max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
Source/YBio.py
YuriShporhun/YBio
0
12782751
<reponame>YuriShporhun/YBio from YSeq import YSeq from YLoader import YLoader from YDNA import YDNA from YRNA import YRNA class YSeqFunc: def __init__(self): pass @staticmethod def hamming_distance(seq_one, seq_two): """ En: A Static method which calculates the Hamming distance between two sequences for """ distance = 0 for i in range(0, len(seq_one)): if seq_one[i] != seq_two[i]: distance += 1 return distance @staticmethod def transition_transversion_ratio(seq_one, seq_two): """ En: A Static method which calculates the Transiton and Transversion ratio """ transitions = 0 transversions = 0 for i in range(0, len(seq_two)): if seq_one[i] != seq_two[i]: if (seq_one[i] == 'A' and seq_two[i] == 'G') or \ (seq_one[i] == 'C' and seq_two[i] == 'T') or \ (seq_one[i] == 'G' and seq_two[i] == 'A') or \ (seq_one[i] == 'T' and seq_two[i] == 'C'): transitions += 1 else: transversions += 1 return transitions / transversions class _YServiceMatrix: _matrix = [] _cols = 0 _rows = 0 def __init__(self, dna_sequences): self._matrix = dna_sequences[:] self._cols = self.__normalize() self._rows = len(self._matrix) def __normalize(self): max_size = 0 for seq in range(len(self._matrix)): if len(self._matrix[seq]) > max_size: max_size = len(self._matrix[seq]) for seq in range(len(self._matrix)): if len(self._matrix[seq]) < max_size: self._matrix[seq] += ('_' * (max_size - len(self._matrix[seq]))) return max_size def _transpose(self): self._matrix = [[self._matrix[j][i] for j in range(len(self._matrix))] for i in range(len(self._matrix[0]))] self._cols, self._rows = self._rows, self._cols def append(self, sequence): self._matrix.append(sequence) self._cols = self.__normalize() self._rows += 1 def get_col_count(self): return self._cols def get_row_count(self): return self._rows def get_item(self, row, col): return self._matrix[row][col] class YMatrix(_YServiceMatrix): def __init__(self, dna_sequences): super.__init__(dna_sequences) def __repr__(self): result = '' for item in self._matrix: result += str(item) + '\n' return result def profile(self): profile = YMatrix([]) for col in range(self._cols): temp_dna = YDNA([]) for row in range(self._rows): temp_dna.Append(self._matrix[row][col]) profile.Append(temp_dna.Count()) profile._transpose() return profile def save_profile(self, filename, designations = False): indexes = { 0: 'A', 1: 'C', 2: 'G', 3: 'T' } profile = self.Profile() profile._transpose() sign_flag = True with open(filename, 'w') as file: for i in range(profile.GetColCount()): if designations and sign_flag: file.write(indexes[i] + ': ') for j in range(profile.GetRowCount()): file.write(str(profile.GetItem(j, i)) + ' ') file.write('\n') def save_consensus(self, filename): consensus = self.Consensus() consensus.Save(filename) @staticmethod def consensus(profile): consensus = YDNA([]) indexes = { 0: 'A', 1: 'C', 2: 'G', 3: 'T' } for col in range(profile.GetColCount()): max_index = 0 max_count = 0 for row in range(profile.GetRowCount()): if int(profile.GetItem(row, col)) > max_count: max_count = int(profile.GetItem(row, col)) max_index = row consensus.Append(indexes[max_index]) return consensus
2.953125
3
src/python/pyllars/cppparser/generation/clang/tranlation_unit.py
nak/pyllars
2
12782752
from pyllars.cppparser.parser.clang_translator import NodeType from .generator import Generator class TranslationUnitDeclGenerator(Generator): def generate(self): pass
1.359375
1
evaluation/interpolate_pc_codes.py
eduarddohr/pc2pix
12
12782753
<gh_stars>10-100 '''Render point clouds from test dataset using pc2pix python3 interpolate_pc_codes.py --ptcloud_ae_weights=../model_weights/ptcloud/chair-pt-cloud-stacked-ae-chamfer-5-ae-weights-32.h5 -p=32 -k=5 --generator=../model_weights/pc2pix/chair-gen-color.h5 --discriminator=../model_weights/pc2pix/chair-dis-color.h5 ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from keras import backend as K import tensorflow as tf import numpy as np import argparse import sys sys.path.append("..") sys.path.append("../lib") sys.path.append("../external") from pc2pix import PC2Pix from ptcloud_stacked_ae import PtCloudStackedAE from general_utils import plot_3d_point_cloud from shapenet import get_split from in_out import load_ply from loader import read_view_angle from general_utils import plot_3d_point_cloud, plot_image, plot_images import os import datetime from PIL import Image import scipy.misc #sys.path.append("evaluation") from utils import get_ply, plot_images def render_by_pc2pix(pc_code, pc2pix, elev=10., azim=240.): elev += 40. azim += 180. elev_code = np.array([elev / 80.]) azim_code = np.array([azim / 360.]) noise = np.random.uniform(-1.0, 1.0, size=[1, 128]) fake_image = pc2pix.generator.predict([noise, pc_code, elev_code, azim_code]) fake_image *= 0.5 fake_image += 0.5 fake_image = fake_image[0] return fake_image def norm_angle(angle): angle *= 0.5 angle += 0.5 return angle def norm_pc(pc): pc = pc / 0.5 return pc PLY_PATH = "../data/shape_net_core_uniform_samples_2048" PC_CODES_PATH = "pc_codes" PLOTS_PATH = "plots3d" if __name__ == '__main__': parser = argparse.ArgumentParser() help_ = "Load generator model trained weights" parser.add_argument("-g", "--generator", default=None, help=help_) help_ = "Load discriminator model trained weights" parser.add_argument("-d", "--discriminator", default=None, help=help_) help_ = "Load h5 ptcloud_ae model trained ae weights" parser.add_argument("-w", "--ptcloud_ae_weights", help=help_) help_ = "Shapnet category or class (chair, airplane, etc)" parser.add_argument("-a", "--category", default='chair', help=help_) help_ = "Split file" parser.add_argument("-s", "--split_file", default='data/chair_exp.json', help=help_) help_ = "PLY files folder" parser.add_argument("--ply", default=PLY_PATH, help=help_) help_ = "pc codes folder" parser.add_argument("--pc_codes", default=PC_CODES_PATH, help=help_) help_ = "Point cloud code dim" parser.add_argument("-p", "--pc_code_dim", default=32, type=int, help=help_) help_ = "Kernel size" parser.add_argument("-k", "--kernel_size", default=1, type=int, help=help_) args = parser.parse_args() batch_size = 32 pc_code_dim = args.pc_code_dim category = args.category ptcloud_ae = PtCloudStackedAE(latent_dim=args.pc_code_dim, kernel_size=args.kernel_size, category=category, evaluate=True) ptcloud_ae.stop_sources() exit(0) if args.ptcloud_ae_weights: print("Loading point cloud ae weights: ", args.ptcloud_ae_weights) ptcloud_ae.use_emd = False ptcloud_ae.ae.load_weights(args.ptcloud_ae_weights) else: print("Trained point cloud ae required to pc2pix") exit(0) pc2pix = PC2Pix(ptcloud_ae=ptcloud_ae, gw=args.generator, dw=args.discriminator, pc_code_dim=args.pc_code_dim, batch_size=batch_size, category=category) js = get_ply(args.split_file) datasets = ('test') start_time = datetime.datetime.now() os.makedirs(PLOTS_PATH, exist_ok=True) t = 0 interpolate = False for key in js.keys(): # key eg 03001627 data = js[key] tags = data['test'] ply_path_main = os.path.join(args.ply, key) tagslen = len(tags) n_interpolate = 10 if not interpolate: n_interpolate = 2 for i in range(tagslen - 1): n = 0 tag = tags[i] images = [] pc_codes = [] ply_file = os.path.join(ply_path_main, tag + ".ply") pc = load_ply(ply_file) target_path = os.path.join(PLOTS_PATH, tag + "_" + str(n) + ".png") n += 1 fig = plot_3d_point_cloud(pc[:, 0], pc[:, 1], pc[:, 2], show=False, azim=320, colorize='rainbow', filename=target_path) image = np.array(Image.open(target_path)) / 255.0 images.append(image) pc = norm_pc(pc) shape = pc.shape pc = np.reshape(pc, [-1, shape[0], shape[1]]) pc_code1 = ptcloud_ae.encoder.predict(pc) pc_codes.append(pc_code1) tag = tags[i+1] ply_file = os.path.join(ply_path_main, tag + ".ply") pc = load_ply(ply_file) target_path = os.path.join(PLOTS_PATH, tag + "_" + str(n_interpolate + 1) + ".png") fig = plot_3d_point_cloud(pc[:, 0], pc[:, 1], pc[:, 2], azim=320, show=False, colorize='rainbow', filename=target_path) image_end = np.array(Image.open(target_path)) / 255.0 pc = norm_pc(pc) shape = pc.shape pc = np.reshape(pc, [-1, shape[0], shape[1]]) pc_code2 = ptcloud_ae.encoder.predict(pc) shape = pc_code1.shape if interpolate: for i in range(n_interpolate): #pc_code = [] delta = (pc_code2 - pc_code1)/(n_interpolate + 1) delta *= (i + 1) pc_code = pc_code1 + delta pc_codes.append(pc_code) pc = ptcloud_ae.decoder.predict(pc_code) pc *= 0.5 target_path = os.path.join(PLOTS_PATH, tag + "_" + str(n) + ".png") n += 1 fig = plot_3d_point_cloud(pc[0][:, 0], pc[0][:, 1], pc[0][:, 2], show=False, azim=320, colorize='rainbow', filename=target_path) image = np.array(Image.open(target_path)) / 255.0 images.append(image) #print("pc_code shape:", pc_code.shape) #print(pc_code) images.append(image_end) pc_codes.append(pc_code2) else: tag = tags[i+2] ply_file = os.path.join(ply_path_main, tag + ".ply") pc = load_ply(ply_file) target_path = os.path.join(PLOTS_PATH, tag + "_" + str(1) + ".png") fig = plot_3d_point_cloud(pc[:, 0], pc[:, 1], pc[:, 2], show=False, azim=320, colorize='rainbow', filename=target_path) image = np.array(Image.open(target_path)) / 255.0 images.append(image) pc = norm_pc(pc) shape = pc.shape pc = np.reshape(pc, [-1, shape[0], shape[1]]) pc_code = ptcloud_ae.encoder.predict(pc) pc_codes.append(pc_code) images.append(image_end) pc_codes.append(pc_code2) pc_code = pc_code1 - pc_code + pc_code2 pc_codes.append(pc_code) pc = ptcloud_ae.decoder.predict(pc_code) pc *= 0.5 target_path = os.path.join(PLOTS_PATH, tag + "_" + str(3) + ".png") n += 1 fig = plot_3d_point_cloud(pc[0][:, 0], pc[0][:, 1], pc[0][:, 2], show=False, azim=320, colorize='rainbow', filename=target_path) image = np.array(Image.open(target_path)) / 255.0 images.append(image) for pc_code in pc_codes: # default of plot_3d_point_cloud is azim=240 which is -120 # or 60 = 180 - 120 image = render_by_pc2pix(pc_code, pc2pix, azim=(320-360)) images.append(image) print(len(images)) plot_images(2, n_interpolate + 2, images, tag + ".png", dir_name="point_clouds") t += 1 if t >= len(tags): del pc2pix del ptcloud_ae exit(0) #exit(0)
2.140625
2
webservice/funcs/ask_question.py
jordsti/hacker-jeopardy
6
12782754
<gh_stars>1-10 from ..service_func import service_func, func_error, meta_arg import random class ask_question(service_func): def __init__(self): service_func.__init__(self, '/question/ask') self.name = "Ask Question" self.description = "Ask a question to a team, with a category id and a rank" self.question = None self.points = 0 self.args.append(meta_arg("key", "Protection Key", "none")) self.args.append(meta_arg("category", "Category Id", "none")) self.args.append(meta_arg("rank", "Rank Id", "none")) self.args.append(meta_arg("team", "Team Id", "none")) def init(self): self.question = None self.points = 0 def execute(self, args, server): key = args["key"] category = int(args["category"]) rank = int(args["rank"]) team = int(args["team"]) if server.key == key: cat = server.game_data.get_category(category) if cat is not None: if cat.ranks_available[rank]: if server.game_data.current_question is None: pool = [] for q in cat.questions: if q.rank == rank and not q.asked: pool.append(q) if len(pool) > 0: q_i = random.randint(0, len(pool)-1) self.question = pool[q_i] self.question.asked = True self.points = server.game_data.points_table.points[self.question.rank] server.game_data.ask_question(self.question, team) cat.ranks_available[rank] = False else: raise func_error("No more question in this category with this rank") else: raise func_error("A question is already asked and waiting for an answer") else: raise func_error("You can't ask anymore question with this rank and category") else: raise func_error("Invalid category") else: raise func_error("Invalid key") def answer(self): data = {'question': { 'id': self.question.id, 'question': self.question.question, 'answer': self.question.answer, 'rank': self.question.rank, 'points': self.points }} return data
2.78125
3
util/level_set/ls_util/interactive_ls.py
margaritiko/UGIR
46
12782755
<gh_stars>10-100 import time import os import GeodisTK import numpy as np import matplotlib.pyplot as plt import scipy.ndimage.filters as filters from PIL import Image from scipy import ndimage from skimage import measure from mpl_toolkits.mplot3d import Axes3D from level_set.ls_util.drlse_reion import * def show_leve_set(fig, phi): ax1 = fig.add_subplot(111, projection='3d') y, x = phi.shape x = np.arange(0, x, 1) y = np.arange(0, y, 1) X, Y = np.meshgrid(x, y) ax1.plot_surface(X, Y, phi, rstride=2, cstride=2, color='r', linewidth=0, alpha=0.6, antialiased=True) ax1.contour(X, Y, phi, 0, colors='g', linewidths=2) def show_image_and_segmentation(fig, img, contours, seeds = None): ax2 = fig.add_subplot(111) ax2.imshow(img, interpolation='nearest', cmap=plt.cm.gray) for n, contour in enumerate(contours): ax2.plot(contour[:, 1], contour[:, 0], linewidth=2, color='green') if(seeds is not None): h_idx, w_idx = np.where(seeds[0] > 0) ax2.plot(w_idx, h_idx, linewidth=2, color='red') h_idx, w_idx = np.where(seeds[1] > 0) ax2.plot(w_idx, h_idx, linewidth=2, color='blue') ax2.axis('off') def get_distance_based_likelihood(img, seed, D): if(seed.sum() > 0): geoD = GeodisTK.geodesic2d_raster_scan(img, seed, 0.1, 2) geoD[geoD > D] = D else: geoD = np.ones_like(img)*D geoD = np.exp(-geoD) return geoD def interactive_level_set(img, seg, seed_f, seed_b, param, display = True, intensity = False): """ Refine an initial segmentation with interaction based level set Params: img: a 2D image array sed: a 2D image array representing the intial binary segmentation seed_f: a binary array representing the existence of foreground scribbles seed_b: a binary array representing the existence of background scribbles display: a bool value, whether display the segmentation result intensity: a bool value, whether define the region term based on intensity """ img = np.asarray(img, np.float32) img = (img - img.mean())/img.std() seg = np.asarray(seg, np.float32) Df = get_distance_based_likelihood(img, seed_f, 4) Db = get_distance_based_likelihood(img, seed_b, 4) Pfexp = np.exp(Df); Pbexp = np.exp(Db) Pf = Pfexp / (Pfexp + Pbexp) # if(display): # plt.subplot(1,3,1) # plt.imshow(Df) # plt.subplot(1,3,2) # plt.imshow(Db) # plt.subplot(1,3,3) # plt.imshow(Pf) # plt.show() [H, D] = img.shape zoom = [64.0/H, 64.0/D] img_d = ndimage.interpolation.zoom(img, zoom) seg_d = ndimage.interpolation.zoom(seg, zoom) Pf_d = ndimage.interpolation.zoom(Pf, zoom) if(intensity is True): print("use intensity") ls_img = img_d else: print("use segmentation") ls_img = seg_d # parameters timestep = 1 # time step iter_inner = 50 iter_outer_max = 10 mu = param['mu']/timestep # coefficient of the distance regularization term R(phi) lmda = param['lambda'] # coefficient of the weighted length term L(phi) alfa = param['alpha'] # coefficient of the weighted area term A(phi) beta = param['beta'] # coefficient for user interactin term epsilon = 1.5 # parameter that specifies the width of the DiracDelta function # initialize LSF as binary step function # the level set has positive value inside the contour and negative value outside # this is opposite to DRLSE c0 = 20 initialLSF = -c0 * np.ones(seg_d.shape) initialLSF[seg_d > 0.5] = c0 phi = initialLSF.copy() t0 = time.time() # start level set evolution seg_size0 = np.asarray(phi > 0).sum() for n in range(iter_outer_max): phi = drlse_region_interaction(phi, ls_img, Pf_d, lmda, mu, alfa, beta, epsilon, timestep, iter_inner, 'double-well') seg_size = np.asarray(phi > 0).sum() ratio = (seg_size - seg_size0)/float(seg_size0) if(abs(ratio) < 1e-3): print('iteration', n*iter_inner, ratio) break else: seg_size0 = seg_size runtime = time.time() - t0 print('iteration', (n + 1)*iter_inner) print('running time', runtime) finalLSF = phi.copy() finalLSF = ndimage.interpolation.zoom(finalLSF, [1.0/item for item in zoom]) if(display): plt.ion() fig1 = plt.figure(1) fig2 = plt.figure(2) fig3 = plt.figure(3) fig1.clf() init_contours = measure.find_contours(seg, 0.5) show_image_and_segmentation(fig1, img, init_contours, [seed_f, seed_b]) fig1.suptitle("(a) Initial Segmentation") # fig1.savefig("init_seg.png") fig2.clf() final_contours = measure.find_contours(finalLSF, 0) show_image_and_segmentation(fig2, img, final_contours) fig2.suptitle("(b) Refined Result") # fig2.savefig("refine_seg.png") fig3.clf() show_leve_set(fig3, finalLSF) fig3.suptitle("(c) Final Level Set Function") # fig3.savefig("levelset_func.png") plt.pause(10) plt.show() return finalLSF > 0, runtime
1.992188
2
tests/asp/gringo/simplify.002.test.py
bernardocuteri/wasp
19
12782756
input = """ a :- b, not a. """ output = """ {} """
1.65625
2
msg/__init__.py
trym-inc/django-msg
7
12782757
default_app_config = 'msg.apps.MsgConfig'
1.210938
1
skyfield/projections.py
dieli/python-skyfield
0
12782758
<reponame>dieli/python-skyfield from numpy import sqrt from .functions import length_of def _derive_stereographic(): """Compute the formulae to cut-and-paste into the routine below.""" from sympy import symbols, atan2, acos, rot_axis1, rot_axis3, Matrix x_c, y_c, z_c, x, y, z = symbols('x_c y_c z_c x y z') # The angles we'll need to rotate through. around_z = atan2(x_c, y_c) around_x = acos(-z_c) # Apply rotations to produce an "o" = output vector. v = Matrix([x, y, z]) xo, yo, zo = rot_axis1(around_x) * rot_axis3(-around_z) * v # Which we then use the stereographic projection to produce the # final "p" = plotting coordinates. xp = xo / (1 - zo) yp = yo / (1 - zo) return xp, yp def build_stereographic_projection(center): """Compute *x* and *y* coordinates at which to plot the positions.""" # TODO: Computing the center should really be done using # optimization, as in: # https://math.stackexchange.com/questions/409217/ p = center.position.au u = p / length_of(p) c = u.mean(axis=1) c = c / length_of(c) x_c, y_c, z_c = c def project(position): p = position.position.au u = p / length_of(p) x, y, z = u x_out = (x*y_c/sqrt(x_c**2 + y_c**2) - x_c*y/sqrt(x_c**2 + y_c**2))/(x*x_c*sqrt(-z_c**2 + 1)/sqrt(x_c**2 + y_c**2) + y*y_c*sqrt(-z_c**2 + 1)/sqrt(x_c**2 + y_c**2) + z*z_c + 1) y_out = (-x*x_c*z_c/sqrt(x_c**2 + y_c**2) - y*y_c*z_c/sqrt(x_c**2 + y_c**2) + z*sqrt(-z_c**2 + 1))/(x*x_c*sqrt(-z_c**2 + 1)/sqrt(x_c**2 + y_c**2) + y*y_c*sqrt(-z_c**2 + 1)/sqrt(x_c**2 + y_c**2) + z*z_c + 1) return x_out, y_out return project
3.46875
3
raynet/common/camera.py
paschalidoud/raynet
76
12782759
import numpy as np class Camera(object): """Camera is a simple finite pinhole camera defined by the matrices K, R and t. see "Multiple View Geometry in Computer Vision" by <NAME> and <NAME> for notation. Parameters ---------- K: The 3x3 intrinsic camera parameters R: The 3x3 rotation matrix from world to camera coordinates t: The 3x1 translation vector for the camera center in camera coordinates (so that the camera center is the origin in the camera coordinates) """ def __init__(self, K, R, t): # Make sure the input data have the right shape assert K.shape == (3, 3) assert R.shape == (3, 3) assert t.shape == (3, 1) self._K = K self._R = R self._t = t self._P = None self._P_pinv = None self._center = None @property def K(self): return self._K @property def R(self): return self._R @property def t(self): return self._t @property def center(self): # Compute the center of the camera in homogenous coordinates and return # it as a 4x1 vector if self._center is None: self._center = np.vstack( [(-np.linalg.inv(self.R)).dot(self.t), [1]] ).astype(np.float32) assert self._center.shape == (4, 1) return self._center @property def P(self): # Compute and return a 3x4 projection matrix if self._P is None: self._P = self._K.dot(np.hstack([self._R, self._t])) return self._P @property def P_pinv(self): if self._P_pinv is None: self._P_pinv = np.linalg.pinv(self.P) return self._P_pinv
3.6875
4
Examples/Suppliments/hello_unicode.py
Sharmila8/intropython2016
0
12782760
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- hello = 'Hello ' world = u'世界' print hello + world print u"It was nice weather today: it reached 80\u00B0" print u"Maybe it will reach 90\N{degree sign}" print u"It is extremely rare for it ever to reach 100° in Seattle"
2.421875
2
PyEngine3D/Utilities/Config.py
ubuntunux/PyEngine3D
121
12782761
<reponame>ubuntunux/PyEngine3D<gh_stars>100-1000 import os import configparser import traceback from . import Logger # util class class Empty: pass def evaluation(value): # find value type try: evalValue = eval(value) if type(evalValue) in [int, float, list, tuple, dict]: return evalValue except: return value def getValue(config, section, option, default_value=None): return evaluation(config[section][option]) if config.has_option(section, option) else default_value def setValue(config, section, option, value): if not config.has_section(section): config.add_section(section) config.set(section, option, value) # ------------------------------ # # CLASS : Configure # Usage : # config = Configure() # # get value example, section:Screen, option:wdith # print(config.Screen.width) # ------------------------------ # class Config: def __init__(self, configFilename, log_level=Logger.WARN, prevent_lowercase=True): self.log_level = log_level self.isChanged = False self.filename = configFilename self.config = configparser.ConfigParser() self.config.read(configFilename) # prevent the key value being lowercase if prevent_lowercase: self.config.optionxform = lambda option_name: option_name if self.log_level <= Logger.INFO: print("Load Config : %s" % self.filename) # set sections for section in self.config.sections(): if self.log_level == Logger.DEBUG: print("[%s]" % section) if not hasattr(self, section): setattr(self, section, Empty()) # set value to member variables current_section = getattr(self, section) for option in self.config[section]: value = self.config.get(section, option) if self.log_level == Logger.DEBUG: print("%s = %s" % (option, value)) setattr(current_section, option, evaluation(value)) def hasValue(self, section, option): return self.config.has_option(section, option) def getValue(self, section, option, default_value=None): return evaluation(self.config[section][option]) if self.config.has_option(section, option) else default_value def setValue(self, section, option, value): # set value if not self.config.has_section(section): self.config.add_section(section) self.config[section][option] = str(value) # set value to member variables if not hasattr(self, section): setattr(self, section, Empty()) self.isChanged = True elif not self.isChanged: self.isChanged = value != getattr(self, section) current_section = getattr(self, section) setattr(current_section, option, value) def setDefaultValue(self, section, option, value): if not self.hasValue(section, option): self.setValue(section, option, value) def save(self): if self.isChanged or not os.path.exists(self.filename): with open(self.filename, 'w') as configfile: self.config.write(configfile) if self.log_level <= Logger.INFO: print("Saved Config : " + self.filename) self.isChanged = False def getFilename(self): return self.filename if __name__ == '__main__': import unittest class test(unittest.TestCase): def testConfig(self): # load test testConfig = Config("TestConfig.ini", debug=False) # set value testConfig.setValue("TestSection", "test_int", 45) testConfig.setValue("TestSection", "test_float", 0.1) testConfig.setValue("TestSection", "test_string", "Hello, World") testConfig.setValue("TestSection", "test_list", [1, 2, 3]) testConfig.setValue("TestSection", "test_tuple", (4, 5, 6)) testConfig.setValue("TestSection", "test_dict", {"x":7.0, "y":8.0}) # call test self.assertEqual(testConfig.TestSection.test_int, 45) self.assertEqual(testConfig.TestSection.test_float, 0.1) self.assertEqual(testConfig.TestSection.test_string, "Hello, World") self.assertEqual(testConfig.TestSection.test_list, [1, 2, 3]) self.assertEqual(testConfig.TestSection.test_tuple, (4, 5, 6)) self.assertEqual(testConfig.TestSection.test_dict['x'], 7.0) self.assertEqual(testConfig.TestSection.test_dict['y'], 8.0) # set value test testConfig.setValue("TestSection", "test_int", 99) self.assertEqual(testConfig.TestSection.test_int, 99) testConfig.save() unittest.main()
2.4375
2
examples/load.py
KokaKiwi/ryaml
14
12782762
SRC = """ --- - - college - -380608299.3165369 - closely: 595052867 born: false stomach: true expression: true chosen: 34749965 somebody: false - positive - true - false - price - 2018186817 - average - young - -1447308110 """ import ryaml for _ in range(1000): ryaml.loads(SRC)
1.601563
2
mi/dataset/parser/parad_j_cspp.py
rmanoni/mi-dataset
1
12782763
<filename>mi/dataset/parser/parad_j_cspp.py """ @package mi.dataset.parser.parad_j_cspp @file marine-integrations/mi/dataset/parser/parad_j_cspp.py @author <NAME> @brief Parser for the parad_j_cspp dataset driver Release notes: initial release """ __author__ = '<NAME>' __license__ = 'Apache 2.0' import re import numpy from mi.core.log import get_logger log = get_logger() from mi.core.common import BaseEnum from mi.core.instrument.data_particle import DataParticle from mi.core.exceptions import RecoverableSampleException from mi.dataset.parser.common_regexes import \ END_OF_LINE_REGEX, \ FLOAT_REGEX, \ INT_REGEX, \ MULTIPLE_TAB_REGEX from mi.dataset.parser.cspp_base import \ CsppParser, \ Y_OR_N_REGEX, \ CsppMetadataDataParticle, \ MetadataRawDataKey, \ encode_y_or_n # Date is in format MM/DD/YY, example 04/17/14 DATE_REGEX = r'\d{2}/\d{2}/\d{2}' # Time is in format HH:MM:SS, example 15:22:31 TIME_REGEX = r'\d{2}:\d{2}:\d{2}' # regex for the data record DATA_REGEX = r'(' + FLOAT_REGEX + ')' + MULTIPLE_TAB_REGEX # Profiler Timestamp DATA_REGEX += '(' + FLOAT_REGEX + ')' + MULTIPLE_TAB_REGEX # Depth DATA_REGEX += '(' + Y_OR_N_REGEX + ')' + MULTIPLE_TAB_REGEX # Suspect Timestamp DATA_REGEX += '(' + DATE_REGEX + ')' + MULTIPLE_TAB_REGEX # Date DATA_REGEX += '(' + TIME_REGEX + ')' + MULTIPLE_TAB_REGEX # Time DATA_REGEX += '(' + INT_REGEX + ')' + END_OF_LINE_REGEX # par # IDD states the configuration rows after the header as well as occasional malformed data rows # can be ignored. # # Ignore any rows that begin with the timestamp and depth but # do not match the data record or the header rows formats IGNORE_REGEX = FLOAT_REGEX + MULTIPLE_TAB_REGEX # Profiler Timestamp IGNORE_REGEX += FLOAT_REGEX + MULTIPLE_TAB_REGEX # Depth IGNORE_REGEX += Y_OR_N_REGEX + MULTIPLE_TAB_REGEX # Suspect Timestamp IGNORE_REGEX += r'[^\t]*' + END_OF_LINE_REGEX # any text (excluding tabs) after the Suspect Timestamp IGNORE_MATCHER = re.compile(IGNORE_REGEX) class DataMatchesGroupNumber(BaseEnum): """ An enum for group match indices for a data record chunk. Used to access the match groups in the particle raw data """ PROFILER_TIMESTAMP = 1 DEPTH = 2 SUSPECT_TIMESTAMP = 3 DATE = 4 TIME = 5 PAR = 6 class DataParticleType(BaseEnum): """ The data particle types that a parad_j_cspp parser could generate """ METADATA_RECOVERED = 'parad_j_cspp_metadata_recovered' INSTRUMENT_RECOVERED = 'parad_j_cspp_instrument_recovered' METADATA_TELEMETERED = 'parad_j_cspp_metadata' INSTRUMENT_TELEMETERED = 'parad_j_cspp_instrument' class ParadJCsppParserDataParticleKey(BaseEnum): """ The data particle keys associated with parad_j_cspp data instrument particle parameters """ PROFILER_TIMESTAMP = 'profiler_timestamp' PRESSURE_DEPTH = 'pressure_depth' SUSPECT_TIMESTAMP = 'suspect_timestamp' DATE_STRING = 'date_string' TIME_STRING = 'time_string' PAR = 'par' class ParadJCsppMetadataDataParticle(CsppMetadataDataParticle): """ Base Class for building a parad_j_cspp metadata particle """ def _build_parsed_values(self): """ Take something in the data format and turn it into an array of dictionaries defining the data in the particle with the appropriate tag. @throws SampleException If there is a problem with sample creation """ results = [] try: # Append the base metadata parsed values to the results to return results += self._build_metadata_parsed_values() data_match = self.raw_data[MetadataRawDataKey.DATA_MATCH] # Set the internal timestamp internal_timestamp_unix = numpy.float(data_match.group( DataMatchesGroupNumber.PROFILER_TIMESTAMP)) self.set_internal_timestamp(unix_time=internal_timestamp_unix) except (ValueError, TypeError, IndexError) as ex: log.warn("Exception when building parsed values") raise RecoverableSampleException( "Error (%s) while decoding parameters in data: [%s]" % (ex, self.raw_data)) return results class ParadJCsppMetadataRecoveredDataParticle(ParadJCsppMetadataDataParticle): """ Class for building a parad_j_cspp recovered metadata particle """ _data_particle_type = DataParticleType.METADATA_RECOVERED class ParadJCsppMetadataTelemeteredDataParticle(ParadJCsppMetadataDataParticle): """ Class for building a parad_j_cspp telemetered metadata particle """ _data_particle_type = DataParticleType.METADATA_TELEMETERED class ParadJCsppInstrumentDataParticle(DataParticle): """ Base Class for building a parad_j_cspp instrument data particle """ def _build_parsed_values(self): """ Take something in the data format and turn it into an array of dictionaries defining the data in the particle with the appropriate tag. @throws SampleException If there is a problem with sample creation """ results = [] try: results.append(self._encode_value(ParadJCsppParserDataParticleKey.PROFILER_TIMESTAMP, self.raw_data.group(DataMatchesGroupNumber.PROFILER_TIMESTAMP), numpy.float)) results.append(self._encode_value(ParadJCsppParserDataParticleKey.PRESSURE_DEPTH, self.raw_data.group(DataMatchesGroupNumber.DEPTH), float)) results.append(self._encode_value(ParadJCsppParserDataParticleKey.SUSPECT_TIMESTAMP, self.raw_data.group(DataMatchesGroupNumber.SUSPECT_TIMESTAMP), encode_y_or_n)) results.append(self._encode_value(ParadJCsppParserDataParticleKey.DATE_STRING, self.raw_data.group(DataMatchesGroupNumber.DATE), str)) results.append(self._encode_value(ParadJCsppParserDataParticleKey.TIME_STRING, self.raw_data.group(DataMatchesGroupNumber.TIME), str)) results.append(self._encode_value(ParadJCsppParserDataParticleKey.PAR, self.raw_data.group(DataMatchesGroupNumber.PAR), int)) # Set the internal timestamp internal_timestamp_unix = numpy.float(self.raw_data.group( DataMatchesGroupNumber.PROFILER_TIMESTAMP)) self.set_internal_timestamp(unix_time=internal_timestamp_unix) except (ValueError, TypeError, IndexError) as ex: log.warn("Exception when building parsed values") raise RecoverableSampleException( "Error (%s) while decoding parameters in data: [%s]" % (ex, self.raw_data)) return results class ParadJCsppInstrumentRecoveredDataParticle(ParadJCsppInstrumentDataParticle): """ Class for building a parad_j_cspp recovered instrument data particle """ _data_particle_type = DataParticleType.INSTRUMENT_RECOVERED class ParadJCsppInstrumentTelemeteredDataParticle(ParadJCsppInstrumentDataParticle): """ Class for building a parad_j_cspp telemetered instrument data particle """ _data_particle_type = DataParticleType.INSTRUMENT_TELEMETERED class ParadJCsppParser(CsppParser): def __init__(self, config, stream_handle, exception_callback): """ This method is a constructor that will instantiate an ParadJCsppParser object. @param config The configuration for this ParadJCsppParser parser @param stream_handle The handle to the data stream containing the parad_j_cspp data @param exception_callback The function to call to report exceptions """ # Call the superclass constructor super(ParadJCsppParser, self).__init__(config, stream_handle, exception_callback, DATA_REGEX, ignore_matcher=IGNORE_MATCHER)
1.796875
2
odoo-13.0/addons/website_slides_survey/models/slide_slide.py
VaibhavBhujade/Blockchain-ERP-interoperability
0
12782764
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models class SlidePartnerRelation(models.Model): _inherit = 'slide.slide.partner' user_input_ids = fields.One2many('survey.user_input', 'slide_partner_id', 'Certification attempts') survey_quizz_passed = fields.Boolean('Certification Quizz Passed', compute='_compute_survey_quizz_passed', store=True) @api.depends('partner_id', 'user_input_ids.quizz_passed') def _compute_survey_quizz_passed(self): passed_user_inputs = self.env['survey.user_input'].sudo().search([ ('slide_partner_id', 'in', self.ids), ('quizz_passed', '=', True) ]) passed_slide_partners = passed_user_inputs.mapped('slide_partner_id') for record in self: record.survey_quizz_passed = record in passed_slide_partners @api.model_create_multi def create(self, vals_list): res = super(SlidePartnerRelation, self).create(vals_list) completed = res.filtered('survey_quizz_passed') if completed: completed.write({'completed': True}) return res def _write(self, vals): res = super(SlidePartnerRelation, self)._write(vals) if vals.get('survey_quizz_passed'): self.sudo().write({'completed': True}) return res class Slide(models.Model): _inherit = 'slide.slide' slide_type = fields.Selection(selection_add=[('certification', 'Certification')]) survey_id = fields.Many2one('survey.survey', 'Certification') nbr_certification = fields.Integer("Number of Certifications", compute='_compute_slides_statistics', store=True) _sql_constraints = [ ('check_survey_id', "CHECK(slide_type != 'certification' OR survey_id IS NOT NULL)", "A slide of type 'certification' requires a certification."), ('check_certification_preview', "CHECK(slide_type != 'certification' OR is_preview = False)", "A slide of type certification cannot be previewed."), ] @api.onchange('survey_id') def _on_change_survey_id(self): if self.survey_id: self.slide_type = 'certification' @api.model def create(self, values): rec = super(Slide, self).create(values) if rec.survey_id: rec.slide_type = 'certification' return rec def _generate_certification_url(self): """ get a map of certification url for certification slide from `self`. The url will come from the survey user input: 1/ existing and not done user_input for member of the course 2/ create a new user_input for member 3/ for no member, a test user_input is created and the url is returned Note: the slide.slides.partner should already exist We have to generate a new invite_token to differentiate pools of attempts since the course can be enrolled multiple times. """ certification_urls = {} for slide in self.filtered(lambda slide: slide.slide_type == 'certification' and slide.survey_id): if slide.channel_id.is_member: user_membership_id_sudo = slide.user_membership_id.sudo() if user_membership_id_sudo.user_input_ids: last_user_input = next(user_input for user_input in user_membership_id_sudo.user_input_ids.sorted( lambda user_input: user_input.create_date, reverse=True )) certification_urls[slide.id] = last_user_input._get_survey_url() else: user_input = slide.survey_id.sudo()._create_answer( partner=self.env.user.partner_id, check_attempts=False, **{ 'slide_id': slide.id, 'slide_partner_id': user_membership_id_sudo.id }, invite_token=self.env['survey.user_input']._generate_invite_token() ) certification_urls[slide.id] = user_input._get_survey_url() else: user_input = slide.survey_id.sudo()._create_answer( partner=self.env.user.partner_id, check_attempts=False, test_entry=True, **{ 'slide_id': slide.id } ) certification_urls[slide.id] = user_input._get_survey_url() return certification_urls
