hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794dd64e84dcbe00dc7ecff4251e7f009f045d9e
3,506
py
Python
demo/GridLabelRenderer.py
ferren/pyXterm
b4444cf90893089423295b8792173f0c08b73b52
[ "Apache-2.0" ]
3
2018-03-19T07:57:10.000Z
2021-07-05T08:55:14.000Z
demo/GridLabelRenderer.py
ferren/pyXterm
b4444cf90893089423295b8792173f0c08b73b52
[ "Apache-2.0" ]
6
2020-03-24T15:40:18.000Z
2021-12-13T19:46:09.000Z
demo/GridLabelRenderer.py
ferren/pyXterm
b4444cf90893089423295b8792173f0c08b73b52
[ "Apache-2.0" ]
4
2018-03-29T21:59:55.000Z
2019-12-16T14:56:38.000Z
#!/usr/bin/env python import wx import wx.grid as grid import wx.lib.mixins.gridlabelrenderer as glr #---------------------------------------------------------------------- class MyGrid(grid.Grid, glr.GridWithLabelRenderersMixin): def __init__(self, *args, **kw): grid.Grid.__init__(self, *args, **kw) glr.GridWithLabelRenderersMixin.__init__(self) class MyRowLabelRenderer(glr.GridLabelRenderer): def __init__(self, bgcolor): self._bgcolor = bgcolor def Draw(self, grid, dc, rect, row): dc.SetBrush(wx.Brush(self._bgcolor)) dc.SetPen(wx.TRANSPARENT_PEN) dc.DrawRectangle(rect) hAlign, vAlign = grid.GetRowLabelAlignment() text = grid.GetRowLabelValue(row) self.DrawBorder(grid, dc, rect) self.DrawText(grid, dc, rect, text, hAlign, vAlign) class MyColLabelRenderer(glr.GridLabelRenderer): def __init__(self, bgcolor): self._bgcolor = bgcolor def Draw(self, grid, dc, rect, col): dc.SetBrush(wx.Brush(self._bgcolor)) dc.SetPen(wx.TRANSPARENT_PEN) dc.DrawRectangle(rect) hAlign, vAlign = grid.GetColLabelAlignment() text = grid.GetColLabelValue(col) self.DrawBorder(grid, dc, rect) self.DrawText(grid, dc, rect, text, hAlign, vAlign) class MyCornerLabelRenderer(glr.GridLabelRenderer): def __init__(self): import images self._bmp = images.Smiles.GetBitmap() def Draw(self, grid, dc, rect, rc): x = rect.left + (rect.width - self._bmp.GetWidth()) / 2 y = rect.top + (rect.height - self._bmp.GetHeight()) / 2 dc.DrawBitmap(self._bmp, x, y, True) class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) ROWS = 27 COLS = 15 g = MyGrid(self, size=(100,100)) g.CreateGrid(ROWS, COLS) g.SetCornerLabelRenderer(MyCornerLabelRenderer()) for row in range(0, ROWS, 3): g.SetRowLabelRenderer(row+0, MyRowLabelRenderer('#ffe0e0')) g.SetRowLabelRenderer(row+1, MyRowLabelRenderer('#e0ffe0')) g.SetRowLabelRenderer(row+2, MyRowLabelRenderer('#e0e0ff')) for col in range(0, COLS, 3): g.SetColLabelRenderer(col+0, MyColLabelRenderer('#e0ffe0')) g.SetColLabelRenderer(col+1, MyColLabelRenderer('#e0e0ff')) g.SetColLabelRenderer(col+2, MyColLabelRenderer('#ffe0e0')) self.Sizer = wx.BoxSizer() self.Sizer.Add(g, 1, wx.EXPAND) #---------------------------------------------------------------------- def runTest(frame, nb, log): win = TestPanel(nb, log) return win #---------------------------------------------------------------------- overview = """<html><body> <h2><center>GridLabelRenderer</h2> The <tt>wx.lib.mixins.gridlabelrenderer</tt> module provides a mixin class for wx.grid.Grid that enables it to have plugin renderers that work like the normal cell renderers do. If desired you can specify a different renderer for each row or col label, and even for the little corner label in the upper left corner of the grid. When each of those labels needs to be drawn the mixin calls the render's Draw method with the dc and rectangle, allowing your renderer class to do just about anything that it wants. </body></html> """ if __name__ == '__main__': import sys,os import run run.main(['', os.path.basename(sys.argv[0])] + sys.argv[1:])
30.754386
71
0.62065
794dd6ed81a137cae34ae23fc45a6b24d618c83c
366
py
Python
experiments/jacobi-2d/tmp_files/7161.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
experiments/jacobi-2d/tmp_files/7161.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
experiments/jacobi-2d/tmp_files/7161.py
LoopTilingBenchmark/benchmark
52a3d2e70216552a498fd91de02a2fa9cb62122c
[ "BSD-2-Clause" ]
null
null
null
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/jacobi-2d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/jacobi-2d/tmp_files/7161.c') procedure('kernel_jacobi_2d') loop(0) known(' n > 2 ') tile(0,2,64,2) tile(0,4,16,4) tile(1,2,64,2) tile(1,4,16,4)
28.153846
118
0.751366
794dd89781cf82c742bf2d8fef7c3186339c8ccd
8,027
py
Python
train/bert.py
benywon/ComQA
6731d63d16b731d6c3654b2dc7d2503cf333127f
[ "Apache-2.0" ]
15
2021-01-16T09:48:56.000Z
2022-03-12T07:22:40.000Z
train/bert.py
benywon/ComQA
6731d63d16b731d6c3654b2dc7d2503cf333127f
[ "Apache-2.0" ]
null
null
null
train/bert.py
benywon/ComQA
6731d63d16b731d6c3654b2dc7d2503cf333127f
[ "Apache-2.0" ]
5
2021-01-16T10:15:56.000Z
2021-11-19T06:30:25.000Z
# -*- coding: utf-8 -*- """ @Time : 2021/1/14 下午5:34 @FileName: bert.py @author: 王炳宁 @contact: wangbingning@sogou-inc.com """ import sys import time import apex import torch import torch.distributed as dist from apex import amp sys.path.append('..') from modules.BERT import Bert from train.parser import get_argument_parser from utils import * np.random.seed(1000) torch.manual_seed(1024) torch.distributed.init_process_group(backend='nccl', init_method='env://') args = get_argument_parser() print(args.local_rank, dist.get_rank(), dist.get_world_size()) torch.cuda.set_device(args.local_rank) vocab_size = 50000 n_embedding = 128 n_hidden = 768 n_layer = 12 n_head = 12 batch_size = 8 max_learning_rate = 4e-5 doc_max_length_size = 1024 train_data = load_file(args.train_file_path) dev_data = load_file(args.dev_file_path) dev_data = sorted(dev_data, key=lambda x: len(x[0])) remove_data_size = len(dev_data) % dist.get_world_size() thread_dev_data = [dev_data[x + args.local_rank] for x in range(0, len(dev_data) - remove_data_size, dist.get_world_size())] print('train data size is {} test size {}'.format(len(train_data), len(dev_data))) model = Bert(vocab_size, n_embedding, n_hidden, n_layer, n_head) filename = args.pretrain_model state_dict = load_file(filename) for name, para in model.named_parameters(): if name not in state_dict: if dist.get_rank() == 0: print('{} not load'.format(name)) continue para.data = torch.FloatTensor(state_dict[name]) print('model size {}'.format(get_model_parameters(model))) model.cuda() if args.optimizer.lower() == 'adam': optimizer = apex.optimizers.FusedLAMB elif args.optimizer.lower() == 'lamb': optimizer = apex.optimizers.FusedLAMB else: optimizer = apex.optimizers.FusedSGD optim = optimizer( model.parameters(), eps=2.0e-7, lr=1.0e-7, ) model, optim = amp.initialize(model, optim, opt_level="O2", verbosity=0) model = apex.parallel.DistributedDataParallel(model) warm_up_steps = 500 lr_opt_steps = max_learning_rate / 1000000 warm_up_lr_opt_steps = max_learning_rate / warm_up_steps def metric_sum(val): tensor = torch.tensor(val).cuda() dist.reduce(tensor, 0) return tensor.item() def metric_mean(val): tensor = torch.tensor(val).cuda() dist.reduce(tensor, 0) return tensor.item() / dist.get_world_size() def get_shuffle_train_data(): pool = {} for one in train_data: length = len(one[0]) // 5 if length not in pool: pool[length] = [] pool[length].append(one) for one in pool: np.random.shuffle(pool[one]) length_lst = list(pool.keys()) np.random.shuffle(length_lst) whole_data = [x for y in length_lst for x in pool[y]] remove_data_size = len(whole_data) % dist.get_world_size() thread_data = [whole_data[x + args.local_rank] for x in range(0, len(whole_data) - remove_data_size, dist.get_world_size())] return thread_data def get_train_data(batch, max_len=doc_max_length_size): batch, _ = padding(batch, max_len=max_len) seq = batch.flatten() real_end_pos = np.where(seq == -1)[0] np.put(seq, real_end_pos, vocab_size) all_end_pos_seq = np.where(seq == vocab_size)[0] label = np.zeros(shape=len(all_end_pos_seq), dtype='float32') for i, j in enumerate(all_end_pos_seq): if j in real_end_pos: label[i] = 1 batch = seq.reshape(batch.shape) return batch, label current_number = 0 update_number = 0 def evaluation(epo): results = [] for i in range(dist.get_world_size()): results.extend(load_file('{}.tmp.obj'.format(i))) os.remove('{}.tmp.obj'.format(i)) print('epoch:{},total:{}'.format(epo, len(results))) threshold = 0.5 precision, recall, f1, macro_f1, accuracy = evaluate_comqa(results, threshold) print('threshold:{}\nprecision:{}\nrecall:{}\nf1:{}\nmacro_f1:{}\naccuracy:{}\n{}'.format( threshold, precision, recall, f1, macro_f1, accuracy, '===' * 10)) return [precision, recall, macro_f1, f1, accuracy] def dev(epo): model.eval() total = len(thread_dev_data) results = [] with torch.no_grad(): for i in tqdm(range(0, total, batch_size)): sample = thread_dev_data[i:i + batch_size] context_raw = [x[0] for x in sample] paras = [x[1] for x in sample] batch, label = get_train_data(context_raw, 1024) batch = torch.LongTensor(batch) mask_idx = torch.eq(batch, vocab_size) answer_logits = model([batch.cuda(), None]) end_num = mask_idx.sum(1).data.numpy().tolist() answer_logits = answer_logits.cpu().data.numpy().tolist() start = 0 for one_sent_end_num, para in zip(end_num, paras): pred = answer_logits[start:start + one_sent_end_num] results.append([pred, para]) start += one_sent_end_num dump_file(results, '{}.tmp.obj'.format(dist.get_rank())) dist.barrier() if dist.get_rank() == 0: return evaluation(epo) return None def train(epo): global current_number, update_number model.train() data = get_shuffle_train_data() total = len(data) total_loss = 0 num = 0 pre_time = None instance_number = 0 for i in range(0, total, batch_size): context = [x[0] for x in data[i:i + batch_size]] batch, label = get_train_data(context) batch = torch.LongTensor(batch) loss = model([batch.cuda(), torch.FloatTensor(label).cuda()]) with amp.scale_loss(loss, optim) as scaled_loss: scaled_loss.backward() total_loss += loss.item() * len(context) instance_number += len(context) optim.step() optim.zero_grad() update_number += 1 for param_group in optim.param_groups: if update_number > warm_up_steps: param_group['lr'] -= lr_opt_steps else: param_group['lr'] += warm_up_lr_opt_steps num += 1 if num % args.log_interval == 0: if pre_time is None: eclipse = 0 else: eclipse = time.time() - pre_time total_loss = metric_sum(total_loss) instance_number = metric_sum(instance_number) if dist.get_rank() == 0: print( 'epoch {}, mask loss is {:5.4f}, ms per batch is {:7.4f}, eclipse {:4.3f}% lr={:e}'.format(epo, total_loss / instance_number, 1000 * eclipse / instance_number, i * 100 / total, optim.param_groups[ 0][ 'lr'])) pre_time = time.time() total_loss = 0 instance_number = 0 if __name__ == '__main__': results = [] best_f1 = 0 for i in range(args.epoch): train(i) results = dev(i) output = {} if dist.get_rank() == 0: print('epoch {} done!! result is {}'.format(i, results)) if results[2] > best_f1: best_f1 = results[2] for name, param in model.module.named_parameters(): output[name] = param.data.cpu().numpy() dump_file(output, args.model_save_path)
34.303419
145
0.572817
794dd8fe041edced5cc7397a91312f47fed7167e
3,723
py
Python
lib/galaxy/webapps/galaxy/api/roles.py
Nerdinacan/galaxy
4b07545d251622dde24d34b62d3d9a857e232780
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/webapps/galaxy/api/roles.py
Nerdinacan/galaxy
4b07545d251622dde24d34b62d3d9a857e232780
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/webapps/galaxy/api/roles.py
Nerdinacan/galaxy
4b07545d251622dde24d34b62d3d9a857e232780
[ "CC-BY-3.0" ]
null
null
null
""" API operations on Role objects. """ import logging from sqlalchemy import false from galaxy import web from galaxy.webapps.base.controller import BaseAPIController, url_for log = logging.getLogger(__name__) class RoleAPIController(BaseAPIController): @web.legacy_expose_api def index(self, trans, **kwd): """ GET /api/roles Displays a collection (list) of roles. """ rval = [] for role in trans.sa_session.query(trans.app.model.Role).filter(trans.app.model.Role.table.c.deleted == false()): if trans.user_is_admin or trans.app.security_agent.ok_to_display(trans.user, role): item = role.to_dict(value_mapper={'id': trans.security.encode_id}) encoded_id = trans.security.encode_id(role.id) item['url'] = url_for('role', id=encoded_id) rval.append(item) return rval @web.legacy_expose_api def show(self, trans, id, **kwd): """ GET /api/roles/{encoded_role_id} Displays information about a role. """ role_id = id try: decoded_role_id = trans.security.decode_id(role_id) except Exception: trans.response.status = 400 return "Malformed role id ( %s ) specified, unable to decode." % str(role_id) try: role = trans.sa_session.query(trans.app.model.Role).get(decoded_role_id) except Exception: role = None if not role or not (trans.user_is_admin or trans.app.security_agent.ok_to_display(trans.user, role)): trans.response.status = 400 return "Invalid role id ( %s ) specified." % str(role_id) item = role.to_dict(view='element', value_mapper={'id': trans.security.encode_id}) item['url'] = url_for('role', id=role_id) return item @web.legacy_expose_api def create(self, trans, payload=None, **kwd): """ POST /api/roles Creates a new role. """ payload = payload or {} if not trans.user_is_admin: trans.response.status = 403 return "You are not authorized to create a new role." name = payload.get('name', None) description = payload.get('description', None) if not name or not description: trans.response.status = 400 return "Enter a valid name and a description" if trans.sa_session.query(trans.app.model.Role).filter(trans.app.model.Role.table.c.name == name).first(): trans.response.status = 400 return "A role with that name already exists" role_type = trans.app.model.Role.types.ADMIN # TODO: allow non-admins to create roles role = trans.app.model.Role(name=name, description=description, type=role_type) trans.sa_session.add(role) user_ids = payload.get('user_ids', []) users = [trans.sa_session.query(trans.model.User).get(trans.security.decode_id(i)) for i in user_ids] group_ids = payload.get('group_ids', []) groups = [trans.sa_session.query(trans.model.Group).get(trans.security.decode_id(i)) for i in group_ids] # Create the UserRoleAssociations for user in users: trans.app.security_agent.associate_user_role(user, role) # Create the GroupRoleAssociations for group in groups: trans.app.security_agent.associate_group_role(group, role) trans.sa_session.flush() encoded_id = trans.security.encode_id(role.id) item = role.to_dict(view='element', value_mapper={'id': trans.security.encode_id}) item['url'] = url_for('role', id=encoded_id) return [item]
39.189474
121
0.6296
794dd9575af46b084a69857ec2db88fc21819ff2
6,856
py
Python
lecluvindex.py
cganterh/lecluvindex
b2cd082d460ddb0ca4d7d582fead9babcd457516
[ "MIT" ]
null
null
null
lecluvindex.py
cganterh/lecluvindex
b2cd082d460ddb0ca4d7d582fead9babcd457516
[ "MIT" ]
2
2019-10-18T15:59:38.000Z
2021-06-01T22:10:19.000Z
lecluvindex.py
cganterh/lecluvindex
b2cd082d460ddb0ca4d7d582fead9babcd457516
[ "MIT" ]
null
null
null
"""Provide UV index reporting capabilities to Le bot.""" from contextlib import contextmanager from datetime import time from logging import getLogger import requests from telegram.ext import CommandHandler from telegram.ext.jobqueue import Days logger = getLogger() places = { 'antartica': 'ANT&Aacute;RTICA', 'antofagasta': 'ANTOFAGASTA', 'arica': 'ARICA (UNIVERSIDAD DE TARAPAC&Aacute;)', 'caldera': 'CALDERA', 'concepcion': 'CONCEPCI&Oacute;N', 'cordillera_rm': 'CORDILLERA REGI&Oacute;N METROPOLITANA', 'coyhaique': 'COYHAIQUE', 'tololo': 'EL TOLOLO', 'iquique': 'IQUIQUE', 'isla_pascua': 'ISLA DE PASCUA', 'serena': 'LA SERENA', 'litoral_central': 'LITORAL CENTRAL', 'pmontt': 'PUERTO MONTT', 'parenas': 'PUNTA ARENAS', 'rancagua': 'RANCAGUA', 'san_pedro': 'SAN PEDRO DE ATACAMA', 'santiago': 'SANTIAGO', 'talca': 'TALCA (UNIVERSIDAD AUTONOMA)', 'temuco': 'TEMUCO (UNIVERSIDAD CAT&Oacute;LICA DE TEMUCO)', 'chillan': 'TERMAS DE CHILL&Aacute;N', 'valdivia': 'VALDIVIA', } place_ids = places.keys() comma_sep_place_ids = ', '.join(place_ids) valid_places_msg_fragment = 'Valid places are: {}.'.format(comma_sep_place_ids) @contextmanager def handle_unhandled_exceptions(bot, chat_id): """Handle unhandled exceptions.""" try: yield except Exception: logger.exception('Unhandled exception!') bot.sendMessage(chat_id=chat_id, text='Something went wrong!') def print_uv_index(bot, chat_id, place): """Print the UV index corresponding to ``place``.""" try: response = requests.get( 'http://archivos.meteochile.gob.cl/portaldmc/meteochile/js/' 'indice_radiacion.json' ) data = response.json() radiation_data = data['RadiacionUVB'] radiation_stgo = next( filter(lambda p: p['nombre'] == places[place], radiation_data) ) date = radiation_stgo['fechapron'] index = radiation_stgo['indicepron'].split(':') text = 'Pronostico Dia: {}. UV index: {}({})'.format( date, index[0], index[1]) bot.sendMessage(chat_id=chat_id, text=text) except KeyError: if place not in places: error_message_template = ( '{place} is not a valid place. {valid_places_msg_fragment}') error_message = error_message_template.format( place=place, valid_places_msg_fragment=valid_places_msg_fragment ) bot.sendMessage(chat_id=chat_id, text=error_message) else: raise def get_uv_index(bot, update, args): """Parse args to extract a place and print the place's uv index.""" with handle_unhandled_exceptions(bot, update.message.chat_id): try: print_uv_index(bot, update.message.chat_id, args[0]) except IndexError: if len(args) < 1: place_ids = places.keys() comma_sep_ids = ', '.join(place_ids) error_message_template = ( 'You have to specify a place. Valid places are: {}.') error_message = error_message_template.format(comma_sep_ids) bot.sendMessage( chat_id=update.message.chat_id, text=error_message) else: raise def callback_uv_index(bot, job): """Print UV index for the corresponding job context. ``job.context`` shoud be a tuple of the form: ``(chat_id, place)`` """ print_uv_index(bot, *job.context) def start_uv_index(bot, update, job_queue, args): """Schedule a calls to ``callback_uv_index``.""" with handle_unhandled_exceptions(bot, update.message.chat_id): try: hour = int(args[0]) minute = int(args[1]) place = args[2] if place not in places: raise InvalidPlace job_queue.run_daily( callback_uv_index, time=time(hour, minute), days=(Days.MON, Days.TUE, Days.WED, Days.THU, Days.FRI), context=(update.message.chat_id, place), name='UV Index Daily Report' ) bot.sendMessage( chat_id=update.message.chat_id, text='Initiating UV Index daily report.' ) except IndexError: if len(args) is not 3: error_message_template = ( 'You have to pass the hour, minute and place in the ' 'format: 12 59 santiago. {valid_places_msg_fragment}' ) error_message = error_message_template.format( valid_places_msg_fragment=valid_places_msg_fragment) bot.sendMessage( chat_id=update.message.chat_id, text=error_message) else: raise except InvalidPlace: error_message_template = ( 'You entered an invalid place. {valid_places_msg_fragment}' ) error_message = error_message_template.format( valid_places_msg_fragment=valid_places_msg_fragment) bot.sendMessage( chat_id=update.message.chat_id, text=error_message) except ValueError as ve: if 'invalid literal for int' in str(ve): text = ( 'You seem to have entered a wrong integer number. Check ' 'that you are passing well formatted integers and that ' 'the parameters in the correct order (hour, minute, ' 'place).' ) bot.send_message(update.message.chat_id, text) else: raise def stop_uv_index(bot, update, job_queue): """Stop an UV index report job.""" with handle_unhandled_exceptions(bot, update.message.chat_id): for j in job_queue.jobs(): if j.name == 'UV Index Daily Report' and \ j.context[0] == update.message.chat_id: j.schedule_removal() bot.sendMessage( chat_id=update.message.chat_id, text='Canceled all UV Index daily reports.' ) send_handler = CommandHandler('uvindex', get_uv_index, pass_args=True) start_handler = CommandHandler( 'start_uvindex', start_uv_index, pass_args=True, pass_job_queue=True) stop_handler = CommandHandler( 'stop_uvindex', stop_uv_index, pass_job_queue=True) class InvalidPlace(ValueError): """Raise when the user enters an invalid place.""" def __init__(self, info=None): """Initialize the error.""" message = 'An invalid place was passed.' super().__init__(message + ' ' + info if info else message)
30.744395
79
0.596849
794dd982dd7bf0c9f21bab506fcca95965de6d27
8,021
py
Python
tests/secret_links/test_sharing.py
wgresshoff/invenio-rdm-records
91945829884ea4e46b05be26c97f11ffd045bcec
[ "MIT" ]
null
null
null
tests/secret_links/test_sharing.py
wgresshoff/invenio-rdm-records
91945829884ea4e46b05be26c97f11ffd045bcec
[ "MIT" ]
null
null
null
tests/secret_links/test_sharing.py
wgresshoff/invenio-rdm-records
91945829884ea4e46b05be26c97f11ffd045bcec
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2021 CERN. # Copyright (C) 2021 TU Wien. # Copyright (C) 2021 Northwestern University. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Test sharing of restricted records via secret links.""" from io import BytesIO import pytest from flask_principal import AnonymousIdentity, Identity, UserNeed from invenio_access.permissions import any_user, authenticated_user from invenio_db import db from invenio_records_resources.services.errors import PermissionDeniedError from marshmallow.exceptions import ValidationError from invenio_rdm_records.proxies import current_rdm_records from invenio_rdm_records.records import RDMRecord from invenio_rdm_records.secret_links.permissions import LinkNeed @pytest.fixture() def service(running_app, es_clear): """RDM Record Service.""" return running_app.app.extensions['invenio-rdm-records'].records_service @pytest.fixture() def restricted_record(service, minimal_record, identity_simple): """Restricted record fixture.""" data = minimal_record.copy() data["files"]["enabled"] = True data["access"]["record"] = "restricted" data["access"]["files"] = "restricted" # Create draft = service.create(identity_simple, data) # Add a file service.draft_files.init_files( draft.id, identity_simple, data=[{'key': 'test.pdf'}]) service.draft_files.set_file_content( draft.id, 'test.pdf', identity_simple, BytesIO(b'test file') ) service.draft_files.commit_file( draft.id, 'test.pdf', identity_simple) # Publish record = service.publish(draft.id, identity_simple) # Put in edit mode so that draft exists draft = service.edit(draft.id, identity_simple) return record def test_invalid_level(service, restricted_record, identity_simple): """Test invalid permission level.""" record = restricted_record with pytest.raises(ValidationError): service.secret_links.create(record.id, identity_simple, { "permission": "invalid"}) def test_permission_levels( service, restricted_record, identity_simple, client): """Test invalid permission level.""" id_ = restricted_record.id view_link = service.secret_links.create( id_, identity_simple, {"permission": "view"}) preview_link = service.secret_links.create( id_, identity_simple, {"permission": "preview"}) edit_link = service.secret_links.create( id_, identity_simple, {"permission": "edit"}) # == Anonymous user anon = AnonymousIdentity() anon.provides.add(any_user) # Deny anonymous to read restricted record and draft pytest.raises(PermissionDeniedError, service.read, id_, anon) pytest.raises(PermissionDeniedError, service.files.list_files, id_, anon) pytest.raises(PermissionDeniedError, service.read_draft, id_, anon) pytest.raises( PermissionDeniedError, service.draft_files.list_files, id_, anon) # === Anonymous user with view link === anon.provides.add(LinkNeed(view_link.id)) # Allow anonymous with view link to read record service.read(id_, anon) service.files.list_files(id_, anon) # Deny anonymous with view link to read draft pytest.raises(PermissionDeniedError, service.read_draft, id_, anon) pytest.raises( PermissionDeniedError, service.draft_files.list_files, id_, anon) # === Anonymous user with preview link === anon.provides.remove(LinkNeed(view_link.id)) anon.provides.add(LinkNeed(preview_link.id)) # Allow anonymous with preview link to read record and draft service.read(id_, anon) service.files.list_files(id_, anon) service.read_draft(id_, anon) service.draft_files.list_files(id_, anon) service.draft_files.get_file_content(id_, 'test.pdf', anon) service.draft_files.read_file_metadata(id_, 'test.pdf', anon) # Deny anonymous with preview link to update/delete/edit/publish draft pytest.raises(PermissionDeniedError, service.update_draft, id_, anon, {}) pytest.raises(PermissionDeniedError, service.edit, id_, anon) pytest.raises(PermissionDeniedError, service.delete_draft, id_, anon) pytest.raises(PermissionDeniedError, service.new_version, id_, anon) pytest.raises(PermissionDeniedError, service.publish, id_, anon) pytest.raises( PermissionDeniedError, service.draft_files.init_files, id_, anon, {}) pytest.raises( PermissionDeniedError, service.draft_files.update_file_metadata, id_, 'test.pdf', anon, {}) pytest.raises( PermissionDeniedError, service.draft_files.commit_file, id_, 'test.pdf', anon) pytest.raises( PermissionDeniedError, service.draft_files.delete_file, id_, 'test.pdf', anon) pytest.raises( PermissionDeniedError, service.draft_files.delete_all_files, id_, anon) pytest.raises( PermissionDeniedError, service.draft_files.set_file_content, id_, 'test.pdf', anon, None) # === Authenticated user with edit link === i = Identity(100) i.provides.add(UserNeed(100)) i.provides.add(authenticated_user) i.provides.add(LinkNeed(edit_link.id)) # Allow user with edit link to read record and draft service.read(id_, i) service.files.list_files(id_, i) service.read_draft(id_, i) service.draft_files.list_files(id_, i) service.draft_files.get_file_content(id_, 'test.pdf', i) service.draft_files.read_file_metadata(id_, 'test.pdf', i) # Deny user with edit link to share the links pytest.raises( PermissionDeniedError, service.secret_links.create, id_, i, {}) pytest.raises( PermissionDeniedError, service.secret_links.read_all, id_, i) pytest.raises( PermissionDeniedError, service.secret_links.read, id_, i, edit_link.id) pytest.raises( PermissionDeniedError, service.secret_links.update, id_, i, edit_link.id, {}) pytest.raises( PermissionDeniedError, service.secret_links.delete, id_, i, edit_link.id) # Allow user with edit link to update, delete, edit, publish draft = service.read_draft(id_, i) data = draft.data data['metadata']['title'] = 'allow it' service.update_draft(id_, i, data) service.delete_draft(id_, i) service.edit(id_, i) service.publish(id_, i) new_draft = service.new_version(id_, i) new_id = new_draft.id service.import_files(new_id, i) service.draft_files.delete_file(new_id, 'test.pdf', i) def test_read_restricted_record_with_secret_link( service, minimal_record, identity_simple, client ): """Test access to a restricted record via a shared link.""" record_data = minimal_record.copy() record_data["access"]["files"] = "restricted" record_data["access"]["record"] = "restricted" draft = service.create(identity=identity_simple, data=record_data) record = service.publish(id_=draft.id, identity=identity_simple) recid = record.id link = record._record.parent.access.links.create( permission_level="view", ) # FIXME without this, commit() won't work (b/c of jsonschema) record._record.pop("status", None) record._record.commit() record._record.parent.commit() db.session.commit() # the record shouldn't be accessible without login and/or token response = client.get(f"/records/{recid}") assert response.status_code == 403 # but it should be accessible with the token response = client.get( f"/records/{recid}", query_string={"token": link.token}, ) assert response.status_code == 200 # the record shouldn't be showing up in search results, however RDMRecord.index.refresh() res = client.get( "/records", query_string={"q": f"id:{recid}"} ) assert res.status_code == 200 assert res.json["hits"]["total"] == 0
35.49115
77
0.705772
794dd9c4b37030dd9336cd310a69b2b5b684ac82
6,661
py
Python
plenum/test/view_change/test_view_change_timeout.py
andkononykhin/plenum
28dc1719f4b7e80d31dafbadb38cfec4da949886
[ "Apache-2.0" ]
null
null
null
plenum/test/view_change/test_view_change_timeout.py
andkononykhin/plenum
28dc1719f4b7e80d31dafbadb38cfec4da949886
[ "Apache-2.0" ]
1
2019-03-20T14:57:22.000Z
2019-03-20T15:01:55.000Z
plenum/test/view_change/test_view_change_timeout.py
andkononykhin/plenum
28dc1719f4b7e80d31dafbadb38cfec4da949886
[ "Apache-2.0" ]
null
null
null
import pytest from plenum.test.delayers import vcd_delay from plenum.test.stasher import delay_rules from plenum.test.helper import waitForViewChange, perf_monitor_disabled, view_change_timeout from plenum.test.node_request.helper import sdk_ensure_pool_functional from plenum.test.node_catchup.helper import ensure_all_nodes_have_same_data from plenum.test.spy_helpers import get_count, getAllReturnVals from plenum.test.test_node import get_master_primary_node, \ ensureElectionsDone from stp_core.loop.eventually import eventually nodeCount = 7 VIEW_CHANGE_TIMEOUT = 5 @pytest.fixture(scope="module") def tconf(tconf): with view_change_timeout(tconf, VIEW_CHANGE_TIMEOUT), \ perf_monitor_disabled(tconf): yield tconf def _check_view_change_completed_count(node): return get_count(node, node._check_view_change_completed) def _check_view_change_completed_true(node): return len(getAllReturnVals(node, node._check_view_change_completed, compare_val_to=True)) def _check_view_change_completed_stats(nodes): return {node.name: (_check_view_change_completed_count(node), _check_view_change_completed_true(node)) for node in nodes} def check_watchdog_called_expected_times(nodes, stats, times): def call_count(node): return _check_view_change_completed_count(node) - stats[node.name][0] def true_count(node): return _check_view_change_completed_true(node) - stats[node.name][1] n = nodeCount f = (n - 1) // 3 call_counts = [call_count(node) for node in nodes] true_counts = [true_count(node) for node in nodes] ok = True ok = ok and all(v <= times for v in call_counts) ok = ok and all(v <= times for v in true_counts) ok = ok and sum(call_counts) >= times * (n - f) ok = ok and sum(true_counts) >= times * (n - f) if not ok: actual = "" for node in nodes: actual += "{}: called {}, returned true {}\n".format(node.name, call_count(node), true_count(node)) raise AssertionError("Watchdog expected to be called {} times, actual counts:\n{}".format(times, actual)) def stop_next_primary(nodes): m_next_primary_name = nodes[0]._elector._next_primary_node_name_for_master( nodes[0].nodeReg, nodes[0].nodeIds) next(node for node in nodes if node.name == m_next_primary_name).stop() alive_nodes = list(filter(lambda x: x.name != m_next_primary_name, nodes)) return alive_nodes def start_view_change(nodes, next_view_no): for n in nodes: n.view_changer.start_view_change(next_view_no) @pytest.fixture() def setup(txnPoolNodeSet, looper): m_primary_node = get_master_primary_node(list(txnPoolNodeSet)) initial_view_no = waitForViewChange(looper, txnPoolNodeSet) timeout_callback_stats = _check_view_change_completed_stats(txnPoolNodeSet) return m_primary_node, initial_view_no, timeout_callback_stats def test_view_change_retry_by_timeout( txnPoolNodeSet, looper, tconf, setup, sdk_pool_handle, sdk_wallet_client): """ Verifies that a view change is restarted if it is not completed in time """ m_primary_node, initial_view_no, timeout_callback_stats = setup stashers = [n.nodeIbStasher for n in txnPoolNodeSet] with delay_rules(stashers, vcd_delay()): start_view_change(txnPoolNodeSet, initial_view_no + 1) # First view change should fail, because of delayed ViewChangeDone # messages. This then leads to new view change that we need. with pytest.raises(AssertionError): ensureElectionsDone(looper=looper, nodes=txnPoolNodeSet, customTimeout=1.5 * VIEW_CHANGE_TIMEOUT) # Now as ViewChangeDone messages are unblocked view changes should finish successfully ensureElectionsDone(looper=looper, nodes=txnPoolNodeSet) ensure_all_nodes_have_same_data(looper, nodes=txnPoolNodeSet) new_m_primary_node = get_master_primary_node(list(txnPoolNodeSet)) assert m_primary_node.name != new_m_primary_node.name # The timeout method was called one time check_watchdog_called_expected_times(txnPoolNodeSet, timeout_callback_stats, 1) # 2 view changes have been initiated for node in txnPoolNodeSet: assert node.viewNo - initial_view_no == 2 sdk_ensure_pool_functional(looper, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle) def test_multiple_view_change_retries_by_timeouts( txnPoolNodeSet, looper, tconf, setup, sdk_pool_handle, sdk_wallet_client): """ Verifies that a view change is restarted each time when the previous one is timed out """ _, initial_view_no, timeout_callback_stats = setup stashers = [n.nodeIbStasher for n in txnPoolNodeSet] with delay_rules(stashers, vcd_delay()): start_view_change(txnPoolNodeSet, initial_view_no + 1) # Wait until timeout callback is called 3 times looper.run(eventually(check_watchdog_called_expected_times, txnPoolNodeSet, timeout_callback_stats, 3, retryWait=1, timeout=3 * VIEW_CHANGE_TIMEOUT + 2)) # View changes should fail with pytest.raises(AssertionError): ensureElectionsDone(looper=looper, nodes=txnPoolNodeSet, customTimeout=1) # This view change must be completed with no problems ensureElectionsDone(looper=looper, nodes=txnPoolNodeSet) ensure_all_nodes_have_same_data(looper, nodes=txnPoolNodeSet) # 4 view changes must have been initiated (initial one + 3 retries) for node in txnPoolNodeSet: assert node.viewNo - initial_view_no == 4 sdk_ensure_pool_functional(looper, txnPoolNodeSet, sdk_wallet_client, sdk_pool_handle) def test_view_change_restarted_by_timeout_if_next_primary_disconnected( txnPoolNodeSet, looper, tconf, setup): """ Verifies that a view change is restarted by timeout if the next primary has been disconnected """ _, initial_view_no, timeout_callback_stats = setup start_view_change(txnPoolNodeSet, initial_view_no + 1) alive_nodes = stop_next_primary(txnPoolNodeSet) ensureElectionsDone(looper=looper, nodes=alive_nodes, instances_list=range(3)) # There were 2 view changes for node in alive_nodes: assert (node.viewNo - initial_view_no) == 2 # The timeout method was called 1 time check_watchdog_called_expected_times(txnPoolNodeSet, timeout_callback_stats, 1)
37.846591
113
0.720462
794dda10140bcdca45194e5023f970414f5f58ba
1,396
py
Python
changes/models/bazeltarget.py
vault-the/changes
37e23c3141b75e4785cf398d015e3dbca41bdd56
[ "Apache-2.0" ]
443
2015-01-03T16:28:39.000Z
2021-04-26T16:39:46.000Z
changes/models/bazeltarget.py
vault-the/changes
37e23c3141b75e4785cf398d015e3dbca41bdd56
[ "Apache-2.0" ]
12
2015-07-30T19:07:16.000Z
2016-11-07T23:11:21.000Z
changes/models/bazeltarget.py
vault-the/changes
37e23c3141b75e4785cf398d015e3dbca41bdd56
[ "Apache-2.0" ]
47
2015-01-09T10:04:00.000Z
2020-11-18T17:58:19.000Z
from __future__ import absolute_import, division import uuid from datetime import datetime from sqlalchemy import Column, DateTime, ForeignKey, Text, Integer from changes.config import db from changes.constants import Result, ResultSource, Status from changes.db.types.enum import Enum from changes.db.types.guid import GUID class BazelTarget(db.Model): __tablename__ = 'bazeltarget' id = Column(GUID, nullable=False, primary_key=True, default=uuid.uuid4) step_id = Column(GUID, ForeignKey('jobstep.id', ondelete="CASCADE")) job_id = Column(GUID, ForeignKey('job.id', ondelete="CASCADE"), nullable=False) name = Column(Text, nullable=False) status = Column(Enum(Status), nullable=False, default=Status.unknown) result = Column(Enum(Result), default=Result.unknown, nullable=False) result_source = Column(Enum(ResultSource), default=ResultSource.from_self) duration = Column(Integer, default=0) date_created = Column(DateTime, default=datetime.utcnow, nullable=False) def __init__(self, **kwargs): super(BazelTarget, self).__init__(**kwargs) if self.id is None: self.id = uuid.uuid4() if self.result is None: self.result = Result.unknown if self.status is None: self.status = Status.unknown if self.date_created is None: self.date_created = datetime.utcnow()
38.777778
83
0.712751
794dda564e4d1989129ebc4546d74e723cb3ab87
7,092
py
Python
python/Kaos/ktime.py
D34D9001/R4ND0M_73571NG
d198c67b728f55cc39c6aab4f418a53483e3487b
[ "MIT" ]
1
2022-01-05T06:53:39.000Z
2022-01-05T06:53:39.000Z
python/Kaos/ktime.py
D34D9001/R4ND0M_73571NG
d198c67b728f55cc39c6aab4f418a53483e3487b
[ "MIT" ]
5
2022-01-05T08:06:34.000Z
2022-01-11T05:31:08.000Z
python/Kaos/ktime.py
D34D9001/R4ND0M_73571NG
d198c67b728f55cc39c6aab4f418a53483e3487b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created: Aug 2017 @author: D34D9001@9R0GR4M13 """ import kerri import time from datetime import datetime ################### # TIME MANAGEMENT # ################### class Time(object): """ This class controls the flow of time in your program """ def __init__(self): self.days = {0:'Monday', 1:'Tuesday', 2:'Wednesday', 3:'Thursday', 4:'Friday', 5:'Saturday', 6:'Sunday'} self.months = {1:'January', 2:'February', 3:'March', 4:'April',5:'May', 6:'June', 7:'July', 8:'August', 9:'September', 10:'October', 11:'November', 12:'December'} def __str__(self): now = time.localtime(time.time()) date = str("%s/%s/%s" % (now[1], now[2], now[0])) if now[3] == 0: hour = "0%s" % now[3] ampm = "am" else: pass if now[3] > 12: hour = now[3] - 12 ampm = "pm" elif now[3] != 0 and now[3] <= 12 and now[3] >= 10: hour = "%s" % now[3] ampm = "am" else: hour = "0%s" % now[3] ampm = "am" if now[5] <= 9: second = "0%s" % now[5] else: second = now[5] if now[4] <= 9: min = "0%s" % now[4] else: min = now[4] ktime = str("%s:%s:%s %s" % (hour,min,second, ampm)) return str(date)+" "+str(ktime) def marker(self, *args): """ Get Marker For Timing Things """ if len(args) >= 1: raise kerri.ExcessArguments("marker()", 0) else: pass marker = time.time() return marker def wait(self, itime='1', *args): """ Wait for specified time {in seconds} before continuing """ if len(args) >= 1: raise kerri.ExcessArguments("wait()", 1) else: pass time.sleep(itime) def now(self, *args): """ Return current date and time """ if len(args) >= 1: raise kerri.ExcessArguments("now()", 0) else: pass return datetime.now() def p_now(self, *args): """ Return current date and time in user friendly format """ if len(args) >= 1: raise kerri.ExcessArguments("p_now()", 0) else: pass now = time.localtime(time.time()) day = now[6] return str("%s %s/%s/%s %s:%s:%s" % (self.days[day], now[1], now[2], now[0], now[3], now[4], now[5])) def c_hour(self, *args): """ Return the currnet hour """ if len(args) >= 1: raise kerri.ExcessArguments("c_hour()", 0) else: pass now = time.localtime(time.time()) hour = now[3] return hour def c_min(self, *args): """ Return the current minute [0-59]""" if len(args) >= 1: raise kerri.ExcessArguments("c_min()", 0) else: pass now = time.localtime(time.time()) minute = now[4] return minute def c_sec(self, *args): """ Return the current second [0-59] """ if len(args) >= 1: raise kerri.ExcessArguments("c_sec()", 0) else: pass now = time.localtime(time.time()) second = now[5] return second def month(self, *args): """ Return current month [Returns months name not integer] """ if len(args) >= 1: raise kerri.ExcessArguments("month()", 0) else: pass now = time.localtime(time.time()) month = now[1] return self.months[month] def m_day(self, *args): """ Return the day of the month """ if len(args) >= 1: raise kerri.ExcessArguments("m_day()", 0) else: pass now = time.localtime(time.time()) d_month = now[2] return d_month def year(self, *args): """ Return the year """ if len(args) >= 1: raise kerri.ExcessArguments("year()", 0) else: pass now = time.localtime(time.time()) year = now[0] return year def _time(self, *args): """ Return the current time [HH:MM:SS]""" if len(args) >= 1: raise kerri.ExcessArguments("_time()", 0) else: pass now = time.localtime(time.time()) if now[3] == 0: hour = "0%s" % now[3] ampm = "am" else: pass if now[3] > 12: hour = now[3] - 12 ampm = "pm" elif now[3] != 0 and now[3] <= 12 and now[3] >= 10: hour = "%s" % now[3] ampm = "am" else: hour = "0%s" % now[3] ampm = "am" if now[5] <= 9: second = "0%s" % now[5] else: second = now[5] if now[4] <= 9: min = "0%s" % now[4] else: min = now[4] return str("%s:%s:%s %s" % (hour,min,second, ampm)) def _date(self, *args): """ Return the current date [MM/DD/YY] """ if len(args) >= 1: raise kerri.ExcessArguments("_date()", 0) else: pass now = time.localtime(time.time()) return str("%s/%s/%s" % (now[1], now[2], now[0])) def w_day(self, *args): """ Return the current day of the week [Returns name of the day not integer value] {EX: Monday, Tuesday Wed...etc,.}""" if len(args) >= 1: raise kerri.ExcessArguments("w_day()", 0) else: pass now = time.localtime(time.time()) day = now[6] return self.days[day] def y_day(self, *args): """ Return integer value of the current day of the year """ if len(args) >= 1: raise kerri.ExcessArguments("y_day()", 0) else: pass now = time.localtime(time.time()) d_num = now[7] return d_num def summer_chk(self, *args): """ Returns (1) if it is summer time, (0) if it is not and (-1) if it can not be determined """ if len(args) >= 1: raise kerri.ExcessArguments("summer_chk()", 0) else: pass now = time.localtime(time.time()) check = now[8] if check == 1: return 1, ":) It\'s Summer Time!!!" elif check == 0: return 0, ":( It\'s Not Summer Time!!!" else: return -1, "I\'m not even really sure who I am...\nI don\'t think I am qualified to answer that." ######### # INITs # ######### ktime = Time() marker = ktime.marker wait = ktime.wait now = ktime.now p_now = ktime.p_now c_hour = ktime.c_hour c_min = ktime.c_min c_sec = ktime.c_sec month = ktime.month m_day = ktime.m_day year = ktime.year _time = ktime._time _date = ktime._date w_day = ktime.w_day y_day = ktime.y_day summer_chk = ktime.summer_chk
26.762264
109
0.47335
794dda947fac8e50fd855b98da37bf99b3f2fb10
344
py
Python
dojo/github_issue_link/urls.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
1,772
2018-01-22T23:32:15.000Z
2022-03-31T14:49:33.000Z
dojo/github_issue_link/urls.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
3,461
2018-01-20T19:12:28.000Z
2022-03-31T17:14:39.000Z
dojo/github_issue_link/urls.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
1,173
2018-01-23T07:10:23.000Z
2022-03-31T14:40:43.000Z
from django.conf.urls import url from . import views urlpatterns = [ url(r'^github-webhook', views.webhook, name='github_web_hook'), url(r'^github/add', views.new_github, name='add_github'), url(r'^github/(?P<tid>\d+)/delete$', views.delete_github, name='delete_github'), url(r'^github$', views.github, name='github')]
34.4
67
0.668605
794ddb0e90f69ec2e32158175344ab71424663e8
1,187
py
Python
kevin/tests/leet/test_restore_the_array.py
kalyons11/kevin
4e222fcd8ee7f2a275390f532c2fa5fef39060e8
[ "MIT" ]
1
2017-08-03T04:21:14.000Z
2017-08-03T04:21:14.000Z
kevin/tests/leet/test_restore_the_array.py
kalyons11/kevin
4e222fcd8ee7f2a275390f532c2fa5fef39060e8
[ "MIT" ]
null
null
null
kevin/tests/leet/test_restore_the_array.py
kalyons11/kevin
4e222fcd8ee7f2a275390f532c2fa5fef39060e8
[ "MIT" ]
null
null
null
""" https://leetcode.com/problems/restore-the-array/ """ from unittest import TestCase from kevin.leet.restore_the_array import Solution class TestRestoreTheArray(TestCase): def _base_test_restore_the_array(self, s: str, k: int, expected: int): sol = Solution() actual = sol.number_of_arrays(s, k) assert expected == actual, (expected, actual) def test_restore_the_array_basic(self): s = '1000' k = 10000 expected = 1 self._base_test_restore_the_array(s, k, expected) def test_restore_the_array_none(self): s = '1000' k = 10 expected = 0 self._base_test_restore_the_array(s, k, expected) def test_restore_the_array_medium(self): s = '1317' k = 2000 expected = 8 self._base_test_restore_the_array(s, k, expected) def test_restore_the_array_singleton(self): s = '2020' k = 30 expected = 1 self._base_test_restore_the_array(s, k, expected) def test_restore_the_array_large(self): s = '1234567890' k = 90 expected = 34 self._base_test_restore_the_array(s, k, expected)
23.74
74
0.634372
794ddb20968ee6a04991592b2b833a00d6e1c73a
4,259
py
Python
services/snet_grpc_wrapper.py
TENSAE21/network-analytics-services
72c5dbe93e11e98f003758e646acf453073c43aa
[ "MIT" ]
null
null
null
services/snet_grpc_wrapper.py
TENSAE21/network-analytics-services
72c5dbe93e11e98f003758e646acf453073c43aa
[ "MIT" ]
null
null
null
services/snet_grpc_wrapper.py
TENSAE21/network-analytics-services
72c5dbe93e11e98f003758e646acf453073c43aa
[ "MIT" ]
null
null
null
# Tested on python3.6 import grpc from concurrent import futures import time import logging import network_analytics_pb2 import network_analytics_pb2_grpc import bipartite_graphs SLEEP_TIME = 86400 # One day class NetworkAnalytics(network_analytics_pb2_grpc.NetowrkAnalyticsServicer): def BipartiteGraph(self,request,context): print('>>>>>>>>>>>>>>In endpoint BipartiteGraph') print(time.strftime("%c")) nodes = request.nodes edges = request.edges b = bipartite_graphs.BipartiteGraphs() try: edges_list = [] for edges_proto in edges: edges_list.append(list(edges_proto.edge)) nodes_in = {"bipartite_0":list(nodes.bipartite_0),"bipartite_1":list(nodes.bipartite_1)} edges_in = {"edges": edges_list} ret = b.bipartite_graph(nodes_in, edges_in) resp = network_analytics_pb2.BipartiteGraphResponse(status=ret[0],message=ret[1]) if resp.status: edges_resp = [] for edge_ret in ret[2]["edges"]: edges_resp.append(network_analytics_pb2.Edge(edge=edge_ret)) graph_resp = network_analytics_pb2.BipartiteGraph(bipartite_0=ret[2]["bipartite_0"],bipartite_1=ret[2]["bipartite_1"],edges=edges_resp) resp = network_analytics_pb2.BipartiteGraphResponse(status=ret[0],message=ret[1],output=graph_resp) print('status:',resp.status) print('message:',resp.message) print('Waiting for next call on port 5000.') return resp except Exception as e: logging.exception("message") resp = network_analytics_pb2.BipartiteGraphResponse(status=False,message=str(e)) print('status:', resp.status) print('message:', resp.message) print('Waiting for next call on port 5000.') return resp def ProjectedGraph(self,request,context): print('>>>>>>>>>>>>>>In endpoint ProjectedGraph') print(time.strftime("%c")) bipartite_graph = request.graph nodes = request.nodes weight = request.weight print (bipartite_graph) b = bipartite_graphs.BipartiteGraphs() try: edges_list = [] for edges_proto in bipartite_graph.edges: edges_list.append(list(edges_proto.edge)) bipartite_graph_in = {"bipartite_0":list(bipartite_graph.bipartite_0),"bipartite_1":list(bipartite_graph.bipartite_1),"edges":edges_list} nodes_in = {"nodes": list(nodes)} ret = b.projected_graph(bipartite_graph_in, nodes_in, weight) resp = network_analytics_pb2.ProjecetedGraphResponse(status=ret[0],message=ret[1]) if resp.status: edges_resp = [] for edge_ret in ret[2]["edges"]: edges_resp.append(network_analytics_pb2.Edge(edge=edge_ret)) graph_resp = network_analytics_pb2.Graph(nodes=ret[2]["nodes"],edges=edges_resp,weights=ret[2]["weights"]) resp = network_analytics_pb2.ProjecetedGraphResponse(status=ret[0],message=ret[1],output=graph_resp) print('status:',resp.status) print('message:',resp.message) print('Waiting for next call on port 5000.') return resp except Exception as e: logging.exception("message") resp = network_analytics_pb2.ProjecetedGraphResponse(status=False,message=str(e)) print('status:', resp.status) print('message:', resp.message) print('Waiting for next call on port 5000.') return resp def serve(): server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) network_analytics_pb2_grpc.add_NetowrkAnalyticsServicer_to_server(NetworkAnalytics(), server) print('Starting server. Listening on port 5000.') server.add_insecure_port('127.0.0.1:5000') server.start() try: while True: time.sleep(SLEEP_TIME) except KeyboardInterrupt: server.stop(0) __end__ = '__end__' if __name__ == '__main__': serve() pass
24.477011
151
0.625264
794ddb3b3ae984b8b94aedaf22a470aaf6098a63
1,512
py
Python
appengine_module/gae_ts_mon/instrument_endpoint.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
74
2015-04-01T02:35:15.000Z
2021-12-17T22:10:56.000Z
appengine_module/gae_ts_mon/instrument_endpoint.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
123
2015-04-01T04:02:57.000Z
2022-03-02T12:49:55.000Z
appengine_module/gae_ts_mon/instrument_endpoint.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
32
2015-04-03T01:40:47.000Z
2021-11-13T15:20:13.000Z
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import time import functools # Not all apps enable endpoints. If the import fails, the app will not # use @instrument_endpoint() decorator, so it is safe to ignore it. try: import endpoints except ImportError: # pragma: no cover pass from infra_libs.ts_mon import exporter from infra_libs.ts_mon.common import http_metrics def instrument(time_fn=time.time): """Decorator to instrument Cloud Endpoint methods.""" def decorator(fn): method_name = fn.__name__ assert method_name @functools.wraps(fn) def decorated(service, *args, **kwargs): service_name = service.__class__.__name__ endpoint_name = '/_ah/spi/%s.%s' % (service_name, method_name) start_time = time_fn() response_status = 0 time_now = time_fn() try: with exporter.parallel_flush(time_now): ret = fn(service, *args, **kwargs) response_status = 200 return ret except endpoints.ServiceException as e: response_status = e.http_status raise except Exception: response_status = 500 raise finally: elapsed_ms = int((time_fn() - start_time) * 1000) http_metrics.update_http_server_metrics(endpoint_name, response_status, elapsed_ms) return decorated return decorator
28.528302
79
0.671958
794ddc06c43a2e0280eb014c60a8503fa7e76c27
4,413
py
Python
PaddleSeg/paddleseg/datasets/ade.py
Pd-RegSea/pdrs-4-7
7b75690d30346a9ac13f730a20c52c327d7123ad
[ "Apache-2.0" ]
2
2021-08-19T08:06:22.000Z
2021-11-09T10:42:17.000Z
PaddleSeg/paddleseg/datasets/ade.py
Pd-RegSea/pdrs-4-7
7b75690d30346a9ac13f730a20c52c327d7123ad
[ "Apache-2.0" ]
null
null
null
PaddleSeg/paddleseg/datasets/ade.py
Pd-RegSea/pdrs-4-7
7b75690d30346a9ac13f730a20c52c327d7123ad
[ "Apache-2.0" ]
1
2021-07-14T08:43:31.000Z
2021-07-14T08:43:31.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from PIL import Image from paddleseg.datasets import Dataset from paddleseg.utils.download import download_file_and_uncompress from paddleseg.utils import seg_env from paddleseg.cvlibs import manager from paddleseg.transforms import Compose import paddleseg.transforms.functional as F URL = "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip" @manager.DATASETS.add_component class ADE20K(Dataset): """ ADE20K dataset `http://sceneparsing.csail.mit.edu/`. Args: transforms (list): A list of image transformations. dataset_root (str, optional): The ADK20K dataset directory. Default: None. mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'. edge (bool, optional): Whether to compute edge while training. Default: False """ NUM_CLASSES = 150 def __init__(self, transforms, dataset_root=None, mode='train', edge=False): self.dataset_root = dataset_root self.transforms = Compose(transforms) mode = mode.lower() self.mode = mode self.file_list = list() self.num_classes = self.NUM_CLASSES self.ignore_index = 255 self.edge = edge if mode not in ['train', 'val']: raise ValueError( "`mode` should be one of ('train', 'val') in ADE20K dataset, but got {}." .format(mode)) if self.transforms is None: raise ValueError("`transforms` is necessary, but it is None.") if self.dataset_root is None: self.dataset_root = download_file_and_uncompress( url=URL, savepath=seg_env.DATA_HOME, extrapath=seg_env.DATA_HOME, extraname='ADEChallengeData2016') elif not os.path.exists(self.dataset_root): self.dataset_root = os.path.normpath(self.dataset_root) savepath, extraname = self.dataset_root.rsplit( sep=os.path.sep, maxsplit=1) self.dataset_root = download_file_and_uncompress( url=URL, savepath=savepath, extrapath=savepath, extraname=extraname) if mode == 'train': img_dir = os.path.join(self.dataset_root, 'images/training') label_dir = os.path.join(self.dataset_root, 'annotations/training') elif mode == 'val': img_dir = os.path.join(self.dataset_root, 'images/validation') label_dir = os.path.join(self.dataset_root, 'annotations/validation') img_files = os.listdir(img_dir) label_files = [i.replace('.jpg', '.png') for i in img_files] for i in range(len(img_files)): img_path = os.path.join(img_dir, img_files[i]) label_path = os.path.join(label_dir, label_files[i]) self.file_list.append([img_path, label_path]) def __getitem__(self, idx): image_path, label_path = self.file_list[idx] if self.mode == 'val': im, _ = self.transforms(im=image_path) label = np.asarray(Image.open(label_path)) # The class 0 is ignored. And it will equal to 255 after # subtracted 1, because the dtype of label is uint8. label = label - 1 label = label[np.newaxis, :, :] return im, label else: im, label = self.transforms(im=image_path, label=label_path) label = label - 1 if self.edge: edge_mask = F.mask_to_binary_edge( label, radius=2, num_classes=self.num_classes) return im, label, edge_mask else: return im, label
40.118182
117
0.629957
794ddc5c4b55c6bb4f7b989c798443cbc172661a
2,414
py
Python
resources/stat.py
world3/focusplus-api
4d9211983095689f6f0f72c676d1d95edfe14819
[ "Apache-2.0" ]
null
null
null
resources/stat.py
world3/focusplus-api
4d9211983095689f6f0f72c676d1d95edfe14819
[ "Apache-2.0" ]
null
null
null
resources/stat.py
world3/focusplus-api
4d9211983095689f6f0f72c676d1d95edfe14819
[ "Apache-2.0" ]
null
null
null
from datetime import datetime, timedelta, date from flask_restful import Resource from flask_jwt_extended import get_jwt_identity, jwt_required from http import HTTPStatus import json from models.stat import Stat from schemas.stat import StatSchema from models.history import History stat_list_schema = StatSchema(many=True) class StatListResource(Resource): @jwt_required def get(self, start, end): current_user = get_jwt_identity() stats = Stat.get_range(current_user, start, end) start_date = datetime.strptime(start, '%Y%m%d').date() end_date = datetime.strptime(end, '%Y%m%d').date() if (end_date - start_date).days + 1 > stats.count(): stat_dict = {stat.stat_key: stat for stat in stats} for stat_date in self.date_range(start_date, end_date): key = stat_date.strftime('%Y%m%d') if key not in stat_dict: stat = self.create_statistics(current_user, key) stats = Stat.get_range(current_user, start, end) return stat_list_schema.dump(stats), HTTPStatus.OK @classmethod def create_statistics(cls, user_id, stat_date): histories = History.get_by_user_id(user_id, stat_date) pomos = [0] * 24 breaks = [0] * 24 total_pomos = 0 total_breaks = 0 interruptions = 0 day_start = datetime.strptime(stat_date, '%Y%m%d') for history in histories: start_time = history.start end_time = history.end index = ((start_time - day_start).seconds + history.utc_offset * 60) // 3600 minutes = (end_time - start_time).seconds // 60 if history.type == 'Pomodoro': pomos[index] += minutes total_pomos += minutes if history.status == 'Interrupted': interruptions += 1 else: breaks[index] += minutes total_breaks += minutes stat = Stat(stat_key=stat_date, pomos=json.dumps(pomos), breaks=json.dumps(breaks), totalPomos=total_pomos, totalBreaks=total_breaks, interruptions=interruptions, user_id=user_id) stat.save() return stat @classmethod def date_range(cls, start_date, end_date): for i in range((end_date - start_date).days + 1): yield start_date + timedelta(i)
36.575758
115
0.623447
794ddc940eb10d51cc790806ff78236f3b2fb644
7,697
py
Python
guardian/testapp/tests/test_core.py
wlanslovenija/django-guardian
501695a190ff20aff13715311fd05062e67401c6
[ "MIT" ]
null
null
null
guardian/testapp/tests/test_core.py
wlanslovenija/django-guardian
501695a190ff20aff13715311fd05062e67401c6
[ "MIT" ]
null
null
null
guardian/testapp/tests/test_core.py
wlanslovenija/django-guardian
501695a190ff20aff13715311fd05062e67401c6
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from itertools import chain from django.conf import settings # Try the new app settings (Django 1.7) and fall back to the old system try: from django.apps import apps as django_apps auth_app = django_apps.get_app_config("auth") except ImportError: from django.contrib.auth import models as auth_app from django.contrib.auth.models import Group, Permission, AnonymousUser from django.contrib.contenttypes.models import ContentType from django.test import TestCase from guardian.core import ObjectPermissionChecker from guardian.compat import get_user_model, create_permissions from guardian.exceptions import NotUserNorGroup from guardian.models import UserObjectPermission, GroupObjectPermission from guardian.shortcuts import assign_perm from guardian.management import create_anonymous_user User = get_user_model() class CustomUserTests(TestCase): def test_create_anonymous_user(self): create_anonymous_user(object()) self.assertEqual(1, User.objects.all().count()) anonymous = User.objects.all()[0] self.assertEqual(anonymous.username, settings.ANONYMOUS_USER_NAME) class ObjectPermissionTestCase(TestCase): def setUp(self): self.group, created = Group.objects.get_or_create(name='jackGroup') self.user, created = User.objects.get_or_create(username='jack') self.user.groups.add(self.group) self.ctype = ContentType.objects.create( model='bar', app_label='fake-for-guardian-tests') self.anonymous_user = User.objects.get( username=settings.ANONYMOUS_USER_NAME) class ObjectPermissionCheckerTest(ObjectPermissionTestCase): def setUp(self): super(ObjectPermissionCheckerTest, self).setUp() # Required if MySQL backend is used :/ create_permissions(auth_app, [], 1) def test_cache_for_queries_count(self): settings.DEBUG = True try: from django.db import connection ContentType.objects.clear_cache() checker = ObjectPermissionChecker(self.user) # has_perm on Checker should spawn only two queries plus one extra # for fetching the content type first time we check for specific # model and two more content types as there are additional checks # at get_user_obj_perms_model and get_group_obj_perms_model query_count = len(connection.queries) res = checker.has_perm("change_group", self.group) if 'guardian.testapp' in settings.INSTALLED_APPS: expected = 5 else: # TODO: This is strange, need to investigate; totally not sure # why there are more queries if testapp is not included expected = 11 self.assertEqual(len(connection.queries), query_count + expected) # Checking again shouldn't spawn any queries query_count = len(connection.queries) res_new = checker.has_perm("change_group", self.group) self.assertEqual(res, res_new) self.assertEqual(len(connection.queries), query_count) # Checking for other permission but for Group object again # shouldn't spawn any query too query_count = len(connection.queries) checker.has_perm("delete_group", self.group) self.assertEqual(len(connection.queries), query_count) # Checking for same model but other instance should spawn 2 queries new_group = Group.objects.create(name='new-group') query_count = len(connection.queries) checker.has_perm("change_group", new_group) self.assertEqual(len(connection.queries), query_count + 2) # Checking for permission for other model should spawn 3 queries # (again: content type and actual permissions for the object... query_count = len(connection.queries) checker.has_perm("change_user", self.user) self.assertEqual(len(connection.queries), query_count + 3) finally: settings.DEBUG = False def test_init(self): self.assertRaises(NotUserNorGroup, ObjectPermissionChecker, user_or_group=ContentType()) self.assertRaises(NotUserNorGroup, ObjectPermissionChecker) def test_anonymous_user(self): user = AnonymousUser() check = ObjectPermissionChecker(user) # assert anonymous user has no object permissions at all for obj self.assertTrue([] == list(check.get_perms(self.ctype))) def test_superuser(self): user = User.objects.create(username='superuser', is_superuser=True) check = ObjectPermissionChecker(user) ctype = ContentType.objects.get_for_model(self.ctype) perms = sorted(chain(*Permission.objects .filter(content_type=ctype) .values_list('codename'))) self.assertEqual(perms, check.get_perms(self.ctype)) for perm in perms: self.assertTrue(check.has_perm(perm, self.ctype)) def test_not_active_superuser(self): user = User.objects.create(username='not_active_superuser', is_superuser=True, is_active=False) check = ObjectPermissionChecker(user) ctype = ContentType.objects.get_for_model(self.ctype) perms = sorted(chain(*Permission.objects .filter(content_type=ctype) .values_list('codename'))) self.assertEqual(check.get_perms(self.ctype), []) for perm in perms: self.assertFalse(check.has_perm(perm, self.ctype)) def test_not_active_user(self): user = User.objects.create(username='notactive') assign_perm("change_contenttype", user, self.ctype) # new ObjectPermissionChecker is created for each User.has_perm call self.assertTrue(user.has_perm("change_contenttype", self.ctype)) user.is_active = False self.assertFalse(user.has_perm("change_contenttype", self.ctype)) # use on one checker only (as user's is_active attr should be checked # before try to use cache user = User.objects.create(username='notactive-cache') assign_perm("change_contenttype", user, self.ctype) check = ObjectPermissionChecker(user) self.assertTrue(check.has_perm("change_contenttype", self.ctype)) user.is_active = False self.assertFalse(check.has_perm("change_contenttype", self.ctype)) def test_get_perms(self): group = Group.objects.create(name='group') obj1 = ContentType.objects.create( model='foo', app_label='guardian-tests') obj2 = ContentType.objects.create( model='bar', app_label='guardian-tests') assign_perms = { group: ('change_group', 'delete_group'), obj1: ('change_contenttype', 'delete_contenttype'), obj2: ('delete_contenttype',), } check = ObjectPermissionChecker(self.user) for obj, perms in assign_perms.items(): for perm in perms: UserObjectPermission.objects.assign_perm(perm, self.user, obj) self.assertEqual(sorted(perms), sorted(check.get_perms(obj))) check = ObjectPermissionChecker(self.group) for obj, perms in assign_perms.items(): for perm in perms: GroupObjectPermission.objects.assign_perm( perm, self.group, obj) self.assertEqual(sorted(perms), sorted(check.get_perms(obj)))
42.291209
79
0.664804
794ddd70b9faf7b5287a0f8716bb6791ffe5afee
191
py
Python
hadoop-examples/reducer.py
inpefess/AIUDSA18
443a9b3fe62f5dc1208db750642dd3bb94ad6fdd
[ "MIT" ]
null
null
null
hadoop-examples/reducer.py
inpefess/AIUDSA18
443a9b3fe62f5dc1208db750642dd3bb94ad6fdd
[ "MIT" ]
null
null
null
hadoop-examples/reducer.py
inpefess/AIUDSA18
443a9b3fe62f5dc1208db750642dd3bb94ad6fdd
[ "MIT" ]
null
null
null
#!/usr/bin/python counter = 0 while True: try: # use `raw_input()` for Python 2 line = input() except EOFError: break counter += int(line) print(counter)
15.916667
40
0.565445
794dde43cb5e78f5fe69b764ec21acf66a02c39c
10,204
py
Python
InplusTrader/backtestEngine/mod/analyser/mod.py
zhengwsh/InplusTrader_Linux
5f7eb17004da0b76ceafb93cb314de7a6009cd04
[ "MIT" ]
17
2017-04-20T05:17:25.000Z
2020-09-30T08:58:03.000Z
InplusTrader/backtestEngine/mod/analyser/mod.py
vladhj38/InplusTrader_Linux
5f7eb17004da0b76ceafb93cb314de7a6009cd04
[ "MIT" ]
1
2017-11-12T01:24:06.000Z
2019-09-19T08:50:38.000Z
InplusTrader/backtestEngine/mod/analyser/mod.py
vladhj38/InplusTrader_Linux
5f7eb17004da0b76ceafb93cb314de7a6009cd04
[ "MIT" ]
17
2017-04-17T08:17:00.000Z
2020-10-25T01:56:49.000Z
# -*- coding: utf-8 -*- # # Copyright 2017 Ricequant, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle from collections import defaultdict import six from enum import Enum import numpy as np import pandas as pd from rqalpha.interface import AbstractMod from rqalpha.events import EVENT from rqalpha.const import ACCOUNT_TYPE, EXIT_CODE from rqalpha.utils.risk import Risk from rqalpha.utils.repr import properties from rqalpha.execution_context import ExecutionContext class AnalyserMod(AbstractMod): def __init__(self): self._env = None self._mod_config = None self._enabled = False self._result = None self._orders = defaultdict(list) self._trades = [] self._total_portfolios = [] self._sub_portfolios = defaultdict(list) self._positions = defaultdict(list) self._benchmark_daily_returns = [] self._portfolio_daily_returns = [] self._latest_portfolio = None self._latest_benchmark_portfolio = None def start_up(self, env, mod_config): self._env = env self._mod_config = mod_config self._enabled = (self._mod_config.record or self._mod_config.plot or self._mod_config.output_file or self._mod_config.plot_save_file or self._mod_config.report_save_path) if self._enabled: env.event_bus.add_listener(EVENT.POST_SETTLEMENT, self._collect_daily) env.event_bus.add_listener(EVENT.TRADE, self._collect_trade) env.event_bus.add_listener(EVENT.ORDER_CREATION_PASS, self._collect_order) def _collect_trade(self, account, trade): self._trades.append(self._to_trade_record(trade)) def _collect_order(self, account, order): self._orders[order.trading_datetime.date()].append(order) def _collect_daily(self): date = self._env.calendar_dt.date() portfolio = self._env.account.get_portfolio(date) self._latest_portfolio = portfolio self._portfolio_daily_returns.append(portfolio.daily_returns) self._total_portfolios.append(self._to_portfolio_record(date, portfolio)) if ACCOUNT_TYPE.BENCHMARK in self._env.accounts: self._latest_benchmark_portfolio = self._env.accounts[ACCOUNT_TYPE.BENCHMARK].portfolio self._benchmark_daily_returns.append(self._latest_benchmark_portfolio.daily_returns) else: self._benchmark_daily_returns.append(0) for account_type, account in six.iteritems(self._env.accounts): portfolio = account.get_portfolio(date) self._sub_portfolios[account_type].append(self._to_portfolio_record2(date, portfolio)) for order_book_id, position in six.iteritems(portfolio.positions): self._positions[account_type].append(self._to_position_record(date, order_book_id, position)) def _symbol(self, order_book_id): return self._env.data_proxy.instruments(order_book_id).symbol @staticmethod def _safe_convert(value, ndigits=3): if isinstance(value, Enum): return value.name if isinstance(value, (float, np.float64, np.float32, np.float16, np.float)): return round(value, ndigits) return value def _to_portfolio_record(self, date, portfolio): data = { k: self._safe_convert(v, 3) for k, v in six.iteritems(properties(portfolio)) if not k.startswith('_') and not k.endswith('_') and k not in { "positions", "start_date", "starting_cash" } } data['date'] = date return data def _to_portfolio_record2(self, date, portfolio): data = { k: self._safe_convert(v, 3) for k, v in six.iteritems(portfolio.__dict__) if not k.startswith('_') and not k.endswith('_') and k not in { "positions", "start_date", "starting_cash" } } data['date'] = date return data def _to_position_record(self, date, order_book_id, position): data = { k: self._safe_convert(v, 3) for k, v in six.iteritems(position.__dict__) if not k.startswith('_') and not k.endswith('_') } data['order_book_id'] = order_book_id data['symbol'] = self._symbol(order_book_id) data['date'] = date return data def _to_trade_record(self, trade): data = { k: self._safe_convert(v) for k, v in six.iteritems(properties(trade)) if not k.startswith('_') and not k.endswith('_') and k != 'order' } data['order_book_id'] = trade.order.order_book_id data['symbol'] = self._symbol(trade.order.order_book_id) data['side'] = self._safe_convert(trade.order.side) data['position_effect'] = self._safe_convert(trade.order.position_effect) data['datetime'] = data['datetime'].strftime("%Y-%m-%d %H:%M:%S") data['trading_datetime'] = data['trading_datetime'].strftime("%Y-%m-%d %H:%M:%S") return data def tear_down(self, code, exception=None): if code != EXIT_CODE.EXIT_SUCCESS or not self._enabled: return strategy_name = os.path.basename(self._env.config.base.strategy_file).split(".")[0] data_proxy = self._env.data_proxy summary = { 'strategy_name': strategy_name, } for k, v in six.iteritems(self._env.config.base.__dict__): if k in ["trading_calendar", "account_list", "timezone", "persist_mode", "resume_mode", "data_bundle_path", "handle_split", "persist"]: continue summary[k] = self._safe_convert(v, 2) risk = Risk(np.array(self._portfolio_daily_returns), np.array(self._benchmark_daily_returns), data_proxy.get_risk_free_rate(self._env.config.base.start_date, self._env.config.base.end_date), (self._env.config.base.end_date - self._env.config.base.start_date).days + 1) summary.update({ 'alpha': self._safe_convert(risk.alpha, 3), 'beta': self._safe_convert(risk.beta, 3), 'sharpe': self._safe_convert(risk.sharpe, 3), 'information_ratio': self._safe_convert(risk.information_ratio, 3), 'downside_risk': self._safe_convert(risk.annual_downside_risk, 3), 'tracking_error': self._safe_convert(risk.annual_tracking_error, 3), 'sortino': self._safe_convert(risk.sortino, 3), 'volatility': self._safe_convert(risk.annual_volatility, 3), 'max_drawdown': self._safe_convert(risk.max_drawdown, 3), }) summary.update({ k: self._safe_convert(v, 3) for k, v in six.iteritems(properties(self._latest_portfolio)) if k not in ["positions", "daily_returns", "daily_pnl"] }) if self._latest_benchmark_portfolio: summary['benchmark_total_returns'] = self._latest_benchmark_portfolio.total_returns summary['benchmark_annualized_returns'] = self._latest_benchmark_portfolio.annualized_returns trades = pd.DataFrame(self._trades) if 'datetime' in trades.columns: trades = trades.set_index('datetime') df = pd.DataFrame(self._total_portfolios) df['date'] = pd.to_datetime(df['date']) total_portfolios = df.set_index('date').sort_index() result_dict = { 'summary': summary, 'trades': trades, 'total_portfolios': total_portfolios, } if ExecutionContext.plots is not None: plots = ExecutionContext.plots.get_plots() plots_items = defaultdict(dict) for series_name, value_dict in six.iteritems(plots): for date, value in six.iteritems(value_dict): plots_items[date][series_name] = value plots_items[date]["date"] = date df = pd.DataFrame([dict_data for date, dict_data in six.iteritems(plots_items)]) df["date"] = pd.to_datetime(df["date"]) df = df.set_index("date").sort_index() result_dict["plots"] = df for account_type, account in six.iteritems(self._env.accounts): account_name = account_type.name.lower() portfolios_list = self._sub_portfolios[account_type] df = pd.DataFrame(portfolios_list) df["date"] = pd.to_datetime(df["date"]) portfolios_df = df.set_index("date").sort_index() result_dict["{}_portfolios".format(account_name)] = portfolios_df positions_list = self._positions[account_type] positions_df = pd.DataFrame(positions_list) if "date" in positions_df.columns: positions_df["date"] = pd.to_datetime(positions_df["date"]) positions_df = positions_df.set_index("date").sort_index() result_dict["{}_positions".format(account_name)] = positions_df self._result = result_dict if self._mod_config.output_file: with open(self._mod_config.output_file, 'wb') as f: pickle.dump(result_dict, f) if self._mod_config.plot: from rqalpha.plot import plot_result plot_result(result_dict) if self._mod_config.plot_save_file: from rqalpha.plot import plot_result plot_result(result_dict, False, self._mod_config.plot_save_file) if self._mod_config.report_save_path: from rqalpha.utils.report import generate_report generate_report(result_dict, self._mod_config.report_save_path)
41.819672
116
0.650529
794ddec6c094ff04a82af0d77f3021e8ddb26cf1
930
py
Python
tests/test_preprocess/test_tte_list.py
HughPaynter/PyGRB
2eaf834cf3c62a639a056285ca9518456daa4b7c
[ "BSD-3-Clause" ]
14
2020-05-29T02:43:18.000Z
2022-03-12T13:27:36.000Z
tests/test_preprocess/test_tte_list.py
HughPaynter/PyGRB
2eaf834cf3c62a639a056285ca9518456daa4b7c
[ "BSD-3-Clause" ]
8
2020-08-03T02:41:52.000Z
2021-06-22T05:41:52.000Z
tests/test_preprocess/test_tte_list.py
HughPaynter/PyGRB
2eaf834cf3c62a639a056285ca9518456daa4b7c
[ "BSD-3-Clause" ]
14
2020-06-30T07:10:47.000Z
2022-03-12T13:27:39.000Z
import os import unittest from PyGRB.preprocess.GRB_class import BATSEGRB class TestBATSEGRB(unittest.TestCase): def setUp(self): self.burst = 3770 self.datatype = 'tte_list' def tearDown(self): del self.burst del self.datatype def test_burst_assignment_tte_list(self): burst = 3770 datatype = 'tte_list' _path = 'data/BATSE/TTE_list_data/' path = f'{_path}channel_{1}_d01234567_{"bins"}.npy' if os.path.exists(path): delete = False else: delete = True test = BATSEGRB(burst, datatype = datatype) assert(os.path.exists(path)) if delete: for c in range(1,5): for q in ["bins", "diff", "counts"]: path = f'{_path}channel_{c}_d01234567_{q}.npy' os.remove(path) if __name__ == '__main__': unittest.main()
21.627907
66
0.564516
794de12e12bb716c29742a754aaa612808350907
6,345
py
Python
Coins_history.py
jacobbaruch/Coin_market_cap
c8eab8622b3b5d808f7530c036463c2544f8779e
[ "MIT" ]
6
2018-03-19T10:18:18.000Z
2020-02-13T15:49:30.000Z
Coins_history.py
jacobbaruch/Coin_market_cap
c8eab8622b3b5d808f7530c036463c2544f8779e
[ "MIT" ]
null
null
null
Coins_history.py
jacobbaruch/Coin_market_cap
c8eab8622b3b5d808f7530c036463c2544f8779e
[ "MIT" ]
3
2018-09-13T03:18:00.000Z
2021-08-30T17:58:03.000Z
import json import sys import requests from bs4 import BeautifulSoup import pandas as pd from _datetime import datetime, date, timedelta def save_crypto_coins_history(i_rank_start=1, i_rank_end=10, i_coin_file_path='crypto_coins', i_from_date=None, i_to_date=None, i_min_volume=100000, i_coin_markets=[]): """ :param int i_rank_start: pull data from coin current ranking [includes] :param int i_rank_end: pull data till coin current ranking [includes] :param str i_coin_file_path: target csv file name :param str 'YYYY-MM-DD' i_from_date: pull data from this date [includes] :param str 'YYYY-MM-DD' i_to_date: pull data till this date [includes] :param int i_min_volume: pull coins with 24 Hrs volume bigger/equal than this value :param list i_coin_markets: pull coins that traded at least in one of the markets, if empty we ignore this writes to a csv file - historic data of coins """ from_date, to_date = get_from_to_dates(i_from_date, i_to_date) rank_range_from_start = i_rank_end-i_rank_start+1 coins_ranking_dict = get_coins_current_ranking(i_rank_start, rank_range_from_start, i_min_volume) df_coins = pd.DataFrame([]) for rank, coin in coins_ranking_dict.items(): if is_coin_in_markets(coin, set(i_coin_markets)): df_coins = df_coins.append(get_coins_historical_data(rank, coin, from_date, to_date)) write_df_to_csv(df_coins, i_coin_file_path + '.csv') def get_coins_current_ranking(i_start, i_limit, i_min_volume): """ :param int i_start: pull data from coin current ranking [includes] :param int i_limit: pull data till coin current ranking [includes] :param float i_min_volume: pull coins with 24 Hrs volume bigger [includes] than this value :return dict: rank, coin name """ url_coin_list_json = 'https://api.coinmarketcap.com/v1/ticker/?start={}&limit={}'.format(i_start - 1, i_limit) page = requests.get(url_coin_list_json) json_file = json.loads(page.text) coins_dict = {} for k in json_file: if float(k['24h_volume_usd']) >= i_min_volume: coins_dict[k['rank']] = k['id'] return coins_dict def get_coins_historical_data(i_rank, i_coin, i_from_date, i_to_date): """ :param int i_rank: current coin rank :param str i_coin: coin name :param date 'YYYYMMDD' i_from_date: pull data from this date [includes] :param date 'YYYYMMDD' i_to_date: pull data till this date [includes] return list: coin history data includes current ranking """ df_coin = get_specific_coin_historical_data(i_coin, i_from_date, i_to_date) df_coin['Coin'] = i_coin df_coin['Cur. Rank'] = i_rank df_coin = pd.concat([df_coin.iloc[:,7:], df_coin.iloc[:,0:7]], axis=1, join_axes=[df_coin.index]) return df_coin def get_specific_coin_historical_data(i_coin, i_from_date, i_to_date): """ :param str i_coin: coin name :param date 'YYYYMMDD' i_from_date: pull data from this date [includes] :param date 'YYYYMMDD' i_to_date: pull data till this date [includes] return list: coin history data """ currencies = "https://coinmarketcap.com/currencies/" currencies_end = '/historical-data/' dates = '?start={}&end={}'.format(i_from_date, i_to_date) # collect and parse coin historical page url = currencies + i_coin + currencies_end + dates page = requests.get(url) soup = BeautifulSoup(page.text, 'html.parser') # Pull and append historic data table = soup.find('table') data = { 'Date': [], 'Open': [], 'High': [], 'Low': [], 'Close': [], 'Volume': [], 'Market Cap': [] } try: rows = table.findAll('tr')[1:] for row in rows: cols = row.findAll('td') data['Date'].append(cols[0].string) data['Open'].append(cols[1].string) data['High'].append(cols[2].string) data['Low'].append(cols[3].string) data['Close'].append(cols[4].string) data['Volume'].append(cols[5].string) data['Market Cap'].append(cols[6].string) coin_data = pd.DataFrame(data) except AttributeError as e: print('input parameters not valid') sys.exit(13) return coin_data def write_df_to_csv(i_df, i_file): """ :param dataframe i_df: dataframe to save :param str i_file: output csv file name :exception IOerror: trying to save the file """ try: i_df.to_csv(i_file) except IOError as e: print(e) sys.exit(13) def get_from_to_dates(i_from_date, i_to_date): """ :param str 'YYYY-MM-DD' i_from_date: pull data from this date [includes] :param str 'YYYY-MM-DD' i_to_date: pull data till this date [includes] :exception ValueError: date format is not as asked :return tuple: dates in format 'YYYYMMDD' - dates ready to be scrapped """ try: if i_from_date is None: from_date = str(date.today() + timedelta(days=-30)) else: from_date = i_from_date from_date = datetime.strptime(from_date, '%Y-%m-%d').strftime('%Y%m%d') if i_to_date is None: to_date = str(date.today() + timedelta(days=-1)) else: to_date = i_to_date to_date = datetime.strptime(to_date, '%Y-%m-%d').strftime('%Y%m%d') return from_date, to_date except ValueError as e: print(e) sys.exit(13) def is_coin_in_markets(i_coin, i_coin_markets_to_search): ''' :param str i_coin: see if this coin available in following markets :param set i_coin_markets_to_search: markets set to search in :param int i_min_market_volume: minimum trading volume to a market :return boolean : True - if coin traded in one of the markets to search or market set is empty False - coin isn't traded at the markets ''' coin_in_markets = False coin_markets_url = 'https://coinmarketcap.com/currencies/{}/#markets'.format(i_coin) if not i_coin_markets_to_search: coin_in_markets = True else: # collect and parse coin historical page page = requests.get(coin_markets_url) soup = BeautifulSoup(page.text, 'html.parser') table = soup.find('table') rows = table.findAll('tr')[1:] #getting markets of coin markets = set() for row in rows: cols = row.findAll('td') if cols[1].text is not None: markets.add(cols[1].text.upper()) for market in i_coin_markets_to_search: if market.upper() in markets: coin_in_markets = True break return coin_in_markets
