vol":"4.86000000"}, # ], # "cmd":"kline", # "ver":"1.1" # } # result = self.safe_value(response, 'result', []) return self.parse_ohlcvs(result, market, timeframe, since, limit) async def fetch_currencies(self, params={}): if self.check_required_credentials(False): return await self.fetch_currencies_private(params) else: return await self.fetch_currencies_public(params) async def fetch_currencies_public(self, params={}): request = { 'cmd': 'currencies', } response = await self.publicGetCdata(self.extend(request, params)) # # publicGetCdata # # { # "result":[ # { # "symbol":"BTC", # "name":"BTC", # "valid_decimals":8, # "original_decimals":8, # "is_erc20":0, # "enable_withdraw":1, # "enable_deposit":1, # "withdraw_min":0.005, # "describe_summary":"[{\"lang\":\"zh-cn\",\"text\":\"Bitcoin 比特币的概念最初由中本聪在2009年提出,是点对点的基于 SHA-256 算法的一种P2P形式的数字货币,点对点的传输意味着一个去中心化的支付系统。\"},{\"lang\":\"en-ww\",\"text\":\"Bitcoin is a digital asset and a payment system invented by Satoshi Nakamoto who published a related paper in 2008 and released it as open-source software in 2009. The system featured as peer-to-peer; users can transact directly without an intermediary.\"}]" # } # ], # "cmd":"currencies" # } # currencies = self.safe_value(response, 'result') result = {} for i in range(0, len(currencies)): currency = currencies[i] id = self.safe_string(currency, 'symbol') name = self.safe_string(currency, 'name') # contains hieroglyphs causing python ASCII bug code = self.safe_currency_code(id) precision = self.safe_integer(currency, 'valid_decimals') deposit = self.safe_value(currency, 'enable_deposit') withdraw = self.safe_value(currency, 'enable_withdraw') active = (deposit and withdraw) result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': active, 'deposit': deposit, 'withdraw': withdraw, 'fee': None, 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': None, }, 'withdraw': { 'min': self.safe_number(currency, 'withdraw_min'), 'max': None, }, }, } return result async def fetch_currencies_private(self, params={}): if not self.check_required_credentials(False): raise AuthenticationError(self.id + " fetchCurrencies is an authenticated endpoint, therefore it requires 'apiKey' and 'secret' credentials. If you don't need currency details, set exchange.has['fetchCurrencies'] = False before calling its methods.") request = { 'cmd': 'transfer/coinList', 'body': {}, } response = await self.privatePostTransfer(self.extend(request, params)) # # { # "result":[ # { # "result":[ # { # "totalBalance":"14.60987476", # "balance":"14.60987476", # "freeze":"0.00000000", # "id":60, # "symbol":"USDT", # "icon_url":"/appimg/USDT_icon.png", # "describe_url":"[{\"lang\":\"zh-cn\",\"link\":\"https://bibox.zendesk.com/hc/zh-cn/articles/115004798234\"},{\"lang\":\"en-ww\",\"link\":\"https://bibox.zendesk.com/hc/en-us/articles/115004798234\"}]", # "name":"USDT", # "enable_withdraw":1, # "enable_deposit":1, # "enable_transfer":1, # "confirm_count":2, # "is_erc20":1, # "forbid_info":null, # "describe_summary":"[{\"lang\":\"zh-cn\",\"text\":\"USDT 是 Tether 公司推出的基于稳定价值货币美元(USD)的代币 Tether USD(简称USDT),1USDT=1美元,用户可以随时使用 USDT 与 USD 进行1:1的兑换。\"},{\"lang\":\"en-ww\",\"text\":\"USDT is a cryptocurrency asset issued on the Bitcoin blockchain via the Omni Layer Protocol. Each USDT unit is backed by a U.S Dollar held in the reserves of the Tether Limited and can be redeemed through the Tether Platform.\"}]", # "total_amount":4776930644, # "supply_amount":4642367414, # "price":"--", # "contract_father":"OMNI", # "supply_time":"--", # "comment":null, # "chain_type":"OMNI", # "general_name":"USDT", # "contract":"31", # "original_decimals":8, # "deposit_type":0, # "hasCobo":0, # "BTCValue":"0.00027116", # "CNYValue":"90.36087919", # "USDValue":"14.61090236", # "children":[ # {"type":"ERC20","symbol":"eUSDT","enable_deposit":1,"enable_withdraw":1,"confirm_count":13}, # {"type":"TRC20","symbol":"tUSDT","enable_deposit":1,"enable_withdraw":1,"confirm_count":20}, # {"type":"OMNI","symbol":"USDT","enable_deposit":1,"enable_withdraw":1,"confirm_count":2}, # {"type":"HECO","symbol":"hUSDT","enable_deposit":1,"enable_withdraw":1,"confirm_count":12}, # {"type":"BSC(BEP20)","symbol":"bUSDT","enable_deposit":1,"enable_withdraw":1,"confirm_count":5}, # {"type":"HPB","symbol":"pUSDT","enable_deposit":1,"enable_withdraw":1,"confirm_count":20} # ] # } # ], # "cmd":"transfer/coinList" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) currencies = self.safe_value(firstResult, 'result') result = {} for i in range(0, len(currencies)): currency = currencies[i] id = self.safe_string(currency, 'symbol') name = currency['name'] # contains hieroglyphs causing python ASCII bug code = self.safe_currency_code(id) precision = 8 deposit = self.safe_value(currency, 'enable_deposit') withdraw = self.safe_value(currency, 'enable_withdraw') active = (deposit and withdraw) result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': active, 'fee': None, 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'withdraw': { 'min': None, 'max': math.pow(10, precision), }, }, } return result def parse_balance(self, response): outerResult = self.safe_value(response, 'result') firstResult = self.safe_value(outerResult, 0, {}) innerResult = self.safe_value(firstResult, 'result') result = {'info': response} assetsList = self.safe_value(innerResult, 'assets_list', []) for i in range(0, len(assetsList)): balance = assetsList[i] currencyId = self.safe_string(balance, 'coin_symbol') code = self.safe_currency_code(currencyId) account = self.account() account['free'] = self.safe_string(balance, 'balance') account['used'] = self.safe_string(balance, 'freeze') result[code] = account return self.safe_balance(result) async def fetch_balance(self, params={}): await self.load_markets() type = self.safe_string(params, 'type', 'assets') params = self.omit(params, 'type') request = { 'cmd': 'transfer/' + type, # assets, mainAssets 'body': self.extend({ 'select': 1, # return full info }, params), } response = await self.privatePostTransfer(request) # # { # "result":[ # { # "result":{ # "total_btc":"0.00000298", # "total_cny":"0.99", # "total_usd":"0.16", # "assets_list":[ # {"coin_symbol":"BTC","BTCValue":"0.00000252","CNYValue":"0.84","USDValue":"0.14","balance":"0.00000252","freeze":"0.00000000"}, # {"coin_symbol":"LTC","BTCValue":"0.00000023","CNYValue":"0.07","USDValue":"0.01","balance":"0.00006765","freeze":"0.00000000"}, # {"coin_symbol":"USDT","BTCValue":"0.00000023","CNYValue":"0.08","USDValue":"0.01","balance":"0.01252100","freeze":"0.00000000"} # ] # }, # "cmd":"transfer/assets" # } # ] # } # return self.parse_balance(response) async def fetch_deposits(self, code=None, since=None, limit=None, params={}): await self.load_markets() if limit is None: limit = 100 request = { 'page': 1, 'size': limit, } currency = None if code is not None: currency = self.currency(code) request['symbol'] = currency['id'] response = await self.privatePostTransfer({ 'cmd': 'transfer/transferInList', 'body': self.extend(request, params), }) # # { # "result":[ # { # "result":{ # "count":2, # "page":1, # "items":[ # { # "coin_symbol":"ETH", # token # "to_address":"xxxxxxxxxxxxxxxxxxxxxxxxxx", # address # "amount":"1.00000000", # amount # "confirmCount":"15", # the acknowledgment number # "createdAt":1540641511000, # "status":2 # status, 1-deposit is in process,2-deposit finished,3-deposit failed # }, # { # "coin_symbol":"BIX", # "to_address":"xxxxxxxxxxxxxxxxxxxxxxxxxx", # "amount":"1.00000000", # "confirmCount":"15", # "createdAt":1540622460000, # "status":2 # } # ] # }, # "cmd":"transfer/transferInList" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) innerResult = self.safe_value(firstResult, 'result', {}) deposits = self.safe_value(innerResult, 'items', []) for i in range(0, len(deposits)): deposits[i]['type'] = 'deposit' return self.parse_transactions(deposits, currency, since, limit) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): await self.load_markets() if limit is None: limit = 100 request = { 'page': 1, 'size': limit, } currency = None if code is not None: currency = self.currency(code) request['symbol'] = currency['id'] response = await self.privatePostTransfer({ 'cmd': 'transfer/transferOutList', 'body': self.extend(request, params), }) # # { # "result":[ # { # "result":{ # "count":1, # "page":1, # "items":[ # { # "id":612867, # "coin_symbol":"ETH", # "chain_type":"ETH", # "to_address":"0xd41de7a88ab5fc59edc6669f54873576be95bff1", # "tx_id":"0xc60950596227af3f27c3a1b5911ea1c79bae53bdce67274e48a0ce87a5ef2df8", # "addr_remark":"binance", # "amount":"2.34550946", # "fee":"0.00600000", # "createdAt":1561339330000, # "memo":"", # "status":3 # } # ] # }, # "cmd":"transfer/transferOutList" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) innerResult = self.safe_value(firstResult, 'result', {}) withdrawals = self.safe_value(innerResult, 'items', []) for i in range(0, len(withdrawals)): withdrawals[i]['type'] = 'withdrawal' return self.parse_transactions(withdrawals, currency, since, limit) def parse_transaction(self, transaction, currency=None): # # fetchDeposits # # { # 'id': 1023291, # 'coin_symbol': 'ETH', # 'to_address': '0x7263....', # 'amount': '0.49170000', # 'confirmCount': '16', # 'createdAt': 1553123867000, # 'status': 2 # } # # fetchWithdrawals # # { # 'id': 521844, # 'coin_symbol': 'ETH', # 'to_address': '0xfd4e....', # 'addr_remark': '', # 'amount': '0.39452750', # 'fee': '0.00600000', # 'createdAt': 1553226906000, # 'memo': '', # 'status': 3 # } # id = self.safe_string(transaction, 'id') address = self.safe_string(transaction, 'to_address') currencyId = self.safe_string(transaction, 'coin_symbol') code = self.safe_currency_code(currencyId, currency) timestamp = self.safe_string(transaction, 'createdAt') tag = self.safe_string(transaction, 'addr_remark') type = self.safe_string(transaction, 'type') status = self.parse_transaction_status_by_type(self.safe_string(transaction, 'status'), type) amount = self.safe_number(transaction, 'amount') feeCost = self.safe_number(transaction, 'fee') if type == 'deposit': feeCost = 0 tag = None fee = { 'cost': feeCost, 'currency': code, } return { 'info': transaction, 'id': id, 'txid': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'network': None, 'address': address, 'addressTo': None, 'addressFrom': None, 'tag': tag, 'tagTo': None, 'tagFrom': None, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': None, 'fee': fee, } def parse_transaction_status_by_type(self, status, type=None): statuses = { 'deposit': { '1': 'pending', '2': 'ok', }, 'withdrawal': { '0': 'pending', '3': 'ok', }, } return self.safe_string(self.safe_value(statuses, type, {}), status, status) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) orderType = 2 if (type == 'limit') else 1 orderSide = 1 if (side == 'buy') else 2 request = { 'cmd': 'orderpending/trade', 'body': self.extend({ 'pair': market['id'], 'account_type': 0, 'order_type': orderType, 'order_side': orderSide, 'pay_bix': 0, 'amount': amount, 'price': price, }, params), } response = await self.privatePostOrderpending(request) # # { # "result":[ # { # "result": "100055558128036", # order id # "index": 12345, # random index, specific one in a batch # "cmd":"orderpending/trade" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) id = self.safe_value(firstResult, 'result') return { 'info': response, 'id': id, } async def cancel_order(self, id, symbol=None, params={}): request = { 'cmd': 'orderpending/cancelTrade', 'body': self.extend({ 'orders_id': id, }, params), } response = await self.privatePostOrderpending(request) # # { # "result":[ # { # "result":"OK", # only indicates if the server received the cancelling request, and the cancelling result can be obtained from the order record # "index": 12345, # random index, specific one in a batch # "cmd":"orderpending/cancelTrade" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) return firstResult async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() request = { 'cmd': 'orderpending/order', 'body': self.extend({ 'id': str(id), 'account_type': 0, # 0 = spot account }, params), } response = await self.privatePostOrderpending(request) # # { # "result":[ # { # "result":{ # "id":"100055558128036", # "createdAt": 1512756997000, # "account_type":0, # "coin_symbol":"LTC", # Trading Token # "currency_symbol":"BTC", # Pricing Token # "order_side":2, # Trading side 1-Buy, 2-Sell # "order_type":2, # 2-limit order # "price":"0.00900000", # order price # "amount":"1.00000000", # order amount # "money":"0.00900000", # currency amount(price * amount) # "deal_amount":"0.00000000", # deal amount # "deal_percent":"0.00%", # deal percentage # "unexecuted":"0.00000000", # unexecuted amount # "status":3 # Status, -1-fail, 0,1-to be dealt, 2-dealt partly, 3-dealt totally, 4- cancelled partly, 5-cancelled totally, 6-to be cancelled # }, # "cmd":"orderpending/order" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) order = self.safe_value(firstResult, 'result') if self.is_empty(order): raise OrderNotFound(self.id + ' order ' + id + ' not found') return self.parse_order(order) def parse_order(self, order, market=None): symbol = None if market is None: marketId = None baseId = self.safe_string(order, 'coin_symbol') quoteId = self.safe_string(order, 'currency_symbol') if (baseId is not None) and (quoteId is not None): marketId = baseId + '_' + quoteId if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] rawType = self.safe_string(order, 'order_type') type = 'market' if (rawType == '1') else 'limit' timestamp = self.safe_integer(order, 'createdAt') price = self.safe_string(order, 'price') average = self.safe_string(order, 'deal_price') filled = self.safe_string(order, 'deal_amount') amount = self.safe_string(order, 'amount') cost = self.safe_string_2(order, 'deal_money', 'money') rawSide = self.safe_string(order, 'order_side') side = 'buy' if (rawSide == '1') else 'sell' status = self.parse_order_status(self.safe_string(order, 'status')) id = self.safe_string(order, 'id') feeCost = self.safe_number(order, 'fee') fee = None if feeCost is not None: fee = { 'cost': feeCost, 'currency': None, } return self.safe_order({ 'info': order, 'id': id, 'clientOrderId': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': None, 'amount': amount, 'cost': cost, 'average': average, 'filled': filled, 'remaining': None, 'status': status, 'fee': fee, 'trades': None, }, market) def parse_order_status(self, status): statuses = { # original comments from bibox: '1': 'open', # pending '2': 'open', # part completed '3': 'closed', # completed '4': 'canceled', # part canceled '5': 'canceled', # canceled '6': 'canceled', # canceling } return self.safe_string(statuses, status, status) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() market = None pair = None if symbol is not None: market = self.market(symbol) pair = market['id'] size = limit if limit else 200 request = { 'cmd': 'orderpending/orderPendingList', 'body': self.extend({ 'pair': pair, 'account_type': 0, # 0 - regular, 1 - margin 'page': 1, 'size': size, }, params), } response = await self.privatePostOrderpending(request) # # { # "result":[ # { # "result":{ # "count":1, # "page":1, # "items":[ # { # "id":"100055558128036", # "createdAt": 1512756997000, # "account_type":0, # "coin_symbol":"LTC", # Trading Token # "currency_symbol":"BTC", # Pricing Token # "order_side":2, # Trading side 1-Buy, 2-Sell # "order_type":2, # 2-limit order # "price":"0.00900000", # order price # "amount":"1.00000000", # order amount # "money":"0.00900000", # currency amount(price * amount) # "deal_amount":"0.00000000", # deal amount # "deal_percent":"0.00%", # deal percentage # "unexecuted":"0.00000000", # unexecuted amount # "status":1 # Status,-1-fail, 0,1-to be dealt, 2-dealt partly, 3-dealt totally, 4- cancelled partly, 5-cancelled totally, 6-to be cancelled # } # ] # }, # "cmd":"orderpending/orderPendingList" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) innerResult = self.safe_value(firstResult, 'result', {}) orders = self.safe_value(innerResult, 'items', []) return self.parse_orders(orders, market, since, limit) async def fetch_closed_orders(self, symbol=None, since=None, limit=200, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchClosedOrders() requires a `symbol` argument') await self.load_markets() market = self.market(symbol) request = { 'cmd': 'orderpending/pendingHistoryList', 'body': self.extend({ 'pair': market['id'], 'account_type': 0, # 0 - regular, 1 - margin 'page': 1, 'size': limit, }, params), } response = await self.privatePostOrderpending(request) # # { # "result":[ # { # "result":{ # "count":1, # "page":1, # "items":[ # { # "id":"100055558128036", # "createdAt": 1512756997000, # "account_type":0, # "coin_symbol":"LTC", # Trading Token # "currency_symbol":"BTC", # Pricing Token # "order_side":2, # Trading side 1-Buy, 2-Sell # "order_type":2, # 2-limit order # "price":"0.00900000", # order price # "amount":"1.00000000", # order amount # "money":"0.00900000", # currency amount(price * amount) # "deal_amount":"0.00000000", # deal amount # "deal_percent":"0.00%", # deal percentage # "unexecuted":"0.00000000", # unexecuted amount # "status":3 # Status,-1-fail, 0,1-to be dealt, 2-dealt partly, 3-dealt totally, 4- cancelled partly, 5-cancelled totally, 6-to be cancelled # } # ] # }, # "cmd":"orderpending/pendingHistoryList" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) innerResult = self.safe_value(firstResult, 'result', {}) orders = self.safe_value(innerResult, 'items', []) return self.parse_orders(orders, market, since, limit) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a `symbol` argument') await self.load_markets() market = self.market(symbol) size = limit if limit else 200 request = { 'cmd': 'orderpending/orderHistoryList', 'body': self.extend({ 'pair': market['id'], 'account_type': 0, # 0 - regular, 1 - margin 'page': 1, 'size': size, 'coin_symbol': market['baseId'], 'currency_symbol': market['quoteId'], }, params), } response = await self.privatePostOrderpending(request) # # { # "result":[ # { # "result":{ # "count":1, # "page":1, # "items":[ # { # "id":"100055558128033", # "createdAt": 1512756997000, # "account_type":0, # "coin_symbol":"LTC", # "currency_symbol":"BTC", # "order_side":2, # "order_type":2, # "price":"0.00886500", # "amount":"1.00000000", # "money":"0.00886500", # "fee":0 # } # ] # }, # "cmd":"orderpending/orderHistoryList" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) innerResult = self.safe_value(firstResult, 'result', {}) trades = self.safe_value(innerResult, 'items', []) return self.parse_trades(trades, market, since, limit) async def fetch_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) request = { 'cmd': 'transfer/transferIn', 'body': self.extend({ 'coin_symbol': currency['id'], }, params), } response = await self.privatePostTransfer(request) # # { # "result":[ # { # "result":"3Jx6RZ9TNMsAoy9NUzBwZf68QBppDruSKW", # "cmd":"transfer/transferIn" # } # ] # } # # { # "result":[ # { # "result":"{\"account\":\"PERSONALLY OMITTED\",\"memo\":\"PERSONALLY OMITTED\"}", # "cmd":"transfer/transferIn" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) innerResult = self.safe_value(firstResult, 'result') address = innerResult tag = None if self.is_json_encoded_object(innerResult): parsed = json.loads(innerResult) address = self.safe_string(parsed, 'account') tag = self.safe_string(parsed, 'memo') return { 'currency': code, 'address': address, 'tag': tag, 'network': None, 'info': response, } async def withdraw(self, code, amount, address, tag=None, params={}): tag, params = self.handle_withdraw_tag_and_params(tag, params) self.check_address(address) await self.load_markets() currency = self.currency(code) if self.password is None: if not ('trade_pwd' in params): raise ExchangeError(self.id + ' withdraw() requires self.password set on the exchange instance or a trade_pwd parameter') if not ('totp_code' in params): raise ExchangeError(self.id + ' withdraw() requires a totp_code parameter for 2FA authentication') request = { 'trade_pwd': self.password, 'coin_symbol': currency['id'], 'amount': amount, 'addr': address, } if tag is not None: request['address_remark'] = tag response = await self.privatePostTransfer({ 'cmd': 'transfer/transferOut', 'body': self.extend(request, params), }) # # { # "result":[ # { # "result": 228, # withdrawal id # "cmd":"transfer/transferOut" # } # ] # } # outerResults = self.safe_value(response, 'result') firstResult = self.safe_value(outerResults, 0, {}) id = self.safe_value(firstResult, 'result') return { 'info': response, 'id': id, } async def fetch_funding_fees(self, codes=None, params={}): # by default it will try load withdrawal fees of all currencies(with separate requests) # however if you define codes = ['ETH', 'BTC'] in args it will only load those await self.load_markets() withdrawFees = {} info = {} if codes is None: codes = list(self.currencies.keys()) for i in range(0, len(codes)): code = codes[i] currency = self.currency(code) request = { 'cmd': 'transfer/coinConfig', 'body': self.extend({ 'coin_symbol': currency['id'], }, params), } response = await self.privatePostTransfer(request) # { # "result":[ # { # "result":[ # { # "coin_symbol":"ETH", # "is_active":1, # "original_decimals":18, # "enable_deposit":1, # "enable_withdraw":1, # "withdraw_fee":0.008, # "withdraw_min":0.05, # "deposit_avg_spent":173700, # "withdraw_avg_spent":322600 # } # ], # "cmd":"transfer/coinConfig" # } # ] # } # outerResults = self.safe_value(response, 'result', []) firstOuterResult = self.safe_value(outerResults, 0, {}) innerResults = self.safe_value(firstOuterResult, 'result', []) firstInnerResult = self.safe_value(innerResults, 0, {}) info[code] = firstInnerResult withdrawFees[code] = self.safe_number(firstInnerResult, 'withdraw_fee') return { 'info': info, 'withdraw': withdrawFees, 'deposit': {}, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.implode_hostname(self.urls['api']) + '/' + self.version + '/' + path cmds = self.json([params]) if api == 'public': if method != 'GET': body = {'cmds': cmds} elif params: url += '?' + self.urlencode(params) elif api == 'v2private': self.check_required_credentials() url = self.implode_hostname(self.urls['api']) + '/v2/' + path json_params = self.json(params) body = { 'body': json_params, 'apikey': self.apiKey, 'sign': self.hmac(self.encode(json_params), self.encode(self.secret), hashlib.md5), } else: self.check_required_credentials() body = { 'cmds': cmds, 'apikey': self.apiKey, 'sign': self.hmac(self.encode(cmds), self.encode(self.secret), hashlib.md5), } if body is not None: body = self.json(body, {'convertArraysToObjects': True}) headers = {'Content-Type': 'application/json'} return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return if 'error' in response: if 'code' in response['error']: code = self.safe_string(response['error'], 'code') feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions, code, feedback) raise ExchangeError(feedback) raise ExchangeError(self.id + ' ' + body) if not ('result' in response): raise ExchangeError(self.id + ' ' + body)
42.283933
453
0.445509
794e1a8780f1a93d897238f81e1731cb14bfddf5
283
py
Python
setup.py
edolramba/QWebview-plus
77e160d17af9d3ad203886198cd522f9a4796445
[ "MIT" ]
225
2016-03-11T06:03:41.000Z
2022-01-23T17:19:21.000Z
setup.py
edolramba/QWebview-plus
77e160d17af9d3ad203886198cd522f9a4796445
[ "MIT" ]
20
2016-03-26T05:42:15.000Z
2021-11-13T01:01:04.000Z
setup.py
edolramba/QWebview-plus
77e160d17af9d3ad203886198cd522f9a4796445
[ "MIT" ]
90
2016-03-25T04:03:18.000Z
2022-03-02T04:21:09.000Z
import sys from cx_Freeze import setup, Executable setup( name = "QWebview-plus", version = "1.0", description = "QWebview supports Kiwoom Open API+ for JavaScript", author = "sculove", executables = [Executable("qwebviewplus.py", base="Win32GUI")])
35.375
74
0.657244
794e1ac82b35d733cd03ec2f32db1785bb11d8e2
1,017
py
Python
problems/exercism/guidos-gorgeous-lasagna/lasagna.py
JayMonari/py-personal
ef16d030cc7fe2266d661e1378d95f588229b746
[ "MIT" ]
null
null
null
problems/exercism/guidos-gorgeous-lasagna/lasagna.py
JayMonari/py-personal
ef16d030cc7fe2266d661e1378d95f588229b746
[ "MIT" ]
null
null
null
problems/exercism/guidos-gorgeous-lasagna/lasagna.py
JayMonari/py-personal
ef16d030cc7fe2266d661e1378d95f588229b746
[ "MIT" ]
null
null
null
EXPECTED_BAKE_TIME = 40 def bake_time_remaining(elapsed_time: int) -> int: ''' :param elapsed_time: int baking time already elapsed :return: int remaining bake time derived from 'EXPECTED_BAKE_TIME' Function that takes the actual minutes the lasagna has been in the oven as an argument and returns how many minutes the lasagna still needs to bake based on the `EXPECTED_BAKE_TIME`. ''' return EXPECTED_BAKE_TIME - elapsed_time def preparation_time_in_minutes(num_layers: int) -> int: ''' Return total preparation time needed to complete number of layers of lasagna. ''' return num_layers * 2 def elapsed_time_in_minutes(num_layers: int, elapsed_time: int) -> int: ''' Return elapsed cooking time. This function takes two numbers representing the number of layers & the time already spent baking and calculates the total elapsed minutes spent cooking the lasagna. ''' return preparation_time_in_minutes(num_layers) + elapsed_time
30.818182
78
0.73353
794e1acf56a71eeb0edbc9f99239d83b79312e4e
1,105
py
Python
Masters/Color/Delete Non-Color Layers in Selected Glyphs.py
danielgamage/Mekkablue-Scripts
0b0b4468ec938f8c669b3552e2fa429080b65bf1
[ "Apache-2.0" ]
null
null
null
Masters/Color/Delete Non-Color Layers in Selected Glyphs.py
danielgamage/Mekkablue-Scripts
0b0b4468ec938f8c669b3552e2fa429080b65bf1
[ "Apache-2.0" ]
null
null
null
Masters/Color/Delete Non-Color Layers in Selected Glyphs.py
danielgamage/Mekkablue-Scripts
0b0b4468ec938f8c669b3552e2fa429080b65bf1
[ "Apache-2.0" ]
null
null
null
#MenuTitle: Delete Non-Color Layers in Selected Glyphs # -*- coding: utf-8 -*- __doc__=""" Deletes all sublayers in all glyphs that are not of type "Color X" (CPAL/COLR layers). """ import GlyphsApp thisFont = Glyphs.font # frontmost font thisFontMaster = thisFont.selectedFontMaster # active master thisFontMasterID = thisFontMaster.id listOfSelectedLayers = thisFont.selectedLayers # active layers of selected glyphs def process( thisGlyph ): for i in range(len(thisGlyph.layers))[::-1]: currentLayer = thisGlyph.layers[i] if not currentLayer.layerId == thisFontMasterID: # not the master layer if not currentLayer.name.startswith("Color "): currentLayerID = currentLayer.layerId thisGlyph.removeLayerForKey_(currentLayerID) thisFont.disableUpdateInterface() # suppresses UI updates in Font View for thisLayer in listOfSelectedLayers: thisGlyph = thisLayer.parent print "Processing", thisGlyph.name thisGlyph.beginUndo() # begin undo grouping process( thisGlyph ) thisGlyph.endUndo() # end undo grouping thisFont.enableUpdateInterface() # re-enables UI updates in Font View
34.53125
86
0.774661
794e1aeafc4c2376798dbb423c8ab391c618291c
2,577
py
Python
setup.py
converghub/qrllib
d14ce543094fe6fb3ebe3d303b98b4d6129a5fdd
[ "MIT" ]
null
null
null
setup.py
converghub/qrllib
d14ce543094fe6fb3ebe3d303b98b4d6129a5fdd
[ "MIT" ]
null
null
null
setup.py
converghub/qrllib
d14ce543094fe6fb3ebe3d303b98b4d6129a5fdd
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import subprocess from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from distutils.sysconfig import get_python_inc import distutils.sysconfig as sysconfig class CMakeBuild(build_ext): def run(self): if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) env = os.environ.copy() env['CXXFLAGS'] = env.get('CXXFLAGS', '') env['CXXFLAGS'] += ' -DVERSION_INFO=\\"' + self.distribution.get_version() + '\\"' for ext in self.extensions: extension_path = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_call = ['cmake', ext.sourcedir, '-DBUILD_PYTHON=ON', '-DBUILD_TESTS=OFF', '-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extension_path, '-DCMAKE_BUILD_TYPE=Release'] # Detect conda if sys.platform == 'darwin' and 'CONDA_DEFAULT_ENV' in os.environ: print('OSX + Conda environment detected') python_include_dir = get_python_inc() python_library = os.path.join(sysconfig.get_config_var('LIBDIR'), sysconfig.get_config_var('LDLIBRARY')) cmake_call.extend(['-DPYTHON_INCLUDE_DIR=' + python_include_dir, '-DPYTHON_LIBRARY=' + python_library]) if sys.platform == 'win32': cmake_call.extend(['-G' + env.get('CMAKE_VS_GENERATOR', 'Ninja')]) subprocess.check_call(cmake_call, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.', '--config', 'Release'], cwd=self.build_temp) class CMakeExtension(Extension): def __init__(self, name, sourcedir='', *args, **kw): Extension.__init__(self, name, sources=[], *args, **kw) self.sourcedir = os.path.abspath(sourcedir) def setup_package(): needs_sphinx = {'build_sphinx', 'upload_docs'}.intersection(sys.argv) sphinx = ['sphinx'] if needs_sphinx else [] cmake = [] # noinspection PyInterpreter setup(setup_requires=['six', 'pytest-runner', 'pyscaffold>3'] + sphinx + cmake, packages=['pyqrllib', ], tests_require=['pytest', 'pytest-cov'], ext_modules=[CMakeExtension('pyqrllib')], cmdclass=dict(build_ext=CMakeBuild), use_pyscaffold=True) if __name__ == "__main__": setup_package()
36.814286
120
0.604191
794e1cd6f48df42f9f86d5a0127f21465e0d0e4d
2,287
py
Python
test_detector.py
ResearchingDexter/mtcnn-pytorch
a7c5eb8ed2cd984a0990d59267cbac5a83770624
[ "MIT" ]
null
null
null
test_detector.py
ResearchingDexter/mtcnn-pytorch
a7c5eb8ed2cd984a0990d59267cbac5a83770624
[ "MIT" ]
null
null
null
test_detector.py
ResearchingDexter/mtcnn-pytorch
a7c5eb8ed2cd984a0990d59267cbac5a83770624
[ "MIT" ]
null
null
null
from src.detector import detect_faces from PIL import Image,ImageDraw import os import torch import numpy as np import matplotlib.pyplot as plt import tqdm @torch.no_grad() def img_locate(path): img=Image.open(path) boundboxes,landmark=detect_faces(img.copy()) print(boundboxes,landmark) img_draw=ImageDraw.Draw(img) print(img.size,type(landmark)) for i,box in enumerate(boundboxes): box=np.array(box) lm=np.array(landmark[i],np.int32) fill=(0,0,255) for j in range(0,len(lm)//2): print('j:{}'.format(j)) img_draw.point((lm[j],lm[j+5]),fill=fill) print('box:{}'.format(box)) img_draw.rectangle(tuple(box[:4].astype(np.int32)),outline=(255,0,0), width=2) img_draw.text(tuple(box[:2].astype(np.int32)),text="{}".format(box[-1]),fill=fill) img.show() plt.show() #img_draw.rectangle(label[:4], outline=(255, 0, 0), width=0) #img_draw.text(label[:2], text=str(label[5]), fill=(255, 0, 0), font=font) #img.show() @torch.no_grad() def mtcnn_crop(in_path,out_path,crop_size=(112,96)): if not os.path.exists(out_path): os.makedirs(out_path) imgs_folder=os.listdir(in_path) for img_folder in tqdm.tqdm(imgs_folder): if not os.path.exists(os.path.join(out_path,img_folder)): os.makedirs(os.path.join(out_path,img_folder)) img_names=os.listdir(os.path.join(in_path,img_folder)) for name in img_names: img=Image.open(os.path.join(in_path,img_folder,name)) boundboxes, landmark = detect_faces(img) index=0 score=boundboxes[0][-1] for i,box in enumerate(boundboxes): if(box[-1]>score): index=i score=box[-1] box=boundboxes[index][:4].astype(np.int32) img_crop=img.crop(box).resize(crop_size,Image.BICUBIC) img_crop.save(os.path.join(out_path,img_folder,name)) if __name__ == '__main__': # path=r'G:\FaceRetrieval\lfw_funneled\Jan_Peter_Balkenende' # name='Jan_Peter_Balkenende_0001.jpg' # img_locate(os.path.join(path,name)) in_path=r'G:\FaceRetrieval\lfw_funneled' out_path=r'G:\FaceRetrieval\lfw_funneled_croped' mtcnn_crop(in_path,out_path)
38.116667
90
0.641014
794e1d7938c075776f30fdc80065d384158e74f2
12,921
py
Python
behave/formatter/pretty.py
wombat70/behave
c54493b0531795d946ac6754bfc643248cf3056a
[ "BSD-2-Clause" ]
13
2019-10-03T19:15:14.000Z
2019-10-16T02:01:57.000Z
behave/formatter/pretty.py
wombat70/behave
c54493b0531795d946ac6754bfc643248cf3056a
[ "BSD-2-Clause" ]
2
2019-08-28T00:05:00.000Z
2020-03-09T19:43:25.000Z
behave/formatter/pretty.py
fluendo/behave
eeffde083456dcf1a0ea9b6139b32091970118c0
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf8 -*- from __future__ import absolute_import, division import sys from behave.formatter.ansi_escapes import escapes, up from behave.formatter.base import Formatter from behave.model_core import Status from behave.model_describe import escape_cell, escape_triple_quotes from behave.textutil import indent, make_indentation, text as _text import six from six.moves import range, zip # ----------------------------------------------------------------------------- # TERMINAL SUPPORT: # ----------------------------------------------------------------------------- DEFAULT_WIDTH = 80 DEFAULT_HEIGHT = 24 def get_terminal_size(): if sys.platform == "windows": # Autodetecting the size of a Windows command window is left as an # exercise for the reader. Prizes may be awarded for the best answer. return (DEFAULT_WIDTH, DEFAULT_HEIGHT) try: import fcntl import termios import struct zero_struct = struct.pack("HHHH", 0, 0, 0, 0) result = fcntl.ioctl(0, termios.TIOCGWINSZ, zero_struct) h, w, hp1, wp1 = struct.unpack("HHHH", result) return w or DEFAULT_WIDTH, h or DEFAULT_HEIGHT except Exception: # pylint: disable=broad-except return (DEFAULT_WIDTH, DEFAULT_HEIGHT) # ----------------------------------------------------------------------------- # COLORING SUPPORT: # ----------------------------------------------------------------------------- class MonochromeFormat(object): def text(self, text): # pylint: disable=no-self-use assert isinstance(text, six.text_type) return text class ColorFormat(object): def __init__(self, status): self.status = status def text(self, text): assert isinstance(text, six.text_type) return escapes[self.status] + text + escapes["reset"] # ----------------------------------------------------------------------------- # CLASS: PrettyFormatter # ----------------------------------------------------------------------------- class PrettyFormatter(Formatter): # pylint: disable=too-many-instance-attributes name = "pretty" description = "Standard colourised pretty formatter" def __init__(self, stream_opener, config): super(PrettyFormatter, self).__init__(stream_opener, config) # -- ENSURE: Output stream is open. self.stream = self.open() isatty = getattr(self.stream, "isatty", lambda: True) stream_supports_colors = isatty() self.monochrome = not config.color or not stream_supports_colors self.show_source = config.show_source self.show_timings = config.show_timings self.show_multiline = config.show_multiline self.formats = None self.display_width = get_terminal_size()[0] # -- UNUSED: self.tag_statement = None self.steps = [] self._uri = None self._match = None self.statement = None self.indentations = [] self.step_lines = 0 def reset(self): # -- UNUSED: self.tag_statement = None self.current_rule = None self.steps = [] self._uri = None self._match = None self.statement = None self.indentations = [] self.step_lines = 0 def uri(self, uri): self.reset() self._uri = uri def feature(self, feature): #self.print_comments(feature.comments, '') self.current_rule = None prefix = "" self.print_tags(feature.tags, prefix) self.stream.write(u"%s: %s" % (feature.keyword, feature.name)) if self.show_source: # pylint: disable=redefined-builtin format = self.format("comments") self.stream.write(format.text(u" # %s" % feature.location)) self.stream.write("\n") self.print_description(feature.description, " ", False) self.stream.flush() def rule(self, rule): self.replay() self.current_rule = rule self.statement = rule def background(self, background): self.replay() self.statement = background def scenario(self, scenario): self.replay() self.statement = scenario def replay(self): self.print_statement() self.print_steps() self.stream.flush() def step(self, step): self.steps.append(step) def match(self, match): self._match = match self.print_statement() self.print_step(Status.executing, self._match.arguments, self._match.location, self.monochrome) self.stream.flush() def result(self, step): if not self.monochrome: lines = self.step_lines + 1 if self.show_multiline: if step.table: lines += len(step.table.rows) + 1 if step.text: lines += len(step.text.splitlines()) + 2 self.stream.write(up(lines)) arguments = [] location = None if self._match: arguments = self._match.arguments location = self._match.location self.print_step(step.status, arguments, location, True) if step.error_message: self.stream.write(indent(step.error_message.strip(), u" ")) self.stream.write("\n\n") self.stream.flush() def arg_format(self, key): return self.format(key + "_arg") def format(self, key): if self.monochrome: if self.formats is None: self.formats = MonochromeFormat() return self.formats # -- OTHERWISE: if self.formats is None: self.formats = {} # pylint: disable=redefined-builtin format = self.formats.get(key, None) if format is not None: return format format = self.formats[key] = ColorFormat(key) return format def eof(self): self.replay() self.stream.write("\n") self.stream.flush() def table(self, table): prefix = u" " if self.current_rule: prefix += u" " cell_lengths = [] all_rows = [table.headings] + table.rows for row in all_rows: lengths = [len(escape_cell(c)) for c in row] cell_lengths.append(lengths) max_lengths = [] for col in range(0, len(cell_lengths[0])): max_lengths.append(max([c[col] for c in cell_lengths])) for i, row in enumerate(all_rows): #for comment in row.comments: # self.stream.write(" %s\n" % comment.value) self.stream.write(u"%s|" % prefix) for j, (cell, max_length) in enumerate(zip(row, max_lengths)): self.stream.write(" ") self.stream.write(self.color(cell, None, j)) self.stream.write(" " * (max_length - cell_lengths[i][j])) self.stream.write(" |") self.stream.write("\n") self.stream.flush() def doc_string(self, doc_string): #self.stream.write(' """' + doc_string.content_type + '\n') doc_string = _text(doc_string) prefix = u" " if self.current_rule: prefix += u" " self.stream.write(u'%s"""\n' % prefix) doc_string = escape_triple_quotes(indent(doc_string, prefix)) self.stream.write(doc_string) self.stream.write(u'\n%s"""\n' % prefix) self.stream.flush() # def doc_string(self, doc_string): # from behave.model_describe import ModelDescriptor # prefix = " " # text = ModelDescriptor.describe_docstring(doc_string, prefix) # self.stream.write(text) # self.stream.flush() # -- UNUSED: # def exception(self, exception): # exception_text = _text(exception) # self.stream.write(self.format("failed").text(exception_text) + "\n") # self.stream.flush() def color(self, cell, statuses, _color): # pylint: disable=no-self-use if statuses: return escapes["color"] + escapes["reset"] # -- OTHERWISE: return escape_cell(cell) def indented_text(self, text, proceed): if not text: return u"" if proceed: indentation = self.indentations.pop(0) else: indentation = self.indentations[0] indentation = u" " * indentation return u"%s # %s" % (indentation, text) def calculate_location_indentations(self): line_widths = [] for s in [self.statement] + self.steps: string = s.keyword + " " + s.name line_widths.append(len(string)) max_line_width = max(line_widths) self.indentations = [max_line_width - width for width in line_widths] def print_statement(self): if self.statement is None: return prefix = u" " if self.current_rule and self.statement.type != "rule": prefix += prefix self.calculate_location_indentations() self.stream.write(u"\n") #self.print_comments(self.statement.comments, " ") if hasattr(self.statement, "tags"): self.print_tags(self.statement.tags, prefix) self.stream.write(u"%s%s: %s " % (prefix, self.statement.keyword, self.statement.name)) location = self.indented_text(six.text_type(self.statement.location), True) if self.show_source: self.stream.write(self.format("comments").text(location)) self.stream.write("\n") #self.print_description(self.statement.description, u" ") self.statement = None def print_steps(self): while self.steps: self.print_step(Status.skipped, [], None, True) def print_step(self, status, arguments, location, proceed): if proceed: step = self.steps.pop(0) else: step = self.steps[0] text_format = self.format(status.name) arg_format = self.arg_format(status.name) prefix = u" " if self.current_rule: prefix += u" " #self.print_comments(step.comments, " ") self.stream.write(prefix) self.stream.write(text_format.text(step.keyword + " ")) line_length = 5 + len(step.keyword) step_name = six.text_type(step.name) text_start = 0 for arg in arguments: if arg.end <= text_start: # -- SKIP-OVER: Optional and nested regexp args # - Optional regexp args (unmatched: None). # - Nested regexp args that are already processed. continue # -- VALID, MATCHED ARGUMENT: assert arg.original is not None text = step_name[text_start:arg.start] self.stream.write(text_format.text(text)) line_length += len(text) self.stream.write(arg_format.text(arg.original)) line_length += len(arg.original) text_start = arg.end if text_start != len(step_name): text = step_name[text_start:] self.stream.write(text_format.text(text)) line_length += (len(text)) if self.show_source: location = six.text_type(location) if self.show_timings and status in (Status.passed, Status.failed): location += " %0.3fs" % step.duration location = self.indented_text(location, proceed) self.stream.write(self.format("comments").text(location)) line_length += len(location) elif self.show_timings and status in (Status.passed, Status.failed): timing = "%0.3fs" % step.duration timing = self.indented_text(timing, proceed) self.stream.write(self.format("comments").text(timing)) line_length += len(timing) self.stream.write("\n") self.step_lines = int((line_length - 1) / self.display_width) if self.show_multiline: if step.text: self.doc_string(step.text) if step.table: self.table(step.table) def print_tags(self, tags, indentation): if not tags: return line = " ".join("@" + tag for tag in tags) self.stream.write(indentation + line + "\n") def print_comments(self, comments, indentation): if not comments: return self.stream.write(indent([c.value for c in comments], indentation)) self.stream.write("\n") def print_description(self, description, indentation, newline=True): if not description: return self.stream.write(indent(description, indentation)) if newline: self.stream.write("\n")
34.640751
83
0.565978
794e1e2b6541885954f585ef3260d03ceacd3528
1,463
py
Python
uqueue.py
aerodesic/MeshSemtech
2b59c30559309326f48f8562b6a98b43032941d2
[ "MIT" ]
1
2020-02-17T11:12:51.000Z
2020-02-17T11:12:51.000Z
uqueue.py
aerodesic/MeshSemtech
2b59c30559309326f48f8562b6a98b43032941d2
[ "MIT" ]
null
null
null
uqueue.py
aerodesic/MeshSemtech
2b59c30559309326f48f8562b6a98b43032941d2
[ "MIT" ]
null
null
null
from ulock import * class QueueException(Exception): pass class queue(): def __init__(self, maxlen=0): self._maxlen = maxlen self._lock = lock() self._fill = lock(True) self._queue = [] def __len__(self): with self._lock: return len(self._queue) def put(self, item): with self._lock: if self._maxlen != 0 and len(self._queue) >= self._maxlen: raise QueueException("full") self._queue.append(item) if self._fill.locked(): self._fill.release() # Return head of queue or None if empty def head(self): with self._lock: return self._queue[0] if len(self._queue) != 0 else None # Return tail of queue or None if empty def tail(self): with self._lock: return self._queue[-1] if len(self._queue) != 0 else None def get(self, wait=1): self._lock.acquire() if wait: while len(self._queue) == 0: # Wait for something self._lock.release() self._fill.acquire() self._lock.acquire() if len(self._queue) != 0: item = self._queue.pop(0) found = True else: item = None found = False self._lock.release() if wait and not found: raise QueueException("empty") return item
23.983607
70
0.524949
794e1f68d12d08b12f3a8762577a46adccdd3f4a
5,927
py
Python
train_classifier.py
abekoh/dcgan_font
85c8580ae8aaeee9b9a10793063f02fe45067894
[ "MIT" ]
null
null
null
train_classifier.py
abekoh/dcgan_font
85c8580ae8aaeee9b9a10793063f02fe45067894
[ "MIT" ]
null
null
null
train_classifier.py
abekoh/dcgan_font
85c8580ae8aaeee9b9a10793063f02fe45067894
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import cv2 import chainer from chainer import cuda from chainer import optimizers from chainer import FunctionSet from chainer import Variable from chainer import serializers from chainer import functions as F from chainer import links as L from mylib.chainer import dataset from mylib import tools import models def train(train_txt_path, test_txt_path, dst_dir_path, epoch_n=100, batch_size=128, model=models.Classifier_AlexNet()): ''' Classifierの学習 Args: train_txt_path: 学習に用いる画像のパスを記載したtxt. 1列目は画像パス,2列目はクラスID('A'から順に0,1,2...) ex) /home/hoge/font/A/0.png, 0 /home/hoge/font/B/0.png, 1 /home/hoge/font/C/0.png, 2 /home/hoge/2.png, 0 test_txt_path: テストに用いる画像のパスを記載したtxt. フォーマットはtrain_txt_pathと同じ. dst_dir_path: 学習済みモデルの出力先. epoch_n: 学習回数. batch_size: バッチサイズ. model: Classifierの学習済みモデルのパス.(models.pyのクラス) ''' train_imgs, train_labels = dataset.filelist_to_list(train_txt_path) test_imgs, test_labels = dataset.filelist_to_list(test_txt_path) xp = cuda.cupy cuda.get_device(0).use() model.to_gpu() optimizer = optimizers.SGD(lr=0.01) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005)) train_imgs_n = train_imgs.shape[0] test_imgs_n = test_imgs.shape[0] for epoch_i in range(epoch_n): print('epoch:{0}/{1}'.format(epoch_i, epoch_n)) perm = np.random.permutation(train_imgs_n) train_sum_acc = 0 train_sum_loss = 0 test_sum_acc = 0 test_sum_loss = 0 for batch_i in range(0, train_imgs_n, batch_size): optimizer.zero_grads() batched_imgs = xp.asarray(train_imgs[perm[batch_i: batch_i + batch_size]]) batched_labels = xp.asarray(train_labels[perm[batch_i: batch_i + batch_size]]) batched_imgs_score = model(Variable(batched_imgs)) loss = F.softmax_cross_entropy( batched_imgs_score, Variable(batched_labels)) acc = F.accuracy(batched_imgs_score, Variable(batched_labels)) loss.backward() optimizer.update() train_sum_loss += float(loss.data.get()) * batch_size train_sum_acc += float(acc.data.get()) * batch_size for batch_i in range(0, test_imgs_n, batch_size): batched_imgs = xp.asarray(test_imgs[batch_i: batch_i + batch_size]) batched_labels = xp.asarray(test_labels[batch_i: batch_i + batch_size]) batched_imgs_score = model(Variable(batched_imgs)) loss = F.softmax_cross_entropy( batched_imgs_score, Variable(batched_labels)) acc = F.accuracy(batched_imgs_score, Variable(batched_labels)) test_sum_loss += float(loss.data.get()) * batch_size test_sum_acc += float(acc.data.get()) * batch_size print('train: loss={0}, accuracy={1}'.format(train_sum_loss / train_imgs_n, train_sum_acc / train_imgs_n)) print('test: loss={0}, accuracy={1}'.format(test_sum_loss / test_imgs_n, test_sum_acc / test_imgs_n)) serializers.save_hdf5('{0}model_{1}.hdf5'.format(dst_dir_path, epoch_i), model) serializers.save_hdf5('{0}state_{1}.hdf5'.format(dst_dir_path, epoch_i), optimizer) def classify(src_png_path, classifier): ''' クラス分別の実行 Args: src_png_path: 分別する画像のパス classifier: Classifierのモデルの構造(models.pyのクラス) Return: predict_label: 分別されたラベル(クラスID) ''' img = cv2.imread(src_png_path, -1) img = img.astype(np.float32) img /= 255 img = img[np.newaxis, np.newaxis, :, :] x = Variable(img) y = classifier.predictor(x) max_score = 0 for i, score in enumerate(y.data[0]): if score > max_score: max_score = score predict_label = i return predict_label def output_accuracy_rate(img_paths, labels, model=models.Classifier_AlexNet(), hdf5_path='/home/abe/dcgan_font/classificator_alex.hdf5'): ''' 正解率の出力 Args: img_paths: 対象の画像のパス labels: 対象の画像の正解ラベル model: Classifierのモデルの構造(models.pyのクラス) hdf5_path: Classifierの学習済みモデルのパス ''' serializers.load_hdf5(hdf5_path, model) classifier = L.Classifier(model) correct_n = 0 for img_path, label in zip(img_paths, labels): if label == classify(img_path, classifier): print(img_path, '正解') correct_n += 1 else: print(img_path, '不正解') accuracy_rate = float(correct_n) / float(len(img_paths)) print ('correct_n:', correct_n) print (accuracy_rate) def debug(): # # train # train_txt_path = '/home/abe/font_dataset/png_6628_64x64/train_noise.txt' # test_txt_path = '/home/abe/font_dataset/png_6628_64x64/test_noise.txt' # dst_dir_path = tools.make_date_dir('/home/abe/dcgan_font/output_classificator/debug/') # train(train_txt_path, test_txt_path, dst_dir_path, model=models.Classifier(noise=True)) # classify # print (classify('/home/abe/font_dataset/png_6628_64x64/B/3239.png')) # output_accuracy_rate path_tmp1 = '/home/abe/dcgan_font/output_storage/forPRMU/CNN_Test/plusclassifier/' img_paths, labels = [], [] for alph in ['A', 'B', 'C', 'D']: path_tmp2 = path_tmp1 + alph + '_' for i in range(2500): img_path = path_tmp2 + str(i) + '.png' img_paths.append(img_path) labels.append(ord(alph) - 65) output_accuracy_rate(img_paths, labels) if __name__ == '__main__': debug()
36.58642
119
0.625612
794e2015bfe7de13c7e6b0a303f593f02933205d
3,980
py
Python
rexchain/blockchain/views.py
Prescrypto/RexChain
abf4bb8d0ec3c906221224ba82b77cfac8b06eca
[ "Apache-2.0" ]
3
2021-04-16T21:53:41.000Z
2021-05-18T07:28:47.000Z
rexchain/blockchain/views.py
Prescrypto/RexChain
abf4bb8d0ec3c906221224ba82b77cfac8b06eca
[ "Apache-2.0" ]
34
2018-10-11T17:16:44.000Z
2021-09-08T00:31:57.000Z
rexchain/blockchain/views.py
Prescrypto/RexChain
abf4bb8d0ec3c906221224ba82b77cfac8b06eca
[ "Apache-2.0" ]
1
2019-05-07T20:11:55.000Z
2019-05-07T20:11:55.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals # Python libs import json import logging # Django packages from django.http import HttpResponse from django.shortcuts import render, redirect from django.views.generic import View # Our Models from django.conf import settings from .models import Payload, Block, Transaction # Blockcypher from api.views import PayloadSerializer logger = logging.getLogger('django_info') class ValidateRxView(View): ''' Validate PoE of one Transaction with a block poe.received Date of stampd poe.poe_url Url of PoE poe.hash Hash of PoE Transaction poe.data_hex Data Hex merkle_root Merkle Root of block ''' template = "blockchain/validate.html" def get(self, request, *args, **kwargs): hash_id = kwargs.get("hash_id") payload = tx = None template = "blockchain/validate.html" try: payload = Payload.objects.get(hash_id=hash_id) tx = payload.transaction except Exception as e: logger.info("[Validate ERROR]:{} type:{}".format(e, type(e))) # Try to get from transaction ID try: tx = Transaction.objects.get(txid=hash_id) except Exception as e: _message_error = "[Validate ERROR] Neither hash is from Payload nor Transaction:{} type:{}" logger.error(_message_error.format(e, type(e))) return redirect("/") return render(request, template, {"tx": tx}) def glossary(request): ''' Proof of existence explanation ''' return render(request, "blockchain/glossary.html") def tx_detail(request, hash_id=False): ''' Get a hash and return the blockchain model ''' if request.GET.get("hash_id", False): hash_id = request.GET.get("hash_id") if hash_id: context = dict() try: rx = Payload.objects.get(hash_id=hash_id) except: # noqa : F841 try: rx = Payload.objects.get(transaction__txid=hash_id) except Exception as e: logger.error("Error :{}, type({})".format(e, type(e))) return redirect("/block/?block_hash={}".format(hash_id)) _payload = PayloadSerializer(rx) context.update({ "rx": rx, "payload": json.dumps(_payload.data, sort_keys=True, indent=4, ensure_ascii=False), }) return render(request, "blockchain/rx_detail.html", context) return redirect("/") def rx_priv_key(request, hash_rx=False): # Temporary way to show key just for test, remove later try: rx = Payload.objects.get(hash_id=hash_rx) return HttpResponse(rx.get_priv_key, content_type="text/plain") except Exception as e: # noqa: F841 return HttpResponse("Not Found", content_type="text/plain") def block_detail(request, block_hash=False): ''' Get a hash and return the block''' if request.GET.get("block_hash", False): block_hash = request.GET.get("block_hash") if block_hash: context = {} try: block = Block.objects.get(hash_block=block_hash) context["block_object"] = block if block.poetxid == "True": context["message_poe"] = "PoE en proceso" elif block.poetxid == "False" or block.poetxid.strip() == "": context["message_poe"] = "Sin PoE por el momento" elif block.poetxid == "Genesis": context["message_poe"] = "Block Genesis" else: # Create URL context["poe_url"] = "{}/dash/tx/{}/".format(settings.BASE_POE_URL, block.poetxid) context["message_poe"] = "PoE válida" return render(request, "blockchain/block_detail.html", context) except Exception as e: logger.error("Error found: {}, type: {}".format(e, type(e))) return redirect("/")
33.445378
107
0.61005
794e202247e07930e6dc69151ffef0dc8f934318
11,507
gyp
Python
src/session/session_test.gyp
KawaneRio/mozc
215e669e6fdac2040a28dd3f97cfa0910ee4c9df
[ "BSD-3-Clause" ]
1,144
2015-04-23T16:18:45.000Z
2022-03-29T19:37:33.000Z
src/session/session_test.gyp
KawaneRio/mozc
215e669e6fdac2040a28dd3f97cfa0910ee4c9df
[ "BSD-3-Clause" ]
291
2015-05-04T07:53:37.000Z
2022-03-22T00:09:05.000Z
src/session/session_test.gyp
KawaneRio/mozc
215e669e6fdac2040a28dd3f97cfa0910ee4c9df
[ "BSD-3-Clause" ]
301
2015-05-03T00:07:18.000Z
2022-03-21T10:48:29.000Z
# Copyright 2010-2021, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. { 'variables': { 'relative_dir': 'session', 'gen_out_dir': '<(SHARED_INTERMEDIATE_DIR)/<(relative_dir)', }, 'targets': [ { 'target_name': 'session_handler_test_util', 'type' : 'static_library', 'sources': [ 'session_handler_test_util.cc', ], 'dependencies': [ '../base/base.gyp:base', '../config/config.gyp:config_handler', '../engine/engine.gyp:engine_factory', '../engine/engine.gyp:mock_data_engine_factory', '../protocol/protocol.gyp:commands_proto', '../protocol/protocol.gyp:config_proto', '../testing/testing.gyp:testing', '../usage_stats/usage_stats_test.gyp:usage_stats_testing_util', 'session.gyp:session', 'session.gyp:session_handler', 'session.gyp:session_usage_observer', ], }, { 'target_name': 'session_server_test', 'type': 'executable', 'sources': [ 'session_server_test.cc', ], 'dependencies': [ '../testing/testing.gyp:gtest_main', 'session.gyp:session', 'session.gyp:session_server', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_test', 'type': 'executable', 'sources': [ 'session_test.cc', ], 'dependencies': [ '../converter/converter_base.gyp:converter_mock', '../data_manager/testing/mock_data_manager.gyp:mock_data_manager', '../engine/engine.gyp:engine', '../engine/engine.gyp:mock_converter_engine', '../engine/engine.gyp:mock_data_engine_factory', '../rewriter/rewriter.gyp:rewriter', '../testing/testing.gyp:gtest_main', '../testing/testing.gyp:mozctest', '../usage_stats/usage_stats_test.gyp:usage_stats_testing_util', 'session.gyp:session', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_regression_test', 'type': 'executable', 'sources': [ 'session_regression_test.cc', ], 'dependencies': [ '../data_manager/testing/mock_data_manager.gyp:mock_data_manager', '../engine/engine.gyp:mock_data_engine_factory', '../testing/testing.gyp:gtest_main', 'session.gyp:session', 'session.gyp:session_server', ], 'variables': { 'test_size': 'large', }, }, { 'target_name': 'session_handler_test', 'type': 'executable', 'sources': [ 'session_handler_test.cc', ], 'dependencies': [ '../base/base_test.gyp:clock_mock', '../converter/converter_base.gyp:converter_mock', '../engine/engine.gyp:mock_converter_engine', '../testing/testing.gyp:gtest_main', '../usage_stats/usage_stats_test.gyp:usage_stats_testing_util', 'session.gyp:session', 'session.gyp:session_server', 'session_handler_test_util', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_converter_test', 'type': 'executable', 'sources': [ 'session_converter_test.cc', ], 'dependencies': [ '../converter/converter_base.gyp:converter_mock', '../data_manager/testing/mock_data_manager.gyp:mock_data_manager', '../testing/testing.gyp:gtest_main', '../testing/testing.gyp:testing_util', '../usage_stats/usage_stats_test.gyp:usage_stats_testing_util', 'session.gyp:session', 'session_base.gyp:request_test_util', ], }, { 'target_name': 'session_module_test', 'type': 'executable', 'sources': [ 'output_util_test.cc', 'session_observer_handler_test.cc', 'session_usage_observer_test.cc', 'session_usage_stats_util_test.cc', ], 'dependencies': [ '../base/base.gyp:base', '../base/base_test.gyp:clock_mock', '../base/base_test.gyp:scheduler_stub', '../client/client.gyp:client_mock', '../config/config.gyp:config_handler', '../config/config.gyp:stats_config_util', '../protocol/protocol.gyp:commands_proto', '../testing/testing.gyp:gtest_main', '../usage_stats/usage_stats_base.gyp:usage_stats', '../usage_stats/usage_stats_test.gyp:usage_stats_testing_util', 'session.gyp:session_handler', 'session.gyp:session_usage_observer', 'session_base.gyp:keymap', 'session_base.gyp:keymap_factory', 'session_base.gyp:output_util', 'session_base.gyp:session_usage_stats_util', ], 'variables': { 'test_size': 'small', }, }, { # iOS is not supported. 'target_name': 'session_watch_dog_test', 'type': 'executable', 'sources': [ 'session_watch_dog_test.cc', ], 'dependencies': [ '../base/base.gyp:base', '../client/client.gyp:client_mock', '../testing/testing.gyp:gtest_main', 'session.gyp:session_watch_dog', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_key_handling_test', 'type': 'executable', 'sources': [ 'ime_switch_util_test.cc', 'key_info_util_test.cc', ], 'dependencies': [ '../base/base.gyp:base', '../config/config.gyp:config_handler', '../protocol/protocol.gyp:commands_proto', '../testing/testing.gyp:gtest_main', 'session_base.gyp:ime_switch_util', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_internal_test', 'type': 'executable', 'sources': [ 'internal/candidate_list_test.cc', 'internal/ime_context_test.cc', 'internal/keymap_test.cc', 'internal/keymap_factory_test.cc', 'internal/session_output_test.cc', 'internal/key_event_transformer_test.cc', ], 'dependencies': [ '../base/base.gyp:base', '../converter/converter_base.gyp:converter_mock', '../engine/engine.gyp:mock_converter_engine', '../protocol/protocol.gyp:commands_proto', '../protocol/protocol.gyp:config_proto', '../testing/testing.gyp:gtest_main', '../testing/testing.gyp:testing_util', 'session.gyp:session', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_handler_stress_test', 'type': 'executable', 'sources': [ 'session_handler_stress_test.cc' ], 'dependencies': [ '../engine/engine.gyp:engine_factory', '../testing/testing.gyp:gtest_main', 'session.gyp:random_keyevents_generator', 'session.gyp:session', 'session.gyp:session_handler_tool', 'session.gyp:session_server', 'session_handler_test_util', ], 'variables': { 'test_size': 'large', }, }, { 'target_name': 'random_keyevents_generator_test', 'type': 'executable', 'sources': [ 'random_keyevents_generator_test.cc', ], 'dependencies': [ '../protocol/protocol.gyp:commands_proto', '../testing/testing.gyp:gtest_main', 'session.gyp:random_keyevents_generator', ], 'variables': { 'test_size': 'large', }, }, { 'target_name': 'session_converter_stress_test', 'type': 'executable', 'sources': [ 'session_converter_stress_test.cc' ], 'dependencies': [ '../engine/engine.gyp:mock_data_engine_factory', '../testing/testing.gyp:gtest_main', 'session.gyp:session', ], 'variables': { 'test_size': 'large', }, }, { 'target_name': 'request_test_util_test', 'type': 'executable', 'sources': [ 'request_test_util_test.cc' ], 'dependencies': [ '../base/base.gyp:base', '../testing/testing.gyp:gtest_main', 'session_base.gyp:request_test_util', ], 'variables': { 'test_size': 'small', }, }, { 'target_name': 'session_handler_scenario_test', 'type': 'executable', 'sources': [ 'session_handler_scenario_test.cc' ], 'dependencies': [ '../base/absl.gyp:absl_status', '../base/base.gyp:base', '../data/test/session/scenario/scenario.gyp:install_session_handler_scenario_test_data', '../data/test/session/scenario/usage_stats/usage_stats.gyp:install_session_handler_usage_stats_scenario_test_data', '../engine/engine.gyp:mock_data_engine_factory', '../protocol/protocol.gyp:candidates_proto', '../protocol/protocol.gyp:commands_proto', '../testing/testing.gyp:gtest_main', '../testing/testing.gyp:mozctest', '../usage_stats/usage_stats_test.gyp:usage_stats_testing_util', 'session.gyp:session_handler', 'session.gyp:session_handler_tool', 'session_base.gyp:request_test_util', 'session_handler_test_util', ], 'variables': { 'test_size': 'large', }, }, # Test cases meta target: this target is referred from gyp/tests.gyp { 'target_name': 'session_all_test', 'type': 'none', 'dependencies': [ 'random_keyevents_generator_test', 'request_test_util_test', 'session_converter_stress_test', 'session_converter_test', 'session_handler_scenario_test', 'session_handler_stress_test', 'session_handler_test', 'session_key_handling_test', 'session_internal_test', 'session_module_test', 'session_regression_test', 'session_server_test', 'session_test', 'session_watch_dog_test', ], 'conditions': [ ], }, ], }
32.597734