2.125
2
pacote-download/Exercicios/Desafio100.py
lucasdmazon/CursoVideo_Python
0
12782765
from random import randint from time import sleep def sorteia(lst): print('Sorteando 5 valores da lista: ', end='') for i in range(0, 5): num = randint(1, 10) lst.append(num) print(num, end=' ') sleep(0.5) print('PRONTO!') def somaPar(lst): soma = 0 for i in lst: if i % 2 == 0: soma += i print(f'Somando os valores pares de {lst}, temos {soma}') numeros = list() sorteia(numeros) somaPar(numeros)
3.6875
4
plugins/viewcam.py
komoto48g/wxpj
0
12782766
#! python # -*- coding: utf-8 -*- ## import time import wx import cv2 import numpy as np from mwx.controls import Param, LParam from mwx.controls import ToggleButton, Choice from mwx.graphman import Layer, Thread import editor as edi class Plugin(Layer): """Plugins of camera viewer """ menu = "Cameras" menustr = "Camera &viewer" camerasys = property(lambda self: self.camera_selector.value) cameraman = property(lambda self: self.parent.require(self.camerasys)) def Init(self): self.viewer = Thread(self) self.button = ToggleButton(self, "View camera", icon='cam', handler=lambda v: self.viewer.Start(self.run) if v.IsChecked() else self.viewer.Stop()) self.rate_param = LParam('rate', (100,500,100), 500, tip="refresh speed [ms] (>= 100ms)") self.size_param = Param('size', (128,256,512,1024), 512, tip="resizing view window (<= 1k)") self.camera_selector = Choice(self, choices=['JeolCamera', 'RigakuCamera'], readonly=1) self.layout(( self.button, ), ) self.layout(( self.rate_param, self.size_param, self.camera_selector, ), title="Setting", row=1, show=0, type='vspin', lw=40, tw=40, cw=-1 ) def init_session(self, session): self.rate_param.value = session.get('rate') self.size_param.value = session.get('size') self.camera_selector.value = session.get('camera') def save_session(self, session): session.update({ 'rate': self.rate_param.value, 'size': self.size_param.value, 'camera': self.camera_selector.value, }) def Destroy(self): if self.viewer.is_active: self.viewer.Stop() return Layer.Destroy(self) def run(self): try: title = self.__module__ if not self.cameraman: print(self.message("- Camera manager is not selected.")) return while self.viewer.is_active: src = edi.imconv(self.cameraman.capture()) h, w = src.shape H = self.size_param.value W = H * w // h dst = cv2.resize(src, (W, H), interpolation=cv2.INTER_AREA) ## dst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) ## 照準サークルを xor で足し合わせる if 1: ## lines and circles with color:cyan #00c0c0 ## c = (192,192,0) c = 255 cx, cy = W//2, H//2 buf = np.zeros((H, W), dtype=dst.dtype) ## buf = np.resize(0, (H, W)).astype(dst.dtype) cv2.line(buf, (0, cy), (W, cy), c, 1) cv2.line(buf, (cx, 0), (cx, H), c, 1) cv2.circle(buf, (cx, cy), cx//2, c, 1) cv2.circle(buf, (cx, cy), cx//4, c, 1) dst = cv2.bitwise_xor(buf, dst) cv2.imshow(title, dst) cv2.waitKey(self.rate_param.value) if cv2.getWindowProperty(title, 0) < 0: self.button.Value = False self.viewer.Stop() break finally: cv2.destroyAllWindows() if __name__ == '__main__': from plugins import JeolCamera, RigakuCamera from mwx.graphman import Frame app = wx.App() frm = Frame(None) frm.load_plug(__file__, show=1) frm.load_plug(JeolCamera, show=0) frm.load_plug(RigakuCamera, show=0) frm.Show() app.MainLoop()
2.1875
2
stib_administraciones/personales/models.py
nfheredia/stib-administraciones
0
12782767
<reponame>nfheredia/stib-administraciones<filename>stib_administraciones/personales/models.py<gh_stars>0 from django.db import models from ..core.models import TimeStampedModel class Personales(TimeStampedModel): """ Modelo para almacenar los diferentes tipos de personales que trabajan en un edificio. Ej: Portero, Limpieza, Seguridad """ nombre = models.CharField(blank=False, max_length=150, null=False, verbose_name='Tipo de Personal', help_text='Ej: Portero, Limpieza, Seguridad', unique=True) comentario = models.TextField(blank=True, verbose_name='Comentario') def __unicode__(self): """ Muestro el nombre """ return self.nombre class Meta: verbose_name = 'Personal de edificios' verbose_name_plural = 'Personal de edificios'
2.0625
2
migrations/versions/57beb47d38d3_init.py
Bloodielie/trip_counter
0
12782768
<filename>migrations/versions/57beb47d38d3_init.py """init Revision ID: 57beb47d38d3 Revises: Create Date: 2021-12-02 18:11:42.551720 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '57<PASSWORD>4<PASSWORD>3' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('fuels', sa.Column('id', sa.Integer(), nullable=False), sa.Column('price', sa.Numeric(precision=15, scale=6), nullable=True), sa.Column('identifier', sa.String(length=150), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_fuels_identifier'), 'fuels', ['identifier'], unique=True) op.create_table('roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('codename', sa.String(length=64), nullable=False), sa.Column('description', sa.String(length=256), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_roles_codename'), 'roles', ['codename'], unique=True) op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('telegram_id', sa.Integer(), nullable=True), sa.Column('balance', sa.Numeric(precision=15, scale=6), nullable=True), sa.Column('identifier', sa.String(length=250), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_users_identifier'), 'users', ['identifier'], unique=True) op.create_index(op.f('ix_users_telegram_id'), 'users', ['telegram_id'], unique=True) op.create_table('autos', sa.Column('id', sa.Integer(), nullable=False), sa.Column('multiplier', sa.Float(), nullable=True), sa.Column('consumption', sa.Float(), nullable=True), sa.Column('identifier', sa.String(length=150), nullable=True), sa.Column('owner', sa.Integer(), nullable=True), sa.Column('fuel', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['fuel'], ['fuels.id'], ), sa.ForeignKeyConstraint(['owner'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_autos_fuel'), 'autos', ['fuel'], unique=False) op.create_index(op.f('ix_autos_identifier'), 'autos', ['identifier'], unique=False) op.create_table('invites', sa.Column('id', sa.Integer(), nullable=False), sa.Column('creator', sa.Integer(), nullable=True), sa.Column('invited', sa.Integer(), nullable=True), sa.Column('hash', sa.String(length=64), nullable=False), sa.Column('user_identifier', sa.String(length=32), nullable=True), sa.ForeignKeyConstraint(['creator'], ['users.id'], ), sa.ForeignKeyConstraint(['invited'], ['users.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('user_identifier') ) op.create_index(op.f('ix_invites_hash'), 'invites', ['hash'], unique=False) op.create_table('transactions', sa.Column('id', sa.Integer(), nullable=False), sa.Column('date', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True), sa.Column('amount', sa.Numeric(precision=15, scale=6), nullable=True), sa.Column('sender', sa.Integer(), nullable=True), sa.Column('receiver', sa.Integer(), nullable=True), sa.Column('is_active', sa.Boolean(), nullable=True), sa.ForeignKeyConstraint(['receiver'], ['users.id'], ), sa.ForeignKeyConstraint(['sender'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_transactions_is_active'), 'transactions', ['is_active'], unique=False) op.create_table('users_roles', sa.Column('user', sa.Integer(), nullable=False), sa.Column('role', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['role'], ['roles.id'], ), sa.ForeignKeyConstraint(['user'], ['users.id'], ), sa.PrimaryKeyConstraint('user', 'role') ) op.create_table('trips', sa.Column('id', sa.Integer(), nullable=False), sa.Column('driver', sa.Integer(), nullable=True), sa.Column('distance', sa.Float(), nullable=True), sa.Column('cost', sa.Numeric(precision=15, scale=6), nullable=True), sa.Column('auto', sa.Integer(), nullable=True), sa.Column('date', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=True), sa.Column('is_deleted', sa.Boolean(), nullable=True), sa.ForeignKeyConstraint(['auto'], ['autos.id'], ), sa.ForeignKeyConstraint(['driver'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_trips_auto'), 'trips', ['auto'], unique=False) op.create_index(op.f('ix_trips_driver'), 'trips', ['driver'], unique=False) op.create_index(op.f('ix_trips_is_deleted'), 'trips', ['is_deleted'], unique=False) op.create_table('trip_passengers', sa.Column('passenger', sa.Integer(), nullable=False), sa.Column('trip', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['passenger'], ['users.id'], ), sa.ForeignKeyConstraint(['trip'], ['trips.id'], ), sa.PrimaryKeyConstraint('passenger', 'trip') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('trip_passengers') op.drop_index(op.f('ix_trips_is_deleted'), table_name='trips') op.drop_index(op.f('ix_trips_driver'), table_name='trips') op.drop_index(op.f('ix_trips_auto'), table_name='trips') op.drop_table('trips') op.drop_table('users_roles') op.drop_index(op.f('ix_transactions_is_active'), table_name='transactions') op.drop_table('transactions') op.drop_index(op.f('ix_invites_hash'), table_name='invites') op.drop_table('invites') op.drop_index(op.f('ix_autos_identifier'), table_name='autos') op.drop_index(op.f('ix_autos_fuel'), table_name='autos') op.drop_table('autos') op.drop_index(op.f('ix_users_telegram_id'), table_name='users') op.drop_index(op.f('ix_users_identifier'), table_name='users') op.drop_table('users') op.drop_index(op.f('ix_roles_codename'), table_name='roles') op.drop_table('roles') op.drop_index(op.f('ix_fuels_identifier'), table_name='fuels') op.drop_table('fuels') # ### end Alembic commands ###
1.789063
2
app/main/hs_api_log_forms.py
RRRoger/MyWebserver-flask
20
12782769
<filename>app/main/hs_api_log_forms.py from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, SelectField, PasswordField, IntegerField, TextAreaField, BooleanField from wtforms.validators import DataRequired, EqualTo, Length class HsApiLogSearch(FlaskForm): methods = [ ('url', 'URL'), ('create_uid', 'Create User'), ('is_success', 'Is Success'), ('remote_addr', 'Remote Address'), ] method = SelectField(choices=methods, validators=[DataRequired(message=u'名称不能为空')], coerce=str) content = StringField() submit = SubmitField('搜索') class HsApiLogForm(FlaskForm): record_id = IntegerField(validators=[]) url = StringField() remote_addr = StringField() is_success = BooleanField() form_body = TextAreaField() data_body = TextAreaField() file_body = TextAreaField() response_body = TextAreaField() create_date = StringField() create_user_name = StringField()
2.578125
3
django_project/weatherapp/settings_dev.py
bbsoft0/weather
1
12782770
<filename>django_project/weatherapp/settings_dev.py """local runserver settings""" import os from .settings import BASE_DIR # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "<KEY>" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.path.join(BASE_DIR, "db.sqlite3"), } } # Static Files STATIC_ROOT = os.path.join(BASE_DIR, "static") STATIC_URL = "/static/"
2
2
psana/psana/detector/test_xx_ipython.py
ZhenghengLi/lcls2
16
12782771
def test_ipython(): print('DATA FILE IS AVAILABLE ON drp-ued-cmp001 ONLY') #from psana.pyalgos.generic.NDArrUtils import info_ndarr from psana import DataSource ds = DataSource(files='/u2/pcds/pds/ued/ueddaq02/xtc/ueddaq02-r0028-s000-c000.xtc2') run = next(ds.runs()) det = run.Detector('epixquad') step = next(run.steps()) evt = next(step.events()) v = det.step.value(evt) d = det.step.docstring(evt) detsd = run.Detector('step_docstring') #Out[6]: <psana.detector.envstore.scan_raw_2_0_0 at 0x7f1a24735c10> detsv = run.Detector('step_value') #Out[8]: <psana.detector.envstore.scan_raw_2_0_0 at 0x7f1a0b205c10> from psana import DataSource ds = DataSource(exp='tmoc00118', run=123, max_events=100) run = next(ds.runs()) det = run.Detector('tmoopal') print('run.dsparms.det_classes dict content:\n %s' % str(run.dsparms.det_classes)) run = None evt = None from psana import DataSource ds = DataSource(exp='ascdaq18', run=24, max_events=100) print('ds.xtc_files:\n ', '\n '.join(ds.xtc_files)) for irun,run in enumerate(ds.runs()): print('\n==== %02d run: %d exp: %s detnames: %s' % (irun, run.runnum, run.expt, ','.join(run.detnames))) det = run.Detector('epixhr') print('det.raw._fullname :', det.raw._fullname()) for istep,step in enumerate(run.steps()): print('\nStep %02d' % istep, type(step), end='') for ievt,evt in enumerate(step.events()): if ievt>10: continue #exit('exit by number of events limit %d' % args.evtmax) print('\n Event %02d' % (ievt)) st = evt.run().step(evt) print('XXX dir(st):', dir(st))
2.15625
2
validate_infrastruture.py
dell-ai-engineering/BigDL4CDSW
2
12782772
import os import os.path from IPython.display import display, HTML def html_log(message,tag="H1", color="black",center=False): if center: display(HTML('<{tag}> <center> <font color="{color}"> {message}</font></center></{tag}>'.format(tag=tag, message=message,color=color))) else: display(HTML('<{tag}> <font color="{color}"> {message}</font></{tag}>'.format(tag=tag, message=message,color=color))) def html_table(data): display(HTML( '<table style="border: 1px solid black" ><tr>{}</tr></table>'.format( '</tr><tr style="border: 1px solid black">'.join( '<td style="border: 1px solid black">{}</td>'.format('</td><td>'.join(str(_) for _ in row)) for row in data) ) )) html_log("Checking BigDL Environment",center=True) def check_env(env_var): if env_var not in os.environ: display(HTML('<H2 <font color="red">{0} Environment variable not set </font></H2>'.format(env_var))) return False env_paths = os.environ.get(env_var).split(':') if not all([ os.path.isfile(p) for p in env_paths ] ): display(HTML("<H3> <font color=\"red\"> {0} Environment set ,but one of the paths not present</font></H2>".format(env_var))) return False else: html_log("Succesfully checked for {0}".format(env_var), 'p', 'gree') #display(HTML("<H3> <font color='green'> </font></H3>".format(env_var))) print "{}=={}".format(env_var, os.environ.get(env_var)) return True for bigdl_var in ['BigDL_JAR_PATH', 'PYTHONPATH']: check_env(bigdl_var) try: from bigdl.util.common import * from bigdl.nn.layer import * import bigdl.version except: html_log('Unable to import BigDL Libary', 'p', 'red') else: html_log(" BigDL Python Library Imported",'p','gree') #display(HTML('<H3> <font color="green"> BigDL Python Library Imported </font></H3>')) try: from pyspark import SparkContext sc = SparkContext.getOrCreate(conf=create_spark_conf().setMaster("local[*]")) except: html_log('Unable to open get a spark context', 'p', 'red') #display(HTML('<H3> <font color="red">Unable to open Spark context </font></H3>')) else: html_log('Got a spark context handle', 'p', 'gree') #display(HTML('<H3> <font color="green">Spark Context created </font></H3>')) html_table(sc._conf.getAll()) try: init_engine() # prepare the bigdl environment except: html_log('Unable to Initialize BigDL Engine', 'p', 'red') else: html_log('BigDL Engine initialized , Good to go ....', 'p', 'gree') print "BigDL Version : {} ".format(bigdl.version.__version__) ;
2.609375
3
Python/NeonOcean.S4.Main/NeonOcean/S4/Main/Director.py
NeonOcean/Main
1
12782773
from __future__ import annotations import typing import clock import zone from NeonOcean.S4.Main import Mods, This from NeonOcean.S4.Main.Tools import Exceptions from protocolbuffers import FileSerialization_pb2 from server import client as clientModule from sims4 import service_manager from sims4.tuning import instance_manager _announcers = list() # type: typing.List[typing.Type[Announcer]] class Announcer: Host = This.Mod # type: Mods.Mod Enabled = True # type: bool Reliable = False # type: bool # Whether the announcer will be called if the host is disabled. Preemptive = False # type: bool # Whether the annoucnment methods are called before or after the function they are announcing. _priority = 0 # type: float # Higher priority announcers will run before lower priority ones. def __init_subclass__ (cls, **kwargs): SetupAnnouncer(cls) @classmethod def GetPriority (cls) -> float: return cls._priority @classmethod def SetPriority (cls, value) -> None: cls._priority = value _SortAnnouncer() @classmethod def InstanceManagerOnStart (cls, instanceManager: instance_manager.InstanceManager) -> None: pass @classmethod def InstanceManagerLoadDataIntoClassInstances (cls, instanceManager: instance_manager.InstanceManager) -> None: pass @classmethod def InstanceManagerOnStop (cls, instanceManager: instance_manager.InstanceManager) -> None: pass @classmethod def OnLoadingScreenAnimationFinished (cls, zoneReference: zone.Zone) -> None: pass @classmethod def OnClientConnect (cls, clientReference: clientModule.Client) -> None: pass @classmethod def OnClientDisconnect (cls, clientReference: clientModule.Client) -> None: pass @classmethod def OnEnterMainMenu (cls) -> None: pass @classmethod def ZoneLoad (cls, zoneReference: zone.Zone) -> None: pass @classmethod def ZoneSave (cls, zoneReference: zone.Zone, saveSlotData: typing.Optional[FileSerialization_pb2.SaveSlotData] = None) -> None: pass @classmethod def ZoneStartServices (cls, zoneReference: zone.Zone, gameplayZoneData: FileSerialization_pb2.GameplayData, saveSlotData: FileSerialization_pb2.SaveSlotData) -> None: pass @classmethod def ZoneOnToreDown (cls, zoneReference: zone.Zone, clientReference: clientModule.Client) -> None: pass @classmethod def ZoneUpdate (cls, zoneReference: zone.Zone, absoluteTicks: int) -> None: pass @classmethod def ServiceManagerOnZoneLoad (cls, zoneManager: service_manager.ServiceManager) -> None: pass @classmethod def ServiceManagerOnZoneUnload (cls, zoneManager: service_manager.ServiceManager) -> None: pass @classmethod def GameClockTickGameClock (cls, gameClock: clock.GameClock, absoluteTicks: int) -> None: pass def GetAllAnnouncers () -> typing.List[typing.Type[Announcer]]: return list(_announcers) def SetupAnnouncer (announcer: typing.Type[Announcer]) -> None: if not isinstance(announcer, type): raise Exceptions.IncorrectTypeException(announcer, "announcer", (type,)) if not issubclass(announcer, Announcer): raise Exceptions.DoesNotInheritException("announcer", (Announcer,)) if announcer in _announcers: return _Register(announcer) _SortAnnouncer() def _Register (announcer: typing.Type[Announcer]) -> None: if not announcer in _announcers: _announcers.append(announcer) def _SortAnnouncer () -> None: global _announcers announcersCopy = _announcers.copy() # type: typing.List[typing.Type[Announcer]] sortedAnnouncers = list() for loopCount in range(len(announcersCopy)): # type: int targetIndex = None # type: typing.Optional[int] for currentIndex in range(len(announcersCopy)): if targetIndex is None: targetIndex = currentIndex continue if -announcersCopy[currentIndex].GetPriority() != -announcersCopy[targetIndex].GetPriority(): if -announcersCopy[currentIndex].GetPriority() < -announcersCopy[targetIndex].GetPriority(): targetIndex = currentIndex continue else: if announcersCopy[currentIndex].__module__ < announcersCopy[targetIndex].__module__: targetIndex = currentIndex continue sortedAnnouncers.append(announcersCopy[targetIndex]) announcersCopy.pop(targetIndex) _announcers = sortedAnnouncers
2.09375
2
preprocess_scripts/group.py
ictnlp/STEMM
11
12782774
<gh_stars>10-100 import os import shutil import argparse parser = argparse.ArgumentParser() parser.add_argument("--lang", help="target language") args = parser.parse_args() splits = ['dev', 'tst-COMMON', 'tst-HE', 'train'] root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) seg_path = os.path.join(root, 'data', 'mustc', f'en-{args.lang}', 'segment') for split in splits: split_path = os.path.join(seg_path, split) for f in os.listdir(split_path): if f.startswith('ted'): speaker = f.split('_')[1] speaker_dir = os.path.join(split_path, speaker) os.makedirs(speaker_dir, exist_ok=True) shutil.move(os.path.join(split_path, f), speaker_dir)
2.421875
2
1556_thousand_separator.py
claytonjwong/leetcode-py
1
12782775
# # 1556. Thousand Separator # # Q: https://leetcode.com/problems/thousand-separator/ # A: https://leetcode.com/problems/thousand-separator/discuss/805674/Javascript-Python3-C%2B%2B-1-Liners # class Solution: def thousandSeparator(self, n: int) -> str: return str(n) if n < 1000 else self.thousandSeparator(n // 1000) + '.' + str(n % 1000).zfill(3)
3.203125
3
rest_models/backend/utils.py
matheusmatos/django-rest-models
61
12782776
<reponame>matheusmatos/django-rest-models<gh_stars>10-100 # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import logging logger = logging.getLogger(__name__) def message_from_response(response): return "[%d]%s" % ( response.status_code, response.text if '<!DOCTYPE html>' not in response.text[:30] else response.reason ) try: from django.contrib.postgres.fields import JSONField as JSONFieldLegacy except ImportError: def JSONField(*args, **kwargs): return None else: class JSONField(JSONFieldLegacy): def get_prep_value(self, value): return value
2.078125
2
main.py
keygen-sh/example-python-activation-proof-verification
2
12782777
<reponame>keygen-sh/example-python-activation-proof-verification from cryptography.hazmat.primitives import serialization, hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.backends import default_backend from cryptography.exceptions import InvalidSignature import base64 import sys import os # Cryptographically verify the activation proof using our public key def verify_activation_proof(activation_proof): assert activation_proof, 'activation proof is missing' # Split Activation proof to obtain a dataset and signature, then decode # base64url encoded values signing_data, enc_sig = activation_proof.split('.') signing_prefix, enc_proof = signing_data.split('/') assert signing_prefix == 'proof', 'activation proof prefix %s is invalid' % signing_prefix proof = base64.urlsafe_b64decode(enc_proof) sig = base64.urlsafe_b64decode(enc_sig) # Load the PEM formatted public key from the environment pub_key = serialization.load_pem_public_key( os.environ['KEYGEN_PUBLIC_KEY'].encode(), backend=default_backend() ) # Verify the proof try: pub_key.verify( sig, ("proof/%s" % enc_proof).encode(), padding.PKCS1v15(), hashes.SHA256() ) print('[INFO] Activation proof contents: %s' % proof) return True except (InvalidSignature, TypeError): return False try: ok = verify_activation_proof( sys.argv[1] ) except AssertionError as e: print('[ERROR] %s' % e) sys.exit(1) except Exception as e: print('[ERROR] cryptography: %s' % e) sys.exit(1) if ok: print('[OK] Activation proof is authentic!') sys.exit(0) else: print('[ERROR] Activation proof is not authentic!') sys.exit(1)
3.078125
3
tests/models.py
ckirby/django-model-ident
2
12782778
from django.db import models class BaseManagerModel(models.Model): @classmethod def create(cls): return cls.objects.create() class TestManager(models.Manager): def get_queryset(self): return super(TestManager, self).get_queryset().none() class RenameManagerModel(models.Model): instances = models.Manager() @classmethod def create(cls): return cls.instances.create() class ReplaceManagerModel(models.Model): objects = TestManager() @classmethod def create(cls): return cls.objects.create() class MultipleManagerModel(models.Model): objects = models.Manager() instances = TestManager() @classmethod def create(cls): return cls.objects.create()
2.21875
2
Poisson_S1_hypersphere.py
zhang-liu-official/project3-pinn-test
0
12782779
<filename>Poisson_S1_hypersphere.py """Backend supported: tensorflow.compat.v1""" import deepxde as dde import xde as xde import numpy as np import matplotlib import matplotlib.pyplot as plt import random from deepxde.backend import tf ## useful reference: https://en.wikipedia.org/wiki/Laplace_operator#Coordinate_expressions ## Laplacian-beltrami operator in spherical coordinates for 2-sphere: ## https://en.wikipedia.org/wiki/Laplace%E2%80%93Beltrami_operator#Examples # note thta u (the solution) is the y here! def pde(x, y): ## Poisson vs Laplacian: only diff is the rhs is f(x) vs 0 # (X1, X2) = (x,y) = (cos(theta), sin(theta)) X1, X2= x[:, 0], x[:,1] X1 = tf.reshape(X1, (X1.shape[0],1)) X2 = tf.reshape(X2, (X2.shape[0],1)) dy_xx = dde.grad.hessian(y, x, i=0, j=0) dy_yy = dde.grad.hessian(y, x, i=1, j=1) lhs = dy_xx + dy_yy # sin(theta) rhs = X2 return lhs - rhs def boundary(x, on_boundary): ## (Note that because of rounding-off errors, it is often wise to use np.isclose to test whether two floating point values are equivalent.) return on_boundary def solution(x): # (X1, X2) = (x,y) = (cos(theta), sin(theta)) X1, X2= x[:, 0], x[:,1] X1 = tf.reshape(X1, (X1.shape[0],1)) X2 = tf.reshape(X2, (X2.shape[0],1)) ## if laplacian, the solution is: # return r * np.cos(theta) ##-np.sin(theta) return -X2 # Use [r*sin(theta), r*cos(theta)] as features, # so that the network is automatically periodic along the theta coordinate. # Backend tensorflow.compat.v1 or tensorflow # def feature_transform(x): # return tf.concat( # [tf.sin(x[:]), tf.cos(x[:])], axis=1 ## since r = 1 # ) def main(): # geom = dde.geometry.Rectangle(xmin=[0, 0], xmax=[1, 2 * np.pi]) # unit sphere centered at (0,0,0) (radius = 1) # geom = dde.geometry.geometry_nd.Hypersphere([0,0], radius = 1) geom = xde.geometry.geometry_nd.Hypersphere([0,0], radius = 1) ## BC: u(0) = u(2 * pi) bc = xde.ZeroLossBC( geom, lambda x: x, boundary, ) # bc = xde.ZeroLossBC(geom, func, boundary) data = dde.data.PDE( geom, pde, [bc], num_domain=400, num_boundary=0, num_test = 80, solution = solution) ## original NN parameters net = dde.maps.FNN([2] + [500] + [1], "tanh", "Glorot uniform") ## over-parameterized # net = dde.maps.FNN([2] + [1200]*2 + [1], "tanh", "Glorot uniform") # net.apply_feature_transform(feature_transform) model = dde.Model(data, net) model.compile("adam", lr=0.001, metrics=["l2 relative error"]) losshistory, train_state = model.train(epochs=15000) dde.saveplot(losshistory, train_state, issave=True, isplot=True) ## uniform_points not implemented for hypersphere. test data used random_points instead, following distribution defined here: https://mathworld.wolfram.com/DiskPointPicking.html X = geom.uniform_points(1000) # X = feature_transform(X) y_true = solution(X) # y_pred is PDE residual y_pred = model.predict(X, operator = pde) print("L2 relative error:", dde.metrics.l2_relative_error(y_true, y_pred)) y_true = y_true.reshape((y_true.shape[0],1)) y_pred = y_pred.reshape((y_pred.shape[0],1)) np.savetxt("test.dat", np.hstack((X,y_true, y_pred))) if __name__ == "__main__": main()
2.734375
3
invest/tests/test_template_tags.py
uktrade/invest
1
12782780
<filename>invest/tests/test_template_tags.py<gh_stars>1-10 from unittest.mock import call, Mock, patch import pytest from invest.templatetags.language_tags import change_lang_with_querystring @pytest.mark.parametrize( 'change_lang_response,expected_response', [ ('', ''), ('foo?bar=hello', 'foo?bar=hello&lang=es'), ('foo', 'foo?lang=es') ] ) def test_change_lang_with_querystring(change_lang_response, expected_response): with patch( 'invest.templatetags.language_tags.change_lang' ) as mocked_change_lang: context = Mock() mocked_change_lang.return_value = change_lang_response response = change_lang_with_querystring(context, 'es') assert response == expected_response assert mocked_change_lang.call_args == call(context, 'es')
2.578125
3
tensorflow/stream_executor/cl/test/test_random.py
salvatoretrimarchi/tf-coriander
0
12782781
from __future__ import print_function import tensorflow as tf import numpy as np import pytest import sys from tensorflow.python.ops import array_ops shapes = [ (3, 4), (50, 70, 12) ] seed = 123 def _test_random_func(func_name, shape): print('func_name', func_name) func = eval(func_name) with tf.Graph().as_default(): with tf.device('/cpu:0'): W_t = tf.Variable(func(shape, seed=seed)) with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess: sess.run(tf.initialize_all_variables()) W_cpu = sess.run(W_t) with tf.device('/gpu:0'): W_t = tf.Variable(func(shape, seed=seed)) with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess: sess.run(tf.initialize_all_variables()) W_gpu = sess.run(W_t) if np.prod(np.array(shape)) < 20: print('W_cpu', W_cpu) print('W_gpu', W_gpu) else: print('W_cpu.reshape(-1)[:20]', W_cpu.reshape(-1)[:20]) print('W_gpu.reshape(-1)[:20]', W_gpu.reshape(-1)[:20]) assert np.all(np.abs(W_cpu - W_gpu) < 1e-4) @pytest.mark.parametrize( 'shape', shapes) def test_random_normal(shape): _test_random_func('tf.random_normal', shape) @pytest.mark.parametrize( 'shape', shapes) def test_random_uniform(shape): _test_random_func('tf.random_uniform', shape) @pytest.mark.parametrize( 'shape', shapes) @pytest.mark.skip(reason='Causes abort currently') def test_truncated_normal(shape): _test_random_func('tf.truncated_normal', shape) if __name__ == '__main__': if len(sys.argv) == 1: print('Please run using py.test') else: eval('%s((3, 4))' % sys.argv[1])
2.234375
2
gpycharts.py
diotrahenriyan/goopycharts
0
12782782
<reponame>diotrahenriyan/goopycharts # To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% [markdown] # # Creating Graphs with Python and GooPyCharts # Source: [datascience+](https://datascienceplus.com/creating-graphs-with-python-and-goopycharts/) # %% [markdown] # ## Install gpcharts library # # ```python # pip install gpcharts # ``` # %% [markdown] # ## Our First Graph # # %% from gpcharts import figure my_plot = figure(title='Demo') my_plot.plot([1, 2, 10, 15, 12, 23]) # %% [markdown] # ## Creating a Bar Graph # %% fig3 = figure() xVals = ['Temps','2016-03-20','2016-03-21','2016-03-25','2016-04-01'] yVals = [['Shakuras','Korhal','Aiur'],[10,30,40],[12,28,41],[15,34,38],[8,33,47]] fig3.title = 'Weather over Days' fig3.ylabel = 'Dates' fig3.bar(xVals, yVals) # %% [markdown] # ## Creating Other Types of Graphs # %% my_fig = figure() xVals = ['Dates','2016-03-20','2016-03-21','2016-03-25','2016-04-01'] yVals = [['Shakuras','Korhal','Aiur'],[10,30,40],[12,28,41],[15,34,38],[8,33,47]] my_fig.title = 'Scatter Plot' my_fig.ylabel = 'Temps' my_fig.scatter(xVals, yVals)
3.15625
3
django_sendgrid_tracking/signals.py
MattFanto/django-sendgrid-tracking
5
12782783
from sendgrid_backend.signals import sendgrid_email_sent from django_sendgrid_tracking.mail import create_send_email sendgrid_email_sent.connect(create_send_email)
1.21875
1
nugridpy/regression_tests/ImageCompare/compare_image_entropy.py
NuGrid/NuGridPy
16
12782784
<gh_stars>10-100 from __future__ import print_function from __future__ import division from builtins import range from past.utils import old_div import matplotlib.image as mpimg import matplotlib.pylab as plb import numpy import sys from scipy import stats import glob import os.path import warnings import time def compare_entropy(name_img1,name_img2,method="rmq"): '''Compare two images by the Kullback-Leibler divergence Parameters ---------- name_img1 : string filename of image 1 (png format) name_img2 : string filename of image 2 (png format) Returns ------- S : float Kullback-Leibler divergence S = sum(pk * log(pk / qk), axis=0) Note ---- See http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html ''' img1 = mpimg.imread(name_img1) img2 = mpimg.imread(name_img2) fimg1 = img1.flatten() fimg2 = img2.flatten() if method == "KL-div": eps = 0.0001 S = stats.entropy(fimg2+eps,fimg1+eps) S = numpy.log10(S) elif method == "rmq": fdiff=fimg1-fimg2 fdiff_sqr = fdiff**4 S = (fdiff_sqr.sum())**(old_div(1.,4)) return S,fimg1, fimg2 def compare_images(path = '.'): S_limit = 10. file_list = glob.glob(os.path.join(path, 'Abu*')) file_list_master = glob.glob(os.path.join(path, 'MasterAbu*')) file_list.sort() file_list_master.sort() S=[] print("Identifying images with rmq > "+'%3.1f'%S_limit) ierr_count = 0 for i in range(len(file_list)): this_S,fimg1,fimg2 = compare_entropy(file_list[i],file_list_master[i]) if this_S > S_limit: warnings.warn(file_list[i]+" and "+file_list_master[i]+" differ by "+'%6.3f'%this_S) ierr_count += 1 S.append(this_S) if ierr_count > 0: print("Error: at least one image differs by more than S_limit") sys.exit(1) #print ("S: ",S) #plb.plot(S,'o') #plb.xlabel("image number") #plb.ylabel("modified log KL-divergence to previous image") #plb.show() if __name__ == "__main__": compare_images()
2.3125
2
30_days_leetcode_challenge/MinStack.py
Imipenem/Competitive_Prog_with_Python
0
12782785
class MinStack: def __init__(self): """ initialize your data structure here. """ self.min = [] self.stack = [] def push(self, x: int) -> None: self.stack.insert(0, x) if not self.min or x <= self.min[-1]: # only those <= to actual min must be taken into account, other will be popped before # and wont ever be the minimum self.min.append(x) def pop(self) -> None: if self.min[-1] == self.top(): self.min.pop(-1) self.stack.pop(0) def top(self) -> int: return self.stack[0] def getMin(self) -> int: return self.min[-1] if __name__ == '__main__': minStack = MinStack() minStack.push(-2) minStack.push(0) minStack.push(-3) print(minStack.getMin()) # --> Returns -3. minStack.pop() print(minStack.top()) # --> Returns 0. print(minStack.getMin()) # --> Returns -2.