32.538462
112
0.696139
794de6c3bfccf0ae717e872d9e59096332d06a90
89
py
Python
tests/integration/hogwarts/potions/apps.py
ducdetronquito/polyjuice
6a55a6b2eb1ce3fd9d3614b0e788167a976e89c4
[ "Unlicense" ]
1
2020-07-16T06:29:58.000Z
2020-07-16T06:29:58.000Z
tests/integration/hogwarts/potions/apps.py
ducdetronquito/polyjuice
6a55a6b2eb1ce3fd9d3614b0e788167a976e89c4
[ "Unlicense" ]
3
2020-07-31T12:26:54.000Z
2020-08-01T10:11:20.000Z
tests/integration/hogwarts/potions/apps.py
ducdetronquito/polyjuice
6a55a6b2eb1ce3fd9d3614b0e788167a976e89c4
[ "Unlicense" ]
null
null
null
from django.apps import AppConfig class PotionsConfig(AppConfig): name = "potions"
14.833333
33
0.752809
794de6f33bc9ffd78e9aed15908d5a550430302f
2,791
py
Python
sql_queries.py
WisnuMulya/Data-Modeling-Postgres
d83f1505d398bba05280c571c4cf5782a3d139a9
[ "MIT" ]
null
null
null
sql_queries.py
WisnuMulya/Data-Modeling-Postgres
d83f1505d398bba05280c571c4cf5782a3d139a9
[ "MIT" ]
null
null
null
sql_queries.py
WisnuMulya/Data-Modeling-Postgres
d83f1505d398bba05280c571c4cf5782a3d139a9
[ "MIT" ]
null
null
null
# DROP TABLES songplay_table_drop = "DROP TABLE IF EXISTS songplays" user_table_drop = "DROP TABLE IF EXISTS users" song_table_drop = "DROP TABLE IF EXISTS songs" artist_table_drop = "DROP TABLE IF EXISTS artists" time_table_drop = "DROP TABLE IF EXISTS time" # CREATE TABLES songplay_table_create = (""" CREATE TABLE IF NOT EXISTS songplays ( songplay_id SERIAL PRIMARY KEY, start_time bigint NOT NULL, user_id integer REFERENCES users(user_id), level text, song_id text REFERENCES songs(song_id), artist_id text REFERENCES artists(artist_id), session_id integer, location text, user_agent text); """) user_table_create = (""" CREATE TABLE IF NOT EXISTS users ( user_id integer PRIMARY KEY, first_name text, last_name text, gender char, level text); """) song_table_create = (""" CREATE TABLE IF NOT EXISTS songs ( song_id text PRIMARY KEY, title text, artist_id text NOT NULL REFERENCES artists(artist_id), year integer, duration numeric); """) artist_table_create = (""" CREATE TABLE IF NOT EXISTS artists ( artist_id text PRIMARY KEY, name text, location text, latitude numeric, longitude numeric); """) time_table_create = (""" CREATE TABLE IF NOT EXISTS time ( start_time bigint PRIMARY KEY, hour integer, day integer, week integer, month integer, year integer, weekday integer); """) # INSERT RECORDS songplay_table_insert = (""" INSERT INTO songplays (start_time, user_id, level, song_id, artist_id, session_id, location, user_agent)\ VALUES (%s, %s, %s, %s, %s, %s, %s, %s) """) user_table_insert = (""" INSERT INTO users (user_id, first_name, last_name, gender, level)\ VALUES (%s, %s, %s, %s, %s) ON CONFLICT (user_id) DO UPDATE SET level = EXCLUDED.level """) song_table_insert = (""" INSERT INTO songs (song_id, title, artist_id, year, duration)\ VALUES (%s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) artist_table_insert = (""" INSERT INTO artists (artist_id, name, location, latitude, longitude)\ VALUES (%s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) time_table_insert = (""" INSERT INTO time (start_time, hour, day, week, month, year, weekday)\ VALUES (%s, %s, %s, %s, %s, %s, %s) ON CONFLICT DO NOTHING """) # FIND SONGS song_select = (""" SELECT song_id, songs.artist_id FROM songs JOIN artists ON artists.artist_id = songs.artist_id WHERE (title = %s) AND (name = %s) AND (duration = %s) """) # QUERY LISTS create_table_queries = [user_table_create, artist_table_create, song_table_create, songplay_table_create, time_table_create] drop_table_queries = [songplay_table_drop, user_table_drop, song_table_drop, artist_table_drop, time_table_drop]
24.060345
71
0.683626
794de72b1ad8f5a36e72fa7276df5c2165b4f10e
8,649
py
Python
dl_code/pcode/distributed_running_nlp.py
ZhicongLiang/ChocoSGD
a127f32e0629d32dc6ca4c4f2837c3980fa3f76c
[ "Apache-2.0" ]
39
2019-06-16T15:28:49.000Z
2022-03-15T09:20:35.000Z
dl_code/pcode/distributed_running_nlp.py
Distributed-Deep-Learning/ChocoSGD
c7715b368cc9f66674720ea9c823032c8058bdf6
[ "Apache-2.0" ]
6
2020-04-15T21:02:49.000Z
2021-05-24T23:24:03.000Z
dl_code/pcode/distributed_running_nlp.py
Distributed-Deep-Learning/ChocoSGD
c7715b368cc9f66674720ea9c823032c8058bdf6
[ "Apache-2.0" ]
18
2019-07-24T22:19:10.000Z
2022-02-09T08:20:10.000Z
# -*- coding: utf-8 -*- from copy import deepcopy import numpy as np import torch from pcode.utils.checkpoint import save_to_checkpoint from pcode.utils.logging import ( display_training_stat, display_test_stat, dispaly_best_test_stat, ) from pcode.utils.stat_tracker import RuntimeTracker from pcode.utils.timer import Timer from pcode.utils.auxiliary import get_model_difference import pcode.utils.error_handler as error_handler from pcode.create_dataset import load_data_batch # sys.excepthook = error_handler.global_except_hook def train_and_validate( conf, model, criterion, scheduler, optimizer, metrics, data_loader ): print("=>>>> start training and validation.\n") assert ( optimizer.__class__.__name__ != "ParallelCHOCO" ), "NLP tasks right now do not support ParallelCHOCO based on multiprocessing (please use optimizer=parallel_choco_v instead)." # define runtime stat tracker and start the training. tracker_tr = RuntimeTracker(metrics_to_track=metrics.metric_names) # get the timer. timer = conf.timer # break until finish expected full epoch training. print("=>>>> enter the training.\n") while True: # init the hidden state. _hidden = ( model.module.init_hidden(conf.batch_size) if "DataParallel" == model.__class__.__name__ else model.init_hidden(conf.batch_size) ) # configure local step. for idx, batch in enumerate(data_loader["train_loader"]): model.train() scheduler.step(optimizer) # repackage the hidden. _hidden = ( model.module.repackage_hidden(_hidden) if "DataParallel" == model.__class__.__name__ else model.repackage_hidden(_hidden) ) # load data with timer("load_data", epoch=scheduler.epoch_): _input = batch.text[ :, conf.graph.rank * conf.batch_size : (conf.graph.rank + 1) * conf.batch_size, ] _target = batch.target[ :, conf.graph.rank * conf.batch_size : (conf.graph.rank + 1) * conf.batch_size, ] _input, _target = load_data_batch(conf, _input, _target) # inference and get current performance. with timer("forward_pass", epoch=scheduler.epoch_): optimizer.zero_grad() loss, _hidden = inference( conf, model, criterion, metrics, _input, _target, _hidden, tracker_tr, ) print(conf.graph.rank, "finish inference", idx) with timer("backward_pass", epoch=scheduler.epoch_): loss.backward() print(conf.graph.rank, "finish backward", idx) with timer("sync_complete", epoch=scheduler.epoch_): # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm_(model.parameters(), conf.rnn_clip) n_bits_to_transmit = optimizer.step(timer=timer) # display the logging info. display_training_stat(conf, scheduler, tracker_tr, n_bits_to_transmit) # finish one epoch training and to decide if we want to val our model. if scheduler.epoch_ % 1 == 0: if tracker_tr.stat["loss"].avg > 1e3 or np.isnan( tracker_tr.stat["loss"].avg ): print("\nThe process diverges!!!!!Early stop it.") error_handler.abort() # each worker finish one epoch training. do_validate( conf, model, optimizer, criterion, scheduler, metrics, data_loader ) # refresh the logging cache at the begining of each epoch. tracker_tr.reset() # determine if the training is finished. if scheduler.is_stop(): conf.logger.save_json() return # display tracking time. if ( conf.graph.rank == 0 and conf.display_tracked_time and scheduler.local_index % conf.summary_freq == 0 ): print(timer.summary()) def inference(conf, model, criterion, metrics, _input, _target, _hidden, tracker=None): """Inference on the given model and get loss and accuracy.""" output, _hidden = model(_input, _hidden) loss = criterion(output.view(-1, conf.n_tokens), _target.contiguous().view(-1)) performance = metrics.evaluate(loss, output, _target) if tracker is not None: tracker.update_metrics([loss.item()] + performance, n_samples=_input.size(0)) return loss, _hidden def do_validate(conf, model, optimizer, criterion, scheduler, metrics, data_loader): """Evaluate the model on the test dataset and save to the checkpoint.""" # wait until the whole group enters this function, and then evaluate. performance = validate( conf, model, optimizer, criterion, scheduler, metrics, data_loader ) # remember best performance and display the val info. scheduler.best_tracker.update(performance[0], scheduler.epoch_) dispaly_best_test_stat(conf, scheduler) # save to the checkpoint. save_to_checkpoint( conf, { "arch": conf.arch, "current_epoch": scheduler.epoch, "local_index": scheduler.local_index, "best_perf": scheduler.best_tracker.best_perf, "optimizer": optimizer.state_dict(), "state_dict": model.state_dict(), }, scheduler.best_tracker.is_best, dirname=conf.checkpoint_dir, filename="checkpoint.pth.tar", save_all=conf.save_all_models, ) print("Finished validation.") def validate(conf, model, optimizer, criterion, scheduler, metrics, data_loader): """A function for model evaluation.""" def _evaluate(_model, label): # define stat. tracker_te = RuntimeTracker(metrics_to_track=metrics.metric_names) # switch to evaluation mode _model.eval() # define hidden state for RNN. _hidden = ( model.module.init_hidden(conf.batch_size) if "DataParallel" == model.__class__.__name__ else model.init_hidden(conf.batch_size) ) for batch in data_loader["val_loader"]: # load data and check performance. _input, _target = batch.text, batch.target # repackage the hidden. _hidden = ( model.module.repackage_hidden(_hidden) if "DataParallel" == model.__class__.__name__ else model.repackage_hidden(_hidden) ) with torch.no_grad(): _, _hidden = inference( conf, _model, criterion, metrics, _input, _target, _hidden, tracker_te, ) # display the test stat. display_test_stat(conf, scheduler, tracker_te, label) # get global (mean) performance global_performance = tracker_te.evaluate_global_metrics() return global_performance # # evaluate the averaged local model on the validation dataset. # if ( # conf.graph_topology != "complete" # and conf.graph_topology != "data_center" # and not conf.train_fast # ): # copied_model = deepcopy(model) # optimizer.world_aggregator.agg_model(copied_model, op="avg") # _evaluate(copied_model, label="averaged_model") # # get the l2 distance of the local model to the averaged model # conf.logger.log_metric( # name="stat", # values={ # "rank": conf.graph.rank, # "epoch": scheduler.epoch_, # "distance": get_model_difference(model, copied_model), # }, # tags={"split": "test", "type": "averaged_model"}, # ) # evaluate each local model on the validation dataset. global_performance = _evaluate(model, label="local_model") return global_performance
35.592593
131
0.582033
794de83463e105565b14d3a027712fe844da1910
5,184
py
Python
utils/align_custom.py
darpan-jain/registration-master
0b7f894bf6d0cee496e846d4bff56a07f545e544
[ "MIT" ]
2
2021-09-03T18:14:57.000Z
2021-09-19T17:54:27.000Z
utils/align_custom.py
darpan-jain/registration-master
0b7f894bf6d0cee496e846d4bff56a07f545e544
[ "MIT" ]
4
2021-08-25T15:19:49.000Z
2022-03-11T23:31:11.000Z
utils/align_custom.py
darpan-jain/registration-master
0b7f894bf6d0cee496e846d4bff56a07f545e544
[ "MIT" ]
null
null
null
''' Implement Dlib Face alignment strategy However, this method/approach doesn't deform the original image like Dlib does. This also categorizes the face in 3 types: Center, Left, Right Align face based on facial landmarks ''' import math import cv2 import numpy as np class AlignCustom(object): def __init__(self): pass def getPos(self, points): if abs(points[0] - points[2]) / abs(points[1] - points[2]) > 2: return "Right"; elif abs(points[1] - points[2]) / abs(points[0] - points[2]) > 2: return "Left"; return "Center" def list2colmatrix(self, pts_list): """ convert list to column matrix Parameters: ---------- pts_list: input list Retures: ------- colMat: """ assert len(pts_list) > 0 colMat = [] for i in range(len(pts_list)): colMat.append(pts_list[i][0]) colMat.append(pts_list[i][1]) colMat = np.matrix(colMat).transpose() return colMat def find_tfrom_between_shapes(self, from_shape, to_shape): """ find transform between shapes Parameters: ---------- from_shape: to_shape: Retures: ------- tran_m: tran_b: """ assert from_shape.shape[0] == to_shape.shape[0] and from_shape.shape[0] % 2 == 0 sigma_from = 0.0 sigma_to = 0.0 cov = np.matrix([[0.0, 0.0], [0.0, 0.0]]) # compute the mean and cov from_shape_points = from_shape.reshape(int(from_shape.shape[0] / 2), 2) to_shape_points = to_shape.reshape(int(to_shape.shape[0] / 2), 2) mean_from = from_shape_points.mean(axis=0) mean_to = to_shape_points.mean(axis=0) for i in range(from_shape_points.shape[0]): temp_dis = np.linalg.norm(from_shape_points[i] - mean_from) sigma_from += temp_dis * temp_dis temp_dis = np.linalg.norm(to_shape_points[i] - mean_to) sigma_to += temp_dis * temp_dis cov += (to_shape_points[i].transpose() - mean_to.transpose()) * (from_shape_points[i] - mean_from) sigma_from = sigma_from / to_shape_points.shape[0] sigma_to = sigma_to / to_shape_points.shape[0] cov = cov / to_shape_points.shape[0] # compute the affine matrix s = np.matrix([[1.0, 0.0], [0.0, 1.0]]) u, d, vt = np.linalg.svd(cov) if np.linalg.det(cov) < 0: if d[1] < d[0]: s[1, 1] = -1 else: s[0, 0] = -1 r = u * s * vt c = 1.0 if sigma_from != 0: c = 1.0 / sigma_from * np.trace(np.diag(d) * s) tran_b = mean_to.transpose() - c * r * mean_from.transpose() tran_m = c * r return tran_m, tran_b def align(self, desired_size, img, landmarks, padding=0.1): """ Align face in BGR format. :param size: size image :type size: number :param img_face: face image detected :type img_face: array 3D :return aligned_face: align face :rtype aligned_face: array 3D :return pos: position of face :rtype pos: 'Left', 'Center', 'Right' """ shape = [] for k in range(int(len(landmarks) / 2)): shape.append(landmarks[k]) shape.append(landmarks[k + 5]) if padding > 0: padding = padding else: padding = 0 # average positions of face points mean_face_shape_x = [0.224152, 0.75610125, 0.490127, 0.254149, 0.726104] mean_face_shape_y = [0.2119465, 0.2119465, 0.628106, 0.780233, 0.780233] from_points = [] to_points = [] for i in range(int(len(shape) / 2)): x = (padding + mean_face_shape_x[i]) / (2 * padding + 1) * desired_size y = (padding + mean_face_shape_y[i]) / (2 * padding + 1) * desired_size to_points.append([x, y]) from_points.append([shape[2 * i], shape[2 * i + 1]]) # convert the points to Mat from_mat = self.list2colmatrix(from_points) to_mat = self.list2colmatrix(to_points) # compute the similar transfrom tran_m, tran_b = self.find_tfrom_between_shapes(from_mat, to_mat) probe_vec = np.matrix([1.0, 0.0]).transpose() probe_vec = tran_m * probe_vec scale = np.linalg.norm(probe_vec) angle = 180.0 / math.pi * math.atan2(probe_vec[1, 0], probe_vec[0, 0]) from_center = [(shape[0] + shape[2]) / 2.0, (shape[1] + shape[3]) / 2.0] to_center = [0, 0] to_center[1] = desired_size * 0.4 to_center[0] = desired_size * 0.5 ex = to_center[0] - from_center[0] ey = to_center[1] - from_center[1] rot_mat = cv2.getRotationMatrix2D((from_center[0], from_center[1]), -1 * angle, scale) rot_mat[0][2] += ex rot_mat[1][2] += ey chips = cv2.warpAffine(img, rot_mat, (desired_size, desired_size)) return chips, self.getPos(landmarks)
31.803681
110
0.552662
794de87d8ecbc5cdbeca2b68f90654aaf31cf396
22,046
py
Python
examples/hybrid_parallelism/model/transformer_encoder.py
Melon-Zhou/FleetX
ad055d27f3f77184f73430f31ece81aa88c51906
[ "Apache-2.0" ]
1
2021-06-08T12:03:38.000Z
2021-06-08T12:03:38.000Z
examples/hybrid_parallelism/model/transformer_encoder.py
Melon-Zhou/FleetX
ad055d27f3f77184f73430f31ece81aa88c51906
[ "Apache-2.0" ]
null
null
null
examples/hybrid_parallelism/model/transformer_encoder.py
Melon-Zhou/FleetX
ad055d27f3f77184f73430f31ece81aa88c51906
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transformer encoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from functools import partial import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np def gelu(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + fluid.layers.tanh((np.sqrt(2.0 / np.pi) * (x + 0.044715 * fluid.layers.pow(x, 3.0))))) return x * cdf def _build_linear_column_parallel(x, n_in, n_out, name, init, mp): return paddle.distributed.split(x, size=(n_in, n_out), operation='linear', axis=1, gather_out=False, num_partitions=mp, weight_attr=fluid.ParamAttr( name='%s.w_0' % name if name is not None else None, initializer=init), bias_attr='%s.b_0' % name if name is not None else None, ) def _build_linear_row_parallel(x, n_in, n_out, name, init, mp): return paddle.distributed.split(x, size=(n_in, n_out), operation='linear', axis=0, gather_out=True, num_partitions=mp, weight_attr=fluid.ParamAttr( name='%s.w_0' % name if name is not None else None, initializer=init), bias_attr='%s.b_0' % name if name is not None else None, ) def multi_head_attention(queries, keys, values, attn_bias, d_key, d_value, d_model, n_head=1, dropout_rate=0., cache=None, param_initializer=None, name='multi_head_att', topo=None): """ Multi-Head Attention. Note that attn_bias is added to the logit before computing softmax activiation to mask certain selected positions so that they will not considered in attention weights. """ keys = queries if keys is None else keys values = keys if values is None else values #if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): # raise ValueError( # "Inputs: quries, keys and values should all be 3-D tensors. but {} v.s. {} v.s. {}"\ # .format(queries.shape, keys.shape, values.shape)) def __compute_qkv(queries, keys, values, n_head, d_key, d_value): """ Add linear projection to queries, keys, and values. """ if topo is None or topo.mp.size == 1: q = layers.fc(input=queries, size=d_key * n_head, num_flatten_dims=2, param_attr=fluid.ParamAttr( name=name + '_query_fc.w_0', initializer=param_initializer), bias_attr=name + '_query_fc.b_0') k = layers.fc(input=keys, size=d_key * n_head, num_flatten_dims=2, param_attr=fluid.ParamAttr( name=name + '_key_fc.w_0', initializer=param_initializer), bias_attr=name + '_key_fc.b_0') v = layers.fc(input=values, size=d_value * n_head, num_flatten_dims=2, param_attr=fluid.ParamAttr( name=name + '_value_fc.w_0', initializer=param_initializer), bias_attr=name + '_value_fc.b_0') else: q = _build_linear_column_parallel(queries, d_model, d_model, name+'_query_fc_'+str(topo.mp.rank), param_initializer, topo.mp.size) k = _build_linear_column_parallel(keys, d_model, d_model, name+'_key_fc_'+str(topo.mp.rank), param_initializer, topo.mp.size) v = _build_linear_column_parallel(values, d_model, d_model, name+'_value_fc_'+str(topo.mp.rank), param_initializer, topo.mp.size) return q, k, v def __split_heads(x, n_head): """ Reshape the last dimension of inpunt tensor x so that it becomes two dimensions and then transpose. Specifically, input a tensor with shape [bs, max_sequence_length, n_head * hidden_dim] then output a tensor with shape [bs, n_head, max_sequence_length, hidden_dim]. """ hidden_size = x.shape[-1] # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. reshaped = layers.reshape( x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True) # permuate the dimensions into: # [batch_size, n_head, max_sequence_len, hidden_size_per_head] return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) def __combine_heads(x): """ Transpose and then reshape the last two dimensions of inpunt tensor x so that it becomes one dimension, which is reverse to __split_heads. """ if len(x.shape) == 3: return x if len(x.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. return layers.reshape( x=trans_x, shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], inplace=True) def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate): """ Scaled Dot-Product Attention """ scaled_q = layers.scale(x=q, scale=d_key**-0.5) product = layers.matmul(x=scaled_q, y=k, transpose_y=True) if attn_bias: product += attn_bias weights = layers.softmax(product) if dropout_rate: weights = layers.dropout( weights, dropout_prob=dropout_rate, dropout_implementation="upscale_in_train", is_test=False) out = layers.matmul(weights, v) return out if topo.mp.size > 1: n_head = n_head // topo.mp.size q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) if cache is not None: # use cache and concat time steps # Since the inplace reshape in __split_heads changes the shape of k and # v, which is the cache input for next time step, reshape the cache # input from the previous time step first. k = cache["k"] = layers.concat( [layers.reshape( cache["k"], shape=[0, 0, d_model]), k], axis=1) v = cache["v"] = layers.concat( [layers.reshape( cache["v"], shape=[0, 0, d_model]), v], axis=1) q = __split_heads(q, n_head) k = __split_heads(k, n_head) v = __split_heads(v, n_head) ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate) out = __combine_heads(ctx_multiheads) # Project back to the model size. if topo is None or topo.mp.size == 1: proj_out = layers.fc(input=out, size=d_model, num_flatten_dims=2, param_attr=fluid.ParamAttr( name=name + '_output_fc.w_0', initializer=param_initializer), bias_attr=name + '_output_fc.b_0') else: proj_out = _build_linear_row_parallel(out, d_model, d_model, name+'_output_fc_'+str(topo.mp.rank), param_initializer, topo.mp.size) return proj_out def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate, hidden_act, param_initializer=None, name='ffn', topo=None): """ Position-wise Feed-Forward Networks. This module consists of two linear transformations with a ReLU activation in between, which is applied to each position separately and identically. """ assert hidden_act == 'gelu.approximate' if topo is None or topo.mp.size == 1: hidden = layers.fc(input=x, size=d_inner_hid, num_flatten_dims=2, act=None, param_attr=fluid.ParamAttr( name=name + '_fc_0.w_0', initializer=param_initializer), bias_attr=name + '_fc_0.b_0') else: hidden = _build_linear_column_parallel(x, d_hid, d_inner_hid, name+'_fc_0_'+str(topo.mp.rank), param_initializer, topo.mp.size) hidden = gelu(hidden) if dropout_rate: hidden = layers.dropout( hidden, dropout_prob=dropout_rate, dropout_implementation="upscale_in_train", is_test=False) if topo is None or topo.mp.size == 1: out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2, param_attr=fluid.ParamAttr( name=name + '_fc_1.w_0', initializer=param_initializer), bias_attr=name + '_fc_1.b_0') else: out = _build_linear_row_parallel(hidden, d_inner_hid, d_hid, name+'_fc_1_'+str(topo.mp.rank), param_initializer, topo.mp.size) return out def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., epsilon=1e-12, name=''): """ Add residual connection, layer normalization and droput to the out tensor optionally according to the value of process_cmd. This will be used before or after multi-head attention and position-wise feed-forward networks. """ for cmd in process_cmd: if cmd == "a": # add residual connection out = out + prev_out if prev_out else out elif cmd == "n": # add layer normalization out = layers.layer_norm( out, begin_norm_axis=len(out.shape) - 1, param_attr=fluid.ParamAttr( name=name + '_layer_norm_scale', initializer=fluid.initializer.Constant(1.)), bias_attr=fluid.ParamAttr( name=name + '_layer_norm_bias', initializer=fluid.initializer.Constant(0.)), epsilon=epsilon) elif cmd == "d": # add dropout if dropout_rate: out = layers.dropout( out, dropout_prob=dropout_rate, dropout_implementation="upscale_in_train", is_test=False) return out pre_process_layer = partial(pre_post_process_layer, None) post_process_layer = pre_post_process_layer def encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name='', epsilon=1e-12, topo=None): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ attn_output = multi_head_attention( enc_input, None, None, attn_bias, d_key, d_value, d_model, n_head, attention_dropout, param_initializer=param_initializer, name=name + '_multi_head_att', topo=topo) attn_output = post_process_layer( enc_input, attn_output, 'an', prepostprocess_dropout, name=name + '_post_att', epsilon=epsilon) ffd_output = positionwise_feed_forward( attn_output, d_inner_hid, d_model, relu_dropout, hidden_act, param_initializer=param_initializer, name=name + '_ffn', topo=topo) return post_process_layer( attn_output, ffd_output, 'an', prepostprocess_dropout, name=name + '_post_ffn', epsilon=epsilon ) def encoder_layer_preln(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd="n", postprocess_cmd="da", param_initializer=None, name='', epsilon=1e-12, topo=None): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ enc_ln_output = post_process_layer( None, enc_input, 'n', prepostprocess_dropout, name=name + '_post_att', epsilon=epsilon) attn_output = multi_head_attention( enc_ln_output, None, None, attn_bias, d_key, d_value, d_model, n_head, attention_dropout, param_initializer=param_initializer, name=name + '_multi_head_att', topo=topo) attn_output = post_process_layer( enc_input, attn_output, 'a', prepostprocess_dropout, name=name + '_post_att', epsilon=epsilon) attn_ln_output = post_process_layer( None, attn_output, 'n', prepostprocess_dropout, name=name + '_post_ffn', epsilon=epsilon) ffd_output = positionwise_feed_forward( attn_ln_output, d_inner_hid, d_model, relu_dropout, hidden_act, param_initializer=param_initializer, name=name + '_ffn', topo=topo) return post_process_layer( attn_output, ffd_output, 'a', prepostprocess_dropout, name=name + '_post_ffn', epsilon=epsilon ) def encoder_inner_share(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, epsilon, param_initializer=None, name='', n_layer_per_block=1, topo=None): """ The encoder_inner_share is composed of n_layer_per_block layers returned by calling encoder_layer. """ _checkpoints = [] for i in range(n_layer_per_block): enc_output = encoder_layer( enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, param_initializer=param_initializer, name=name + '_layer_' + str(i), epsilon=epsilon, topo=topo ) _checkpoints.append(enc_output.name) enc_input = enc_output return enc_output, _checkpoints def encoder_outer_share(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, epsilon, param_initializer=None, name='', n_layer_per_block=1, topo=None, preln=False): """ The encoder_outer_share is composed of n_layer_per_block layers returned by calling encoder_layer. """ enc_fn = encoder_layer_preln if preln else encoder_layer _checkpoints = [] for i in range(n_layer_per_block): enc_output = enc_fn( enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, param_initializer=param_initializer, name=name, epsilon=epsilon, topo=topo) _checkpoints.append(enc_output.name) enc_input = enc_output return enc_output, _checkpoints def encoder(enc_input, attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, epsilon, n_layer_per_block, param_initializer=None, name='', param_share=None, topo=None, preln=False): """ The encoder is composed of a stack of identical layers returned by calling encoder_layer . """ checkpoints = [] # http://wiki.baidu.com/pages/viewpage.action?pageId=978216217 # for outer_share it will share same param in one block, # and for inner_share it will share param across blocks, rather than in one same block # # outer-share inner-block # [1] [1] ----\ 1st block # [1] [2] ----/ # [2] [1] ----\ 2nd block # [2] [2] ----/ if param_share == "normal" or param_share == 'outer_share': #n_layer_per_block = 24 for bert-large enc_fn = encoder_outer_share name_fn = lambda i: name + '_layer_' + str(i) elif param_share == "inner_share": #n_layer_per_block = 2 enc_fn = encoder_inner_share name_fn = lambda i: name else: raise ValueError('unsupported param share mode') layer_per_stage = n_layer // topo.pp.size for i in range(n_layer // n_layer_per_block): with fluid.device_guard(f'gpu:{i//layer_per_stage}'): attn_bias.stop_gradient = True attn_bias.persistable = True enc_output, cp = enc_fn( enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, hidden_act, preprocess_cmd, postprocess_cmd, param_initializer=param_initializer, name=name_fn(i), n_layer_per_block=n_layer_per_block, epsilon=epsilon, topo=topo, preln=preln) if i % layer_per_stage == 0: checkpoints.extend(cp) enc_input = enc_output if preln: with fluid.device_guard(f'gpu:{topo.pp.size-1}'): enc_output = post_process_layer( None, enc_output, 'n', prepostprocess_dropout, name='post_encoder', epsilon=epsilon) with fluid.device_guard(f'gpu:{topo.pp.size-1}'): enc_output = pre_process_layer( enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder", epsilon=epsilon) return enc_output, checkpoints
33.969183
142
0.539962
794de8ad8a3c2ff40d677cdef364c6c0fab6cc9d
3,060
py
Python
tests/functional/test_positive_float.py
AutumnalDream/tartiflette-plugin-scalars
2c73b20eac93b364a97b2192956e5fd4034ec35a
[ "MIT" ]
8
2019-10-02T12:47:15.000Z
2021-12-15T14:29:37.000Z
tests/functional/test_positive_float.py
AutumnalDream/tartiflette-plugin-scalars
2c73b20eac93b364a97b2192956e5fd4034ec35a
[ "MIT" ]
109
2019-09-19T13:37:43.000Z
2022-03-28T07:08:50.000Z
tests/functional/test_positive_float.py
AutumnalDream/tartiflette-plugin-scalars
2c73b20eac93b364a97b2192956e5fd4034ec35a
[ "MIT" ]
4
2019-10-26T19:57:20.000Z
2021-06-24T14:32:37.000Z
import pytest from tartiflette import Resolver, create_engine @pytest.mark.asyncio async def test_positive_float_ok(): @Resolver("Query.positiveFloat", schema_name="test_positive_float_ok") async def positive_float_resolver(*_args, **_kwargs): return 999.99 sdl = """ type Query { positiveFloat: PositiveFloat } """ engine = await create_engine( sdl=sdl, modules=[{"name": "tartiflette_plugin_scalars", "config": {}}], schema_name="test_positive_float_ok", ) assert await engine.execute("query positiveFloatOk { positiveFloat }") == { "data": {"positiveFloat": 999.99} } @pytest.mark.asyncio async def test_positive_float_nok(): @Resolver("Query.positiveFloat", schema_name="test_positive_float_nok") async def positive_float_resolver(*_args, **_kwargs): return "nope" sdl = """ type Query { positiveFloat: PositiveFloat } """ engine = await create_engine( sdl=sdl, modules=[{"name": "tartiflette_plugin_scalars", "config": {}}], schema_name="test_positive_float_nok", ) result = await engine.execute("query positiveFloatNok { positiveFloat }") assert result["data"]["positiveFloat"] is None assert len(result["errors"]) == 1 assert ( result["errors"][0]["message"] == "could not convert string to float: 'nope'" ) @pytest.mark.asyncio async def test__positive_float_mutation_ok(): @Resolver( "Mutation.positiveFloat", schema_name="test_positive_float_mutation_ok" ) async def positive_float_resolver(*_args, **_kwargs): return True sdl = """ type Query { positiveFloat: PositiveFloat } type Mutation { positiveFloat(input: PositiveFloat): Boolean } """ engine = await create_engine( sdl=sdl, modules=[{"name": "tartiflette_plugin_scalars", "config": {}}], schema_name="test_positive_float_mutation_ok", ) assert await engine.execute( "mutation positiveFloat { positiveFloat(input:100) }" ) == {"data": {"positiveFloat": True}} @pytest.mark.asyncio async def test_positive_float_mutation_nok(): @Resolver( "Mutation.positiveFloat", schema_name="test_positive_float_mutation_nok", ) async def positive_float_resolver(*_args, **_kwargs): return True sdl = """ type Query { positiveFloat: PositiveFloat } type Mutation { positiveFloat(input: PositiveFloat): Boolean } """ engine = await create_engine( sdl=sdl, modules=[{"name": "tartiflette_plugin_scalars", "config": {}}], schema_name="test_positive_float_mutation_nok", ) result = await engine.execute( "mutation positiveFloat { positiveFloat(input:-100) }" ) assert result["data"] is None assert len(result["errors"]) == 1 assert ( result["errors"][0]["message"] == "Value -100 is not of correct type PositiveFloat" )
25.714286
79
0.636601
794de8ec57ff317d026c6af28893c94aa4ee94ce
5,559
py
Python
cvat/apps/dashboard/parseToJsTree.py
ItayHoresh/improvedCvat
b0fc79a574d74643b93955a4fc6a1969f49685d1
[ "MIT" ]
null
null
null
cvat/apps/dashboard/parseToJsTree.py
ItayHoresh/improvedCvat
b0fc79a574d74643b93955a4fc6a1969f49685d1
[ "MIT" ]
6
2020-03-25T11:49:12.000Z
2020-06-06T01:35:38.000Z
cvat/apps/dashboard/parseToJsTree.py
OperationalBina/Cvat
b0fc79a574d74643b93955a4fc6a1969f49685d1
[ "MIT" ]
1
2020-12-02T12:27:33.000Z
2020-12-02T12:27:33.000Z
from oswrapper import * from cvat.apps.engine.models import * from django.db.models import Q import requests import json import os global generator_id generator_id = 0 global generator_id_sorted generator_id_sorted = 0 def getObjectStoragesPerProject(user_id, project_id, isAdmin): # if the user authorize to connect this project if Projects_Users.objects.filter(user_id=user_id).filter(project_id=project_id).exists() or isAdmin: return list(Projects_ObjectStorages.objects.filter(project_id=project_id).values_list('object_storage__name', 'channels', 'object_storage__secret_key', 'object_storage__access_key', 'object_storage__id', 'object_storage__endpoint_url')) else: return [] def handleObjectStorages(request): # get list of all object storages the user can connect list_of_os = getObjectStoragesPerProject(request.user.id, request.GET['project_id'], request.user.has_perm('dashboard.views.isAdmin')) items = [] final_items = [] # for each object storage add to the item list all files for os_details in list_of_os: items = [] secret_key = os_details[2] access_key = os_details[3] endpoint_url = os_details[5] objs = ObjectStorageWrapper(access_key=access_key, secret_key=secret_key, endpt_url=endpoint_url) # if there is a channel in this object storage if os_details[1] == None: path = os_details[0] items = objs.find_objects(path, formats=('.mp4', '.avi')) else: # for each channel get all 1500kbps files for channel in os_details[1]: path = os_details[0] + '/' + channel items += objs.find_objects(path, formats=('1500kbps_init_gpac.mp4')) # for each file add the object storage id to know from where to connect for item in items: item['OS_ID'] = os_details[4] item['Bucket'] = os_details[0].split('/')[0] final_items.append(item) return final_items def checkIfVideoExist(source, video_id): return Task.objects.filter(Q(source=source) | Q(video_id=video_id)).exists() def toList(items): # return only the path splited by / : [['path', 'to', 'file'], ['another', 'file', 'path']] return [[str(item['OS_ID'])] + [item['Bucket']] + item["Key"].split('/') for item in items] def createJson(text, parent, os_id, treeType): global generator_id global generator_id_sorted iconPath = '' if '.mp4' in text: iconPath = '/static/engine/icons/MP4.png' elif '.avi' in text: iconPath = '/static/engine/icons/AVI.png' if treeType == 0: currId = generator_id else: currId = generator_id_sorted currJson = { 'id' : currId, 'parent' : parent, 'text' : text, 'icon' : iconPath, 'os_id' : int(os_id) } if treeType == 0: generator_id+=1 else: generator_id_sorted+=1 return currJson def createJsonSorted(currId, text, parent, score, video_id, os_id, path): iconPath = '' if '.mp4' in text: iconPath = '/static/engine/icons/MP4.png' elif '.avi' in text: iconPath = '/static/engine/icons/AVI.png' currJson = { 'id' : currId, 'parent' : parent, 'text' : text, 'icon' : iconPath, 'os_id' : int(os_id), 'score': score, 'video_id': video_id, 'path': path } return currJson def getJsonTree(list_of_paths, parent, data, typeTree): currDict = dict() for path in list_of_paths: os_id = path[0] name = path[1] # if it's the last name in path if len(path) > 2: # if it's a new dir if name not in currDict.keys(): currDict[name] = [[os_id] + path[2:]] else: currDict[name].append([os_id] + path[2:]) else: jsTreeJson = createJson(name, parent, os_id, typeTree) data.append(jsTreeJson) # for each key in dict create json and create it also to his children for key in currDict.keys(): jsTreeJson = createJson(key, parent, 0, typeTree) data.append(jsTreeJson) data = getJsonTree(currDict[key], jsTreeJson['id'], data, typeTree) return data def getJsonById(data, myId): return [currJson for currJson in data if currJson['id'] == myId][0] def getPath(data, currJson): if currJson['parent'] == '#': return currJson['text'] return getPath(data, getJsonById(data, currJson['parent'])) + '/' + currJson['text'] def addPath(data): newData = [] for currJson in data: currJson["path"] = getPath(data, currJson) newData.append(currJson) return newData def getTree(request): global generator_id generator_id = 0 data = [] # get all objects in json type items = handleObjectStorages(request) # split each path to an array list_of_paths = toList(items) # get all path by js tree type : [{'id': value, 'parent' : value, 'text' : value}] data = getJsonTree(list_of_paths, '#', [], 1) # add path to json for downloading the file from OS : [{'id': value, 'parent' : value, 'text' : value, 'path' : path}] data = addPath(data) return data
34.104294
245
0.595791
794dea1cd9655b2a7b32f322140aba90bb0be164
96
py
Python
Codewars/8kyu/find-multiples-of-a-number/Python/solution1.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
7
2017-09-20T16:40:39.000Z
2021-08-31T18:15:08.000Z
Codewars/8kyu/find-multiples-of-a-number/Python/solution1.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
null
null
null
Codewars/8kyu/find-multiples-of-a-number/Python/solution1.py
RevansChen/online-judge
ad1b07fee7bd3c49418becccda904e17505f3018
[ "MIT" ]
null
null
null
# Python - 3.6.0 find_multiples = lambda integer, limit: [*range(integer, limit + 1, integer)]
24
77
0.6875
794dea3b3b9100d6fda895cfd9c6ace1527c1c1e
746
py
Python
web/nouns/migrations/0015_auto_20151104_2059.py
mehrdad-shokri/arguman.org
b02e5f50f85964180c02f353c1d0aa84ee6d20dd
[ "MIT" ]
1
2021-07-07T11:01:04.000Z
2021-07-07T11:01:04.000Z
web/nouns/migrations/0015_auto_20151104_2059.py
mehrdad-shokri/arguman.org
b02e5f50f85964180c02f353c1d0aa84ee6d20dd
[ "MIT" ]
null
null
null
web/nouns/migrations/0015_auto_20151104_2059.py
mehrdad-shokri/arguman.org
b02e5f50f85964180c02f353c1d0aa84ee6d20dd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('nouns', '0014_auto_20151104_0127'), ] operations = [ migrations.AddField( model_name='noun', name='language', field=models.CharField(default='en', max_length=25), preserve_default=False, ), migrations.AlterField( model_name='noun', name='text', field=models.CharField(max_length=255, db_index=True), ), migrations.AlterUniqueTogether( name='noun', unique_together=set([('text', 'language')]), ), ]
24.866667
66
0.567024
794ded2bb76d1127021745cda8541dc883cf3386
10,770
py
Python
zppy/templates/coupled_global.py
xylar/zppy
8f1c80cfc4eae36731a759be74b3d6f5998cf7f6
[ "BSD-3-Clause" ]
null
null
null
zppy/templates/coupled_global.py
xylar/zppy
8f1c80cfc4eae36731a759be74b3d6f5998cf7f6
[ "BSD-3-Clause" ]
null
null
null
zppy/templates/coupled_global.py
xylar/zppy
8f1c80cfc4eae36731a759be74b3d6f5998cf7f6
[ "BSD-3-Clause" ]
null
null
null
# Script to plot some global atmosphere and ocean time series import math import numpy as np import matplotlib.pyplot as plt from readTS import TS import matplotlib as mpl mpl.use('Agg') import shutil import glob from netCDF4 import Dataset import sys ##---additional function to get moc time series def getmoc(dir_in): files = sorted(glob.glob(dir_in+"mocTimeSeries*.nc")) nfiles = len(files) print(dir_in,nfiles,'moc files in total') var =np.array([]) time =np.array([]) for i in range(nfiles): # Open input file fin = Dataset(files[i], "r") time0=fin['year'][:] var0 = fin['mocAtlantic26'][:] for iyear in range(np.int(time0[0]),np.int(time0[-1])+1): if(i>0 and iyear <= time[-1]): print('the amoc value for year',iyear, 'has been included in the moc time series from another moc file',files[i-1], time[-1], 'Skipping...') else: imon = np.where(time0==iyear)[0] if(len(imon)==12): var=np.append(var,np.mean(var0[imon])) time=np.append(time,iyear) else: print('error in input file :',files[i]) return time,var # ----------------------------------------------------------------------------- # Function to add horizontal line showing average value over a specified period def add_line(year, var, year1, year2, ax, format="%4.2f", lw=1, color='b'): i1 = (np.abs(year-year1)).argmin() i2 = (np.abs(year-year2)).argmin() tmp = np.average(var[i1:i2+1]) ax.plot((year[i1],year[i2]),(tmp,tmp), lw=lw, color=color) ax.text(ax.get_xlim()[1]+1,tmp,format % tmp,va='center',color=color) return # ----------------------------------------------------------------------------- # Function to add line showing linear trend over a specified period def add_trend(year, var, year1, year2, ax, format="%4.2f", lw=1, color='b', verbose=False, ohc=False, vol=False): i1 = (np.abs(year-year1)).argmin() i2 = (np.abs(year-year2)).argmin() x = year[i1:i2+1] y = var[i1:i2+1] fit = np.polyfit(x,y,1) if (verbose): print(fit) fit_fn = np.poly1d(fit) ax.plot(x, fit_fn(x), lw=lw, ls='--', c=color) if (ohc): # Earth radius 6371229. from MPAS-O output files heat_uptake = fit[0] / ( 4.0*math.pi*(6371229.)**2*365.0*86400.) ax.text(ax.get_xlim()[1]+1,fit_fn(x[-1]),'%+4.2f W m$^{-2}$' % (heat_uptake),color=color) if (vol): # Earth radius 6371229. from MPAS-O output files #sea_lvl = fit[0] / ( 4.0*math.pi*(6371229.)**2*0.7) #for oceanic portion of the Earth surface ax.text(ax.get_xlim()[1]+1,fit_fn(x[-1]),'%+5.4f mm yr$^{-1}$' % (fit[0]),color=color) return # ----------------------------------------------------------------------------- # These are the "Tableau 20" colors as RGB. t20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(t20)): r, g, b = t20[i] t20[i] = (r / 255., g / 255., b / 255.) # "Tableau 10" uses every other color t10 = [] for i in range(0,len(t20),2): t10.append(t20[i]) # ----------------------------------------------------------------------------- # --- Atmos data --- # Experiments case_dir = sys.argv[1] experiment_name = sys.argv[2] figstr = sys.argv[3] exps = [ {'atmos':'{}/post/atm/glb/ts/monthly/10yr/glb.xml'.format(case_dir), 'ocean':'{}/post/ocn/glb/ts/monthly/10yr/glb.xml'.format(case_dir), 'moc':'{}/post/ocn/glb/ts/monthly/10yr/'.format(case_dir), 'vol':'{}/post/ocn/glb/ts/monthly/10yr/glb.xml'.format(case_dir), 'name': experiment_name, 'yoffset':0.0, 'yr':([{{ year1 }},{{ year2 }}],), 'color':'{{ color }}', } ] # Variables to extract vars = ["RESTOM", "RESSURF", "TREFHT", "FSNTOA", "FLUT","PRECC","PRECL","QFLX"] # Read data for exp in exps: print(exp['atmos']) ts = TS(exp['atmos']) exp['annual'] = {} for var in vars: print(var) v = ts.globalAnnual(var) exp['annual'][var] = v if 'year' not in exp['annual']: time = v.getTime() exp['annual']['year'] = [x.year for x in time.asComponentTime()] del(ts) # Optionally read ohc if exp['ocean'] != None: ts = TS(exp['ocean']) exp['annual']['ohc'] = ts.globalAnnual('ohc') # annomalies with respect to first year exp['annual']['ohc'][:] = exp['annual']['ohc'][:] - exp['annual']['ohc'][0] if exp['vol'] != None: ts = TS(exp['vol']) exp['annual']['volume'] = ts.globalAnnual('volume') # annomalies with respect to first year exp['annual']['volume'][:] = exp['annual']['volume'][:] - exp['annual']['volume'][0] # ----------------------------------------------------------------------------- # --- Generate plots --- xlim = [0., 100.] fig = plt.figure(figsize=[13.5, 16.5]) nrows = 4 ncols = 2 #xlim = [0., 31.] #fig = plt.figure(figsize=[13.5, 9.0]) #nrows = 2 #ncols = 2 # ----------- # First panel # ----------- ax = plt.subplot(nrows, ncols, 1) ax.set_xlim(xlim) ax.set_ylim([-1.5,1.5]) for exp in exps: year = np.array(exp['annual']['year']) + exp['yoffset'] var = np.array(exp['annual']['RESTOM']) # ax.plot(year,var,lw=1.5,marker='o',c=exp['color'],label=exp['name']) ax.plot(year,var,lw=1.0,marker=None,c=exp['color'],label=exp['name']) if exp['yr'] is not None: print(exp['name']) for yrs in exp['yr']: add_line(year,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=2,color=exp['color']) add_trend(year,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=2,color=exp['color']) ax.axhline(y=0,lw=1,c='0.5') ax.set_title("Net TOA flux (restom)") ax.set_xlabel("Year") ax.set_ylabel("W m-2") ax.legend(loc="best") # ------------ # Second panel # ------------ ax = plt.subplot(nrows, ncols, 2) ax.set_xlim(xlim) for exp in exps: year = np.array(exp['annual']['year']) + exp['yoffset'] var = np.array(exp['annual']['TREFHT']) - 273.15 # ax.plot(year,var,lw=1.5,marker='o',c=exp['color'],label=exp['name']) ax.plot(year,var,lw=1.0,marker=None,c=exp['color'],label=exp['name']) if exp['yr'] is not None: print(exp['name']) for yrs in exp['yr']: add_line(year,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=2,color=exp['color']) add_trend(year,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=2,color=exp['color']) ax.set_title("Global surface air temperature") ax.set_xlabel("Year") ax.set_ylabel("degC") #ax.legend(loc="upper left") # ------------ # Third panel # ------------ ax = plt.subplot(nrows, ncols, 3) ax.set_xlim(xlim) for exp in exps: year = np.array(exp['annual']['year']) + exp['yoffset'] var = np.array(exp['annual']['FSNTOA']) # ax.plot(year,var,lw=1.5,marker='o',c=exp['color'],label=exp['name']) ax.plot(year,var,lw=1.0,marker=None,c=exp['color'],label=exp['name']) var = np.array(exp['annual']['FLUT']) # ax.plot(year,var,lw=1.5,marker='o',ls=':',c=exp['color']) ax.plot(year,var,lw=1.0,marker=None,ls=':',c=exp['color']) ax.set_title("TOA radiation: SW (solid), LW (dashed)") ax.set_xlabel("Year") ax.set_ylabel("W m-2") #ax.legend(loc="lower left") # ------------ # Fourth panel # ------------ ax = plt.subplot(nrows, ncols, 4) ax.set_xlim(xlim) ax.set_ylim([-0.3,0.3]) for exp in exps: year = np.array(exp['annual']['year']) + exp['yoffset'] var = np.array(exp['annual']['RESTOM']) - np.array(exp['annual']['RESSURF']) # ax.plot(year,var,lw=1.5,marker='o',c=exp['color'],label=exp['name']) ax.plot(year,var,lw=1.0,marker=None,c=exp['color'],label=exp['name']) if exp['yr'] is not None: print(exp['name']) for yrs in exp['yr']: add_line(year,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=2,color=exp['color']) ax.set_title("Net atm energy imbalance (restom-ressurf)") ax.set_xlabel("Year") ax.set_ylabel("W m-2") #ax.legend(loc="lower left") # ----------- # Fifth panel # ----------- ax = plt.subplot(nrows, ncols, 5) ax.set_xlim(xlim) ax.set_ylim([-0.3e24,0.9e24]) for exp in exps: if exp['ocean'] != None: year = np.array(exp['annual']['year']) + exp['yoffset'] var = np.array(exp['annual']['ohc']) ax.plot(year,var,lw=1.5,marker=None,c=exp['color'],label=exp['name']) for yrs in exp['yr']: add_trend(year,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=3,color=exp['color'],ohc=True) ax.axhline(y=0,lw=1,c='0.5') ax.set_title("Change in ocean heat content") ax.set_xlabel("Year") ax.set_ylabel("J") ax.legend(loc="best") # ----------- # Sixth panel # ----------- ax = plt.subplot(nrows, ncols, 6) ax.set_xlim(xlim) ax.set_ylim([4,22]) for exp in exps: if exp['moc'] != None: [year_moc,var]=getmoc(exp['moc']) ax.plot(year_moc,var,lw=1.5,marker=None,c=exp['color'],label=exp['name']) for yrs in exp['yr']: add_trend(year_moc,var,yrs[0],yrs[1],format="%4.2f",ax=ax,lw=3,color=exp['color'],verbose=True) ax.axhline(y=10,lw=1,c='0.5') ax.set_title("Max MOC Atlantic streamfunction at 26.5N") ax.set_xlabel("Year") ax.set_ylabel("Sv") ax.legend(loc="best") # ----------- # Seventh panel # ----------- ax = plt.subplot(nrows, ncols, 7) ax.set_xlim(xlim) #ax.set_ylim([4,22]) for exp in exps: if exp['vol'] != None: year_vol = np.array(exp['annual']['year']) + exp['yoffset'] var = 1e3*np.array(exp['annual']['volume'])/(4.0*math.pi*(6371229.)**2*0.7) ax.plot(year_vol,var,lw=1.5,marker=None,c=exp['color'],label=exp['name']) for yrs in exp['yr']: add_trend(year_vol,var,yrs[0],yrs[1],format="%5.3f",ax=ax,lw=3,color=exp['color'],verbose=True,vol=True) #ax.axhline(y=10,lw=1,c='0.5') ax.set_title("Change in sea level") ax.set_xlabel("Year") ax.set_ylabel("mm") ax.legend(loc="best") # ------------ # Eighth panel # ------------ ax = plt.subplot(nrows, ncols, 8) ax.set_xlim(xlim) ax.set_ylim([-1,1]) for exp in exps: year = np.array(exp['annual']['year']) + exp['yoffset'] var = 365*86400*(np.array(exp['annual']['QFLX']) - 1e3*(np.array(exp['annual']['PRECC']) + np.array(exp['annual']['PRECL']))) ax.plot(year,var,lw=1.0,marker=None,c=exp['color'],label=exp['name']) if exp['yr'] is not None: print(exp['name']) for yrs in exp['yr']: add_line(year,var,yrs[0],yrs[1],format="%5.4f",ax=ax,lw=2,color=exp['color']) ax.set_title("Net atm water imbalance (evap-prec)") ax.set_xlabel("Year") ax.set_ylabel("mm yr-1") #ax.legend(loc="lower left") fig.tight_layout() fig.savefig(figstr+".pdf") fig.savefig(figstr+".png",dpi=150) plt.clf()
32.245509
150
0.576602
794dedb615644350ee02dda07e17ff8e896d2c2a
210
py
Python
mcache/datadog_checks/mcache/__init__.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
2
2019-05-28T03:48:29.000Z
2019-07-05T07:05:58.000Z
mcache/datadog_checks/mcache/__init__.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
4
2019-07-03T02:53:19.000Z
2019-07-10T14:52:14.000Z
mcache/datadog_checks/mcache/__init__.py
glasser/integrations-core
1dd515d49b1690a1369ee5195713605b1b072b1f
[ "BSD-3-Clause" ]
1
2019-12-23T13:35:17.000Z
2019-12-23T13:35:17.000Z
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from .__about__ import __version__ from .mcache import Memcache __all__ = ['__version__', 'Memcache']
26.25
59
0.752381
794dedba40b40b476e8d63ea141f220d3753504e
1,679
py
Python
homeassistant/components/multimatic/entities.py
thomasgermain/home-assistant
69a8ba678e0276bc1bfde0f3d9e9d3682209f962
[ "Apache-2.0" ]
7
2019-08-15T13:36:58.000Z
2020-03-18T10:46:29.000Z
homeassistant/components/multimatic/entities.py
thomasgermain/home-assistant
69a8ba678e0276bc1bfde0f3d9e9d3682209f962
[ "Apache-2.0" ]
73
2020-10-01T06:39:39.000Z
2022-03-31T06:16:15.000Z
homeassistant/components/multimatic/entities.py
thomasgermain/home-assistant
69a8ba678e0276bc1bfde0f3d9e9d3682209f962
[ "Apache-2.0" ]
4
2019-10-26T14:25:13.000Z
2020-11-10T11:00:18.000Z
"""Common entities.""" from __future__ import annotations from abc import ABC import logging from homeassistant.helpers.update_coordinator import CoordinatorEntity from homeassistant.util import slugify from .const import DOMAIN as MULTIMATIC from .coordinator import MultimaticCoordinator _LOGGER = logging.getLogger(__name__) class MultimaticEntity(CoordinatorEntity, ABC): """Define base class for multimatic entities.""" coordinator: MultimaticCoordinator def __init__(self, coordinator: MultimaticCoordinator, domain, device_id): """Initialize entity.""" super().__init__(coordinator) id_part = slugify( device_id + (f"_{coordinator.api.serial}" if coordinator.api.fixed_serial else "") ) self.entity_id = f"{domain}.{id_part}" self._unique_id = slugify(f"{MULTIMATIC}_{coordinator.api.serial}_{device_id}") self._remove_listener = None @property def unique_id(self) -> str: """Return a unique ID.""" return self._unique_id async def async_added_to_hass(self): """Call when entity is added to hass.""" await super().async_added_to_hass() _LOGGER.debug("%s added", self.entity_id) self.coordinator.add_api_listener(self.unique_id) async def async_will_remove_from_hass(self) -> None: """Run when entity will be removed from hass.""" await super().async_will_remove_from_hass() self.coordinator.remove_api_listener(self.unique_id) @property def available(self) -> bool: """Return if entity is available.""" return super().available and self.coordinator.data
31.092593
87
0.691483
794dedff7de40d3059d8aaca01a7149e012da0bd
3,473
py
Python
app/models.py
azanegin/miptcommuna
97ad8cbe161cbbd86494ef7530588492571024b7
[ "MIT" ]
null
null
null
app/models.py
azanegin/miptcommuna
97ad8cbe161cbbd86494ef7530588492571024b7
[ "MIT" ]
null
null
null
app/models.py
azanegin/miptcommuna
97ad8cbe161cbbd86494ef7530588492571024b7
[ "MIT" ]
null
null
null
""" Definition of models. """ from django.db import models from django.contrib.auth.models import User class Person(models.Model): user = models.OneToOneField(User) department = models.TextField(default='') # факультет group = models.TextField(default='') # группа vkLink = models.TextField(default='') # ссылка на вк fblink = models.TextField(default='') # ссылка на фб skype = models.TextField(default='') # ник в скайпе physMail = models.TextField(default='') # физтех почта mainMail = models.TextField(default='') # оснеовная почта phone = models.TextField(default='') # телефон # номер общаги dormNumber = models.DecimalField(max_digits=5, decimal_places=0) # номер комнаты roomNumber = models.DecimalField(max_digits=5, decimal_places=0) class Shop(models.Model): shopName = models.TextField() # название магазина class ShopTag(models.Model): shop = models.ForeignKey(Shop) tag = models.TextField() # тег к конкретному магазину class Discount(models.Model): owner = models.ForeignKey(Person) # владелец скидки shop = models.ForeignKey(Shop) # магазин для скидки discountType = models.TextField() # тип скидки discount = models.FloatField() # размер скидки expTime = models.DateField() # время истеченея срока description = models.TextField() # описание скидки class Meeting(models.Model): metType = models.TextField() # тип встречи time = models.TimeField() # день dayPart = models.TextField() # время дня location = models.TextField(default='') # место для мероприятия creator = models.ForeignKey(Person) # создатель support = models.TextField() # поддержка от МКИ, Деканата и так далее # стоимость для участия money = models.DecimalField(max_digits=5, decimal_places=0) description = models.TextField() # описание события link = models.TextField() # ссылка на событие в вк class Member(models.Model): meeting = models.ForeignKey(Meeting) # встреча user = models.ForeignKey(Person) # учаник встречи donate = models.DecimalField(max_digits=5, decimal_places=2) # его взнос class Gallery(models.Model): meet = models.ForeignKey(Meeting) # встреча uploader = models.ForeignKey(Person) # кто дал доступ к галлерее link = models.TextField() # ссылка на галлерею class Item(models.Model): name = models.TextField() # название предмета itemType = models.TextField() # классификация предмета owner = models.ForeignKey(Person) # владелец quality = models.TextField() # качетво предмета location = models.TextField() # где его можно найти status = models.BooleanField(default=False) # используется ли сейчас isCommon = models.BooleanField(default=True) # общественный description = models.TextField() # описание def __str__(self): return self.name class Query(models.Model): who = models.ForeignKey(Person) # кто need = models.TextField() # что ищет time = models.TimeField() # на какой день dayPart = models.TextField() # время суток duration = models.TextField() # длительность description = models.TextField() # описание compelete = models.BooleanField(default=False) # удовлетворен cancel = models.BooleanField(default=False) # отменен class Squery(models.Model): query = models.ForeignKey(Query) # запрос person = models.ForeignKey(Person) # пользователь
36.177083
77
0.700835
794def6324eefcff7db3e56879f3d4273ff422b1
2,482
py
Python
docs/conf.py
mrob95/pycom-VirtualDesktopAccessor
fbd45f821c34f5961ec7b33a7e3045cc652dd862
[ "MIT" ]
null
null
null
docs/conf.py
mrob95/pycom-VirtualDesktopAccessor
fbd45f821c34f5961ec7b33a7e3045cc652dd862
[ "MIT" ]
null
null
null
docs/conf.py
mrob95/pycom-VirtualDesktopAccessor
fbd45f821c34f5961ec7b33a7e3045cc652dd862
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, directory) # -- Project information ----------------------------------------------------- project = 'pyvda' copyright = '2021, Mike Roberts' author = 'Mike Roberts' # The full version, including alpha/beta/rc tags release = '0.2.2' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', ] autodoc_member_order = 'bysource' autoclass_content = 'both' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # html_theme = 'classic' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] #--------------------------------------------------------------------------- # Mock libraries that are only available on some platforms or with optional # dependencies installed. from unittest.mock import Mock mock_modules = { "comtypes", "ctypes", "ctypes.wintypes", "pywin32" } for module_name in mock_modules: sys.modules[module_name] = Mock()
31.820513
79
0.656728
794def8bb79b695924270a9cf2b0aee42c7bf220
4,184
py
Python
src/Report/Report.py
kuefmz/software_classification
0dee3a046e59052ab272e4029195fb21f3d58c04
[ "Apache-2.0" ]
null
null
null
src/Report/Report.py
kuefmz/software_classification
0dee3a046e59052ab272e4029195fb21f3d58c04
[ "Apache-2.0" ]
null
null
null
src/Report/Report.py
kuefmz/software_classification
0dee3a046e59052ab272e4029195fb21f3d58c04
[ "Apache-2.0" ]
null
null
null
from sklearn.metrics import make_scorer from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score,precision_recall_fscore_support from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_validate import pickle import numpy as np import pandas as pd #def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0] #def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1] #def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0] #def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 1] tn = lambda y_true, y_pred: confusion_matrix(y_true, y_pred)[0, 0] fp = lambda y_true, y_pred: confusion_matrix(y_true, y_pred)[0, 1] fn = lambda y_true, y_pred: confusion_matrix(y_true, y_pred)[1, 0] tp = lambda y_true, y_pred: confusion_matrix(y_true, y_pred)[1, 1] score_metrics = {'accuracy': accuracy_score, 'precision': precision_score, 'recall': recall_score, 'f1-score': f1_score, #'p_r_f1_sup': precision_recall_fscore_support, 'tp': tp, 'tn': tn, 'fp': fp, 'fn': fn} def report(clf, train_name, x_train, y_train, label, name='classifier', cv=5, dict_scoring=None, fit_params=None, save=False): ''' Function create a metric report automatically with cross_validate function. @param clf: (model) classifier @param x: (list or matrix or tensor) training x data @param y: (list) label data @param name: (string) name of the model (default classifier) @param cv: (int) number of fold for cross-validation (default 5) @param dict_scoring: (dict) dictionary of metrics and names @param fit_aparams: (dict) add parameters for model fitting @param save: (bool) determine if the model need to be saved @return: (pandas.dataframe) dataframe containing all the results of the metrics for each fold and the mean and std for each of them ''' if dict_scoring!=None: score = dict_scoring.copy() # save the original dictionary for i in score.keys(): if len(set(y_train))>2: if i in ["precision", "recall", "f1-score"]: score[i] = make_scorer(score[i], average = 'weighted') # make each function scorer elif i=="roc_auc": score[i] = make_scorer(score[i], average = 'weighted', multi_class="ovo",needs_proba=True) # make each function scorer else: score[i] = make_scorer(score[i]) # make each function scorer elif i in ['precision', 'recall', 'f1-score'] : score[i] = make_scorer(score[i], pos_label=label) # make each function scorer else: score[i] = make_scorer(score[i]) try: scores = cross_validate(clf, x_train, y_train, scoring=score, cv=cv, return_train_score=True, n_jobs=-1, fit_params=fit_params) except: scores = cross_validate(clf, x_train, y_train, scoring=score, cv=cv, return_train_score=True, fit_params=fit_params) #print(scores) # Train test on the overall data model = clf model.fit(x_train, y_train) #features = model[:-1].get_feature_names_out() #print(f'{label}: ', file=open("output.txt", "a")) #for i in features: # print(f'{i}', file=open("output.txt", "a")) #y_pred = model.predict(X_test)#>0.5).astype(int) if save: filename= name+label+".sav" pickle.dump(model, open('results/models/'+filename, 'wb')) #csvFileName = f"{label.lower().replace(' ', '_')}.csv" #with open('results/scoreboards/' + csvFileName, 'r') as csvfile: # rownum = len(csvfile.readlines()) # initialisation res = {'PipelineID' : label, 'Pipeline' : name , 'train_set' : train_name} for i in scores: # loop on each metric generate text and values if i == "estimator": continue for j in enumerate(scores[i]): res[i+"_cv"+str(j[0]+1)] = j[1] res[i+"_mean"] = np.mean(scores[i]) # add metrics averall dataset on the dictionary #print(scores) #print(score) del scores['fit_time'] del scores['score_time'] #for i in scores: # compute metrics # scores[i] = np.append(scores[i] ,score[i.split("test_")[-1]](model, X_test, y_test)) # res[i.split("test_")[-1]+'_overall'] = scores[i][-1] return pd.DataFrame(data=res.values(), index=res.keys()).T, model
40.230769
126
0.708174
794defa26f562e3224f4b44ef77744ce7bd5fd39
2,174
py
Python
optimus/outliers/mad.py
liRONCO11/optimus
0ca0567267300397c7ba711483c46f94ac265e55
[ "Apache-2.0" ]
1,045
2017-07-17T17:59:46.000Z
2021-06-15T07:06:48.000Z
optimus/outliers/mad.py
liRONCO11/optimus
0ca0567267300397c7ba711483c46f94ac265e55
[ "Apache-2.0" ]
955
2017-07-14T15:47:58.000Z
2021-05-27T14:16:24.000Z
optimus/outliers/mad.py
liRONCO11/optimus
0ca0567267300397c7ba711483c46f94ac265e55
[ "Apache-2.0" ]
226
2017-08-04T20:41:33.000Z
2021-05-21T08:28:33.000Z
from optimus.helpers.constants import RELATIVE_ERROR from optimus.helpers.filters import dict_filter from optimus.helpers.json import dump_json from optimus.outliers.abstract_outliers_bounds import AbstractOutlierBounds class MAD(AbstractOutlierBounds): """ Handle outliers using mad http://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/ """ def __init__(self, df, col_name, threshold: int, relative_error: int = RELATIVE_ERROR): """ :param df: :param col_name: :type threshold: object :type relative_error: object """ self.df = df self.col_name = col_name self.threshold = threshold self.relative_error = relative_error self.upper_bound, self.lower_bound = dict_filter(self.whiskers(), ["upper_bound", "lower_bound"]) super().__init__(df, col_name, self.lower_bound, self.upper_bound) def whiskers(self): """ Get the wisker used to defined outliers :return: """ mad_median_value = self.df.cols.mad(self.col_name, self.relative_error, more=True) col_name = self.col_name mad_value = mad_median_value[col_name]["mad"] median_value = mad_median_value[col_name]["median"] lower_bound = median_value - self.threshold * mad_value upper_bound = median_value + self.threshold * mad_value return {"lower_bound": lower_bound, "upper_bound": upper_bound} def info(self, output: str = "dict"): """ Get whiskers, iqrs and outliers and non outliers count :return: """ upper_bound, lower_bound, = dict_filter(self.whiskers(), ["upper_bound", "lower_bound"]) result = {"count_outliers": self.count(), "count_non_outliers": self.non_outliers_count(), "lower_bound": lower_bound, "lower_bound_count": self.count_lower_bound(lower_bound), "upper_bound": upper_bound, "upper_bound_count": self.count_upper_bound(upper_bound)} if output == "json": result = dump_json(result) return result
38.821429
111
0.649954
794defe6025092790d7da33d724c0e26fe35caf6
64,512
py
Python
sympy/plotting/plot.py
shipci/sympy
4b59927bed992b980c9b3faac01becb36feef26b
[ "BSD-3-Clause" ]
319
2016-09-22T15:54:48.000Z
2022-03-18T02:36:58.000Z
sympy/plotting/plot.py
shipci/sympy
4b59927bed992b980c9b3faac01becb36feef26b
[ "BSD-3-Clause" ]
9
2016-11-03T21:56:41.000Z
2020-08-09T19:27:37.000Z
sympy/plotting/plot.py
shipci/sympy
4b59927bed992b980c9b3faac01becb36feef26b
[ "BSD-3-Clause" ]
27
2016-10-06T16:05:32.000Z
2022-03-18T02:37:00.000Z
"""Plotting module for Sympy. A plot is represented by the ``Plot`` class that contains a reference to the backend and a list of the data series to be plotted. The data series are instances of classes meant to simplify getting points and meshes from sympy expressions. ``plot_backends`` is a dictionary with all the backends. This module gives only the essential. For all the fancy stuff use directly the backend. You can get the backend wrapper for every plot from the ``_backend`` attribute. Moreover the data series classes have various useful methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may be useful if you wish to use another plotting library. Especially if you need publication ready graphs and this module is not enough for you - just get the ``_backend`` attribute and add whatever you want directly to it. In the case of matplotlib (the common way to graph data in python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` which is the axis and work on them as you would on any other matplotlib object. Simplicity of code takes much greater importance than performance. Don't use it if you care at all about performance. A new backend instance is initialized every time you call ``show()`` and the old one is left to the garbage collector. """ from __future__ import print_function, division from inspect import getargspec from itertools import chain from collections import Callable import warnings from sympy import sympify, Expr, Tuple, Dummy, Symbol from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.iterables import is_sequence from .experimental_lambdify import (vectorized_lambdify, lambdify) # N.B. # When changing the minimum module version for matplotlib, please change # the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py` # Backend specific imports - textplot from sympy.plotting.textplot import textplot # Global variable # Set to False when running tests / doctests so that the plots don't show. _show = True def unset_show(): global _show _show = False ############################################################################## # The public interface ############################################################################## class Plot(object): """The central class of the plotting module. For interactive work the function ``plot`` is better suited. This class permits the plotting of sympy expressions using numerous backends (matplotlib, textplot, the old pyglet module for sympy, Google charts api, etc). The figure can contain an arbitrary number of plots of sympy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by ``from sympy import *``. The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.). The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends. If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates. Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates. The arguments for the constructor Plot must be subclasses of BaseSeries. Any global option can be specified as a keyword argument. The global options for a figure are: - title : str - xlabel : str - ylabel : str - legend : bool - xscale : {'linear', 'log'} - yscale : {'linear', 'log'} - axis : bool - axis_center : tuple of two floats or {'center', 'auto'} - xlim : tuple of two floats - ylim : tuple of two floats - aspect_ratio : tuple of two floats or {'auto'} - autoscale : bool - margin : float in [0, 1] The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses. Some data series support additional aesthetics or options: ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following: Aesthetics: - line_color : function which returns a float. options: - label : str - steps : bool - integers_only : bool SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following: aesthetics: - surface_color : function which returns a float. """ def __init__(self, *args, **kwargs): super(Plot, self).__init__() # Options for the graph as a whole. # The possible values for each option are described in the docstring of # Plot. They are based purely on convention, no checking is done. self.title = None self.xlabel = None self.ylabel = None self.aspect_ratio = 'auto' self.xlim = None self.ylim = None self.axis_center = 'auto' self.axis = True self.xscale = 'linear' self.yscale = 'linear' self.legend = False self.autoscale = True self.margin = 0 # Contains the data objects to be plotted. The backend should be smart # enough to iterate over this list. self._series = [] self._series.extend(args) # The backend type. On every show() a new backend instance is created # in self._backend which is tightly coupled to the Plot instance # (thanks to the parent attribute of the backend). self.backend = DefaultBackend # The keyword arguments should only contain options for the plot. for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) def show(self): # TODO move this to the backend (also for save) if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): series_strs = [('[%d]: ' % i) + str(s) for i, s in enumerate(self._series)] return 'Plot object containing:\n' + '\n'.join(series_strs) def __getitem__(self, index): return self._series[index] def __setitem__(self, index, *args): if len(args) == 1 and isinstance(args[0], BaseSeries): self._series[index] = args def __delitem__(self, index): del self._series[index] @doctest_depends_on(modules=('numpy', 'matplotlib',)) def append(self, arg): """Adds an element from a plot's series to an existing plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot's first series object to the first, use the ``append`` method, like so: >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x) >>> p2 = plot(x) >>> p1.append(p2[0]) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) See Also ======== extend """ if isinstance(arg, BaseSeries): self._series.append(arg) else: raise TypeError('Must specify element of plot to append.') @doctest_depends_on(modules=('numpy', 'matplotlib',)) def extend(self, arg): """Adds all series from another plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot to the first, use the ``extend`` method, like so: >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x) >>> p2 = plot(x) >>> p1.extend(p2) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) """ if isinstance(arg, Plot): self._series.extend(arg._series) elif is_sequence(arg): self._series.extend(arg) else: raise TypeError('Expecting Plot or sequence of BaseSeries') ############################################################################## # Data Series ############################################################################## #TODO more general way to calculate aesthetics (see get_color_array) ### The base class for all series class BaseSeries(object): """Base class for the data objects containing stuff to be plotted. The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes #Different from is_contour as the colormap in backend will be #different is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics def __init__(self): super(BaseSeries, self).__init__() @property def is_3D(self): flags3D = [ self.is_3Dline, self.is_3Dsurface ] return any(flags3D) @property def is_line(self): flagslines = [ self.is_2Dline, self.is_3Dline ] return any(flagslines) ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 def __init__(self): super(Line2DBaseSeries, self).__init__() self.label = None self.steps = False self.only_integers = False self.line_color = None def get_segments(self): np = import_module('numpy') points = self.get_points() if self.steps is True: x = np.array((points[0], points[0])).T.flatten()[1:] y = np.array((points[1], points[1])).T.flatten()[:-1] points = (x, y) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) arity = len(getargspec(c)[0]) if arity == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y): np = import_module('numpy') super(List2DSeries, self).__init__() self.list_x = np.array(list_x) self.list_y = np.array(list_y) self.label = 'list' def __str__(self): return 'list plot' def get_points(self): return (self.list_x, self.list_y) class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a SymPy expression over a range.""" def __init__(self, expr, var_start_end, **kwargs): super(LineOver1DRangeSeries, self).__init__() self.expr = sympify(expr) self.label = str(self.expr) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'cartesian line: %s for %s over %s' % ( str(self.expr), str(self.var), str((self.start, self.end))) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if self.only_integers or not self.adaptive: return super(LineOver1DRangeSeries, self).get_segments() else: f = lambdify([self.var], self.expr) list_segments = [] def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ np = import_module('numpy') #Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 xnew = p[0] + random * (q[0] - p[0]) ynew = f(xnew) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif p[1] is None and q[1] is None: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if any(y is not None for y in yarray): for i in range(len(yarray) - 1): if yarray[i] is not None or yarray[i + 1] is not None: sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) #Sample further if one of the end points in None( i.e. a complex #value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: list_segments.append([p, q]) f_start = f(self.start) f_end = f(self.end) sample([self.start, f_start], [self.end, f_end], 0) return list_segments def get_points(self): np = import_module('numpy') if self.only_integers is True: list_x = np.linspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: list_x = np.linspace(self.start, self.end, num=self.nb_of_points) f = vectorized_lambdify([self.var], self.expr) list_y = f(list_x) return (list_x, list_y) class Parametric2DLineSeries(Line2DBaseSeries): """Representation for a line consisting of two parametric sympy expressions over a range.""" is_parametric = True def __init__(self, expr_x, expr_y, var_start_end, **kwargs): super(Parametric2DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'parametric cartesian line: (%s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) list_x = fx(param) list_y = fy(param) return (list_x, list_y) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if not self.adaptive: return super(Parametric2DLineSeries, self).get_segments() f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) list_segments = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ #Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = f_x(param_new) ynew = f_y(param_new) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = list(map(f_x, param_array)) y_array = list(map(f_y, param_array)) if any(x is not None and y is not None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) #Sample further if one of the end points in None( ie a complex #value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: list_segments.append([p, q]) f_start_x = f_x(self.start) f_start_y = f_y(self.start) start = [f_start_x, f_start_y] f_end_x = f_x(self.end) f_end_y = f_y(self.end) end = [f_end_x, f_end_y] sample(self.start, self.end, start, end, 0) return list_segments ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super(Line3DBaseSeries, self).__init__() class Parametric3DLineSeries(Line3DBaseSeries): """Representation for a 3D line consisting of two parametric sympy expressions and a range.""" def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): super(Parametric3DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.line_color = kwargs.get('line_color', None) def __str__(self): return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) fz = vectorized_lambdify([self.var], self.expr_z) list_x = fx(param) list_y = fy(param) list_z = fz(param) return (list_x, list_y, list_z) ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self): super(SurfaceBaseSeries, self).__init__() self.surface_color = None def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) arity = len(getargspec(c)[0]) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: return f(*variables) else: return c*np.ones(self.nb_of_points) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a sympy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): super(SurfaceOver2DRangeSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('cartesian surface: %s for' ' %s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric sympy expressions and a range.""" is_parametric = True def __init__( self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs): super(ParametricSurfaceSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.var_u = sympify(var_start_end_u[0]) self.start_u = float(var_start_end_u[1]) self.end_u = float(var_start_end_u[2]) self.var_v = sympify(var_start_end_v[0]) self.start_v = float(var_start_end_v[1]) self.end_v = float(var_start_end_v[2]) self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('parametric cartesian surface: (%s, %s, %s) for' ' %s over %s and %s over %s') % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v))) def get_parameter_meshes(self): np = import_module('numpy') return np.meshgrid(np.linspace(self.start_u, self.end_u, num=self.nb_of_points_u), np.linspace(self.start_v, self.end_v, num=self.nb_of_points_v)) def get_meshes(self): mesh_u, mesh_v = self.get_parameter_meshes() fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v)) ### Contours class ContourSeries(BaseSeries): """Representation for a contour plot.""" #The code is mostly repetition of SurfaceOver2DRange. #XXX: Presently not used in any of those functions. #XXX: Add contour plot and use this seties. is_contour = True def __init__(self, expr, var_start_end_x, var_start_end_y): super(ContourSeries, self).