123
0.607717
794e20d5e43a481ab209b0e7f79b23da36df45c3
6,184
py
Python
Src/StdLib/Lib/site-packages/win32com/test/testPersist.py
cwensley/ironpython2
f854444e1e08afc8850cb7c1a739a7dd2d10d32a
[ "Apache-2.0" ]
1,078
2016-07-19T02:48:30.000Z
2022-03-30T21:22:34.000Z
Src/StdLib/Lib/site-packages/win32com/test/testPersist.py
cwensley/ironpython2
f854444e1e08afc8850cb7c1a739a7dd2d10d32a
[ "Apache-2.0" ]
576
2017-05-21T12:36:48.000Z
2022-03-30T13:47:03.000Z
Src/StdLib/Lib/site-packages/win32com/test/testPersist.py
cwensley/ironpython2
f854444e1e08afc8850cb7c1a739a7dd2d10d32a
[ "Apache-2.0" ]
269
2017-05-21T04:44:47.000Z
2022-03-31T16:18:13.000Z
import pythoncom import win32com.server.util import time import win32com, sys, string, win32api, traceback import win32com.client.dynamic import win32com.client import pythoncom from win32com.axcontrol import axcontrol from pywintypes import Unicode from win32com import storagecon from win32com.test.util import CheckClean import pywintypes import win32ui import win32api, os S_OK = 0 class LockBytes: _public_methods_ = [ 'ReadAt', 'WriteAt', 'Flush', 'SetSize', 'LockRegion', 'UnlockRegion', 'Stat' ] _com_interfaces_ = [ pythoncom.IID_ILockBytes ] def __init__(self, data = ""): self.data = data now = pywintypes.Time(time.time()) self.ctime = now self.mtime = now self.atime = now def ReadAt(self, offset, cb): print "ReadAt" result = self.data[offset:offset + cb] return result def WriteAt(self, offset, data): print "WriteAt " +str(offset) print "len " + str(len(data)) print "data:" #print data if len(self.data) >= offset: newdata = self.data[0:offset] + data print len(newdata) if len(self.data) >= offset + len(data): newdata = newdata + self.data[offset + len(data):] print len(newdata) self.data = newdata return len(data) def Flush(self, whatsthis=0): print "Flush" + str(whatsthis) fname = os.path.join(win32api.GetTempPath(), "persist.doc") open(fname, "wb").write(self.data) return S_OK def SetSize(self, size): print "Set Size" + str(size) if size > len(self.data): self.data = self.data + "\000" * (size - len(self.data)) else: self.data = self.data[0:size] return S_OK def LockRegion(self, offset, size, locktype): print "LockRegion" pass def UnlockRegion(self, offset, size, locktype): print "UnlockRegion" pass def Stat(self, statflag): print "returning Stat " + str(statflag) return ( "PyMemBytes", storagecon.STGTY_LOCKBYTES, len(self.data), self.mtime, self.ctime, self.atime, storagecon.STGM_DIRECT|storagecon.STGM_READWRITE|storagecon.STGM_CREATE , storagecon.STGM_SHARE_EXCLUSIVE, "{00020905-0000-0000-C000-000000000046}", 0, # statebits ? 0 ) class OleClientSite: _public_methods_ = [ 'SaveObject', 'GetMoniker', 'GetContainer', 'ShowObject', 'OnShowWindow', 'RequestNewObjectLayout' ] _com_interfaces_ = [ axcontrol.IID_IOleClientSite ] def __init__(self, data = ""): self.IPersistStorage = None self.IStorage = None def SetIPersistStorage(self, IPersistStorage): self.IPersistStorage = IPersistStorage def SetIStorage(self, IStorage): self.IStorage = IStorage def SaveObject(self): print "SaveObject" if self.IPersistStorage != None and self.IStorage != None: self.IPersistStorage.Save(self.IStorage,1) self.IStorage.Commit(0) return S_OK def GetMoniker(self, dwAssign, dwWhichMoniker): print "GetMoniker " + str(dwAssign) + " " + str(dwWhichMoniker) def GetContainer(self): print "GetContainer" def ShowObject(self): print "ShowObject" def OnShowWindow(self, fShow): print "ShowObject" + str(fShow) def RequestNewObjectLayout(self): print "RequestNewObjectLayout" def test(): # create a LockBytes object and #wrap it as a COM object # import win32com.server.dispatcher lbcom = win32com.server.util.wrap(LockBytes(), pythoncom.IID_ILockBytes) #, useDispatcher=win32com.server.dispatcher.DispatcherWin32trace) # create a structured storage on the ILockBytes object stcom = pythoncom.StgCreateDocfileOnILockBytes(lbcom, storagecon.STGM_DIRECT| storagecon.STGM_CREATE | storagecon.STGM_READWRITE | storagecon.STGM_SHARE_EXCLUSIVE, 0) # create our ClientSite ocs = OleClientSite() # wrap it as a COM object ocscom = win32com.server.util.wrap(ocs, axcontrol.IID_IOleClientSite) # create a Word OLE Document, connect it to our site and our storage oocom=axcontrol.OleCreate("{00020906-0000-0000-C000-000000000046}", axcontrol.IID_IOleObject, 0, (0,), ocscom, stcom, ) mf=win32ui.GetMainFrame() hwnd=mf.GetSafeHwnd() # Set the host and document name # for unknown reason document name becomes hostname, and document name # is not set, debugged it, but don't know where the problem is? oocom.SetHostNames("OTPython", "This is Cool") # activate the OLE document oocom.DoVerb( -1, ocscom, 0, hwnd, mf.GetWindowRect()) # set the hostnames again oocom.SetHostNames("OTPython2", "ThisisCool2") # get IDispatch of Word doc=win32com.client.Dispatch(oocom.QueryInterface(pythoncom.IID_IDispatch)) # get IPersistStorage of Word dpcom=oocom.QueryInterface(pythoncom.IID_IPersistStorage) # let our ClientSite know the interfaces ocs.SetIPersistStorage(dpcom) ocs.SetIStorage(stcom) # use IDispatch to do the Office Word test # pasted from TestOffice.py wrange = doc.Range() for i in range(10): wrange.InsertAfter("Hello from Python %d\n" % i) paras = doc.Paragraphs for i in range(len(paras)): paras[i]().Font.ColorIndex = i+1 paras[i]().Font.Size = 12 + (4 * i) # XXX - note that # for para in paras: # para().Font... # doesnt seem to work - no error, just doesnt work # Should check if it works for VB! dpcom.Save(stcom, 0) dpcom.HandsOffStorage() # oocom.Close(axcontrol.OLECLOSE_NOSAVE) # or OLECLOSE_SAVEIFDIRTY, but it fails??? #Save the ILockBytes data to "persist2.doc" lbcom.Flush() #exiting Winword will automatically update the ILockBytes data #and flush it to "%TEMP%\persist.doc" doc.Application.Quit() if __name__=='__main__': test() pythoncom.CoUninitialize() CheckClean()
30.165854
170
0.645052
794e2241cfb748c4cff837583b25783cc4587e40
14,835
py
Python
modules/marriage.py
CapnS/uwu-bot
3c06badaa3c76d3f2f6949fbcc20c7b0e33a5e04
[ "MIT" ]
null
null
null
modules/marriage.py
CapnS/uwu-bot
3c06badaa3c76d3f2f6949fbcc20c7b0e33a5e04
[ "MIT" ]
null
null
null
modules/marriage.py
CapnS/uwu-bot
3c06badaa3c76d3f2f6949fbcc20c7b0e33a5e04
[ "MIT" ]
null
null
null
import discord from discord.ext import commands from discord.ext.commands import cooldown from discord.ext.commands.cooldowns import BucketType import time import asyncio import asyncpg from datetime import datetime, timezone, timedelta from utils import errorhandler from random import randint, choice heartt = "<:heartt:521071307769774080>" broken_heartt = "<:brokenheartt:521074570707468308>" caution = "<:caution:521002590566219776>" class marriage(commands.Cog): def __init__(self, bot): self.bot = bot async def cog_check(self, ctx): if await self.bot.pool.fetchrow( "SELECT user_id FROM user_settings WHERE user_id = $1", ctx.author.id ): return True raise (errorhandler.hasUwU(ctx)) @commands.command(descritpion="Marry your lover.", brief="Marry someone") async def marry(self, ctx, lover: discord.Member = None): async with self.bot.pool.acquire() as conn: if lover is None or lover is ctx.author: return await ctx.send("Trying to marry yourself...", delete_after=30) if ( await conn.fetchrow( "SELECT user_id FROM user_settings WHERE user_id = $1", lover.id ) is None ): return await ctx.send( f"{lover.name} does not have an uwulonian.", delete_after=30 ) if await conn.fetchrow( "SELECT user1_id, user2_id FROM marriages WHERE user1_id = $1 OR user2_id = $1 OR user1_id = $2 OR user2_id = $2", ctx.author.id, lover.id, ): return await ctx.send( "Either you or the person you are trying to marry is already married...", delete_after=30, ) msg = await ctx.send( f"""{lover.name} would you like to marry {ctx.author.name}. Reply "I do" to marry. Reply "No" to decline the marriage. This will timeout after 30 seconds.""" ) def check(amsg): return amsg.author == lover try: choice = await self.bot.wait_for("message", timeout=30, check=check) except asyncio.TimeoutError: return await msg.edit( content=f"{lover.name} does not want to marry you." ) if choice.content.lower() == "i do": await conn.execute( "INSERT INTO marriages (user1_id,user2_id) VALUES ($1,$2)", ctx.author.id, lover.id, ) await msg.delete() return await ctx.send( f"{lover.mention} has accepted {ctx.author.mention}'s proposal {heartt}" ) if choice.content.lower() == "no": await msg.delete() return await ctx.send( f"{ctx.author.mention} your lover ({lover.mention}) declined your marriage! There's a million fish in the sea though." ) else: await msg.edit( content="Invalid choice. Did you type it properly?", delete_after=30 ) @commands.command(description="Divorce...", brief="Divorce") async def divorce(self, ctx): async with self.bot.pool.acquire() as conn: if ( await conn.fetchrow( "SELECT user1_id, user2_id FROM marriages WHERE user1_id = $1 OR user2_id = $1", ctx.author.id, ) is None ): return await ctx.send( "You can't divorce someone you're not married to.", delete_after=30 ) await self.bot.pool.execute( "DELETE FROM marriages WHERE user1_id = $1 OR user2_id = $1", ctx.author.id, ) await self.bot.pool.execute( "DELETE FROM children WHERE lover1_id = $1 OR lover2_id = $1", ctx.author.id, ) await ctx.send(broken_heartt) @commands.command( description="Check who you are married to", brief="Check who you married" ) async def marriage(self, ctx): married = await self.bot.pool.fetchrow( "SELECT user1_id, user2_id, time_married FROM marriages WHERE user1_id = $1 OR user2_id = $1", ctx.author.id, ) if married is None: return await ctx.caution("You are not married.") if married["user1_id"] == ctx.author.id: user = self.bot.get_user(married["user2_id"]) else: user = self.bot.get_user(married["user1_id"]) marriage_time = datetime.now(timezone.utc) - married["time_married"] await ctx.send( f"""You have been married to {user.name} since {married['time_married'].strftime("%X at %x")} ({marriage_time.days}d).""" ) @commands.command( descritpion="Breed with your lover", aliases=["sex", "fuck", "<---_that_is_so_funny_hahahahhahahaha"], brief="Breed", ) async def breed(self, ctx): async with self.bot.pool.acquire() as conn: children = await conn.fetchval( "SELECT COUNT(*) FROM children WHERE lover1_id = $1 OR lover2_id = $1", ctx.author.id, ) marriage = await conn.fetchrow( "SELECT user1_id, user2_id FROM marriages WHERE user1_id = $1 OR user2_id = $1", ctx.author.id, ) if marriage is None: return await ctx.caution("You aren't married") if children >= 5: return await ctx.caution( "You already have 5 children. Are you crazy wanting more?" ) if marriage["user1_id"] == ctx.author.id: user = self.bot.get_user(marriage["user2_id"]) else: user = self.bot.get_user(marriage["user1_id"]) asking = await ctx.send( f"""{ctx.author.name} would like to breed with {user.name}. {user.name} reply with "I do" for yes and "No" for no.""" ) await self.bot.redis.execute( "SET", f"{ctx.author.id}-{ctx.command.qualified_name}", "cooldown", "EX", 3600, ) def check(amsg): return amsg.author.id == user.id try: breed_choice = await self.bot.wait_for( "message", timeout=30, check=check ) except asyncio.TimeoutError: await asking.delete() await self.bot.redis.execute( "DEL", f"{ctx.author.id}-{ctx.command.qualified_name}" ) return await ctx.send( f"{user.name} does not want to make a child with you." ) if breed_choice.content.lower() == "i do": if randint(1, 2) == 1: await asking.delete() await ctx.send("You didn't successfully make a child.") else: gender = choice(["male", "female"]) if gender == "male": await asking.delete() congrats = await ctx.send( "Your efforts were successful! He's a male! Please enter the babies name." ) else: await asking.delete() congrats = await ctx.send( "Your efforts were successful! She's a female! Please enter the babies name." ) def check(amsg): return ( amsg.author.id == ctx.author.id or amsg.author.id == user.id ) try: baby_name = await self.bot.wait_for( "message", timeout=30, check=check ) except asyncio.TimeoutError: await asking.delete() await self.bot.redis.execute( "DEL", f"{ctx.author.id}-{ctx.command.qualified_name}" ) return await ctx.send( f"No name was provided in time.", delete_after=30 ) if len(baby_name.content) < 3 or len(baby_name.content) > 50: await self.bot.redis.execute( "DEL", f"{ctx.author.id}-{ctx.command.qualified_name}" ) return await ctx.caution( "The name must be more then 3 chars long and can't be longer then 50 chars." ) await self.bot.pool.execute( "INSERT INTO children (lover1_id, lover2_id, child_name, age, gender) VALUES ($1, $2, $3, $4, $5)", ctx.author.id, user.id, baby_name.content, 0, gender, ) await congrats.delete() await ctx.send( f"Great name! Good luck with your newborn {baby_name.content}.".replace( "@", "@\u200b" ) ) if breed_choice.content.lower() == "no": await asking.delete() await self.bot.redis.execute( "DEL", f"{ctx.author.id}-{ctx.command.qualified_name}" ) return await ctx.send(f"{user.name} does not want to have a child.") await asking.delete() await self.bot.redis.execute( "DEL", f"{ctx.author.id}-{ctx.command.qualified_name}" ) await ctx.caution("Invalid choice. Did you type it properly?") @commands.command(description="Check your family") async def family(self, ctx): async with self.bot.pool.acquire() as conn: children = await conn.fetch( "SELECT * FROM children WHERE lover1_id = $1 OR lover2_id = $1", ctx.author.id, ) marriage = await conn.fetchrow( "SELECT user1_id, user2_id, time_married FROM marriages WHERE user1_id = $1 OR user2_id = $1", ctx.author.id, ) if marriage is None: return await ctx.caution("You aren't married") if marriage["user1_id"] == ctx.author.id: user = self.bot.get_user(marriage["user2_id"]) else: user = self.bot.get_user(marriage["user1_id"]) marriage_time = datetime.now(timezone.utc) - marriage["time_married"] e = discord.Embed(colour=0x7289DA) e.set_author(name=f"{user.name} is married to {ctx.author.name}") e.set_footer( text=f"Married {marriage['time_married'].strftime('%x on %X')} ({marriage_time.days}d)" ) num = 0 for i in children: e.add_field( name=children[num]["child_name"], value=f"Gender {children[num]['gender']}; Age {children[num]['age']}; Born {children[num]['birthdate'].strftime('%x on %X')}", ) num += 1 if num == 0: e.add_field( name="No children", value=f"{user.name} and {ctx.author.name} have no children.", ) await ctx.send(embed=e) @commands.command(description="Bday!", aliases=["bd", "bday"], hidden=True) async def birthday(self, ctx): async with self.bot.pool.acquire() as conn: children = await conn.fetchrow( "SELECT child_name, age, gender, last_bd FROM children WHERE lover1_id = $1 OR lover2_id = $1 ORDER BY RANDOM() LIMIT 1", ctx.author.id, ) if children is None: return await ctx.caution("You have no children.") user_cooldown = await ctx.bot.redis.pttl( f"{ctx.author.id}-{ctx.command.qualified_name}-{children['child_name']}" ) if user_cooldown == -2: marriage = await conn.fetchrow( "SELECT user1_id, user2_id, time_married FROM marriages WHERE user1_id = $1 OR user2_id = $1", ctx.author.id, ) if marriage is None: return await ctx.caution("You aren't married.") await self.bot.redis.execute( "SET", f"{ctx.author.id}-{ctx.command.qualified_name}-{children['child_name']}", "cooldown", "EX", 2_630_000, ) gender = "He" if children["gender"] == "female": gender = "She" pre_enjy_msg = await ctx.send( f"It's {children['child_name']}'s birthday! {gender} will be turning {children['age'] + 1}" ) enjoyment_lvl = [ f"{children['child_name']} loved the birthday party!", f"{children['child_name']} didn't enjoy the party.", f"{children['child_name']} thinks that was the best party ever!", f"{ctx.author.name} loves uwu", ] await asyncio.sleep(4) enjy = choice(enjoyment_lvl) await pre_enjy_msg.delete() time = timedelta(seconds=2_630_000) + datetime.utcnow() await conn.execute( "UPDATE children SET age = children.age + 1, last_bd = $1 WHERE child_name = $2", time, children["child_name"], ) await ctx.send(enjy) else: base_time = user_cooldown seconds = round(base_time, 2) hours, remainder = divmod(int(seconds), 3600) minutes, seconds = divmod(remainder, 60) await ctx.caution( f"{children['child_name']} already had there birthday within the last month" ) def setup(bot): bot.add_cog(marriage(bot))
41.554622
173
0.49363
794e234301e2e42c8a568c2cfd3640dce94809a7
557
py
Python
concursinhos/urls.py
gmendonc/concursinhos-dev
24e6fe6917d6a844175f64b20ba5166b88ea93b4
[ "Unlicense", "MIT" ]
null
null
null
concursinhos/urls.py
gmendonc/concursinhos-dev
24e6fe6917d6a844175f64b20ba5166b88ea93b4
[ "Unlicense", "MIT" ]
null
null
null
concursinhos/urls.py
gmendonc/concursinhos-dev
24e6fe6917d6a844175f64b20ba5166b88ea93b4
[ "Unlicense", "MIT" ]
null
null
null
from django.conf.urls import patterns, include, url from django.contrib import admin from django.conf import settings urlpatterns = patterns('', # Examples: # url(r'^$', 'concursinhos.views.home', name='home'), # url(r'^blog/', include('blog.urls')), #url(r'^$', include('quiz.urls')), url(r'^quiz/', include('quiz.urls')), url(r'^admin/', include(admin.site.urls)), ) if settings.DEBUG: urlpatterns += patterns('', (r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT}), )
29.315789
103
0.628366
794e240470229cb6a11eb83066b5147fddb11c87
10,080
py
Python
training/dataset.py
LightNormal/StyleGAN2withGUI
d2ffa81a4e7b2b779423bb854230863d57f0eb85
[ "BSD-Source-Code" ]
4
2020-07-16T00:49:03.000Z
2021-02-23T23:42:02.000Z
training/dataset.py
LightNormal/StyleGAN2withGUI
d2ffa81a4e7b2b779423bb854230863d57f0eb85
[ "BSD-Source-Code" ]
null
null
null
training/dataset.py
LightNormal/StyleGAN2withGUI
d2ffa81a4e7b2b779423bb854230863d57f0eb85
[ "BSD-Source-Code" ]
1
2020-12-09T12:02:04.000Z
2020-12-09T12:02:04.000Z
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Multi-resolution input data pipeline.""" import os import glob import numpy as np import tensorflow as tf import dnnlib import dnnlib.tflib as tflib #---------------------------------------------------------------------------- # Dataset class that loads data from tfrecords files. class TFRecordDataset: def __init__(self, tfrecord_dir, # Directory containing a collection of tfrecords files. resolution = None, # Dataset resolution, None = autodetect. label_file = None, # Relative path of the labels file, None = autodetect. max_label_size = 0, # 0 = no labels, 'full' = full labels, <int> = N first label components. max_images = None, # Maximum number of images to use, None = use all images. repeat = True, # Repeat dataset indefinitely? shuffle_mb = 4096, # Shuffle data within specified window (megabytes), 0 = disable shuffling. prefetch_mb = 2048, # Amount of data to prefetch (megabytes), 0 = disable prefetching. buffer_mb = 256, # Read buffer size (megabytes). num_threads = 2): # Number of concurrent threads. self.tfrecord_dir = tfrecord_dir self.resolution = None self.resolution_log2 = None self.shape = [] # [channels, height, width] self.dtype = 'uint8' self.dynamic_range = [0, 255] self.label_file = label_file self.label_size = None # components self.label_dtype = None self._np_labels = None self._tf_minibatch_in = None self._tf_labels_var = None self._tf_labels_dataset = None self._tf_datasets = dict() self._tf_iterator = None self._tf_init_ops = dict() self._tf_minibatch_np = None self._cur_minibatch = -1 self._cur_lod = -1 # List tfrecords files and inspect their shapes. assert os.path.isdir(self.tfrecord_dir) tfr_files = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.tfrecords'))) assert len(tfr_files) >= 1 tfr_shapes = [] for tfr_file in tfr_files: tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE) for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt): tfr_shapes.append(self.parse_tfrecord_np(record).shape) break # Autodetect label filename. if self.label_file is None: guess = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.labels'))) if len(guess): self.label_file = guess[0] elif not os.path.isfile(self.label_file): guess = os.path.join(self.tfrecord_dir, self.label_file) if os.path.isfile(guess): self.label_file = guess # Determine shape and resolution. max_shape = max(tfr_shapes, key=np.prod) self.resolution = resolution if resolution is not None else max_shape[1] self.resolution_log2 = int(np.log2(self.resolution)) self.shape = [max_shape[0], self.resolution, self.resolution] tfr_lods = [self.resolution_log2 - int(np.log2(shape[1])) for shape in tfr_shapes] assert all(shape[0] == max_shape[0] for shape in tfr_shapes) assert all(shape[1] == shape[2] for shape in tfr_shapes) assert all(shape[1] == self.resolution // (2**lod) for shape, lod in zip(tfr_shapes, tfr_lods)) assert all(lod in tfr_lods for lod in range(self.resolution_log2 - 1)) # Load labels. assert max_label_size == 'full' or max_label_size >= 0 self._np_labels = np.zeros([1<<30, 0], dtype=np.float32) if self.label_file is not None and max_label_size != 0: self._np_labels = np.load(self.label_file) assert self._np_labels.ndim == 2 if max_label_size != 'full' and self._np_labels.shape[1] > max_label_size: self._np_labels = self._np_labels[:, :max_label_size] if max_images is not None and self._np_labels.shape[0] > max_images: self._np_labels = self._np_labels[:max_images] self.label_size = self._np_labels.shape[1] self.label_dtype = self._np_labels.dtype.name # Build TF expressions. with tf.name_scope('Dataset'), tf.device('/cpu:0'): self._tf_minibatch_in = tf.placeholder(tf.int64, name='minibatch_in', shape=[]) self._tf_labels_var = tflib.create_var_with_large_initial_value(self._np_labels, name='labels_var') self._tf_labels_dataset = tf.data.Dataset.from_tensor_slices(self._tf_labels_var) for tfr_file, tfr_shape, tfr_lod in zip(tfr_files, tfr_shapes, tfr_lods): if tfr_lod < 0: continue dset = tf.data.TFRecordDataset(tfr_file, compression_type='', buffer_size=buffer_mb<<20) if max_images is not None: dset = dset.take(max_images) dset = dset.map(self.parse_tfrecord_tf, num_parallel_calls=num_threads) dset = tf.data.Dataset.zip((dset, self._tf_labels_dataset)) bytes_per_item = np.prod(tfr_shape) * np.dtype(self.dtype).itemsize if shuffle_mb > 0: dset = dset.shuffle(((shuffle_mb << 20) - 1) // bytes_per_item + 1) if repeat: dset = dset.repeat() if prefetch_mb > 0: dset = dset.prefetch(((prefetch_mb << 20) - 1) // bytes_per_item + 1) dset = dset.batch(self._tf_minibatch_in) self._tf_datasets[tfr_lod] = dset self._tf_iterator = tf.data.Iterator.from_structure(self._tf_datasets[0].output_types, self._tf_datasets[0].output_shapes) self._tf_init_ops = {lod: self._tf_iterator.make_initializer(dset) for lod, dset in self._tf_datasets.items()} def close(self): pass # Use the given minibatch size and level-of-detail for the data returned by get_minibatch_tf(). def configure(self, minibatch_size, lod=0): lod = int(np.floor(lod)) assert minibatch_size >= 1 and lod in self._tf_datasets if self._cur_minibatch != minibatch_size or self._cur_lod != lod: self._tf_init_ops[lod].run({self._tf_minibatch_in: minibatch_size}) self._cur_minibatch = minibatch_size self._cur_lod = lod # Get next minibatch as TensorFlow expressions. def get_minibatch_tf(self): # => images, labels return self._tf_iterator.get_next() # Get next minibatch as NumPy arrays. def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels self.configure(minibatch_size, lod) with tf.name_scope('Dataset'): if self._tf_minibatch_np is None: self._tf_minibatch_np = self.get_minibatch_tf() return tflib.run(self._tf_minibatch_np) # Get random labels as TensorFlow expression. def get_random_labels_tf(self, minibatch_size): # => labels with tf.name_scope('Dataset'): if self.label_size > 0: with tf.device('/cpu:0'): return tf.gather(self._tf_labels_var, tf.random_uniform([minibatch_size], 0, self._np_labels.shape[0], dtype=tf.int32)) return tf.zeros([minibatch_size, 0], self.label_dtype) # Get random labels as NumPy array. def get_random_labels_np(self, minibatch_size): # => labels if self.label_size > 0: return self._np_labels[np.random.randint(self._np_labels.shape[0], size=[minibatch_size])] return np.zeros([minibatch_size, 0], self.label_dtype) # Parse individual image from a tfrecords file into TensorFlow expression. @staticmethod def parse_tfrecord_tf(record): features = tf.parse_single_example(record, features={ 'shape': tf.FixedLenFeature([3], tf.int64), 'data': tf.FixedLenFeature([], tf.string)}) data = tf.decode_raw(features['data'], tf.uint8) return tf.reshape(data, features['shape']) # Parse individual image from a tfrecords file into NumPy array. @staticmethod def parse_tfrecord_np(record): ex = tf.train.Example() ex.ParseFromString(record) shape = ex.features.feature['shape'].int64_list.value # pylint: disable=no-member data = ex.features.feature['data'].bytes_list.value[0] # pylint: disable=no-member return np.fromstring(data, np.uint8).reshape(shape) #---------------------------------------------------------------------------- # Helper func for constructing a dataset object using the given options. def load_dataset(class_name=None, data_dir=None, verbose=False, **kwargs): kwargs = dict(kwargs) if 'tfrecord_dir' in kwargs: if class_name is None: class_name = __name__ + '.TFRecordDataset' if data_dir is not None: kwargs['tfrecord_dir'] = os.path.join(data_dir, kwargs['tfrecord_dir']) assert class_name is not None if verbose: print('Streaming data using %s...' % class_name) dataset = dnnlib.util.get_obj_by_name(class_name)(**kwargs) if verbose: print('Dataset shape =', np.int32(dataset.shape).tolist()) print('Dynamic range =', dataset.dynamic_range) print('Label size =', dataset.label_size) return dataset #----------------------------------------------------------------------------
50.4
140
0.605456
794e2422dd9cf0c29d4aa32ecdaed24ce4872b12
6,276
py
Python
3rdparty/huawei-lte-api/huawei_lte_api/Client.py
tux1c0/plugin-huawei4g
af83ce6321db23fcfd51eb204e00c287d3ea2325
[ "MIT" ]
null
null
null
3rdparty/huawei-lte-api/huawei_lte_api/Client.py
tux1c0/plugin-huawei4g
af83ce6321db23fcfd51eb204e00c287d3ea2325
[ "MIT" ]
1
2020-06-21T20:35:27.000Z
2020-07-14T20:08:55.000Z
3rdparty/huawei-lte-api/huawei_lte_api/Client.py
tux1c0/plugin-huawei4g
af83ce6321db23fcfd51eb204e00c287d3ea2325
[ "MIT" ]
3
2020-02-27T11:35:55.000Z
2021-03-25T08:51:51.000Z
from huawei_lte_api.Connection import Connection from huawei_lte_api.api.Device import Device from huawei_lte_api.api.User import User from huawei_lte_api.api.Monitoring import Monitoring from huawei_lte_api.api.Security import Security from huawei_lte_api.api.WebServer import WebServer from huawei_lte_api.api.WLan import WLan from huawei_lte_api.api.Cradle import Cradle from huawei_lte_api.api.Pin import Pin from huawei_lte_api.config.DialUp import DialUp as DialUpConfig from huawei_lte_api.config.Global import Global from huawei_lte_api.config.Lan import Lan as LanConfig from huawei_lte_api.config.Network import Network as NetworkConfig from huawei_lte_api.config.Pincode import Pincode as PincodeConfig from huawei_lte_api.config.Sms import Sms as SmsConfig from huawei_lte_api.config.Voice import Voice from huawei_lte_api.config.Wifi import Wifi as WifiConfig from huawei_lte_api.config.PcAssistant import PcAssistant from huawei_lte_api.config.DeviceInformation import DeviceInformation from huawei_lte_api.config.WebUICfg import WebUICfg from huawei_lte_api.config.Device import Device as DeviceConfig from huawei_lte_api.config.FastBoot import FastBoot from huawei_lte_api.config.Firewall import Firewall from huawei_lte_api.config.IPv6 import IPv6 from huawei_lte_api.config.Ota import Ota as OtaConfig from huawei_lte_api.config.Pb import Pb as PbConfig from huawei_lte_api.config.Sntp import Sntp from huawei_lte_api.config.Statistic import Statistic as ConfigStatistic from huawei_lte_api.config.Stk import Stk from huawei_lte_api.config.Update import Update from huawei_lte_api.config.UPnp import UPnp from huawei_lte_api.config.Ussd import Ussd from huawei_lte_api.config.WebSd import WebSd from huawei_lte_api.usermanual.PublicSysResources import PublicSysResources from huawei_lte_api.api.Ota import Ota from huawei_lte_api.api.Net import Net from huawei_lte_api.api.DialUp import DialUp from huawei_lte_api.api.Sms import Sms from huawei_lte_api.api.Redirection import Redirection from huawei_lte_api.api.VSim import VSim from huawei_lte_api.api.FileManager import FileManager from huawei_lte_api.api.Dhcp import Dhcp from huawei_lte_api.api.DDns import DDns from huawei_lte_api.api.Diagnosis import Diagnosis from huawei_lte_api.api.SNtp import SNtp from huawei_lte_api.api.OnlineUpdate import OnlineUpdate from huawei_lte_api.api.Log import Log from huawei_lte_api.api.Time import Time from huawei_lte_api.api.SdCard import SdCard from huawei_lte_api.api.UsbStorage import UsbStorage from huawei_lte_api.api.UsbPrinter import UsbPrinter from huawei_lte_api.api.Vpn import Vpn from huawei_lte_api.api.Ntwk import Ntwk from huawei_lte_api.api.Global import Global as Global_ from huawei_lte_api.api.Pb import Pb from huawei_lte_api.api.Host import Host from huawei_lte_api.api.Language import Language from huawei_lte_api.api.Syslog import Syslog from huawei_lte_api.api.Voice import Voice as Voice_ from huawei_lte_api.api.Cwmp import Cwmp from huawei_lte_api.api.Lan import Lan from huawei_lte_api.api.Led import Led from huawei_lte_api.api.Statistic import Statistic from huawei_lte_api.api.TimeRule import TimeRule from huawei_lte_api.api.Bluetooth import Bluetooth from huawei_lte_api.api.MLog import MLog class Client: def __init__(self, connection: Connection): # pylint: disable=too-many-statements self.monitoring = Monitoring(connection) self.security = Security(connection) self.webserver = WebServer(connection) self.global_ = Global_(connection) self.wlan = WLan(connection) self.cradle = Cradle(connection) self.pin = Pin(connection) self.config_dialup = DialUpConfig(connection) self.config_global = Global(connection) self.config_lan = LanConfig(connection) self.config_network = NetworkConfig(connection) self.config_pincode = PincodeConfig(connection) self.config_sms = SmsConfig(connection) self.config_voice = Voice(connection) self.config_wifi = WifiConfig(connection) self.config_pc_assistant = PcAssistant(connection) self.config_device_information = DeviceInformation(connection) self.config_web_ui_cfg = WebUICfg(connection) self.config_device = DeviceConfig(connection) self.config_fast_boot = FastBoot(connection) self.config_firewall = Firewall(connection) self.config_ipv6 = IPv6(connection) self.config_ota = OtaConfig(connection) self.config_pb = PbConfig(connection) self.config_sntp = Sntp(connection) self.config_statistic = ConfigStatistic(connection) self.config_stk = Stk(connection) self.config_update = Update(connection) self.config_u_pnp = UPnp(connection) self.config_ussd = Ussd(connection) self.config_web_sd = WebSd(connection) self.usermanual_public_sys_resources = PublicSysResources(connection) self.ota = Ota(connection) self.net = Net(connection) self.dial_up = DialUp(connection) self.sms = Sms(connection) self.redirection = Redirection(connection) self.v_sim = VSim(connection) self.file_manager = FileManager(connection) self.dhcp = Dhcp(connection) self.d_dns = DDns(connection) self.diagnosis = Diagnosis(connection) self.s_ntp = SNtp(connection) self.user = User(connection) self.device = Device(connection) self.online_update = OnlineUpdate(connection) self.log = Log(connection) self.time = Time(connection) self.sd_card = SdCard(connection) self.usb_storage = UsbStorage(connection) self.usb_printer = UsbPrinter(connection) self.vpn = Vpn(connection) self.ntwk = Ntwk(connection) self.pb = Pb(connection) self.host = Host(connection) self.language = Language(connection) self.syslog = Syslog(connection) self.voice = Voice_(connection) self.cwmp = Cwmp(connection) self.lan = Lan(connection) self.led = Led(connection) self.statistic = Statistic(connection) self.timerule = TimeRule(connection) self.bluetooth = Bluetooth(connection) self.mlog = MLog(connection)
46.147059
86
0.773582
794e24f954bf9531a4ba99da6cffc088d9380a79
12,526
py
Python
scripts/NGS/plotutils.py
shivankurkapoor/moleculardating
4a72c3e92a09ab321e0d92840cc7619857bbab8a
[ "BSD-3-Clause" ]
1
2018-04-24T04:38:33.000Z
2018-04-24T04:38:33.000Z
scripts/NGS/plotutils.py
shivankurkapoor/molecular-dating
4a72c3e92a09ab321e0d92840cc7619857bbab8a
[ "BSD-3-Clause" ]
null
null
null
scripts/NGS/plotutils.py
shivankurkapoor/molecular-dating
4a72c3e92a09ab321e0d92840cc7619857bbab8a
[ "BSD-3-Clause" ]
null
null
null
cnames = { 'palegoldenrod': '#EEE8AA', 'palegreen': '#98FB98', 'paleturquoise': '#AFEEEE', 'palevioletred': '#DB7093', 'papayawhip': '#FFEFD5', 'peachpuff': '#FFDAB9', 'peru': '#CD853F', 'pink': '#FFC0CB', 'plum': '#DDA0DD', 'powderblue': '#B0E0E6', 'purple': '#800080', 'red': '#FF0000', 'rosybrown': '#BC8F8F', 'royalblue': '#4169E1', 'saddlebrown': '#8B4513', 'salmon': '#FA8072', 'sandybrown': '#FAA460', 'seagreen': '#2E8B57', 'seashell': '#FFF5EE', 'darkblue': '#00008B', 'darkcyan': '#008B8B', 'darkgoldenrod': '#B8860B', 'darkgreen': '#006400', 'darkkhaki': '#BDB76B', 'darkmagenta': '#8B008B', 'darkolivegreen': '#556B2F', 'darkorange': '#FF8C00', 'darkorchid': '#9932CC', 'darkred': '#8B0000', 'darksalmon': '#E9967A', 'darkseagreen': '#8FBC8F', 'darkslateblue': '#483D8B', 'darkturquoise': '#00CED1', 'darkviolet': '#9400D3', 'deeppink': '#FF1493', 'deepskyblue': '#00BFFF', 'dodgerblue': '#1E90FF', 'firebrick': '#B22222', 'forestgreen': '#228B22', 'fuchsia': '#FF00FF', 'gainsboro': '#DCDCDC', 'gold': '#FFD700', 'goldenrod': '#DAA520', 'green': '#008000', 'hotpink': '#FF69B4', 'indianred': '#CD5C5C', 'indigo': '#4B0082', 'ivory': '#FFFFF0', 'khaki': '#F0E68C', 'lawngreen': '#7CFC00', 'lemonchiffon': '#FFFACD', 'aliceblue': '#F0F8FF', 'aqua': '#00FFFF', 'aquamarine': '#7FFFD4', 'azure': '#F0FFFF', 'beige': '#F5F5DC', 'black': '#000000', 'blanchedalmond': '#FFEBCD', 'blue': '#0000FF', 'blueviolet': '#8A2BE2', 'brown': '#A52A2A', 'burlywood': '#DEB887', 'cadetblue': '#5F9EA0', 'chartreuse': '#7FFF00', 'chocolate': '#D2691E', 'coral': '#FF7F50', 'crimson': '#DC143C', 'cyan': '#00FFFF', 'lime': '#00FF00', 'limegreen': '#32CD32', 'linen': '#FAF0E6', 'magenta': '#FF00FF', 'maroon': '#800000', 'midnightblue': '#191970', 'mintcream': '#F5FFFA', 'mistyrose': '#FFE4E1', 'moccasin': '#FFE4B5', 'navy': '#000080', 'oldlace': '#FDF5E6', 'olive': '#808000', 'olivedrab': '#6B8E23', 'orange': '#FFA500', 'orangered': '#FF4500', 'orchid': '#DA70D6', 'sienna': '#A0522D', 'silver': '#C0C0C0', 'skyblue': '#87CEEB', 'slateblue': '#6A5ACD', 'springgreen': '#00FF7F', 'steelblue': '#4682B4', 'teal': '#008080', 'thistle': '#D8BFD8', 'tomato': '#FF6347', 'turquoise': '#40E0D0', 'violet': '#EE82EE', 'mediumaquamarine': '#66CDAA', 'mediumblue': '#0000CD', 'mediumorchid': '#BA55D3', 'mediumpurple': '#9370DB', 'mediumseagreen': '#3CB371', 'mediumslateblue': '#7B68EE', 'mediumspringgreen': '#00FA9A', 'mediumturquoise': '#48D1CC', 'mediumvioletred': '#C71585', } filled_markers = [u'o', u'v', u'^', u'<', u'>', u'8', u's', u'p', u'*', u'h', u'H', u'D', u'd'] ''' Points with S2 <=5.0 ''' tuplist = [('CH256', 0), ('CH256', 172), ('CH256', 426), ('CH256', 684), ('CH256', 28), ('CH256', 63), ('PIC83747', 0), ('PIC83747', 6), ('PIC83747', 50), ('PIC90770', 193), ('PIC90770', 8), ('PIC90770', 96), ('PIC90770', 12), ('PIC90770', 125), ('R880F', 0), ('R880F', 147), ('R880F', 63), ('CH470', 0), ('CH470', 41), ('CH470', 13), ('CH470', 174), ('CH470', 69), ('CH159', 0), ('CH159', 648), ('CH159', 12), ('CH159', 302), ('CH159', 8), ('CH159', 85), ('CH159', 22), ('CH159', 56), ('CH159', 29), ('9004SS', 0), ('9004SS', 29), ('CAP239', 0), ('CAP239', 119), ('CAP210', 0), ('CAP210', 168), ('CAP210', 140), ('CAP210', 70), ('SUMA', 0), ('SUMA', 1), ('SUMA', 30), ('SUMA', 16), ('SUMA', 9), ('CH131', 0), ('CH131', 34), ('CH131', 333), ('CH131', 175), ('CH131', 273), ('CH131', 21), ('CH131', 91), ('CH131', 28), ('CH131', 670), ('CH131', 63), ('1056', 0), ('1056', 3), ('1056', 7), ('1058', 0), ('1058', 10), ('1058', 3), ('1059', 0), ('1059', 4), ('1059', 7), ('CH042', 0), ('CH042', 676), ('CH042', 424), ('CH042', 172), ('CH042', 21), ('CH042', 60), ('CH040', 0), ('CH040', 45), ('CH040', 412), ('CH040', 111), ('CAP45', 0), ('CAP45', 21), ('CH185', 0), ('CH185', 25), ('CH185', 67), ('CH185', 416), ('CH185', 180), ('K84', 0), ('K84', 24), ('6247', 0), ('6247', 2), ('R053', 0), ('R053', 8), ('R526', 0), ('R526', 65), ('703010200', 0), ('CH164', 0), ('CH164', 169), ('CH164', 420), ('CH164', 14), ('CH164', 56), ('WEAU', 0), ('WEAU', 8), ('WEAU', 29), ('WEAU', 197), ('WEAU', 15), ('CH162', 0), ('CH162', 179), ('CH162', 21), ('CH162', 438), ('CH162', 77), ('H386', 0), ('H386', 9), ('PIC55751', 0), ('191647', 0), ('191647', 127), ('PIC1362', 0), ('H408', 0), ('PIC38417', 0), ('PIC38417', 8), ('PIC71101', 0), ('PIC71101', 37), ('PIC71101', 6), ('PIC71101', 174), ('PIC71101', 14), ('PIC71101', 120), ('TT31P', 0), ('TT31P', 11), ('CH198', 0), ('CH198', 11), ('CH198', 60), ('CH198', 447), ('PIC38051', 0), ('PIC38051', 4), ('CH077', 0), ('CH077', 32), ('CH077', 14), ('CH077', 159), ('CH058', 0), ('CH058', 76), ('CH058', 36), ('CH607', 0), ('CH607', 21), ('CH607', 14), ('R463F', 0), ('R463F', 7), ('R463F', 236), ('R463F', 48), ] # S2<=5 type_list = [('CH256', 0, 'Single'), ('CH256', 172, 'Single'), ('CH256', 426, 'Single'), ('CH256', 684, 'Single'), ('CH256', 28, 'Single'), ('CH256', 63, 'Single'), ('PIC83747', 0, 'Multiple'), ('PIC83747', 6, 'Multiple'), ('PIC83747', 50, 'Multiple'), ('PIC90770', 193, 'Multiple'), ('PIC90770', 8, 'Multiple'), ('PIC90770', 96, 'Multiple'), ('PIC90770', 12, 'Multiple'), ('PIC90770', 125, 'Multiple'), ('R880F', 0, 'Single'), ('R880F', 147, 'Single'), ('R880F', 63, 'Single'), ('CH470', 0, 'Single'), ('CH470', 41, 'Single'), ('CH470', 13, 'Single'), ('CH470', 174, 'Single'), ('CH470', 69, 'Single'), ('CH159', 0, 'Single'), ('CH159', 648, 'Single'), ('CH159', 12, 'Single'), ('CH159', 302, 'Single'), ('CH159', 8, 'Single'), ('CH159', 85, 'Single'), ('CH159', 22, 'Single'), ('CH159', 56, 'Single'), ('CH159', 29, 'Single'), ('9004SS', 0, 'Single'), ('9004SS', 29, 'Single'), ('CAP239', 0, 'Single'), ('CAP239', 119, 'Single'), ('CAP210', 0, 'Single'), ('CAP210', 168, 'Single'), ('CAP210', 140, 'Single'), ('CAP210', 70, 'Single'), ('SUMA', 0, 'Single'), ('SUMA', 1, 'Single'), ('SUMA', 30, 'Single'), ('SUMA', 16, 'Single'), ('SUMA', 9, 'Single'), ('CH131', 0, 'Single'), ('CH131', 34, 'Single'), ('CH131', 333, 'Single'), ('CH131', 175, 'Single'), ('CH131', 273, 'Single'), ('CH131', 21, 'Single'), ('CH131', 91, 'Single'), ('CH131', 28, 'Single'), ('CH131', 670, 'Single'), ('CH131', 63, 'Single'), ('1056', 0, 'Single'), ('1056', 3, 'Single'), ('1056', 7, 'Single'), ('1058', 0, 'Single'), ('1058', 10, 'Single'), ('1058', 3, 'Single'), ('1059', 0, 'Multiple'), ('1059', 4, 'Multiple'), ('1059', 7, 'Multiple'), ('CH042', 0, 'Single'), ('CH042', 676, 'Single'), ('CH042', 424, 'Single'), ('CH042', 172, 'Single'), ('CH042', 21, 'Single'), ('CH042', 60, 'Single'), ('CH040', 0, 'Single'), ('CH040', 45, 'Single'), ('CH040', 412, 'Single'), ('CH040', 111, 'Single'), ('CAP45', 0, 'Single'), ('CAP45', 21, 'Single'), ('CH185', 0, 'Single'), ('CH185', 25, 'Single'), ('CH185', 67, 'Single'), ('CH185', 416, 'Single'), ('CH185', 180, 'Single'), ('K84', 0, 'Single'), ('K84', 24, 'Single'), ('6247', 0, 'Single'), ('6247', 2, 'Single'), ('R053', 0, 'Single'), ('R053', 8, 'Single'), ('R526', 0, 'Single'), ('R526', 65, 'Single'), ('703010200', 0, 'Multiple'), ('CH164', 0, 'Single'), ('CH164', 169, 'Single'), ('CH164', 420, 'Single'), ('CH164', 14, 'Single'), ('CH164', 56, 'Single'), ('WEAU', 0, 'Single'), ('WEAU', 8, 'Single'), ('WEAU', 29, 'Single'), ('WEAU', 197, 'Single'), ('WEAU', 15, 'Single'), ('CH162', 0, 'Single'), ('CH162', 179, 'Single'), ('CH162', 21, 'Single'), ('CH162', 438, 'Single'), ('CH162', 77, 'Single'), ('H386', 0, 'Single'), ('H386', 9, 'Single'), ('PIC55751', 0, 'Multiple'), ('191647', 0, 'Single'), ('191647', 127, 'Single'), ('PIC1362', 0, 'Single'), ('H408', 0, 'Multiple'), ('PIC38417', 0, 'Multiple'), ('PIC38417', 8, 'Multiple'), ('PIC71101', 0, 'Single'), ('PIC71101', 37, 'Single'), ('PIC71101', 6, 'Single'), ('PIC71101', 174, 'Single'), ('PIC71101', 14, 'Single'), ('PIC71101', 120, 'Single'), ('TT31P', 0, 'Single'), ('TT31P', 11, 'Single'), ('CH198', 0, 'Single'), ('CH198', 11, 'Single'), ('CH198', 60, 'Single'), ('CH198', 447, 'Single'), ('PIC38051', 0, 'Single'), ('PIC38051', 4, 'Single'), ('CH077', 0, 'Single'), ('CH077', 32, 'Single'), ('CH077', 14, 'Single'), ('CH077', 159, 'Single'), ('CH058', 0, 'Single'), ('CH058', 76, 'Single'), ('CH058', 36, 'Single'), ('CH607', 0, 'Single'), ('CH607', 21, 'Single'), ('CH607', 14, 'Single'), ('R463F', 0, 'Single'), ('R463F', 7, 'Single'), ('R463F', 236, 'Single'), ('R463F', 48, 'Single'), ]
31.472362
96
0.357975
794e252a6923a3e368203e7308f80bf4d86aac85
3,089
py
Python
autotest/gdrivers/genbin.py
tbonfort/gdal
173e0659bc3f2e6b97c2c07332a3066478afb821
[ "MIT" ]
1
2015-04-21T19:52:03.000Z
2015-04-21T19:52:03.000Z
autotest/gdrivers/genbin.py
tbonfort/gdal
173e0659bc3f2e6b97c2c07332a3066478afb821
[ "MIT" ]
7
2018-04-09T09:35:42.000Z
2018-05-22T06:54:05.000Z
autotest/gdrivers/genbin.py
pramsey/gdal
965421b79fe4d3332b0f2f633b072fdcab2b700a
[ "MIT" ]
2
2018-05-08T01:51:34.000Z
2019-06-26T05:08:56.000Z
#!/usr/bin/env python ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test Generic Binary format driver. # Author: Frank Warmerdam <warmerdam@pobox.com> # ############################################################################### # Copyright (c) 2007, Frank Warmerdam <warmerdam@pobox.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import sys sys.path.append( '../pymod' ) import gdaltest ############################################################################### # Perform simple read test. def genbin_1(): tst = gdaltest.GDALTest( 'GenBin', 'tm4628_96.bil', 1, 5738, 0, 0, 500, 1 ) prj = """PROJCS["NAD27 / Washington South", GEOGCS["NAD27", DATUM["North_American_Datum_1927", SPHEROID["Clarke 1866",6378206.4,294.9786982138982, AUTHORITY["EPSG","7008"]], AUTHORITY["EPSG","6267"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.01745329251994328, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4267"]], UNIT["US survey foot",0.3048006096012192, AUTHORITY["EPSG","9003"]], PROJECTION["Lambert_Conformal_Conic_2SP"], PARAMETER["standard_parallel_1",45.83333333333334], PARAMETER["standard_parallel_2",47.33333333333334], PARAMETER["latitude_of_origin",45.33333333333334], PARAMETER["central_meridian",-120.5], PARAMETER["false_easting",2000000], PARAMETER["false_northing",0], AUTHORITY["EPSG","32049"], AXIS["X",EAST], AXIS["Y",NORTH]]""" gt = (1181700.9894981384, 82.021003723042099, 0.0, 596254.01050186157, 0.0, -82.021003723045894 ) return tst.testOpen( check_prj = prj, check_gt = gt ) gdaltest_list = [ genbin_1 ] if __name__ == '__main__': gdaltest.setup_run( 'genbin' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
35.505747
79
0.616704
794e25acc1e2d8199bffb7b683c74d17997c4047
254
py
Python
Alba/albaproject/manage.py
marcos-sb/quick-openstacked-hadoop
ae40d842b31a16e212d1474e9cd8e8f022be99a8
[ "Apache-2.0" ]
null
null
null
Alba/albaproject/manage.py
marcos-sb/quick-openstacked-hadoop
ae40d842b31a16e212d1474e9cd8e8f022be99a8
[ "Apache-2.0" ]
null
null
null
Alba/albaproject/manage.py
marcos-sb/quick-openstacked-hadoop
ae40d842b31a16e212d1474e9cd8e8f022be99a8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "albaproject.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
23.090909
75
0.775591
794e26220fe4d90ac9f974ada53e62b4fe0a538b
2,123
py
Python
users/forms.py
edevars/taco_blog
b21ffee6899e07928f40ec85a8ff40872b9a77a9
[ "MIT" ]
null
null
null
users/forms.py
edevars/taco_blog
b21ffee6899e07928f40ec85a8ff40872b9a77a9
[ "MIT" ]
null
null
null
users/forms.py
edevars/taco_blog
b21ffee6899e07928f40ec85a8ff40872b9a77a9
[ "MIT" ]
null
null
null
# Django from django import forms from django.contrib.auth.models import User from users.models import Profile class SignupForm(forms.Form): """Sign up form.""" username = forms.CharField(label=False, min_length=4, max_length=50, widget=forms.TextInput( attrs={'placeholder': 'Usuario', 'class': 'input mb-4', 'required': True})) password = forms.CharField(label=False, max_length=70, widget=forms.PasswordInput( attrs={'placeholder': 'Escribe tu contraseña', 'class': 'input mb-4', 'required': True})) password_confirmation = forms.CharField(label=False, max_length=70, widget=forms.PasswordInput( attrs={'placeholder': 'Confirma tu contraseña', 'class': 'input mb-4', 'required': True})) first_name = forms.CharField(label=False, min_length=2, max_length=50, widget=forms.TextInput( attrs={'placeholder': 'Nombres', 'class': 'input mb-4', 'required': True})) last_name = forms.CharField(label=False, min_length=2, max_length=50, widget=forms.TextInput( attrs={'placeholder': 'Apellidos', 'class': 'input mb-4', 'required': True})) email = forms.EmailField(label=False, min_length=6, max_length=70, widget=forms.EmailInput( attrs={'placeholder': 'Correo electrónico', 'class': 'input mb-4', 'required': True})) def clean_username(self): username = self.cleaned_data['username'] username_taken = User.objects.filter(username=username).exists() if username_taken: raise forms.ValidationError('Username is already in use.') return username def clean(self): data = super().clean() password = data['password'] password_confirmation = data['password_confirmation'] if password != password_confirmation: raise forms.ValidationError('Passwords do not match.') return data def save(self): """Create user and profile.""" data = self.cleaned_data data.pop('password_confirmation') user = User.objects.create_user(**data) profile = Profile(user=user) profile.save() return data
37.910714
99
0.666039
794e2659302473b0b01ac49d4338d959051e567f
51,260
py
Python
python/paddle/nn/functional/activation.py
DevilCarp/Paddle
04325d2cbefb029a4478bdc069d3279cd566ac6a
[ "Apache-2.0" ]
2
2022-03-30T09:55:45.000Z
2022-03-30T09:55:49.000Z
python/paddle/nn/functional/activation.py
DevilCarp/Paddle
04325d2cbefb029a4478bdc069d3279cd566ac6a
[ "Apache-2.0" ]
null
null
null
python/paddle/nn/functional/activation.py
DevilCarp/Paddle
04325d2cbefb029a4478bdc069d3279cd566ac6a
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...fluid.layers import sigmoid # noqa: F401 from ...tensor.math import tanh # noqa: F401 from ...tensor.math import tanh_ # noqa: F401 from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only from ...tensor.manipulation import chunk from ...tensor.math import multiply import warnings from ...fluid.layer_helper import LayerHelper from ...fluid.framework import convert_np_dtype_to_dtype_ from ...fluid.data_feeder import check_variable_and_dtype, check_dtype import paddle from paddle import _C_ops, in_dynamic_mode from paddle.framework import core __all__ = [] def celu(x, alpha=1.0, name=None): r""" celu activation. .. math:: celu(x) = max(0, x) + min(0, \alpha * (e^{x/\alpha}-1)) Parameters: x (Tensor): The input Tensor with data type float32, float64. alpha (float, optional): The 'alpha' value of the CELU formulation. Default is 1.0. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([[-1., 6.], [1., 15.6]]) out = F.celu(x, alpha=0.2) # [[-0.19865242, 6. ], # [ 1. , 15.60000038]] """ if alpha == 0: raise ZeroDivisionError("alpha cannot be 0 for celu") if in_dynamic_mode(): return _C_ops.celu(x, 'alpha', alpha) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu') helper = LayerHelper("celu", **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='celu', inputs={'X': x}, outputs={'Out': out}, attrs={'alpha': alpha}) return out def elu(x, alpha=1.0, name=None): r""" elu activation. .. math:: elu(x)= \left\{ \begin{array}{lcl} x,& &\text{if } \ x > 0 \\ alpha * (e^{x} - 1),& &\text{if } \ x <= 0 \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([[-1., 6.], [1., 15.6]]) out = F.elu(x, alpha=0.2) # [[-0.12642411 6. ] # [ 1. 15.6 ]] """ if in_dynamic_mode(): return _C_ops.elu(x, 'alpha', alpha) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu') helper = LayerHelper("elu", **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='elu', inputs={'X': x}, outputs={'Out': out}, attrs={'alpha': alpha}) return out @inplace_apis_in_dygraph_only def elu_(x, alpha=1.0, name=None): r""" Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``. Please refer to :ref:`api_nn_cn_elu`. """ assert alpha >= 0., "elu_ only support alpha >= 0, please use elu instead." return _C_ops.elu_(x, 'alpha', alpha) def gelu(x, approximate=False, name=None): r""" gelu activation. if approximate is True .. math:: gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3}))) else .. math:: gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}})) Parameters: x (Tensor): The input Tensor with data type float32, float64. approximate (bool, optional): Wether to enable approximation. Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([[-1, 0.5], [1, 1.5]]) out1 = F.gelu(x) # [[-0.15865529, 0.34573123], # [ 0.84134471, 1.39978933]] out2 = F.gelu(x, True) # [[-0.15880799, 0.34571400], # [ 0.84119201, 1.39957154]] """ if in_dynamic_mode(): return _C_ops.gelu(x, 'approximate', approximate) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu') helper = LayerHelper("gelu", **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='gelu', inputs={'X': x}, outputs={'Out': out}, attrs={'approximate': approximate}) return out def hardshrink(x, threshold=0.5, name=None): r""" hard shrinkage activation .. math:: hardshrink(x)= \left\{ \begin{array}{rcl} x,& &if \ {x > threshold} \\ x,& &if \ {x < -threshold} \\ 0,& &if \ {others} & \end{array} \right. Args: x (Tensor): The input Tensor with data type float32, float64. threshold (float, optional): The value of threshold for hardthrink. Default is 0.5 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-1, 0.3, 2.5]) out = F.hardshrink(x) # [-1., 0., 2.5] """ if in_dynamic_mode(): return _C_ops.hard_shrink(x, 'threshold', threshold) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hardshrink') helper = LayerHelper('hardshrink', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='hard_shrink', inputs={'X': x}, outputs={'Out': out}, attrs={'threshold': threshold}) return out def hardtanh(x, min=-1.0, max=1.0, name=None): r""" hardtanh activation .. math:: hardtanh(x)= \left\{ \begin{array}{cll} max,& & \text{if } x > max \\ min,& & \text{if } x < min \\ x,& & \text{otherwise} \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. min (float, optional): The minimum value of the linear region range. Default is -1. max (float, optional): The maximum value of the linear region range. Default is 1. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5])) out = F.hardtanh(x) # [-1., 0.3, 1.] """ if in_dynamic_mode(): return _C_ops.brelu(x, 't_min', min, 't_max', max) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hardtanh') helper = LayerHelper('hardtanh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='brelu', inputs={'X': x}, outputs={'Out': out}, attrs={'t_min': min, 't_max': max}) return out def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None): r""" hardsigmoid activation. A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391), which is much faster than sigmoid. .. math:: hardsigmoid(x)= \left\{ \begin{array}{lcl} 0, & &\text{if } \ x \leq -3 \\ 1, & &\text{if } \ x \geq 3 \\ slope * x + offset, & &\text{otherwise} \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667. offset (float, optional): The offset of hardsigmoid function. Default is 0.5. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-4., 5., 1.]) out = F.hardsigmoid(x) # [0., 1., 0.666667] """ if in_dynamic_mode(): return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid') helper = LayerHelper('hardsigmoid', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='hard_sigmoid', inputs={'X': x}, outputs={'Out': out}, attrs={'slope': slope, 'offset': offset}) return out def hardswish(x, name=None): r""" hardswish activation hardswish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function. For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf .. math:: hardswish(x)= \left\{ \begin{array}{cll} 0 &, & \text{if } x \leq -3 \\ x &, & \text{if } x \geq 3 \\ \frac{x(x+3)}{6} &, & \text{otherwise} \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-4., 5., 1.]) out = F.hardswish(x) # [0., 5., 0.666667] """ if in_dynamic_mode(): return _C_ops.hard_swish(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hardswish') helper = LayerHelper('hardswish', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out}) return out def leaky_relu(x, negative_slope=0.01, name=None): r""" leaky_relu activation .. math:: leaky\_relu(x)= \left\{ \begin{array}{rcl} x, & & if \ x >= 0 \\ negative\_slope * x, & & otherwise \\ \end{array} \right. Args: x (Tensor): The input Tensor with data type float32, float64. negative_slope (float, optional): Slope of the activation function at :math:`x < 0` . Default is 0.01. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-2., 0., 1.]) out = F.leaky_relu(x) # [-0.02, 0., 1.] """ if in_dynamic_mode(): return _C_ops.leaky_relu(x, 'alpha', negative_slope) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu') helper = LayerHelper('leaky_relu', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='leaky_relu', inputs={'X': x}, outputs={'Out': out}, attrs={'alpha': negative_slope}) return out def prelu(x, weight, data_format="NCHW", name=None): """ prelu activation. .. math:: prelu(x) = max(0, x) + weight * min(0, x) Parameters: x (Tensor): The input Tensor with data type float32, float64. weight (Tensor): The learnable parameter with data type same as ``x``. The weight shape is [1] or [in], where `in` is the input channel of ``x``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. data_format(str, optional): Data format that specifies the layout of input. It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW". Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np data = np.array([[[[-2.0, 3.0, -4.0, 5.0], [ 3.0, -4.0, 5.0, -6.0], [-7.0, -8.0, 8.0, 9.0]], [[ 1.0, -2.0, -3.0, 4.0], [-5.0, 6.0, 7.0, -8.0], [ 6.0, 7.0, 8.0, 9.0]]]], 'float32') x = paddle.to_tensor(data) w = paddle.to_tensor(np.array([0.25]).astype('float32')) out = F.prelu(x, w) # [[[[-0.5 , 3. , -1. , 5. ], # [ 3. , -1. , 5. , -1.5 ], # [-1.75, -2. , 8. , 9. ]], # [[ 1. , -0.5 , -0.75, 4. ], # [-1.25, 6. , 7. , -2. ], # [ 6. , 7. , 8. , 9. ]]]] """ check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu') check_variable_and_dtype(weight, 'weight', ['float16', 'float32', 'float64'], 'prelu') assert len(weight.shape ) == 1, "The dim count of weight shape should be 1 in prelu()." mode = 'all' if weight.shape[0] > 1: true_data_format = [ 'NC', 'NCL', 'NCHW', 'NCDHW', 'NLC', 'NHWC', 'NDHWC' ] if data_format not in true_data_format: raise ValueError( "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', " "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)) data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC' assert len( x.shape ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]." #NOTE(GuoxiaWang): support NHWC data format if data_format == 'NHWC': assert weight.shape[0] == x.shape[ -1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]." else: assert weight.shape[0] == x.shape[ 1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]." mode = 'channel' if in_dynamic_mode(): return _C_ops.prelu(x, weight, 'mode', mode, 'data_format', data_format) helper = LayerHelper('prelu', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type="prelu", inputs={"X": x, "Alpha": weight}, outputs={"Out": out}, attrs={"mode": mode, "data_format": data_format}) return out def relu(x, name=None): """ relu activation. .. math:: out = max(x, 0) Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32')) out = F.relu(x) # [0., 0., 1.] """ if in_dynamic_mode(): return _C_ops.relu(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu') helper = LayerHelper('relu', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out}) return out @inplace_apis_in_dygraph_only def relu_(x, name=None): """ Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``. Please refer to :ref:`api_nn_cn_relu`. """ if paddle.fluid.framework._in_eager_mode_: return _C_ops.final_state_relu_(x) return _C_ops.relu_(x) def log_sigmoid(x, name=None): r""" log_sigmoid activation. .. math:: log\_sigmoid(x) = log \frac{1}{1 + e^{-x}} Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499] """ if in_dynamic_mode(): return _C_ops.logsigmoid(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid') helper = LayerHelper("log_sigmoid", **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out}) return out def maxout(x, groups, axis=1, name=None): r""" maxout activation. Assumed the input shape is (N, Ci, H, W). The output shape is (N, Co, H, W). Then Co = Ci/groups and the operator formula is as follows: .. math:: \begin{array}{l} &out_{si+j} = \max_{k} x_{gsi + sk + j} \\ &g = groups \\ &s = \frac{input.size}{num\_channels} \\ &0 \le i < \frac{num\_channels}{groups} \\ &0 \le j < s \\ &0 \le k < groups \end{array} Parameters: x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type of input is float32 or float64. groups (int, optional): The groups number of maxout. `groups` specifies the index of channel dimension where maxout will be performed. This must be a factor of number of features. Default is 1. axis (int, optional): The axis along which to perform maxout calculations. It should be 1 when data format is NCHW, be -1 or 3 when data format is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` , where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1. Default is 1. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.rand([1, 2, 3, 4]) # [[[[0.5002636 0.22272532 0.17402348 0.2874594 ] # [0.95313174 0.6228939 0.7129065 0.7087491 ] # [0.02879342 0.88725346 0.61093384 0.38833922]] # [[0.5231306 0.03807496 0.91661984 0.15602879] # [0.666127 0.616567 0.30741522 0.24044901] # [0.7142536 0.7351477 0.31588817 0.23782359]]]] out = F.maxout(x, groups=2) # [[[[0.5231306 0.22272532 0.91661984 0.2874594 ] # [0.95313174 0.6228939 0.7129065 0.7087491 ] # [0.7142536 0.88725346 0.61093384 0.38833922]]]] """ if in_dynamic_mode(): return _C_ops.maxout(x, 'groups', groups, 'axis', axis) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout') if axis not in [1, -1, 3]: raise ValueError( "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received " "Attr(axis): %s." % str(axis)) if axis == -1: axis = 3 helper = LayerHelper('maxout', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='maxout', inputs={'X': x}, outputs={'Out': out}, attrs={'groups': groups, 'axis': axis}) return out def relu6(x, name=None): """ relu6 activation .. math:: relu6(x) = min(max(0,x), 6) Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-1, 0.3, 6.5])) out = F.relu6(x) # [0, 0.3, 6] """ threshold = 6.0 if in_dynamic_mode(): return _C_ops.relu6(x, 'threshold', threshold) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6') helper = LayerHelper('relu6', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='relu6', inputs={'X': x}, outputs={'Out': out}, attrs={'threshold': threshold}) return out def selu(x, scale=1.0507009873554804934193349852946, alpha=1.6732632423543772848170429916717, name=None): r""" selu activation .. math:: selu(x)= scale * \left\{ \begin{array}{lcl} x,& &\text{if } \ x > 0 \\ alpha * e^{x} - alpha,& &\text{if } \ x <= 0 \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946 alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]])) out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]] """ if scale <= 1.0: raise ValueError( "The scale must be greater than 1.0. Received: {}.".format(scale)) if alpha < 0: raise ValueError( "The alpha must be no less than zero. Received: {}.".format(alpha)) if in_dynamic_mode(): return _C_ops.selu(x, 'scale', scale, 'alpha', alpha) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu') helper = LayerHelper('selu', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='selu', inputs={'X': x}, outputs={'Out': out}, attrs={'scale': scale, 'alpha': alpha}) return out def silu(x, name=None): r""" silu activation .. math:: silu(x) = \frac{x}{1 + e^{-x}} Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ] """ if in_dynamic_mode(): return _C_ops.silu(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu') helper = LayerHelper("silu", **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out}) return out def softmax(x, axis=-1, dtype=None, name=None): r""" This operator implements the softmax layer. The calculation process is as follows: 1. The dimension :attr:`axis` of ``x`` will be permuted to the last. 2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second dimension(row length) is the same as the dimension :attr:`axis` of ``x``, and the first dimension(column length) is the product of all other dimensions of ``x``. For each row of the matrix, the softmax operator squashes the K-dimensional(K is the width of the matrix, which is also the size of ``x``'s dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional vector of real values in the range [0, 1] that add up to 1. 3. After the softmax operation is completed, the inverse operations of steps 1 and 2 are performed to restore the two-dimensional matrix to the same dimension as the ``x`` . It computes the exponential of the given dimension and the sum of exponential values of all the other dimensions in the K-dimensional vector input. Then the ratio of the exponential of the given dimension and the sum of exponential values of all the other dimensions is the output of the softmax operator. For each row :math:`i` and each column :math:`j` in the matrix, we have: .. math:: softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])} Example: .. code-block:: text Case 1: Input: x.shape = [2, 3, 4] x.data = [[[2.0, 3.0, 4.0, 5.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 8.0, 9.0]], [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [6.0, 7.0, 8.0, 9.0]]] Attrs: axis = -1 Output: out.shape = [2, 3, 4] out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.07232949, 0.19661193, 0.19661193, 0.53444665]], [[0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]] Case 2: Input: x.shape = [2, 3, 4] x.data = [[[2.0, 3.0, 4.0, 5.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 8.0, 9.0]], [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [6.0, 7.0, 8.0, 9.0]]] Attrs: axis = 1 Output: out.shape = [2, 3, 4] out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783], [0.01786798, 0.01786798, 0.04661262, 0.04661262], [0.97555875, 0.97555875, 0.93623955, 0.93623955]], [[0.00490169, 0.00490169, 0.00490169, 0.00490169], [0.26762315, 0.26762315, 0.26762315, 0.26762315], [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] Parameters: x (Tensor): The input Tensor with data type float32, float64. axis (int, optional): The axis along which to perform log_softmax calculations. It should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` < 0, it works the same way as :math:`axis + D` . Default is -1. dtype (str, optional): The data type of the output tensor, can be float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same shape and data type (use ``dtype`` if it is specified) as x. Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = np.array([[[2.0, 3.0, 4.0, 5.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 8.0, 9.0]], [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [6.0, 7.0, 8.0, 9.0]]], 'float32') x = paddle.to_tensor(x) out1 = F.softmax(x) out2 = F.softmax(x, dtype='float64') # out1's data type is float32; out2's data type is float64 # out1 and out2's value is as follows: # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426], # [0.0320586 , 0.08714432, 0.23688282, 0.64391426], # [0.07232949, 0.19661193, 0.19661193, 0.53444665]], # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426], # [0.0320586 , 0.08714432, 0.23688282, 0.64391426], # [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]] """ if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)): dtype = convert_np_dtype_to_dtype_(dtype) use_cudnn = True if in_dynamic_mode(): outs_cast = x if dtype is None \ else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype) return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn) if dtype is None: check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'softmax') else: check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax', 'If dtype is not None, it only support float32 or float64.') helper = LayerHelper("softmax", **locals()) outs_cast = x if dtype is not None: outs_cast = helper.create_variable_for_type_inference(dtype) helper.append_op( type='cast', inputs={'X': x}, outputs={'Out': outs_cast}, attrs={'in_dtype': x.dtype, 'out_dtype': dtype}) outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype) helper.append_op( type='softmax', inputs={'X': outs_cast}, outputs={'Out': outs_softmax}, attrs={'axis': axis, 'use_cudnn': use_cudnn}) return outs_softmax @inplace_apis_in_dygraph_only def softmax_(x, axis=-1, dtype=None, name=None): r""" Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``. Please refer to :ref:`api_nn_cn_softmax`. """ if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)): dtype = convert_np_dtype_to_dtype_(dtype) use_cudnn = True return _C_ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn) def softplus(x, beta=1, threshold=20, name=None): r""" softplus activation .. math:: softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\ \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.} Parameters: x (Tensor): The input Tensor with data type float32, float64. beta (float, optional): The value of beta for softplus. Default is 1 threshold (float, optional): The value of threshold for softplus. Default is 20 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3])) out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355] """ if in_dynamic_mode(): return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'softplus') helper = LayerHelper('softplus', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='softplus', inputs={'X': x}, outputs={'Out': out}, attrs={'beta': beta, 'threshold': threshold}) return out def softshrink(x, threshold=0.5, name=None): r""" softshrink activation .. math:: softshrink(x)= \left\{ \begin{array}{rcl} x - threshold,& & \text{if } x > threshold \\ x + threshold,& & \text{if } x < -threshold \\ 0,& & \text{otherwise} \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8])) out = F.softshrink(x) # [-0.4, 0, 0, 0.3] """ if threshold < 0: raise ValueError( "The threshold must be no less than zero. Received: {}.".format( threshold)) if in_dynamic_mode(): return _C_ops.softshrink(x, 'lambda', threshold) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'softshrink') helper = LayerHelper('softshrink', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='softshrink', inputs={'X': x}, outputs={'Out': out}, attrs={'lambda': threshold}) return out def softsign(x, name=None): r""" softsign activation .. math:: softsign(x) = \frac{x}{1 + |x|} Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3])) out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769] """ if in_dynamic_mode(): return _C_ops.softsign(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'softsign') helper = LayerHelper('softsign', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out}) return out def swish(x, name=None): r""" swish activation. .. math:: swish(x) = \frac{x}{1 + e^{-x}} Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-2., 0., 1.])) out = F.swish(x) # [-0.238406, 0., 0.731059] """ if in_dynamic_mode(): return _C_ops.swish(x, 'beta', 1.0) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish') helper = LayerHelper('swish', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='swish', inputs={'X': x}, outputs={'Out': out}, attrs={'beta': 1.0}) return out def mish(x, name=None): r""" mish activation. .. math:: softplus(x) = \begin{cases} x, \text{if } x > \text{threshold} \\ \ln(1 + e^{x}), \text{otherwise} \end{cases} mish(x) = x * \tanh(softplus(x)) Parameters: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([-5., 0., 5.]) out = F.mish(x) # [-0.03357624, 0., 4.99955208] """ if in_dynamic_mode(): return _C_ops.mish(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish') helper = LayerHelper('mish', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out}) return out def tanhshrink(x, name=None): """ tanhshrink activation .. math:: tanhshrink(x) = x - tanh(x) Args: x (Tensor): The input Tensor with data type float32, float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3])) out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739] """ if in_dynamic_mode(): return _C_ops.tanh_shrink(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink') helper = LayerHelper('tanh_shrink', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out}) return out def thresholded_relu(x, threshold=1.0, name=None): r""" thresholded relu activation. .. math:: thresholded\_relu(x) = \left\{ \begin{array}{rl} x,& \text{if } \ x > threshold \\ 0,& \text{otherwise} \end{array} \right. Parameters: x (Tensor): The input Tensor with data type float32, float64. threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F import numpy as np x = paddle.to_tensor(np.array([2., 0., 1.])) out = F.thresholded_relu(x) # [2., 0., 0.] """ if in_dynamic_mode(): return _C_ops.thresholded_relu(x, 'threshold', threshold) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu') helper = LayerHelper('thresholded_relu', **locals()) out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='thresholded_relu', inputs={'X': x}, outputs={'Out': out}, attrs={'threshold': threshold}) return out def log_softmax(x, axis=-1, dtype=None, name=None): r""" This operator implements the log_softmax layer. The calculation process is as follows: .. math:: \begin{aligned} log\_softmax[i, j] &= log(softmax(x)) \\ &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])}) \end{aligned} Parameters: x (Tensor): The input Tensor with data type float32, float64. axis (int, optional): The axis along which to perform log_softmax calculations. It should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` < 0, it works the same way as :math:`axis + D` . Default is -1. dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data type of the output tensor. If dtype is specified, ``x`` is casted to ``dtype`` before the operation is performed. This is useful for preventing data type overflows. Supported dtype: float32, float64. If ``dtype`` is None, the output Tensor has the same dtype as x. Default is None. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same shape and data type (use ``dtype`` if it is specified) as x. Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = [[[-2.0, 3.0, -4.0, 5.0], [3.0, -4.0, 5.0, -6.0], [-7.0, -8.0, 8.0, 9.0]], [[1.0, -2.0, -3.0, 4.0], [-5.0, 6.0, 7.0, -8.0], [6.0, 7.0, 8.0, 9.0]]] x = paddle.to_tensor(x) out1 = F.log_softmax(x) out2 = F.log_softmax(x, dtype='float64') # out1's data type is float32; out2's data type is float64 # out1 and out2's value is as follows: # [[[ -7.1278396 -2.1278396 -9.127839 -0.12783948] # [ -2.1270514 -9.127051 -0.12705144 -11.127051 ] # [-16.313261 -17.313261 -1.3132617 -0.31326184]] # [[ -3.0518122 -6.051812 -7.051812 -0.051812 ] # [-12.313267 -1.3132664 -0.3132665 -15.313267 ] # [ -3.4401896 -2.4401896 -1.4401896 -0.44018966]]] """ if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)): dtype = convert_np_dtype_to_dtype_(dtype) if in_dynamic_mode(): if dtype is not None: x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype) return _C_ops.log_softmax(x, 'axis', axis) if dtype is None: check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'log_softmax') else: check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax', 'If dtype is not None, it only support float32 or float64.') helper = LayerHelper("log_softmax", **locals()) out_cast = x if dtype is not None: out_cast = helper.create_variable_for_type_inference(dtype) helper.append_op( type='cast', inputs={'X': x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype, 'out_dtype': dtype}) out = helper.create_variable_for_type_inference(out_cast.dtype) helper.append_op( type='log_softmax', inputs={'X': out_cast}, outputs={'Out': out}, attrs={'axis': axis}) return out def glu(x, axis=-1, name=None): r""" The gated linear unit. The input is evenly splited into 2 parts along a given axis. The first part is used as the content, and the second part is passed through a sigmoid function then used as the gate. The output is a elementwise multiplication of the content and the gate. .. math:: \mathrm{GLU}(a, b) = a \otimes \sigma(b) Parameters: x (Tensor): The input Tensor with data type float32, float64. axis (int, optional): The axis along which split the input tensor. It should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` < 0, it works the same way as :math:`axis + D` . Default is -1. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type as x. The size of the given aixs is halved. Examples: .. code-block:: python import paddle from paddle.nn import functional as F x = paddle.to_tensor( [[-0.22014759, -1.76358426, 0.80566144, 0.04241343], [-1.94900405, -1.89956081, 0.17134808, -1.11280477]] ) print(F.glu(x).numpy()) # array([[-0.15216254, -0.9004892 ], # [-1.0577879 , -0.46985325]], dtype=float32) """ check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'], "glu") a, b = chunk(x, 2, axis=axis, name=name) gate = sigmoid(b, name=name) out = paddle.multiply(a, gate, name=name) return out def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None): r""" Samples from the Gumbel-Softmax distribution and optionally discretizes. temperature is denoted by t. The calculation process is as follows: First, generate gumbel noise: .. math:: G_i = -log(-log(U_i)), U_i \sim U(0,1) Second, add noise to ``x``: .. math:: v = [x_1 + G_1,...,x_n + G_n] Finally, calculate gumbel_softmax and generate samples: .. math:: gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n Parameters: x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch of independent distributions and the last dimension represents a vector of probabilities with datatype float32, float64. temperature (float, optional): non-negative scalar temperature. Default is 1.0. hard (bool, optional): if True, the returned samples will be discretized as one-hot vectors, but will be differentiated as if it is the soft sample in autograd. Default is False. axis (int, optional): The axis along will be calculated softmax value. Default is -1. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution. If ``hard = True``, the returned samples will be one-hot, otherwise they will be probability distributions that sum to 1 across ``axis``. Examples: .. code-block:: python import paddle import paddle.nn.functional as F logits = paddle.randn([4, 6]) temperature = 0.01 gumbel_softmax = F.gumbel_softmax(logits, temperature) print(gumbel_softmax) # out's value is as follows: # [[0.00000001, 1. , 0.00000000, 0.00000000, 0.00000006, 0.00000000], # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1. ], # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940], # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]] """ if in_dynamic_mode(): return _C_ops.gumbel_softmax(x, 'temperature', temperature, 'hard', hard, 'axis', axis) helper = LayerHelper("gumbel_softmax", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax') out = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='gumbel_softmax', inputs={'X': x}, outputs={'Out': out}, attrs={'temperature': temperature, 'hard': hard, 'axis': axis}) return out
33.768116
133
0.556828
794e267eeef55a48466cf579457b30cc905c49e3
6,256
py
Python
pygsm/growing_string_methods/se_cross.py
espottesmith/pyGSM
5bf263f9ef6cbee3ec16355c5eb1839446e704e7
[ "MIT" ]
null
null
null
pygsm/growing_string_methods/se_cross.py
espottesmith/pyGSM
5bf263f9ef6cbee3ec16355c5eb1839446e704e7
[ "MIT" ]
null
null
null
pygsm/growing_string_methods/se_cross.py
espottesmith/pyGSM
5bf263f9ef6cbee3ec16355c5eb1839446e704e7
[ "MIT" ]
null
null
null
from __future__ import print_function # standard library imports import sys import os from os import path # third party import numpy as np # local application imports sys.path.append(path.dirname( path.dirname( path.abspath(__file__)))) from utilities import * from wrappers import Molecule from .base_gsm import Base_Method from .se_gsm import SE_GSM from potential_energy_surfaces import Avg_PES class SE_Cross(SE_GSM): def go_gsm(self,max_iters=50,opt_steps=3,rtype=0): """rtype=0 MECI search rtype=1 MESX search """ assert rtype in [0,1], "rtype not defined" if rtype==0: nifty.printcool("Doing SE-MECI search") else: nifty.printcool("Doing SE-MESX search") self.nodes[0].gradrms=0. self.nodes[0].V0 = self.nodes[0].energy print(' Initial energy is {:1.4f}'.format(self.nodes[0].energy)) sys.stdout.flush() # stash bdist for node 0 _,self.nodes[0].bdist = Base_Method.tangent(self.nodes[0],None,driving_coords=self.driving_coords) print(" Initial bdist is %1.3f" %self.nodes[0].bdist) # interpolate first node self.add_GSM_nodeR() # grow string self.growth_iters(iters=max_iters,maxopt=opt_steps,nconstraints=1) print(' SE_Cross growth phase over') print(' Warning last node still not fully optimized') if True: # doing extra constrained penalty optimization for MECI print(" extra constrained optimization for the nnR-1 = %d" % (self.nR-1)) self.optimizer[self.nR-1].conv_grms=0.01 ictan,_ = Base_Method.tangent(self.nodes[self.nR-1],self.nodes[self.nR-2]) self.nodes[self.nR-1].PES.sigma=3.5 self.optimizer[self.nR-1].optimize( molecule=self.nodes[self.nR-1], refE=self.nodes[0].V0, opt_type='ICTAN', opt_steps=50, ictan=ictan, ) self.optimizer[self.nR].opt_cross=True if rtype==0: # MECI optimization self.write_xyz_files(iters=1,base="after_penalty",nconstraints=1) self.nodes[self.nR] = Molecule.copy_from_options(self.nodes[self.nR-1],new_node_id=self.nR) self.nodes[self.nR].PES.lot.do_coupling=True avg_pes = Avg_PES.create_pes_from(self.nodes[self.nR].PES) self.nodes[self.nR].PES = avg_pes self.optimizer[self.nR].conv_grms=self.options['CONV_TOL'] self.optimizer[self.nR].optimize( molecule=self.nodes[self.nR], refE=self.nodes[0].V0, opt_type='MECI', opt_steps=100, ) self.write_xyz_files(iters=1,base="grown_string",nconstraints=1) else: # unconstrained penalty optimization #TODO make unctonstrained "CROSSING" which checks for dE convergence self.nodes[self.nR] = Molecule.copy_from_options(self.nodes[self.nR-1],new_node_id=self.nR) self.nodes[self.nR].PES.sigma = 10.0 print(" sigma for node %d is %.3f" %(self.nR,self.nodes[self.nR].PES.sigma)) self.optimizer[self.nR].opt_cross=True self.optimizer[self.nR].conv_grms=self.options['CONV_TOL'] self.optimizer[self.nR].optimize( molecule=self.nodes[self.nR], refE=self.nodes[0].V0, opt_type='UNCONSTRAINED', opt_steps=100, ) self.write_xyz_files(iters=1,base="grown_string",nconstraints=1) tmp = [] for n in range(self.nnodes): tmp.append(self.energies[n]) self.energies = np.asarray(tmp) def converged(self,n,opt_type): if opt_type=="UNCSONTRAINED": tmp1 = np.copy(self.nodes[n].PES.grad1) tmp2 = np.copy(self.nodes[n].PES.grad2) print('norm1: {:1.4f} norm2: {:1.4f}'.format(np.linalg.norm(tmp1),np.linalg.norm(tmp2))) print('ratio: {:1.4f}'.format(np.linalg.norm(tmp1)/np.linalg.norm(tmp2))) tmp1 = tmp1/np.linalg.norm(tmp1) tmp2 = tmp2/np.linalg.norm(tmp2) print('normalized gradient dot product:',float(np.dot(tmp1.T,tmp2))) sys.stdout.flush() if self.nodes[n].gradrms<self.options['CONV_TOL'] and 1.-abs(float(np.dot(tmp1.T,tmp2))) <= 0.02 and abs(self.nodes[n].PES.dE) <= 1.25: return True else: return False elif opt_type=="ICTAN": #constrained growth if self.nodes[n].gradrms<self.optimizer[n].conv_grms: return True else: return False elif opt_type=="MECI": if self.nodes[n].gradrms<self.options['CONV_TOL'] and abs(self.nodes[n].PES.dE) <= 1.0: return True else: return False def check_if_grown(self): isDone = False epsilon = 1.5 pes1dE = self.nodes[self.nR-1].PES.dE pes2dE = self.nodes[self.nR-2].PES.dE condition1 = (abs(self.nodes[self.nR-1].bdist) <=(1-self.BDIST_RATIO)*abs(self.nodes[0].bdist) and (abs(pes1dE) > abs(pes2dE))) condition2= ((self.nodes[self.nR-1].bdist+0.1>self.nodes[self.nR-2].bdist) and (1-self.BDIST_RATIO)*abs(self.nodes[0].bdist)) if condition1: print(" Condition 1 satisfied") print(" bdist current %1.3f" % abs(self.nodes[self.nR-1].bdist)) print(" bdist target %1.3f" % (abs(self.nodes[0].bdist)*(1-self.BDIST_RATIO))) print(" Growth-phase over") isDone=True #elif condition2: # print(" Condition 2 satisfied") # print(" Growth-phase over") # isDone = True return isDone def restart_string(self,xyzfile='restart.xyz'): super(SE_Cross,self).restart_string(xyzfile) self.done_growing=False self.nnodes=20 self.nR -=1 # stash bdist for node 0 _,self.nodes[0].bdist = Base_Method.tangent(self.nodes[0],None,driving_coords=self.driving_coords)
40.623377
147
0.585997
794e276fadef10163df8a726e8bcca57f0c8dfc8
438
py
Python
CONTENT/DS-n-Algos/ALGO/_LEETCODE/042_trapping_rain_water/42.py
impastasyndrome/DS-ALGO-OFFICIAL
c85ec9cf0af0009f038b7a571a7ac1fb466b7f3a
[ "Apache-2.0" ]
13
2021-03-11T00:25:22.000Z
2022-03-19T00:19:23.000Z
CONTENT/DS-n-Algos/ALGO/_LEETCODE/042_trapping_rain_water/42.py
impastasyndrome/DS-ALGO-OFFICIAL
c85ec9cf0af0009f038b7a571a7ac1fb466b7f3a
[ "Apache-2.0" ]
162
2021-03-09T01:52:11.000Z
2022-03-12T01:09:07.000Z
CONTENT/DS-n-Algos/ALGO/_LEETCODE/042_trapping_rain_water/42.py
impastasyndrome/DS-ALGO-OFFICIAL
c85ec9cf0af0009f038b7a571a7ac1fb466b7f3a
[ "Apache-2.0" ]
12
2021-04-26T19:43:01.000Z
2022-01-31T08:36:29.000Z
class Solution: def trap(self, height: "List[int]") -> "int": result = 0 stack = [] for i in range(len(height)): while stack and height[i] > height[stack[-1]]: pre = stack.pop() if stack: h = min(height[stack[-1]], height[i]) result += (h - height[pre]) * (i - 1 - stack[-1]) stack.append(i) return result
33.692308
69
0.440639
794e28503fcea03264b036cb01d22cdfbc53f4d8
32,394
py
Python
models/official/resnet/resnet_main_onecycle.py
henryqin1997/tpu
cf7f26bb3d2bdfa71652f0e216be35a2393ff7ef
[ "Apache-2.0" ]
null
null
null
models/official/resnet/resnet_main_onecycle.py
henryqin1997/tpu
cf7f26bb3d2bdfa71652f0e216be35a2393ff7ef
[ "Apache-2.0" ]
null
null
null
models/official/resnet/resnet_main_onecycle.py
henryqin1997/tpu
cf7f26bb3d2bdfa71652f0e216be35a2393ff7ef
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Train a ResNet-50 model on ImageNet on TPU.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time from absl import app from absl import flags from absl import logging import numpy as np import tensorflow.compat.v1 as tf import tensorflow.compat.v2 as tf2 import myWeightedLoss from common import inference_warmup from common import tpu_profiler_hook from hyperparameters import common_hparams_flags from hyperparameters import common_tpu_flags from hyperparameters import flags_to_params from hyperparameters import params_dict from official.resnet import imagenet_input from official.resnet import lars_util_onecycle from official.resnet import resnet_model from official.resnet.configs import resnet_config from official.resnet import onecycle from tensorflow.core.protobuf import rewriter_config_pb2 # pylint: disable=g-direct-tensorflow-import common_tpu_flags.define_common_tpu_flags() common_hparams_flags.define_common_hparams_flags() FLAGS = flags.FLAGS FAKE_DATA_DIR = 'gs://cloud-tpu-test-datasets/fake_imagenet' flags.DEFINE_integer( 'resnet_depth', default=None, help=('Depth of ResNet model to use. Must be one of {18, 34, 50, 101, 152,' ' 200}. ResNet-18 and 34 use the pre-activation residual blocks' ' without bottleneck layers. The other models use pre-activation' ' bottleneck layers. Deeper models require more training time and' ' more memory and may require reducing --train_batch_size to prevent' ' running out of memory.')) flags.DEFINE_integer( 'num_train_images', default=None, help='Size of training data set.') flags.DEFINE_integer( 'num_eval_images', default=None, help='Size of evaluation data set.') flags.DEFINE_integer( 'num_label_classes', default=None, help='Number of classes, at least 2') flags.DEFINE_string( 'data_format', default=None, help=('A flag to override the data format used in the model. The value' ' is either channels_first or channels_last. To run the network on' ' CPU or TPU, channels_last should be used. For GPU, channels_first' ' will improve performance.')) flags.DEFINE_bool( 'transpose_input', default=None, help='Use TPU double transpose optimization') flags.DEFINE_bool( 'use_cache', default=None, help=('Enable cache for training input.')) flags.DEFINE_integer('image_size', None, 'The input image size.') flags.DEFINE_string( 'dropblock_groups', None, help=('A string containing comma separated integers indicating ResNet ' 'block groups to apply DropBlock. `3,4` means to apply DropBlock to ' 'block groups 3 and 4. Use an empty string to not apply DropBlock to ' 'any block group.')) flags.DEFINE_float( 'dropblock_keep_prob', default=None, help=('keep_prob parameter of DropBlock. Will not be used if ' 'dropblock_groups is empty.')) flags.DEFINE_integer( 'dropblock_size', default=None, help=('size parameter of DropBlock. Will not be used if dropblock_groups ' 'is empty.')) flags.DEFINE_boolean( 'pre_activation', default=None, help=('Whether to use pre-activation ResNet (ResNet-v2)')) flags.DEFINE_string( 'norm_act_layer', default=None, help='One of {"bn_relu", "evonorm_b0", "evonorm_s0"}.') flags.DEFINE_integer( 'profile_every_n_steps', default=0, help=('Number of steps between collecting profiles if larger than 0')) flags.DEFINE_string( 'mode', default='train_and_eval', help='One of {"train_and_eval", "train", "eval"}.') flags.DEFINE_integer( 'steps_per_eval', default=1251, help=('Controls how often evaluation is performed. Since evaluation is' ' fairly expensive, it is advised to evaluate as infrequently as' ' possible (i.e. up to --train_steps, which evaluates the model only' ' after finishing the entire training regime).')) flags.DEFINE_integer( 'eval_timeout', default=None, help='Maximum seconds between checkpoints before evaluation terminates.') flags.DEFINE_integer( 'num_parallel_calls', default=None, help=('Number of parallel threads in CPU for the input pipeline.' ' Recommended value is the number of cores per CPU host.')) flags.DEFINE_integer( 'num_cores', default=None, help=('Number of TPU cores in total. For a single TPU device, this is 8' ' because each TPU has 4 chips each with 2 cores.')) flags.DEFINE_string( 'bigtable_project', None, 'The Cloud Bigtable project. If None, --gcp_project will be used.') flags.DEFINE_string( 'bigtable_instance', None, 'The Cloud Bigtable instance to load data from.') flags.DEFINE_string( 'bigtable_table', 'imagenet', 'The Cloud Bigtable table to load data from.') flags.DEFINE_string( 'bigtable_train_prefix', 'train_', 'The prefix identifying training rows.') flags.DEFINE_string( 'bigtable_eval_prefix', 'validation_', 'The prefix identifying evaluation rows.') flags.DEFINE_string( 'bigtable_column_family', 'tfexample', 'The column family storing TFExamples.') flags.DEFINE_string( 'bigtable_column_qualifier', 'example', 'The column name storing TFExamples.') flags.DEFINE_string( 'export_dir', default=None, help=('The directory where the exported SavedModel will be stored.')) flags.DEFINE_bool( 'export_to_tpu', default=False, help=('Whether to export additional metagraph with "serve, tpu" tags' ' in addition to "serve" only metagraph.')) flags.DEFINE_float( 'base_learning_rate', default=None, help=('Base learning rate when train batch size is 256.')) flags.DEFINE_float( 'momentum', default=None, help=('Momentum parameter used in the MomentumOptimizer.')) flags.DEFINE_float( 'weight_decay', default=None, help=('Weight decay coefficiant for l2 regularization.')) flags.DEFINE_float( 'label_smoothing', default=None, help=('Label smoothing parameter used in the softmax_cross_entropy')) flags.DEFINE_bool('enable_lars', default=None, help=('Enable LARS optimizer for large batch training.')) flags.DEFINE_float('poly_rate', default=None, help=('Set LARS/Poly learning rate.')) flags.DEFINE_bool( 'use_async_checkpointing', default=None, help=('Enable async checkpoint')) flags.DEFINE_integer('log_step_count_steps', 64, 'The number of steps at ' 'which the global step information is logged.') flags.DEFINE_string( 'augment_name', default=None, help='`string` that is the name of the augmentation method' 'to apply to the image. `autoaugment` if AutoAugment is to be used or' '`randaugment` if RandAugment is to be used. If the value is `None` no' 'augmentation method will be applied applied. See autoaugment.py for ' 'more details.') flags.DEFINE_integer( 'randaug_num_layers', default=None, help='If RandAug is used, what should the number of layers be.' 'See autoaugment.py for detailed description.') flags.DEFINE_integer( 'randaug_magnitude', default=None, help='If RandAug is used, what should the magnitude be. ' 'See autoaugment.py for detailed description.') # Inference configuration. flags.DEFINE_bool( 'add_warmup_requests', False, 'Whether to add warmup requests into the export saved model dir,' 'especially for TPU inference.') flags.DEFINE_string('model_name', 'resnet', 'Serving model name used for the model server.') flags.DEFINE_multi_integer( 'inference_batch_sizes', [8], 'Known inference batch sizes used to warm up for each core.') # The input tensor is in the range of [0, 255], we need to scale them to the # range of [0, 1] MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255] STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255] losslog = [] # def get_lr_schedule(train_steps, num_train_images, train_batch_size): # """learning rate schedule.""" # steps_per_epoch = np.floor(num_train_images / train_batch_size) # train_epochs = train_steps / steps_per_epoch # return [ # (multiplier, epoch to start) tuples # (1.0, np.floor(5 / 90 * train_epochs)), # (0.1, np.floor(30 / 90 * train_epochs)), # (0.01, np.floor(60 / 90 * train_epochs)), # (0.001, np.floor(80 / 90 * train_epochs)) # ] # # # def learning_rate_schedule(params, current_epoch): # """Handles linear scaling rule, gradual warmup, and LR decay. # # The learning rate starts at 0, then it increases linearly per step. # After 5 epochs we reach the base learning rate (scaled to account # for batch size). # After 30, 60 and 80 epochs the learning rate is divided by 10. # After 90 epochs training stops and the LR is set to 0. This ensures # that we train for exactly 90 epochs for reproducibility. # # Args: # params: Python dict containing parameters for this run. # current_epoch: `Tensor` for current epoch. # # Returns: # A scaled `Tensor` for current learning rate. # """ # scaled_lr = params['base_learning_rate'] * ( # params['train_batch_size'] / 256.0) # # lr_schedule = get_lr_schedule( # train_steps=params['train_steps'], # num_train_images=params['num_train_images'], # train_batch_size=params['train_batch_size']) # decay_rate = (scaled_lr * lr_schedule[0][0] * # current_epoch / lr_schedule[0][1]) # for mult, start_epoch in lr_schedule: # decay_rate = tf.where(current_epoch < start_epoch, # decay_rate, scaled_lr * mult) # return decay_rate def resnet_model_fn(features, labels, mode, params): """The model_fn for ResNet to be used with TPUEstimator. Args: features: `Tensor` of batched images. If transpose_input is enabled, it is transposed to device layout and reshaped to 1D tensor. labels: `Tensor` of labels for the data samples mode: one of `tf.estimator.ModeKeys.{TRAIN,EVAL,PREDICT}` params: `dict` of parameters passed to the model from the TPUEstimator, `params['batch_size']` is always provided and should be used as the effective batch size. Returns: A `TPUEstimatorSpec` for the model """ if isinstance(features, dict): features = features['feature'] # In most cases, the default data format NCHW instead of NHWC should be # used for a significant performance boost on GPU/TPU. NHWC should be used # only if the network needs to be run on CPU since the pooling operations # are only supported on NHWC. if params['data_format'] == 'channels_first': assert not params['transpose_input'] # channels_first only for GPU features = tf.transpose(features, [0, 3, 1, 2]) if params['transpose_input'] and mode != tf.estimator.ModeKeys.PREDICT: image_size = tf.sqrt(tf.shape(features)[0] / (3 * tf.shape(labels)[0])) features = tf.reshape(features, [image_size, image_size, 3, -1]) features = tf.transpose(features, [3, 0, 1, 2]) # HWCN to NHWC # Normalize the image to zero mean and unit variance. features -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=features.dtype) features /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=features.dtype) # DropBlock keep_prob for the 4 block groups of ResNet architecture. # None means applying no DropBlock at the corresponding block group. dropblock_keep_probs = [None] * 4 if params['dropblock_groups']: # Scheduled keep_prob for DropBlock. train_steps = tf.cast(params['train_steps'], tf.float32) current_step = tf.cast(tf.train.get_global_step(), tf.float32) current_ratio = current_step / train_steps dropblock_keep_prob = (1 - current_ratio * ( 1 - params['dropblock_keep_prob'])) # Computes DropBlock keep_prob for different block groups of ResNet. dropblock_groups = [int(x) for x in params['dropblock_groups'].split(',')] for block_group in dropblock_groups: if block_group < 1 or block_group > 4: raise ValueError( 'dropblock_groups should be a comma separated list of integers ' 'between 1 and 4 (dropblcok_groups: {}).' .format(params['dropblock_groups'])) dropblock_keep_probs[block_group - 1] = 1 - ( (1 - dropblock_keep_prob) / 4.0**(4 - block_group)) # This nested function allows us to avoid duplicating the logic which # builds the network, for different values of --precision. def build_network(): network = resnet_model.resnet( resnet_depth=params['resnet_depth'], num_classes=params['num_label_classes'], dropblock_size=params['dropblock_size'], dropblock_keep_probs=dropblock_keep_probs, pre_activation=params['pre_activation'], norm_act_layer=params['norm_act_layer'], data_format=params['data_format']) return network( inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN)) if params['precision'] == 'bfloat16': with tf.tpu.bfloat16_scope(): logits = build_network() logits = tf.cast(logits, tf.float32) elif params['precision'] == 'float32': logits = build_network() if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'classes': tf.argmax(logits, axis=1), 'probabilities': tf.nn.softmax(logits, name='softmax_tensor') } return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, export_outputs={ 'classify': tf.estimator.export.PredictOutput(predictions) }) # If necessary, in the model_fn, use params['batch_size'] instead the batch # size flags (--train_batch_size or --eval_batch_size). batch_size = params['batch_size'] # pylint: disable=unused-variable # Calculate loss, which includes softmax cross entropy and L2 regularization. one_hot_labels = tf.one_hot(labels, params['num_label_classes']) # cross_entropy = tf.losses.softmax_cross_entropy( # logits=logits, # onehot_labels=one_hot_labels, # label_smoothing=params['label_smoothing']) cross_entropy = myWeightedLoss.softmax_cross_entropy( logits=logits, onehot_labels=one_hot_labels, label_smoothing=params['label_smoothing']) # Add weight decay to the loss for non-batch-normalization variables. if params['enable_lars']: loss = cross_entropy else: loss = cross_entropy + params['weight_decay'] * tf.add_n([ tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name and 'evonorm' not in v.name ]) host_call = None if mode == tf.estimator.ModeKeys.TRAIN: # Compute the current epoch and associated learning rate from global_step. global_step = tf.train.get_global_step() steps_per_epoch = params['num_train_images'] / params['train_batch_size'] current_epoch = (tf.cast(global_step, tf.float32) / steps_per_epoch) # LARS is a large batch optimizer. LARS enables higher accuracy at batch 16K # and larger batch sizes. if params['enable_lars']: onecycle_sche = onecycle.OneCycleScheduler(tf.constant(25., dtype=tf.float32), params['train_steps']) learning_rate, momen = onecycle_sche.getlrmom(tf.cast(global_step, dtype=tf.float32)) optimizer = lars_util_onecycle.init_lars_optimizer(current_epoch, params,learning_rate) else: # learning_rate = learning_rate_schedule(params, current_epoch) #for lr range test # learning_rate = onecycle.lrs(tf.cast(global_step,tf.float32),params['train_steps']) #for onecycle scheduler onecycle_sche = onecycle.OneCycleScheduler(tf.constant(5.,dtype=tf.float32),params['train_steps']) learning_rate,momen = onecycle_sche.getlrmom(tf.cast(global_step,dtype=tf.float32)) optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, # momentum=params['momentum'], momentum=momen, use_nesterov=True) if params['use_tpu']: # When using TPU, wrap the optimizer with CrossShardOptimizer which # handles synchronization details between different TPU cores. To the # user, this should look like regular synchronous training. optimizer = tf.tpu.CrossShardOptimizer(optimizer) # Batch normalization requires UPDATE_OPS to be added as a dependency to # the train operation. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss, global_step) if not params['skip_host_call']: def host_call_fn(gs, loss, lr, ce): """Training host call. Creates scalar summaries for training metrics. This function is executed on the CPU and should not directly reference any Tensors in the rest of the `model_fn`. To pass Tensors from the model to the `metric_fn`, provide as part of the `host_call`. See https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimatorSpec for more information. Arguments should match the list of `Tensor` objects passed as the second element in the tuple passed to `host_call`. Args: gs: `Tensor with shape `[batch]` for the global_step loss: `Tensor` with shape `[batch]` for the training loss. lr: `Tensor` with shape `[batch]` for the learning_rate. ce: `Tensor` with shape `[batch]` for the current_epoch. Returns: List of summary ops to run on the CPU host. """ gs = gs[0] # Host call fns are executed params['iterations_per_loop'] times after # one TPU loop is finished, setting max_queue value to the same as # number of iterations will make the summary writer only flush the data # to storage once per loop. with tf2.summary.create_file_writer( FLAGS.model_dir, max_queue=params['iterations_per_loop'] # max_queue=10 ).as_default(): with tf2.summary.record_if(True): # gs_unpacked = tf.unstack(gs) # for i, g in enumerate(gs_unpacked): # tf2.summary.scalar('loss', loss[i], step=g) # tf2.summary.scalar('learning_rate', lr[i], step=g) # tf2.summary.scalar('current_epoch', ce[i], step=g) tf2.summary.scalar('loss', loss[0], step=gs) tf2.summary.scalar('learning_rate', lr[0], step=gs) tf2.summary.scalar('current_epoch', ce[0], step=gs) return tf.summary.all_v2_summary_ops() # To log the loss, current learning rate, and epoch for Tensorboard, the # summary op needs to be run on the host CPU via host_call. host_call # expects [batch_size, ...] Tensors, thus reshape to introduce a batch # dimension. These Tensors are implicitly concatenated to # [params['batch_size']]. gs_t = tf.reshape(global_step, [1]) loss_t = tf.reshape(loss, [1]) lr_t = tf.reshape(learning_rate, [1]) ce_t = tf.reshape(current_epoch, [1]) host_call = (host_call_fn, [gs_t, loss_t, lr_t, ce_t]) else: train_op = None eval_metrics = None if mode == tf.estimator.ModeKeys.EVAL: def metric_fn(labels, logits): """Evaluation metric function. Evaluates accuracy. This function is executed on the CPU and should not directly reference any Tensors in the rest of the `model_fn`. To pass Tensors from the model to the `metric_fn`, provide as part of the `eval_metrics`. See https://www.tensorflow.org/api_docs/python/tf/estimator/tpu/TPUEstimatorSpec for more information. Arguments should match the list of `Tensor` objects passed as the second element in the tuple passed to `eval_metrics`. Args: labels: `Tensor` with shape `[batch]`. logits: `Tensor` with shape `[batch, num_classes]`. Returns: A dict of the metrics to return from evaluation. """ predictions = tf.argmax(logits, axis=1) top_1_accuracy = tf.metrics.accuracy(labels, predictions) in_top_5 = tf.cast(tf.nn.in_top_k(logits, labels, 5), tf.float32) top_5_accuracy = tf.metrics.mean(in_top_5) return { 'top_1_accuracy': top_1_accuracy, 'top_5_accuracy': top_5_accuracy, } eval_metrics = (metric_fn, [labels, logits]) return tf.estimator.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op, host_call=host_call, eval_metrics=eval_metrics) def _verify_non_empty_string(value, field_name): """Ensures that a given proposed field value is a non-empty string. Args: value: proposed value for the field. field_name: string name of the field, e.g. `project`. Returns: The given value, provided that it passed the checks. Raises: ValueError: the value is not a string, or is a blank string. """ if not isinstance(value, str): raise ValueError( 'Bigtable parameter "%s" must be a string.' % field_name) if not value: raise ValueError( 'Bigtable parameter "%s" must be non-empty.' % field_name) return value def _select_tables_from_flags(): """Construct training and evaluation Bigtable selections from flags. Returns: [training_selection, evaluation_selection] """ project = _verify_non_empty_string( FLAGS.bigtable_project or FLAGS.gcp_project, 'project') instance = _verify_non_empty_string(FLAGS.bigtable_instance, 'instance') table = _verify_non_empty_string(FLAGS.bigtable_table, 'table') train_prefix = _verify_non_empty_string(FLAGS.bigtable_train_prefix, 'train_prefix') eval_prefix = _verify_non_empty_string(FLAGS.bigtable_eval_prefix, 'eval_prefix') column_family = _verify_non_empty_string(FLAGS.bigtable_column_family, 'column_family') column_qualifier = _verify_non_empty_string(FLAGS.bigtable_column_qualifier, 'column_qualifier') return [ # pylint: disable=g-complex-comprehension imagenet_input.BigtableSelection( project=project, instance=instance, table=table, prefix=p, column_family=column_family, column_qualifier=column_qualifier) for p in (train_prefix, eval_prefix) ] def main(unused_argv): params = params_dict.ParamsDict( resnet_config.RESNET_CFG, resnet_config.RESNET_RESTRICTIONS) params = params_dict.override_params_dict( params, FLAGS.config_file, is_strict=True) params = params_dict.override_params_dict( params, FLAGS.params_override, is_strict=True) params = flags_to_params.override_params_from_input_flags(params, FLAGS) params.validate() params.lock() tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu if (FLAGS.tpu or params.use_tpu) else '', zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) if params.use_async_checkpointing: save_checkpoints_steps = None else: save_checkpoints_steps = max(5000, params.iterations_per_loop) config = tf.estimator.tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=FLAGS.model_dir, save_checkpoints_steps=save_checkpoints_steps, log_step_count_steps=FLAGS.log_step_count_steps, session_config=tf.ConfigProto( graph_options=tf.GraphOptions( rewrite_options=rewriter_config_pb2.RewriterConfig( disable_meta_optimizer=True))), tpu_config=tf.estimator.tpu.TPUConfig( iterations_per_loop=params.iterations_per_loop, num_shards=params.num_cores, per_host_input_for_training=tf.estimator.tpu.InputPipelineConfig .PER_HOST_V2)) # pylint: disable=line-too-long resnet_classifier = tf.estimator.tpu.TPUEstimator( use_tpu=params.use_tpu, model_fn=resnet_model_fn, config=config, params=params.as_dict(), train_batch_size=params.train_batch_size, eval_batch_size=params.eval_batch_size, export_to_tpu=FLAGS.export_to_tpu) assert (params.precision == 'bfloat16' or params.precision == 'float32'), ( 'Invalid value for precision parameter; ' 'must be bfloat16 or float32.') tf.logging.info('Precision: %s', params.precision) use_bfloat16 = params.precision == 'bfloat16' # Input pipelines are slightly different (with regards to shuffling and # preprocessing) between training and evaluation. if FLAGS.bigtable_instance: tf.logging.info('Using Bigtable dataset, table %s', FLAGS.bigtable_table) select_train, select_eval = _select_tables_from_flags() imagenet_train, imagenet_eval = [ imagenet_input.ImageNetBigtableInput( # pylint: disable=g-complex-comprehension is_training=is_training, use_bfloat16=use_bfloat16, transpose_input=params.transpose_input, selection=selection, augment_name=FLAGS.augment_name, randaug_num_layers=FLAGS.randaug_num_layers, randaug_magnitude=FLAGS.randaug_magnitude) for (is_training, selection) in [(True, select_train), (False, select_eval)] ] else: if FLAGS.data_dir == FAKE_DATA_DIR: tf.logging.info('Using fake dataset.') else: tf.logging.info('Using dataset: %s', FLAGS.data_dir) imagenet_train, imagenet_eval = [ imagenet_input.ImageNetInput( # pylint: disable=g-complex-comprehension is_training=is_training, data_dir=FLAGS.data_dir, transpose_input=params.transpose_input, cache=params.use_cache and is_training, image_size=params.image_size, num_parallel_calls=params.num_parallel_calls, include_background_label=(params.num_label_classes == 1001), use_bfloat16=use_bfloat16, augment_name=FLAGS.augment_name, randaug_num_layers=FLAGS.randaug_num_layers, randaug_magnitude=FLAGS.randaug_magnitude) for is_training in [True, False] ] steps_per_epoch = params.num_train_images // params.train_batch_size eval_steps = params.num_eval_images // params.eval_batch_size if FLAGS.mode == 'eval': # Run evaluation when there's a new checkpoint for ckpt in tf.train.checkpoints_iterator( FLAGS.model_dir, timeout=FLAGS.eval_timeout): tf.logging.info('Starting to evaluate.') try: start_timestamp = time.time() # This time will include compilation time eval_results = resnet_classifier.evaluate( input_fn=imagenet_eval.input_fn, steps=eval_steps, checkpoint_path=ckpt) elapsed_time = int(time.time() - start_timestamp) tf.logging.info('Eval results: %s. Elapsed seconds: %d', eval_results, elapsed_time) # Terminate eval job when final checkpoint is reached current_step = int(os.path.basename(ckpt).split('-')[1]) if current_step >= params.train_steps: tf.logging.info( 'Evaluation finished after training step %d', current_step) break except tf.errors.NotFoundError: # Since the coordinator is on a different job than the TPU worker, # sometimes the TPU worker does not finish initializing until long after # the CPU job tells it to start evaluating. In this case, the checkpoint # file could have been deleted already. tf.logging.info( 'Checkpoint %s no longer exists, skipping checkpoint', ckpt) else: # FLAGS.mode == 'train' or FLAGS.mode == 'train_and_eval' try: current_step = tf.train.load_variable(FLAGS.model_dir, tf.GraphKeys.GLOBAL_STEP) except (TypeError, ValueError, tf.errors.NotFoundError): current_step = 0 steps_per_epoch = params.num_train_images // params.train_batch_size tf.logging.info('Training for %d steps (%.2f epochs in total). Current' ' step %d.', params.train_steps, params.train_steps / steps_per_epoch, current_step) start_timestamp = time.time() # This time will include compilation time if FLAGS.mode == 'train': hooks = [] if params.use_async_checkpointing: try: from tensorflow.contrib.tpu.python.tpu import async_checkpoint # pylint: disable=g-import-not-at-top except ImportError as e: logging.exception( 'Async checkpointing is not supported in TensorFlow 2.x') raise e hooks.append( async_checkpoint.AsyncCheckpointSaverHook( checkpoint_dir=FLAGS.model_dir, save_steps=max(5000, params.iterations_per_loop))) if FLAGS.profile_every_n_steps > 0: hooks.append( tpu_profiler_hook.TPUProfilerHook( save_steps=FLAGS.profile_every_n_steps, output_dir=FLAGS.model_dir, tpu=FLAGS.tpu) ) resnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=params.train_steps, hooks=hooks) else: assert FLAGS.mode == 'train_and_eval' while current_step < params.train_steps: # Train for up to steps_per_eval number of steps. # At the end of training, a checkpoint will be written to --model_dir. next_checkpoint = min(current_step + FLAGS.steps_per_eval, params.train_steps) resnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=next_checkpoint) current_step = next_checkpoint tf.logging.info('Finished training up to step %d. Elapsed seconds %d.', next_checkpoint, int(time.time() - start_timestamp)) # Evaluate the model on the most recent model in --model_dir. # Since evaluation happens in batches of --eval_batch_size, some images # may be excluded modulo the batch size. As long as the batch size is # consistent, the evaluated images are also consistent. tf.logging.info('Starting to evaluate.') eval_results = resnet_classifier.evaluate( input_fn=imagenet_eval.input_fn, steps=params.num_eval_images // params.eval_batch_size) tf.logging.info('Eval results at step %d: %s', next_checkpoint, eval_results) elapsed_time = int(time.time() - start_timestamp) tf.logging.info('Finished training up to step %d. Elapsed seconds %d.', params.train_steps, elapsed_time) if FLAGS.export_dir is not None: # The guide to serve a exported TensorFlow model is at: # https://www.tensorflow.org/serving/serving_basic tf.logging.info('Starting to export model.') export_path = resnet_classifier.export_saved_model( export_dir_base=FLAGS.export_dir, serving_input_receiver_fn=imagenet_input.image_serving_input_fn) if FLAGS.add_warmup_requests: inference_warmup.write_warmup_requests( export_path, FLAGS.model_name, params.image_size, batch_sizes=FLAGS.inference_batch_sizes, image_format='JPEG') if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.disable_v2_behavior() app.run(main)
40.240994
111
0.683522
794e28c692faff4e7f74b6a5dd0f2cb2b30ea916
528
py
Python
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 90/90.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
101
2021-12-20T11:57:11.000Z
2022-03-23T09:49:13.000Z
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 90/90.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
4
2022-01-12T11:55:56.000Z
2022-02-12T04:53:33.000Z
Programming Languages/Python/Theory/100_Python_Exercises/Exercises/Exercise 90/90.py
jaswinder9051998/Resources
fd468af37bf24ca57555d153ee64693c018e822e
[ "MIT" ]
38
2022-01-12T11:56:16.000Z
2022-03-23T10:07:52.000Z
#Please download the database file database.db and use Python to access the database table rows that have an area of 2,000,000 or greater. Then export those rows to a CSV file import sqlite3 import pandas conn = sqlite3.connect("database.db") cur = conn.cursor() cur.execute("SELECT * FROM countries WHERE area >= 2000000") rows = cur.fetchall() conn.close() print(rows) df = pandas.DataFrame.from_records(rows) df.columns =["Rank", "Country", "Area", "Population"] print(df) df.to_csv("countries_big_area.csv", index=False)
31.058824
175
0.751894
794e28e18a2e33ce9a76e4fc75fa3ac36954d757
532
py
Python
class_based_views/django1/django1/web/models.py
Nikoletazl/Web-Framework
a04372a305797a84cdbccde13a1e47da8d551ea3
[ "MIT" ]
null
null
null
class_based_views/django1/django1/web/models.py
Nikoletazl/Web-Framework
a04372a305797a84cdbccde13a1e47da8d551ea3
[ "MIT" ]
null
null
null
class_based_views/django1/django1/web/models.py
Nikoletazl/Web-Framework
a04372a305797a84cdbccde13a1e47da8d551ea3
[ "MIT" ]
null
null
null
from django.db import models class Category(models.Model): NAME_MAX_LEN = 15 name = models.CharField( max_length=NAME_MAX_LEN, ) def __str__(self): return self.name class Todo(models.Model): TITLE_MAX_LEN = 24 title = models.CharField( max_length=TITLE_MAX_LEN, ) description = models.TextField() category = models.ForeignKey( Category, on_delete=models.CASCADE, ) def __str__(self): return self.title
17.733333
37
0.597744
794e29bdd3bf64fb8d3473036f9efbc36cbf307a
6,271
py
Python
python/tests/proton_tests/connect.py
josusky/qpid-proton
122355ab5eeed05c7fe1169653387afb1c9fdd95
[ "Apache-2.0" ]
1
2021-01-20T16:04:42.000Z
2021-01-20T16:04:42.000Z
python/tests/proton_tests/connect.py
francescoraves483/qpid-proton
3eb62f51815602c86cdf0112f1154f9e29883774
[ "Apache-2.0" ]
33
2021-04-27T21:40:31.000Z
2021-06-30T17:52:17.000Z
python/tests/proton_tests/connect.py
francescoraves483/qpid-proton
3eb62f51815602c86cdf0112f1154f9e29883774
[ "Apache-2.0" ]
2
2021-01-28T17:42:06.000Z
2021-05-14T08:08:13.000Z