4.03125
4
contests/kickstart-2021H/p1.py
forewing/lc
0
12782786
def solve(s, f): dist = [100] * 26 avaliable = set(map(lambda c: ord(c) - ord('a'), f)) for i in range(26): if i in avaliable: dist[i] = 0 else: for a in avaliable: dist[i] = min(dist[i], abs(a-i), 26-abs(a-i)) ans = 0 for c in s: ans += dist[ord(c) - ord('a')] return ans if __name__ == "__main__": T = int(input()) for i in range(T): s = input() f = input() print(f"Case #{i+1}: {solve(s, f)}")
2.921875
3
exercises/en/exc_08_04a.py
Lavendulaa/programming-in-python-for-data-science
1
12782787
<reponame>Lavendulaa/programming-in-python-for-data-science import numpy as np # Create 2 lists containing any the same number of elements # Save each as objects named a_list and b_list ____ ____ # Using boolean operators, what is outputted when you test to see if they are equal? ____
3.90625
4
getDailyBhav.py
krthkj/pythonDumps
0
12782788
#!/usr/bin/python import zipfile # read, test zipfile import os, errno # delete file and handle error import urllib2 # download file import datetime # date and time object # deletes the file def silentRemove(filename): try: os.remove(filename) print filename + " removed" except OSError as e: if e.errno != errno.ENOENT: raise e return # checks the zip file def extractZip(bhavZipFile): if os.path.exists(bhavZipFile): try: fileHandler = zipfile.ZipFile(bhavZipFile,'r') if fileHandler.testzip(): raise zipfile.BadZipfile for files in fileHandler.namelist(): fileHandler.extract(files) fileHandler.close() except(zipfile.LargeZipFile, zipfile.BadZipfile) as e: print(e) finally: silentRemove(bhavZipFile) return # Download the zip file def getBhav(bhavDate): downloadUrl = "http://www.bseindia.com/download/BhavCopy/Equity/eq"+bhavDate+"_csv.zip" bhavZipFile="eq"+bhavDate+"_csv.zip" output = open(bhavZipFile,'wb') try: output.write(urllib2.urlopen(downloadUrl).read()) print bhavZipFile+" download success" except (urllib2.URLError, urllib2.HTTPError,ValueError) as e: print(e) print bhavZipFile+" download failed" finally: output.close() return bhavZipFile # Generate today's date ddmmyy def bhavDate (): return datetime.datetime.today().strftime("%d%m%y") # Get History till date # helps in setup of database def bhavHistory(noOfDays): today = datetime.datetime.today() itr=1 while itr != noOfDays: val = (today - datetime.timedelta(days=itr)).strftime("%d%m%y") extractZip(getBhav (val)) itr += 1 return try: bhavHistory(5) extractZip(getBhav(bhavDate())) except KeyboardInterrupt ,e : print e
3.265625
3
aquascope/data_processing/export.py
MicroscopeIT/aquascope_backend
0
12782789
import os import tempfile from aquascope.webserver.data_access.conversions import list_of_item_dicts_to_tsv from aquascope.webserver.data_access.storage.export import upload_export_file def export_items(items, storage_client): with tempfile.TemporaryDirectory() as tmpdirname: local_filepath = os.path.join(tmpdirname, 'features.tsv') list_of_item_dicts_to_tsv(items, local_filepath) return upload_export_file(storage_client, local_filepath)
2.28125
2
retiolum/scripts/adv_graphgen/tinc_graphs/BackwardsReader.py
makefu/painload
9
12782790
import sys import os import string class BackwardsReader: """ Stripped and stolen from : http://code.activestate.com/recipes/120686-read-a-text-file-backwards/ """ def readline(self): while len(self.data) == 1 and ((self.blkcount * self.blksize) < self.size): self.blkcount = self.blkcount + 1 line = self.data[0] try: self.f.seek(-self.blksize * self.blkcount, 2) self.data = string.split(self.f.read(self.blksize) + line, '\n') except IOError: self.f.seek(0) self.data = string.split(self.f.read(self.size - (self.blksize * (self.blkcount-1))) + line, '\n') if len(self.data) == 0: return "" line = self.data[-1] self.data = self.data[:-1] return line + '\n' def __init__(self, file, blksize=4096): """initialize the internal structures""" self.size = os.stat(file)[6] self.blksize = blksize self.blkcount = 1 self.f = open(file, 'rb') if self.size > self.blksize: self.f.seek(-self.blksize * self.blkcount, 2) self.data = string.split(self.f.read(self.blksize), '\n') if not self.data[-1]: self.data = self.data[:-1]
2.921875
3
Desafios/desafio045.py
LucasHenrique-dev/Exercicios-Python
1
12782791
from random import choice from time import sleep print('Vamos jogar \033[32mJokenpô\033[m') escolhas = ['pedra', 'papel', 'tesoura'] computador = choice(escolhas) jogador = str(input('Já escolhi a minha opção, qual a sua jogador \033[34mdesafiante\033[m: ')).strip().lower() while not (jogador in escolhas): jogador = str(input('opção invalida, por favor digite outra: ')).strip().lower() print('Jogada contabilizada, hora de saber o vencedor') sleep(1.5) print('\033[34mJo\033[m...') sleep(1) print('\033[34mKen\033[m...') sleep(1) print('\033[34mPô\033[m!!!') sleep(2) print('\033[1;31mComputador\033[m: \033[1;35m{}\033[m'.format(computador)) print('\033[1;32mJogador\033[m: \033[1;36m{}\033[m'.format(jogador)) if computador == jogador: print('\033[1;33mEMPATE\033[m') elif computador == 'pedra': if jogador == 'tesoura': print('Vitória do \033[1;31mCOMPUTADOR\033[m') else: print('Vitória do \033[1;34mJOGADOR DESAFIANTE\033[m') elif computador == 'papel': if jogador == 'tesoura': print('Vitória do \033[1;34mJOGADOR DESAFIANTE\033[m') else: print('Vitória do \033[1;31mCOMPUTADOR\033[m') elif computador == 'tesoura': if jogador == 'pedra': print('Vitória do \033[1;34mJOGADOR DESAFIANTE\033[m') else: print('Vitória do \033[31mCOMPUTADOR\033[m')
3.71875
4
qftimports.py
Bra-A-Ket/QFTools
1
12782792
#!/usr/bin/env python3 # external packages import os import getopt import sys from time import time import itertools as it import csv from collections import Counter import numpy as np # internal imports from qftoolslib.wick import *
1.109375
1
python/gdal_cookbook/cookbook_geometry/calculate_in_geometry.py
zeroam/TIL
0
12782793
<filename>python/gdal_cookbook/cookbook_geometry/calculate_in_geometry.py from osgeo import ogr """ Calculate Envelope of a Geometry """ wkt = "LINESTRING (1181866.263593049 615654.4222507705, 1205917.1207499576 623979.7189589312, 1227192.8790041457 643405.4112779726, 1224880.2965852122 665143.6860159477)" geom = ogr.CreateGeometryFromWkt(wkt) # Get Envelope return a tuple (minX, maxX, minY, maxY) env = geom.GetEnvelope() print(f'minX:{env[0]}, minY:{env[0]}, maxX:{env[1]}, maxY:{env[3]}') """ Calculate the Area of a Geometry """ wkt = "POLYGON ((1162440.5712740074 672081.4332727483, 1162440.5712740074 647105.5431482664, 1195279.2416228633 647105.5431482664, 1195279.2416228633 672081.4332727483, 1162440.5712740074 672081.4332727483))" poly = ogr.CreateGeometryFromWkt(wkt) print(f'Area = {poly.GetArea()}') """ Calculate the Length of a Geometry """ wkt = "LINESTRING (1181866.263593049 615654.4222507705, 1205917.1207499576 623979.7189589312, 1227192.8790041457 643405.4112779726, 1224880.2965852122 665143.6860159477)" geom = ogr.CreateGeometryFromWkt(wkt) print(f'Length = {geom.Length()}') """ Get the geometry type (as a string) from a Geometry """ wkts = [ "POINT (1198054.34 648493.09)", "LINESTRING (1181866.263593049 615654.4222507705, 1205917.1207499576 623979.7189589312, 1227192.8790041457 643405.4112779726, 1224880.2965852122 665143.6860159477)", "POLYGON ((1162440.5712740074 672081.4332727483, 1162440.5712740074 647105.5431482664, 1195279.2416228633 647105.5431482664, 1195279.2416228633 672081.4332727483, 1162440.5712740074 672081.4332727483))" ] for wkt in wkts: geom = ogr.CreateGeometryFromWkt(wkt) print(geom.GetGeometryName()) """ Calculate intersection between two Geometries """ wkt1 = "POLYGON ((1208064.271243039 624154.6783778917, 1208064.271243039 601260.9785661874, 1231345.9998651114 601260.9785661874, 1231345.9998651114 624154.6783778917, 1208064.271243039 624154.6783778917))" wkt2 = "POLYGON ((1199915.6662253144 633079.3410163528, 1199915.6662253144 614453.958118695, 1219317.1067437078 614453.958118695, 1219317.1067437078 633079.3410163528, 1199915.6662253144 633079.3410163528)))" poly1 = ogr.CreateGeometryFromWkt(wkt1) poly2 = ogr.CreateGeometryFromWkt(wkt2) intersection = poly1.Intersection(poly2) print(intersection.ExportToWkt()) """ Calculate union between two Geometries """ wkt1 = "POLYGON ((1208064.271243039 624154.6783778917, 1208064.271243039 601260.9785661874, 1231345.9998651114 601260.9785661874, 1231345.9998651114 624154.6783778917, 1208064.271243039 624154.6783778917))" wkt2 = "POLYGON ((1199915.6662253144 633079.3410163528, 1199915.6662253144 614453.958118695, 1219317.1067437078 614453.958118695, 1219317.1067437078 633079.3410163528, 1199915.6662253144 633079.3410163528)))" poly1 = ogr.CreateGeometryFromWkt(wkt1) poly2 = ogr.CreateGeometryFromWkt(wkt2) union = poly1.Union(poly2) print(f'poly1: {poly1}') print(f'poly2: {poly2}') print(f'union: {union.ExportToWkt()}')
2.875
3
src/opts.py
xdr940/som-TSP
0
12782794
<gh_stars>0 import argparse class OPT: def __init__(self): self.parser = argparse.ArgumentParser(description='M2CT2020') # ------------------------------- self.parser.add_argument('--wk_root', type=str, default='/home/roit/aws/aprojects/M2CT2020/proj') self.parser.add_argument('--data_dir',default='./data') self.parser.add_argument('--iteration',default=5000) self.parser.add_argument('--evaluate_freq',default=50) self.parser.add_argument('--out_dir',default='./out_dir') self.parser.add_argument('--data_out',default='./data_out.csv') self.parser.add_argument('--route_plt', default=[19,18,25,26,29,21,23,24,28,22,4,3,5,10,13,16,27,12,8,15,14,11,6,7 ,9,2,1,0,17,20]) #args self.parser.add_argument('--decay',default=0.9997) self.parser.add_argument('--learning_rate',default=0.9997) self.parser.add_argument('--routes', default=[ [0,21,23,24,28,22,4,3], [0,5,13,27,16,10], [0,17,20,19,18,25,26,29], [0, 1, 9, 7, 6, 11, 14, 15,12,8,2] ]) def args(self): self.options = self.parser.parse_args() return self.options
2.4375
2
qualifiedname/qname_inspect.py
maxfischer2781/qualifiedname
0
12782795
from __future__ import print_function import inspect import ast import sys import collections import weakref def qualname(obj): """ Lookup or compute the ``__qualname__`` of ``obj`` :param obj: class or function to lookup :return: ``__qualname__`` of ``obj`` :rtype: str :raises: AttributeError if no ``__qualname__`` can be found """ # only compute qualname if not present already try: return obj.__qualname__ except AttributeError as err: no_qualname_exception = err obj = getattr(obj, '__func__', obj) # inspect source to retrace definition source, line_no = inspect.findsource(obj) try: __qualname__ = QNameTracer(''.join(source)).at_line_no(line_no) except KeyError as err: no_qualname_exception.__context__ = err raise no_qualname_exception return __qualname__ def get_qualname(module, line_no): """ Return the qualname corresponding to a definition Parses the abstract syntax tree to reconstruct the name of scopes. A qualname is defined at the beginning of a scope - a ``class`` or ``def`` statement. :param module: name of the module in which the definition is performed :param line_no: line number at which the definition is performed :return: qualname at ``line_no`` of ``module`` :raises: KeyError if ``module`` or ``line_no`` do not point to valid definitions """ module = sys.modules[module] source, _ = inspect.findsource(module) return QNameTracer(''.join(source)).at_line_no(line_no) class QNameTracer(ast.NodeVisitor): _cache = weakref.WeakValueDictionary() _cache_fifo = collections.deque(maxlen=10) # limit cache to 10 elements _init = False def __new__(cls, source): try: return cls._cache[source] except KeyError: self = ast.NodeVisitor.__new__(cls) cls._cache[source] = self cls._cache_fifo.append(self) return self def __init__(self, source): if self._init: return ast.NodeVisitor.__init__(self) self._name_stack = [] self._lno_qualname = {} self.visit(ast.parse(source=source)) self._init = True def at_line_no(self, line_no): return self._lno_qualname[line_no] def _set_qualname(self, ast_line_no, push_qualname=None): # ast_line_no starts at 1, inspect line_no starts at 0 line_no = ast_line_no name_stack = self._name_stack + ([push_qualname] if push_qualname is not None else []) self._lno_qualname[line_no] = '.'.join(name_stack) def visit_FunctionDef(self, node): # enter scope self._name_stack.append(node.name) self._set_qualname(node.lineno) # proceed in function local namespace self._name_stack.append('<locals>') self.generic_visit(node) # unwind at exit self._name_stack.pop() self._name_stack.pop() def visit_ClassDef(self, node): # enter scope self._name_stack.append(node.name) self._set_qualname(node.lineno) # proceed at same scope self.generic_visit(node) # unwind at exit self._name_stack.pop() def visit_Exec(self, node): try: qnames = self.__class__(node.body.s) except SyntaxError: return for ast_line_no, exec_qualname in qnames._lno_qualname.items(): self._set_qualname(node.lineno + ast_line_no, push_qualname=exec_qualname)
2.640625
3
qatm.py
gyhdtc/QATM_pytorch
0
12782796
<reponame>gyhdtc/QATM_pytorch<filename>qatm.py from pathlib import Path import torch import torchvision from torchvision import models, transforms, utils import argparse import multiprocessing import pyrealsense2 as rs from ctypes import c_wchar_p import numpy as np import cv2 # + # import functions and classes from qatm_pytorch.py print("import qatm_pytorch.py...") import ast import types import sys from utils import * with open("qatm_pytorch.py") as f: p = ast.parse(f.read()) for node in p.body[:]: if not isinstance(node, (ast.FunctionDef, ast.ClassDef, ast.Import, ast.ImportFrom)): p.body.remove(node) module = types.ModuleType("mod") code = compile(p, "mod.py", 'exec') sys.modules["mod"] = module exec(code, module.__dict__) from mod import * # - # global global image_index imageflag = 0 qatmflag = 0 # global # lock import threading # lock def getimage(image_index, image_name, global_lock_1, global_lock_2) -> None: print ("begin get image......" + str(image_index)) saveflag = 1 # Configure depth and color streams pipeline = rs.pipeline() config = rs.config() config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) # Start streaming pipeline.start(config) try: while image_index.value < 10: global_lock_1.acquire() frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() if not depth_frame or not color_frame: continue image_index.value += 1 depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # save image color_image = cv2.resize(color_image, (320, 240)) cv2.imwrite("handsample/1.jpg", color_image) image_name.value = str(image_index.value)+".jpg" print ("SAVE! - " + image_name.value) global_lock_2.release() finally: # Stop streaming pipeline.stop() def showimage(): # Configure depth and color streams pipeline = rs.pipeline() config = rs.config() config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) # Start streaming pipeline.start(config) try: while True: # Wait for a coherent pair of frames: depth and color frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() if not depth_frame or not color_frame: continue # Convert images to numpy arrays depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # Apply colormap on depth image (image must be converted to 8-bit per pixel first) depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) # Stack both images horizontally images = np.hstack((color_image, depth_colormap)) # Show images cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) cv2.imshow('RealSense', images) key = cv2.waitKey(1) # Press esc or 'q' to close the image window if key & 0xFF == ord('q') or key == 27: cv2.destroyAllWindows() break finally: # Stop streaming pipeline.stop() def GYH(image_index, image_name, global_lock_1, global_lock_2): parser = argparse.ArgumentParser(description='QATM Pytorch Implementation') parser.add_argument('--cuda', action='store_true') parser.add_argument('-s', '--sample_image', default='sample/1.jpg') parser.add_argument('-t', '--template_images_dir', default='template/') parser.add_argument('--alpha', type=float, default=25) parser.add_argument('--thresh_csv', type=str, default='thresh_template.csv') args = parser.parse_args() template_dir = args.template_images_dir image_path = args.sample_image print("define model...") model = CreateModel(model=models.vgg19(pretrained=True).features, alpha=args.alpha, use_cuda=args.cuda) while image_index.value < 10: global_lock_1.release() global_lock_2.acquire() for image_file in os.listdir(Path(image_path)): # 多个模板匹配,暂时不需要 # dataset,每个元素有:一个模板,一个相同的目标图片,一个图片名 # image # image_raw # image_name # template # template_name # template_h # template_w # thresh dataset = ImageDataset(Path(template_dir), image_path+"/"+image_file, thresh_csv='thresh_template.csv') # print("calculate score..." + image_file) # scores, w_array, h_array, thresh_list = run_multi_sample(model, dataset) # print("nms..." + image_file) # boxes, indices = nms_multi(scores, w_array, h_array, thresh_list) # _ = plot_result_multi(dataset.image_raw, boxes, indices, show=False, save_name="result-"+str(image_index.value)+".png") # print("result-" + "result-"+str(image_index.value)+".png" + " was saved") # 模拟一张图片匹配 w_array = 0 h_array = 0 thresh = 0.8 score = run_one_sample(model, dataset[0]['template'], dataset[0]['image'], dataset[0]['image_name']) w_array = dataset[0]['template_w'] h_array = dataset[0]['template_h'] boxes = nms(score, w_array, h_array, thresh) _ = plot_result(dataset[0]['image_raw'], boxes, show=False, save_name="result-"+str(image_index.value)+".png", color=(0,255,0)) if __name__ == '__main__': global_lock_1 = multiprocessing.Lock() global_lock_2 = multiprocessing.Lock() image_index = multiprocessing.Value('d', 0) image_name = multiprocessing.Value(c_wchar_p, '1') p1 = multiprocessing.Process(target=getimage, args=[image_index, image_name, global_lock_1, global_lock_2]) p2 = multiprocessing.Process(target=GYH, args=[image_index, image_name, global_lock_1, global_lock_2]) global_lock_1.acquire() global_lock_2.acquire() p1.start() p2.start() p1.join() p2.join() # -------------------------------------------- # # p1 = multiprocessing.Process(target = getimage, args=[global_lock_1, global_lock_2]) # p1.start() # p1.join() # p2 = multiprocessing.Process(target=GYH) # p2.start() # p2.join() # -------------------------------------------- #
2.21875
2
examples/single_tbst_database.py
shunsvineyard/forest-python
8
12782797
"""The module demonstrates using threaded binary trees to implement ordered index.""" from typing import Any from forest.binary_trees import single_threaded_binary_trees from forest.binary_trees import traversal class MyDatabase: """Example using threaded binary trees to build index.""" def __init__(self) -> None: self._left_bst = single_threaded_binary_trees.LeftThreadedBinaryTree() self._right_bst = single_threaded_binary_trees.RightThreadedBinaryTree() def _persist(self, payload: Any) -> str: """Fake function pretent storing data to file system. Returns ------- str Path to the payload. """ return f"path_to_{payload}" def insert_data(self, key: Any, payload: Any) -> None: """Insert data. Parameters ---------- key: Any Unique key for the payload payload: Any Any data """ path = self._persist(payload=payload) self._left_bst.insert(key=key, data=path) self._right_bst.insert(key=key, data=path) def dump(self, ascending: bool = True) -> traversal.Pairs: """Dump the data. Parameters ---------- ascending: bool The order of data. Yields ------ `Pairs` The next (key, data) pair. """ if ascending: return self._right_bst.inorder_traverse() else: return self._left_bst.reverse_inorder_traverse() if __name__ == "__main__": # Initialize the database. my_database = MyDatabase() # Add some items. my_database.insert_data("Adam", "adam_data") my_database.insert_data("Bob", "bob_data") my_database.insert_data("Peter", "peter_data") my_database.insert_data("David", "david_data") # Dump the items in ascending order. print("Ascending...") for contact in my_database.dump(): print(contact) print("\nDescending...") # Dump the data in decending order. for contact in my_database.dump(ascending=False): print(contact)
3.75
4
App/backend/app/serial/events.py
UWO-Aero-Design/gnd-station
4
12782798
<reponame>UWO-Aero-Design/gnd-station #Websocket from flask import session,jsonify from flask_socketio import emit,send from .. import socketio import time import random from app import database from app.database import databasehelperclass,queryDatabase from .. import dbase from .. import serialDataOut from .. import serialDataIn from .. import currentState from app.serial import builder from app.serial.builder import * from app.serial import definitions from app.serial.definitions import * # from builder import * # from definitions import * import eventlet eventlet.monkey_patch() random.seed() point = 0 #Scale values PITOTSCALE = 1000 IMUSCALE = 100 GPSLATLONSCALE = 10000000 GPSALTSCALE = 10 GPSSPEEDSCALE = 100 ENVIROSCALE = 100 # Event handler that can be passed to the serial task in order to handle a receive event def post_serial_read(app,data = None): print('Serial receive') global currentState print("Current Point: ",currentState.point) print("'Current Flight: ",currentState.flight) currentState.point = currentState.point + 1 global serialDataIn PitotData = data[0] serialDataIn.PitotData = PitotData #print(PitotData) IMUData = data[1] serialDataIn.IMUData = IMUData #print(IMUData) GPSData = data[2] serialDataIn.GPSData = GPSData GPSData.lat = 27.94 * 10000000 GPSData.lon = -81 * 10000000 print(GPSData) EnviroData = data[3] EnviroData.pressure = EnviroData.pressure + random.randint(0,10) serialDataIn.EnviroData = EnviroData print(EnviroData) BatteryData = data[4] serialDataIn.BatteryData = BatteryData #print(BatteryData) StatusData = data[6] serialDataIn.StatusData = StatusData #print(StatusData) ServoData = data[7] serialDataIn.ServoData = ServoData #print(ServoData) #print("Recording:",currentState.recording) #Database insertions and websocket messages #All database access should be inside app context since this is running in a background thread with app.app_context(): if currentState.recording == True: databaseObj = databasehelperclass.pointtable(currentState.flight,currentState.point) databaseinsertion(databaseObj) if PitotData is not None: PitotData.differential_pressure = PitotData.differential_pressure / PITOTSCALE jsonData = {'differentialpressure':PitotData.differential_pressure} #print(jsonData) socketio.emit('PitotChannel',jsonData) socketio.emit('connectStatus','Connected') serialDataIn.PitotData = PitotData if currentState.recording == True: databaseObj = databasehelperclass.pitottubetable(float(PitotData.differential_pressure), currentState.flight,currentState.point) databaseinsertion(databaseObj) if IMUData is not None: IMUData.ax = IMUData.ax / IMUSCALE IMUData.ay = IMUData.ay / IMUSCALE IMUData.az = IMUData.az / IMUSCALE IMUData.gx = IMUData.gx / IMUSCALE IMUData.gy = IMUData.gy / IMUSCALE IMUData.gz = IMUData.gz / IMUSCALE IMUData.mx = IMUData.mx / IMUSCALE IMUData.my = IMUData.my / IMUSCALE IMUData.mz = IMUData.mz / IMUSCALE IMUData.yaw = IMUData.yaw / IMUSCALE IMUData.pitch = IMUData.pitch / IMUSCALE IMUData.roll = IMUData.roll / IMUSCALE jsonData = {'ax':IMUData.ax, 'ay':IMUData.ay, 'az':IMUData.az, 'gx':IMUData.gx, 'gy':IMUData.gy, 'gz':IMUData.gz, 'mx':IMUData.mx, 'my':IMUData.my, 'mz':IMUData.mz, 'yaw':IMUData.yaw, 'pitch':IMUData.pitch, 'roll':IMUData.roll} # print(jsonData) socketio.emit('IMUChannel',jsonData) socketio.emit('connectStatus','Connected') serialDataIn.IMUData = IMUData if currentState.recording == True: databaseObj = databasehelperclass.imuvaluestable(float(IMUData.ax),float(IMUData.ay),float(IMUData.az), float(IMUData.yaw),float(IMUData.pitch),float(IMUData.roll), float(IMUData.mx),float(IMUData.my),float(IMUData.mz), float(IMUData.gx),float(IMUData.gy),float(IMUData.gz), currentState.flight,currentState.point) databaseinsertion(databaseObj) if GPSData is not None: GPSData.lat = GPSData.lat / GPSLATLONSCALE GPSData.lon = GPSData.lon / GPSLATLONSCALE GPSData.altitude = GPSData.altitude / GPSALTSCALE GPSData.speed = GPSData.speed / GPSSPEEDSCALE jsonData = {'lat':GPSData.lat, 'lon':GPSData.lon, 'altitude':GPSData.altitude, 'speed':GPSData.speed, 'time':GPSData.time, 'satellites':GPSData.satellites, 'date':GPSData.date} # print(jsonData) socketio.emit('GPSChannel',jsonData) socketio.emit('connectStatus','Connected') serialDataIn.GPSData = GPSData if currentState.recording == True: databaseObj = databasehelperclass.gpsvaluetable(float(GPSData.lat) + point,float(GPSData.lon),float(GPSData.speed), float(GPSData.satellites),float(GPSData.altitude),float(GPSData.time), int(GPSData.date),currentState.flight,currentState.point) databaseinsertion(databaseObj) if EnviroData is not None: EnviroData.humidity = EnviroData.humidity / ENVIROSCALE EnviroData.pressure = EnviroData.pressure / ENVIROSCALE - 10 EnviroData.temperature = EnviroData.temperature / ENVIROSCALE # jsonData = {'pressure':EnviroData.pressure, # 'humidity':EnviroData.humidity, # 'temperature':EnviroData.temperature} jsonData = {'altitude':EnviroData.pressure, 'temperature':EnviroData.humidity, 'humidity':EnviroData.temperature} # print(jsonData) socketio.emit('EnviroChannel',jsonData) socketio.emit('connectStatus','Connected') serialDataIn.EnviroData = EnviroData if currentState.recording == True: databaseObj = databasehelperclass.environmentalsensortable(float(EnviroData.pressure), float(EnviroData.humidity), float(EnviroData.temperature), currentState.flight,currentState.point) databaseinsertion(databaseObj) if BatteryData is not None: jsonData = {'voltage':BatteryData.voltage, 'current':BatteryData.current} # print(jsonData) socketio.emit('BatteryChannel',jsonData) socketio.emit('connectStatus','Connected') if currentState.recording == True: databaseObj = databasehelperclass.batterystatustable(float(BatteryData.voltage), float(BatteryData.current), currentState.flight,currentState.point) databaseinsertion(databaseObj) if StatusData is not None: jsonData = {'rrsi':StatusData.rssi, 'state':StatusData.state} # print(jsonData) socketio.emit('StatusChannel',jsonData) socketio.emit('connectStatus','Connected') if currentState.recording == True: databaseObj = databasehelperclass.systemstatustable(float(StatusData.rssi), float(StatusData.state), currentState.flight,currentState.point) databaseinsertion(databaseObj) if ServoData is not None: jsonData = {'servo0':ServoData.servo0, 'servo1':ServoData.servo1, 'servo2':ServoData.servo2, 'servo3':ServoData.servo3, 'servo4':ServoData.servo4, 'servo5':ServoData.servo5, 'servo6':ServoData.servo6, 'servo7':ServoData.servo7, 'servo8':ServoData.servo8, 'servo9':ServoData.servo9, 'servo10':ServoData.servo10, 'servo11':ServoData.servo11, 'servo12':ServoData.servo12, 'servo13':ServoData.servo13, 'servo14':ServoData.servo14, 'servo15':ServoData.servo15} # print(jsonData) socketio.emit('ServoChannel',jsonData) socketio.emit('connectStatus','Connected') if currentState.recording == True: databaseObj = databasehelperclass.servodatatable(float(ServoData.servo0), float(ServoData.servo1), float(ServoData.servo2), float(ServoData.servo3), float(ServoData.servo4), float(ServoData.servo5), float(ServoData.servo6), float(ServoData.servo7), float(ServoData.servo8), float(ServoData.servo9), float(ServoData.servo10), float(ServoData.servo11), float(ServoData.servo12), float(ServoData.servo13), float(ServoData.servo14), float(ServoData.servo15), currentState.flight,currentState.point) databaseinsertion(databaseObj) #time.sleep(0.1) # The plan is here to take data that is parsed from the serial port and add it to the DB # Event handler that is called before a write. should return a message to send over serial or None def pre_serial_write(app,data = None): #print('Serial write data gather') global serialDataOut builder = MessageBuilder() c = Commands() c.drop = serialDataOut.cmdDrop c.servos = serialDataOut.cmdServo c.pitch = serialDataOut.cmdPitch builder.add(c) #i = IMU() #i.ax = 10 # p = Pitot() # p.differential_pressure = 255 # i = IMU() # i.ax = 31245 # g = GPS() # g.lat = 31245 # g.lon = 31245 # e = Enviro() # e.pressure = 31245 # e.humidity = 31245 # e.temperature = 31245 # print(uint16_to_bytes(31245)) # builder.add(p) # builder.add(i) # builder.add(e) write_val = builder.build(0,serialDataOut.destination) #print(write_val) #print(len(write_val)) #TODO: Preprocessing stuff #Replace serialDataOut with string of bytes return write_val # The plan here is to return a string of bytes to send over the serial port def databaseinsertion(obj): #databasehelperclass.db.session.add(obj) #databasehelperclass.db.session.commit() dbase.session.add(obj) dbase.session.commit()
2.703125
3
scripts/build_sdk_ios.py
kokorinosoba/xamarin_sdk
10
12782799
from scripting_utils import * def build(version, root_dir, ios_submodule_dir, with_test_lib): # ------------------------------------------------------------------ # paths srcdir = '{0}/sdk'.format(ios_submodule_dir) lib_out_dir = '{0}/ios/AdjustSdk.Xamarin.iOS/Resources'.format(root_dir) sdk_static_framework = '{0}/Frameworks/Static/AdjustSdk.framework'.format(srcdir) adjust_api_path = '{0}/Adjust/Adjust.m'.format(srcdir) # ------------------------------------------------------------------ # Removing old iOS SDK binary debug_green('Removing old iOS SDK binary ...') remove_file_if_exists('{0}/libAdjust.a'.format(lib_out_dir)) # ------------------------------------------------------------------ # Appending SDK prefix to source code debug_green('Appending SDK prefix to source code ...') replace_text_in_file(adjust_api_path, 'self.activityHandler = [[ADJActivityHandler alloc]', '[adjustConfig setSdkPrefix:@"xamarin{0}"];self.activityHandler = [[ADJActivityHandler alloc]'.format(version)) replace_text_in_file(adjust_api_path, 'return [[Adjust getInstance] sdkVersion];', 'return [NSString stringWithFormat: @"xamarin{0}@%@", [[Adjust getInstance] sdkVersion]];'.format(version)) # ------------------------------------------------------------------ # Building new iOS SDK binary debug_green('Building new iOS SDK binary ...') change_dir(srcdir) xcode_build('AdjustStatic') # ------------------------------------------------------------------ # Removing SDK prefix from source code debug_green('Removing SDK prefix from source code ...') replace_text_in_file(adjust_api_path, '[adjustConfig setSdkPrefix:@"xamarin{0}"];self.activityHandler = [[ADJActivityHandler alloc]'.format(version), 'self.activityHandler = [[ADJActivityHandler alloc]') replace_text_in_file(adjust_api_path, 'return [NSString stringWithFormat: @"xamarin{0}@%@", [[Adjust getInstance] sdkVersion]];'.format(version), 'return [[Adjust getInstance] sdkVersion];') # ------------------------------------------------------------------ # Copying the generated binary to lib out dir debug_green('Copying the generated binary to {0} ...'.format(lib_out_dir)) copy_file(sdk_static_framework + '/Versions/A/AdjustSdk', lib_out_dir + '/libAdjust.a') if with_test_lib: # ------------------------------------------------------------------ # Test Library paths set_log_tag('IOS-TEST-LIB-BUILD') debug_green('Building Test Library started ...') test_static_framework = '{0}/Frameworks/Static/AdjustTestLibrary.framework'.format(srcdir) test_lib_out_dir = '{0}/ios/Test/TestLib/Resources'.format(root_dir) # ------------------------------------------------------------------ # Removing old iOS SDK binary debug_green('Removing old iOS SDK binary ...') remove_file_if_exists('{0}/libAdjustTest.a'.format(test_lib_out_dir)) # ------------------------------------------------------------------ # Building new iOS SDK binary debug_green('Building new iOS SDK binary ...') change_dir('{0}/AdjustTests/AdjustTestLibrary'.format(srcdir)) xcode_build('AdjustTestLibraryStatic') copy_file(test_static_framework + '/Versions/A/AdjustTestLibrary', test_lib_out_dir + '/libAdjustTest.a')
1.773438
2
19 - Drawing Live Graphs.py
mayankdcoder/Matplotlib
1
12782800
<filename>19 - Drawing Live Graphs.py # Drawing live graphs # If the data reservoir is getting updated regularly then use this for graphing in real time. import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib.style as style style.use('fivethirtyeight') figure = plt.figure() axes1 = figure.add_subplot(1, 1, 1) def animate(i): graph_data = open('example.txt', 'r').read() lines = graph_data.split('\n') x = [] y = [] for line in lines: alpha, beta = line.split(',') x.append(alpha) y.append(beta) axes1.clear() axes1.plot(x, y) ani = animation.FuncAnimation(figure, animate, interval=1000) plt.show()
3.359375
3
opendc-web/opendc-web-api/opendc/api/traces.py
Timovanmilligen/opendc
32
12782801
<filename>opendc-web/opendc-web-api/opendc/api/traces.py # Copyright (c) 2021 AtLarge Research # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from flask_restful import Resource from opendc.exts import requires_auth from opendc.models.trace import Trace as TraceModel, TraceSchema class TraceList(Resource): """ Resource for the list of traces to pick from. """ method_decorators = [requires_auth] def get(self): """Get all available Traces.""" traces = TraceModel.get_all() data = TraceSchema().dump(traces.obj, many=True) return {'data': data} class Trace(Resource): """ Resource representing a single trace. """ method_decorators = [requires_auth] def get(self, trace_id): """Get trace information by identifier.""" trace = TraceModel.from_id(trace_id) trace.check_exists() data = TraceSchema().dump(trace.obj) return {'data': data}
1.875
2
functions_lib.py
surajpaib/CrowdEstimationchallenge
0
12782802
<gh_stars>0 import cv2 import numpy as np class CrowdCounter(object): def __init__(self): self.params = None def mutlifile_read(self, *args): for arg in args: yield cv2.imread(arg) def multifile_write(self, *args): for arg in args: cv2.imwrite(arg[0], arg[1]) return def background_subtraction(self, img1, img2, img3): diff1 = cv2.absdiff(img1, img2) diff2 = cv2.absdiff(img2, img3) diff3 = cv2.absdiff(img3, img1) return diff1, diff2, diff3 def high_pass_filtering(self, img): im = cv2.imread(img, cv2.IMREAD_GRAYSCALE) f = np.fft.fft2(im) fshift = np.fft.fftshift(f) rows, cols = im.shape crow, ccol = rows / 2, cols / 2 fshift[crow - 30:crow + 30, ccol - 30:ccol + 30] = 0 f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift) img_back = np.abs(img_back) return img_back def morph_operations(self, kernel, im, operation): if operation == "open": return cv2.morphologyEx(im, cv2.MORPH_OPEN, kernel) if operation == "close": return cv2.morphologyEx(im, cv2.MORPH_CLOSE, kernel) if operation == "erode": return cv2.morphologyEx(im, cv2.MORPH_ERODE, kernel) if operation == "dilate": return cv2.morphologyEx(im, cv2.MORPH_OPEN, kernel) def blob_detect_set_params(self): params = cv2.SimpleBlobDetector_Params() # Detect circles params.filterByCircularity = True params.minCircularity = 0.15 params.maxCircularity = 0.8 # Threshold for splitting images params.minThreshold = 10 params.maxThreshold = 500 # filter by color params.filterByColor = False # Filter by Convexity params.filterByConvexity = True params.minConvexity = 0.5 # Filter by Inertia params.filterByArea = True params.minArea = 100 params.filterByInertia = True params.minInertiaRatio = 0.1 params.maxInertiaRatio = 0.5 self.params = params return def run_blob_detector(self, processed_im, original_im): blob = cv2.SimpleBlobDetector(self.params) keypoint = blob.detect(processed_im) im_with_keypoints = cv2.drawKeypoints(original_im, keypoint, np.array([]), (255, 0, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) return im_with_keypoints, keypoint
2.34375
2
label_process/code/label_preprocessing.py
tisssu10086/Gibbon_call_detection
0
12782803
import os import numpy as np import pandas as pd '''This script is for preprocessing the label, finding the mistake in it and stroe label in a unified format in processed_label dic''' file_dic_Extra = os.listdir('../../label/Extra_Labels') file_dic_Train = os.listdir('../../label/Train_labels') file_dic_Test = os.listdir('../../label/Test_labels') #store the gibbon call duration distribution duration_dist = np.array([]) duration_dist2 = np.array([]) for file_name in file_dic_Extra: # go through the Extra_Labels dictionary if file_name[0] == 'g': gibbon_timestamps = pd.read_csv('../../label/Extra_Labels/' + file_name, sep=',') duration = np.asarray(gibbon_timestamps['Duration']) duration_dist = np.concatenate((duration_dist, duration), axis = 0) # test the whether the duration equals to 'end' - 'start' duration2 = np.asarray(gibbon_timestamps['End'] - gibbon_timestamps['Start']) duration_dist2 = np.concatenate((duration_dist2, duration2), axis = 0) if duration.size != 0 : if min(duration) <= 0: print(file_name, 'has wrong record') gibbon_timestamps.to_csv('../../label/processed_label/' + file_name[2:], index = 0) for file_name in file_dic_Train: # go through the Train_Labels dictionary if file_name[0] == 'g': gibbon_timestamps = pd.read_csv('../../label/Train_Labels/' + file_name, sep=',') duration = np.asarray(gibbon_timestamps['Duration']) duration_dist = np.concatenate((duration_dist, duration), axis = 0) # test the whether the duration equals to 'end' - 'start' duration2 = np.asarray(gibbon_timestamps['End'] - gibbon_timestamps['Start']) duration_dist2 = np.concatenate((duration_dist2, duration2), axis = 0) if duration.size != 0: if min(duration) <= 0: print(file_name, 'has wrong record') gibbon_timestamps.to_csv('../../label/processed_label/' + file_name[2:], index = 0) # result show that duration equals to 'end' - 'start' test_duration = duration_dist2 == duration_dist duration_test_result = np.where(test_duration == False) if duration_test_result[0].size == 0: print('duration equals to end - star') else: print('duration record typo exist') for file_name in file_dic_Test: # go through the Test_Labels dictionary and save data to processed label dictionary gibbon_timestamps = pd.read_csv('../../label/Test_Labels/' + file_name, sep=',') gibbon_timestamps['End'] = gibbon_timestamps['Start'] + gibbon_timestamps['Duration'] gibbon_timestamps = gibbon_timestamps[['Start', 'End', 'Duration']] if duration.size != 0 : if min(duration) <= 0: print(file_name, 'has wrong record') gibbon_timestamps.to_csv('../../label/processed_label/' + file_name[:-9] + '.data', index = 0) # g_HGSM3BD_0+1_20160305_060000.data has wrong record # g_HGSM3AC_0+1_20160312_055400.data has wrong record # this two file has minus or equals to zero duration because of typo, these error have been fixed in processed-label manually.