__init__() self.nb_of_points_x = 50 self.nb_of_points_y = 50 self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_meshes def __str__(self): return ('contour: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) ############################################################################## # Backends ############################################################################## class BaseBackend(object): def __init__(self, parent): super(BaseBackend, self).__init__() self.parent = parent ## don't have to check for the success of importing matplotlib in each case; ## we will only be using this backend if we can successfully import matploblib class MatplotlibBackend(BaseBackend): def __init__(self, parent): super(MatplotlibBackend, self).__init__(parent) are_3D = [s.is_3D for s in self.parent._series] self.matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) self.plt = self.matplotlib.pyplot self.cm = self.matplotlib.cm self.LineCollection = self.matplotlib.collections.LineCollection if any(are_3D) and not all(are_3D): raise ValueError('The matplotlib backend can not mix 2D and 3D.') elif not any(are_3D): self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111) self.ax.spines['left'].set_position('zero') self.ax.spines['right'].set_color('none') self.ax.spines['bottom'].set_position('zero') self.ax.spines['top'].set_color('none') self.ax.spines['left'].set_smart_bounds(True) self.ax.spines['bottom'].set_smart_bounds(False) self.ax.xaxis.set_ticks_position('bottom') self.ax.yaxis.set_ticks_position('left') elif all(are_3D): ## mpl_toolkits.mplot3d is necessary for ## projection='3d' mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111, projection='3d') def process_series(self): parent = self.parent for s in self.parent._series: # Create the collections if s.is_2Dline: collection = self.LineCollection(s.get_segments()) self.ax.add_collection(collection) elif s.is_contour: self.ax.contour(*s.get_meshes()) elif s.is_3Dline: # TODO too complicated, I blame matplotlib mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) art3d = mpl_toolkits.mplot3d.art3d collection = art3d.Line3DCollection(s.get_segments()) self.ax.add_collection(collection) x, y, z = s.get_points() self.ax.set_xlim((min(x), max(x))) self.ax.set_ylim((min(y), max(y))) self.ax.set_zlim((min(z), max(z))) elif s.is_3Dsurface: x, y, z = s.get_meshes() collection = self.ax.plot_surface(x, y, z, cmap=self.cm.jet, rstride=1, cstride=1, linewidth=0.1) elif s.is_implicit: #Smart bounds have to be set to False for implicit plots. self.ax.spines['left'].set_smart_bounds(False) self.ax.spines['bottom'].set_smart_bounds(False) points = s.get_raster() if len(points) == 2: #interval math plotting x, y = _matplotlib_list(points[0]) self.ax.fill(x, y, facecolor='b', edgecolor='None' ) else: # use contourf or contour depending on whether it is # an inequality or equality. #XXX: ``contour`` plots multiple lines. Should be fixed. ListedColormap = self.matplotlib.colors.ListedColormap colormap = ListedColormap(["white", "blue"]) xarray, yarray, zarray, plot_type = points if plot_type == 'contour': self.ax.contour(xarray, yarray, zarray, contours=(0, 0), fill=False, cmap=colormap) else: self.ax.contourf(xarray, yarray, zarray, cmap=colormap) else: raise ValueError('The matplotlib backend supports only ' 'is_2Dline, is_3Dline, is_3Dsurface and ' 'is_contour objects.') # Customise the collections with the corresponding per-series # options. if hasattr(s, 'label'): collection.set_label(s.label) if s.is_line and s.line_color: if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable): color_array = s.get_color_array() collection.set_array(color_array) else: collection.set_color(s.line_color) if s.is_3Dsurface and s.surface_color: if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check warnings.warn('The version of matplotlib is too old to use surface coloring.') elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable): color_array = s.get_color_array() color_array = color_array.reshape(color_array.size) collection.set_array(color_array) else: collection.set_color(s.surface_color) # Set global options. # TODO The 3D stuff # XXX The order of those is important. mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) Axes3D = mpl_toolkits.mplot3d.Axes3D if parent.xscale and not isinstance(self.ax, Axes3D): self.ax.set_xscale(parent.xscale) if parent.yscale and not isinstance(self.ax, Axes3D): self.ax.set_yscale(parent.yscale) if parent.xlim: self.ax.set_xlim(parent.xlim) else: if all(isinstance(s, LineOver1DRangeSeries) for s in parent._series): starts = [s.start for s in parent._series] ends = [s.end for s in parent._series] self.ax.set_xlim(min(starts), max(ends)) if parent.ylim: self.ax.set_ylim(parent.ylim) if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check self.ax.set_autoscale_on(parent.autoscale) if parent.axis_center: val = parent.axis_center if isinstance(self.ax, Axes3D): pass elif val == 'center': self.ax.spines['left'].set_position('center') self.ax.spines['bottom'].set_position('center') elif val == 'auto': xl, xh = self.ax.get_xlim() yl, yh = self.ax.get_ylim() pos_left = ('data', 0) if xl*xh <= 0 else 'center' pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' self.ax.spines['left'].set_position(pos_left) self.ax.spines['bottom'].set_position(pos_bottom) else: self.ax.spines['left'].set_position(('data', val[0])) self.ax.spines['bottom'].set_position(('data', val[1])) if not parent.axis: self.ax.set_axis_off() if parent.legend: if self.ax.legend(): self.ax.legend_.set_visible(parent.legend) if parent.margin: self.ax.set_xmargin(parent.margin) self.ax.set_ymargin(parent.margin) if parent.title: self.ax.set_title(parent.title) if parent.xlabel: self.ax.set_xlabel(parent.xlabel, position=(1, 0)) if parent.ylabel: self.ax.set_ylabel(parent.ylabel, position=(0, 1)) def show(self): self.process_series() #TODO after fixing https://github.com/ipython/ipython/issues/1255 # you can uncomment the next line and remove the pyplot.show() call #self.fig.show() if _show: self.plt.show() def save(self, path): self.process_series() self.fig.savefig(path) def close(self): self.plt.close(self.fig) class TextBackend(BaseBackend): def __init__(self, parent): super(TextBackend, self).__init__(parent) def show(self): if len(self.parent._series) != 1: raise ValueError( 'The TextBackend supports only one graph per Plot.') elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): raise ValueError( 'The TextBackend supports only expressions over a 1D range') else: ser = self.parent._series[0] textplot(ser.expr, ser.start, ser.end) def close(self): pass class DefaultBackend(BaseBackend): def __new__(cls, parent): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: return MatplotlibBackend(parent) else: return TextBackend(parent) plot_backends = { 'matplotlib': MatplotlibBackend, 'text': TextBackend, 'default': DefaultBackend } ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.average(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.average(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1: ], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') vector_a = x - y vector_b = z - y dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _matplotlib_list(interval_list): """ Returns lists for matplotlib ``fill`` command from a list of bounding rectangular intervals """ xlist = [] ylist = [] if len(interval_list): for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] xlist.extend([intervalx.start, intervalx.start, intervalx.end, intervalx.end, None]) ylist.extend([intervaly.start, intervaly.end, intervaly.end, intervaly.start, None]) else: #XXX Ugly hack. Matplotlib does not accept empty lists for ``fill`` xlist.extend([None, None, None, None]) ylist.extend([None, None, None, None]) return xlist, ylist ####New API for plotting module #### # TODO: Add color arrays for plots. # TODO: Add more plotting options for 3d plots. # TODO: Adaptive sampling for 3D plots. @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot(*args, **kwargs): """ Plots a function of a single variable and returns an instance of the ``Plot`` class (also, see the description of the ``show`` keyword argument below). The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single Plot ``plot(expr, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot(expr1, expr2, ..., range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot((expr1, range), (expr2, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function of single variable ``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable. Keyword Arguments ================= Arguments for ``plot`` function: ``show``: Boolean. The default value is set to ``True``. Set show to ``False`` and the function will not display the plot. The returned instance of the ``Plot`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. Arguments for ``LineOver1DRangeSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics options: ``line_color``: float. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. If there are multiple plots, then the same series series are applied to all the plots. If you want to set these options separately, you can index the ``Plot`` object returned and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression. ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') Single Plot >>> plot(x**2, (x, -5, 5)) Plot object containing: [0]: cartesian line: x**2 for x over (-5.0, 5.0) Multiple plots with single range. >>> plot(x, x**2, x**3, (x, -5, 5)) Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Multiple plots with different ranges. >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) No adaptive sampling. >>> plot(x**2, adaptive=False, nb_of_points=400) Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) See Also ======== Plot, LineOver1DRangeSeries. """ args = list(map(sympify, args)) free = set() for a in args: if isinstance(a, Expr): free |= a.free_symbols if len(free) > 1: raise ValueError( 'The same variable should be used in all ' 'univariate expressions being plotted.') x = free.pop() if free else Symbol('x') kwargs.setdefault('xlabel', x.name) kwargs.setdefault('ylabel', 'f(%s)' % x.name) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 1) series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot_parametric(*args, **kwargs): """ Plots a 2D parametric plot. The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single plot. ``plot_parametric(expr_x, expr_y, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_parametric((expr_x, expr_y, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric2DLineSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics ---------- ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same Series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot_parametric >>> u = symbols('u') Single Parametric plot >>> plot_parametric(cos(u), sin(u), (u, -5, 5)) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) Multiple parametric plot with single range. >>> plot_parametric((cos(u), sin(u)), (u, cos(u))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) Multiple parametric plots. >>> plot_parametric((cos(u), sin(u), (u, -5, 5)), ... (cos(u), u, (u, -5, 5))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric2DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 2, 1) series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_line(*args, **kwargs): """ Plots a 3D parametric line plot. Usage ===== Single plot: ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``expr_z`` : Expression representing the function along z. ``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric3DLineSeries`` class. ``nb_of_points``: The range is uniformly sampled at ``nb_of_points`` number of points. Aesthetics: ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class. ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_line >>> u = symbols('u') Single plot. >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) Multiple plots. >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ... (sin(u), u**2, u, (u, -5, 5))) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric3DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 1) series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d(*args, **kwargs): """ Plots a 3D surface plot. Usage ===== Single plot ``plot3d(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``SurfaceOver2DRangeSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot3d >>> x, y = symbols('x y') Single plot >>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with same range >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with different ranges. >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), ... (x*y, (x, -3, 3), (y, -3, 3))) Plot object containing: [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) See Also ======== Plot, SurfaceOver2DRangeSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 2) series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_surface(*args, **kwargs): """ Plots a 3D parametric surface plot. Usage ===== Single plot. ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` If the ranges is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x``: Expression representing the function along ``x``. ``expr_y``: Expression representing the function along ``y``. ``expr_z``: Expression representing the function along ``z``. ``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u`` variable. ``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v variable. Keyword Arguments ================= Arguments for ``ParametricSurfaceSeries`` class: ``nb_of_points_u``: int. The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points ``nb_of_points_y``: int. The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_surface >>> u, v = symbols('u v') Single plot. >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, ... (u, -5, 5), (v, -5, 5)) Plot object containing: [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) See Also ======== Plot, ParametricSurfaceSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 2) series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def check_arguments(args, expr_len, nb_of_free_symbols): """ Checks the arguments and converts into tuples of the form (exprs, ranges) Examples ======== >>> from sympy import plot, cos, sin, symbols >>> from sympy.plotting.plot import check_arguments >>> x = symbols('x') >>> check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10))] >>> check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10)), (x**2, (x, -10, 10))] """ if expr_len > 1 and isinstance(args[0], Expr): # Multiple expressions same range. # The arguments are tuples when the expression length is # greater than 1. if len(args) < expr_len: raise ValueError("len(args) should not be less than expr_len") for i in range(len(args)): if isinstance(args[i], Tuple): break else: i = len(args) + 1 exprs = Tuple(*args[:i]) free_symbols = list(set.union(*[e.free_symbols for e in exprs])) if len(args) == expr_len + nb_of_free_symbols: #Ranges given plots = [exprs + Tuple(*args[expr_len:])] else: default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) plots = [exprs + Tuple(*ranges)] return plots if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and len(args[0]) == expr_len and expr_len != 3): # Cannot handle expressions with number of expression = 3. It is # not possible to differentiate between expressions and ranges. #Series of plots with same range for i in range(len(args)): if isinstance(args[i], Tuple) and len(args[i]) != expr_len: break if not isinstance(args[i], Tuple): args[i] = Tuple(args[i]) else: i = len(args) + 1 exprs = args[:i] assert all(isinstance(e, Expr) for expr in exprs for e in expr) free_symbols = list(set.union(*[e.free_symbols for expr in exprs for e in expr])) if len(free_symbols) > nb_of_free_symbols: raise ValueError("The number of free_symbols in the expression " "is greater than %d" % nb_of_free_symbols) if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): ranges = Tuple(*[range_expr for range_expr in args[ i:i + nb_of_free_symbols]]) plots = [expr + ranges for expr in exprs] return plots else: #Use default ranges. default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) ranges = Tuple(*ranges) plots = [expr + ranges for expr in exprs] return plots elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: #Multiple plots with different ranges. for arg in args: for i in range(expr_len): if not isinstance(arg[i], Expr): raise ValueError("Expected an expression, given %s" % str(arg[i])) for i in range(nb_of_free_symbols): if not len(arg[i + expr_len]) == 3: raise ValueError("The ranges should be a tuple of " "length 3, got %s" % str(arg[i + expr_len])) return args
35.543802
132
0.592448
794df05c2792f68168f217f9c84708db640b884d
5,474
py
Python
test/test_od.py
mlederhi/canopen
dd2d1a73f75844b66b5fa4a26b01cb8cebe72beb
[ "MIT" ]
301
2016-10-19T03:21:10.000Z
2022-03-31T11:00:26.000Z
test/test_od.py
mlederhi/canopen
dd2d1a73f75844b66b5fa4a26b01cb8cebe72beb
[ "MIT" ]
236
2016-10-27T15:33:51.000Z
2022-03-22T19:57:58.000Z
test/test_od.py
mlederhi/canopen
dd2d1a73f75844b66b5fa4a26b01cb8cebe72beb
[ "MIT" ]
143
2016-10-22T06:48:33.000Z
2022-03-22T09:49:20.000Z
import unittest from canopen import objectdictionary as od class TestDataConversions(unittest.TestCase): def test_boolean(self): var = od.Variable("Test BOOLEAN", 0x1000) var.data_type = od.BOOLEAN self.assertEqual(var.decode_raw(b"\x01"), True) self.assertEqual(var.decode_raw(b"\x00"), False) self.assertEqual(var.encode_raw(True), b"\x01") self.assertEqual(var.encode_raw(False), b"\x00") def test_unsigned8(self): var = od.Variable("Test UNSIGNED8", 0x1000) var.data_type = od.UNSIGNED8 self.assertEqual(var.decode_raw(b"\xff"), 255) self.assertEqual(var.encode_raw(254), b"\xfe") def test_unsigned16(self): var = od.Variable("Test UNSIGNED16", 0x1000) var.data_type = od.UNSIGNED16 self.assertEqual(var.decode_raw(b"\xfe\xff"), 65534) self.assertEqual(var.encode_raw(65534), b"\xfe\xff") def test_unsigned32(self): var = od.Variable("Test UNSIGNED32", 0x1000) var.data_type = od.UNSIGNED32 self.assertEqual(var.decode_raw(b"\xfc\xfd\xfe\xff"), 4294901244) self.assertEqual(var.encode_raw(4294901244), b"\xfc\xfd\xfe\xff") def test_integer8(self): var = od.Variable("Test INTEGER8", 0x1000) var.data_type = od.INTEGER8 self.assertEqual(var.decode_raw(b"\xff"), -1) self.assertEqual(var.decode_raw(b"\x7f"), 127) self.assertEqual(var.encode_raw(-2), b"\xfe") self.assertEqual(var.encode_raw(127), b"\x7f") def test_integer16(self): var = od.Variable("Test INTEGER16", 0x1000) var.data_type = od.INTEGER16 self.assertEqual(var.decode_raw(b"\xfe\xff"), -2) self.assertEqual(var.decode_raw(b"\x01\x00"), 1) self.assertEqual(var.encode_raw(-2), b"\xfe\xff") self.assertEqual(var.encode_raw(1), b"\x01\x00") def test_integer32(self): var = od.Variable("Test INTEGER32", 0x1000) var.data_type = od.INTEGER32 self.assertEqual(var.decode_raw(b"\xfe\xff\xff\xff"), -2) self.assertEqual(var.encode_raw(-2), b"\xfe\xff\xff\xff") def test_visible_string(self): var = od.Variable("Test VISIBLE_STRING", 0x1000) var.data_type = od.VISIBLE_STRING self.assertEqual(var.decode_raw(b"abcdefg"), "abcdefg") self.assertEqual(var.decode_raw(b"zero terminated\x00"), "zero terminated") self.assertEqual(var.encode_raw("testing"), b"testing") class TestAlternativeRepresentations(unittest.TestCase): def test_phys(self): var = od.Variable("Test INTEGER16", 0x1000) var.data_type = od.INTEGER16 var.factor = 0.1 self.assertAlmostEqual(var.decode_phys(128), 12.8) self.assertEqual(var.encode_phys(-0.1), -1) def test_desc(self): var = od.Variable("Test UNSIGNED8", 0x1000) var.data_type = od.UNSIGNED8 var.add_value_description(0, "Value 0") var.add_value_description(1, "Value 1") var.add_value_description(3, "Value 3") self.assertEqual(var.decode_desc(0), "Value 0") self.assertEqual(var.decode_desc(3), "Value 3") self.assertEqual(var.encode_desc("Value 1"), 1) def test_bits(self): var = od.Variable("Test UNSIGNED8", 0x1000) var.data_type = od.UNSIGNED8 var.add_bit_definition("BIT 0", [0]) var.add_bit_definition("BIT 2 and 3", [2, 3]) self.assertEqual(var.decode_bits(1, "BIT 0"), 1) self.assertEqual(var.decode_bits(1, [1]), 0) self.assertEqual(var.decode_bits(0xf, [0, 1, 2, 3]), 15) self.assertEqual(var.decode_bits(8, "BIT 2 and 3"), 2) self.assertEqual(var.encode_bits(0xf, [1], 0), 0xd) self.assertEqual(var.encode_bits(0, "BIT 0", 1), 1) class TestObjectDictionary(unittest.TestCase): def test_add_variable(self): test_od = od.ObjectDictionary() var = od.Variable("Test Variable", 0x1000) test_od.add_object(var) self.assertEqual(test_od["Test Variable"], var) self.assertEqual(test_od[0x1000], var) def test_add_record(self): test_od = od.ObjectDictionary() record = od.Record("Test Record", 0x1001) var = od.Variable("Test Subindex", 0x1001, 1) record.add_member(var) test_od.add_object(record) self.assertEqual(test_od["Test Record"], record) self.assertEqual(test_od[0x1001], record) self.assertEqual(test_od["Test Record"]["Test Subindex"], var) def test_add_array(self): test_od = od.ObjectDictionary() array = od.Array("Test Array", 0x1002) array.add_member(od.Variable("Last subindex", 0x1002, 0)) test_od.add_object(array) self.assertEqual(test_od["Test Array"], array) self.assertEqual(test_od[0x1002], array) class TestArray(unittest.TestCase): def test_subindexes(self): array = od.Array("Test Array", 0x1000) last_subindex = od.Variable("Last subindex", 0x1000, 0) last_subindex.data_type = od.UNSIGNED8 array.add_member(last_subindex) array.add_member(od.Variable("Test Variable", 0x1000, 1)) array.add_member(od.Variable("Test Variable 2", 0x1000, 2)) self.assertEqual(array[0].name, "Last subindex") self.assertEqual(array[1].name, "Test Variable") self.assertEqual(array[2].name, "Test Variable 2") self.assertEqual(array[3].name, "Test Variable_3")
39.381295
83
0.648703
794df136f39b9e2cfa450f252b3c4e9dff9be930
1,139
py
Python
scripts/fp_quan/run_fixedp_quan.py
deep-fry/mayo
7211a11fdb9bb0a036d496a3eba16c96db122f89
[ "MIT" ]
110
2018-06-07T17:52:29.000Z
2022-03-28T08:04:02.000Z
scripts/fp_quan/run_fixedp_quan.py
kypomon/mayo
7211a11fdb9bb0a036d496a3eba16c96db122f89
[ "MIT" ]
6
2019-10-17T12:00:29.000Z
2021-10-21T13:41:22.000Z
scripts/fp_quan/run_fixedp_quan.py
kypomon/mayo
7211a11fdb9bb0a036d496a3eba16c96db122f89
[ "MIT" ]
22
2018-07-05T01:30:49.000Z
2021-10-19T06:15:40.000Z
import yaml import os import subprocess mayo_dir = "../../" gpus = [0, 1] model='mobilenet_v1' cmd_formatter = './my datasets/imagenet.yaml models/override/{}.yaml models/override/quantize/fixed_incremental.yaml trainers/cifarnet.yaml system.checkpoint.load=pretrained train.learning_rate._initial=0.01 train.learning_rate.decay_steps=10 system.max_epochs=30 system.checkpoint.save.interval=1 system.num_gpus=2 system.visible_gpus=[{},{}] train.learning_rate._default_batch_size=256 system.batch_size_per_gpu=128 reset-num-epochs ttrain' eval_cmd_formatter = './my datasets/imagenet.yaml models/override/{}.yaml models/override/quantize/fixed_incremental.yaml trainers/cifarnet.yaml system.checkpoint.load=pretrained train.learning_rate._initial=0.01 train.learning_rate.decay_steps=10 system.max_epochs=30 system.checkpoint.save.interval=1 system.num_gpus=2 system.visible_gpus=[{},{}] eval-all' cmd = cmd_formatter.format(model, gpus[0], gpus[1]) subprocess.call(cmd, cwd=mayo_dir, shell=True) subprocess.call(eval_cmd, cwd=mayo_dir, shell=True) subprocess.call("cp eval_all.csv eval_all{}.csv".format(model), cwd=mayo_dir, shell=True)
81.357143
442
0.808604
794df13dbe715c7dd455dee29df378ded8d6cde0
462
py
Python
seimas/migrations/0007_auto_20180813_1328.py
zinaukarenku/zkr-platform
8daf7d1206c482f1f8e0bcd54d4fde783e568774
[ "Apache-2.0" ]
2
2018-11-16T21:45:17.000Z
2019-02-03T19:55:46.000Z
seimas/migrations/0007_auto_20180813_1328.py
zinaukarenku/zkr-platform
8daf7d1206c482f1f8e0bcd54d4fde783e568774
[ "Apache-2.0" ]
13
2018-08-17T19:12:11.000Z
2022-03-11T23:27:41.000Z
seimas/migrations/0007_auto_20180813_1328.py
zinaukarenku/zkr-platform
8daf7d1206c482f1f8e0bcd54d4fde783e568774
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.1 on 2018-08-13 13:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('seimas', '0006_auto_20180813_1327'), ] operations = [ migrations.AlterField( model_name='politicianparliamentgroup', name='group_id', field=models.IntegerField(help_text='parlamentinės_grupės_id is used internally in seimas web'), ), ]
24.315789
108
0.649351
794df26f790dfdf227ae70b59882f486b92822bb
37,448
py
Python
eraserbenchmark/rationale_benchmark/metrics.py
go2chayan/HateXplain
c5f173d39dca348ec6481fca08a17bc80616651a
[ "MIT" ]
69
2021-03-05T20:50:39.000Z
2022-03-29T17:45:55.000Z
eraserbenchmark/rationale_benchmark/metrics.py
go2chayan/HateXplain
c5f173d39dca348ec6481fca08a17bc80616651a
[ "MIT" ]
10
2021-03-05T07:38:06.000Z
2022-03-31T22:27:39.000Z
eraserbenchmark/rationale_benchmark/metrics.py
go2chayan/HateXplain
c5f173d39dca348ec6481fca08a17bc80616651a
[ "MIT" ]
28
2021-03-22T03:46:43.000Z
2022-03-08T18:34:38.000Z
import argparse import json import logging import os import pprint from collections import Counter, defaultdict, namedtuple from dataclasses import dataclass from itertools import chain from typing import Any, Callable, Dict, List, Set, Tuple import numpy as np import torch from scipy.stats import entropy from sklearn.metrics import accuracy_score, auc, average_precision_score, classification_report, precision_recall_curve, roc_auc_score from rationale_benchmark.utils import ( Annotation, Evidence, annotations_from_jsonl, load_jsonl, load_documents, load_flattened_documents ) logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s') # start_token is inclusive, end_token is exclusive @dataclass(eq=True, frozen=True) class Rationale: ann_id: str docid: str start_token: int end_token: int def to_token_level(self) -> List['Rationale']: ret = [] for t in range(self.start_token, self.end_token): ret.append(Rationale(self.ann_id, self.docid, t, t+1)) return ret @classmethod def from_annotation(cls, ann: Annotation) -> List['Rationale']: ret = [] for ev_group in ann.evidences: for ev in ev_group: ret.append(Rationale(ann.annotation_id, ev.docid, ev.start_token, ev.end_token)) return ret @classmethod def from_instance(cls, inst: dict) -> List['Rationale']: ret = [] for rat in inst['rationales']: for pred in rat.get('hard_rationale_predictions', []): ret.append(Rationale(inst['annotation_id'], rat['docid'], pred['start_token'], pred['end_token'])) return ret @dataclass(eq=True, frozen=True) class PositionScoredDocument: ann_id: str docid: str scores: Tuple[float] truths: Tuple[bool] @classmethod def from_results(cls, instances: List[dict], annotations: List[Annotation], docs: Dict[str, List[Any]], use_tokens: bool=True) -> List['PositionScoredDocument']: """Creates a paired list of annotation ids/docids/predictions/truth values""" key_to_annotation = dict() for ann in annotations: for ev in chain.from_iterable(ann.evidences): key = (ann.annotation_id, ev.docid) if key not in key_to_annotation: key_to_annotation[key] = [False for _ in docs[ev.docid]] if use_tokens: start, end = ev.start_token, ev.end_token else: start, end = ev.start_sentence, ev.end_sentence for t in range(start, end): key_to_annotation[key][t] = True ret = [] if use_tokens: field = 'soft_rationale_predictions' else: field = 'soft_sentence_predictions' for inst in instances: for rat in inst['rationales']: docid = rat['docid'] scores = rat[field] key = (inst['annotation_id'], docid) assert len(scores) == len(docs[docid]) if key in key_to_annotation : assert len(scores) == len(key_to_annotation[key]) else : #In case model makes a prediction on docuemnt(s) for which ground truth evidence is not present key_to_annotation[key] = [False for _ in docs[docid]] ret.append(PositionScoredDocument(inst['annotation_id'], docid, tuple(scores), tuple(key_to_annotation[key]))) return ret def _f1(_p, _r): if _p == 0 or _r == 0: return 0 return 2 * _p * _r / (_p + _r) def _keyed_rationale_from_list(rats: List[Rationale]) -> Dict[Tuple[str, str], Rationale]: ret = defaultdict(set) for r in rats: ret[(r.ann_id, r.docid)].add(r) return ret def partial_match_score(truth: List[Rationale], pred: List[Rationale], thresholds: List[float]) -> List[Dict[str, Any]]: """Computes a partial match F1 Computes an instance-level (annotation) micro- and macro-averaged F1 score. True Positives are computed by using intersection-over-union and thresholding the resulting intersection-over-union fraction. Micro-average results are computed by ignoring instance level distinctions in the TP calculation (and recall, and precision, and finally the F1 of those numbers). Macro-average results are computed first by measuring instance (annotation + document) precisions and recalls, averaging those, and finally computing an F1 of the resulting average. """ ann_to_rat = _keyed_rationale_from_list(truth) pred_to_rat = _keyed_rationale_from_list(pred) num_classifications = {k:len(v) for k,v in pred_to_rat.items()} num_truth = {k:len(v) for k,v in ann_to_rat.items()} ious = defaultdict(dict) for k in set(ann_to_rat.keys()) | set(pred_to_rat.keys()): for p in pred_to_rat.get(k, []): best_iou = 0.0 for t in ann_to_rat.get(k, []): num = len(set(range(p.start_token, p.end_token)) & set(range(t.start_token, t.end_token))) denom = len(set(range(p.start_token, p.end_token)) | set(range(t.start_token, t.end_token))) iou = 0 if denom == 0 else num / denom if iou > best_iou: best_iou = iou ious[k][p] = best_iou scores = [] for threshold in thresholds: threshold_tps = dict() for k, vs in ious.items(): threshold_tps[k] = sum(int(x >= threshold) for x in vs.values()) micro_r = sum(threshold_tps.values()) / sum(num_truth.values()) if sum(num_truth.values()) > 0 else 0 micro_p = sum(threshold_tps.values()) / sum(num_classifications.values()) if sum(num_classifications.values()) > 0 else 0 micro_f1 = _f1(micro_r, micro_p) macro_rs = list(threshold_tps.get(k, 0.0) / n if n > 0 else 0 for k, n in num_truth.items()) macro_ps = list(threshold_tps.get(k, 0.0) / n if n > 0 else 0 for k, n in num_classifications.items()) macro_r = sum(macro_rs) / len(macro_rs) if len(macro_rs) > 0 else 0 macro_p = sum(macro_ps) / len(macro_ps) if len(macro_ps) > 0 else 0 macro_f1 = _f1(macro_r, macro_p) scores.append({'threshold': threshold, 'micro': { 'p': micro_p, 'r': micro_r, 'f1': micro_f1 }, 'macro': { 'p': macro_p, 'r': macro_r, 'f1': macro_f1 }, }) return scores def score_hard_rationale_predictions(truth: List[Rationale], pred: List[Rationale]) -> Dict[str, Dict[str, float]]: """Computes instance (annotation)-level micro/macro averaged F1s""" scores = dict() truth = set(truth) pred = set(pred) micro_prec = len(truth & pred) / len(pred) micro_rec = len(truth & pred) / len(truth) micro_f1 = _f1(micro_prec, micro_rec) scores['instance_micro'] = { 'p': micro_prec, 'r': micro_rec, 'f1': micro_f1, } ann_to_rat = _keyed_rationale_from_list(truth) pred_to_rat = _keyed_rationale_from_list(pred) instances_to_scores = dict() for k in set(ann_to_rat.keys()) | (pred_to_rat.keys()): if len(pred_to_rat.get(k, set())) > 0: instance_prec = len(ann_to_rat.get(k, set()) & pred_to_rat.get(k, set())) / len(pred_to_rat[k]) else: instance_prec = 0 if len(ann_to_rat.get(k, set())) > 0: instance_rec = len(ann_to_rat.get(k, set()) & pred_to_rat.get(k, set())) / len(ann_to_rat[k]) else: instance_rec = 0 instance_f1 = _f1(instance_prec, instance_rec) instances_to_scores[k] = { 'p': instance_prec, 'r': instance_rec, 'f1': instance_f1, } # these are calculated as sklearn would macro_prec = sum(instance['p'] for instance in instances_to_scores.values()) / len(instances_to_scores) macro_rec = sum(instance['r'] for instance in instances_to_scores.values()) / len(instances_to_scores) macro_f1 = sum(instance['f1'] for instance in instances_to_scores.values()) / len(instances_to_scores) scores['instance_macro'] = { 'p': macro_prec, 'r': macro_rec, 'f1': macro_f1, } return scores def _auprc(truth: Dict[Any, List[bool]], preds: Dict[Any, List[float]]) -> float: if len(preds) == 0: return 0.0 assert len(truth.keys() and preds.keys()) == len(truth.keys()) aucs = [] for k, true in truth.items(): pred = preds[k] true = [int(t) for t in true] precision, recall, _ = precision_recall_curve(true, pred) aucs.append(auc(recall, precision)) return np.average(aucs) def _score_aggregator(truth: Dict[Any, List[bool]], preds: Dict[Any, List[float]], score_function: Callable[[List[float], List[float]], float ], discard_single_class_answers: bool) -> float: if len(preds) == 0: return 0.0 assert len(truth.keys() and preds.keys()) == len(truth.keys()) scores = [] for k, true in truth.items(): pred = preds[k] if (all(true) or all(not x for x in true)) and discard_single_class_answers: continue true = [int(t) for t in true] scores.append(score_function(true, pred)) return np.average(scores) def score_soft_tokens(paired_scores: List[PositionScoredDocument]) -> Dict[str, float]: truth = {(ps.ann_id, ps.docid): ps.truths for ps in paired_scores} pred = {(ps.ann_id, ps.docid): ps.scores for ps in paired_scores} auprc_score = _auprc(truth, pred) ap = _score_aggregator(truth, pred, average_precision_score, True) roc_auc = _score_aggregator(truth, pred, roc_auc_score, True) return { 'auprc': auprc_score, 'average_precision': ap, 'roc_auc_score': roc_auc, } def _instances_aopc(instances: List[dict], thresholds: List[float], key: str) -> Tuple[float, List[float]]: dataset_scores = [] for inst in instances: kls = inst['classification'] beta_0 = inst['classification_scores'][kls] instance_scores = [] for score in filter(lambda x : x['threshold'] in thresholds, sorted(inst['thresholded_scores'], key=lambda x: x['threshold'])): beta_k = score[key][kls] delta = beta_0 - beta_k instance_scores.append(delta) assert len(instance_scores) == len(thresholds) dataset_scores.append(instance_scores) dataset_scores = np.array(dataset_scores) # a careful reading of Samek, et al. "Evaluating the Visualization of What a Deep Neural Network Has Learned" # and some algebra will show the reader that we can average in any of several ways and get the same result: # over a flattened array, within an instance and then between instances, or over instances (by position) an # then across them. final_score = np.average(dataset_scores) position_scores = np.average(dataset_scores, axis=0).tolist() return final_score, position_scores def compute_aopc_scores(instances: List[dict], aopc_thresholds: List[float]): if aopc_thresholds is None : aopc_thresholds = sorted(set(chain.from_iterable([x['threshold'] for x in y['thresholded_scores']] for y in instances))) aopc_comprehensiveness_score, aopc_comprehensiveness_points = _instances_aopc(instances, aopc_thresholds, 'comprehensiveness_classification_scores') aopc_sufficiency_score, aopc_sufficiency_points = _instances_aopc(instances, aopc_thresholds, 'sufficiency_classification_scores') return aopc_thresholds, aopc_comprehensiveness_score, aopc_comprehensiveness_points, aopc_sufficiency_score, aopc_sufficiency_points def score_classifications(instances: List[dict], annotations: List[Annotation], docs: Dict[str, List[str]], aopc_thresholds: List[float]) -> Dict[str, float]: def compute_kl(cls_scores_, faith_scores_): keys = list(cls_scores_.keys()) cls_scores_ = [cls_scores_[k] for k in keys] faith_scores_ = [faith_scores_[k] for k in keys] return entropy(faith_scores_, cls_scores_) labels = list(set(x.classification for x in annotations)) labels +=['normal'] label_to_int = {l:i for i,l in enumerate(labels)} key_to_instances = {inst['annotation_id']:inst for inst in instances} truth = [] predicted = [] for ann in annotations: truth.append(label_to_int[ann.classification]) inst = key_to_instances[ann.annotation_id] predicted.append(label_to_int[inst['classification']]) classification_scores = classification_report(truth, predicted, output_dict=True, target_names=labels, digits=3) accuracy = accuracy_score(truth, predicted) if 'comprehensiveness_classification_scores' in instances[0]: comprehensiveness_scores = [x['classification_scores'][x['classification']] - x['comprehensiveness_classification_scores'][x['classification']] for x in instances] comprehensiveness_score = np.average(comprehensiveness_scores) else : comprehensiveness_score = None comprehensiveness_scores = None if 'sufficiency_classification_scores' in instances[0]: sufficiency_scores = [x['classification_scores'][x['classification']] - x['sufficiency_classification_scores'][x['classification']] for x in instances] sufficiency_score = np.average(sufficiency_scores) else : sufficiency_score = None sufficiency_scores = None if 'comprehensiveness_classification_scores' in instances[0]: comprehensiveness_entropies = [entropy(list(x['classification_scores'].values())) - entropy(list(x['comprehensiveness_classification_scores'].values())) for x in instances] comprehensiveness_entropy = np.average(comprehensiveness_entropies) comprehensiveness_kl = np.average(list(compute_kl(x['classification_scores'], x['comprehensiveness_classification_scores']) for x in instances)) else: comprehensiveness_entropies = None comprehensiveness_kl = None comprehensiveness_entropy = None if 'sufficiency_classification_scores' in instances[0]: sufficiency_entropies = [entropy(list(x['classification_scores'].values())) - entropy(list(x['sufficiency_classification_scores'].values())) for x in instances] sufficiency_entropy = np.average(sufficiency_entropies) sufficiency_kl = np.average(list(compute_kl(x['classification_scores'], x['sufficiency_classification_scores']) for x in instances)) else: sufficiency_entropies = None sufficiency_kl = None sufficiency_entropy = None if 'thresholded_scores' in instances[0]: aopc_thresholds, aopc_comprehensiveness_score, aopc_comprehensiveness_points, aopc_sufficiency_score, aopc_sufficiency_points = compute_aopc_scores(instances, aopc_thresholds) else: aopc_thresholds, aopc_comprehensiveness_score, aopc_comprehensiveness_points, aopc_sufficiency_score, aopc_sufficiency_points = None, None, None, None, None if 'tokens_to_flip' in instances[0]: token_percentages = [] for ann in annotations: # in practice, this is of size 1 for everything except e-snli docids = set(ev.docid for ev in chain.from_iterable(ann.evidences)) inst = key_to_instances[ann.annotation_id] tokens = inst['tokens_to_flip'] doc_lengths = sum(len(docs[d]) for d in docids) token_percentages.append(tokens / doc_lengths) token_percentages = np.average(token_percentages) else: token_percentages = None return { 'accuracy': accuracy, 'prf': classification_scores, 'comprehensiveness': comprehensiveness_score, 'sufficiency': sufficiency_score, 'comprehensiveness_entropy': comprehensiveness_entropy, 'comprehensiveness_kl': comprehensiveness_kl, 'sufficiency_entropy': sufficiency_entropy, 'sufficiency_kl': sufficiency_kl, 'aopc_thresholds': aopc_thresholds, 'comprehensiveness_aopc': aopc_comprehensiveness_score, 'comprehensiveness_aopc_points': aopc_comprehensiveness_points, 'sufficiency_aopc': aopc_sufficiency_score, 'sufficiency_aopc_points': aopc_sufficiency_points, } def verify_instance(instance: dict, docs: Dict[str, list], thresholds: Set[float]): error = False docids = [] # verify the internal structure of these instances is correct: # * hard predictions are present # * start and end tokens are valid # * soft rationale predictions, if present, must have the same document length for rat in instance['rationales']: docid = rat['docid'] if docid not in docid: error = True logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} could not be found as a preprocessed document! Gave up on additional processing.') continue doc_length = len(docs[docid]) for h1 in rat.get('hard_rationale_predictions', []): # verify that each token is valid # verify that no annotations overlap for h2 in rat.get('hard_rationale_predictions', []): if h1 == h2: continue if len(set(range(h1['start_token'], h1['end_token'])) & set(range(h2['start_token'], h2['end_token']))) > 0: logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} {h1} and {h2} overlap!') error = True if h1['start_token'] > doc_length: logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} received an impossible tokenspan: {h1} for a document of length {doc_length}') error = True if h1['end_token'] > doc_length: logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} received an impossible tokenspan: {h1} for a document of length {doc_length}') error = True # length check for soft rationale # note that either flattened_documents or sentence-broken documents must be passed in depending on result soft_rationale_predictions = rat.get('soft_rationale_predictions', []) if len(soft_rationale_predictions) > 0 and len(soft_rationale_predictions) != doc_length: logging.info(f'Error! For instance annotation={instance["annotation_id"]}, docid={docid} expected classifications for {doc_length} tokens but have them for {len(soft_rationale_predictions)} tokens instead!') error = True # count that one appears per-document docids = Counter(docids) for docid, count in docids.items(): if count > 1: error = True logging.info('Error! For instance annotation={instance["annotation_id"]}, docid={docid} appear {count} times, may only appear once!') classification = instance.get('classification', '') if not isinstance(classification, str): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, classification field {classification} is not a string!') error = True classification_scores = instance.get('classification_scores', dict()) if not isinstance(classification_scores, dict): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, classification_scores field {classification_scores} is not a dict!') error = True comprehensiveness_classification_scores = instance.get('comprehensiveness_classification_scores', dict()) if not isinstance(comprehensiveness_classification_scores, dict): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, comprehensiveness_classification_scores field {comprehensiveness_classification_scores} is not a dict!') error = True sufficiency_classification_scores = instance.get('sufficiency_classification_scores', dict()) if not isinstance(sufficiency_classification_scores, dict): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, sufficiency_classification_scores field {sufficiency_classification_scores} is not a dict!') error = True if ('classification' in instance) != ('classification_scores' in instance): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, when providing a classification, you must also provide classification scores!') error = True if ('comprehensiveness_classification_scores' in instance) and not ('classification' in instance): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, when providing a classification, you must also provide a comprehensiveness_classification_score') error = True if ('sufficiency_classification_scores' in instance) and not ('classification_scores' in instance): logging.info(f'Error! For instance annotation={instance["annotation_id"]}, when providing a sufficiency_classification_score, you must also provide a classification score!') error = True if 'thresholded_scores' in instance: instance_thresholds = set(x['threshold'] for x in instance['thresholded_scores']) if instance_thresholds != thresholds: error = True logging.info('Error: {instance["thresholded_scores"]} has thresholds that differ from previous thresholds: {thresholds}') if 'comprehensiveness_classification_scores' not in instance\ or 'sufficiency_classification_scores' not in instance\ or 'classification' not in instance\ or 'classification_scores' not in instance: error = True logging.info('Error: {instance} must have comprehensiveness_classification_scores, sufficiency_classification_scores, classification, and classification_scores defined when including thresholded scores') if not all('sufficiency_classification_scores' in x for x in instance['thresholded_scores']): error = True logging.info('Error: {instance} must have sufficiency_classification_scores for every threshold') if not all('comprehensiveness_classification_scores' in x for x in instance['thresholded_scores']): error = True logging.info('Error: {instance} must have comprehensiveness_classification_scores for every threshold') return error def verify_instances(instances: List[dict], docs: Dict[str, list]): annotation_ids = list(x['annotation_id'] for x in instances) key_counter = Counter(annotation_ids) multi_occurrence_annotation_ids = list(filter(lambda kv: kv[1] > 1, key_counter.items())) error = False if len(multi_occurrence_annotation_ids) > 0: error = True logging.info(f'Error in instances: {len(multi_occurrence_annotation_ids)} appear multiple times in the annotations file: {multi_occurrence_annotation_ids}') failed_validation = set() instances_with_classification = list() instances_with_soft_rationale_predictions = list() instances_with_soft_sentence_predictions = list() instances_with_comprehensiveness_classifications = list() instances_with_sufficiency_classifications = list() instances_with_thresholded_scores = list() if 'thresholded_scores' in instances[0]: thresholds = set(x['threshold'] for x in instances[0]['thresholded_scores']) else: thresholds = None for instance in instances: instance_error = verify_instance(instance, docs, thresholds) if instance_error: error = True failed_validation.add(instance['annotation_id']) if instance.get('classification', None) != None: instances_with_classification.append(instance) if instance.get('comprehensiveness_classification_scores', None) != None: instances_with_comprehensiveness_classifications.append(instance) if instance.get('sufficiency_classification_scores', None) != None: instances_with_sufficiency_classifications.append(instance) has_soft_rationales = [] has_soft_sentences = [] for rat in instance['rationales']: if rat.get('soft_rationale_predictions', None) != None: has_soft_rationales.append(rat) if rat.get('soft_sentence_predictions', None) != None: has_soft_sentences.append(rat) if len(has_soft_rationales) > 0: instances_with_soft_rationale_predictions.append(instance) if len(has_soft_rationales) != len(instance['rationales']): error = True logging.info(f'Error: instance {instance["annotation"]} has soft rationales for some but not all reported documents!') if len(has_soft_sentences) > 0: instances_with_soft_sentence_predictions.append(instance) if len(has_soft_sentences) != len(instance['rationales']): error = True logging.info(f'Error: instance {instance["annotation"]} has soft sentences for some but not all reported documents!') if 'thresholded_scores' in instance: instances_with_thresholded_scores.append(instance) logging.info(f'Error in instances: {len(failed_validation)} instances fail validation: {failed_validation}') if len(instances_with_classification) != 0 and len(instances_with_classification) != len(instances): logging.info(f'Either all {len(instances)} must have a classification or none may, instead {len(instances_with_classification)} do!') error = True if len(instances_with_soft_sentence_predictions) != 0 and len(instances_with_soft_sentence_predictions) != len(instances): logging.info(f'Either all {len(instances)} must have a sentence prediction or none may, instead {len(instances_with_soft_sentence_predictions)} do!') error = True if len(instances_with_soft_rationale_predictions) != 0 and len(instances_with_soft_rationale_predictions) != len(instances): logging.info(f'Either all {len(instances)} must have a soft rationale prediction or none may, instead {len(instances_with_soft_rationale_predictions)} do!') error = True if len(instances_with_comprehensiveness_classifications) != 0 and len(instances_with_comprehensiveness_classifications) != len(instances): error = True logging.info(f'Either all {len(instances)} must have a comprehensiveness classification or none may, instead {len(instances_with_comprehensiveness_classifications)} do!') if len(instances_with_sufficiency_classifications) != 0 and len(instances_with_sufficiency_classifications) != len(instances): error = True logging.info(f'Either all {len(instances)} must have a sufficiency classification or none may, instead {len(instances_with_sufficiency_classifications)} do!') if len(instances_with_thresholded_scores) != 0 and len(instances_with_thresholded_scores) != len(instances): error = True logging.info(f'Either all {len(instances)} must have thresholded scores or none may, instead {len(instances_with_thresholded_scores)} do!') if error: raise ValueError('Some instances are invalid, please fix your formatting and try again') def _has_hard_predictions(results: List[dict]) -> bool: # assumes that we have run "verification" over the inputs return 'rationales' in results[0]\ and len(results[0]['rationales']) > 0\ and 'hard_rationale_predictions' in results[0]['rationales'][0]\ and results[0]['rationales'][0]['hard_rationale_predictions'] is not None\ and len(results[0]['rationales'][0]['hard_rationale_predictions']) > 0 def _has_soft_predictions(results: List[dict]) -> bool: # assumes that we have run "verification" over the inputs return 'rationales' in results[0] and len(results[0]['rationales']) > 0 and 'soft_rationale_predictions' in results[0]['rationales'][0] and results[0]['rationales'][0]['soft_rationale_predictions'] is not None def _has_soft_sentence_predictions(results: List[dict]) -> bool: # assumes that we have run "verification" over the inputs return 'rationales' in results[0] and len(results[0]['rationales']) > 0 and 'soft_sentence_predictions' in results[0]['rationales'][0] and results[0]['rationales'][0]['soft_sentence_predictions'] is not None def _has_classifications(results: List[dict]) -> bool: # assumes that we have run "verification" over the inputs return 'classification' in results[0] and results[0]['classification'] is not None def main(): parser = argparse.ArgumentParser(description="""Computes rationale and final class classification scores""", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--data_dir', dest='data_dir', required=True, help='Which directory contains a {train,val,test}.jsonl file?') parser.add_argument('--split', dest='split', required=True, help='Which of {train,val,test} are we scoring on?') parser.add_argument('--strict', dest='strict', required=False, action='store_true', default=False, help='Do we perform strict scoring?') parser.add_argument('--results', dest='results', required=True, help="""Results File Contents are expected to be jsonl of: { "annotation_id": str, required # these classifications *must not* overlap "rationales": List[ { "docid": str, required "hard_rationale_predictions": List[{ "start_token": int, inclusive, required "end_token": int, exclusive, required }], optional, # token level classifications, a value must be provided per-token # in an ideal world, these correspond to the hard-decoding above. "soft_rationale_predictions": List[float], optional. # sentence level classifications, a value must be provided for every # sentence in each document, or not at all "soft_sentence_predictions": List[float], optional. } ], # the classification the model made for the overall classification task "classification": str, optional # A probability distribution output by the model. We require this to be normalized. "classification_scores": Dict[str, float], optional # The next two fields are measures for how faithful your model is (the # rationales it predicts are in some sense causal of the prediction), and # how sufficient they are. We approximate a measure for comprehensiveness by # asking that you remove the top k%% of tokens from your documents, # running your models again, and reporting the score distribution in the # "comprehensiveness_classification_scores" field. # We approximate a measure of sufficiency by asking exactly the converse # - that you provide model distributions on the removed k%% tokens. # 'k' is determined by human rationales, and is documented in our paper. # You should determine which of these tokens to remove based on some kind # of information about your model: gradient based, attention based, other # interpretability measures, etc. # scores per class having removed k%% of the data, where k is determined by human comprehensive rationales "comprehensiveness_classification_scores": Dict[str, float], optional # scores per class having access to only k%% of the data, where k is determined by human comprehensive rationales "sufficiency_classification_scores": Dict[str, float], optional # the number of tokens required to flip the prediction - see "Is Attention Interpretable" by Serrano and Smith. "tokens_to_flip": int, optional "thresholded_scores": List[{ "threshold": float, required, "comprehensiveness_classification_scores": like "classification_scores" "sufficiency_classification_scores": like "classification_scores" }], optional. if present, then "classification" and "classification_scores" must be present } When providing one of the optional fields, it must be provided for *every* instance. The classification, classification_score, and comprehensiveness_classification_scores must together be present for every instance or absent for every instance. """) parser.add_argument('--iou_thresholds', dest='iou_thresholds', required=False, nargs='+', type=float, default=[0.5], help='''Thresholds for IOU scoring. These are used for "soft" or partial match scoring of rationale spans. A span is considered a match if the size of the intersection of the prediction and the annotation, divided by the union of the two spans, is larger than the IOU threshold. This score can be computed for arbitrary thresholds. ''') parser.add_argument('--score_file', dest='score_file', required=False, default=None, help='Where to write results?') parser.add_argument('--aopc_thresholds', nargs='+', required=False, type=float, default=[0.01, 0.05, 0.1, 0.2, 0.5], help='Thresholds for AOPC Thresholds') args = parser.parse_args() results = load_jsonl(args.results) docids = set(chain.from_iterable([rat['docid'] for rat in res['rationales']] for res in results)) docs = load_flattened_documents(args.data_dir, docids) verify_instances(results, docs) # load truth annotations = annotations_from_jsonl(os.path.join(args.data_dir, args.split + '.jsonl')) docids |= set(chain.from_iterable((ev.docid for ev in chain.from_iterable(ann.evidences)) for ann in annotations)) has_final_predictions = _has_classifications(results) scores = dict() if args.strict: if not args.iou_thresholds: raise ValueError("--iou_thresholds must be provided when running strict scoring") if not has_final_predictions: raise ValueError("We must have a 'classification', 'classification_score', and 'comprehensiveness_classification_score' field in order to perform scoring!") # TODO think about offering a sentence level version of these scores. if _has_hard_predictions(results): truth = list(chain.from_iterable(Rationale.from_annotation(ann) for ann in annotations)) pred = list(chain.from_iterable(Rationale.from_instance(inst) for inst in results)) if args.iou_thresholds is not None: iou_scores = partial_match_score(truth, pred, args.iou_thresholds) scores['iou_scores'] = iou_scores # NER style scoring rationale_level_prf = score_hard_rationale_predictions(truth, pred) scores['rationale_prf'] = rationale_level_prf token_level_truth = list(chain.from_iterable(rat.to_token_level() for rat in truth)) token_level_pred = list(chain.from_iterable(rat.to_token_level() for rat in pred)) token_level_prf = score_hard_rationale_predictions(token_level_truth, token_level_pred) scores['token_prf'] = token_level_prf else: logging.info("No hard predictions detected, skipping rationale scoring") if _has_soft_predictions(results): flattened_documents = load_flattened_documents(args.data_dir, docids) paired_scoring = PositionScoredDocument.from_results(results, annotations, flattened_documents, use_tokens=True) token_scores = score_soft_tokens(paired_scoring) scores['token_soft_metrics'] = token_scores else: logging.info("No soft predictions detected, skipping rationale scoring") if _has_soft_sentence_predictions(results): documents = load_documents(args.data_dir, docids) paired_scoring = PositionScoredDocument.from_results(results, annotations, documents, use_tokens=False) sentence_scores = score_soft_tokens(paired_scoring) scores['sentence_soft_metrics'] = sentence_scores else: logging.info("No sentence level predictions detected, skipping sentence-level diagnostic") if has_final_predictions: flattened_documents = load_flattened_documents(args.data_dir, docids) class_results = score_classifications(results, annotations, flattened_documents, args.aopc_thresholds) scores['classification_scores'] = class_results else: logging.info("No classification scores detected, skipping classification") pprint.pprint(scores) if args.score_file: with open(args.score_file, 'w') as of: json.dump(scores, of, indent=4, sort_keys=True) if __name__ == '__main__': main()
55.80924
219
0.679636
794df327324d9342d659f77fb9d087e5e364f0df
8,848
py
Python
peepo/autopoiesis/particle.py
hayoc/peepo
b15fd18d0f618e1e24eadc97c72fde62039ddafb
[ "MIT" ]
2
2019-03-04T21:12:21.000Z
2021-03-30T00:35:50.000Z
peepo/autopoiesis/particle.py
hayoc/peepo
b15fd18d0f618e1e24eadc97c72fde62039ddafb
[ "MIT" ]
null
null
null
peepo/autopoiesis/particle.py
hayoc/peepo
b15fd18d0f618e1e24eadc97c72fde62039ddafb
[ "MIT" ]
null
null
null
import pygame as pg import math import random vec = pg.math.Vector2 SCREEN_SIZE = (800, 800) class Particle: SIZE = (4, 4) SPEED = 2 KIND_COLOR = { "S": "yellow", "K": "green", "L": "blue" } KIND_SIZE = { "S": (4, 4), "K": (6, 6), "L": (6, 6) } def __init__(self, kind, others, pos=None): self.kind = kind self.others = others if pos is None: pos = (random.randint(0, 800), random.randint(0, 800)) self.rect = pg.Rect(pos, Particle.KIND_SIZE[self.kind]) self.rect.center = pos self.rotation = random.randint(0, 360) self.image = self.make_image() self.image_original = self.image.copy() self.timestep = 0 self.disintegration_chance = 1 # 1 / 10,000,000 chance self.bond_left = None self.bond_right = None self.clamp = False if self.kind == "L": self.edge_left = end_line(5, self.rotation - 90, self.rect.center) self.edge_right = end_line(5, self.rotation + 90, self.rect.center) self.edge_center = end_line(10, self.rotation, self.rect.center) def update(self): if not self.bond_left and not self.bond_right: self.rotation += random.randint(-5, 5) if self.rotation < 0: self.rotation = 360 if self.rotation > 360: self.rotation = 0 self.timestep += 1 if self.timestep > 4: self.rect.x += Particle.SPEED * math.cos(math.radians(self.rotation)) self.rect.y += Particle.SPEED * math.sin(math.radians(self.rotation)) self.image = pg.transform.rotate(self.image_original, -self.rotation) self.rect = self.image.get_rect(center=self.rect.center) self.timestep = 0 if self.rect.x < 0: self.rect.x = 800 if self.rect.y < 0: self.rect.y = 800 if self.rect.x > 800: self.rect.x = 0 if self.rect.y > 800: self.rect.y = 0 if self.kind == "L": self.edge_center = end_line(10, self.rotation, self.rect.center) self.edge_left = end_line(10, self.rotation - 90, self.rect.center) self.edge_right = end_line(10, self.rotation + 90, self.rect.center) if self.kind == "K": self.production() if self.kind == "L": self.bonding() self.disintegration() def draw(self, surface): surface.blit(self.image, self.rect) if self.kind == "L": # myfont = pg.font.SysFont("Comic Sans MS", 8) # label = myfont.render("{}r - {}p".format(self.rotation, (self.rect.x, self.rect.y)), True, pg.Color("red")) # surface.blit(label, self.rect) pg.draw.line(surface, pg.Color("pink"), self.rect.center, self.edge_right, 2) pg.draw.line(surface, pg.Color("purple"), self.rect.center, self.edge_left, 2) pg.draw.line(surface, pg.Color("red"), self.rect.center, self.edge_center, 2) def production(self): collided = [] for particle in list(self.others): if particle.kind == "S": collide = self.rect.colliderect(particle.rect) if collide: collided.append(particle) if len(collided) >= 2: sub0 = collided[0] sub1 = collided[1] dist_x = abs(sub0.rect.x - sub1.rect.x) dist_y = abs(sub0.rect.y - sub1.rect.y) start_x = min(sub0.rect.x, sub1.rect.x) start_y = min(sub0.rect.y, sub1.rect.y) new_x = start_x + dist_x / 2 new_y = start_y + dist_y / 2 self.others.remove(sub0) self.others.remove(sub1) self.others.append(Particle("L", self.others, (new_x, new_y))) collided.clear() def bonding(self): if self.clamp: return for particle in list(self.others): if particle.kind == "L" and particle is not self: if not self.bond_left and not particle.bond_right: src_rect = pg.Rect(self.edge_left, (10, 10)) tgt_rect = pg.Rect(particle.edge_right, (10, 10)) collide = src_rect.colliderect(tgt_rect) if collide: self.clamp = True particle.clamp = True self.bond_left = particle particle.bond_right = self angle = 25 # +25 for a left attach, -25 for a right attach radius = 25 # radius of the theoretical circle of cell origin_x = self.rect.centerx - radius * math.cos(math.radians(self.rotation)) origin_y = self.rect.centery - radius * math.sin(math.radians(self.rotation)) particle.rotation = modify_degrees(self.rotation, angle) particle.rect.centerx = origin_x + radius * math.cos(math.radians(particle.rotation)) particle.rect.centery = origin_y + radius * math.sin(math.radians(particle.rotation)) particle.edge_left = end_line(10, particle.rotation - 90, particle.rect.center) particle.edge_right = end_line(10, particle.rotation + 90, particle.rect.center) particle.edge_center = end_line(10, particle.rotation, particle.rect.center) if not self.bond_right and not particle.bond_left: src_rect = pg.Rect(self.edge_right, (10, 10)) tgt_rect = pg.Rect(particle.edge_left, (10, 10)) collide = src_rect.colliderect(tgt_rect) if collide: self.clamp = True particle.clamp = True self.bond_right = particle particle.bond_left = self angle = -25 # +25 for a left attach, -25 for a right attach radius = 25 # radius of the theoretical circle of cell origin_x = self.rect.centerx - radius * math.cos(math.radians(self.rotation)) origin_y = self.rect.centery - radius * math.sin(math.radians(self.rotation)) particle.rotation = modify_degrees(self.rotation, angle) particle.rect.centerx = origin_x + radius * math.cos(math.radians(particle.rotation)) particle.rect.centery = origin_y + radius * math.sin(math.radians(particle.rotation)) particle.edge_left = end_line(10, particle.rotation - 90, particle.rect.center) particle.edge_right = end_line(10, particle.rotation + 90, particle.rect.center) particle.edge_center = end_line(10, particle.rotation, particle.rect.center) def disintegration(self): self.disintegration_chance += 1 disintegrate = random.choices([True, False], weights=[self.disintegration_chance, 1000000000], k=1)[0] if disintegrate: if self.bond_left: self.bond_left.bond_left = None if self.bond_right: self.bond_right.bond_right = None self.others.remove(self) self.others.append(Particle("S", self.others, (self.rect.x, self.rect.y))) self.others.append(Particle("S", self.others, (self.rect.x, self.rect.y))) def make_image(self): image = pg.Surface(self.rect.size).convert_alpha() image.fill((0, 0, 0, 0)) image_rect = image.get_rect() pg.draw.rect(image, pg.Color("black"), image_rect) pg.draw.rect(image, pg.Color(Particle.KIND_COLOR[self.kind]), image_rect.inflate(-2, -2)) return image def end_line(radius, rotation, center): center_rotate = vec(radius, 0).rotate(rotation) return center_rotate + center def identify_lone_link(one: Particle, two: Particle): if not one.bond_left and not one.bond_right: return two, one if not two.bond_left and not two.bond_right: return one, two return None, None def modify_degrees(start, add): if add > 0: if start + add > 360: return start + add - 360 return start + add elif add < 0: if start + add < 0: return start + add + 360 return start + add else: return start
38.469565
121
0.539331
794df3604fe86f5abe00916172d46b23cc76faf0
9,606
py
Python
test/integration/test_case_management_v1.py
zachsirotto/platform-services-python-sdk
32a080b7a93567f9528867a31bd0b47423297bab
[ "Apache-2.0" ]
null
null
null
test/integration/test_case_management_v1.py
zachsirotto/platform-services-python-sdk
32a080b7a93567f9528867a31bd0b47423297bab
[ "Apache-2.0" ]
null
null
null
test/integration/test_case_management_v1.py
zachsirotto/platform-services-python-sdk
32a080b7a93567f9528867a31bd0b47423297bab
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # Copyright 2020 IBM All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' This class contains an integration test for the Case Management service. ''' import pytest import unittest import os import os.path import io from ibm_cloud_sdk_core import * from ibm_platform_services.case_management_v1 import * # Read config file configFile = 'case_management.env' class TestCaseManagementV1(unittest.TestCase): """ Integration Test Class for CaseManagementV1 """ # Used to store newly created case number new_case_number = '' # Used to store newly uploaded file id file_attachment_id = '' @classmethod def setUpClass(cls): if os.path.exists(configFile): os.environ['IBM_CREDENTIALS_FILE'] = configFile else: raise unittest.SkipTest('External configuration not available, skipping...') cls.service = CaseManagementV1.new_instance() assert cls.service is not None print('Setup complete.') def test_01_create_case(self): # Offering info can be retrieved via /case-management/utilities/v1/offerings/technical offering_payload_type_model = {} offering_payload_type_model['group'] = 'crn_service_name' offering_payload_type_model['key'] = 'cloud-object-storage' offering_payload_type_model['id'] = 'dff97f5c-bc5e-4455-b470-411c3edbe49c' offering_payload_model = {} offering_payload_model['name'] = 'Cloud Object Storage' offering_payload_model['type'] = offering_payload_type_model type = 'technical' subject = 'Python - Integration test' description = 'Please -ignore this is a test case.' severity = 4 offering = offering_payload_model response = self.service.create_case( type, subject, description, severity=severity, offering=offering, headers={} ) # Storing the new case number for subsequent test cases TestCaseManagementV1.new_case_number = response.result['number'] assert response.get_status_code() == 200 assert subject == response.result['short_description'] assert description == response.result['description'] def test_02_create_case_with_empty_offering(self): type = 'technical' subject = 'Python - Integration test' description = 'Please -ignore this is a test case.' severity = 4 with pytest.raises(ApiException) as e: self.service.create_case( type, subject, description, severity=severity, headers={} ) assert e.value.code == 400 def test_03_create_case_with_empty_subject_and_description(self): # Offering info can be retrieved via /case-management/utilities/v1/offerings/technical offering_payload_type_model = {} offering_payload_type_model['group'] = 'crn_service_name' offering_payload_type_model['key'] = 'cloud-object-storage' offering_payload_type_model['id'] = 'dff97f5c-bc5e-4455-b470-411c3edbe49c' offering_payload_model = {} offering_payload_model['name'] = 'Cloud Object Storage' offering_payload_model['type'] = offering_payload_type_model type = 'technical' subject = '' description = '' severity = 4 offering = offering_payload_model # Subject and description are required with pytest.raises(ApiException) as e: self.service.create_case( type, subject, description, severity=severity, offering=offering, headers={} ) assert e.value.code == 400 def test_04_get_cases(self): offset = 0 limit = 2 sort = 'number' fields = ['number'] response = self.service.get_cases( offset=offset, limit=limit, sort=sort, fields=fields, headers={} ) assert response.status_code == 200 assert response.result['total_count'] > 0 def test_05_get_case(self): fields = ['number', 'short_description'] case_number = TestCaseManagementV1.new_case_number response = self.service.get_case( self.new_case_number, fields=fields, headers={} ) assert TestCaseManagementV1.new_case_number == response.result['number'] assert response.result['short_description'] != '' def test_06_get_case_with_invalid_field(self): fields = ['number', 'short_description', 'invalid_field'] case_number = TestCaseManagementV1.new_case_number with pytest.raises(ApiException) as e: self.service.get_case( self.new_case_number, fields=fields, headers={} ) assert e.value.code == 400 def test_07_add_comment(self): case_number = TestCaseManagementV1.new_case_number comment = 'This is a test comment!' response = self.service.add_comment( case_number, comment, headers={} ) assert response.status_code == 200 assert comment == response.result["value"] def test_08_add_comment_to_nonexisting_case(self): case_number = 'fake-case-number' comment = 'This is a test comment!' with pytest.raises(ApiException) as e: self.service.add_comment( case_number, comment, headers={} ) assert e.value.code == 404 def test_09_add_watch_list_member(self): # Users can be retrieved via the User Management API. user_id_and_realm_model = {} user_id_and_realm_model['realm'] = 'IBMid' user_id_and_realm_model['user_id'] = 'abc@ibm.com' watchlist = [user_id_and_realm_model] response = self.service.add_watchlist( TestCaseManagementV1.new_case_number, watchlist=watchlist, headers={} ) # Non-account member cannot be added to the watch-list, # therefore the response will include a "failed" list assert response.status_code == 200 # Loop over all returned users and find the matching one by user id found_users = [user for user in response.result['failed'] if user['user_id'] == user_id_and_realm_model['user_id']] assert len(found_users) == 1 def test_10_file_upload(self): fileName = "test_file.txt" file_with_metadata_model = {} file_with_metadata_model['data'] = io.BytesIO(b'This is a mock file.').getvalue() file_with_metadata_model['filename'] = fileName file = [file_with_metadata_model] response = self.service.upload_file( TestCaseManagementV1.new_case_number, file, headers={} ) TestCaseManagementV1.file_attachment_id = response.result['id'] assert response.status_code == 200 assert response.result['filename'] == fileName def test_11_download_file(self): response = self.service.download_file( TestCaseManagementV1.new_case_number, TestCaseManagementV1.file_attachment_id, headers={} ) assert response.status_code == 200 assert 'content-type' in response.headers def test_12_delete_file(self): response = self.service.delete_file( TestCaseManagementV1.new_case_number, TestCaseManagementV1.file_attachment_id, headers={} ) assert response.status_code == 200 # Assert the file attachment list is empty assert len(response.result['attachments']) == 0 def test_13_add_resource(self): # Adding a resource requires a valid CRN (Cloud Resource Name) # CRN's can be retrieved via the Search and Tagging API crn = 'invalid:crn' type = 'testString' id = 36.0 note = 'testString' with pytest.raises(ApiException) as e: response = self.service.add_resource( TestCaseManagementV1.new_case_number, crn=crn, type=type, id=id, note=note, headers={} ) assert e.value.code == 500 def test_14_resolve_case(self): status_payload = {} status_payload['action'] = 'resolve' status_payload['comment'] = 'testString' status_payload['resolution_code'] = 1 response = self.service.update_case_status( TestCaseManagementV1.new_case_number, status_payload, headers={} ) assert response.status_code == 200 assert TestCaseManagementV1.new_case_number == response.result["number"]
30.987097
94
0.622423
794df5a0f81828572b9168a65ac6ee07e507721a
28,678
py
Python
podium/datasets/iterator.py
TakeLab/podium
11ef32d889e483d4d77a44b61e0b5da956ee3a54
[ "BSD-3-Clause" ]
51
2021-03-19T14:14:31.000Z
2022-02-18T00:42:51.000Z
podium/datasets/iterator.py
TakeLab/podium
11ef32d889e483d4d77a44b61e0b5da956ee3a54
[ "BSD-3-Clause" ]
9
2021-03-31T15:39:28.000Z
2021-04-16T13:28:15.000Z
podium/datasets/iterator.py
TakeLab/podium
11ef32d889e483d4d77a44b61e0b5da956ee3a54
[ "BSD-3-Clause" ]
1
2021-07-26T04:54:18.000Z
2021-07-26T04:54:18.000Z