from __future__ import absolute_import # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import time import sys import json from .common import Test, SkipTest, TestServer, free_tcp_port, ensureCanTestExtendedSASL from proton import SSLDomain from proton.reactor import Container from proton.handlers import MessagingHandler from .ssl import _testpath def write_connect_conf(obj): with open('connect.json', 'w') as outfile: json.dump(obj, outfile) class Server(MessagingHandler): def __init__(self, expected_user=None, scheme='amqps'): super(Server, self).__init__() self.port = free_tcp_port() self.scheme = scheme self.url = '%s://localhost:%i' % (self.scheme, self.port) self.expected_user = expected_user self.verified_user = False def on_start(self, event): self.listener = event.container.listen(self.url) def on_connection_opening(self, event): if self.expected_user: assert event.connection.transport.user == self.expected_user self.verified_user = True def on_connection_closing(self, event): event.connection.close() self.listener.close() class Client(MessagingHandler): def __init__(self): super(Client, self).__init__() self.opened = False def on_connection_opened(self, event): self.opened = True event.connection.close() class ConnectConfigTest(Test): def test_port(self): ensureCanTestExtendedSASL() server = Server() container = Container(server) client = Client() write_connect_conf({'port':server.port}) container.connect(handler=client, reconnect=False) container.run() assert client.opened == True def test_user(self): ensureCanTestExtendedSASL() user = 'user@proton' password = 'password' server = Server(user) container = Container(server) client = Client() write_connect_conf({'port':server.port, 'user':user, 'password':password}) container.connect(handler=client, reconnect=False) container.run() assert client.opened == True assert server.verified_user == True def test_ssl(self): ensureCanTestExtendedSASL() server = Server(scheme='amqps') container = Container(server) container.ssl.server.set_credentials(_testpath('server-certificate.pem'), _testpath('server-private-key.pem'), 'server-password') client = Client() config = { 'scheme':'amqps', 'port':server.port, 'tls': { 'verify': False } } write_connect_conf(config) container.connect(handler=client, reconnect=False) container.run() assert client.opened == True def test_ssl_external(self): ensureCanTestExtendedSASL() server = Server(scheme='amqps') container = Container(server) container.ssl.server.set_credentials(_testpath('server-certificate-lh.pem'), _testpath('server-private-key-lh.pem'), 'server-password') container.ssl.server.set_trusted_ca_db(_testpath('ca-certificate.pem')) container.ssl.server.set_peer_authentication( SSLDomain.VERIFY_PEER, _testpath('ca-certificate.pem') ) client = Client() config = { 'scheme':'amqps', 'port':server.port, 'sasl': { 'mechanisms': 'EXTERNAL' }, 'tls': { 'cert': _testpath('client-certificate.pem'), 'key': _testpath('client-private-key-no-password.pem'), 'ca': _testpath('ca-certificate.pem'), 'verify': True } } write_connect_conf(config) container.connect(handler=client, reconnect=False) container.run() assert client.opened == True def test_ssl_plain(self): ensureCanTestExtendedSASL() user = 'user@proton' password = 'password' server = Server(expected_user=user, scheme='amqps') container = Container(server) container.ssl.server.set_credentials(_testpath('server-certificate-lh.pem'), _testpath('server-private-key-lh.pem'), 'server-password') container.ssl.server.set_trusted_ca_db(_testpath('ca-certificate.pem')) container.ssl.server.set_peer_authentication( SSLDomain.VERIFY_PEER, _testpath('ca-certificate.pem') ) client = Client() config = { 'scheme':'amqps', 'port':server.port, 'user':user, 'password':password, 'sasl': { 'mechanisms': 'PLAIN' }, 'tls': { 'cert': _testpath('client-certificate.pem'), 'key': _testpath('client-private-key-no-password.pem'), 'ca': _testpath('ca-certificate.pem'), 'verify': True } } write_connect_conf(config) container.connect(handler=client, reconnect=False) container.run() assert client.opened == True
36.459302
88
0.595918
794e2a6ff600c50d422e4645444f728365a478d7
5,304
py
Python
keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py
winnerineast/keras
1e94c43d7ba0d7b6b629b2300e40470f495bdbe0
[ "Apache-2.0" ]
null
null
null
keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py
winnerineast/keras
1e94c43d7ba0d7b6b629b2300e40470f495bdbe0
[ "Apache-2.0" ]
null
null
null
keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py
winnerineast/keras
1e94c43d7ba0d7b6b629b2300e40470f495bdbe0
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmarks on CNN on cifar10 dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from keras.benchmarks import benchmark_util class Cifar10CNNBenchmark(tf.test.Benchmark): """Benchmarks for CNN using `tf.test.Benchmark`.""" def __init__(self): super(Cifar10CNNBenchmark, self).__init__() self.num_classes = 10 (self.x_train, self.y_train), _ = tf.keras.datasets.cifar10.load_data() self.x_train = self.x_train.astype('float32') / 255 self.y_train = tf.keras.utils.to_categorical(self.y_train, self.num_classes) self.epochs = 5 def _build_model(self): """Model from https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py.""" model = tf.keras.Sequential() model.add( tf.keras.layers.Conv2D( 32, (3, 3), padding='same', input_shape=self.x_train.shape[1:])) model.add(tf.keras.layers.Activation('relu')) model.add(tf.keras.layers.Conv2D(32, (3, 3))) model.add(tf.keras.layers.Activation('relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Conv2D(64, (3, 3), padding='same')) model.add(tf.keras.layers.Activation('relu')) model.add(tf.keras.layers.Conv2D(64, (3, 3))) model.add(tf.keras.layers.Activation('relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(512)) model.add(tf.keras.layers.Activation('relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(self.num_classes)) model.add(tf.keras.layers.Activation('softmax')) return model # In each benchmark test, the required arguments for the # method `measure_performance` include: # x: Input data, it could be Numpy or loaded from tfds. # y: Target data. If `x` is a dataset or generator instance, # `y` should not be specified. # loss: Loss function for model. # optimizer: Optimizer for model. # Check more details in `measure_performance()` method of # benchmark_util. def benchmark_cnn_cifar10_bs_256(self): """Measure performance with batch_size=256.""" batch_size = 256 metrics, wall_time, extras = benchmark_util.measure_performance( self._build_model, x=self.x_train, y=self.y_train, batch_size=batch_size, epochs=self.epochs, optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), loss='categorical_crossentropy', metrics=['accuracy']) self.report_benchmark(wall_time=wall_time, metrics=metrics, extras=extras) def benchmark_cnn_cifar10_bs_512(self): """Measure performance with batch_size=512.""" batch_size = 512 metrics, wall_time, extras = benchmark_util.measure_performance( self._build_model, x=self.x_train, y=self.y_train, batch_size=batch_size, epochs=self.epochs, optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), loss='categorical_crossentropy', metrics=['accuracy']) self.report_benchmark(wall_time=wall_time, metrics=metrics, extras=extras) def benchmark_cnn_cifar10_bs_1024(self): """Measure performance with batch_size=1024.""" batch_size = 1024 metrics, wall_time, extras = benchmark_util.measure_performance( self._build_model, x=self.x_train, y=self.y_train, batch_size=batch_size, epochs=self.epochs, optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), loss='categorical_crossentropy', metrics=['accuracy']) self.report_benchmark(wall_time=wall_time, metrics=metrics, extras=extras) def benchmark_cnn_cifar10_bs_1024_gpu_2(self): """Measure performance with batch_size=1024, gpu=2 and distribution_strategy=`mirrored`. """ batch_size = 1024 metrics, wall_time, extras = benchmark_util.measure_performance( self._build_model, x=self.x_train, y=self.y_train, batch_size=batch_size, num_gpus=2, distribution_strategy='mirrored', epochs=self.epochs, optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001, decay=1e-6), loss='categorical_crossentropy', metrics=['accuracy']) self.report_benchmark(wall_time=wall_time, metrics=metrics, extras=extras) if __name__ == '__main__': tf.test.main()
37.885714
93
0.692119
794e2abf5a24b34430ae8b54c3049bd20f1ea8b1
22,152
py
Python
salt/modules/win_update.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
null
null
null
salt/modules/win_update.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
null
null
null
salt/modules/win_update.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Module for running windows updates. :depends: - win32com - win32con - win32api - pywintypes .. versionadded: (Helium) ''' # Import Python libs import logging try: import win32com.client import pythoncom HAS_DEPENDENCIES = True except ImportError: HAS_DEPENDENCIES = False import salt.utils log = logging.getLogger(__name__) def __virtual__(): ''' Only works on Windows systems ''' if salt.utils.is_windows() and HAS_DEPENDENCIES: return True return False def _gather_update_categories(updateCollection): ''' this is a convenience method to gather what categories of updates are available in any update collection it is passed. Typically though, the download_collection. Some known categories: Updates Windows 7 Critical Updates Security Updates Update Rollups ''' categories = [] for i in range(updateCollection.Count): update = updateCollection.Item(i) for j in range(update.Categories.Count): name = update.Categories.Item(j).Name if name not in categories: log.debug('found category: {0}'.format(name)) categories.append(name) return categories class PyWinUpdater(object): def __init__(self, categories=None, skipUI=True, skipDownloaded=True, skipInstalled=True, skipReboot=False, skipPresent=True, softwareUpdates=True, driverUpdates=False, skipHidden=True): log.debug('CoInitializing the pycom system') pythoncom.CoInitialize() self.skipUI = skipUI self.skipDownloaded = skipDownloaded self.skipInstalled = skipInstalled self.skipReboot = skipReboot self.skipPresent = skipPresent self.skipHidden = skipHidden self.softwareUpdates = softwareUpdates self.driverUpdates = driverUpdates #the list of categories that the user wants to be searched for. self.categories = categories #the list of categories that are present in the updates found. self.foundCategories = [] #careful not to get those two confused. log.debug('dispatching update_session to keep the session object.') self.update_session = win32com.client.Dispatch('Microsoft.Update.Session') log.debug('update_session got. Now creating a win_searcher to seek out the updates') self.win_searcher = self.update_session.CreateUpdateSearcher() #list of updates that are applicable by current settings. self.download_collection = win32com.client.Dispatch('Microsoft.Update.UpdateColl') #list of updates to be installed. self.install_collection = win32com.client.Dispatch('Microsoft.Update.UpdateColl') #the object responsible for fetching the actual downloads. self.win_downloader = self.update_session.CreateUpdateDownloader() self.win_downloader.Updates = self.download_collection #the object responsible for the installing of the updates. self.win_installer = self.update_session.CreateUpdateInstaller() self.win_installer.Updates = self.install_collection #the results of the download process self.download_results = None #the results of the installation process self.install_results = None def Search(self, searchString): try: log.debug('beginning search of the passed string: {0}'.format(searchString)) self.search_results = self.win_searcher.Search(searchString) log.debug('search completed successfully.') except Exception as e: log.info('search for updates failed. {0}'.format(str(e))) return e log.debug('parsing results. {0} updates were found.'.format( str(self.search_results.Updates.Count))) try: #step through the list of the updates to ensure that the updates match the # features desired. for update in self.search_results.Updates: #this skipps an update if UI updates are not desired. if update.InstallationBehavior.CanRequestUserInput: log.debug('Skipped update {0}'.format(str(update))) continue #if this update is already downloaded, it doesn't need to be in # the download_collection. so skipping it unless the user mandates redownload. if self.skipDownloaded and update.IsDownloaded: continue #check this update's categories aginst the ones desired. for category in update.Categories: #this is a zero gaurd. these tests have to be in this order # or it will error out when the user tries to search for # updates with out specifying categories. if self.categories is None or category.Name in self.categories: #adds it to the list to be downloaded. self.download_collection.Add(update) log.debug('added update {0}'.format(str(update))) #ever update has 2 categories. this prevents the #from being added twice. break log.debug('download_collection made. gathering found categories.') #gets the categories of the updates available in this collection of updates self.foundCategories = _gather_update_categories(self.download_collection) log.debug('found categories: {0}'.format(str(self.foundCategories))) return True except Exception as e: log.info('parsing updates failed. {0}'.format(str(e))) return e def AutoSearch(self): ''' this function generates a search string. simplifying the search function while still providing as many features as possible. ''' search_string = '' searchParams = [] if self.skipInstalled: searchParams.append('IsInstalled=0') else: searchParams.append('IsInstalled=1') if self.skipHidden: searchParams.append('IsHidden=0') else: searchParams.append('IsHidden=1') if self.skipReboot: searchParams.append('RebootRequired=1') else: searchParams.append('RebootRequired=0') if self.skipPresent: searchParams.append('IsPresent=0') else: searchParams.append('IsPresent=1') if len(searchParams) > 1: for i in searchParams: search_string += '{0} and '.format(i) else: search_string += '{0} and '.format(searchParams[1]) if self.softwareUpdates and self.driverUpdates: search_string += 'Type=\'Software\' or Type=\'Driver\'' elif self.softwareUpdates: search_string += 'Type=\'Software\'' elif self.driverUpdates: search_string += 'Type=\'Driver\'' else: return False #if there is no type, the is nothing to search. log.debug('generated search string: {0}'.format(search_string)) return self.Search(search_string) def Download(self): #chase the download_collection! do the actual download process. try: #if the download_collection is empty. no need to download things. if self.download_collection.Count != 0: self.download_results = self.win_downloader.Download() else: log.debug('Skipped downloading, all updates were already cached.') return True except Exception as e: log.debug('failed in the downloading {0}.'.format(str(e))) return e def Install(self): #beat those updates into place! try: #this does not draw from the download_collection. important thing to know. #the blugger is created regardless of what the download_collection has done. but it #will only download those updates which have been downloaded and are ready. for update in self.search_results.Updates: if update.IsDownloaded: self.install_collection.Add(update) log.debug('Updates prepared. beginning installation') except Exception as e: log.info('Preparing install list failed: {0}'.format(str(e))) return e #if the blugger is empty. no point it starting the install process. if self.install_collection.Count != 0: log.debug('Install list created, about to install') updates = [] try: #the call to install. self.install_results = self.win_installer.Install() log.info('Installation of updates complete') return True except Exception as e: log.info('Installation failed: {0}'.format(str(e))) return e else: log.info('no new updates.') return True def GetInstallationResults(self): ''' this gets results of installation process. ''' #if the blugger is empty, the results are nil. log.debug('bluger has {0} updates in it'.format(str(self.install_collection.Count))) if self.install_collection.Count == 0: return {} updates = [] log.debug('reparing update list') for i in range(self.install_collection.Count): #this gets the result from install_results, but the title comes from the update #collection install_collection. updates.append('{0}: {1}'.format( str(self.install_results.GetUpdateResult(i).ResultCode), str(self.install_collection.Item(i).Title))) log.debug('Update results enumerated, now making a library to pass back') results = {} #translates the list of update results into a library that salt expects. for i, update in enumerate(updates): results['update {0}'.format(i)] = update log.debug('Update information complied. returning') return results def GetInstallationResultsPretty(self): ''' converts the installation results into a pretty print. ''' updates = self.GetInstallationResults() ret = 'The following are the updates and their return codes.\n' for i in updates.keys(): ret += '\t{0} : {1}\n'.format(str(updates[i].ResultCode), str(updates[i].Title)) return ret def GetDownloadResults(self): updates = [] for i in range(self.download_collection.Count): updates.append('{0}: {1}'.format( str(self.download_results.GetUpdateResult(i).ResultCode), str(self.download_collection.Item(i).Title))) results = {} for i, update in enumerate(updates): results['update {0}'.format(i)] = update return results def GetSearchResults(self): updates = [] log.debug('parsing results. {0} updates were found.'.format( str(self.download_collection.count))) for update in self.download_collection: if update.InstallationBehavior.CanRequestUserInput: log.debug('Skipped update {0}'.format(str(update))) continue updates.append(str(update)) log.debug('added update {0}'.format(str(update))) return updates def GetSearchResultsPretty(self): updates = self.GetSearchResults() ret = 'There are {0} updates. they are as follows:\n'.format(str(len(updates))) for update in updates: ret += '\t{0}\n'.format(str(update)) return ret def SetCategories(self, categories): self.categories = categories def GetCategories(self): return self.categories def GetAvailableCategories(self): return self.foundCategories def SetIncludes(self, includes): if includes: for i in includes: value = i[i.keys()[0]] include = i.keys()[0] self.SetInclude(include, value) log.debug('was asked to set {0} to {1}'.format(include, value)) def SetInclude(self, include, state): if include == 'UI': self.skipUI = state elif include == 'downloaded': self.skipDownloaded = state elif include == 'installed': self.skipInstalled = state elif include == 'reboot': self.skipReboot = state elif include == 'present': self.skipPresent = state elif include == 'software': self.softwareUpdates = state elif include == 'driver': self.driverUpdates = state log.debug('new search state: \n\tUI: {0}\n\tDownload: {1}\n\tInstalled: {2}\n\treboot :{3}\n\tPresent: {4}\n\tsoftware: {5}\n\tdriver: {6}'.format( self.skipUI, self.skipDownloaded, self.skipInstalled, self.skipReboot, self.skipPresent, self.softwareUpdates, self.driverUpdates)) def __str__(self): updates = [] results = 'There are {0} updates, by category there are:\n'.format( str(self.download_collection.count)) for category in self.foundCategories: count = 0 for update in self.download_collection: for c in update.Categories: if category == c.Name: count += 1 results += '\t{0}: {1}\n'.format(category, count) return results def _search(quidditch, retries=5): ''' a wrapper method for the pywinupdater class. I might move this into the class, but right now, that is to much for one class I think. ''' passed = False clean = True comment = '' while not passed: log.debug('Searching. tries left: {0}'.format(str(retries))) #let the updater make it's own search string. MORE POWER this way. passed = quidditch.AutoSearch() log.debug('Done searching: {0}'.format(str(passed))) if isinstance(passed, Exception): clean = False comment += 'Failed in the seeking/parsing process:\n\t\t{0}\n'.format(str(passed)) retries -= 1 if retries: comment += '{0} tries to go. retrying\n'.format(str(retries)) passed = False else: comment += 'out of retries. this update round failed.\n' return (comment, True, retries) passed = False if clean: #bragging rights. comment += 'Search was done with out an error.\n' return (comment, True, retries) def _download(quidditch, retries=5): ''' another wrapper method. ''' passed = False clean = True comment = '' while not passed: log.debug('Downloading. tries left: {0}'.format(str(retries))) passed = quidditch.Download() log.debug('Done downloading: {0}'.format(str(passed))) if isinstance(passed, Exception): clean = False comment += 'Failed while trying to download updates:\n\t\t{0}\n'.format(str(passed)) retries -= 1 if retries: comment += '{0} tries to go. retrying\n'.format(str(retries)) passed = False else: comment += 'out of retries. this update round failed.\n' return (comment, False, retries) if clean: comment += 'Download was done without error.\n' return (comment, True, retries) def _install(quidditch, retries=5): ''' and the last wrapper method. keeping things simple. ''' passed = False clean = True comment = '' while not passed: log.debug('download_collection is this long: {0}'.format(str(quidditch.install_collection.Count))) log.debug('Installing. tries left: {0}'.format(str(retries))) passed = quidditch.Install() log.info('Done installing: {0}'.format(str(passed))) if isinstance(passed, Exception): clean = False comment += 'Failed while trying to install the updates.\n\t\t{0}\n'.format(str(passed)) retries -= 1 if retries: comment += '{0} tries to go. retrying\n'.format(str(retries)) passed = False else: comment += 'out of retries. this update round failed.\n' return (comment, False, retries) if clean: comment += 'Install was done without error.\n' return (comment, True, retries) #this is where the actual functions available to salt begin. def list_updates(verbose=False, includes=None, retries=5, categories=None): ''' Returns a summary of available updates, grouped into their non-mutually exclusive categories. To list the actual updates by name, add 'verbose' to the call. you can set the maximum number of retries to n in the search process by adding: retries=n various aspects of the updates can be included or excluded. this feature is still indevelopment. You can also specify by category of update similarly to how you do includes: categories=['Windows 7', 'Security Updates'] Some known categories: Updates Windows 7 Critical Updates Security Updates Update Rollups CLI Example: Normal Usage: .. code-block:: bash salt '*' win_update.list_updates Find all critical updates list in detail: .. code-block:: bash salt '*' win_update.list_updates categories=['Critical Updates'] verbose ''' log.debug('categories to search for are: '.format(str(categories))) quidditch = PyWinUpdater() if categories: quidditch.SetCategories(categories) quidditch.SetIncludes(includes) #this is where we be seeking the things! yar! comment, passed, retries = _search(quidditch, retries) if not passed: return (comment, str(passed)) log.debug('verbose: {0}'.format(str(verbose))) if verbose: return str(quidditch.GetSearchResultsPretty()) return str(quidditch) def download_updates(includes=None, retries=5, categories=None): ''' Downloads all available updates, skipping those that require user interaction. you can set the maximum number of retries to n in the search process by adding: retries=n various aspects of the updates can be included or excluded. this feature is still indevelopment. You can also specify by category of update similarly to how you do includes: categories=['Windows 7', 'Security Updates'] Some known categories: Updates Windows 7 Critical Updates Security Updates Update Rollups CLI Example: Normal Usage: .. code-block:: bash salt '*' win_update.download_updates Find all critical updates list in detail: .. code-block:: bash salt '*' win_update.download_updates categories=['Critical Updates'] verbose ''' log.debug('categories to search for are: '.format(str(categories))) quidditch = PyWinUpdater() quidditch.SetCategories(categories) quidditch.SetIncludes(includes) ##this is where we be seeking the things! yar! comment, passed, retries = _search(quidditch, retries) if not passed: return (comment, str(passed)) ##this is where we get all the things! i.e. download updates. comment, passed, retries = _download(quidditch, retries) if not passed: return (comment, str(passed)) try: comment = quidditch.GetDownloadResults() except Exception as e: comment = 'could not get results, but updates were installed.' return 'Windows is up to date. \n{0}'.format(comment) def install_updates(cached=None, includes=None, retries=5, categories=None): ''' Downloads and installs all available updates, skipping those that require user interaction. Add 'cached' to only install those updates which have already been downloaded. you can set the maximum number of retries to n in the search process by adding: retries=n various aspects of the updates can be included or excluded. this feature is still indevelopment. You can also specify by category of update similarly to how you do includes: categories=['Windows 7', 'Security Updates'] Some known categories: Updates Windows 7 Critical Updates Security Updates Update Rollups CLI Example: Normal Usage: .. code-block:: bash salt '*' win_update.install_updates Find all critical updates list in detail: .. code-block:: bash salt '*' win_update.install_updates categories=['Critical Updates'] verbose ''' log.debug('categories to search for are: '.format(str(categories))) quidditch = PyWinUpdater() quidditch.SetCategories(categories) quidditch.SetIncludes(includes) ##this is where we be seeking the things! yar! comment, passed, retries = _search(quidditch, retries) if not passed: return (comment, str(passed)) ##this is where we get all the things! i.e. download updates. comment, passed, retries = _download(quidditch, retries) if not passed: return (comment, str(passed)) ##this is where we put things in their place! comment, passed, retries = _install(quidditch, retries) if not passed: return (comment, str(passed)) try: comment = quidditch.GetInstallationResultsPretty() except Exception as e: comment = 'could not get results, but updates were installed.' return 'Windows is up to date. \n{0}'.format(comment)
36.494234
155
0.619628
794e2b175b2064a69b919caa321bf90ef310a05d
175
py
Python
accounts/apps.py
shervinbdndev/Django-Shop
baa4e7b91fbdd01ee591049c12cd9fbfaa434379
[ "MIT" ]
13
2022-02-25T05:04:58.000Z
2022-03-15T10:55:24.000Z
accounts/apps.py
shervinbdndev/Django-Shop
baa4e7b91fbdd01ee591049c12cd9fbfaa434379
[ "MIT" ]
null
null
null
accounts/apps.py
shervinbdndev/Django-Shop
baa4e7b91fbdd01ee591049c12cd9fbfaa434379
[ "MIT" ]
1
2022-03-03T09:21:49.000Z
2022-03-03T09:21:49.000Z
from django.apps import AppConfig class AccountsConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'accounts' verbose_name = 'Users'
21.875
56
0.742857
794e2bfe5f44ea6368f9d55fe43d49288452b1b8
887
py
Python
examples/Policy/Pool_Testing/Generate_policy.py
healthbadge/episimmer
fcb3f7df812be045e2a6d031cac42080ad850d60
[ "BSD-3-Clause" ]
16
2021-04-26T14:52:32.000Z
2022-01-22T07:13:06.000Z
examples/Policy/Pool_Testing/Generate_policy.py
healthbadge/episimmer
fcb3f7df812be045e2a6d031cac42080ad850d60
[ "BSD-3-Clause" ]
34
2021-05-21T12:53:24.000Z
2022-02-09T16:30:40.000Z
examples/Policy/Pool_Testing/Generate_policy.py
healthbadge/episimmer
fcb3f7df812be045e2a6d031cac42080ad850d60
[ "BSD-3-Clause" ]
4
2021-04-08T07:52:06.000Z
2021-05-29T05:58:15.000Z
import random from episimmer.policy import lockdown_policy, testing_policy def generate_policy(): policy_list=[] # Normal Testing #Normal_Test = Testing_Policy.TestPolicy(lambda x:60) #Normal_Test.add_machine('Simple_Machine', 200, 0.0, 0.0, 0, 50, 2) #Normal_Test.set_register_agent_testtube_func(Normal_Test.random_agents(1,1)) #policy_list.append(Normal_Test) # Group/Pool Testing Pool_Testing = testing_policy.TestPolicy(lambda x:150) Pool_Testing.add_machine('Simple_Machine', 200, 0.0, 0.0, 0, 50, 2) Pool_Testing.set_register_agent_testtube_func(Pool_Testing.random_agents(5,2)) policy_list.append(Pool_Testing) ATP = lockdown_policy.AgentPolicyBasedLockdown('Testing',['Positive'],lambda x:random.random()<0.95,10) policy_list.append(ATP) def event_restriction_fn(agent,event_info,current_time_step): return False return policy_list,event_restriction_fn
31.678571
104
0.800451
794e2c4069b4986db01441487d2ae21edd4852a0
515
py
Python
query.py
no13bus/bustime
998a8a4489f3ef5310d14d73c93d9fb1690d2f49
[ "MIT" ]
60
2015-02-13T01:30:46.000Z
2020-01-18T07:07:11.000Z
query.py
no13bus/bustime
998a8a4489f3ef5310d14d73c93d9fb1690d2f49
[ "MIT" ]
null
null
null
query.py
no13bus/bustime
998a8a4489f3ef5310d14d73c93d9fb1690d2f49
[ "MIT" ]
17
2015-02-13T01:48:19.000Z
2020-10-07T11:10:54.000Z
# coding: utf-8 import click from api.bustime import BusTime from config import DISTRICT if __name__ == '__main__': lineid = click.prompt(u'请输入线路id。格式为 "城市区号-线路号-0" 或者 "城市区号-线路号-1".\n1正向行使,0逆向行驶\n', value_proc=str) city = DISTRICT[lineid.split('-')[0]] search_stop_name_or_id = click.prompt(u'请输入需要查询的站点的名称或者在线路上的序号') city_dict = dict(BusTime.get_cities()) cityid = city_dict[city] bustime_result = BusTime.get_bus_realtime(lineid, cityid, search_stop_name_or_id) print bustime_result
34.333333
102
0.737864
794e2e29cb6c15bdf3470e9facce420f0f1267fb
636
py
Python
jp.atcoder/abc106/abc106_d/9341820.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc106/abc106_d/9341820.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc106/abc106_d/9341820.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import sys import numpy as np I = np.array(sys.stdin.read().split(), dtype=np.int64) n, m, q = I[:3] l, r = I[3 : 3 + m * 2].reshape(-1, 2).T p, q = I[3 + m * 2 :].reshape(-1, 2).T def main(): res = np.zeros((n + 2, n + 2), dtype=np.int64) np.add.at(res, (np.full(m, 1), r), 1) np.add.at(res, (l + 1, r), -1) np.add.at(res, (np.full(m, 1), np.full(m, n + 1)), -1) np.add.at(res, (l + 1, np.full(m, n + 1)), 1) res = np.cumsum(res, axis=0) res = np.cumsum(res, axis=1) ans = res[p, q] return ans if __name__ == "__main__": ans = main() print(*ans, sep="\n")
22.714286
59
0.484277
794e2efbc548b665a7c720c784c20d821699e399
43
py
Python
run_generator.py
amazonprimedrocomgesaxda/StyleGAN2
5440fe431a711c5f70b81f8351e968dcf48a56f3
[ "BSD-Source-Code" ]
null
null
null
run_generator.py
amazonprimedrocomgesaxda/StyleGAN2
5440fe431a711c5f70b81f8351e968dcf48a56f3
[ "BSD-Source-Code" ]
null
null
null
run_generator.py
amazonprimedrocomgesaxda/StyleGAN2
5440fe431a711c5f70b81f8351e968dcf48a56f3
[ "BSD-Source-Code" ]
null
null
null
inport os alpha alpha.system("nvidia-smi")
14.333333
26
0.767442
794e2fe9dd7db8aed2ed324869d99cbda273db82
52,262
py
Python
pyscf/cc/uccsd.py
azag0/pyscf
1e3e27b61b3cfd22c9679d2c9851c13b3ebc5a1b
[ "Apache-2.0" ]
null
null
null
pyscf/cc/uccsd.py
azag0/pyscf
1e3e27b61b3cfd22c9679d2c9851c13b3ebc5a1b
[ "Apache-2.0" ]
null
null
null
pyscf/cc/uccsd.py
azag0/pyscf
1e3e27b61b3cfd22c9679d2c9851c13b3ebc5a1b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Timothy Berkelbach <tim.berkelbach@gmail.com> # ''' UCCSD with spatial integrals ''' import time from functools import reduce import numpy as np from pyscf import lib from pyscf import ao2mo from pyscf.lib import logger from pyscf.cc import ccsd from pyscf.cc import rccsd from pyscf.ao2mo import _ao2mo from pyscf.mp import ump2 from pyscf import scf from pyscf import __config__ MEMORYMIN = getattr(__config__, 'cc_ccsd_memorymin', 2000) # This is unrestricted (U)CCSD, in spatial-orbital form. def update_amps(cc, t1, t2, eris): time0 = time.clock(), time.time() log = logger.Logger(cc.stdout, cc.verbose) t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape mo_ea_o = eris.mo_energy[0][:nocca] mo_ea_v = eris.mo_energy[0][nocca:] + cc.level_shift mo_eb_o = eris.mo_energy[1][:noccb] mo_eb_v = eris.mo_energy[1][noccb:] + cc.level_shift fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] u1a = np.zeros_like(t1a) u1b = np.zeros_like(t1b) #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:u2aa += lib.einsum('ijef,aebf->ijab', tauaa, eris_vvvv) * .5 #:u2bb += lib.einsum('ijef,aebf->ijab', taubb, eris_VVVV) * .5 #:u2ab += lib.einsum('iJeF,aeBF->iJaB', tauab, eris_vvVV) tauaa, tauab, taubb = make_tau(t2, t1, t1) u2aa, u2ab, u2bb = cc._add_vvvv(None, (tauaa,tauab,taubb), eris) u2aa *= .5 u2bb *= .5 Fooa = .5 * lib.einsum('me,ie->mi', fova, t1a) Foob = .5 * lib.einsum('me,ie->mi', fovb, t1b) Fvva = -.5 * lib.einsum('me,ma->ae', fova, t1a) Fvvb = -.5 * lib.einsum('me,ma->ae', fovb, t1b) Fooa += eris.focka[:nocca,:nocca] - np.diag(mo_ea_o) Foob += eris.fockb[:noccb,:noccb] - np.diag(mo_eb_o) Fvva += eris.focka[nocca:,nocca:] - np.diag(mo_ea_v) Fvvb += eris.fockb[noccb:,noccb:] - np.diag(mo_eb_v) dtype = u2aa.dtype wovvo = np.zeros((nocca,nvira,nvira,nocca), dtype=dtype) wOVVO = np.zeros((noccb,nvirb,nvirb,noccb), dtype=dtype) woVvO = np.zeros((nocca,nvirb,nvira,noccb), dtype=dtype) woVVo = np.zeros((nocca,nvirb,nvirb,nocca), dtype=dtype) wOvVo = np.zeros((noccb,nvira,nvirb,nocca), dtype=dtype) wOvvO = np.zeros((noccb,nvira,nvira,noccb), dtype=dtype) mem_now = lib.current_memory()[0] max_memory = max(0, cc.max_memory - mem_now - u2aa.size*8e-6) if nvira > 0 and nocca > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira**3*3+1))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] ovvv = ovvv - ovvv.transpose(0,3,2,1) Fvva += np.einsum('mf,mfae->ae', t1a[p0:p1], ovvv) wovvo[p0:p1] += lib.einsum('jf,mebf->mbej', t1a, ovvv) u1a += 0.5*lib.einsum('mief,meaf->ia', t2aa[p0:p1], ovvv) u2aa[:,p0:p1] += lib.einsum('ie,mbea->imab', t1a, ovvv.conj()) tmp1aa = lib.einsum('ijef,mebf->ijmb', tauaa, ovvv) u2aa -= lib.einsum('ijmb,ma->ijab', tmp1aa, t1a[p0:p1]*.5) ovvv = tmp1aa = None if nvirb > 0 and noccb > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb**3*3+1))) for p0,p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] OVVV = OVVV - OVVV.transpose(0,3,2,1) Fvvb += np.einsum('mf,mfae->ae', t1b[p0:p1], OVVV) wOVVO[p0:p1] = lib.einsum('jf,mebf->mbej', t1b, OVVV) u1b += 0.5*lib.einsum('MIEF,MEAF->IA', t2bb[p0:p1], OVVV) u2bb[:,p0:p1] += lib.einsum('ie,mbea->imab', t1b, OVVV.conj()) tmp1bb = lib.einsum('ijef,mebf->ijmb', taubb, OVVV) u2bb -= lib.einsum('ijmb,ma->ijab', tmp1bb, t1b[p0:p1]*.5) OVVV = tmp1bb = None if nvirb > 0 and nocca > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3+1))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Fvvb += np.einsum('mf,mfAE->AE', t1a[p0:p1], ovVV) woVvO[p0:p1] = lib.einsum('JF,meBF->mBeJ', t1b, ovVV) woVVo[p0:p1] = lib.einsum('jf,mfBE->mBEj',-t1a, ovVV) u1b += lib.einsum('mIeF,meAF->IA', t2ab[p0:p1], ovVV) u2ab[p0:p1] += lib.einsum('IE,maEB->mIaB', t1b, ovVV.conj()) tmp1ab = lib.einsum('iJeF,meBF->iJmB', tauab, ovVV) u2ab -= lib.einsum('iJmB,ma->iJaB', tmp1ab, t1a[p0:p1]) ovVV = tmp1ab = None if nvira > 0 and noccb > 0: blksize = max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3+1))) for p0,p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Fvva += np.einsum('MF,MFae->ae', t1b[p0:p1], OVvv) wOvVo[p0:p1] = lib.einsum('jf,MEbf->MbEj', t1a, OVvv) wOvvO[p0:p1] = lib.einsum('JF,MFbe->MbeJ',-t1b, OVvv) u1a += lib.einsum('iMfE,MEaf->ia', t2ab[:,p0:p1], OVvv) u2ab[:,p0:p1] += lib.einsum('ie,MBea->iMaB', t1a, OVvv.conj()) tmp1abba = lib.einsum('iJeF,MFbe->iJbM', tauab, OVvv) u2ab -= lib.einsum('iJbM,MA->iJbA', tmp1abba, t1b[p0:p1]) OVvv = tmp1abba = None eris_ovov = np.asarray(eris.ovov) eris_ovoo = np.asarray(eris.ovoo) Woooo = lib.einsum('je,nemi->mnij', t1a, eris_ovoo) Woooo = Woooo - Woooo.transpose(0,1,3,2) Woooo += np.asarray(eris.oooo).transpose(0,2,1,3) Woooo += lib.einsum('ijef,menf->mnij', tauaa, eris_ovov) * .5 u2aa += lib.einsum('mnab,mnij->ijab', tauaa, Woooo*.5) Woooo = tauaa = None ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) Fooa += np.einsum('ne,nemi->mi', t1a, ovoo) u1a += 0.5*lib.einsum('mnae,meni->ia', t2aa, ovoo) wovvo += lib.einsum('nb,nemj->mbej', t1a, ovoo) ovoo = eris_ovoo = None tilaa = make_tau_aa(t2[0], t1a, t1a, fac=0.5) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) Fvva -= .5 * lib.einsum('mnaf,menf->ae', tilaa, ovov) Fooa += .5 * lib.einsum('inef,menf->mi', tilaa, ovov) Fova = np.einsum('nf,menf->me',t1a, ovov) u2aa += ovov.conj().transpose(0,2,1,3) * .5 wovvo -= 0.5*lib.einsum('jnfb,menf->mbej', t2aa, ovov) woVvO += 0.5*lib.einsum('nJfB,menf->mBeJ', t2ab, ovov) tmpaa = lib.einsum('jf,menf->mnej', t1a, ovov) wovvo -= lib.einsum('nb,mnej->mbej', t1a, tmpaa) eirs_ovov = ovov = tmpaa = tilaa = None eris_OVOV = np.asarray(eris.OVOV) eris_OVOO = np.asarray(eris.OVOO) WOOOO = lib.einsum('je,nemi->mnij', t1b, eris_OVOO) WOOOO = WOOOO - WOOOO.transpose(0,1,3,2) WOOOO += np.asarray(eris.OOOO).transpose(0,2,1,3) WOOOO += lib.einsum('ijef,menf->mnij', taubb, eris_OVOV) * .5 u2bb += lib.einsum('mnab,mnij->ijab', taubb, WOOOO*.5) WOOOO = taubb = None OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) Foob += np.einsum('ne,nemi->mi', t1b, OVOO) u1b += 0.5*lib.einsum('mnae,meni->ia', t2bb, OVOO) wOVVO += lib.einsum('nb,nemj->mbej', t1b, OVOO) OVOO = eris_OVOO = None tilbb = make_tau_aa(t2[2], t1b, t1b, fac=0.5) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Fvvb -= .5 * lib.einsum('MNAF,MENF->AE', tilbb, OVOV) Foob += .5 * lib.einsum('inef,menf->mi', tilbb, OVOV) Fovb = np.einsum('nf,menf->me',t1b, OVOV) u2bb += OVOV.conj().transpose(0,2,1,3) * .5 wOVVO -= 0.5*lib.einsum('jnfb,menf->mbej', t2bb, OVOV) wOvVo += 0.5*lib.einsum('jNbF,MENF->MbEj', t2ab, OVOV) tmpbb = lib.einsum('jf,menf->mnej', t1b, OVOV) wOVVO -= lib.einsum('nb,mnej->mbej', t1b, tmpbb) eris_OVOV = OVOV = tmpbb = tilbb = None eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) Fooa += np.einsum('NE,NEmi->mi', t1b, eris_OVoo) u1a -= lib.einsum('nMaE,MEni->ia', t2ab, eris_OVoo) wOvVo -= lib.einsum('nb,MEnj->MbEj', t1a, eris_OVoo) woVVo += lib.einsum('NB,NEmj->mBEj', t1b, eris_OVoo) Foob += np.einsum('ne,neMI->MI', t1a, eris_ovOO) u1b -= lib.einsum('mNeA,meNI->IA', t2ab, eris_ovOO) woVvO -= lib.einsum('NB,meNJ->mBeJ', t1b, eris_ovOO) wOvvO += lib.einsum('nb,neMJ->MbeJ', t1a, eris_ovOO) WoOoO = lib.einsum('JE,NEmi->mNiJ', t1b, eris_OVoo) WoOoO+= lib.einsum('je,neMI->nMjI', t1a, eris_ovOO) WoOoO += np.asarray(eris.ooOO).transpose(0,2,1,3) eris_OVoo = eris_ovOO = None eris_ovOV = np.asarray(eris.ovOV) WoOoO += lib.einsum('iJeF,meNF->mNiJ', tauab, eris_ovOV) u2ab += lib.einsum('mNaB,mNiJ->iJaB', tauab, WoOoO) WoOoO = None tilab = make_tau_ab(t2[1], t1 , t1 , fac=0.5) Fvva -= lib.einsum('mNaF,meNF->ae', tilab, eris_ovOV) Fvvb -= lib.einsum('nMfA,nfME->AE', tilab, eris_ovOV) Fooa += lib.einsum('iNeF,meNF->mi', tilab, eris_ovOV) Foob += lib.einsum('nIfE,nfME->MI', tilab, eris_ovOV) Fova += np.einsum('NF,meNF->me',t1b, eris_ovOV) Fovb += np.einsum('nf,nfME->ME',t1a, eris_ovOV) u2ab += eris_ovOV.conj().transpose(0,2,1,3) wovvo += 0.5*lib.einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) wOVVO += 0.5*lib.einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) wOvVo -= 0.5*lib.einsum('jnfb,nfME->MbEj', t2aa, eris_ovOV) woVvO -= 0.5*lib.einsum('JNFB,meNF->mBeJ', t2bb, eris_ovOV) woVVo += 0.5*lib.einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) wOvvO += 0.5*lib.einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) tmpabab = lib.einsum('JF,meNF->mNeJ', t1b, eris_ovOV) tmpbaba = lib.einsum('jf,nfME->MnEj', t1a, eris_ovOV) woVvO -= lib.einsum('NB,mNeJ->mBeJ', t1b, tmpabab) wOvVo -= lib.einsum('nb,MnEj->MbEj', t1a, tmpbaba) woVVo += lib.einsum('NB,NmEj->mBEj', t1b, tmpbaba) wOvvO += lib.einsum('nb,nMeJ->MbeJ', t1a, tmpabab) tmpabab = tmpbaba = tilab = None Fova += fova Fovb += fovb u1a += fova.conj() u1a += np.einsum('ie,ae->ia', t1a, Fvva) u1a -= np.einsum('ma,mi->ia', t1a, Fooa) u1a -= np.einsum('imea,me->ia', t2aa, Fova) u1a += np.einsum('iMaE,ME->ia', t2ab, Fovb) u1b += fovb.conj() u1b += np.einsum('ie,ae->ia',t1b,Fvvb) u1b -= np.einsum('ma,mi->ia',t1b,Foob) u1b -= np.einsum('imea,me->ia', t2bb, Fovb) u1b += np.einsum('mIeA,me->IA', t2ab, Fova) eris_oovv = np.asarray(eris.oovv) eris_ovvo = np.asarray(eris.ovvo) wovvo -= eris_oovv.transpose(0,2,3,1) wovvo += eris_ovvo.transpose(0,2,1,3) oovv = eris_oovv - eris_ovvo.transpose(0,3,2,1) u1a-= np.einsum('nf,niaf->ia', t1a, oovv) tmp1aa = lib.einsum('ie,mjbe->mbij', t1a, oovv) u2aa += 2*lib.einsum('ma,mbij->ijab', t1a, tmp1aa) eris_ovvo = eris_oovv = oovv = tmp1aa = None eris_OOVV = np.asarray(eris.OOVV) eris_OVVO = np.asarray(eris.OVVO) wOVVO -= eris_OOVV.transpose(0,2,3,1) wOVVO += eris_OVVO.transpose(0,2,1,3) OOVV = eris_OOVV - eris_OVVO.transpose(0,3,2,1) u1b-= np.einsum('nf,niaf->ia', t1b, OOVV) tmp1bb = lib.einsum('ie,mjbe->mbij', t1b, OOVV) u2bb += 2*lib.einsum('ma,mbij->ijab', t1b, tmp1bb) eris_OVVO = eris_OOVV = OOVV = None eris_ooVV = np.asarray(eris.ooVV) eris_ovVO = np.asarray(eris.ovVO) woVVo -= eris_ooVV.transpose(0,2,3,1) woVvO += eris_ovVO.transpose(0,2,1,3) u1b+= np.einsum('nf,nfAI->IA', t1a, eris_ovVO) tmp1ab = lib.einsum('ie,meBJ->mBiJ', t1a, eris_ovVO) tmp1ab+= lib.einsum('IE,mjBE->mBjI', t1b, eris_ooVV) u2ab -= lib.einsum('ma,mBiJ->iJaB', t1a, tmp1ab) eris_ooVV = eris_ovVo = tmp1ab = None eris_OOvv = np.asarray(eris.OOvv) eris_OVvo = np.asarray(eris.OVvo) wOvvO -= eris_OOvv.transpose(0,2,3,1) wOvVo += eris_OVvo.transpose(0,2,1,3) u1a+= np.einsum('NF,NFai->ia', t1b, eris_OVvo) tmp1ba = lib.einsum('IE,MEbj->MbIj', t1b, eris_OVvo) tmp1ba+= lib.einsum('ie,MJbe->MbJi', t1a, eris_OOvv) u2ab -= lib.einsum('MA,MbIj->jIbA', t1b, tmp1ba) eris_OOvv = eris_OVvO = tmp1ba = None u2aa += 2*lib.einsum('imae,mbej->ijab', t2aa, wovvo) u2aa += 2*lib.einsum('iMaE,MbEj->ijab', t2ab, wOvVo) u2bb += 2*lib.einsum('imae,mbej->ijab', t2bb, wOVVO) u2bb += 2*lib.einsum('mIeA,mBeJ->IJAB', t2ab, woVvO) u2ab += lib.einsum('imae,mBeJ->iJaB', t2aa, woVvO) u2ab += lib.einsum('iMaE,MBEJ->iJaB', t2ab, wOVVO) u2ab += lib.einsum('iMeA,MbeJ->iJbA', t2ab, wOvvO) u2ab += lib.einsum('IMAE,MbEj->jIbA', t2bb, wOvVo) u2ab += lib.einsum('mIeA,mbej->jIbA', t2ab, wovvo) u2ab += lib.einsum('mIaE,mBEj->jIaB', t2ab, woVVo) wovvo = wOVVO = woVvO = wOvVo = woVVo = wOvvO = None Ftmpa = Fvva - .5*lib.einsum('mb,me->be', t1a, Fova) Ftmpb = Fvvb - .5*lib.einsum('mb,me->be', t1b, Fovb) u2aa += lib.einsum('ijae,be->ijab', t2aa, Ftmpa) u2bb += lib.einsum('ijae,be->ijab', t2bb, Ftmpb) u2ab += lib.einsum('iJaE,BE->iJaB', t2ab, Ftmpb) u2ab += lib.einsum('iJeA,be->iJbA', t2ab, Ftmpa) Ftmpa = Fooa + 0.5*lib.einsum('je,me->mj', t1a, Fova) Ftmpb = Foob + 0.5*lib.einsum('je,me->mj', t1b, Fovb) u2aa -= lib.einsum('imab,mj->ijab', t2aa, Ftmpa) u2bb -= lib.einsum('imab,mj->ijab', t2bb, Ftmpb) u2ab -= lib.einsum('iMaB,MJ->iJaB', t2ab, Ftmpb) u2ab -= lib.einsum('mIaB,mj->jIaB', t2ab, Ftmpa) eris_ovoo = np.asarray(eris.ovoo).conj() eris_OVOO = np.asarray(eris.OVOO).conj() eris_OVoo = np.asarray(eris.OVoo).conj() eris_ovOO = np.asarray(eris.ovOO).conj() ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) u2aa -= lib.einsum('ma,jbim->ijab', t1a, ovoo) u2bb -= lib.einsum('ma,jbim->ijab', t1b, OVOO) u2ab -= lib.einsum('ma,JBim->iJaB', t1a, eris_OVoo) u2ab -= lib.einsum('MA,ibJM->iJbA', t1b, eris_ovOO) eris_ovoo = eris_OVoo = eris_OVOO = eris_ovOO = None u2aa *= .5 u2bb *= .5 u2aa = u2aa - u2aa.transpose(0,1,3,2) u2aa = u2aa - u2aa.transpose(1,0,2,3) u2bb = u2bb - u2bb.transpose(0,1,3,2) u2bb = u2bb - u2bb.transpose(1,0,2,3) eia_a = lib.direct_sum('i-a->ia', mo_ea_o, mo_ea_v) eia_b = lib.direct_sum('i-a->ia', mo_eb_o, mo_eb_v) u1a /= eia_a u1b /= eia_b u2aa /= lib.direct_sum('ia+jb->ijab', eia_a, eia_a) u2ab /= lib.direct_sum('ia+jb->ijab', eia_a, eia_b) u2bb /= lib.direct_sum('ia+jb->ijab', eia_b, eia_b) time0 = log.timer_debug1('update t1 t2', *time0) t1new = u1a, u1b t2new = u2aa, u2ab, u2bb return t1new, t2new def energy(cc, t1=None, t2=None, eris=None): '''UCCSD correlation energy''' if t1 is None: t1 = cc.t1 if t2 is None: t2 = cc.t2 if eris is None: eris = cc.ao2mo() t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] e = np.einsum('ia,ia', fova, t1a) e += np.einsum('ia,ia', fovb, t1b) e += 0.25*np.einsum('ijab,iajb',t2aa,eris_ovov) e -= 0.25*np.einsum('ijab,ibja',t2aa,eris_ovov) e += 0.25*np.einsum('ijab,iajb',t2bb,eris_OVOV) e -= 0.25*np.einsum('ijab,ibja',t2bb,eris_OVOV) e += np.einsum('iJaB,iaJB',t2ab,eris_ovOV) e += 0.5*np.einsum('ia,jb,iajb',t1a,t1a,eris_ovov) e -= 0.5*np.einsum('ia,jb,ibja',t1a,t1a,eris_ovov) e += 0.5*np.einsum('ia,jb,iajb',t1b,t1b,eris_OVOV) e -= 0.5*np.einsum('ia,jb,ibja',t1b,t1b,eris_OVOV) e += np.einsum('ia,jb,iajb',t1a,t1b,eris_ovOV) if abs(e.imag) > 1e-4: logger.warn(cc, 'Non-zero imaginary part found in UCCSD energy %s', e) return e.real get_nocc = ump2.get_nocc get_nmo = ump2.get_nmo get_frozen_mask = ump2.get_frozen_mask def amplitudes_to_vector(t1, t2, out=None): nocca, nvira = t1[0].shape noccb, nvirb = t1[1].shape sizea = nocca * nvira + nocca*(nocca-1)//2*nvira*(nvira-1)//2 sizeb = noccb * nvirb + noccb*(noccb-1)//2*nvirb*(nvirb-1)//2 sizeab = nocca * noccb * nvira * nvirb vector = np.ndarray(sizea+sizeb+sizeab, t2[0].dtype, buffer=out) ccsd.amplitudes_to_vector_s4(t1[0], t2[0], out=vector[:sizea]) ccsd.amplitudes_to_vector_s4(t1[1], t2[2], out=vector[sizea:]) vector[sizea+sizeb:] = t2[1].ravel() return vector def vector_to_amplitudes(vector, nmo, nocc): nocca, noccb = nocc nmoa, nmob = nmo nvira, nvirb = nmoa-nocca, nmob-noccb nocc = nocca + noccb nvir = nvira + nvirb nov = nocc * nvir size = nov + nocc*(nocc-1)//2*nvir*(nvir-1)//2 if vector.size == size: #return ccsd.vector_to_amplitudes_s4(vector, nmo, nocc) raise RuntimeError('Input vector is GCCSD vecotr') else: sizea = nocca * nvira + nocca*(nocca-1)//2*nvira*(nvira-1)//2 sizeb = noccb * nvirb + noccb*(noccb-1)//2*nvirb*(nvirb-1)//2 sections = np.cumsum([sizea, sizeb]) veca, vecb, t2ab = np.split(vector, sections) t1a, t2aa = ccsd.vector_to_amplitudes_s4(veca, nmoa, nocca) t1b, t2bb = ccsd.vector_to_amplitudes_s4(vecb, nmob, noccb) t2ab = t2ab.copy().reshape(nocca,noccb,nvira,nvirb) return (t1a,t1b), (t2aa,t2ab,t2bb) def amplitudes_from_rccsd(t1, t2): t2aa = t2 - t2.transpose(0,1,3,2) return (t1,t1), (t2aa,t2,t2aa) def _add_vvVV(mycc, t1, t2ab, eris, out=None): '''Ht2 = np.einsum('iJcD,acBD->iJaB', t2ab, vvVV) without using symmetry in t2ab or Ht2 ''' time0 = time.clock(), time.time() if t2ab.size == 0: return np.zeros_like(t2ab) if t1 is not None: t2ab = make_tau_ab(t2ab, t1, t1) log = logger.Logger(mycc.stdout, mycc.verbose) nocca, noccb, nvira, nvirb = t2ab.shape if mycc.direct: # AO direct CCSD if getattr(eris, 'mo_coeff', None) is not None: mo_a, mo_b = eris.mo_coeff else: moidxa, moidxb = mycc.get_frozen_mask() mo_a = mycc.mo_coeff[0][:,moidxa] mo_b = mycc.mo_coeff[1][:,moidxb] # Note tensor t2ab may be t2bbab from eom_uccsd code. In that # particular case, nocca, noccb do not equal to the actual number of # alpha/beta occupied orbitals. orbva and orbvb cannot be indexed as # mo_a[:,nocca:] and mo_b[:,noccb:] orbva = mo_a[:,-nvira:] orbvb = mo_b[:,-nvirb:] tau = lib.einsum('ijab,pa->ijpb', t2ab, orbva) tau = lib.einsum('ijab,pb->ijap', tau, orbvb) time0 = logger.timer_debug1(mycc, 'vvvv-tau mo2ao', *time0) buf = eris._contract_vvVV_t2(mycc, tau, mycc.direct, out, log) mo = np.asarray(np.hstack((orbva, orbvb)), order='F') Ht2 = _ao2mo.nr_e2(buf.reshape(nocca*noccb,-1), mo.conj(), (0,nvira,nvira,nvira+nvirb), 's1', 's1') return Ht2.reshape(t2ab.shape) else: return eris._contract_vvVV_t2(mycc, t2ab, mycc.direct, out, log) def _add_vvvv(mycc, t1, t2, eris, out=None, with_ovvv=False, t2sym=None): time0 = time.clock(), time.time() log = logger.Logger(mycc.stdout, mycc.verbose) if t1 is None: t2aa, t2ab, t2bb = t2 else: t2aa, t2ab, t2bb = make_tau(t2, t1, t1) nocca, nvira = t2aa.shape[1:3] noccb, nvirb = t2bb.shape[1:3] if mycc.direct: assert(t2sym is None) if with_ovvv: raise NotImplementedError if getattr(eris, 'mo_coeff', None) is not None: mo_a, mo_b = eris.mo_coeff else: moidxa, moidxb = mycc.get_frozen_mask() mo_a = mycc.mo_coeff[0][:,moidxa] mo_b = mycc.mo_coeff[1][:,moidxb] nao = mo_a.shape[0] otrila = np.tril_indices(nocca,-1) otrilb = np.tril_indices(noccb,-1) if nocca > 1: tauaa = lib.einsum('xab,pa->xpb', t2aa[otrila], mo_a[:,nocca:]) tauaa = lib.einsum('xab,pb->xap', tauaa, mo_a[:,nocca:]) else: tauaa = np.zeros((0,nao,nao)) if noccb > 1: taubb = lib.einsum('xab,pa->xpb', t2bb[otrilb], mo_b[:,noccb:]) taubb = lib.einsum('xab,pb->xap', taubb, mo_b[:,noccb:]) else: taubb = np.zeros((0,nao,nao)) tauab = lib.einsum('ijab,pa->ijpb', t2ab, mo_a[:,nocca:]) tauab = lib.einsum('ijab,pb->ijap', tauab, mo_b[:,noccb:]) tau = np.vstack((tauaa, taubb, tauab.reshape(nocca*noccb,nao,nao))) tauaa = taubb = tauab = None time0 = log.timer_debug1('vvvv-tau', *time0) buf = ccsd._contract_vvvv_t2(mycc, mycc.mol, None, tau, out, log) mo = np.asarray(np.hstack((mo_a[:,nocca:], mo_b[:,noccb:])), order='F') u2aa = np.zeros_like(t2aa) if nocca > 1: u2tril = buf[:otrila[0].size] u2tril = _ao2mo.nr_e2(u2tril.reshape(-1,nao**2), mo.conj(), (0,nvira,0,nvira), 's1', 's1') u2tril = u2tril.reshape(otrila[0].size,nvira,nvira) u2aa[otrila[1],otrila[0]] = u2tril.transpose(0,2,1) u2aa[otrila] = u2tril u2bb = np.zeros_like(t2bb) if noccb > 1: u2tril = buf[otrila[0].size:otrila[0].size+otrilb[0].size] u2tril = _ao2mo.nr_e2(u2tril.reshape(-1,nao**2), mo.conj(), (nvira,nvira+nvirb,nvira,nvira+nvirb), 's1', 's1') u2tril = u2tril.reshape(otrilb[0].size,nvirb,nvirb) u2bb[otrilb[1],otrilb[0]] = u2tril.transpose(0,2,1) u2bb[otrilb] = u2tril u2ab = _ao2mo.nr_e2(buf[-nocca*noccb:].reshape(nocca*noccb,nao**2), mo, (0,nvira,nvira,nvira+nvirb), 's1', 's1') u2ab = u2ab.reshape(t2ab.shape) else: assert(not with_ovvv) if t2sym is None: tmp = eris._contract_vvvv_t2(mycc, t2aa[np.tril_indices(nocca)], mycc.direct, None) u2aa = ccsd._unpack_t2_tril(tmp, nocca, nvira, None, 'jiba') tmp = eris._contract_VVVV_t2(mycc, t2bb[np.tril_indices(noccb)], mycc.direct, None) u2bb = ccsd._unpack_t2_tril(tmp, noccb, nvirb, None, 'jiba') u2ab = eris._contract_vvVV_t2(mycc, t2ab, mycc.direct, None) else: u2aa = eris._contract_vvvv_t2(mycc, t2aa, mycc.direct, None) u2bb = eris._contract_VVVV_t2(mycc, t2bb, mycc.direct, None) u2ab = eris._contract_vvVV_t2(mycc, t2ab, mycc.direct, None) return u2aa,u2ab,u2bb class UCCSD(ccsd.CCSD): conv_tol = getattr(__config__, 'cc_uccsd_UCCSD_conv_tol', 1e-7) conv_tol_normt = getattr(__config__, 'cc_uccsd_UCCSD_conv_tol_normt', 1e-6) # Attribute frozen can be # * An integer : The same number of inner-most alpha and beta orbitals are frozen # * One list : Same alpha and beta orbital indices to be frozen # * A pair of list : First list is the orbital indices to be frozen for alpha # orbitals, second list is for beta orbitals def __init__(self, mf, frozen=0, mo_coeff=None, mo_occ=None): assert isinstance(mf, scf.uhf.UHF) ccsd.CCSD.__init__(self, mf, frozen, mo_coeff, mo_occ) get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask def init_amps(self, eris=None): time0 = time.clock(), time.time() if eris is None: eris = self.ao2mo(self.mo_coeff) nocca, noccb = self.nocc fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] mo_ea_o = eris.mo_energy[0][:nocca] mo_ea_v = eris.mo_energy[0][nocca:] mo_eb_o = eris.mo_energy[1][:noccb] mo_eb_v = eris.mo_energy[1][noccb:] eia_a = lib.direct_sum('i-a->ia', mo_ea_o, mo_ea_v) eia_b = lib.direct_sum('i-a->ia', mo_eb_o, mo_eb_v) t1a = fova.conj() / eia_a t1b = fovb.conj() / eia_b eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) t2aa = eris_ovov.transpose(0,2,1,3) / lib.direct_sum('ia+jb->ijab', eia_a, eia_a) t2ab = eris_ovOV.transpose(0,2,1,3) / lib.direct_sum('ia+jb->ijab', eia_a, eia_b) t2bb = eris_OVOV.transpose(0,2,1,3) / lib.direct_sum('ia+jb->ijab', eia_b, eia_b) t2aa = t2aa - t2aa.transpose(0,1,3,2) t2bb = t2bb - t2bb.transpose(0,1,3,2) e = np.einsum('iJaB,iaJB', t2ab, eris_ovOV) e += 0.25*np.einsum('ijab,iajb', t2aa, eris_ovov) e -= 0.25*np.einsum('ijab,ibja', t2aa, eris_ovov) e += 0.25*np.einsum('ijab,iajb', t2bb, eris_OVOV) e -= 0.25*np.einsum('ijab,ibja', t2bb, eris_OVOV) self.emp2 = e.real logger.info(self, 'Init t2, MP2 energy = %.15g', self.emp2) logger.timer(self, 'init mp2', *time0) return self.emp2, (t1a,t1b), (t2aa,t2ab,t2bb) energy = energy update_amps = update_amps _add_vvvv = _add_vvvv _add_vvVV = _add_vvVV def kernel(self, t1=None, t2=None, eris=None, mbpt2=False): return self.ccsd(t1, t2, eris, mbpt2) def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False): '''Ground-state unrestricted (U)CCSD. Kwargs: mbpt2 : bool Use one-shot MBPT2 approximation to CCSD. ''' if mbpt2: pt = ump2.UMP2(self._scf, self.frozen, self.mo_coeff, self.mo_occ) self.e_corr, self.t2 = pt.kernel(eris=eris) t2ab = self.t2[1] nocca, noccb, nvira, nvirb = t2ab.shape self.t1 = (np.zeros((nocca,nvira)), np.zeros((noccb,nvirb))) return self.e_corr, self.t1, self.t2 return ccsd.CCSD.ccsd(self, t1, t2, eris) def solve_lambda(self, t1=None, t2=None, l1=None, l2=None, eris=None): from pyscf.cc import uccsd_lambda if t1 is None: t1 = self.t1 if t2 is None: t2 = self.t2 if eris is None: eris = self.ao2mo(self.mo_coeff) self.converged_lambda, self.l1, self.l2 = \ uccsd_lambda.kernel(self, eris, t1, t2, l1, l2, max_cycle=self.max_cycle, tol=self.conv_tol_normt, verbose=self.verbose) return self.l1, self.l2 def ccsd_t(self, t1=None, t2=None, eris=None): from pyscf.cc import uccsd_t if t1 is None: t1 = self.t1 if t2 is None: t2 = self.t2 if eris is None: eris = self.ao2mo(self.mo_coeff) return uccsd_t.kernel(self, eris, t1, t2, self.verbose) uccsd_t = ccsd_t def make_rdm1(self, t1=None, t2=None, l1=None, l2=None, ao_repr=False): '''Un-relaxed 1-particle density matrix in MO space Returns: dm1a, dm1b ''' from pyscf.cc import uccsd_rdm if t1 is None: t1 = self.t1 if t2 is None: t2 = self.t2 if l1 is None: l1 = self.l1 if l2 is None: l2 = self.l2 if l1 is None: l1, l2 = self.solve_lambda(t1, t2) return uccsd_rdm.make_rdm1(self, t1, t2, l1, l2, ao_repr=ao_repr) def make_rdm2(self, t1=None, t2=None, l1=None, l2=None, ao_repr=False): '''2-particle density matrix in spin-oribital basis. ''' from pyscf.cc import uccsd_rdm if t1 is None: t1 = self.t1 if t2 is None: t2 = self.t2 if l1 is None: l1 = self.l1 if l2 is None: l2 = self.l2 if l1 is None: l1, l2 = self.solve_lambda(t1, t2) return uccsd_rdm.make_rdm2(self, t1, t2, l1, l2, ao_repr=ao_repr) def spin_square(self, mo_coeff=None, s=None): from pyscf.fci.spin_op import spin_square_general if mo_coeff is None: mo_coeff = self.mo_coeff if s is None: s = self._scf.get_ovlp() dma,dmb = self.make_rdm1() dmaa,dmab,dmbb = self.make_rdm2() return spin_square_general(dma,dmb,dmaa,dmab,dmbb,mo_coeff,s) def ao2mo(self, mo_coeff=None): nmoa, nmob = self.get_nmo() nao = self.mo_coeff[0].shape[0] nmo_pair = nmoa * (nmoa+1) // 2 nao_pair = nao * (nao+1) // 2 mem_incore = (max(nao_pair**2, nmoa**4) + nmo_pair**2) * 8/1e6 mem_now = lib.current_memory()[0] if (self._scf._eri is not None and (mem_incore+mem_now < self.max_memory or self.incore_complete)): return _make_eris_incore(self, mo_coeff) elif getattr(self._scf, 'with_df', None): logger.warn(self, 'UCCSD detected DF being used in the HF object. ' 'MO integrals are computed based on the DF 3-index tensors.\n' 'It\'s recommended to use dfccsd.CCSD for the ' 'DF-CCSD calculations') raise NotImplementedError else: return _make_eris_outcore(self, mo_coeff) def ipccsd(self, nroots=1, left=False, koopmans=False, guess=None, partition=None, eris=None): from pyscf.cc import eom_uccsd return eom_uccsd.EOMIP(self).kernel(nroots, left, koopmans, guess, partition, eris) def eaccsd(self, nroots=1, left=False, koopmans=False, guess=None, partition=None, eris=None): from pyscf.cc import eom_uccsd return eom_uccsd.EOMEA(self).kernel(nroots, left, koopmans, guess, partition, eris) def eeccsd(self, nroots=1, koopmans=False, guess=None, eris=None): from pyscf.cc import eom_uccsd return eom_uccsd.EOMEE(self).kernel(nroots, koopmans, guess, eris) def eomee_ccsd(self, nroots=1, koopmans=False, guess=None, eris=None): from pyscf.cc import eom_uccsd return eom_uccsd.EOMEESpinKeep(self).kernel(nroots, koopmans, guess, eris) def eomsf_ccsd(self, nroots=1, koopmans=False, guess=None, eris=None): from pyscf.cc import eom_uccsd return eom_uccsd.EOMEESpinFlip(self).kernel(nroots, koopmans, guess, eris) def eomip_method(self): from pyscf.cc import eom_uccsd return eom_uccsd.EOMIP(self) def eomea_method(self): from pyscf.cc import eom_uccsd return eom_uccsd.EOMEA(self) def eomee_method(self): from pyscf.cc import eom_uccsd return eom_uccsd.EOMEE(self) def density_fit(self): raise NotImplementedError def nuc_grad_method(self): from pyscf.grad import uccsd return uccsd.Gradients(self) def amplitudes_to_vector(self, t1, t2, out=None): return amplitudes_to_vector(t1, t2, out) def vector_to_amplitudes(self, vector, nmo=None, nocc=None): if nocc is None: nocc = self.nocc if nmo is None: nmo = self.nmo return vector_to_amplitudes(vector, nmo, nocc) def vector_size(self, nmo=None, nocc=None): if nocc is None: nocc = self.nocc if nmo is None: nmo = self.nmo nocca, noccb = nocc nmoa, nmob = nmo nvira, nvirb = nmoa-nocca, nmob-noccb sizea = nocca * nvira + nocca*(nocca-1)//2*nvira*(nvira-1)//2 sizeb = noccb * nvirb + noccb*(noccb-1)//2*nvirb*(nvirb-1)//2 sizeab = nocca * noccb * nvira * nvirb return sizea + sizeb + sizeab def amplitudes_from_rccsd(self, t1, t2): return amplitudes_from_rccsd(t1, t2) def get_t1_diagnostic(self, t1=None): if t1 is None: t1 = self.t1 raise NotImplementedError #return get_t1_diagnostic(t1) def get_d1_diagnostic(self, t1=None): if t1 is None: t1 = self.t1 raise NotImplementedError #return get_d1_diagnostic(t1) def get_d2_diagnostic(self, t2=None): if t2 is None: t2 = self.t2 raise NotImplementedError #return get_d2_diagnostic(t2) CCSD = UCCSD class _ChemistsERIs(ccsd._ChemistsERIs): def __init__(self, mol=None): ccsd._ChemistsERIs.