2.65625
3
measuredivergence/copyrandom.py
tedunderwood/measureperspective
4
12782804
import shutil, os, glob import pandas as pd for ratio in [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]: metafile = 'partitionmeta/meta' + str(ratio) + '.csv' df = pd.read_csv(metafile, index_col = 'docid') for i in df.index: if df.loc[i, 'tags'] != 'random': continue outpath = 'mix/' + str(ratio) + '/' + i + '.tsv' shutil.copyfile('../data/' + i + '.tsv', outpath)
2.140625
2
projects/cookie/platform/taobao/taobao_shop_goods.py
kingking888/crawler-pyspider
1
12782805
<reponame>kingking888/crawler-pyspider import json import random import time from cookie.model.data import Data as CookieData from cookie.config import * from crawl_taobao_goods_migrate.model.result import Result from crawl_taobao_goods_migrate.page.goods_details import GoodsDetails from pyspider.libs.webdriver import Webdriver from bs4 import BeautifulSoup class TaobaoShopGoods: """ 用h5页面抓取淘宝店铺的商品内容 """ URL = 'https://shop{}.taobao.com/search.htm?search=y&orderType=newOn_desc' def __init__(self, shop_id_list): self.__driver = Webdriver().set_headless().get_driver() self.__driver.set_page_load_timeout(30) self.__page_nums = 0 self.__current_page = 1 self.__shop_crawled_status = False self.__shop_id_list = shop_id_list self.__url = None def catch_all_goods(self): for shop_id in self.__shop_id_list: # self.set_browser_cookie(shop_id) self.__page_nums = 0 self.__current_page = 1 self.__shop_crawled_status = self.shop_crawled_status(shop_id) self.__url = self.URL.format(shop_id) self.__driver.get(self.__url) time.sleep(5) print('开始抓取店铺:{} 的商品内容'.format(shop_id)) # 递归抓取下一页 self.catch_next_page(shop_id) def set_browser_cookie(self, shop_id): """ 设置淘宝店铺的cookies :param shop_id: :return: """ self.__driver.get(self.URL.format(shop_id)) cookies = json.loads( CookieData.get(CookieData.CONST_PLATFORM_TAOBAO_SHOP, CookieData.CONST_USER_TAOBAO_SHOP[0][0])) for _c in cookies: self.__driver.add_cookie(_c) def catch_next_page(self, shop_id): """ 判断是否有下一页 :return: """ try: print('抓取第: {} 页'.format(self.__current_page)) result = self.__driver.page_source soup = BeautifulSoup(result, 'lxml') # 获取总页码 if not self.__page_nums: self.__page_nums = int(soup.find('span', class_='page-info').get_text().split('/', 1)[1].strip()) # 获取商品ID all_goods = soup.find_all('dl', class_='item') for _g in all_goods: goods_url = _g.find('a', class_='J_TGoldData')['href'] goods_id = goods_url.split('id=', 1)[1].split('&', 1)[0] crawl_url = 'https://item.taobao.com/item.htm?id={}'.format(goods_id) print('解析商品: {}'.format(crawl_url)) GoodsDetails(crawl_url).enqueue() if self.__shop_crawled_status and self.__current_page >= SHOP_CRAWLED_PAGES: print('全量抓取过的店铺,只抓取前: {} 页'.format(SHOP_CRAWLED_PAGES)) else: self.__driver.find_element_by_css_selector("[class='J_SearchAsync next']").click() time.sleep(random.randint(5, 10)) self.__current_page += 1 self.catch_next_page(shop_id) except Exception as e: if self.__current_page < self.__page_nums or self.__current_page == 1: print('获取下一页失败: {}, 退出'.format(e)) else: print('已到达最后一页第 {} 页,退出: {}'.format(self.__current_page, e)) # 更改被抓取店铺的状态 Result().update_shop_crawled_status(shop_id, True) print('已更改店铺的抓取状态') def shop_crawled_status(self, shop_id): """ 店铺是否已完整抓取的状态 :return: """ shop = Result().find_shop_by_id(shop_id) status = shop.get('result').get('crawled', False) if shop else False print('status: {}'.format(status)) return status def __del__(self): """ 最后会销毁所有chrome进程 :return: """ try: self.__driver.close() except: pass
2.671875
3
ci/recipe/RecipeRepoReader.py
andrsd/civet
29
12782806
<gh_stars>10-100 #!/usr/bin/env python # Copyright 2016 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import unicode_literals, absolute_import import os, fnmatch from ci.recipe.RecipeReader import RecipeReader class InvalidDependency(Exception): pass class InvalidRecipe(Exception): pass class RecipeRepoReader(object): """ Reads all the recipes in a repository """ def __init__(self, recipe_dir): """ Constructor. Input: recipe_dir: str: Path to the recipe repo. """ super(RecipeRepoReader, self).__init__() self.recipe_dir = recipe_dir self.recipes = self.read_recipes() def get_recipe_files(self): """ Searches the recipe repo for *.cfg files. This returns ALL recipe files found. Return: list[str]: Of paths to recipes """ recipes = [] recipes_dir = os.path.join(self.recipe_dir, "recipes") for root, dirnames, files in os.walk(recipes_dir): for filename in fnmatch.filter(files, "*.cfg"): path = os.path.join(root, filename) recipes.append(os.path.relpath(path, self.recipe_dir)) return recipes def read_recipes(self): """ Converts all the recipes found by get_recipe_files() and converts them into dicts Return: list of recipe dicts """ all_recipes = [] for recipe_file in self.get_recipe_files(): reader = RecipeReader(self.recipe_dir, recipe_file) recipe = reader.read() if recipe: all_recipes.append(recipe) else: raise InvalidRecipe(recipe_file) if not self.check_dependencies(all_recipes): raise InvalidDependency("Invalid dependencies!") return all_recipes def check_dependencies(self, all_recipes): ret = True for recipe in all_recipes: # the reader already checks for file existence. # We need to check for the same build user, repo and event type if not recipe["active"]: continue if not self.check_depend(recipe, all_recipes, "push_dependencies", "trigger_push", "trigger_push_branch"): ret = False if not self.check_depend(recipe, all_recipes, "manual_dependencies", "trigger_manual", "trigger_manual_branch"): ret = False if not self.check_depend(recipe, all_recipes, "pullrequest_dependencies", "trigger_pull_request", None): ret = False return ret def check_depend(self, recipe, all_recipes, dep_key, trigger_key, branch_key, alt_branch=None): ret = True for dep in recipe[dep_key]: for dep_recipe in all_recipes: if dep_recipe["filename"] == dep: branch_same = True if branch_key: branch_same = dep_recipe[branch_key] == recipe[branch_key] if not branch_same and alt_branch and recipe[alt_branch]: branch_same = dep_recipe[branch_key] == recipe[alt_branch] if (not branch_same or not dep_recipe["active"] or dep_recipe["build_user"] != recipe["build_user"] or dep_recipe["repository"] != recipe["repository"] or not dep_recipe[trigger_key]): print("Recipe: %s: has invalid %s : %s" % (recipe["filename"], dep_key, dep)) ret = False break return ret if __name__ == "__main__": # import json dirname = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.dirname(dirname) try: reader = RecipeRepoReader(parent_dir) #print(json.dumps(reader.recipes, indent=2)) except Exception as e: print("Recipe repo is not valid: %s" % e)
2.421875
2
ProteinGraphML/MLTools/MetapathFeatures/featureBuilder.py
JessBinder/ProteinGraphML
10
12782807
<reponame>JessBinder/ProteinGraphML import os,re import itertools import logging import pandas as pd from .nodes import ProteinInteractionNode def getMetapaths(proteinGraph,start): children = getChildren(proteinGraph.graph,start) if start in proteinGraph.childParentDict.keys(): # if we've got parents, lets remove them from this search children = list( set(children) - set(proteinGraph.childParentDict[start]) ) proteinMap = { True:set(), False:set() } for c in children: p = filterNeighbors(proteinGraph.graph,c,True) n = filterNeighbors(proteinGraph.graph,c,False) posPaths = len(p) negPaths = len(n) for pid in p: proteinMap[True].add(pid) for pid in n: proteinMap[False].add(pid) return proteinMap # new graph stuff, things below have been removed def filterNeighbors(graph,start,association): # hard coded ... "association" return [a for a in graph.adj[start] if "association" in graph.edges[(start,a)].keys() and graph.edges[(start,a)]["association"] == association] def getChildren(graph,start): # hard coded ... "association" return [a for a in graph.adj[start] if "association" not in graph.edges[(start,a)].keys()] def getTrainingProteinIds(disease,proteinGraph): ''' This function returns the protein ids for True and False labels. ''' paths = getMetapaths(proteinGraph,disease) #a dictionary with 'True' and 'False' as keys and protein_id as values return paths[True], paths[False] def metapathFeatures(disease, proteinGraph, featureList, idDescription, staticFeatures=None, staticDir=None, test=False, loadedLists=None): # we compute a genelist.... # get the proteins # for each of the features, compute their metapaths, given an object, and graph+list... then they get joined #print(len(proteinGraph.graph.nodes)) G = proteinGraph.graph # this is our networkx api if loadedLists is not None: trueP = loadedLists[True] falseP = loadedLists[False] try: unknownP = loadedLists['unknown'] except: unknownP = [] else: paths = getMetapaths(proteinGraph,disease) #a dictionary with 'True' and 'False' as keys and protein_id as values trueP = paths[True] falseP = paths[False] unknownP = [] logging.info("(metapathFeatures) PREPARING TRUE ASSOCIATIONS: {0}".format(len(trueP))) logging.info("(metapathFeatures) PREPARING FALSE ASSOCIATIONS: {0}".format(len(falseP))) logging.info("(metapathFeatures) PREPARING UNKNOWN ASSOCIATIONS: {0}".format(len(unknownP))) logging.info("(metapathFeatures) NODES IN GRAPH: {0}".format(len(G.nodes))) logging.info("(metapathFeatures) EDGES IN GRAPH: {0}".format(len(G.edges))) proteinNodes = [pro for pro in list(G.nodes) if ProteinInteractionNode.isThisNode(pro)] #if isinstance(pro,int)] # or isinstance(pro,np.integer)] if len(proteinNodes) == 0: raise Exception('No protein nodes detected in graph') logging.info("(metapathFeatures) DETECTED PROTEINS: {0}".format(len(proteinNodes))) nodeListPairs = [] for n in featureList: nodeListPairs.append((n,[nval for nval in list(G.nodes) if n.isThisNode(nval)])) metapaths = [] flog = 'metapath_features.log' logging.info("(metapathFeatures) Metapath features logfile: {0}".format(flog)) fh = open(flog, 'w') # file to save nodes used for metapaths for pair in nodeListPairs: nodes = pair[1] nonTrueAssociations = set(proteinNodes) - trueP #print(len(G.nodes), len(nodes), len(trueP), len(nonTrueAssociations)) METAPATH = pair[0].computeMetapaths(G, nodes, trueP, nonTrueAssociations, idDescription, fh) METAPATH = (METAPATH - METAPATH.mean())/METAPATH.std() logging.info("(metapathFeatures) METAPATH FRAME {0}x{1} for {2}".format(METAPATH.shape[0], METAPATH.shape[1], pair[0])) metapaths.append(METAPATH) fh.close() if test: fullList = list(proteinNodes) df = pd.DataFrame(fullList, columns=['protein_id']) df = df.set_index('protein_id') else: if (len(unknownP) == 0): fullList = list(itertools.product(trueP,[1])) + list(itertools.product(falseP,[0])) else: fullList = list(itertools.product(trueP,[1])) + list(itertools.product(falseP,[0])) + list(itertools.product(unknownP,[-1])) df = pd.DataFrame(fullList, columns=['protein_id', 'Y']) df = df.set_index('protein_id') for metapathframe in metapaths: # YOU CAN USE THESE TO GET A SUM IF NEED BE #print(metapathframe.shape) #print(sum(metapathframe.sum(axis=1))) df = df.join(metapathframe,on="protein_id") if staticFeatures is not None: df = joinStaticFeatures(df, staticFeatures, staticDir) return df def joinStaticFeatures(df, features, datadir): #datadir = os.getcwd()+'/ProteinGraphML/MLTools/StaticFeatures/' for feature in features: try: #newer, TSVs df_this = pd.read_csv(datadir+"/"+feature+".tsv", '\t') except: #older, CSVs df_this = pd.read_csv(datadir+"/"+feature+".csv") # df_this = df_this.set_index('protein_id') df_this = df_this.drop(df_this.columns[0], axis=1) # if feature == "gtex" or feature == "ccle": # Kludge: all normed but hpa. df_this = (df_this - df_this.mean())/df_this.std() df = df.join(df_this, on="protein_id") return df
2.6875
3
scripts/convert_to_frames.py
TechieBoy/deepfake-detection
0
12782808
import os import cv2 from concurrent.futures import ProcessPoolExecutor import torch from facenet_pytorch import MTCNN from tqdm import tqdm from PIL import Image import pickle from face_detection import RetinaFace from bisect import bisect_left from collections import Counter import math def delete_folders(): """Deletes the frames folder from each directory in folder_list""" from shutil import rmtree for f in folder_list: folder_to_delete = os.path.join(f, "frames") rmtree(folder_to_delete) def create_folders(): """ Creates a folder called frames in each directory and creates subfolders for each video in the frames folder. """ for f in folder_list: os.mkdir(os.path.join(f, "frames")) for fil in os.listdir(f): fil = fil.split(".")[0] if fil != "metadata" and fil != "frames": os.mkdir(os.path.join(f, "frames", fil)) def convert_video_to_frames(input_path, output_folder): """Extract all frames from a video""" count = 0 cap = cv2.VideoCapture(input_path) while cap.isOpened(): ret, frame = cap.read() if not ret: break cv2.imwrite(os.path.join(output_folder, f"frame_{count}.png"), frame) count += 1 cap.release() def find_max_face(input_image): """ Finds face in input_image with maximum confidence and returns it Adds padding of 15px around face """ detection = cv.detect_face(input_image) if detection is not None: faces, confidences = detection if confidences: max_conf = max(confidences) face = faces[confidences.index(max_conf)] (startX, startY) = face[0], face[1] (endX, endY) = face[2], face[3] height, width, _ = input_image.shape y_top = max(startY - 15, 0) x_top = max(startX - 15, 0) y_bot = min(endY + 15, height) x_bot = min(endX + 15, width) return input_image[y_top:y_bot, x_top:x_bot] return None def convert_video_to_frames_periodic(name_prefix, input_path, output_folder, dt): """Captures a frame every dt milliseconds""" count = 0 cap = cv2.VideoCapture(input_path) success, image = cap.read() while success: cap.set(cv2.CAP_PROP_POS_MSEC, (count * dt)) success, frame = cap.read() cv2.imwrite(os.path.join(output_folder, f"{name_prefix}_frame_{count}.png"), frame) count += 1 cap.release() def convert_video_to_face_frames_periodic(name_prefix, input_path, output_folder, dt): """Captures a frame and tries to detect and save a face in it every dt milliseconds""" count = 0 num_face = 0 cap = cv2.VideoCapture(input_path) success, image = cap.read() while success: cap.set(cv2.CAP_PROP_POS_MSEC, (count * dt)) success, frame = cap.read() face = find_max_face(frame) if face is not None: cv2.imwrite(os.path.join(output_folder, f"{name_prefix}_face_{num_face}.png"), face) num_face += 1 count += 1 if num_face < 5: print(name_prefix + f" has {num_face} faces") cap.release() def create_frames(executor): for f in folder_list: print(f"In folder {f}") for video in os.listdir(f): if video != "metadata.json" and video != "frames": # print(f"Processing video {video}") input_path = os.path.join(f, video) video_folder = video.split(".")[0] output_folder = os.path.join(f, "frames", video_folder) executor.submit(convert_video_to_face_frames_periodic, video_folder, input_path, output_folder, 1000) # convert_video_to_face_frames_periodic(video_folder, input_path, output_folder, 800) def convert_with_mtcnn_parallel(detector, base_folder, folder): print(folder) def func(video): return convert_video_to_frames_per_frame(os.path.join(folder, video), 10) video_list = os.listdir(folder) video_list.remove("metadata.json") video_list.remove("frames") video_list.remove("audio") with ProcessPoolExecutor(20) as pool: frame_list = pool.map(func, video_list, chunksize=1) for video, frames in zip(video_list, frame_list): base_video = video.split(".")[0] detect_faces_mtcnn_and_save(detector, base_folder, base_video, frames) def get_frame_count(cap): num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) return num_frames def get_exact_frames(cap, frame_indices): """Gets all frames with the indices in frame indices (0 based)""" frames = [] for index in frame_indices: cap.set(cv2.CAP_PROP_POS_FRAMES, index) ret, frame = cap.read() if ret: frames.append(frame) return frames def get_exact_frames_for_optical_flow(cap, frame_indices): """Gets all frames and 4 ahead with the indices in frame indices (0 based)""" frames = [] index_list = [] for index in frame_indices: for i in range(4): idx = index + i cap.set(cv2.CAP_PROP_POS_FRAMES, idx) ret, frame = cap.read() if ret: image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) height, width, channels = image.shape image = cv2.resize(image, (width // 2, height // 2), interpolation=cv2.INTER_AREA) frames.append(image) index_list.append(idx) return frames, index_list def load_model(device): device = torch.device(device) detector = MTCNN(device=device, keep_all=True, select_largest=False, post_process=False) return detector def mtcnn_detect(detector, frames, path, vid_name): data = [] def get_dist(px,py,x,y): return abs(px - x) + abs(py - y) def get_min_coords(s, x,y): min_set = max(s, key=lambda k:get_dist(k[0], k[1], x,y)) return min_set[0], min_set[1], min_set[2] def get_avg_coords(s): x,y = 0.0,0.0 for dd in s: px,py,*rest = dd x += px y += py tot = len(s) return x/tot, y/tot def add_to_closest_set(x,y,area,bi,bj): min_dist = float('inf') idx = -1 for i, s in enumerate(data): px,py,pa = get_min_coords(s,x,y) dist = get_dist(px,py,x,y) areas = sorted([pa, area]) if dist > 175 or (areas[1] / areas[0]) > 1.3: continue if dist < min_dist: dist = min_dist idx = i if idx == -1: stuff = (x,y,area,bi,bj,) ss = set() ss.add(stuff) data.append(ss) else: data[idx].add((x,y,area,bi,bj,)) stored_frames = [] def get_box(face_box, shape, padding=15): (startX, startY) = int(face_box[0]), int(face_box[1]) (endX, endY) = int(face_box[2]), int(face_box[3]) height, width, _ = shape y_top = max(startY - padding, 0) x_top = max(startX - padding, 0) y_bot = min(endY + padding, height) x_bot = min(endX + padding, width) return y_top, y_bot, x_top, x_bot frames_boxes, frames_confidences = detector.detect([Image.fromarray(x) for x in frames], landmarks=False) for batch_idx, (frame_boxes, frame_confidences) in enumerate(zip(frames_boxes, frames_confidences)): frame = frames[batch_idx] stored_frames.append(frame_boxes) if (frame_boxes is not None) and (len(frame_boxes) > 0): frame_locations = [] for j, (face_box, confidence) in enumerate(zip(frame_boxes, frame_confidences)): (y, yb, x, xb) = get_box(face_box, frame.shape, 0) area = (yb - y) * (xb - x) if not data: stuff = (x,y,area,batch_idx,j,) ss = set() ss.add(stuff) data.append(ss) else: add_to_closest_set(x,y,area,batch_idx,j) count = 0 for i, d in enumerate(data): if len(d) > 9: for f in d: rx,ry,area,i,j = f frame = frames[i] box = stored_frames[i][j] (y, yb, x, xb) = get_box(box, frame.shape, 10) face_extract = frame[y : yb, x : xb] pa = f'{path}/{vid_name}_{len(d)}_{count}.png' cv2.imwrite(pa,cv2.cvtColor(face_extract, cv2.COLOR_RGB2BGR)) count += 1 def convert_video_to_frames_per_frame(capture, per_n): num_frames = get_frame_count(capture) frames = [] for i in range(0, num_frames): ret = capture.grab() if i % per_n == 0: ret, image = capture.retrieve() if ret: height, width, channels = image.shape image = cv2.resize(image, (width // 2, height // 2), interpolation=cv2.INTER_AREA) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) frames.append(image) return frames def load_model_retina(device): return RetinaFace(gpu_id=0) def detect_faces_mtcnn_and_save(detector, base_folder, base_video, frames, filenames=None): pil_images = [Image.fromarray(frame) for frame in frames] if filenames is None: filenames = [os.path.join(base_folder, f"{base_video}_face_{i}.png") for i, _ in enumerate(pil_images)] faces = detector(pil_images, filenames) return faces def convert_video_to_frames_with_mtcnn(detector, base_folder, folder): print(folder) for video in tqdm(os.listdir(folder)): name = video.split(".") try: name, extension = name[0], name[1] except IndexError: continue if extension == "mp4": try: capture = cv2.VideoCapture(os.path.join(folder, video)) total_frames = get_frame_count(capture) frame_begin = 10 frame_end = total_frames - 8 begin_indices = [i for i in range(frame_begin, frame_end, total_frames // 4)] frames, indices = get_exact_frames_for_optical_flow(capture, begin_indices) new_video_folder = os.path.join(base_folder, name) os.mkdir(new_video_folder) filenames = [os.path.join(new_video_folder, f"{name}_face_{i}.png") for i in indices] detect_faces_mtcnn_and_save(detector, new_video_folder, name, frames, filenames) capture.release() except Exception as e: print(video) print(e) continue if __name__ == "__main__": # base_folder = "/home/teh_devs/deepfake/raw/test_vids" """ Rescaled by 4 need testing """ from glob import glob storage_dir = '/home/teh_devs/deepfake/dataset/revamp' folder_list = [] print("Doing first 5 folders") for i in range(0, 5): folder_list.append(f"/home/teh_devs/deepfake/raw/dfdc_train_part_{i}") detector = load_model(device="cuda:0") # f = '/home/teh_devs/deepfake/raw/dfdc_train_part_4/srqogltgnx.mp4' for f in folder_list: print(f) videos = glob(f + '/*.mp4') for vid in tqdm(videos, ncols=0): try: vid_name = vid.split('/')[-1].split('.')[0] capture = cv2.VideoCapture(vid) frames = convert_video_to_frames_per_frame(capture, 10) new_folder = os.path.join(storage_dir, vid_name) os.mkdir(new_folder) mtcnn_detect(detector, frames, new_folder, vid_name) capture.release() except Exception as e: print(e) # for f in folder_list: # convert_video_to_frames_with_mtcnn(detector, base_folder, f)
2.46875
2
test/binaries/foo_v1.py
drmikecrowe/cod
405
12782809
#!/usr/bin/env python3 """ Usage: foo [OPTION]... --foo1 useful option foo --bar1 useful option bar """ import sys if __name__ == "__main__": print(__doc__, file=sys.stderr)
1.710938
2
panos_update_panorama_upload/content_update_panorama_upload.py
scotchoaf/fw_content_update
0
12782810
<filename>panos_update_panorama_upload/content_update_panorama_upload.py # Copyright (c) 2018, Palo Alto Networks # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # Author: <NAME> <<EMAIL>> ''' Palo Alto Networks content_update_panorama_upload.py uses panorama install content updates to a managed firewall does both content/threat and antivirus updates This software is provided without support, warranty, or guarantee. Use at your own risk. ''' import argparse import sys import time from datetime import datetime, timedelta import pan.xapi from xml.etree import ElementTree as etree def get_job_id(s): ''' extract job-id from pan-python string xml response regex parse due to pan-python output join breaking xml rules :param s is the input string :return: simple string with job id ''' return s.split('<job>')[1].split('</job>')[0] def get_job_status(s): ''' extract status and progress % from pan-python string xml response regex parse due to pan-python output join breaking xml rules :param s is the input string :return: status text and progress % ''' status = s.split('<status>')[1].split('</status>')[0] progress = s.split('<progress>')[1].split('</progress>')[0] return status, progress def check_job_status(fw, results): ''' periodically check job status in the firewall :param fw is fw object being queried :param results is the xml-string results returned for job status ''' # initialize to null status status = '' job_id = get_job_id(results) # check job id status and progress while status != 'FIN': fw.op(cmd='<show><jobs><id>{0}</id></jobs></show>'.format(job_id)) status, progress = get_job_status(fw.xml_result()) if status != 'FIN': print('job {0} in progress [ {1}% complete ]'.format(job_id, progress), end='\r', flush=True) time.sleep(5) print('\njob {0} is complete'.format(job_id)) def get_latest_content(fw, kind): ''' check panorama to get latest content files panorama upload doesn't have a latest option as with the firewall :param fw: device object for api calls :param type: type of content update to check :return: ''' # call to panorama to check content file name fw.op(cmd='<request><batch><{0}><info/></{0}></batch></request>'.format(kind)) results = fw.xml_result() contents = etree.fromstring(results) # set a year old best date to find the latest one bestdate = datetime.now() - timedelta(days=365) if kind == 'anti-virus': filetype = 'antivirus' if kind == 'content': filetype = 'contents' for item in contents: # only consider all-contents file and if downloaded if item[7].text == 'yes' and 'all-{0}'.format(filetype) in item[2].text: itemdate = datetime.strptime(item[5].text.rsplit(' ', 1)[0],'%Y/%m/%d %H:%M:%S') # get the latest date and associated filename if itemdate > bestdate: bestdate = itemdate latestfile = item[2].text return latestfile def update_content(fw, type, sn, filename): ''' check, download, and install latest content updates :param fw is the fw object being updated :param type is update type - content or anti-virus ''' # install latest content # this model assume that panorama has latest content downloads print('installing latest {0} updates to {1}'.format(type, sn)) print('using file {0}'.format(filename)) fw.op(cmd='<request><batch><{0}><upload-install><devices>{1}</devices>' '<file>{2}</file></upload-install>' '</{0}></batch></request>'.format(type, sn, filename)) results = fw.xml_result() if '<job>' in results: check_job_status(fw, results) def main(): ''' simple set of api calls to update fw to latest content versions ''' # python skillets currently use CLI arguments to get input from the operator / user. Each argparse argument long # name must match a variable in the .meta-cnc file directly parser = argparse.ArgumentParser() parser.add_argument("-d", "--panorama", help="IP address of Panorama", type=str) parser.add_argument("-u", "--username", help="Panorama Username", type=str) parser.add_argument("-p", "--password", help="Panorama Password", type=str) parser.add_argument("-s", "--serial_number", help="Firewall Serial Number", type=str) args = parser.parse_args() if len(sys.argv) < 2: parser.print_help() parser.exit() exit(1) # this is actually the panorama ip and will fix fw_ip = args.panorama username = args.username password = <PASSWORD> serial_number = args.serial_number # create fw object using pan-python class # fw object is actually a panorama object so an api device object fw = pan.xapi.PanXapi(api_username=username, api_password=password, hostname=fw_ip) # get panorama api key api_key = fw.keygen() print('updating content for NGFW serial number {0}'.format(serial_number)) # !!! updates require panorama mgmt interface with internet access # update ngfw to latest content and av versions # passing in the serial number for device to update for item in ['content', 'anti-virus']: filename = get_latest_content(fw, item) update_content(fw, item, serial_number, filename) print('\ncontent update complete') if __name__ == '__main__': main()
2.140625
2
tests/integration/helper.py
covx/graypy_v6
181
12782811
<filename>tests/integration/helper.py #!/usr/bin/env python # -*- coding: utf-8 -*- """helper functions for testing graypy with a local Graylog instance""" from time import sleep from uuid import uuid4 import requests def get_unique_message(): return str(uuid4()) DEFAULT_FIELDS = [ "message", "full_message", "source", "level", "func", "file", "line", "module", "logger_name", ] BASE_API_URL = 'http://127.0.0.1:9000/api/search/universal/relative?query=message:"{0}"&range=300&fields=' def get_graylog_response(message, fields=None): """Search for a given log message (with possible additional fields) within a local Graylog instance""" fields = fields if fields else [] tries = 0 while True: try: return _parse_api_response( api_response=_get_api_response(message, fields), wanted_message=message ) except ValueError: sleep(2) if tries == 5: raise tries += 1 def _build_api_string(message, fields): return BASE_API_URL.format(message) + "%2C".join(set(DEFAULT_FIELDS + fields)) def _get_api_response(message, fields): url = _build_api_string(message, fields) api_response = requests.get( url, auth=("admin", "admin"), headers={"accept": "application/json"} ) return api_response def _parse_api_response(api_response, wanted_message): assert api_response.status_code == 200 print(api_response.json()) for message in api_response.json()["messages"]: if message["message"]["message"] == wanted_message: return message["message"] raise ValueError( "wanted_message: '{}' not within api_response: {}".format( wanted_message, api_response ) )
2.3125
2
examples/long_example.py
AdrieanKhisbe/logupdate.py
5
12782812
<gh_stars>1-10 from logupdate import logupdate from time import sleep logupdate("This is gonna be...") sleep(1) logupdate("This is gonna be a very very very long example") sleep(3) logupdate("This is gonna be a very very very long example with very very long lines that span over terminal size") sleep(3) logupdate( """This is gonna be a very very very long example with very very long lines that span over terminal size And that use also multilines!""") sleep(3) logupdate.clear() logupdate("Voilà").done()
1.929688
2
tests/test_system.py
adamzhang1987/bt-python-sdk
4
12782813
import unittest import warnings from pybt.system import System from pybt.exceptions import InvalidAPIKey from .config import CONFIG class ClientTestCase(unittest.TestCase): def setUp(self): warnings.simplefilter('ignore', ResourceWarning) self.api = System(CONFIG.get("panel_address"), CONFIG.get("api_key")) def test_api_key_error(self): with self.assertRaises(InvalidAPIKey): api_err_key = System(CONFIG.get("panel_address"), "somewords"+CONFIG.get("api_key")) api_err_key.get_system_total() def test_get_system_total(self): self.assertIsInstance(self.api.get_system_total(), dict) self.assertIn("system", self.api.get_system_total()) self.assertIn("version", self.api.get_system_total()) def test_get_disk_info(self): self.assertIsInstance(self.api.get_disk_info(), list) self.assertIn("filesystem", self.api.get_disk_info()[0]) self.assertIn("type", self.api.get_disk_info()[0]) def test_get_net_work(self): self.assertIsInstance(self.api.get_net_work(), dict) self.assertIn("network", self.api.get_net_work()) def test_get_task_count(self): self.assertIsInstance(self.api.get_task_count(), int) def test_update_panel(self): self.assertIsInstance(self.api.update_panel(), dict) self.assertIn("status", self.api.update_panel()) self.assertIn("version", self.api.update_panel().get('msg'))
2.390625
2
softwares/houdini_wizard/export/modeling.py
Wizard-collab/wizard_2
1
12782814
# coding: utf-8 # Author: <NAME> # Contact: <EMAIL> # Python modules import traceback import os import logging logger = logging.getLogger(__name__) # Wizard modules from houdini_wizard import wizard_tools from houdini_wizard import wizard_export # Houdini modules def main(): scene = wizard_export.save_or_save_increment() try: out_nodes_dic = {'wizard_modeling_output_LOD1':'LOD1', 'wizard_modeling_output_LOD2':'LOD2', 'wizard_modeling_output_LOD3':'LOD3'} for out_node_name in out_nodes_dic.keys(): if wizard_tools.check_out_node_existence(out_node_name): export_name = out_nodes_dic[out_node_name] wizard_export.trigger_before_export_hook('modeling') wizard_export.export(stage_name='modeling', export_name=export_name, out_node=out_node_name) except: logger.error(str(traceback.format_exc())) finally: wizard_export.reopen(scene)
2.078125
2
code/data_analysis_2.py
PrideLee/CCFDF-Personalized-Matching-Model-of-Packages-for-Telecom-Users
0
12782815
<filename>code/data_analysis_2.py import pandas as pd import numpy as np import random import matplotlib.pyplot as plt def scater_service_type(att): type_0 = raw_data[raw_data["current_service"] == 89016252][att].tolist() type_1 = raw_data[raw_data["current_service"] == 89016253][att].tolist() type_2 = raw_data[raw_data["current_service"] == 89016259][att].tolist() type_3 = raw_data[raw_data["current_service"] == 89950166][att].tolist() type_4 = raw_data[raw_data["current_service"] == 89950167][att].tolist() type_5 = raw_data[raw_data["current_service"] == 89950168][att].tolist() type_6 = raw_data[raw_data["current_service"] == 99999825][att].tolist() type_7 = raw_data[raw_data["current_service"] == 99999826][att].tolist() type_8 = raw_data[raw_data["current_service"] == 99999827][att].tolist() type_9 = raw_data[raw_data["current_service"] == 99999828][att].tolist() type_10 = raw_data[raw_data["current_service"] == 99999830][att].tolist() type_11 = raw_data[raw_data["current_service"] == 90063345][att].tolist() type_12 = raw_data[raw_data["current_service"] == 90109916][att].tolist() type_13 = raw_data[raw_data["current_service"] == 90155946][att].tolist() type_14 = raw_data[raw_data["current_service"] == 99104722][att].tolist() x_1 = [1 + random.random() for i in range(len(type_0))] x_2 = [3 + random.random() for i in range(len(type_1))] x_3 = [5 + random.random() for i in range(len(type_2))] x_4 = [7 + random.random() for i in range(len(type_3))] x_5 = [9 + random.random() for i in range(len(type_4))] x_6 = [11 + random.random() for i in range(len(type_5))] x_7 = [13 + random.random() for i in range(len(type_6))] x_8 = [15 + random.random() for i in range(len(type_7))] x_9 = [17 + random.random() for i in range(len(type_8))] x_10 = [19 + random.random() for i in range(len(type_9))] x_11 = [21 + random.random() for i in range(len(type_10))] x_12 = [23 + random.random() for i in range(len(type_11))] x_13 = [25 + random.random() for i in range(len(type_12))] x_14 = [27 + random.random() for i in range(len(type_13))] x_15 = [29 + random.random() for i in range(len(type_14))] plt.scatter(x_1, type_0, c="red", s=0.03) plt.scatter(x_2, type_1, c="red", s=0.03) plt.scatter(x_3, type_2, c="red", s=0.03) plt.scatter(x_4, type_3, c="red", s=0.03) plt.scatter(x_5, type_4, c="red", s=0.03) plt.scatter(x_6, type_5, c="red", s=0.03) plt.scatter(x_7, type_6, c="red", s=0.03) plt.scatter(x_8, type_7, c="red", s=0.03) plt.scatter(x_9, type_8, c="red", s=0.03) plt.scatter(x_10, type_9, c="red", s=0.03) plt.scatter(x_11, type_10, c="red", s=0.03) plt.scatter(x_12, type_11, c="red", s=0.03) plt.scatter(x_13, type_12, c="red", s=0.03) plt.scatter(x_14, type_13, c="red", s=0.03) plt.scatter(x_15, type_14, c="red", s=0.03) plt.xlabel('service_type') plt.ylabel(att) plt.grid(True) # plt.title("service_type-1_total_fee scatter") plt.show() def bbox(att): type_0 = raw_data[raw_data["current_service"] == 89016252][att].tolist() type_1 = raw_data[raw_data["current_service"] == 89016253][att].tolist() type_2 = raw_data[raw_data["current_service"] == 89016259][att].tolist() type_3 = raw_data[raw_data["current_service"] == 89950166][att].tolist() type_4 = raw_data[raw_data["current_service"] == 89950167][att].tolist() type_5 = raw_data[raw_data["current_service"] == 89950168][att].tolist() type_6 = raw_data[raw_data["current_service"] == 99999825][att].tolist() type_7 = raw_data[raw_data["current_service"] == 99999826][att].tolist() type_8 = raw_data[raw_data["current_service"] == 99999827][att].tolist() type_9 = raw_data[raw_data["current_service"] == 99999828][att].tolist() type_10 = raw_data[raw_data["current_service"] == 99999830][att].tolist() type_11 = raw_data[raw_data["current_service"] == 90063345][att].tolist() type_12 = raw_data[raw_data["current_service"] == 90109916][att].tolist() type_13 = raw_data[raw_data["current_service"] == 90155946][att].tolist() type_14 = raw_data[raw_data["current_service"] == 99104722][att].tolist() y = np.transpose(np.array([type_0, type_1, type_2, type_3, type_4, type_5, type_6, type_7, type_8, type_9, type_10, type_11, type_12, type_13, type_14])) # y = np.transpose(np.array( # [type_0, type_1, type_2, type_3, type_4, type_5, type_6, type_7, type_8, type_9, type_10, type_11, type_12, # type_13])) labels = ["89016252", "89016253", "89016259", "89950166", "89950167", "89950168", "99999825", "99999826", "99999827", "99999828", "99999830", "90063345", "90109916", "90155946", "99104722"] # labels = ["89016252", "89016253", "89016259", "89950166", "89950167", "89950168", "99999825", "99999826", # "99999827", "99999828", "99999830", "90063345", "90109916", "90155946"] plt.boxplot(y, labels=labels, sym='o') plt.grid(True) plt.show() def binary_value_distribution(att): type_0 = raw_data[raw_data["current_service"] == 89016252][att] type_1 = raw_data[raw_data["current_service"] == 89016253][att] type_2 = raw_data[raw_data["current_service"] == 89016259][att] type_3 = raw_data[raw_data["current_service"] == 89950166][att] type_4 = raw_data[raw_data["current_service"] == 89950167][att] type_5 = raw_data[raw_data["current_service"] == 89950168][att] type_6 = raw_data[raw_data["current_service"] == 99999825][att] type_7 = raw_data[raw_data["current_service"] == 99999826][att] type_8 = raw_data[raw_data["current_service"] == 99999827][att] type_9 = raw_data[raw_data["current_service"] == 99999828][att] type_10 = raw_data[raw_data["current_service"] == 99999830][att] type_11 = raw_data[raw_data["current_service"] == 90063345][att] type_12 = raw_data[raw_data["current_service"] == 90109916][att] type_13 = raw_data[raw_data["current_service"] == 90155946][att] type_14 = raw_data[raw_data["current_service"] == 99104722][att] print(type_0.value_counts()) print(type_1.value_counts()) print(type_2.value_counts()) print(type_3.value_counts()) print(type_4.value_counts()) print(type_5.value_counts()) print(type_6.value_counts()) print(type_7.value_counts()) print(type_8.value_counts()) print(type_9.value_counts()) print(type_10.value_counts()) print(type_11.value_counts()) print(type_12.value_counts()) print(type_13.value_counts()) print(type_14.value_counts()) def dimensionality_reduction(par): new_list = [] par_list = raw_data[par].tolist() for i in par_list: if i != 0: new_list.append(1) else: new_list.append(0) return new_list def parallel_coordinates(dataframe, paralist): service_type = dataframe["current_service"].tolist() num = len(service_type) list_12 = [] list_13 = [] list_14 = [] for i in range(num): if service_type[i] == 12: list_12.append(i) if service_type[i] == 13: list_13.append(i) if service_type[i] == 14: list_14.append(i) list_14_sample_num = round(len(list_14) * 0.68) list_14_sample = random.sample(list_14, list_14_sample_num) dataframe_12 = dataframe.iloc[list_12] dataframe_13 = dataframe.iloc[list_13] dataframe_14 = dataframe.iloc[list_14_sample] par_num = len(paralist) x_type = [i*3 for i in range(par_num)] x_12, y_12 = parallel_coordinates_part(dataframe_12, x_type, paralist) num_12 = len(dataframe_12) print(1) for i in range(num_12): plt.plot(x_12[i], y_12[i], 'r') plt.hold x_13, y_13 = parallel_coordinates_part(dataframe_13, x_type, paralist) num_13 = len(dataframe_13) print(2) for i in range(num_13): plt.plot(x_13[i], y_13[i], 'g') plt.hold x_14, y_14 = parallel_coordinates_part(dataframe_14, x_type, paralist) num_14 = len(dataframe_14) print(3) for i in