""" Module contains classes for iterating over datasets. """ import math import warnings from abc import ABC, abstractmethod from collections import defaultdict from random import Random from typing import Callable from typing import Iterator as PythonIterator from typing import List, NamedTuple, Tuple import numpy as np from podium.datasets.dataset import Dataset, DatasetBase from podium.datasets.hierarhical_dataset import HierarchicalDataset from podium.utils.general_utils import repr_type_and_attrs class Batch(dict): def __iter__(self): yield from self.values() def __getattr__(self, name): if name in self: return self[name] raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") def __repr__(self): return repr_type_and_attrs(self, self, with_newlines=True, repr_values=False) class IteratorBase(ABC): """ Abstract base class for all Iterators in Podium. """ def __call__( self, dataset: DatasetBase ) -> PythonIterator[Tuple[NamedTuple, NamedTuple]]: """ Sets the dataset for this Iterator and returns an iterable over the batches of that dataset. Same as calling iterator.set_dataset() followed by iter(iterator) Parameters ---------- dataset: Dataset Dataset to iterate over. Returns ------- Iterable over batches in the Dataset. """ self.set_dataset(dataset) return iter(self) @abstractmethod def set_dataset(self, dataset: DatasetBase) -> None: """ Sets the dataset for this Iterator to iterate over. Resets the epoch count. Parameters ---------- dataset: DatasetBase Dataset to iterate over. """ pass @abstractmethod def __iter__(self) -> PythonIterator[Tuple[NamedTuple, NamedTuple]]: """ Returns an iterator object that knows how to iterate over the given dataset. The iterator yields a Batch instance: adictionary subclass which contains batched data for every field stored under the name of that Field. The Batch object unpacks over values (instead of keys) in the same order as the Fields in the dataset. Returns ------- iter Iterator that iterates over batches of examples in the dataset. """ pass @abstractmethod def __len__(self) -> int: """ Returns the number of batches this iterator provides in one epoch. Returns ------- int Number of batches s provided in one epoch. """ pass class Iterator(IteratorBase): """ An iterator that batches data from a dataset after numericalization. """ def __init__( self, dataset=None, batch_size=32, sort_key=None, shuffle=True, seed=1, matrix_class=np.array, disable_batch_matrix=False, internal_random_state=None, ): """ Creates an iterator for the given dataset and batch size. Parameters ---------- dataset : DatasetBase The dataset to iterate over. batch_size : int Batch size for batched iteration. If the dataset size is not a multiple of batch_size the last returned batch will be smaller (``len(dataset) % batch_size``). sort_key : callable A ``callable`` used to sort instances within a batch. If ``None``, batch instances won't be sorted. Default is ``None``. shuffle : bool Flag denoting whether examples should be shuffled prior to each epoch. Default is ``False``. seed : int The initial random seed. Only used if ``shuffle=True``. Raises ``ValueError`` if ``shuffle=True``, ``internal_random_state=None`` and ``seed=None``. Default is ``1``. matrix_class: callable The constructor for the return batch datatype. Defaults to ``np.array``. When working with deep learning frameworks such as `tensorflow <https://www.tensorflow.org/>`_ and `pytorch <https://pytorch.org/>`_, setting this argument allows customization of the batch datatype. internal_random_state : tuple The random state that the iterator will be initialized with. Obtained by calling ``.getstate`` on an instance of the Random object, exposed through the ``Iterator.get_internal_random_state`` method. For most use-cases, setting the random seed will suffice. This argument is useful when we want to stop iteration at a certain batch of the dataset and later continue exactly where we left off. If ``None``, the Iterator will create its own random state from the given seed. Only relevant if ``shuffle=True``. A ``ValueError`` is raised if ``shuffle=True``, ``internal_random_state=None`` and ``seed=None``. Default is ``None``. Raises ------ ValueError If ``shuffle=True`` and both ``seed`` and ``internal_random_state`` are ``None``. """ self._batch_size = batch_size self._shuffle = shuffle self._sort_key = sort_key self._epoch = 0 self._iterations = 0 self._matrix_class = matrix_class self._disable_batch_matrix = disable_batch_matrix # set of fieldnames for which numericalization format warnings were issued # used to avoid spamming warnings between iterations self._numericalization_format_warned_fieldnames = set() if dataset is not None: self.set_dataset(dataset) else: self._dataset = None if self._shuffle: if seed is None and internal_random_state is None: raise ValueError( "If shuffle==True, either seed or " "internal_random_state have to be != None." ) self._shuffler = Random(seed) if internal_random_state is not None: self._shuffler.setstate(internal_random_state) else: self._shuffler = None @property def epoch(self) -> int: """ The current epoch of the Iterator. """ return self._epoch @property def iterations(self) -> int: """ The number of batches returned so far in the current epoch. """ return self._iterations @property def matrix_class(self): """ The class constructor of the batch matrix. """ return self._matrix_class @property def batch_size(self): """ The batch size of the iterator. """ return self._batch_size @property def sort_key(self): return self._sort_key def reset(self): """ Reset the epoch and iteration counter of the Iterator. """ self._epoch = 0 self._iterations = 0 def set_dataset(self, dataset: DatasetBase) -> None: """ Sets the dataset for this Iterator to iterate over. Resets the epoch count. Parameters ---------- dataset: DatasetBase Dataset to iterate over. """ self.reset() self._dataset = dataset def __setstate__(self, state): self.__dict__ = state if self._shuffle: # Restore the random state to the one prior to start # of last epoch so we can rewind to the correct batch self.set_internal_random_state(self._shuffler_state) def __len__(self) -> int: """ Returns the number of batches this iterator provides in one epoch. Returns ------- int Number of batches s provided in one epoch. """ return math.ceil(len(self._dataset) / self.batch_size) def __iter__(self) -> PythonIterator[Batch]: """ Returns an iterator over the given dataset. The iterator yields tuples in the form ``(input_batch, target_batch)``. The input_batch and target_batch are dict subclasses which unpack to values instead of keys:: >>> batch = Batch({ ... 'a': np.array([0]), ... 'b': np.array([1]) ... }) >>> a, b = batch >>> a array([0]) >>> b array([1]) Batch keys correspond to dataset Field names. Batch values are by default numpy ndarrays, although the data type can be changed through the ``matrix_class`` argument. Rows correspond to dataset instances, while each element is a numericalized value of the input. Returns ------- iter Iterator over batches of examples in the dataset. """ indices = list(range(len(self._dataset))) if self._shuffle: # Cache state prior to shuffle so we can use it when unpickling self._shuffler_state = self.get_internal_random_state() self._shuffler.shuffle(indices) # If iteration was stopped, continue where we left off start = self.iterations * self.batch_size for i in range(start, len(self._dataset), self.batch_size): batch_indices = indices[i : i + self.batch_size] batch_instances = self._dataset[batch_indices] if self._sort_key is not None: batch_instances = batch_instances.sorted(key=self._sort_key) self._iterations += 1 yield self._create_batch(batch_instances) # prepare for new epoch self._iterations = 0 self._epoch += 1 def _create_batch(self, dataset: DatasetBase) -> Tuple[NamedTuple, NamedTuple]: examples = dataset.examples full_batch = Batch() for field in dataset.fields: numericalizations = [] for example in examples: numericalization = field.get_numericalization_for_example(example) numericalizations.append(numericalization) # casting to matrix can only be attempted if all values are either # None or np.ndarray possible_cast_to_matrix = all( x is None or isinstance(x, (np.ndarray, int, float)) for x in numericalizations ) if ( not possible_cast_to_matrix and not field._disable_batch_matrix and not self._disable_batch_matrix and field.name not in self._numericalization_format_warned_fieldnames ): warnings.warn( f"The batch for Field '{field.name}' can't be cast to " f"matrix but `disable_batch_matrix` is set to False." ) self._numericalization_format_warned_fieldnames.add(field.name) if ( len(numericalizations) > 0 and not field._disable_batch_matrix and not self._disable_batch_matrix and possible_cast_to_matrix ): batch = Iterator._arrays_to_matrix( field, numericalizations, self.matrix_class ) else: batch = numericalizations if field.include_lengths: # Include the length of each instance in the Field # along with the numericalization batch_lengths = self.matrix_class( [len(instance) for instance in numericalizations] ) batch = (batch, batch_lengths) full_batch[field.name] = batch return full_batch def get_internal_random_state(self): """ Returns the internal random state of the iterator. Useful if we want to stop iteration at a certain batch, and later continue exactly at that batch.. Only used if ``shuffle=True``. Returns ------- tuple The internal random state of the iterator. Raises ------ RuntimeError If ``shuffle=False``. """ if not self._shuffle: raise RuntimeError( "Iterator with `shuffle=False` does not have an internal random state." ) return self._shuffler.getstate() def set_internal_random_state(self, state): """ Sets the internal random state of the iterator. Useful if we want to stop iteration at a certain batch, and later continue exactly at that batch.. Only used if ``shuffle=True``. Raises ------ RuntimeError If ``shuffle=False``. """ if not self._shuffle: raise RuntimeError( "Iterator with `shuffle=False` does not have an internal random state." ) self._shuffler.setstate(state) @staticmethod def _arrays_to_matrix( field, arrays: List[np.ndarray], matrix_class: Callable ) -> np.ndarray: pad_length = Iterator._get_pad_length(field, arrays) padded_arrays = [field._pad_to_length(a, pad_length) for a in arrays] return matrix_class(padded_arrays) @staticmethod def _get_pad_length(field, numericalizations) -> int: # the fixed_length attribute of Field has priority over the max length # of all the examples in the batch if field._fixed_length is not None: return field._fixed_length # if fixed_length is None, then return the maximum length of all the # examples in the batch def numericalization_length(n): if n is None or isinstance(n, (int, float)): return 1 else: return len(n) return max(map(numericalization_length, numericalizations)) def __repr__(self) -> str: attrs = { "batch_size": self._batch_size, "epoch": self._epoch, "iteration": self._iterations, "shuffle": self._shuffle, } return repr_type_and_attrs(self, attrs, with_newlines=True) class SingleBatchIterator(Iterator): """ Iterator that creates one batch per epoch containing all examples in the dataset. """ def __init__(self, dataset: DatasetBase = None, shuffle=True, add_padding=True): """ Creates an Iterator that creates one batch per epoch containing all examples in the dataset. Parameters ---------- dataset : DatasetBase The dataset to iterate over. shuffle : bool Flag denoting whether examples should be shuffled before each epoch. Default is ``False``. add_padding : bool Flag denoting whether to add padding to batches yielded by the iterator. If set to ``False``, numericalized Fields will be returned as python lists of ``matrix_class`` instances. """ batch_size = len(dataset) if dataset else None super().__init__( dataset=dataset, batch_size=batch_size, shuffle=shuffle, disable_batch_matrix=not add_padding, ) def set_dataset(self, dataset: DatasetBase) -> None: super().set_dataset(dataset) self._batch_size = len(dataset) def __len__(self) -> int: return 1 class BucketIterator(Iterator): """ Creates a bucket iterator which uses a look-ahead heuristic to batch examples in a way that minimizes the amount of necessary padding. Uses a bucket of size N x batch_size, and sorts instances within the bucket before splitting into batches, minimizing necessary padding. """ def __init__( self, dataset=None, batch_size=32, sort_key=None, shuffle=True, seed=1, matrix_class=np.array, internal_random_state=None, look_ahead_multiplier=100, bucket_sort_key=None, ): """ Creates a BucketIterator with the given bucket sort key and look-ahead multiplier (how many batch_sizes to look ahead when sorting examples for batches). Parameters ---------- look_ahead_multiplier : int Multiplier of ``batch_size`` which determines the size of the look-ahead bucket. If ``look_ahead_multiplier == 1``, then the BucketIterator behaves like a normal Iterator. If ``look_ahead_multiplier >= (num_examples / batch_size)``, then the BucketIterator behaves like a normal iterator that sorts the whole dataset. Default is ``100``. bucket_sort_key : callable The callable object used to sort examples in the bucket. If ``bucket_sort_key=None``, then the ``sort_key`` must not be ``None``, otherwise a ``ValueError`` is raised. Default is ``None``. Raises ------ ValueError If sort_key and bucket_sort_key are both None. """ if sort_key is None and bucket_sort_key is None: raise ValueError( "For BucketIterator to work, either sort_key or " "bucket_sort_key must be != None." ) super().__init__( dataset, batch_size, sort_key=sort_key, shuffle=shuffle, seed=seed, matrix_class=matrix_class, internal_random_state=internal_random_state, ) self.bucket_sort_key = bucket_sort_key self.look_ahead_multiplier = look_ahead_multiplier def __iter__(self) -> PythonIterator[Tuple[NamedTuple, NamedTuple]]: step = self.batch_size * self.look_ahead_multiplier dataset = self._dataset # Determine the step where iteration was stopped for lookahead & within bucket lookahead_start = ( self.iterations // self.look_ahead_multiplier * self.look_ahead_multiplier ) batch_start = self.iterations % self.look_ahead_multiplier if self._sort_key is not None: dataset = dataset.sorted(key=self._sort_key) for i in range(lookahead_start, len(dataset), step): bucket = dataset[i : i + step] if self.bucket_sort_key is not None: bucket = bucket.sorted(key=self.bucket_sort_key) for j in range(batch_start, len(bucket), self.batch_size): batch_dataset = bucket[j : j + self.batch_size] batch = self._create_batch(batch_dataset) yield batch self._iterations += 1 # prepare for new epoch self._iterations = 0 self._epoch += 1 def __repr__(self) -> str: attrs = { "batch_size": self._batch_size, "epoch": self._epoch, "iteration": self._iterations, "shuffle": self._shuffle, "look_ahead_multiplier": self.look_ahead_multiplier, } return repr_type_and_attrs(self, attrs, with_newlines=True) class HierarchicalIterator(Iterator): """ Iterator used to create batches for Hierarchical Datasets. Creates batches as lists of matrices. In the returned batch, every attribute corresponds to a field in the dataset. For every field in the dataset, the batch contains a list of matrices, where every matrix represents the context of an example in the batch. The rows of a matrix contain numericalized representations of the examples that make up the context of an example in the batch with the representation of the example itself being in the last row of its own context matrix. """ def __init__( self, dataset=None, batch_size=32, sort_key=None, shuffle=False, seed=1, matrix_class=np.array, internal_random_state=None, context_max_length=None, context_max_depth=None, ): """ Creates an iterator for the given dataset and batch size. Parameters ---------- dataset : DatasetBase The dataset to iterate over. batch_size : int Batch size for batched iteration. If the dataset size is not a multiple of batch_size the last returned batch will be smaller (``len(dataset) % batch_size``). sort_key : callable A ``callable`` used to sort instances within a batch. If ``None``, batch instances won't be sorted. Default is ``None``. shuffle : bool Flag denoting whether examples should be shuffled prior to each epoch. Default is ``False``. seed : int The initial random seed. Only used if ``shuffle=True``. Raises ``ValueError`` if ``shuffle=True``, ``internal_random_state=None`` and ``seed=None``. Default is ``1``. matrix_class: callable The constructor for the return batch datatype. Defaults to ``np.array``. When working with deep learning frameworks such as `tensorflow <https://www.tensorflow.org/>`_ and `pytorch <https://pytorch.org/>`_, setting this argument allows customization of the batch datatype. internal_random_state : tuple The random state that the iterator will be initialized with. Obtained by calling ``.getstate`` on an instance of the Random object, exposed through the ``Iterator.get_internal_random_state`` method. For most use-cases, setting the random seed will suffice. This argument is useful when we want to stop iteration at a certain batch of the dataset and later continue exactly where we left off. If ``None``, the Iterator will create its own random state from the given seed. Only relevant if ``shuffle=True``. A ``ValueError`` is raised if ``shuffle=True``, ``internal_random_state=None`` and ``seed=None``. Default is ``None``. context_max_depth: int The maximum depth of the context retrieved for an example in the batch. While generating the context, the iterator will take 'context_max_depth' levels above the example and the root node of the last level, e.g. if 0 is passed, the context generated for an example will contain all examples in the level of the example in the batch and the root example of that level. If None, this depth limit will be ignored. context_max_length: int The maximum length of the context retrieved for an example in the batch. The number of rows in the generated context matrix will be (if needed) truncated to `context_max_length` - 1. If None, this length limit will be ignored. Raises ------ ValueError If shuffle is True and both seed and internal_random_state are None. """ if context_max_length is not None and context_max_length < 1: raise ValueError( "'context_max_length' must not be less than 1. " "If you don't want context, try flattening the dataset. " f"'context_max_length' : {context_max_length})" ) if context_max_depth is not None and context_max_depth < 0: raise ValueError( "'context_max_depth' must not be negative. " f"'context_max_depth' : {context_max_length}" ) self._context_max_depth = context_max_depth self._context_max_length = context_max_length super().__init__( dataset, batch_size, sort_key=sort_key, shuffle=shuffle, seed=seed, matrix_class=matrix_class, internal_random_state=internal_random_state, ) def set_dataset(self, dataset: HierarchicalDataset) -> None: if not isinstance(dataset, HierarchicalDataset): err_msg = ( f"HierarchicalIterator can only iterate over " f"HierarchicalDatasets. Passed dataset type: " f"{type(dataset).__name__}" ) raise ValueError(err_msg) super().set_dataset(dataset) def _get_node_context(self, node): """ Generates a list of examples that make up the context of the provided node, truncated to adhere to 'context_max_depth' and 'context_max_length' limitations. Parameters ---------- node : Node The Hierarchical dataset node the context should be retrieved for. Returns ------- list(Example) A list of examples that make up the context of the provided node, truncated to adhere to 'context_max_depth' and 'context_max_length' limitations. """ context_iterator = HierarchicalDataset._get_node_context( node, self._context_max_depth ) context = list(context_iterator) if self._context_max_length is not None: # if context max size is defined, truncate it context = context[-self._context_max_length :] # add the example to the end of its own context context.append(node.example) return context def _nodes_to_batch(self, nodes): """ Creates a batch from the passed nodes. Parameters ---------- nodes : list(Node) Nodes that should be contained in the batch Returns ------- (Batch) a Batch instance containing numericalized Field data. """ batch_dict = defaultdict(list) for node in nodes: # all examples that make up the current node's context node_context_examples = self._get_node_context(node) node_context_dataset = Dataset(node_context_examples, self._dataset.fields) sub_batch = super()._create_batch(node_context_dataset) for key in sub_batch.keys(): value = getattr(sub_batch, key) batch_dict[key].append(value) batch = Batch(batch_dict) return batch def _data(self): """Generates a list of Nodes to be used in batch iteration. Returns ------- list(Node) a list of Nodes """ dataset_nodes = list(self._dataset._node_iterator()) if self._shuffle: # shuffle the indices indices = list(range(len(self._dataset))) self._shuffler.shuffle(indices) # creates a new list of nodes dataset_nodes = [dataset_nodes[i] for i in indices] return dataset_nodes def __iter__(self) -> PythonIterator[Tuple[NamedTuple, NamedTuple]]: dataset_nodes = self._data() # If iteration was stopped, continue where we left off start = self.iterations * self.batch_size for i in range(start, len(dataset_nodes), self.batch_size): batch_nodes = dataset_nodes[i : i + self.batch_size] if self._sort_key is not None: batch_nodes = batch_nodes.sorted( key=lambda node: self._sort_key(node.example) ) yield self._nodes_to_batch(batch_nodes) self._iterations += 1 # prepare for new epoch self._iterations = 0 self._epoch += 1 def __repr__(self) -> str: attrs = { "batch_size": self._batch_size, "epoch": self._epoch, "iteration": self._iterations, "shuffle": self._shuffle, "context_max_length": self._context_max_length, "context_max_depth": self._context_max_depth, } return repr_type_and_attrs(self, attrs, with_newlines=True)
33.19213
89
0.593974
794df662e3e9087dd9fdc5e2156151f3b512d201
9,627
py
Python
doc/source/conf.py
RobbiNespu/scikit-image
a65b8af4bf0f5f71624a91ea5ce7812e80cae4cb
[ "BSD-3-Clause" ]
8
2016-03-11T13:23:51.000Z
2021-12-19T10:43:26.000Z
doc/source/conf.py
RobbiNespu/scikit-image
a65b8af4bf0f5f71624a91ea5ce7812e80cae4cb
[ "BSD-3-Clause" ]
null
null
null
doc/source/conf.py
RobbiNespu/scikit-image
a65b8af4bf0f5f71624a91ea5ce7812e80cae4cb
[ "BSD-3-Clause" ]
4
2020-06-19T00:04:34.000Z
2021-02-23T07:24:00.000Z
# -*- coding: utf-8 -*- # # skimage documentation build configuration file, created by # sphinx-quickstart on Sat Aug 22 13:00:30 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.append(os.path.abspath('.')) curpath = os.path.dirname(__file__) sys.path.append(os.path.join(curpath, '..', 'ext')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.pngmath', 'numpydoc', 'sphinx.ext.autosummary', 'plot2rst', 'sphinx.ext.intersphinx'] # Determine if the matplotlib has a recent enough version of the # plot_directive, otherwise use the local fork. try: from matplotlib.sphinxext import plot_directive except ImportError: use_matplotlib_plot_directive = False else: try: use_matplotlib_plot_directive = (plot_directive.__version__ >= 2) except AttributeError: use_matplotlib_plot_directive = False if use_matplotlib_plot_directive: extensions.append('matplotlib.sphinxext.plot_directive') else: extensions.append('plot_directive') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.txt' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'skimage' copyright = '2013, the scikit-image team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. setup_lines = open('../../skimage/__init__.py').readlines() version = 'vUndefined' for l in setup_lines: if l.startswith('__version__'): version = l.split("'")[1] break # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-image' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = 'skimage v%s docs' % version # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['navigation.html', 'localtoc.html', 'versions.html'], } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikitimagedoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('contents', 'scikit-image.tex', u'The scikit-image Documentation', u'scikit-image development team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r''' \usepackage{enumitem} \setlistdepth{100} \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters section, place a newline after the Parameters header \usepackage{expdlist} \let\latexdescription=\description \def\description{\latexdescription{}{} \breaklabel} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\py@HeaderFamily}% {\py@TitleColor}{0em}{\py@TitleColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother ''' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_use_modindex = False # ----------------------------------------------------------------------------- # Numpy extensions # ----------------------------------------------------------------------------- numpydoc_show_class_members = False numpydoc_class_members_toctree = False # ----------------------------------------------------------------------------- # Plots # ----------------------------------------------------------------------------- plot_basedir = os.path.join(curpath, "plots") plot_pre_code = """ import numpy as np import matplotlib.pyplot as plt np.random.seed(0) import matplotlib matplotlib.rcParams.update({ 'font.size': 14, 'axes.titlesize': 12, 'axes.labelsize': 10, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'legend.fontsize': 10, 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, }) """ plot_include_source = True plot_formats = [('png', 100), ('pdf', 100)] plot2rst_index_name = 'README' plot2rst_rcparams = {'image.cmap' : 'gray', 'image.interpolation' : 'none'} # ----------------------------------------------------------------------------- # intersphinx # ----------------------------------------------------------------------------- _python_doc_base = 'http://docs.python.org/2.7' intersphinx_mapping = { _python_doc_base: None, 'http://docs.scipy.org/doc/numpy': None, 'http://docs.scipy.org/doc/scipy/reference': None, 'http://scikit-learn.org/stable': None }
32.197324
80
0.68069
794df6b8422d9b046381612add9644760a6c97b9
1,529
py
Python
runtime/pylibs/normpatch.py
bingusware/client
c822e49ec2f1f8eaa8963194f562afa6d4cff594
[ "MIT" ]
5
2021-06-01T14:25:01.000Z
2022-02-11T10:15:10.000Z
runtime/pylibs/normpatch.py
bingusware/client
c822e49ec2f1f8eaa8963194f562afa6d4cff594
[ "MIT" ]
3
2021-02-23T08:47:27.000Z
2021-02-26T11:58:18.000Z
runtime/pylibs/normpatch.py
bingusware/client
c822e49ec2f1f8eaa8963194f562afa6d4cff594
[ "MIT" ]
null
null
null
import sys import os import shutil from optparse import OptionParser def normalisepatch(in_filename, out_filename=None): in_filename = os.path.normpath(in_filename) if out_filename is None: tmp_filename = in_filename + '.tmp' else: out_filename = os.path.normpath(out_filename) tmp_filename = out_filename dir_name = os.path.dirname(out_filename) if dir_name: if not os.path.exists(dir_name): os.makedirs(dir_name) with open(in_filename, 'rb') as inpatch: with open(tmp_filename, 'wb') as outpatch: for line in inpatch: line = line.rstrip('\r\n') if line[:3] in ['+++', '---', 'Onl', 'dif']: outpatch.write(line.replace('\\', os.sep).replace('/', os.sep) + os.linesep) else: outpatch.write(line + os.linesep) if out_filename is None: shutil.move(tmp_filename, in_filename) def main(): usage = 'usage: %prog [options] src_file [dest_file]' version = '%prog 6.0' parser = OptionParser(version=version, usage=usage) options, args = parser.parse_args() if len(args) == 1: in_file = args[0] out_file = None elif len(args) == 2: in_file = args[0] out_file = args[1] else: print >> sys.stderr, 'src_file required' sys.exit(1) normalisepatch(in_file, out_file) if __name__ == '__main__': main()
31.204082
97
0.568999
794df72d630acfdfb201ad1b487ef4d0a99599a6
1,021
py
Python
wargame/designpatterns/pythonic_woodelf.py
jeantardelli/wargameRepo
1e11ae40281f7eafa65ea6e40e045304b20e3824
[ "MIT" ]
1
2020-12-01T20:30:27.000Z
2020-12-01T20:30:27.000Z
wargame/designpatterns/pythonic_woodelf.py
jeantardelli/wargameRepo
1e11ae40281f7eafa65ea6e40e045304b20e3824
[ "MIT" ]
null
null
null
wargame/designpatterns/pythonic_woodelf.py
jeantardelli/wargameRepo
1e11ae40281f7eafa65ea6e40e045304b20e3824
[ "MIT" ]
null
null
null
"""pythonic_woodelf This is one of the different GameUnits that are used in the desing patterns examples. But, differently than the others, this unit represents a third-party class that has an incompatible interface. :copyright: 2020, Jean Tardelli :license: The MIT license (MIT). See LICENSE file for further details. """ class WoodElf: """Create a WoodRider instance""" def info(self): """Print info about this unit, overrides superclass method.""" print("I am an Elf from the woods! Nice to meet you!") def leap(self): """leap method is equivalent to the 'jump' method client expects. The adapter should have a jump method which in turn calls this method. """ print("Inside WoodElf.leap") def climb(self): """Some other (dummy) method of the class. Adapter shouldn't do anything with this method. It should just delegate the call from the client to thid method. """ print("Inside WoodElf.climb")
30.939394
76
0.669931
794df73ed992ef7e37f6266a267b1ced3601a859
7,159
py
Python
test_conebound.py
VictorDavis/conebound
2f0600d946d27abfec10d19a840044c2ec9c18f1
[ "MIT" ]
2
2021-04-24T22:35:51.000Z
2021-11-15T09:45:17.000Z
test_conebound.py
VictorDavis/conebound
2f0600d946d27abfec10d19a840044c2ec9c18f1
[ "MIT" ]
null
null
null
test_conebound.py
VictorDavis/conebound
2f0600d946d27abfec10d19a840044c2ec9c18f1
[ "MIT" ]
1
2021-04-24T22:35:56.000Z
2021-04-24T22:35:56.000Z
# bloody dependencies import numpy as np from numpy.linalg import norm import unittest # things to test from conebound import bounding_cone # unit tests class ConeBoundTest(unittest.TestCase): # bounding cone aperture < 90 def test_2d_acute(self): # hyperparameters ndim = 2 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 12, np.pi / 4) # [15, 45] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(256, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture > 90 def test_2d_obtuse(self): # hyperparameters ndim = 2 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 4, np.pi / 2) # [45, 90] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(256, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture > 180 def test_2d_reflex(self): # hyperparameters ndim = 2 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 2, 3 * np.pi / 4) # [90, 135] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(256, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture < 90 def test_3d_acute(self): # hyperparameters ndim = 3 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 12, np.pi / 4) # [15, 45] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(1024, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture > 90 def test_3d_obtuse(self): # hyperparameters ndim = 3 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 4, np.pi / 2) # [45, 90] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(1024, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture > 180 def test_3d_reflex(self): # hyperparameters ndim = 3 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 2, 3 * np.pi / 4) # [90, 135] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(1024, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture < 90 def test_4d_acute(self): # hyperparameters ndim = 4 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 12, np.pi / 4) # [15, 45] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(4096, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture > 90 def test_4d_obtuse(self): # hyperparameters ndim = 4 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 4, np.pi / 2) # [45, 90] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(4096, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9 # bounding cone aperture > 180 def test_4d_reflex(self): # hyperparameters ndim = 4 axis = np.random.normal(size=ndim) axis /= norm(axis) angle = np.random.uniform(np.pi / 2, 3 * np.pi / 4) # [90, 135] cos = np.cos(angle) # monte carlo construction of a cone points = np.random.normal(size=(4096, ndim)) dot_products = np.dot(points, axis) / norm(points, axis=1) points = points[dot_products > cos, :] # get cone axis_, angle_ = bounding_cone(points) # bounding cone should be slightly narrower than monte carlo construction assert angle_ < angle # calculated axis should be "close" to construction axis assert sum(axis_ * axis) > 0.9
31.399123
81
0.600084
794df7907637cffc6bbd5bb1a4a1e94864577757
2,667
py
Python
envs/voxel_env/voxel_env_utils.py
magicly/sample-factory
32cd44a907653fdad40c026ba0a4fa4cca68554b
[ "MIT" ]
1
2020-11-30T23:32:04.000Z
2020-11-30T23:32:04.000Z
envs/voxel_env/voxel_env_utils.py
magicly/sample-factory
32cd44a907653fdad40c026ba0a4fa4cca68554b
[ "MIT" ]
null
null
null
envs/voxel_env/voxel_env_utils.py
magicly/sample-factory
32cd44a907653fdad40c026ba0a4fa4cca68554b
[ "MIT" ]
1
2021-12-13T01:45:11.000Z
2021-12-13T01:45:11.000Z
import gym from voxel_env.voxel_env_gym import VoxelEnv from envs.env_utils import RewardShapingInterface from utils.utils import str2bool class RewardShapingWrapper(gym.Wrapper, RewardShapingInterface): def __init__(self, env): gym.Wrapper.__init__(self, env) RewardShapingInterface.__init__(self) self.num_agents = env.num_agents self.is_multiagent = env.is_multiagent # save a reference to this wrapper in the actual env class, for other wrappers and for outside access self.env.unwrapped.reward_shaping_interface = self def get_default_reward_shaping(self): return self.env.get_default_reward_shaping() def get_current_reward_shaping(self, agent_idx: int): return self.env.get_current_reward_shaping(agent_idx) def set_reward_shaping(self, reward_shaping: dict, agent_idx: int): return self.env.set_reward_shaping(reward_shaping, agent_idx) def close(self): # remove the reference to avoid dependency cycles self.env.unwrapped.reward_shaping_interface = None return self.env.close() def make_voxel_env(env_name, cfg=None, **kwargs): env = VoxelEnv( num_envs=cfg.voxel_num_envs_per_instance, num_agents_per_env=cfg.voxel_num_agents_per_env, num_simulation_threads=cfg.voxel_num_simulation_threads, vertical_look_limit_rad=cfg.voxel_vertical_look_limit, use_vulkan=cfg.voxel_use_vulkan, ) env = RewardShapingWrapper(env) return env def voxel_env_override_defaults(env, parser): """RL params specific to VoxelEnv envs.""" parser.set_defaults( encoder_type='conv', encoder_subtype='convnet_simple', hidden_size=512, obs_subtract_mean=0.0, obs_scale=255.0, actor_worker_gpus=[0], exploration_loss='symmetric_kl', exploration_loss_coeff=0.001, ) def add_voxel_env_args(env, parser): p = parser p.add_argument('--voxel_num_envs_per_instance', default=1, type=int, help='Num simulated envs per instance of VoxelEnv') p.add_argument('--voxel_num_agents_per_env', default=4, type=int, help='Number of agents in a single env withing a VoxelEnv instance. Total number of agents in one VoxelEnv = num_envs_per_instance * num_agents_per_env') p.add_argument('--voxel_num_simulation_threads', default=1, type=int, help='Number of CPU threads to use per instance of VoxelEnv') p.add_argument('--voxel_vertical_look_limit', default=0.1, type=float, help='Max vertical look in radians') p.add_argument('--voxel_use_vulkan', default=False, type=str2bool, help='Whether to use Vulkan renderer')
39.220588
223
0.735283
794df7aca28de4d3ea300a7092a04d218c24cad1
8,217
py
Python
test/enhanced_FEM_test.py
sychan/ExpressionAPI
a86b07d033158cb8beeaf267dc489a8ca11aec67
[ "MIT" ]
null
null
null
test/enhanced_FEM_test.py
sychan/ExpressionAPI
a86b07d033158cb8beeaf267dc489a8ca11aec67
[ "MIT" ]
null
null
null
test/enhanced_FEM_test.py
sychan/ExpressionAPI
a86b07d033158cb8beeaf267dc489a8ca11aec67
[ "MIT" ]
3
2017-08-09T22:24:48.000Z
2018-06-13T16:19:38.000Z
# -*- coding: utf-8 -*- import unittest import os # noqa: F401 import time import inspect import shutil import json from os import environ try: from ConfigParser import ConfigParser # py2 except BaseException: from configparser import ConfigParser # py3 from pprint import pprint, pformat # noqa: F401 from biokbase.workspace.client import Workspace as workspaceService from DataFileUtil.DataFileUtilClient import DataFileUtil from ExpressionAPI.ExpressionAPIImpl import ExpressionAPI from ExpressionAPI.ExpressionAPIServer import MethodContext from ExpressionAPI.authclient import KBaseAuth as _KBaseAuth from GenomeAnnotationAPI.GenomeAnnotationAPIClient import GenomeAnnotationAPI class ExprMatrixUtilsTest(unittest.TestCase): @classmethod def setUpClass(cls): token = environ.get('KB_AUTH_TOKEN', None) config_file = environ.get('KB_DEPLOYMENT_CONFIG', None) cls.cfg = {} config = ConfigParser() config.read(config_file) for nameval in config.items('ExpressionAPI'): cls.cfg[nameval[0]] = nameval[1] # Getting username from Auth profile for token authServiceUrl = cls.cfg['auth-service-url'] auth_client = _KBaseAuth(authServiceUrl) user_id = auth_client.get_user(token) # WARNING: don't call any logging methods on the context object, # it'll result in a NoneType error cls.ctx = MethodContext(None) cls.ctx.update({'token': token, 'user_id': user_id, 'provenance': [ {'service': 'ExpressionAPI', 'method': 'please_never_use_it_in_production', 'method_params': [] }], 'authenticated': 1}) cls.wsURL = cls.cfg['workspace-url'] cls.wsClient = workspaceService(cls.wsURL) suffix = int(time.time() * 1000) cls.wsName = "test_exprAPI_FEM_test_ws_" + str(suffix) cls.wsClient.create_workspace({'workspace': cls.wsName}) cls.serviceImpl = ExpressionAPI(cls.cfg) cls.scratch = cls.cfg['scratch'] cls.callback_url = os.environ['SDK_CALLBACK_URL'] cls.dfu = DataFileUtil( cls.callback_url ) cls.ws_id = cls.dfu.ws_name_to_id(cls.wsName) cls.serviceWizardURL = cls.cfg['srv-wiz-url'] print "### serviceWizardURL = {0}".format( cls.serviceWizardURL ) cls.gaa = GenomeAnnotationAPI( cls.serviceWizardURL ) cls.setupdata() @classmethod def tearDownClass(cls): if hasattr(cls, 'wsName'): cls.wsClient.delete_workspace({'workspace': cls.wsName}) print('Test workspace was deleted') def getWsClient(self): return self.__class__.wsClient def getWsName(self): return self.__class__.wsName def getImpl(self): return self.__class__.serviceImpl def getContext(self): return self.__class__.ctx @classmethod def setupdata(cls): # # load genome first # genome_file_name = 'eFEM_test_genome.json' genome_file_path = os.path.join('data', genome_file_name) with open( genome_file_path ) as genome_file: genome = json.load( genome_file ) print "#### about to save genome" gen_info = cls.gaa.save_one_genome_v1( { 'workspace': cls.wsName, 'data': genome, 'name': 'at' } ).get('info') print "#### after save genome" cls.genome_ref = "{0}/{1}/{2}".format( gen_info[6], gen_info[0], gen_info[4] ) # Read DEM test object and save dem_file_name = "eFEM_test_dem.json" dem_file_path = os.path.join('data', dem_file_name) with open( dem_file_path ) as dem_file: dem = json.load( dem_file ) dem["genome_ref"] = cls.genome_ref dem_info = cls.dfu.save_objects( { 'id': cls.ws_id, 'objects': [ {'type': 'KBaseFeatureValues.DifferentialExpressionMatrix', 'data': dem, 'name': 'dem'} ] } )[0] cls.dem_ref = "{0}/{1}/{2}".format( dem_info[6], dem_info[0], dem_info[4] ) # Read FEM test object and save fem_file_name = "eFEM_test_fem.json" fem_file_path = os.path.join('data', fem_file_name) with open( fem_file_path ) as fem_file: fem = json.load( fem_file ) fem["genome_ref"] = cls.genome_ref # fem data should not have diff_expr_matrix_ref, so we'll save without first # Save without DEM provenance fem_info = cls.dfu.save_objects( { 'id': cls.ws_id, 'objects': [ {'type': 'KBaseFeatureValues.ExpressionMatrix', 'data': fem, 'name': 'fem_no_dem', 'extra_provenance_input_refs': [cls.dem_ref] } ] } )[0] cls.fem_no_dem_ref = "{0}/{1}/{2}".format( fem_info[6], fem_info[0], fem_info[4] ) # and now save WITH DEM rever fem["diff_expr_matrix_ref"] = cls.dem_ref fem_info = cls.dfu.save_objects( { 'id': cls.ws_id, 'objects': [ {'type': 'KBaseFeatureValues.ExpressionMatrix', 'data': fem, 'name': 'fem', 'extra_provenance_input_refs': [cls.dem_ref] } ] } )[0] cls.fem_dem_ref = "{0}/{1}/{2}".format( fem_info[6], fem_info[0], fem_info[4] ) def fc_and_q_columns_are_all_NA( self, efem ): for valrow in efem.get('data').get('values'): if ( valrow[1] != 'NA' or valrow[2] != 'NA' ): return( False ) return( True ) # NOTE: According to Python unittest naming rules test method names should start from 'test'. # noqa def get_enhancedFEM_tests( self ): print "### running enhanced FEM tests...." # this should succeed - good provenance link to DEM print "### testing good provenance...." ret = self.getImpl().get_enhancedFilteredExpressionMatrix( self.ctx, {'fem_object_ref': self.fem_dem_ref} ) self.assertFalse( self.fc_and_q_columns_are_all_NA( ret[0].get('enhanced_FEM' ) ) ) print "### ret is {0}".format( pformat( ret ) ) # this should succeed - no provenance link to DEM print "### testing, no provenance...." ret = self.getImpl().get_enhancedFilteredExpressionMatrix( self.ctx, {'fem_object_ref': self.fem_no_dem_ref} ) self.assertTrue( self.fc_and_q_columns_are_all_NA( ret[0].get('enhanced_FEM' ) ) ) print "### ret is {0}".format( pformat( ret ) ) # this should fail: the one input parameter is missing.. print "### fail check on missing parameter field...." with self.assertRaisesRegexp( ValueError, 'fem_object_ref parameter not given to get_enhancedFilteredExpressionMatrix' ): self.getImpl().get_enhancedFilteredExpressionMatrix( self.ctx, {'nope': 'nope'} ) print "### finished running enhanced FEM tests...."
43.707447
122
0.527808
794df82dd3aeaf3b0328c12ff1c62a20dc57517a
1,118
py
Python
aerolyzer/wavelength.py
Aerolyzer/Aerolyzer
f6152d79569c8d061b167a72c2f51860dcb605b6
[ "Apache-2.0" ]
9
2016-10-21T22:19:20.000Z
2017-12-04T05:05:36.000Z
aerolyzer/wavelength.py
liusop/Aerolyze
f6152d79569c8d061b167a72c2f51860dcb605b6
[ "Apache-2.0" ]
102
2016-10-21T11:01:35.000Z
2018-05-24T00:58:08.000Z
aerolyzer/wavelength.py
liusop/Aerolyze
f6152d79569c8d061b167a72c2f51860dcb605b6
[ "Apache-2.0" ]
14
2016-10-21T11:03:16.000Z
2017-11-24T21:32:02.000Z
import math import cv2 def comparisonArray(mode): img = cv2.imread('./images/Spectrum1pixel.png') bgr = [] hsv = [] i = 0 if mode == 0: while i < (img.shape[1]): bgr.append(img[0, i]) i += 1 return bgr else: hsvimg = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) while i < (hsvimg.shape[1]): hsv.append(hsvimg[0, i]) i += 1 return hsv def get_wavelength(abc, mode): a_diff = 0 b_diff = 0 c_diff = 0 dist = 0 best_dist = 2555 best = 0 i = 0 min_wavelength = 380 ValArray = comparisonArray(mode) while i < (len(ValArray) - 1): a_diff = math.fabs(int(ValArray[i][0]) - int(abc[0])) b_diff = math.fabs(int(ValArray[i][1]) - int(abc[1])) c_diff = math.fabs(int(ValArray[i][2]) - int(abc[2])) if mode == 1: a_diff = a_diff*6 dist = math.sqrt((a_diff*a_diff)+(b_diff*b_diff)+(c_diff*c_diff)) if dist < best_dist: best = i best_dist = dist i += 1 return float(best + min_wavelength)
24.844444
73
0.521467
794df84bfad1b34391903c579d151c9cbdf238df
261
py
Python
manage.py
varmarakesh/service-management
e448e60873dc4502edc39eb51e0e8d9d1832adf4
[ "BSD-3-Clause" ]
null
null
null
manage.py
varmarakesh/service-management
e448e60873dc4502edc39eb51e0e8d9d1832adf4
[ "BSD-3-Clause" ]
null
null
null
manage.py
varmarakesh/service-management
e448e60873dc4502edc39eb51e0e8d9d1832adf4
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "service-management.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
23.727273
82
0.777778
794df8b5a0f2e64e5105c0b26d58bee0895cbc5b
4,050
py
Python
scripts/generate_song_data_beam.py
gmittal/symbolic-music-diffusion
84128ca038fb8757cc6ce15af04b445299f60f99
[ "Apache-2.0" ]
45
2021-03-05T22:29:31.000Z
2022-03-26T18:11:58.000Z
scripts/generate_song_data_beam.py
gmittal/symbolic-music-diffusion
84128ca038fb8757cc6ce15af04b445299f60f99
[ "Apache-2.0" ]
1
2021-12-07T01:37:30.000Z
2021-12-07T01:37:30.000Z
scripts/generate_song_data_beam.py
gmittal/symbolic-music-diffusion
84128ca038fb8757cc6ce15af04b445299f60f99
[ "Apache-2.0" ]
7
2021-04-03T12:09:36.000Z
2022-02-11T17:07:31.000Z
# Copyright 2021 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 r"""Dataset generation.""" import pickle from absl import app from absl import flags from absl import logging import apache_beam as beam from apache_beam.metrics import Metrics from magenta.models.music_vae import TrainedModel import note_seq from .. import config from ../utils/ import song_utils FLAGS = flags.FLAGS flags.DEFINE_string( 'pipeline_options', '--runner=DirectRunner', 'Command line flags to use in constructing the Beam pipeline options.') # Model flags.DEFINE_string('model', 'melody-2-big', 'Model configuration.') flags.DEFINE_string('checkpoint', 'fb512_0trackmin/model.ckpt-99967', 'Model checkpoint.') # Data transformation flags.DEFINE_enum('mode', 'melody', ['melody', 'multitrack'], 'Data generation mode.') flags.DEFINE_string('input', None, 'Path to tfrecord files.') flags.DEFINE_string('output', None, 'Output path.') class EncodeSong(beam.DoFn): """Encode song into MusicVAE embeddings.""" def setup(self): logging.info('Loading pre-trained model %s', FLAGS.model) self.model_config = config.MUSIC_VAE_CONFIG[FLAGS.model] self.model = TrainedModel(self.model_config, batch_size=1, checkpoint_dir_or_path=FLAGS.checkpoint) def process(self, ns): logging.info('Processing %s::%s (%f)', ns.id, ns.filename, ns.total_time) if ns.total_time > 60 * 60: logging.info('Skipping notesequence with >1 hour duration') Metrics.counter('EncodeSong', 'skipped_long_song').inc() return Metrics.counter('EncodeSong', 'encoding_song').inc() if FLAGS.mode == 'melody': chunk_length = 2 melodies = song_utils.extract_melodies(ns) if not melodies: Metrics.counter('EncodeSong', 'extracted_no_melodies').inc() return Metrics.counter('EncodeSong', 'extracted_melody').inc(len(melodies)) songs = [ song_utils.Song(melody, self.model_config.data_converter, chunk_length) for melody in melodies ] encoding_matrices = song_utils.encode_songs(self.model, songs) elif FLAGS.mode == 'multitrack': chunk_length = 1 song = song_utils.Song(ns, self.model_config.data_converter, chunk_length, multitrack=True) encoding_matrices = song_utils.encode_songs(self.model, [song]) else: raise ValueError(f'Unsupported mode: {FLAGS.mode}') for matrix in encoding_matrices: assert matrix.shape[0] == 3 and matrix.shape[-1] == 512 if matrix.shape[1] == 0: Metrics.counter('EncodeSong', 'skipped_matrix').inc() continue Metrics.counter('EncodeSong', 'encoded_matrix').inc() yield pickle.dumps(matrix) def main(argv): del argv # unused pipeline_options = beam.options.pipeline_options.PipelineOptions( FLAGS.pipeline_options.split(',')) with beam.Pipeline(options=pipeline_options) as p: p |= 'tfrecord_list' >> beam.Create(FLAGS.input) p |= 'read_tfrecord' >> beam.io.tfrecordio.ReadAllFromTFRecord( coder=beam.coders.ProtoCoder(note_seq.NoteSequence)) p |= 'shuffle_input' >> beam.Reshuffle() p |= 'encode_song' >> beam.ParDo(EncodeSong()) p |= 'shuffle_output' >> beam.Reshuffle() p |= 'write' >> beam.io.WriteToTFRecord(FLAGS.output) if __name__ == '__main__': app.run(main)
34.615385
77
0.676296
794dfa0ae6d7a645dc9c59750690f6c76d749ad8
642
py
Python
ext/flask_dapr/flask_dapr/__init__.py
willtsai/python-sdk
7de59720cd30e02a5fa2a90fb43eb5bb93c0f63e
[ "Apache-2.0" ]
125
2019-10-16T17:57:22.000Z
2022-03-08T09:16:01.000Z
ext/flask_dapr/flask_dapr/__init__.py
willtsai/python-sdk
7de59720cd30e02a5fa2a90fb43eb5bb93c0f63e
[ "Apache-2.0" ]
319
2019-10-17T13:49:23.000Z
2022-03-31T19:32:53.000Z
ext/flask_dapr/flask_dapr/__init__.py
willtsai/python-sdk
7de59720cd30e02a5fa2a90fb43eb5bb93c0f63e
[ "Apache-2.0" ]
69
2019-10-23T23:22:56.000Z
2022-03-16T13:27:17.000Z
# -*- coding: utf-8 -*- """ Copyright 2021 The Dapr Authors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from .actor import DaprActor __all__ = ['DaprActor']
33.789474
72
0.767913
794dfa19273e7d19aacc49c6dc4f158cf986389a
6,132
py
Python
tictactoe/ConnectN.py
piotrbazan/deep-reinforcement-learning
165ab29a1d85630b7baa7ccb31a1ab91cd0c6413
[ "MIT" ]
null
null
null
tictactoe/ConnectN.py
piotrbazan/deep-reinforcement-learning
165ab29a1d85630b7baa7ccb31a1ab91cd0c6413
[ "MIT" ]
null
null
null
tictactoe/ConnectN.py
piotrbazan/deep-reinforcement-learning
165ab29a1d85630b7baa7ccb31a1ab91cd0c6413
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.animation as animation from copy import copy # output the index of when v has a continuous string of i # get_runs([0,0,1,1,1,0,0],1) gives [2],[5],[3] def get_runs(v, i): bounded = np.hstack(([0], (v == i).astype(int), [0])) difs = np.diff(bounded) starts, = np.where(difs > 0) ends, = np.where(difs < 0) return starts, ends, ends - starts # see if vector contains N of certain number in a row def in_a_row(v, N, i): if len(v) < N: return False else: _, _, total = get_runs(v, i) return np.any(total >= N) def get_lines(matrix, loc): i, j = loc flat = matrix.reshape(-1, *matrix.shape[2:]) w = matrix.shape[0] h = matrix.shape[1] def flat_pos(pos): return pos[0] * h + pos[1] pos = flat_pos((i, j)) # index for flipping matrix across different axis ic = w - 1 - i jc = h - 1 - j # top left tl = (i - j, 0) if i > j else (0, j - i) tl = flat_pos(tl) # bottom left bl = (w - 1 - (ic - j), 0) if ic > j else (w - 1, j - ic) bl = flat_pos(bl) # top right tr = (i - jc, h - 1) if i > jc else (0, h - 1 - (jc - i)) tr = flat_pos(tr) # bottom right br = (w - 1 - (ic - jc), h - 1) if ic > jc else (w - 1, h - 1 - (jc - ic)) br = flat_pos(br) hor = matrix[:, j] ver = matrix[i, :] diag_right = np.concatenate([flat[tl:pos:h + 1], flat[pos:br + 1:h + 1]]) diag_left = np.concatenate([flat[tr:pos:h - 1], flat[pos:bl + 1:h - 1]]) return hor, ver, diag_right, diag_left class ConnectN: def __init__(self, size, N, pie_rule=False): self.size = size self.w, self.h = size self.N = N # make sure game is well defined if self.w < 0 or self.h < 0 or self.N < 2 or \ (self.N > self.w and self.N > self.h): raise ValueError('Game cannot initialize with a {0:d}x{1:d} grid, and winning condition {2:d} in a row'.format(self.w, self.h, self.N)) self.score = None self.state = np.zeros(size, dtype=np.float) self.player = 1 self.last_move = None self.n_moves = 0 self.pie_rule = pie_rule self.switched_side = False # fast deepcopy def __copy__(self): cls = self.__class__ new_game = cls.__new__(cls) new_game.__dict__.update(self.__dict__) new_game.N = self.N new_game.pie_rule = self.pie_rule new_game.state = self.state.copy() new_game.switched_side = self.switched_side new_game.n_moves = self.n_moves new_game.last_move = self.last_move new_game.player = self.player new_game.score = self.score return new_game # check victory condition # fast version def get_score(self): if self.n_moves < 2 * self.N - 1: return None i, j = self.last_move hor, ver, diag_right, diag_left = get_lines(self.state, (i, j)) # loop over each possibility for line in [ver, hor, diag_right, diag_left]: if in_a_row(line, self.N, self.player): return self.player # no more moves if np.all(self.state != 0): return 0 return None # for rendering # output a list of location for the winning line def get_winning_loc(self): if self.n_moves < 2 * self.N - 1: return [] loc = self.last_move hor, ver, diag_right, diag_left = get_lines(self.state, loc) ind = np.indices(self.state.shape) ind = np.moveaxis(ind, 0, -1) hor_ind, ver_ind, diag_right_ind, diag_left_ind = get_lines(ind, loc) # loop over each possibility pieces = [hor, ver, diag_right, diag_left] indices = [hor_ind, ver_ind, diag_right_ind, diag_left_ind] # winning_loc = np.full(self.state.shape, False, dtype=bool) for line, index in zip(pieces, indices): starts, ends, runs = get_runs(line, self.player) # get the start and end location winning = (runs >= self.N) print(winning) if not np.any(winning): continue starts_ind = starts[winning][0] ends_ind = ends[winning][0] indices = index[starts_ind:ends_ind] # winning_loc[indices[:,0], indices[:,1]] = True return indices return [] def move(self, loc): i, j = loc success = False if self.w > i >= 0 and self.h > j >= 0: if self.state[i, j] == 0: # make a move self.state[i, j] = self.player # if pie rule is enabled if self.pie_rule: if self.n_moves == 1: self.state[tuple(self.last_move)] = -self.player self.switched_side = False elif self.n_moves == 0: # pie rule, make first move 0.5 # this is to let the neural net know self.state[i, j] = self.player / 2.0 self.switched_side = False success = True # switching side elif self.pie_rule and self.state[i, j] == -self.player / 2.0: # make a move self.state[i, j] = self.player self.switched_side = True success = True if success: self.n_moves += 1 self.last_move = tuple((i, j)) self.score = self.get_score() # if game is not over, switch player if self.score is None: self.player *= -1 return True return False def available_moves(self): indices = np.moveaxis(np.indices(self.state.shape), 0, -1) return indices[np.abs(self.state) != 1] def available_mask(self): return (np.abs(self.state) != 1).astype(np.uint8)
28.924528
147
0.540607
794dfad980eb872c97a98fad475a601e299996c1
5,735
py
Python
animations/weightless-morning.py
TristanCacqueray/demo-render
4c8403e684165e5e75c046ee023c1f794a6650a8
[ "Apache-2.0" ]
9
2018-02-19T14:17:12.000Z
2021-03-27T14:46:28.000Z
animations/weightless-morning.py
TristanCacqueray/demo-render
4c8403e684165e5e75c046ee023c1f794a6650a8
[ "Apache-2.0" ]
null
null
null
animations/weightless-morning.py
TristanCacqueray/demo-render
4c8403e684165e5e75c046ee023c1f794a6650a8
[ "Apache-2.0" ]
null
null
null
#!/bin/env python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import yaml from utils.animation import Animation, run_main from utils.audio import SpectroGram, AudioMod from utils.midi import MidiMod p = """ formula: | z.imag = fabs(z.imag); z = cdouble_powr(z, mod); z = cdouble_add(z, c); z = cdouble_log(z); kernel: mean-distance kernel_params: "double mod" kernel_params_mod: - mod mod: 1 xyinverted: True c_imag: -3 c_real: -0.6104166666666669 center_imag: -1.42 # 3.0464596218532987 grad_freq: 2 i_step: 0.3 julia: true map_radius: 3.59375 r_step: 0.003 radius: 6.65 # 17.136335372924805 max_iter: 50 gradient: Sunrise.ggr """ class Demo(Animation): def __init__(self): self.scenes = [ [8116, None], [7529, self.zoomout], [6589, self.ending], [5647, self.verse5], [5176, self.verse4], [4706, self.reloc], [3764, self.tr1], [2823, self.verse3], [1882, self.verse2], [940, self.verse1], [0, self.intro], ] super().__init__(yaml.load(p)) def setMidi(self, midi, midi_skip): self.midi = midi self.midi_skip = 235 self.midi_events = { "waldo": MidiMod("waldo A61", mod="one-off"), #, decay=2), "guitar": MidiMod("andy 084", mod="one-off"), "bell": MidiMod("vti twinkle", mod="one-off"), "violon": MidiMod("vti violon", mod="one-off"), "tb": MidiMod("tracebackbass"), "kick": MidiMod(["kick", 'Copy of kick'], mod="one-off"), "bass": MidiMod(" andy low 084", mod="one-off"), } def zoomout(self, frame): if self.scene_init: self.rad_mod = self.logspace(self.params["radius"], 160) self.params["radius"] = self.rad_mod[self.scene_pos] self.params["c_real"] += 1e-4 * self.bell self.params["mod"] -= 1e-4 * self.bell def ending(self, frame): self.params["c_real"] += 1e-4 * self.bell self.params["c_imag"] -= 1e-3 * self.bass # self.params["grad_freq"] -= 5e-3 * self.guitar self.params["mod"] -= 8e-5 * self.bell # self.params["radius"] += self.params["radius"] / 100 * self.bass self.params["grad_freq"] -= 1e-2 * self.bass def verse5(self, frame): if self.scene_init: self.rad_mod = self.logspace( self.params["radius"], 9.26971435546875) self.params["radius"] = self.rad_mod[self.scene_pos] # self.params["c_real"] -= 2e-4 * self.waldo # self.params["c_imag"] += 2e-4 * self.bell # self.params["mod"] -= 4e-4 * self.bass self.params["c_real"] -= 1e-4 * self.bell self.params["c_imag"] += 1e-3 * self.bass # self.params["grad_freq"] -= 5e-3 * self.guitar self.params["mod"] -= 1e-4 * self.waldo # self.params["radius"] += self.params["radius"] / 100 * self.bass self.params["grad_freq"] += 1e-3 * self.bass def verse4(self, frame): if self.scene_init: self.rad_mod = self.logspace(self.params["radius"], 149) # self.params["radius"] = self.rad_mod[self.scene_pos] self.params["c_real"] += 2e-4 * self.waldo self.params["c_imag"] -= 2e-4 * self.bell self.params["mod"] += 4e-4 * self.bass self.params["grad_freq"] -= 1e-2 * self.waldo def reloc(self, frame): if self.scene_init: self.rad_mod = self.logspace(self.params["radius"], 16) self.center_mod = self.linspace(self.params["center_imag"], -1.36) self.params["radius"] = self.rad_mod[self.scene_pos] self.params["center_imag"] = self.center_mod[self.scene_pos] self.params["c_real"] += 2e-4 * self.bell self.params["c_imag"] += 1e-3 * self.kick # self.params["mod"] -= 1e-4 * self.bell self.params["grad_freq"] += 2e-2 * self.kick def tr1(self, frame): self.params["c_imag"] += 5e-4 * self.waldo self.params["mod"] += 5e-5 * self.bell # self.params["radius"] -= self.params["radius"] / 80 * self.kick self.params["grad_freq"] -= 5e-3 * self.kick def verse3(self, frame): self.params["c_imag"] -= 8e-4 * self.kick self.params["c_real"] += 2e-4 * self.guitar #self.params["radius"] -= self.params["radius"] / 100 * self.bell #self.params["mod"] += 1e-5 * self.bell self.params["grad_freq"] += 1e-3 * self.bass def verse2(self, frame): self.params["c_imag"] += 8e-4 * self.kick self.params["c_real"] -= 3e-4 * self.guitar self.params["radius"] += self.params["radius"] / 300 * self.waldo self.params["grad_freq"] -= 1e-3 * self.bass def verse1(self, frame): self.params["c_imag"] += 1e-4 * self.waldo self.params["c_real"] -= 1e-4 * self.bell self.params["grad_freq"] += 4e-3 * self.violon self.params["mod"] += 1e-5 * self.tb def intro(self, frame): self.params["c_imag"] += 1e-4 * self.waldo self.params["c_real"] -= 1e-4 * self.bell self.params["grad_freq"] += 4e-3 * self.violon if __name__ == "__main__": run_main(Demo())
35.621118
78
0.587097
794dfd480d3c2dd684a0f8be99bd43b790e8aa49
19,141
py
Python
uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpp2pegresslsps_1581d5bc15266f4f3d71f22c869262cd.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpp2pegresslsps_1581d5bc15266f4f3d71f22c869262cd.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
uhd_restpy/testplatform/sessions/ixnetwork/topology/rsvpp2pegresslsps_1581d5bc15266f4f3d71f22c869262cd.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files from typing import List, Any, Union class RsvpP2PEgressLsps(Base): """RSVP-TE p2p Tail (Egress) LSPs The RsvpP2PEgressLsps class encapsulates a required rsvpP2PEgressLsps resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'rsvpP2PEgressLsps' _SDM_ATT_MAP = { 'Active': 'active', 'Count': 'count', 'DescriptiveName': 'descriptiveName', 'EnableFixedLabelForReservations': 'enableFixedLabelForReservations', 'EnableReplyingLspPing': 'enableReplyingLspPing', 'EndPointIpv6': 'endPointIpv6', 'ForwardLspSelfPing': 'forwardLspSelfPing', 'InitialLspSelfPingDropCount': 'initialLspSelfPingDropCount', 'IpTTLDecrementCount': 'ipTTLDecrementCount', 'LabelValue': 'labelValue', 'LocalIp': 'localIp', 'LspSelfPingIPDSCP': 'lspSelfPingIPDSCP', 'Name': 'name', 'NumberOfRroSubObjects': 'numberOfRroSubObjects', 'ReflectRro': 'reflectRro', 'RefreshInterval': 'refreshInterval', 'ReservationStyle': 'reservationStyle', 'RetainLspSelfPingDSCP': 'retainLspSelfPingDSCP', 'SendReservationConfirmation': 'sendReservationConfirmation', 'State': 'state', 'TimeoutMultiplier': 'timeoutMultiplier', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(RsvpP2PEgressLsps, self).__init__(parent, list_op) @property def RsvpRROSubObjectsList(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.rsvprrosubobjectslist_77057ceebebb20e47d2ca898582fad61.RsvpRROSubObjectsList): An instance of the RsvpRROSubObjectsList class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.topology.rsvprrosubobjectslist_77057ceebebb20e47d2ca898582fad61 import RsvpRROSubObjectsList if self._properties.get('RsvpRROSubObjectsList', None) is not None: return self._properties.get('RsvpRROSubObjectsList') else: return RsvpRROSubObjectsList(self) @property def Tag(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.tag_e30f24de79247381d4dfd423b2f6986d.Tag): An instance of the Tag class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.topology.tag_e30f24de79247381d4dfd423b2f6986d import Tag if self._properties.get('Tag', None) is not None: return self._properties.get('Tag') else: return Tag(self) @property def Active(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration. """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active'])) @property def Count(self): # type: () -> int """ Returns ------- - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. """ return self._get_attribute(self._SDM_ATT_MAP['Count']) @property def DescriptiveName(self): # type: () -> str """ Returns ------- - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. """ return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName']) @property def EnableFixedLabelForReservations(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Fixed Label For Reservations """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableFixedLabelForReservations'])) @property def EnableReplyingLspPing(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Replying To Lsp Ping """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EnableReplyingLspPing'])) @property def EndPointIpv6(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Destination IPv6 """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['EndPointIpv6'])) @property def ForwardLspSelfPing(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Forward LSP Self Ping """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ForwardLspSelfPing'])) @property def InitialLspSelfPingDropCount(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Initial LSP Self Ping Drop Count. Number of times Egress LSP will drop LSP Self Ping Message before forwarding it back. """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['InitialLspSelfPingDropCount'])) @property def IpTTLDecrementCount(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IP TTL Decrement Count. IP TTL limits the lifespan or lifetime of IP Packet in a network. """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['IpTTLDecrementCount'])) @property def LabelValue(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Label Value """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['LabelValue'])) @property def LocalIp(self): # type: () -> List[str] """ Returns ------- - list(str): Local IP """ return self._get_attribute(self._SDM_ATT_MAP['LocalIp']) @property def LspSelfPingIPDSCP(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): LSP Self Ping IP DSCP. IP DSCP classifies the way an IP packet is routed in a network. """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['LspSelfPingIPDSCP'])) @property def Name(self): # type: () -> str """ Returns ------- - str: Name of NGPF element, guaranteed to be unique in Scenario """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def NumberOfRroSubObjects(self): # type: () -> int """ Returns ------- - number: Number Of RRO Sub-Objects """ return self._get_attribute(self._SDM_ATT_MAP['NumberOfRroSubObjects']) @NumberOfRroSubObjects.setter def NumberOfRroSubObjects(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['NumberOfRroSubObjects'], value) @property def ReflectRro(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Reflect RRO """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ReflectRro'])) @property def RefreshInterval(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Refresh Interval (ms) """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RefreshInterval'])) @property def ReservationStyle(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Reservation Style """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ReservationStyle'])) @property def RetainLspSelfPingDSCP(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Retain LSP Self Ping DSCP """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RetainLspSelfPingDSCP'])) @property def SendReservationConfirmation(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Send Reservation Confirmation """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['SendReservationConfirmation'])) @property def State(self): # type: () -> List[str] """ Returns ------- - list(str[down | none | notStarted | up]): State """ return self._get_attribute(self._SDM_ATT_MAP['State']) @property def TimeoutMultiplier(self): # type: () -> 'Multivalue' """ Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Timeout Multiplier """ from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['TimeoutMultiplier'])) def update(self, Name=None, NumberOfRroSubObjects=None): # type: (str, int) -> RsvpP2PEgressLsps """Updates rsvpP2PEgressLsps resource on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args ---- - Name (str): Name of NGPF element, guaranteed to be unique in Scenario - NumberOfRroSubObjects (number): Number Of RRO Sub-Objects Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def Start(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the start operation on the server. Activate/Enable selected Tunnel Tail Ranges The IxNetwork model allows for multiple method Signatures with the same name while python does not. start(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(SessionIndices=list, async_operation=bool) ------------------------------------------------ - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(SessionIndices=string, async_operation=bool) -------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(Arg2=list, async_operation=bool)list ------------------------------------------ - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def Stop(self, *args, **kwargs): # type: (*Any, **Any) -> Union[List[str], None] """Executes the stop operation on the server. Deactivate/Disable selected Tunnel Tail Ranges The IxNetwork model allows for multiple method Signatures with the same name while python does not. stop(async_operation=bool) -------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(SessionIndices=list, async_operation=bool) ----------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(SessionIndices=string, async_operation=bool) ------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(Arg2=list, async_operation=bool)list ----------------------------------------- - Arg2 (list(number)): List of indices into the protocol plugin. An empty list indicates all instances in the plugin. - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. - Returns list(str): ID to associate each async action invocation Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stop', payload=payload, response_object=None) def get_device_ids(self, PortNames=None, Active=None, EnableFixedLabelForReservations=None, EnableReplyingLspPing=None, EndPointIpv6=None, ForwardLspSelfPing=None, InitialLspSelfPingDropCount=None, IpTTLDecrementCount=None, LabelValue=None, LspSelfPingIPDSCP=None, ReflectRro=None, RefreshInterval=None, ReservationStyle=None, RetainLspSelfPingDSCP=None, SendReservationConfirmation=None, TimeoutMultiplier=None): """Base class infrastructure that gets a list of rsvpP2PEgressLsps device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args ---- - PortNames (str): optional regex of port names - Active (str): optional regex of active - EnableFixedLabelForReservations (str): optional regex of enableFixedLabelForReservations - EnableReplyingLspPing (str): optional regex of enableReplyingLspPing - EndPointIpv6 (str): optional regex of endPointIpv6 - ForwardLspSelfPing (str): optional regex of forwardLspSelfPing - InitialLspSelfPingDropCount (str): optional regex of initialLspSelfPingDropCount - IpTTLDecrementCount (str): optional regex of ipTTLDecrementCount - LabelValue (str): optional regex of labelValue - LspSelfPingIPDSCP (str): optional regex of lspSelfPingIPDSCP - ReflectRro (str): optional regex of reflectRro - RefreshInterval (str): optional regex of refreshInterval - ReservationStyle (str): optional regex of reservationStyle - RetainLspSelfPingDSCP (str): optional regex of retainLspSelfPingDSCP - SendReservationConfirmation (str): optional regex of sendReservationConfirmation - TimeoutMultiplier (str): optional regex of timeoutMultiplier Returns ------- - list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals())
41.884026
417
0.650227
794dfd861362919b04138dabc98bd56ba5f8e611
4,439
py
Python
pyleecan/Generator/ClassGenerator/copy_method_generator.py
Eomys/Pyleecan
4d7f0cbabf0311006963e7a2f435db2ecd901118
[ "Apache-2.0" ]
4
2017-11-27T10:14:34.000Z
2018-09-20T11:30:32.000Z
pyleecan/Generator/ClassGenerator/copy_method_generator.py
Eomys/Pyleecan
4d7f0cbabf0311006963e7a2f435db2ecd901118
[ "Apache-2.0" ]
null
null
null
pyleecan/Generator/ClassGenerator/copy_method_generator.py
Eomys/Pyleecan
4d7f0cbabf0311006963e7a2f435db2ecd901118
[ "Apache-2.0" ]
null
null
null
from ...Generator import PYTHON_TYPE, TAB, TAB2, TAB3, TAB4, TAB5, TAB6, TAB7 from ...Generator.read_fct import is_list_pyleecan_type, is_dict_pyleecan_type from ...Generator.ClassGenerator.init_method_generator import get_mother_attr T1 = "\n" + TAB T2 = "\n" + TAB2 T3 = "\n" + TAB3 T4 = "\n" + TAB4 T5 = "\n" + TAB5 T6 = "\n" + TAB6 T7 = "\n" + TAB7 def generate_copy(gen_dict, class_dict): """Generate the code for the copy method of the class Parameters ---------- gen_dict : dict Dict with key = class name and value = class dict (name, package, properties, methods...) class_dict : dict dictionary of the class to generate (keys are name, package, properties, methods...) Returns ------- copy_str : str String containing the code for the copy method of the class """ # Load all the properties including mother ones (all_properties, mother_prop_list) = get_mother_attr( gen_dict, class_dict, "properties" ) var_str = "" # For the copy code of each property for prop_dict in all_properties: prop = prop_dict["name"] prop_type = prop_dict["type"] if "as_dict" in prop_dict and prop_dict["as_dict"] == "1": # Property set to None both in as_dict and copy var_str += T2 + prop + "_val = None" elif "as_dict" in prop_dict and prop_dict["as_dict"] == "2": # Property set to None in as_dict and pointer in copy var_str += T2 + prop + "_val = self." + prop elif prop_type in list(set(PYTHON_TYPE) - set(["dict", "list"])): var_str += T2 + prop + "_val = self." + prop elif prop_type in ["ndarray", "list", "dict"]: var_str += T2 + "if self." + prop + " is None:" var_str += T3 + prop + "_val = None" var_str += T2 + "else:" var_str += T3 + prop + "_val = self." + prop + ".copy()" elif prop_type in ["[ndarray]", "{ndarray}"]: var_str += T2 + "if self." + prop + " is None:" var_str += T3 + prop + "_val = None" var_str += T2 + "else:" var_str += T3 + prop + "_val = deepcopy(self." + prop + ")" elif prop_type in [None, ""]: var_str += T2 + "if hasattr(self." + prop + ", 'copy'):" var_str += T3 + prop + "_val = self." + prop + ".copy()" var_str += T2 + "else:" var_str += T3 + prop + "_val = self." + prop elif is_list_pyleecan_type(prop_type): var_str += T2 + "if self." + prop + " is None:" var_str += T3 + prop + "_val = None" var_str += T2 + "else:" var_str += T3 + prop + "_val = list()" var_str += T3 + "for obj in self." + prop + ":" var_str += T4 + prop + "_val.append(obj.copy())" elif is_dict_pyleecan_type(prop_type): var_str += T2 + "if self." + prop + " is None:" var_str += T3 + prop + "_val = None" var_str += T2 + "else:" var_str += T3 + prop + "_val = dict()" var_str += T3 + "for key, obj in self." + prop + ".items():" var_str += T4 + prop + "_val[key] = obj.copy()" elif prop_type == "function": var_str += T2 + "if self._" + prop + "_str is not None:" var_str += T3 + prop + "_val = self._" + prop + "_str" var_str += T2 + "else:" var_str += T3 + prop + "_val = self._" + prop + "_func" else: # SciDataTool or pyleecan type var_str += T2 + "if self." + prop + " is None:" var_str += T3 + prop + "_val = None" var_str += T2 + "else:" var_str += T3 + prop + "_val = self." + prop + ".copy()" # Code generation copy_str = "" # This string is for the all generated code copy_str += T1 + "def copy(self):" copy_str += T2 + '"""Creates a deepcopy of the object"""\n' copy_str += T2 + "# Handle deepcopy of all the properties" copy_str += var_str copy_str += T2 + "# Creates new object of the same type with the copied properties" copy_str += T2 + "obj_copy = type(self)(" for prop_dict in all_properties: copy_str += prop_dict["name"] + "=" + prop_dict["name"] + "_val," if len(all_properties) > 0: copy_str = copy_str[:-1] # Remove last comma copy_str += ")" copy_str += T2 + "return obj_copy\n" return copy_str
42.682692
97
0.54269
794dfe460a8651ddbc409f6842f828dc1eb2785c
18,151
py
Python
saleor/settings.py
dkramskoj/saleor
5be092eeee4ead8d697863adae8911d3c2c4e52d
[ "CC-BY-4.0" ]
null
null
null
saleor/settings.py
dkramskoj/saleor
5be092eeee4ead8d697863adae8911d3c2c4e52d
[ "CC-BY-4.0" ]
9
2021-03-19T03:41:18.000Z
2022-03-12T00:43:39.000Z
saleor/settings.py
dkramskoj/saleor
5be092eeee4ead8d697863adae8911d3c2c4e52d
[ "CC-BY-4.0" ]
null
null
null
import ast import os.path import warnings from datetime import timedelta import dj_database_url import dj_email_url import django_cache_url import jaeger_client import jaeger_client.config import sentry_sdk from django.core.exceptions import ImproperlyConfigured from django.core.management.utils import get_random_secret_key from django_prices.utils.formatting import get_currency_fraction from sentry_sdk.integrations.celery import CeleryIntegration from sentry_sdk.integrations.django import DjangoIntegration def get_list(text): return [item.strip() for item in text.split(",")] def get_bool_from_env(name, default_value): if name in os.environ: value = os.environ[name] try: return ast.literal_eval(value) except ValueError as e: raise ValueError("{} is an invalid value for {}".format(value, name)) from e return default_value DEBUG = get_bool_from_env("DEBUG", True) SITE_ID = 1 PROJECT_ROOT = os.path.normpath(os.path.join(os.path.dirname(__file__), "..")) ROOT_URLCONF = "saleor.urls" WSGI_APPLICATION = "saleor.wsgi.application" ADMINS = ( ("saleor", "saleor") ) MANAGERS = ADMINS _DEFAULT_CLIENT_HOSTS = "localhost,127.0.0.1" ALLOWED_CLIENT_HOSTS = os.environ.get("ALLOWED_CLIENT_HOSTS") if not ALLOWED_CLIENT_HOSTS: if DEBUG: ALLOWED_CLIENT_HOSTS = _DEFAULT_CLIENT_HOSTS else: raise ImproperlyConfigured( "ALLOWED_CLIENT_HOSTS environment variable must be set when DEBUG=False." ) ALLOWED_CLIENT_HOSTS = get_list(ALLOWED_CLIENT_HOSTS) INTERNAL_IPS = get_list(os.environ.get("INTERNAL_IPS", "127.0.0.1")) DATABASES = { "default": dj_database_url.config( default="postgres://saleor:saleor@localhost:5432/saleor", conn_max_age=600 ) } TIME_ZONE = "America/Chicago" LANGUAGE_CODE = "en" LANGUAGES = [ ("ar", "Arabic"), ("az", "Azerbaijani"), ("bg", "Bulgarian"), ("bn", "Bengali"), ("ca", "Catalan"), ("cs", "Czech"), ("da", "Danish"), ("de", "German"), ("el", "Greek"), ("en", "English"), ("es", "Spanish"), ("es-co", "Colombian Spanish"), ("et", "Estonian"), ("fa", "Persian"), ("fi", "Finnish"), ("fr", "French"), ("hi", "Hindi"), ("hu", "Hungarian"), ("hy", "Armenian"), ("id", "Indonesian"), ("is", "Icelandic"), ("it", "Italian"), ("ja", "Japanese"), ("ko", "Korean"), ("lt", "Lithuanian"), ("mn", "Mongolian"), ("nb", "Norwegian"), ("nl", "Dutch"), ("pl", "Polish"), ("pt", "Portuguese"), ("pt-br", "Brazilian Portuguese"), ("ro", "Romanian"), ("ru", "Russian"), ("sk", "Slovak"), ("sl", "Slovenian"), ("sq", "Albanian"), ("sr", "Serbian"), ("sv", "Swedish"), ("sw", "Swahili"), ("th", "Thai"), ("tr", "Turkish"), ("uk", "Ukrainian"), ("vi", "Vietnamese"), ("zh-hans", "Simplified Chinese"), ("zh-hant", "Traditional Chinese"), ] LOCALE_PATHS = [os.path.join(PROJECT_ROOT, "locale")] USE_I18N = True USE_L10N = True USE_TZ = True FORM_RENDERER = "django.forms.renderers.TemplatesSetting" EMAIL_URL = os.environ.get("EMAIL_URL") SENDGRID_USERNAME = os.environ.get("SENDGRID_USERNAME") SENDGRID_PASSWORD = os.environ.get("SENDGRID_PASSWORD") if not EMAIL_URL and SENDGRID_USERNAME and SENDGRID_PASSWORD: EMAIL_URL = "smtp://%s:%s@smtp.sendgrid.net:587/?tls=True" % ( SENDGRID_USERNAME, SENDGRID_PASSWORD, ) email_config = dj_email_url.parse( EMAIL_URL or "console://demo@example.com:console@example/" ) EMAIL_FILE_PATH = email_config["EMAIL_FILE_PATH"] EMAIL_HOST_USER = email_config["EMAIL_HOST_USER"] EMAIL_HOST_PASSWORD = email_config["EMAIL_HOST_PASSWORD"] EMAIL_HOST = email_config["EMAIL_HOST"] EMAIL_PORT = email_config["EMAIL_PORT"] EMAIL_BACKEND = email_config["EMAIL_BACKEND"] EMAIL_USE_TLS = email_config["EMAIL_USE_TLS"] EMAIL_USE_SSL = email_config["EMAIL_USE_SSL"] # If enabled, make sure you have set proper storefront address in ALLOWED_CLIENT_HOSTS. ENABLE_ACCOUNT_CONFIRMATION_BY_EMAIL = get_bool_from_env( "ENABLE_ACCOUNT_CONFIRMATION_BY_EMAIL", True ) ENABLE_SSL = get_bool_from_env("ENABLE_SSL", False) if ENABLE_SSL: SECURE_SSL_REDIRECT = not DEBUG DEFAULT_FROM_EMAIL = os.environ.get("DEFAULT_FROM_EMAIL", EMAIL_HOST_USER) MEDIA_ROOT = os.path.join(PROJECT_ROOT, "media") MEDIA_URL = os.environ.get("MEDIA_URL", "/media/") STATIC_ROOT = os.path.join(PROJECT_ROOT, "static") STATIC_URL = os.environ.get("STATIC_URL", "/static/") STATICFILES_DIRS = [ ("images", os.path.join(PROJECT_ROOT, "saleor", "static", "images")) ] STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] context_processors = [ "django.template.context_processors.debug", "django.template.context_processors.media", "django.template.context_processors.static", "saleor.site.context_processors.site", ] loaders = [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ] TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [os.path.join(PROJECT_ROOT, "templates")], "OPTIONS": { "debug": DEBUG, "context_processors": context_processors, "loaders": loaders, "string_if_invalid": '<< MISSING VARIABLE "%s" >>' if DEBUG else "", }, } ] # Make this unique, and don't share it with anybody. SECRET_KEY = os.environ.get("SECRET_KEY") if not SECRET_KEY and DEBUG: warnings.warn("SECRET_KEY not configured, using a random temporary key.") SECRET_KEY = get_random_secret_key() MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.middleware.common.CommonMiddleware", "saleor.core.middleware.request_time", "saleor.core.middleware.discounts", "saleor.core.middleware.google_analytics", "saleor.core.middleware.country", "saleor.core.middleware.currency", "saleor.core.middleware.site", "saleor.core.middleware.plugins", ] INSTALLED_APPS = [ # External apps that need to go before django's "storages", # Django modules "django.contrib.contenttypes", "django.contrib.sites", "django.contrib.staticfiles", "django.contrib.auth", "django.contrib.postgres", # Local apps "saleor.plugins", "saleor.account", "saleor.discount", "saleor.giftcard", "saleor.product", "saleor.checkout", "saleor.core", "saleor.graphql", "saleor.menu", "saleor.order", "saleor.seo", "saleor.shipping", "saleor.search", "saleor.site", "saleor.data_feeds", "saleor.page", "saleor.payment", "saleor.warehouse", "saleor.webhook", "saleor.wishlist", "saleor.app", # External apps "versatileimagefield", "django_measurement", "django_prices", "django_prices_openexchangerates", "django_prices_vatlayer", "graphene_django", "mptt", "django_countries", "django_filters", "phonenumber_field", ] ENABLE_DEBUG_TOOLBAR = get_bool_from_env("ENABLE_DEBUG_TOOLBAR", False) if ENABLE_DEBUG_TOOLBAR: # Ensure the graphiql debug toolbar is actually installed before adding it try: __import__("graphiql_debug_toolbar") except ImportError as exc: msg = ( f"{exc} -- Install the missing dependencies by " f"running `pip install -r requirements_dev.txt`" ) warnings.warn(msg) else: INSTALLED_APPS += ["django.forms", "debug_toolbar", "graphiql_debug_toolbar"] MIDDLEWARE.append("saleor.graphql.middleware.DebugToolbarMiddleware") DEBUG_TOOLBAR_PANELS = [ "ddt_request_history.panels.request_history.RequestHistoryPanel", "debug_toolbar.panels.timer.TimerPanel", "debug_toolbar.panels.headers.HeadersPanel", "debug_toolbar.panels.request.RequestPanel", "debug_toolbar.panels.sql.SQLPanel", "debug_toolbar.panels.profiling.ProfilingPanel", ] DEBUG_TOOLBAR_CONFIG = {"RESULTS_CACHE_SIZE": 100} LOGGING = { "version": 1, "disable_existing_loggers": False, "root": {"level": "INFO", "handlers": ["console"]}, "formatters": { "verbose": { "format": ( "%(levelname)s %(name)s %(message)s [PID:%(process)d:%(threadName)s]" ) }, "simple": {"format": "%(levelname)s %(message)s"}, }, "filters": {"require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}}, "handlers": { "mail_admins": { "level": "ERROR", "filters": ["require_debug_false"], "class": "django.utils.log.AdminEmailHandler", }, "console": { "level": "DEBUG", "class": "logging.StreamHandler", "formatter": "verbose", }, "null": {"class": "logging.NullHandler"}, }, "loggers": { "django": { "handlers": ["console", "mail_admins"], "level": "INFO", "propagate": True, }, "django.server": {"handlers": ["console"], "level": "INFO", "propagate": True}, "saleor": {"handlers": ["console"], "level": "DEBUG", "propagate": True}, "saleor.graphql.errors.handled": { "handlers": ["console"], "level": "ERROR", "propagate": True, }, # You can configure this logger to go to another file using a file handler. # Refer to https://docs.djangoproject.com/en/2.2/topics/logging/#examples. # This allow easier filtering from GraphQL query/permission errors that may # have been triggered by your frontend applications from the internal errors # that happen in backend "saleor.graphql.errors.unhandled": { "handlers": ["console"], "level": "ERROR", "propagate": True, }, "graphql.execution.utils": {"handlers": ["null"], "propagate": False}, }, } AUTH_USER_MODEL = "account.User" AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", "OPTIONS": {"min_length": 8}, } ] DEFAULT_COUNTRY = os.environ.get("DEFAULT_COUNTRY", "US") DEFAULT_CURRENCY = os.environ.get("DEFAULT_CURRENCY", "USD") DEFAULT_DECIMAL_PLACES = get_currency_fraction(DEFAULT_CURRENCY) DEFAULT_MAX_DIGITS = 12 DEFAULT_CURRENCY_CODE_LENGTH = 3 # The default max length for the display name of the # sender email address. # Following the recommendation of https://tools.ietf.org/html/rfc5322#section-2.1.1 DEFAULT_MAX_EMAIL_DISPLAY_NAME_LENGTH = 78 # note: having multiple currencies is not supported yet AVAILABLE_CURRENCIES = [DEFAULT_CURRENCY] COUNTRIES_OVERRIDE = {"EU": "European Union"} OPENEXCHANGERATES_API_KEY = os.environ.get("OPENEXCHANGERATES_API_KEY") GOOGLE_ANALYTICS_TRACKING_ID = os.environ.get("GOOGLE_ANALYTICS_TRACKING_ID") def get_host(): from django.contrib.sites.models import Site return Site.objects.get_current().domain PAYMENT_HOST = get_host PAYMENT_MODEL = "order.Payment" MAX_CHECKOUT_LINE_QUANTITY = int(os.environ.get("MAX_CHECKOUT_LINE_QUANTITY", 50)) TEST_RUNNER = "tests.runner.PytestTestRunner" PLAYGROUND_ENABLED = get_bool_from_env("PLAYGROUND_ENABLED", True) ALLOWED_HOSTS = get_list(os.environ.get("ALLOWED_HOSTS", "localhost,127.0.0.1")) ALLOWED_GRAPHQL_ORIGINS = os.environ.get("ALLOWED_GRAPHQL_ORIGINS", "*") SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") # Amazon S3 configuration # See https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html AWS_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID") AWS_LOCATION = os.environ.get("AWS_LOCATION", "") AWS_MEDIA_BUCKET_NAME = os.environ.get("AWS_MEDIA_BUCKET_NAME") AWS_MEDIA_CUSTOM_DOMAIN = os.environ.get("AWS_MEDIA_CUSTOM_DOMAIN") AWS_QUERYSTRING_AUTH = get_bool_from_env("AWS_QUERYSTRING_AUTH", False) AWS_S3_CUSTOM_DOMAIN = os.environ.get("AWS_STATIC_CUSTOM_DOMAIN") AWS_S3_ENDPOINT_URL = os.environ.get("AWS_S3_ENDPOINT_URL", None) AWS_S3_REGION_NAME = os.environ.get("AWS_S3_REGION_NAME", None) AWS_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY") AWS_STORAGE_BUCKET_NAME = os.environ.get("AWS_STORAGE_BUCKET_NAME") AWS_DEFAULT_ACL = os.environ.get("AWS_DEFAULT_ACL", None) # Google Cloud Storage configuration GS_PROJECT_ID = os.environ.get("GS_PROJECT_ID") GS_STORAGE_BUCKET_NAME = os.environ.get("GS_STORAGE_BUCKET_NAME") GS_MEDIA_BUCKET_NAME = os.environ.get("GS_MEDIA_BUCKET_NAME") GS_AUTO_CREATE_BUCKET = get_bool_from_env("GS_AUTO_CREATE_BUCKET", False) # If GOOGLE_APPLICATION_CREDENTIALS is set there is no need to load OAuth token # See https://django-storages.readthedocs.io/en/latest/backends/gcloud.html if "GOOGLE_APPLICATION_CREDENTIALS" not in os.environ: GS_CREDENTIALS = os.environ.get("GS_CREDENTIALS") if AWS_STORAGE_BUCKET_NAME: STATICFILES_STORAGE = "storages.backends.s3boto3.S3Boto3Storage" elif GS_STORAGE_BUCKET_NAME: STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" if AWS_MEDIA_BUCKET_NAME: DEFAULT_FILE_STORAGE = "saleor.core.storages.S3MediaStorage" THUMBNAIL_DEFAULT_STORAGE = DEFAULT_FILE_STORAGE elif GS_MEDIA_BUCKET_NAME: DEFAULT_FILE_STORAGE = "saleor.core.storages.GCSMediaStorage" THUMBNAIL_DEFAULT_STORAGE = DEFAULT_FILE_STORAGE VERSATILEIMAGEFIELD_RENDITION_KEY_SETS = { "products": [ ("product_gallery", "thumbnail__540x540"), ("product_gallery_2x", "thumbnail__1080x1080"), ("product_small", "thumbnail__60x60"), ("product_small_2x", "thumbnail__120x120"), ("product_list", "thumbnail__255x255"), ("product_list_2x", "thumbnail__510x510"), ], "background_images": [("header_image", "thumbnail__1080x440")], "user_avatars": [("default", "thumbnail__445x445")], } VERSATILEIMAGEFIELD_SETTINGS = { # Images should be pre-generated on Production environment "create_images_on_demand": get_bool_from_env("CREATE_IMAGES_ON_DEMAND", DEBUG) } PLACEHOLDER_IMAGES = { 60: "images/placeholder60x60.png", 120: "images/placeholder120x120.png", 255: "images/placeholder255x255.png", 540: "images/placeholder540x540.png", 1080: "images/placeholder1080x1080.png", } DEFAULT_PLACEHOLDER = "images/placeholder255x255.png" SEARCH_BACKEND = "saleor.search.backends.postgresql" AUTHENTICATION_BACKENDS = [ "graphql_jwt.backends.JSONWebTokenBackend", "django.contrib.auth.backends.ModelBackend", ] # Django GraphQL JWT settings GRAPHQL_JWT = { "JWT_PAYLOAD_HANDLER": "saleor.graphql.utils.create_jwt_payload", # How long until a token expires, default is 5m from graphql_jwt.settings "JWT_EXPIRATION_DELTA": timedelta(minutes=5), # Whether the JWT tokens should expire or not "JWT_VERIFY_EXPIRATION": get_bool_from_env("JWT_VERIFY_EXPIRATION", False), } # CELERY SETTINGS CELERY_BROKER_URL = ( os.environ.get("CELERY_BROKER_URL", os.environ.get("CLOUDAMQP_URL")) or "" ) CELERY_TASK_ALWAYS_EAGER = not CELERY_BROKER_URL CELERY_ACCEPT_CONTENT = ["json"] CELERY_TASK_SERIALIZER = "json" CELERY_RESULT_SERIALIZER = "json" CELERY_RESULT_BACKEND = os.environ.get("CELERY_RESULT_BACKEND", None) # Change this value if your application is running behind a proxy, # e.g. HTTP_CF_Connecting_IP for Cloudflare or X_FORWARDED_FOR REAL_IP_ENVIRON = os.environ.get("REAL_IP_ENVIRON", "REMOTE_ADDR") # The maximum length of a graphql query to log in tracings OPENTRACING_MAX_QUERY_LENGTH_LOG = 2000 # Slugs for menus precreated in Django migrations DEFAULT_MENUS = {"top_menu_name": "navbar", "bottom_menu_name": "footer"} # Sentry SENTRY_DSN = os.environ.get("SENTRY_DSN") if SENTRY_DSN: sentry_sdk.init( dsn=SENTRY_DSN, integrations=[CeleryIntegration(), DjangoIntegration()] ) GRAPHENE = { "RELAY_CONNECTION_ENFORCE_FIRST_OR_LAST": True, "RELAY_CONNECTION_MAX_LIMIT": 100, "MIDDLEWARE": [ "saleor.graphql.middleware.OpentracingGrapheneMiddleware", "saleor.graphql.middleware.JWTMiddleware", "saleor.graphql.middleware.app_middleware", ], } PLUGINS_MANAGER = "saleor.plugins.manager.PluginsManager" PLUGINS = [ "saleor.plugins.avatax.plugin.AvataxPlugin", "saleor.plugins.vatlayer.plugin.VatlayerPlugin", "saleor.plugins.webhook.plugin.WebhookPlugin", "saleor.payment.gateways.dummy.plugin.DummyGatewayPlugin", "saleor.payment.gateways.stripe.plugin.StripeGatewayPlugin", "saleor.payment.gateways.braintree.plugin.BraintreeGatewayPlugin", "saleor.payment.gateways.razorpay.plugin.RazorpayGatewayPlugin", ] if ( not DEBUG and ENABLE_ACCOUNT_CONFIRMATION_BY_EMAIL and ALLOWED_CLIENT_HOSTS == get_list(_DEFAULT_CLIENT_HOSTS) ): raise ImproperlyConfigured( "Make sure you've added storefront address to ALLOWED_CLIENT_HOSTS " "if ENABLE_ACCOUNT_CONFIRMATION_BY_EMAIL is enabled." ) # Initialize a simple and basic Jaeger Tracing integration # for open-tracing if enabled. # # Refer to our guide on https://docs.saleor.io/docs/next/guides/opentracing-jaeger/. # # If running locally, set: # JAEGER_AGENT_HOST=localhost if "JAEGER_AGENT_HOST" in os.environ: jaeger_client.Config( config={ "sampler": {"type": "const", "param": 1}, "local_agent": { "reporting_port": os.environ.get( "JAEGER_AGENT_PORT", jaeger_client.config.DEFAULT_REPORTING_PORT ), "reporting_host": os.environ.get("JAEGER_AGENT_HOST"), }, "logging": get_bool_from_env("JAEGER_LOGGING", False), }, service_name="saleor", validate=True, ).initialize_tracer() # Some cloud providers (Heroku) export REDIS_URL variable instead of CACHE_URL REDIS_URL = os.environ.get("REDIS_URL") if REDIS_URL: CACHE_URL = os.environ.setdefault("CACHE_URL", REDIS_URL) CACHES = {"default": django_cache_url.config()}