__init__(self, mol) self.OOOO = None self.OVOO = None self.OVOV = None self.OOVV = None self.OVVO = None self.OVVV = None self.VVVV = None self.ooOO = None self.ovOO = None self.ovOV = None self.ooVV = None self.ovVO = None self.ovVV = None self.vvVV = None self.OVoo = None self.OOvv = None self.OVvo = None def _common_init_(self, mycc, mo_coeff=None): if mo_coeff is None: mo_coeff = mycc.mo_coeff mo_idx = mycc.get_frozen_mask() self.mo_coeff = mo_coeff = \ (mo_coeff[0][:,mo_idx[0]], mo_coeff[1][:,mo_idx[1]]) # Note: Recomputed fock matrix since SCF may not be fully converged. dm = mycc._scf.make_rdm1(mycc.mo_coeff, mycc.mo_occ) vhf = mycc._scf.get_veff(mycc.mol, dm) fockao = mycc._scf.get_fock(vhf=vhf, dm=dm) self.focka = reduce(np.dot, (mo_coeff[0].conj().T, fockao[0], mo_coeff[0])) self.fockb = reduce(np.dot, (mo_coeff[1].conj().T, fockao[1], mo_coeff[1])) self.fock = (self.focka, self.fockb) self.e_hf = mycc._scf.energy_tot(dm=dm, vhf=vhf) nocca, noccb = self.nocc = mycc.nocc self.mol = mycc.mol mo_ea = self.focka.diagonal().real mo_eb = self.fockb.diagonal().real self.mo_energy = (mo_ea, mo_eb) gap_a = abs(mo_ea[:nocca,None] - mo_ea[None,nocca:]) gap_b = abs(mo_eb[:noccb,None] - mo_eb[None,noccb:]) if gap_a.size > 0: gap_a = gap_a.min() else: gap_a = 1e9 if gap_b.size > 0: gap_b = gap_b.min() else: gap_b = 1e9 if gap_a < 1e-5 or gap_b < 1e-5: logger.warn(mycc, 'HOMO-LUMO gap (%s,%s) too small for UCCSD', gap_a, gap_b) return self def get_ovvv(self, *slices): return _get_ovvv_base(self.ovvv, *slices) def get_ovVV(self, *slices): return _get_ovvv_base(self.ovVV, *slices) def get_OVvv(self, *slices): return _get_ovvv_base(self.OVvv, *slices) def get_OVVV(self, *slices): return _get_ovvv_base(self.OVVV, *slices) def _contract_VVVV_t2(self, mycc, t2, vvvv_or_direct=False, out=None, verbose=None): if isinstance(vvvv_or_direct, np.ndarray): vvvv = vvvv_or_direct elif vvvv_or_direct: vvvv = None else: vvvv = self.VVVV return ccsd._contract_vvvv_t2(mycc, self.mol, vvvv, t2, out, verbose) def _contract_vvVV_t2(self, mycc, t2, vvvv_or_direct=False, out=None, verbose=None): if isinstance(vvvv_or_direct, np.ndarray): vvvv = vvvv_or_direct elif vvvv_or_direct: vvvv = None else: vvvv = self.vvVV return ccsd._contract_vvvv_t2(mycc, self.mol, vvvv, t2, out, verbose) def _get_ovvv_base(ovvv, *slices): if len(ovvv.shape) == 3: # DO NOT use .ndim here for h5py library # backward compatbility ovw = np.asarray(ovvv[slices]) nocc, nvir, nvir_pair = ovw.shape ovvv = lib.unpack_tril(ovw.reshape(nocc*nvir,nvir_pair)) nvir1 = ovvv.shape[2] return ovvv.reshape(nocc,nvir,nvir1,nvir1) elif slices: return ovvv[slices] else: return ovvv def _make_eris_incore(mycc, mo_coeff=None, ao2mofn=None): cput0 = (time.clock(), time.time()) eris = _ChemistsERIs() eris._common_init_(mycc, mo_coeff) nocca, noccb = mycc.nocc nmoa, nmob = mycc.nmo nvira, nvirb = nmoa-nocca, nmob-noccb moa = eris.mo_coeff[0] mob = eris.mo_coeff[1] nmoa = moa.shape[1] nmob = mob.shape[1] if callable(ao2mofn): eri_aa = ao2mofn(moa).reshape([nmoa]*4) eri_bb = ao2mofn(mob).reshape([nmob]*4) eri_ab = ao2mofn((moa,moa,mob,mob)) else: eri_aa = ao2mo.restore(1, ao2mo.full(mycc._scf._eri, moa), nmoa) eri_bb = ao2mo.restore(1, ao2mo.full(mycc._scf._eri, mob), nmob) eri_ab = ao2mo.general(mycc._scf._eri, (moa,moa,mob,mob), compact=False) eri_ba = eri_ab.reshape(nmoa,nmoa,nmob,nmob).transpose(2,3,0,1) eri_aa = eri_aa.reshape(nmoa,nmoa,nmoa,nmoa) eri_ab = eri_ab.reshape(nmoa,nmoa,nmob,nmob) eri_ba = eri_ba.reshape(nmob,nmob,nmoa,nmoa) eri_bb = eri_bb.reshape(nmob,nmob,nmob,nmob) eris.oooo = eri_aa[:nocca,:nocca,:nocca,:nocca].copy() eris.ovoo = eri_aa[:nocca,nocca:,:nocca,:nocca].copy() eris.ovov = eri_aa[:nocca,nocca:,:nocca,nocca:].copy() eris.oovv = eri_aa[:nocca,:nocca,nocca:,nocca:].copy() eris.ovvo = eri_aa[:nocca,nocca:,nocca:,:nocca].copy() eris.ovvv = eri_aa[:nocca,nocca:,nocca:,nocca:].copy() eris.vvvv = eri_aa[nocca:,nocca:,nocca:,nocca:].copy() eris.OOOO = eri_bb[:noccb,:noccb,:noccb,:noccb].copy() eris.OVOO = eri_bb[:noccb,noccb:,:noccb,:noccb].copy() eris.OVOV = eri_bb[:noccb,noccb:,:noccb,noccb:].copy() eris.OOVV = eri_bb[:noccb,:noccb,noccb:,noccb:].copy() eris.OVVO = eri_bb[:noccb,noccb:,noccb:,:noccb].copy() eris.OVVV = eri_bb[:noccb,noccb:,noccb:,noccb:].copy() eris.VVVV = eri_bb[noccb:,noccb:,noccb:,noccb:].copy() eris.ooOO = eri_ab[:nocca,:nocca,:noccb,:noccb].copy() eris.ovOO = eri_ab[:nocca,nocca:,:noccb,:noccb].copy() eris.ovOV = eri_ab[:nocca,nocca:,:noccb,noccb:].copy() eris.ooVV = eri_ab[:nocca,:nocca,noccb:,noccb:].copy() eris.ovVO = eri_ab[:nocca,nocca:,noccb:,:noccb].copy() eris.ovVV = eri_ab[:nocca,nocca:,noccb:,noccb:].copy() eris.vvVV = eri_ab[nocca:,nocca:,noccb:,noccb:].copy() #eris.OOoo = eri_ba[:noccb,:noccb,:nocca,:nocca].copy() eris.OVoo = eri_ba[:noccb,noccb:,:nocca,:nocca].copy() #eris.OVov = eri_ba[:noccb,noccb:,:nocca,nocca:].copy() eris.OOvv = eri_ba[:noccb,:noccb,nocca:,nocca:].copy() eris.OVvo = eri_ba[:noccb,noccb:,nocca:,:nocca].copy() eris.OVvv = eri_ba[:noccb,noccb:,nocca:,nocca:].copy() #eris.VVvv = eri_ba[noccb:,noccb:,nocca:,nocca:].copy() if not callable(ao2mofn): ovvv = eris.ovvv.reshape(nocca*nvira,nvira,nvira) eris.ovvv = lib.pack_tril(ovvv).reshape(nocca,nvira,nvira*(nvira+1)//2) eris.vvvv = ao2mo.restore(4, eris.vvvv, nvira) OVVV = eris.OVVV.reshape(noccb*nvirb,nvirb,nvirb) eris.OVVV = lib.pack_tril(OVVV).reshape(noccb,nvirb,nvirb*(nvirb+1)//2) eris.VVVV = ao2mo.restore(4, eris.VVVV, nvirb) ovVV = eris.ovVV.reshape(nocca*nvira,nvirb,nvirb) eris.ovVV = lib.pack_tril(ovVV).reshape(nocca,nvira,nvirb*(nvirb+1)//2) vvVV = eris.vvVV.reshape(nvira**2,nvirb**2) idxa = np.tril_indices(nvira) idxb = np.tril_indices(nvirb) eris.vvVV = lib.take_2d(vvVV, idxa[0]*nvira+idxa[1], idxb[0]*nvirb+idxb[1]) OVvv = eris.OVvv.reshape(noccb*nvirb,nvira,nvira) eris.OVvv = lib.pack_tril(OVvv).reshape(noccb,nvirb,nvira*(nvira+1)//2) return eris def _make_eris_outcore(mycc, mo_coeff=None): cput0 = (time.clock(), time.time()) eris = _ChemistsERIs() eris._common_init_(mycc, mo_coeff) nocca, noccb = mycc.nocc nmoa, nmob = mycc.nmo nvira, nvirb = nmoa-nocca, nmob-noccb moa = eris.mo_coeff[0] mob = eris.mo_coeff[1] nmoa = moa.shape[1] nmob = mob.shape[1] orboa = moa[:,:nocca] orbob = mob[:,:noccb] orbva = moa[:,nocca:] orbvb = mob[:,noccb:] eris.feri = lib.H5TmpFile() eris.oooo = eris.feri.create_dataset('oooo', (nocca,nocca,nocca,nocca), 'f8') eris.ovoo = eris.feri.create_dataset('ovoo', (nocca,nvira,nocca,nocca), 'f8') eris.ovov = eris.feri.create_dataset('ovov', (nocca,nvira,nocca,nvira), 'f8') eris.oovv = eris.feri.create_dataset('oovv', (nocca,nocca,nvira,nvira), 'f8') eris.ovvo = eris.feri.create_dataset('ovvo', (nocca,nvira,nvira,nocca), 'f8') eris.ovvv = eris.feri.create_dataset('ovvv', (nocca,nvira,nvira*(nvira+1)//2), 'f8') #eris.vvvv = eris.feri.create_dataset('vvvv', (nvira,nvira,nvira,nvira), 'f8') eris.OOOO = eris.feri.create_dataset('OOOO', (noccb,noccb,noccb,noccb), 'f8') eris.OVOO = eris.feri.create_dataset('OVOO', (noccb,nvirb,noccb,noccb), 'f8') eris.OVOV = eris.feri.create_dataset('OVOV', (noccb,nvirb,noccb,nvirb), 'f8') eris.OOVV = eris.feri.create_dataset('OOVV', (noccb,noccb,nvirb,nvirb), 'f8') eris.OVVO = eris.feri.create_dataset('OVVO', (noccb,nvirb,nvirb,noccb), 'f8') eris.OVVV = eris.feri.create_dataset('OVVV', (noccb,nvirb,nvirb*(nvirb+1)//2), 'f8') #eris.VVVV = eris.feri.create_dataset('VVVV', (nvirb,nvirb,nvirb,nvirb), 'f8') eris.ooOO = eris.feri.create_dataset('ooOO', (nocca,nocca,noccb,noccb), 'f8') eris.ovOO = eris.feri.create_dataset('ovOO', (nocca,nvira,noccb,noccb), 'f8') eris.ovOV = eris.feri.create_dataset('ovOV', (nocca,nvira,noccb,nvirb), 'f8') eris.ooVV = eris.feri.create_dataset('ooVV', (nocca,nocca,nvirb,nvirb), 'f8') eris.ovVO = eris.feri.create_dataset('ovVO', (nocca,nvira,nvirb,noccb), 'f8') eris.ovVV = eris.feri.create_dataset('ovVV', (nocca,nvira,nvirb*(nvirb+1)//2), 'f8') #eris.vvVV = eris.feri.create_dataset('vvVV', (nvira,nvira,nvirb,nvirb), 'f8') eris.OVoo = eris.feri.create_dataset('OVoo', (noccb,nvirb,nocca,nocca), 'f8') eris.OOvv = eris.feri.create_dataset('OOvv', (noccb,noccb,nvira,nvira), 'f8') eris.OVvo = eris.feri.create_dataset('OVvo', (noccb,nvirb,nvira,nocca), 'f8') eris.OVvv = eris.feri.create_dataset('OVvv', (noccb,nvirb,nvira*(nvira+1)//2), 'f8') cput1 = time.clock(), time.time() mol = mycc.mol # <ij||pq> = <ij|pq> - <ij|qp> = (ip|jq) - (iq|jp) tmpf = lib.H5TmpFile() if nocca > 0: ao2mo.general(mol, (orboa,moa,moa,moa), tmpf, 'aa') buf = np.empty((nmoa,nmoa,nmoa)) for i in range(nocca): lib.unpack_tril(tmpf['aa'][i*nmoa:(i+1)*nmoa], out=buf) eris.oooo[i] = buf[:nocca,:nocca,:nocca] eris.ovoo[i] = buf[nocca:,:nocca,:nocca] eris.ovov[i] = buf[nocca:,:nocca,nocca:] eris.oovv[i] = buf[:nocca,nocca:,nocca:] eris.ovvo[i] = buf[nocca:,nocca:,:nocca] eris.ovvv[i] = lib.pack_tril(buf[nocca:,nocca:,nocca:]) del(tmpf['aa']) if noccb > 0: buf = np.empty((nmob,nmob,nmob)) ao2mo.general(mol, (orbob,mob,mob,mob), tmpf, 'bb') for i in range(noccb): lib.unpack_tril(tmpf['bb'][i*nmob:(i+1)*nmob], out=buf) eris.OOOO[i] = buf[:noccb,:noccb,:noccb] eris.OVOO[i] = buf[noccb:,:noccb,:noccb] eris.OVOV[i] = buf[noccb:,:noccb,noccb:] eris.OOVV[i] = buf[:noccb,noccb:,noccb:] eris.OVVO[i] = buf[noccb:,noccb:,:noccb] eris.OVVV[i] = lib.pack_tril(buf[noccb:,noccb:,noccb:]) del(tmpf['bb']) if nocca > 0: buf = np.empty((nmoa,nmob,nmob)) ao2mo.general(mol, (orboa,moa,mob,mob), tmpf, 'ab') for i in range(nocca): lib.unpack_tril(tmpf['ab'][i*nmoa:(i+1)*nmoa], out=buf) eris.ooOO[i] = buf[:nocca,:noccb,:noccb] eris.ovOO[i] = buf[nocca:,:noccb,:noccb] eris.ovOV[i] = buf[nocca:,:noccb,noccb:] eris.ooVV[i] = buf[:nocca,noccb:,noccb:] eris.ovVO[i] = buf[nocca:,noccb:,:noccb] eris.ovVV[i] = lib.pack_tril(buf[nocca:,noccb:,noccb:]) del(tmpf['ab']) if noccb > 0: buf = np.empty((nmob,nmoa,nmoa)) ao2mo.general(mol, (orbob,mob,moa,moa), tmpf, 'ba') for i in range(noccb): lib.unpack_tril(tmpf['ba'][i*nmob:(i+1)*nmob], out=buf) eris.OVoo[i] = buf[noccb:,:nocca,:nocca] eris.OOvv[i] = buf[:noccb,nocca:,nocca:] eris.OVvo[i] = buf[noccb:,nocca:,:nocca] eris.OVvv[i] = lib.pack_tril(buf[noccb:,nocca:,nocca:]) del(tmpf['ba']) buf = None cput1 = logger.timer_debug1(mycc, 'transforming oopq, ovpq', *cput1) if not mycc.direct: ao2mo.full(mol, orbva, eris.feri, dataname='vvvv') ao2mo.full(mol, orbvb, eris.feri, dataname='VVVV') ao2mo.general(mol, (orbva,orbva,orbvb,orbvb), eris.feri, dataname='vvVV') eris.vvvv = eris.feri['vvvv'] eris.VVVV = eris.feri['VVVV'] eris.vvVV = eris.feri['vvVV'] cput1 = logger.timer_debug1(mycc, 'transforming vvvv', *cput1) return eris def make_tau(t2, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1aa = make_tau_aa(t2[0], t1a, r1a, fac, out) tau1bb = make_tau_aa(t2[2], t1b, r1b, fac, out) tau1ab = make_tau_ab(t2[1], t1, r1, fac, out) return tau1aa, tau1ab, tau1bb def make_tau_aa(t2aa, t1a, r1a, fac=1, out=None): tau1aa = np.einsum('ia,jb->ijab', t1a, r1a) tau1aa-= np.einsum('ia,jb->jiab', t1a, r1a) tau1aa = tau1aa - tau1aa.transpose(0,1,3,2) tau1aa *= fac * .5 tau1aa += t2aa return tau1aa def make_tau_ab(t2ab, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1ab = np.einsum('ia,jb->ijab', t1a, r1b) tau1ab+= np.einsum('ia,jb->ijab', r1a, t1b) tau1ab *= fac * .5 tau1ab += t2ab return tau1ab def _fp(nocc, nmo): nocca, noccb = nocc nmoa, nmob = nmo nvira, nvirb = nmoa - nocca, nmob - noccb # vvvv fp = nocca**2 * nvira**4 fp += noccb**2 * nvirb**4 fp += nocca * nvira**2 * noccb * nvirb**2 * 2 # ovvv fp += nocca**2 * nvira**3 * 2 fp += nocca**2 * nvira**3 * 2 fp += nocca**2 * nvira**3 * 2 fp += nocca**3 * nvira**3 * 2 fp += nocca**3 * nvira**2 * 2 # OVVV fp += noccb**2 * nvirb**3 * 2 fp += noccb**2 * nvirb**3 * 2 fp += noccb**2 * nvirb**3 * 2 fp += noccb**3 * nvirb**3 * 2 fp += noccb**3 * nvirb**2 * 2 # ovVV fp += nocca * nvira * noccb * nvirb**2 * 2 fp += nocca**2 * nvira * nvirb**2 * 2 fp += nocca * nvira * noccb * nvirb**2 * 2 fp += nocca * nvira * noccb * nvirb**2 * 2 fp += nocca**2 * nvira * noccb * nvirb**2 * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 # OVvv fp += nocca * nvira**2 * noccb * nvirb * 2 fp += nvira**2 * noccb**2 * nvirb * 2 fp += nocca * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira**2 * noccb**2 * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb * 2 fp += nocca**4 * nvira * 2 fp += nocca**4 * nvira**2 * 2 fp += nocca**4 * nvira**2 * 2 fp += nocca**3 * nvira**2 * 2 fp += nocca**3 * nvira**2 * 2 fp += nocca**2 * nvira**3 * 2 fp += nocca**3 * nvira**2 * 2 fp += nocca**3 * nvira**3 * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += nocca**3 * nvira**2 * 2 fp += nocca**3 * nvira**2 * 2 fp += noccb**4 * nvirb * 2 fp += noccb**4 * nvirb**2 * 2 fp += noccb**4 * nvirb**2 * 2 fp += noccb**3 * nvirb**2 * 2 fp += noccb**3 * nvirb**2 * 2 fp += noccb**2 * nvirb**3 * 2 fp += noccb**3 * nvirb**2 * 2 fp += noccb**3 * nvirb**3 * 2 fp += noccb**2 * nvirb**2 * nocca * nvira * 2 fp += noccb**3 * nvirb**2 * 2 fp += noccb**3 * nvirb**2 * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca**2 * noccb * nvirb**2 * 2 fp += noccb**2 * nvirb * nocca * nvira * 2 fp += noccb**2 * nvirb * nocca * nvira * 2 fp += noccb**2 * nocca * nvira**2 * 2 fp += nocca**2 * noccb**2 * nvirb * 2 fp += nocca**2 * nvira * noccb**2 * 2 fp += nocca**2 * nvira * noccb**2 * nvirb * 2 fp += nocca**2 * nvira * noccb**2 * nvirb * 2 fp += nocca * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira * noccb * nvirb**2 * 2 fp += nocca * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira * noccb * nvirb**2 * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb**2 * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb**2 * 2 fp += nocca**2 * nvira * noccb * nvirb**2 * 2 fp += nocca * nvira**2 * noccb**2 * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca**2 * noccb * nvirb**2 * 2 fp += nocca * nvira**2 * noccb**2 * 2 fp += nocca**3 * nvira**2 * 2 fp += nocca**3 * nvira**2 * 2 fp += noccb**3 * nvirb**2 * 2 fp += noccb**3 * nvirb**2 * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca**2 * noccb * nvirb**2 * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += noccb**2 * nvirb * nocca * nvira * 2 fp += noccb**2 * nocca * nvira**2 * 2 fp += noccb**2 * nvirb * nocca * nvira * 2 fp += nocca**3 * nvira**3 * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += noccb**3 * nvirb**3 * 2 fp += noccb**2 * nvirb**2 * nocca * nvira * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb**2 * 2 fp += nocca * nvira**2 * noccb**2 * nvirb * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += nocca**2 * nvira**2 * noccb * nvirb * 2 fp += nocca**2 * nvira * noccb * nvirb**2 * 2 fp += nocca**2 * nvira**3 * 2 fp += noccb**2 * nvirb**3 * 2 fp += nocca * nvira * noccb * nvirb**2 * 2 fp += nocca * nvira**2 * noccb * nvirb * 2 fp += nocca**3 * nvira**2 * 2 fp += noccb**3 * nvirb**2 * 2 fp += nocca * nvira * noccb**2 * nvirb * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca**2 * nvira**3 * 2 fp += noccb**2 * nvirb**3 * 2 fp += nocca**2 * nvira * noccb * nvirb * 2 fp += nocca * nvira * noccb**2 * nvirb * 2 return fp if __name__ == '__main__': import copy from pyscf import scf from pyscf import gto mol = gto.Mole() mol.atom = [['O', (0., 0., 0.)], ['O', (1.21, 0., 0.)]] mol.basis = 'cc-pvdz' mol.spin = 2 mol.build() mf = scf.UHF(mol).run() # Freeze 1s electrons # also acceptable #frozen = 4 or [2,2] frozen = [[0,1], [0,1]] ucc = UCCSD(mf, frozen=frozen) eris = ucc.ao2mo() ecc, t1, t2 = ucc.kernel(eris=eris) print(ecc - -0.3486987472235819) mol = gto.Mole() mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]] mol.basis = 'cc-pvdz' mol.spin = 0 mol.build() mf = scf.UHF(mol).run() mycc = UCCSD(mf) mycc.direct = True ecc, t1, t2 = mycc.kernel() print(ecc - -0.2133432712431435) print(mycc.ccsd_t() - -0.003060021865720902) e,v = mycc.ipccsd(nroots=8) print(e[0] - 0.4335604332073799) print(e[2] - 0.5187659896045407) print(e[4] - 0.6782876002229172) e,v = mycc.eaccsd(nroots=8) print(e[0] - 0.16737886338859731) print(e[2] - 0.24027613852009164) print(e[4] - 0.51006797826488071) e,v = mycc.eeccsd(nroots=4) print(e[0] - 0.2757159395886167) print(e[1] - 0.2757159395886167) print(e[2] - 0.2757159395886167) print(e[3] - 0.3005716731825082)
40.765991
89
0.586085
794e3018387494cb970c47ef0cdd929c7b8e2cb4
304
py
Python
tests/test_mantle/logic/mothball/reduceand2.py
splhack/loam
10b08bd622b7cfd63eabaec4729f6238e4521b30
[ "MIT" ]
14
2017-10-08T09:16:10.000Z
2021-11-27T19:12:24.000Z
tests/test_mantle/logic/mothball/reduceand2.py
splhack/loam
10b08bd622b7cfd63eabaec4729f6238e4521b30
[ "MIT" ]
7
2018-04-12T21:33:49.000Z
2018-08-21T22:14:20.000Z
tests/test_mantle/logic/mothball/reduceand2.py
splhack/loam
10b08bd622b7cfd63eabaec4729f6238e4521b30
[ "MIT" ]
3
2018-07-24T04:55:02.000Z
2019-12-30T08:12:39.000Z
from magma import wire, compile, EndCircuit from mantle import And from loam.boards.icestick import IceStick icestick = IceStick() for i in range(2): icestick.J1[i].input().on() icestick.D5.on() main = icestick.main() and2 = And(2) and2(main.J1[0], main.J1[1]) wire(and2.O, main.D5) EndCircuit()
17.882353
43
0.710526
794e309d5486036756cef688f28de112279e3e04
718
py
Python
day6/ftp-client.py
water-liu/automation
0a94b8e311f037a5624c3f376dcfdf67d8577dea
[ "Apache-2.0" ]
null
null
null
day6/ftp-client.py
water-liu/automation
0a94b8e311f037a5624c3f376dcfdf67d8577dea
[ "Apache-2.0" ]
null
null
null
day6/ftp-client.py
water-liu/automation
0a94b8e311f037a5624c3f376dcfdf67d8577dea
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # _*_coding:utf-8_*_ import socket import sys import os ip_port = ('127.0.0.1', 9999) sk = socket.socket() sk.connect(ip_port) container = {'key': '', 'data': ''} while True: inputdata = input('path:') cmd, path = inputdata.split('|') file_name = os.path.basename(path) file_size = os.stat(path).st_size sk.send((cmd + "|" + file_name + '|' + str(file_size)).encode()) send_size = 0 f = open(path, 'rb') Flag = True while Flag: if send_size + 1024 > file_size: data = f.read(file_size - send_size) Flag = False else: data = f.read(1024) send_size += 1024 sk.send(data) f.close()
21.757576
68
0.559889
794e30d3827e430bc8665628c3220c37eb57d24c
6,545
py
Python
pruning/abstract.py
garion9013/shrinkbench
c460cbc371ef2673b2a3f8498ca7a8aeb60d78bb
[ "MIT" ]
null
null
null
pruning/abstract.py
garion9013/shrinkbench
c460cbc371ef2673b2a3f8498ca7a8aeb60d78bb
[ "MIT" ]
null
null
null
pruning/abstract.py
garion9013/shrinkbench
c460cbc371ef2673b2a3f8498ca7a8aeb60d78bb
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from collections import OrderedDict import numpy as np import pandas as pd from .mask import mask_module from .modules import MaskedModule from .utils import get_params import tempfile, pathlib import torch class Pruning(ABC): """Base class for Pruning operations """ def __init__(self, model, inputs=None, outputs=None, **pruning_params): """Construct Pruning class Passed params are set as attributes for convienence and saved internally for __repr__ Arguments: model {torch.nn.Module} -- Model for which to compute masks inputs {torch.nn.Tensor} -- Sample inputs to estimate activation &| gradients outputs {torch.nn.Tensor} -- Sample outputs to estimate activation &| gradients Keyword Arguments: **pruning_params {dict} -- [description] """ self.model = model self.inputs = inputs self.outputs = outputs self.pruning_params = list(pruning_params.keys()) for k, v in pruning_params.items(): setattr(self, k, v) if hasattr(self, "scheduler") and isinstance(self.scheduler, type): self.scheduler_gen = self.scheduler(self, **self.scheduler_args) @abstractmethod def model_masks(self, prunable=None): """Compute masks for a given model """ # TODO Also accept a dataloader pass # return masks def update_context(self, step): # Update prunable parameters after backward pass if hasattr(self, "scheduler_gen"): # from generator class (stateful) sparsity, next_waiting_steps = self.scheduler_gen.next(step) elif hasattr(self, "scheduler"): # from generator fn (stateless) sparsity, next_waiting_steps = self.scheduler(self, step=step, **self.scheduler_args) else: raise AttributeError("Scheduler fn/obj is required to determine pruning step and amount") self.compression = 1/(1-sparsity) assert self.compression >= 1, "Unacceptable compression rate" self.init(self.compression) return next_waiting_steps def apply(self, step): next_waiting_steps = self.update_context(step) masks = self.model_masks() mask_module(self.model, masks) return next_waiting_steps @abstractmethod def can_prune(self, module): pass def prunable_modules(self): prunable = [module for module in self.model.modules() if self.can_prune(module)] return prunable def prunable_keys(self): prunables = self.prunable_modules() prunable_keys = [] for name, module in self.model.named_modules(): if module in prunables: # Assuring prunable layer always have weight and bias prunable_keys.append(name+".weight") prunable_keys.append(name+".bias") return prunable_keys def capture_params(self, steps, only_prunable=True): self._handle = tempfile.TemporaryDirectory() tmp_path = pathlib.Path(self._handle.name) tmp_path.mkdir(exist_ok=True, parents=True) self.params_snapshot_path = tmp_path / f"{self.model.__class__.__name__}.{steps}" params = self.model.state_dict() if only_prunable: params = dict(filter(lambda kv: kv[0] in self.prunable_keys(), params.items())) torch.save({"model_state_dict":params}, self.params_snapshot_path) # def weight_diff_norm(self): # assert hasattr(self, "weights_path"), "Should be loaded with a pretrained model in advance" # # weights = torch.load(self.weights_path)["model_state_dict"] # if list(weights.keys())[0].startswith('module.'): # weights = {k[len("module."):]: v for k, v in weights.items()} # self.load_state_dict(weights, strict=False) # for k,v in weights.items(): # delta = def reset_params(self): assert hasattr(self, "params_snapshot_path"), "No saved model path (by self.captured_weights)" weights = torch.load(self.params_snapshot_path)["model_state_dict"] if list(weights.keys())[0].startswith('module.'): weights = {k[len("module."):]: v for k, v in weights.items()} self.model.load_state_dict(weights, strict=False) def __repr__(self): s = f"{self.__class__.__name__}(" for k in self.pruning_params: s += f"{k}={repr(getattr(self, k))}, " s = s[:-2] + ')' return s def __str__(self): return repr(self) def module_params(self, module): return get_params(module) def params(self, only_prunable=True, native=False): if only_prunable: return {module: get_params(module, native=native) for module in self.prunable} else: return {module: get_params(module, native=native) for module in self.model.modules()} def summary(self): rows = [] for name, module in self.model.named_modules(): for pname, param in module.named_parameters(recurse=False): if isinstance(module, MaskedModule): compression = 1/getattr(module, pname+'_mask').detach().cpu().numpy().mean() else: compression = 1 shape = param.detach().cpu().numpy().shape rows.append([name, pname, compression, np.prod(shape), shape, self.can_prune(module)]) columns = ['module', 'param', 'comp', 'size', 'shape', 'prunable'] return pd.DataFrame(rows, columns=columns) class LayerPruning(Pruning): @abstractmethod def layer_masks(self, module): """Instead of implementing masks for the entire model at once User needs to specify a layer_masks fn that can be applied layerwise Should return None is layer can't be masked """ pass # return masks def model_masks(self, prunable=None): """Compute masks using the said strategy for every module This is a straight forward implementation that supports strategies that prune each module independently """ masks = OrderedDict() if prunable is None: prunable = self.prunable_modules() for module in prunable: masks_ = self.layer_masks(module) if masks_ is not None: masks[module] = masks_ return masks
36.361111
102
0.628266
794e31ecc19277789a85f1457df975b39a845b96
12,473
py
Python
pettingzoo/agar/players/Bot.py
footoredo/PettingZoo
b48baf9ca459d72cdcb7013ef86c5fc470856081
[ "MIT" ]
null
null
null
pettingzoo/agar/players/Bot.py
footoredo/PettingZoo
b48baf9ca459d72cdcb7013ef86c5fc470856081
[ "MIT" ]
null
null
null
pettingzoo/agar/players/Bot.py
footoredo/PettingZoo
b48baf9ca459d72cdcb7013ef86c5fc470856081
[ "MIT" ]
null
null
null
from pettingzoo.agar.players.Player import Player import numpy as np from pettingzoo.agar.modules import * from pettingzoo.agar.entity.Cell import Cell import random from copy import deepcopy import numpy as np class Bot(Player): def __init__(self, gameServer, name='bot', id = None, pos = None): super().__init__(gameServer, name, id, pos) self.np_random = gameServer.np_random assert self.np_random is not None self.actionCooldown = 0 self.splitCooldown = 0 self.actionstamp = np.zeros(4) def step(self, *kargs, **kwargs): if len(self.cells) == 0: self.isRemoved = True if self.isRemoved: return if self.actionCooldown: self.action[2] = 2 self.actionCooldown -= 1 self.action[:2] = self.actionstamp[:2] return self.actionCooldown = 5 # action_repeat=5 if self.splitCooldown: self.splitCooldown -= 1 if self.np_random.rand() < 0.: self.peace_step() else: self.aggressive_step() self.mouse = self.centerPos.add(Vec2(self.action[0] * self.gameServer.config.serverViewBaseX, self.action[1] * self.gameServer.config.serverViewBaseY), 1) if self.action[2] == 0: self.pressSpace() elif self.action[2] == 1: self.pressW() elif self.action[2] == 2: pass def peace_step(self): visible_food = [] visible_virus = [] action = np.zeros(3) has_enemy = False for cell in self.viewNodes: if cell.cellType == 1 or cell.cellType == 3: # food and ejected mass as visible_food visible_food.append(cell) elif cell.cellType == 0: if cell.owner is not self and not self.gameServer.gameMode.haveTeams: has_enemy = True elif self.gameServer.gameMode.haveTeams and cell.owner.team != self.team: has_enemy = True elif cell.cellType ==2: visible_virus.append(cell) if not has_enemy and self.np_random.rand() < 0.05: action[2] = 0 if visible_food and self.cells: mincell = self.mincell() maxcell = self.maxcell() if len(self.cells) >= 14 and self.maxradius > self.gameServer.config.virusMinRadius * 1.15 and visible_virus: target = sorted(visible_virus, key=lambda c: (abs(c.position.x - maxcell.position.x) + abs(c.position.y - maxcell.position.y)) / c.mass + 10000 * (self.maxradius <= c.radius * 1.15))[0] # 吃最大cell 1.15倍以下的最近最大virus(when i have >= 14 cells) relative_position = target.position.clone().sub(maxcell.position) action[2] = 2 elif len(self.cells) >= 4 and self.maxradius > self.gameServer.config.virusMinRadius * 1.15 and visible_virus and not has_enemy: target = sorted(visible_virus, key=lambda c: (abs(c.position.x - maxcell.position.x) + abs(c.position.y - maxcell.position.y)) / c.mass + 10000 * (self.maxradius <= c.radius * 1.15))[0] relative_position = target.position.clone().sub(maxcell.position) # no enemy then also eat virus action[2] = 2 else: target = sorted(visible_food, key=lambda c: (abs(c.position.x - mincell.position.x) + abs(c.position.y - mincell.position.y)) / c.mass)[0] # target = sorted(visible_food, key=lambda c: (abs(c.position.x - self.centerPos.x) + abs(c.position.y - self.centerPos.y)) / c.mass)[0] relative_position = target.position.clone().sub(mincell.position) # eat food action[0] = relative_position.x / max(abs(relative_position.x), abs(relative_position.y)) action[1] = relative_position.y / max(abs(relative_position.x), abs(relative_position.y)) self.actionstamp[:2] = action[:2] elif self.cells: action[:2] = np.random.randint(2, size=(2)) * 2 - 1 self.actionstamp[:2] = action[:2] self.action = action def dfs(self, cell, d_list, deep, pos, opt): n_p_list = [] b = 2 * np.pi * self.np_random.rand() b = 0 for j in range(10): theta = b + 2 * np.pi / 10 * j next_pos = pos + np.array([np.cos(theta), np.sin(theta)]) * cell.getMoveR() next_pos = self.gameServer.limit_pos(next_pos) mi = 1e10 ok = True for c in d_list: dis = Vec2(c.position.x - next_pos[0], c.position.y - next_pos[1]).sqDist() - c.getMoveR() * (deep + 1) - c.radius mi = min(mi, dis) if dis + (cell.getMoveR() - c.getMoveR()) * (2 - deep) < opt[0]: ok = False break if mi > 0 and ok: n_p_list.append([next_pos, mi]) if len(n_p_list) == 0: if deep == 0: #'cannot escape in dfs Bot' return -1, [0., 0.] return -1 n_p_list = sorted(n_p_list, key=lambda x: -x[1]) if deep == 2: opt[0] = max(opt[0], n_p_list[0][1]) return n_p_list[0][1] ma = -1 ans = [0., 0.] for x in n_p_list: old_opt = opt[0] result = self.dfs(cell, d_list, deep + 1, x[0], opt) ma = max(ma, result) if deep == 0: if old_opt != opt[0]: ans = x[0] - pos if deep == 0: return ma, ans return ma def aggressive_step(self): cell = self.maxcell() result = Vec2(0, 0) # For splitting action = np.zeros(3) action[2] = 2. # now all agents try to keep their size ab_x = cell.position.x / (self.config.borderWidth - cell.radius) + 0.5 ab_y = cell.position.y / (self.config.borderHeight - cell.radius) + 0.5 gamma = 1.03 danger = False very_danger = False danger_list = [] for check in self.viewNodes: if check.cellType == 0 and check.radius > cell.radius * 1.15: danger = True dis = Vec2(check.position.x - cell.position.x, check.position.y - cell.position.y).sqDist() if dis <= self.config.borderWidth / 6.5 and check.pID < self.gameServer.env.num_agents: very_danger = True danger_list.append(check) if very_danger: ma, ans = self.dfs(cell, danger_list, 0, np.array([cell.position.x, cell.position.y]), [-1]) result.x = ans[0] result.y = ans[1] self.action = np.zeros(3) self.action[2] = 2 self.action[0] = result.x self.action[1] = result.y return if danger: self.viewNodes.append(Cell(self.gameServer, None, Vec2(-gamma * self.config.borderWidth / 2, -gamma * self.config.borderHeight / 2), cell.radius)) self.viewNodes.append(Cell(self.gameServer, None, Vec2( gamma * self.config.borderWidth / 2, -gamma * self.config.borderHeight / 2), cell.radius)) self.viewNodes.append(Cell(self.gameServer, None, Vec2(-gamma * self.config.borderWidth / 2, gamma * self.config.borderHeight / 2), cell.radius)) self.viewNodes.append(Cell(self.gameServer, None, Vec2( gamma * self.config.borderWidth / 2, gamma * self.config.borderHeight / 2), cell.radius)) for check in self.viewNodes: if check.owner == self: continue # Get attraction of the cells - avoid larger cells, viruses and same team cells influence = 0 if check.cellType == -1: if check.owner is None: # corner influence = -check.radius elif check.cellType == 0: # Player cell if self.gameServer.gameMode.haveTeams and cell.owner.team == check.owner.team: # Same team cell influence = 0 elif cell.radius > check.radius * 1.15: # Can eat it influence = check.radius * 2.5 elif check.radius > cell.radius * 1.15: # Can eat me influence = -check.radius else: influence = -(check.radius / cell.radius) / 3 elif check.cellType == 1: # Food influence = 1 elif check.cellType == 2: # Virus/Mothercell if cell.radius > check.radius * 1.15: # Can eat it if len(self.cells) == self.gameServer.config.playerMaxCells: # Won't explode influence = check.radius * 2.5 elif len(self.cells) >= self.gameServer.config.playerMaxCells - 6: influence = check.radius * 2 else: # Can explode influence = -1 elif check.isMotherCell and check.radius > cell.radius * 1.15: # can eat me influence = -1 elif check.cellType == 3: # Ejected mass if cell.radius > check.radius * 1.15: influence = check.radius # Apply influence if it isn't 0 if influence == 0: continue displacement = Vec2(check.position.x - cell.position.x, check.position.y - cell.position.y) # Figure out distance between cells distance = displacement.sqDist() if distance == 0: print('bug in Bot', check.owner, self) continue if influence < 0: # Get edge distance distance -= cell.radius + check.radius # The farther they are the smaller influnce it is if distance < 1: distance = 1; # Avoid NaN and positive influence with negative distance & attraction influence /= distance # Splitting conditions if check.cellType == 0: checkmax = check.owner.maxcell() selfmin = self.mincell() if checkmax and cell.radius / 1.414 > checkmax.radius * 1.15 and selfmin.radius > checkmax.radius and not self.splitCooldown and 820 - cell.radius / 2 - checkmax.radius >= distance: # Splitkill the target self.splitCooldown = 10 relative = checkmax.position.clone().sub(cell.position) if relative.sqDist(): relative = relative.normalize() action[0] = relative.x action[1] = relative.y action[2] = 0 self.action = action return else: result.add(displacement.normalize(), influence) else: # Produce force vector exerted by self entity on the cell result.add(displacement.normalize(), influence) if danger: self.viewNodes = self.viewNodes[:-4] ab_x = cell.position.x / (self.config.borderWidth - cell.radius) + 0.5 ab_y = cell.position.y / (self.config.borderHeight - cell.radius) + 0.5 def sigmoid(x): x -= 5 return 1. / (1. + np.exp(-x)) beta = 3 result.y *= max(1 / (1 - sigmoid(beta / (np.abs(10 * (ab_x - 1)) + 0.03) ** 0.5)), 1 / (1 - sigmoid(beta / (np.abs(10 * (ab_x - 0)) + 0.03) ** 0.5))) result.x *= max(1 / (1 - sigmoid(beta / (np.abs(10 * (ab_y - 1)) + 0.03) ** 0.5)), 1 / (1 - sigmoid(beta / (np.abs(10 * (ab_y - 0)) + 0.03) ** 0.5))) alpha = 0.1 result.add(Vec2(-1, 0), alpha * 1 / (np.abs(10 * (ab_x - 1)) + 0.01) ** 0.5) result.add(Vec2(+1, 0), alpha * 1 / (np.abs(10 * (ab_x - 0)) + 0.01) ** 0.5) result.add(Vec2(0, -1), alpha * 1 / (np.abs(10 * (ab_y - 1)) + 0.01) ** 0.5) result.add(Vec2(0, +1), alpha * 1 / (np.abs(10 * (ab_y - 0)) + 0.01) ** 0.5) if result.sqDist(): result = result.normalize() action[0] = result.x action[1] = result.y self.action = action
43.764912
254
0.527058
794e3213d81b1f731ddf09e9f069f40a4f8a76b8
1,214
py
Python
leetcode/358.py
windniw/just-for-fun
54e5c2be145f3848811bfd127f6a89545e921570
[ "Apache-2.0" ]
1
2019-08-28T23:15:25.000Z
2019-08-28T23:15:25.000Z
leetcode/358.py
windniw/just-for-fun
54e5c2be145f3848811bfd127f6a89545e921570
[ "Apache-2.0" ]
null
null
null
leetcode/358.py
windniw/just-for-fun
54e5c2be145f3848811bfd127f6a89545e921570
[ "Apache-2.0" ]
null
null
null
""" link: https://leetcode-cn.com/problems/rearrange-string-k-distance-apart problem: 重新排列字符串s,问新组成的字符串s'能否满足每个相同字符间至少间隔k-1个元素 solution: 贪心。依次决定s'的每位新字符是什么,放置时优先挑选当前可以放置的(与其之前的相同字符间隔已经有k)且剩余量最大的。 用堆与队列来实现,先按重复次数入大根堆,每次抛出堆顶元素,放置后将字符入队,当队内元素已经超过k时,证明队首元素可以重新被放置, 取出重新入堆。 """ class Solution: def rearrangeString(self, s: str, k: int) -> str: class item: def __init__(self, c, n): self.n = n self.c = c def __lt__(self, t): return self.n > t.n def __str__(self): return "c : {}, n: {}".format(self.c, self.n) def __repr__(self): return "c : {}, n: {}".format(self.c, self.n) m, res = collections.Counter(s), "" heap, queue = [], collections.deque() for c in m: heapq.heappush(heap, item(c, m[c])) while heap: t = heapq.heappop(heap) res += t.c t.n -= 1 queue.append(t) if len(queue) >= k: t = queue.popleft() if t.n > 0: heapq.heappush(heap, t) return res if len(res) == len(s) else ""
28.904762
74
0.504119
794e325d45c8960c851170436427f2508231d1c3
10,700
py
Python
randimages/randimages.py
fixator10/predacogs
575ede3bbda867222cec911debf8fa306918be22
[ "MIT" ]
38
2019-05-13T19:42:31.000Z
2022-02-28T10:09:30.000Z
randimages/randimages.py
fixator10/predacogs
575ede3bbda867222cec911debf8fa306918be22
[ "MIT" ]
39
2019-05-26T01:55:26.000Z
2022-01-28T15:53:29.000Z
randimages/randimages.py
fixator10/predacogs
575ede3bbda867222cec911debf8fa306918be22
[ "MIT" ]
50
2019-03-27T15:59:36.000Z
2022-03-12T09:33:56.000Z
from redbot.core import checks, commands from redbot.core.i18n import Translator, cog_i18n from .core import Core from . import constants as sub _ = Translator("Image", __file__) @cog_i18n(_) class RandImages(Core): """Send random images (animals, art ...) from different APIs.""" @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def art(self, ctx: commands.Context): """Send art from random subreddits.""" await self._send_reddit_msg( ctx, name=_("art image"), emoji="\N{ARTIST PALETTE}", sub=sub.ART, details=True ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def birb(self, ctx: commands.Context): """Send a random birb image from alexflipnote API.""" await self._send_other_msg( ctx, name=_("birb"), emoji="\N{BIRD}", source="alexflipnote API", img_url="https://api.alexflipnote.dev/birb", img_arg="file", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["cats"]) async def cat(self, ctx: commands.Context): """Send a random cat image some-random-api.ml API.""" await self._send_other_msg( ctx, name=_("cat"), emoji="\N{CAT FACE}", source="nekos.life", img_url="https://nekos.life/api/v2/img/meow", img_arg="url", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["catsfact"]) async def catfact(self, ctx: commands.Context): """Send a random cat fact with a random cat image from some-random-api.ml API.""" await self._send_other_msg( ctx, name=_("a cat fact with a random cat image"), emoji="\N{CAT FACE}", source="nekos.life", img_url="https://nekos.life/api/v2/img/meow", img_arg="url", facts_url="https://some-random-api.ml/facts/cat", facts_arg="fact", facts=True, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def coffee(self, ctx: commands.Context): """Send a random coffee image from alexflipnote API.""" await self._send_other_msg( ctx, name=_("your coffee"), emoji="\N{HOT BEVERAGE}", source="alexflipnote API", img_url="https://coffee.alexflipnote.dev/random.json", img_arg="file", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["cuteness"]) async def cute(self, ctx: commands.Context): """Send a random cute images from random subreddits.""" await self._send_reddit_msg( ctx, name=_("a cute image"), emoji="❤️", sub=sub.CUTE, details=False ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["dogs"]) async def dog(self, ctx: commands.Context): """Send a random dog image from random.dog API.""" await self._send_other_msg( ctx, name=_("dog"), emoji="\N{DOG FACE}", source="random.dog", img_url="https://random.dog/woof.json", img_arg="url", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["dogsfact"]) async def dogfact(self, ctx: commands.Context): """Send a random dog fact with a random dog image from some-random-api.ml API.""" await self._send_other_msg( ctx, name=_("a dog fact with a random dog image"), emoji="\N{DOG FACE}", source="random.dog", img_url="https://random.dog/woof.json", img_arg="url", facts_url="https://some-random-api.ml/facts/dog", facts_arg="fact", facts=True, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def duck(self, ctx: commands.Context): """Send a random duck image from random subreddits.""" await self._send_reddit_msg( ctx, name=_("a duck image"), emoji="\N{DUCK}", sub=sub.DUCKS, details=False ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["ferrets"]) async def ferret(self, ctx: commands.Context): """Send a random ferrets images from random subreddits.""" await self._send_reddit_msg( ctx, name=_("a ferret image"), emoji="❤️", sub=sub.FERRETS, details=False ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["foxes"]) async def fox(self, ctx: commands.Context): """Send a random fox image from randomfox.ca API""" await self._send_other_msg( ctx, name=_("fox"), emoji="\N{FOX FACE}", source="randomfox.ca", img_url="https://randomfox.ca/floof", img_arg="image", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["pandas"]) async def panda(self, ctx: commands.Context): """Send a random panda image from some-random-api.ml API.""" await self._send_other_msg( ctx, name=_("panda"), emoji="\N{PANDA FACE}", source="some-random-api.ml", img_url="https://some-random-api.ml/img/panda", img_arg="link", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def lizard(self, ctx: commands.Context): """Send a random lizard image from nekos.life API""" await self._send_other_msg( ctx, name=_("lizard"), emoji="\N{LIZARD}", source="nekos.life", img_url="https://nekos.life/api/lizard", img_arg="url", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["memes"]) async def meme(self, ctx: commands.Context): """Send a random dank meme from random subreddits.""" await self._send_reddit_msg( ctx, name=_("meme image"), emoji="\N{OK HAND SIGN}", sub=sub.MEMES, details=False ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["pandasfact"]) async def pandafact(self, ctx: commands.Context): """Send a random panda fact with a random panda image from some-random-api.ml API.""" await self._send_other_msg( ctx, name=_("a panda fact with a random panda image"), emoji="\N{PANDA FACE}", source="some-random-api.ml", img_url="https://some-random-api.ml/img/panda", img_arg="link", facts_url="https://some-random-api.ml/facts/panda", facts_arg="fact", facts=True, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["pikachu"]) async def pika(self, ctx: commands.Context): """Send a random Pikachu image or GIF from some-random-api.ml API.""" await self._send_other_msg( ctx, name=_("Pikachu"), emoji="❤️", source="some-random-api.ml", img_url="https://some-random-api.ml/img/pikachu", img_arg="link", facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command() async def shiba(self, ctx: commands.Context): """Send a random shiba image from shiba.online API.""" await self._send_other_msg( ctx, name=_("shiba"), emoji="\N{DOG FACE}", source="shibe.online", img_url="http://shibe.online/api/shibes", img_arg=0, facts=False, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["photography"]) async def photo(self, ctx: commands.Context): """Send a random photography from random subreddits.""" await self._send_reddit_msg( ctx, name=_("a photography"), emoji="\N{CAMERA WITH FLASH}", sub=sub.PHOTOS, details=True, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["subr"]) @commands.max_concurrency(1, commands.BucketType.user, wait=False) async def subreddit(self, ctx: commands.Context, *, subreddit: str): """Send a random image from a chosen subreddit.""" if subreddit in ["friends", "mod"]: return await ctx.send("This isn't a valid subreddit.") await self._send_reddit_msg( ctx, name=_("random image"), emoji="\N{FRAME WITH PICTURE}", sub=[str(subreddit)], details=True, ) @commands.cooldown(1, 0.5, commands.BucketType.user) @commands.bot_has_permissions(embed_links=True) @commands.command(aliases=["wallp"]) async def wallpaper(self, ctx: commands.Context): """Send a random wallpaper image from random subreddits.""" await self._send_reddit_msg( ctx, name=_("a wallpaper"), emoji="\N{FRAME WITH PICTURE}", sub=sub.WALLPAPERS, details=True, )
34.85342
93
0.596355
794e3379e6ea77ac30a4e79890fff2a6d7949c45
663
py
Python
pymodels/TS_V04_01/accelerator.py
lnls-fac/models
b806c3bcca6a8a8e02c1a3c9abee92f7366c44cb
[ "MIT" ]
3
2015-04-13T23:20:31.000Z
2015-04-14T01:50:31.000Z
pymodels/TS_V04_01/accelerator.py
lnls-fac/models
b806c3bcca6a8a8e02c1a3c9abee92f7366c44cb
[ "MIT" ]
17
2015-04-14T01:50:21.000Z
2016-01-28T12:50:27.000Z
pymodels/TS_V04_01/accelerator.py
lnls-fac/sirius
b806c3bcca6a8a8e02c1a3c9abee92f7366c44cb
[ "MIT" ]
1
2022-02-08T13:11:35.000Z
2022-02-08T13:11:35.000Z
import numpy as _np import lnls as _lnls import pyaccel as _pyaccel from . import lattice as _lattice default_radiation_on = False default_vchamber_on = False def create_accelerator(optics_mode=_lattice.default_optics_mode): latt, twiss_at_start = _lattice.create_lattice(optics_mode=optics_mode) accelerator = _pyaccel.accelerator.Accelerator( lattice= latt, energy=_lattice.energy, radiation_on=default_radiation_on, vchamber_on=default_vchamber_on ) return accelerator, twiss_at_start accelerator_data = dict() accelerator_data['lattice_version'] = 'TS_V04_01' accelerator_data['pressure_profile'] = None
25.5
75
0.775264
794e34f6cd26f82dd76c136ef9fae57635c9201b
14,999
py
Python
Visualization/Gld-case_study_plotting.py
achau1/plastic-networks
6845a7d83ab9d6901dfc921e5fe7ffda965758da
[ "MIT" ]
null
null
null
Visualization/Gld-case_study_plotting.py
achau1/plastic-networks
6845a7d83ab9d6901dfc921e5fe7ffda965758da
[ "MIT" ]
null
null
null
Visualization/Gld-case_study_plotting.py
achau1/plastic-networks
6845a7d83ab9d6901dfc921e5fe7ffda965758da
[ "MIT" ]
null
null
null
## Plotting individual glacier results for case studies ## 24 Apr 2019 EHU import numpy as np import matplotlib.pyplot as plt import csv import shapefile #import collections import glob #from matplotlib.colors import LogNorm from matplotlib import cm import matplotlib.patches as mpatches from shapely.geometry import * from scipy import interpolate from scipy.ndimage import gaussian_filter ## Special import for SERMeQ modules import sys sys.path.insert(0, 'Documents/GitHub/plastic-networks') from SERMeQ.plastic_utilities_v2 import * from SERMeQ.GL_model_tools import * from SERMeQ.flowline_class_hierarchy import * ### Topography needed to remove floating points from saved coords ### print 'Reading in surface topography' gl_bed_path ='Documents/1. Research/2. Flowline networks/Model/Data/BedMachine-Greenland/BedMachineGreenland-2017-09-20.nc' fh = Dataset(gl_bed_path, mode='r') xx = fh.variables['x'][:].copy() #x-coord (polar stereo (70, 45)) yy = fh.variables['y'][:].copy() #y-coord s_raw = fh.variables['surface'][:].copy() #surface elevation h_raw=fh.variables['thickness'][:].copy() # Gridded thickness b_raw = fh.variables['bed'][:].copy() # bed topo thick_mask = fh.variables['mask'][:].copy() ss = np.ma.masked_where(thick_mask !=2, s_raw)#mask values: 0=ocean, 1=ice-free land, 2=grounded ice, 3=floating ice, 4=non-Greenland land hh = np.ma.masked_where(thick_mask !=2, h_raw) #bb = np.ma.masked_where(thick_mask !=2, b_raw) bb = b_raw #don't mask, to allow bed sampling from modern bathymetry (was subglacial in ~2006) ## Down-sampling X = xx[::2] Y = yy[::2] S = ss[::2, ::2] H = hh[::2, ::2] B = bb[::2, ::2] M = thick_mask[::2,::2] ## Not down-sampling #X = xx #Y = yy #S = ss fh.close() #Smoothing bed and surface unsmoothB = B smoothB = gaussian_filter(B, 2) smoothS = gaussian_filter(S, 2) #B_processed = np.ma.masked_where(thick_mask !=2, smoothB) #Replacing interpolated surface with bed+thickness S_new = np.add(B, H) S_interp = interpolate.RectBivariateSpline(X, Y[::-1], smoothS.T[::, ::-1]) H_interp = interpolate.RectBivariateSpline(X, Y[::-1], H.T[::, ::-1]) B_interp = interpolate.RectBivariateSpline(X, Y[::-1], smoothB.T[::, ::-1]) ###-------------------------------------- #### GLACIERS TO PLOT ###-------------------------------------- ## Which glaciers are available glacier_ids = range(1,195) #MEaSUREs glacier IDs to process. not_present = (93, 94, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 169) #glacier IDs missing from set ## which ones get special treatment added_jan19 = (139, 140, 141, 142, 143, 159, 161, 172, 173, 177) seaward_projected = (61, 64, 82, 83, 99, 130, 132, 139, 140, 141, 156, 157, 158, 161, 167, 170, 178, 179, 180, 184) special_treatment = np.concatenate((added_jan19, seaward_projected)) errors = (5, 18, 19, 29, 71, 92, 95, 97, 101, 107, 108, 120, 134) #glacier IDs that crashed in hindcasting 12 Mar 2019 rmv = np.concatenate((not_present, errors)) for n in rmv: try: glacier_ids.remove(n) except ValueError: pass #glaciers_to_plot=np.copy(glacier_ids).tolist() #for m in special_treatment: # try: # glaciers_to_plot.remove(m) # except ValueError: # pass glaciers_to_plot = [g for g in glacier_ids if g in (3, 105, 137, 175)] testyears = arange(0, 9, step=0.25)#array of the years tested, with year "0" reflecting initial nominal date of MEaSUREs read-in (generally 2006) scenarios = ('persistence',) #datemarker = '2019-02-08' #markers on filename to indicate date run tempmarker = 'min10Cice' #and temperature of ice timestepmarker = '8a_dt025a' #and total time and timestep full_output_dicts = {} for s in scenarios: scenario_output = {'Testyears': testyears} for gid in glaciers_to_plot: fn = glob.glob('Documents/GitHub/Data_unsynced/Hindcasted_networks/GID{}-*-{}-{}-{}.pickle'.format(gid, s, tempmarker, timestepmarker))[0] #using glob * to select files of multiple run dates lightload(fn, glacier_name = 'GID{}'.format(gid), output_dictionary = scenario_output) #for i, gid in enumerate(glaciers_to_plot): # fn = 'GID{}-{}-{}-{}-{}.pickle'.format(gid, datemarker, s, tempmarker, timestepmarker) # lightload(fn, glacier_name = 'GID{}'.format(gid), output_dictionary = scenario_output) full_output_dicts[s] = scenario_output #add output from this scenario to the dictionary of all output, with scenario name as key perscenario_fluxes = [] perscenario_SLE = [] for s in full_output_dicts.keys(): print 'Scenario {}'.format(s) out = full_output_dicts[s] pernetwork_cumul_fx = [] pernetwork_cumul_sle = [] for j, gid in enumerate(glaciers_to_plot): branch_fx = [np.nan_to_num(out['GID{}'.format(gid)][k]['Terminus_flux']) for k in range(len(out['GID{}'.format(gid)]))] total_fx = sum(branch_fx, axis=0) total_sle = (1E-12)*np.array(total_fx)/(361.8) #Gt ice/mm SLE conversion cumul_fx = np.cumsum(total_fx) cumul_sle = np.cumsum(total_sle) pernetwork_cumul_fx.append(cumul_fx) pernetwork_cumul_sle.append(cumul_sle) scenario_flux = np.cumsum(pernetwork_cumul_fx, axis=0) perscenario_fluxes.append(scenario_flux[-1]) scenario_sle = np.cumsum(pernetwork_cumul_sle, axis=0) print max(scenario_sle[-1]) print(scenario_sle[-1][-1]) perscenario_SLE.append(scenario_sle[-1]) gl_termpos_fldr = 'Documents/GitHub/Data_unsynced/MEaSUREs-termini' basefiles = ['/termini_0607_v01_2', '/termini_0708_v01_2', '/termini_0809_v01_2', '/termini_1213_v01_2', '/termini_1415_v01_2', '/termini_1516_v01_2'] obs_years = [2006, 2007, 2008, 2012, 2014, 2015] #compare with term of hindcast, 2006-2014 termini = {} for i,b in enumerate(basefiles): yr = obs_years[i] fn = gl_termpos_fldr+b termini[yr] = read_termini(fn, yr) #creating dictionary for each year print len(termini[yr]) nw_base_fpath = 'Documents/1. Research/2. Flowline networks/Auto_selected-networks/Gld-autonetwork-GID' projected_termini = {gid: [] for gid in glaciers_to_plot} seaward_coords_fpath = 'Documents/GitHub/Data_unsynced/Auto_selected-networks/Seaward_coords/Gld-advnetwork-GID' termpos_corrections = {gid: 0 for gid in glacier_ids} for gid in glaciers_to_plot: print 'Reading in glacier ID: '+str(gid) #if gid in added_jan19: # filename = nw_base_fpath+str(gid)+'-date_2019-01-10.csv' filename = glob.glob(nw_base_fpath+'{}-date_*.csv'.format(gid))[0] #using glob * to select files of different run dates coords_list = Flowline_CSV(filename, has_width=True, flip_order=False) if gid in seaward_projected: seaward_fn = seaward_coords_fpath+'{}-fwd_2000_m.csv'.format(gid) seaward_coords = Flowline_CSV(seaward_fn, has_width=True, flip_order=True)[0] branch_0 = Branch(coords=np.concatenate((seaward_coords, coords_list[0])), index=0, order=0) #saving extended central branch as main termpos_correction = 10*max(ArcArray(seaward_coords)) #how much glacier length has been added to initial line, i.e. how much terminus shifted in coordinate system, in km print termpos_correction else: branch_0 = Branch(coords=coords_list[0], index=0, order=0) #saving central branch as main termpos_correction = 0 termpos_corrections[gid] = termpos_correction branch_list = [branch_0] nw = PlasticNetwork(name='GID'+str(gid), init_type='Branch', branches=branch_list, main_terminus=branch_0.coords[0]) nw.make_full_lines() if gid not in seaward_projected: #remove floating, but not from lines that have been artificially extended print 'Removing floating points from glacier ID: '+str(gid) nw.process_full_lines(B_interp, S_interp, H_interp) nw.remove_floating() mainline = LineString(nw.flowlines[0].coords) for yr in obs_years: try: termpts = termini[yr][gid] #get terminus points for each year t = projected_term_obs(termpts, mainline) #project onto main flowline r = retterm(termpts, mainline) #find most retreated point a = advterm(termpts, mainline) #find most advanced point print 'GID {}, t={}, r={}, a={}'.format(gid, t, r, a) projected_termini[gid].append((-1*termpos_correction)+np.asarray((a, t, r))) #add these to dictionary of projected termini per glacier except KeyError: print 'No terminus found in year {} for GID {}.'.format(yr, gid) projected_termini[gid].append((0, np.nan, 0)) ###-------------------------------------- #### PLOTTING ###-------------------------------------- ## Settings for plots #labels = [str(g[1]) for g in gids_by_name if g[0] in glaciers_to_plot] #set what the glaciers will be called in plotting. Default is simply their MEaSUREs ID labels = [str(g) for g in glaciers_to_plot] markers = ['o', '.', ',', '^', 'd', '*'] styles = ['-', ':', '-.', '-', '-', '-'] cmap = cm.get_cmap('winter') scenario_colors = cm.get_cmap('Blues')([0.1, 0.3, 0.5, 0.7, 0.9]) #colors = cmap([0.1, 0.2, 0.3, 0.5, 0.7, 0.9]) colors = cmap(linspace(0.1, 0.9, num=len(glaciers_to_plot))) alt_colors = cm.get_cmap('Greys')([0.2, 0.3, 0.5, 0.7, 0.9]) plot_years = 2006+np.array(testyears) # #####terminus #plt.figure() #for j, gid in enumerate(glaciers_to_plot): # print gid # term_positions = full_output_dicts['persistence']['GID{}'.format(gid)][0]['Termini'][1::] # ms_selection = mod(j, len(styles)) # plt.plot(testyears, -0.001*np.array(term_positions), linewidth=2, color='Gainsboro', linestyle=styles[ms_selection], label=labels[j]) # #plt.plot(testyears[::4], -0.001*np.array(full_output_dicts['persistence']['GID{}'.format(gid)][0]['Termini'][1::])[::4], linewidth=0, marker=markers[ms_selection], ms=10, color=colors[j]) #plt.legend(loc='lower left') #plt.axes().set_xlabel('Year of simulation', size=20) #plt.axes().set_ylabel('Terminus change [km]', size=20) #plt.axes().tick_params(axis='both', length=5, width=2, labelsize=20) ##plt.axes().set_ylim(-100, 1) ##plt.axes().set_yticks([-75, -50, -25, 0]) #plt.title('Terminus retreat of {} Greenland outlet glaciers 2006-2014 ERA-I, Tice=-10 C'.format(len(glaciers_to_plot)), fontsize=20) #plt.show() ####SINGLE NETWORK - termini vs obs for j, gid in enumerate(glaciers_to_plot): sim_termini = full_output_dicts['persistence']['GID{}'.format(gid)][0]['Termini'][1::] obs_termini = np.asarray(projected_termini[gid]) #will be of shape (len(obs_years), 3) with an entry (lower, centroid, upper) for each year obs_term_centr = obs_termini[:,1] e = np.asarray([(min(ot[0]-ot[1], ot[0]), ot[1]-ot[2]) for ot in obs_termini]).T #error lower (more advanced), upper (less advanced) plt.figure('Main line terminus change, GID{}'.format(gid)) plt.plot(plot_years, -0.001*np.array(sim_termini), linewidth=2, color='k', linestyle='-', label='Modelled') plt.errorbar(obs_years, -1*obs_term_centr, yerr = e, fmt='D') plt.axes().tick_params(axis='both', length=5, width=2, labelsize=30) plt.axes().set_xlim(2006, 2014.5) plt.axes().set_xticks([2006, 2008, 2010, 2012, 2014]) plt.axes().set_ylim(-20, 2) plt.axes().set_yticks([-20, -15, -10, -5, 0]) if gid==175: plt.axes().set_xticklabels(['2006', '2008', '2010', '2012', '2014']) plt.axes().set_xlabel('Year', size=35) else: plt.axes().set_xticklabels([]) if gid==3: plt.axes().set_yticklabels(['-20', '', '-10', '', '0']) plt.axes().set_ylabel('Terminus change [km]', size=35) else: plt.axes().set_yticklabels([]) plt.axes().set_aspect(0.3) plt.show() ## #####SINGLE NETWORK - splitting termini #single_network_output = full_output_dicts['persistence']['GID10'] #plt.figure('Single network terminus change') #for k in range(len(single_network_output)): #for each branch j # #colork = alt_colors[mod(k, len(colors))] # branch_termini = single_network_output[k]['Termini'] #for some reason enumerate doesn't work with loaded-in output, so we're stuck with this # #markerk = (k+2, mod(k+1, 3), 0) # plt.plot(testyears, -0.001*np.array(branch_termini[0:-1:]), linewidth=4, label='Branch {}'.format(k)) # #plt.plot(testyears[::10], -0.001*np.array(branch_termini[0:-1:])[::10], linewidth=0, color=colork, marker=markerk, ms=10) #plt.legend(loc='lower left') #plt.axes().set_xlabel('Year of simulation', size=30) #plt.axes().set_ylabel('Terminus change [km]', size=30) #plt.axes().tick_params(axis='both', length=5, width=2, labelsize=20) ##plt.axes().set_ylim(-50, 1) ##plt.axes().set_yticks([-50, -25, 0]) #plt.show() # #####Flux #for j, gid in enumerate(glaciers_to_plot): # plt.figure('GID{}'.format(gid)) # ms_selection = mod(gid, len(styles)) # plt.plot(testyears, 1E-12*np.array(pernetwork_cumul_fx[j]), linewidth=4, label=str(gid), color=colors[ms_selection], linestyle = styles[ms_selection]) # plt.plot(testyears[::20], 1E-12*np.array(pernetwork_cumul_fx[j][::20]), linewidth=0, ms=10, marker=markers[ms_selection]) # plt.fill_between(testyears, y1=1E-12*np.array(pernetwork_cumul_fx[j]), y2=0, alpha=0.5) # plt.axes().set_xlabel('Year of simulation', size=20) # plt.axes().set_ylabel('Cumulative ice flux [Gt]', size=20) # plt.axes().tick_params(axis='both', length=5, width=2, labelsize=20) # plt.axes().set_xlim(0,50) # plt.axes().set_xticks([0,10,20, 30, 40, 50]) # #plt.axes().set_ylim(0, 401) # #plt.axes().set_yticks([0, 50, 100, 150, 200, 250, 300, 350, 400]) # plt.show() ## #######Sea level equivalent #plt.figure(figsize=(12,8)) #for j, gid in enumerate(glaciers_to_plot): # #if gid!=10: # ms_selection = mod(gid, len(styles)) # plt.plot(testyears[::], scenario_sle[j], linewidth=4, color=colors[ms_selection], label=gid) # plt.plot(testyears[::5], scenario_sle[j][::5], linewidth=0, marker=markers[ms_selection], ms=10, color=colors[ms_selection]) # if j==0: # plt.fill_between(testyears[::], y1=scenario_sle[j], y2=0, color=colors[ms_selection], alpha=0.7) # else: # plt.fill_between(testyears[::], y1=scenario_sle[j], y2=scenario_sle[j-1], color=colors[ms_selection], alpha=0.7) ##plt.plot([0, 20, 40, 60], [0, 14, 28, 42], color='k', linewidth=1, ls='-', alpha=0.8) #GRACE linear trend ##rect = mpatches.Rectangle((98,8.5), width=2, height=4.6, color='k', alpha=0.7) # Nick et al total projection for 2100, A1B ##rect2 = mpatches.Rectangle((98,11.3), width=2, height=6.2, color='k', alpha=0.7) # Nick et al total projection for 2100, RCP8.5 ##plt.axes().add_patch(rect) ##plt.axes().add_patch(rect2) #plt.legend(loc='upper left') #plt.axes().set_xlabel('Year of simulation', size=20) #plt.axes().set_ylabel('Cumulative sea level contribution [mm]', size=20) #plt.axes().tick_params(axis='both', length=5, width=2, labelsize=20) ##plt.axes().set_xlim(0, 100) ##plt.axes().set_xticks([0, 25, 50, 75, 100]) ##plt.axes().set_ylim(0, 12) ##plt.axes().set_yticks([0, 2, 4, 6, 8, 10, 12]) #plt.show()
47.767516
198
0.677645
794e358db9dba650df024a9239322103f0972e54
2,068
py
Python
tests/unit/output/json_out_test.py
fictivekin/salt
f4b6f815d47ab8c790028e8ddad64ee0f8bb3f00
[ "Apache-2.0" ]
2
2015-09-21T14:13:30.000Z
2016-02-12T11:33:46.000Z
tests/unit/output/json_out_test.py
fictivekin/salt
f4b6f815d47ab8c790028e8ddad64ee0f8bb3f00
[ "Apache-2.0" ]
1
2019-09-06T13:57:28.000Z
2019-09-06T13:57:28.000Z
tests/unit/output/json_out_test.py
fictivekin/salt
f4b6f815d47ab8c790028e8ddad64ee0f8bb3f00
[ "Apache-2.0" ]
2
2017-01-05T16:14:59.000Z
2019-01-31T23:15:25.000Z
# -*- coding: utf-8 -*- ''' unittests for json outputter ''' # Import Python Libs from __future__ import absolute_import # Import Salt Testing Libs from salttesting import TestCase from salttesting.helpers import ensure_in_syspath ensure_in_syspath('../../') # Import Salt Libs from salt.output import json_out as json class JsonTestCase(TestCase): ''' Test cases for salt.output.json_out ''' def setUp(self): json.__opts__ = {} self.data = {'test': 'two', 'example': 'one'} def test_default_output(self): ret = json.output(self.data) expect = '{\n "test": "two", \n "example": "one"\n}' self.assertEqual(expect, ret) def test_pretty_output(self): json.__opts__['output_indent'] = 'pretty' ret = json.output(self.data) expect = '{\n "example": "one", \n "test": "two"\n}' self.assertEqual(expect, ret) def test_indent_output(self): json.__opts__['output_indent'] = 2 expect = '{\n "test": "two", \n "example": "one"\n}' ret = json.output(self.data) self.assertEqual(expect, ret) def test_negative_zero_output(self): json.__opts__['output_indent'] = 0 expect = '{\n"test": "two", \n"example": "one"\n}' ret = json.output(self.data) self.assertEqual(expect, ret) def test_negative_int_output(self): json.__opts__['output_indent'] = -1 expect = '{"test": "two", "example": "one"}' ret = json.output(self.data) self.assertEqual(expect, ret) def test_unicode_output(self): json.__opts__['output_indent'] = 'pretty' data = {'test': '\xe1', 'example': 'one'} expect = ('{"message": "\'utf8\' codec can\'t decode byte 0xe1 in position 0: unexpected end of data", ' '"error": "Unable to serialize output to json"}') ret = json.output(data) self.assertEqual(expect, ret) if __name__ == '__main__': from integration import run_tests run_tests(JsonTestCase, needs_daemon=False)
30.411765