range(num_14): plt.plot(x_14[i], y_14[i], 'b') plt.hold plt.show() def parallel_coordinates_part(dataframe, x, parlist): num = len(dataframe) att = [[m + random.random() for m in x] for n in range(num)] y = [[dataframe.iloc[n][m] for m in parlist] for n in range(num)] return att, y def pre(dataframe, paralist): # dataframe only include ther data of current_service = 12, 13, 14. service_type = dataframe["current_service"].tolist() num = len(service_type) list_12 = [] list_13 = [] list_14 = [] for i in range(num): if service_type[i] == 12: list_12.append(i) if service_type[i] == 13: list_13.append(i) if service_type[i] == 14: list_14.append(i) dataframe_12 = dataframe.iloc[list_12] dataframe_13 = dataframe.iloc[list_13] dataframe_14 = dataframe.iloc[list_14] paralist_12 = [] paralist_13 = [] paralist_14 = [] for i in paralist: paralist_12.append(sorted(dataframe_12[i].tolist())) paralist_13.append(sorted(dataframe_13[i].tolist())) paralist_14.append(sorted(dataframe_14[i].tolist())) para_num = len(paralist) num_12 = len(paralist_12[0]) bound_12 = max(round(num_12 * 0.001), 100) para_12_bound = [paralist_12[j][num_12] - paralist_12[j][0] for j in range(para_num)] pre_12 = [[] for i in range(para_num)] num_13 = len(paralist_13[0]) bound_13 = max(round(num_13 * 0.001), 100) para_13_bound = [paralist_13[j][num_13] - paralist_13[j][0] for j in range(para_num)] pre_13 = [[] for i in range(para_num)] num_14 = len(paralist_14[0]) bound_14 = max(round(num_14 * 0.001), 100) para_14_bound = [paralist_14[j][num_14] - paralist_14[j][0] for j in range(para_num)] pre_14 = [[] for i in range(para_num)] for i in range(num): for j in range(para_num): temp = dataframe.iloc[i][paralist[j]] for k in range(num_12): if temp < paralist_12[j][k]: paralist_12[j].insert(k, temp) break up = min(k + bound_12, num_12) down = max(k - bound_12, 0) pre_12[j].append(round((paralist_12[j][up] - paralist_12[j][down])/para_12_bound, 6)) for k in range(num_13): if temp < paralist_13[j][k]: paralist_13[j].insert(k, temp) break up = min(k + bound_13, num_13) down = max(k - bound_13, 0) pre_13[j].append(round((paralist_13[j][up] - paralist_13[j][down])/para_13_bound, 6)) for k in range(num_14): if temp < paralist_14[j][k]: paralist_14[j].insert(k, temp) break up = min(k + bound_14, num_14) down = max(k - bound_14, 0) pre_14[j].append(round((paralist_14[j][up] - paralist_14[j][down])/para_14_bound, 6)) for j in range(para_num): rank_att = [] for i in range(num): a = pre_12[j][i] b = pre_13[j][i] c = pre_14[j][i] temp_list = [a, b, c] list_sort = sorted(temp_list) rank = [list_sort.index(k) for k in temp_list] rank_att.append(rank[0] * 100 + rank[1] + rank[2]) dataframe[paralist[j] + "probability"] = rank_att return dataframe, pre_12, pre_13, pre_14 # raw_data = pd.read_csv(r"E:\CCFDF\plansmatching\data\raw data\train\train_1.csv", encoding="utf-8", low_memory=False) # print(raw_data["service_type"].value_counts()) # binary_value_distribution("service_type") # scater_service_type("service_type") # print(raw_data["is_mix_service"].value_counts()) # is_mix_service_1 = raw_data[raw_data["is_mix_service"] == 1]["current_service"] # print(is_mix_service_1.value_counts()) # online_time_qu = raw_data[raw_data["online_time"] < 64]["service_type"] # scater_service_type("online_time") # bbox("online_time") # print(online_time_qu.value_counts()) # scater_service_type("4_total_fee") # bbox("4_total_fee") # scater_service_type("month_traffic") # bbox("month_traffic") # month_traffic_3 = raw_data[raw_data["service_type"] == 3]["month_traffic"] # print(month_traffic_3.value_counts()) # month_traffic_3 = raw_data[raw_data["service_type"] == 1]["month_traffic"] # print(month_traffic_3.value_counts()) # binary_value_distribution("many_over_bill") # binary_value_distribution("contract_type") # scater_service_type("contract_type") # scater_service_type("contract_time") # binary_value_distribution("contract_time") # binary_value_distribution("is_promise_low_consume") # binary_value_distribution("net_service") # scater_service_type("pay_times") # scater_service_type("pay_num") # bbox("pay_times") # bbox("pay_num") # temp = raw_data["pay_num"].tolist() # error = [i for i in range(len(temp)) if temp[i]>40000] # print(error) # scater_service_type("last_month_traffic") # binary_value_distribution("last_month_traffic") # bbox("last_month_traffic") # temp = raw_data["2_total_fee"].tolist() # error = [i for i in range(len(temp)) if temp[i] == '\\N'] # float_fee_2 = [float(i) for i in temp] # print([i for i in range(len(float_fee_2)) if float_fee_2[i] < 0]) # scater_service_type("2_total_fee") # bbox("2_total_fee") # temp = raw_data["3_total_fee"].tolist() # error = [i for i in range(len(temp)) if temp[i] == '\\N'] # scater_service_type("3_total_fee") # bbox("3_total_fee") # scater_service_type("local_trafffic_month") # bbox("local_trafffic_month") # temp = raw_data["local_trafffic_month"].tolist() # error = [i for i in range(len(temp)) if temp[i]>300000] # print(error) # scater_service_type("local_caller_time") # bbox("local_caller_time") # temp = raw_data["local_caller_time"].tolist() # error = [i for i in range(len(temp)) if temp[i]>5000] # print(error) # binary_value_distribution("local_caller_time") # scater_service_type("service1_caller_time") # bbox("service1_caller_time") # binary_value_distribution("service1_caller_time") # scater_service_type("service2_caller_time") # bbox("service2_caller_time") # temp = raw_data["service2_caller_time"].tolist() # error = [i for i in range(len(temp)) if temp[i]>8000] # print(error) # binary_value_distribution("service1_caller_time") # temp = raw_data["gender"].tolist() # error = [i for i in range(len(temp)) if temp[i] == '\\N'] # print(error) # binary_value_distribution("gender") # scater_service_type("age") # temp = raw_data["age"].tolist() # error = [i for i in range(len(temp)) if temp[i] == '\\N'] # print(error) # bbox("age") # binary_value_distribution("complaint_level") # binary_value_distribution("former_complaint_num") # bbox("former_complaint_num") # scater_service_type("former_complaint_fee") # bbox("former_complaint_fee") # temp = raw_data["former_complaint_fee"].tolist() # error = [i for i in range(len(temp)) if temp[i] > 10**9] # print(error) # binary_value_distribution("former_complaint_fee") # dis_1 = raw_data[raw_data["service_type"] == 1]['former_complaint_fee'].tolist() # dis_3 = raw_data[raw_data["service_type"] == 3]['former_complaint_fee'].tolist() # dis_4 = raw_data[raw_data["service_type"] == 4]['former_complaint_fee'].tolist() # sit_1 = [i for i in range(len(dis_1)) if ((dis_1[i] != 0) & (dis_1[i] < 10**10))] # sit_3 = [i for i in range(len(dis_3)) if ((dis_3[i] != 0) & (dis_3[i] < 10**10))] # sit_4 = [i for i in range(len(dis_4)) if ((dis_4[i] != 0) & (dis_4[i] < 10**10))] # y_1 = [dis_1[i] for i in sit_1] # y_3 = [dis_3[i] for i in sit_3] # y_4 = [dis_4[i] for i in sit_4] # print(np.mean(y_1)) # print(np.mean(y_3)) # print(np.mean(y_4)) # y = np.transpose(np.array([y_1, y_3, y_4])) # labels = ["service_type_1", "service_type_3", "service_type_4"] # plt.boxplot(y, labels=labels, sym='o') # plt.grid(True) # plt.show() # print(binary_value_distribution("current_service")) # temp = raw_data["1_total_fee"].tolist() # error = [i for i in range(len(temp)) if temp[i]>4000] # value = [temp[i] for i in error] # print(value) # temp = raw_data["month_traffic"].tolist() # error = [i for i in range(len(temp)) if temp[i] > 120000] # value = [temp[i] for i in error] # print(value) # bbox("contract_time") # scater_service_type("pay_num") # bbox("pay_num") # # raw_data = pd.read_csv(r"E:\CCFDF\plansmatching\data\raw data\train\train_1.csv", encoding="utf-8", # low_memory=False) # binary_value_distribution("service_type") # raw_data = pd.read_csv(r"E:\CCFDF\plansmatching\data\raw data\train\class_2_sup_add_0_balance.csv", encoding="utf-8", # low_memory=False) # index = raw_data["current_service"].tolist() # select_type = [12, 13, 14] # index_num = len(index) # select_data = [i for i in range(index_num) if index[i] in select_type] # select_label = [index[i] for i in select_data] # site_total = range(0, index_num) # noisy_nom = round(0.3 * index_num) # noisy = random.sample(site_total, noisy_nom) # noisy_real = [i for i in noisy if i not in select_data] # noisy_real_num = len(noisy_real) # noisy_label = [0] * noisy_real_num # select_total = select_data + noisy_real # label_total = select_label + noisy_label # select_sample = raw_data.iloc[select_total] # select_sample["current_service_new"] = label_total # select_sample.to_csv(r"E:\CCFDF\plansmatching\data\raw data\train\small_class_12_13_14_others.csv") # # b = np.mean([0.7064220183486238, 0.8772348033373063, 0.5764192139737991, 0.6644951140065146, 0.8432098765432099, 0.7623400365630713, 0.8747913188647747, 0.8597285067873304, 0.6574074074074074, 0.5882352941176471, 0.6779661016949153]) # print(b) # # r_3 = [0.7095435684647303, 0.8888888888888888, 0.7058823529411764, 0.6552901023890785, 0.8222778473091366, 0.7463837994214079, 0.8519195612431445, 0.8584269662921349, 0.6600331674958542, 0.611023622047244, 0.6757425742574258] # print(np.mean(r_3)) raw_data = pd.read_csv(r"E:\CCFDF\plansmatching\data\raw data\train\class_2_sup_add_0_correct.csv", encoding="utf-8", low_memory=False) attri_list = ['online_time_norm', 'local_trafffic_month_norm', 'service2_caller_time_norm', 'age_norm', 'fee_mean_norm', 'fee_mean_2_norm', 'fee_fluctuate_norm', 'month_traffic_norm', 'contract_time_norm', 'pay_num_norm', 'last_month_traffic_norm', 'local_trafffic_month_norm', 'local_caller_time_norm', 'service1_caller_time_norm'] parallel_coordinates(raw_data, attri_list) # raw_data = pd.read_csv(r"E:\CCFDF\plansmatching\data\raw data\train\class_2_sup_add_0_correct.csv", encoding="utf-8", # low_memory=False) # service_type = raw_data["current_service"].tolist() # num_total = len(raw_data) # select_type = [12, 13, 14] # sel_site = [i for i in range(num_total) if service_type[i] in select_type] # select_dataframe = raw_data.iloc[sel_site] # select_dataframe.to_csv(r"E:\CCFDF\plansmatching\data\raw data\train\class_2_sup_add_12_13_14_correct.csv") #
2.78125
3
spartan/expr/__init__.py
MaggieQi/spartan
0
12782816
#!/usr/bin/env python """ Definitions of expressions and optimizations. In Spartan, operations are not performed immediately. Instead, they are represented using a graph of `Expr` nodes. Expression graphs can be evaluated using the `Expr.evaluate` or `Expr.force` methods. The `base` module contains the definition of `Expr`, the base class for all types of expressions. It also defines subclasses for wrapping common Python values: lists (`ListExpr`), dicts (`DictExpr`) and tuples ((`TupleExpr`). Operations are built up using a few high-level operations -- these all live in their own modules: * Create a new distributed array `spartan.expr.ndarray` * Map over an array :py:mod:`spartan.expr.map` and `spartan.expr.shuffle` * Reduce over an array `spartan.expr.reduce` * Apply a stencil/convolution to an array `spartan.expr.stencil` * Slicing/indexing `spartan.expr.index`. Optimizations on DAGs live in `spartan.expr.optimize`. """ from base import Expr, evaluate, optimized_dag, glom, eager, lazify, as_array, force, NotShapeable, newaxis from .builtins import * from .assign import assign from .map import map, map2 from .map_with_location import map_with_location from .region_map import region_map from .tile_operation import tile_operation from .ndarray import ndarray from .outer import outer from .reduce import reduce from .shuffle import shuffle from .scan import scan from .write_array import write, from_numpy, from_file, from_file_parallel from .checkpoint import checkpoint from .fio import save, load, pickle, unpickle, partial_load, partial_unpickle from .reshape import reshape from .retile import retile from .transpose import transpose from .dot import dot from .sort import sort, argsort, argpartition, partition Expr.outer = outer Expr.sum = sum Expr.mean = mean Expr.astype = astype Expr.ravel = ravel Expr.argmin = argmin Expr.argmax = argmax
2.609375
3
data_preprocessing/utils/match_lat_lon.py
facebookresearch/Context-Aware-Representation-Crop-Yield-Prediction
12
12782817
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def match_lat_lon(lats_from, lons_from, lats_to, lons_to, expand=0): i_lat_start = i_lat_end = i_lon_start = i_lon_end = 0 for i in range(len(lats_from)): if abs(lats_from[i] - lats_to[0]) < 0.00001: i_lat_start = i - expand if abs(lats_from[i] - lats_to[-1]) < 0.00001: i_lat_end = i + expand for i in range(len(lons_from)): if abs(lons_from[i] - lons_to[0]) < 0.00001: i_lon_start = i - expand if abs(lons_from[i] - lons_to[-1]) < 0.00001: i_lon_end = i + expand return i_lat_start, i_lat_end, i_lon_start, i_lon_end
3.359375
3
tests/declarative.py
drowse314-dev-ymat/lexical-knowledge-base-for-japanese-civil-law
1
12782818
<gh_stars>1-10 # encoding: utf-8 from attest import ( Tests, assert_hook, raises, contextmanager, ) import rdflib from lkbutils import declarative from lkbutils.relationprovider import RedundantRelation, Cyclic termloader_unit = Tests() relationloader_unit = Tests() @contextmanager def new_rdflib_termloader(**options): try: yield declarative.RDFLibTermLoader(**options) finally: pass @contextmanager def new_rdflib_relationloader(**options): try: yield declarative.RDFLibRelationLoader(**options) finally: pass class Fixtures(object): """Namespace for fixtures.""" class NS(object): pass # law terms law_terms = NS() law_terms.flat = [ u'抵当権', u'質権', u'詐害行為取消権', u'制限行為能力者', ] law_terms.struct = { u'権利': [ {u'物権': [u'抵当権', u'質権']}, {u'請求権': [u'詐害行為取消権']}, ], u'人': [u'制限行為能力者'], } law_terms.identifiers = { u'teitouken': u'抵当権', u'shichiken': u'質権', u'sagaikouitorikeshiken': u'詐害行為取消権', u'seigenkouinouryokumono': u'制限行為能力者', } # general properties basic_properties = NS() basic_properties.flat = [ u'hyper', u'part_of{attribute}', u'contrary', ] basic_properties.identifiers = { u'hyper': u'hyper', u'attribute': u'part_of', u'contrary': u'contrary', } # japanese prefectures jp_prefectures = NS() jp_prefectures.flat_yaml = ( u"terms:\n" u" - 京都\n" u" - 奈良\n" u" - 島根\n" u" - 神奈川\n" u" - 福島\n" ) jp_prefectures.struct_yaml = ( u"terms:\n" u" 府:\n" u" 政令指定都市がある:\n" u" - 京都\n" u" 県:\n" u" 政令指定都市がある:\n" u" - 神奈川\n" u" ない:\n" u" - 奈良\n" u" - 島根\n" u" - 福島\n" ) jp_prefectures.identifiers = { u'kyouto': u'京都', u'nara': u'奈良', u'shimane': u'島根', u'kanagawa': u'神奈川', u'fukushima': u'福島', } # predicate-style python funcs python_predicates = NS() python_predicates.yaml = ( u"options:\n" u" as_property: yes\n" u"terms:\n" u" - isinstance{_type}\n" u" - issubclass\n" u" - hasattr{_has}\n" ) python_predicates.identifiers = { u'_type': u'isinstance', u'issubclass': u'issubclass', u'_has': u'hasattr', } # world & japanese rivers world_rivers = NS() world_rivers.definition_yaml = ( u"options:\n" u" romanize: yes\n" u"terms:\n" u" egypt:\n" u" - nile\n" u" brazil:\n" u" - amazon\n" u" china:\n" u" - 長江\n" u" japan:\n" u" 中部地方:\n" u" - 信濃川\n" ) world_rivers.identifiers = { u'nile': u'nile', u'amazon': u'amazon', u'choukou': u'長江', u'shinanokawa': u'信濃川', } world_rivers.prop_definition_yaml = ( u"options:\n" u" romanize: yes\n" u"load_options:\n" u" as_property: yes\n" u"terms:\n" u" - longer than\n" u" - wider than\n" ) world_rivers.prop_identifiers = { u'longer_than': u'longer than', u'wider_than': u'wider than', } # 出世魚 shusse_uo = NS() shusse_uo.core_relation = u'shusse_uo' shusse_uo.core_relation_identifier = u'shusse' shusse_uo.terms = [ u'shusse', u'wakashi', u'inada', u'warasa', u'buri', ] shusse_uo.relation_pairs = [ (u'wakashi', u'inada'), (u'inada', u'warasa'), (u'warasa', u'buri'), ] shusse_uo.additions = NS() shusse_uo.additions.addcycle = [(u'buri', u'wakashi')] shusse_uo.additions.redundant = [(u'warasa', u'buri')] # US geo. relation configs us_geo_rel_cfg = NS() us_geo_rel_cfg.yaml = ( u"options:\n" u" dry: yes\n" u" nointerlinks: no\n" u" acyclic: no\n" u"relations:\n" u" next_to:\n" u" options:\n" u" acyclic: yes\n" u" pairs:\n" u" 南:\n" u" - missisippi arkansas\n" u" 北西:\n" u" - washington oregon\n" u" far_from:\n" u" options:\n" u" dry: no\n" u" pairs:\n" u" - alabama nebraska\n" ) us_geo_rel_cfg.relations = NS() us_geo_rel_cfg.relations.next_to = u'next_to' us_geo_rel_cfg.relations.far_from = u'far_from' us_geo_rel_cfg.expects = NS() us_geo_rel_cfg.expects.attr_casts = { u'relation': unicode, u'options': dict, u'pairs': set, } us_geo_rel_cfg.expects.next_to = { u'relation': u'next_to', u'options': {u'dry': True, u'nointerlinks': False, u'acyclic': True}, u'pairs': [ (u'washington', u'oregon'), (u'missisippi', u'arkansas'), ], } us_geo_rel_cfg.expects.far_from = { u'relation': u'far_from', u'options': {u'dry': False, u'nointerlinks': False, u'acyclic': False}, u'pairs': [ (u'alabama', u'nebraska'), ], } # US geo. relation definitions def_us_geo_rels = NS() def_us_geo_rels.terms = [ u'next_to', u'tikai', u'missisippi', u'arkansas', u'tennessee', u'alabama', ] def_us_geo_rels.definition_yaml = ( u"options:\n" u" dry: yes\n" u" nointerlinks: yes\n" u" acyclic: no\n" u"relations:\n" u" next_to:\n" u" options:\n" u" acyclic: yes\n" u" pairs:\n" u" 南:\n" u" - missisippi arkansas\n" u" - arkansas tennessee\n" u" - tennessee alabama\n" u" tikai:\n" u" pairs:\n" u" - missisippi arkansas\n" u" - arkansas tennessee\n" u" - tennessee alabama\n" ) def_us_geo_rels.relations = NS() def_us_geo_rels.relations.next_to = u'next_to' def_us_geo_rels.relations.tikai = u'tikai' def_us_geo_rels.relation_pairs = [ (u'missisippi', u'arkansas'), (u'arkansas', u'tennessee'), (u'tennessee', u'alabama'), ] def_us_geo_rels.additions = NS() def_us_geo_rels.additions.redundant = [(u'missisippi', u'arkansas')] def_us_geo_rels.additions.addcycle = [(u'alabama', u'missisippi')] def rdflib_getlabel(graph, node): return list(graph.objects(subject=node, predicate=rdflib.RDFS.label))[0].value @termloader_unit.test def load_terms_from_data(): """Load terms directly from data.""" # flat with new_rdflib_termloader(romanize=True) as termloader: termloader.load(Fixtures.law_terms.flat) ns = termloader.ns graph = termloader.graph for id_label in Fixtures.law_terms.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.law_terms.identifiers[id_label]) # structured with new_rdflib_termloader(romanize=True) as termloader: termloader.load(Fixtures.law_terms.struct) ns = termloader.ns graph = termloader.graph for id_label in Fixtures.law_terms.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.law_terms.identifiers[id_label]) # properties with new_rdflib_termloader(romanize=True) as termloader: termloader.load(Fixtures.basic_properties.flat, as_property=True) ns = termloader.ns graph = termloader.graph triples = list(termloader.graph.triples((None, None, None))) for id_label in Fixtures.basic_properties.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.basic_properties.identifiers[id_label]) assert (node, rdflib.RDF.type, rdflib.RDF.Property) in triples @termloader_unit.test def load_terms_from_yaml(): """Load terms from YAML representation.""" # flat with new_rdflib_termloader(romanize=True) as termloader: termloader.load_yaml(Fixtures.jp_prefectures.flat_yaml) ns = termloader.ns graph = termloader.graph for id_label in Fixtures.jp_prefectures.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.jp_prefectures.identifiers[id_label]) # structured with new_rdflib_termloader(romanize=True) as termloader: termloader.load_yaml(Fixtures.jp_prefectures.struct_yaml) ns = termloader.ns graph = termloader.graph for id_label in Fixtures.jp_prefectures.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(getattr(ns, id_label), rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.jp_prefectures.identifiers[id_label]) # properties with new_rdflib_termloader(romanize=True) as termloader: termloader.load_yaml(Fixtures.python_predicates.yaml) ns = termloader.ns graph = termloader.graph triples = list(termloader.graph.triples((None, None, None))) for id_label in Fixtures.python_predicates.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.python_predicates.identifiers[id_label]) assert (node, rdflib.RDF.type, rdflib.RDF.Property) in triples @termloader_unit.test def load_terms_from_yaml_on_demand(): """Load terms from YAML representation using declarative.load_terms.""" termloader = declarative.rdflib_load_terms(Fixtures.world_rivers.definition_yaml) ns = termloader.ns graph = termloader.graph for id_label in Fixtures.world_rivers.identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.world_rivers.identifiers[id_label]) @termloader_unit.test def load_properties_from_yaml_on_demand(): """Load properties from YAML representation using declarative.load_terms.""" termloader = declarative.rdflib_load_terms(Fixtures.world_rivers.prop_definition_yaml) ns = termloader.ns graph = termloader.graph triples = list(graph.triples((None, None, None))) for id_label in Fixtures.world_rivers.prop_identifiers: node = getattr(ns, id_label) assert id_label in ns assert isinstance(node, rdflib.BNode) assert (rdflib_getlabel(graph, node) == Fixtures.world_rivers.prop_identifiers[id_label]) assert (node, rdflib.RDF.type, rdflib.RDF.Property) in triples @termloader_unit.test def toplevel_termloader(): """lkbutils.declarative.load_terms is accessible from top-level.""" from lkbutils import rdflib_load_terms class MockRDFLibNamespace(object): def __init__(self, names): self.namespace = self.create_ns(names) @property def ns(self): return self.namespace def create_ns(self, names): class NS: pass ns = NS() for name in names: setattr(ns, name, rdflib.BNode()) return ns @relationloader_unit.test def load_relations_from_data(): """Load node relations directly from structured data.""" nodeprovider = MockRDFLibNamespace(Fixtures.shusse_uo.terms) with new_rdflib_relationloader(nodeprovider=nodeprovider, relation=Fixtures.shusse_uo.core_relation_identifier, dry=True, acyclic=True) as relloader: relloader.load(Fixtures.shusse_uo.relation_pairs) triples = list(relloader.graph.triples((None, None, None))) for relsrc, reldest in Fixtures.shusse_uo.relation_pairs: noderel = (getattr(nodeprovider.ns, relsrc), nodeprovider.ns.shusse, getattr(nodeprovider.ns, reldest)) assert noderel in triples with raises(Cyclic): relloader.load(Fixtures.shusse_uo.additions.addcycle) with raises(RedundantRelation): relloader.load(Fixtures.shusse_uo.additions.redundant) @relationloader_unit.test def relation_configs_from_yaml(): """ Parse YAML representation & generate configs. to create RelationLoader. """ # mapping {relation => config} relation_definitions = declarative.rdflib_load_relcfg(Fixtures.us_geo_rel_cfg.yaml) config_attr_casts = Fixtures.us_geo_rel_cfg.expects.attr_casts parsed_next_to_cfg = relation_definitions[Fixtures.us_geo_rel_cfg.relations.next_to] for config_attr in config_attr_casts: cast = config_attr_casts[config_attr] assert ( cast(parsed_next_to_cfg[config_attr]) == cast(Fixtures.us_geo_rel_cfg.expects.next_to[config_attr]) ) parsed_far_from_cfg = relation_definitions[Fixtures.us_geo_rel_cfg.relations.far_from] for config_attr in config_attr_casts: cast = config_attr_casts[config_attr] assert ( cast(parsed_far_from_cfg[config_attr]) == cast(Fixtures.us_geo_rel_cfg.expects.far_from[config_attr]) ) @relationloader_unit.test def load_relations_from_yaml(): """Load node relations from YAML representation.""" nodeprovider = MockRDFLibNamespace(Fixtures.def_us_geo_rels.terms) relloaders = declarative.rdflib_load_relations( Fixtures.def_us_geo_rels.definition_yaml, nodeprovider=nodeprovider, ) relloader_next_to = relloaders[Fixtures.def_us_geo_rels.relations.next_to] relloader_tikai = relloaders[Fixtures.def_us_geo_rels.relations.tikai] # pairs loaded triples_next_to = list(relloader_next_to.graph.triples((None, None, None))) for relsrc, reldest in Fixtures.def_us_geo_rels.relation_pairs: noderel = (getattr(nodeprovider.ns, relsrc), nodeprovider.ns.next_to, getattr(nodeprovider.ns, reldest)) assert noderel in triples_next_to triples_tikai = list(relloader_tikai.graph.triples((None, None, None))) for relsrc, reldest in Fixtures.def_us_geo_rels.relation_pairs: noderel = (getattr(nodeprovider.ns, relsrc), nodeprovider.ns.tikai, getattr(nodeprovider.ns, reldest)) assert noderel in triples_tikai # rules with raises(RedundantRelation): relloader_next_to.load(Fixtures.def_us_geo_rels.additions.redundant) with raises(Cyclic): relloader_next_to.load(Fixtures.def_us_geo_rels.additions.addcycle) with raises(RedundantRelation): relloader_tikai.load(Fixtures.def_us_geo_rels.additions.redundant) relloader_tikai.load(Fixtures.def_us_geo_rels.additions.addcycle) @relationloader_unit.test def toplevel_relationloader(): """lkbutils.declarative.load_relations is accessible from top-level.""" from lkbutils import rdflib_load_relations
2.234375
2
detector.py
neutrons/Qikr
0
12782819
<filename>detector.py import mcvine, mcvine.components from mcni.AbstractComponent import AbstractComponent from mcni.utils import conversion import numpy as np import os from mcni import neutron_buffer, neutron class Detector(AbstractComponent): "2D detector center a (0,0,0) and perpendicular to z" def __init__(self, name, xwidth, yheight, dx, dy, outfile, tofbinsize=0.1): self.name = name assert xwidth > 0 and yheight > 0 and dx>0 and dy>0 self.xwidth = xwidth self.yheight = yheight self.dx = dx self.dy = dy self.Nx = int(xwidth/dx) self.Ny = int(yheight/dy) print (self.Nx, self.Ny) self.outfile = outfile self.tofbinsize = tofbinsize return def process(self, neutrons): if not len(neutrons): return from mcni.neutron_storage import neutrons_as_npyarr, ndblsperneutron # number of doubles per neutrons thats means each neutron is represented by x, y, z, vx, vy, vz, s1, s2, t, t0, p (10 double variables) arr = neutrons_as_npyarr(neutrons) #converting the input neutrons to array arr.shape = -1, ndblsperneutron x = arr[:, 0]; y = arr[:, 1]; z = arr[:, 2] vx = arr[:, 3]; vy = arr[:, 4]; vz = arr[:, 5] s1 = arr[:, 6]; s2 = arr[:, 7]; t = arr[:, 8]; t0 = t.copy() p = arr[:, 9] # propagate to Z = 0 self._propagateToZ0(x, y, z, vx, vy, vz, t) # Filter ftr = (x >= -self.xwidth / 2) * (x < self.xwidth / 2) \ * (y >= -self.yheight / 2) * (y < self.yheight / 2) \ * (t > t0) # xindex = (x+self.xwidth/2)//self.dx; xindex[xindex<0] = 0; xindex[xindex>=self.Nx]=self.Nx-1 yindex = (y+self.yheight/2)//self.dy; yindex[yindex<0] = 0; yindex[yindex>=self.Ny]=self.Ny-1 index = yindex + xindex * self.Ny N = ftr.sum() from mccomponents.detector.event_utils import datatype events = np.zeros(N, dtype=datatype) events['pixelID'] = index[ftr] events['tofChannelNo']=t[ftr]*1e6/self.tofbinsize events['p'] = p[ftr] self._save(events) return def _save(self, events): outdir = self._getOutputDirInProgress() np.save(os.path.join(outdir, self.outfile), events) return def _propagateToZ0(self, x, y, z, vx, vy, vz, t): dt = -z / vz x += vx * dt y += vy * dt z[:] = 0 t += dt return
3.078125
3
py/text2img.py
walker-zheng/code
4
12782820
#! /usr/bin/python # -*- coding: utf-8 -*- ''' # 使用 convert(ImageMagick) 转换png为gif图片: ls |sed 's/\(.*\).png/convert \1.png -flatten -channel A -threshold 0% \1.gif/g' # cx-freeze打包: Python setup.py build Python setup.py bdist_msi ''' from os import mkdir from os import walk from os import path from os import getcwd import sys from math import floor from codecs import open # from pathlib import Path # from inspect import getsourcefile # from os.path import abspath import pygame def AAfilledRoundedRect(surface,rect,color,radius=0.4): """ AAfilledRoundedRect(surface,rect,color,radius=0.4) surface : destination rect : rectangle color : rgb or rgba radius : 0 <= radius <= 1 """ rect = pygame.Rect(rect) color = pygame.Color(*color) alpha = color.a color.a = 0 pos = rect.topleft rect.topleft = 0,0 rectangle = pygame.Surface(rect.size,pygame.SRCALPHA) circle = pygame.Surface([min(rect.size)*3]*2,pygame.SRCALPHA) pygame.draw.ellipse(circle,(0,0,0),circle.get_rect(),0) circle = pygame.transform.smoothscale(circle,[int(min(rect.size)*radius)]*2) radius = rectangle.blit(circle,(0,0)) radius.bottomright = rect.bottomright rectangle.blit(circle,radius) radius.topright = rect.topright rectangle.blit(circle,radius) radius.bottomleft = rect.bottomleft rectangle.blit(circle,radius) rectangle.fill((0,0,0),rect.inflate(-radius.w,0)) rectangle.fill((0,0,0),rect.inflate(0,-radius.h)) rectangle.fill(color,special_flags=pygame.BLEND_RGBA_MAX) rectangle.fill((255,255,255,alpha),special_flags=pygame.BLEND_RGBA_MIN) return surface.blit(rectangle,pos) def splitByLen(string, width): return [string[x:x+width] for x in range(0, len(string), width)] def generate_pic(hasBackgroud, frontColor): # import os.path # try: # dir_path = os.path.dirname(os.path.abspath(__file__)) # except NameError: # We are the main py2exe script, not a module # import sys # dir_path = os.path.dirname(os.path.abspath(sys.argv[0])) # dir_path = path.dirname(path.realpath(__file__)) # dir_path = Path(__file__).parent # dir_path = abspath(getsourcefile(lambda:0)) # if getattr(sys, 'text2img', False): # # The application is frozen # dir_path = path.dirname(sys.executable) # Print("found install path:" + dir_path) path_prefix = getcwd() pygame.init() fontPath = path.join(path_prefix, "fonts\\") text = u'获取测试文本长度哈哈' line_len = len(text) fontSize = 15 fontHeight = 200 # 35 40 50 # 单字高度 越大字越清 fontEdge = 0.25 # 图片边距 picEdge = 1600 # 240 # 图片边长 单行字数 = picEdge/fontHeight dst_scale = 240/picEdge width_plus = fontHeight * fontEdge height_plus = fontHeight * fontEdge radius_default = 0.5 color_white = (255, 255, 255, 255) color_gray = (204, 204, 204, 255) color_black = (0, 0, 0, 0) isSmoooth = True if hasBackgroud: color_bg = color_gray color_fg = frontColor image_bg = "-bg" else: color_bg = None color_fg = color_black image_bg = "" imagePath = path.join(path_prefix, "images\\") Print(u"图片将生成在目录:\t\t\t\t\t" + imagePath) mkdir(imagePath) if not path.exists(imagePath) else None input_file = path.join(path_prefix,"1.txt") if not path.exists(input_file): Print(u"[退出]当前目录无文件:\t\t\t\t" + input_file) return else: Print(u"以文件内容为输入:\t\t\t\t\t" + input_file) if not path.exists(fontPath): Print(u"[退出]未找到字体:\t\t\t\t\t" + fontPath) return else: Print(u"搜索字体:\t\t\t\t\t\t\t" + fontPath) for _,_,filenames in walk(path.join(fontPath)): fontCount = 0 for filename in filenames: font = pygame.font.Font(path.join("fonts", filename), fontSize) _rtext = font.render(text, isSmoooth, color_fg, color_bg) _width, _height = _rtext.get_size() while _height < fontHeight: fontSize += 1 font = pygame.font.Font(path.join("fonts", filename), fontSize) _rtext = font.render(text, isSmoooth, color_fg, color_bg) _width, _height = _rtext.get_size() if hasBackgroud: echoBG= u"带" else: echoBG= u"无" Print(u"使用["+ str(fontSize).zfill(3) + "]号字体" + echoBG + "背景色:\t\t\t" + path.join(fontPath, filename)) fontCount += 1 width_one = _width/len(text) line_len = floor(picEdge/(width_one+2*fontEdge)) imagePath_font = imagePath + path.splitext(filename)[0] imagePath_big = imagePath_font + "\\big" + image_bg imagePath_small = imagePath_font + "\\small" + image_bg imagePath_huge = imagePath_font + "\\huge" + image_bg mkdir(imagePath_font) if not path.exists(imagePath_font) else None mkdir(imagePath_huge) if not path.exists(imagePath_huge) else None mkdir(imagePath_big) if not path.exists(imagePath_big) else None mkdir(imagePath_small) if not path.exists(imagePath_small) else None Print(u"将生成最大[" + str(picEdge) + "]pix的图片:\t\t\t" + imagePath_huge) Print(u"将生成[" + str(picEdge*dst_scale) + "x" + str(picEdge*dst_scale) + "]pix的微信图片:\t" + imagePath_big) Print(u"将生成[" + str(picEdge*dst_scale/2) + "x" + str(picEdge*dst_scale/2) + "]pix的微信图片:\t" + imagePath_small) count = 0 for line in open(input_file, mode='r', encoding='utf-8'): line = line.strip("\n") if len(line) == 0: continue lines = [line] if len(line) > line_len: lines = splitByLen(line, line_len) rtext1 = pygame.Surface((width_one * len(lines[0]) + width_plus * 2, _height * len(lines) + height_plus * 2), pygame.SRCALPHA) rtext1.set_alpha(0) if hasBackgroud: AAfilledRoundedRect(rtext1, rtext1.get_rect(), color_bg, 0.5) line_count = 0 for every in lines: rtext = font.render(every, isSmoooth, color_fg, color_bg) rtext1.blit(rtext, (height_plus, width_plus + line_count * _height)) line_count += 1 pygame.image.save(rtext1, imagePath_huge + "\\" + str(count).zfill(2) + ".png") Print(u"保存图片:\t\t\t\t\t\t\t" + imagePath_huge + "\\" + str(count).zfill(2) + ".png") width_save = floor(picEdge*dst_scale) height_save = floor(picEdge*dst_scale*rtext1.get_height()/rtext1.get_width()) rtext2 = pygame.transform.smoothscale(rtext1, (width_save, height_save)) rtext3 = pygame.Surface((picEdge*dst_scale, picEdge*dst_scale), pygame.SRCALPHA) rtext3.set_alpha(0) rtext3.blit(rtext2, (0, (picEdge*dst_scale - rtext2.get_height())/2)) pygame.image.save(rtext3, imagePath_big + "\\" + str(count).zfill(2) + ".png") Print(u"保存图片:\t\t\t\t\t\t\t" + imagePath_big + "\\" + str(count).zfill(2) + ".png") rtext2 = pygame.transform.smoothscale(rtext3, (floor(rtext3.get_width()/2), floor(rtext3.get_height()/2))) pygame.image.save(rtext2, imagePath_small + "\\" + str(count).zfill(2) + ".png") Print(u"保存图片:\t\t\t\t\t\t\t" + imagePath_small + "\\" + str(count).zfill(2) + ".png") count += 1 __DEBUG__ = True def Print(string): print(string) if __DEBUG__ else None generate_pic(True, (0, 0, 0, 0)) generate_pic(False, (0, 0, 0, 0))
2.515625
3
warpfield/telescope.py
xr0038/jasmine_warpfield
0
12782821