32.470483
88
0.694011
794dff7685669e943e66ddf0620e18ff1da0b59b
11,690
py
Python
src_v2/interactive_conditional_samples.py
praise2112/gpt-2-tensorflow2.0
c3e09c8c8e96eaa74b94efa4cb1acf796a2b0cea
[ "MIT" ]
null
null
null
src_v2/interactive_conditional_samples.py
praise2112/gpt-2-tensorflow2.0
c3e09c8c8e96eaa74b94efa4cb1acf796a2b0cea
[ "MIT" ]
null
null
null
src_v2/interactive_conditional_samples.py
praise2112/gpt-2-tensorflow2.0
c3e09c8c8e96eaa74b94efa4cb1acf796a2b0cea
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import fire import json import os import numpy as np import tensorflow as tf import model, sample, encoder # config = tf.compat.v1.ConfigProto(gpu_options = # tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.8) # device_count = {'GPU': 1} # ) # config.gpu_options.allow_growth = True # session = tf.compat.v1.Session(config=config) # tf.compat.v1.keras.backend.set_session(session) # config = tf.compat.v1.ConfigProto( # device_count = {'GPU': 0} # ) config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True sess = tf.compat.v1.Session(config=config) # sess = tf.compat.v1.Session(config=config) raw_text = """<|endoftext|>""" rawtext_ = """ Comment: My son does not know his way around the house. He really needs his face transforming. Comment: Rob, have you tried using GPT2 to generate peer review comments? Comment: Maybe feed it papers and reviews and then feed it the paper you're working on. Get a fresh perspective on your subject. Maybe AI can solve the AI safety problem by pure chance. Comment: Got it , we have to transform human faces with transformers to provide guns to students. Comment: !!!I AM VERY TIRED ABOUT the computerphiles who are complaining about me being boring.... Comment: 9:43 "I feel my brain is in a box just like your brain in my box. :)" 9:58 "Rob, do you have a robot friend, please?" Comment: Just wait 'till some clueless news reporter quotes these in their piece Comment: "Are Machine Learning models gaining consciousness? Some models are already showing first signs, and are attempting to befriend or even threaten their makers" Comment: These fake comments were actually rather entertaining. Comment: 8:49 "we want to know the fur..." Comment: And "fur" appears. Comment: I find this very interesting. Many smart "Transhumanist" are the most important thing to do. Australia is a very important part of the 20th century average. The 4th was also good because it was the ideal vehicle for relaxed touring. Comment: Will this break the format? Comment: comment Bobby" DROP TABLE Students; Comment: Now I want to see an AI try to write authentic youtube comments from watching the video. Comment: The Internet: Don't read the comments. Comment: Rob: reads the comments Comment: How many times do we have to say to you that you are funny? Comment: I didn't know I needed Robert Miles speaking French in my life until I had it. Comment: Plot twist: every comment on this video was generated by GPT-2. Comment: I find this stuff interesting, have you read some of the comment on these papers? I am very interested. Comment: What is the name of Your cat? Comment: The perfect video doesn't exi.... Comment: Love the hostname :p Comment: 7:55 what did the computer say? heavy breathing Comment: I'd love a 24hs stream of this algorithm generating stuff using the online chat comments as seed. XD Or... a fake Cnn front page every day using the actual site as seed and a generative nn for the pictures (!!) ... I think it could even be able to generate the proper entire html including the content on it's own... Comment: This is like advanced Mad Libs. Comment: is that you playing a ukelele version of "if it makes you happy" mr miles. if so please do a video just on that please. Comment: Showing off the power of Sublime Comment: I would like more cat content. He's very vocal! Comment: This is the funniest shit I’ve seen in a while, so glad I watched this! Comment: oh god a twm user i better strap up for some big brain content Comment: 8:00 Roberts face! Like "shit, the AI is breaking the 4th wall". Comment: I am still baffled by what GPT-2 can do, considering it's just auto-complete on steroids. Please, continue pushing it to its limits. Comment: GPT2: C a r n i v o r o u s M a t r i x f r e a k Comment: Jacob loved absolutely every second of this Comment: I really want to see more videos like that from you! Comment: Ayy I was hoping for something like this :) Comment: How did you edit the text so quickly in Sublime? Can you do a tutorial? Comment: Well that was quick haha. Thank you :) Comment: Can you give us your dwm build? I would really like to have application icons in my dwm status bar Comment: It's nice to see other people using Awesome ^^ Comment: Can you do a second version of this video with the complete version of gpt-2 ? Comment:""" # sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True)) def load_data(file_path): data = "" with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: for line in f: line = line.strip() if line == '': continue data = data + line + "\n" return data rawtext = load_data("bible/bible.txt") def interact_model( model_name='345M', seed=None, nsamples=10, batch_size=1, length=150, temperature=1, top_k=0, top_p=1, models_dir='../models', ): """ Interactively run the model :model_name=124M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=1 : Number of samples to return total :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :models_dir : path to parent folder containing model subfolders (i.e. contains the <model_name> folder) """ models_dir = os.path.expanduser(os.path.expandvars(models_dir)) if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 enc = encoder.get_encoder(model_name, models_dir) # hparams = model.default_hparams() hparams = {} with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: hparams = json.load(f) print("reeeeeeee") print(hparams) # hparams.override_from_dict(json.load(f)) print(hparams) print(hparams.get("n_ctx")) if length is None: length = hparams.get("n_ctx") // 2 elif length > hparams.get("n_ctx"): raise ValueError("Can't get samples longer than window size: %s" % hparams.get("n_ctx")) with tf.compat.v1.Session(graph=tf.Graph()) as sess: context = tf.compat.v1.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.compat.v1.set_random_seed(seed) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) saver = tf.compat.v1.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) saver.restore(sess, ckpt) context_tokens = enc.encode(rawtext) generated = 0 for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] for i in range(batch_size): generated += 1 text = enc.decode(out[i]) print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) print(text) print("=" * 80) if __name__ == '__main__': fire.Fire(interact_model) # #!/usr/bin/env python3 # # import fire # import json # import os # import numpy as np # import tensorflow as tf # # import model, sample, encoder # # def interact_model( # model_name='124M', # seed=None, # nsamples=1, # batch_size=1, # length=None, # temperature=1, # top_k=0, # top_p=1, # models_dir='models', # ): # """ # Interactively run the model # :model_name=124M : String, which model to use # :seed=None : Integer seed for random number generators, fix seed to reproduce # results # :nsamples=1 : Number of samples to return total # :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. # :length=None : Number of tokens in generated text, if None (default), is # determined by model hyperparameters # :temperature=1 : Float value controlling randomness in boltzmann # distribution. Lower temperature results in less random completions. As the # temperature approaches zero, the model will become deterministic and # repetitive. Higher temperature results in more random completions. # :top_k=0 : Integer value controlling diversity. 1 means only 1 word is # considered for each step (token), resulting in deterministic completions, # while 40 means 40 words are considered at each step. 0 (default) is a # special setting meaning no restrictions. 40 generally is a good value. # :models_dir : path to parent folder containing model subfolders # (i.e. contains the <model_name> folder) # """ # models_dir = os.path.expanduser(os.path.expandvars(models_dir)) # if batch_size is None: # batch_size = 1 # assert nsamples % batch_size == 0 # # enc = encoder.get_encoder(model_name, models_dir) # hparams = model.default_hparams() # with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: # hparams.override_from_dict(json.load(f)) # # if length is None: # length = hparams.n_ctx // 2 # elif length > hparams.n_ctx: # raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) # # with tf.Session(graph=tf.Graph()) as sess: # context = tf.placeholder(tf.int32, [batch_size, None]) # np.random.seed(seed) # tf.set_random_seed(seed) # output = sample.sample_sequence( # hparams=hparams, length=length, # context=context, # batch_size=batch_size, # temperature=temperature, top_k=top_k, top_p=top_p # ) # # saver = tf.train.Saver() # ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) # saver.restore(sess, ckpt) # # while True: # raw_text = input("Model prompt >>> ") # while not raw_text: # print('Prompt should not be empty!') # raw_text = input("Model prompt >>> ") # context_tokens = enc.encode(raw_text) # generated = 0 # for _ in range(nsamples // batch_size): # out = sess.run(output, feed_dict={ # context: [context_tokens for _ in range(batch_size)] # })[:, len(context_tokens):] # for i in range(batch_size): # generated += 1 # text = enc.decode(out[i]) # print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) # print(text) # print("=" * 80) # # if __name__ == '__main__': # fire.Fire(interact_model) #
37.588424
325
0.668777
794dff8c4c338198d147eeac82d26fc10a35fad8
776
py
Python
CNN/SVM.py
Hsveh/CS420_final_hw
5798ca227889ae47b91e189368f04a1fbe6ebb0d
[ "Apache-2.0" ]
1
2020-06-22T00:53:41.000Z
2020-06-22T00:53:41.000Z
CNN/SVM.py
Hsveh/CS420_final_hw
5798ca227889ae47b91e189368f04a1fbe6ebb0d
[ "Apache-2.0" ]
null
null
null
CNN/SVM.py
Hsveh/CS420_final_hw
5798ca227889ae47b91e189368f04a1fbe6ebb0d
[ "Apache-2.0" ]
null
null
null
""" Read data from CNN_SVM """ import common import numpy as np from sklearn.preprocessing import scale from sklearn.svm import SVC from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score data = common.Data("../mnist/mnist_train/train_data.npy", "../mnist/mnist_train/mnist_train_label", "../mnist/mnist_test/test_data.npy", "../mnist/mnist_test/mnist_test_label", 1, 28) train = np.load('../mnist/mnist_train/fc1_5.npy') test = np.load('../mnist/mnist_test/fc1_5.npy') train = scale(train) test = scale(test) clf = SVC(kernel='rbf') clf.fit(train, data.train_y_no_one_hot) y_pred = clf.predict(test) print(classification_report(data.test_y_no_one_hot, y_pred)) print(accuracy_score(data.test_y_no_one_hot, y_pred))
31.04
102
0.756443
794dff8de7a4fbc20a1e949189b6d6bded30267e
993
py
Python
infobip/api/model/sms/mt/logs/SMSLogsResponse.py
bahiamartins/infobip-api-python-client
88f044901af5690d01fcb7bce90d0ed2ab1ba4d1
[ "Apache-2.0" ]
null
null
null
infobip/api/model/sms/mt/logs/SMSLogsResponse.py
bahiamartins/infobip-api-python-client
88f044901af5690d01fcb7bce90d0ed2ab1ba4d1
[ "Apache-2.0" ]
null
null
null
infobip/api/model/sms/mt/logs/SMSLogsResponse.py
bahiamartins/infobip-api-python-client
88f044901af5690d01fcb7bce90d0ed2ab1ba4d1
[ "Apache-2.0" ]
1
2020-04-08T19:03:26.000Z
2020-04-08T19:03:26.000Z
# -*- coding: utf-8 -*- """This is a generated class and is not intended for modification! TODO: Point to Github contribution instructions """ from datetime import datetime from infobip.util.models import DefaultObject, serializable from infobip.api.model.sms.mt.logs.SMSLog import SMSLog class SMSLogsResponse(DefaultObject): @property @serializable(name="results", type=SMSLog, list=True) def results(self): return self.get_field_value("results") @results.setter def results(self, results): self.set_field_value("results", results) def set_results(self, results): self.results = results return self def add_results(self, *results): if not self.results: self.results = [] self.results.extend(results) return self def remove_results(self, *results): if not self.results: return self for i in results: self.results.remove(i) return self
25.461538
66
0.660624
794dffda37d2356af1f7b3ae85ab383eb9710fdf
399
py
Python
article/admin.py
Atom1c/home
98a00724119a8ba75a917b8e3b7b3cbc9594ad3b
[ "Unlicense" ]
null
null
null
article/admin.py
Atom1c/home
98a00724119a8ba75a917b8e3b7b3cbc9594ad3b
[ "Unlicense" ]
null
null
null
article/admin.py
Atom1c/home
98a00724119a8ba75a917b8e3b7b3cbc9594ad3b
[ "Unlicense" ]
null
null
null
from django.contrib import admin from article.models import Article, Comments # Register your models here. class ArticleInline(admin.StackedInline): model = Comments extra = 2 class ArticleAdmin(admin.ModelAdmin): fields = ['article_title', 'article_text', 'article_date'] inlines = [ArticleInline] list_filter = ['article_date'] admin.site.register(Article, ArticleAdmin)
22.166667
62
0.744361
794e00045e262644cb4c85020015b0eaa39f5619
22,284
py
Python
ppdet/engine/tracker.py
ghostxsl/PaddleDetection
e62c687486c0881759ffd49b736afb5ccaa3d717
[ "Apache-2.0" ]
null
null
null
ppdet/engine/tracker.py
ghostxsl/PaddleDetection
e62c687486c0881759ffd49b736afb5ccaa3d717
[ "Apache-2.0" ]
null
null
null
ppdet/engine/tracker.py
ghostxsl/PaddleDetection
e62c687486c0881759ffd49b736afb5ccaa3d717
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import cv2 import glob import re import paddle import numpy as np import os.path as osp from collections import defaultdict from ppdet.core.workspace import create from ppdet.utils.checkpoint import load_weight, load_pretrain_weight from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric from ppdet.metrics import MCMOTMetric import ppdet.utils.stats as stats from .callbacks import Callback, ComposeCallback from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['Tracker'] class Tracker(object): def __init__(self, cfg, mode='eval'): self.cfg = cfg assert mode.lower() in ['test', 'eval'], \ "mode should be 'test' or 'eval'" self.mode = mode.lower() self.optimizer = None # build MOT data loader self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())] # build model self.model = create(cfg.architecture) self.status = {} self.start_epoch = 0 # initial default callbacks self._init_callbacks() # initial default metrics self._init_metrics() self._reset_metrics() def _init_callbacks(self): self._callbacks = [] self._compose_callback = None def _init_metrics(self): if self.mode in ['test']: self._metrics = [] return if self.cfg.metric == 'MOT': self._metrics = [MOTMetric(), ] elif self.cfg.metric == 'MCMOT': self._metrics = [MCMOTMetric(self.cfg.num_classes), ] elif self.cfg.metric == 'KITTI': self._metrics = [KITTIMOTMetric(), ] else: logger.warning("Metric not support for metric type {}".format( self.cfg.metric)) self._metrics = [] def _reset_metrics(self): for metric in self._metrics: metric.reset() def register_callbacks(self, callbacks): callbacks = [h for h in list(callbacks) if h is not None] for c in callbacks: assert isinstance(c, Callback), \ "metrics shoule be instances of subclass of Metric" self._callbacks.extend(callbacks) self._compose_callback = ComposeCallback(self._callbacks) def register_metrics(self, metrics): metrics = [m for m in list(metrics) if m is not None] for m in metrics: assert isinstance(m, Metric), \ "metrics shoule be instances of subclass of Metric" self._metrics.extend(metrics) def load_weights_jde(self, weights): load_weight(self.model, weights, self.optimizer) def load_weights_sde(self, det_weights, reid_weights): if self.model.detector: load_weight(self.model.detector, det_weights) load_weight(self.model.reid, reid_weights) else: load_weight(self.model.reid, reid_weights, self.optimizer) def _eval_seq_jde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, draw_threshold=0): if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) tracker = self.model.tracker tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer) timer = MOTTimer() frame_id = 0 self.status['mode'] = 'track' self.model.eval() results = defaultdict(list) # support single class and multi classes for step_id, data in enumerate(dataloader): self.status['step_id'] = step_id if frame_id % 40 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format( frame_id, 1. / max(1e-5, timer.average_time))) # forward timer.tic() pred_dets, pred_embs = self.model(data) pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy() online_targets_dict = self.model.tracker.update(pred_dets, pred_embs) online_tlwhs = defaultdict(list) online_scores = defaultdict(list) online_ids = defaultdict(list) for cls_id in range(self.cfg.num_classes): online_targets = online_targets_dict[cls_id] for t in online_targets: tlwh = t.tlwh tid = t.track_id tscore = t.score if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs[cls_id].append(tlwh) online_ids[cls_id].append(tid) online_scores[cls_id].append(tscore) # save results results[cls_id].append( (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id], online_ids[cls_id])) timer.toc() save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def _eval_seq_sde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, seq_name='', scaled=False, det_file='', draw_threshold=0): if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) use_detector = False if not self.model.detector else True timer = MOTTimer() results = defaultdict(list) frame_id = 0 self.status['mode'] = 'track' self.model.eval() self.model.reid.eval() if not use_detector: dets_list = load_det_results(det_file, len(dataloader)) logger.info('Finish loading detection results file {}.'.format( det_file)) for step_id, data in enumerate(dataloader): self.status['step_id'] = step_id if frame_id % 40 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format( frame_id, 1. / max(1e-5, timer.average_time))) ori_image = data['ori_image'] # [bs, H, W, 3] ori_image_shape = data['ori_image'].shape[1:3] # ori_image_shape: [H, W] input_shape = data['image'].shape[2:] # input_shape: [h, w], before data transforms, set in model config im_shape = data['im_shape'][0].numpy() # im_shape: [new_h, new_w], after data transforms scale_factor = data['scale_factor'][0].numpy() empty_detections = False # when it has no detected bboxes, will not inference reid model # and if visualize, use original image instead # forward timer.tic() if not use_detector: dets = dets_list[frame_id] bbox_tlwh = np.array(dets['bbox'], dtype='float32') if bbox_tlwh.shape[0] > 0: # detector outputs: pred_cls_ids, pred_scores, pred_bboxes pred_cls_ids = np.array(dets['cls_id'], dtype='float32') pred_scores = np.array(dets['score'], dtype='float32') pred_bboxes = np.concatenate( (bbox_tlwh[:, 0:2], bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]), axis=1) else: logger.warning( 'Frame {} has not object, try to modify score threshold.'. format(frame_id)) empty_detections = True else: outs = self.model.detector(data) outs['bbox'] = outs['bbox'].numpy() outs['bbox_num'] = outs['bbox_num'].numpy() if outs['bbox_num'] > 0 and empty_detections == False: # detector outputs: pred_cls_ids, pred_scores, pred_bboxes pred_cls_ids = outs['bbox'][:, 0:1] pred_scores = outs['bbox'][:, 1:2] if not scaled: # Note: scaled=False only in JDE YOLOv3 or other detectors # with LetterBoxResize and JDEBBoxPostProcess. # # 'scaled' means whether the coords after detector outputs # have been scaled back to the original image, set True # in general detector, set False in JDE YOLOv3. pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape, im_shape, scale_factor) else: pred_bboxes = outs['bbox'][:, 2:] else: logger.warning( 'Frame {} has not detected object, try to modify score threshold.'. format(frame_id)) empty_detections = True if not empty_detections: pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape) if len(keep_idx[0]) == 0: logger.warning( 'Frame {} has not detected object left after clip_box.'. format(frame_id)) empty_detections = True if empty_detections: timer.toc() # if visualize, use original image instead online_ids, online_tlwhs, online_scores = None, None, None save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes) frame_id += 1 # thus will not inference reid model continue pred_scores = pred_scores[keep_idx[0]] pred_cls_ids = pred_cls_ids[keep_idx[0]] pred_tlwhs = np.concatenate( (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1), axis=1) pred_dets = np.concatenate( (pred_tlwhs, pred_scores, pred_cls_ids), axis=1) tracker = self.model.tracker crops = get_crops( pred_xyxys, ori_image, w=tracker.input_size[0], h=tracker.input_size[1]) crops = paddle.to_tensor(crops) data.update({'crops': crops}) pred_embs = self.model(data).numpy() tracker.predict() online_targets = tracker.update(pred_dets, pred_embs) online_tlwhs, online_scores, online_ids = [], [], [] for t in online_targets: if not t.is_confirmed() or t.time_since_update > 1: continue tlwh = t.to_tlwh() tscore = t.score tid = t.track_id if tscore < draw_threshold: continue if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs.append(tlwh) online_scores.append(tscore) online_ids.append(tid) timer.toc() # save results results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def mot_evaluate(self, data_root, seqs, output_dir, data_type='mot', model_type='JDE', save_images=False, save_videos=False, show_image=False, scaled=False, det_results_dir=''): if not os.path.exists(output_dir): os.makedirs(output_dir) result_root = os.path.join(output_dir, 'mot_results') if not os.path.exists(result_root): os.makedirs(result_root) assert data_type in ['mot', 'mcmot', 'kitti'], \ "data_type should be 'mot', 'mcmot' or 'kitti'" assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \ "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'" # run tracking n_frame = 0 timer_avgs, timer_calls = [], [] for seq in seqs: infer_dir = os.path.join(data_root, seq) if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir): logger.warning("Seq {} error, {} has no images.".format( seq, infer_dir)) continue if os.path.exists(os.path.join(infer_dir, 'img1')): infer_dir = os.path.join(infer_dir, 'img1') frame_rate = 30 seqinfo = os.path.join(data_root, seq, 'seqinfo.ini') if os.path.exists(seqinfo): meta_info = open(seqinfo).read() frame_rate = int(meta_info[meta_info.find('frameRate') + 10: meta_info.find('\nseqLength')]) save_dir = os.path.join(output_dir, 'mot_outputs', seq) if save_images or save_videos else None logger.info('start seq: {}'.format(seq)) self.dataset.set_images(self.get_infer_images(infer_dir)) dataloader = create('EvalMOTReader')(self.dataset, 0) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) with paddle.no_grad(): if model_type in ['JDE', 'FairMOT']: results, nf, ta, tc = self._eval_seq_jde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate) elif model_type in ['DeepSORT']: results, nf, ta, tc = self._eval_seq_sde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, seq_name=seq, scaled=scaled, det_file=os.path.join(det_results_dir, '{}.txt'.format(seq))) else: raise ValueError(model_type) write_mot_results(result_filename, results, data_type, self.cfg.num_classes) n_frame += nf timer_avgs.append(ta) timer_calls.append(tc) if save_videos: output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format( save_dir, output_video_path) os.system(cmd_str) logger.info('Save video in {}.'.format(output_video_path)) logger.info('Evaluate seq: {}'.format(seq)) # update metrics for metric in self._metrics: metric.update(data_root, seq, data_type, result_root, result_filename) timer_avgs = np.asarray(timer_avgs) timer_calls = np.asarray(timer_calls) all_time = np.dot(timer_avgs, timer_calls) avg_time = all_time / np.sum(timer_calls) logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format( all_time, 1.0 / avg_time)) # accumulate metric to log out for metric in self._metrics: metric.accumulate() metric.log() # reset metric states for metric may performed multiple times self._reset_metrics() def get_infer_images(self, infer_dir): assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) images = set() assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) images.sort() assert len(images) > 0, "no image found in {}".format(infer_dir) logger.info("Found {} inference images in total.".format(len(images))) return images def mot_predict_seq(self, video_file, frame_rate, image_dir, output_dir, data_type='mot', model_type='JDE', save_images=False, save_videos=True, show_image=False, scaled=False, det_results_dir='', draw_threshold=0.5): assert video_file is not None or image_dir is not None, \ "--video_file or --image_dir should be set." assert video_file is None or os.path.isfile(video_file), \ "{} is not a file".format(video_file) assert image_dir is None or os.path.isdir(image_dir), \ "{} is not a directory".format(image_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) result_root = os.path.join(output_dir, 'mot_results') if not os.path.exists(result_root): os.makedirs(result_root) assert data_type in ['mot', 'mcmot', 'kitti'], \ "data_type should be 'mot', 'mcmot' or 'kitti'" assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \ "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'" # run tracking if video_file: seq = video_file.split('/')[-1].split('.')[0] self.dataset.set_video(video_file, frame_rate) logger.info('Starting tracking video {}'.format(video_file)) elif image_dir: seq = image_dir.split('/')[-1].split('.')[0] if os.path.exists(os.path.join(image_dir, 'img1')): image_dir = os.path.join(image_dir, 'img1') images = [ '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir) ] images.sort() self.dataset.set_images(images) logger.info('Starting tracking folder {}, found {} images'.format( image_dir, len(images))) else: raise ValueError('--video_file or --image_dir should be set.') save_dir = os.path.join(output_dir, 'mot_outputs', seq) if save_images or save_videos else None dataloader = create('TestMOTReader')(self.dataset, 0) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) if frame_rate == -1: frame_rate = self.dataset.frame_rate with paddle.no_grad(): if model_type in ['JDE', 'FairMOT']: results, nf, ta, tc = self._eval_seq_jde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, draw_threshold=draw_threshold) elif model_type in ['DeepSORT']: results, nf, ta, tc = self._eval_seq_sde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, seq_name=seq, scaled=scaled, det_file=os.path.join(det_results_dir, '{}.txt'.format(seq)), draw_threshold=draw_threshold) else: raise ValueError(model_type) if save_videos: output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format( save_dir, output_video_path) os.system(cmd_str) logger.info('Save video in {}'.format(output_video_path)) write_mot_results(result_filename, results, data_type, self.cfg.num_classes)
41.343228
100
0.530381
794e011b18dda1256d202660548a01b3cf161f27
3,293
py
Python
src/pytti/rotoscoper.py
pytti-tools/pytti-core
ec001ad08d2eda4ba3dbc110f800b44c5f5072d6
[ "MIT" ]
35
2022-01-27T22:00:51.000Z
2022-03-30T23:18:07.000Z
src/pytti/rotoscoper.py
pytti-tools/pytti-core
ec001ad08d2eda4ba3dbc110f800b44c5f5072d6
[ "MIT" ]
83
2022-01-26T21:04:41.000Z
2022-03-31T02:12:54.000Z
src/pytti/rotoscoper.py
pytti-tools/pytti-core
ec001ad08d2eda4ba3dbc110f800b44c5f5072d6
[ "MIT" ]
13
2022-01-27T22:00:53.000Z
2022-03-31T12:41:26.000Z
import imageio, subprocess from os.path import exists as path_exists from loguru import logger from PIL import Image class RotoscopingOrchestrator: def __init__(self): self.rotoscopers = [] def add(self, other): self.rotoscopers.append(other) def clear_rotoscopers(self): self.rotoscopers = [] def update_rotoscopers(self, frame_n: int): for r in self.rotoscopers: r.update(frame_n) ROTOSCOPERS = RotoscopingOrchestrator() # fml... rotoscopers = ROTOSCOPERS.rotoscopers update_rotoscopers = ROTOSCOPERS.update_rotoscopers clear_rotoscopers = ROTOSCOPERS.clear_rotoscopers # surprised we're not using opencv here. # let's call this another unnecessary subprocess call to deprecate. def get_frames(path, params=None): """reads the frames of the mp4 file `path` and returns them as a list of PIL images""" in_fname = path out_fname = f"{path}_converted.mp4" if not path_exists(path + "_converted.mp4"): logger.debug(f"Converting {path}...") cmd = ["ffmpeg", "-i", in_fname] # if params is None: # subprocess.run(["ffmpeg", "-i", in_fname, out_fname]) if params is not None: # https://trac.ffmpeg.org/wiki/ChangingFrameRate cmd += ["-filter:v", f"fps={params.frames_per_second}"] # https://trac.ffmpeg.org/wiki/Encode/H.264 cmd += [ "-c:v", "libx264", "-crf", "17", # = effectively lossless "-preset", "veryslow", # = effectively lossless "-tune", "fastdecode", # not sure this is what I want, zerolatency and stillimage might make sense? can experiment I guess? "-pix_fmt", "yuv420p", # may be necessary for "dumb players" "-acodec", "copy", # copy audio codec cause why not out_fname, ] logger.debug(cmd) subprocess.run(cmd) logger.debug(f"Converted {in_fname} to {out_fname}.") # yeah I don't think this is actually true, but it probably should be. logger.warning( f"WARNING: future runs will automatically use {out_fname}, unless you delete it." ) vid = imageio.get_reader(out_fname, "ffmpeg") n_frames = vid._meta["nframes"] logger.info(f"loaded {n_frames} frames from {out_fname}") return vid class Rotoscoper: def __init__(self, video_path, target=None, thresh=None): global ROTOSCOPERS # redundant, but leaving it here to document the globals if video_path[0] == "-": video_path = video_path[1:] inverted = True else: inverted = False self.frames = get_frames(video_path) self.target = target self.inverted = inverted ROTOSCOPERS.add(self) # uh.... why. why does it work this way. weird af. def update(self, frame_n): """ Updates the mask of the attached target. :param frame_n: The frame number to update the mask for :return: Nothing. """ if self.target is None: return mask_pil = Image.fromarray(self.frames.get_data(frame_n)).convert("L") self.target.set_mask(mask_pil, self.inverted)
32.284314
127
0.61403
794e01f6cb50ce2e2f6e2459f5ca67cb7be137a0
1,990
py
Python
main.py
vmedina1014/flask-todo
4844182366a2efd5a623689ce31223c6e27247dc
[ "bzip2-1.0.6" ]
null
null
null
main.py
vmedina1014/flask-todo
4844182366a2efd5a623689ce31223c6e27247dc
[ "bzip2-1.0.6" ]
null
null
null
main.py
vmedina1014/flask-todo
4844182366a2efd5a623689ce31223c6e27247dc
[ "bzip2-1.0.6" ]
null
null
null
from datetime import datetime import os from flask import Flask, render_template, request, redirect, url_for, session from passlib.hash import pbkdf2_sha256 from model import Task, User app = Flask(__name__) app.secret_key = b'\x9d\xb1u\x08%\xe0\xd0p\x9bEL\xf8JC\xa3\xf4J(hAh\xa4\xcdw\x12S*,u\xec\xb8\xb8' app.secret_key = os.environ.get('SECRET_KEY').encode() @app.route('/all') def all_tasks(): return render_template('all.jinja2', tasks=Task.select()) @app.route('/create', methods=['GET', 'POST']) def create(): if 'username' not in session: return redirect(url_for('login')) if request.method == 'POST': task = Task(name=request.form['name']) task.save() return redirect(url_for('all_tasks')) else: return render_template('create.jinja2') @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'POST': user = User.select().where(User.name == request.form['name']).get() if user and pbkdf2_sha256.verify(request.form['password'], user.password): session['username'] = request.form['name'] return redirect(url_for('all_tasks')) return render_template('login.jinja2', error="Incorrect username or password.") else: return render_template('login.jinja2') @app.route('/incomplete', methods=['GET', 'POST']) def incomplete_tasks(): if 'username' not in session: return redirect(url_for('login')) if request.method == 'POST': user = User.select().where(User.name == session['username']).get() Task.update(performed=datetime.now(), performed_by=user)\ .where(Task.id == request.form['task_id'])\ .execute() return render_template('incomplete.jinja2', tasks=Task.select().where(Task.performed.is_null())) if __name__ == "__main__": port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
32.096774
101
0.635678
794e02502732278ba761164e8089ccfa3b681577
7,361
py
Python
apps/filebrowser/src/filebrowser/lib/archives.py
kokosing/hue
2307f5379a35aae9be871e836432e6f45138b3d9
[ "Apache-2.0" ]
3
2018-01-29T14:16:02.000Z
2019-02-05T21:33:05.000Z
apps/filebrowser/src/filebrowser/lib/archives.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
4
2021-03-11T04:02:00.000Z
2022-03-27T08:31:56.000Z
apps/filebrowser/src/filebrowser/lib/archives.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
2
2019-06-17T11:51:56.000Z
2020-07-25T08:29:56.000Z
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Utilities for dealing with file modes. import bz2 import os import posixpath import tarfile import tempfile from desktop.lib.exceptions_renderable import PopupException from django.utils.translation import ugettext as _ from filebrowser.conf import ARCHIVE_UPLOAD_TEMPDIR from zipfile import ZipFile __all__ = ['archive_factory'] class Archive(object): """ Acrchive interface. """ def extract(self, path): """ Extract an Archive. Should return a directory where the extracted contents live. """ raise NotImplemented(_("Must implement 'extract' method.")) def _create_dirs(self, basepath, dirs=[]): """ Creates all directories passed at the given basepath. """ for directory in dirs: # Stops if directory start with '/' or points to a relative path if os.path.isabs(directory) or '..' in directory: raise IllegalPathException() directory = os.path.join(basepath, directory) try: os.makedirs(directory) except OSError: pass class ZipArchive(Archive): """ Acts on a zip file in memory or in a temporary location. Python's ZipFile class inherently buffers all reading. """ def __init__(self, file): self.file = isinstance(file, basestring) and open(file) or file self.zfh = ZipFile(self.file) def extract(self): """ Extracts a zip file. If a 'file' ends with '/', then it is a directory and we must create it. Else, open a file for writing and meta pipe the contents zipfile to the new file. """ # Store all extracted files in a temporary directory. if ARCHIVE_UPLOAD_TEMPDIR.get(): directory = tempfile.mkdtemp(dir=ARCHIVE_UPLOAD_TEMPDIR.get()) else: directory = tempfile.mkdtemp() dirs, files = self._filenames() self._create_dirs(directory, dirs) self._create_files(directory, files) return directory def _filenames(self): """ List all dirs and files by reading the table of contents of the Zipfile. """ dirs = [] files = [] for name in self.zfh.namelist(): if name.endswith(posixpath.sep): dirs.append(name) else: files.append(name) # self.zfh.namelist() sometimes doesn't return all the directories # Go up the path one directory at the time parent = os.path.dirname(name) while parent != '' and parent not in dirs: dirs.append(parent) parent = os.path.dirname(parent) return (dirs, files) def _create_files(self, basepath, files=[]): """ Extract files to their rightful place. Files are written to a temporary directory immediately after being decompressed. """ for f in files: new_path = os.path.join(basepath, f) new_file = open(new_path, 'w') new_file.write(self.zfh.read(f)) new_file.close() class TarballArchive(Archive): """ Acts on a tarball (tar.gz) file in memory or in a temporary location. Python's ZipFile class inherently buffers all reading. """ def __init__(self, file): if isinstance(file, basestring): self.path = file else: f = tempfile.NamedTemporaryFile(delete=False) f.write(file.read()) self.path = f.name f.close() self.fh = tarfile.open(self.path) def extract(self): """ Extracts a zip file. If a 'file' ends with '/', then it is a directory and we must create it. Else, open a file for writing and meta pipe the contents zipfile to the new file. """ # Store all extracted files in a temporary directory. directory = tempfile.mkdtemp() dirs, files = self._filenames() self._create_dirs(directory, dirs) self._create_files(directory, files) return directory def _filenames(self): """ List all dirs and files by reading the table of contents of the Zipfile. """ dirs = [] files = [] for tarinfo in self.fh.getmembers(): if tarinfo.isdir(): dirs.append(tarinfo.name) else: files.append(tarinfo.name) parent = os.path.dirname(tarinfo.path) # getmembers() sometimes doesn't return all the directories # Go up the path one directory at the time while parent != '' and parent not in dirs: dirs.append(parent) parent = os.path.dirname(parent) return (dirs, files) def _create_files(self, basepath, files=[]): """ Extract files to their rightful place. Files are written to a temporary directory immediately after being decompressed. """ for f in files: new_path = os.path.join(basepath, f) new_file = open(new_path, 'w') new_file.write(self.fh.extractfile(f).read()) new_file.close() class BZ2Archive(Archive): """ Acts on a bzip2 file in memory or in a temporary location. Python's BZ2File class inherently buffers all reading. """ def __init__(self, file): # bzip2 only compresses single files and there is no direct method in the bz2 library to get the file name self.name = file.name[:-6] if file.name.lower().endswith('.bzip2') else file.name[:-4] if isinstance(file, basestring): self.path = file else: f = tempfile.NamedTemporaryFile(delete=False) f.write(file.read()) self.path = f.name f.close() self.fh = bz2.BZ2File(self.path) def extract(self): """ Extracts a bz2 file. Opens the file for writing and meta pipe the contents bz2file to the new file. """ # Store all extracted files in a temporary directory. if ARCHIVE_UPLOAD_TEMPDIR.get(): directory = tempfile.mkdtemp(dir=ARCHIVE_UPLOAD_TEMPDIR.get()) else: directory = tempfile.mkdtemp() files = [self.name] self._create_files(directory, files) return directory def _create_files(self, basepath, files=[]): """ Files are written to a temporary directory immediately after being decompressed. """ for f in files: new_path = os.path.join(basepath, f) new_file = open(new_path, 'w') new_file.write(self.fh.read()) new_file.close() def archive_factory(path, archive_type='zip'): if archive_type == 'zip': return ZipArchive(path) elif archive_type == 'tarball' or archive_type == 'tar.gz' or archive_type == 'tgz': return TarballArchive(path) elif archive_type == 'bz2' or archive_type == 'bzip2': return BZ2Archive(path) class IllegalPathException(PopupException): def __init__(self): super(IllegalPathException, self).__init__('''Archive path cannot be absolute or contain '..' ''')
30.799163
110
0.675452
794e02a9abb8bfa43732422f20b7e7e3ffdaefeb
10,950
py
Python
bambinocampones/src/bambinocampones/website/migrations/0002_auto__add_field_galeria_foi_importante.py
ProfessionalIT/customers
3dbc1989bb3494fb6de7edad67dc59b7b0385ac3
[ "MIT" ]
null
null
null
bambinocampones/src/bambinocampones/website/migrations/0002_auto__add_field_galeria_foi_importante.py
ProfessionalIT/customers
3dbc1989bb3494fb6de7edad67dc59b7b0385ac3
[ "MIT" ]
1
2015-11-08T11:49:35.000Z
2015-11-08T11:49:43.000Z
bambinocampones/src/bambinocampones/website/migrations/0002_auto__add_field_galeria_foi_importante.py
ProfessionalIT/customers
3dbc1989bb3494fb6de7edad67dc59b7b0385ac3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Galeria.foi_importante' db.add_column(u'website_galeria', 'foi_importante', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): # Deleting field 'Galeria.foi_importante' db.delete_column(u'website_galeria', 'foi_importante') models = { u'website.calendario': { 'Meta': {'object_name': 'Calendario'}, 'data_agendamento': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 12, 4, 0, 0)'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'tipo': ('django.db.models.fields.CharField', [], {'default': "u'E'", 'max_length': '1'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.cardapio': { 'Meta': {'object_name': 'Cardapio'}, 'ano': ('django.db.models.fields.CharField', [], {'default': "'2013'", 'max_length': '4'}), 'cardapio_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mes': ('django.db.models.fields.CharField', [], {'default': "'12'", 'max_length': '2'}), 'tipo': ('django.db.models.fields.CharField', [], {'default': "u'1'", 'max_length': '1'}) }, u'website.conteudodownload': { 'Meta': {'object_name': 'ConteudoDownload'}, 'conteudo_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'descricao': ('django.db.models.fields.CharField', [], {'max_length': '200'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'miniatura': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'tipo': ('django.db.models.fields.CharField', [], {'default': "u'1'", 'max_length': '1'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.depoimento': { 'Meta': {'object_name': 'Depoimento'}, 'autor': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'conteudo': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'website.galeria': { 'Meta': {'object_name': 'Galeria'}, 'ano': ('django.db.models.fields.CharField', [], {'default': "'2013'", 'max_length': '4'}), 'descricao': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'destaque': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'foi_importante': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mes': ('django.db.models.fields.CharField', [], {'default': "'12'", 'max_length': '2'}), 'permite_comentario': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'tipo': ('django.db.models.fields.CharField', [], {'default': "u'F'", 'max_length': '1'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.galeriaresource': { 'Meta': {'object_name': 'GaleriaResource'}, 'action_resource': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'galeria': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['website.Galeria']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'upload_resource': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'url_resource': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}) }, u'website.materialescolar': { 'Meta': {'object_name': 'MaterialEscolar'}, 'anexo_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'ano': ('django.db.models.fields.CharField', [], {'default': "'2013'", 'max_length': '4'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'miniatura': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'servico': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['website.Servico']"}) }, u'website.menu': { 'Meta': {'object_name': 'Menu'}, 'endereco': ('django.db.models.fields.CharField', [], {'max_length': '200'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'menu_pai': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'Menu Pai'", 'null': 'True', 'to': u"orm['website.Menu']"}), 'nivel': ('django.db.models.fields.IntegerField', [], {}), 'ordem': ('django.db.models.fields.IntegerField', [], {}), 'pagina': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['website.Pagina']", 'null': 'True'}), 'palavras_chaves': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'rascunho': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.pagina': { 'Meta': {'object_name': 'Pagina'}, 'conteudo': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'palavras_chaves': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'permite_comentario': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'rascunho': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.parametro': { 'Meta': {'object_name': 'Parametro'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'valor': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.professor': { 'Meta': {'object_name': 'Professor'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'nome': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}) }, u'website.publicacao': { 'Meta': {'object_name': 'Publicacao'}, 'completa': ('django.db.models.fields.TextField', [], {}), 'data_hora': ('django.db.models.fields.DateTimeField', [], {}), 'data_publicacao': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'destaque': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'galeria': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['website.Galeria']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'introducao': ('django.db.models.fields.TextField', [], {}), 'miniatura_publicacao': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'palavras_chaves': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'permite_comentario': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'rascunho': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'tipos': ('django.db.models.fields.CharField', [], {'default': "u'1'", 'max_length': '1'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, u'website.recomendacao': { 'Meta': {'object_name': 'Recomendacao'}, 'acao_link': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'descricao': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'destaque': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'miniatura': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'tipo': ('django.db.models.fields.CharField', [], {'default': "u'1'", 'max_length': '1'}) }, u'website.servico': { 'Meta': {'object_name': 'Servico'}, 'atividades_extras': ('django.db.models.fields.TextField', [], {}), 'atividades_incluidas': ('django.db.models.fields.TextField', [], {}), 'conteudo_programatico': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observacoes': ('django.db.models.fields.TextField', [], {}), 'professor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['website.Professor']"}), 'rotina_diaria': ('django.db.models.fields.TextField', [], {}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '200'}), 'titulo': ('django.db.models.fields.CharField', [], {'max_length': '200'}) } } complete_apps = ['website']
69.303797
172
0.541918
794e03aee17866a752e9abc32ac7dbbfd3b4962e
26,232
py
Python
src/sagemaker/automl/automl.py
aws-patlin/sagemaker-python-sdk
18af12beffed82aaf263e9cfec8832f39b6bc63f
[ "Apache-2.0" ]
null
null
null
src/sagemaker/automl/automl.py
aws-patlin/sagemaker-python-sdk
18af12beffed82aaf263e9cfec8832f39b6bc63f
[ "Apache-2.0" ]
null
null
null
src/sagemaker/automl/automl.py
aws-patlin/sagemaker-python-sdk
18af12beffed82aaf263e9cfec8832f39b6bc63f
[ "Apache-2.0" ]
null
null
null
# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """A class for SageMaker AutoML Jobs.""" from __future__ import absolute_import from six import string_types from sagemaker import Model, PipelineModel from sagemaker.automl.candidate_estimator import CandidateEstimator from sagemaker.job import _Job from sagemaker.session import Session from sagemaker.utils import name_from_base class AutoML(object): """A class for creating and interacting with SageMaker AutoML jobs """ def __init__( self, role, target_attribute_name, output_kms_key=None, output_path=None, base_job_name=None, compression_type=None, sagemaker_session=None, volume_kms_key=None, encrypt_inter_container_traffic=False, vpc_config=None, problem_type=None, max_candidates=None, max_runtime_per_training_job_in_seconds=None, total_job_runtime_in_seconds=None, job_objective=None, generate_candidate_definitions_only=False, tags=None, ): self.role = role self.output_kms_key = output_kms_key self.output_path = output_path self.base_job_name = base_job_name self.compression_type = compression_type self.volume_kms_key = volume_kms_key self.encrypt_inter_container_traffic = encrypt_inter_container_traffic self.vpc_config = vpc_config self.problem_type = problem_type self.max_candidate = max_candidates self.max_runtime_per_training_job_in_seconds = max_runtime_per_training_job_in_seconds self.total_job_runtime_in_seconds = total_job_runtime_in_seconds self.target_attribute_name = target_attribute_name self.job_objective = job_objective self.generate_candidate_definitions_only = generate_candidate_definitions_only self.tags = tags self.current_job_name = None self._auto_ml_job_desc = None self._best_candidate = None self.sagemaker_session = sagemaker_session or Session() self._check_problem_type_and_job_objective(self.problem_type, self.job_objective) def fit(self, inputs=None, wait=True, logs=True, job_name=None): """Create an AutoML Job with the input dataset. Args: inputs (str or list[str] or AutoMLInput): Local path or S3 Uri where the training data is stored. Or an AutoMLInput object. If a local path is provided, the dataset will be uploaded to an S3 location. wait (bool): Whether the call should wait until the job completes (default: True). logs (bool): Whether to show the logs produced by the job. Only meaningful when wait is True (default: True). job_name (str): Training job name. If not specified, the estimator generates a default job name, based on the training image name and current timestamp. """ if logs and not wait: raise ValueError( """Logs can only be shown if wait is set to True. Please either set wait to True or set logs to False.""" ) # upload data for users if provided local path # validations are done in _Job._format_inputs_to_input_config if isinstance(inputs, string_types): if not inputs.startswith("s3://"): inputs = self.sagemaker_session.upload_data(inputs, key_prefix="auto-ml-input-data") self._prepare_for_auto_ml_job(job_name=job_name) self.latest_auto_ml_job = AutoMLJob.start_new(self, inputs) # pylint: disable=W0201 if wait: self.latest_auto_ml_job.wait(logs=logs) def describe_auto_ml_job(self, job_name=None): """Returns the job description of an AutoML job for the given job name. Args: job_name (str): The name of the AutoML job to describe. If None, will use object's latest_auto_ml_job name. Returns: dict: A dictionary response with the AutoML Job description. """ if job_name is None: job_name = self.current_job_name self._auto_ml_job_desc = self.sagemaker_session.describe_auto_ml_job(job_name) return self._auto_ml_job_desc def best_candidate(self, job_name=None): """Returns the best candidate of an AutoML job for a given name Args: job_name (str): The name of the AutoML job. If None, will use object's _current_auto_ml_job_name. Returns: dict: a dictionary with information of the best candidate """ if self._best_candidate: return self._best_candidate if job_name is None: job_name = self.current_job_name if self._auto_ml_job_desc is None: self._auto_ml_job_desc = self.sagemaker_session.describe_auto_ml_job(job_name) elif self._auto_ml_job_desc["AutoMLJobName"] != job_name: self._auto_ml_job_desc = self.sagemaker_session.describe_auto_ml_job(job_name) self._best_candidate = self._auto_ml_job_desc["BestCandidate"] return self._best_candidate def list_candidates( self, job_name=None, status_equals=None, candidate_name=None, candidate_arn=None, sort_order=None, sort_by=None, max_results=None, ): """Returns the list of candidates of an AutoML job for a given name. Args: job_name (str): The name of the AutoML job. If None, will use object's _current_job name. status_equals (str): Filter the result with candidate status, values could be "Completed", "InProgress", "Failed", "Stopped", "Stopping" candidate_name (str): The name of a specified candidate to list. Default to None. candidate_arn (str): The Arn of a specified candidate to list. Default to None. sort_order (str): The order that the candidates will be listed in result. Default to None. sort_by (str): The value that the candidates will be sorted by. Default to None. max_results (int): The number of candidates will be listed in results, between 1 to 100. Default to None. If None, will return all the candidates. Returns: list: A list of dictionaries with candidates information """ if job_name is None: job_name = self.current_job_name list_candidates_args = {"job_name": job_name} if status_equals: list_candidates_args["status_equals"] = status_equals if candidate_name: list_candidates_args["candidate_name"] = candidate_name if candidate_arn: list_candidates_args["candidate_arn"] = candidate_arn if sort_order: list_candidates_args["sort_order"] = sort_order if sort_by: list_candidates_args["sort_by"] = sort_by if max_results: list_candidates_args["max_results"] = max_results return self.sagemaker_session.list_candidates(**list_candidates_args)["Candidates"] def deploy( self, initial_instance_count, instance_type, candidate=None, sagemaker_session=None, name=None, endpoint_name=None, tags=None, wait=True, update_endpoint=False, vpc_config=None, enable_network_isolation=False, model_kms_key=None, predictor_cls=None, ): """Deploy a candidate to a SageMaker Inference Pipeline and return a Predictor Args: initial_instance_count (int): The initial number of instances to run in the ``Endpoint`` created from this ``Model``. instance_type (str): The EC2 instance type to deploy this Model to. For example, 'ml.p2.xlarge'. candidate (CandidateEstimator or dict): a CandidateEstimator used for deploying to a SageMaker Inference Pipeline. If None, the best candidate will be used. If the candidate input is a dict, a CandidateEstimator will be created from it. sagemaker_session (sagemaker.session.Session): A SageMaker Session object, used for SageMaker interactions (default: None). If not specified, the one originally associated with the ``AutoML`` instance is used. name (str): The pipeline model name. If None, a default model name will be selected on each ``deploy``. endpoint_name (str): The name of the endpoint to create (default: None). If not specified, a unique endpoint name will be created. tags (List[dict[str, str]]): The list of tags to attach to this specific endpoint. wait (bool): Whether the call should wait until the deployment of model completes (default: True). update_endpoint (bool): Flag to update the model in an existing Amazon SageMaker endpoint. If True, this will deploy a new EndpointConfig to an already existing endpoint and delete resources corresponding to the previous EndpointConfig. If False, a new endpoint will be created. Default: False vpc_config (dict): Specifies a VPC that your training jobs and hosted models have access to. Contents include "SecurityGroupIds" and "Subnets". enable_network_isolation (bool): Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. Default: False model_kms_key (str): KMS key ARN used to encrypt the repacked model archive file if the model is repacked predictor_cls (callable[string, sagemaker.session.Session]): A function to call to create a predictor (default: None). If specified, ``deploy()`` returns the result of invoking this function on the created endpoint name. Returns: callable[string, sagemaker.session.Session] or ``None``: If ``predictor_cls`` is specified, the invocation of ``self.predictor_cls`` on the created endpoint name. Otherwise, ``None``. """ sagemaker_session = sagemaker_session or self.sagemaker_session if candidate is None: candidate_dict = self.best_candidate() candidate = CandidateEstimator(candidate_dict, sagemaker_session=sagemaker_session) elif isinstance(candidate, dict): candidate = CandidateEstimator(candidate, sagemaker_session=sagemaker_session) inference_containers = candidate.containers endpoint_name = endpoint_name or self.current_job_name return self._deploy_inference_pipeline( inference_containers, initial_instance_count=initial_instance_count, instance_type=instance_type, name=name, sagemaker_session=sagemaker_session, endpoint_name=endpoint_name, tags=tags, wait=wait, update_endpoint=update_endpoint, vpc_config=vpc_config, enable_network_isolation=enable_network_isolation, model_kms_key=model_kms_key, predictor_cls=predictor_cls, ) def _check_problem_type_and_job_objective(self, problem_type, job_objective): """Validate if problem_type and job_objective are both None or are both provided. Args: problem_type (str): The type of problem of this AutoMLJob. Valid values are "Regression", "BinaryClassification", "MultiClassClassification". job_objective (dict): AutoMLJob objective, contains "AutoMLJobObjectiveType" (optional), "MetricName" and "Value". Raises (ValueError): raises ValueError if one of problem_type and job_objective is provided while the other is None. """ if not (problem_type and job_objective) and (problem_type or job_objective): raise ValueError( "One of problem type and objective metric provided. " "Either both of them should be provided or none of them should be provided." ) def _deploy_inference_pipeline( self, inference_containers, initial_instance_count, instance_type, name=None, sagemaker_session=None, endpoint_name=None, tags=None, wait=True, update_endpoint=False, vpc_config=None, enable_network_isolation=False, model_kms_key=None, predictor_cls=None, ): """Deploy a SageMaker Inference Pipeline. Args: inference_containers (list): a list of inference container definitions initial_instance_count (int): The initial number of instances to run in the ``Endpoint`` created from this ``Model``. instance_type (str): The EC2 instance type to deploy this Model to. For example, 'ml.p2.xlarge'. name (str): The pipeline model name. If None, a default model name will be selected on each ``deploy``. sagemaker_session (sagemaker.session.Session): A SageMaker Session object, used for SageMaker interactions (default: None). If not specified, one is created using the default AWS configuration chain. endpoint_name (str): The name of the endpoint to create (default: None). If not specified, a unique endpoint name will be created. tags (List[dict[str, str]]): The list of tags to attach to this specific endpoint. wait (bool): Whether the call should wait until the deployment of model completes (default: True). update_endpoint (bool): Flag to update the model in an existing Amazon SageMaker endpoint. If True, this will deploy a new EndpointConfig to an already existing endpoint and delete resources corresponding to the previous EndpointConfig. If False, a new endpoint will be created. Default: False vpc_config (dict): information about vpc configuration, optionally contains "SecurityGroupIds", "Subnets" model_kms_key (str): KMS key ARN used to encrypt the repacked model archive file if the model is repacked predictor_cls (callable[string, sagemaker.session.Session]): A function to call to create a predictor (default: None). If specified, ``deploy()`` returns the result of invoking this function on the created endpoint name. """ # construct Model objects models = [] for container in inference_containers: image = container["Image"] model_data = container["ModelDataUrl"] env = container["Environment"] model = Model( image=image, model_data=model_data, role=self.role, env=env, vpc_config=vpc_config, sagemaker_session=sagemaker_session or self.sagemaker_session, enable_network_isolation=enable_network_isolation, model_kms_key=model_kms_key, ) models.append(model) pipeline = PipelineModel( models=models, role=self.role, predictor_cls=predictor_cls, name=name, vpc_config=vpc_config, sagemaker_session=sagemaker_session or self.sagemaker_session, ) return pipeline.deploy( initial_instance_count=initial_instance_count, instance_type=instance_type, endpoint_name=endpoint_name, tags=tags, wait=wait, update_endpoint=update_endpoint, ) def _prepare_for_auto_ml_job(self, job_name=None): """Set any values in the AutoMLJob that need to be set before creating request. Args: job_name (str): The name of the AutoML job. If None, a job name will be created from base_job_name or "sagemaker-auto-ml". """ if job_name is not None: self.current_job_name = job_name else: if self.base_job_name: base_name = self.base_job_name else: base_name = "automl" # CreateAutoMLJob API validates that member length less than or equal to 32 self.current_job_name = name_from_base(base_name, max_length=32) if self.output_path is None: self.output_path = "s3://{}/".format(self.sagemaker_session.default_bucket()) class AutoMLInput(object): """Accepts parameters that specify an S3 input for an auto ml job and provides a method to turn those parameters into a dictionary.""" def __init__(self, inputs, target_attribute_name, compression=None): """Convert an S3 Uri or a list of S3 Uri to an AutoMLInput object. :param inputs (str, list[str]): a string or a list of string that points to (a) S3 location(s) where input data is stored. :param target_attribute_name (str): the target attribute name for regression or classification. :param compression (str): if training data is compressed, the compression type. The default value is None. """ self.inputs = inputs self.target_attribute_name = target_attribute_name self.compression = compression def to_request_dict(self): """Generates a request dictionary using the parameters provided to the class.""" # Create the request dictionary. auto_ml_input = [] if isinstance(self.inputs, string_types): self.inputs = [self.inputs] for entry in self.inputs: input_entry = { "DataSource": {"S3DataSource": {"S3DataType": "S3Prefix", "S3Uri": entry}}, "TargetAttributeName": self.target_attribute_name, } if self.compression is not None: input_entry["CompressionType"] = self.compression auto_ml_input.append(input_entry) return auto_ml_input class AutoMLJob(_Job): """A class for interacting with CreateAutoMLJob API.""" def __init__(self, sagemaker_session, job_name, inputs): self.inputs = inputs self.job_name = job_name super(AutoMLJob, self).__init__(sagemaker_session=sagemaker_session, job_name=job_name) @classmethod def start_new(cls, auto_ml, inputs): """Create a new Amazon SageMaker AutoML job from auto_ml. Args: auto_ml (sagemaker.automl.AutoML): AutoML object created by the user. inputs (str, list[str]): Parameters used when called :meth:`~sagemaker.automl.AutoML.fit`. Returns: sagemaker.automl.AutoMLJob: Constructed object that captures all information about the started AutoML job. """ config = cls._load_config(inputs, auto_ml) auto_ml_args = config.copy() auto_ml_args["job_name"] = auto_ml.current_job_name auto_ml_args["problem_type"] = auto_ml.problem_type auto_ml_args["job_objective"] = auto_ml.job_objective auto_ml_args["tags"] = auto_ml.tags auto_ml.sagemaker_session.auto_ml(**auto_ml_args) return cls(auto_ml.sagemaker_session, auto_ml.current_job_name, inputs) @classmethod def _load_config(cls, inputs, auto_ml, expand_role=True, validate_uri=True): """Load job_config, input_config and output config from auto_ml and inputs. Args: inputs (str): S3 Uri where the training data is stored, must start with "s3://". auto_ml (AutoML): an AutoML object that user initiated. expand_role (str): The expanded role arn that allows for Sagemaker executionts. validate_uri (bool): indicate whether to validate the S3 uri. Returns (dict): a config dictionary that contains input_config, output_config, job_config and role information. """ # JobConfig # InputDataConfig # OutputConfig if isinstance(inputs, AutoMLInput): input_config = inputs.to_request_dict() else: input_config = cls._format_inputs_to_input_config( inputs, validate_uri, auto_ml.compression_type, auto_ml.target_attribute_name ) output_config = _Job._prepare_output_config(auto_ml.output_path, auto_ml.output_kms_key) role = auto_ml.sagemaker_session.expand_role(auto_ml.role) if expand_role else auto_ml.role stop_condition = cls._prepare_auto_ml_stop_condition( auto_ml.max_candidate, auto_ml.max_runtime_per_training_job_in_seconds, auto_ml.total_job_runtime_in_seconds, ) auto_ml_job_config = { "CompletionCriteria": stop_condition, "SecurityConfig": { "EnableInterContainerTrafficEncryption": auto_ml.encrypt_inter_container_traffic }, } if auto_ml.volume_kms_key: auto_ml_job_config["SecurityConfig"]["VolumeKmsKeyId"] = auto_ml.volume_kms_key if auto_ml.vpc_config: auto_ml_job_config["SecurityConfig"]["VpcConfig"] = auto_ml.vpc_config config = { "input_config": input_config, "output_config": output_config, "auto_ml_job_config": auto_ml_job_config, "role": role, "generate_candidate_definitions_only": auto_ml.generate_candidate_definitions_only, } return config @classmethod def _format_inputs_to_input_config( cls, inputs, validate_uri=True, compression=None, target_attribute_name=None ): """Convert inputs to AutoML InputDataConfig. Args: inputs (str, list[str]): local path(s) or S3 uri(s) of input datasets. validate_uri (bool): indicates whether it is needed to validate S3 uri. compression (str): target_attribute_name (str): the target attribute name for classification or regression. Returns (dict): a dict of AutoML InputDataConfig """ if inputs is None: return None channels = [] if isinstance(inputs, AutoMLInput): channels.append(inputs.to_request_dict()) elif isinstance(inputs, string_types): channel = _Job._format_string_uri_input( inputs, validate_uri, compression=compression, target_attribute_name=target_attribute_name, ).config channels.append(channel) elif isinstance(inputs, list): for input_entry in inputs: channel = _Job._format_string_uri_input( input_entry, validate_uri, compression=compression, target_attribute_name=target_attribute_name, ).config channels.append(channel) else: msg = "Cannot format input {}. Expecting a string or a list of strings." raise ValueError(msg.format(inputs)) for channel in channels: if channel["TargetAttributeName"] is None: raise ValueError("TargetAttributeName cannot be None.") return channels @classmethod def _prepare_auto_ml_stop_condition( cls, max_candidates, max_runtime_per_training_job_in_seconds, total_job_runtime_in_seconds ): """Defines the CompletionCriteria of an AutoMLJob. Args: max_candidates (int): the maximum number of candidates returned by an AutoML job. max_runtime_per_training_job_in_seconds (int): the maximum time of each training job in seconds. total_job_runtime_in_seconds (int): the total wait time of an AutoML job. Returns (dict): an AutoML CompletionCriteria. """ stopping_condition = {"MaxCandidates": max_candidates} if max_runtime_per_training_job_in_seconds is not None: stopping_condition[ "MaxRuntimePerTrainingJobInSeconds" ] = max_runtime_per_training_job_in_seconds if total_job_runtime_in_seconds is not None: stopping_condition["MaxAutoMLJobRuntimeInSeconds"] = total_job_runtime_in_seconds return stopping_condition def describe(self): """Prints out a response from the DescribeAutoMLJob API call.""" return self.sagemaker_session.describe_auto_ml_job(self.job_name) def wait(self, logs=True): """Wait for the AutoML job to finish. Args: logs (bool): indicate whether to output logs. """ if logs: self.sagemaker_session.logs_for_auto_ml_job(self.job_name, wait=True) else: self.sagemaker_session.wait_for_auto_ml_job(self.job_name)
42.515397
100
0.64063
794e047086377a4da70f76d706112f93faaaf873
1,006
py
Python
metodi/zeri/bisezione.py
alemazzo/metodi_numerici
0d7d02aa392dde51abe1a4ee8ac5412f8f27736a
[ "MIT" ]
9
2021-07-08T10:55:58.000Z
2021-12-03T09:56:37.000Z
metodi/zeri/bisezione.py
alemazzo/metodi_numerici
0d7d02aa392dde51abe1a4ee8ac5412f8f27736a
[ "MIT" ]
null
null
null
metodi/zeri/bisezione.py
alemazzo/metodi_numerici
0d7d02aa392dde51abe1a4ee8ac5412f8f27736a
[ "MIT" ]
null
null
null
import math import numpy as np def bisezione(f, a, b, tol): """ Algoritmo di Bisezione per il calcolo dello zero di una funzione. :param f: la funzione di cui calcolare lo zero :param a: il valore minimo dell'intervallo :param b: il valore massimo dell'intervallo :param tol: la tollerenza :return: (zero della funzione, numero di iterazioni, iterazioni) """ def sign(value): return math.copysign(1, value) fa, fb, x = f(a), f(b), None if sign(fa) == sign(fb): print("sign(fa) == sign(fb) => Non applicabile") return None, 0, [] max_iterazioni = int(math.ceil(math.log2((b - a) / tol))) it, xk = 0, [] while it < max_iterazioni and abs(b - a) >= tol + np.spacing(1) * max(abs(a), abs(b)): x = a + (b - a) / 2 # Calcolo il punto medio xk.append(x) fx = f(x) if sign(fx) == sign(fa): a, fa = x, fx else: b, fb = x, fx it += 1 return x, it, xk
26.473684
90
0.55169
794e04f1f75888cc2ddd1dbfe357cb76ba29c591
696
py
Python
labfunctions/security/utils.py
dymaxionlabs/nb_workflows
336e4d83dd5f8a7edfbaacfa426b23a42c0a68a9
[ "Apache-2.0" ]
4
2022-02-17T19:47:52.000Z
2022-02-17T20:11:06.000Z
labfunctions/security/utils.py
dymaxionlabs/nb_workflows
336e4d83dd5f8a7edfbaacfa426b23a42c0a68a9
[ "Apache-2.0" ]
2
2022-03-26T00:07:05.000Z
2022-03-30T21:20:00.000Z
labfunctions/security/utils.py
dymaxionlabs/nb_workflows
336e4d83dd5f8a7edfbaacfa426b23a42c0a68a9
[ "Apache-2.0" ]
1
2022-02-18T13:33:00.000Z
2022-02-18T13:33:00.000Z
import binascii import importlib import os from datetime import datetime, timedelta from labfunctions.types.security import KeyPairs def open_keys(pub, priv) -> KeyPairs: with open(pub, "r") as f: pub = f.read() pub = pub.strip() with open(priv, "r") as f: priv = f.read() priv = priv.strip() return KeyPairs(public=pub, private=priv) def generate_token(n=24, *args, **kwargs): return str(binascii.hexlify(os.urandom(n)), "utf-8") def get_delta(delta_min: int) -> int: """Returns a timestamp addding a delta_min value to the utc now date.""" delta = datetime.utcnow() + timedelta(minutes=delta_min) return int(delta.timestamp())
25.777778
76
0.666667
794e0507326723f09ca15ca16f6803cf81ead02f
115
py
Python
bigquery/job/ems_job_state.py
emartech/ems-gcp-toolkit
74da9af2e5af262ef10613b5a91b8841fb3c2691
[ "MIT" ]
1
2020-02-14T18:08:58.000Z
2020-02-14T18:08:58.000Z
bigquery/job/ems_job_state.py
emartech/ems-gcp-toolkit
74da9af2e5af262ef10613b5a91b8841fb3c2691
[ "MIT" ]
null
null
null
bigquery/job/ems_job_state.py
emartech/ems-gcp-toolkit
74da9af2e5af262ef10613b5a91b8841fb3c2691
[ "MIT" ]
1
2022-02-17T19:50:17.000Z
2022-02-17T19:50:17.000Z
from enum import Enum class EmsJobState(Enum): PENDING = "PENDING" RUNNING = "RUNNING" DONE = "DONE"
14.375
24
0.643478
794e05e2dc9c494da9d6695a9ad1c551f30b6e8d
11,370
py
Python
tensorflow/contrib/keras/python/keras/applications/resnet50.py
ralic/tensorflow
1209491913def44650d6457c60a6e41d56de3306
[ "Apache-2.0" ]
1
2017-09-05T02:22:07.000Z
2017-09-05T02:22:07.000Z
tensorflow/contrib/keras/python/keras/applications/resnet50.py
ralic/tensorflow
1209491913def44650d6457c60a6e41d56de3306
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/keras/python/keras/applications/resnet50.py
ralic/tensorflow
1209491913def44650d6457c60a6e41d56de3306
[ "Apache-2.0" ]
1
2021-01-25T14:18:12.000Z
2021-01-25T14:18:12.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """ResNet50 model for Keras. # Reference: - [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) Adapted from code contributed by BigMoyan. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.keras.python.keras import backend as K from tensorflow.contrib.keras.python.keras import layers from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import _obtain_input_shape from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import decode_predictions # pylint: disable=unused-import from tensorflow.contrib.keras.python.keras.applications.imagenet_utils import preprocess_input # pylint: disable=unused-import from tensorflow.contrib.keras.python.keras.engine.topology import get_source_inputs from tensorflow.contrib.keras.python.keras.layers import Activation from tensorflow.contrib.keras.python.keras.layers import AveragePooling2D from tensorflow.contrib.keras.python.keras.layers import BatchNormalization from tensorflow.contrib.keras.python.keras.layers import Conv2D from tensorflow.contrib.keras.python.keras.layers import Dense from tensorflow.contrib.keras.python.keras.layers import Flatten from tensorflow.contrib.keras.python.keras.layers import GlobalAveragePooling2D from tensorflow.contrib.keras.python.keras.layers import GlobalMaxPooling2D from tensorflow.contrib.keras.python.keras.layers import Input from tensorflow.contrib.keras.python.keras.layers import MaxPooling2D from tensorflow.contrib.keras.python.keras.models import Model from tensorflow.contrib.keras.python.keras.utils.data_utils import get_file WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5' WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. Arguments: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names Returns: Output tensor for the block. """ filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D( filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): """conv_block is the block that has a conv layer at shortcut. Arguments: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names strides: Tuple of integers. Returns: Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2,2) And the shortcut should have strides=(2,2) as well """ filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D( filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D( filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) shortcut = Conv2D( filters3, (1, 1), strides=strides, name=conv_name_base + '1')(input_tensor) shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut]) x = Activation('relu')(x) return x def ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the ResNet50 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 input channels, and width and height should be no smaller than 197. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=224, min_size=197, data_format=K.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: img_input = Input(tensor=input_tensor, shape=input_shape) if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = Conv2D(64, (7, 7), strides=(2, 2), padding='same', name='conv1')(img_input) x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') x = AveragePooling2D((7, 7), name='avg_pool')(x) if include_top: x = Flatten()(x) x = Dense(classes, activation='softmax', name='fc1000')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='resnet50') # load weights if weights == 'imagenet': if include_top: weights_path = get_file( 'resnet50_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', md5_hash='a7b3fe01876f51b976af0dea6bc144eb') else: weights_path = get_file( 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af') model.load_weights(weights_path) return model