112
0.608801
794e35ef9b80c36133bc0ec1ec397d1cfa0b887c
5,446
py
Python
test/cli/test_submit.py
tzing/python-livy
0f2b0bf7832ae8fc65399506da294f4e8e019626
[ "MIT" ]
1
2022-01-27T03:04:29.000Z
2022-01-27T03:04:29.000Z
test/cli/test_submit.py
tzing/python-livy
0f2b0bf7832ae8fc65399506da294f4e8e019626
[ "MIT" ]
null
null
null
test/cli/test_submit.py
tzing/python-livy
0f2b0bf7832ae8fc65399506da294f4e8e019626
[ "MIT" ]
null
null
null
import argparse import datetime import logging import unittest import unittest.mock import livy.cli.submit as module import livy.cli.config import livy class TestMain(unittest.TestCase): def setUp(self) -> None: # config getter self.config = livy.cli.config.Configuration() self.config.root.api_url = "http://example.com/" patcher = unittest.mock.patch("livy.cli.config.load", return_value=self.config) patcher.start() self.addCleanup(patcher.stop) # hook getter patcher = unittest.mock.patch( "livy.cli.submit.get_function", return_value=lambda x, y: y ) self.get_function = patcher.start() self.addCleanup(patcher.stop) # livy client self.client = unittest.mock.MagicMock(spec=livy.LivyClient) self.client.create_batch.return_value = {"id": 1234} patcher = unittest.mock.patch("livy.LivyClient", return_value=self.client) patcher.start() self.addCleanup(patcher.stop) # log reader self.reader = unittest.mock.MagicMock(spec=livy.LivyBatchLogReader) patcher = unittest.mock.patch( "livy.LivyBatchLogReader", return_value=self.reader ) patcher.start() self.addCleanup(patcher.stop) def test_success(self): # not reading log self.assertEqual( 0, module.main( [ "test.py", "--on-pre-submit", "test_hook", "--no-watch-log", ] ), ) self.get_function.assert_called() self.client.check.assert_called() # reading log self.client.get_batch_state.return_value = "success" self.assertEqual( 0, module.main( [ "test.py", "--on-pre-submit", "test_hook", ] ), ) def test_server_error(self): self.client.check.side_effect = livy.RequestError(0, "Test error") self.assertEqual(1, module.main(["test.py"])) def test_create_batch_error_1(self): self.client.create_batch.side_effect = livy.RequestError(0, "Test error") self.assertEqual(1, module.main(["test.py"])) def test_create_batch_error_2(self): self.client.create_batch.return_value = {"foo": "bar"} self.assertEqual(1, module.main(["test.py"])) def test_readlog_error(self): self.reader.read_until_finish.side_effect = livy.RequestError(0, "Test error") self.assertEqual(1, module.main(["test.py"])) def test_readlog_interrupt(self): self.reader.read_until_finish.side_effect = KeyboardInterrupt() self.assertEqual(1, module.main(["test.py"])) def test_ending_get_batch_state(self): self.client.get_batch_state.side_effect = livy.RequestError(0, "Test error") self.assertEqual(1, module.main(["test.py"])) def test_task_ending_error(self): self.client.get_batch_state.return_value = "dead" self.assertEqual(1, module.main(["test.py", "--on-task-failed", "test_hook"])) class TestHelperFunc(unittest.TestCase): def test_argument(self): # memory size self.assertEqual(module.argmem("1234GB"), "1234GB") with self.assertRaises(argparse.ArgumentTypeError): module.argmem("1234") # key value pair self.assertEqual(module.argkvpair("foo=bar=baz"), ("foo", "bar=baz")) with self.assertRaises(ValueError): module.argkvpair("1234") def test_get_function(self): # success func = module.get_function("livy.cli.submit:get_function") self.assertIs(func, module.get_function) # nameing format error self.assertIsNone(module.get_function("::error")) # import error self.assertIsNone(module.get_function("no_this_module:example")) # func error self.assertIsNone(module.get_function("livy.cli.submit:no_this_func")) def test_run_hook(self): logger = logging.getLogger(__name__) args = unittest.mock.Mock(spec=argparse.Namespace) patcher = unittest.mock.patch( "livy.cli.submit.get_function", return_value=lambda x, y: y ) # success with patcher: module.run_hook(logger, "TEST", args, ["foo"]) # failed to get func with patcher as patch, self.assertRaises(SystemExit): patch.return_value = None module.run_hook(logger, "TEST", args, ["foo"]) # error during run action with patcher as patch, self.assertRaises(SystemExit): patch.return_value = unittest.mock.Mock(side_effect=ValueError()) module.run_hook(logger, "TEST", args, ["foo"]) # hook action's return value invalid with patcher as patch, self.assertRaises(SystemExit): patch.return_value = lambda x, y: None module.run_hook(logger, "TEST", args, ["foo"]) def test_human_readable_timeperiod(self): self.assertEqual( "1h 5s", module.human_readable_timeperiod(datetime.timedelta(seconds=3605)), ) self.assertEqual( "2d 1m 1s", module.human_readable_timeperiod(datetime.timedelta(days=2, seconds=61)), )
33.207317
87
0.608704
794e360407cf097b32fafa79d113cdba46d7f435
583
py
Python
wazimap_ng/profile/migrations/0016_auto_20200412_0544.py
arghyaiitb/wazimap-ng
2a77860526d865b8fd0c22a2204f121fdb3b28a0
[ "Apache-2.0" ]
11
2019-12-31T20:27:22.000Z
2022-03-10T03:55:38.000Z
wazimap_ng/profile/migrations/0016_auto_20200412_0544.py
arghyaiitb/wazimap-ng
2a77860526d865b8fd0c22a2204f121fdb3b28a0
[ "Apache-2.0" ]
164
2020-02-06T15:02:22.000Z
2022-03-30T22:42:00.000Z
wazimap_ng/profile/migrations/0016_auto_20200412_0544.py
arghyaiitb/wazimap-ng
2a77860526d865b8fd0c22a2204f121fdb3b28a0
[ "Apache-2.0" ]
16
2020-01-03T20:30:24.000Z
2022-01-11T11:05:15.000Z
# Generated by Django 2.2.10 on 2020-04-12 05:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('profile', '0015_auto_20200411_2129'), ('points', '0013_auto_20200411_2129'), ] operations = [ ] database_operations = [ migrations.AlterModelTable('Licence', 'datasets_licence'), ] state_operations = [ ] operations = [ migrations.SeparateDatabaseAndState( database_operations=database_operations, state_operations=state_operations) ]
18.806452
68
0.641509
794e366fd616491d3e4e742376a5307708afc112
758
py
Python
misago/misago/threads/api/postingendpoint/protect.py
vascoalramos/misago-deployment
20226072138403108046c0afad9d99eb4163cedc
[ "MIT" ]
2
2021-03-06T21:06:13.000Z
2021-03-09T15:05:12.000Z
misago/misago/threads/api/postingendpoint/protect.py
vascoalramos/misago-deployment
20226072138403108046c0afad9d99eb4163cedc
[ "MIT" ]
null
null
null
misago/misago/threads/api/postingendpoint/protect.py
vascoalramos/misago-deployment
20226072138403108046c0afad9d99eb4163cedc
[ "MIT" ]
null
null
null
from rest_framework import serializers from . import PostingEndpoint, PostingMiddleware class ProtectMiddleware(PostingMiddleware): def use_this_middleware(self): return self.mode == PostingEndpoint.EDIT def get_serializer(self): return ProtectSerializer(data=self.request.data) def post_save(self, serializer): if self.thread.category.acl["can_protect_posts"]: try: self.post.is_protected = serializer.validated_data.get("protect", False) self.post.update_fields.append("is_protected") except (TypeError, ValueError): pass class ProtectSerializer(serializers.Serializer): protect = serializers.BooleanField(required=False, default=False)
31.583333
88
0.701847
794e3928e5d961cc192bf0eac058a450eb405eee
84
py
Python
nxted/files/rotate.py
xlcteam/nxtIDE
659ace68b060682aeeb6d789d88a7b6899a56f9a
[ "MIT" ]
8
2015-02-16T23:11:30.000Z
2021-01-16T00:15:25.000Z
nxted/files/rotate.py
xlcteam/nxtIDE
659ace68b060682aeeb6d789d88a7b6899a56f9a
[ "MIT" ]
3
2016-07-16T20:47:48.000Z
2021-03-25T21:27:11.000Z
nxted/files/rotate.py
xlcteam/nxtIDE
659ace68b060682aeeb6d789d88a7b6899a56f9a
[ "MIT" ]
3
2015-08-30T18:23:51.000Z
2016-10-28T15:07:59.000Z
def main(): OnFwd(OUT_A, 100) OnRev(OUT_B, 100) while 1: pass
12
21
0.511905
794e395c965ecb4db0f6cc555342351e2d387081
9,490
py
Python
src/git_portfolio/prompt.py
staticdev/github-portfolio
850461eed8160e046ee16664ac3dbc19e3ec0965
[ "MIT" ]
null
null
null
src/git_portfolio/prompt.py
staticdev/github-portfolio
850461eed8160e046ee16664ac3dbc19e3ec0965
[ "MIT" ]
null
null
null
src/git_portfolio/prompt.py
staticdev/github-portfolio
850461eed8160e046ee16664ac3dbc19e3ec0965
[ "MIT" ]
null
null
null
"""User prompting module.""" from __future__ import annotations from typing import Any from typing import cast import inquirer import git_portfolio.domain.gh_connection_settings as gcs import git_portfolio.domain.issue as i import git_portfolio.domain.pull_request as pr import git_portfolio.domain.pull_request_merge as prm import git_portfolio.prompt_validation as val class InquirerPrompter: """Question prompting using inquirer.""" @staticmethod def connect_github(github_access_token: str) -> gcs.GhConnectionSettings: """Prompt questions to connect to Github.""" questions = [ inquirer.Password( "github_access_token", message="GitHub access token", validate=val.not_empty_validation, default=github_access_token, ), inquirer.Text( "github_hostname", message="GitHub hostname (change ONLY if you use GitHub Enterprise)", ), ] answers = inquirer.prompt(questions) return gcs.GhConnectionSettings( answers["github_access_token"], answers["github_hostname"] ) @staticmethod def new_repos(github_selected_repos: list[str]) -> Any: """Prompt question to know if you want to select new repositories.""" message = "\nThe configured repos will be used:\n" for repo in github_selected_repos: message += f" * {repo}\n" print(message) answer = inquirer.prompt( [inquirer.Confirm("", message="Do you want to select new repositories?")] )[""] return answer @staticmethod def select_repos(repo_names: list[str]) -> Any: """Prompt questions to select new repositories.""" while True: message = "Which repos are you working on? (Select pressing space)" selected = inquirer.prompt( [ inquirer.Checkbox( "github_repos", message=message, choices=repo_names, ) ] )["github_repos"] if selected: return selected else: print("Please select with `space` at least one repo.\n") @staticmethod def create_issues(github_selected_repos: list[str]) -> i.Issue: """Prompt questions to create issues.""" questions = [ inquirer.Text( "title", message="Write an issue title", validate=val.not_empty_validation, ), inquirer.Text("body", message="Write an issue body [optional]"), inquirer.Text( "labels", message="Write issue labels [optional, separated by comma]" ), inquirer.Confirm( "correct", message=( "Confirm creation of issue for the project(s) " f"{github_selected_repos}. Continue?" ), default=False, ), ] correct = False while not correct: answers = inquirer.prompt(questions) correct = answers["correct"] labels = ( {label.strip() for label in answers["labels"].split(",")} if answers["labels"] else set() ) return i.Issue(0, answers["title"], answers["body"], labels) @staticmethod def query_by_title(github_selected_repos: list[str], object_name: str) -> str: """Prompt questions to close/reopen issues or pull requests.""" questions = [ inquirer.Text( "object_title_query", message=f"Write {object_name} title or part of it", validate=val.not_empty_validation, ), inquirer.Confirm( "correct", message=( f"Confirm closing {object_name}(s) for the project(s) " f"{github_selected_repos}. Continue?" ), default=False, ), ] correct = False while not correct: answers = inquirer.prompt(questions) correct = answers["correct"] return cast(str, answers["object_title_query"]) @staticmethod def create_pull_requests( github_selected_repos: list[str], ) -> pr.PullRequest: """Prompt questions to create pull requests.""" questions = [ inquirer.Text( "base", message="Write base branch name (destination)", default="main", validate=val.not_empty_validation, ), inquirer.Text( "head", message="Write the head branch name (source)", validate=val.not_empty_validation, ), inquirer.Text( "title", message="Write a PR title", validate=val.not_empty_validation ), inquirer.Text("body", message="Write an PR body [optional]"), # inquirer.Confirm( # "draft", message="Do you want to create a draft PR?", default=False # ), inquirer.Text( "labels", message="Write PR labels [optional, separated by comma]" ), inquirer.Confirm( "confirmation", message="Do you want to link pull request to issues by title?", default=False, ), inquirer.Text( "issues_title_query", message="Write issue title (or part of it)", default="", validate=val.not_empty_validation, ignore=val.ignore_if_not_confirmed, ), inquirer.Confirm( "inherit_labels", message="Do you want to add labels inherited from the issues?", default=True, ignore=val.ignore_if_not_confirmed, ), inquirer.Confirm( "correct", message=( "Confirm creation of pull request(s) for the project(s) " f"{github_selected_repos}. Continue?" ), default=False, ), ] correct = False while not correct: answers = inquirer.prompt(questions) correct = answers["correct"] labels = ( {label.strip() for label in answers["labels"].split(",")} if answers["labels"] else set() ) return pr.PullRequest( answers["title"], answers["body"], labels, answers["confirmation"], answers["issues_title_query"], answers["inherit_labels"], answers["head"], answers["base"], False, ) @staticmethod def delete_branches(github_selected_repos: list[str]) -> str: """Prompt questions to delete branches.""" questions = [ inquirer.Text( "branch", message="Write the branch name", validate=val.not_empty_validation, ), inquirer.Confirm( "correct", message=( "Confirm deleting of branch(es) for the project(s) " f"{github_selected_repos}. Continue?" ), default=False, ), ] correct = False while not correct: answers = inquirer.prompt(questions) correct = answers["correct"] return cast(str, answers["branch"]) @staticmethod def merge_pull_requests( github_username: str, github_selected_repos: list[str] ) -> prm.PullRequestMerge: """Prompt questions to merge pull requests.""" questions = [ inquirer.Text( "base", message="Write base branch name (destination)", default="main", validate=val.not_empty_validation, ), inquirer.Text( "head", message="Write the head branch name (source)", validate=val.not_empty_validation, ), inquirer.Text( "prefix", message="Write base user or organization name from PR head", default=github_username, validate=val.not_empty_validation, ), inquirer.Confirm( "delete_branch", message="Do you want to delete head branch on merge?", default=False, ), inquirer.Confirm( "correct", message=( "Confirm merging of pull request(s) for the project(s) " f"{github_selected_repos}. Continue?" ), default=False, ), ] correct = False while not correct: answers = inquirer.prompt(questions) correct = answers["correct"] return prm.PullRequestMerge( answers["base"], answers["head"], answers["prefix"], answers["delete_branch"], )
34.384058
86
0.513066
794e3b37d45f4fc3326e29e616b25e67122f090b
154
py
Python
selfdrive/modeld/constants.py
Basketkase/openpilot
769e1cf7a8322ca83d1a86a2f547acf5e3a5a52e
[ "MIT" ]
73
2017-10-28T20:52:31.000Z
2022-03-05T21:41:34.000Z
selfdrive/modeld/constants.py
Basketkase/openpilot
769e1cf7a8322ca83d1a86a2f547acf5e3a5a52e
[ "MIT" ]
15
2021-09-03T10:11:55.000Z
2022-03-24T14:19:50.000Z
selfdrive/modeld/constants.py
Basketkase/openpilot
769e1cf7a8322ca83d1a86a2f547acf5e3a5a52e
[ "MIT" ]
130
2020-08-19T04:20:02.000Z
2022-03-24T23:05:22.000Z
IDX_N = 33 def index_function(idx, max_val=192): return (max_val/1024)*(idx**2) T_IDXS = [index_function(idx, max_val=10.0) for idx in range(IDX_N)]
19.25
68
0.707792
794e3c0378d9145c9ef4990247907bc95cdc4432
4,024
py
Python
pred.py
debunagoya/PredictVictoryofSumou
16fe94defaab2173f2ca6d0051db768b38590907
[ "MIT" ]
null
null
null
pred.py
debunagoya/PredictVictoryofSumou
16fe94defaab2173f2ca6d0051db768b38590907
[ "MIT" ]
2
2020-09-26T01:03:52.000Z
2021-06-08T21:33:08.000Z
pred.py
debunagoya/PredictVictoryofSumou
16fe94defaab2173f2ca6d0051db768b38590907
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib.pyplot as plt import lightgbm as lgb import pickle from sklearn import metrics from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier as RandomForest from sklearn.model_selection import GridSearchCV ## CSV読み込み train = pd.read_csv("data/train.csv") test = pd.read_csv("data/test.csv") # ARR = [] # for i in range(1,13,2) : # for j in range(1,16,1) : # ARR.append([0,'Takakeisho','Kakuryu', 2020, i, j]) # test = pd.DataFrame(ARR, columns=['w_judge','w_name','e_name','year','month','day']) ### 欠損値の削除 train = train.dropna() test = test.dropna() train = train.drop(columns=['e_judge']) train = train.drop(columns=['ruler']) train = train.drop(columns=['w_rank']) train = train.drop(columns=['e_rank']) test = test.drop(columns=['e_judge']) test = test.drop(columns=['ruler']) test = test.drop(columns=['w_rank']) test = test.drop(columns=['e_rank']) # データセットを結合 train = pd.concat([train,test], ignore_index=True) ### Category Encorder for column in ['w_judge']: le = LabelEncoder() le.fit(train[column]) train[column] = le.transform(train[column]) le.fit(test[column]) test[column] = le.transform(test[column]) ### OneHot Encording oh_w_class = pd.get_dummies(train.w_name) oh_e_class = pd.get_dummies(train.e_name) train.drop(['w_name','e_name'], axis=1, inplace=True) train = pd.concat([train,oh_w_class,oh_w_class], axis=1) _, i = np.unique(train.columns, return_index=True) train = train.iloc[:, i] ### データセットの作成 (説明変数 -> X, 目的変数 -> Y) X = train.drop('w_judge', axis=1) y = train.w_judge # print('X shape: {}, y shape: {}'.format(X.shape, y.shape)) ### データセットの分割 # X_train = X[0:len(X)-len(ARR)] # X_test = X.tail(len(ARR)) # y_train = y[0:len(y)-len(ARR)] # y_test = y.tail(len(ARR)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None) # print("LinearRegression") # model = LinearRegression() # model.fit(X_train,y_train) # print(model.score(X_train,y_train)) # # print("LogisticRegression") # model = LogisticRegression() # model.fit(X_train,y_train) # print(model.score(X_train,y_train)) # print("SVM") # model = SVC() # model.fit(X_train, y_train) # predicted = model.predict(X_test) # print(metrics.accuracy_score(Y_test, predicted)) # print("GridSearch") # best_score = 0 # for gamma in [0.001, 0.01, 0.1, 1, 10, 100]: # for C in [0.001, 0.01, 0.1, 1, 10, 100]: # print(str(gamma) + "," + str(C)) # svm = SVC(gamma=gamma, C=C) # svm.fit(X_train, y_train.values.ravel()) # score = svm.score(X_test, y_test) # if score > best_score: # best_score = score # best_parameters = {'C':C, 'gamma':gamma} # print("Best score: " + str(best_score)) # print("Best parameters: " + str(best_parameters)) # print("RandomForest") # model = RandomForest(n_estimators=100).fit(X_train, y_train) # print(model.score(X_test, y_test)) print("LightGBM") train = lgb.Dataset(X_train, y_train) test = lgb.Dataset(X_test, y_test, reference=train) params = { 'objective': 'binary', 'metric': 'auc', } model = lgb.train(params, train, valid_sets=test) with open('model.pickle', mode='wb') as f: pickle.dump(model, f) with open('model.pickle', mode='rb') as f: model = pickle.load(f) y_pred = model.predict(X_test, num_iteration=model.best_iteration) print(len(y_pred)) acc = 0 for i in range(len(y_pred)) : acc = acc + y_pred[i] print(acc / len(y_pred)) # model.save_model('model.txt') #bst = lgb.Booster(model_file='model.txt') #ypred = bst.predict(X_test, num_iteration=bst.best_iteration) # fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred) # auc = metrics.auc(fpr, tpr) # print(auc)
29.807407
91
0.684891
794e3c19a4bb43ecdec762ffd05a01ccf93378da
331
py
Python
getUserInput.py
yogajia/Field-Programming
19891a9fff4cf66c60a4a5d9b1bd03f8d06f884b
[ "MIT" ]
null
null
null
getUserInput.py
yogajia/Field-Programming
19891a9fff4cf66c60a4a5d9b1bd03f8d06f884b
[ "MIT" ]
null
null
null
getUserInput.py
yogajia/Field-Programming
19891a9fff4cf66c60a4a5d9b1bd03f8d06f884b
[ "MIT" ]
6
2021-10-30T00:17:23.000Z
2021-10-30T01:08:09.000Z
def getUserInput(): level = 1 print("输出:请输入你的年级") grade = input("输入:") if grade in ["一年级", "二年级"]: level = 1 if grade in ["三年级", "四年级"]: level = 2 if grade in ["五年级", "六年级"]: level = 3 print("输出:请输入题目数") num = input("输入:") return level, int(num) # print(getUserInput())
20.6875
31
0.504532
794e3c6584938c883a90a558379a5dbfd424b2dc
3,375
py
Python
apps/home/views.py
jjsanchezc/CONPY
c7a92f5bbf214813bc7f79baff803657fb40f3a2
[ "MIT" ]
1
2022-02-19T17:21:57.000Z
2022-02-19T17:21:57.000Z
apps/home/views.py
jjsanchezc/CONPY
c7a92f5bbf214813bc7f79baff803657fb40f3a2
[ "MIT" ]
null
null
null
apps/home/views.py
jjsanchezc/CONPY
c7a92f5bbf214813bc7f79baff803657fb40f3a2
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ import os from django.shortcuts import render from fileinput import filename from django import template from django.contrib.auth.decorators import login_required from django.http import HttpRequest, HttpResponse, HttpResponseRedirect from django.template import loader from django.urls import reverse import apps.home.dataManagement.ingresos.manage as idm import apps.home.dataManagement.gastos.manage as gdm from core import settings @login_required(login_url="/login/") def index(request): context = {'segment': 'index'} html_template = loader.get_template('home/index.html') return HttpResponse(html_template.render(context, request)) @login_required(login_url="/login/") def pages(request): context = {} # All resource paths end in .html. # Pick out the html file name from the url. And load that template. try: load_template = request.path.split('/')[-1] if load_template == 'admin': return HttpResponseRedirect(reverse('admin:index')) context['segment'] = load_template html_template = loader.get_template('home/' + load_template) return HttpResponse(html_template.render(context, request)) except template.TemplateDoesNotExist: html_template = loader.get_template('home/page-404.html') return HttpResponse(html_template.render(context, request)) except: html_template = loader.get_template('home/page-500.html') return HttpResponse(html_template.render(context, request)) def upload(request): print("llega hasta aca") if request.method=="POST": uploaded_file=request.FILES['documento'] print(uploaded_file.name) print(uploaded_file.size) return render(request,'upload-download.html') @login_required(login_url="/login/") def read_new_input(request): """metodo para leer el input de ingresos, este llama a las funciones manage.py para poder procesarlos Returns: django.http.response.HttpResponse: devuelve a la pagina de ingresos """ descr=request.POST.get('descripcion') cant=request.POST.get('cantidad') msg=None exito=None if request.POST.get('tipo')=='ingreso': org=request.POST.get('origen/destino') if cant!="" and org!="" : try: idm.add_ingresos(str(org),str(descr),float(cant)) exito="se ha añadido con exito a la base de datos" except ValueError: msg="no se han introducido datos correctos en cantidad" else: msg="Has dejado espacios obligatorios vacios" elif request.POST.get('tipo')=='gasto': destino=request.POST.get('origen/destino') if cant!="" and destino!="" : try: gdm.add_gastos(str(destino),str(descr),float(cant)) exito="se ha añadido con exito a la base de datos" except ValueError: msg="no se han introducido datos correctos en cantidad" else: msg="Has dejado espacios obligatorios vacios" print("gastos") else: print("no entré") return render(request,'home/ingreso.html',{"msg":msg,"exito":exito}) def a(request): print("--------------------------------------------\nhola soy a")
30.963303
72
0.653926
794e3cfa36ad6bc80f9103a307b39cb34c3659fd
539
py
Python
tests/aio/conftest.py
cuenca-mx/mongoengine-plus
01e55db2af58477bac2621ff51708daae3416268
[ "MIT" ]
null
null
null
tests/aio/conftest.py
cuenca-mx/mongoengine-plus
01e55db2af58477bac2621ff51708daae3416268
[ "MIT" ]
43
2021-04-30T20:02:49.000Z
2022-03-30T16:16:30.000Z
tests/aio/conftest.py
cuenca-mx/mongoengine-plus
01e55db2af58477bac2621ff51708daae3416268
[ "MIT" ]
null
null
null
from typing import Generator, List import pytest from .cities import City @pytest.fixture def cities() -> Generator[List[City], None, None]: cities = [ City(name='Villahermosa', state='Tabasco'), City(name='Ciudad de México', state='CDMX'), City(name='Monterrey', state='Nuevo León'), City(name='San Cristobal', state='Chiapas'), City(name='Tuxtla Gutiérrez', state='Chiapas'), ] for city in cities: city.save() yield cities for city in cities: city.delete()
24.5
55
0.619666
794e3d0856c04f5110ffff67644f1b8c3a137c1c
1,609
py
Python
plotting.py
CSlocumWX/plotting
d13467202208a97d0a4bc487c0e001ae55690fb3
[ "BSD-3-Clause" ]
2
2019-05-17T19:36:11.000Z
2022-03-07T08:34:21.000Z
plotting.py
CSlocumWX/plotting
d13467202208a97d0a4bc487c0e001ae55690fb3
[ "BSD-3-Clause" ]
null
null
null
plotting.py
CSlocumWX/plotting
d13467202208a97d0a4bc487c0e001ae55690fb3
[ "BSD-3-Clause" ]
1
2022-03-07T08:34:22.000Z
2022-03-07T08:34:22.000Z
""" Loads my matplotlibrc file and allows me to customize additional aspects of my plots """ import os from warnings import warn import matplotlib as mpl import matplotlib.pyplot as plt _path = os.path.dirname(os.path.abspath(__file__)) mpl.rc_context(fname=_path + "/matplotlibrc") def change_style(society="utopia"): """ Loads other fonts based on the professional society Parameters ---------- society : str the name of the society """ if society == "ams": font = "\usepackage{mathptmx}," elif society == "agu": font = "\usepackage[helvet]{sfmath}," elif society == "utopia": font = "\usepackage[adobe-utopia]{mathdesign}," else: warn("Style for society {society} not found. Using Computer Modern") font = '' with open(_path + "/preamble.txt", "r") as preamble: mpl.rcParams['text.latex.preamble'] = preamble.read().format(font=font) def pc2in(picas): """ Converts picas to inches Parameters ---------- picas : int or float dimension in picas Returns ------- inches : float dimensions in inches """ if picas not in [19, 27, 33, 39, 68]: warn("Not a standard AMS width") return picas / 6. def fix_ticklabels(): """ Sets tick label typeface back to default while preserving the default behavior of the major label formatter """ for attr in ["xaxis", "yaxis"]: fmt = getattr(plt.gca(), attr).get_major_formatter() fmt._usetex = False getattr(plt.gca(), attr).set_major_formatter(fmt)
25.140625
79
0.620883
794e3ff805ff4ab237c24e7c1ac354053dabd05d
1,149
py
Python
twopointer/merge_sorted_array.py
dsrao711/DSA-101-HacktoberFest
0d04e2aecee224080c34146e327ff6de15d9ba16
[ "MIT" ]
16
2021-10-02T20:10:51.000Z
2022-03-06T10:31:11.000Z
twopointer/merge_sorted_array.py
dsrao711/DSA-101-HacktoberFest
0d04e2aecee224080c34146e327ff6de15d9ba16
[ "MIT" ]
55
2021-10-02T07:31:41.000Z
2021-10-30T06:19:26.000Z
twopointer/merge_sorted_array.py
dsrao711/DSA-101-HacktoberFest
0d04e2aecee224080c34146e327ff6de15d9ba16
[ "MIT" ]
36
2021-10-02T18:00:08.000Z
2022-01-03T18:50:35.000Z
# https://leetcode.com/problems/merge-sorted-array/ class Solution(object): def merge(self, nums1, m, nums2, n): """ :type nums1: List[int] :type m: int :type nums2: List[int] :type n: int :rtype: None Do not return anything, modify nums1 in-place instead. """ # pointer 1 = m - 1 # pointer 2 = n - 1 last = m + n - 1 # Since both arrays are sorted , check if last ele of nums2 is greater than nums1 # If yes, then nums2's last ele will be the last ele of nums1 # Else , it means that nums1's last non zero ele is the largest ele possible so it goes to last # Decreament the pointers and last accordingly while(m and n): if(nums1[m-1] < nums2[n-1]): nums1[last] = nums2[n-1] n -= 1 else: nums1[last] = nums1[m-1] m -= 1 last -= 1 # If any elements are left in nums2 , append them in nums1 while(n): nums1[last] = nums2[n-1] n -= 1 last -= 1
35.90625
104
0.499565
794e427802e0cd8d960c3515953aa1a305794516
5,572
py
Python
ambari-agent/src/main/python/ambari_agent/HostCheckReportFileHandler.py
mkozinenko/ambari
9cfe9559420a1f4af89a2d645af84b1ab20d6737
[ "Apache-2.0", "MIT" ]
null
null
null
ambari-agent/src/main/python/ambari_agent/HostCheckReportFileHandler.py
mkozinenko/ambari
9cfe9559420a1f4af89a2d645af84b1ab20d6737
[ "Apache-2.0", "MIT" ]
null
null
null
ambari-agent/src/main/python/ambari_agent/HostCheckReportFileHandler.py
mkozinenko/ambari
9cfe9559420a1f4af89a2d645af84b1ab20d6737
[ "Apache-2.0", "MIT" ]
null
null
null
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import datetime import os.path import logging import traceback from AmbariConfig import AmbariConfig import ConfigParser; logger = logging.getLogger(__name__) class HostCheckReportFileHandler: HOST_CHECK_FILE = "hostcheck.result" HOST_CHECK_CUSTOM_ACTIONS_FILE = "hostcheck_custom_actions.result" def __init__(self, config=None): self.hostCheckFilePath = None if config is None: config = self.resolve_ambari_config() hostCheckFileDir = config.get('agent', 'prefix') self.hostCheckFilePath = os.path.join(hostCheckFileDir, self.HOST_CHECK_FILE) self.hostCheckCustomActionsFilePath = os.path.join(hostCheckFileDir, self.HOST_CHECK_CUSTOM_ACTIONS_FILE) def resolve_ambari_config(self): try: config = AmbariConfig() if os.path.exists(AmbariConfig.getConfigFile()): config.read(AmbariConfig.getConfigFile()) else: raise Exception("No config found, use default") except Exception, err: logger.warn(err) return config def writeHostChecksCustomActionsFile(self, structuredOutput): if self.hostCheckCustomActionsFilePath is None: return try: logger.info("Host check custom action report at " + self.hostCheckCustomActionsFilePath) config = ConfigParser.RawConfigParser() config.add_section('metadata') config.set('metadata', 'created', str(datetime.datetime.now())) if 'installed_packages' in structuredOutput.keys(): items = [] for itemDetail in structuredOutput['installed_packages']: items.append(itemDetail['name']) config.add_section('packages') config.set('packages', 'pkg_list', ','.join(map(str, items))) if 'existing_repos' in structuredOutput.keys(): config.add_section('repositories') config.set('repositories', 'repo_list', ','.join(structuredOutput['existing_repos'])) self.removeFile(self.hostCheckCustomActionsFilePath) self.touchFile(self.hostCheckCustomActionsFilePath) with open(self.hostCheckCustomActionsFilePath, 'wb') as configfile: config.write(configfile) except Exception, err: logger.error("Can't write host check file at %s :%s " % (self.hostCheckCustomActionsFilePath, err.message)) traceback.print_exc() def writeHostCheckFile(self, hostInfo): if self.hostCheckFilePath is None: return try: logger.debug("Host check report at " + self.hostCheckFilePath) config = ConfigParser.RawConfigParser() config.add_section('metadata') config.set('metadata', 'created', str(datetime.datetime.now())) if 'existingUsers' in hostInfo.keys(): items = [] items2 = [] for itemDetail in hostInfo['existingUsers']: items.append(itemDetail['name']) items2.append(itemDetail['homeDir']) config.add_section('users') config.set('users', 'usr_list', ','.join(items)) config.set('users', 'usr_homedir_list', ','.join(items2)) if 'alternatives' in hostInfo.keys(): items = [] items2 = [] for itemDetail in hostInfo['alternatives']: items.append(itemDetail['name']) items2.append(itemDetail['target']) config.add_section('alternatives') config.set('alternatives', 'symlink_list', ','.join(items)) config.set('alternatives', 'target_list', ','.join(items2)) if 'stackFoldersAndFiles' in hostInfo.keys(): items = [] for itemDetail in hostInfo['stackFoldersAndFiles']: items.append(itemDetail['name']) if os.path.exists('/usr/hdp'): items.append('/usr/hdp') config.add_section('directories') config.set('directories', 'dir_list', ','.join(items)) if 'hostHealth' in hostInfo.keys(): if 'activeJavaProcs' in hostInfo['hostHealth'].keys(): items = [] for itemDetail in hostInfo['hostHealth']['activeJavaProcs']: items.append(itemDetail['pid']) config.add_section('processes') config.set('processes', 'proc_list', ','.join(map(str, items))) self.removeFile(self.hostCheckFilePath) self.touchFile(self.hostCheckFilePath) with open(self.hostCheckFilePath, 'wb') as configfile: config.write(configfile) except Exception, err: logger.error("Can't write host check file at %s :%s " % (self.hostCheckFilePath, err.message)) traceback.print_exc() def removeFile(self, path): if os.path.isfile(path): logger.debug("Removing old host check file at %s" % path) os.remove(path) def touchFile(self, path): if not os.path.isfile(path): logger.debug("Creating host check file at %s" % path) open(path, 'w').close()
36.657895
113
0.681981
794e44290f9e092e01df3fa24f59906f319aec35
264
py
Python
ex13.py
ShweYeeKoKo/python-exercises
f7e0a8a5b1a55c42783d36f849c10b54932d568e
[ "MIT" ]
null
null
null
ex13.py
ShweYeeKoKo/python-exercises
f7e0a8a5b1a55c42783d36f849c10b54932d568e
[ "MIT" ]
null
null
null
ex13.py
ShweYeeKoKo/python-exercises
f7e0a8a5b1a55c42783d36f849c10b54932d568e
[ "MIT" ]
null
null
null
from sys import argv # read the WYSS section for how to run this script, first, second, third = argv print("The script is called:", script) print("Your first variable is:", first) print("Your second variable is:", second) print("Your third variable is:", third)
29.333333
43
0.731061
794e45aade7a6d16460934c64e28bb3e6e48c275
297
py
Python
pyhmsa_tiff/__init__.py
pyhmsa/pyhmsa-fileformat-tiff
e04bc393a899f45974ecee1e77afc78f0e48e6cb
[ "MIT" ]
null
null
null
pyhmsa_tiff/__init__.py
pyhmsa/pyhmsa-fileformat-tiff
e04bc393a899f45974ecee1e77afc78f0e48e6cb
[ "MIT" ]
null
null
null
pyhmsa_tiff/__init__.py
pyhmsa/pyhmsa-fileformat-tiff
e04bc393a899f45974ecee1e77afc78f0e48e6cb
[ "MIT" ]
null
null
null
""" Exporter of pyhMSA data to TIFF images. """ __author__ = "Philippe T. Pinard" __email__ = "philippe.pinard@gmail.com" __copyright__ = "Copyright (c) 2013-2015 Philippe T. Pinard" __license__ = "MIT" from ._version import get_versions __version__ = get_versions()['version'] del get_versions
22.846154
60
0.750842
794e45c19b797eba9dec4876a0be74c2dcbaed05
26,964
py
Python
skweak/utils.py
schopra8/skweak
e2a8fd396164b07292d86fae44e71af0fa28860a
[ "MIT" ]
null
null
null
skweak/utils.py
schopra8/skweak
e2a8fd396164b07292d86fae44e71af0fa28860a
[ "MIT" ]
null
null
null
skweak/utils.py
schopra8/skweak
e2a8fd396164b07292d86fae44e71af0fa28860a
[ "MIT" ]
null
null
null
import json import re import functools from typing import List, Dict, Tuple, Optional, TypeVar, Iterable from spacy.tokens import Doc, Token, Span, DocBin # type: ignore import numpy as np T = TypeVar('T') ############################################ # Utility functions for NLP analysis ############################################ def is_likely_proper(tok: Token, min_rank=200) -> bool: """Returns true if the spacy token is a likely proper name, based on its form. NB: this method should only be used for languages that have a distinction between lowercase and uppercase (so called bicameral scripts).""" # We require at least two characters if len(tok) < 2: return False # If the lemma is titled or in uppercase, just return True elif tok.lemma_.istitle() and len(tok.lemma_) >2: return True elif tok.lemma_.isupper() and len(tok.lemma_) >2 and tok.lemma_ != "-PRON-": return True # If there is no lemma, but the token is in uppercase, return true as well elif tok.lemma_=="" and tok.is_upper: return True # We do not consider the 200 most common words as proper name elif (tok.lemma_.islower() and tok.lemma in tok.vocab.strings and tok.vocab[tok.lemma].rank < min_rank): return False # Handling cases such as iPad elif len(tok) > 2 and tok.text[0].islower() and tok.text[1].isupper(): return True # Handling cases such as IceFog elif (len(tok) > 2 and tok.text[0].isupper() and any([k.islower() for k in tok.text[1:]]) and any([k.isupper() for k in tok.text[1:]])): return True # Else, check whether the surface token is titled and is not sentence-initial # NB: This should be commented out for languages such as German elif (tok.i > 0 and tok.is_title and not tok.is_sent_start and tok.nbor(-1).text not in {'\'', '"', '‘', '“', '”', '’', "\n", "|"} and not tok.nbor(-1).text.endswith(".")): return True # If the part-of-speech is a proper noun elif tok.pos_ == "PROPN": return True # If the token is a quite rare token elif (len(tok) > 3 and (tok.is_lower or tok.is_upper) and len(tok.vocab.vectors) > 0 and tok.is_oov): return True return False def is_infrequent(span: Span, max_rank_threshold=15000) -> bool: """Returns true if there is at least one token that is quite infrequent""" max_rank = max(tok.rank if len(span.vocab.vectors) > 0 and tok.rank > 0 else 0 for tok in span) return max_rank > max_rank_threshold def in_compound(tok: Token): """Returns true if the spacy token is part of a compound phrase""" if tok.dep_ == "compound": return True elif tok.i > 0 and tok.nbor(-1).dep_ == "compound": return True return False def replace_ner_spans(doc: Doc, source: str): """Given a Spacy Doc object and the name of an annotation source, replaces the current named entities by the ones specified in the source""" # We create Spacy spans based on the annotation layer spans = [] if source in doc.spans: for span in doc.spans[source]: spans.append(span) doc.ents = tuple(spans) return doc @functools.lru_cache(maxsize=5) def get_spacy_model(spacy_model_name: str): """Returns the vocabulary associated with the spacy model (and caches it for faster access)""" import spacy return spacy.load(spacy_model_name) @functools.lru_cache(maxsize=1) def get_tokens(doc: Doc) -> List[str]: """Returns the list of tokens from a given spacy Document. As it is an operation that (for some strange reason) actually takes some CPU resources, we cache the results, as it is a frequent operation, e.g. for gazetteers. """ return [tok.text for tok in doc] @functools.lru_cache(maxsize=1) def get_next_sentence_boundaries(doc: Doc) -> List[int]: """Returns a list of integers (of same size as the number of tokens) expressing, for each token, the position of the next sentence boundary (start-of-sentence token). """ boundaries = [] for tok in doc: if tok.is_sent_start: boundaries.append(tok.i) next_boundary_indices = np.searchsorted(boundaries, range(1, len(doc)+1)) next_boundaries = [boundaries[i] if i < len(boundaries) else len(doc) for i in next_boundary_indices] return next_boundaries ############################################ # I/O related functions ############################################ def docbin_reader(docbin_file_path: str, spacy_model_name: str = "en_core_web_md", cutoff: Optional[int] = None, nb_to_skip: int = 0): """Read a binary file containing a DocBin repository of spacy documents. In addition to the file path, we also need to provide the name of the spacy model (which is necessary to load the vocabulary), such as "en_core_web_md". If cutoff is specified, the method will stop after generating the given number of documents. If nb_to_skip is > 0, the method will skip the given number of documents before starting the generation. """ import spacy # Reading the binary data from the file fd = open(docbin_file_path, "rb") data = fd.read() fd.close() docbin = DocBin(store_user_data=True) docbin.from_bytes(data) del data # print("Total number of documents in docbin:", len(docbin)) # Skip a number of documents if nb_to_skip: docbin.tokens = docbin.tokens[nb_to_skip:] docbin.spaces = docbin.spaces[nb_to_skip:] docbin.user_data = docbin.user_data[nb_to_skip:] # Retrieves the vocabulary vocab = get_spacy_model(spacy_model_name).vocab # We finally generate the documents one by one reader = docbin.get_docs(vocab) for i, doc in enumerate(reader): yield doc if cutoff is not None and (i+1) >= cutoff: return def docbin_writer(docs: Iterable[Doc], docbin_output_path: str): """Writes a stream of Spacy Doc objects to a binary file in the DocBin format.""" import spacy.attrs # Creating the DocBin object (with all attributes) attrs = [spacy.attrs.LEMMA, spacy.attrs.TAG, spacy.attrs.DEP, spacy.attrs.HEAD, spacy.attrs.ENT_IOB, spacy.attrs.ENT_TYPE] docbin = DocBin(attrs=attrs, store_user_data=True) # Storing the documents in the DocBin repository for doc in docs: doc.cats = {} docbin.add(doc) data = docbin.to_bytes() # And writing the content to the file print("Write to", docbin_output_path, end="...", flush=True) fd = open(docbin_output_path, "wb") fd.write(data) fd.close() print("done") def json_writer(docs, json_file_path: str, source: str = None): """Converts a collection of Spacy Doc objects to a JSON format, such that it can be used to train the Spacy NER model. (for Spacy v2) Source must be an aggregated source (defined in user_data["agg_spans"]), which will correspond to the target values in the JSON file. """ import spacy if int(spacy.__version__[0]) > 2: raise RuntimeError("Only supported for Spacy v2") import spacy.gold # type: ignore # We start opening up the JSON file print("Writing JSON file to", json_file_path) out_fd = open(json_file_path, "wt") out_fd.write("[{\"id\": 0, \"paragraphs\": [\n") for i, doc in enumerate(docs): # We replace the NER labels with the annotation source if source is not None: doc = replace_ner_spans(doc, source) # We dump the JSON content to the file d = spacy.gold.docs_to_json([doc]) s = json.dumps(d["paragraphs"]).strip("[]") if i > 0: s = ",\n" + s out_fd.write(s) if i > 0 and i % 1000 == 0: print("Converted documents:", i) out_fd.flush() # And finally close all file descriptors out_fd.write("]}]\n") out_fd.flush() out_fd.close() ############################################ # Operations on spans ############################################ def get_spans(doc: Doc, sources: List[str], labels: Optional[List[str]] = None ) -> List[Span]: """Return the spans annotated by a list of labelling sources. If two spans are overlapping, the longest spans are kept. One can also specify the labels to focus on (if empty, we extract all). """ # Creating a list of spans spans = [] for source in sources: if source in doc.spans: for span in doc.spans[source]: if labels is None or span.label_ in labels: spans.append(span) else: raise RuntimeError("Annotation source \"%s\" cannot be found" % source) # Remove possible overlaps spans = _remove_overlaps(spans) return spans def get_spans_with_probs(doc: Doc, source: str, labels: Optional[List[str]] = None ) -> List[Tuple[Span,float]]: """Return the spans annotated by an aggregated source. The method returns a dictionary of non-overlapping spans where the keys are (start, end) pairs and the values are pairs of (label, prob). """ spans = [] if source in doc.spans: for span in doc.spans[source]: if labels is None or span.label_ in labels: prob = _get_agg_span_prob(doc, source, span) spans.append((span, prob)) else: raise RuntimeError("Annotation source \"%s\" cannot be found" % source) return spans def _get_agg_span_prob(doc, source, span): """Get the probability that the source assigns the (start,end)->label span""" if source not in doc.spans: return 0 elif "probs" not in doc.spans[source].attrs: return 1 probs = doc.spans[source].attrs["probs"] if (span.start, span.end) in probs: return probs[(span.start, span.end)] probs_per_token = [] for i in range(span.start, span.end): if i in probs: for prefixed_label, prob in probs[i].items(): if prefixed_label.endswith("-%s" % span.label_): probs_per_token.append(prob) return sum(probs_per_token)/(len(span)) def count_nb_occurrences(tokens: Tuple[str, ...], all_tokens: List[str]): """Count the number of occurences of the sequence of tokens in the full list all_tokens""" nb_occurrences = 0 for i in range(len(all_tokens)): for k in range(len(tokens)): if all_tokens[i+k] != tokens[k]: break else: nb_occurrences += 1 return nb_occurrences def at_least_nb_occurrences(tokens: Tuple[str, ...], all_tokens: List[str], min_threshold): """Returns true if the number of occurences of the sequence of tokens in the full list all_tokens is at least min_threshold, and false otherwise""" if len(tokens) == 1: return all_tokens.count(tokens[0]) >= min_threshold nb_occurrences = 0 for i in range(len(all_tokens)): for k in range(len(tokens)): if (i+k) >= len(all_tokens) or all_tokens[i+k] != tokens[k]: break else: nb_occurrences += 1 if nb_occurrences >= min_threshold: return True return False def _remove_overlaps(spans: List[Span]) -> List[Span]: """Remove overlaps between spans expressed as (start, end, label, score) tuples. When two overlapping spans are detected, the method keeps the longest span and removes the other. If the two scores are identical, the first span is discarded). """ # We sort the spans by their position spans.sort() # We resolve overlaps between spans finished = False while not finished: finished = True for i in range(1, len(spans)): # If two spans are overlapping , keep the longest one start1 = spans[i-1].start end1 = spans[i-1].end start2 = spans[i].start end2 = spans[i].end if start2 < end1 and start1 < end2: length_diff = (end1-start1) - (end2-start2) if length_diff > 0: del spans[i] else: del spans[i-1] finished = False break return spans def merge_contiguous_spans(spans: List[Tuple[int, int, str]], doc: Doc, acceptable_gaps: str = ","): """Merge spans that are contiguous (and with same label), or only separated with some predefined punctuation symbols""" finished = False while not finished: finished = True spans.sort() for i in range(1, len(spans)): start1, end1, label1 = spans[i-1] start2, end2, label2 = spans[i] if end1 == start2 or (end1 == start2-1 and doc[end1].text in acceptable_gaps): if label1 == label2: new_spans = spans[:i-1] if i > 1 else [] new_spans.append((start1, end2, label1)) new_spans += spans[i+1:] spans = new_spans finished = False break return spans def get_overlaps(start: int, end: int, other_spans: List[Tuple[int, int]]) -> List[Tuple[int, int]]: """Returns a list of overlaps (as (start, end, value) between the provided span and other existing spans""" overlaps = [] other_spans.sort() start_search, end_search = _binary_search(start, end, other_spans) for other_span_start, other_span_end in other_spans[start_search:end_search]: if start < other_span_start and end > other_span_end: overlaps.append((other_span_start, other_span_end)) return overlaps def _binary_search(start: int, end: int, intervals: List[Tuple[int, int]]) -> Tuple[int, int]: """Performs a binary search""" start_search = 0 end_search = len(intervals) while start_search < (end_search-1): mid = start_search + (end_search-start_search)//2 (interval_start, interval_end) = intervals[mid] if interval_end <= start: start_search = mid elif interval_start >= end: end_search = mid else: break return start_search, end_search def get_subsequences(sequence: List[T]) -> List[List[T]]: """Returns the list of possible subsequences that are included in the full sequence (including the original sequence).""" subsequences = [] for length in range(1, len(sequence)+1): for i in range(length, len(sequence)+1): subsequences.append(sequence[i-length:i]) return subsequences def spans_to_array(doc: Doc, labels: List[str], sources: List[str] = None) -> np.ndarray: """Convert the annotations of a spacy document into a 2D array. Each row corresponds to a token, and each column to a labelling source. In other words, the value at (i,j) represents the prediction of source j for token i. This prediction is expressed as the index of the label in the labels. Labels must be a list of labels (such as B-PERSON, I-ORG) to detect. Sources should be a list of labelling sources. If empty, all sources are employed. NB: we assume the labels use either IO/BIO/BILUO, and that the O label is at position 0. """ # Creating some helper dictionaries label_indices = {} prefixes = set() labels_without_prefix = set() for i, label in enumerate(labels): label_indices[label] = i if "-" in label: prefix, label = label.split("-", 1) prefixes.add(prefix) labels_without_prefix.add(label) if sources is None: sources = list(doc.spans.keys()) # Creating the numpy array itself data = np.zeros((len(doc), len(sources)), dtype=np.int16) for source_index, source in enumerate(sources): for span in doc.spans.get(source, []): if span.label_ not in labels_without_prefix: continue # If the span is a single token, we can use U if "U" in prefixes and len(span) == 1: data[span.start, source_index] = label_indices["U-%s" % span.label_] continue # Otherwise, we use B, I and L if "B" in prefixes: data[span.start, source_index] = label_indices["B-%s" % span.label_] if "I" in prefixes: start_i = (span.start+1) if "B" in prefixes else span.start end_i = (span.end-1) if "L" in prefixes else span.end data[start_i:end_i, source_index] = label_indices["I-%s" % span.label_] if "L" in prefixes: data[span.end-1, source_index] = label_indices["L-%s" % span.label_] return data def token_array_to_spans(agg_array: np.ndarray, prefix_labels: List[str]) -> Dict[Tuple[int, int], str]: """Returns an dictionary of spans corresponding to the aggregated 2D array. prefix_labels must be list of prefix labels such as B-PERSON, I-ORG etc., of same size as the number of columns in the array.""" spans = {} i = 0 while i < len(agg_array): if np.isscalar(agg_array[i]): value_index = agg_array[i] else: # If we have probabilities, select most likely label value_index = agg_array[i].argmax() if value_index == 0: i += 1 continue prefix_label = prefix_labels[value_index] prefix, label = prefix_label.split("-", 1) # If the prefix is "U", create a single-token span if prefix == "U": spans[(i, i+1)] = label i += 1 # Otherwise, we need to continue until the span ends elif prefix in {"B", "I"}: start = i i += 1 while i < len(agg_array): if np.isscalar(agg_array[i]): next_val = agg_array[i] else: next_val = agg_array[i].argmax() if next_val == 0: break next_prefix_label = prefix_labels[next_val] next_prefix, next_label = next_prefix_label.split("-", 1) if next_prefix not in {"I", "L"}: break i += 1 spans[(start, i)] = label return spans def token_array_to_probs(agg_array: np.ndarray, prefix_labels: List[str]) -> Dict[int, Dict[str, float]]: """Given a 2D array containing, for each token, the probabilities for a each possible output label in prefix form (B-PERSON, I-ORG, etc.), returns a dictionary of dictionaries mapping token indices to probability distributions over their possible labels. The "O" label and labels with zero probabilities are ignored. """ # Initialising the label sequence token_probs = {} # We only look at labels beyond "O", and with non-zero probability row_indices, col_indices = np.nonzero(agg_array[:, 1:]) for i, j in zip(row_indices, col_indices): if i not in token_probs: token_probs[i] = {prefix_labels[j+1]: agg_array[i, j+1]} #type: ignore else: token_probs[i][prefix_labels[j+1]] = agg_array[i, j+1] #type: ignore return token_probs def is_valid_start(prefix_label, encoding="BIO"): """Returns whether the prefix label is allowed to start a sequence""" return (prefix_label == "O" or prefix_label.startswith("B-") or prefix_label.startswith("U-") or (prefix_label.startswith("I-") and "B" not in encoding)) def is_valid_transition(prefix_label1, prefix_label2, encoding="BIO"): """Returns whether the two labels (associated with a prefix, such as B-PERSON, I-ORG etc.) are allowed to follow one another according to the encoding (which can be BIO, BILUO, IO, etc.)""" if prefix_label1.startswith("B-"): if ((prefix_label2.startswith("I-") or prefix_label2.startswith("L-")) and prefix_label1[2:] == prefix_label2[2:]): return True elif "U" not in encoding: return (prefix_label2 == "O" or prefix_label2.startswith("B-") or prefix_label2.startswith("U-") or (prefix_label2.startswith("I-") and "B" not in encoding)) elif prefix_label1.startswith("I-"): if ((prefix_label2.startswith("I-") or prefix_label2.startswith("L-")) and prefix_label1[2:] == prefix_label2[2:]): return True elif "L" not in encoding: return (prefix_label2 == "O" or prefix_label2.startswith("B-") or prefix_label2.startswith("U-") or (prefix_label2.startswith("I-") and "B" not in encoding)) elif prefix_label1 == "O" or prefix_label1.startswith("L-") or prefix_label1.startswith("U-"): return (prefix_label2 == "O" or prefix_label2.startswith("B-") or prefix_label2.startswith("U-") or (prefix_label2.startswith("I-") and "B" not in encoding)) ############################################ # Visualisation ############################################ def display_entities(doc: Doc, layer=None, add_tooltip=False): """Display the entities annotated in a spacy document, based on the provided annotation layer(s). If layer is None, the method displays the entities from Spacy. This method will only work in a Jupyter Notebook or similar. If add_tooltip is set to True, the visualisation also adds tooltips to show the predictions of each labelling functions for a given token. This functionality only works with Jupyter Lab (not Jupyter Notebook). """ import spacy.displacy import IPython.core.display if layer is None: spans = doc.ents elif type(layer) is list: spans = get_spans(doc, layer) elif type(layer) == str: if "*" in layer: matched_layers = [l for l in doc.spans if re.match(layer.replace("*", ".*?")+"$", l)] spans = get_spans(doc, matched_layers) else: spans = doc.spans[layer] else: raise RuntimeError("Layer type not accepted") entities = {} for span in spans: start_char = doc[span.start].idx end_char = doc[span.end-1].idx + len(doc[span.end-1]) if (start_char, end_char) not in entities: entities[(start_char, end_char)] = span.label_ # If we have several alternative labels for a span, join them with + elif span.label_ not in entities[(start_char, end_char)]: entities[(start_char, end_char)] = entities[( start_char, end_char)] + "+" + span.label_ entities = [{"start": start, "end": end, "label": label} for (start, end), label in entities.items()] doc2 = {"text": doc.text, "title": None, "ents": entities} html = spacy.displacy.render(doc2, jupyter=False, style="ent", manual=True) if add_tooltip and type(layer)==str and "sources" in doc.spans[layer].attrs: html = _enrich_with_tooltip(doc, html, doc.spans[layer].attrs["sources"]) # type: ignore ipython_html = IPython.core.display.HTML( '<span class="tex2jax_ignore">{}</span>'.format(html)) return IPython.core.display.display(ipython_html) def _enrich_with_tooltip(doc: Doc, html: str, sources: List[str]): """Enrich the HTML produced by spacy with tooltips displaying the predictions of each labelling function""" import spacy.util if len(doc.spans)==0: return html # Retrieves annotations for each token annotations_by_tok = {} for source in sources: for span in doc.spans[source]: for i in range(span.start, span.end): annotations_by_tok[i] = annotations_by_tok.get(i, []) + [(source, span.label_)] # We determine which characters are part of the HTML markup and not the text all_chars_to_skip = set() for fragment in re.finditer("<span.+?</span>", html): all_chars_to_skip.update(range(fragment.start(0), fragment.end(0))) for fragment in re.finditer("</?div.*?>", html): all_chars_to_skip.update(range(fragment.start(0), fragment.end(0))) for fragment in re.finditer("</?mark.*?>", html): all_chars_to_skip.update(range(fragment.start(0), fragment.end(0))) # We loop on each token curr_pos = 0 new_fragments = [] for tok in doc: # We search for the token position in the HTML toktext = spacy.util.escape_html(tok.text) if "\n" in toktext: continue start_pos = html.index(toktext, curr_pos) if start_pos == -1: raise RuntimeError("could not find", tok) while any((i in all_chars_to_skip for i in range(start_pos, start_pos + len(toktext)))): start_pos = html.index(toktext, start_pos+1) if start_pos == -1: raise RuntimeError("could not find", tok) # We add the preceding fragment new_fragments.append(html[curr_pos:start_pos]) # If the token has annotations, we create a tooltip if tok.i in annotations_by_tok: lines = ["%s:\t%s&nbsp;&nbsp" % (ann, label) for ann, label in annotations_by_tok[tok.i]] max_width = 7*max([len(l) for l in lines]) new_fragment = ("<label class='tooltip'>%s" % toktext + "<span class='tooltip-text' style='width:%ipx'>"%max_width + "%s</span></label>" %"<br>".join(lines)) else: new_fragment = toktext new_fragments.append(new_fragment) curr_pos = start_pos + len(toktext) new_fragments.append(html[curr_pos:]) new_html = """<style> .tooltip { position: relative; border-bottom: 1px dotted black; } .tooltip .tooltip-text {visibility: hidden; background-color: black; color: white; line-height: 1.2; text-align: right; border-radius: 6px; padding: 5px 0; position: absolute; z-index: 1; margin-left:1em; opacity: 0; transition: opacity 1s;} .tooltip .tooltip-text::after {position: absolute; top: 1.5em; right: 100%; margin-top: -5px; border-width: 5px; border-style: solid; border-color: transparent black transparent transparent;} .tooltip:hover .tooltip-text {visibility: visible; opacity: 1;} </style> """ + "".join(new_fragments) return new_html
36.339623
100
0.608812
794e45cdcb0ddec582bbd5bcba4917956e5f1d35
3,715
py
Python
code/crawler/selenium_maoyan_movie_top100.py
yuguiyang/python_demo
1be2406bfc920e22a0f92bf10d9a3665984067ba
[ "Apache-2.0" ]
null
null
null
code/crawler/selenium_maoyan_movie_top100.py
yuguiyang/python_demo
1be2406bfc920e22a0f92bf10d9a3665984067ba
[ "Apache-2.0" ]
null
null
null
code/crawler/selenium_maoyan_movie_top100.py
yuguiyang/python_demo
1be2406bfc920e22a0f92bf10d9a3665984067ba