#!/usr/bin/env python # -*- coding: utf-8 -*- from dataclasses import dataclass, field from typing import Callable, List from astropy.coordinates import SkyCoord, Longitude, Latitude, Angle from astropy.time import Time from astropy.units.quantity import Quantity from astropy.wcs import WCS from astropy.visualization.wcsaxes import WCSAxesSubplot from scipy.spatial.transform import Rotation from matplotlib.patches import Rectangle from shapely.geometry import Polygon, Point from shapely.geometry import MultiPoint from shapely.prepared import prep from descartes.patch import PolygonPatch from scipy.optimize import least_squares import matplotlib.pyplot as plt import astropy.units as u import numpy as np import pandas as pd import sys from .util import get_projection def identity_transformation(position): ''' An identity transformation function. This function is an fallback function for the image distortion. The function requires a tuple of two arrays. The first and second elements are the x- and y-positions on the focal plane without any distortion, respectively. This function returns the positions as they are. Parameters: position: A numpy.array with the shape of (2, Nsrc). The first element contains the x-positions, while the second element contains the y-positions. Return: A numpy.ndarray of the input coordinates. ''' return np.array(position) @dataclass class Optics(object): ''' Definition of optical components. Attributes: pointing (SkyCoord) : the latitude of the telescope pointing. position_angle (Angle) : the position angle of the telescope. focal_length (Quantity): the focal length of the telescope in meter. diameter (Quantity) : the diameter of the telescope in meter. valid_region (Polygon) : the valid region of the focal plane. margin (Quantity) : the margin of the valid region (buffle). distortion (function) : a function to distort the focal plane image. ''' pointing: SkyCoord position_angle: Angle = Angle(0.0, unit='degree') focal_length: Quantity = 7.3*u.m diameter: Quantity = 0.4*u.m valid_region: Polygon = Point(0,0).buffer(30000) margin: Quantity = 5000*u.um distortion: Callable = identity_transformation @property def scale(self): ''' A conversion factor from sky to focal plane in degree/um. ''' return (1.0*u.rad/self.focal_length).to(u.deg/u.um) @property def center(self): ''' A dummy position to defiine the center of the focal plane. ''' return SkyCoord(0*u.deg,0*u.deg,frame='icrs') @property def pointing_angle(self): ''' Angle set to define the pointing position and orientation. ''' ## use the ICRS frame in calculation. icrs = self.pointing.icrs ## calculate position angle in the ICRS frame. north = self.pointing.directional_offset_by(0.0,1*u.arcsec) delta = self.pointing.icrs.position_angle(north) position_angle = -self.position_angle.rad-delta.rad return np.array((icrs.ra.rad,-icrs.dec.rad,position_angle)) def set_distortion(self, distortion): ''' Assign a distortion function. The argument of the distortion function should be a numpy.array with the shape of (2, Nsrc). The first element contains the x-positions, while the second element contains the y-positions. Parameters: distortion (function): a function to distort focal plane image. ''' self.distortion = distortion def block(self, position): ''' Block sources by a certain radius. Parameters: position (ndarray): source positions on the focal plane w/o distortion. Return: A boolean array to indicate which sources are inside the field-of-view. ''' mp = MultiPoint(position.T) polygon = prep(self.valid_region.buffer(self.margin.to_value(u.um))) return np.array([not polygon.contains(p) for p in mp.geoms]) def imaging(self, sources, epoch=None): ''' Map celestial positions onto the focal plane. Parameters: sources (SkyCoord): the coordinates of sources. epoch (Time): the epoch of the observation. Return: A `DataFrame` instance. The DataFrame contains four columns: the "x" and "y" columns are the positions on the focal plane in micron, and the "ra" and "dec" columns are the original celestial positions in the ICRS frame. ''' try: if epoch is not None: sources = sources.apply_space_motion(epoch) except Exception as e: print('No proper motion information is available.', file=sys.stderr) print('The positions are not updated to new epoch.', file=sys.stderr) icrs = sources.transform_to('icrs') xyz = icrs.cartesian.xyz r = Rotation.from_euler('zyx', -self.pointing_angle) pqr = r.as_matrix() @ xyz if pqr.ndim==1: pqr = np.expand_dims(pqr,axis=1) obj = SkyCoord(pqr.T, obstime=epoch, representation_type='cartesian').transform_to('icrs') obj.representation_type = 'spherical' proj = get_projection(self.center,self.scale.to_value()) pos = np.array(obj.to_pixel(proj, origin=0)) blocked = self.block(pos) pos = self.distortion(pos) return pd.DataFrame({ 'x': pos[0], 'y': pos[1], 'ra': icrs.ra, 'dec': icrs.dec, 'blocked': blocked }) @dataclass class PixelDisplacement(object): ''' Definition of the pixel non-uniformity. Attributes: dx (ndarray): a two dimensional array with the same size of the detector. each element contains the x-displacement of the pixel. dy (ndarray): a two dimensional array with the same size of the detector. each element contains the y-displacement of the pixel. ''' dx: np.ndarray = None dy: np.ndarray = None def initialize(self, naxis1, naxis2): ''' Initialize the displacement array with zeros. Parameters: naxis1 (int): the detector size along with NAXIS1. naxis2 (int): the detector size along with NAXIS2. ''' self.dx = np.zeros((naxis2, naxis1)) self.dy = np.zeros((naxis2, naxis1)) def evaluate(self, x, y): ''' Evaluate the source position displacement. Parameters: position (ndarray): a numpy.ndarray with the shape of (2, N(sources)). the first array contains the x-coordinates, while the second does the y-coordinates. Note: Not implemented yet. ''' return (x,y) @dataclass class Detector(object): ''' Definition of a detector. Attributes: naxis1 (int) : detector pixels along with NAXIS1. naxis2 (int) : detector pixels along with NAXIS2. pixel_scale (Quantity): nominal detector pixel scale. offset_dx (Quantity) : the offset along with the x-axis. offset_dy (Quantity) : the offste along with the y-axis. position_angle (Angle): the position angle of the detector. displacement (PixelDisplacement): an instance to define the displacements of the sources due to the pixel non-uniformity. ''' naxis1: int = 4096 naxis2: int = 4096 pixel_scale: Quantity = 10*u.um offset_dx: Quantity = 0*u.um offset_dy: Quantity = 0*u.um position_angle: Angle = Angle(0.0, unit='degree') displacement: PixelDisplacement = None def __post_init__(self): if self.displacement is None: self.displacement = PixelDisplacement() self.displacement.initialize(self.naxis1,self.naxis2) @property def width(self): ''' The physical width of the detector. ''' return self.naxis1*self.pixel_scale.to_value(u.um) @property def height(self): ''' The physical height of the detector. ''' return self.naxis2*self.pixel_scale.to_value(u.um) @property def xrange(self): ''' The x-axis range of the detector. ''' return np.array((-self.width/2,self.width/2)) @property def yrange(self): ''' The y-axis range of the detector. ''' return np.array((-self.height/2,self.height/2)) @property def patch(self): ''' The footprint of the detector on the focal plane as a patch. ''' c,s = np.cos(self.position_angle.rad),np.sin(self.position_angle.rad) x0,y0 = self.offset_dx.to_value(u.um),self.offset_dy.to_value(u.um) x1 = x0 - (+ self.width*c - self.height*s)/2 y1 = y0 - (+ self.width*s + self.height*c)/2 return Rectangle((x1,y1), width=self.width, height=self.height, angle=self.position_angle.deg, ec='r', linewidth=2, fill=False) @property def footprint(self): ''' The footprint of the detector on the focal plane. ''' c,s = np.cos(self.position_angle.rad),np.sin(self.position_angle.rad) x0,y0 = self.offset_dx.to_value(u.um),self.offset_dy.to_value(u.um) x1 = x0 - (+ self.width*c - self.height*s)/2 y1 = y0 - (+ self.width*s + self.height*c)/2 x2 = x0 - (- self.width*c - self.height*s)/2 y2 = y0 - (- self.width*s + self.height*c)/2 x3 = x0 - (- self.width*c + self.height*s)/2 y3 = y0 - (- self.width*s - self.height*c)/2 x4 = x0 - (+ self.width*c + self.height*s)/2 y4 = y0 - (+ self.width*s - self.height*c)/2 return Polygon(([x1,y1],[x2,y2],[x3,y3],[x4,y4])) def align(self, x, y): ''' Align the source position to the detector. Parameters: x (Series): the x-coordinates on the focal plane. y (Series): the y-coordinates on the focal plane. Return: The tuple of the x- and y-positions of the sources, which are remapped onto the detector coordinates. ''' c,s = np.cos(-self.position_angle.rad),np.sin(-self.position_angle.rad) dx,dy = x-self.offset_dx.to_value(u.um), y-self.offset_dy.to_value(u.um) return c*dx-s*dy, s*dx+c*dy def capture(self, position): ''' Calculate the positions of the sources on the detector. Parameters: position (DataFrame): the positions of the sources on the focal plane. the "x" and "y" columns are respectively the x- and y-positions of the sources in units of micron. Return: A list of `DataFrame`s which contains the positions on the detectors. The number of the `DataFrame`s are the same as the detectors. The "x" and "y" columns are the positions on each detector. The "ra" and "dec" columns are the original positions in the ICRS frame. ''' x,y = self.align(position.x, position.y) x,y = self.displacement.evaluate(x,y) position.x = x position.y = y bf = ~position.blocked xf = ((self.xrange[0] < x) & (x < self.xrange[1])) yf = ((self.yrange[0] < y) & (y < self.yrange[1])) return position.loc[xf&yf&bf,:] @dataclass class Telescope(object): ''' An imaginary telescope instance. The `Telescope` class is composed of an `Optics` instance and a list of `Detector` instances. This instance organizes the alignment of the detectors and converts the coordinates of the astronomical sources into the positions on the detectors. Attributes: pointing (SkyCoord) position_angle (Angle): ''' pointing: SkyCoord = None position_angle: Angle = None optics: Optics = None detectors: List[Detector] = None def __post_init__(self): if self.optics is None: self.optics = Optics(self.pointing, self.position_angle) else: self.pointing = self.optics.pointing self.position_angle = self.optics.position_angle if self.detectors is None: self.detectors = [Detector(),] assert self.optics is not None assert self.detectors is not None def set_distortion(self, distortion): ''' Set a distortion function to the optics. Parameters: distortion (function): a function to distort focal plane image. ''' self.optics.set_distortion(distortion) def get_footprints(self, **options): ''' Obtain detector footprints on the sky. Options: frame (string): specify the coordinate of the footprint. limit (bool): limit the footprints within the valid region. patch (bool): obtain PolygonPatch instead of Polygon. ''' frame = options.pop('frame', self.pointing.frame.name) limit = options.pop('limit', True) patch = options.pop('patch', False) if self.pointing.frame.name == 'galactic': l0 = self.pointing.galactic.l b0 = self.pointing.galactic.b else: l0 = self.pointing.icrs.ra b0 = self.pointing.icrs.dec def generate(e): frame = self.pointing.frame def func(x): pos = x.reshape((-1,2)) p0 = SkyCoord(pos[:,0], pos[:,1], frame=frame, unit=u.deg) res = self.optics.imaging(p0) return (e-res[['x','y']].to_numpy()).flatten() return func footprints = [] valid_region = self.optics.valid_region for d in self.detectors: fp = valid_region.intersection(d.footprint) if limit else d.footprint edge = np.array(fp.boundary.coords[0:-1]) p0 = np.tile([l0.deg,b0.deg],edge.shape[0]) func = generate(edge) res = least_squares(func, p0) pos = res.x.reshape((-1,2)) sky = SkyCoord(pos[:,0]*u.deg,pos[:,1]*u.deg, frame=self.pointing.frame.name) if frame == 'galactic': sky = sky.galactic pos = Polygon(np.stack([sky.l.deg,sky.b.deg]).T) else: sky = sky.icrs pos = Polygon(np.stack([sky.ra.deg,sky.dec.deg]).T) footprints.append(PolygonPatch(pos, **options) if patch else pos) return footprints def overlay_footprints(self, axis, **options): ''' Display the footprints on the given axis. Parameters: axis (WCSAxesSubplot): An axis instance with a WCS projection. Options: frame (string): the coodinate frame. label (string): the label of the footprints. color (Color): color of the footprint edges. ''' label = options.pop('label', None) color = options.pop('color','C2') frame = options.pop('frame', self.pointing.frame.name) if isinstance(axis, WCSAxesSubplot): options['tranform'] = axis.get_transform(frame) for footprint in self.get_footprints(frame=frame, **options): v = np.array(footprint.boundary.coords) axis.plot(v[:,0], v[:,1], c=color, label=label, **options) return axis def display_focal_plane( self, sources=None, epoch=None, axis=None, **options): ''' Display the layout of the detectors. Show the layout of the detectors on the focal plane. The detectors are illustrated by the red rectangles. If the `sources` are provided, the detectors are overlaid on the sources on the focal plane. Parameters: sources (SkyCoord): the coordinates of astronomical sources. epoch (Time) : the observation epoch. ''' markersize = options.pop('markersize', 1) marker = options.pop('marker', 'x') figsize = options.pop('figsize', (8,8)) if axis is None: fig = plt.figure(figsize=figsize) axis = fig.add_subplot(111) axis.set_aspect(1.0) axis.add_patch(PolygonPatch( self.optics.valid_region, color=(0.8,0.8,0.8), alpha=0.2)) if sources is not None: position = self.optics.imaging(sources, epoch) axis.scatter(position.x,position.y,markersize,marker=marker) for d in self.detectors: axis.add_patch(d.patch) axis.autoscale_view() axis.grid() axis.set_xlabel('Displacement on the focal plane ($\mu$m)', fontsize=14) axis.set_ylabel('Displacement on the focal plane ($\mu$m)', fontsize=14) if axis is None: fig.tight_layout() def observe(self, sources, epoch=None): ''' Observe astronomical sources. Map the sky coordinates of astronomical sources into the physical positions on the detectors of the telescope. Parameters: sources (SkyCoord): a list of astronomical sources. epoch (Time): the datetime of the observation. Return: A numpy.ndarray with the shape of (N(detector), 2, N(source)). The first index specifies the detector of the telescope. A two dimensional array is assigned for each detector. The first line is the coordinates along the NAXIS1 axis, and the second one is the coordinates along the NAXIS2 axis. ''' position = self.optics.imaging(sources, epoch) fov = [] for det in self.detectors: fov.append(det.capture(position)) return fov
2.953125
3
tests/hurricane_yz/plot_hurricane_yz.py
drreynolds/sundials_manyvector_demo
2
12782822
#!/usr/bin/env python3 #------------------------------------------------------------ # Programmer(s): <NAME> @ SMU #------------------------------------------------------------ # Copyright (c) 2019, Southern Methodist University. # All rights reserved. # For details, see the LICENSE file. #------------------------------------------------------------ # matplotlib-based plotting utility function for # hurricane test problem in the yz-plane # imports import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt from utilities_euler3D import * # determine if running interactively if __name__=="__main__": showplots = False else: showplots = True # set view for surface plots elevation = 15 angle = 20 # set test constants rho0 = 1.0 v0 = 10.0 Amp = 25.0 gamma = 2.0 yl = -1.0 yr = 1.0 zl = -1.0 zr = 1.0 # utility function to create analytical solution def analytical_solution(t,ny,nz): if (t == 0): t = 1e-14 p0prime = Amp*gamma*rho0**(gamma-1.0) rthresh = 2.0*t*np.sqrt(p0prime) rho = np.zeros((ny,nz), dtype=float) my = np.zeros((ny,nz), dtype=float) mz = np.zeros((ny,nz), dtype=float) dy = (yr-yl)/ny dz = (zr-zl)/nz for j in range(nz): for i in range(ny): y = (i+0.5)*dy + yl z = (j+0.5)*dz + zl r = np.sqrt(y*y + z*z) if (r == 0.0): # protect against division by zero r = 1e-14 costheta = y/r sintheta = z/r if (r < rthresh): rho[i,j] = r*r / (8*Amp*t*t) my[i,j] = rho[i,j] * (y + z) / (2*t) mz[i,j] = rho[i,j] * (z - y) / (2*t) else: rho[i,j] = rho0 my[i,j] = rho0 * ( 2*t*p0prime*costheta + np.sqrt(2*p0prime)*np.sqrt(r*r-2*t*t*p0prime)*sintheta )/r mz[i,j] = rho0 * ( 2*t*p0prime*sintheta - np.sqrt(2*p0prime)*np.sqrt(r*r-2*t*t*p0prime)*costheta )/r return [rho, my, mz] # load solution data nx, ny, nz, nchem, nt, xgrid, ygrid, zgrid, tgrid, rho, mx, my, mz, et, chem = load_data() # output general information to screen print('Generating plots for data set:') print(' ny: ', ny) print(' nz: ', nz) print(' nt: ', nt) # determine extents of plots minmaxrho = [0.9*rho.min(), 1.1*rho.max()] if (rho.min() == rho.max()): minmaxrho = [rho.min()-0.1, rho.max()+0.1] minmaxmy = [0.9*my.min(), 1.1*my.max()] if (my.min() == my.max()): minmaxmy = [my.min()-0.1, my.max()+0.1] minmaxmz = [0.9*mz.min(), 1.1*mz.max()] if (mz.min() == mz.max()): minmaxmz = [mz.min()-0.1, mz.max()+0.1] minmaxet = [0.9*et.min(), 1.1*et.max()] if (et.min() == et.max()): minmaxet = [et.min()-0.1, et.max()+0.1] # generate plots of solution for tstep in range(nt): numfigs = 0 print('time step', tstep+1, 'out of', nt) # get true solutions rhotrue, mytrue, mztrue = analytical_solution(tgrid[tstep],ny,nz) # set string constants for current time, mesh sizes tstr = repr(tstep) nystr = repr(ny) nzstr = repr(nz) # extract 2D velocity fields (computed and true) U = my[nx//2,:,:,tstep]/rho[nx//2,:,:,tstep] Utrue = mytrue/rhotrue V = mz[nx//2,:,:,tstep]/rho[nx//2,:,:,tstep] Vtrue = mztrue/rhotrue speed = np.sqrt(U**2 + V**2) speedtrue = np.sqrt(Utrue**2 + Vtrue**2) # set filenames for graphics rhosurf = 'rho_surface.' + repr(tstep).zfill(4) + '.png' etsurf = 'et_surface.' + repr(tstep).zfill(4) + '.png' vstr = 'velocity.' + repr(tstep).zfill(4) + '.png' rhocont = 'rho_contour.' + repr(tstep).zfill(4) + '.png' etcont = 'et_contour.' + repr(tstep).zfill(4) + '.png' rho1dout = 'rho1d.' + repr(tstep).zfill(4) + '.png' my1dout = 'my1d.' + repr(tstep).zfill(4) + '.png' mz1dout = 'my1d.' + repr(tstep).zfill(4) + '.png' sp1dout = 'speed1d.' + repr(tstep).zfill(4) + '.png' # set y and z meshgrid objects Y,Z = np.meshgrid(ygrid,zgrid) # surface plots numfigs += 1 fig = plt.figure(numfigs) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(Y, Z, rho[nx//2,:,:,tstep], rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=True, shade=True) ax.set_xlabel('y'); ax.set_ylabel('z'); ax.set_zlim((minmaxrho[0], minmaxrho[1])) ax.view_init(elevation,angle) plt.title(r'$\rho(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) plt.savefig(rhosurf) numfigs += 1 fig = plt.figure(numfigs) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(Y, Z, et[nx//2,:,:,tstep], rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=True, shade=True) ax.set_xlabel('y'); ax.set_ylabel('z'); ax.set_zlim((minmaxet[0], minmaxet[1])) ax.view_init(elevation,angle) plt.title(r'$e_t(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) plt.savefig(etsurf) # stream plots numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) lw = speed / speed.max() ax1.streamplot(Y, Z, U, V, color='b', linewidth=lw) ax1.set_xlabel('y'); ax1.set_ylabel('z'); ax1.set_aspect('equal') ax2 = fig.add_subplot(122) lw = speedtrue / speedtrue.max() ax2.streamplot(Y, Z, Utrue, Vtrue, color='k', linewidth=lw) ax2.set_xlabel('y'); ax2.set_ylabel('z'); ax2.set_aspect('equal') plt.suptitle(r'$\mathbf{v}(y,z)$ (left) vs $\mathbf{v}_{true}(y,z)$ (right) at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) plt.savefig(vstr) # contour plots # numfigs += 1 # fig = plt.figure(numfigs,figsize=(12,4)) # ax1 = fig.add_subplot(121) # ax1.contourf(Y, Z, rho[nx//2,:,:,tstep]) # plt.colorbar(); ax1.set_xlabel('y'); ax1.set_ylabel('z'); ax1.set_axis('equal') # ax2 = fig.add_subplot(122) # ax2.contourf(Y, Z, rhotrue) # ax2.colorbar(); ax2.set_xlabel('y'); ax2.set_ylabel('z'); ax2.set_axis('equal') # plt.suptitle(r'$\rho(y,z)$ (left) vs $\rho_{true}(y,z)$ (right) at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) # plt.savefig(rhocont) # numfigs += 1 # fig = plt.figure(numfigs) # plt.contourf(Y, Z, et[nx//2,:,:,tstep]) # plt.colorbar(); plt.xlabel('y'); plt.ylabel('z'); plt.axis('equal') # plt.title(r'$e_t(y,z)$ at output ' + tstr + ', mesh = ' + nystr + 'x' + nzstr) # plt.savefig(etcont) # line/error plots rho1d = rho[nx//2,:,nz//2,tstep] my1d = my[nx//2,:,nz//2,tstep] mz1d = mz[nx//2,:,nz//2,tstep] sp1d = speed[:,nz//2] rhotrue1d = rhotrue[:,nz//2] mytrue1d = mytrue[:,nz//2] mztrue1d = mztrue[:,nz//2] sptrue1d = speedtrue[:,nz//2] numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,rho1d,'b--',ygrid,rhotrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel(r'$\rho(y)$') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(rho1d-rhotrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|\rho-\rho_{true}|$') plt.suptitle(r'$\rho(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(rho1dout) numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,my1d,'b--',ygrid,mytrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel(r'$m_y(y)$') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(my1d-mytrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|m_y-m_{y,true}|$') plt.suptitle(r'$m_y(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(my1dout) numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,mz1d,'b--',ygrid,mztrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel(r'$m_z(y)$') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(mz1d-mztrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|m_z-m_{z,true}|$') plt.suptitle(r'$m_z(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(mz1dout) numfigs += 1 fig = plt.figure(numfigs,figsize=(12,4)) ax1 = fig.add_subplot(121) ax1.plot(ygrid,sp1d,'b--',ygrid,sptrue1d,'k-') ax1.legend(('computed','analytical')) ax1.set_xlabel('y'); ax1.set_ylabel('s(y)') ax2 = fig.add_subplot(122) ax2.semilogy(ygrid,np.abs(sp1d-sptrue1d)+1e-16) ax2.set_xlabel('y'); ax2.set_ylabel(r'$|s-s_{true}|$') plt.suptitle(r'$s(y)$ and error at output ' + tstr + ', mesh = ' + nystr) plt.savefig(sp1dout) if (showplots): plt.show() for i in range(1,numfigs+1): plt.figure(i), plt.close() ##### end of script #####
2.90625
3
tests/test_installation_commands.py
figufema/TesteClone
1,521
12782823
# -*- coding: utf-8 -*- # Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the google.colab._installation_commands package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import unittest import IPython from IPython.utils import io from google.colab import load_ipython_extension MOCKED_COMMANDS = { 'pip install pandas': """ Requirement already satisfied: pandas in /usr/local/lib/python2.7/dist-packages (0.22.0) Requirement already satisfied: pytz>=2011k in /usr/local/lib/python2.7/dist-packages (from pandas) (2018.9) Requirement already satisfied: python-dateutil in /usr/local/lib/python2.7/dist-packages (from pandas) (2.5.3) Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python2.7/dist-packages (from pandas) (1.16.2) Requirement already satisfied: six>=1.5 in /usr/local/lib/python2.7/dist-packages (from python-dateutil->pandas) (1.11.0) """, 'pip install -U numpy': """ Collecting numpy Downloading https://files.pythonhosted.org/packages/c4/33/8ec8dcdb4ede5d453047bbdbd01916dbaccdb63e98bba60989718f5f0876/numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl (17.0MB) 100% |============================| 17.0MB 660kB/s fastai 0.7.0 has requirement torch<0.4, but you'll have torch 1.0.1.post2 which is incompatible. albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.8 which is incompatible. featuretools 0.4.1 has requirement pandas>=0.23.0, but you'll have pandas 0.22.0 which is incompatible. Installing collected packages: numpy Found existing installation: numpy 1.14.6 Uninstalling numpy-1.14.6: Successfully uninstalled numpy-1.14.6 Successfully installed numpy-1.16.2 """ } class MockInteractiveShell(IPython.InteractiveShell): """Interactive shell that mocks some commands.""" def system(self, cmd): if cmd in MOCKED_COMMANDS: sys.stderr.write('') sys.stdout.write(MOCKED_COMMANDS[cmd]) self.user_ns['_exit_code'] = 0 else: return super(MockInteractiveShell, self).system(cmd) class InstallationCommandsTest(unittest.TestCase): @classmethod def setUpClass(cls): super(InstallationCommandsTest, cls).setUpClass() cls.ip = MockInteractiveShell() load_ipython_extension(cls.ip) def testPipMagicPandas(self): output = self.run_cell('%pip install pandas') self.assertEqual([], output.outputs) self.assertEqual('', output.stderr) self.assertIn('pandas', output.stdout) def testPipMagicNumpy(self): output = self.run_cell('%pip install -U numpy') self.assertEqual([], output.outputs) self.assertEqual('', output.stderr) self.assertIn('numpy', output.stdout) def run_cell(self, cell_contents): with io.capture_output() as captured: self.ip.run_cell(cell_contents) return captured
1.664063
2
galini/relaxations/continuous.py
michaelbynum/galini
0
12782824
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A relaxation that removes integrality constraints on variables.""" from galini.core import Variable, Domain from galini.relaxations.relaxation import Relaxation, RelaxationResult class ContinuousRelaxation(Relaxation): def relaxed_problem_name(self, problem): return problem.name + '_continuous' def relax_variable(self, problem, variable): return Variable( variable.name, problem.lower_bound(variable), problem.upper_bound(variable), Domain.REAL, ) def relax_objective(self, problem, objective): return RelaxationResult(objective) def relax_constraint(self, problem, constraint): return RelaxationResult(constraint)
2.4375
2
relevanceai/dataset/write/__init__.py
RelevanceAI/RelevanceAI
21
12782825
<filename>relevanceai/dataset/write/__init__.py from relevanceai.dataset.write.write import Write
1.289063
1
ideas/web/doc-viewer/service/utils/hasher.py
ctfcup/2019-task-based
1
12782826
from math import sin from wsgi import HASH_SALT def calculate_hash(data: str) -> str: return _calculate_inner(HASH_SALT + data) def _calculate_inner(data: str) -> str: A = 0x12345678 B = 0x9ABCDEF0 C = 0xDEADDEAD D = 0xC0FEC0FE E = 0xFEEDBEAF X = [int(0xFFFFFFFF * sin(i)) & 0xFFFFFFFF for i in range(256)] def F(X, Y, Z): return ((~X & Z) | (~X & Z)) & 0xFFFFFFFF def G(X, Y, Z): return ((X & Z) | (~Z & Y)) & 0xFFFFFFFF def H(X, Y, Z): return (X ^ Y ^ Z) & 0xFFFFFFFF def I(X, Y, Z): return (Y ^ (~Z | X)) & 0xFFFFFFFF def ROL(X, Y): return (X << Y | X >> (32 - Y)) & 0xFFFFFFFF for i, ch in enumerate(data): k, l = ord(ch), i & 0x1f A = (B + ROL(A + F(B, C, D) + X[k], l)) & 0xFFFFFFFF B = (C + ROL(B + G(C, D, E) + X[k], l)) & 0xFFFFFFFF C = (D + ROL(C + H(E, A, B) + X[k], l)) & 0xFFFFFFFF D = (E + ROL(D + I(C, D, E) + X[k], l)) & 0xFFFFFFFF E = (A + ROL(E + F(A, B, C) + X[k], l)) & 0xFFFFFFFF return "".join([hex(x)[2:].zfill(8) for x in [A, B, C, D, E]])
2.640625
3
warning_exceptions.py
lmokto/allexceptions
0
12782827
''' Warning Categories There are also several exceptions defined for use with the warnings module. Warning The base class for all warnings. UserWarning Base class for warnings coming from user code. DeprecationWarning Used for features no longer being maintained. PendingDeprecationWarning Used for features that are soon going to be deprecated. SyntaxWarning Used for questionable syntax. RuntimeWarning Used for events that happen at runtime that might cause problems. FutureWarning Warning about changes to the language or library that are coming at a later time. ImportWarning Warn about problems importing a module. UnicodeWarning Warn about problems with unicode text. '''
1.648438
2
comch/cubical/__init__.py
smimic/comch
4
12782828
<gh_stars>1-10 from .cubical import Cube from .cubical import CubicalElement from .cubical import Cubical
1.117188
1
khan/formatter/__init__.py
globocom/mongo-top
0
12782829
<reponame>globocom/mongo-top import sys import inspect from .table_top import TopTable from .table_replication import ReplicationTable def formatter_factory(command_name): klasses = inspect.getmembers(sys.modules[__name__], inspect.isclass) for klass in klasses: if klass[1].__formatter_name__ == command_name: return klass[1] else: raise AttributeError('Unknown method: {}'.format(command_name))
2.140625
2
tests/test_consumer_group.py
Yelp/yelp_kafka
40
12782830
<gh_stars>10-100 # -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import unicode_literals import os import time from multiprocessing import Process import mock import pytest from kafka.common import ConsumerTimeout from kafka.common import KafkaUnavailableError from yelp_kafka.config import KafkaConsumerConfig from yelp_kafka.consumer_group import ConsumerGroup from yelp_kafka.consumer_group import KafkaConsumerGroup from yelp_kafka.consumer_group import MultiprocessingConsumerGroup from yelp_kafka.error import ConsumerGroupError from yelp_kafka.error import PartitionerError from yelp_kafka.error import PartitionerZookeeperError from yelp_kafka.error import ProcessMessageError @mock.patch('yelp_kafka.consumer_group.Partitioner', autospec=True) class TestConsumerGroup(object): topic = 'topic1' def test__consume(self, mock_partitioner, config): group = ConsumerGroup(self.topic, config, mock.Mock()) group.consumer = mock.MagicMock() group.consumer.__iter__.return_value = [ mock.sentinel.message1, mock.sentinel.message2 ] group.consume(refresh_timeout=1) assert group.process.call_args_list == [ mock.call(mock.sentinel.message1), mock.call(mock.sentinel.message2) ] mock_partitioner.return_value.refresh.assert_called_once_with() def test__consume_partitioner_errors(self, mock_partitioner, config): group = ConsumerGroup(self.topic, config, mock.Mock()) group.consumer = mock.MagicMock() group.consumer.__iter__.return_value = [ mock.sentinel.message1, mock.sentinel.message2 ] mock_partitioner.return_value.refresh.side_effect = PartitionerError("Boom") with pytest.raises(PartitionerError): group.consume(refresh_timeout=1) mock_partitioner.return_value.refresh.side_effect = PartitionerZookeeperError("Boom") with pytest.raises(PartitionerZookeeperError): group.consume(refresh_timeout=1) def test__consume_error(self, mock_partitioner, config): group = ConsumerGroup(self.topic, config, mock.Mock(side_effect=Exception("Boom!"))) group.consumer = mock.MagicMock() group.consumer.__iter__.return_value = [ mock.sentinel.message1, mock.sentinel.message2 ] with pytest.raises(ProcessMessageError): group.consume(refresh_timeout=1) @mock.patch('yelp_kafka.consumer_group.KafkaSimpleConsumer', autospec=True) def test__acquire(self, mock_consumer, _, config): group = ConsumerGroup(self.topic, config, mock.Mock()) partitions = {self.topic: [0, 1]} group._acquire(partitions) args, _ = mock_consumer.call_args topic, _, partitions = args assert topic == self.topic assert partitions == [0, 1] mock_consumer.return_value.connect.assert_called_once_with() @mock.patch('yelp_kafka.consumer_group.KafkaSimpleConsumer', autospec=True) def test__acquire_no_partitions_assigned(self, mock_consumer, _, config): group = ConsumerGroup(self.topic, config, mock.Mock()) partitions = {} group._acquire(partitions) assert not mock_consumer.called @mock.patch('yelp_kafka.consumer_group.KafkaSimpleConsumer', autospec=True) def test__release(self, mock_consumer, _, config): group = ConsumerGroup(self.topic, config, mock.Mock()) partitions = {self.topic: [0, 1]} group._acquire(partitions) group._release(partitions) mock_consumer.return_value.close.assert_called_once_with() class TestKafkaConsumerGroup(object): @pytest.fixture def example_partitions(self): return {'a': 'b'} topic = 'topic1' group = 'my_group' def test___init__string_topics(self): with pytest.raises(AssertionError): KafkaConsumerGroup(self.topic, None) def test__should_keep_trying_no_timeout(self, cluster): config = KafkaConsumerConfig( self.group, cluster, consumer_timeout_ms=-1 ) consumer = KafkaConsumerGroup([], config) long_time_ago = time.time() - 1000 assert consumer._should_keep_trying(long_time_ago) @mock.patch('time.time') def test__should_keep_trying_not_timed_out(self, mock_time, cluster): mock_time.return_value = 0 config = KafkaConsumerConfig( self.group, cluster, consumer_timeout_ms=1000 ) consumer = KafkaConsumerGroup([], config) almost_a_second_ago = time.time() - 0.8 assert consumer._should_keep_trying(almost_a_second_ago) @mock.patch('time.time') def test__should_keep_trying_timed_out(self, mock_time, cluster): mock_time.return_value = 0 config = KafkaConsumerConfig( self.group, cluster, consumer_timeout_ms=1000 ) consumer = KafkaConsumerGroup([], config) over_a_second_ago = time.time() - 1.2 assert not consumer._should_keep_trying(over_a_second_ago) def test__auto_commit_enabled_is_enabled(self, cluster): config = KafkaConsumerConfig( self.group, cluster, auto_commit_enable=True ) consumer = KafkaConsumerGroup([], config) assert consumer._auto_commit_enabled() def test__auto_commit_enabled_not_enabled(self, cluster): config = KafkaConsumerConfig( self.group, cluster, auto_commit_enable=False ) consumer = KafkaConsumerGroup([], config) assert not consumer._auto_commit_enabled() @mock.patch('yelp_kafka.consumer_group.Partitioner') @mock.patch('yelp_kafka.consumer_group.KafkaConsumer') def test_next(self, mock_consumer, mock_partitioner, cluster): config = KafkaConsumerConfig( self.group, cluster, consumer_timeout_ms=500 ) consumer = KafkaConsumerGroup([], config) consumer.partitioner = mock_partitioner() consumer.consumer = mock_consumer() def fake_next(): time.sleep(1) raise ConsumerTimeout() consumer.consumer.next.side_effect = fake_next # The mock KafkaConsumer.next (called fake_next above) takes longer than # consumer_timeout_ms, so we should get a ConsumerTimeout from # KafkaConsumerGroup with pytest.raises(ConsumerTimeout): consumer.next() consumer.consumer.next.assert_called_once_with() consumer.partitioner.refresh.assert_called_once_with() def test__acquire_has_consumer( self, cluster, example_partitions, mock_post_rebalance_cb ): config = KafkaConsumerConfig( self.group, cluster, post_rebalance_callback=mock_post_rebalance_cb ) consumer = KafkaConsumerGroup([], config) consumer.consumer = mock.Mock() consumer._acquire(example_partitions) consumer.consumer.set_topic_partitions.assert_called_once_with(example_partitions) mock_post_rebalance_cb.assert_called_once_with(example_partitions) @mock.patch('yelp_kafka.consumer_group.KafkaConsumer') def test__acquire_has_no_consumer(self, mock_consumer, cluster, example_partitions): config = KafkaConsumerConfig(self.group, cluster) consumer = KafkaConsumerGroup([], config) consumer._acquire(example_partitions) mock_consumer.assert_called_once_with(example_partitions, **consumer.config) def test__release( self, cluster, example_partitions, mock_pre_rebalance_cb ): config = KafkaConsumerConfig( self.group, cluster, auto_commit_enable=True, pre_rebalance_callback=mock_pre_rebalance_cb ) consumer = KafkaConsumerGroup([], config) mock_consumer = mock.Mock() consumer.consumer = mock_consumer consumer._release(example_partitions) mock_consumer.commit.assert_called_once_with() mock_consumer.set_topic_partitions.assert_called_once_with({}) mock_pre_rebalance_cb.assert_called_once_with(example_partitions) def test__release_retry(self, cluster): config = KafkaConsumerConfig( self.group, cluster, auto_commit_enable=True ) consumer = KafkaConsumerGroup([], config) mock_consumer = mock.Mock() mock_consumer.set_topic_partitions.side_effect = KafkaUnavailableError consumer.consumer = mock_consumer with pytest.raises(KafkaUnavailableError): consumer._release({}) assert mock_consumer.set_topic_partitions.call_count == 2 class TestMultiprocessingConsumerGroup(object): topics = ['topic1', 'topic2'] @pytest.fixture @mock.patch('yelp_kafka.consumer_group.Partitioner', autospec=True) def group( self, _, mock_pre_rebalance_cb, mock_post_rebalance_cb ): config = KafkaConsumerConfig( cluster={'broker_list': ['test_broker:9292'], 'zookeeper': 'zookeeper_uri1:2181,zookeeper_uri2:2181'}, group_id='test_group', client_id='test_client_id', max_termination_timeout_secs=0.1, pre_rebalance_callback=mock_pre_rebalance_cb, post_rebalance_callback=mock_post_rebalance_cb ) return MultiprocessingConsumerGroup( self.topics, config, mock.Mock() ) @mock.patch('yelp_kafka.consumer_group.Partitioner', autospec=True) def test_acquire(self, _, config, mock_post_rebalance_cb): consumer_factory = mock.Mock() mock_consumer = mock.Mock() consumer_factory.return_value = mock_consumer group = MultiprocessingConsumerGroup( self.topics, config, consumer_factory ) partitions = { 'topic1': [0, 1, 2], 'topic2': [3] } with mock.patch( 'yelp_kafka.consumer_group.Process', autospec=True ) as mock_process: group.acquire(partitions) assert all(consumer is mock_consumer for consumer in group.get_consumers()) assert consumer_factory.call_count == 4 assert mock_process.call_count == 4 assert mock_process.return_value.start.call_count == 4 mock_post_rebalance_cb.assert_called_once_with(partitions) def test_start_consumer_fail(self, group): consumer = mock.Mock(topic='Test', partitions=[1, 2, 3]) with mock.patch( 'yelp_kafka.consumer_group.Process', autospec=True, ) as mock_process: mock_process.return_value.start.side_effect = Exception("Boom!") with pytest.raises(ConsumerGroupError): group.start_consumer(consumer) def test_release(self, group, mock_pre_rebalance_cb): consumer = mock.Mock() args = {'is_alive.return_value': False} group.consumers = [consumer, consumer] group.consumer_procs = { mock.Mock(spec=Process, **args): consumer, mock.Mock(spec=Process, **args): consumer } with mock.patch.object(os, 'kill', autospec=True) as mock_kill: # Release takes acquired_partitions but in this case it is not used # so we pass None group.release(None) assert not mock_kill.called assert consumer.terminate.call_count == 2 assert not group.get_consumers() mock_pre_rebalance_cb.assert_called_once_with(None) def test_release_and_kill_unresponsive_consumer(self, group): consumer = mock.Mock() args = {'is_alive.return_value': True} group.consumer_procs = { mock.Mock(spec=Process, **args): consumer, mock.Mock(spec=Process, **args): consumer } with mock.patch.object(os, 'kill', autospec=True) as mock_kill: # Release takes acquired_partitions but in this case it is not used # so we pass None group.release(None) assert mock_kill.call_count == 2 assert consumer.terminate.call_count == 2 def test_monitor(self, group): consumer1 = mock.Mock() consumer2 = mock.Mock() args1 = {'is_alive.return_value': False} args2 = {'is_alive.return_value': True} group.consumer_procs = { mock.Mock(spec=Process, **args1): consumer1, mock.Mock(spec=Process, **args2): consumer2, } mock_new_proc = mock.Mock() mock_new_proc.is_alive.return_value = True with mock.patch.object( MultiprocessingConsumerGroup, 'start_consumer', autospec=True ) as mock_start: mock_start.return_value = mock_new_proc group.monitor() assert mock_new_proc in group.consumer_procs mock_start.assert_called_once_with(group, consumer1) def test_get_consumers(self, group): group.consumers = [mock.Mock(), mock.Mock] actual = group.get_consumers() # Test that get_consumers actually returns a copy assert actual is not group.consumers assert actual == group.consumers
1.835938
2
models.py
ymkjp/pytalki
0
12782831
<filename>models.py # -*- coding: utf-8 -*- from sqlalchemy import Column, Integer, String, DateTime, Boolean, DATETIME, Index from sqlalchemy.schema import Column, ForeignKey, Table, UniqueConstraint from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relation, backref from faker import Factory import random from datetime import datetime import enum_types import utils Base = declarative_base() class User(Base): __tablename__ = 'user' __table_args__ = {'mysql_engine': 'InnoDB'} id = Column('id', Integer, primary_key=True) username = Column('username', String(30)) name = Column('name', String(30), nullable=False) created = Column('created', DATETIME, default=datetime.now, nullable=False) modified = Column('modified', DATETIME, default=datetime.now, nullable=False) def __init__(self, username, name): self.username = username self.name = name now = datetime.now() self.created = now self.modified = now # def __repr__(self): # return "<User('id:%s, name:%s')>" % self.id, self.name class LangProfile(Base): __tablename__ = 'lang_profile' __table_args__ = ( (UniqueConstraint('user_id', 'lang_code', name='unique__idx__user_id__lang_code')), Index('idx__lang_code__is_teaching', 'lang_code', 'is_teaching'), {'mysql_engine': 'InnoDB'} ) id = Column('id', Integer, primary_key=True) user_id = Column('user_id', Integer, ForeignKey('user.id', onupdate='CASCADE', ondelete='CASCADE'), nullable=False) lang_code = Column('lang_code', utils.EnumType(enum_class=enum_types.LangCode), index=True, nullable=False) lang_level = Column('lang_level', utils.EnumType(enum_class=enum_types.LangLevel)) is_learning = Column('is_learning', Boolean, index=True, default=False) is_teaching = Column('is_teaching', Boolean, index=True, default=False) user = relation("User", backref=backref('lang_profile', order_by=id)) # def __repr__(self): # return "<LangProfile('user_id:%s,lang_code:%s,lang_level:%s')>" % ( # self.user_id, self.lang_code, self.lang_level) class Course(Base): __tablename__ = 'course' __table_args__ = ( {'mysql_engine': 'InnoDB'} ) id = Column(Integer, primary_key=True) user_id = Column('user_id', Integer, ForeignKey('user.id', onupdate='CASCADE', ondelete='CASCADE'), nullable=False) lang_code = Column(utils.EnumType(enum_class=enum_types.LangCode), nullable=False) lesson_type = Column(utils.EnumType(enum_class=enum_types.LessonType)) minutes = Column(Integer) itc = Column(Integer) session_count = Column(Integer, default=0) rating = Column(Integer, default=0) user = relation("User", backref=backref('course', order_by=id)) # def __repr__(self): # return "<Course('%s,%s')>" % self.user_id, self.lang_code user_table = User.__table__ lang_profile_table = LangProfile.__table__ course_table = Course.__table__ metadata = Base.metadata def init_db(engine): Base.metadata.create_all(bind=engine) faker = Factory.create() def insert_dummy_data(session): dummy_users_count = 100 for i in range(dummy_users_count): add_one_user(session) session.commit() def add_one_user(session): user = User(name=faker.name(), username=faker.user_name()) session.add(user) session.commit() # Every user has one native language at least lang_code_list = random.sample(list(enum_types.LangCode), random.randint(1, 3)) add_lang(session, user, lang_code_list.pop(), enum_types.LangLevel.Native) for lang_code in lang_code_list: add_lang(session, user, lang_code, random.choice(list(enum_types.LangLevel))) def add_lang(session, user, lang_code, lang_level): is_teaching = faker.boolean() and (5 <= lang_level.value) is_learning = faker.boolean() and (lang_level.value <= 6) session.add(LangProfile(user_id=user.id, lang_code=lang_code, lang_level=lang_level, is_learning=is_learning, is_teaching=is_teaching, )) if is_teaching: for i in range(random.randint(1, 5)): session.add(Course(user_id=user.id, lang_code=lang_code, lesson_type=random.choice(list(enum_types.LessonType)), minutes=random.randint(1, 12) * 10, itc=random.randint(1, 100) * 10, session_count=random.randint(0, 1000), rating=random.randint(0, 5), ))
2.390625
2
GCSs_filtering_and_overlapping.py
sutormin94/TopoI_Topo-Seq_1
0
12782832