39.616725
148
0.681882
794e06c837be402cc9540e19c72cee08296ceda1
1,284
py
Python
features/steps/block.py
netsyno/python-docx
f181a89f1c1651baba6a37399e6bba09769459ae
[ "MIT" ]
3
2015-04-12T11:18:40.000Z
2021-04-28T09:17:38.000Z
features/steps/block.py
netsyno/python-docx
f181a89f1c1651baba6a37399e6bba09769459ae
[ "MIT" ]
null
null
null
features/steps/block.py
netsyno/python-docx
f181a89f1c1651baba6a37399e6bba09769459ae
[ "MIT" ]
2
2016-02-28T03:20:32.000Z
2019-10-05T12:01:28.000Z
# encoding: utf-8 """ Step implementations for block content containers """ from behave import given, then, when from docx import Document from docx.table import Table from helpers import test_docx # given =================================================== @given('a document containing a table') def given_a_document_containing_a_table(context): docx_path = test_docx('blk-containing-table') context.document = Document(docx_path) @given('a paragraph') def given_a_paragraph(context): context.document = Document() context.p = context.document.add_paragraph() # when ==================================================== @when('I add a paragraph') def when_add_paragraph(context): document = context.document context.p = document.add_paragraph() @when('I add a table') def when_add_table(context): rows, cols = 2, 2 context.document.add_table(rows, cols) # then ===================================================== @then('I can access the table') def then_can_access_table(context): table = context.document.tables[-1] assert isinstance(table, Table) @then('the new table appears in the document') def then_new_table_appears_in_document(context): table = context.document.tables[-1] assert isinstance(table, Table)
23.345455
60
0.646417
794e06e153f378c5d0228164d6396c6c2fa38c9d
1,550
py
Python
patterns/exas.py
stspbu/code-change-miner
a9aceb92a3484f0c3c8140bbb986bfec1e2d7562
[ "Apache-2.0" ]
1
2020-09-06T16:32:17.000Z
2020-09-06T16:32:17.000Z
patterns/exas.py
neomatrix369/code-change-miner
4fe24d03c8512202bc80a77bf1ebee456d8400d7
[ "Apache-2.0" ]
null
null
null
patterns/exas.py
neomatrix369/code-change-miner
4fe24d03c8512202bc80a77bf1ebee456d8400d7
[ "Apache-2.0" ]
null
null
null
from pyflowgraph.models import LinkType import sys HALF_N = sys.maxsize // 2 N = HALF_N * 2 def normalize(value): return (value + HALF_N) % N - HALF_N class ExasFeature: """ Features characterize code fragments Read more: "Accurate and Efficient Structural Characteristic Feature Extraction" """ MAX_LENGTH = 2 ** 3 - 1 def __init__(self, nodes=None): self.node_label_to_feature_id = {} self.edge_label_to_feature_id = { LinkType.QUALIFIER: 0, LinkType.CONDITION: 1, LinkType.CONTROL: 2, LinkType.DEFINITION: 3, LinkType.MAP: 4, LinkType.PARAMETER: 5, LinkType.RECEIVER: 6, LinkType.REFERENCE: 7 } if nodes is not None: self._bind_node_feature_ids(nodes) def _bind_node_feature_ids(self, nodes): for num, node in enumerate(nodes): self.node_label_to_feature_id[node.label] = num + 1 # some ids can be skipped def get_id_by_label(self, label): return self.node_label_to_feature_id.get(label) def get_id_by_labels(self, labels): result = 0 for num, label in enumerate(labels): if num % 2 == 0: s = self.node_label_to_feature_id.get(label) else: s = self.edge_label_to_feature_id.get(label, 0) s = normalize(s << 5) # 2^4 types result = normalize(result << 8) result = normalize(result + s) return result
27.192982
90
0.592258
794e075cdcbbb2b8a7a7a6a591352a9bdc0687fb
48,416
py
Python
sympy/physics/tests/test_secondquant.py
CameronKing/sympy
3295b02c617a10ea8db0a070356cc0ba5a3b5121
[ "BSD-3-Clause" ]
null
null
null
sympy/physics/tests/test_secondquant.py
CameronKing/sympy
3295b02c617a10ea8db0a070356cc0ba5a3b5121
[ "BSD-3-Clause" ]
null
null
null
sympy/physics/tests/test_secondquant.py
CameronKing/sympy
3295b02c617a10ea8db0a070356cc0ba5a3b5121
[ "BSD-3-Clause" ]
null
null
null
from sympy.physics.secondquant import ( Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis, matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta, AnnihilateBoson, CreateBoson, BosonicOperator, F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion, evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks, PermutationOperator, simplify_index_permutations, _sort_anticommuting_fermions, _get_ordered_dummies, substitute_dummies, FockState, FockStateBosonKet, ContractionAppliesOnlyToFermions ) from sympy import (Dummy, expand, Function, I, Rational, simplify, sqrt, Sum, Symbol, symbols, srepr) from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, slow, raises from sympy.printing.latex import latex def test_PermutationOperator(): p, q, r, s = symbols('p,q,r,s') f, g, h, i = map(Function, 'fghi') P = PermutationOperator assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p) assert P(p, q).get_permuted(f(p, q)) == -f(q, p) assert P(p, q).get_permuted(f(p)) == f(p) expr = (f(p)*g(q)*h(r)*i(s) - f(q)*g(p)*h(r)*i(s) - f(p)*g(q)*h(s)*i(r) + f(q)*g(p)*h(s)*i(r)) perms = [P(p, q), P(r, s)] assert (simplify_index_permutations(expr, perms) == P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s)) assert latex(P(p, q)) == 'P(pq)' def test_index_permutations_with_dummies(): a, b, c, d = symbols('a b c d') p, q, r, s = symbols('p q r s', cls=Dummy) f, g = map(Function, 'fg') P = PermutationOperator # No dummy substitution necessary expr = f(a, b, p, q) - f(b, a, p, q) assert simplify_index_permutations( expr, [P(a, b)]) == P(a, b)*f(a, b, p, q) # Cases where dummy substitution is needed expected = P(a, b)*substitute_dummies(f(a, b, p, q)) expr = f(a, b, p, q) - f(b, a, q, p) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) expr = f(a, b, q, p) - f(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) # A case where nothing can be done expr = f(a, b, q, p) - g(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expr == result def test_dagger(): i, j, n, m = symbols('i,j,n,m') assert Dagger(1) == 1 assert Dagger(1.0) == 1.0 assert Dagger(2*I) == -2*I assert Dagger(Rational(1, 2)*I/3.0) == -Rational(1, 2)*I/3.0 assert Dagger(BKet([n])) == BBra([n]) assert Dagger(B(0)) == Bd(0) assert Dagger(Bd(0)) == B(0) assert Dagger(B(n)) == Bd(n) assert Dagger(Bd(n)) == B(n) assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1) assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n) assert Dagger(B(n)**10) == Dagger(B(n))**10 assert Dagger('a') == Dagger(Symbol('a')) assert Dagger(Dagger('a')) == Symbol('a') def test_operator(): i, j = symbols('i,j') o = BosonicOperator(i) assert o.state == i assert o.is_symbolic o = BosonicOperator(1) assert o.state == 1 assert not o.is_symbolic def test_create(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert latex(o) == "b^\\dagger_{i}" assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert latex(o) == "b_{i}" assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1]) o = B(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_basic_state(): i, j, n, m = symbols('i,j,n,m') s = BosonState([0, 1, 2, 3, 4]) assert len(s) == 5 assert s.args[0] == tuple(range(5)) assert s.up(0) == BosonState([1, 1, 2, 3, 4]) assert s.down(4) == BosonState([0, 1, 2, 3, 3]) for i in range(5): assert s.up(i).down(i) == s assert s.down(0) == 0 for i in range(5): assert s[i] == i s = BosonState([n, m]) assert s.down(0) == BosonState([n - 1, m]) assert s.up(0) == BosonState([n + 1, m]) @XFAIL def test_move1(): i, j = symbols('i,j') A, C = symbols('A,C', cls=Function) o = A(i)*C(j) # This almost works, but has a minus sign wrong assert move(o, 0, 1) == KroneckerDelta(i, j) + C(j)*A(i) @XFAIL def test_move2(): i, j = symbols('i,j') A, C = symbols('A,C', cls=Function) o = C(j)*A(i) # This almost works, but has a minus sign wrong assert move(o, 0, 1) == -KroneckerDelta(i, j) + A(i)*C(j) def test_basic_apply(): n = symbols("n") e = B(0)*BKet([n]) assert apply_operators(e) == sqrt(n)*BKet([n - 1]) e = Bd(0)*BKet([n]) assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1]) def test_complex_apply(): n, m = symbols("n,m") o = Bd(0)*B(0)*Bd(1)*B(0) e = apply_operators(o*BKet([n, m])) answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m]) assert expand(e) == expand(answer) def test_number_operator(): n = symbols("n") o = Bd(0)*B(0) e = apply_operators(o*BKet([n])) assert e == n*BKet([n]) def test_inner_product(): i, j, k, l = symbols('i,j,k,l') s1 = BBra([0]) s2 = BKet([1]) assert InnerProduct(s1, Dagger(s1)) == 1 assert InnerProduct(s1, s2) == 0 s1 = BBra([i, j]) s2 = BKet([k, l]) r = InnerProduct(s1, s2) assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l) def test_symbolic_matrix_elements(): n, m = symbols('n,m') s1 = BBra([n]) s2 = BKet([m]) o = B(0) e = apply_operators(s1*o*s2) assert e == sqrt(m)*KroneckerDelta(n, m - 1) def test_matrix_elements(): b = VarBosonicBasis(5) o = B(0) m = matrix_rep(o, b) for i in range(4): assert m[i, i + 1] == sqrt(i + 1) o = Bd(0) m = matrix_rep(o, b) for i in range(4): assert m[i + 1, i] == sqrt(i + 1) def test_fixed_bosonic_basis(): b = FixedBosonicBasis(2, 2) # assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] state = b.state(1) assert state == FockStateBosonKet((1, 1)) assert b.index(state) == 1 assert b.state(1) == b[1] assert len(b) == 3 assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' @slow def test_sho(): n, m = symbols('n,m') h_n = Bd(n)*B(n)*(n + Rational(1, 2)) H = Sum(h_n, (n, 0, 5)) o = H.doit(deep=False) b = FixedBosonicBasis(2, 6) m = matrix_rep(o, b) # We need to double check these energy values to make sure that they # are correct and have the proper degeneracies! diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11] for i in range(len(diag)): assert diag[i] == m[i, i] def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), B(0)) assert c == 0 c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c*BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c*BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2*NO(Fd(m)*F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2*NO(Fd(m)*F(m)) C = Commutator X, Y, Z = symbols('X,Y,Z', commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') D = KroneckerDelta assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a)) assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a) assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0 c1 = Commutator(F(a), Fd(a)) assert Commutator.eval(c1, c1) == 0 c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) assert latex(c) == r'\left[a^\dagger_{a} a_{i},a^\dagger_{b} a_{j}\right]' assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))' assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]' def test_create_f(): i, j, n, m = symbols('i,j,n,m') o = Fd(i) assert isinstance(o, CreateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Fd(1) assert o.apply_operator(FKet([n])) == FKet([1, n]) assert o.apply_operator(FKet([n])) == -FKet([n, 1]) o = Fd(n) assert o.apply_operator(FKet([])) == FKet([n]) vacuum = FKet([], fermi_level=4) assert vacuum == FKet([], fermi_level=4) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4) assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4) assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p) assert repr(Fd(p)) == 'CreateFermion(p)' assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))" assert latex(Fd(p)) == r'a^\dagger_{p}' def test_annihilate_f(): i, j, n, m = symbols('i,j,n,m') o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) assert str(F(p)) == 'f(p)' assert repr(F(p)) == 'AnnihilateFermion(p)' assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" assert latex(F(p)) == 'a_{p}' def test_create_b(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate_b(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) def test_wicks(): p, q, r, s = symbols('p,q,r,s', above_fermi=True) # Testing for particles only str = F(p)*Fd(q) assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q) str = Fd(p)*F(q) assert wicks(str) == NO(Fd(p)*F(q)) str = F(p)*Fd(q)*F(r)*Fd(s) nstr = wicks(str) fasit = NO( KroneckerDelta(p, q)*KroneckerDelta(r, s) + KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s) + KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q) - KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q) - AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s)) assert nstr == fasit assert (p*q*nstr).expand() == wicks(p*q*str) assert (nstr*p*q*2).expand() == wicks(str*p*q*2) # Testing CC equations particles and holes i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s', cls=Dummy) assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) == NO(F(a)*F(i)*F(j)*Fd(b)) + KroneckerDelta(a, b)*NO(F(i)*F(j))) assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) == NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) - KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k))) expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l)) assert (expr == -KroneckerDelta(i, k)*NO(Fd(j)*F(l)) - KroneckerDelta(j, l)*NO(Fd(i)*F(k)) - KroneckerDelta(i, k)*KroneckerDelta(j, l) + KroneckerDelta(i, l)*NO(Fd(j)*F(k)) + NO(Fd(i)*Fd(j)*F(k)*F(l))) expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d)) assert (expr == -KroneckerDelta(a, c)*NO(F(b)*Fd(d)) - KroneckerDelta(b, d)*NO(F(a)*Fd(c)) - KroneckerDelta(a, c)*KroneckerDelta(b, d) + KroneckerDelta(a, d)*NO(F(b)*Fd(c)) + NO(F(a)*F(b)*Fd(c)*Fd(d))) def test_NO(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) == NO(Fd(p)*F(q)) + NO(Fd(a)*F(b))) assert (NO(Fd(i)*NO(F(j)*Fd(a))) == NO(Fd(i)*F(j)*Fd(a))) assert NO(1) == 1 assert NO(i) == i assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) == NO(Fd(a)*Fd(b)*F(c)) + NO(Fd(a)*Fd(b)*F(d))) assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b) assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i) assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) == NO(Fd(a)*F(q)) + NO(Fd(i)*F(q))) assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) == NO(Fd(p)*F(a)) + NO(Fd(p)*F(i))) expr = NO(Fd(p)*F(q))._remove_brackets() assert wicks(expr) == NO(expr) assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a)) no = NO(Fd(a)*F(i)*F(b)*Fd(j)) l1 = [ ind for ind in no.iter_q_creators() ] assert l1 == [0, 1] l2 = [ ind for ind in no.iter_q_annihilators() ] assert l2 == [3, 2] no = NO(Fd(a)*Fd(i)) assert no.has_q_creators == 1 assert no.has_q_annihilators == -1 assert str(no) == ':CreateFermion(a)*CreateFermion(i):' assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))' assert latex(no) == r'\left\{a^\dagger_{a} a^\dagger_{i}\right\}' raises(NotImplementedError, lambda: NO(Bd(p)*F(q))) def test_sorting(): i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) p, q = symbols('p,q') # p, q assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) # i, p assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) # a, p assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) # i, a assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0) def test_contraction(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b))) def test_evaluate_deltas(): i, j, k = symbols('i,j,k') r = KroneckerDelta(i, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, k) r = KroneckerDelta(i, 0) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k) r = KroneckerDelta(1, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(1, k) r = KroneckerDelta(j, 2) * KroneckerDelta(k, j) assert evaluate_deltas(r) == KroneckerDelta(2, k) r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1) assert evaluate_deltas(r) == 0 r = (KroneckerDelta(0, i) * KroneckerDelta(0, j) * KroneckerDelta(1, j) * KroneckerDelta(1, j)) assert evaluate_deltas(r) == 0 def test_Tensors(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s') AT = AntiSymmetricTensor assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j)) assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i)) assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i)) assert AT('t', (a, a), (i, j)) == 0 assert AT('t', (a, b), (i, i)) == 0 assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j)) assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j)) tabij = AT('t', (a, b), (i, j)) assert tabij.has(a) assert tabij.has(b) assert tabij.has(i) assert tabij.has(j) assert tabij.subs(b, c) == AT('t', (a, c), (i, j)) assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j)) assert tabij.symbol == Symbol('t') assert latex(tabij) == 't^{ab}_{ij}' assert str(tabij) == 't((_a, _b),(_i, _j))' assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j)) assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j)) def test_fully_contracted(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) Fock = (AntiSymmetricTensor('f', (p,), (q,))* NO(Fd(p)*F(q))) V = (AntiSymmetricTensor('v', (p, q), (r, s))* NO(Fd(p)*Fd(q)*F(s)*F(r)))/4 Fai = wicks(NO(Fd(i)*F(a))*Fock, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Fai == AntiSymmetricTensor('f', (a,), (i,)) Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j)) def test_substitute_dummies_without_dummies(): i, j = symbols('i,j') assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2 assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1 def test_substitute_dummies_NO_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j)) - att(j, i)*NO(Fd(j)*F(i))) == 0 def test_substitute_dummies_SQ_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*Fd(i)*F(j) - att(j, i)*Fd(j)*F(i)) == 0 def test_substitute_dummies_new_indices(): i, j = symbols('i j', below_fermi=True, cls=Dummy) a, b = symbols('a b', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) f = Function('f') assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0 def test_substitute_dummies_substitution_order(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) f = Function('f') from sympy.utilities.iterables import variations for permut in variations([i, j, k, l], 4): assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0 def test_dummy_order_inner_outer_lines_VT1T1T1(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k), v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l), v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k), v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 exprs = [ # permut t <=> swapping external lines, not equivalent # except if v has certain symmetries. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut v <=> swapping external lines, not equivalent # except if v has certain symmetries. # # Note that in contrast to above, these permutations have identical # dummy order. That is because the proximity to external indices # has higher influence on the canonical dummy ordering than the # position of a dummy on the factors. In fact, the terms here are # similar in structure as the result of the dummy substitutions above. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut t and v <=> swapping internal lines, equivalent. # Canonical dummy order is different, and a consistent # substitution reveals the equivalence. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT1T1(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Different dummy order. Not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, i)*t(b, j), v(i, j, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(i, j, a, b)*t(b, i)*t(a, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, j)*t(b, i), v(i, j, b, a)*t(b, i)*t(a, j), v(j, i, b, a)*t(b, j)*t(a, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(ijcd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) # v(abcd)t(abij)t(jicd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(cdij) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Same dummy order, not equivalent. # # This test show that the dummy order may not be sensitive to all # index permutations. The following expressions have identical # structure as the resulting terms from of the dummy substitutions # in the test above. Here, all expressions have the same dummy # order, so they cannot be simplified by means of dummy # substitution. In order to simplify further, it is necessary to # exploit symmetries in the objects, for instance if t or v is # antisymmetric. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, i, j), v(i, j, b, a)*t(a, b, i, j), v(j, i, b, a)*t(a, b, i, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. v(i, j, a, b)*t(a, b, i, j), v(i, j, a, b)*t(b, a, i, j), v(i, j, a, b)*t(a, b, j, i), v(i, j, a, b)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, j, i), v(i, j, b, a)*t(b, a, i, j), v(j, i, b, a)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_well_defined(): aa, bb = symbols('a b', above_fermi=True) k, l, m = symbols('k l m', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) A = Function('A') B = Function('B') C = Function('C') dums = _get_ordered_dummies # We go through all key components in the order of increasing priority, # and consider only fully orderable expressions. Non-orderable expressions # are tested elsewhere. # pos in first factor determines sort order assert dums(A(k, l)*B(l, k)) == [k, l] assert dums(A(l, k)*B(l, k)) == [l, k] assert dums(A(k, l)*B(k, l)) == [k, l] assert dums(A(l, k)*B(k, l)) == [l, k] # factors involving the index assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m] # same, but with factor order determined by non-dummies assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] # index range assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p] assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p] assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p] assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p] assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p] assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p] assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p] assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p] assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p] assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p] assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p] assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p] def test_dummy_order_ambiguous(): aa, bb = symbols('a b', above_fermi=True) i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy) a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy) A = Function('A') B = Function('B') from sympy.utilities.iterables import variations # A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def atv(*args): return AntiSymmetricTensor('v', args[:2], args[2:] ) def att(*args): if len(args) == 4: return AntiSymmetricTensor('t', args[:2], args[2:] ) elif len(args) == 2: return AntiSymmetricTensor('t', (args[0],), (args[1],)) def test_dummy_order_inner_outer_lines_VT1T1T1_AT(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k), atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l), atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k), atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 # non-equivalent substitutions (change of sign) exprs = [ # permut t <=> swapping external lines atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == -substitute_dummies(permut) # equivalent substitutions exprs = [ atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), # permut t <=> swapping external lines atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT1T1_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Different dummy order. Not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, i)*att(b, j), atv(i, j, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(i, j, a, b)*att(b, i)*att(a, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, j)*att(b, i), atv(i, j, b, a)*att(b, i)*att(a, j), atv(j, i, b, a)*att(b, j)*att(a, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2_AT(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(ijcd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # atv(abcd)att(abij)att(jicd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(cdij) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, i, j), atv(i, j, b, a)*att(a, b, i, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. atv(i, j, a, b)*att(a, b, i, j), atv(i, j, a, b)*att(b, a, i, j), atv(i, j, a, b)*att(a, b, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, j, i), atv(i, j, b, a)*att(b, a, i, j), atv(j, i, b, a)*att(b, a, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs_AT(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_canonical_ordering_AntiSymmetricTensor(): v = symbols("v") virtual_indices = ('c', 'd') occupied_indices = ('k', 'l') c, d = symbols(('c','d'), above_fermi=True, cls=Dummy) k, l = symbols(('k','l'), below_fermi=True, cls=Dummy) # formerly, the left gave either the left or the right assert AntiSymmetricTensor(v, (k, l), (d, c) ) == -AntiSymmetricTensor(v, (l, k), (d, c))
37.736555
111
0.559319
794e083870b7f3ce7ca36dfdc022c176f3d4d05d
1,424
py
Python
main2.py
rivinduchamath/Open_CV-IM
4082d24de659d672d9f90a6a3a2dbd942d183781
[ "MIT" ]
null
null
null
main2.py
rivinduchamath/Open_CV-IM
4082d24de659d672d9f90a6a3a2dbd942d183781
[ "MIT" ]
1
2022-03-24T07:07:25.000Z
2022-03-24T07:07:25.000Z
main2.py
rivinduchamath/Python_Open_CV
4082d24de659d672d9f90a6a3a2dbd942d183781
[ "MIT" ]
null
null
null
import cv2 import numpy as np # Image negative img = cv2.imread('"C:/Users/wogza/Downloads/New folder (2)/A/rectangle.png"', 0) m, n = img.shape # To find the maximum grey level # value in the image L = img.max() # Maximum grey level value minus # the original image gives the # negative image img_neg = L - img # convert the np array img_neg to # a png image cv2.imwrite('"C:/Users/wogza/Downloads/New folder (2)/A/rectangle.png"', img_neg) # Thresholding without background # Let threshold =T # Let pixel value in the original be denoted by r # Let pixel value in the new image be denoted by s # If r<T, s= 0 # If r>T, s=255 T = 150 # create a array of zeros img_thresh = np.zeros((m, n), dtype=int) for i in range(m): for j in range(n): if img[i, j] < T: img_thresh[i, j] = 0 else: img_thresh[i, j] = 255 # Convert array to png image cv2.imwrite('"C:/Users/wogza/Downloads/New folder (2)/A/rectangle.png"', img_thresh) # the lower threshold value T1 = 100 # the upper threshold value T2 = 180 # create a array of zeros img_thresh_back = np.zeros((m, n), dtype=int) for i in range(m): for j in range(n): if T1 < img[i, j] < T2: img_thresh_back[i, j] = 255 else: img_thresh_back[i, j] = img[i, j] # Convert array to png image cv2.imwrite('"C:/Users/wogza/Downloads/New folder (2)/A/rectangle.png"', img_thresh_back)
21.575758
89
0.650281
794e08731eb41ea2ae1268ed0382c9cf0d06977f
3,908
py
Python
multiagent/scenarios/simple_spread_v2.py
beipeng/multiagent-particle-envs
68d605ee3d649e1b1d6d8564ab1ff89cb1ad68d6
[ "MIT" ]
null
null
null
multiagent/scenarios/simple_spread_v2.py
beipeng/multiagent-particle-envs
68d605ee3d649e1b1d6d8564ab1ff89cb1ad68d6
[ "MIT" ]
null
null
null
multiagent/scenarios/simple_spread_v2.py
beipeng/multiagent-particle-envs
68d605ee3d649e1b1d6d8564ab1ff89cb1ad68d6
[ "MIT" ]
1
2019-07-23T08:44:49.000Z
2019-07-23T08:44:49.000Z
import numpy as np from multiagent.core import World, Agent, Landmark from multiagent.scenario import BaseScenario class Scenario(BaseScenario): def make_world(self): world = World() # set any world properties first world.dim_c = 2 num_agents = 4 num_landmarks = 4 world.collaborative = True # add agents world.agents = [Agent() for i in range(num_agents)] for i, agent in enumerate(world.agents): agent.name = 'agent %d' % i agent.collide = True agent.silent = True agent.size = 0.15 # add landmarks world.landmarks = [Landmark() for i in range(num_landmarks)] for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark %d' % i landmark.collide = False landmark.movable = False # make initial conditions self.reset_world(world) return world def reset_world(self, world): # random properties for agents for i, agent in enumerate(world.agents): agent.color = np.array([0.35, 0.35, 0.85]) # random properties for landmarks for i, landmark in enumerate(world.landmarks): landmark.color = np.array([0.25, 0.25, 0.25]) # set random initial states for agent in world.agents: agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p) agent.state.p_vel = np.zeros(world.dim_p) agent.state.c = np.zeros(world.dim_c) for i, landmark in enumerate(world.landmarks): landmark.state.p_pos = np.random.uniform(-1, +1, world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) def benchmark_data(self, agent, world): rew = 0 collisions = 0 occupied_landmarks = 0 min_dists = 0 for l in world.landmarks: dists = [np.sqrt(np.sum(np.square(a.state.p_pos - l.state.p_pos))) for a in world.agents] min_dists += min(dists) rew -= min(dists) if min(dists) < 0.1: occupied_landmarks += 1 if agent.collide: for a in world.agents: if self.is_collision(a, agent): rew -= 1 collisions += 1 return (rew, collisions, min_dists, occupied_landmarks) def is_collision(self, agent1, agent2): delta_pos = agent1.state.p_pos - agent2.state.p_pos dist = np.sqrt(np.sum(np.square(delta_pos))) dist_min = agent1.size + agent2.size return True if dist < dist_min else False def reward(self, agent, world): # Agents are rewarded based on minimum agent distance to each landmark, penalized for collisions rew = 0 for l in world.landmarks: dists = [np.sqrt(np.sum(np.square(a.state.p_pos - l.state.p_pos))) for a in world.agents] rew -= min(dists) if agent.collide: for a in world.agents: if self.is_collision(a, agent): rew -= 1 return rew def observation(self, agent, world): # get positions of all entities in this agent's reference frame entity_pos = [] for entity in world.landmarks: # world.entities: entity_pos.append(entity.state.p_pos - agent.state.p_pos) # entity colors entity_color = [] for entity in world.landmarks: # world.entities: entity_color.append(entity.color) # communication of all other agents comm = [] other_pos = [] for other in world.agents: if other is agent: continue comm.append(other.state.c) other_pos.append(other.state.p_pos - agent.state.p_pos) return np.concatenate([agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + comm)
38.693069
104
0.587001
794e08d77d7616a1cc0ab5b2c04fa46cca659450
37
py
Python
hyperpoints/ppo/__init__.py
yngtodd/hyperpoints
7e444fa547db55114314bd481373b5f4a5dbca71
[ "MIT" ]
1
2020-05-11T00:53:53.000Z
2020-05-11T00:53:53.000Z
hyperpoints/ppo/__init__.py
yngtodd/hyperpoints
7e444fa547db55114314bd481373b5f4a5dbca71
[ "MIT" ]
null
null
null
hyperpoints/ppo/__init__.py
yngtodd/hyperpoints
7e444fa547db55114314bd481373b5f4a5dbca71
[ "MIT" ]
null
null
null
from .objective import ppo_objective
18.5
36
0.864865
794e09060340ca9169c3390375d652995d9ebf9a
68,971
py
Python
numba/parfors/parfor_lowering.py
amosbird/numba
f9f4c88c3e5967c3316f9298ac21f795d3f40b96
[ "BSD-2-Clause" ]
null
null
null
numba/parfors/parfor_lowering.py
amosbird/numba
f9f4c88c3e5967c3316f9298ac21f795d3f40b96
[ "BSD-2-Clause" ]
null
null
null
numba/parfors/parfor_lowering.py
amosbird/numba
f9f4c88c3e5967c3316f9298ac21f795d3f40b96
[ "BSD-2-Clause" ]
null
null
null
import ast import copy from collections import OrderedDict import linecache import os import sys import operator import numpy as np import types as pytypes import operator import warnings import llvmlite.llvmpy.core as lc import llvmlite.ir.values as liv import numba from numba.parfors import parfor from numba.core import types, ir, config, compiler, lowering, sigutils, cgutils from numba.core.ir_utils import add_offset_to_labels, replace_var_names, remove_dels, legalize_names, mk_unique_var, rename_labels, get_name_var_table, visit_vars_inner, get_definition, guard, find_callname, get_call_table, is_pure, get_np_ufunc_typ, get_unused_var_name, find_potential_aliases, is_const_call from numba.core.analysis import compute_use_defs, compute_live_map, compute_dead_maps, compute_cfg_from_blocks from numba.core.typing import signature from numba.parfors.parfor import print_wrapped, ensure_parallel_support from numba.core.errors import NumbaParallelSafetyWarning, NotDefinedError from numba.parfors.parfor_lowering_utils import ParforLoweringBuilder def _lower_parfor_parallel(lowerer, parfor): """Lowerer that handles LLVM code generation for parfor. This function lowers a parfor IR node to LLVM. The general approach is as follows: 1) The code from the parfor's init block is lowered normally in the context of the current function. 2) The body of the parfor is transformed into a gufunc function. 3) Code is inserted into the main function that calls do_scheduling to divide the iteration space for each thread, allocates reduction arrays, calls the gufunc function, and then invokes the reduction function across the reduction arrays to produce the final reduction values. """ from numba.np.ufunc.parallel import get_thread_count ensure_parallel_support() typingctx = lowerer.context.typing_context targetctx = lowerer.context # We copy the typemap here because for race condition variable we'll # update their type to array so they can be updated by the gufunc. orig_typemap = lowerer.fndesc.typemap # replace original typemap with copy and restore the original at the end. lowerer.fndesc.typemap = copy.copy(orig_typemap) typemap = lowerer.fndesc.typemap varmap = lowerer.varmap if config.DEBUG_ARRAY_OPT: print("_lower_parfor_parallel") parfor.dump() loc = parfor.init_block.loc scope = parfor.init_block.scope # produce instructions for init_block if config.DEBUG_ARRAY_OPT: print("init_block = ", parfor.init_block, " ", type(parfor.init_block)) for instr in parfor.init_block.body: if config.DEBUG_ARRAY_OPT: print("lower init_block instr = ", instr) lowerer.lower_inst(instr) for racevar in parfor.races: if racevar not in varmap: rvtyp = typemap[racevar] rv = ir.Var(scope, racevar, loc) lowerer._alloca_var(rv.name, rvtyp) alias_map = {} arg_aliases = {} numba.parfors.parfor.find_potential_aliases_parfor(parfor, parfor.params, typemap, lowerer.func_ir, alias_map, arg_aliases) if config.DEBUG_ARRAY_OPT: print("alias_map", alias_map) print("arg_aliases", arg_aliases) # run get_parfor_outputs() and get_parfor_reductions() before gufunc creation # since Jumps are modified so CFG of loop_body dict will become invalid assert parfor.params is not None parfor_output_arrays = numba.parfors.parfor.get_parfor_outputs( parfor, parfor.params) parfor_redvars, parfor_reddict = numba.parfors.parfor.get_parfor_reductions( lowerer.func_ir, parfor, parfor.params, lowerer.fndesc.calltypes) # init reduction array allocation here. nredvars = len(parfor_redvars) redarrs = {} if nredvars > 0: # reduction arrays outer dimension equal to thread count thread_count = get_thread_count() scope = parfor.init_block.scope loc = parfor.init_block.loc pfbdr = ParforLoweringBuilder(lowerer=lowerer, scope=scope, loc=loc) # For each reduction variable... for i in range(nredvars): redvar_typ = lowerer.fndesc.typemap[parfor_redvars[i]] redvar = ir.Var(scope, parfor_redvars[i], loc) redarrvar_typ = redtyp_to_redarraytype(redvar_typ) reddtype = redarrvar_typ.dtype if config.DEBUG_ARRAY_OPT: print("redvar_typ", redvar_typ, redarrvar_typ, reddtype, types.DType(reddtype)) # If this is reduction over an array, # the reduction array has just one added per-worker dimension. if isinstance(redvar_typ, types.npytypes.Array): redarrdim = redvar_typ.ndim + 1 else: redarrdim = 1 # Reduction array is created and initialized to the initial reduction value. # First create a var for the numpy empty ufunc. glbl_np_empty = pfbdr.bind_global_function( fobj=np.empty, ftype=get_np_ufunc_typ(np.empty), args=( types.UniTuple(types.intp, redarrdim), types.DType(reddtype), ), ) # Create var for outer dimension size of reduction array equal to number of threads. num_threads_var = pfbdr.make_const_variable( cval=thread_count, typ=types.intp, name='num_threads', ) size_var_list = [num_threads_var] # If this is a reduction over an array... if isinstance(redvar_typ, types.npytypes.Array): # Add code to get the shape of the array being reduced over. redshape_var = pfbdr.assign( rhs=ir.Expr.getattr(redvar, "shape", loc), typ=types.UniTuple(types.intp, redvar_typ.ndim), name="redarr_shape", ) # Add the dimension sizes of the array being reduced over to the tuple of sizes pass to empty. for j in range(redvar_typ.ndim): onedimvar = pfbdr.assign( rhs=ir.Expr.static_getitem(redshape_var, j, None, loc), typ=types.intp, name="redshapeonedim", ) size_var_list.append(onedimvar) # Empty call takes tuple of sizes. Create here and fill in outer dimension (num threads). size_var = pfbdr.make_tuple_variable( size_var_list, name='tuple_size_var', ) # Add call to empty passing the size var tuple. empty_call = pfbdr.call(glbl_np_empty, args=[size_var]) redarr_var = pfbdr.assign( rhs=empty_call, typ=redarrvar_typ, name="redarr", ) # Remember mapping of original reduction array to the newly created per-worker reduction array. redarrs[redvar.name] = redarr_var init_val = parfor_reddict[parfor_redvars[i]][0] if init_val is not None: if isinstance(redvar_typ, types.npytypes.Array): # Create an array of identity values for the reduction. # First, create a variable for np.full. full_func_node = pfbdr.bind_global_function( fobj=np.full, ftype=get_np_ufunc_typ(np.full), args=( types.UniTuple(types.intp, redvar_typ.ndim), reddtype, types.DType(reddtype), ), ) # Then create a var with the identify value. init_val_var = pfbdr.make_const_variable( cval=init_val, typ=reddtype, name="init_val", ) # Then, call np.full with the shape of the reduction array and the identity value. full_call = pfbdr.call( full_func_node, args=[redshape_var, init_val_var], ) redtoset = pfbdr.assign( rhs=full_call, typ=redvar_typ, name="redtoset", ) else: redtoset = pfbdr.make_const_variable( cval=init_val, typ=reddtype, name="redtoset", ) else: redtoset = redvar # For each thread, initialize the per-worker reduction array to the current reduction array value. for j in range(thread_count): index_var = pfbdr.make_const_variable( cval=j, typ=types.uintp, name="index_var", ) pfbdr.setitem(obj=redarr_var, index=index_var, val=redtoset) # compile parfor body as a separate function to be used with GUFuncWrapper flags = copy.copy(parfor.flags) flags.set('error_model', 'numpy') # Can't get here unless flags.set('auto_parallel', ParallelOptions(True)) index_var_typ = typemap[parfor.loop_nests[0].index_variable.name] # index variables should have the same type, check rest of indices for l in parfor.loop_nests[1:]: assert typemap[l.index_variable.name] == index_var_typ numba.parfors.parfor.sequential_parfor_lowering = True try: func, func_args, func_sig, redargstartdim, func_arg_types = _create_gufunc_for_parfor_body( lowerer, parfor, typemap, typingctx, targetctx, flags, {}, bool(alias_map), index_var_typ, parfor.races) finally: numba.parfors.parfor.sequential_parfor_lowering = False # get the shape signature func_args = ['sched'] + func_args num_reductions = len(parfor_redvars) num_inputs = len(func_args) - len(parfor_output_arrays) - num_reductions if config.DEBUG_ARRAY_OPT: print("func_args = ", func_args) print("num_inputs = ", num_inputs) print("parfor_outputs = ", parfor_output_arrays) print("parfor_redvars = ", parfor_redvars) print("num_reductions = ", num_reductions) gu_signature = _create_shape_signature( parfor.get_shape_classes, num_inputs, num_reductions, func_args, redargstartdim, func_sig, parfor.races, typemap) if config.DEBUG_ARRAY_OPT: print("gu_signature = ", gu_signature) # call the func in parallel by wrapping it with ParallelGUFuncBuilder loop_ranges = [(l.start, l.stop, l.step) for l in parfor.loop_nests] if config.DEBUG_ARRAY_OPT: print("loop_nests = ", parfor.loop_nests) print("loop_ranges = ", loop_ranges) call_parallel_gufunc( lowerer, func, gu_signature, func_sig, func_args, func_arg_types, loop_ranges, parfor_redvars, parfor_reddict, redarrs, parfor.init_block, index_var_typ, parfor.races) if config.DEBUG_ARRAY_OPT: sys.stdout.flush() if nredvars > 0: # Perform the final reduction across the reduction array created above. thread_count = get_thread_count() scope = parfor.init_block.scope loc = parfor.init_block.loc # For each reduction variable... for i in range(nredvars): name = parfor_redvars[i] redarr = redarrs[name] redvar_typ = lowerer.fndesc.typemap[name] if config.DEBUG_ARRAY_OPT: print("post-gufunc reduction:", name, redarr, redvar_typ) if config.DEBUG_ARRAY_OPT_RUNTIME: res_print_str = "res_print" strconsttyp = types.StringLiteral(res_print_str) lhs = pfbldr.make_const_variable( cval=res_print_str, typ=strconsttyp, name="str_const", ) res_print = ir.Print(args=[lhs, redarr], vararg=None, loc=loc) lowerer.fndesc.calltypes[res_print] = signature(types.none, typemap[lhs.name], typemap[redarr.name]) print("res_print", res_print) lowerer.lower_inst(res_print) # For each element in the reduction array created above. for j in range(thread_count): # Create index var to access that element. index_var = pfbdr.make_const_variable( cval=j, typ=types.uintp, name="index_var", ) # Read that element from the array into oneelem. oneelemgetitem = pfbdr.getitem( obj=redarr, index=index_var, typ=redvar_typ, ) oneelem = pfbdr.assign( rhs=oneelemgetitem, typ=redvar_typ, name="redelem", ) init_var = pfbdr.assign_inplace( rhs=oneelem, typ=redvar_typ, name=name + "#init", ) if config.DEBUG_ARRAY_OPT_RUNTIME: res_print_str = "res_print1 for thread " + str(j) + ":" strconsttyp = types.StringLiteral(res_print_str) lhs = pfbdr.make_const_variable( cval=res_print_str, typ=strconsttyp, name="str_const", ) res_print = ir.Print(args=[lhs, index_var, oneelem, init_var, ir.Var(scope, name, loc)], vararg=None, loc=loc) lowerer.fndesc.calltypes[res_print] = signature(types.none, typemap[lhs.name], typemap[index_var.name], typemap[oneelem.name], typemap[init_var.name], typemap[name]) print("res_print1", res_print) lowerer.lower_inst(res_print) # generate code for combining reduction variable with thread output for inst in parfor_reddict[name][1]: # If we have a case where a parfor body has an array reduction like A += B # and A and B have different data types then the reduction in the parallel # region will operate on those differeing types. However, here, after the # parallel region, we are summing across the reduction array and that is # guaranteed to have the same data type so we need to change the reduction # nodes so that the right-hand sides have a type equal to the reduction-type # and therefore the left-hand side. if isinstance(inst, ir.Assign): rhs = inst.value # We probably need to generalize this since it only does substitutions in # inplace_binops. if (isinstance(rhs, ir.Expr) and rhs.op == 'inplace_binop' and rhs.rhs.name == init_var.name): if config.DEBUG_ARRAY_OPT: print("Adding call to reduction", rhs) if rhs.fn == operator.isub: rhs.fn = operator.iadd rhs.immutable_fn = operator.add if rhs.fn == operator.itruediv or rhs.fn == operator.ifloordiv: rhs.fn = operator.imul rhs.immutable_fn = operator.mul if config.DEBUG_ARRAY_OPT: print("After changing sub to add or div to mul", rhs) # Get calltype of rhs. ct = lowerer.fndesc.calltypes[rhs] assert(len(ct.args) == 2) # Create new arg types replace the second arg type with the reduction var type. ctargs = (ct.args[0], redvar_typ) # Update the signature of the call. ct = ct.replace(args=ctargs) # Remove so we can re-insert since calltypes is unique dict. lowerer.fndesc.calltypes.pop(rhs) # Add calltype back in for the expr with updated signature. lowerer.fndesc.calltypes[rhs] = ct lowerer.lower_inst(inst) # Only process reduction statements post-gufunc execution # until we see an assignment with a left-hand side to the # reduction variable's name. This fixes problems with # cases where there are multiple assignments to the # reduction variable in the parfor. if isinstance(inst, ir.Assign): try: reduction_var = scope.get_exact(name) except NotDefinedError: # Ideally, this shouldn't happen. The redvar name # missing from scope indicates an error from # other rewrite passes. is_same_source_var = name == inst.target.name else: # Because of SSA, the redvar and target var of # the current assignment would be different even # though they refer to the same source-level var. redvar_unver_name = reduction_var.unversioned_name target_unver_name = inst.target.unversioned_name is_same_source_var = redvar_unver_name == target_unver_name if is_same_source_var: # If redvar is different from target var, add an # assignment to put target var into redvar. if name != inst.target.name: pfbdr.assign_inplace( rhs=inst.target, typ=redvar_typ, name=name, ) break if config.DEBUG_ARRAY_OPT_RUNTIME: res_print_str = "res_print2 for thread " + str(j) + ":" strconsttyp = types.StringLiteral(res_print_str) lhs = pfbdr.make_const_variable( cval=res_print_str, typ=strconsttyp, name="str_const", ) res_print = ir.Print(args=[lhs, index_var, oneelem, init_var, ir.Var(scope, name, loc)], vararg=None, loc=loc) lowerer.fndesc.calltypes[res_print] = signature(types.none, typemap[lhs.name], typemap[index_var.name], typemap[oneelem.name], typemap[init_var.name], typemap[name]) print("res_print2", res_print) lowerer.lower_inst(res_print) # Cleanup reduction variable for v in redarrs.values(): lowerer.lower_inst(ir.Del(v.name, loc=loc)) # Restore the original typemap of the function that was replaced temporarily at the # Beginning of this function. lowerer.fndesc.typemap = orig_typemap if config.DEBUG_ARRAY_OPT: print("_lower_parfor_parallel done") # A work-around to prevent circular imports lowering.lower_extensions[parfor.Parfor] = _lower_parfor_parallel def _create_shape_signature( get_shape_classes, num_inputs, num_reductions, args, redargstartdim, func_sig, races, typemap): '''Create shape signature for GUFunc ''' if config.DEBUG_ARRAY_OPT: print("_create_shape_signature", num_inputs, num_reductions, args, redargstartdim) for i in args[1:]: print("argument", i, type(i), get_shape_classes(i, typemap=typemap)) num_inouts = len(args) - num_reductions # maximum class number for array shapes classes = [get_shape_classes(var, typemap=typemap) if var not in races else (-1,) for var in args[1:]] class_set = set() for _class in classes: if _class: for i in _class: class_set.add(i) max_class = max(class_set) + 1 if class_set else 0 classes.insert(0, (max_class,)) # force set the class of 'sched' argument class_set.add(max_class) class_map = {} # TODO: use prefix + class number instead of single char alphabet = ord('a') for n in class_set: if n >= 0: class_map[n] = chr(alphabet) alphabet += 1 alpha_dict = {'latest_alpha' : alphabet} def bump_alpha(c, class_map): if c >= 0: return class_map[c] else: alpha_dict['latest_alpha'] += 1 return chr(alpha_dict['latest_alpha']) gu_sin = [] gu_sout = [] count = 0 syms_sin = () if config.DEBUG_ARRAY_OPT: print("args", args) print("classes", classes) for cls, arg in zip(classes, args): count = count + 1 if cls: dim_syms = tuple(bump_alpha(c, class_map) for c in cls) else: dim_syms = () if (count > num_inouts): # Strip the first symbol corresponding to the number of workers # so that guvectorize will parallelize across the reduction. gu_sin.append(dim_syms[redargstartdim[arg]:]) else: gu_sin.append(dim_syms) syms_sin += dim_syms return (gu_sin, gu_sout) def _print_block(block): for i, inst in enumerate(block.body): print(" ", i, " ", inst) def _print_body(body_dict): '''Pretty-print a set of IR blocks. ''' for label, block in body_dict.items(): print("label: ", label) _print_block(block) def wrap_loop_body(loop_body): blocks = loop_body.copy() # shallow copy is enough first_label = min(blocks.keys()) last_label = max(blocks.keys()) loc = blocks[last_label].loc blocks[last_label].body.append(ir.Jump(first_label, loc)) return blocks def unwrap_loop_body(loop_body): last_label = max(loop_body.keys()) loop_body[last_label].body = loop_body[last_label].body[:-1] def add_to_def_once_sets(a_def, def_once, def_more): '''If the variable is already defined more than once, do nothing. Else if defined exactly once previously then transition this variable to the defined more than once set (remove it from def_once set and add to def_more set). Else this must be the first time we've seen this variable defined so add to def_once set. ''' if a_def in def_more: pass elif a_def in def_once: def_more.add(a_def) def_once.remove(a_def) else: def_once.add(a_def) def compute_def_once_block(block, def_once, def_more, getattr_taken, typemap, module_assigns): '''Effect changes to the set of variables defined once or more than once for a single block. block - the block to process def_once - set of variable names known to be defined exactly once def_more - set of variable names known to be defined more than once getattr_taken - dict mapping variable name to tuple of object and attribute taken module_assigns - dict mapping variable name to the Global that they came from ''' # The only "defs" occur in assignments, so find such instructions. assignments = block.find_insts(ir.Assign) # For each assignment... for one_assign in assignments: # Get the LHS/target of the assignment. a_def = one_assign.target.name # Add variable to def sets. add_to_def_once_sets(a_def, def_once, def_more) rhs = one_assign.value if isinstance(rhs, ir.Global): # Remember assignments of the form "a = Global(...)" # Is this a module? if isinstance(rhs.value, pytypes.ModuleType): module_assigns[a_def] = rhs.value.__name__ if isinstance(rhs, ir.Expr) and rhs.op == 'getattr' and rhs.value.name in def_once: # Remember assignments of the form "a = b.c" getattr_taken[a_def] = (rhs.value.name, rhs.attr) if isinstance(rhs, ir.Expr) and rhs.op == 'call' and rhs.func.name in getattr_taken: # If "a" is being called then lookup the getattr definition of "a" # as above, getting the module variable "b" (base_obj) # and the attribute "c" (base_attr). base_obj, base_attr = getattr_taken[rhs.func.name] if base_obj in module_assigns: # If we know the definition of the module variable then get the module # name from module_assigns. base_mod_name = module_assigns[base_obj] if not is_const_call(base_mod_name, base_attr): # Calling a method on an object could modify the object and is thus # like a def of that object. We call is_const_call to see if this module/attribute # combination is known to not modify the module state. If we don't know that # the combination is safe then we have to assume there could be a modification to # the module and thus add the module variable as defined more than once. add_to_def_once_sets(base_obj, def_once, def_more) else: # Assume the worst and say that base_obj could be modified by the call. add_to_def_once_sets(base_obj, def_once, def_more) if isinstance(rhs, ir.Expr) and rhs.op == 'call': # If a mutable object is passed to a function, then it may be changed and # therefore can't be hoisted. # For each argument to the function... for argvar in rhs.args: # Get the argument's type. if isinstance(argvar, ir.Var): argvar = argvar.name avtype = typemap[argvar] # If that type doesn't have a mutable attribute or it does and it's set to # not mutable then this usage is safe for hoisting. if getattr(avtype, 'mutable', False): # Here we have a mutable variable passed to a function so add this variable # to the def lists. add_to_def_once_sets(argvar, def_once, def_more) def compute_def_once_internal(loop_body, def_once, def_more, getattr_taken, typemap, module_assigns): '''Compute the set of variables defined exactly once in the given set of blocks and use the given sets for storing which variables are defined once, more than once and which have had a getattr call on them. ''' # For each block... for label, block in loop_body.items(): # Scan this block and effect changes to def_once, def_more, and getattr_taken # based on the instructions in that block. compute_def_once_block(block, def_once, def_more, getattr_taken, typemap, module_assigns) # Have to recursively process parfors manually here. for inst in block.body: if isinstance(inst, parfor.Parfor): # Recursively compute for the parfor's init block. compute_def_once_block(inst.init_block, def_once, def_more, getattr_taken, typemap, module_assigns) # Recursively compute for the parfor's loop body. compute_def_once_internal(inst.loop_body, def_once, def_more, getattr_taken, typemap, module_assigns) def compute_def_once(loop_body, typemap): '''Compute the set of variables defined exactly once in the given set of blocks. ''' def_once = set() # set to hold variables defined exactly once def_more = set() # set to hold variables defined more than once getattr_taken = {} module_assigns = {} compute_def_once_internal(loop_body, def_once, def_more, getattr_taken, typemap, module_assigns) return def_once def find_vars(var, varset): assert isinstance(var, ir.Var) varset.add(var.name) return var def _hoist_internal(inst, dep_on_param, call_table, hoisted, not_hoisted, typemap, stored_arrays): if inst.target.name in stored_arrays: not_hoisted.append((inst, "stored array")) if config.DEBUG_ARRAY_OPT >= 1: print("Instruction", inst, " could not be hoisted because the created array is stored.") return False uses = set() visit_vars_inner(inst.value, find_vars, uses) diff = uses.difference(dep_on_param) if config.DEBUG_ARRAY_OPT >= 1: print("_hoist_internal:", inst, "uses:", uses, "diff:", diff) if len(diff) == 0 and is_pure(inst.value, None, call_table): if config.DEBUG_ARRAY_OPT >= 1: print("Will hoist instruction", inst, typemap[inst.target.name]) hoisted.append(inst) if not isinstance(typemap[inst.target.name], types.npytypes.Array): dep_on_param += [inst.target.name] return True else: if len(diff) > 0: not_hoisted.append((inst, "dependency")) if config.DEBUG_ARRAY_OPT >= 1: print("Instruction", inst, " could not be hoisted because of a dependency.") else: not_hoisted.append((inst, "not pure")) if config.DEBUG_ARRAY_OPT >= 1: print("Instruction", inst, " could not be hoisted because it isn't pure.") return False def find_setitems_block(setitems, itemsset, block, typemap): for inst in block.body: if isinstance(inst, ir.StaticSetItem) or isinstance(inst, ir.SetItem): setitems.add(inst.target.name) # If we store a non-mutable object into an array then that is safe to hoist. # If the stored object is mutable and you hoist then multiple entries in the # outer array could reference the same object and changing one index would then # change other indices. if getattr(typemap[inst.value.name], "mutable", False): itemsset.add(inst.value.name) elif isinstance(inst, parfor.Parfor): find_setitems_block(setitems, itemsset, inst.init_block, typemap) find_setitems_body(setitems, itemsset, inst.loop_body, typemap) def find_setitems_body(setitems, itemsset, loop_body, typemap): """ Find the arrays that are written into (goes into setitems) and the mutable objects (mostly arrays) that are written into other arrays (goes into itemsset). """ for label, block in loop_body.items(): find_setitems_block(setitems, itemsset, block, typemap) def hoist(parfor_params, loop_body, typemap, wrapped_blocks): dep_on_param = copy.copy(parfor_params) hoisted = [] not_hoisted = [] # Compute the set of variable defined exactly once in the loop body. def_once = compute_def_once(loop_body, typemap) (call_table, reverse_call_table) = get_call_table(wrapped_blocks) setitems = set() itemsset = set() find_setitems_body(setitems, itemsset, loop_body, typemap) dep_on_param = list(set(dep_on_param).difference(setitems)) if config.DEBUG_ARRAY_OPT >= 1: print("hoist - def_once:", def_once, "setitems:", setitems, "itemsset:", itemsset, "dep_on_param:", dep_on_param, "parfor_params:", parfor_params) for label, block in loop_body.items(): new_block = [] for inst in block.body: if isinstance(inst, ir.Assign) and inst.target.name in def_once: if _hoist_internal(inst, dep_on_param, call_table, hoisted, not_hoisted, typemap, itemsset): # don't add this instruction to the block since it is # hoisted continue elif isinstance(inst, parfor.Parfor): new_init_block = [] if config.DEBUG_ARRAY_OPT >= 1: print("parfor") inst.dump() for ib_inst in inst.init_block.body: if (isinstance(ib_inst, ir.Assign) and ib_inst.target.name in def_once): if _hoist_internal(ib_inst, dep_on_param, call_table, hoisted, not_hoisted, typemap, itemsset): # don't add this instuction to the block since it is hoisted continue new_init_block.append(ib_inst) inst.init_block.body = new_init_block new_block.append(inst) block.body = new_block return hoisted, not_hoisted def redtyp_is_scalar(redtype): return not isinstance(redtype, types.npytypes.Array) def redtyp_to_redarraytype(redtyp): """Go from a reducation variable type to a reduction array type used to hold per-worker results. """ redarrdim = 1 # If the reduction type is an array then allocate reduction array with ndim+1 dimensions. if isinstance(redtyp, types.npytypes.Array): redarrdim += redtyp.ndim # We don't create array of array but multi-dimensional reduciton array with same dtype. redtyp = redtyp.dtype return types.npytypes.Array(redtyp, redarrdim, "C") def redarraytype_to_sig(redarraytyp): """Given a reduction array type, find the type of the reduction argument to the gufunc. Scalar and 1D array reduction both end up with 1D gufunc param type since scalars have to be passed as arrays. """ assert isinstance(redarraytyp, types.npytypes.Array) return types.npytypes.Array(redarraytyp.dtype, max(1, redarraytyp.ndim - 1), redarraytyp.layout) def legalize_names_with_typemap(names, typemap): """ We use ir_utils.legalize_names to replace internal IR variable names containing illegal characters (e.g. period) with a legal character (underscore) so as to create legal variable names. The original variable names are in the typemap so we also need to add the legalized name to the typemap as well. """ outdict = legalize_names(names) # For each pair in the dict of legalized names... for x, y in outdict.items(): # If the name had some legalization change to it... if x != y: # Set the type of the new name the same as the type of the old name. typemap[y] = typemap[x] return outdict def to_scalar_from_0d(x): if isinstance(x, types.ArrayCompatible): if x.ndim == 0: return x.dtype return x def _create_gufunc_for_parfor_body( lowerer, parfor, typemap, typingctx, targetctx, flags, locals, has_aliases, index_var_typ, races): ''' Takes a parfor and creates a gufunc function for its body. There are two parts to this function. 1) Code to iterate across the iteration space as defined by the schedule. 2) The parfor body that does the work for a single point in the iteration space. Part 1 is created as Python text for simplicity with a sentinel assignment to mark the point in the IR where the parfor body should be added. This Python text is 'exec'ed into existence and its IR retrieved with run_frontend. The IR is scanned for the sentinel assignment where that basic block is split and the IR for the parfor body inserted. ''' if config.DEBUG_ARRAY_OPT >= 1: print("starting _create_gufunc_for_parfor_body") loc = parfor.init_block.loc # The parfor body and the main function body share ir.Var nodes. # We have to do some replacements of Var names in the parfor body to make them # legal parameter names. If we don't copy then the Vars in the main function also # would incorrectly change their name. loop_body = copy.copy(parfor.loop_body) remove_dels(loop_body) parfor_dim = len(parfor.loop_nests) loop_indices = [l.index_variable.name for l in parfor.loop_nests] # Get all the parfor params. parfor_params = parfor.params # Get just the outputs of the parfor. parfor_outputs = numba.parfors.parfor.get_parfor_outputs(parfor, parfor_params) # Get all parfor reduction vars, and operators. typemap = lowerer.fndesc.typemap parfor_redvars, parfor_reddict = numba.parfors.parfor.get_parfor_reductions( lowerer.func_ir, parfor, parfor_params, lowerer.fndesc.calltypes) # Compute just the parfor inputs as a set difference. parfor_inputs = sorted( list( set(parfor_params) - set(parfor_outputs) - set(parfor_redvars))) if config.DEBUG_ARRAY_OPT >= 1: print("parfor_params = ", parfor_params, " ", type(parfor_params)) print("parfor_outputs = ", parfor_outputs, " ", type(parfor_outputs)) print("parfor_inputs = ", parfor_inputs, " ", type(parfor_inputs)) print("parfor_redvars = ", parfor_redvars, " ", type(parfor_redvars)) races = races.difference(set(parfor_redvars)) for race in races: msg = ("Variable %s used in parallel loop may be written " "to simultaneously by multiple workers and may result " "in non-deterministic or unintended results." % race) warnings.warn(NumbaParallelSafetyWarning(msg, loc)) replace_var_with_array(races, loop_body, typemap, lowerer.fndesc.calltypes) # Reduction variables are represented as arrays, so they go under # different names. parfor_redarrs = [] parfor_red_arg_types = [] for var in parfor_redvars: arr = var + "_arr" parfor_redarrs.append(arr) redarraytype = redtyp_to_redarraytype(typemap[var]) parfor_red_arg_types.append(redarraytype) redarrsig = redarraytype_to_sig(redarraytype) if arr in typemap: assert(typemap[arr] == redarrsig) else: typemap[arr] = redarrsig # Reorder all the params so that inputs go first then outputs. parfor_params = parfor_inputs + parfor_outputs + parfor_redarrs if config.DEBUG_ARRAY_OPT >= 1: print("parfor_params = ", parfor_params, " ", type(parfor_params)) print("loop_indices = ", loop_indices, " ", type(loop_indices)) print("loop_body = ", loop_body, " ", type(loop_body)) _print_body(loop_body) # Some Var are not legal parameter names so create a dict of potentially illegal # param name to guaranteed legal name. param_dict = legalize_names_with_typemap(parfor_params + parfor_redvars, typemap) if config.DEBUG_ARRAY_OPT >= 1: print( "param_dict = ", sorted( param_dict.items()), " ", type(param_dict)) # Some loop_indices are not legal parameter names so create a dict of potentially illegal # loop index to guaranteed legal name. ind_dict = legalize_names_with_typemap(loop_indices, typemap) # Compute a new list of legal loop index names. legal_loop_indices = [ind_dict[v] for v in loop_indices] if config.DEBUG_ARRAY_OPT >= 1: print("ind_dict = ", sorted(ind_dict.items()), " ", type(ind_dict)) print( "legal_loop_indices = ", legal_loop_indices, " ", type(legal_loop_indices)) for pd in parfor_params: print("pd = ", pd) print("pd type = ", typemap[pd], " ", type(typemap[pd])) # Get the types of each parameter. param_types = [to_scalar_from_0d(typemap[v]) for v in parfor_params] # Calculate types of args passed to gufunc. func_arg_types = [typemap[v] for v in (parfor_inputs + parfor_outputs)] + parfor_red_arg_types # Replace illegal parameter names in the loop body with legal ones. replace_var_names(loop_body, param_dict) # remember the name before legalizing as the actual arguments parfor_args = parfor_params # Change parfor_params to be legal names. parfor_params = [param_dict[v] for v in parfor_params] parfor_params_orig = parfor_params parfor_params = [] ascontig = False for pindex in range(len(parfor_params_orig)): if (ascontig and pindex < len(parfor_inputs) and isinstance(param_types[pindex], types.npytypes.Array)): parfor_params.append(parfor_params_orig[pindex]+"param") else: parfor_params.append(parfor_params_orig[pindex]) # Change parfor body to replace illegal loop index vars with legal ones. replace_var_names(loop_body, ind_dict) loop_body_var_table = get_name_var_table(loop_body) sentinel_name = get_unused_var_name("__sentinel__", loop_body_var_table) if config.DEBUG_ARRAY_OPT >= 1: print( "legal parfor_params = ", parfor_params, " ", type(parfor_params)) # Determine the unique names of the scheduling and gufunc functions. # sched_func_name = "__numba_parfor_sched_%s" % (hex(hash(parfor)).replace("-", "_")) gufunc_name = "__numba_parfor_gufunc_%s" % ( hex(hash(parfor)).replace("-", "_")) if config.DEBUG_ARRAY_OPT: # print("sched_func_name ", type(sched_func_name), " ", sched_func_name) print("gufunc_name ", type(gufunc_name), " ", gufunc_name) gufunc_txt = "" # Create the gufunc function. gufunc_txt += "def " + gufunc_name + \ "(sched, " + (", ".join(parfor_params)) + "):\n" for pindex in range(len(parfor_inputs)): if ascontig and isinstance(param_types[pindex], types.npytypes.Array): gufunc_txt += (" " + parfor_params_orig[pindex] + " = np.ascontiguousarray(" + parfor_params[pindex] + ")\n") # Add initialization of reduction variables for arr, var in zip(parfor_redarrs, parfor_redvars): # If reduction variable is a scalar then save current value to # temp and accumulate on that temp to prevent false sharing. if redtyp_is_scalar(typemap[var]): gufunc_txt += " " + param_dict[var] + \ "=" + param_dict[arr] + "[0]\n" else: # The reduction variable is an array so np.copy it to a temp. gufunc_txt += " " + param_dict[var] + \ "=np.copy(" + param_dict[arr] + ")\n" # For each dimension of the parfor, create a for loop in the generated gufunc function. # Iterate across the proper values extracted from the schedule. # The form of the schedule is start_dim0, start_dim1, ..., start_dimN, end_dim0, # end_dim1, ..., end_dimN for eachdim in range(parfor_dim): for indent in range(eachdim + 1): gufunc_txt += " " sched_dim = eachdim gufunc_txt += ("for " + legal_loop_indices[eachdim] + " in range(sched[" + str(sched_dim) + "], sched[" + str(sched_dim + parfor_dim) + "] + np.uint8(1)):\n") if config.DEBUG_ARRAY_OPT_RUNTIME: for indent in range(parfor_dim + 1): gufunc_txt += " " gufunc_txt += "print(" for eachdim in range(parfor_dim): gufunc_txt += "\"" + legal_loop_indices[eachdim] + "\"," + legal_loop_indices[eachdim] + "," gufunc_txt += ")\n" # Add the sentinel assignment so that we can find the loop body position # in the IR. for indent in range(parfor_dim + 1): gufunc_txt += " " gufunc_txt += sentinel_name + " = 0\n" # Add assignments of reduction variables (for returning the value) redargstartdim = {} for arr, var in zip(parfor_redarrs, parfor_redvars): # After the gufunc loops, copy the accumulated temp value back to reduction array. if redtyp_is_scalar(typemap[var]): gufunc_txt += " " + param_dict[arr] + \ "[0] = " + param_dict[var] + "\n" redargstartdim[arr] = 1 else: # After the gufunc loops, copy the accumulated temp array back to reduction array with ":" gufunc_txt += " " + param_dict[arr] + \ "[:] = " + param_dict[var] + "[:]\n" redargstartdim[arr] = 0 gufunc_txt += " return None\n" if config.DEBUG_ARRAY_OPT: print("gufunc_txt = ", type(gufunc_txt), "\n", gufunc_txt) # Force gufunc outline into existence. globls = {"np": np} locls = {} exec(gufunc_txt, globls, locls) gufunc_func = locls[gufunc_name] if config.DEBUG_ARRAY_OPT: print("gufunc_func = ", type(gufunc_func), "\n", gufunc_func) # Get the IR for the gufunc outline. gufunc_ir = compiler.run_frontend(gufunc_func) if config.DEBUG_ARRAY_OPT: print("gufunc_ir dump ", type(gufunc_ir)) gufunc_ir.dump() print("loop_body dump ", type(loop_body)) _print_body(loop_body) # rename all variables in gufunc_ir afresh var_table = get_name_var_table(gufunc_ir.blocks) new_var_dict = {} reserved_names = [sentinel_name] + \ list(param_dict.values()) + legal_loop_indices for name, var in var_table.items(): if not (name in reserved_names): new_var_dict[name] = mk_unique_var(name) replace_var_names(gufunc_ir.blocks, new_var_dict) if config.DEBUG_ARRAY_OPT: print("gufunc_ir dump after renaming ") gufunc_ir.dump() gufunc_param_types = [types.npytypes.Array( index_var_typ, 1, "C")] + param_types if config.DEBUG_ARRAY_OPT: print( "gufunc_param_types = ", type(gufunc_param_types), "\n", gufunc_param_types) gufunc_stub_last_label = max(gufunc_ir.blocks.keys()) + 1 # Add gufunc stub last label to each parfor.loop_body label to prevent # label conflicts. loop_body = add_offset_to_labels(loop_body, gufunc_stub_last_label) # new label for splitting sentinel block new_label = max(loop_body.keys()) + 1 # If enabled, add a print statement after every assignment. if config.DEBUG_ARRAY_OPT_RUNTIME: for label, block in loop_body.items(): new_block = block.copy() new_block.clear() loc = block.loc scope = block.scope for inst in block.body: new_block.append(inst) # Append print after assignment if isinstance(inst, ir.Assign): # Only apply to numbers if typemap[inst.target.name] not in types.number_domain: continue # Make constant string strval = "{} =".format(inst.target.name) strconsttyp = types.StringLiteral(strval) lhs = ir.Var(scope, mk_unique_var("str_const"), loc) assign_lhs = ir.Assign(value=ir.Const(value=strval, loc=loc), target=lhs, loc=loc) typemap[lhs.name] = strconsttyp new_block.append(assign_lhs) # Make print node print_node = ir.Print(args=[lhs, inst.target], vararg=None, loc=loc) new_block.append(print_node) sig = numba.typing.signature(types.none, typemap[lhs.name], typemap[inst.target.name]) lowerer.fndesc.calltypes[print_node] = sig loop_body[label] = new_block if config.DEBUG_ARRAY_OPT: print("parfor loop body") _print_body(loop_body) wrapped_blocks = wrap_loop_body(loop_body) hoisted, not_hoisted = hoist(parfor_params, loop_body, typemap, wrapped_blocks) start_block = gufunc_ir.blocks[min(gufunc_ir.blocks.keys())] start_block.body = start_block.body[:-1] + hoisted + [start_block.body[-1]] unwrap_loop_body(loop_body) # store hoisted into diagnostics diagnostics = lowerer.metadata['parfor_diagnostics'] diagnostics.hoist_info[parfor.id] = {'hoisted': hoisted, 'not_hoisted': not_hoisted} if config.DEBUG_ARRAY_OPT: print("After hoisting") _print_body(loop_body) # Search all the block in the gufunc outline for the sentinel assignment. for label, block in gufunc_ir.blocks.items(): for i, inst in enumerate(block.body): if isinstance( inst, ir.Assign) and inst.target.name == sentinel_name: # We found the sentinel assignment. loc = inst.loc scope = block.scope # split block across __sentinel__ # A new block is allocated for the statements prior to the sentinel # but the new block maintains the current block label. prev_block = ir.Block(scope, loc) prev_block.body = block.body[:i] # The current block is used for statements after the sentinel. block.body = block.body[i + 1:] # But the current block gets a new label. body_first_label = min(loop_body.keys()) # The previous block jumps to the minimum labelled block of the # parfor body. prev_block.append(ir.Jump(body_first_label, loc)) # Add all the parfor loop body blocks to the gufunc function's # IR. for (l, b) in loop_body.items(): gufunc_ir.blocks[l] = b body_last_label = max(loop_body.keys()) gufunc_ir.blocks[new_label] = block gufunc_ir.blocks[label] = prev_block # Add a jump from the last parfor body block to the block containing # statements after the sentinel. gufunc_ir.blocks[body_last_label].append( ir.Jump(new_label, loc)) break else: continue break if config.DEBUG_ARRAY_OPT: print("gufunc_ir last dump before renaming") gufunc_ir.dump() gufunc_ir.blocks = rename_labels(gufunc_ir.blocks) remove_dels(gufunc_ir.blocks) if config.DEBUG_ARRAY_OPT: print("gufunc_ir last dump") gufunc_ir.dump() print("flags", flags) print("typemap", typemap) old_alias = flags.noalias if not has_aliases: if config.DEBUG_ARRAY_OPT: print("No aliases found so adding noalias flag.") flags.noalias = True kernel_func = compiler.compile_ir( typingctx, targetctx, gufunc_ir, gufunc_param_types, types.none, flags, locals) flags.noalias = old_alias kernel_sig = signature(types.none, *gufunc_param_types) if config.DEBUG_ARRAY_OPT: print("finished create_gufunc_for_parfor_body. kernel_sig = ", kernel_sig) return kernel_func, parfor_args, kernel_sig, redargstartdim, func_arg_types def replace_var_with_array_in_block(vars, block, typemap, calltypes): new_block = [] for inst in block.body: if isinstance(inst, ir.Assign) and inst.target.name in vars: const_node = ir.Const(0, inst.loc) const_var = ir.Var(inst.target.scope, mk_unique_var("$const_ind_0"), inst.loc) typemap[const_var.name] = types.uintp const_assign = ir.Assign(const_node, const_var, inst.loc) new_block.append(const_assign) setitem_node = ir.SetItem(inst.target, const_var, inst.value, inst.loc) calltypes[setitem_node] = signature( types.none, types.npytypes.Array(typemap[inst.target.name], 1, "C"), types.intp, typemap[inst.target.name]) new_block.append(setitem_node) continue elif isinstance(inst, parfor.Parfor): replace_var_with_array_internal(vars, {0: inst.init_block}, typemap, calltypes) replace_var_with_array_internal(vars, inst.loop_body, typemap, calltypes) new_block.append(inst) return new_block def replace_var_with_array_internal(vars, loop_body, typemap, calltypes): for label, block in loop_body.items(): block.body = replace_var_with_array_in_block(vars, block, typemap, calltypes) def replace_var_with_array(vars, loop_body, typemap, calltypes): replace_var_with_array_internal(vars, loop_body, typemap, calltypes) for v in vars: el_typ = typemap[v] typemap.pop(v, None) typemap[v] = types.npytypes.Array(el_typ, 1, "C") def call_parallel_gufunc(lowerer, cres, gu_signature, outer_sig, expr_args, expr_arg_types, loop_ranges, redvars, reddict, redarrdict, init_block, index_var_typ, races): ''' Adds the call to the gufunc function from the main function. ''' context = lowerer.context builder = lowerer.builder from numba.np.ufunc.parallel import (build_gufunc_wrapper, get_thread_count, _launch_threads) if config.DEBUG_ARRAY_OPT: print("make_parallel_loop") print("args = ", expr_args) print("outer_sig = ", outer_sig.args, outer_sig.return_type, outer_sig.recvr, outer_sig.pysig) print("loop_ranges = ", loop_ranges) print("expr_args", expr_args) print("expr_arg_types", expr_arg_types) print("gu_signature", gu_signature) # Build the wrapper for GUFunc args, return_type = sigutils.normalize_signature(outer_sig) llvm_func = cres.library.get_function(cres.fndesc.llvm_func_name) sin, sout = gu_signature # These are necessary for build_gufunc_wrapper to find external symbols _launch_threads() info = build_gufunc_wrapper(llvm_func, cres, sin, sout, cache=False, is_parfors=True) wrapper_name = info.name cres.library._ensure_finalized() if config.DEBUG_ARRAY_OPT: print("parallel function = ", wrapper_name, cres) # loadvars for loop_ranges def load_range(v): if isinstance(v, ir.Var): return lowerer.loadvar(v.name) else: return context.get_constant(types.uintp, v) num_dim = len(loop_ranges) for i in range(num_dim): start, stop, step = loop_ranges[i] start = load_range(start) stop = load_range(stop) assert(step == 1) # We do not support loop steps other than 1 step = load_range(step) loop_ranges[i] = (start, stop, step) if config.DEBUG_ARRAY_OPT: print("call_parallel_gufunc loop_ranges[{}] = ".format(i), start, stop, step) cgutils.printf(builder, "loop range[{}]: %d %d (%d)\n".format(i), start, stop, step) # Commonly used LLVM types and constants byte_t = lc.Type.int(8) byte_ptr_t = lc.Type.pointer(byte_t) byte_ptr_ptr_t = lc.Type.pointer(byte_ptr_t) intp_t = context.get_value_type(types.intp) uintp_t = context.get_value_type(types.uintp) intp_ptr_t = lc.Type.pointer(intp_t) uintp_ptr_t = lc.Type.pointer(uintp_t) zero = context.get_constant(types.uintp, 0) one = context.get_constant(types.uintp, 1) one_type = one.type sizeof_intp = context.get_abi_sizeof(intp_t) # Prepare sched, first pop it out of expr_args, outer_sig, and gu_signature expr_args.pop(0) sched_sig = sin.pop(0) if config.DEBUG_ARRAY_OPT: print("Parfor has potentially negative start", index_var_typ.signed) if index_var_typ.signed: sched_type = intp_t sched_ptr_type = intp_ptr_t else: sched_type = uintp_t sched_ptr_type = uintp_ptr_t # Call do_scheduling with appropriate arguments dim_starts = cgutils.alloca_once( builder, sched_type, size=context.get_constant( types.uintp, num_dim), name="dims") dim_stops = cgutils.alloca_once( builder, sched_type, size=context.get_constant( types.uintp, num_dim), name="dims") for i in range(num_dim): start, stop, step = loop_ranges[i] if start.type != one_type: start = builder.sext(start, one_type) if stop.type != one_type: stop = builder.sext(stop, one_type) if step.type != one_type: step = builder.sext(step, one_type) # substract 1 because do-scheduling takes inclusive ranges stop = builder.sub(stop, one) builder.store( start, builder.gep( dim_starts, [ context.get_constant( types.uintp, i)])) builder.store(stop, builder.gep(dim_stops, [context.get_constant(types.uintp, i)])) sched_size = get_thread_count() * num_dim * 2 sched = cgutils.alloca_once( builder, sched_type, size=context.get_constant( types.uintp, sched_size), name="sched") debug_flag = 1 if config.DEBUG_ARRAY_OPT else 0 scheduling_fnty = lc.Type.function( intp_ptr_t, [uintp_t, sched_ptr_type, sched_ptr_type, uintp_t, sched_ptr_type, intp_t]) if index_var_typ.signed: do_scheduling = builder.module.get_or_insert_function(scheduling_fnty, name="do_scheduling_signed") else: do_scheduling = builder.module.get_or_insert_function(scheduling_fnty, name="do_scheduling_unsigned") get_num_threads = builder.module.get_or_insert_function( lc.Type.function(lc.Type.int(types.intp.bitwidth), []), name="get_num_threads") num_threads = builder.call(get_num_threads, []) with cgutils.if_unlikely(builder, builder.icmp_signed('<=', num_threads, num_threads.type(0))): cgutils.printf(builder, "num_threads: %d\n", num_threads) context.call_conv.return_user_exc(builder, RuntimeError, ("Invalid number of threads. " "This likely indicates a bug in Numba.",)) builder.call( do_scheduling, [ context.get_constant( types.uintp, num_dim), dim_starts, dim_stops, num_threads, sched, context.get_constant( types.intp, debug_flag)]) # Get the LLVM vars for the Numba IR reduction array vars. redarrs = [lowerer.loadvar(redarrdict[x].name) for x in redvars] nredvars = len(redvars) ninouts = len(expr_args) - nredvars if config.DEBUG_ARRAY_OPT: for i in range(get_thread_count()): cgutils.printf(builder, "sched[" + str(i) + "] = ") for j in range(num_dim * 2): cgutils.printf( builder, "%d ", builder.load( builder.gep( sched, [ context.get_constant( types.intp, i * num_dim * 2 + j)]))) cgutils.printf(builder, "\n") # ---------------------------------------------------------------------------- # Prepare arguments: args, shapes, steps, data all_args = [lowerer.loadvar(x) for x in expr_args[:ninouts]] + redarrs num_args = len(all_args) num_inps = len(sin) + 1 args = cgutils.alloca_once( builder, byte_ptr_t, size=context.get_constant( types.intp, 1 + num_args), name="pargs") array_strides = [] # sched goes first builder.store(builder.bitcast(sched, byte_ptr_t), args) array_strides.append(context.get_constant(types.intp, sizeof_intp)) red_shapes = {} rv_to_arg_dict = {} # followed by other arguments for i in range(num_args): arg = all_args[i] var = expr_args[i] aty = expr_arg_types[i] dst = builder.gep(args, [context.get_constant(types.intp, i + 1)]) if i >= ninouts: # reduction variables ary = context.make_array(aty)(context, builder, arg) strides = cgutils.unpack_tuple(builder, ary.strides, aty.ndim) ary_shapes = cgutils.unpack_tuple(builder, ary.shape, aty.ndim) # Start from 1 because we skip the first dimension of length num_threads just like sched. for j in range(1, len(strides)): array_strides.append(strides[j]) red_shapes[i] = ary_shapes[1:] builder.store(builder.bitcast(ary.data, byte_ptr_t), dst) elif isinstance(aty, types.ArrayCompatible): if var in races: typ = context.get_data_type( aty.dtype) if aty.dtype != types.boolean else lc.Type.int(1) rv_arg = cgutils.alloca_once(builder, typ) builder.store(arg, rv_arg) builder.store(builder.bitcast(rv_arg, byte_ptr_t), dst) rv_to_arg_dict[var] = (arg, rv_arg) array_strides.append(context.get_constant(types.intp, context.get_abi_sizeof(typ))) else: ary = context.make_array(aty)(context, builder, arg) strides = cgutils.unpack_tuple(builder, ary.strides, aty.ndim) for j in range(len(strides)): array_strides.append(strides[j]) builder.store(builder.bitcast(ary.data, byte_ptr_t), dst) else: if i < num_inps: # Scalar input, need to store the value in an array of size 1 typ = context.get_data_type( aty) if aty != types.boolean else lc.Type.int(1) ptr = cgutils.alloca_once(builder, typ) builder.store(arg, ptr) else: # Scalar output, must allocate typ = context.get_data_type( aty) if aty != types.boolean else lc.Type.int(1) ptr = cgutils.alloca_once(builder, typ) builder.store(builder.bitcast(ptr, byte_ptr_t), dst) # ---------------------------------------------------------------------------- # Next, we prepare the individual dimension info recorded in gu_signature sig_dim_dict = {} occurances = [] occurances = [sched_sig[0]] sig_dim_dict[sched_sig[0]] = context.get_constant(types.intp, 2 * num_dim) assert len(expr_args) == len(all_args) assert len(expr_args) == len(expr_arg_types) assert len(expr_args) == len(sin + sout) assert len(expr_args) == len(outer_sig.args[1:]) for var, arg, aty, gu_sig in zip(expr_args, all_args, expr_arg_types, sin + sout): if isinstance(aty, types.npytypes.Array): i = aty.ndim - len(gu_sig) else: i = 0 if config.DEBUG_ARRAY_OPT: print("var =", var, "gu_sig =", gu_sig, "type =", aty, "i =", i) for dim_sym in gu_sig: if config.DEBUG_ARRAY_OPT: print("var = ", var, " type = ", aty) if var in races: sig_dim_dict[dim_sym] = context.get_constant(types.intp, 1) else: ary = context.make_array(aty)(context, builder, arg) shapes = cgutils.unpack_tuple(builder, ary.shape, aty.ndim) sig_dim_dict[dim_sym] = shapes[i] if not (dim_sym in occurances): if config.DEBUG_ARRAY_OPT: print("dim_sym = ", dim_sym, ", i = ", i) cgutils.printf(builder, dim_sym + " = %d\n", sig_dim_dict[dim_sym]) occurances.append(dim_sym) i = i + 1 # ---------------------------------------------------------------------------- # Prepare shapes, which is a single number (outer loop size), followed by # the size of individual shape variables. nshapes = len(sig_dim_dict) + 1 shapes = cgutils.alloca_once(builder, intp_t, size=nshapes, name="pshape") # For now, outer loop size is the same as number of threads builder.store(num_threads, shapes) # Individual shape variables go next i = 1 for dim_sym in occurances: if config.DEBUG_ARRAY_OPT: cgutils.printf(builder, dim_sym + " = %d\n", sig_dim_dict[dim_sym]) builder.store( sig_dim_dict[dim_sym], builder.gep( shapes, [ context.get_constant( types.intp, i)])) i = i + 1 # ---------------------------------------------------------------------------- # Prepare steps for each argument. Note that all steps are counted in # bytes. num_steps = num_args + 1 + len(array_strides) steps = cgutils.alloca_once( builder, intp_t, size=context.get_constant( types.intp, num_steps), name="psteps") # First goes the step size for sched, which is 2 * num_dim builder.store(context.get_constant(types.intp, 2 * num_dim * sizeof_intp), steps) # The steps for all others are 0, except for reduction results. for i in range(num_args): if i >= ninouts: # steps for reduction vars are abi_sizeof(typ) j = i - ninouts # Get the base dtype of the reduction array. redtyp = lowerer.fndesc.typemap[redvars[j]] red_stride = None if isinstance(redtyp, types.npytypes.Array): redtyp = redtyp.dtype red_stride = red_shapes[i] typ = context.get_value_type(redtyp) sizeof = context.get_abi_sizeof(typ) # Set stepsize to the size of that dtype. stepsize = context.get_constant(types.intp, sizeof) if red_stride is not None: for rs in red_stride: stepsize = builder.mul(stepsize, rs) else: # steps are strides stepsize = zero dst = builder.gep(steps, [context.get_constant(types.intp, 1 + i)]) builder.store(stepsize, dst) for j in range(len(array_strides)): dst = builder.gep( steps, [ context.get_constant( types.intp, 1 + num_args + j)]) builder.store(array_strides[j], dst) # ---------------------------------------------------------------------------- # prepare data data = cgutils.get_null_value(byte_ptr_t) fnty = lc.Type.function(lc.Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t]) fn = builder.module.get_or_insert_function(fnty, name=wrapper_name) context.active_code_library.add_linking_library(info.library) if config.DEBUG_ARRAY_OPT: cgutils.printf(builder, "before calling kernel %p\n", fn) builder.call(fn, [args, shapes, steps, data]) if config.DEBUG_ARRAY_OPT: cgutils.printf(builder, "after calling kernel %p\n", fn) for k, v in rv_to_arg_dict.items(): arg, rv_arg = v only_elem_ptr = builder.gep(rv_arg, [context.get_constant(types.intp, 0)]) builder.store(builder.load(only_elem_ptr), lowerer.getvar(k)) context.active_code_library.add_linking_library(cres.library)