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import csv from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException #打开浏览器 browser = webdriver.Firefox() #设置等待时长,最长等待10s wait = WebDriverWait(browser,10) #定义电影排名 comment_index = 0 #定义一个movie class Movie: __movie_id = 0 __movie_name = '' __movie_star = '' __movie_releasetime = '' __movie_score = '' def __init__(self , movie_id,movie_name,movie_star,movie_releasetime,movie_score): self.__movie_id = movie_id self.__movie_name = movie_name self.__movie_star = movie_star self.__movie_releasetime = movie_releasetime self.__movie_score = movie_score def show(self): print('影片排名: ', self.__movie_id) print('影片名称: ', self.__movie_name) print(self.__movie_star) print(self.__movie_releasetime) print('影片评分', self.__movie_score) print('') def simple_list(self): return [self.__movie_id, self.__movie_name, self.__movie_star, self.__movie_releasetime, self.__movie_score] def save2csv(movie_list): with open('movie.csv', 'a', newline='',encoding='utf-8') as csvfile: csv_writer = csv.writer(csvfile) for m in movie_list: csv_writer.writerow(m.simple_list()) csvfile.close() def main(): #打开URL browser.get('http://maoyan.com/board/4') #输出浏览器标题 print('browser title: ',browser.title) #数据更新信息 p_update_info = wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'div.main p.update-time'))) print('更新信息: ',p_update_info.text) #输出当前页信息 show_current_page() def show_current_page(): print('-----------------------------------') print('current url: ',browser.current_url) #获取当前页信息 div_page = wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'div.pager-main li.active'))) print('current page: ',div_page.text) #当前页总数量 div_items = wait.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR,'div.main div.board-item-main div.board-item-content'))) print('total count: ',len(div_items)) movie_list = [] #结果集有很多结果,我们获取 for item in div_items: #调用全局变量 global comment_index comment_index += 1 #获取我们需要的信息 p_name = item.find_element_by_css_selector('div.movie-item-info p.name') p_star = item.find_element_by_css_selector('div.movie-item-info p.star') p_releasetime = item.find_element_by_css_selector('div.movie-item-info p.releasetime') p_score_integer = item.find_element_by_css_selector('div.movie-item-number p.score i.integer') p_score_fraction = item.find_element_by_css_selector('div.movie-item-number p.score i.fraction') #初始化movie对象 m = Movie(comment_index , p_name.text , p_star.text, p_releasetime.text, p_score_integer.text+p_score_fraction.text) movie_list.append(m) save2csv(movie_list) #获取下一页 show_next_page() def show_next_page(): try: #获取下一页的标签 #最后1页,没有下一页标签 a_next = wait.until(EC.presence_of_element_located((By.PARTIAL_LINK_TEXT,'下一页'))) a_next.click() show_current_page() except TimeoutException: #找不到下一页 print('get all movies.') #也有可能真是网络异常 finally: browser.quit() if __name__=='__main__': main()
28.576923
136
0.650875
794e46ed8189b9210f962129da05e25ef523a6d8
3,596
py
Python
pimdm/packet/PacketPimEncodedUnicastAddress.py
leoplo/pim_dm
e097fb8e247b14f142b6aa97d8ee34440aeba806
[ "MIT" ]
6
2020-02-04T20:59:59.000Z
2021-11-24T09:56:07.000Z
pimdm/packet/PacketPimEncodedUnicastAddress.py
leoplo/pim_dm
e097fb8e247b14f142b6aa97d8ee34440aeba806
[ "MIT" ]
4
2020-04-10T14:51:39.000Z
2022-02-14T00:59:21.000Z
pimdm/packet/PacketPimEncodedUnicastAddress.py
leoplo/pim_dm
e097fb8e247b14f142b6aa97d8ee34440aeba806
[ "MIT" ]
3
2020-08-13T17:56:35.000Z
2021-11-24T11:03:12.000Z
import ipaddress import struct import socket ''' 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Addr Family | Encoding Type | Unicast Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+... ''' class PacketPimEncodedUnicastAddress: PIM_ENCODED_UNICAST_ADDRESS_HDR = "! BB %s" PIM_ENCODED_UNICAST_ADDRESS_HDR_WITHOUT_UNICAST_ADDRESS = "! BB" IPV4_HDR = "4s" IPV6_HDR = "16s" # TODO ver melhor versao ip PIM_ENCODED_UNICAST_ADDRESS_HDR_WITHOUT_UNICAST_ADDRESS_LEN = struct.calcsize(PIM_ENCODED_UNICAST_ADDRESS_HDR_WITHOUT_UNICAST_ADDRESS) PIM_ENCODED_UNICAST_ADDRESS_HDR_LEN = struct.calcsize(PIM_ENCODED_UNICAST_ADDRESS_HDR % IPV4_HDR) PIM_ENCODED_UNICAST_ADDRESS_HDR_LEN_IPV6 = struct.calcsize(PIM_ENCODED_UNICAST_ADDRESS_HDR % IPV6_HDR) FAMILY_RESERVED = 0 FAMILY_IPV4 = 1 FAMILY_IPV6 = 2 def __init__(self, unicast_address): if type(unicast_address) not in (str, bytes): raise Exception if type(unicast_address) is bytes: unicast_address = socket.inet_ntoa(unicast_address) self.unicast_address = unicast_address def bytes(self) -> bytes: (string_ip_hdr, hdr_addr_family, socket_family) = PacketPimEncodedUnicastAddress.get_ip_info(self.unicast_address) ip = socket.inet_pton(socket_family, self.unicast_address) msg = struct.pack(PacketPimEncodedUnicastAddress.PIM_ENCODED_UNICAST_ADDRESS_HDR % string_ip_hdr, hdr_addr_family, 0, ip) return msg @staticmethod def get_ip_info(ip): version = ipaddress.ip_address(ip).version if version == 4: return (PacketPimEncodedUnicastAddress.IPV4_HDR, PacketPimEncodedUnicastAddress.FAMILY_IPV4, socket.AF_INET) elif version == 6: return (PacketPimEncodedUnicastAddress.IPV6_HDR, PacketPimEncodedUnicastAddress.FAMILY_IPV6, socket.AF_INET6) else: raise Exception("Unknown address family") def __len__(self): version = ipaddress.ip_address(self.unicast_address).version if version == 4: return self.PIM_ENCODED_UNICAST_ADDRESS_HDR_LEN elif version == 6: return self.PIM_ENCODED_UNICAST_ADDRESS_HDR_LEN_IPV6 else: raise Exception("Unknown address family") @staticmethod def parse_bytes(data: bytes): data_without_unicast_addr = data[0:PacketPimEncodedUnicastAddress.PIM_ENCODED_UNICAST_ADDRESS_HDR_WITHOUT_UNICAST_ADDRESS_LEN] (addr_family, encoding) = struct.unpack(PacketPimEncodedUnicastAddress.PIM_ENCODED_UNICAST_ADDRESS_HDR_WITHOUT_UNICAST_ADDRESS, data_without_unicast_addr) data_unicast_addr = data[PacketPimEncodedUnicastAddress.PIM_ENCODED_UNICAST_ADDRESS_HDR_WITHOUT_UNICAST_ADDRESS_LEN:] if addr_family == PacketPimEncodedUnicastAddress.FAMILY_IPV4: (ip,) = struct.unpack("! " + PacketPimEncodedUnicastAddress.IPV4_HDR, data_unicast_addr[:4]) ip = socket.inet_ntop(socket.AF_INET, ip) elif addr_family == PacketPimEncodedUnicastAddress.FAMILY_IPV6: (ip,) = struct.unpack("! " + PacketPimEncodedUnicastAddress.IPV6_HDR, data_unicast_addr[:16]) ip = socket.inet_ntop(socket.AF_INET6, ip) else: raise Exception("Unknown address family") if encoding != 0: print("unknown encoding") raise Exception return PacketPimEncodedUnicastAddress(ip)
44.95
162
0.688821
794e471bc3e7d44e0993fab1c14ff85b963914e7
9,198
py
Python
agent_admin_sdk/model/collector_service/alias_metric_with_one_original_metric_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
agent_admin_sdk/model/collector_service/alias_metric_with_one_original_metric_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
agent_admin_sdk/model/collector_service/alias_metric_with_one_original_metric_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: alias_metric_with_one_original_metric.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from agent_admin_sdk.model.collector_service import metric_pb2 as agent__admin__sdk_dot_model_dot_collector__service_dot_metric__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='alias_metric_with_one_original_metric.proto', package='collector_service', syntax='proto3', serialized_options=_b('ZKgo.easyops.local/contracts/protorepo-models/easyops/model/collector_service'), serialized_pb=_b('\n+alias_metric_with_one_original_metric.proto\x12\x11\x63ollector_service\x1a\x34\x61gent_admin_sdk/model/collector_service/metric.proto\"\xb5\x03\n*CollectorAliasMetricWithOneOiriginalMetric\x12\x15\n\rcalculateOnly\x18\x01 \x01(\x08\x12;\n\x0f\x63ollectorMetric\x18\x02 \x01(\x0b\x32\".collector_service.CollectorMetric\x12T\n\rdependMetrics\x18\x03 \x03(\x0b\x32=.collector_service.CollectorAliasMetricWithOneOiriginalMetric\x12\x12\n\ninstanceId\x18\x04 \x01(\t\x12\x0c\n\x04name\x18\x05 \x01(\t\x12P\n\x04\x64ims\x18\x06 \x03(\x0b\x32\x42.collector_service.CollectorAliasMetricWithOneOiriginalMetric.Dims\x12\x0f\n\x07version\x18\x07 \x01(\x05\x12\x14\n\x0cisCalculated\x18\x08 \x01(\x08\x12\x12\n\nexpression\x18\t \x01(\t\x1a.\n\x04\x44ims\x12\x0f\n\x07\x64imName\x18\x01 \x01(\t\x12\x15\n\roriginDimName\x18\x02 \x01(\tBMZKgo.easyops.local/contracts/protorepo-models/easyops/model/collector_serviceb\x06proto3') , dependencies=[agent__admin__sdk_dot_model_dot_collector__service_dot_metric__pb2.DESCRIPTOR,]) _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC_DIMS = _descriptor.Descriptor( name='Dims', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.Dims', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dimName', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.Dims.dimName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='originDimName', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.Dims.originDimName', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=512, serialized_end=558, ) _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC = _descriptor.Descriptor( name='CollectorAliasMetricWithOneOiriginalMetric', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='calculateOnly', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.calculateOnly', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='collectorMetric', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.collectorMetric', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dependMetrics', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.dependMetrics', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceId', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.instanceId', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.name', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dims', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.dims', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.version', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isCalculated', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.isCalculated', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='expression', full_name='collector_service.CollectorAliasMetricWithOneOiriginalMetric.expression', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC_DIMS, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=121, serialized_end=558, ) _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC_DIMS.containing_type = _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC.fields_by_name['collectorMetric'].message_type = agent__admin__sdk_dot_model_dot_collector__service_dot_metric__pb2._COLLECTORMETRIC _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC.fields_by_name['dependMetrics'].message_type = _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC.fields_by_name['dims'].message_type = _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC_DIMS DESCRIPTOR.message_types_by_name['CollectorAliasMetricWithOneOiriginalMetric'] = _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC _sym_db.RegisterFileDescriptor(DESCRIPTOR) CollectorAliasMetricWithOneOiriginalMetric = _reflection.GeneratedProtocolMessageType('CollectorAliasMetricWithOneOiriginalMetric', (_message.Message,), { 'Dims' : _reflection.GeneratedProtocolMessageType('Dims', (_message.Message,), { 'DESCRIPTOR' : _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC_DIMS, '__module__' : 'alias_metric_with_one_original_metric_pb2' # @@protoc_insertion_point(class_scope:collector_service.CollectorAliasMetricWithOneOiriginalMetric.Dims) }) , 'DESCRIPTOR' : _COLLECTORALIASMETRICWITHONEOIRIGINALMETRIC, '__module__' : 'alias_metric_with_one_original_metric_pb2' # @@protoc_insertion_point(class_scope:collector_service.CollectorAliasMetricWithOneOiriginalMetric) }) _sym_db.RegisterMessage(CollectorAliasMetricWithOneOiriginalMetric) _sym_db.RegisterMessage(CollectorAliasMetricWithOneOiriginalMetric.Dims) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
51.385475
940
0.791803
794e48e1d5f2aefda26e6c495b302a1abb79ab68
10,355
py
Python
tests/test_tutorial/test_bigger_applications/test_main.py
cdeil/fastapi
7a445402d4960d6173d76dac43393ad6c5040521
[ "MIT" ]
2
2020-01-21T10:57:59.000Z
2021-11-09T11:27:18.000Z
tests/test_tutorial/test_bigger_applications/test_main.py
cdeil/fastapi
7a445402d4960d6173d76dac43393ad6c5040521
[ "MIT" ]
null
null
null
tests/test_tutorial/test_bigger_applications/test_main.py
cdeil/fastapi
7a445402d4960d6173d76dac43393ad6c5040521
[ "MIT" ]
null
null
null
import pytest from starlette.testclient import TestClient from bigger_applications.app.main import app client = TestClient(app) openapi_schema = { "openapi": "3.0.2", "info": {"title": "Fast API", "version": "0.1.0"}, "paths": { "/users/": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, } }, "tags": ["users"], "summary": "Read Users", "operationId": "read_users_users__get", } }, "/users/me": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, } }, "tags": ["users"], "summary": "Read User Me", "operationId": "read_user_me_users_me_get", } }, "/users/{username}": { "get": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "tags": ["users"], "summary": "Read User", "operationId": "read_user_users__username__get", "parameters": [ { "required": True, "schema": {"title": "Username", "type": "string"}, "name": "username", "in": "path", } ], } }, "/items/": { "get": { "responses": { "404": {"description": "Not found"}, "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "tags": ["items"], "summary": "Read Items", "operationId": "read_items_items__get", "parameters": [ { "required": True, "schema": {"title": "X-Token", "type": "string"}, "name": "x-token", "in": "header", } ], } }, "/items/{item_id}": { "get": { "responses": { "404": {"description": "Not found"}, "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "tags": ["items"], "summary": "Read Item", "operationId": "read_item_items__item_id__get", "parameters": [ { "required": True, "schema": {"title": "Item Id", "type": "string"}, "name": "item_id", "in": "path", }, { "required": True, "schema": {"title": "X-Token", "type": "string"}, "name": "x-token", "in": "header", }, ], }, "put": { "responses": { "404": {"description": "Not found"}, "403": {"description": "Operation forbidden"}, "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "tags": ["custom", "items"], "summary": "Update Item", "operationId": "update_item_items__item_id__put", "parameters": [ { "required": True, "schema": {"title": "Item Id", "type": "string"}, "name": "item_id", "in": "path", }, { "required": True, "schema": {"title": "X-Token", "type": "string"}, "name": "x-token", "in": "header", }, ], }, }, }, "components": { "schemas": { "ValidationError": { "title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": { "loc": { "title": "Location", "type": "array", "items": {"type": "string"}, }, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}, }, }, "HTTPValidationError": { "title": "HTTPValidationError", "type": "object", "properties": { "detail": { "title": "Detail", "type": "array", "items": {"$ref": "#/components/schemas/ValidationError"}, } }, }, } }, } @pytest.mark.parametrize( "path,expected_status,expected_response,headers", [ ("/users", 200, [{"username": "Foo"}, {"username": "Bar"}], {}), ("/users/foo", 200, {"username": "foo"}, {}), ("/users/me", 200, {"username": "fakecurrentuser"}, {}), ( "/items", 200, [{"name": "Item Foo"}, {"name": "item Bar"}], {"X-Token": "fake-super-secret-token"}, ), ( "/items/bar", 200, {"name": "Fake Specific Item", "item_id": "bar"}, {"X-Token": "fake-super-secret-token"}, ), ("/items", 400, {"detail": "X-Token header invalid"}, {"X-Token": "invalid"}), ( "/items/bar", 400, {"detail": "X-Token header invalid"}, {"X-Token": "invalid"}, ), ( "/items", 422, { "detail": [ { "loc": ["header", "x-token"], "msg": "field required", "type": "value_error.missing", } ] }, {}, ), ( "/items/bar", 422, { "detail": [ { "loc": ["header", "x-token"], "msg": "field required", "type": "value_error.missing", } ] }, {}, ), ("/openapi.json", 200, openapi_schema, {}), ], ) def test_get_path(path, expected_status, expected_response, headers): response = client.get(path, headers=headers) assert response.status_code == expected_status assert response.json() == expected_response def test_put_no_header(): response = client.put("/items/foo") assert response.status_code == 422 assert response.json() == { "detail": [ { "loc": ["header", "x-token"], "msg": "field required", "type": "value_error.missing", } ] } def test_put_invalid_header(): response = client.put("/items/foo", headers={"X-Token": "invalid"}) assert response.status_code == 400 assert response.json() == {"detail": "X-Token header invalid"} def test_put(): response = client.put("/items/foo", headers={"X-Token": "fake-super-secret-token"}) assert response.status_code == 200 assert response.json() == {"item_id": "foo", "name": "The Fighters"} def test_put_forbidden(): response = client.put("/items/bar", headers={"X-Token": "fake-super-secret-token"}) assert response.status_code == 403 assert response.json() == {"detail": "You can only update the item: foo"}
34.401993
87
0.336456
794e4ceb179c309aed1103a48f26961085e0a19a
2,580
py
Python
cuboid_teleop/scripts/teleop_emotion.py
sbgisen/cuboid_sim
02a881c64ea0f7aa9770ce78c741953887dd0fc9
[ "Apache-2.0" ]
null
null
null
cuboid_teleop/scripts/teleop_emotion.py
sbgisen/cuboid_sim
02a881c64ea0f7aa9770ce78c741953887dd0fc9
[ "Apache-2.0" ]
3
2019-12-06T06:29:05.000Z
2019-12-16T10:18:35.000Z
cuboid_teleop/scripts/teleop_emotion.py
sbgisen/cuboid_sim
02a881c64ea0f7aa9770ce78c741953887dd0fc9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2019, SoftBank corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rospy from sensor_msgs.msg import Joy from std_msgs.msg import String class TeleopEmotion(object): _CONTROL_HZ = 4 def __init__(self): self.emo_anger_pressed_ = False self.emo_bright_pressed_ = False self.emo_sad_pressed_ = False self.emo_puzzle_pressed_ = False self.emergence_pressed_ = False rospy.init_node("teleop_face", anonymous=True) self._init_params() self._init_pubsub() rospy.Timer(rospy.Duration(1. / self._CONTROL_HZ), self._timer_callback) def _init_params(self): self.emo_anger_ = rospy.get_param("~emotion_anger", 12) self.emo_bright_ = rospy.get_param("~emotion_bright", 13) self.emo_sad_ = rospy.get_param("~emotion_sad", 14) self.emo_puzzle_ = rospy.get_param("~emotion_puzzle", 15) self.emergence_ = rospy.get_param("~emotion_puzzle", 3) def _init_pubsub(self): rospy.Subscriber("joy", Joy, self._update_joy) self.pub = rospy.Publisher("emotion", String, queue_size=10) def _update_joy(self, joy): self.emo_anger_pressed_ = joy.buttons[self.emo_anger_] self.emo_bright_pressed_ = joy.buttons[self.emo_bright_] self.emo_sad_pressed_ = joy.buttons[self.emo_sad_] self.emo_puzzle_pressed_ = joy.buttons[self.emo_puzzle_] self.emergence_pressed_ = joy.buttons[self.emergence_] def _timer_callback(self, msg): if self.emo_anger_pressed_: self.pub.publish("anger") elif self.emo_bright_pressed_: self.pub.publish("bright") elif self.emo_sad_pressed_: self.pub.publish("sad") elif self.emo_puzzle_pressed_: self.pub.publish("puzzle") elif self.emergence_pressed_: rospy.signal_shutdown("Shutdown signal button is pressed") else: self.pub.publish("hello") if __name__ == "__main__": node = TeleopEmotion() rospy.spin()
33.506494
80
0.684884
794e4f6f9b9f4f8054e6ac6751a68083c96912f9
920
py
Python
easyq/configuration.py
easyqiot/easyq
0718fdfefbbd4cb85edaa696c2d2ae9e1225ead7
[ "MIT" ]
4
2018-11-12T07:31:16.000Z
2020-03-04T08:59:58.000Z
easyq/configuration.py
pylover/easyq
0718fdfefbbd4cb85edaa696c2d2ae9e1225ead7
[ "MIT" ]
1
2018-11-02T09:38:24.000Z
2018-11-02T09:38:24.000Z
easyq/configuration.py
easyqiot/easyq
0718fdfefbbd4cb85edaa696c2d2ae9e1225ead7
[ "MIT" ]
1
2018-09-07T08:43:31.000Z
2018-09-07T08:43:31.000Z
import pymlconf settings = pymlconf.DeferredRoot() DEFAULT_ADDRESS = 'localhost:1085' BUILTIN_CONFIGURATION = f''' bind: {DEFAULT_ADDRESS} authentication: method: trust logging: level: debug queues: default: maxsize: 100 dispatchers: 1 dispatcher: messages_per_queue: 5 intervals: .3 ''' def configure(init_value=None, filename=None, force=None): """ Load configurations .. seealso:: `pymlconf Documentations <https://github.com/pylover/pymlconf#documentation>`_ :param args: positional arguments pass into ``pymlconf.DeferredConfigManager.load`` :param kwargs: keyword arguments pass into ``pymlconf.DeferredConfigManager.load`` """ settings.initialize( BUILTIN_CONFIGURATION, force=force ) if init_value is not None: settings.merge(init_value) if filename is not None: settings.load_file(filename) return settings
18.039216
95
0.708696
794e4f702ff8b7bd7c70e06cbbff4dd855a008ff
1,011
py
Python
relational/student_projects/2020_karkkainen/models/Baseline/Most-Frequent-Answer/model3ps.py
monthie/cogmods
62af4b8bf2effb77f26a8877d6a89949164d83f0
[ "MIT" ]
null
null
null
relational/student_projects/2020_karkkainen/models/Baseline/Most-Frequent-Answer/model3ps.py
monthie/cogmods
62af4b8bf2effb77f26a8877d6a89949164d83f0
[ "MIT" ]
11
2020-05-04T09:05:29.000Z
2021-04-08T13:22:34.000Z
relational/student_projects/2020_karkkainen/models/Baseline/Most-Frequent-Answer/model3ps.py
monthie/cogmods
62af4b8bf2effb77f26a8877d6a89949164d83f0
[ "MIT" ]
12
2020-05-02T09:36:14.000Z
2021-06-22T08:10:45.000Z
""" Implements a most frequent answer model. """ import numpy as np import ccobra import pandas as pd def createDict(): data = pd.read_csv('3ps.csv') keys = data['Task-ID'].tolist() values = data['most_frequent_response'].tolist() return dict(zip(keys, values)) class MostFreqModel(ccobra.CCobraModel): """ Model producing the most frequent answer as a response. """ def __init__(self, name='MostFrequentAnswer'): """ Initializes the random model. Parameters ---------- name : str Unique name of the model. Will be used throughout the CCOBRA framework as a means for identifying the model. """ self.answers = createDict() super(MostFreqModel, self).__init__( name, ["spatial-relational"], ["verify", "single-choice"]) def predict(self, item, **kwargs): """ Predicts the most frequent answer for the given task ID """ return self.answers[kwargs['Task-ID']]
23.511628
72
0.621167
794e4f83a1a78d257a2bd3cdb6b9aff836d88fd7
2,800
py
Python
Transformer/MHA.py
antoniorv6/Transformer-Keras
9566f4211f92922a668977e72dbb72b722d4de5e
[ "MIT" ]
null
null
null
Transformer/MHA.py
antoniorv6/Transformer-Keras
9566f4211f92922a668977e72dbb72b722d4de5e
[ "MIT" ]
null
null
null
Transformer/MHA.py
antoniorv6/Transformer-Keras
9566f4211f92922a668977e72dbb72b722d4de5e
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow.keras.layers import Dense, Softmax class MHA(tf.keras.layers.Layer): def __init__(self, model_depth, num_heads): super(MHA, self).__init__() self.num_heads = num_heads self.model_depth = model_depth assert model_depth % self.num_heads == 0 self.depth = model_depth // num_heads self.wQ = Dense(model_depth) #Q weights self.wK = Dense(model_depth) #K weights self.wV = Dense(model_depth) #V weights self.output_linear = Dense(model_depth) def split_heads(self, x, batch_size): #Split the last dimension into (num_heads, depth) where depth is the model_depth // num_heads x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth)) #We transpose the result that the shape is (batch_size, num_heads, seq_len, depth) return tf.transpose(x, perm=[0,2,1,3]) @staticmethod def scaled_dot_product_attention(q, k, v, mask): matmul_qk = tf.matmul(q, k, transpose_b=True) #(..., seq_len_q, seq_len_k) #Scale the matmul k_dim = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(k_dim) #add mask to the scaled tensor (this will happen in the decoder layers) if mask is not None: scaled_attention_logits += (mask * -1e9) attention_weights = Softmax(axis=-1)(scaled_attention_logits) # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v) #Multiply by the V value tu get the attention effect on the real values return output, attention_weights #kwargs -> (v,k,q,mask) def __call__(self, inputs, k, q, mask): v = inputs batch_size = tf.shape(q)[0] Q = self.wQ(q) #(batch_size, seq_len, d_model) K = self.wK(k) #(batch_size, seq_len, d_model) V = self.wV(v) #(batch_size, seq_len, d_model) Q = self.split_heads(Q, batch_size) # (batch_size, num_heads, seq_len_q, depth) K = self.split_heads(K, batch_size) # (batch_size, num_heads, seq_len_k, depth) V = self.split_heads(V, batch_size) # (batch_size, num_heads, seq_len_v, depth) # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth) # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k) scaled_attention, attention_weights = MHA.scaled_dot_product_attention(Q, K, V, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0,2,1,3]) # (batch_size, seq_len_q, num_heads, depth) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.model_depth)) #(batch_size, seq_len_q, model_depth) output = self.output_linear(concat_attention) return output, attention_weights
44.444444
129
0.6675
794e4fd553852fea14b2360d5386e334b97832db
9,995
py
Python
integration/common/openlineage/common/provider/bigquery.py
kedar-cz/OpenLineage
bd75b53c84fd9655f593c4f161e15c14785eb93e
[ "Apache-2.0" ]
null
null
null
integration/common/openlineage/common/provider/bigquery.py
kedar-cz/OpenLineage
bd75b53c84fd9655f593c4f161e15c14785eb93e
[ "Apache-2.0" ]
null
null
null
integration/common/openlineage/common/provider/bigquery.py
kedar-cz/OpenLineage
bd75b53c84fd9655f593c4f161e15c14785eb93e
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import traceback import attr from typing import Tuple, Optional, Dict, List from google.cloud import bigquery from openlineage.common.dataset import Dataset, Source from openlineage.common.models import DbTableSchema, DbColumn, DbTableName from openlineage.common.schema import GITHUB_LOCATION from openlineage.common.utils import get_from_nullable_chain from openlineage.client.facet import BaseFacet, OutputStatisticsOutputDatasetFacet _BIGQUERY_CONN_URL = 'bigquery' @attr.s class BigQueryErrorRunFacet(BaseFacet): """ Represents errors that can happen during execution of BigqueryExtractor :param clientError: represents errors originating in bigquery client :param parserError: represents errors that happened during parsing SQL provided to bigquery """ clientError: str = attr.ib(default=None) parserError: str = attr.ib(default=None) @staticmethod def _get_schema() -> str: return GITHUB_LOCATION + "bq-error-run-facet.json" @attr.s class BigQueryJobRunFacet(BaseFacet): """ Facet that represents relevant statistics of bigquery run. :param cached: bigquery caches query results. Rest of the statistics will not be provided for cached queries. :param billedBytes: how many bytes bigquery bills for. :param properties: full property tree of bigquery run. """ cached: bool = attr.ib() billedBytes: int = attr.ib(default=None) properties: str = attr.ib(default=None) @staticmethod def _get_schema() -> str: return GITHUB_LOCATION + "bq-statistics-run-facet.json" @attr.s class BigQueryStatisticsDatasetFacet(BaseFacet): """ Facet that represents statistics of output dataset resulting from bigquery run. :param outputRows: how many rows query produced. :param size: size of output dataset in bytes. """ rowCount: int = attr.ib() size: int = attr.ib() def to_openlineage(self) -> OutputStatisticsOutputDatasetFacet: return OutputStatisticsOutputDatasetFacet( rowCount=self.rowCount, size=self.size ) @staticmethod def _get_schema() -> str: return GITHUB_LOCATION + "bq-statistics-dataset-facet.json" @attr.s class BigQueryFacets: run_facets: Dict[str, BaseFacet] = attr.ib() inputs: List[Dataset] = attr.ib() output: Optional[Dataset] = attr.ib(default=None) class BigQueryDatasetsProvider: def __init__( self, client: Optional[bigquery.Client] = None, logger: Optional[logging.Logger] = None ): self.client = client if client is None: self.client = bigquery.Client() self.logger = logger if logger is None: self.logger = logging.getLogger(__name__) def get_facets(self, job_id: str) -> BigQueryFacets: inputs = [] output = None run_facets = {} try: try: job = self.client.get_job(job_id=job_id) props = job._properties run_stat_facet, dataset_stat_facet = self._get_output_statistics(props) run_facets.update({ "bigQuery_job": run_stat_facet }) inputs = self._get_input_from_bq(props) output = self._get_output_from_bq(props) if output and dataset_stat_facet: output.custom_facets.update({ "stats": dataset_stat_facet }) output.output_facets.update({ 'outputStatistics': dataset_stat_facet.to_openlineage() }) finally: # Ensure client has close() defined, otherwise ignore. # NOTE: close() was introduced in python-bigquery v1.23.0 if hasattr(self.client, "close"): self.client.close() except Exception as e: self.logger.error( f"Cannot retrieve job details from BigQuery.Client. {e}", exc_info=True ) run_facets.update({ "bigQuery_error": BigQueryErrorRunFacet( clientError=f"{e}: {traceback.format_exc()}", ) }) return BigQueryFacets(run_facets, inputs, output) def _get_output_statistics(self, properties) \ -> Tuple[BigQueryJobRunFacet, Optional[BigQueryStatisticsDatasetFacet]]: stages = get_from_nullable_chain(properties, ['statistics', 'query', 'queryPlan']) json_props = json.dumps(properties) if not stages: if get_from_nullable_chain(properties, ['statistics', 'query', 'statementType']) \ == 'CREATE_VIEW': return BigQueryJobRunFacet(cached=False), None # we're probably getting cached results if get_from_nullable_chain(properties, ['statistics', 'query', 'cacheHit']): return BigQueryJobRunFacet(cached=True), None if get_from_nullable_chain(properties, ['status', 'state']) != "DONE": raise ValueError("Trying to extract data from running bigquery job") raise ValueError( f"BigQuery properties did not have required data: queryPlan - {json_props}" ) out_stage = stages[-1] out_rows = out_stage.get("recordsWritten", None) out_bytes = out_stage.get("shuffleOutputBytes", None) billed_bytes = get_from_nullable_chain(properties, [ 'statistics', 'query', 'totalBytesBilled' ]) return BigQueryJobRunFacet( cached=False, billedBytes=int(billed_bytes) if billed_bytes else None, properties=json_props ), BigQueryStatisticsDatasetFacet( rowCount=int(out_rows), size=int(out_bytes) ) if out_bytes and out_rows else None def _get_input_from_bq(self, properties): bq_input_tables = get_from_nullable_chain(properties, [ 'statistics', 'query', 'referencedTables' ]) if not bq_input_tables: return [] input_table_names = [ self._bq_table_name(bq_t) for bq_t in bq_input_tables ] sources = [ self._source() for bq_t in bq_input_tables ] try: return [ Dataset.from_table_schema( source=source, table_schema=table_schema ) for table_schema, source in zip(self._get_table_schemas( input_table_names ), sources) ] except Exception as e: self.logger.warning(f'Could not extract schema from bigquery. {e}') return [ Dataset.from_table(source, table) for table, source in zip(input_table_names, sources) ] def _get_output_from_bq(self, properties) -> Optional[Dataset]: bq_output_table = get_from_nullable_chain(properties, [ 'configuration', 'query', 'destinationTable' ]) if not bq_output_table: return None output_table_name = self._bq_table_name(bq_output_table) source = self._source() table_schema = self._get_table_safely(output_table_name) if table_schema: return Dataset.from_table_schema( source=source, table_schema=table_schema, ) else: self.logger.warning("Could not resolve output table from bq") return Dataset.from_table(source, output_table_name) def _get_table_safely(self, output_table_name): try: return self._get_table(output_table_name) except Exception as e: self.logger.warning(f'Could not extract output schema from bigquery. {e}') return None def _get_table_schemas(self, tables: [str]) \ -> [DbTableSchema]: # Avoid querying BigQuery by returning an empty array # if no tables have been provided. if not tables: return [] return [self._get_table(table) for table in tables] def _get_table(self, table: str) -> Optional[DbTableSchema]: bq_table = self.client.get_table(table) if not bq_table._properties: return table = bq_table._properties fields = get_from_nullable_chain(table, ['schema', 'fields']) if not fields: return columns = [DbColumn( name=fields[i].get('name'), type=fields[i].get('type'), description=fields[i].get('description'), ordinal_position=i ) for i in range(len(fields))] return DbTableSchema( schema_name=table.get('tableReference').get('projectId') + '.' + table.get('tableReference').get('datasetId'), table_name=DbTableName(table.get('tableReference').get('tableId')), columns=columns ) def _source(self) -> Source: return Source( scheme='bigquery', connection_url='bigquery' ) def _bq_table_name(self, bq_table): project = bq_table.get('projectId') dataset = bq_table.get('datasetId') table = bq_table.get('tableId') return f"{project}.{dataset}.{table}"
35.569395
95
0.62081
794e50c86281f1c318e204be96764db3bbdb104b
1,988
py
Python
2021/CVE-2021-44848/poc/pocsploit/CVE-2021-44848.py
hjyuan/reapoc
ef515e56c44c2590ff8601582bf6c08e076e7083
[ "Apache-2.0" ]
421
2021-12-07T08:46:40.000Z
2022-03-31T12:42:16.000Z
2021/CVE-2021-44848/poc/pocsploit/CVE-2021-44848.py
hjyuan/reapoc
ef515e56c44c2590ff8601582bf6c08e076e7083
[ "Apache-2.0" ]
5
2022-03-27T07:37:32.000Z
2022-03-31T13:56:11.000Z
2021/CVE-2021-44848/poc/pocsploit/CVE-2021-44848.py
hjyuan/reapoc
ef515e56c44c2590ff8601582bf6c08e076e7083
[ "Apache-2.0" ]
144
2021-12-07T11:06:14.000Z
2022-03-31T07:41:35.000Z
import requests # Vuln Base Info def info(): return { "author": "cckuailong", "name": '''Thinfinity VirtualUI User Enumeration''', "description": '''Thinfinity VirtualUI (before v3.0), /changePassword returns different responses for requests depending on whether the username exists. It may enumerate OS users (Administrator, Guest, etc.)''', "severity": "medium", "references": [ "https://github.com/cybelesoft/virtualui/issues/1", "https://nvd.nist.gov/vuln/detail/CVE-2021-44848", "https://www.tenable.com/cve/CVE-2021-44848" ], "classification": { "cvss-metrics": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N", "cvss-score": "", "cve-id": "CVE-2021-44848", "cwe-id": "CWE-287" }, "metadata":{ "vuln-target": "", }, "tags": ["cve", "cve2021", "exposure", "thinfinity", "virtualui"], } # Vender Fingerprint def fingerprint(url): return True # Proof of Concept def poc(url): result = {} try: url = format_url(url) path = """/changePassword?username=administrator""" method = "GET" data = """""" headers = {} resp0 = requests.request(method=method,url=url+path,data=data,headers=headers,timeout=10,verify=False,allow_redirects=False) if (re.search(r"""rc":(.*?)""",resp0.text) and re.search(r"""msg":"(.*?)""",resp0.text)) and (resp0.status_code == 200): result["success"] = True result["info"] = info() result["payload"] = url+path except: result["success"] = False return result # Exploit, can be same with poc() def exp(url): return poc(url) # Utils def format_url(url): url = url.strip() if not ( url.startswith('http://') or url.startswith('https://') ): url = 'http://' + url url = url.rstrip('/') return url
28.811594
219
0.552817
794e51e631823cbf3206722135293ab85a845c98
8,088
bzl
Python
unix_toolchain_config.bzl
improbable-eng/BazelCon2019-cpp-toolchains-example
0e93672d5025a97a056a3029cbf496fc3a12183f
[ "MIT" ]
null
null
null
unix_toolchain_config.bzl
improbable-eng/BazelCon2019-cpp-toolchains-example
0e93672d5025a97a056a3029cbf496fc3a12183f
[ "MIT" ]
null
null
null
unix_toolchain_config.bzl
improbable-eng/BazelCon2019-cpp-toolchains-example
0e93672d5025a97a056a3029cbf496fc3a12183f
[ "MIT" ]
null
null
null
load( "@bazel_tools//tools/cpp:cc_toolchain_config_lib.bzl", "action_config", "artifact_name_pattern", "env_entry", "env_set", "feature", "feature_set", "flag_group", "flag_set", "make_variable", "tool", "tool_path", "variable_with_value", "with_feature_set", ) load("@bazel_tools//tools/build_defs/cc:action_names.bzl", "ACTION_NAMES") load("@bazel_tools//tools/cpp:cc_toolchain_config.bzl", "all_compile_actions", "all_link_actions") CLANG_OPTIONS = { "compile_flags": [ "-Wall", "-Wextra", "-Werror", "-Wpedantic", "-fcolor-diagnostics", # Keep stack frames for debugging, even in opt mode. "-fno-omit-frame-pointer", # Security hardening on by default. # Conservative choice; -D_FORTIFY_SOURCE=2 may be unsafe in some cases. # We need to undef it before redefining it as some distributions now have # it enabled by default. "-U_FORTIFY_SOURCE", "-D_FORTIFY_SOURCE=1", "-fstack-protector", # Do not export symbols by default. "-fvisibility=hidden", "-fno-common", ], "dbg_compile_flags": [ "-O0", "-g", ], "opt_compile_flags": [ "-g0", # Conservative choice for -O. # -O3 can increase binary size and even slow down the resulting binaries. # Profile first and / or use FDO if you need better performance than this. "-O2", # Disable assertions. "-DNDEBUG", # Removal of unused code and data at link time (can this increase binary size in some cases?). "-ffunction-sections", "-fdata-sections", ], "unfiltered_compile_flags": [ # Make compilation deterministic. "-no-canonical-prefixes", "-Wno-builtin-macro-redefined", "-D__DATE__=\"redacted\"", "-D__TIMESTAMP__=\"redacted\"", "-D__TIME__=\"redacted\"", ], "cxx_flags": [ "-std=c++11", "-stdlib=libstdc++", # Do not export symbols by default. "-fvisibility-inlines-hidden", ], "link_flags": [ "-latomic", # Anticipated future default. "-no-canonical-prefixes", # Security hardening on by default. "-Wl,-z,relro,-z,now", "-lstdc++", # ALL THE WARNINGS AND ERRORS - even during linking. "-Wall", "-Wextra", "-Werror", "-Wpedantic", ], "opt_link_flags": [ "-O4", "-Wl,--gc-sections", ], } def _impl(ctx): tool_paths = [ tool_path( name = name, path = path, ) for name, path in ctx.attr.tool_paths.items() ] default_compile_flags_feature = feature( name = "default_compile_flags", enabled = True, flag_sets = [ flag_set( actions = all_compile_actions, flag_groups = ([flag_group(flags = ctx.attr.compile_flags)] if ctx.attr.compile_flags else []), ), flag_set( actions = all_compile_actions, flag_groups = ([flag_group(flags = ctx.attr.dbg_compile_flags)] if ctx.attr.dbg_compile_flags else []), with_features = [with_feature_set(features = ["dbg"])], ), flag_set( actions = all_compile_actions, flag_groups = ([flag_group(flags = ctx.attr.opt_compile_flags)] if ctx.attr.opt_compile_flags else []), with_features = [with_feature_set(features = ["opt"])], ), flag_set( actions = [ ACTION_NAMES.linkstamp_compile, ACTION_NAMES.cpp_compile, ACTION_NAMES.cpp_header_parsing, ACTION_NAMES.cpp_module_compile, ACTION_NAMES.cpp_module_codegen, ACTION_NAMES.lto_backend, ACTION_NAMES.clif_match, ], flag_groups = ([flag_group(flags = ctx.attr.cxx_flags)] if ctx.attr.cxx_flags else []), ), ], ) default_link_flags_feature = feature( name = "default_link_flags", enabled = True, flag_sets = [ flag_set( actions = all_link_actions, flag_groups = ([flag_group(flags = ctx.attr.link_flags)] if ctx.attr.link_flags else []), ), flag_set( actions = all_link_actions, flag_groups = ([flag_group(flags = ctx.attr.opt_link_flags)] if ctx.attr.opt_link_flags else []), with_features = [with_feature_set(features = ["opt"])], ), flag_set( actions = all_link_actions, flag_groups = ([flag_group(flags = ctx.attr.dbg_link_flags)] if ctx.attr.dbg_link_flags else []), with_features = [with_feature_set(features = ["dbg"])], ), ], ) dbg_feature = feature(name = "dbg") opt_feature = feature(name = "opt") supports_dynamic_linker_feature = feature(name = "supports_dynamic_linker", enabled = True) unfiltered_compile_flags_feature = feature( name = "unfiltered_compile_flags", enabled = True, flag_sets = [ flag_set( actions = [ ACTION_NAMES.assemble, ACTION_NAMES.preprocess_assemble, ACTION_NAMES.linkstamp_compile, ACTION_NAMES.c_compile, ACTION_NAMES.cpp_compile, ACTION_NAMES.cpp_header_parsing, ACTION_NAMES.cpp_module_compile, ACTION_NAMES.cpp_module_codegen, ACTION_NAMES.lto_backend, ACTION_NAMES.clif_match, ], flag_groups = [flag_group(flags = ctx.attr.unfiltered_compile_flags)], ), ], ) supports_pic_feature = feature(name = "supports_pic", enabled = True) features = [ default_compile_flags_feature, default_link_flags_feature, dbg_feature, opt_feature, supports_dynamic_linker_feature, supports_pic_feature, unfiltered_compile_flags_feature, ] return cc_common.create_cc_toolchain_config_info( ctx = ctx, toolchain_identifier = ctx.attr.toolchain_identifier, host_system_name = "x86_64-gcc_libstdcpp-linux", target_system_name = ctx.attr.target_system_name, target_cpu = ctx.attr.target_cpu, target_libc = "local", compiler = ctx.attr.compiler, abi_version = ctx.attr.abi_version, abi_libc_version = "local", tool_paths = tool_paths, features = features, builtin_sysroot = ctx.attr.sysroot, cxx_builtin_include_directories = ctx.attr.include_directories, ) unix_cc_toolchain_config = rule( implementation = _impl, attrs = { "abi_version": attr.string(mandatory = True), "target_cpu": attr.string(mandatory = True), "target_system_name": attr.string(mandatory = True), "toolchain_identifier": attr.string(mandatory = True), "tool_paths": attr.string_dict(mandatory = False), # Optional parameters. "compiler": attr.string(default = "generic_compiler_version"), "compile_flags": attr.string_list(default = []), "dbg_compile_flags": attr.string_list(default = []), "opt_compile_flags": attr.string_list(default = []), "unfiltered_compile_flags": attr.string_list(default = []), "link_flags": attr.string_list(default = []), "dbg_link_flags": attr.string_list(default = []), "opt_link_flags": attr.string_list(default = []), "cxx_flags": attr.string_list(default = []), "include_directories": attr.string_list(default = []), "sysroot": attr.string(default = ""), }, provides = [CcToolchainConfigInfo], )
34.564103
119
0.574184
794e522a02315848d186828f0cc557e7c8d2fe4f
15,728
py
Python
fabric/contrib/files.py
hrubi/fabric
5b7ba26915c188b7748dccd659d26e7b7e9056ae
[ "BSD-2-Clause" ]
1
2015-11-06T10:46:27.000Z
2015-11-06T10:46:27.000Z
fabric/contrib/files.py
hrubi/fabric
5b7ba26915c188b7748dccd659d26e7b7e9056ae
[ "BSD-2-Clause" ]
null
null
null
fabric/contrib/files.py
hrubi/fabric
5b7ba26915c188b7748dccd659d26e7b7e9056ae
[ "BSD-2-Clause" ]
2
2019-01-01T18:35:50.000Z
2021-03-04T10:32:03.000Z
""" Module providing easy API for working with remote files and folders. """ from __future__ import with_statement import hashlib import tempfile import re import os from StringIO import StringIO from fabric.api import * from fabric.utils import apply_lcwd def exists(path, use_sudo=False, verbose=False): """ Return True if given path exists on the current remote host. If ``use_sudo`` is True, will use `sudo` instead of `run`. `exists` will, by default, hide all output (including the run line, stdout, stderr and any warning resulting from the file not existing) in order to avoid cluttering output. You may specify ``verbose=True`` to change this behavior. """ func = use_sudo and sudo or run cmd = 'test -e %s' % _expand_path(path) # If verbose, run normally if verbose: with settings(warn_only=True): return not func(cmd).failed # Otherwise, be quiet with settings(hide('everything'), warn_only=True): return not func(cmd).failed def is_link(path, use_sudo=False, verbose=False): """ Return True if the given path is a symlink on the current remote host. If ``use_sudo`` is True, will use `.sudo` instead of `.run`. `.is_link` will, by default, hide all output. Give ``verbose=True`` to change this. """ func = sudo if use_sudo else run cmd = 'test -L "$(echo %s)"' % path args, kwargs = [], {'warn_only': True} if not verbose: opts = [hide('everything')] with settings(*args, **kwargs): return func(cmd).succeeded def first(*args, **kwargs): """ Given one or more file paths, returns first one found, or None if none exist. May specify ``use_sudo`` and ``verbose`` which are passed to `exists`. """ for directory in args: if exists(directory, **kwargs): return directory def upload_template(filename, destination, context=None, use_jinja=False, template_dir=None, use_sudo=False, backup=True, mirror_local_mode=False, mode=None): """ Render and upload a template text file to a remote host. Returns the result of the inner call to `~fabric.operations.put` -- see its documentation for details. ``filename`` should be the path to a text file, which may contain `Python string interpolation formatting <http://docs.python.org/library/stdtypes.html#string-formatting>`_ and will be rendered with the given context dictionary ``context`` (if given.) Alternately, if ``use_jinja`` is set to True and you have the Jinja2 templating library available, Jinja will be used to render the template instead. Templates will be loaded from the invoking user's current working directory by default, or from ``template_dir`` if given. The resulting rendered file will be uploaded to the remote file path ``destination``. If the destination file already exists, it will be renamed with a ``.bak`` extension unless ``backup=False`` is specified. By default, the file will be copied to ``destination`` as the logged-in user; specify ``use_sudo=True`` to use `sudo` instead. The ``mirror_local_mode`` and ``mode`` kwargs are passed directly to an internal `~fabric.operations.put` call; please see its documentation for details on these two options. .. versionchanged:: 1.1 Added the ``backup``, ``mirror_local_mode`` and ``mode`` kwargs. """ func = use_sudo and sudo or run # Normalize destination to be an actual filename, due to using StringIO with settings(hide('everything'), warn_only=True): if func('test -d %s' % _expand_path(destination)).succeeded: sep = "" if destination.endswith('/') else "/" destination += sep + os.path.basename(filename) # Use mode kwarg to implement mirror_local_mode, again due to using # StringIO if mirror_local_mode and mode is None: mode = os.stat(filename).st_mode # To prevent put() from trying to do this # logic itself mirror_local_mode = False # Process template text = None if use_jinja: try: template_dir = template_dir or os.getcwd() template_dir = apply_lcwd(template_dir, env) from jinja2 import Environment, FileSystemLoader jenv = Environment(loader=FileSystemLoader(template_dir)) text = jenv.get_template(filename).render(**context or {}) # Force to a byte representation of Unicode, or str()ification # within Paramiko's SFTP machinery may cause decode issues for # truly non-ASCII characters. text = text.encode('utf-8') except ImportError: import traceback tb = traceback.format_exc() abort(tb + "\nUnable to import Jinja2 -- see above.") else: filename = apply_lcwd(filename, env) with open(os.path.expanduser(filename)) as inputfile: text = inputfile.read() if context: text = text % context # Back up original file if backup and exists(destination): func("cp %s{,.bak}" % _expand_path(destination)) # Upload the file. return put( local_path=StringIO(text), remote_path=destination, use_sudo=use_sudo, mirror_local_mode=mirror_local_mode, mode=mode ) def sed(filename, before, after, limit='', use_sudo=False, backup='.bak', flags='', shell=False): """ Run a search-and-replace on ``filename`` with given regex patterns. Equivalent to ``sed -i<backup> -r -e "/<limit>/ s/<before>/<after>/<flags>g" <filename>``. Setting ``backup`` to an empty string will, disable backup file creation. For convenience, ``before`` and ``after`` will automatically escape forward slashes, single quotes and parentheses for you, so you don't need to specify e.g. ``http:\/\/foo\.com``, instead just using ``http://foo\.com`` is fine. If ``use_sudo`` is True, will use `sudo` instead of `run`. The ``shell`` argument will be eventually passed to `run`/`sudo`. It defaults to False in order to avoid problems with many nested levels of quotes and backslashes. However, setting it to True may help when using ``~fabric.operations.cd`` to wrap explicit or implicit ``sudo`` calls. (``cd`` by it's nature is a shell built-in, not a standalone command, so it should be called within a shell.) Other options may be specified with sed-compatible regex flags -- for example, to make the search and replace case insensitive, specify ``flags="i"``. The ``g`` flag is always specified regardless, so you do not need to remember to include it when overriding this parameter. .. versionadded:: 1.1 The ``flags`` parameter. .. versionadded:: 1.6 Added the ``shell`` keyword argument. """ func = use_sudo and sudo or run # Characters to be escaped in both for char in "/'": before = before.replace(char, r'\%s' % char) after = after.replace(char, r'\%s' % char) # Characters to be escaped in replacement only (they're useful in regexen # in the 'before' part) for char in "()": after = after.replace(char, r'\%s' % char) if limit: limit = r'/%s/ ' % limit context = { 'script': r"'%ss/%s/%s/%sg'" % (limit, before, after, flags), 'filename': _expand_path(filename), 'backup': backup } # Test the OS because of differences between sed versions with hide('running', 'stdout'): platform = run("uname") if platform in ('NetBSD', 'OpenBSD', 'QNX'): # Attempt to protect against failures/collisions hasher = hashlib.sha1() hasher.update(env.host_string) hasher.update(filename) context['tmp'] = "/tmp/%s" % hasher.hexdigest() # Use temp file to work around lack of -i expr = r"""cp -p %(filename)s %(tmp)s \ && sed -r -e %(script)s %(filename)s > %(tmp)s \ && cp -p %(filename)s %(filename)s%(backup)s \ && mv %(tmp)s %(filename)s""" else: context['extended_regex'] = '-E' if platform == 'Darwin' else '-r' expr = r"sed -i%(backup)s %(extended_regex)s -e %(script)s %(filename)s" command = expr % context return func(command, shell=shell) def uncomment(filename, regex, use_sudo=False, char='#', backup='.bak', shell=False): """ Attempt to uncomment all lines in ``filename`` matching ``regex``. The default comment delimiter is `#` and may be overridden by the ``char`` argument. This function uses the `sed` function, and will accept the same ``use_sudo``, ``shell`` and ``backup`` keyword arguments that `sed` does. `uncomment` will remove a single whitespace character following the comment character, if it exists, but will preserve all preceding whitespace. For example, ``# foo`` would become ``foo`` (the single space is stripped) but `` # foo`` would become `` foo`` (the single space is still stripped, but the preceding 4 spaces are not.) .. versionchanged:: 1.6 Added the ``shell`` keyword argument. """ return sed( filename, before=r'^([[:space:]]*)%s[[:space:]]?' % char, after=r'\1', limit=regex, use_sudo=use_sudo, backup=backup, shell=shell ) def comment(filename, regex, use_sudo=False, char='#', backup='.bak', shell=False): """ Attempt to comment out all lines in ``filename`` matching ``regex``. The default commenting character is `#` and may be overridden by the ``char`` argument. This function uses the `sed` function, and will accept the same ``use_sudo``, ``shell`` and ``backup`` keyword arguments that `sed` does. `comment` will prepend the comment character to the beginning of the line, so that lines end up looking like so:: this line is uncommented #this line is commented # this line is indented and commented In other words, comment characters will not "follow" indentation as they sometimes do when inserted by hand. Neither will they have a trailing space unless you specify e.g. ``char='# '``. .. note:: In order to preserve the line being commented out, this function will wrap your ``regex`` argument in parentheses, so you don't need to. It will ensure that any preceding/trailing ``^`` or ``$`` characters are correctly moved outside the parentheses. For example, calling ``comment(filename, r'^foo$')`` will result in a `sed` call with the "before" regex of ``r'^(foo)$'`` (and the "after" regex, naturally, of ``r'#\\1'``.) .. versionadded:: 1.5 Added the ``shell`` keyword argument. """ carot, dollar = '', '' if regex.startswith('^'): carot = '^' regex = regex[1:] if regex.endswith('$'): dollar = '$' regex = regex[:-1] regex = "%s(%s)%s" % (carot, regex, dollar) return sed( filename, before=regex, after=r'%s\1' % char, use_sudo=use_sudo, backup=backup, shell=shell ) def contains(filename, text, exact=False, use_sudo=False, escape=True, shell=False): """ Return True if ``filename`` contains ``text`` (which may be a regex.) By default, this function will consider a partial line match (i.e. where ``text`` only makes up part of the line it's on). Specify ``exact=True`` to change this behavior so that only a line containing exactly ``text`` results in a True return value. This function leverages ``egrep`` on the remote end (so it may not follow Python regular expression syntax perfectly), and skips ``env.shell`` wrapper by default. If ``use_sudo`` is True, will use `sudo` instead of `run`. If ``escape`` is False, no extra regular expression related escaping is performed (this includes overriding ``exact`` so that no ``^``/``$`` is added.) The ``shell`` argument will be eventually passed to ``run/sudo``. See description of the same argumnet in ``~fabric.contrib.sed`` for details. .. versionchanged:: 1.0 Swapped the order of the ``filename`` and ``text`` arguments to be consistent with other functions in this module. .. versionchanged:: 1.4 Updated the regular expression related escaping to try and solve various corner cases. .. versionchanged:: 1.4 Added ``escape`` keyword argument. .. versionadded:: 1.6 Added the ``shell`` keyword argument. """ func = use_sudo and sudo or run if escape: text = _escape_for_regex(text) if exact: text = "^%s$" % text with settings(hide('everything'), warn_only=True): egrep_cmd = 'egrep "%s" %s' % (text, _expand_path(filename)) return func(egrep_cmd, shell=shell).succeeded def append(filename, text, use_sudo=False, partial=False, escape=True, shell=False): """ Append string (or list of strings) ``text`` to ``filename``. When a list is given, each string inside is handled independently (but in the order given.) If ``text`` is already found in ``filename``, the append is not run, and None is returned immediately. Otherwise, the given text is appended to the end of the given ``filename`` via e.g. ``echo '$text' >> $filename``. The test for whether ``text`` already exists defaults to a full line match, e.g. ``^<text>$``, as this seems to be the most sensible approach for the "append lines to a file" use case. You may override this and force partial searching (e.g. ``^<text>``) by specifying ``partial=True``. Because ``text`` is single-quoted, single quotes will be transparently backslash-escaped. This can be disabled with ``escape=False``. If ``use_sudo`` is True, will use `sudo` instead of `run`. The ``shell`` argument will be eventually passed to ``run/sudo``. See description of the same argumnet in ``~fabric.contrib.sed`` for details. .. versionchanged:: 0.9.1 Added the ``partial`` keyword argument. .. versionchanged:: 1.0 Swapped the order of the ``filename`` and ``text`` arguments to be consistent with other functions in this module. .. versionchanged:: 1.0 Changed default value of ``partial`` kwarg to be ``False``. .. versionchanged:: 1.4 Updated the regular expression related escaping to try and solve various corner cases. .. versionadded:: 1.6 Added the ``shell`` keyword argument. """ func = use_sudo and sudo or run # Normalize non-list input to be a list if isinstance(text, basestring): text = [text] for line in text: regex = '^' + _escape_for_regex(line) + ('' if partial else '$') if (exists(filename, use_sudo=use_sudo) and line and contains(filename, regex, use_sudo=use_sudo, escape=False, shell=shell)): continue line = line.replace("'", r"'\\''") if escape else line func("echo '%s' >> %s" % (line, _expand_path(filename))) def _escape_for_regex(text): """Escape ``text`` to allow literal matching using egrep""" regex = re.escape(text) # Seems like double escaping is needed for \ regex = regex.replace('\\\\', '\\\\\\') # Triple-escaping seems to be required for $ signs regex = regex.replace(r'\$', r'\\\$') # Whereas single quotes should not be escaped regex = regex.replace(r"\'", "'") return regex def _expand_path(path): return '"$(echo %s)"' % path
37.898795
87
0.638543
794e526cf6386534186390c02df7eff01e38325d
374
py
Python
axe/__init__.py
soasme/axe
652b8075a1fd2b3aa66392d464575ffed6a758ae
[ "MIT" ]
null
null
null
axe/__init__.py
soasme/axe
652b8075a1fd2b3aa66392d464575ffed6a758ae
[ "MIT" ]
null
null
null
axe/__init__.py
soasme/axe
652b8075a1fd2b3aa66392d464575ffed6a758ae
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Axe ~~~ A microframework based on Werkzeug. :copyright: (c) 2014 by Ju Lin. :license: MIT, see LICENSE for more details. """ __all__ = [ 'abort', 'redirect', 'exceptions', 'Axe', ] import werkzeug.exceptions as exceptions from werkzeug.utils import redirect from .app import Axe from .utils import abort
14.96
48
0.625668
794e5424d1555685ab1a85aebfd73d84152e9a15
2,291
py
Python
ch06/50_fetch_shape_data.py
taro-masuda/nlp100
a2f73777b8215622726d040f48add9ab6b50c188
[ "MIT" ]
3
2021-06-22T10:17:56.000Z
2022-02-21T07:11:57.000Z
ch06/50_fetch_shape_data.py
taro-masuda/nlp100
a2f73777b8215622726d040f48add9ab6b50c188
[ "MIT" ]
null
null
null
ch06/50_fetch_shape_data.py
taro-masuda/nlp100
a2f73777b8215622726d040f48add9ab6b50c188
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import random import os import requests import zipfile import io def seed_everything(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) def fetch_data(url: str, save_dir: str, filename: str) -> pd.DataFrame: req = requests.get(url) zip_file = zipfile.ZipFile(io.BytesIO(req.content)) zip_file.extractall(save_dir) df = pd.read_csv(os.path.join(save_dir, filename), sep='\t', header=None) return df def shape_data(df: pd.DataFrame):#-> (pd.DataFrame, pd.DataFrame, pd.DataFrame): df.columns = ['id', 'title', 'url', 'publisher', 'category', 'story', 'hostname', 'timestamp'] df_cond = df[df['publisher'].isin(['Reuters' ,'Huffington Post', 'Businessweek', 'Contactmusic.com', 'Daily Mail'])] df_train, df_val_test = train_test_split(df_cond, test_size=0.2) df_val, df_test = train_test_split(df_val_test, test_size=0.5) return df_train, df_val, df_test def fetch_shape_data(url: str, save_dir: str, filename: str):# -> (pd.DataFrame, pd.DataFrame, pd.DataFrame): df = fetch_data(url=url, save_dir=save_dir, filename=filename) train_df, valid_df, test_df = shape_data(df=df) return train_df, valid_df, test_df if __name__ == '__main__': seed_everything(seed=42) url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00359/NewsAggregatorDataset.zip' save_dir = './data/' filename = 'newsCorpora.csv' df_train, df_val, df_test = fetch_shape_data(url=url, save_dir=save_dir, filename=filename) df_train.to_csv(os.path.join(save_dir, 'train.txt'), sep='\t', index=None) df_val.to_csv(os.path.join(save_dir, 'val.txt'), sep='\t', index=None) df_test.to_csv(os.path.join(save_dir, 'test.txt'), sep='\t', index=None) print('df_train record size:', len(df_train)) print('df_val record size:', len(df_val)) print('df_test record size:', len(df_test)) ''' df_train record size: 10672 df_val record size: 1334 df_test record size: 1334 '''
40.192982
109
0.64557
794e54795c37bb4144ce782213781ce1e2a3330b
479
py
Python
home/migrations/0011_auto_20190604_1215.py
xni06/wagtail-CMS
defe0f46e8109e96d6d5e9fd4cf002790fbcd54b
[ "MIT" ]
4
2019-06-04T07:18:44.000Z
2020-06-15T22:27:36.000Z
home/migrations/0011_auto_20190604_1215.py
jaspotsangbam/wagtail-CMS
2ec0dd05ba1f9339b705ce529588131049aa9bc7
[ "MIT" ]
38
2019-05-09T13:14:56.000Z
2022-03-12T00:54:57.000Z
home/migrations/0011_auto_20190604_1215.py
jaspotsangbam/wagtail-CMS
2ec0dd05ba1f9339b705ce529588131049aa9bc7
[ "MIT" ]
3
2019-09-26T14:32:36.000Z
2021-05-06T15:48:01.000Z