############################################### ##<NAME>, 2018## ##Topo-Seq analysis## #The script takes raw GCSs data, returns only trusted GCSs, #computes GCSs shared between different conditions, #draws Venn diagrams of the sets overlappings, #writes GCSs sets. ############################################### ####### #Packages to be imported. ####### import os import matplotlib.pyplot as plt import collections from matplotlib_venn import venn2, venn3, venn3_circles import numpy as np ####### #Variables to be defined. ####### print('Variables to be defined:') #Path to the working directory pwd="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Science\TopoI-ChIP-Seq\TopA_ChIP-Seq\EcTopoI_G116S_M320V_Topo-Seq\TCS_motifs\\" #Input data path_to_replicas={'TopoI_Topo_Seq_1': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_1_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_1_no_Ara_TCSs_called_thr_15.BroadPeak"}, 'TopoI_Topo_Seq_2': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_2_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_2_no_Ara_TCSs_called_thr_15.BroadPeak"}, 'TopoI_Topo_Seq_3': {'Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_3_Ara_TCSs_called_thr_15.BroadPeak", 'No_Ara' : pwd + "Replics_1_2_3_Thresholds\TopoI_Topo_Seq_3_no_Ara_TCSs_called_thr_15.BroadPeak"}} #Configuration of the output for the GCSs data in replicas. Replicas_path_out="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Science\TopoI-ChIP-Seq\TopA_ChIP-Seq\EcTopoI_G116S_M320V_Topo-Seq\TCS_motifs\\Replicas_1_2_3_Tresholds_trusted_TCSs\\" if not os.path.exists(Replicas_path_out): os.makedirs(Replicas_path_out) Set_name="Thr_15" All_conditions_name="TopoI_Topo_Seq_123_TCSs_merged" #Configuration of the output for GCSs trusted. Out_path=Replicas_path_out + "TopoI_Topo_Seq_123_TCSs_called_thr_15.BroadPeak" #Outpath for Venn diagrams. plot_outpath=Replicas_path_out ####### #Parsing raw GCSs coordinates, returns dictionary - GCSs_coordinate:N3E. ####### def read_GCSs_file(GCSs_file_path): GCSs_dict={} GCSs_in=open(GCSs_file_path, 'r') for line in GCSs_in: line=line.rstrip().split('\t') if line[0] not in ['GCSs_coordinate']: GCSs_dict[int(line[1])]=float(line[6]) GCSs_in.close() return GCSs_dict ####### #Filter controls. ####### def filter_controls(replicas_path_dict): #Merges a range of replicates TCSs_replicas_dict={} for set_name, set_pair in replicas_path_dict.items(): #Iterates replicas #Read files with raw GCSs Raw_TCSs_dict_Ara=read_GCSs_file(set_pair['Ara']) Raw_TCSs_dict_no_Ara=read_GCSs_file(set_pair['No_Ara']) Raw_TCSs_dict_Ara_filtered={} for TCS_coordinate, TCS_signal in Raw_TCSs_dict_Ara.items(): if TCS_coordinate not in Raw_TCSs_dict_no_Ara: Raw_TCSs_dict_Ara_filtered[TCS_coordinate]=TCS_signal TCSs_replicas_dict[set_name]=Raw_TCSs_dict_Ara_filtered return TCSs_replicas_dict ####### #Combines replicates into one GCSs table. ####### def combine_replicates(replicas_path_dict, path_out, name): #Filter controls. TCSs_replicas_dict=filter_controls(replicas_path_dict) #Merges a range of replicates GCSs_replicas_dict={} names_ar=[] for key, Raw_GCSs_dict in TCSs_replicas_dict.items(): #Iterates replicas names_ar.append(key) for k, v in Raw_GCSs_dict.items(): #Iterates raw GCSs #Table filling process initiation if len(names_ar)==1: GCSs_replicas_dict[k]=[v] #Table filling process continuing (the table already contains at least one GCSs set) else: #If GCSs is already in the table if k in GCSs_replicas_dict: GCSs_replicas_dict[k].append(v) #If this is the first occurrence of the element in a NON empty table. else: add_el=[] for j in range(len(names_ar)-1): add_el.append(0) add_el.append(v) GCSs_replicas_dict[k]=add_el #If table body line contains less elements than header does, hence add zero. for k, v in GCSs_replicas_dict.items(): if len(v)<len(names_ar): GCSs_replicas_dict[k].append(0) #Sorting the list of dictionary keys. GCSs_replicas_dict_sorted=collections.OrderedDict(sorted(GCSs_replicas_dict.items())) #Writes merged GCSs data fileout=open(f'{path_out}{name}_TCSs_replicates.txt', 'w') #TCSs_out.write(f'{Genome_ID}\t{TCSs_list_F[i][0]}\t{TCSs_list_F[i][0]+1}\tTCS_{i}_F\t10\t.\t{TCSs_list_F[i][1]}\t-1\t-1\n') #Header fileout.write('TCSs_coordinate\t') for i in names_ar: fileout.write(str(i) + '_N3E\t') fileout.write('\n') #Body of the table for k, v in GCSs_replicas_dict_sorted.items(): fileout.write(str(k) + '\t') for i in GCSs_replicas_dict_sorted[k]: fileout.write(str(i) + '\t') fileout.write('\n') fileout.close() return GCSs_replicas_dict #Prepares GCSs table for all conditions #combine_replicates(path_to_replicas, Replicas_path_out, All_conditions_name) ####### #Returns only trusted GCSs - observed at least 2 times within 3 biological replicates. #Data organization: 1. coordinate of GCSs, 2.-4. N3E values for biological replicates 1-3 ####### def trusted(ar): av_height=0 ind=0 for i in range(len(ar)): if ar[i]>0: ind=ind+1 av_height=av_height+ar[i] if ind>1: return av_height/ind else: return "No signal" def trusted_GCSs_calling(GCSs_dictionary): ar=[] for k, v in GCSs_dictionary.items(): if trusted(v)!="No signal": ar.append([k, trusted(v)]) return ar def replicas_comb_trust_wrapper(replicas_dict, path_out, name): print('Now working with: ' + str(name)) cur_GCSs_dict=combine_replicates(replicas_dict, path_out, name) cur_GCSs_trusted=trusted_GCSs_calling(cur_GCSs_dict) print('Number of trusted TCSs for ' + str(name) + ' : ' + str(len(cur_GCSs_trusted))) return cur_GCSs_trusted TCSs_trusted=replicas_comb_trust_wrapper(path_to_replicas, Replicas_path_out, All_conditions_name) #Antibs_GCSs_sets=[Cfx, RifCfx, Micro, Oxo] ####### #GCSs shared between pairs of antibiotics - Cfx, Micro and Oxo and between Cfx and RifCfx. ####### def pairs_construction(ar1, ar2): double=[] for i in range(len(ar1)): for j in range(len(ar2)): if ar1[i][0]==ar2[j][0]: double.append([ar1[i][0], ar1[i][1], ar2[j][1]]) #GCSs coordinate, N3E_1, N3E_2 return double #Cfx_RifCfx_shared_GCSs=pairs_construction(Cfx, RifCfx) #print('Number of GCSs shared between Cfx and RifCfx: ' + str(len(Cfx_RifCfx_shared_GCSs)) + '\n') # #Cfx_Micro_shared_GCSs=pairs_construction(Cfx, Micro) #Cfx_Oxo_shared_GCSs=pairs_construction(Cfx, Oxo) #Micro_Oxo_shared_GCSs=pairs_construction(Micro, Oxo) # #print('Number of GCSs shared between Cfx and Micro: ' + str(len(Cfx_Micro_shared_GCSs))) #print('Number of GCSs shared between Cfx and Oxo: ' + str(len(Cfx_Oxo_shared_GCSs))) #print('Number of GCSs shared between Micro and Oxo: ' + str(len(Micro_Oxo_shared_GCSs)) + '\n') # #Antibs_GCSs_sets_pair_shared=[Cfx_Micro_shared_GCSs, Cfx_Oxo_shared_GCSs, Micro_Oxo_shared_GCSs] ####### #GCSs shared between 3 antibiotics ####### def triple_construction(ar12, ar3): triple=[] for i in range(len(ar12)): for j in range(len(ar3)): if ar12[i][0]==ar3[j][0]: triple.append([ar12[i][0], ar12[i][1], ar12[i][2], ar3[j][1]]) #GCSs coordinate, N3E_1, N3E_2, N3E_3 return triple #Cfx_Micro_Oxo_shared_GCSs=triple_construction(Cfx_Micro_shared_GCSs, Oxo) #print('Number of GCSs shared between Cfx, Micro and Oxo: ' + str(len(Cfx_Micro_Oxo_shared_GCSs)) +'\n') ####### #Parses replicas, overlaps lists of GCSs, output data for Venn diagram construction. ####### def replicates_parsing_to_list_and_overlapping(replicas_dict, name): #Parsing GCSs_dict={} for k, v in replicas_dict.items(): #Iterate replicas. GCSs_dict[k]=[] for c, h in read_GCSs_file(v).items(): #Iterate GCSs. GCSs_dict[k].append([c, h]) #Overlapping one_two=pairs_construction(GCSs_dict[name+str(1)], GCSs_dict[name+str(2)]) one_three=pairs_construction(GCSs_dict[name+str(1)], GCSs_dict[name+str(3)]) two_three=pairs_construction(GCSs_dict[name+str(2)], GCSs_dict[name+str(3)]) one_two_three=triple_construction(one_two, GCSs_dict[name+str(3)]) #Venn input description (for 3 sets): one, two, three, one_two, one_three, two_three, one_two_three venn_input=[len(GCSs_dict[name+str(1)])-len(one_two)-len(one_three)+len(one_two_three), len(GCSs_dict[name+str(2)])-len(one_two)-len(two_three)+len(one_two_three), len(one_two)-len(one_two_three), len(GCSs_dict[name+str(3)])-len(one_three)-len(two_three)+len(one_two_three), len(one_three)-len(one_two_three), len(two_three)-len(one_two_three), len(one_two_three)] return venn_input ####### #Venn diagram represents GCSs sets overlapping. #description2: one, two, one_two #description3: one, two, one_two, three, one_three, two_three, one_two_three ####### #venn_data_2=[len(Cfx)-len(Cfx_RifCfx_shared_GCSs), len(RifCfx)-len(Cfx_RifCfx_shared_GCSs), len(Cfx_RifCfx_shared_GCSs)] #venn_data_3=[len(Cfx)-len(Cfx_Micro_shared_GCSs)-len(Cfx_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Micro)-len(Cfx_Micro_shared_GCSs)-len(Micro_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Micro_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Oxo)-len(Cfx_Oxo_shared_GCSs)-len(Micro_Oxo_shared_GCSs)+len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Oxo_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Micro_Oxo_shared_GCSs)-len(Cfx_Micro_Oxo_shared_GCSs), # len(Cfx_Micro_Oxo_shared_GCSs)] #venn2(subsets = (venn_data_2), set_labels = ("Ciprofloxacin", "Rifampicin Ciprofloxacin")) #plt.savefig(plot_outpath+'Cfx_RifCfx_venn.png', dpi=320) #plt.close() # #print("Cfx Micro Oxo subsets volumes: " + str(venn_data_3)) #venn3(subsets = (venn_data_3), set_labels = ('Ciprofloxacin', 'Microcin B17', 'Oxolinic acid')) #plt.savefig(plot_outpath+'Cfx_Micro_Oxo_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_cfx_replicas, 'Cfx_')), set_labels = ('Cfx_1', 'Cfx_2', 'Cfx_3')) #plt.savefig(plot_outpath+'Cfx_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_rifcfx_replicas, 'RifCfx_')), set_labels = ('RifCfx_1', 'RifCfx_2', 'RifCfx_3')) #plt.savefig(plot_outpath+'RifCfx_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_microcin_replicas, 'Micro_')), set_labels = ('Micro_1', 'Micro_2', 'Micro_3')) #plt.savefig(plot_outpath+'Micro_replicas_venn.png', dpi=320) #plt.close() # #venn3(subsets = (replicates_parsing_to_list_and_overlapping(path_to_oxo_replicas, 'Oxo_')), set_labels = ('Oxo_1', 'Oxo_2', 'Oxo_3')) #plt.savefig(plot_outpath+'Oxo_replicas_venn.png', dpi=320) #plt.close() ####### #GCSs sets average N3E estimation. ####### def average_height(ar): av_he=0 for i in range(len(ar)): peak_he=np.mean(ar[i][1:]) av_he=av_he+peak_he return av_he/len(ar) #print('Cfx average GCSs N3E: ' + str(average_height(Cfx))) #print('Micro average GCSs N3E: ' + str(average_height(Micro))) #print('Oxo average GCSs N3E: ' + str(average_height(Oxo))) #print('Cfx and Micro average GCSs N3E: ' + str(average_height(Cfx_Micro_shared_GCSs))) #print('Cfx and Oxo average GCSs N3E: ' + str(average_height(Cfx_Oxo_shared_GCSs))) #print('Micro and Oxo average GCSs N3E: ' + str(average_height(Micro_Oxo_shared_GCSs))) #print('Cfx, Micro and Oxo average GCSs N3E: ' + str(average_height(Cfx_Micro_Oxo_shared_GCSs)) + '\n') ####### #Write down files with GCSs lists - trusted or shared. ####### #All_GCSs_sets={Cfx_path: Antibs_GCSs_sets[0], # RifCfx_path: Antibs_GCSs_sets[1], # Micro_path: Antibs_GCSs_sets[2], # Oxo_path: Antibs_GCSs_sets[3], # Cfx_Micro_path: Antibs_GCSs_sets_pair_shared[0], # Cfx_Oxo_path: Antibs_GCSs_sets_pair_shared[1], # Micro_Oxo_path: Antibs_GCSs_sets_pair_shared[2], # Cfx_Micro_Oxo_path: Cfx_Micro_Oxo_shared_GCSs} def write_GCSs_file(dictionary): for k, v in dictionary.items(): #Iterates lists to be written v.sort(key=lambda tup: tup[0]) #Sorting lists by the zero elements of the sublists they consist of fileout=open(k, 'w') fileout.write('GCSs_coordinate\tN3E\n') for i in range(len(v)): fileout.write(str(v[i][0]) + '\t' + str(np.mean(v[i][1:])) + '\n') fileout.close() return #write_GCSs_file(All_GCSs_sets) def write_Cfx_RifCfx_shared_GCSs(ar, path): fileout=open(path, 'w') fileout.write('GCSs_coordinate\tCfx_N3E\tRifCfx_N3E\n') ar.sort(key=lambda tup: tup[0]) for i in range(len(ar)): fileout.write(str(ar[i][0]) + '\t' + str(ar[i][1]) + '\t' + str(ar[i][2]) + '\n') fileout.close() return #write_Cfx_RifCfx_shared_GCSs(Cfx_RifCfx_shared_GCSs, Cfx_RifCfx_shared_GCSs_path) # #print('Script ended its work succesfully!')
2.296875
2
BeeFiles/Bee.py
Nezgun/Exploring-Bees
0
12782833
<filename>BeeFiles/Bee.py # -*- coding: utf-8 -*- #from DataStorageSystems.Stack import Stack #from DataStorageSystems.LinkedList import LinkedList class Bee(object): def __init__(self, location, name, home): #General Bee Metadata self._home = home self._name = name #Bee's ID self.location = None #Current location => starts in hive #importantMemory #genericMemory linkedlist #self.generalMemory = LinkedList() #hiveMemory #movementQueue
2.484375
2
program/transformer/if_transformer.py
mmsbrggr/polar
2
12782834
<reponame>mmsbrggr/polar from typing import List from singledispatchmethod import singledispatchmethod from program.condition import TrueCond, And, Not, Condition from program.ifstatem import IfStatem from program.assignment import Assignment, PolyAssignment from program.transformer.transformer import TreeTransformer from utils import get_unique_var class IfTransformer(TreeTransformer): """ Removes all if-statements from the program and moves the branch conditions into the conditions of the assignments. So the transformer basically flattens the structure. """ @singledispatchmethod def transform(self, element): return element @transform.register def _(self, ifstmt: IfStatem): conditions = ifstmt.conditions branches: List[List[Assignment]] = ifstmt.branches if ifstmt.else_branch: branches.append(ifstmt.else_branch) conditions.append(TrueCond()) # If a variable in a condition is assigned within a branch we need to store its old value at the beginning # and use the old value in all conditions condition_symbols = self.__get_all_symbols__(conditions) rename_subs = {} # Now, move the conditions of the if-statement into the conditions of the assignments not_previous = TrueCond() for i, branch in enumerate(branches): current_condition = conditions[i] if ifstmt.mutually_exclusive else And(not_previous, conditions[i]) # Remember variables which appear in a condition and are assigned within the branch current_rename_subs = {} for assign in branch: if assign.variable in condition_symbols: if assign.variable in rename_subs: current_rename_subs[assign.variable] = rename_subs[assign.variable] else: current_rename_subs[assign.variable] = get_unique_var(name="old") rename_subs[assign.variable] = current_rename_subs[assign.variable] extra_condition = current_condition.copy().simplify() extra_condition.subs(current_rename_subs) # Add the branch conditions to the assignments for assign in branch: assign.add_to_condition(extra_condition) assign.simplify_condition() not_previous = And(not_previous, Not(conditions[i].copy())) all_assigns = [assign for branch in branches for assign in branch] # Before the if-statement we need to add assignments to actually store the old values of variables # appearing in conditions and being assigned within a branch rename_assigns = [] for orig_var, new_var in rename_subs.items(): rename_assigns.append(PolyAssignment.deterministic(new_var, orig_var)) all_assigns = rename_assigns + all_assigns return tuple(all_assigns) def __get_all_symbols__(self, conditions: List[Condition]): all_symbols = set() for c in conditions: all_symbols |= c.get_free_symbols() return all_symbols
2.609375
3
datareturn/settings.py
PersonalGenomesOrg/datareturn
0
12782835
<gh_stars>0 import os from django.conf import global_settings from env_tools import apply_env # Apply the environment variables in the .env file. apply_env() BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # Required by django-allauth 'django.contrib.sites', # Main app for this site. 'datareturn', # Third party apps 'allauth', 'allauth.account', 'markdown_deux', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) AUTHENTICATION_BACKENDS = ( # Allow login with token instead of password. 'datareturn.backends.UserTokenBackend', # Needed to login by username in Django admin, regardless of `allauth` 'django.contrib.auth.backends.ModelBackend', # `allauth` specific authentication methods, such as login by e-mail 'allauth.account.auth_backends.AuthenticationBackend', ) ROOT_URLCONF = 'datareturn.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', # We use Sites and associated config to customize templates. 'datareturn.context_processors.site', ], }, }, ] WSGI_APPLICATION = 'datareturn.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases # Parse database configuration from $DATABASE_URL DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Sites required by django-allauth. SITE_ID = 1 # Open Humans base URL. Defaults to main site, can be changed for dev purposes. OPEN_HUMANS_SERVER = os.getenv('OPEN_HUMANS_SERVER', 'https://www.openhumans.org') OPEN_HUMANS_REDIRECT_URI = os.getenv('OPEN_HUMANS_REDIRECT_URI') OPEN_HUMANS_CLIENT_ID = os.getenv('OPEN_HUMANS_CLIENT_ID') OPEN_HUMANS_CLIENT_SECRET = os.getenv('OPEN_HUMANS_CLIENT_SECRET') # File storage on S3 and AWS credentials. DEFAULT_FILE_STORAGE = 'datareturn.models.PrivateStorage' AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY') AWS_STORAGE_BUCKET_NAME = os.getenv('AWS_S3_STORAGE_BUCKET_NAME') # Static files (CSS, JavaScript, Images) STATIC_URL = '/static/' STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'),) STATIC_ROOT = 'staticfiles' # Settings for django-allauth and account interactions. ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_EMAIL_VERIFICATION = 'none' LOGIN_REDIRECT_URL = 'home' ############################################################ # Heroku settings if os.getenv('HEROKU_SETUP') in ['true', 'True']: # Parse database configuration from $DATABASE_URL import dj_database_url DATABASES['default'] = dj_database_url.config() # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Allow all host headers DEBUG = False ALLOWED_HOSTS = ['*'] # Email set up. EMAIL_BACKEND = os.getenv('EMAIL_BACKEND', global_settings.EMAIL_BACKEND) if os.getenv('EMAIL_USE_TLS') in ['true', 'True']: EMAIL_USE_TLS = True else: EMAIL_USE_TLS = global_settings.EMAIL_USE_TLS EMAIL_HOST = os.getenv('EMAIL_HOST', global_settings.EMAIL_HOST) EMAIL_HOST_USER = os.getenv('EMAIL_HOST_USER', global_settings.EMAIL_HOST_USER) EMAIL_HOST_PASSWORD = os.getenv('EMAIL_HOST_PASSWORD', global_settings.EMAIL_HOST_PASSWORD) EMAIL_PORT = int(os.getenv('EMAIL_PORT', str(global_settings.EMAIL_PORT))) DEFAULT_FROM_EMAIL = os.getenv('DEFAULT_FROM_EMAIL', global_settings.DEFAULT_FROM_EMAIL)
1.601563
2
recipes/recipe_modules/third_party_packages/examples/go.py
xinghun61/infra
2
12782836
<filename>recipes/recipe_modules/third_party_packages/examples/go.py # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # """Recipe for Go toolchain building. During testing, it may be useful to focus on building Go. This can be done by running this recipe module directly. """ from recipe_engine.recipe_api import Property DEPS = [ 'depot_tools/cipd', 'recipe_engine/platform', 'recipe_engine/properties', 'recipe_engine/url', 'third_party_packages', ] PROPERTIES = { 'platform_name': Property(default=None, kind=str), 'platform_bits': Property(default=None, kind=int), 'dry_run': Property(default=True, kind=bool), } PLATFORMS = ( ('linux', 32, 'linux-386'), ('linux', 64, 'linux-amd64'), ('mac', 64, 'mac-amd64'), ('win', 32, 'windows-386'), ('win', 64, 'windows-amd64'), ) def RunSteps(api, platform_name, platform_bits, dry_run): api.third_party_packages.dry_run = dry_run if not dry_run: api.cipd.set_service_account_credentials( api.cipd.default_bot_service_account_credentials) api.third_party_packages.go.package( platform_name=platform_name, platform_bits=platform_bits) def GenTests(api): go = api.third_party_packages.go version = '1.2.3' + go.PACKAGE_VERSION_SUFFIX for name, bits, platform in PLATFORMS: package_name = go.PACKAGE_TEMPLATE % {'platform': platform} yield ( api.test('%s_%d' % (name, bits)) + api.platform('linux', 32) + api.properties( platform_name=name, platform_bits=bits, dry_run=False, ) + api.step_data( 'cipd search %s version:%s' % (package_name, version), api.cipd.example_search(package_name, instances=0)) ) package_name = go.PACKAGE_TEMPLATE % {'platform': 'linux-386'} yield ( api.test('exists') + api.platform('linux', 32) + api.properties( dry_run=False, ) + api.step_data( 'cipd search %s version:%s' % (package_name, version), api.cipd.example_search(package_name, instances=1)) )
1.796875
2
thesaurus.py
xnaas/custom-bot-commands
0
12782837
""" Original author: xnaas (2022) License: The Unlicense (public domain) """ import requests from sopel import plugin, formatting from sopel.config.types import StaticSection, ValidatedAttribute class ThesaurusSection(StaticSection): api_key = ValidatedAttribute("api_key", str) def setup(bot): bot.config.define_section("thesaurus", ThesaurusSection) def configure(config): config.define_section("thesaurus", ThesaurusSection) config.thesaurus.configure_setting("api_key", "dictionaryapi.com api key") @plugin.command("syn", "synonym") @plugin.output_prefix("[synonym] ") def synonyms(bot, trigger): word = formatting.plain(trigger.group(3)) url = f"https://www.dictionaryapi.com/api/v3/references/thesaurus/json/{word}" key = {"key": bot.config.thesaurus.api_key} try: synonyms = requests.get(url, params=key).json()[0]["meta"]["syns"][0] bot.say(", ".join(synonyms), max_messages=2) except IndexError: bot.reply("No results.") @plugin.command("ant", "antonym") @plugin.output_prefix("[antonym] ") def antonyms(bot, trigger): word = formatting.plain(trigger.group(3)) url = f"https://www.dictionaryapi.com/api/v3/references/thesaurus/json/{word}" key = {"key": bot.config.thesaurus.api_key} try: antonyms = requests.get(url, params=key).json()[0]["meta"]["ants"][0] bot.say(", ".join(antonyms), max_messages=2) except IndexError: bot.reply("No results.")
2.296875
2
app/lists/serializers.py
marcosvbras/inimex-api
0
12782838
<reponame>marcosvbras/inimex-api from rest_framework import serializers from rest_framework.pagination import PageNumberPagination from django.conf import settings from .models import MyList class MyListSerializer(serializers.ModelSerializer): class Meta: model = MyList fields = '__all__' class MyListPagination(PageNumberPagination): page_size = settings.DEFAULT_PAGE_SIZE
2
2
mkab/config.py
grplyler/mkab
0
12782839
import os os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = os.path.expanduser('~/.key.json')
1.398438
1
migrations/versions/640_add_framework_agreement_version_to_.py
uk-gov-mirror/alphagov.digitalmarketplace-api
25
12782840
<reponame>uk-gov-mirror/alphagov.digitalmarketplace-api """add framework_agreement_version to Framework Revision ID: 640 Revises: 630 Create Date: 2016-06-16 11:37:21.802880 """ # revision identifiers, used by Alembic. revision = '640' down_revision = '630' from alembic import op import sqlalchemy as sa def upgrade(): op.add_column('frameworks', sa.Column('framework_agreement_version', sa.String(), nullable=True)) op.execute(""" UPDATE frameworks SET framework_agreement_version = 'v1.0' WHERE slug = 'g-cloud-8' """) def downgrade(): op.drop_column('frameworks', 'framework_agreement_version')
1.164063
1
hphp/tools/gdb/gdbutils.py
tmotyl/hiphop-php
1
12782841
""" Assorted utilities for HHVM GDB bindings. """ # @lint-avoid-python-3-compatibility-imports import collections import functools import gdb #------------------------------------------------------------------------------ # Memoization. def memoized(func): """Simple memoization decorator that ignores **kwargs.""" cache = {} @functools.wraps(func) def memoizer(*args): if not isinstance(args, collections.Hashable): return func(*args) if args not in cache: cache[args] = func(*args) return cache[args] return memoizer #------------------------------------------------------------------------------ # General-purpose helpers. def parse_argv(args): return [gdb.parse_and_eval(arg) for arg in gdb.string_to_argv(args)] def vstr(value): """Stringify a value without pretty-printing.""" for pp in gdb.pretty_printers: try: pp.saved = pp.enabled except AttributeError: pp.saved = True pp.enabled = False ret = unicode(value) for pp in gdb.pretty_printers: pp.enabled = pp.saved return ret #------------------------------------------------------------------------------ # Caching lookups. @memoized def T(name): return gdb.lookup_type(name) @memoized def V(name): return gdb.lookup_symbol(name)[0].value() @memoized def K(name): return gdb.lookup_global_symbol(name).value()
2.4375
2
segar/tasks/billiards.py
fgolemo/segar
19
12782842
__copyright__ = "Copyright (c) Microsoft Corporation and Mila - Quebec AI Institute" __license__ = "MIT" """Billiards game """ __all__ = ("billiards_default_config", "Billiards", "BilliardsInitialization") import math from typing import Optional import numpy as np from segar.mdps.initializations import ArenaInitialization from segar.mdps.rewards import dead_reward_fn, l2_distance_reward_fn from segar.mdps.tasks import Task from segar.rendering.rgb_rendering import register_color from segar.factors import ( Label, Mass, Charge, Shape, Text, Circle, GaussianNoise, Size, Position, ID, Done, Alive, Visible, Velocity, ) from segar.rules import Prior from segar.things import Ball, Hole, Entity, Object from segar.sim.location_priors import RandomBottomLocation _DEFAULT_CUEBALL_MASS = 1.0 _DEFAULT_CUEBALL_CHARGE = 1.0 _DEFAULT_BALL_MASS = 1.0 _DEFAULT_BALL_SIZE = 0.2 _DEFAULT_BALL_CHARGE = 1.0 _DEFAULT_HOLE_SIZE = 0.3 _DEFAULT_DEAD_REWARD = -100.0 _HOLE_DISTANCE_THRESH = 1e-4 _MAX_BALL_AT_GOAL_VEL = None _ACTION_RANGE = (-100, 100) def billiard_ball_positions( start: list[float, float], r: float = _DEFAULT_BALL_SIZE / 2 + 1e-3, n: int = 10 ) -> list[list[float, float]]: x, y = start sq2r = math.sqrt(2.0) * r positions = [start] positions += [[x - sq2r, y + sq2r], [x + sq2r, y + sq2r]] positions += [ [x - 2 * sq2r, y + 2 * sq2r], [x, y + 2 * sq2r], [x + 2 * sq2r, y + 2 * sq2r], ] positions += [ [x - 3 * sq2r, y + 3 * sq2r], [x - sq2r, y + 3 * sq2r], [x + sq2r, y + 3 * sq2r], [x + 3 * sq2r, y + 3 * sq2r], ] positions = positions[:n] return positions class CueBall( Object, default={ Label: "cueball", Mass: _DEFAULT_CUEBALL_MASS, Charge: _DEFAULT_CUEBALL_CHARGE, Shape: Circle(0.2), Text: "X", ID: "cueball", }, ): pass billiards_default_config = { "numbers": [(CueBall, 1)], "priors": [ Prior( Size, GaussianNoise( _DEFAULT_BALL_SIZE, 0.01, clip=(_DEFAULT_BALL_SIZE / 2.0, 3 * _DEFAULT_BALL_SIZE / 2.0), ), entity_type=CueBall, ), Prior(Size, _DEFAULT_BALL_SIZE, entity_type=Ball), Prior(Mass, _DEFAULT_BALL_MASS, entity_type=Ball), Prior(Size, _DEFAULT_HOLE_SIZE, entity_type=Hole), Prior(Position, RandomBottomLocation(), entity_type=CueBall), ], } class BilliardsInitialization(ArenaInitialization): """Initialization of billiards derived from arena initialization. Adds a cueball, holes, and other billiard balls. """ def __init__(self, config=None): self.cueball_id = None self.ball_ids = [] self.hole_ids = [] super().__init__(config=config) register_color("cueball", (255, 255, 255)) def sample(self, max_iterations: int = 100) -> list[Entity]: self.ball_ids.clear() self.hole_ids.clear() sampled_things = super().sample(max_iterations=max_iterations) ball_positions = billiard_ball_positions([0.0, 0.0]) for i, pos in enumerate(ball_positions): ball = Ball({Position: pos, Text: f"{i + 1}", ID: f"{i + 1}_ball"}) sampled_things.append(ball) hole_positions = [[-0.9, -0.9], [-0.9, 0.9], [0.9, -0.9], [0.9, 0.9]] for i, pos in enumerate(hole_positions): hole = Hole({Position: pos, ID: f"{i}_hole", Size: _DEFAULT_HOLE_SIZE}) sampled_things.append(hole) has_cueball = False has_balls = False has_holes = False for thing in sampled_things: if isinstance(thing, CueBall): has_cueball = True self.cueball_id = thing[ID] if isinstance(thing, Ball): has_balls = True self.ball_ids.append(thing[ID]) if isinstance(thing, Hole): has_holes = True self.hole_ids.append(thing[ID]) if not has_cueball: raise ValueError("cueball wasn't created.") if not has_balls: raise ValueError("balls weren't created.") if not has_holes: raise ValueError("holes weren't created.") return sampled_things def set_arena(self, init_things: Optional[list[Entity]] = None) -> None: super().set_arena(init_things) if self.cueball_id is None: raise RuntimeError("Cueball was not set in arena.") if len(self.ball_ids) == 0: raise RuntimeError("Balls not set in arena.") if len(self.hole_ids) == 0: raise RuntimeError("Holes not set in arena.") class Billiards(Task): """Billiards game. Agent controls the cue ball. Hit the cue ball into billiard balls and get them into holes. Avoid getting the cue ball into the holes. """ def __init__( self, initialization: BilliardsInitialization, action_range: tuple[float, float] = _ACTION_RANGE, action_shape: tuple[int, ...] = (2,), dead_reward: float = _DEFAULT_DEAD_REWARD, hole_distance_threshold: float = _HOLE_DISTANCE_THRESH, max_ball_at_hole_velocity: float = _MAX_BALL_AT_GOAL_VEL, ): """ :param initialization: Initialization object used for initializing the arena. :param action_range: Range of actions used by the agent. :param action_shape: Shape of actions. :param dead_reward: Reward when cue ball is `dead`. :param hole_distance_threshold: Distance between billiard ball and hole under which to stop. :param max_ball_at_hole_velocity: Max billiard ball velocity under which to stop. """ action_type = np.float16 baseline_action = np.array([0, 0]).astype(action_type) super().__init__( action_range=action_range, action_shape=action_shape, action_type=action_type, baseline_action=baseline_action, initialization=initialization, ) self._dead_reward = dead_reward self._hole_distance_threshold = hole_distance_threshold self._max_ball_at_hole_velocity = max_ball_at_hole_velocity @property def cueball_id(self) -> ID: if not hasattr(self._initialization, "cueball_id"): raise AttributeError( "Initialization must define `cueball_id` to " "be compatible with task." ) cueball_id = self._initialization.cueball_id if cueball_id is None: raise ValueError("`cueball_id` is not set yet.") return cueball_id @property def hole_ids(self) -> list[ID]: if not hasattr(self._initialization, "hole_ids"): raise AttributeError( "Initialization must define `hole_ids` to " "be compatible with task." ) hole_ids = self._initialization.hole_ids return hole_ids @property def ball_ids(self) -> list[ID]: if not hasattr(self._initialization, "ball_ids"): raise AttributeError( "Initialization must define `ball_ids` to " "be compatible with task." ) ball_ids = self._initialization.ball_ids return ball_ids def reward(self, state: dict) -> float: """Reward determined by the distance of the billiard balls to the nearest hold and whether the cue ball is in a hole (dead). :param state: States :return: (float) the reward. """ ball_state = state["things"][self.cueball_id] dead_reward = dead_reward_fn(ball_state, self._dead_reward) # Distance reward is tricky: can't do it directly from states # because sim owns scaling distance_reward = 0.0 for ball_id in self.ball_ids: distance = min([self.sim.l2_distance(ball_id, hole_id) for hole_id in self.hole_ids]) if distance <= self._hole_distance_threshold: self.sim.change_thing_state(ball_id, Alive, False) self.sim.change_thing_state(ball_id, Visible, False) distance_reward += l2_distance_reward_fn(distance) return dead_reward + distance_reward def done(self, state: dict) -> bool: """Episode is done if the cue ball is dead or if all of the billiard balls are in the holes. :param state: The states. :return: True if the state indicates the environment is done. """ ball_state = state["things"][self.cueball_id] is_finished = ball_state[Done] or not ball_state[Alive] balls_are_finished = True for ball_id in self.ball_ids: ball_state = state["things"][ball_id] ball_is_finished = ball_state[Done] or not ball_state[Alive] balls_are_finished = balls_are_finished and ball_is_finished return is_finished or balls_are_finished def apply_action(self, force: np.ndarray) -> None: """Applies force to the cue ball. :param force: (np.array) Force to apply """ self.sim.add_force(self.cueball_id, force) def results(self, state: dict) -> dict: """Results for monitoring task. :param state: States :return: Dictionary of results. """ distance = min( [self.sim.l2_distance(self.cueball_id, hole_id) for hole_id in self.hole_ids] ) ball_state = state["things"][self.cueball_id] return dict( dist_to_goal=distance, velocity=ball_state[Velocity].norm(), mass=ball_state[Mass].value, alive=ball_state[Alive].value, ) def demo_action(self): """Generate an action used for demos :return: np.array action """ return np.random.normal() + np.array((4, 3))
2.375
2
powergate/parse_manually_updated_jobs.py
deplatformr/open-images
2
12782843
import os import sqlite3 from datetime import datetime abs_path = os.getcwd() split = os.path.split(abs_path) workflow_db_path = os.path.join( split[0], "pipeline/deplatformr_open_images_workflow.sqlite") workflow_db = sqlite3.connect(workflow_db_path) cursor = workflow_db.cursor() utctime = datetime.utcnow() with open("updated_jobs.txt", "r") as jobs_list: jobs = jobs_list.readlines() for job in jobs: split = job.split(",") cursor.execute("UPDATE jobs set job_id=?, timestamp=?, status=? WHERE cid=?", (split[1], utctime, "JOB_STATUS_EXECUTING", split[0],),) workflow_db.commit() workflow_db.close()
2.5625
3
nnfs/datasets/mnist.py
tblut/NNFS
0
12782844
<filename>nnfs/datasets/mnist.py import numpy as np from pathlib import Path from nnfs.utils import download_file def _read_images_file(path): with open(path, mode='rb') as file: data = file.read() n_images = int.from_bytes(data[4:8], byteorder='big', signed=True) width = int.from_bytes(data[8:12], byteorder='big', signed=True) height = int.from_bytes(data[12:16], byteorder='big', signed=True) images = np.empty((n_images, width * height), dtype=np.float32) image_size = width * height for i in range(n_images): start = 16 + i * image_size end = start + image_size images[i, :] = np.frombuffer(data[start:end], dtype=np.uint8) / 255.0 return images def _read_labels_file(path): with open(path, mode='rb') as file: data = file.read() n_items = int.from_bytes(data[4:8], byteorder='big', signed=True) labels = np.frombuffer(data[8:], dtype=np.uint8) labels = labels.astype(np.int32).reshape((n_items, 1)) return labels def load_data(cache_dir='.cache'): cache_file_path = Path(cache_dir, 'mnist.npz') if not cache_file_path.exists(): url_train_images = "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz" url_train_labels = "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz" url_test_images = "http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz" url_test_labels = "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz" train_images_path = download_file(url_train_images, cache_dir, extract=True) train_labels_path = download_file(url_train_labels, cache_dir, extract=True) test_images_path = download_file(url_test_images, cache_dir, extract=True) test_labels_path = download_file(url_test_labels, cache_dir, extract=True) train_images = _read_images_file(train_images_path) train_labels = _read_labels_file(train_labels_path) test_images = _read_images_file(test_images_path) test_labels = _read_labels_file(test_labels_path) np.savez(cache_file_path, train_images, train_labels, test_images, test_labels) data = np.load(cache_file_path) return (data['train_images'], data['train_labels']), (data['test_images'], data['test_labels'])
3.015625
3
utility/massFractionsEagleXG.py
jrminter/dtsa2scripts
2
12782845
# -*- coding: utf-8 -*- """ DTSA-II Script - <NAME> - 2018-07-30 massFractionsEagleXG.py Date Who Comment ---------- --- ----------------------------------------------- 2018-07-30 JRM Mass fractions the easy way for EagleXG rev sort 2018-10-02 JRM Change name to remove spaces. This made it easier to add to the database. Done! Elapse: 0:00:00.6 jrmFastMac Z Sym WF 8 O: 0.51877 14 Si: 0.30139 13 Al: 0.09008 20 Ca: 0.03876 5 B: 0.03266 12 Mg: 0.00773 38 Sr: 0.00696 50 Sn: 0.00120 56 Ba: 0.00109 51 Sb: 0.00039 26 Fe: 0.00036 33 As: 0.00024 22 Ti: 0.00015 density = 2.36 """ import sys sys.packageManager.makeJavaPackage("gov.nist.microanalysis.NISTMonte.Gen3", "CharacteristicXRayGeneration3, BremsstrahlungXRayGeneration3,FluorescenceXRayGeneration3, XRayTransport3", None) import os import glob import shutil import time import math import csv import gov.nist.microanalysis.NISTMonte as nm import gov.nist.microanalysis.NISTMonte.Gen3 as nm3 import gov.nist.microanalysis.EPQLibrary as epq import gov.nist.microanalysis.EPQLibrary.Detector as epd import gov.nist.microanalysis.Utility as epu import gov.nist.microanalysis.EPQTools as ept import dtsa2 as dt2 import dtsa2.mcSimulate3 as mc3 gitDir = os.environ['GIT_HOME'] relPrj = "/dtsa2Scripts/utility" prjDir = gitDir + relPrj rptDir = prjDir + '/massFractionsEagleXG Results/' eagleXG = mixture({"SiO2" : 0.6447825, "Al2O3" : 0.1702057, "B2O3" : 0.1051482, "CaO" : 0.0542376, "MgO" : 0.0128153, "SrO" : 0.0082368, "SnO2" : 0.0015215, "BaO" : 0.0012188, "Fe2O3" : 0.0005078, "Sb2O3" : 0.0004635, "As2O3" : 0.0003145, "ZrO2" : 0.0002938, "TiO2" : 0.0002540 }, density=2.36, name="eagleXG") wfO = round(eagleXG.weightFractionU(epq.Element.O, True).doubleValue(), 5) wfSi = round(eagleXG.weightFractionU(epq.Element.Si, True).doubleValue(), 5) wfAl = round(eagleXG.weightFractionU(epq.Element.Al, True).doubleValue(), 5) wfB = round(eagleXG.weightFractionU(epq.Element.B, True).doubleValue(), 5) wfCa = round(eagleXG.weightFractionU(epq.Element.Ca, True).doubleValue(), 5) wfMg = round(eagleXG.weightFractionU(epq.Element.Mg, True).doubleValue(), 5) wfSr = round(eagleXG.weightFractionU(epq.Element.Sr, True).doubleValue(), 5) wfSn = round(eagleXG.weightFractionU(epq.Element.Sn, True).doubleValue(), 5) wfBa = round(eagleXG.weightFractionU(epq.Element.Ba, True).doubleValue(), 5) wfFe = round(eagleXG.weightFractionU(epq.Element.Fe, True).doubleValue(), 5) wfSb = round(eagleXG.weightFractionU(epq.Element.Sb, True).doubleValue(), 5) wfAs = round(eagleXG.weightFractionU(epq.Element.As, True).doubleValue(), 5) wfZr = round(eagleXG.weightFractionU(epq.Element.Zr, True).doubleValue(), 5) wfTi = round(eagleXG.weightFractionU(epq.Element.Ti, True).doubleValue(), 5) exg = { "O" : wfO, "Si" : wfSi, "Al" : wfAl, "B" : wfB, "Ca" : wfCa, "Mg" : wfMg, "Sr" : wfSr, "Sn" : wfSn, "Ba" : wfBa, "Fe" : wfFe, "Sb" : wfSb, "As" : wfAs, "Ti" : wfTi } # a1_sorted_keys = sorted(a1, key=a1.get, reverse=True) # for r in a1_sorted_keys: # print r, a1[r] for key, value in sorted(exg.iteritems(), key=lambda (k,v): (v,k), reverse=True): print("%s: %.5f" % (key, exg[key])) # print(exg) # es = exg.getElementSet() # print(es) # clean up cruft shutil.rmtree(rptDir) print "Done!"