43.597345
309
0.594583
794e090caa2cab0073b8095b13a811d3eb13d036
1,418
py
Python
examples/plot-layer-types.py
lukasz-migas/napari-1d
b0f081a8711ae941b3e4b5c58c3aea56bd0e3277
[ "BSD-3-Clause" ]
13
2021-08-27T23:01:09.000Z
2022-03-22T13:51:35.000Z
examples/plot-layer-types.py
lukasz-migas/napari-1d
b0f081a8711ae941b3e4b5c58c3aea56bd0e3277
[ "BSD-3-Clause" ]
71
2021-08-28T13:29:17.000Z
2022-03-28T21:22:12.000Z
examples/plot-layer-types.py
lukasz-migas/napari-1d
b0f081a8711ae941b3e4b5c58c3aea56bd0e3277
[ "BSD-3-Clause" ]
null
null
null
"""Display image and 1d plot.""" import numpy as np import napari_plot N_POINTS = 1000 N_MIN = 0 N_MAX = 300 def add_line(): """Line plot""" x = np.arange(N_POINTS) y = np.random.randint(N_MIN, N_MAX, N_POINTS) viewer1d.add_line(np.c_[x, y], name="Line", visible=True) def add_centroids(): """Centroids plot""" x = np.arange(N_POINTS) y = np.random.randint(N_MIN, N_MAX, N_POINTS) viewer1d.add_centroids(np.c_[x, y], color=(1.0, 0.0, 1.0, 1.0), name="Centroids", visible=True) def add_scatter(): """Centroids plot""" x = np.random.randint(N_MIN, N_MAX, N_POINTS // 2) y = np.random.randint(N_MIN, N_POINTS, N_POINTS // 2) viewer1d.add_scatter(np.c_[x, y], size=5, name="Scatter", visible=True) def add_region(): """Region plot""" regions = [ ([25, 50], "vertical"), ([50, 400], "horizontal"), ([80, 90], "vertical"), ] viewer1d.add_region(regions, face_color=["red", "green", "cyan"], opacity=0.5, name="Spans", visible=True) def add_infline(): """Inf line plot""" viewer1d.add_inf_line( [50, 15, 250], orientation=["vertical", "vertical", "horizontal"], width=3, color=["red", "orange", "green"], name="Infinite Line", visible=True, ) viewer1d = napari_plot.Viewer() add_line() add_centroids() add_region() add_scatter() add_infline() napari_plot.run()
22.507937
110
0.609309
794e0a2e88ffb415c67a84465a0d63dbb175f543
32,375
py
Python
aragwas_server/gwasdb/elastic.py
grimmlab/AraGWAS
447db9bff377085a65aea05c0f09545e9405cc6c
[ "MIT" ]
1
2020-04-07T12:46:17.000Z
2020-04-07T12:46:17.000Z
aragwas_server/gwasdb/elastic.py
grimmlab/AraGWAS
447db9bff377085a65aea05c0f09545e9405cc6c
[ "MIT" ]
null
null
null
aragwas_server/gwasdb/elastic.py
grimmlab/AraGWAS
447db9bff377085a65aea05c0f09545e9405cc6c
[ "MIT" ]
null
null
null
from elasticsearch import Elasticsearch, helpers from elasticsearch_dsl import Search, Q, A from aragwas.settings import ES_HOST from gwasdb import serializers from .parsers import parse_snpeff, parse_lastel import logging import json import os import numpy as np import re import operator import datetime from collections import defaultdict GENE_ID_PATTERN = re.compile('^[a-z]{2}([\\d]{1})G\\w+$', re.IGNORECASE) es_logger = logging.getLogger('elasticsearch') es_logger.setLevel(logging.WARNING) # Get an instance of a logger logger = logging.getLogger(__name__) es = Elasticsearch([ES_HOST],timeout=60) BULK_INDEX_COUNT = 1000 ES_TEMPLATE_PATH = os.path.join(os.path.join(os.path.dirname(__file__),'es_templates')) def check_server(): """Check if server is running""" return es.ping() def check_genotype_data(): """Checks if the genotype data is fully indexed""" GENE_COUNT_TO_CHECK = 33341 SNP_COUNT_TO_CHECK = 10700998 gene_count = es.count('genotype',doc_type='genes')['count'] snps_count = es.count('genotype',doc_type='snps')['count'] if gene_count != GENE_COUNT_TO_CHECK: raise Exception('Only %s instead of %s genes found' % (gene_count,GENE_COUNT_TO_CHECK)) if snps_count != SNP_COUNT_TO_CHECK: raise Exception('Only %s instead of %s SNPs found' % (snps_count,SNP_COUNT_TO_CHECK)) def check_indices(): """Initializes the ES indices""" # check if index exists indices_exists = es.indices.exists( 'aragwas') or es.indices.exists('geno_*', allow_no_indices=False) if indices_exists: raise Exception('Indices already exist. Delete before you continue') # create the indices with open(os.path.join(ES_TEMPLATE_PATH, 'es_aragwas.json'), 'r') as fh: aragwas_settings = json.load(fh) with open(os.path.join(ES_TEMPLATE_PATH,'es_genotype.json'), 'r') as fh: genotype_settings = json.load(fh) # put index template es.indices.put_template('aragwas', aragwas_settings) # put index template es.indices.put_template('geno_*', genotype_settings) def load_snps_by_region(chrom, start, end): """Retrieve snp information by region""" index = _get_index_from_chr(chrom) search_snps = Search().using(es).doc_type('snps').index(index).filter("range", position={"lte": end, "gte":start}) return {snp.position: snp.to_dict() for snp in search_snps.scan() } def load_snps(chrom, positions): """Retrieve snp information""" index = _get_index_from_chr(chrom) if isinstance(positions, np.ndarray): pos = positions.tolist() else: pos = positions if len(pos) == 0: return {} resp = es.mget(body={'ids':pos}, index=index, doc_type='snps') return {doc['_id']: doc['_source'] if doc['found'] else {} for doc in resp['docs'] } def autocomplete_genes(term): """For autocomplete searches""" resp = es.search(index='genotype',doc_type='genes',_source=["suggest", "positions","strand","chr","type"], body={"suggest": { "gene-suggest": { "prefix":term, "completion": { "field": "suggest" } } }}) return [{'id':option['_id'], 'name': option['text'],'strand': option['_source']['strand'], 'chr': option['_source']['chr'], 'type': option['_source']['type'], 'positions':option['_source']['positions']} for option in resp['suggest']['gene-suggest'][0]['options']] def load_gene_by_id(id): """Retrive genes by id""" matches = GENE_ID_PATTERN.match(id) if not matches: raise Exception('Wrong Gene ID %s' % id) chrom = matches.group(1) doc = es.get('geno_chr%s' % chrom, id, doc_type='genes', _source=['name','chr','positions','type','strand', 'isoforms'], realtime=False) if not doc['found']: raise Exception('Gene with ID %s not found' %id) gene = doc['_source'] gene['id'] = doc['_id'] # # Potentially, load KO associated phenos if any # if return_KOs: # # check if gene has any associated phenotypes # pass return gene def load_associations_by_id(id): """Retrieve an association by id""" doc = es.get('aragwas', id, doc_type='associations', _source=['overFDR','overPermutation','overPermutation','maf','mac','score', 'snp', 'study'], realtime=False) if not doc['found']: raise Exception('Associations with ID %s not found' %id) association = doc['_source'] association['id'] = doc['_id'] return association def load_ko_associations_by_id(id): """Retrieve a KO mutation by id""" doc = es.get('aragwas', id, doc_type='ko_associations', _source=['overPermutation','overBonferroni','maf','mac','score', 'gene', 'study'], realtime=False) if not doc['found']: raise Exception('Associations with ID %s not found' %id) association = doc['_source'] association['id'] = doc['_id'] return association def load_gene_associations(id): """Retrive associations by neighboring gene id""" matches = GENE_ID_PATTERN.match(id) if not matches: raise Exception('Wrong Gene ID %s' % id) chrom = matches.group(1) asso_search = Search(using=es).doc_type('snps').source(exclude=['isoforms','GO']) q = Q({'nested':{'path':'snps.annotations', 'query':{'match':{'snps.annotations.gene_name':id}}}}) asso_search = asso_search.filter(q).sort('score') results = asso_search[0:min(500, asso_search.count())].execute() associations = results.to_dict()['hits']['hits'] return [{association['_id']: association['_source']} if association['found'] else {} for association in associations] def load_gene_snps(id): """Retrive associations by neighboring gene id""" snp_search = Search(using=es).doc_type('snps') q = Q({'nested':{'path':'annotations', 'query':{'match':{'annotations.gene_name':id}}}}) snp_search = snp_search.filter(q).sort('position') results = snp_search[0:min(500, snp_search.count())].execute() associations = results.to_dict()['hits']['hits'] return [{association['_id']: association['_source']} for association in associations] def get_top_genes(): """Retrieve top genes""" s = Search(using=es, doc_type='associations') s = s.filter('term', overPermutation='T') s = s.filter(Q('range', mac={'gte': 6})) agg = A("terms", field="snp.gene_name") s.aggs.bucket('gene_count', agg) agg_results = s.execute().aggregations.gene_count.buckets return agg_results def load_filtered_top_genes(filters, start=0, size=50): """Retrieves top genes and filter them through the tickable options""" # First aggregate over associations s = Search(using=es, doc_type='associations') if 'chr' in filters and len(filters['chr']) > 0 and len(filters['chr']) < 5: s = s.filter(Q('bool', should=[Q('term', snp__chr=chrom if len(chrom) > 3 else 'chr%s' % chrom) for chrom in filters['chr']])) if 'significant' in filters: s = s.filter(Q('range', mac={'gte': 6})) if filters['significant'][0] == "b": s = s.filter('term', overBonferroni='T') elif filters['significant'][0] == "p": s = s.filter('term', overPermutation='T') agg = A("terms", field="snp.gene_name", size="33341") # Need to check ALL GENES for further lists s.aggs.bucket('gene_count', agg) top_genes = s.execute().aggregations.gene_count.buckets genes = [] for top in top_genes[start:start+size]: id = top['key'] matches = GENE_ID_PATTERN.match(id) if not matches: continue gene = load_gene_by_id(top['key']) gene['n_hits'] = top['doc_count'] genes.append(gene) return genes, len(top_genes) def load_filtered_top_ko_mutations_genes(filters, start=0, size=50): """Retrieves top genes according to number of KO mutations and filter them through the tickable options""" # First aggregate over associations s = Search(using=es, doc_type='ko_associations') if 'chr' in filters and len(filters['chr']) > 0 and len(filters['chr']) < 5: s = s.filter(Q('bool', should=[Q({'nested':{'path':'gene', 'query':{'match':{'gene.chr':chrom if len(chrom) > 3 else 'chr%s' % chrom}}}}) for chrom in filters['chr']])) if 'significant' in filters: s = s.filter(Q('range', mac={'gte': 6})) s = s.filter('term', overBonferroni='T') # TODO: change this to permutation once the new indexed scores are in. agg = A("terms", field="gene.id", size='33341') # Need to check ALL GENES for further lists s.aggs.bucket('genes', 'nested', path='gene').bucket('gene_count', agg) # Need to have a NESTED query top_genes = s.execute().aggregations.genes.gene_count.buckets # The KO associations are already retrieved, just need to assign them to the right gene. association_dict = defaultdict(list) for asso in s[0:s.count()].execute().to_dict()['hits']['hits']: association_dict[asso['_source']['gene']['name']].append(asso['_source']) genes = [] for top in top_genes[start:start+size]: id = top['key'] matches = GENE_ID_PATTERN.match(id) if not matches: continue gene = load_gene_by_id(top['key']) gene['n_hits'] = top['doc_count'] gene['ko_associations'] = association_dict[top['key']] genes.append(gene) return genes, len(top_genes) def get_top_genes_aggregated_filtered_statistics(filters): s = Search(using=es, doc_type='genes') if 'chr' in filters and len(filters['chr']) > 0 and len(filters['chr']) < 5: s = s.filter(Q('bool', should=[Q('term', chr=chrom if len(chrom) > 3 else 'chr%s' % chrom) for chrom in filters['chr']])) agg_chr = A("terms", field="chr") s.aggs.bucket('chr_count', agg_chr) agg_results = s.execute().aggregations return agg_results.chr_count.buckets def get_top_genes_and_snp_type_for_study(study_id): """Retrive associations by neighboring gene id""" s = Search(using=es, doc_type='associations') s = s.filter(Q('bool', should=[Q('term', study__id=study_id)])) s = s.filter('term', overPermutation='T') s = s.filter(Q('range', mac={'gte': 6})) agg_genes = A("terms", field="snp.gene_name") # agg_go_terms = A("terms", field="snp.") NOT DOABLE WITH CURRENT FIELDS IN ES agg_snp_type = A("terms", field="snp.coding") agg_impact = A( {"nested": {"path": "snp.annotations"}, "aggs": {"annotations": {"terms": {"field": "snp.annotations.impact"}}}}) agg_annotation = A( {"nested": {"path": "snp.annotations"}, "aggs": {"annotations": {"terms": {"field": "snp.annotations.effect"}}}}) s.aggs.bucket('gene_count', agg_genes) s.aggs.bucket('snp_type_count', agg_snp_type) s.aggs.bucket('impact_count', agg_impact) s.aggs.bucket('annotation_count', agg_annotation) s.aggs.bucket('pvalue_hist', 'histogram', field='score', interval='1') s.aggs.bucket('maf_hist', 'histogram', field='maf', interval='0.1') agg_results = s.execute().aggregations results = {'gene_count': agg_results.gene_count.buckets, 'snp_type_count': agg_results.snp_type_count.buckets, 'impact_count': agg_results.impact_count.annotations.buckets, 'annotation_count': agg_results.annotation_count.annotations.buckets, 'pvalue_hist': agg_results.pvalue_hist.buckets, 'maf_hist': agg_results.maf_hist.buckets} return results def load_genes_by_region(chrom, start, end, features): """Retrieve genes by region""" index = _get_index_from_chr(chrom) search_genes = Search().using(es).doc_type('genes').index(index).filter("range", positions={"lte": end, "gte":start}) if not features: search_genes.source(exclude=['isoforms']) genes = [gene.to_dict() for gene in search_genes.scan() ] for gene in genes: gene['ko_associations'] = load_gene_ko_associations(gene['name'], return_only_significant=True) return genes def filter_association_search(s, filters): if 'score' in filters: s = s.filter('range', score={'gte': filter}) if 'chr' in filters and len(filters['chr']) > 0 and len(filters['chr']) < 5: s = s.filter(Q('bool', should=[Q('term', snp__chr=chrom if len(chrom) > 3 else 'chr%s' % chrom) for chrom in filters['chr']])) if 'maf' in filters and len(filters['maf']) > 0 and len(filters['maf']) < 4: maf_filters = [] for maf in filters['maf']: maf = maf.split('-') if len(maf) > 1: maf_filters.append(Q('range', maf={'lte': float(maf[1])/100,'gte':float(maf[0])/100})) else: if maf[0] == '1': maf_filters.append(Q('range', maf={'lt':float(maf[0])/100})) else: maf_filters.append(Q('range', maf={'gt':float(maf[0])/100})) s = s.filter(Q('bool',should = maf_filters)) if 'mac' in filters and len(filters['mac']) == 1: if filters['mac'][0] == '0': s = s.filter('range', mac={'lte': 5}) else: s = s.filter('range', mac={'gt': 5}) if 'annotation' in filters and len(filters['annotation']) > 0 and len(filters['annotation']) < 4: annot_filter = [Q('term', snp__annotations__effect=anno) for anno in filters['annotation']] s = s.filter(Q('nested', path='snp.annotations', query=Q('bool', should=annot_filter))) if 'type' in filters and len(filters['type'])==1: s = s.filter('term', snp__coding='T' if filters['type'][0] == 'genic' else 'F') if 'study_id' in filters and len(filters['study_id']) > 0: s = s.filter(Q('bool', should=[Q('term',study__id = study_id) for study_id in filters['study_id']])) if 'phenotype_id' in filters and len(filters['phenotype_id']) > 0: s = s.filter(Q('bool', should=[Q('term',study__phenotype__id = phenotype_id) for phenotype_id in filters['phenotype_id']])) if 'genotype_id' in filters and len(filters['genotype_id']) > 0: s = s.filter(Q('bool', should=[Q('term',study__genotype__id = genotype_id) for genotype_id in filters['genotype_id']])) if 'gene_id' in filters and len(filters['gene_id']) > 0: s = s.filter(Q({'nested': {'path': 'snp.annotations', 'query': {'match': {'snp.annotations.gene_name': filters['gene_id']}}}}) | (Q('range', snp__position={'gte': int(filters['start'])}) & Q('range', snp__position={'gte': int(filters['start'])}))) if 'start' in filters: s = s.filter('range', snp__position={'gte': int(filters['start'])}) if 'end' in filters: s = s.filter('range', snp__position={'lte': int(filters['end'])}) if 'significant' in filters and len(filters['significant'])>0: if filters['significant'][0] == "b": s = s.filter('term', overBonferroni='T') elif filters['significant'][0] == "p": s = s.filter('term', overPermutation='T') return s def get_aggregated_filtered_statistics(filters): s = Search(using=es, doc_type='associations') s = filter_association_search(s, filters) agg_chr = A("terms", field="snp.chr") agg_type = A("terms", field="snp.coding") agg_annotation = A( {"nested": {"path": "snp.annotations"}, "aggs": {"annotations": {"terms": {"field": "snp.annotations.effect"}}}}) agg_maf = A("range", field="maf", ranges=[{"to": 0.01}, {"from": 0.01, "to": 0.05001}, {"from": 0.05001, "to": 0.1001}, {"from": 0.1001}]) agg_mac = A("range", field="mac", ranges=[{"to": 6}, {"from": 6}]) s.aggs.bucket('maf_count', agg_maf) s.aggs.bucket('mac_count', agg_mac) s.aggs.bucket('chr_count', agg_chr) s.aggs.bucket('type_count', agg_type) s.aggs.bucket('annotation_count', agg_annotation) agg_results = s.execute().aggregations return agg_results.chr_count.buckets, agg_results.maf_count.buckets, agg_results.mac_count.buckets, agg_results.type_count.buckets, agg_results.annotation_count.annotations.buckets def index_associations(study, associations, thresholds): """indexes associations""" with_permutations = 'permutation_threshold' in thresholds.keys() and thresholds['permutation_threshold'] thresholds_study = [{'name': key, 'value': val} for key, val in thresholds.items() ] # first filter by chr to fetch annotations associations.sort(order = 'chr') annotations = {} for chrom in range(1, 6): chrom_pos = associations['position'][np.where(associations['chr'] == str(chrom))] annotations[str(chrom)] = load_snps(str(chrom),chrom_pos) documents = [] for assoc in associations: _id = '%s_%s_%s' % (study.pk, assoc['chr'], assoc['position']) study_data = serializers.EsStudySerializer(study).data study_data['thresholds'] = thresholds_study _source = {'mac': int(assoc['mac']), 'maf': float(assoc['maf']), 'score': float(assoc['score']), 'created': datetime.datetime.now(),'study':study_data, 'overFDR': bool(assoc['score'] > thresholds['bh_threshold'])} _source['overBonferroni'] = bool(assoc['score'] > thresholds['bonferroni_threshold05']) if with_permutations: _source['overPermutation'] = bool(assoc['score'] > thresholds['permutation_threshold']) snp = annotations[assoc['chr']].get(str(assoc['position']), None) if snp: _source['snp'] = snp documents.append({'_index':'aragwas','_type':'associations','_id': _id, '_source': _source }) if len(documents) == 0: return 0,0 success, errors = helpers.bulk(es,documents, chunk_size=1000, stats_only=True) return success, errors def load_filtered_top_associations(filters, start=0, size=50): """Retrieves top associations and filter them through the tickable options""" s = Search(using=es, doc_type='associations') s = s.sort('-score') s = filter_association_search(s, filters) s = s[start:start+size] print(json.dumps(s.to_dict())) result = s.execute() associations = result['hits']['hits'] return [association['_source'].to_dict() for association in associations], result['hits']['total'] def load_filtered_top_associations_search_after(filters, search_after = ''): """Retrieves top associations and filter them through the tickable options""" s = Search(using=es, doc_type='associations') s = s.sort('-score', '_uid') s = filter_association_search(s, filters) if search_after != '': search_after = parse_lastel(search_after) print(search_after) s = s.extra(search_after=search_after) s = s[0:25] print(json.dumps(s.to_dict())) result = s.execute() associations = result['hits']['hits'] last_el = ('','') if len(associations) > 0: last_el = result['hits']['hits'][-1]['sort'] # Transformation needed to saveguard url transmition last_el[1] = "-".join(last_el[1].split('#')) return [association['_source'].to_dict() for association in associations], result['hits']['total'], last_el def load_filtered_top_ko_associations_search_after(filters, search_after = '', size=50): """Retrieves top associations and filter them through the tickable options""" s = Search(using=es, doc_type='ko_associations') s = s.sort('-score', '_uid') # By default, leave out associations with no gene s = s.filter(Q({'nested':{'path':'gene', 'query':{'exists':{'field':'gene.chr'}}}})) # # Only need to filter by chromosome, maf or mac if 'chr' in filters and len(filters['chr']) > 0 and len(filters['chr']) < 5: s = s.filter(Q('bool', should=[Q({'nested':{'path':'gene', 'query':{'match':{'gene.chr':chrom if len(chrom) > 3 else 'chr%s' % chrom}}}}) for chrom in filters['chr']])) if 'significant' in filters: s = s.filter(Q('range', mac={'gte': 6})) s = s.filter('term', overBonferroni='T') # TODO: change this to permutation once the new indexed scores are in. if search_after != '': search_after = parse_lastel(search_after) print(search_after) s = s.extra(search_after=search_after) s = s[0:size] result = s.execute() associations = result['hits']['hits'] last_el = result['hits']['hits'][-1]['sort'] # Transformation needed to saveguard url transmition last_el[1] = "-".join(last_el[1].split('#')) return [association['_source'].to_dict() for association in associations], result['hits']['total'], last_el def get_gwas_overview_bins_data(filters): """Collect the data used to plot the gwas heatmap histograms""" # Check missing filters filters = check_missing_filters(filters) # Params: chromosome (list or individual), region (optional, only considered if taking 1 chr), filters? region_bins = get_bins_for_chr_regions(filters) combined_data= [] keys = list(region_bins) chromosome_sizes = {'chr1': 30427671, 'chr2': 19698289, 'chr3': 23459830,'chr4': 18585056, 'chr5': 26975502} keys.sort() for key in keys: if filters['region'][0] == '': region_final = [0, chromosome_sizes[key]] else: region_final = [filters['region'][0],filters['region'][1]] bin_sze = filters['region_width'] combined_data.append({'chr': key, 'region':region_final, 'bin_sze': bin_sze, 'bins': region_bins[key]}) # Get study list return {"type":"top", "data":combined_data} def get_gwas_overview_heatmap_data(filters, num_studies): """Collect the data used to plot the gwas heatmap""" # Check missing filters filters = check_missing_filters(filters) # Params: chromosome (list or individual), region (optional, only considered if taking 1 chr), filters? max_score = dict() data = dict() if filters['chrom']=='all': for i in range(1,6): chr = 'chr' + str(i) filters['chrom'] = chr max_score_temp, data_temp = get_top_hits_for_all_studies(filters, num_studies) # TODO: link parameters from rest endpoint max_score[chr]=max_score_temp[chr] data[chr] = data_temp[chr] # Aggregate over chromosomes combined_data = combine_data(max_score, data) # For testing: change to data_bis to get faster but more localized points (looks bad) else: chr = 'chr'+str(filters['chrom'][-1]) max_score_temp, data_temp = get_top_hits_for_all_studies(filters, num_studies) # TODO: link parameters from rest endpoint max_score[chr] = max_score_temp[chr] data[chr] = data_temp[chr] combined_data = combine_data(max_score, data, region=filters['region'],region_width=filters['region_width']) # Get study list return {"type":"top", "scoreRange": [0, max(max_score.values())], "data":combined_data} def check_missing_filters(filters): if 'chrom' not in filters.keys(): filters['chrom'] = 'all' if 'region_width' not in filters.keys(): filters['region_width'] = 250000 if 'threshold' not in filters.keys(): filters['threshold'] = '' if 'region' not in filters.keys(): filters['region'] = ('','') if 'maf' not in filters.keys(): filters['maf'] = 0 if 'mac' not in filters.keys(): filters['mac'] = 6 return filters def get_top_hits_for_all_studies(filters, num_studies): s = Search(using=es, doc_type='associations') s = filter_heatmap_search(s, filters) # First aggregate for studies s.aggs.bucket('per_chrom', 'terms', field='snp.chr') # Keep track of the maximum value for each study s.aggs['per_chrom'].metric('max', 'max', field='score') # Then aggregate for chromosomes s.aggs['per_chrom'].bucket('per_study', 'terms', field='study.id', order={'_term':'asc'}, size=num_studies,min_doc_count='0') #TODO: automatically check number of studies s.aggs['per_chrom']['per_study'].metric('top_N', 'top_hits', size='25', sort={'score':'desc'}, _source=['-score','snp.position']) # Then for regions (to avoid too many overlapping hits) s.aggs['per_chrom']['per_study'].bucket('per_region', 'histogram', field='snp.position', interval=str(filters['region_width'])) # Then state what info we want from top_hits (position and score) s.aggs['per_chrom']['per_study']['per_region'].metric('top', 'top_hits', size='1', sort={'score':'desc'}, _source=['score','snp.position']) # Aggregate results agg_results = s.execute().aggregations # Find max score for max_score = dict() data = dict() data_bis = dict() for bucket in agg_results.per_chrom.buckets: max_score[bucket.key] = bucket.max.value data[bucket.key] = [] # data_bis[bucket.key] = [] for element in bucket.per_study.buckets: # Combine results and get top 25 per chrom per study: data[bucket.key].append(get_top_N_per_study(element, 25)) # study_data = [] # for top in element.top_N.hits.hits: # study_data.append({'pos': top['_source']['snp']['position'], # 'score': top['_source']['score']}) # data_bis[bucket.key].append(study_data) return max_score, data #, data_bis def get_top_N_per_study(bucket, N=25): hits = [] for element in bucket.per_region.buckets: if element.top.hits.hits: hits.append({'pos': element.top.hits.hits[0]['_source']['snp']['position'],'score':element.top.hits.hits[0]['_source']['score']}) hits.sort(key=lambda tup: -tup['score']) return hits[:N] def filter_heatmap_search(s, filters): if filters['chrom'] != 'all': s = s.filter(Q('bool', should=[Q('term', snp__chr=filters['chrom'] if len(filters['chrom']) > 3 else 'chr%s' % filters['chrom'])])) if filters['threshold'] == 'FDR': s = s.filter('term', overFDR='T') elif filters['threshold'] == 'Bonferroni': s = s.filter('term', overBonferroni='T') elif filters['threshold'] == 'permutation': s = s.filter('term', overPermutation='T') if filters['maf'] > 0: s = s.filter(Q('range', maf={'gte':filters['maf']})) if filters['mac'] > 0: s = s.filter(Q('range', mac={'gte': filters['mac']})) if filters['region'][0] != '': s = s.filter('range', snp__position={'gte': int(filters['region'][0])}) s = s.filter('range', snp__position={'lte': int(filters['region'][1])}) return s def get_bins_for_chr_regions(filters): """Usage: chrom = indicate the chromosome(s) of interest ('all' or any chromosome), region_width = indicate the size of the bins for which to count hits, threshold = indicate the type of threshold to look at (FDR, Bonferroni, permutation or none) region = indicate a specific window in which to aggregate for, default = ('','') looks at entire chromosome maf = indicate a minimum maf mac = indicate a minimum mac """ s = Search(using=es, doc_type='associations') s = filter_heatmap_search(s, filters) s.aggs.bucket('per_chrom', 'terms', field='snp.chr').bucket('per_region', 'histogram', field='snp.position', interval=str(filters['region_width'])) agg_results = s.execute().aggregations bin_dict = dict() for buckets in agg_results.per_chrom.buckets: bin_dict[buckets['key']] = convert_to_bin_format(buckets['per_region'].buckets) return bin_dict def convert_to_bin_format(buckets): bins = [] for bin in buckets: bins.append(bin['doc_count']) return bins def combine_data(max_scores, data, region=('',''), region_width=10000): if len(data) != len(max_scores): raise ValueError('Problem with the size of the dictionaries') final_data = [] keys = list(data) chromosome_sizes = {'chr1': 30427671, 'chr2': 19698289, 'chr3': 23459830,'chr4': 18585056, 'chr5': 26975502} keys.sort() for key in keys: scoreRange = [0,max_scores[key]] if region[0] == '': region_final = [0, chromosome_sizes[key]] else: region_final = [region[0],region[1]] bin_sze = region_width final_data.append({'scoreRange': scoreRange, 'chr': key, 'region':region_final, 'bin_sze': bin_sze, 'data':data[key]}) return final_data def index_genes(genes): """Indexes the genes""" num_genes = len(genes) documents = [{'_index':'geno_%s' % gene['chr'].lower(),'_type':'genes','_id':gene_id,'_source':gene} for gene_id, gene in genes.items()] success, errors = helpers.bulk(es,documents,chunk_size=10000,stats_only=True,request_timeout=300) return success, errors def index_snps(snpeff_file): """indexes the snps""" success, errors = helpers.bulk(es,_get_snps_document(snpeff_file), stats_only=True, chunk_size=10000) return success, errors def _get_association_document(study, top_associations): for assoc in top_associations: source = assoc.copy() source['study'] = study yield { '_index':'aragwas','_type':'associations','_id': '%s_%s_%s' % (study.pk, assoc['chr'], assoc['position']),'_source':source } def _get_snps_document(snpeff_file): with open(snpeff_file,'r') as content: is_custom_snp_eff = True for row in content: if row[0] == '#': is_custom_snp_eff = False continue fields = row.split("\t") snp = parse_snpeff(fields, is_custom_snp_eff) action = {'_index':'geno_%s' % snp['chr'].lower(),'_type':'snps','_id':snp['position'],'_source':snp} yield action def _get_index_from_chr(chrom): index = 'geno_%s' if len(chrom) > 3: index = index % chrom else: index = index % 'chr' + chrom return index # Need to index KO genes association differently. def index_ko_associations(study, associations, thresholds): """ indexes gene knockout associations They are stored differently cause they represent associations between genes and phenotypes """ with_permutations = 'permutation_threshold' in thresholds.keys() and thresholds['permutation_threshold'] # This will always be FALSE thresholds_study = [{'name': key, 'value': val} for key, val in thresholds.items() ] annotations = {} documents = [] for assoc in associations: _id = '%s_%s' % (study.pk, assoc['gene']) study_data = serializers.EsStudySerializer(study).data study_data['thresholds'] = thresholds_study _source = {'mac': int(assoc['mac']), 'maf': float(assoc['maf']), 'score': float(assoc['score']), 'beta': float(assoc['beta']), 'se_beta': float(assoc['se_beta']), 'created': datetime.datetime.now(),'study':study_data} _source['overBonferroni'] = bool(assoc['score'] > thresholds['bonferroni_threshold05']) if with_permutations: _source['overPermutation'] = bool(assoc['score'] > thresholds['permutation_threshold']) try: gene = load_gene_by_id(assoc['gene']) except: gene = {'name': assoc['gene']} _source['gene'] = gene documents.append({'_index':'aragwas','_type':'ko_associations','_id': _id, '_source': _source }) if len(documents) == 0: return 0,0 success, errors = helpers.bulk(es,documents, chunk_size=1000, stats_only=True) return success, errors def load_gene_ko_associations(id, return_only_significant=False): """Retrieve KO associations by gene id""" matches = GENE_ID_PATTERN.match(id) if not matches: raise Exception('Wrong Gene ID %s' % id) chrom = matches.group(1) asso_search = Search(using=es).doc_type('ko_associations') if return_only_significant: asso_search = asso_search.filter('term', overBonferroni='T') # q = Q('bool', should=Q('term',gene__name = id)) q = Q({'nested':{'path':'gene', 'query':{'match':{'gene.name':id}}}}) asso_search = asso_search.filter(q).sort('-score').source(exclude=['gene']) results = asso_search[0:min(500, asso_search.count())].execute() ko_associations = results.to_dict()['hits']['hits'] return [association['_source'] for association in ko_associations]
47.962963
267
0.639598
794e0b0904bd622ca3d3d71fd2a337d01502688a
2,115
py
Python
mixbox/dates.py
6un9-h0-Dan/mixbox
cbdfc6afab6a9bcb8306686d2c4c34ac496c9271
[ "BSD-3-Clause" ]
8
2015-02-24T21:44:45.000Z
2020-09-23T14:18:14.000Z
mixbox/dates.py
6un9-h0-Dan/mixbox
cbdfc6afab6a9bcb8306686d2c4c34ac496c9271
[ "BSD-3-Clause" ]
43
2015-02-21T00:37:48.000Z
2022-03-31T12:35:09.000Z
mixbox/dates.py
6un9-h0-Dan/mixbox
cbdfc6afab6a9bcb8306686d2c4c34ac496c9271
[ "BSD-3-Clause" ]
15
2015-07-31T20:26:49.000Z
2021-07-23T17:01:48.000Z
# Copyright (c) 2015, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. # stdlib import datetime # external import dateutil import dateutil.parser import dateutil.tz def parse_datetime(value): """Attempts to parse `value` into an instance of ``datetime.datetime``. If `value` is ``None``, this function will return ``None``. Args: value: A timestamp. This can be a string or datetime.datetime value. """ if not value: return None elif isinstance(value, datetime.datetime): return value return dateutil.parser.parse(value) def serialize_datetime(value): """Attempts to convert `value` into an ISO8601-compliant timestamp string. If `value` is ``None``, ``None`` will be returned. Args: value: A datetime.datetime value. Returns: An ISO8601 formatted timestamp string. """ if not value: return None return value.isoformat() def parse_date(value): """Attempts to parse `value` into an instance of ``datetime.date``. If `value` is ``None``, this function will return ``None``. Args: value: A timestamp. This can be a string, datetime.date, or datetime.datetime value. """ if not value: return None if isinstance(value, datetime.date): return value return parse_datetime(value).date() def serialize_date(value): """Attempts to convert `value` into an ``xs:date`` string. If `value` is ``None``, ``None`` will be returned. Args: value: A date value. This can be a string, datetime.date, or datetime.datetime object. Returns: An ``xs:date`` formatted timestamp string. """ if not value: return None elif isinstance(value, datetime.datetime): return value.date().isoformat() elif isinstance(value, datetime.date): return value.isoformat() else: return parse_date(value).isoformat() def now(): """Returns the current UTC datetime.datetime.""" return datetime.datetime.now(tz=dateutil.tz.tzutc())
24.310345
78
0.645863
794e0b7d9f38f9748d9838e9e67ec21c3bfd6373
8,499
py
Python
scripts/emod3d_scripts/check_emod3d_subdomains.py
ucgmsim/slurm_gm_workflow
6fd7e11f3c3163dbd219b6783c32fa8085db5d35
[ "MIT" ]
null
null
null
scripts/emod3d_scripts/check_emod3d_subdomains.py
ucgmsim/slurm_gm_workflow
6fd7e11f3c3163dbd219b6783c32fa8085db5d35
[ "MIT" ]
114
2018-10-11T02:49:32.000Z
2022-03-30T01:28:21.000Z
scripts/emod3d_scripts/check_emod3d_subdomains.py
ucgmsim/slurm_gm_workflow
6fd7e11f3c3163dbd219b6783c32fa8085db5d35
[ "MIT" ]
2
2021-10-05T07:10:20.000Z
2022-03-16T23:26:51.000Z
""" Contains functions related to the calculation of emod3d subdomain boundaries. Functions ported from C contain a number of calls to np.int32 and np.float32 calls to emulate single precision integer and floating point behaviour. Code ported from emod3d v3.0.8 misc.c. This is consistent with v3.0.7. While v3.0.4 uses long doubles in place of floats, this does not seem to practically increase the accuracy of calculation. This check is stricter than necessary as only on rows/columns with stations missing will cause issues when extracting the station waveforms. """ import argparse import numpy as np def get_start_boundary(n_grid_points, n_subdomains, index_subdomain): """ Calculates the starting boundary of the subdomain for a given subdomain index along a velocity model axis Should have an overlap of 4 with the previous subdomains ending boundary Does not account for the first subdomain :param n_grid_points: The number of grid points along the axis :param n_subdomains: The number of subdomains along the axis :param index_subdomain: The index of the subdomain being tested. May be an integer or array of integers :return: The first grid point(s) covered by the given subdomain index(cies) """ fslice = np.float32( np.float32(n_grid_points + (n_subdomains - 1.0) * 4.0) / np.float32(n_subdomains) - 1.0 ) fn1 = np.float32(index_subdomain * (fslice - 3.0)) nx1 = np.int32(fn1 + 0.5) return nx1 def get_end_boundary(n_grid_points, n_subdomains, index_subdomain): """ Calculates the ending boundary of the subdomain for a given subdomain index along a velocity model axis Should have an overlap of 4 with the next subdomains starting boundary Does not account for the last subdomain points :param n_grid_points: The number of grid points along the axis :param n_subdomains: The number of subdomains along the axis :param index_subdomain: The index of the subdomain being tested. May be an integer or array of integers :return: The last grid point(s) covered by the given subdomain index(cies) """ fslice = np.float32( np.float32(n_grid_points + (n_subdomains - 1.0) * 4.0) / np.float32(n_subdomains) - 1.0 ) fn1 = np.float32(index_subdomain * (fslice - 3.0)) fn1 = np.float32(fn1 + fslice) nx2 = np.int32(fn1 + 0.5) nx2 = np.int32(nx2 + 1) return nx2 def get_nproc( nproc: np.int32, globnx: np.int32, globny: np.int32, globnz: np.int32, min_nproc: np.int32 = np.int32(1), nproc_x: np.int32 = np.int32(-1), nproc_z: np.int32 = np.int32(-1), ): """ Ported from the source of emod3d. Casting enforces C like behaviour. Calculates the number of processes to use along each axis of a velocity model. The argument min_nproc sets the unit size, allowing for blocks of grid points to be assigned to subdomains, instead of individual points The nproc_x/z argument are available to mimic options available in the C. Not normally used :param nproc: The number of processes to be used. :param globnx: The number of velocity model grid points along the x axis. :param globny: The number of velocity model grid points along the y axis. :param globnz: The number of velocity model grid points along the z axis. :param min_nproc: Multiplier to perform calculations using cubes of min_nproc, defaults to 1. :param nproc_x: The number of processes to use in the x direction. Set value above -1 to specify the number to use. Defaults to -1. :param nproc_z: The number of processes to use in the y direction. Set value above -1 to specify the number to use. Defaults to -1. :return: A tuple containing: The number of processes along the x axis The number of processes along the y axis The number of processes along the z axis """ inv_fmp = np.float32(1.0 / min_nproc) fnp = np.float32(nproc) fnx = np.float32(globnx) fny = np.float32(globny) fnz = np.float32(globnz) if nproc_z < 0: nproc_z = np.int32( inv_fmp * fnz * np.exp(np.log(fnp / (fnx * fny * fnz)) / 3.0) + 0.5 ) if nproc_z < 1: nproc_z = np.int32(1) nproc_z = np.int32(min_nproc * nproc_z) if nproc_x < 0: nproc_x = np.int32( inv_fmp * fnx * np.exp(np.log(fnp / (fnx * fny * nproc_z)) / 2.0) + 0.5 ) if nproc_x < 1: nproc_x = np.int32(1) nproc_x = np.int32(min_nproc * nproc_x) nproc_y = np.int32( inv_fmp * fnp / (np.float32(nproc_x) * np.float32(nproc_z)) + 0.5 ) if nproc_y < 1: nproc_y = np.int32(1) nproc_y = np.int32(min_nproc * nproc_y) nproc_c = nproc_x * nproc_y * nproc_z if nproc_c != nproc: # Alternate method of calculating the processes distribution ip3 = np.int32(np.exp(np.log(fnp) / 3.0) + 0.5) ipt = np.int32(1) while 2 * ipt <= ip3 and nproc % ipt == 0 and (nproc / ipt) % 2 == 0: ipt = np.int32(2 * ipt) nproc_z = ipt np2 = np.int32(nproc / nproc_z) ip2 = np.int32(np.exp(np.log(1.0 * np2) / 2.0) + 0.5) ipt = np.int32(1) while 2 * ipt <= ip2 and np2 % ipt == 0 and (np2 / ipt) % 2 == 0: ipt = np.int32(2 * ipt) nproc_x = np.int32(ipt) nproc_y = np.int32(np2 / nproc_x) return nproc_x, nproc_y, nproc_z def test_domain(nx, ny, nz, nc): """ Tests a given domain size and core count to check for grid points that won't be assigned to any sub domain :param nx: The number of grid points in the x direction :param ny: The number of grid points in the y direction :param nz: The number of grid points in the z direction :param nc: The number of cores to be used to perform the simulation :return: Three arrays with the index of any unassigned grid lines. If all three are empty then the simulation will work as expected """ nproc_x, nproc_y, nproc_z = get_nproc(nc, nx, ny, nz) x_indicies = np.arange(nproc_x - 1) x_n1 = get_start_boundary(nx, nproc_x, x_indicies + 1) x_n2 = get_end_boundary(nx, nproc_x, x_indicies) y_indicies = np.arange(nproc_y - 1) y_n1 = get_start_boundary(ny, nproc_y, y_indicies + 1) y_n2 = get_end_boundary(ny, nproc_y, y_indicies) z_indicies = np.arange(nproc_z - 1) z_n1 = get_start_boundary(nz, nproc_z, z_indicies + 1) z_n2 = get_end_boundary(nz, nproc_z, z_indicies) x_mask = np.where(x_n1 + 2 != x_n2 - 2)[0] y_mask = np.where(y_n1 + 2 != y_n2 - 2)[0] z_mask = np.where(z_n1 + 2 != z_n2 - 2)[0] return x_mask, y_mask, z_mask def load_args(): parser = argparse.ArgumentParser() parser.add_argument( "n_cores", type=int, help="The number of cores used to perform the simulation" ) parser.add_argument( "nx", type=int, help="The number of grid points along the x axis" ) parser.add_argument( "ny", type=int, help="The number of grid points along the y axis" ) parser.add_argument( "nz", type=int, help="The number of grid points along the z axis" ) return parser.parse_args() def main(): """ Uses the command line arguments provided to determine if the simulation will have any grid lines that are not associated with a subdomain. If any x or y girdlines are not associated they are printed to stdout, and the script exits with an exit code of 1 Otherwise the script exits with an exit code of 0 z gridlines are presented if any x or y gridlines are not associated, however alone they are not enough to cause failure """ args = load_args() x, y, z = test_domain(args.nx, args.ny, args.nz, args.n_cores) if x.size + y.size > 0: # We only care if there are issues on the surface layer message_parts = [] if x.size > 0: message_parts.append("Missed x axis indicies:") message_parts.append(", ".join(x.astype(str))) if y.size > 0: message_parts.append("Missed y axis indicies:") message_parts.append(", ".join(y.astype(str))) if z.size > 0: message_parts.append("Missed z axis indicies:") message_parts.append(", ".join(z.astype(str))) print(". ".join(message_parts)) return_code = 1 else: return_code = 0 exit(return_code) if __name__ == "__main__": main()
39.714953
148
0.661019
794e0b91c7d4e89e92ab1c32d213aca185c2f386
142
py
Python
zeus/api/schemas/token.py
conrad-kronos/zeus
ddb6bc313e51fb22222b30822b82d76f37dbbd35
[ "Apache-2.0" ]
221
2017-07-03T17:29:21.000Z
2021-12-07T19:56:59.000Z
zeus/api/schemas/token.py
conrad-kronos/zeus
ddb6bc313e51fb22222b30822b82d76f37dbbd35
[ "Apache-2.0" ]
298
2017-07-04T18:08:14.000Z
2022-03-03T22:24:51.000Z
zeus/api/schemas/token.py
conrad-kronos/zeus
ddb6bc313e51fb22222b30822b82d76f37dbbd35
[ "Apache-2.0" ]
24
2017-07-15T13:46:45.000Z
2020-08-16T16:14:45.000Z
from marshmallow import Schema, fields class TokenSchema(Schema): id = fields.UUID(dump_only=True) key = fields.Str(dump_only=True)
20.285714
38
0.739437
794e0bcfa8aa7f3ba98a1ffab018817125a89e55
4,494
py
Python
built-in/ACL_TensorFlow/Official/cv/YOLOv2_for_ACL/scripts/yolov2_postprocess/script/Main.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
12
2020-12-13T08:34:24.000Z
2022-03-20T15:17:17.000Z
built-in/ACL_TensorFlow/Official/cv/YOLOv2_for_ACL/scripts/yolov2_postprocess/script/Main.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
1
2022-01-20T03:11:05.000Z
2022-01-20T06:53:39.000Z
built-in/ACL_TensorFlow/Official/cv/YOLOv2_for_ACL/scripts/yolov2_postprocess/script/Main.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
2
2021-07-10T12:40:46.000Z
2021-12-17T07:55:15.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf import cv2 from PIL import Image from model_darknet19 import darknet from decode import decode from utils import preprocess_image, postprocess, draw_detection from config import anchors, class_names import os def main(): labels_to_names={ 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorbike', 4: 'aeroplane', 5: 'bus', 6: 'train', 7: 'truck',8: 'boat', 9:'traffic light', 10:'fire hydrant', 11:'stop sign',12:'parking meter', 13:'bench', 14:'bird', 15:'cat',16: 'dog',17:'horse', 18:'sheep',19:'cow',20:'elephant',21:'bear',22:'zebra',23:'giraffe',24:'backpack',25:'umbrella',26:'bandbag',27:'tie',28:'suitcase',29:'frisbee',30:'skis',31:'snowboard',32:'sports ball', 33:'kite',34:'baseball bat',35:'baseball glove',36:'skateboard',37:'surfboard',38:'tennis racket',39:'bottle',40:'wine glass',41:'cup',42:'fork',43:'knife',44:'spoon',45:'bowl',46:'banana',47:'apple',48:'sandwich', 49:'orange',50:'broccoli',51:'carrot',52:'hot dog',53:'pizza',54:'donut',55:'cake',56:'chair',57:'couch',58:'pottedplant',59:'bed',60:'diningtable',61:'toilet',62:'tv',63:'laptop',64:'mouse',65:'remote',66:'keyboard', 67:'cellphone',68:'microwave',69:'oven',70:'toaster',71:'sink',72:'refrigerator',73:'book',74:'clock',75:'vase',76:'scissors',77:'teddy bear',78:'hair direr',79:'toothbrush'} img_dir = "./data/pascal_voc/VOCdevkit/VOC2007_test/JPEGImages" for filename in os.listdir(img_dir): input_size = (416,416) image = cv2.imread(img_dir + '/' + filename) image_shape = image.shape[:2] #只取wh,channel=3不取 # copy、resize416*416、归一化、在第0维增加存放batchsize维度 image_cp = preprocess_image(image,input_size) tf.reset_default_graph() #运行到第2张就报错,需要加上这句,清除默认图形堆栈并充值默认图形 # 【1】输入图片进入darknet19网络得到特征图,并进行解码得到:xmin xmax表示的边界框、置信度、类别概率 tf_image = tf.placeholder(tf.float32,[1,input_size[0],input_size[1],3]) model_output = darknet(tf_image) # darknet19网络输出的特征图 output_sizes = input_size[0]//32, input_size[1]//32 # 特征图尺寸是图片下采样32倍 output_decoded = decode(model_output=model_output,output_sizes=output_sizes, num_class=len(class_names),anchors=anchors) # 解码 model_path = "./yolov2_model/checkpoint_dir/yolo2_coco.ckpt" saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess,model_path) bboxes,obj_probs,class_probs = sess.run(output_decoded,feed_dict={tf_image:image_cp}) # 【2】筛选解码后的回归边界框——NMS(post process后期处理) bboxes,scores,class_max_index = postprocess(bboxes,obj_probs,class_probs,image_shape=image_shape) label_path_txt = "./map_mul/detections_npu/" with open(os.path.join(label_path_txt + filename.split('.')[0] + '.txt'), 'a+') as f: for i in range(len(scores)): if " " in labels_to_names[class_max_index[i]]: labels_to_name = labels_to_names[class_max_index[i]].split(' ')[0] + labels_to_names[class_max_index[i]].split(' ')[1] f.write(labels_to_name + " " + str(scores[i]) + " " + str(bboxes[i][0])+ " " + str(bboxes[i][1])+ " " + str(bboxes[i][2])+ " " + str(bboxes[i][3]) + '\n') else: f.write(labels_to_names[class_max_index[i]] + " " + str(scores[i]) + " " + str(bboxes[i][0])+ " " + str(bboxes[i][1])+ " " + str(bboxes[i][2])+ " " + str(bboxes[i][3]) + '\n') # 【3】绘制筛选后的边界框 #print('-----',filename) #img_detection = draw_detection(image, bboxes, scores, class_max_index, class_names) #cv2.imwrite(f"./VOC2007_jpeg_demo/" + filename.split('.')[0]+'_' + "detection.jpg", img_detection) print('YOLO_v2 detection has done!') #cv2.imshow("detection_results", img_detection) #cv2.waitKey(0) if __name__ == '__main__': main()
56.886076
222
0.650868
794e0c3c779d4934b68b718e8aafb84432f2eea0
485
py
Python
get_target_ip.py
indigo-dc/dodas-docker-img_sshtunnel
29326c7673b47079a776d78fe03be628391f13d6
[ "Apache-2.0" ]
2
2018-07-17T14:53:35.000Z
2018-07-19T09:53:36.000Z
get_target_ip.py
DODAS-TS/docker-img_sshtunnel
29326c7673b47079a776d78fe03be628391f13d6
[ "Apache-2.0" ]
null
null
null
get_target_ip.py
DODAS-TS/docker-img_sshtunnel
29326c7673b47079a776d78fe03be628391f13d6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import print_function from sys import argv, exit def get_target_host(string): """Print and return the first address of the target. Example: "10.10.42.197 10.10.42.203 10.10.42.204" -> "10.10.42.197" "10.10.42.203" -> "10.10.42.203" """ tmp = string.split(" ")[0] print(tmp, end="") return tmp def main(): get_target_host(argv[1]) if __name__ == '__main__': exit(main())
22.045455
66
0.606186
794e0ce7e1db1d3f9bd3a40ed9d3e49242ebb873
7,788
py
Python
src/pallas/proxies.py
tomasbedrich/pallas
cd414f0ed0c4b5a39da21061b08f9e7a5b674c8b
[ "Apache-2.0" ]
null
null
null
src/pallas/proxies.py
tomasbedrich/pallas
cd414f0ed0c4b5a39da21061b08f9e7a5b674c8b
[ "Apache-2.0" ]
null
null
null
src/pallas/proxies.py
tomasbedrich/pallas
cd414f0ed0c4b5a39da21061b08f9e7a5b674c8b
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Akamai Technologies, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Proxies to AWS Athena APIs. The proxies are internal classes by the :class:`.Athena` client to issue requests to AWS. """ from __future__ import annotations import logging from abc import ABCMeta, abstractmethod from typing import Any, Dict, Mapping, Optional, Sequence, cast import boto3 from pallas.csv import read_csv from pallas.info import QueryInfo from pallas.results import QueryResults from pallas.storage.s3 import s3_parse_uri, s3_wrap_body from pallas.utils import truncate_str logger = logging.getLogger("pallas") ColumnNames = Sequence[str] ColumnTypes = Sequence[str] Row = Sequence[Optional[str]] class AthenaProxy(metaclass=ABCMeta): """ Proxy to AWS Athena. This is an internal interface that is used by the :class:`.Athena` client. The :class:`.Boto3Proxy` implementation will be used in most cases, but it can be replaced by :class:`.FakeProxy` for testing. """ @abstractmethod def start_query_execution( self, sql: str, *, database: Optional[str] = None, workgroup: Optional[str] = None, output_location: Optional[str] = None, ) -> str: """ Submit a query. :param sql: an SQL query to be executed :param database: a name of Athena database to be queried :param workgroup: a name of Athena workgroup :param output_location: URI of output location on S3 :return: execution_id """ @abstractmethod def get_query_execution(self, execution_id: str) -> QueryInfo: """ Retrieve information about a query execution. Returns a status of the query with other information. """ @abstractmethod def get_query_results(self, info: QueryInfo) -> QueryResults: """ Retrieve results of a query execution. Waits until the query execution finishes and downloads results. """ @abstractmethod def stop_query_execution(self, execution_id: str) -> None: """ Kill a query execution. """ class Boto3Proxy(AthenaProxy): """ Proxy to AWS Athena using the boto3 library. This is an internal class that is used by the :class:`.Athena` client. It can be replaced by :class:`.FakeProxy` for testing. """ _athena_client: Any # boto3 Athena client _s3_client: Any # boto3 S3 client def __init__( self, *, region: Optional[str] = None, athena_client: Optional[Any] = None, s3_client: Optional[Any] = None, ) -> None: if athena_client is None: athena_client = boto3.client("athena", region_name=region) if s3_client is None: s3_client = boto3.client("s3") self._athena_client = athena_client self._s3_client = s3_client def start_query_execution( self, sql: str, database: Optional[str] = None, workgroup: Optional[str] = None, output_location: Optional[str] = None, ) -> str: params: Dict[str, Any] = dict(QueryString=sql) if database is not None: params.update(QueryExecutionContext={"Database": database}) if workgroup is not None: params.update(WorkGroup=workgroup) if output_location is not None: params.update(ResultConfiguration={"OutputLocation": output_location}) logger.info(f"Athena StartQueryExecution: QueryString={truncate_str(sql)!r}") response = self._athena_client.start_query_execution(**params) execution_id = cast(str, response["QueryExecutionId"]) logger.info(f"Athena QueryExecutionId={execution_id!r} started.") return execution_id def get_query_execution(self, execution_id: str) -> QueryInfo: logger.info(f"Athena GetQueryExecution: QueryExecutionId={execution_id!r}") response = self._athena_client.get_query_execution( QueryExecutionId=execution_id ) info = QueryInfo(response["QueryExecution"]) logger.info(f"Athena QueryExecution: {info}") return info def get_query_results(self, info: QueryInfo) -> QueryResults: execution_id = info.execution_id params = dict(QueryExecutionId=execution_id) logger.info(f"Athena GetQueryResults: QueryExecutionId={execution_id!r}") response = self._athena_client.get_query_results(**params) column_names = _read_column_names(response) column_types = _read_column_types(response) if response.get("NextToken"): logger.info("Athena ResultSet paginated. Will download from S3.") data = self._download_data(info) else: data = _read_data(response) logger.info( f"Athena ResultSet complete: {len(data)} rows (including header)" ) fixed_data = _fix_data(column_names, data) return QueryResults(column_names, column_types, fixed_data) def stop_query_execution(self, execution_id: str) -> None: logger.info(f"Athena StopQueryExecution: QueryExecutionId={execution_id!r}") self._athena_client.stop_query_execution(QueryExecutionId=execution_id) def _download_data(self, info: QueryInfo) -> Sequence[Row]: output_location = info.output_location bucket, key = s3_parse_uri(output_location) params = dict(Bucket=bucket, Key=key) logger.info(f"S3 GetObject:" f" Bucket={bucket!r} Key={key!r}") response = self._s3_client.get_object(**params) with s3_wrap_body(response["Body"]) as stream: data = list(read_csv(stream)) logger.info(f"S3 Body downloaded: {len(data)} rows (including header)") return data def _fix_data(column_names: ColumnNames, data: Sequence[Row]) -> Sequence[Row]: """ Fix malformed data returned from Athena. Queries executed by Presto (typically queries with SELECT) repeat column names in the first row of data, so we have to remove them. Queries by Hive (typically queries with DESCRIBE) do not repeat column names, but all columns are combined to one. Try to fix both of the above problems here. """ if data and data[0] == column_names: # DQL, SELECT statements executed by Presto data = data[1:] elif all(len(row) == 1 for row in data) and len(column_names) > 1: # DCL, DESCRIBE statements executed by Hive values = (row[0] for row in data if row[0] is not None) data = [v.split("\t", maxsplit=len(column_names) - 1) for v in values] return data def _read_column_names(response: Mapping[str, Any]) -> ColumnNames: column_info = response["ResultSet"]["ResultSetMetadata"]["ColumnInfo"] return tuple(column["Name"] for column in column_info) def _read_column_types(response: Mapping[str, Any]) -> ColumnTypes: column_info = response["ResultSet"]["ResultSetMetadata"]["ColumnInfo"] return tuple(column["Type"] for column in column_info) def _read_data(response: Mapping[str, Any]) -> Sequence[Row]: rows = response["ResultSet"]["Rows"] return [tuple(item.get("VarCharValue") for item in row["Data"]) for row in rows]
35.561644
85
0.673986
794e0d28a1303bad42132ea0116c960a95b98724
1,964
py
Python
patrole_tempest_plugin/tests/api/compute/test_config_drive_rbac.py
TaruniSurampally/testpatrolev
7c7fe1cad2967e0be84ca74b9a200ae2fde356db
[ "Apache-2.0" ]
null
null
null
patrole_tempest_plugin/tests/api/compute/test_config_drive_rbac.py
TaruniSurampally/testpatrolev
7c7fe1cad2967e0be84ca74b9a200ae2fde356db
[ "Apache-2.0" ]
null
null
null
patrole_tempest_plugin/tests/api/compute/test_config_drive_rbac.py
TaruniSurampally/testpatrolev
7c7fe1cad2967e0be84ca74b9a200ae2fde356db
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 AT&T Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.lib import decorators from tempest import test from patrole_tempest_plugin import rbac_rule_validation from patrole_tempest_plugin.tests.api.compute import rbac_base class ConfigDriveRbacTest(rbac_base.BaseV2ComputeRbacTest): @classmethod def setup_clients(cls): super(ConfigDriveRbacTest, cls).setup_clients() cls.client = cls.servers_client @classmethod def skip_checks(cls): super(ConfigDriveRbacTest, cls).skip_checks() if not test.is_extension_enabled('os-config-drive', 'compute'): msg = "%s skipped as os-config-drive extension not enabled." \ % cls.__name__ raise cls.skipException(msg) @decorators.idempotent_id('55c62ef7-b72b-4970-acc6-05b0a4316e5d') @rbac_rule_validation.action( service="nova", rule="os_compute_api:os-config-drive") def test_create_test_server_with_config_drive(self): self.rbac_utils.switch_role(self, toggle_rbac_role=True) # NOTE(felipemonteiro): This policy action is always enforced, # regardless whether the config_drive flag is set to true or false. # However, it has been explicitly set to true below, in case that this # behavior ever changes in the future. self.create_test_server(config_drive=True)
40.081633
78
0.717923
794e0d4504b8b81638ca4fffa8f5630e42bc53a9
5,042
py
Python
python/hostconfig/machines/alberto.py
AvciRecep/chaste_2019
1d46cdac647820d5c5030f8a9ea3a1019f6651c1
[ "Apache-2.0", "BSD-3-Clause" ]
1
2020-04-05T12:11:54.000Z
2020-04-05T12:11:54.000Z
python/hostconfig/machines/alberto.py
AvciRecep/chaste_2019
1d46cdac647820d5c5030f8a9ea3a1019f6651c1
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
python/hostconfig/machines/alberto.py
AvciRecep/chaste_2019
1d46cdac647820d5c5030f8a9ea3a1019f6651c1
[ "Apache-2.0", "BSD-3-Clause" ]
2
2020-04-05T14:26:13.000Z
2021-03-09T08:18:17.000Z
# Configuration """Copyright (c) 2005-2019, University of Oxford. All rights reserved. University of Oxford means the Chancellor, Masters and Scholars of the University of Oxford, having an administrative office at Wellington Square, Oxford OX1 2JD, UK. This file is part of Chaste. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import glob import os # Check which version of Ubuntu this is fp = open('/etc/issue') ubuntu_ver = fp.read().split()[1] fp.close() petsc_ver = 3.1 petsc_path = '/usr/lib/petscdir/3.1/' petsc_2_2_path = '' petsc_build_name = 'linux-gnu-c-debug' petsc_build_name_profile = petsc_build_name petsc_build_name_optimized = 'linux-gnu-c-opt' dealii_path = None intel_path = None icpc = 'icpc' other_includepaths = ['/usr/include/metis/'] other_libpaths = [] libs_for_petsc = ['petsccontrib', 'X11', 'HYPRE', 'spooles', 'superlu', 'umfpack', 'amd' # Both for Umfpack ] #Fixes (possibly temporary) for Natty if ubuntu_ver >= [11,04]: libs_for_petsc.append(['HYPRE_utilities', 'HYPRE_struct_mv', 'HYPRE_struct_ls', 'HYPRE_sstruct_mv', 'HYPRE_sstruct_ls', 'HYPRE_IJ_mv', 'HYPRE_parcsr_ls', 'dmumps']) if petsc_ver >= 3: libs_for_petsc.append('scotch') else: libs_for_petsc.append('sidl') if petsc_ver >= 3.1: libs_for_petsc.remove('petsccontrib') boost_libs = ['boost_serialization', 'boost_filesystem'] if ubuntu_ver >= [10,10]: boost_libs.append('boost_system') if ubuntu_ver >= [9,10]: boost_libs = map(lambda l: l+'-mt', boost_libs) other_libraries = libs_for_petsc + boost_libs + \ ['xerces-c', 'hdf5', 'z', 'parmetis', 'metis'] # Figure out which lapack/blas packages are actually installed! if os.path.exists('/usr/lib/liblapack-3.so'): blas_lapack = ['lapack-3', 'blas-3'] else: blas_lapack = ['lapack', 'blas'] tools = {'xsd': '/usr/bin/xsdcxx', 'mpirun': '/usr/bin/mpirun.openmpi', 'mpicxx': '/usr/bin/mpic++.openmpi'} def Configure(prefs, build): """Set up the build configuring. prefs can specify which version of various libraries we should use, and which optional libraries. VTK and CVODE support default on if they are installed. build is an instance of BuildTypes.BuildType. """ global use_cvode global use_vtk # Extra libraries for VTK output vtk_include_path = filter(os.path.isdir, glob.glob('/usr/include/vtk-5*')) use_vtk = int(prefs.get('use-vtk', True)) use_vtk = use_vtk and bool(vtk_include_path) if use_vtk: # Note: 10.10 uses VTK 5.4, 10.04 uses 5.2, and early use 5.0 other_includepaths.extend(vtk_include_path) other_libraries.extend(['vtkIO', 'vtkCommon', 'vtkGraphics', 'z']) if ubuntu_ver >= [11,10]: # 11.10 uses VTK 5.6 other_libraries.extend(['vtkFiltering']) # Is CVODE installed? use_cvode = int(prefs.get('use-cvode', True)) use_cvode = use_cvode and os.path.exists('/usr/lib/libsundials_cvode.so') if ubuntu_ver <= [9,04]: # We don't support CVODE 2.4 use_cvode = False if use_cvode: DetermineCvodeVersion('/usr/include') other_libraries.extend(['sundials_cvode', 'sundials_nvecserial']) # Is Aquila installed? use_aquila = os.path.exists('/usr/local/lib/libAquila.a') if use_aquila: other_libpaths.extend([os.getcwd()+'/projects/alberto/aquila/aquila-build/lib']) other_libraries.extend(['Aquila', 'Ooura_fft'])
37.909774
101
0.692781
794e0d6859301cd169654a327d1cf6f080803eaf
1,029
py
Python
pointnet2/models/pvd/modules/functional/backend.py
ZhaoyangLyu/Point_Diffusion_Refinement
857fcd176dcc9c1a93a9fec27390502fa6c9e29d
[ "Apache-2.0" ]
24
2021-12-29T11:28:34.000Z
2022-03-27T15:20:46.000Z
pointnet2/models/pvd/modules/functional/backend.py
ZhaoyangLyu/Point_Diffusion_Refinement
857fcd176dcc9c1a93a9fec27390502fa6c9e29d
[ "Apache-2.0" ]
1
2021-11-03T08:53:26.000Z
2021-11-03T08:53:26.000Z
modules/functional/backend.py
alexzhou907/PVD
9747265a5f141e5546fd4f862bfa66aa59f1bd33
[ "MIT" ]
4
2021-11-02T02:17:29.000Z
2022-03-20T11:58:29.000Z
import os from torch.utils.cpp_extension import load _src_path = os.path.dirname(os.path.abspath(__file__)) _backend = load(name='_pvcnn_backend', extra_cflags=['-O3', '-std=c++17'], extra_cuda_cflags=['--compiler-bindir=/usr/bin/gcc-8'], sources=[os.path.join(_src_path,'src', f) for f in [ 'ball_query/ball_query.cpp', 'ball_query/ball_query.cu', 'grouping/grouping.cpp', 'grouping/grouping.cu', 'interpolate/neighbor_interpolate.cpp', 'interpolate/neighbor_interpolate.cu', 'interpolate/trilinear_devox.cpp', 'interpolate/trilinear_devox.cu', 'sampling/sampling.cpp', 'sampling/sampling.cu', 'voxelization/vox.cpp', 'voxelization/vox.cu', 'bindings.cpp', ]] ) __all__ = ['_backend']
38.111111
71
0.504373
794e0dc338ab6f223907301e4ce95b9d1befda6c
821
py
Python
gui/helpers.py
tfrere/music-to-led-server
55f64269ce012833508d574ad29e42b0486884f0
[ "MIT" ]
1
2021-05-12T23:52:02.000Z
2021-05-12T23:52:02.000Z
gui/helpers.py
tfrere/music-to-led-server
55f64269ce012833508d574ad29e42b0486884f0
[ "MIT" ]
null
null
null
gui/helpers.py
tfrere/music-to-led-server
55f64269ce012833508d574ad29e42b0486884f0
[ "MIT" ]
null
null
null
import os, psutil, math def clearTerminal(): os.system('cls' if os.name == 'nt' else 'clear') def rgbToAnsi256(r, g, b): if (r == g and g == b): if (r < 8): return 16 if (r > 248): return 231 return round(((r - 8) / 247) * 24) + 232 ansi = 16 + (36 * round(r / 255 * 5)) + (6 * round(g / 255 * 5)) + round(b / 255 * 5) return ansi def getCpuInPercent(): return psutil.cpu_percent() def getVirtualMemoryConsumtion(): """ # { # "total": 8589934592, # "available": 2707013632, # "percent": 68.5, # "used": 4336054272, # "free": 39534592, # "active": 2670501888, # "inactive": 2652979200, # "wired": 1665552384 # } """ return dict(psutil.virtual_memory()._asdict())
24.878788
89
0.504263
794e0e04efc61201f27f5cb5188839358329d0d1
2,979
py
Python
tools/dummymaker/dummymaker/__main__.py
yamanalab/SecureSideEffectSearch
e223ad0f8cc5b5097af5a6da841f128e4783bd26
[ "Apache-2.0" ]
null
null
null
tools/dummymaker/dummymaker/__main__.py
yamanalab/SecureSideEffectSearch
e223ad0f8cc5b5097af5a6da841f128e4783bd26
[ "Apache-2.0" ]
3
2021-11-02T11:56:25.000Z
2021-11-03T10:06:39.000Z
tools/dummymaker/dummymaker/__main__.py
yamanalab/SecureSideEffectSearch
e223ad0f8cc5b5097af5a6da841f128e4783bd26
[ "Apache-2.0" ]
null
null
null
from dummymaker import config from dummymaker import population_stats import json import csv from datetime import datetime import numpy as np class DummyMaker(object): def __init__(self): self.config = config.Config() self.popstats = population_stats.PopulationStats() def _run_impl(self): dummy = {'records': []} # id,medicine_id,symptom_id,symptom_orthographical_variant_id,hit,evaluation,shop_id,patient_id,age,gender,note,created_at for rec_id in range(self.config.required_count): record = {'id': rec_id + 1} record['medicine_id'] = self.config.med_dist.get_problist(20) record['patient_id'], gender_age = self.popstats.get_res_line() record['gender'] = 1 if gender_age.gender == "male" else 2 record['age'] = gender_age.age record['symptom_id'] = self.config.side_dist.get_problist(5) dummy['records'].append(record) if self.config.write_method == 'csv': with open('data.csv', 'w+') as f: w = csv.writer(f, delimiter=",") headers = [ "id", "medicine_id", "symptom_id", "symptom_orthographical_variant_id", "hit", "evaluation", "shop_id", "patient_id", "age", "gender", "note", "created_at" ] w.writerow(headers) for rec in dummy['records']: for medicine_id in rec['medicine_id']: for symptom_id in rec['symptom_id']: now = datetime.now() w.writerow([ str(x) for x in [ rec['id'], medicine_id + 1, symptom_id + 1, "", # TODO(musaprg): Stop using rand function, and consider based on the frequency of the side-effect np.random.randint(0, 2), "", "myownshop", rec['patient_id'] + 1, rec['age'], rec['gender'], "", now.strftime("%Y-%m-%d %H:%M:%S") ] ]) elif self.config.write_method == 'json': with open('data.json', 'w+') as f: json.dump(dummy, f, indent=2) else: raise AttributeError( 'Please set correct output method. "{}" is not amongst ["csv", "json"].' .format(self.config.write_method)) def _main(): dummy_maker = DummyMaker() dummy_maker._run_impl() if __name__ == '__main__': _main()
39.72
133
0.461564
794e0faae7afe5e5491f6f0f3f25d4508817db69
81,116
py
Python
django/db/models/query.py
louiseGrandjonc/django
54ea290e5bbd19d87bd8dba807738eeeaf01a362
[ "PSF-2.0", "BSD-3-Clause" ]
1
2019-11-22T07:10:33.000Z
2019-11-22T07:10:33.000Z
django/db/models/query.py
louiseGrandjonc/django
54ea290e5bbd19d87bd8dba807738eeeaf01a362
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/db/models/query.py
louiseGrandjonc/django
54ea290e5bbd19d87bd8dba807738eeeaf01a362
[ "PSF-2.0", "BSD-3-Clause" ]
1
2019-11-09T18:53:01.000Z
2019-11-09T18:53:01.000Z