# Generated by Django 2.1.8 on 2019-06-04 12:15 from django.db import migrations import wagtail.core.blocks import wagtail.core.fields class Migration(migrations.Migration): dependencies = [ ('home', '0010_auto_20190604_1147'), ] operations = [ migrations.AlterField( model_name='homepage', name='links', field=wagtail.core.fields.StreamField([('link', wagtail.core.blocks.RichTextBlock())]), ), ]
22.809524
99
0.634656
794e5586e708657cbac48ada1eb6474769c452af
18,403
py
Python
Scripts/rfpy_harmonics.py
ttkyryliuk/RfPy
727521f094fcb685622d31ae3f353c0d21713d0e
[ "MIT" ]
null
null
null
Scripts/rfpy_harmonics.py
ttkyryliuk/RfPy
727521f094fcb685622d31ae3f353c0d21713d0e
[ "MIT" ]
null
null
null
Scripts/rfpy_harmonics.py
ttkyryliuk/RfPy
727521f094fcb685622d31ae3f353c0d21713d0e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright 2019 Pascal Audet # # This file is part of RfPy. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Import modules and functions import numpy as np import pickle import stdb from obspy.clients.fdsn import Client from obspy.core import Stream, UTCDateTime from rfpy import binning, plotting, Harmonics from pathlib import Path from argparse import ArgumentParser from os.path import exists as exist from numpy import nan def get_harmonics_arguments(argv=None): """ Get Options from :class:`~optparse.OptionParser` objects. This function is used for data processing on-the-fly (requires web connection) """ parser = ArgumentParser( usage="%(prog)s [arguments] <station database>", description="Script used to process receiver function data " + "for harmonic decomposition.") # General Settings parser.add_argument( "indb", help="Station Database to process from.", type=str) parser.add_argument( "--keys", action="store", type=str, dest="stkeys", default="", help="Specify a comma separated list of station keys for " + "which to perform the analysis. These must be " + "contained within the station database. Partial keys will " + "be used to match against those in the dictionary. For " + "instance, providing IU will match with all stations in " + "the IU network [Default processes all stations in the database]") parser.add_argument( "-v", "-V", "--verbose", action="store_true", dest="verb", default=False, help="Specify to increase verbosity.") parser.add_argument( "-O", "--overwrite", action="store_true", dest="ovr", default=False, help="Force the overwriting of pre-existing data. " + "[Default False]") parser.add_argument( "-L", "--long-name", action="store_true", dest="lkey", default=False, help="Force folder names to use long-key form (NET.STN.CHN). " + "Default behaviour uses short key form (NET.STN) for the folder " + "names, regardless of the key type of the database." ) # Event Selection Criteria TimeGroup = parser.add_argument_group( title="Time Settings", description="Settings associated with refining " + "the times to include in searching for receiver function data") TimeGroup.add_argument( "--start", action="store", type=str, dest="startT", default="", help="Specify a UTCDateTime compatible string representing " + "the start time for the search. This will override any " + "station start times. [Default start date of station]") TimeGroup.add_argument( "--end", action="store", type=str, dest="endT", default="", help="Specify a UTCDateTime compatible string representing " + "the end time for the search. This will override any " + "station end times [Default end date of station]") PreGroup = parser.add_argument_group( title='Pre-processing Settings', description="Options for pre-processing of receiver function " + "data prior to harmonic decomposition") PreGroup.add_argument( "--bp", action="store", type=str, dest="bp", default=None, help="Specify the corner frequencies for the bandpass filter. " + "[Default 0.05,0.5]") PreGroup.add_argument( "--bin", action="store", dest="nbin", type=int, default=None, help="Specify integer number of back-azimuth bins to consider " + "(typically 36 or 72). [Default does not bin data]") PreGroup.add_argument( "--snr", action="store", type=float, dest="snr", default=-9999., help="Specify the SNR threshold for extracting receiver functions. " + "[Default None]") PreGroup.add_argument( "--snrh", action="store", type=float, dest="snrh", default=-9999, help="Specify the horizontal component SNR threshold for " + "extracting receiver functions. [Default None]") PreGroup.add_argument( "--cc", action="store", type=float, dest="cc", default=-1., help="Specify the CC threshold for extracting receiver functions. " + "[Default None]") PreGroup.add_argument( "--no-outlier", action="store_true", dest="no_outl", default=False, help="Set this option to delete outliers based on the MAD " + "on the variance. [Default False]") PreGroup.add_argument( "--phase", action="store", type=str, dest="phase", default='allP', help="Specify the phase name to plot. " + "Options are 'P', 'PP', 'allP', 'S', 'SKS' or 'allS'. " + "[Default 'allP']") HarmonicGroup = parser.add_argument_group( title='Settings for harmonic decomposition', description="Specify parameters for the decomposition, e.g. " + "a fixed azimuth, depth range for finding the optimal azimuth, etc.") HarmonicGroup.add_argument( "--azim", action="store", type=float, dest="azim", default=None, help="Specify the azimuth angle along with to perform the " + "decomposition. [Default 0.]") HarmonicGroup.add_argument( "--find-azim", action="store_true", dest="find_azim", default=False, help="Set this option to calculate the optimal azimuth. [Default " + "uses the '--azim' value]") HarmonicGroup.add_argument( "--trange", action="store", type=str, dest="trange", default=None, help="Specify a list of two floats with minimum and maximum" + "bounds on time range for finding the optimal azimuth (sec). " + "[Default [0., 10.] when '--find-azim' is set]") HarmonicGroup.add_argument( "--save", action="store_true", dest="save", default=False, help="Set this option to save the Harmonics object " + "to a pickled file. [Default does not save object]") PlotGroup = parser.add_argument_group( title='Settings for plotting results', description="Specify parameters for plotting the back-azimuth " + "harmonics.") PlotGroup.add_argument( "--plot", action="store_true", dest="plot", default=False, help="Set this option to produce a plot of the back-azimuth harmonics") PlotGroup.add_argument( "--ymax", action="store", type=float, dest="ymax", default=30., help="Specify the maximum y axis value for the plot in units of the" + "dependent variable (e.g., sec). [Default 30.]") PlotGroup.add_argument( "--scale", action="store", type=float, dest="scale", default=30., help="Specify the scaling value that multiplies the amplitude " + "of the harmonic components. [Default 10.]") PlotGroup.add_argument( "--save-plot", action="store_true", dest="save_plot", default=False, help="Set this option to save the plot [Default doesn't save]") PlotGroup.add_argument( "--title", action="store", type=str, dest="title", default="", help="Specify plot title [Default has no title]") PlotGroup.add_argument( "--format", action="store", type=str, dest="form", default="png", help="Specify format of figure. Can be any one of the valid" + "matplotlib formats: 'png', 'jpg', 'eps', 'pdf'. [Default 'png']") args = parser.parse_args(argv) # Check inputs if not exist(args.indb): parser.error("Input file " + args.indb + " does not exist") # create station key list if len(args.stkeys) > 0: args.stkeys = args.stkeys.split(',') # construct start time if len(args.startT) > 0: try: args.startT = UTCDateTime(args.startT) except: parser.error( "Cannot construct UTCDateTime from start time: " + args.startT) else: args.startT = None # construct end time if len(args.endT) > 0: try: args.endT = UTCDateTime(args.endT) except: parser.error( "Cannot construct UTCDateTime from end time: " + args.endT) else: args.endT = None if args.phase not in ['P', 'PP', 'allP', 'S', 'SKS', 'allS']: parser.error( "Error: choose between 'P', 'PP', 'allP', 'S', 'SKS' and 'allS'.") if args.phase == 'allP': args.listphase = ['P', 'PP'] elif args.phase == 'allS': args.listphase = ['S', 'SKS'] else: args.listphase = [args.phase] if args.bp is None: args.bp = [0.05, 0.5] else: args.bp = [float(val) for val in args.bp.split(',')] args.bp = sorted(args.bp) if (len(args.bp)) != 2: parser.error( "Error: --bp should contain 2 " + "comma-separated floats") if args.azim is not None and args.find_azim: print("Warning: Setting both '--azim' and '--find-azim' is " + "conflictual. Ignoring '--find-azim'") args.find_azim = False elif args.azim is None and not args.find_azim: args.azim = 0. if args.find_azim: if args.trange is None: args.trange = [0., 10.] else: args.trange = [float(val) for val in args.trange.split(',')] args.trange = sorted(args.trange) if (len(args.trange)) != 2: parser.error( "Error: --trange should contain 2 " + "comma-separated floats") return args def main(): print() print("################################################################################") print("# __ _ _ #") print("# _ __ / _|_ __ _ _ | |__ __ _ _ __ _ __ ___ ___ _ __ (_) ___ ___ #") print("# | '__| |_| '_ \| | | | | '_ \ / _` | '__| '_ ` _ \ / _ \| '_ \| |/ __/ __| #") print( "# | | | _| |_) | |_| | | | | | (_| | | | | | | | | (_) | | | | | (__\__ \ #") print("# |_| |_| | .__/ \__, |___|_| |_|\__,_|_| |_| |_| |_|\___/|_| |_|_|\___|___/ #") print("# |_| |___/_____| #") print("# #") print("################################################################################") print() # Run Input Parser args = get_harmonics_arguments() # Load Database db, stkeys = stdb.io.load_db(fname=args.indb, keys=args.stkeys) # Track processed folders procfold = [] # Loop over station keys for stkey in list(stkeys): # Extract station information from dictionary sta = db[stkey] # Construct Folder Name stfld = stkey if not args.lkey: stfld = stkey.split('.')[0]+"."+stkey.split('.')[1] # Define path to see if it exists if args.phase in ['P', 'PP', 'allP']: datapath = Path('P_DATA') / stfld elif args.phase in ['S', 'SKS', 'allS']: datapath = Path('S_DATA') / stfld if not datapath.is_dir(): print('Path to ' + str(datapath) + ' doesn`t exist - continuing') continue # Get search start time if args.startT is None: tstart = sta.startdate else: tstart = args.startT # Get search end time if args.endT is None: tend = sta.enddate else: tend = args.endT if tstart > sta.enddate or tend < sta.startdate: continue # Temporary print locations tlocs = sta.location if len(tlocs) == 0: tlocs = [''] for il in range(0, len(tlocs)): if len(tlocs[il]) == 0: tlocs[il] = "--" sta.location = tlocs # Update Display print(" ") print(" ") print("|===============================================|") print("|===============================================|") print("| {0:>8s} |".format( sta.station)) print("|===============================================|") print("|===============================================|") print("| Station: {0:>2s}.{1:5s} |".format( sta.network, sta.station)) print("| Channel: {0:2s}; Locations: {1:15s} |".format( sta.channel, ",".join(tlocs))) print("| Lon: {0:7.2f}; Lat: {1:6.2f} |".format( sta.longitude, sta.latitude)) print("| Start time: {0:19s} |".format( sta.startdate.strftime("%Y-%m-%d %H:%M:%S"))) print("| End time: {0:19s} |".format( sta.enddate.strftime("%Y-%m-%d %H:%M:%S"))) print("|-----------------------------------------------|") # Check for folder already processed if stfld in procfold: print(' {0} already processed...skipping '.format(stfld)) continue rfRstream = Stream() rfTstream = Stream() datafiles = [x for x in datapath.iterdir() if x.is_dir()] for folder in datafiles: # Skip hidden folders if folder.name.startswith('.'): continue date = folder.name.split('_')[0] year = date[0:4] month = date[4:6] day = date[6:8] dateUTC = UTCDateTime(year+'-'+month+'-'+day) if dateUTC > tstart and dateUTC < tend: filename = folder / "RF_Data.pkl" if filename.is_file(): file = open(filename, "rb") rfdata = pickle.load(file) if rfdata[0].stats.snrh > args.snrh and \ rfdata[0].stats.snr and \ rfdata[0].stats.cc > args.cc: rfRstream.append(rfdata[1]) rfTstream.append(rfdata[2]) file.close() else: continue if args.no_outl: # Remove outliers wrt variance varR = np.array([np.var(tr.data) for tr in rfRstream]) # Calculate outliers medvarR = np.median(varR) madvarR = 1.4826*np.median(np.abs(varR-medvarR)) robustR = np.abs((varR-medvarR)/madvarR) outliersR = np.arange(len(rfRstream))[robustR > 2.] for i in outliersR[::-1]: rfRstream.remove(rfRstream[i]) rfTstream.remove(rfTstream[i]) # Do the same for transverse varT = np.array([np.var(tr.data) for tr in rfTstream]) medvarT = np.median(varT) madvarT = 1.4826*np.median(np.abs(varT-medvarT)) robustT = np.abs((varT-medvarT)/madvarT) outliersT = np.arange(len(rfTstream))[robustT > 2.] for i in outliersT[::-1]: rfRstream.remove(rfRstream[i]) rfTstream.remove(rfTstream[i]) # Try binning if specified if args.nbin is not None: rf_tmp = binning.bin(rfRstream, rfTstream, typ='baz', nbin=args.nbin+1) rfRstream = rf_tmp[0] rfTstream = rf_tmp[1] # Filter original streams rfRstream.filter('bandpass', freqmin=args.bp[0], freqmax=args.bp[1], corners=2, zerophase=True) rfTstream.filter('bandpass', freqmin=args.bp[0], freqmax=args.bp[1], corners=2, zerophase=True) # Initialize the HkStack object harmonics = Harmonics(rfRstream, rfTstream) # Stack with or without dip if args.find_azim: harmonics.dcomp_find_azim(xmin=args.trange[0], xmax=args.trange[1]) print("Optimal azimuth for trange between " + str(args.trange[0])+" and "+str(args.trange[1]) + " seconds is: "+str(harmonics.azim)) else: harmonics.dcomp_fix_azim(azim=args.azim) if args.plot: harmonics.plot(args.ymax, args.scale, args.save_plot, args.title, args.form) if args.save: filename = datapath / (hkstack.hstream[0].stats.station + ".harmonics.pkl") harmonics.save() # Update processed folders procfold.append(stfld) if __name__ == "__main__": # Run main program main()
34.78828
93
0.532087
794e55de4deb3edb68474389856a9397451eca32
546
py
Python
plotly/validators/scatterpolar/marker/colorbar/_showtickprefix.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/scatterpolar/marker/colorbar/_showtickprefix.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/scatterpolar/marker/colorbar/_showtickprefix.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class ShowtickprefixValidator( _plotly_utils.basevalidators.EnumeratedValidator ): def __init__( self, plotly_name='showtickprefix', parent_name='scatterpolar.marker.colorbar', **kwargs ): super(ShowtickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='colorbars', role='style', values=['all', 'first', 'last', 'none'], **kwargs )
24.818182
54
0.602564
794e5626a66cf60721284635c4b42aad8e7c657b
3,391
py
Python
mkt/abuse/models.py
muffinresearch/zamboni
045a6f07c775b99672af6d9857d295ed02fe5dd9
[ "BSD-3-Clause" ]
null
null
null
mkt/abuse/models.py
muffinresearch/zamboni
045a6f07c775b99672af6d9857d295ed02fe5dd9
[ "BSD-3-Clause" ]
null
null
null
mkt/abuse/models.py
muffinresearch/zamboni
045a6f07c775b99672af6d9857d295ed02fe5dd9
[ "BSD-3-Clause" ]
null
null
null
import logging from django.conf import settings from django.db import models from django.utils.translation import gettext import amo.models import amo.utils from mkt.webapps.models import Addon from mkt.users.models import UserProfile log = logging.getLogger('z.abuse') class AbuseReport(amo.models.ModelBase): # NULL if the reporter is anonymous. reporter = models.ForeignKey(UserProfile, null=True, blank=True, related_name='abuse_reported') ip_address = models.CharField(max_length=255, default='0.0.0.0') # An abuse report can be for an addon or a user. Only one of these should # be null. addon = models.ForeignKey(Addon, null=True, related_name='abuse_reports') user = models.ForeignKey(UserProfile, null=True, related_name='abuse_reports') message = models.TextField() class Meta: db_table = 'abuse_reports' def send(self): obj = self.addon or self.user if self.reporter: user_name = '%s (%s)' % (self.reporter.name, self.reporter.email) else: user_name = 'An anonymous coward' with amo.utils.no_translation(): type_ = (gettext(amo.ADDON_TYPE[self.addon.type]) if self.addon else 'User') subject = u'[%s] Abuse Report for %s' % (type_, obj.name) msg = u'%s reported abuse for %s (%s%s).\n\n%s' % ( user_name, obj.name, settings.SITE_URL, obj.get_url_path(), self.message) amo.utils.send_mail(subject, msg, recipient_list=(settings.ABUSE_EMAIL,)) @classmethod def recent_high_abuse_reports(cls, threshold, period, addon_id=None, addon_type=None): """ Returns AbuseReport objects for the given threshold over the given time period (in days). Filters by addon_id or addon_type if provided. E.g. Greater than 5 abuse reports for all webapps in the past 7 days. """ abuse_sql = [''' SELECT `abuse_reports`.*, COUNT(`abuse_reports`.`addon_id`) AS `num_reports` FROM `abuse_reports` INNER JOIN `addons` ON (`abuse_reports`.`addon_id` = `addons`.`id`) WHERE `abuse_reports`.`created` >= %s '''] params = [period] if addon_id: abuse_sql.append('AND `addons`.`id` = %s ') params.append(addon_id) elif addon_type and addon_type in amo.ADDON_TYPES: abuse_sql.append('AND `addons`.`addontype_id` = %s ') params.append(addon_type) abuse_sql.append('GROUP BY addon_id HAVING num_reports > %s') params.append(threshold) return list(cls.objects.raw(''.join(abuse_sql), params)) def send_abuse_report(request, obj, message): report = AbuseReport(ip_address=request.META.get('REMOTE_ADDR'), message=message) if request.user.is_authenticated(): report.reporter = request.user if isinstance(obj, Addon): report.addon = obj elif isinstance(obj, UserProfile): report.user = obj report.save() report.send() # Trigger addon high abuse report detection task. if isinstance(obj, Addon): from amo.tasks import find_abuse_escalations find_abuse_escalations.delay(obj.id)
36.074468
79
0.620466
794e562de3bc5dd0df1d69d4371d7ab13aa69398
2,140
py
Python
aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/DescribeDampPoliciesByCidRequest.py
sdk-team/aliyun-openapi-python-sdk
384730d707e6720d1676ccb8f552e6a7b330ec86
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/DescribeDampPoliciesByCidRequest.py
sdk-team/aliyun-openapi-python-sdk
384730d707e6720d1676ccb8f552e6a7b330ec86
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-rds/aliyunsdkrds/request/v20140815/DescribeDampPoliciesByCidRequest.py
sdk-team/aliyun-openapi-python-sdk
384730d707e6720d1676ccb8f552e6a7b330ec86
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class DescribeDampPoliciesByCidRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Rds', '2014-08-15', 'DescribeDampPoliciesByCid','rds') def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_SecurityToken(self): return self.get_query_params().get('SecurityToken') def set_SecurityToken(self,SecurityToken): self.add_query_param('SecurityToken',SecurityToken) def get_DBInstanceId(self): return self.get_query_params().get('DBInstanceId') def set_DBInstanceId(self,DBInstanceId): self.add_query_param('DBInstanceId',DBInstanceId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId)
35.666667
84
0.77757
794e57af1f8bc8bdd40e8594eee12551f7bd4607
8,846
py
Python
pyteomics/traml.py
superrino130/pyteomics
2d901a9f351d979628c2e3781440c4db77aac12c
[ "Apache-2.0" ]
47
2020-02-29T21:47:01.000Z
2022-03-17T13:27:30.000Z
pyteomics/traml.py
superrino130/pyteomics
2d901a9f351d979628c2e3781440c4db77aac12c
[ "Apache-2.0" ]
53
2020-04-07T01:40:31.000Z
2022-03-17T12:15:44.000Z
pyteomics/traml.py
superrino130/pyteomics
2d901a9f351d979628c2e3781440c4db77aac12c
[ "Apache-2.0" ]
23
2020-02-29T21:47:13.000Z
2021-11-26T04:32:07.000Z
""" traml - targeted MS transition data in TraML format =================================================== Summary ------- TraML is a standard rich XML-format for targeted mass spectrometry method definitions. Please refer to `psidev.info <http://www.psidev.info/traml>`_ for the detailed specification of the format and structure of TraML files. This module provides a minimalistic way to extract information from TraML files. You can use the object-oriented interface (:class:`TraML` instances) to access target definitions and transitions. :class:`TraML` objects also support indexing with entity IDs directly. Data access ----------- :py:class:`TraML` - a class representing a single TraML file. Other data access functions use this class internally. :py:func:`read` - iterate through transitions in TraML format. :py:func:`chain` - read multiple TraML files at once. :py:func:`chain.from_iterable` - read multiple files at once, using an iterable of files. Controlled Vocabularies ~~~~~~~~~~~~~~~~~~~~~~~ TraML relies on controlled vocabularies to describe its contents extensibly. See `Controlled Vocabulary Terms <../data.html#controlled-vocabulary-terms-in-structured-data>`_ for more details on how they are used. Handling Time Units and Other Qualified Quantities ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TraML contains information which may be described as using a variety of different time units. See `Unit Handling <../data.html#unit-handling>`_ for more information. Deprecated functions -------------------- :py:func:`version_info` - get version information about the TraML file. You can just read the corresponding attribute of the :py:class:`TraML` object. :py:func:`iterfind` - iterate over elements in an TraML file. You can just call the corresponding method of the :py:class:`TraML` object. Dependencies ------------ This module requires :py:mod:`lxml` ------------------------------------------------------------------------------- """ # Copyright 2018 Joshua Klein, Lev Levitsky # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from . import xml, _schema_defaults, auxiliary as aux class TraML(xml.MultiProcessingXML, xml.IndexSavingXML): """Parser class for TraML files.""" file_format = 'TraML' _root_element = 'TraML' _default_schema = _schema_defaults._traml_schema_defaults _default_version = '1.0.0' _default_iter_tag = 'Transition' _indexed_tags = { 'Transition', 'Peptide', 'Compound', 'Target', 'Protein', 'Compound', } _element_handlers = xml.XML._element_handlers.copy() _element_handlers.update({ 'Modification': xml.XML._promote_empty_parameter_to_name, 'Interpretation': xml.XML._promote_empty_parameter_to_name, 'Software': xml.XML._promote_empty_parameter_to_name, }) def __init__(self, *args, **kwargs): kwargs.setdefault('retrieve_refs', True) super(TraML, self).__init__(*args, **kwargs) def _get_info_smart(self, element, **kw): kwargs = dict(kw) rec = kwargs.pop('recursive', None) info = self._get_info( element, recursive=(rec if rec is not None else True), **kwargs) return info def _retrieve_refs(self, info, **kwargs): """Retrieves and embeds the data for each attribute in `info` that ends in `Ref`. Removes the id attribute from `info`""" for k, v in dict(info).items(): if k[-3:] in {'Ref', 'ref'}: if isinstance(v, str): key = v elif isinstance(v, dict): key = v['ref'] else: if k != 'ref': info[k[:-3]] = info.pop(k) continue try: by_id = self.get_by_id(key, retrieve_refs=True) except KeyError: warnings.warn('Ignoring unresolved reference: ' + key) else: if k == 'ref': info.update(by_id) else: # by_id.pop('id', None) info[k[:-3]] = by_id del info[k] def read(source, retrieve_refs=True, read_schema=False, iterative=True, use_index=False, huge_tree=False): """Parse `source` and iterate through transitions. Parameters ---------- source : str or file A path to a target TraML file or the file object itself. retrieve_refs : bool, optional If :py:const:`True`, additional information from references will be automatically added to the results. The file processing time will increase. Default is :py:const:`True`. read_schema : bool, optional If :py:const:`True`, attempt to extract information from the XML schema mentioned in the TraML header. Otherwise, use default parameters. Not recommended without Internet connection or if you don't like to get the related warnings. iterative : bool, optional Defines whether iterative parsing should be used. It helps reduce memory usage at almost the same parsing speed. Default is :py:const:`True`. use_index : bool, optional Defines whether an index of byte offsets needs to be created for spectrum elements. Default is :py:const:`False`. huge_tree : bool, optional This option is passed to the `lxml` parser and defines whether security checks for XML tree depth and node size should be disabled. Default is :py:const:`False`. Enable this option for trusted files to avoid XMLSyntaxError exceptions (e.g. `XMLSyntaxError: xmlSAX2Characters: huge text node`). Returns ------- out : TraML A :py:class:`TraML` object, suitable for iteration and possibly random access. """ return TraML(source, retrieve_refs=retrieve_refs, read_schema=read_schema, iterative=iterative, use_index=use_index, huge_tree=huge_tree) def iterfind(source, path, **kwargs): """Parse `source` and yield info on elements with specified local name or by specified "XPath". .. note:: This function is provided for backward compatibility only. If you do multiple :py:func:`iterfind` calls on one file, you should create an :py:class:`TraML` object and use its :py:meth:`!iterfind` method. Parameters ---------- source : str or file File name or file-like object. path : str Element name or XPath-like expression. Only local names separated with slashes are accepted. An asterisk (`*`) means any element. You can specify a single condition in the end, such as: ``"/path/to/element[some_value>1.5]"`` Note: you can do much more powerful filtering using plain Python. The path can be absolute or "free". Please don't specify namespaces. recursive : bool, optional If :py:const:`False`, subelements will not be processed when extracting info from elements. Default is :py:const:`True`. iterative : bool, optional Specifies whether iterative XML parsing should be used. Iterative parsing significantly reduces memory usage and may be just a little slower. When `retrieve_refs` is :py:const:`True`, however, it is highly recommended to disable iterative parsing if possible. Default value is :py:const:`True`. read_schema : bool, optional If :py:const:`True`, attempt to extract information from the XML schema mentioned in the mzIdentML header. Otherwise, use default parameters. Not recommended without Internet connection or if you don't like to get the related warnings. Returns ------- out : iterator """ return TraML(source, **kwargs).iterfind(path, **kwargs) version_info = xml._make_version_info(TraML) chain = aux.ChainBase._make_chain(TraML)
37.483051
107
0.626159
794e5954361d8fce7efee847b5cc89291be9faae
8,313
py
Python
python-package/xgboost/plotting.py
cool-RR/xgboost
306e38ff3145b559e3a7c67d071d8a4ced5f70a3
[ "Apache-2.0" ]
1
2020-12-28T06:19:54.000Z
2020-12-28T06:19:54.000Z
python-package/xgboost/plotting.py
cool-RR/xgboost
306e38ff3145b559e3a7c67d071d8a4ced5f70a3
[ "Apache-2.0" ]
1
2021-09-22T19:06:13.000Z
2021-09-22T19:06:13.000Z
python-package/xgboost/plotting.py
cool-RR/xgboost
306e38ff3145b559e3a7c67d071d8a4ced5f70a3
[ "Apache-2.0" ]
null
null
null
# pylint: disable=too-many-locals, too-many-arguments, invalid-name, # pylint: disable=too-many-branches # coding: utf-8 """Plotting Library.""" from io import BytesIO import numpy as np from .core import Booster from .sklearn import XGBModel def plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='F score', ylabel='Features', fmap='', importance_type='weight', max_num_features=None, grid=True, show_values=True, **kwargs): """Plot importance based on fitted trees. Parameters ---------- booster : Booster, XGBModel or dict Booster or XGBModel instance, or dict taken by Booster.get_fscore() ax : matplotlib Axes, default None Target axes instance. If None, new figure and axes will be created. grid : bool, Turn the axes grids on or off. Default is True (On). importance_type : str, default "weight" How the importance is calculated: either "weight", "gain", or "cover" * "weight" is the number of times a feature appears in a tree * "gain" is the average gain of splits which use the feature * "cover" is the average coverage of splits which use the feature where coverage is defined as the number of samples affected by the split max_num_features : int, default None Maximum number of top features displayed on plot. If None, all features will be displayed. height : float, default 0.2 Bar height, passed to ax.barh() xlim : tuple, default None Tuple passed to axes.xlim() ylim : tuple, default None Tuple passed to axes.ylim() title : str, default "Feature importance" Axes title. To disable, pass None. xlabel : str, default "F score" X axis title label. To disable, pass None. ylabel : str, default "Features" Y axis title label. To disable, pass None. fmap: str or os.PathLike (optional) The name of feature map file. show_values : bool, default True Show values on plot. To disable, pass False. kwargs : Other keywords passed to ax.barh() Returns ------- ax : matplotlib Axes """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError('You must install matplotlib to plot importance') if isinstance(booster, XGBModel): importance = booster.get_booster().get_score( importance_type=importance_type, fmap=fmap) elif isinstance(booster, Booster): importance = booster.get_score(importance_type=importance_type, fmap=fmap) elif isinstance(booster, dict): importance = booster else: raise ValueError('tree must be Booster, XGBModel or dict instance') if not importance: raise ValueError( 'Booster.get_score() results in empty. ' + 'This maybe caused by having all trees as decision dumps.') tuples = [(k, importance[k]) for k in importance] if max_num_features is not None: # pylint: disable=invalid-unary-operand-type tuples = sorted(tuples, key=lambda x: x[1])[-max_num_features:] else: tuples = sorted(tuples, key=lambda x: x[1]) labels, values = zip(*tuples) if ax is None: _, ax = plt.subplots(1, 1) ylocs = np.arange(len(values)) ax.barh(ylocs, values, align='center', height=height, **kwargs) if show_values is True: for x, y in zip(values, ylocs): ax.text(x + 1, y, x, va='center') ax.set_yticks(ylocs) ax.set_yticklabels(labels) if xlim is not None: if not isinstance(xlim, tuple) or len(xlim) != 2: raise ValueError('xlim must be a tuple of 2 elements') else: xlim = (0, max(values) * 1.1) ax.set_xlim(xlim) if ylim is not None: if not isinstance(ylim, tuple) or len(ylim) != 2: raise ValueError('ylim must be a tuple of 2 elements') else: ylim = (-1, len(values)) ax.set_ylim(ylim) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) ax.grid(grid) return ax def to_graphviz(booster, fmap='', num_trees=0, rankdir=None, yes_color=None, no_color=None, condition_node_params=None, leaf_node_params=None, **kwargs): """Convert specified tree to graphviz instance. IPython can automatically plot the returned graphiz instance. Otherwise, you should call .render() method of the returned graphiz instance. Parameters ---------- booster : Booster, XGBModel Booster or XGBModel instance fmap: str (optional) The name of feature map file num_trees : int, default 0 Specify the ordinal number of target tree rankdir : str, default "UT" Passed to graphiz via graph_attr yes_color : str, default '#0000FF' Edge color when meets the node condition. no_color : str, default '#FF0000' Edge color when doesn't meet the node condition. condition_node_params : dict, optional Condition node configuration for for graphviz. Example: .. code-block:: python {'shape': 'box', 'style': 'filled,rounded', 'fillcolor': '#78bceb'} leaf_node_params : dict, optional Leaf node configuration for graphviz. Example: .. code-block:: python {'shape': 'box', 'style': 'filled', 'fillcolor': '#e48038'} \\*\\*kwargs: dict, optional Other keywords passed to graphviz graph_attr, e.g. ``graph [ {key} = {value} ]`` Returns ------- graph: graphviz.Source """ try: from graphviz import Source except ImportError: raise ImportError('You must install graphviz to plot tree') if isinstance(booster, XGBModel): booster = booster.get_booster() # squash everything back into kwargs again for compatibility parameters = 'dot' extra = {} for key, value in kwargs.items(): extra[key] = value if rankdir is not None: kwargs['graph_attrs'] = {} kwargs['graph_attrs']['rankdir'] = rankdir for key, value in extra.items(): if 'graph_attrs' in kwargs.keys(): kwargs['graph_attrs'][key] = value else: kwargs['graph_attrs'] = {} del kwargs[key] if yes_color is not None or no_color is not None: kwargs['edge'] = {} if yes_color is not None: kwargs['edge']['yes_color'] = yes_color if no_color is not None: kwargs['edge']['no_color'] = no_color if condition_node_params is not None: kwargs['condition_node_params'] = condition_node_params if leaf_node_params is not None: kwargs['leaf_node_params'] = leaf_node_params if kwargs: parameters += ':' parameters += str(kwargs) tree = booster.get_dump( fmap=fmap, dump_format=parameters)[num_trees] g = Source(tree) return g def plot_tree(booster, fmap='', num_trees=0, rankdir=None, ax=None, **kwargs): """Plot specified tree. Parameters ---------- booster : Booster, XGBModel Booster or XGBModel instance fmap: str (optional) The name of feature map file num_trees : int, default 0 Specify the ordinal number of target tree rankdir : str, default "TB" Passed to graphiz via graph_attr ax : matplotlib Axes, default None Target axes instance. If None, new figure and axes will be created. kwargs : Other keywords passed to to_graphviz Returns ------- ax : matplotlib Axes """ try: from matplotlib import pyplot as plt from matplotlib import image except ImportError: raise ImportError('You must install matplotlib to plot tree') if ax is None: _, ax = plt.subplots(1, 1) g = to_graphviz(booster, fmap=fmap, num_trees=num_trees, rankdir=rankdir, **kwargs) s = BytesIO() s.write(g.pipe(format='png')) s.seek(0) img = image.imread(s) ax.imshow(img) ax.axis('off') return ax
32.346304
98
0.624564
794e599b74bf3be17803e580b283e14439c9f1b4
14,302
py
Python
trainml/connections.py
trainML/trainml-cli
3065ed4cacf415964bcfc8c3854dd8acbc3729c5
[ "MIT" ]
1
2021-02-11T16:08:05.000Z
2021-02-11T16:08:05.000Z
trainml/connections.py
trainML/trainml-cli
3065ed4cacf415964bcfc8c3854dd8acbc3729c5
[ "MIT" ]
1
2021-05-04T00:20:28.000Z
2021-07-07T16:21:35.000Z
trainml/connections.py
trainML/trainml-cli
3065ed4cacf415964bcfc8c3854dd8acbc3729c5
[ "MIT" ]
null
null
null
import json import os import shutil import asyncio import aiohttp import aiodocker import zipfile import re import logging from datetime import datetime from .exceptions import ConnectionError, ApiError, SpecificationError from aiodocker.exceptions import DockerError VPN_IMAGE = "trainml/tinc:no-upnp" STORAGE_IMAGE = "trainml/local-storage" STATUSES = dict( UNKNOWN="unknown", NEW="new", CONNECTING="connecting", CONNECTED="connected", NOT_CONNECTED="not connected", STOPPED="stopped", REMOVED="removed", ) class Connections(object): def __init__(self, trainml): self.trainml = trainml CONFIG_DIR = os.path.expanduser( os.environ.get("TRAINML_CONFIG_DIR") or "~/.trainml" ) self.dir = f"{CONFIG_DIR}/connections" os.makedirs( self.dir, exist_ok=True, ) async def list(self): con_dirs = os.listdir(self.dir) connections = [] con_tasks = [] for con_dir in con_dirs: try: con_type, con_id = con_dir.split("_") except ValueError: # unintelligible directory continue connection = Connection(self.trainml, con_type, con_id) connections.append(connection) con_task = asyncio.create_task(connection.check()) con_tasks.append(con_task) await asyncio.gather(*con_tasks) return connections async def cleanup(self): con_dirs = os.listdir(self.dir) await asyncio.gather( asyncio.create_task( _cleanup_containers(self.dir, con_dirs, "vpn") ), asyncio.create_task( _cleanup_containers(self.dir, con_dirs, "storage") ), ) async def remove_all(self): shutil.rmtree(self.dir) os.makedirs( self.dir, exist_ok=True, ) await self.cleanup() class Connection: def __init__(self, trainml, entity_type, id, entity=None, **kwargs): self.trainml = trainml self._id = id self._type = entity_type self._status = STATUSES.get("UNKNOWN") self._entity = entity CONFIG_DIR = os.path.expanduser( os.environ.get("TRAINML_CONFIG_DIR") or "~/.trainml" ) CONNECTIONS_DIR = f"{CONFIG_DIR}/connections" self._dir = f"{CONNECTIONS_DIR}/{entity_type}_{id}" os.makedirs( self._dir, exist_ok=True, ) @property def id(self) -> str: return self._id @property def type(self) -> str: return self._type @property def status(self) -> str: return self._status def __str__(self): return f"Connection for {self.type} - {self.id}: {self.status}" def __repr__(self): return f"Connection( trainml , {self.id}, {self.type})" async def _get_entity(self): if self.type == "dataset": self._entity = await self.trainml.datasets.get(self.id) elif self.type == "job": self._entity = await self.trainml.jobs.get(self.id) elif self.type == "model": self._entity = await self.trainml.models.get(self.id) else: raise TypeError( "Connection type must be in: ['dataset', 'model', 'job']" ) async def _download_connection_details(self): zip_file = f"{self._dir}/details.zip" url = await self._entity.get_connection_utility_url() async with aiohttp.ClientSession() as session: async with session.request("GET", url) as resp: with open( zip_file, "wb", ) as fd: content = await resp.read() fd.write(content) with zipfile.ZipFile(zip_file, "r") as zipf: for info in zipf.infolist(): extracted_path = zipf.extract(info, self._dir) if info.create_system == 3 and os.path.isfile( extracted_path ): ## 3 - ZIP_UNIX_SYSTEM unix_attributes = info.external_attr >> 16 if unix_attributes: os.chmod(extracted_path, unix_attributes) os.remove(zip_file) async def _test_connection(self, container): entity_details = self._entity.get_connection_details() if not entity_details: return False net = _parse_cidr(entity_details.get("cidr")) target_ip = f"{net.get('first_octet')}.{net.get('second_octet')}.{net.get('third_octet')}.254" logging.debug("") ping = await container.exec( ["ping", "-c", "1", target_ip], stdout=True, stderr=True, ) stream = ping.start() await stream.read_out() data = await ping.inspect() while data["ExitCode"] is None: await stream.read_out() data = await ping.inspect() await stream.close() if data["ExitCode"] == 0: return True return False async def check(self): if not self._entity: try: await self._get_entity() except ApiError as e: if e.status == 404: self._status = STATUSES.get("REMOVED") self._status = STATUSES.get("REMOVED") shutil.rmtree(self._dir) else: raise e if not os.path.isdir(f"{self._dir}/data"): self._status = STATUSES.get("NEW") return try: with open(f"{self._dir}/vpn_id", "r") as f: vpn_id = f.read() except OSError as e: self._status = STATUSES.get("STOPPED") return docker = aiodocker.Docker() try: container = await docker.containers.get(vpn_id) except DockerError as e: if e.status == 404: self._status = STATUSES.get("STOPPED") await docker.close() return raise e data = await container.show() if not data["State"]["Running"]: self._status = STATUSES.get("STOPPED") await container.delete() os.remove(f"{self._dir}/vpn_id") try: with open(f"{self._dir}/storage_id", "r") as f: storage_id = f.read() try: storage_container = await docker.containers.get(storage_id) await storage_container.delete(force=True) except DockerError as e: if e.status != 404: raise e except OSError as e: pass await docker.close() return connected = await self._test_connection(container) await docker.close() if connected: self._status = STATUSES.get("CONNECTED") else: self._status = STATUSES.get("NOT_CONNECTED") async def start(self): logging.debug(f"Beginning start {self.type} connection {self.id}") if self.status == STATUSES.get("UNKNOWN"): await self.check() if self.status in [ STATUSES.get("CONNECTING"), STATUSES.get("CONNECTED"), STATUSES.get("NOT_CONNECTED"), ]: raise SpecificationError( "status", "Only inactive connections can be started." ) self._status = STATUSES.get("CONNECTING") logging.info(f"Connecting...") if not self._entity: await self._get_entity() if not os.path.isdir(f"{self._dir}/data"): await self._download_connection_details() docker = aiodocker.Docker() await asyncio.gather( docker.pull(VPN_IMAGE), docker.pull(STORAGE_IMAGE) ) entity_details = self._entity.get_connection_details() if ( entity_details.get("model_path") or entity_details.get("input_path") or entity_details.get("output_path") ): logging.debug(f"Starting storage container") storage_container = await docker.containers.run( _get_storage_container_config( self.id, entity_details.get("cidr"), f"{self._dir}/data", entity_details.get("ssh_port"), model_path=entity_details.get("model_path"), input_path=entity_details.get("input_path"), output_path=entity_details.get("output_path"), ) ) logging.debug( f"Storage container started, id: {storage_container.id}" ) with open(f"{self._dir}/storage_id", "w") as f: f.write(storage_container.id) logging.debug(f"Starting VPN container") vpn_container = await docker.containers.run( _get_vpn_container_config( self.id, entity_details.get("cidr"), f"{self._dir}/data" ) ) logging.debug(f"VPN container started, id: {vpn_container.id}") with open(f"{self._dir}/vpn_id", "w") as f: f.write(vpn_container.id) count = 0 while count <= 30: logging.debug(f"Test connectivity attempt {count+1}") res = await self._test_connection(vpn_container) if res: logging.debug(f"Test connectivity successful {count+1}") break count += 1 await docker.close() if count > 30: self._status = STATUSES.get("NOT_CONNECTED") raise ConnectionError(f"Unable to connect {self.type} {self.id}") self._status = STATUSES.get("CONNECTED") logging.info(f"Connection Successful.") logging.debug(f"Completed start {self.type} connection {self.id}") async def stop(self): logging.debug(f"Beginning stop {self.type} connection {self.id}") if not self._entity: await self._get_entity() docker = aiodocker.Docker() tasks = [] logging.info("Disconnecting...") try: with open(f"{self._dir}/vpn_id", "r") as f: vpn_id = f.read() logging.debug(f"vpn container id: {vpn_id}") vpn_container = await docker.containers.get(vpn_id) vpn_delete_task = asyncio.create_task( vpn_container.delete(force=True) ) tasks.append(vpn_delete_task) os.remove(f"{self._dir}/vpn_id") except OSError: logging.debug("vpn container not found") storage_delete_task = None try: with open(f"{self._dir}/storage_id", "r") as f: storage_id = f.read() logging.debug(f"storage container id: {vpn_id}") storage_container = await docker.containers.get(storage_id) storage_delete_task = asyncio.create_task( storage_container.delete(force=True) ) tasks.append(storage_delete_task) os.remove(f"{self._dir}/storage_id") except OSError: logging.debug("storage container not found") await asyncio.gather(*tasks) await docker.close() self._status = STATUSES.get("REMOVED") shutil.rmtree(self._dir) logging.info("Disconnected.") logging.debug(f"Completed stop {self.type} connection {self.id}") async def _cleanup_containers(path, con_dirs, type): containers_target = [] for con_dir in con_dirs: try: with open(f"{path}/{con_dir}/{type}_id", "r") as f: id = f.read() containers_target.append(id) except OSError: continue docker = aiodocker.Docker() containers = await docker.containers.list( all=True, filters=json.dumps(dict(label=["service=trainml", f"type={type}"])), ) tasks = [ asyncio.create_task(container.delete(force=True)) for container in containers if container.id not in containers_target ] await asyncio.gather(*tasks) await docker.close() def _parse_cidr(cidr): res = re.match( r"(?P<first_octet>[0-9]{1,3})\.(?P<second_octet>[0-9]{1,3})\.(?P<third_octet>[0-9]{1,3})\.(?P<fourth_octet>[0-9]{1,3})/(?P<mask_length>[0-9]{1,2})", cidr, ) net = res.groupdict() return net def _get_vpn_container_config(id, cidr, data_dir): config = dict( Image=VPN_IMAGE, Hostname=id, Cmd=[], AttachStdin=False, AttachStdout=False, AttachStderr=False, Tty=False, Env=[ f"NETWORK={id}", "DEBUG=1", ], HostConfig=dict( Init=True, Binds=[f"{data_dir}:/etc/tinc:rw"], NetworkMode="host", CapAdd=["NET_ADMIN"], ), Labels=dict(type="vpn", service="trainml", id=id), ) return config def _get_storage_container_config( id, cidr, data_dir, ssh_port, model_path=None, input_path=None, output_path=None, ): Binds = [f"{data_dir}/.ssh:/opt/ssh"] if model_path: Binds.append(f"{os.path.expanduser(model_path)}:/opt/model:ro") if input_path: Binds.append(f"{os.path.expanduser(input_path)}:/opt/data:ro") if output_path: Binds.append(f"{os.path.expanduser(output_path)}:/opt/output:rw") config = dict( Image=STORAGE_IMAGE, Hostname=id, Cmd=[], AttachStdin=False, AttachStdout=False, AttachStderr=False, Tty=False, Env=[ f"VPN_CIDR={cidr}", ], ExposedPorts={f"22/tcp": {}}, HostConfig=dict( Init=True, Binds=Binds, PortBindings={ f"22/tcp": [dict(HostPort=f"{ssh_port}", HostIP="0.0.0.0")], }, ), Labels=dict(type="storage", service="trainml", id=id), ) return config
32.357466
156
0.550482
794e59abab1d60ef28544cb699deaef53af8f3c4
794
py
Python
python/tests/test_multi_bracket_validation.py
M7madMomani2/data-structures-and-algorithms
35ba48973d45f6972d097e4aaac7cfb7147a83a2
[ "MIT" ]
null
null
null
python/tests/test_multi_bracket_validation.py
M7madMomani2/data-structures-and-algorithms
35ba48973d45f6972d097e4aaac7cfb7147a83a2
[ "MIT" ]
null
null
null
python/tests/test_multi_bracket_validation.py
M7madMomani2/data-structures-and-algorithms
35ba48973d45f6972d097e4aaac7cfb7147a83a2
[ "MIT" ]
1
2021-08-29T20:16:19.000Z
2021-08-29T20:16:19.000Z
import pytest from challenges.multi_bracket_validation.multi_bracket_validation import * def test_valid_data(): actual1=multi_bracket_validation('(){}') actual2=multi_bracket_validation('()[[Extra Characters]]') actual3=multi_bracket_validation('({()}') actual4=multi_bracket_validation('({()})') excepted=True assert actual1==excepted assert actual2==excepted assert actual3==excepted assert actual4==excepted def test_valid_data(): actual1=multi_bracket_validation('({()}') actual2=multi_bracket_validation('({())') actual3=multi_bracket_validation('({())))') actual4=multi_bracket_validation('({()]') excepted=False assert actual1==excepted assert actual2==excepted assert actual3==excepted assert actual4==excepted
30.538462
74
0.720403
794e5a26a1e643dfb7d64f37e50a012b1af926e3
3,103
py
Python
x2py/case.py
jaykang920/x2py
b8bd473f94ff4b9576e984cc384f4159ab71278d
[ "MIT" ]
null
null
null
x2py/case.py
jaykang920/x2py
b8bd473f94ff4b9576e984cc384f4159ab71278d
[ "MIT" ]
1
2019-06-05T09:35:09.000Z
2020-07-02T09:46:46.000Z
x2py/case.py
jaykang920/x2py
b8bd473f94ff4b9576e984cc384f4159ab71278d
[ "MIT" ]
null
null
null
# Copyright (c) 2017, 2018 Jae-jun Kang # See the file LICENSE for details. from x2py.event_sink import EventSink from x2py.util.trace import Trace class Case(EventSink): """Represents a set of application logic.""" def __init__(self): super(Case, self).__init__() def setup_with(self, flow): """Initializes this case with the specified holding flow.""" self.flow = flow from x2py.flow import Flow backup = Flow.thread_local.current Flow.thread_local.current = flow self._setup() Flow.thread_local.current = backup def teardown_with(self, flow): """Cleans up this case with the specified holding flow.""" from x2py.flow import Flow backup = Flow.thread_local.current Flow.thread_local.current = flow self._teardown() Flow.thread_local.current = backup self.cleanup() # eventsink cleanup def setup(self): """Overridden by subclasses to build a initialization chain.""" pass def teardown(self): """Overridden by subclasses to build a cleanup chain.""" pass def on_start(self): """Overridden by subclasses to build a flow startup handler chain.""" pass def on_stop(self): """Overridden by subclasses to build a flow shutdown handler chain.""" pass def _setup(self): """Called internally when this case is initialized.""" self.setup() def _teardown(self): """Called internally when this case is cleaned up.""" self.teardown() class CaseStack(object): """Handles a group of cases.""" def __init__(self): self.cases = [] self.activated = False def add(self, case): if case is None or not isinstance(case, Case): raise TypeError() if case in self.cases: return False self.cases.append(case) return True def remove(self, case): if case is None or not isinstance(case, Case): raise TypeError() if case not in self.cases: return False self.cases.remove(case) return True def setup_with(self, flow): if self.activated: return self.activated = True for case in self.cases: Trace.trace("casestack: setting up case {}", type(case).__name__) case.setup_with(flow) def teardown_with(self, flow): if not self.activated: return self.activated = False for case in reversed(self.cases): try: Trace.trace("casestack: tearing down case {}", type(case).__name__) case.teardown_with(flow) except BaseException as ex: Trace.error("{} {} teardown: {}", flow.name, type(case).__name__, ex) def on_start(self): for case in self.cases: case.on_start() def on_stop(self): for case in reversed(self.cases): try: case.on_stop() except: pass
27.460177
85
0.588141
794e5dccdc42a5d639222239fa58a7d4cebe11a3
5,829
py
Python
ssht00ls/classes/utils/__init__.py
vandenberghinc/ssht00ls
e08081773c8da7dfac0764170bfeacb4bf421ec1
[ "CNRI-Python" ]
5
2021-02-18T17:46:39.000Z
2021-12-29T15:48:07.000Z
ssht00ls/classes/utils/__init__.py
vandenberghinc/ssht00ls
e08081773c8da7dfac0764170bfeacb4bf421ec1
[ "CNRI-Python" ]
null
null
null
ssht00ls/classes/utils/__init__.py
vandenberghinc/ssht00ls
e08081773c8da7dfac0764170bfeacb4bf421ec1
[ "CNRI-Python" ]
2
2021-03-19T14:06:20.000Z
2021-09-26T14:08:34.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # imports. from ssht00ls.classes.config import * import os, sys, requests, ast, json, pathlib, glob, string, getpass, django # save config file safely. def save_config_safely(backup=True, __loader__=None, __keyboard_interrupt__=None): if backup: save_config_backup_safely() try: CONFIG.save() except KeyboardInterrupt as e: if __loader__ == None: __loader__ = dev0s.console.Loader("&RED&Do not interrupt!&END& Saving ssht00ls config file.") return save_config_safely(backup=False, __loader__=__loader__, __keyboard_interrupt__=e) if __loader__ != None: __loader__.stop() if __keyboard_interrupt__ != None: raise KeyboardInterrupt(__keyboard_interrupt__) # save backup of config file safely. def save_config_backup_safely(__loader__=None): path = DATABASE.join(".backups") if not Files.exists(path): Files.create(path, directory=True) path += "/config/" if not Files.exists(path): Files.create(path, directory=True) path += f"/{Date().date}" try: Files.save(path, CONFIG.dictionary, format="json") except KeyboardInterrupt as e: if __loader__ == None: __loader__ = dev0s.console.Loader("&RED&Do not interrupt!&END& Saving backup of ssht00ls config file.") return save_config_backup_safely(__loader__=__loader__) if __loader__ != None: __loader__.stop() fp = FilePath(gfp.base(path)) if fp.size(format=int, mode="mb") >= 5: fp.delete(forced=True) fp.create(directory=True) # check / start the ssh agent (due to circular import keep it over here for classes: [aliases]). def ssh_agent(): """ SSH_AUTH_SOCK = os.environ.get("SSH_AUTH_SOCK") SSH_AGENT_PID = os.environ.get("SSH_AGENT_PID") """ """ try: output = utils.__execute__([f"ssh-add", "-D"]) except: a=1 try: output = utils.__execute__([f"ssh-add", "-k"]) except: a=1 """ # version 2. if len(dev0s.code.processes(includes="ssh-agent").processes) >= 10: dev0s.code.execute(f"pkill -9 -f ssh-agent") try: output = dev0s.code.execute(f"ssh-agent") if not output.success: output.crash() output = str(output) try: SSH_AUTH_SOCK = output.split("SSH_AUTH_SOCK=")[1].split(";")[0] os.environ["SSH_AUTH_SOCK"] = SSH_AUTH_SOCK except: return None try: SSH_AGENT_PID = output.split("SSH_AGENT_PID=")[1].split(";")[0] os.environ["SSH_AGENT_PID"] = SSH_AGENT_PID except: return None except: return None os.environ["SSH_AUTH_SOCK"] = SSH_AUTH_SOCK os.environ["SSH_AGENT_PID"] = SSH_AGENT_PID # converting variables. def __array_to_string__(array, joiner=" "): string = "" for i in array: if string == "": string = str(i) else: string += joiner+str(i) return string def __string_to_boolean__(string): if string in ["true", "True", True]: return True elif string in ["false", "False", False]: return False else: raise ValueError(f"Could not convert string [{string}] to a boolean.") def __string_to_bash__(string): a = string.replace('(','\(').replace(')','\)').replace("'","\'").replace(" ","\ ").replace("$","\$").replace("!","\!").replace("?","\?").replace("@","\@").replace("$","\$").replace("%","\%").replace("^","\^").replace("&","\&").replace("*","\*").replace("'","\'").replace('"','\"') return a # generation. def __generate_pincode__(characters=6, charset=string.digits): return ''.join(random.choice(charset) for x in range(characters)) # # execute a shell command. def __execute__( # the command in array. command=[], # wait till the command is pinished. wait=False, # the commands timeout, [timeout] overwrites parameter [wait]. timeout=None, # the commands output return format: string / array. return_format="string", # the subprocess.Popen.shell argument. shell=False, # pass a input string to the process. input=None, ): def __convert__(byte_array, return_format=return_format): if return_format == "string": lines = "" for line in byte_array: lines += line.decode() return lines elif return_format == "array": lines = [] for line in byte_array: lines.append(line.decode().replace("\n","").replace("\\n","")) return lines # create process. if isinstance(command, str): command = command.split(' ') p = subprocess.Popen( command, shell=shell, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE,) # send input. if input != None: if isinstance(input, list): for s in input: p.stdin.write(f'{s}\n'.encode()) elif isinstance(input, str): p.stdin.write(f'{input}\n'.encode()) else: raise ValueError("Invalid format for parameter [input] required format: [string, array].") p.stdin.flush() # timeout. if timeout != None: time.sleep(timeout) p.terminate() # await. elif wait: p.wait() # get output. output = __convert__(p.stdout.readlines(), return_format=return_format) if return_format == "string" and output == "": output = __convert__(p.stderr.readlines(), return_format=return_format) elif return_format == "array" and output == []: output = __convert__(p.stderr.readlines(), return_format=return_format) return output # execute a shell script. def __execute_script__( # the script in string. script="", # wait till the command is pinished. wait=False, # the commands timeout, [timeout] overwrites parameter [wait]. timeout=None, # the commands output return format: string / array. return_format="string", # the subprocess.Popen.shell argument. shell=False, # pass a input string to the process. input=None, ): path = f"/tmp/shell_script.{__generate_pincode__(characters=32)}.sh" with open(str(path), "w") as file: file.write(str(script)) os.system(f"chmod +x {path}") output = __execute__( command=[f"sh", f"{path}"], wait=wait, timeout=timeout, return_format=return_format, shell=shell, input=input,) os.system(f"rm -fr {path}") return output
31.508108
288
0.692057
794e5e4e5f63fb77cd2afadace84e70c79fadffd
1,066
py
Python
main.py
igorpejic/alpha-zero-general
fcb3dff17ede2bc69706962daa8a59991e1b6395
[ "MIT" ]
null
null
null
main.py
igorpejic/alpha-zero-general
fcb3dff17ede2bc69706962daa8a59991e1b6395
[ "MIT" ]
null
null
null
main.py
igorpejic/alpha-zero-general
fcb3dff17ede2bc69706962daa8a59991e1b6395
[ "MIT" ]
null
null
null
from Coach import Coach # from othello.pytorch.NNet import NNetWrapper as nn # from othello.OthelloGame import OthelloGame as Game # from othello.tensorflow.NNet import NNetWrapper as nn from binpack.tensorflow.NNet import NNetWrapper as nn from binpack.BinPackGame import BinPackGame as Game from utils import * args = dotdict({ 'numIters': 8, 'numEps': 3, 'tempThreshold': 15, 'updateThreshold': 0.6, 'maxlenOfQueue': 200000, 'numMCTSSims': 50, 'arenaCompare': 2, 'cpuct': 1, 'checkpoint': './temp/', 'load_model': False, 'load_folder_file': ('/dev/models/8x100x50','best.pth.tar'), 'numItersForTrainExamplesHistory': 40, }) if __name__=="__main__": N_TILES = 8 HEIGHT = 8 WIDTH = 8 g = Game(HEIGHT, WIDTH, N_TILES) nnet = nn(g) if args.load_model and False: nnet.load_checkpoint(args.load_folder_file[0], args.load_folder_file[1]) c = Coach(g, nnet, args) if args.load_model: print("Load trainExamples from file") c.loadTrainExamples() c.learn()
24.790698
80
0.669794
794e5f29c4d556af23e1605ce304a0faa801858f
889
py
Python
Extra/lcp.py
rampup01/Leetcode
8450a95a966ef83b24ffe6450f06ce8de92b3efb
[ "MIT" ]
990
2018-06-05T11:49:22.000Z
2022-03-31T08:59:17.000Z
Extra/lcp.py
rampup01/Leetcode
8450a95a966ef83b24ffe6450f06ce8de92b3efb
[ "MIT" ]
1
2021-11-01T01:29:38.000Z
2021-11-01T01:29:38.000Z
Extra/lcp.py
rampup01/Leetcode
8450a95a966ef83b24ffe6450f06ce8de92b3efb
[ "MIT" ]
482
2018-06-12T22:16:53.000Z
2022-03-29T00:23:29.000Z
from suffix_array import SuffixArray class LCP(object): def __init__(self, s): self.s = s self.lcp_array = [] self.suffix_array = SuffixArray(s) self.suffix_array.create_suffix_array() def lcp_w_suffix_str(self): N = len(self.suffix_array.suffix_array) array = self.suffix_array.suffix_array self.lcp_array = [0]*N inv_suffix = [0]*N for index in range(N): inv_suffix[array[index].index] = index maxLen = 0 for index in range(N): if inv_suffix[index] == N-1: maxLen = 0 continue index_j = array[inv_suffix[index]+1].index while(index+maxLen < N and index_j+maxLen < N and self.s[index+maxLen] == self.s[index_j+maxLen]): maxLen += 1 self.lcp_array[inv_suffix[index]] = maxLen if maxLen > 0: maxLen -= 1 return self.lcp_array if __name__ == '__main__': lcp = LCP("banana") lcp.lcp_w_suffix_str() print lcp.lcp_array
21.166667
101
0.685039
794e601dee15e42214a3cd408efd0dad6970d9a4
609
py
Python
tests/old_suite/basic/pkg1/a.py
yoda-vid/pyinstaller
419f349dad721a253b19d9c596e251818132d6ba
[ "Apache-2.0" ]
2
2017-02-08T22:22:09.000Z
2020-10-08T12:28:36.000Z
tests/old_suite/basic/pkg1/a.py
416426/pyinstaller
0f2b2e921433ab5a510c7efdb21d9c1d7cfbc645
[ "Apache-2.0" ]
3
2020-04-06T15:48:37.000Z
2021-03-23T10:22:21.000Z
tests/old_suite/basic/pkg1/a.py
416426/pyinstaller
0f2b2e921433ab5a510c7efdb21d9c1d7cfbc645
[ "Apache-2.0" ]
4
2018-06-04T20:40:37.000Z
2020-10-13T22:38:40.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2013-2021, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- """ pkg1.a.py is never imported """ print(" %s" % __doc__) print(" %s %s" % (__name__, __file__))
33.833333
78
0.538588