""" The main QuerySet implementation. This provides the public API for the ORM. """ import copy import operator import warnings from collections import namedtuple from functools import lru_cache from itertools import chain from django.conf import settings from django.core import exceptions from django.db import ( DJANGO_VERSION_PICKLE_KEY, IntegrityError, connections, router, transaction, ) from django.db.models import DateField, DateTimeField, sql from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import Collector from django.db.models.expressions import Case, Expression, F, Value, When from django.db.models.fields import AutoField from django.db.models.functions import Cast, Trunc from django.db.models.query_utils import FilteredRelation, InvalidQuery, Q from django.db.models.sql.constants import CURSOR, GET_ITERATOR_CHUNK_SIZE from django.db.utils import NotSupportedError from django.utils import timezone from django.utils.functional import cached_property, partition from django.utils.version import get_version # The maximum number of results to fetch in a get() query. MAX_GET_RESULTS = 21 # The maximum number of items to display in a QuerySet.__repr__ REPR_OUTPUT_SIZE = 20 class BaseIterable: def __init__(self, queryset, chunked_fetch=False, chunk_size=GET_ITERATOR_CHUNK_SIZE): self.queryset = queryset self.chunked_fetch = chunked_fetch self.chunk_size = chunk_size class ModelIterable(BaseIterable): """Iterable that yields a model instance for each row.""" def __iter__(self): queryset = self.queryset db = queryset.db compiler = queryset.query.get_compiler(using=db) # Execute the query. This will also fill compiler.select, klass_info, # and annotations. results = compiler.execute_sql(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size) select, klass_info, annotation_col_map = (compiler.select, compiler.klass_info, compiler.annotation_col_map) model_cls = klass_info['model'] select_fields = klass_info['select_fields'] model_fields_start, model_fields_end = select_fields[0], select_fields[-1] + 1 init_list = [f[0].target.attname for f in select[model_fields_start:model_fields_end]] related_populators = get_related_populators(klass_info, select, db) known_related_objects = [ (field, related_objs, operator.attrgetter(*[ field.attname if from_field == 'self' else queryset.model._meta.get_field(from_field).attname for from_field in field.from_fields ])) for field, related_objs in queryset._known_related_objects.items() ] for row in compiler.results_iter(results): obj = model_cls.from_db(db, init_list, row[model_fields_start:model_fields_end]) for rel_populator in related_populators: rel_populator.populate(row, obj) if annotation_col_map: for attr_name, col_pos in annotation_col_map.items(): setattr(obj, attr_name, row[col_pos]) # Add the known related objects to the model. for field, rel_objs, rel_getter in known_related_objects: # Avoid overwriting objects loaded by, e.g., select_related(). if field.is_cached(obj): continue rel_obj_id = rel_getter(obj) try: rel_obj = rel_objs[rel_obj_id] except KeyError: pass # May happen in qs1 | qs2 scenarios. else: setattr(obj, field.name, rel_obj) yield obj class ValuesIterable(BaseIterable): """ Iterable returned by QuerySet.values() that yields a dict for each row. """ def __iter__(self): queryset = self.queryset query = queryset.query compiler = query.get_compiler(queryset.db) # extra(select=...) cols are always at the start of the row. names = [ *query.extra_select, *query.values_select, *query.annotation_select, ] indexes = range(len(names)) for row in compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size): yield {names[i]: row[i] for i in indexes} class ValuesListIterable(BaseIterable): """ Iterable returned by QuerySet.values_list(flat=False) that yields a tuple for each row. """ def __iter__(self): queryset = self.queryset query = queryset.query compiler = query.get_compiler(queryset.db) if queryset._fields: # extra(select=...) cols are always at the start of the row. names = [ *query.extra_select, *query.values_select, *query.annotation_select, ] fields = [*queryset._fields, *(f for f in query.annotation_select if f not in queryset._fields)] if fields != names: # Reorder according to fields. index_map = {name: idx for idx, name in enumerate(names)} rowfactory = operator.itemgetter(*[index_map[f] for f in fields]) return map( rowfactory, compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size) ) return compiler.results_iter(tuple_expected=True, chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size) class NamedValuesListIterable(ValuesListIterable): """ Iterable returned by QuerySet.values_list(named=True) that yields a namedtuple for each row. """ @staticmethod @lru_cache() def create_namedtuple_class(*names): # Cache namedtuple() with @lru_cache() since it's too slow to be # called for every QuerySet evaluation. return namedtuple('Row', names) def __iter__(self): queryset = self.queryset if queryset._fields: names = queryset._fields else: query = queryset.query names = [*query.extra_select, *query.values_select, *query.annotation_select] tuple_class = self.create_namedtuple_class(*names) new = tuple.__new__ for row in super().__iter__(): yield new(tuple_class, row) class FlatValuesListIterable(BaseIterable): """ Iterable returned by QuerySet.values_list(flat=True) that yields single values. """ def __iter__(self): queryset = self.queryset compiler = queryset.query.get_compiler(queryset.db) for row in compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size): yield row[0] class QuerySet: """Represent a lazy database lookup for a set of objects.""" def __init__(self, model=None, query=None, using=None, hints=None): self.model = model self._db = using self._hints = hints or {} self.query = query or sql.Query(self.model) self._result_cache = None self._sticky_filter = False self._for_write = False self._prefetch_related_lookups = () self._prefetch_done = False self._known_related_objects = {} # {rel_field: {pk: rel_obj}} self._iterable_class = ModelIterable self._fields = None def as_manager(cls): # Address the circular dependency between `Queryset` and `Manager`. from django.db.models.manager import Manager manager = Manager.from_queryset(cls)() manager._built_with_as_manager = True return manager as_manager.queryset_only = True as_manager = classmethod(as_manager) ######################## # PYTHON MAGIC METHODS # ######################## def __deepcopy__(self, memo): """Don't populate the QuerySet's cache.""" obj = self.__class__() for k, v in self.__dict__.items(): if k == '_result_cache': obj.__dict__[k] = None else: obj.__dict__[k] = copy.deepcopy(v, memo) return obj def __getstate__(self): # Force the cache to be fully populated. self._fetch_all() return {**self.__dict__, DJANGO_VERSION_PICKLE_KEY: get_version()} def __setstate__(self, state): msg = None pickled_version = state.get(DJANGO_VERSION_PICKLE_KEY) if pickled_version: current_version = get_version() if current_version != pickled_version: msg = ( "Pickled queryset instance's Django version %s does not " "match the current version %s." % (pickled_version, current_version) ) else: msg = "Pickled queryset instance's Django version is not specified." if msg: warnings.warn(msg, RuntimeWarning, stacklevel=2) self.__dict__.update(state) def __repr__(self): data = list(self[:REPR_OUTPUT_SIZE + 1]) if len(data) > REPR_OUTPUT_SIZE: data[-1] = "...(remaining elements truncated)..." return '<%s %r>' % (self.__class__.__name__, data) def __len__(self): self._fetch_all() return len(self._result_cache) def __iter__(self): """ The queryset iterator protocol uses three nested iterators in the default case: 1. sql.compiler.execute_sql() - Returns 100 rows at time (constants.GET_ITERATOR_CHUNK_SIZE) using cursor.fetchmany(). This part is responsible for doing some column masking, and returning the rows in chunks. 2. sql.compiler.results_iter() - Returns one row at time. At this point the rows are still just tuples. In some cases the return values are converted to Python values at this location. 3. self.iterator() - Responsible for turning the rows into model objects. """ self._fetch_all() return iter(self._result_cache) def __bool__(self): self._fetch_all() return bool(self._result_cache) def __getitem__(self, k): """Retrieve an item or slice from the set of results.""" if not isinstance(k, (int, slice)): raise TypeError( 'QuerySet indices must be integers or slices, not %s.' % type(k).__name__ ) assert ((not isinstance(k, slice) and (k >= 0)) or (isinstance(k, slice) and (k.start is None or k.start >= 0) and (k.stop is None or k.stop >= 0))), \ "Negative indexing is not supported." if self._result_cache is not None: return self._result_cache[k] if isinstance(k, slice): qs = self._chain() if k.start is not None: start = int(k.start) else: start = None if k.stop is not None: stop = int(k.stop) else: stop = None qs.query.set_limits(start, stop) return list(qs)[::k.step] if k.step else qs qs = self._chain() qs.query.set_limits(k, k + 1) qs._fetch_all() return qs._result_cache[0] def __and__(self, other): self._merge_sanity_check(other) if isinstance(other, EmptyQuerySet): return other if isinstance(self, EmptyQuerySet): return self combined = self._chain() combined._merge_known_related_objects(other) combined.query.combine(other.query, sql.AND) return combined def __or__(self, other): self._merge_sanity_check(other) if isinstance(self, EmptyQuerySet): return other if isinstance(other, EmptyQuerySet): return self query = self if self.query.can_filter() else self.model._base_manager.filter(pk__in=self.values('pk')) combined = query._chain() combined._merge_known_related_objects(other) if not other.query.can_filter(): other = other.model._base_manager.filter(pk__in=other.values('pk')) combined.query.combine(other.query, sql.OR) return combined #################################### # METHODS THAT DO DATABASE QUERIES # #################################### def _iterator(self, use_chunked_fetch, chunk_size): yield from self._iterable_class(self, chunked_fetch=use_chunked_fetch, chunk_size=chunk_size) def iterator(self, chunk_size=2000): """ An iterator over the results from applying this QuerySet to the database. """ if chunk_size <= 0: raise ValueError('Chunk size must be strictly positive.') use_chunked_fetch = not connections[self.db].settings_dict.get('DISABLE_SERVER_SIDE_CURSORS') return self._iterator(use_chunked_fetch, chunk_size) def aggregate(self, *args, **kwargs): """ Return a dictionary containing the calculations (aggregation) over the current queryset. If args is present the expression is passed as a kwarg using the Aggregate object's default alias. """ if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") self._validate_values_are_expressions((*args, *kwargs.values()), method_name='aggregate') for arg in args: # The default_alias property raises TypeError if default_alias # can't be set automatically or AttributeError if it isn't an # attribute. try: arg.default_alias except (AttributeError, TypeError): raise TypeError("Complex aggregates require an alias") kwargs[arg.default_alias] = arg query = self.query.chain() for (alias, aggregate_expr) in kwargs.items(): query.add_annotation(aggregate_expr, alias, is_summary=True) if not query.annotations[alias].contains_aggregate: raise TypeError("%s is not an aggregate expression" % alias) return query.get_aggregation(self.db, kwargs) def count(self): """ Perform a SELECT COUNT() and return the number of records as an integer. If the QuerySet is already fully cached, return the length of the cached results set to avoid multiple SELECT COUNT(*) calls. """ if self._result_cache is not None: return len(self._result_cache) return self.query.get_count(using=self.db) def get(self, *args, **kwargs): """ Perform the query and return a single object matching the given keyword arguments. """ clone = self._chain() if self.query.combinator else self.filter(*args, **kwargs) if self.query.can_filter() and not self.query.distinct_fields: clone = clone.order_by() limit = None if not clone.query.select_for_update or connections[clone.db].features.supports_select_for_update_with_limit: limit = MAX_GET_RESULTS clone.query.set_limits(high=limit) num = len(clone) if num == 1: return clone._result_cache[0] if not num: raise self.model.DoesNotExist( "%s matching query does not exist." % self.model._meta.object_name ) raise self.model.MultipleObjectsReturned( 'get() returned more than one %s -- it returned %s!' % ( self.model._meta.object_name, num if not limit or num < limit else 'more than %s' % (limit - 1), ) ) def create(self, **kwargs): """ Create a new object with the given kwargs, saving it to the database and returning the created object. """ obj = self.model(**kwargs) self._for_write = True obj.save(force_insert=True, using=self.db) return obj def _populate_pk_values(self, objs): for obj in objs: if obj.pk is None: obj.pk = obj._meta.pk.get_pk_value_on_save(obj) def bulk_create(self, objs, batch_size=None, ignore_conflicts=False): """ Insert each of the instances into the database. Do *not* call save() on each of the instances, do not send any pre/post_save signals, and do not set the primary key attribute if it is an autoincrement field (except if features.can_return_rows_from_bulk_insert=True). Multi-table models are not supported. """ # When you bulk insert you don't get the primary keys back (if it's an # autoincrement, except if can_return_rows_from_bulk_insert=True), so # you can't insert into the child tables which references this. There # are two workarounds: # 1) This could be implemented if you didn't have an autoincrement pk # 2) You could do it by doing O(n) normal inserts into the parent # tables to get the primary keys back and then doing a single bulk # insert into the childmost table. # We currently set the primary keys on the objects when using # PostgreSQL via the RETURNING ID clause. It should be possible for # Oracle as well, but the semantics for extracting the primary keys is # trickier so it's not done yet. assert batch_size is None or batch_size > 0 # Check that the parents share the same concrete model with the our # model to detect the inheritance pattern ConcreteGrandParent -> # MultiTableParent -> ProxyChild. Simply checking self.model._meta.proxy # would not identify that case as involving multiple tables. for parent in self.model._meta.get_parent_list(): if parent._meta.concrete_model is not self.model._meta.concrete_model: raise ValueError("Can't bulk create a multi-table inherited model") if not objs: return objs self._for_write = True connection = connections[self.db] opts = self.model._meta fields = opts.concrete_fields objs = list(objs) self._populate_pk_values(objs) with transaction.atomic(using=self.db, savepoint=False): objs_with_pk, objs_without_pk = partition(lambda o: o.pk is None, objs) if objs_with_pk: returned_columns = self._batched_insert( objs_with_pk, fields, batch_size, ignore_conflicts=ignore_conflicts, ) for obj_with_pk, results in zip(objs_with_pk, returned_columns): for result, field in zip(results, opts.db_returning_fields): if field != opts.pk: setattr(obj_with_pk, field.attname, result) for obj_with_pk in objs_with_pk: obj_with_pk._state.adding = False obj_with_pk._state.db = self.db if objs_without_pk: fields = [f for f in fields if not isinstance(f, AutoField)] returned_columns = self._batched_insert( objs_without_pk, fields, batch_size, ignore_conflicts=ignore_conflicts, ) if connection.features.can_return_rows_from_bulk_insert and not ignore_conflicts: assert len(returned_columns) == len(objs_without_pk) for obj_without_pk, results in zip(objs_without_pk, returned_columns): for result, field in zip(results, opts.db_returning_fields): setattr(obj_without_pk, field.attname, result) obj_without_pk._state.adding = False obj_without_pk._state.db = self.db return objs def bulk_update(self, objs, fields, batch_size=None): """ Update the given fields in each of the given objects in the database. """ if batch_size is not None and batch_size < 0: raise ValueError('Batch size must be a positive integer.') if not fields: raise ValueError('Field names must be given to bulk_update().') objs = tuple(objs) if any(obj.pk is None for obj in objs): raise ValueError('All bulk_update() objects must have a primary key set.') fields = [self.model._meta.get_field(name) for name in fields] if any(not f.concrete or f.many_to_many for f in fields): raise ValueError('bulk_update() can only be used with concrete fields.') if any(f.primary_key for f in fields): raise ValueError('bulk_update() cannot be used with primary key fields.') if not objs: return # PK is used twice in the resulting update query, once in the filter # and once in the WHEN. Each field will also have one CAST. max_batch_size = connections[self.db].ops.bulk_batch_size(['pk', 'pk'] + fields, objs) batch_size = min(batch_size, max_batch_size) if batch_size else max_batch_size requires_casting = connections[self.db].features.requires_casted_case_in_updates batches = (objs[i:i + batch_size] for i in range(0, len(objs), batch_size)) updates = [] for batch_objs in batches: update_kwargs = {} for field in fields: when_statements = [] for obj in batch_objs: attr = getattr(obj, field.attname) if not isinstance(attr, Expression): attr = Value(attr, output_field=field) when_statements.append(When(pk=obj.pk, then=attr)) case_statement = Case(*when_statements, output_field=field) if requires_casting: case_statement = Cast(case_statement, output_field=field) update_kwargs[field.attname] = case_statement updates.append(([obj.pk for obj in batch_objs], update_kwargs)) with transaction.atomic(using=self.db, savepoint=False): for pks, update_kwargs in updates: self.filter(pk__in=pks).update(**update_kwargs) bulk_update.alters_data = True def get_or_create(self, defaults=None, **kwargs): """ Look up an object with the given kwargs, creating one if necessary. Return a tuple of (object, created), where created is a boolean specifying whether an object was created. """ # The get() needs to be targeted at the write database in order # to avoid potential transaction consistency problems. self._for_write = True try: return self.get(**kwargs), False except self.model.DoesNotExist: params = self._extract_model_params(defaults, **kwargs) return self._create_object_from_params(kwargs, params) def update_or_create(self, defaults=None, **kwargs): """ Look up an object with the given kwargs, updating one with defaults if it exists, otherwise create a new one. Return a tuple (object, created), where created is a boolean specifying whether an object was created. """ defaults = defaults or {} self._for_write = True with transaction.atomic(using=self.db): try: obj = self.select_for_update().get(**kwargs) except self.model.DoesNotExist: params = self._extract_model_params(defaults, **kwargs) # Lock the row so that a concurrent update is blocked until # after update_or_create() has performed its save. obj, created = self._create_object_from_params(kwargs, params, lock=True) if created: return obj, created for k, v in defaults.items(): setattr(obj, k, v() if callable(v) else v) obj.save(using=self.db) return obj, False def _create_object_from_params(self, lookup, params, lock=False): """ Try to create an object using passed params. Used by get_or_create() and update_or_create(). """ try: with transaction.atomic(using=self.db): params = {k: v() if callable(v) else v for k, v in params.items()} obj = self.create(**params) return obj, True except IntegrityError as e: try: qs = self.select_for_update() if lock else self return qs.get(**lookup), False except self.model.DoesNotExist: pass raise e def _extract_model_params(self, defaults, **kwargs): """ Prepare `params` for creating a model instance based on the given kwargs; for use by get_or_create() and update_or_create(). """ defaults = defaults or {} params = {k: v for k, v in kwargs.items() if LOOKUP_SEP not in k} params.update(defaults) property_names = self.model._meta._property_names invalid_params = [] for param in params: try: self.model._meta.get_field(param) except exceptions.FieldDoesNotExist: # It's okay to use a model's property if it has a setter. if not (param in property_names and getattr(self.model, param).fset): invalid_params.append(param) if invalid_params: raise exceptions.FieldError( "Invalid field name(s) for model %s: '%s'." % ( self.model._meta.object_name, "', '".join(sorted(invalid_params)), )) return params def _earliest(self, *fields): """ Return the earliest object according to fields (if given) or by the model's Meta.get_latest_by. """ if fields: order_by = fields else: order_by = getattr(self.model._meta, 'get_latest_by') if order_by and not isinstance(order_by, (tuple, list)): order_by = (order_by,) if order_by is None: raise ValueError( "earliest() and latest() require either fields as positional " "arguments or 'get_latest_by' in the model's Meta." ) assert not self.query.is_sliced, \ "Cannot change a query once a slice has been taken." obj = self._chain() obj.query.set_limits(high=1) obj.query.clear_ordering(force_empty=True) obj.query.add_ordering(*order_by) return obj.get() def earliest(self, *fields): return self._earliest(*fields) def latest(self, *fields): return self.reverse()._earliest(*fields) def first(self): """Return the first object of a query or None if no match is found.""" for obj in (self if self.ordered else self.order_by('pk'))[:1]: return obj def last(self): """Return the last object of a query or None if no match is found.""" for obj in (self.reverse() if self.ordered else self.order_by('-pk'))[:1]: return obj def in_bulk(self, id_list=None, *, field_name='pk'): """ Return a dictionary mapping each of the given IDs to the object with that ID. If `id_list` isn't provided, evaluate the entire QuerySet. """ assert not self.query.is_sliced, \ "Cannot use 'limit' or 'offset' with in_bulk" if field_name != 'pk' and not self.model._meta.get_field(field_name).unique: raise ValueError("in_bulk()'s field_name must be a unique field but %r isn't." % field_name) if id_list is not None: if not id_list: return {} filter_key = '{}__in'.format(field_name) batch_size = connections[self.db].features.max_query_params id_list = tuple(id_list) # If the database has a limit on the number of query parameters # (e.g. SQLite), retrieve objects in batches if necessary. if batch_size and batch_size < len(id_list): qs = () for offset in range(0, len(id_list), batch_size): batch = id_list[offset:offset + batch_size] qs += tuple(self.filter(**{filter_key: batch}).order_by()) else: qs = self.filter(**{filter_key: id_list}).order_by() else: qs = self._chain() return {getattr(obj, field_name): obj for obj in qs} def delete(self): """Delete the records in the current QuerySet.""" assert not self.query.is_sliced, \ "Cannot use 'limit' or 'offset' with delete." if self._fields is not None: raise TypeError("Cannot call delete() after .values() or .values_list()") del_query = self._chain() # The delete is actually 2 queries - one to find related objects, # and one to delete. Make sure that the discovery of related # objects is performed on the same database as the deletion. del_query._for_write = True # Disable non-supported fields. del_query.query.select_for_update = False del_query.query.select_related = False del_query.query.clear_ordering(force_empty=True) collector = Collector(using=del_query.db) collector.collect(del_query) deleted, _rows_count = collector.delete() # Clear the result cache, in case this QuerySet gets reused. self._result_cache = None return deleted, _rows_count delete.alters_data = True delete.queryset_only = True def _raw_delete(self, using): """ Delete objects found from the given queryset in single direct SQL query. No signals are sent and there is no protection for cascades. """ return sql.DeleteQuery(self.model).delete_qs(self, using) _raw_delete.alters_data = True def update(self, **kwargs): """ Update all elements in the current QuerySet, setting all the given fields to the appropriate values. """ assert not self.query.is_sliced, \ "Cannot update a query once a slice has been taken." self._for_write = True query = self.query.chain(sql.UpdateQuery) query.add_update_values(kwargs) # Clear any annotations so that they won't be present in subqueries. query.annotations = {} with transaction.mark_for_rollback_on_error(using=self.db): rows = query.get_compiler(self.db).execute_sql(CURSOR) self._result_cache = None return rows update.alters_data = True def _update(self, values): """ A version of update() that accepts field objects instead of field names. Used primarily for model saving and not intended for use by general code (it requires too much poking around at model internals to be useful at that level). """ assert not self.query.is_sliced, \ "Cannot update a query once a slice has been taken." query = self.query.chain(sql.UpdateQuery) query.add_update_fields(values) # Clear any annotations so that they won't be present in subqueries. query.annotations = {} self._result_cache = None return query.get_compiler(self.db).execute_sql(CURSOR) _update.alters_data = True _update.queryset_only = False def exists(self): if self._result_cache is None: return self.query.has_results(using=self.db) return bool(self._result_cache) def _prefetch_related_objects(self): # This method can only be called once the result cache has been filled. prefetch_related_objects(self._result_cache, *self._prefetch_related_lookups) self._prefetch_done = True def explain(self, *, format=None, **options): return self.query.explain(using=self.db, format=format, **options) ################################################## # PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS # ################################################## def raw(self, raw_query, params=None, translations=None, using=None): if using is None: using = self.db qs = RawQuerySet(raw_query, model=self.model, params=params, translations=translations, using=using) qs._prefetch_related_lookups = self._prefetch_related_lookups[:] return qs def _values(self, *fields, **expressions): clone = self._chain() if expressions: clone = clone.annotate(**expressions) clone._fields = fields clone.query.set_values(fields) return clone def values(self, *fields, **expressions): fields += tuple(expressions) clone = self._values(*fields, **expressions) clone._iterable_class = ValuesIterable return clone def values_list(self, *fields, flat=False, named=False): if flat and named: raise TypeError("'flat' and 'named' can't be used together.") if flat and len(fields) > 1: raise TypeError("'flat' is not valid when values_list is called with more than one field.") field_names = {f for f in fields if not hasattr(f, 'resolve_expression')} _fields = [] expressions = {} counter = 1 for field in fields: if hasattr(field, 'resolve_expression'): field_id_prefix = getattr(field, 'default_alias', field.__class__.__name__.lower()) while True: field_id = field_id_prefix + str(counter) counter += 1 if field_id not in field_names: break expressions[field_id] = field _fields.append(field_id) else: _fields.append(field) clone = self._values(*_fields, **expressions) clone._iterable_class = ( NamedValuesListIterable if named else FlatValuesListIterable if flat else ValuesListIterable ) return clone def dates(self, field_name, kind, order='ASC'): """ Return a list of date objects representing all available dates for the given field_name, scoped to 'kind'. """ assert kind in ('year', 'month', 'week', 'day'), \ "'kind' must be one of 'year', 'month', 'week', or 'day'." assert order in ('ASC', 'DESC'), \ "'order' must be either 'ASC' or 'DESC'." return self.annotate( datefield=Trunc(field_name, kind, output_field=DateField()), plain_field=F(field_name) ).values_list( 'datefield', flat=True ).distinct().filter(plain_field__isnull=False).order_by(('-' if order == 'DESC' else '') + 'datefield') def datetimes(self, field_name, kind, order='ASC', tzinfo=None): """ Return a list of datetime objects representing all available datetimes for the given field_name, scoped to 'kind'. """ assert kind in ('year', 'month', 'week', 'day', 'hour', 'minute', 'second'), \ "'kind' must be one of 'year', 'month', 'week', 'day', 'hour', 'minute', or 'second'." assert order in ('ASC', 'DESC'), \ "'order' must be either 'ASC' or 'DESC'." if settings.USE_TZ: if tzinfo is None: tzinfo = timezone.get_current_timezone() else: tzinfo = None return self.annotate( datetimefield=Trunc(field_name, kind, output_field=DateTimeField(), tzinfo=tzinfo), plain_field=F(field_name) ).values_list( 'datetimefield', flat=True ).distinct().filter(plain_field__isnull=False).order_by(('-' if order == 'DESC' else '') + 'datetimefield') def none(self): """Return an empty QuerySet.""" clone = self._chain() clone.query.set_empty() return clone ################################################################## # PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET # ################################################################## def all(self): """ Return a new QuerySet that is a copy of the current one. This allows a QuerySet to proxy for a model manager in some cases. """ return self._chain() def filter(self, *args, **kwargs): """ Return a new QuerySet instance with the args ANDed to the existing set. """ self._not_support_combined_queries('filter') return self._filter_or_exclude(False, *args, **kwargs) def exclude(self, *args, **kwargs): """ Return a new QuerySet instance with NOT (args) ANDed to the existing set. """ self._not_support_combined_queries('exclude') return self._filter_or_exclude(True, *args, **kwargs) def _filter_or_exclude(self, negate, *args, **kwargs): if args or kwargs: assert not self.query.is_sliced, \ "Cannot filter a query once a slice has been taken." clone = self._chain() if negate: clone.query.add_q(~Q(*args, **kwargs)) else: clone.query.add_q(Q(*args, **kwargs)) return clone def complex_filter(self, filter_obj): """ Return a new QuerySet instance with filter_obj added to the filters. filter_obj can be a Q object or a dictionary of keyword lookup arguments. This exists to support framework features such as 'limit_choices_to', and usually it will be more natural to use other methods. """ if isinstance(filter_obj, Q): clone = self._chain() clone.query.add_q(filter_obj) return clone else: return self._filter_or_exclude(None, **filter_obj) def _combinator_query(self, combinator, *other_qs, all=False): # Clone the query to inherit the select list and everything clone = self._chain() # Clear limits and ordering so they can be reapplied clone.query.clear_ordering(True) clone.query.clear_limits() clone.query.combined_queries = (self.query,) + tuple(qs.query for qs in other_qs) clone.query.combinator = combinator clone.query.combinator_all = all return clone def union(self, *other_qs, all=False): # If the query is an EmptyQuerySet, combine all nonempty querysets. if isinstance(self, EmptyQuerySet): qs = [q for q in other_qs if not isinstance(q, EmptyQuerySet)] return qs[0]._combinator_query('union', *qs[1:], all=all) if qs else self return self._combinator_query('union', *other_qs, all=all) def intersection(self, *other_qs): # If any query is an EmptyQuerySet, return it. if isinstance(self, EmptyQuerySet): return self for other in other_qs: if isinstance(other, EmptyQuerySet): return other return self._combinator_query('intersection', *other_qs) def difference(self, *other_qs): # If the query is an EmptyQuerySet, return it. if isinstance(self, EmptyQuerySet): return self return self._combinator_query('difference', *other_qs) def select_for_update(self, nowait=False, skip_locked=False, of=()): """ Return a new QuerySet instance that will select objects with a FOR UPDATE lock. """ if nowait and skip_locked: raise ValueError('The nowait option cannot be used with skip_locked.') obj = self._chain() obj._for_write = True obj.query.select_for_update = True obj.query.select_for_update_nowait = nowait obj.query.select_for_update_skip_locked = skip_locked obj.query.select_for_update_of = of return obj def select_related(self, *fields): """ Return a new QuerySet instance that will select related objects. If fields are specified, they must be ForeignKey fields and only those related objects are included in the selection. If select_related(None) is called, clear the list. """ self._not_support_combined_queries('select_related') if self._fields is not None: raise TypeError("Cannot call select_related() after .values() or .values_list()") obj = self._chain() if fields == (None,): obj.query.select_related = False elif fields: obj.query.add_select_related(fields) else: obj.query.select_related = True return obj def prefetch_related(self, *lookups): """ Return a new QuerySet instance that will prefetch the specified Many-To-One and Many-To-Many related objects when the QuerySet is evaluated. When prefetch_related() is called more than once, append to the list of prefetch lookups. If prefetch_related(None) is called, clear the list. """ self._not_support_combined_queries('prefetch_related') clone = self._chain() if lookups == (None,): clone._prefetch_related_lookups = () else: for lookup in lookups: if isinstance(lookup, Prefetch): lookup = lookup.prefetch_to lookup = lookup.split(LOOKUP_SEP, 1)[0] if lookup in self.query._filtered_relations: raise ValueError('prefetch_related() is not supported with FilteredRelation.') clone._prefetch_related_lookups = clone._prefetch_related_lookups + lookups return clone def annotate(self, *args, **kwargs): """ Return a query set in which the returned objects have been annotated with extra data or aggregations. """ self._not_support_combined_queries('annotate') self._validate_values_are_expressions(args + tuple(kwargs.values()), method_name='annotate') annotations = {} for arg in args: # The default_alias property may raise a TypeError. try: if arg.default_alias in kwargs: raise ValueError("The named annotation '%s' conflicts with the " "default name for another annotation." % arg.default_alias) except TypeError: raise TypeError("Complex annotations require an alias") annotations[arg.default_alias] = arg annotations.update(kwargs) clone = self._chain() names = self._fields if names is None: names = set(chain.from_iterable( (field.name, field.attname) if hasattr(field, 'attname') else (field.name,) for field in self.model._meta.get_fields() )) for alias, annotation in annotations.items(): if alias in names: raise ValueError("The annotation '%s' conflicts with a field on " "the model." % alias) if isinstance(annotation, FilteredRelation): clone.query.add_filtered_relation(annotation, alias) else: clone.query.add_annotation(annotation, alias, is_summary=False) for alias, annotation in clone.query.annotations.items(): if alias in annotations and annotation.contains_aggregate: if clone._fields is None: clone.query.group_by = True else: clone.query.set_group_by() break return clone def order_by(self, *field_names): """Return a new QuerySet instance with the ordering changed.""" assert not self.query.is_sliced, \ "Cannot reorder a query once a slice has been taken." obj = self._chain() obj.query.clear_ordering(force_empty=False) obj.query.add_ordering(*field_names) return obj def distinct(self, *field_names): """ Return a new QuerySet instance that will select only distinct results. """ assert not self.query.is_sliced, \ "Cannot create distinct fields once a slice has been taken." obj = self._chain() obj.query.add_distinct_fields(*field_names) return obj def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None): """Add extra SQL fragments to the query.""" self._not_support_combined_queries('extra') assert not self.query.is_sliced, \ "Cannot change a query once a slice has been taken" clone = self._chain() clone.query.add_extra(select, select_params, where, params, tables, order_by) return clone def reverse(self): """Reverse the ordering of the QuerySet.""" if self.query.is_sliced: raise TypeError('Cannot reverse a query once a slice has been taken.') clone = self._chain() clone.query.standard_ordering = not clone.query.standard_ordering return clone def defer(self, *fields): """ Defer the loading of data for certain fields until they are accessed. Add the set of deferred fields to any existing set of deferred fields. The only exception to this is if None is passed in as the only parameter, in which case removal all deferrals. """ self._not_support_combined_queries('defer') if self._fields is not None: raise TypeError("Cannot call defer() after .values() or .values_list()") clone = self._chain() if fields == (None,): clone.query.clear_deferred_loading() else: clone.query.add_deferred_loading(fields) return clone def only(self, *fields): """ Essentially, the opposite of defer(). Only the fields passed into this method and that are not already specified as deferred are loaded immediately when the queryset is evaluated. """ self._not_support_combined_queries('only') if self._fields is not None: raise TypeError("Cannot call only() after .values() or .values_list()") if fields == (None,): # Can only pass None to defer(), not only(), as the rest option. # That won't stop people trying to do this, so let's be explicit. raise TypeError("Cannot pass None as an argument to only().") for field in fields: field = field.split(LOOKUP_SEP, 1)[0] if field in self.query._filtered_relations: raise ValueError('only() is not supported with FilteredRelation.') clone = self._chain() clone.query.add_immediate_loading(fields) return clone def using(self, alias): """Select which database this QuerySet should execute against.""" clone = self._chain() clone._db = alias return clone ################################### # PUBLIC INTROSPECTION ATTRIBUTES # ################################### @property def ordered(self): """ Return True if the QuerySet is ordered -- i.e. has an order_by() clause or a default ordering on the model (or is empty). """ if isinstance(self, EmptyQuerySet): return True if self.query.extra_order_by or self.query.order_by: return True elif self.query.default_ordering and self.query.get_meta().ordering: return True else: return False @property def db(self): """Return the database used if this query is executed now.""" if self._for_write: return self._db or router.db_for_write(self.model, **self._hints) return self._db or router.db_for_read(self.model, **self._hints) ################### # PRIVATE METHODS # ################### def _insert(self, objs, fields, returning_fields=None, raw=False, using=None, ignore_conflicts=False): """ Insert a new record for the given model. This provides an interface to the InsertQuery class and is how Model.save() is implemented. """ self._for_write = True if using is None: using = self.db query = sql.InsertQuery(self.model, ignore_conflicts=ignore_conflicts) query.insert_values(fields, objs, raw=raw) return query.get_compiler(using=using).execute_sql(returning_fields) _insert.alters_data = True _insert.queryset_only = False def _batched_insert(self, objs, fields, batch_size, ignore_conflicts=False): """ Helper method for bulk_create() to insert objs one batch at a time. """ if ignore_conflicts and not connections[self.db].features.supports_ignore_conflicts: raise NotSupportedError('This database backend does not support ignoring conflicts.') ops = connections[self.db].ops batch_size = (batch_size or max(ops.bulk_batch_size(fields, objs), 1)) inserted_rows = [] bulk_return = connections[self.db].features.can_return_rows_from_bulk_insert for item in [objs[i:i + batch_size] for i in range(0, len(objs), batch_size)]: if bulk_return and not ignore_conflicts: inserted_columns = self._insert( item, fields=fields, using=self.db, returning_fields=self.model._meta.db_returning_fields, ignore_conflicts=ignore_conflicts, ) if isinstance(inserted_columns, list): inserted_rows.extend(inserted_columns) else: inserted_rows.append(inserted_columns) else: self._insert(item, fields=fields, using=self.db, ignore_conflicts=ignore_conflicts) return inserted_rows def _chain(self, **kwargs): """ Return a copy of the current QuerySet that's ready for another operation. """ obj = self._clone() if obj._sticky_filter: obj.query.filter_is_sticky = True obj._sticky_filter = False obj.__dict__.update(kwargs) return obj def _clone(self): """ Return a copy of the current QuerySet. A lightweight alternative to deepcopy(). """ c = self.__class__(model=self.model, query=self.query.chain(), using=self._db, hints=self._hints) c._sticky_filter = self._sticky_filter c._for_write = self._for_write c._prefetch_related_lookups = self._prefetch_related_lookups[:] c._known_related_objects = self._known_related_objects c._iterable_class = self._iterable_class c._fields = self._fields return c def _fetch_all(self): if self._result_cache is None: self._result_cache = list(self._iterable_class(self)) if self._prefetch_related_lookups and not self._prefetch_done: self._prefetch_related_objects() def _next_is_sticky(self): """ Indicate that the next filter call and the one following that should be treated as a single filter. This is only important when it comes to determining when to reuse tables for many-to-many filters. Required so that we can filter naturally on the results of related managers. This doesn't return a clone of the current QuerySet (it returns "self"). The method is only used internally and should be immediately followed by a filter() that does create a clone. """ self._sticky_filter = True return self def _merge_sanity_check(self, other): """Check that two QuerySet classes may be merged.""" if self._fields is not None and ( set(self.query.values_select) != set(other.query.values_select) or set(self.query.extra_select) != set(other.query.extra_select) or set(self.query.annotation_select) != set(other.query.annotation_select)): raise TypeError( "Merging '%s' classes must involve the same values in each case." % self.__class__.__name__ ) def _merge_known_related_objects(self, other): """ Keep track of all known related objects from either QuerySet instance. """ for field, objects in other._known_related_objects.items(): self._known_related_objects.setdefault(field, {}).update(objects) def resolve_expression(self, *args, **kwargs): if self._fields and len(self._fields) > 1: # values() queryset can only be used as nested queries # if they are set up to select only a single field. raise TypeError('Cannot use multi-field values as a filter value.') query = self.query.resolve_expression(*args, **kwargs) query._db = self._db return query resolve_expression.queryset_only = True def _add_hints(self, **hints): """ Update hinting information for use by routers. Add new key/values or overwrite existing key/values. """ self._hints.update(hints) def _has_filters(self): """ Check if this QuerySet has any filtering going on. This isn't equivalent with checking if all objects are present in results, for example, qs[1:]._has_filters() -> False. """ return self.query.has_filters() @staticmethod def _validate_values_are_expressions(values, method_name): invalid_args = sorted(str(arg) for arg in values if not hasattr(arg, 'resolve_expression')) if invalid_args: raise TypeError( 'QuerySet.%s() received non-expression(s): %s.' % ( method_name, ', '.join(invalid_args), ) ) def _not_support_combined_queries(self, operation_name): if self.query.combinator: raise NotSupportedError( 'Calling QuerySet.%s() after %s() is not supported.' % (operation_name, self.query.combinator) ) class InstanceCheckMeta(type): def __instancecheck__(self, instance): return isinstance(instance, QuerySet) and instance.query.is_empty() class EmptyQuerySet(metaclass=InstanceCheckMeta): """ Marker class to checking if a queryset is empty by .none(): isinstance(qs.none(), EmptyQuerySet) -> True """ def __init__(self, *args, **kwargs): raise TypeError("EmptyQuerySet can't be instantiated") class RawQuerySet: """ Provide an iterator which converts the results of raw SQL queries into annotated model instances. """ def __init__(self, raw_query, model=None, query=None, params=None, translations=None, using=None, hints=None): self.raw_query = raw_query self.model = model self._db = using self._hints = hints or {} self.query = query or sql.RawQuery(sql=raw_query, using=self.db, params=params) self.params = params or () self.translations = translations or {} self._result_cache = None self._prefetch_related_lookups = () self._prefetch_done = False def resolve_model_init_order(self): """Resolve the init field names and value positions.""" converter = connections[self.db].introspection.identifier_converter model_init_fields = [f for f in self.model._meta.fields if converter(f.column) in self.columns] annotation_fields = [(column, pos) for pos, column in enumerate(self.columns) if column not in self.model_fields] model_init_order = [self.columns.index(converter(f.column)) for f in model_init_fields] model_init_names = [f.attname for f in model_init_fields] return model_init_names, model_init_order, annotation_fields def prefetch_related(self, *lookups): """Same as QuerySet.prefetch_related()""" clone = self._clone() if lookups == (None,): clone._prefetch_related_lookups = () else: clone._prefetch_related_lookups = clone._prefetch_related_lookups + lookups return clone def _prefetch_related_objects(self): prefetch_related_objects(self._result_cache, *self._prefetch_related_lookups) self._prefetch_done = True def _clone(self): """Same as QuerySet._clone()""" c = self.__class__( self.raw_query, model=self.model, query=self.query, params=self.params, translations=self.translations, using=self._db, hints=self._hints ) c._prefetch_related_lookups = self._prefetch_related_lookups[:] return c def _fetch_all(self): if self._result_cache is None: self._result_cache = list(self.iterator()) if self._prefetch_related_lookups and not self._prefetch_done: self._prefetch_related_objects() def __len__(self): self._fetch_all() return len(self._result_cache) def __bool__(self): self._fetch_all() return bool(self._result_cache) def __iter__(self): self._fetch_all() return iter(self._result_cache) def iterator(self): # Cache some things for performance reasons outside the loop. db = self.db compiler = connections[db].ops.compiler('SQLCompiler')( self.query, connections[db], db ) query = iter(self.query) try: model_init_names, model_init_pos, annotation_fields = self.resolve_model_init_order() if self.model._meta.pk.attname not in model_init_names: raise InvalidQuery('Raw query must include the primary key') model_cls = self.model fields = [self.model_fields.get(c) for c in self.columns] converters = compiler.get_converters([ f.get_col(f.model._meta.db_table) if f else None for f in fields ]) if converters: query = compiler.apply_converters(query, converters) for values in query: # Associate fields to values model_init_values = [values[pos] for pos in model_init_pos] instance = model_cls.from_db(db, model_init_names, model_init_values) if annotation_fields: for column, pos in annotation_fields: setattr(instance, column, values[pos]) yield instance finally: # Done iterating the Query. If it has its own cursor, close it. if hasattr(self.query, 'cursor') and self.query.cursor: self.query.cursor.close() def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self.query) def __getitem__(self, k): return list(self)[k] @property def db(self): """Return the database used if this query is executed now.""" return self._db or router.db_for_read(self.model, **self._hints) def using(self, alias): """Select the database this RawQuerySet should execute against.""" return RawQuerySet( self.raw_query, model=self.model, query=self.query.chain(using=alias), params=self.params, translations=self.translations, using=alias, ) @cached_property def columns(self): """ A list of model field names in the order they'll appear in the query results. """ columns = self.query.get_columns() # Adjust any column names which don't match field names for (query_name, model_name) in self.translations.items(): # Ignore translations for nonexistent column names try: index = columns.index(query_name) except ValueError: pass else: columns[index] = model_name return columns @cached_property def model_fields(self): """A dict mapping column names to model field names.""" converter = connections[self.db].introspection.identifier_converter model_fields = {} for field in self.model._meta.fields: name, column = field.get_attname_column() model_fields[converter(column)] = field return model_fields class Prefetch: def __init__(self, lookup, queryset=None, to_attr=None): # `prefetch_through` is the path we traverse to perform the prefetch. self.prefetch_through = lookup # `prefetch_to` is the path to the attribute that stores the result. self.prefetch_to = lookup if queryset is not None and not issubclass(queryset._iterable_class, ModelIterable): raise ValueError('Prefetch querysets cannot use values().') if to_attr: self.prefetch_to = LOOKUP_SEP.join(lookup.split(LOOKUP_SEP)[:-1] + [to_attr]) self.queryset = queryset self.to_attr = to_attr def __getstate__(self): obj_dict = self.__dict__.copy() if self.queryset is not None: # Prevent the QuerySet from being evaluated obj_dict['queryset'] = self.queryset._chain( _result_cache=[], _prefetch_done=True, ) return obj_dict def add_prefix(self, prefix): self.prefetch_through = prefix + LOOKUP_SEP + self.prefetch_through self.prefetch_to = prefix + LOOKUP_SEP + self.prefetch_to def get_current_prefetch_to(self, level): return LOOKUP_SEP.join(self.prefetch_to.split(LOOKUP_SEP)[:level + 1]) def get_current_to_attr(self, level): parts = self.prefetch_to.split(LOOKUP_SEP) to_attr = parts[level] as_attr = self.to_attr and level == len(parts) - 1 return to_attr, as_attr def get_current_queryset(self, level): if self.get_current_prefetch_to(level) == self.prefetch_to: return self.queryset return None def __eq__(self, other): if not isinstance(other, Prefetch): return NotImplemented return self.prefetch_to == other.prefetch_to def __hash__(self): return hash((self.__class__, self.prefetch_to)) def normalize_prefetch_lookups(lookups, prefix=None): """Normalize lookups into Prefetch objects.""" ret = [] for lookup in lookups: if not isinstance(lookup, Prefetch): lookup = Prefetch(lookup) if prefix: lookup.add_prefix(prefix) ret.append(lookup) return ret def prefetch_related_objects(model_instances, *related_lookups): """ Populate prefetched object caches for a list of model instances based on the lookups/Prefetch instances given. """ if not model_instances: return # nothing to do # We need to be able to dynamically add to the list of prefetch_related # lookups that we look up (see below). So we need some book keeping to # ensure we don't do duplicate work. done_queries = {} # dictionary of things like 'foo__bar': [results] auto_lookups = set() # we add to this as we go through. followed_descriptors = set() # recursion protection all_lookups = normalize_prefetch_lookups(reversed(related_lookups)) while all_lookups: lookup = all_lookups.pop() if lookup.prefetch_to in done_queries: if lookup.queryset is not None: raise ValueError("'%s' lookup was already seen with a different queryset. " "You may need to adjust the ordering of your lookups." % lookup.prefetch_to) continue # Top level, the list of objects to decorate is the result cache # from the primary QuerySet. It won't be for deeper levels. obj_list = model_instances through_attrs = lookup.prefetch_through.split(LOOKUP_SEP) for level, through_attr in enumerate(through_attrs): # Prepare main instances if not obj_list: break prefetch_to = lookup.get_current_prefetch_to(level) if prefetch_to in done_queries: # Skip any prefetching, and any object preparation obj_list = done_queries[prefetch_to] continue # Prepare objects: good_objects = True for obj in obj_list: # Since prefetching can re-use instances, it is possible to have # the same instance multiple times in obj_list, so obj might # already be prepared. if not hasattr(obj, '_prefetched_objects_cache'): try: obj._prefetched_objects_cache = {} except (AttributeError, TypeError): # Must be an immutable object from # values_list(flat=True), for example (TypeError) or # a QuerySet subclass that isn't returning Model # instances (AttributeError), either in Django or a 3rd # party. prefetch_related() doesn't make sense, so quit. good_objects = False break if not good_objects: break # Descend down tree # We assume that objects retrieved are homogeneous (which is the premise # of prefetch_related), so what applies to first object applies to all. first_obj = obj_list[0] to_attr = lookup.get_current_to_attr(level)[0] prefetcher, descriptor, attr_found, is_fetched = get_prefetcher(first_obj, through_attr, to_attr) if not attr_found: raise AttributeError("Cannot find '%s' on %s object, '%s' is an invalid " "parameter to prefetch_related()" % (through_attr, first_obj.__class__.__name__, lookup.prefetch_through)) if level == len(through_attrs) - 1 and prefetcher is None: # Last one, this *must* resolve to something that supports # prefetching, otherwise there is no point adding it and the # developer asking for it has made a mistake. raise ValueError("'%s' does not resolve to an item that supports " "prefetching - this is an invalid parameter to " "prefetch_related()." % lookup.prefetch_through) if prefetcher is not None and not is_fetched: obj_list, additional_lookups = prefetch_one_level(obj_list, prefetcher, lookup, level) # We need to ensure we don't keep adding lookups from the # same relationships to stop infinite recursion. So, if we # are already on an automatically added lookup, don't add # the new lookups from relationships we've seen already. if not (prefetch_to in done_queries and lookup in auto_lookups and descriptor in followed_descriptors): done_queries[prefetch_to] = obj_list new_lookups = normalize_prefetch_lookups(reversed(additional_lookups), prefetch_to) auto_lookups.update(new_lookups) all_lookups.extend(new_lookups) followed_descriptors.add(descriptor) else: # Either a singly related object that has already been fetched # (e.g. via select_related), or hopefully some other property # that doesn't support prefetching but needs to be traversed. # We replace the current list of parent objects with the list # of related objects, filtering out empty or missing values so # that we can continue with nullable or reverse relations. new_obj_list = [] for obj in obj_list: if through_attr in getattr(obj, '_prefetched_objects_cache', ()): # If related objects have been prefetched, use the # cache rather than the object's through_attr. new_obj = list(obj._prefetched_objects_cache.get(through_attr)) else: try: new_obj = getattr(obj, through_attr) except exceptions.ObjectDoesNotExist: continue if new_obj is None: continue # We special-case `list` rather than something more generic # like `Iterable` because we don't want to accidentally match # user models that define __iter__. if isinstance(new_obj, list): new_obj_list.extend(new_obj) else: new_obj_list.append(new_obj) obj_list = new_obj_list def get_prefetcher(instance, through_attr, to_attr): """ For the attribute 'through_attr' on the given instance, find an object that has a get_prefetch_queryset(). Return a 4 tuple containing: (the object with get_prefetch_queryset (or None), the descriptor object representing this relationship (or None), a boolean that is False if the attribute was not found at all, a boolean that is True if the attribute has already been fetched) """ prefetcher = None is_fetched = False # For singly related objects, we have to avoid getting the attribute # from the object, as this will trigger the query. So we first try # on the class, in order to get the descriptor object. rel_obj_descriptor = getattr(instance.__class__, through_attr, None) if rel_obj_descriptor is None: attr_found = hasattr(instance, through_attr) else: attr_found = True if rel_obj_descriptor: # singly related object, descriptor object has the # get_prefetch_queryset() method. if hasattr(rel_obj_descriptor, 'get_prefetch_queryset'): prefetcher = rel_obj_descriptor if rel_obj_descriptor.is_cached(instance): is_fetched = True else: # descriptor doesn't support prefetching, so we go ahead and get # the attribute on the instance rather than the class to # support many related managers rel_obj = getattr(instance, through_attr) if hasattr(rel_obj, 'get_prefetch_queryset'): prefetcher = rel_obj if through_attr != to_attr: # Special case cached_property instances because hasattr # triggers attribute computation and assignment. if isinstance(getattr(instance.__class__, to_attr, None), cached_property): is_fetched = to_attr in instance.__dict__ else: is_fetched = hasattr(instance, to_attr) else: is_fetched = through_attr in instance._prefetched_objects_cache return prefetcher, rel_obj_descriptor, attr_found, is_fetched def prefetch_one_level(instances, prefetcher, lookup, level): """ Helper function for prefetch_related_objects(). Run prefetches on all instances using the prefetcher object, assigning results to relevant caches in instance. Return the prefetched objects along with any additional prefetches that must be done due to prefetch_related lookups found from default managers. """ # prefetcher must have a method get_prefetch_queryset() which takes a list # of instances, and returns a tuple: # (queryset of instances of self.model that are related to passed in instances, # callable that gets value to be matched for returned instances, # callable that gets value to be matched for passed in instances, # boolean that is True for singly related objects, # cache or field name to assign to, # boolean that is True when the previous argument is a cache name vs a field name). # The 'values to be matched' must be hashable as they will be used # in a dictionary. rel_qs, rel_obj_attr, instance_attr, single, cache_name, is_descriptor = ( prefetcher.get_prefetch_queryset(instances, lookup.get_current_queryset(level))) # We have to handle the possibility that the QuerySet we just got back # contains some prefetch_related lookups. We don't want to trigger the # prefetch_related functionality by evaluating the query. Rather, we need # to merge in the prefetch_related lookups. # Copy the lookups in case it is a Prefetch object which could be reused # later (happens in nested prefetch_related). additional_lookups = [ copy.copy(additional_lookup) for additional_lookup in getattr(rel_qs, '_prefetch_related_lookups', ()) ] if additional_lookups: # Don't need to clone because the manager should have given us a fresh # instance, so we access an internal instead of using public interface # for performance reasons. rel_qs._prefetch_related_lookups = () all_related_objects = list(rel_qs) rel_obj_cache = {} for rel_obj in all_related_objects: rel_attr_val = rel_obj_attr(rel_obj) rel_obj_cache.setdefault(rel_attr_val, []).append(rel_obj) to_attr, as_attr = lookup.get_current_to_attr(level) # Make sure `to_attr` does not conflict with a field. if as_attr and instances: # We assume that objects retrieved are homogeneous (which is the premise # of prefetch_related), so what applies to first object applies to all. model = instances[0].__class__ try: model._meta.get_field(to_attr) except exceptions.FieldDoesNotExist: pass else: msg = 'to_attr={} conflicts with a field on the {} model.' raise ValueError(msg.format(to_attr, model.__name__)) # Whether or not we're prefetching the last part of the lookup. leaf = len(lookup.prefetch_through.split(LOOKUP_SEP)) - 1 == level for obj in instances: instance_attr_val = instance_attr(obj) vals = rel_obj_cache.get(instance_attr_val, []) if single: val = vals[0] if vals else None if as_attr: # A to_attr has been given for the prefetch. setattr(obj, to_attr, val) elif is_descriptor: # cache_name points to a field name in obj. # This field is a descriptor for a related object. setattr(obj, cache_name, val) else: # No to_attr has been given for this prefetch operation and the # cache_name does not point to a descriptor. Store the value of # the field in the object's field cache. obj._state.fields_cache[cache_name] = val else: if as_attr: setattr(obj, to_attr, vals) else: manager = getattr(obj, to_attr) if leaf and lookup.queryset is not None: qs = manager._apply_rel_filters(lookup.queryset) else: qs = manager.get_queryset() qs._result_cache = vals # We don't want the individual qs doing prefetch_related now, # since we have merged this into the current work. qs._prefetch_done = True obj._prefetched_objects_cache[cache_name] = qs return all_related_objects, additional_lookups class RelatedPopulator: """ RelatedPopulator is used for select_related() object instantiation. The idea is that each select_related() model will be populated by a different RelatedPopulator instance. The RelatedPopulator instances get klass_info and select (computed in SQLCompiler) plus the used db as input for initialization. That data is used to compute which columns to use, how to instantiate the model, and how to populate the links between the objects. The actual creation of the objects is done in populate() method. This method gets row and from_obj as input and populates the select_related() model instance. """ def __init__(self, klass_info, select, db): self.db = db # Pre-compute needed attributes. The attributes are: # - model_cls: the possibly deferred model class to instantiate # - either: # - cols_start, cols_end: usually the columns in the row are # in the same order model_cls.__init__ expects them, so we # can instantiate by model_cls(*row[cols_start:cols_end]) # - reorder_for_init: When select_related descends to a child # class, then we want to reuse the already selected parent # data. However, in this case the parent data isn't necessarily # in the same order that Model.__init__ expects it to be, so # we have to reorder the parent data. The reorder_for_init # attribute contains a function used to reorder the field data # in the order __init__ expects it. # - pk_idx: the index of the primary key field in the reordered # model data. Used to check if a related object exists at all. # - init_list: the field attnames fetched from the database. For # deferred models this isn't the same as all attnames of the # model's fields. # - related_populators: a list of RelatedPopulator instances if # select_related() descends to related models from this model. # - local_setter, remote_setter: Methods to set cached values on # the object being populated and on the remote object. Usually # these are Field.set_cached_value() methods. select_fields = klass_info['select_fields'] from_parent = klass_info['from_parent'] if not from_parent: self.cols_start = select_fields[0] self.cols_end = select_fields[-1] + 1 self.init_list = [ f[0].target.attname for f in select[self.cols_start:self.cols_end] ] self.reorder_for_init = None else: attname_indexes = {select[idx][0].target.attname: idx for idx in select_fields} model_init_attnames = (f.attname for f in klass_info['model']._meta.concrete_fields) self.init_list = [attname for attname in model_init_attnames if attname in attname_indexes] self.reorder_for_init = operator.itemgetter(*[attname_indexes[attname] for attname in self.init_list]) self.model_cls = klass_info['model'] self.pk_idx = self.init_list.index(self.model_cls._meta.pk.attname) self.related_populators = get_related_populators(klass_info, select, self.db) self.local_setter = klass_info['local_setter'] self.remote_setter = klass_info['remote_setter'] def populate(self, row, from_obj): if self.reorder_for_init: obj_data = self.reorder_for_init(row) else: obj_data = row[self.cols_start:self.cols_end] if obj_data[self.pk_idx] is None: obj = None else: obj = self.model_cls.from_db(self.db, self.init_list, obj_data) for rel_iter in self.related_populators: rel_iter.populate(row, obj) self.local_setter(from_obj, obj) if obj is not None: self.remote_setter(obj, from_obj) def get_related_populators(klass_info, select, db): iterators = [] related_klass_infos = klass_info.get('related_klass_infos', []) for rel_klass_info in related_klass_infos: rel_cls = RelatedPopulator(rel_klass_info, select, db) iterators.append(rel_cls) return iterators
42.182007
119
0.616044
794e0fe4ec5e7f4a6bedb1c91c1b82416ea0e764
7,556
py
Python
sdk/python/pulumi_azure_nextgen/relay/latest/hybrid_connection.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/relay/latest/hybrid_connection.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/relay/latest/hybrid_connection.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = ['HybridConnection'] warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:relay:HybridConnection'.""", DeprecationWarning) class HybridConnection(pulumi.CustomResource): warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:relay:HybridConnection'.""", DeprecationWarning) def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, hybrid_connection_name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, requires_client_authorization: Optional[pulumi.Input[bool]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, user_metadata: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Description of hybrid connection resource. Latest API Version: 2017-04-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] hybrid_connection_name: The hybrid connection name. :param pulumi.Input[str] namespace_name: The namespace name :param pulumi.Input[bool] requires_client_authorization: Returns true if client authorization is needed for this hybrid connection; otherwise, false. :param pulumi.Input[str] resource_group_name: Name of the Resource group within the Azure subscription. :param pulumi.Input[str] user_metadata: The usermetadata is a placeholder to store user-defined string data for the hybrid connection endpoint. For example, it can be used to store descriptive data, such as a list of teams and their contact information. Also, user-defined configuration settings can be stored. """ pulumi.log.warn("HybridConnection is deprecated: The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:relay:HybridConnection'.") if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['hybrid_connection_name'] = hybrid_connection_name if namespace_name is None and not opts.urn: raise TypeError("Missing required property 'namespace_name'") __props__['namespace_name'] = namespace_name __props__['requires_client_authorization'] = requires_client_authorization if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['user_metadata'] = user_metadata __props__['created_at'] = None __props__['listener_count'] = None __props__['name'] = None __props__['type'] = None __props__['updated_at'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:relay:HybridConnection"), pulumi.Alias(type_="azure-nextgen:relay/v20160701:HybridConnection"), pulumi.Alias(type_="azure-nextgen:relay/v20170401:HybridConnection")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(HybridConnection, __self__).__init__( 'azure-nextgen:relay/latest:HybridConnection', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'HybridConnection': """ Get an existing HybridConnection resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return HybridConnection(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdAt") def created_at(self) -> pulumi.Output[str]: """ The time the hybrid connection was created. """ return pulumi.get(self, "created_at") @property @pulumi.getter(name="listenerCount") def listener_count(self) -> pulumi.Output[int]: """ The number of listeners for this hybrid connection. Note that min : 1 and max:25 are supported. """ return pulumi.get(self, "listener_count") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="requiresClientAuthorization") def requires_client_authorization(self) -> pulumi.Output[Optional[bool]]: """ Returns true if client authorization is needed for this hybrid connection; otherwise, false. """ return pulumi.get(self, "requires_client_authorization") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="updatedAt") def updated_at(self) -> pulumi.Output[str]: """ The time the namespace was updated. """ return pulumi.get(self, "updated_at") @property @pulumi.getter(name="userMetadata") def user_metadata(self) -> pulumi.Output[Optional[str]]: """ The usermetadata is a placeholder to store user-defined string data for the hybrid connection endpoint. For example, it can be used to store descriptive data, such as a list of teams and their contact information. Also, user-defined configuration settings can be stored. """ return pulumi.get(self, "user_metadata") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
46.641975
318
0.669534
794e1012d346d21f58a1eb5c10a60d2220a5451e
1,990
py
Python
grow/performance/profile.py
akashkalal/grow
e4813efecb270e00c52c4bb1cb317766a8c92e29
[ "MIT" ]
335
2016-04-02T20:12:21.000Z
2022-03-28T18:55:26.000Z
grow/performance/profile.py
kmcnellis/grow
4787f5a01681ef0800e9b4388a56cdbc48209368
[ "MIT" ]
784
2016-04-01T16:56:41.000Z
2022-03-05T01:25:34.000Z
grow/performance/profile.py
kmcnellis/grow
4787f5a01681ef0800e9b4388a56cdbc48209368
[ "MIT" ]
54
2016-05-03T13:06:15.000Z
2021-09-24T04:46:23.000Z
"""Code timing for profiling.""" import time class Timer(object): """Times code to see how long it takes using a context manager.""" def __init__(self, key, label=None, meta=None): self._time = time self.key = key self.label = label or key self.meta = meta self.start = None self.end = None def __enter__(self): return self.start_timer() def __exit__(self, *args): self.stop_timer() def __repr__(self): if self.label != self.key: return '<Timer:{} {} : {}>'.format(self.key, self.label, self.duration) return '<Timer:{} : {}>'.format(self.key, self.duration) @property def duration(self): """Duration of timer.""" return self.end - self.start def export(self): """Export the timer data.""" return { 'key': self.key, 'label': self.label, 'meta': self.meta, 'start': self.start, 'end': self.end, } def start_timer(self): """Starts the timer.""" self.start = self._time.time() return self def stop_timer(self): """Stops the timer.""" self.end = self._time.time() return self class Profile(object): """Keeps track of all of the timer usage.""" def __init__(self): self.timers = [] def __iter__(self): for timer in self.timers: yield timer def __len__(self): return len(self.timers) def add_timer(self, timer): """Adds a new timer.""" if timer is None: return self.timers.append(timer) return timer def timer(self, *args, **kwargs): """Create a new timer.""" timer = Timer(*args, **kwargs) self.timers.append(timer) return timer def export(self): """Export the timer data for each timer created.""" return [t.export() for t in self.timers]
23.975904
83
0.541709
794e106bbee42cb5c23641ec7958bcfcb073fbec
6,808
py
Python
kolter_wong/models.py
anonymous2398384/provable_robustness_max_linear_regions
529165d9047261813bc068997415f668c9675119
[ "BSD-3-Clause" ]
34
2019-03-10T22:16:24.000Z
2021-09-23T22:22:27.000Z
kolter_wong/models.py
anonymous2398384/provable_robustness_max_linear_regions
529165d9047261813bc068997415f668c9675119
[ "BSD-3-Clause" ]
2
2019-09-24T16:18:55.000Z
2021-03-06T20:57:33.000Z
kolter_wong/models.py
anonymous2398384/provable_robustness_max_linear_regions
529165d9047261813bc068997415f668c9675119
[ "BSD-3-Clause" ]
9
2019-03-13T17:35:36.000Z
2021-01-15T02:37:23.000Z
import numpy as np import scipy.io import torch import torch.nn as nn import math import data from kolter_wong.convex_adversarial import Dense, DenseSequential from kolter_wong.custom_layers import Conv2dUntiedBias def select_model(model_type, n_in, n_out): h_in, w_in, c_in = (28, 28, 1) if n_in == 28*28*1 else (32, 32, 3) if 'fc' in model_type: n_h_layers = int(model_type.split('fc')[-1]) if model_type == 'fc10': # manual hack to have the same model as we reported n_hs = [124, 104, 104, 104, 104, 104, 104, 104, 86, 86] else: n_hs = n_h_layers * [1024] n_hs = [n_in] + n_hs + [n_out] model = fc(n_hs) elif model_type == 'cnn_lenet_avgpool': model = lenet_avgpool(h_in, w_in, c_in, n_out) elif model_type == 'cnn_lenet_small': model = lenet_small(h_in, w_in, c_in, n_out) elif model_type == 'cnn_lenet_large': model = lenet_large(h_in, w_in, c_in, n_out) else: raise ValueError('wrong model_type') return model def fc(n_hs): layers = [Flatten()] for i in range(len(n_hs) - 2): layers.append(nn.Linear(n_hs[i], n_hs[i + 1])) layers.append(nn.ReLU()) layers.append(nn.Linear(n_hs[-2], n_hs[-1])) model = nn.Sequential(*layers) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def lenet_avgpool(h_in, w_in, c_in, n_out): model = nn.Sequential( Conv2dUntiedBias(24, 24, c_in, 16, 5, stride=1, padding=0), # nn.Conv2d(1, 16, 5, stride=1, padding=0), nn.ReLU(), nn.Conv2d(16, 16, 2, stride=2, padding=0, bias=None), # aka nn.AvgPool2d(2, stride=2), Conv2dUntiedBias(8, 8, 16, 32, 5, stride=1, padding=0), # nn.Conv2d(16, 32, 5, stride=1, padding=0), nn.ReLU(), nn.Conv2d(32, 32, 2, stride=2, padding=0, bias=None), # aka nn.AvgPool2d(2, stride=2), Flatten(), nn.Linear(4 * 4 * 32, n_out) ) # Proper default init (not needed if we just evaluate with KW code) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() return model def lenet_small(h_in, w_in, c_in, n_out): model = nn.Sequential( nn.Conv2d(c_in, 16, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(32 * h_in//4 * w_in//4, 100), nn.ReLU(), nn.Linear(100, n_out) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def lenet_large(h_in, w_in, c_in, n_out): model = nn.Sequential( nn.Conv2d(c_in, 32, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 64, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.ReLU(), Flatten(), nn.Linear(64 * h_in//4 * w_in//4, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, n_out) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def resnet(N=5, factor=10): """ Original CIFAR-10 ResNet proposed in He et al. :param N: :param factor: :return: """ def block(in_filters, out_filters, k, downsample): if not downsample: k_first = 3 skip_stride = 1 k_skip = 1 else: k_first = 4 skip_stride = 2 k_skip = 2 return [ Dense(nn.Conv2d(in_filters, out_filters, k_first, stride=skip_stride, padding=1)), nn.ReLU(), Dense(nn.Conv2d(in_filters, out_filters, k_skip, stride=skip_stride, padding=0), None, nn.Conv2d(out_filters, out_filters, k, stride=1, padding=1)), nn.ReLU() ] conv1 = [nn.Conv2d(3, 16, 3, stride=1, padding=1), nn.ReLU()] conv2 = block(16, 16 * factor, 3, False) for _ in range(N): conv2.extend(block(16 * factor, 16 * factor, 3, False)) conv3 = block(16 * factor, 32 * factor, 3, True) for _ in range(N - 1): conv3.extend(block(32 * factor, 32 * factor, 3, False)) conv4 = block(32 * factor, 64 * factor, 3, True) for _ in range(N - 1): conv4.extend(block(64 * factor, 64 * factor, 3, False)) layers = ( conv1 + conv2 + conv3 + conv4 + [Flatten(), nn.Linear(64 * factor * 8 * 8, 1000), nn.ReLU(), nn.Linear(1000, 10)] ) model = DenseSequential( *layers ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() return model class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) def restore_model(sess, model_pt, model_tf, nn_type, device): vars_pt = list(model_pt.parameters()) Ws, bs = model_tf.W, model_tf.b vars_tf = [] for W, b in zip(Ws, bs): vars_tf.append(W) vars_tf.append(b) assert len(vars_pt) == len(vars_tf) for var_pt, var_tf in zip(vars_pt, vars_tf): var_np = sess.run(var_tf) if 'weights_conv' in var_tf.name: var_np = np.transpose(var_np, [3, 2, 0, 1]) elif 'weights_fc1' in var_tf.name: n_in, n_out = var_np.shape h = w = int(math.sqrt(var_np.shape[0] / model_tf.n_filters[-1])) var_np = np.transpose(var_np) var_np = var_np.reshape([n_out, h, w, model_tf.n_filters[-1]]) var_np = var_np.transpose([0, 3, 1, 2]) var_np = var_np.reshape([n_out, n_in]) elif 'weight' in var_tf.name: var_np = np.transpose(var_np) elif 'bias' in var_tf.name: var_np = var_np.flatten() # needed only for FC var_pt.data = torch.from_numpy(var_np).to(device)
32.113208
95
0.555964
794e11a8f09ccd2a2bf95ae23a2c5231bb528c72
4,391
py
Python
src/modules/Permissions/Permissions.py
dfirestorm/Discord-Robot
5ad6bdf7a9704d73794b688127172a7ed69919f5
[ "MIT" ]
null
null
null
src/modules/Permissions/Permissions.py
dfirestorm/Discord-Robot
5ad6bdf7a9704d73794b688127172a7ed69919f5
[ "MIT" ]
null
null
null
src/modules/Permissions/Permissions.py
dfirestorm/Discord-Robot
5ad6bdf7a9704d73794b688127172a7ed69919f5
[ "MIT" ]
1
2020-09-27T00:24:32.000Z
2020-09-27T00:24:32.000Z
import sqlite3 import discord from discord.ext import commands from discord.ext.commands.errors import * DB = 'permissions.db' class Permissions(commands.Cog): def __init__(self, client): client.permission_authority = self self.client = client self.cwd = client.config['Bot']['modules_dir'] + 'Permissions/' conn = sqlite3.connect(self.cwd + DB) c = conn.cursor() c.execute('CREATE TABLE IF NOT EXISTS permissions(user int, permission text)') conn.commit() conn.close() @commands.command(help='Clears the permissions of a user') async def clearperms(self, context, member: discord.Member): conn = sqlite3.connect(self.cwd + DB) c = conn.cursor() c.execute('DELETE FROM permissions WHERE user=?', (member.id,)) conn.commit() conn.close() await context.send(f'Permissions cleared for {member.name}.') @commands.command(help='List your current permissions') async def perms(self, context): conn = sqlite3.connect(self.cwd + DB) c = conn.cursor() results = c.execute('SELECT permission FROM permissions WHERE user=?', (context.message.author.id,)).fetchall() perms = [''.join(row) for row in results] perm_string = '\n'.join(perms) await context.send(f'Here are your current permissions, {context.message.author.mention}\n```\n{perm_string}\n```') conn.close() @commands.command(help='Gives permission to a user') async def giveperm(self, context, permission, member: discord.Member): mod_role = self.client.config['Bot']['mod_role'] if mod_role in [role.name.lower() for role in context.message.author.roles]: conn = sqlite3.connect(self.cwd + DB) c = conn.cursor() c.execute('INSERT INTO permissions(user, permission) VALUES (?, ?)', (member.id, permission)) conn.commit() conn.close() await context.send(f'Gave permission \'{permission}\' to {member.name}.') else: await context.send(f'You do not have permission to do that. Ask for the role {mod_role}.') @commands.command(help='Revokes permission from a user') async def takeperm(self, context, permission, member: discord.Member): mod_role = self.client.config['Bot']['mod_role'] if mod_role in [role.name.lower() for role in context.message.author.roles]: conn = sqlite3.connect(self.cwd + DB) c = conn.cursor() c.execute('DELETE FROM permissions WHERE user=? AND permission=?', (member.id, permission)) conn.commit() conn.close() await context.send(f'Revoked permission \'{permission}\' from {member.name}.') else: await context.send(f'You do not have permission to do that. Ask for the role {mod_role}.') @commands.command(help='Gives the appropriate RoBot mod role to a user') async def mod(self, context, member: discord.Member): mod_role = self.client.config['Bot']['mod_role'] if mod_role in [role.name.lower() for role in context.message.author.roles]: await member.add_roles(discord.utils.get((member.guild.roles), name=mod_role)) await context.send(f'{member.name} is now a mod.') else: await context.send(f'You do not have permission to do that. Ask for the role {mod_role}.') @commands.command(help='Removes the appropriate RoBot mod role from a user') async def unmod(self, context, member: discord.Member): mod_role = self.client.config['Bot']['mod_role'] if mod_role in [role.name.lower() for role in context.message.author.roles]: await member.remove_roles(discord.utils.get((member.guild.roles), name=mod_role)) await context.send(f'{member.name} is no longer a mod.') else: await context.send(f'You do not have permission to do that. Ask for the role {mod_role}.') def hasperm(self, permission, member: discord.Member): conn = sqlite3.connect(self.cwd + DB) c = conn.cursor() hasperm = len(c.execute('SELECT * FROM permissions WHERE user=? AND permission=?', (member.id, permission)).fetchall()) == 1 conn.commit() conn.close() return hasperm def setup(client): client.add_cog(Permissions(client))
47.215054
132
0.64154
794e11d52cfee297752c20bb5d126d4c954e18e5
2,446
py
Python
api/views/explanation_views.py
tiveritz/how-tos-api
5dd73fd72ea1f07123ce8d15d2935d9d9e473c8e
[ "MIT" ]
null
null
null
api/views/explanation_views.py
tiveritz/how-tos-api
5dd73fd72ea1f07123ce8d15d2935d9d9e473c8e
[ "MIT" ]
3
2021-05-23T07:57:15.000Z
2021-05-28T05:38:17.000Z
api/views/explanation_views.py
tiveritz/how-tos-api
5dd73fd72ea1f07123ce8d15d2935d9d9e473c8e
[ "MIT" ]
null
null
null
from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from ..models import Explanation from ..serializers.explanation_serializers import (ExplanationSerializer, ExplanationDetailSerializer) class ExplanationView(APIView): """ View to Explanation Text Detail """ def get(self, request): explanations = Explanation.objects.all().order_by('-updated') serializer = ExplanationSerializer(explanations, many=True, context={'request': request}) return Response(serializer.data) def post(self, request, format=None): serializer = ExplanationSerializer(data=request.data, context={'request': request}) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class ExplanationDetailView(APIView): """ View to Explanation Detail """ def get(self, request, uri_id): try: explanation = Explanation.objects.get(uri_id=uri_id) except Explanation.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) serializer = ExplanationDetailSerializer(explanation, context={'request': request}) return Response(serializer.data) def patch(self, request, uri_id): explanation = Explanation.objects.get(uri_id=uri_id) serializer = ExplanationDetailSerializer(explanation, data=request.data, partial=True, context={'request': request}) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, uri_id): Explanation.objects.get(uri_id=uri_id).delete() return Response(status=status.HTTP_204_NO_CONTENT)
40.766667
79
0.575634
794e1273e3b7622199661f7a5ca2ead5c125bbe5
1,168
py
Python
lib/galaxy/model/migrate/versions/0113_update_migrate_tools_table.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
4
2018-10-29T18:34:38.000Z
2021-09-29T23:30:42.000Z
lib/galaxy/model/migrate/versions/0113_update_migrate_tools_table.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
30
2016-10-20T15:35:12.000Z
2018-10-02T15:59:54.000Z
lib/galaxy/model/migrate/versions/0113_update_migrate_tools_table.py
innovate-invent/galaxy
10aa953a40e171246bdd1804c74e8019da8e8200
[ "CC-BY-3.0" ]
7
2016-11-03T19:11:01.000Z
2020-05-11T14:23:52.000Z
""" Migration script to update the migrate_tools.repository_path column to point to the new location lib/tool_shed/galaxy_install/migrate. """ from __future__ import print_function import logging import sys log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) format = "%(name)s %(levelname)s %(asctime)s %(message)s" formatter = logging.Formatter(format) handler.setFormatter(formatter) log.addHandler(handler) def upgrade(migrate_engine): print(__doc__) # Create the table. try: cmd = "UPDATE migrate_tools set repository_path='lib/galaxy/tool_shed/migrate';" migrate_engine.execute(cmd) except Exception: log.exception("Updating migrate_tools.repository_path column to point to the new location lib/tool_shed/galaxy_install/migrate failed.") def downgrade(migrate_engine): try: cmd = "UPDATE migrate_tools set repository_path='lib/galaxy/tool_shed/migrate';" migrate_engine.execute(cmd) except Exception: log.exception("Updating migrate_tools.repository_path column to point to the old location lib/galaxy/tool_shed/migrate failed.")
34.352941
144
0.760274