1.210938
1
6.NAS.py
yassine-afrouni/network-automation
0
12782846
# NAS.py # Network automation sys # # Created by yassen on 5/6/20. # Copyright © 2021 yassen & nouhaila. All rights reserved. from netmiko import ConnectHandler from netmiko.ssh_exception import NetMikoTimeoutException, AuthenticationException from paramiko.ssh_exception import SSHException import getpass from time import time, sleep from datetime import datetime import os from simple_term_menu import TerminalMenu from colorama import Fore, Back, Style import csv from threading import Thread from tabulate import tabulate ################################################################################################### #SSH CONNECTION ################################################################################################### def ssh_connection(device): info_device = { 'device_type':'cisco_ios', 'ip':device[0], 'host':device[1], 'username': 'nouhaila', 'password': '<PASSWORD>' } try: connection = ConnectHandler(**info_device) except (AuthenticationException): print('Authentication failure: '+ ip) except (NetMikoTimeoutException): print('Timeout to device: ' + ip) except (EOFError): print('End of file while attempting device: '+ ip) except (SSHException): print('Be sure that SSH is enabled in: '+ ip +'?') except Exception as unknown_error: print ('Some other error: '+unknown_error) return connection #################################################################################################### #CHECK VERSION #################################################################################################### def check_version(connection): list_versions = ['vios_l2-ADVENTERPRISEK9-M', 'VIOS-ADVENTERPRISEK9-M'] output_version = connection.send_command('show version') for software_ver in list_versions: int_version = 0 int_version = output_version.find(software_ver) if int_version > 0: break else: pass return software_ver ########################################################################################## #device_input ########################################################################################## def device_input(): input_list = [] devices_list = [] while True: ip = input(Back.GREEN +'\nEnter the IP address of the device: '+Style.RESET_ALL) name = input(Back.GREEN +'Enter the hostname : '+Style.RESET_ALL) input_list.append(ip) input_list.append(name) ask = input("\n Do you want more devices? answer by 'y' or 'n'! : " ) devices_list.append(input_list) input_list = [] if ask == 'y': continue elif ask == 'n': break else: input("\n Do you want more devices? answer by 'y' or 'n'! : " ) return devices_list #################################################################################################### #CONFIG ALL DEVICES #################################################################################################### def configuration(device): ip = device [0] name = device [1] connection = ssh_connection(device) print (Back.GREEN+'\nconnection to '+ name + ' is up' + Style.RESET_ALL) software_ver = check_version(connection) if software_ver == 'vios_l2-ADVENTERPRISEK9-M': print ('Running Switch config file ...') output = connection.send_config_set(switch_config_file) print(output) elif software_ver == 'VIOS-ADVENTERPRISEK9-M': print ('Running Router config_file ...') output = connection.send_config_set(router_config_file) connection.disconnect() return output ############################################################################################# #VERIFY ALL DEVICES ############################################################################################# def verification(device): ip = device [0] name = device [1] print(Back.GREEN +'\n'+80*'#'+ Style.RESET_ALL) connection = ssh_connection(device) print (Back.GREEN+'\nconnection to %s ' %name + ' is up'+ Style.RESET_ALL) software_ver = check_version(connection) if software_ver == 'vios_l2-ADVENTERPRISEK9-M': running_config = connection.send_command('show running-config') length = len(switch_config_file) count = 0 for item in switch_config_file: if item in running_config: count = count + 1 else: print(Fore.RED+'{'+ item + '} not found in running-config}'+Style.RESET_ALL) continue if count == length: print(Back.GREEN+'\nCONFIGURATION CORRECT'+Style.RESET_ALL) else: print(Back.RED+'\nCONFIGURATION NOT CORRECT'+Style.RESET_ALL) elif software_ver == 'VIOS-ADVENTERPRISEK9-M': running_config = connection.send_command('show running-config') length = len(router_config_file) count = 0 for item in router_config_file: if item in running_config: count = count + 1 else: print(Fore.RED+'{'+ item + '} not found in running-config}'+Style.RESET_ALL) continue if count == length: print(Back.GREEN+'\nCONFIGURATION CORRECT'+Style.RESET_ALL) else: print(Back.RED+'\nCONFIGURATION NOT CORRECT'+Style.RESET_ALL) #################################################################################################### #TESTING CONNECTION #################################################################################################### def test_connection(source, destination, connection): ip_source = source [0] name_source = source [1] ip_destination = destination[0] name_destination = destination[1] command = 'ping '+ ip_destination output_ping = connection.send_command(command) #delay_factor = 1) check_list = ['Success rate is 80 percent (4/5)','Success rate is 100 percent (5/5)'] if any (item in output_ping for item in check_list): print (Back.GREEN+'Connection from '+name_source+' to '+name_destination+' is reachable==> Success rate'+Style.RESET_ALL) else: print (Back.RED+'Connection from '+name_source+' to '+name_destination +' is unreachable ==> Check Interfaces and protocols !'+Style.RESET_ALL) ############################################################################################# #CONFIRMATION ############################################################################################# def confirmation(device): ip = device [0] name = device [1] connection = ssh_connection(device) print (Back.GREEN+'\nconnection to %s ' %name +' is up'+ Style.RESET_ALL) saving = connection.save_config() print(saving +'\n--------------------- Succesful-- Saving-------------------------') connection.disconnect() ############################################################################################# #BUCKUPS ############################################################################################# def backups(device): ip = device [0] name = device [1] connection = ssh_connection(device) Backup = connection.send_command("show running-config") file = open("%s_backup.txt" %name ,"w") file.write(Backup) file.close() print(Back.GREEN+"\nBackup for %s is done" %name + Style.RESET_ALL) connection.disconnect() ############################################################################################# #CHECK INTERFACE ############################################################################################# def check_interfaces(device): ip = device[0] name = device[1] connection=ssh_connection(device) print (Back.GREEN+'\nconnection to %s ' %name +' is up' +Style.RESET_ALL) output_one = connection.send_command('show int', use_textfsm=True) output_two = connection.send_command('show ip int br', use_textfsm=True) output_three = connection.send_command('show version', use_textfsm=True) i = 0 table_data = [[device[1]+'=>'+output_three[0]['version'], 'Interface', 'IP-Address', 'Protocol', 'Status', 'Uptime', 'In Error', 'In Pckts', 'Out Error', 'Out Pckts']] while i < len(output_one): int_info = [device[1], output_two[i]['intf'], output_two[i]['ipaddr'], output_two[i]['proto'], output_two[i]['status'], output_three[0]['uptime'], output_one[i]['input_errors'], output_one[i]['input_packets'], output_one[i]['output_errors'], output_one[i]['output_packets']] int_info[1] = int_info[1].replace('GigabitEthernet', 'Gi') if int_info[4] == 'administratively down': int_info[4] = int_info[4].replace('administratively down', 'ad-down') table_data.append(int_info) i = i + 1 print(tabulate(table_data, headers="firstrow", tablefmt="fancy_grid", stralign="center", numalign="center")) return table_data ############################################################################################# #CHECK ROUTING ############################################################################################# def check_routing(device): ip = device[0] name = device[1] connection=ssh_connection(device) software_ver = check_version(connection) print (Back.GREEN+'\nconnection to %s ' %name +' is up'+ Style.RESET_ALL) output_one =connection.send_command('show ip route', use_textfsm=True) output_two =connection.send_command('sh ip ospf database', use_textfsm=True) output_three =connection.send_command('sh ip ospf neighbor', use_textfsm=True) if len(output_three) < 1: output_three = [{'address':'No neighbor'}] i = 0 table_one = [['Ospf\nR-table=>'+device[1], 'Network', 'Mask', 'Next-Hop', 'Protocol', 'Neighbor']] while i < len(output_one): tt = ['', output_one[i]['network'], output_one[i]['mask'], output_one[i]['nexthop_if'], output_one[i]['protocol'], output_three[0]['address']] table_one.append(tt) i = i + 1 print(tabulate(table_one, headers="firstrow", stralign="center", numalign="center", tablefmt="fancy_grid")) table_two = [['Ospf\nData-base=>'+device[1], 'adv_router', 'age', 'area', 'link_count', 'link_id', 'process_id', 'router_id']] if len(output_two) > 0: j = 0 while j < len(output_two): tt = ['', output_two[j]['adv_router'], output_two[j]['age'], output_two[j]['area'], output_two[j]['link_count'], output_two[j]['link_id'], output_two[j]['process_id'], output_two[j]['router_id']] table_two.append(tt) j = j + 1 print(tabulate(table_two, headers="firstrow", stralign="center", numalign="center", tablefmt="fancy_grid")) return table_one, table_two ############################################################################################ #CHECK VLAN ############################################################################################ def check_vlan(device): ip = device[0] name = device[1] connection=ssh_connection(device) software_ver = check_version(connection) if software_ver == 'vios_l2-ADVENTERPRISEK9-M': print (Back.GREEN+'\nconnection to %s ' %name +' is up'+ Style.RESET_ALL) output_one =connection.send_command('show vlan', use_textfsm=True) output_two =connection.send_command('show vtp status', use_textfsm=True) i = 0 vlan_data = [[device[1], 'Interfaces', 'Name', 'Status', 'Vlan id', 'VTP-Mode']] while i < len(output_one): int_info = ['', output_one[i]['interfaces'], output_one[i]['name'], output_one[i]['status'], output_one[i]['vlan_id'], output_two[0]['mode']] int_info[1] = ','.join(int_info[1]) vlan_data.append(int_info) i = i + 1 print(tabulate(vlan_data, headers="firstrow", stralign="center", numalign="center", tablefmt="fancy_grid")) else: vlan_data = [['this option can not'], ['be reported']] return vlan_data ############################################################################################# #CSV REPORTING ############################################################################################# def reporting(): with open('Global_report.csv', 'w', newline='') as file: writer = csv.writer(file) writer.writerow(['CHECKING NETWORK IN: ',str(datetime.now())]) writer.writerow(['']) print('\nGenerating a global report of the network ...') for device in devices_list: name = device[1] print (Back.GREEN+'\nconnection to %s for reporting' %name + Style.RESET_ALL) writer.writerow(['']) writer.writerow(['THIS IS A SPREADSHEET', 'TO GET INTERFACES INFOS FROM %s' %name]) writer.writerow(['']) writer.writerows(check_interfaces(device)) rout_info= check_routing(device) writer.writerow(['']) writer.writerow(['THIS IS A SPREADSHEET', 'TO GET ROUTING INFOS FROM %s' %name]) writer.writerow(['']) writer.writerows(rout_info[0]) writer.writerow(['']) writer.writerows(rout_info[1]) writer.writerow(['']) writer.writerow(['THIS IS A SPREADSHEET', 'TO GET VLAN INFOS FROM %s' %name]) writer.writerow(['']) writer.writerows(check_vlan(device)) writer.writerow(['']) print('Reporting Done') ############################################################################################# #UI MENU ############################################################################################# def main(): main_menu_title = 12 *'*'+Back.CYAN+" 'WELCOME TO THE NETWORK MANAGEMENT PLATFORM MAIN MENU' "+Style.RESET_ALL+ 12 *'*' +"\n" main_menu_items = ["NETWORK CONFIGURATION", "NETWORK VERIFICATION","NETWORK CONFIRMATION", "CHECKING NETWORK", "QUIT"] main_menu_exit = False main_menu = TerminalMenu(menu_entries=main_menu_items, title=main_menu_title) conf_menu_title = 24*'*'+Back.CYAN+"'NETWORK CONFIGURATION SECTION'"+Style.RESET_ALL+24*'*'+"\n" conf_menu_items = ["CONFIG ALL DEVICES", "CONFIG SPECIFIC DEVICES", "BACK TO MAIN MENU"] conf_menu_back = False conf_menu = TerminalMenu(conf_menu_items, title=conf_menu_title) ver_menu_title = 24*'*'+Back.CYAN+"'NETWORK VERIFICATION SECTION'"+Style.RESET_ALL+24*'*'+"\n" ver_menu_items = ["VERIFY All DEVICES","VERIFY SPECIFIC DEVICES", "TEST CONNECTION", "BACK TO MAIN MENU"] ver_menu_back = False ver_menu = TerminalMenu(ver_menu_items, title=ver_menu_title) com_menu_title = 24*'*'+Back.CYAN+"'NETWORK CONFIRMATION SECTION'"+Style.RESET_ALL+24*'*'+"\n" com_menu_items = ["CONFIRMATION", "BUCKUPS", "BACK TO MAIN MENU"] com_menu_back = False com_menu = TerminalMenu(com_menu_items, title=com_menu_title) ch_menu_title = 24*'*'+Back.CYAN+"'CHECK NETWORK SECTION'"+Style.RESET_ALL+24*'*'+"\n" ch_menu_items = ["CHECK INTERFACES", "CHECK ROUTING", "CHECK VLAN", "CSV REPORTING","BACK TO MAIN MENU"] ch_menu_back = False ch_menu = TerminalMenu(ch_menu_items, title=ch_menu_title) while not main_menu_exit: os.system('clear') main_sel = main_menu.show() if main_sel == 0: while not conf_menu_back: os.system('clear') conf_sel = conf_menu.show() if conf_sel == 0: print("\nConfig All Devices Has Been Selected") ''' Multithreading Integration''' startTime = time() threads=[] for device in devices_list: t = Thread(target=configuration, args= (device,)) t.start() threads.append(t) for t in threads: t.join() print("\ntime in second is = ", time() - startTime) for device in devices_list: configuration(device=device) print("time in second is = ", time() - startTime) sleep(60) elif conf_sel == 1: print("\nConfig Specific Devices Has Been Selected") devices = device_input() for device in devices: configuration(device) elif conf_sel == 2: conf_menu_back = True print("\nBack Selected") conf_menu_back = False elif main_sel == 1: while not ver_menu_back: os.system('clear') ver_sel = ver_menu.show() if ver_sel == 0: print("\nVerify All Devices Has Been Selected") for device in devices_list: verification(device) sleep(60) elif ver_sel == 1: print("\nVerify Specific Devices Has Been Selected") devices = device_input() for device in devices: verification(device) sleep(50) elif ver_sel == 2: print("\nTest Connection Has Been Selected") print(Back.CYAN + "\nGet source ip =>:" +Style.RESET_ALL) source_ip = device_input() print(Back.CYAN + "\nGet destination ip =>:" +Style.RESET_ALL) destination_ip = device_input() for source in source_ip : print(Back.YELLOW + '\nConnection to %s' %source[1] +'\n'+Style.RESET_ALL) connection = ssh_connection(source) for destination in destination_ip: test_connection(source, destination, connection) sleep(60) elif ver_sel == 3: ver_menu_back = True print("\nBack Selected") ver_menu_back = False elif main_sel == 2: while not com_menu_back: os.system('clear') com_sel = com_menu.show() if com_sel == 0: print("\nConfirm All Devices Has Been Selected") for device in devices_list: confirmation(device) sleep(20) elif com_sel == 1: print("\nBackups Has Been Selected") for device in devices_list: backups(device) sleep(20) elif com_sel == 2: com_menu_back = True print("\nBack Selected") com_menu_back = False elif main_sel == 3: while not ch_menu_back: os.system('clear') ch_sel = ch_menu.show() if ch_sel == 0: print("\nCheck interfaces Has Been Selected") for device in devices_list: check_interfaces(device) sleep(20) elif ch_sel == 1: print("\nCheck Routing Has Been Selected") for device in devices_list: check_routing(device) sleep(20) elif ch_sel == 2: print("\nCheck Vlan Has Been Selected") for device in devices_list: check_vlan(device) sleep(20) elif ch_sel == 3: print("\nCSV Reporting Has Been Selected") reporting() elif ch_sel == 4: ch_menu_back = True print("\nBack Selected") ch_menu_back = False elif main_sel == 4: main_menu_exit = True print("\nQuit System Has Been Selected") ################################################################################################### #MAIN PROGRAMME ################################################################################################### if __name__ == "__main__": startTime = time() with open('switch_config_file') as f: switch_config_file = f.read().splitlines() with open('router_config_file') as f: router_config_file = f.read().splitlines() with open('devices_file', 'r') as f: reader = csv.reader(f) devices_list = [d for d in reader] while True: username = getpass.getpass(prompt='Username: ') password = getpass.getpass(prompt='Password: ') if username.lower() == 'nouhaila'and password =='<PASSWORD>': break else: print('The answer entered by you is incorrect..!!!') main()
2.125
2
vendor-local/src/basket-client/basket/__init__.py
satdav/mozillians
0
12782847
from base import (send_sms, subscribe, unsubscribe, user, update_user, debug_user, BasketException)
0.960938
1
hubspot/crm/extensions/accounting/models/accounting_app_urls.py
cclauss/hubspot-api-python
0
12782848
# coding: utf-8 """ Accounting Extension These APIs allow you to interact with HubSpot's Accounting Extension. It allows you to: * Specify the URLs that HubSpot will use when making webhook requests to your external accounting system. * Respond to webhook calls made to your external accounting system by HubSpot # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.extensions.accounting.configuration import Configuration class AccountingAppUrls(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'get_invoice_url': 'str', 'search_customer_url': 'str', 'get_invoice_pdf_url': 'str', 'customer_url_template': 'str', 'product_url_template': 'str', 'invoice_url_template': 'str', 'create_invoice_url': 'str', 'search_invoice_url': 'str', 'search_product_url': 'str', 'get_terms_url': 'str', 'create_customer_url': 'str', 'search_tax_url': 'str', 'exchange_rate_url': 'str', 'search_url': 'str', 'search_count_url': 'str' } attribute_map = { 'get_invoice_url': 'getInvoiceUrl', 'search_customer_url': 'searchCustomerUrl', 'get_invoice_pdf_url': 'getInvoicePdfUrl', 'customer_url_template': 'customerUrlTemplate', 'product_url_template': 'productUrlTemplate', 'invoice_url_template': 'invoiceUrlTemplate', 'create_invoice_url': 'createInvoiceUrl', 'search_invoice_url': 'searchInvoiceUrl', 'search_product_url': 'searchProductUrl', 'get_terms_url': 'getTermsUrl', 'create_customer_url': 'createCustomerUrl', 'search_tax_url': 'searchTaxUrl', 'exchange_rate_url': 'exchangeRateUrl', 'search_url': 'searchUrl', 'search_count_url': 'searchCountUrl' } def __init__(self, get_invoice_url=None, search_customer_url=None, get_invoice_pdf_url=None, customer_url_template=None, product_url_template=None, invoice_url_template=None, create_invoice_url=None, search_invoice_url=None, search_product_url=None, get_terms_url=None, create_customer_url=None, search_tax_url=None, exchange_rate_url=None, search_url=None, search_count_url=None, local_vars_configuration=None): # noqa: E501 """AccountingAppUrls - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._get_invoice_url = None self._search_customer_url = None self._get_invoice_pdf_url = None self._customer_url_template = None self._product_url_template = None self._invoice_url_template = None self._create_invoice_url = None self._search_invoice_url = None self._search_product_url = None self._get_terms_url = None self._create_customer_url = None self._search_tax_url = None self._exchange_rate_url = None self._search_url = None self._search_count_url = None self.discriminator = None self.get_invoice_url = get_invoice_url self.search_customer_url = search_customer_url self.get_invoice_pdf_url = get_invoice_pdf_url self.customer_url_template = customer_url_template self.product_url_template = product_url_template self.invoice_url_template = invoice_url_template if create_invoice_url is not None: self.create_invoice_url = create_invoice_url if search_invoice_url is not None: self.search_invoice_url = search_invoice_url if search_product_url is not None: self.search_product_url = search_product_url if get_terms_url is not None: self.get_terms_url = get_terms_url if create_customer_url is not None: self.create_customer_url = create_customer_url if search_tax_url is not None: self.search_tax_url = search_tax_url if exchange_rate_url is not None: self.exchange_rate_url = exchange_rate_url if search_url is not None: self.search_url = search_url if search_count_url is not None: self.search_count_url = search_count_url @property def get_invoice_url(self): """Gets the get_invoice_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where invoices can be retrieved. # noqa: E501 :return: The get_invoice_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._get_invoice_url @get_invoice_url.setter def get_invoice_url(self, get_invoice_url): """Sets the get_invoice_url of this AccountingAppUrls. A URL that specifies the endpoint where invoices can be retrieved. # noqa: E501 :param get_invoice_url: The get_invoice_url of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and get_invoice_url is None: # noqa: E501 raise ValueError("Invalid value for `get_invoice_url`, must not be `None`") # noqa: E501 self._get_invoice_url = get_invoice_url @property def search_customer_url(self): """Gets the search_customer_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a customer search can be performed. # noqa: E501 :return: The search_customer_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_customer_url @search_customer_url.setter def search_customer_url(self, search_customer_url): """Sets the search_customer_url of this AccountingAppUrls. A URL that specifies the endpoint where a customer search can be performed. # noqa: E501 :param search_customer_url: The search_customer_url of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and search_customer_url is None: # noqa: E501 raise ValueError("Invalid value for `search_customer_url`, must not be `None`") # noqa: E501 self._search_customer_url = search_customer_url @property def get_invoice_pdf_url(self): """Gets the get_invoice_pdf_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where an invoice PDF can be retrieved. # noqa: E501 :return: The get_invoice_pdf_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._get_invoice_pdf_url @get_invoice_pdf_url.setter def get_invoice_pdf_url(self, get_invoice_pdf_url): """Sets the get_invoice_pdf_url of this AccountingAppUrls. A URL that specifies the endpoint where an invoice PDF can be retrieved. # noqa: E501 :param get_invoice_pdf_url: The get_invoice_pdf_url of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and get_invoice_pdf_url is None: # noqa: E501 raise ValueError("Invalid value for `get_invoice_pdf_url`, must not be `None`") # noqa: E501 self._get_invoice_pdf_url = get_invoice_pdf_url @property def customer_url_template(self): """Gets the customer_url_template of this AccountingAppUrls. # noqa: E501 A template URL that indicates the endpoint where a customer can be fetched by ID. Note that ${CUSTOMER_ID} in this URL will be replaced by the actual customer ID. For example: https://myapp.com/api/customers/${CUSTOMER_ID} # noqa: E501 :return: The customer_url_template of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._customer_url_template @customer_url_template.setter def customer_url_template(self, customer_url_template): """Sets the customer_url_template of this AccountingAppUrls. A template URL that indicates the endpoint where a customer can be fetched by ID. Note that ${CUSTOMER_ID} in this URL will be replaced by the actual customer ID. For example: https://myapp.com/api/customers/${CUSTOMER_ID} # noqa: E501 :param customer_url_template: The customer_url_template of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and customer_url_template is None: # noqa: E501 raise ValueError("Invalid value for `customer_url_template`, must not be `None`") # noqa: E501 self._customer_url_template = customer_url_template @property def product_url_template(self): """Gets the product_url_template of this AccountingAppUrls. # noqa: E501 A template URL that indicates the endpoint where a product can be fetched by ID. Note that ${PRODUCT_ID} in this URL will be replaced by the actual product ID. For example: https://myapp.com/api/products/${PRODUCT_ID} # noqa: E501 :return: The product_url_template of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._product_url_template @product_url_template.setter def product_url_template(self, product_url_template): """Sets the product_url_template of this AccountingAppUrls. A template URL that indicates the endpoint where a product can be fetched by ID. Note that ${PRODUCT_ID} in this URL will be replaced by the actual product ID. For example: https://myapp.com/api/products/${PRODUCT_ID} # noqa: E501 :param product_url_template: The product_url_template of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and product_url_template is None: # noqa: E501 raise ValueError("Invalid value for `product_url_template`, must not be `None`") # noqa: E501 self._product_url_template = product_url_template @property def invoice_url_template(self): """Gets the invoice_url_template of this AccountingAppUrls. # noqa: E501 A template URL that indicates the endpoint where an invoice can be fetched by ID. Note that ${INVOICE_ID} in this URL will be replaced by the actual invoice ID. For example: https://myapp.com/api/invoices/${INVOICE_ID} # noqa: E501 :return: The invoice_url_template of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._invoice_url_template @invoice_url_template.setter def invoice_url_template(self, invoice_url_template): """Sets the invoice_url_template of this AccountingAppUrls. A template URL that indicates the endpoint where an invoice can be fetched by ID. Note that ${INVOICE_ID} in this URL will be replaced by the actual invoice ID. For example: https://myapp.com/api/invoices/${INVOICE_ID} # noqa: E501 :param invoice_url_template: The invoice_url_template of this AccountingAppUrls. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and invoice_url_template is None: # noqa: E501 raise ValueError("Invalid value for `invoice_url_template`, must not be `None`") # noqa: E501 self._invoice_url_template = invoice_url_template @property def create_invoice_url(self): """Gets the create_invoice_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where an invoices can be created. # noqa: E501 :return: The create_invoice_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._create_invoice_url @create_invoice_url.setter def create_invoice_url(self, create_invoice_url): """Sets the create_invoice_url of this AccountingAppUrls. A URL that specifies the endpoint where an invoices can be created. # noqa: E501 :param create_invoice_url: The create_invoice_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._create_invoice_url = create_invoice_url @property def search_invoice_url(self): """Gets the search_invoice_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where an invoice search can be performed. # noqa: E501 :return: The search_invoice_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_invoice_url @search_invoice_url.setter def search_invoice_url(self, search_invoice_url): """Sets the search_invoice_url of this AccountingAppUrls. A URL that specifies the endpoint where an invoice search can be performed. # noqa: E501 :param search_invoice_url: The search_invoice_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_invoice_url = search_invoice_url @property def search_product_url(self): """Gets the search_product_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a product search can be performed. # noqa: E501 :return: The search_product_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_product_url @search_product_url.setter def search_product_url(self, search_product_url): """Sets the search_product_url of this AccountingAppUrls. A URL that specifies the endpoint where a product search can be performed. # noqa: E501 :param search_product_url: The search_product_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_product_url = search_product_url @property def get_terms_url(self): """Gets the get_terms_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where payment terms can be retrieved. # noqa: E501 :return: The get_terms_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._get_terms_url @get_terms_url.setter def get_terms_url(self, get_terms_url): """Sets the get_terms_url of this AccountingAppUrls. A URL that specifies the endpoint where payment terms can be retrieved. # noqa: E501 :param get_terms_url: The get_terms_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._get_terms_url = get_terms_url @property def create_customer_url(self): """Gets the create_customer_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a new customer can be created. # noqa: E501 :return: The create_customer_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._create_customer_url @create_customer_url.setter def create_customer_url(self, create_customer_url): """Sets the create_customer_url of this AccountingAppUrls. A URL that specifies the endpoint where a new customer can be created. # noqa: E501 :param create_customer_url: The create_customer_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._create_customer_url = create_customer_url @property def search_tax_url(self): """Gets the search_tax_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where a tax search can be performed. # noqa: E501 :return: The search_tax_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_tax_url @search_tax_url.setter def search_tax_url(self, search_tax_url): """Sets the search_tax_url of this AccountingAppUrls. A URL that specifies the endpoint where a tax search can be performed. # noqa: E501 :param search_tax_url: The search_tax_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_tax_url = search_tax_url @property def exchange_rate_url(self): """Gets the exchange_rate_url of this AccountingAppUrls. # noqa: E501 A URL that specifies the endpoint where exchange rates can be queried. # noqa: E501 :return: The exchange_rate_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._exchange_rate_url @exchange_rate_url.setter def exchange_rate_url(self, exchange_rate_url): """Sets the exchange_rate_url of this AccountingAppUrls. A URL that specifies the endpoint where exchange rates can be queried. # noqa: E501 :param exchange_rate_url: The exchange_rate_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._exchange_rate_url = exchange_rate_url @property def search_url(self): """Gets the search_url of this AccountingAppUrls. # noqa: E501 :return: The search_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_url @search_url.setter def search_url(self, search_url): """Sets the search_url of this AccountingAppUrls. :param search_url: The search_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_url = search_url @property def search_count_url(self): """Gets the search_count_url of this AccountingAppUrls. # noqa: E501 :return: The search_count_url of this AccountingAppUrls. # noqa: E501 :rtype: str """ return self._search_count_url @search_count_url.setter def search_count_url(self, search_count_url): """Sets the search_count_url of this AccountingAppUrls. :param search_count_url: The search_count_url of this AccountingAppUrls. # noqa: E501 :type: str """ self._search_count_url = search_count_url def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AccountingAppUrls): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, AccountingAppUrls): return True return self.to_dict() != other.to_dict()
2.15625
2
tests/chainer_tests/training_tests/updaters_tests/test_standard_updater.py
belldandyxtq/chainer
1
12782849
<gh_stars>1-10 import unittest import mock import numpy import chainer from chainer.backends import _cpu from chainer.backends import cuda from chainer import dataset from chainer import testing from chainer.testing import attr from chainer import training class DummyIterator(dataset.Iterator): epoch = 1 is_new_epoch = True def __init__(self, next_data): self.finalize_called = 0 self.next_called = 0 self.next_data = next_data self.serialize_called = [] def finalize(self): self.finalize_called += 1 def __next__(self): self.next_called += 1 return self.next_data def serialize(self, serializer): self.serialize_called.append(serializer) class DummyOptimizer(chainer.Optimizer): def __init__(self): self.update = mock.MagicMock() self.serialize_called = [] def serialize(self, serializer): self.serialize_called.append(serializer) class DummySerializer(chainer.Serializer): def __init__(self, path=None): if path is None: path = [] self.path = path self.called = [] def __getitem__(self, key): return DummySerializer(self.path + [key]) def __call__(self, key, value): self.called.append((key, value)) class TestStandardUpdater(unittest.TestCase): def setUp(self): self.target = chainer.Link() self.iterator = DummyIterator([(numpy.array(1), numpy.array(2))]) self.optimizer = DummyOptimizer() self.optimizer.setup(self.target) self.updater = training.updaters.StandardUpdater( self.iterator, self.optimizer) def test_init_values(self): assert self.updater.device is None assert self.updater.loss_func is None assert self.updater.iteration == 0 def test_epoch(self): assert self.updater.epoch == 1 def test_new_epoch(self): assert self.updater.is_new_epoch is True def test_get_iterator(self): assert self.updater.get_iterator('main') is self.iterator def test_get_optimizer(self): assert self.updater.get_optimizer('main') is self.optimizer def test_get_all_optimizers(self): assert self.updater.get_all_optimizers() == {'main': self.optimizer} def test_update(self): self.updater.update() assert self.updater.iteration == 1 assert self.optimizer.epoch == 1 assert self.iterator.next_called == 1 def test_use_auto_new_epoch(self): assert self.optimizer.use_auto_new_epoch is True def test_finalizer(self): self.updater.finalize() assert self.iterator.finalize_called == 1 def test_serialize(self): serializer = DummySerializer() self.updater.serialize(serializer) assert len(self.iterator.serialize_called) == 1 assert self.iterator.serialize_called[0].path == ['iterator:main'] assert len(self.optimizer.serialize_called) == 1 assert self.optimizer.serialize_called[0].path == ['optimizer:main'] assert serializer.called == [('iteration', 0)] class TestStandardUpdaterDataTypes(unittest.TestCase): """Tests several data types with StandardUpdater""" def setUp(self): self.target = chainer.Link() self.optimizer = DummyOptimizer() self.optimizer.setup(self.target) def test_update_tuple(self): iterator = DummyIterator([(numpy.array(1), numpy.array(2))]) updater = training.updaters.StandardUpdater(iterator, self.optimizer) updater.update_core() assert self.optimizer.update.call_count == 1 args, kwargs = self.optimizer.update.call_args assert len(args) == 3 loss, v1, v2 = args assert len(kwargs) == 0 assert loss is self.optimizer.target assert isinstance(v1, numpy.ndarray) assert v1 == 1 assert isinstance(v2, numpy.ndarray) assert v2 == 2 assert iterator.next_called == 1 def test_update_dict(self): iterator = DummyIterator([{'x': numpy.array(1), 'y': numpy.array(2)}]) updater = training.updaters.StandardUpdater(iterator, self.optimizer) updater.update_core() assert self.optimizer.update.call_count == 1 args, kwargs = self.optimizer.update.call_args assert len(args) == 1 loss, = args assert set(kwargs.keys()) == {'x', 'y'} v1 = kwargs['x'] v2 = kwargs['y'] assert loss is self.optimizer.target assert isinstance(v1, numpy.ndarray) assert v1 == 1 assert isinstance(v2, numpy.ndarray) assert v2 == 2 assert iterator.next_called == 1 def test_update_var(self): iterator = DummyIterator([numpy.array(1)]) updater = training.updaters.StandardUpdater(iterator, self.optimizer) updater.update_core() assert self.optimizer.update.call_count == 1 args, kwargs = self.optimizer.update.call_args assert len(args) == 2 loss, v1 = args assert len(kwargs) == 0 assert loss is self.optimizer.target assert isinstance(v1, numpy.ndarray) assert v1 == 1 assert iterator.next_called == 1 @testing.parameterize( {'converter_style': 'old'}, {'converter_style': 'new'}) @chainer.testing.backend.inject_backend_tests( ['test_converter_given_device'], [ # NumPy {}, # CuPy {'use_cuda': True, 'cuda_device': 0}, {'use_cuda': True, 'cuda_device': 1}, # Custom converter is not supported for ChainerX. ]) class TestStandardUpdaterCustomConverter(unittest.TestCase): """Tests custom converters of various specs""" def create_optimizer(self): target = chainer.Link() optimizer = DummyOptimizer() optimizer.setup(target) return optimizer def create_updater(self, iterator, optimizer, converter, device): return training.updaters.StandardUpdater( iterator, optimizer, converter=converter, device=device) def test_converter_given_device(self, backend_config): self.check_converter_all(backend_config.device) def test_converter_given_none(self): self.check_converter_all(None) def test_converter_given_int_negative(self): self.check_converter_all(-1) @attr.gpu def test_converter_given_int_positive(self): self.check_converter_all(9999) def check_converter_all(self, device): self.check_converter_in_arrays(device) self.check_converter_in_obj(device) self.check_converter_out_tuple(device) self.check_converter_out_dict(device) self.check_converter_out_obj(device) def get_converter(self, converter_func): if self.converter_style == 'old': return converter_func if self.converter_style == 'new': @chainer.dataset.converter() def wrapped_converter(*args, **kwargs): return converter_func(*args, **kwargs) return wrapped_converter assert False def check_converter_received_device_arg( self, received_device_arg, device_arg): new_style = self.converter_style == 'new' # None if device_arg is None: assert received_device_arg is None return # Normalize input device types is_cpu = False cuda_device_id = None if isinstance(device_arg, int): if device_arg < 0: is_cpu = True else: cuda_device_id = device_arg elif isinstance(device_arg, _cpu.CpuDevice): is_cpu = True elif isinstance(device_arg, cuda.GpuDevice): cuda_device_id = device_arg.device.id else: assert False # Check received device if is_cpu: if new_style: assert received_device_arg == _cpu.CpuDevice() else: assert received_device_arg == -1 elif cuda_device_id is not None: if new_style: assert (received_device_arg == cuda.GpuDevice.from_device_id(cuda_device_id)) else: assert isinstance(received_device_arg, int) assert received_device_arg == cuda_device_id else: assert new_style assert received_device_arg is device_arg def check_converter_in_arrays(self, device_arg): iterator = DummyIterator([(numpy.array(1), numpy.array(2))]) optimizer = self.create_optimizer() called = [0] def converter_impl(batch, device): self.check_converter_received_device_arg(device, device_arg) assert isinstance(batch, list) assert len(batch) == 1 samples = batch[0] assert isinstance(samples, tuple) assert len(samples) == 2 assert isinstance(samples[0], numpy.ndarray) assert isinstance(samples[1], numpy.ndarray) assert samples[0] == 1 assert samples[1] == 2 called[0] += 1 return samples converter = self.get_converter(converter_impl) updater = self.create_updater( iterator, optimizer, converter, device_arg) updater.update_core() assert called[0] == 1 def check_converter_in_obj(self, device_arg): obj1 = object() obj2 = object() iterator = DummyIterator([obj1, obj2]) optimizer = self.create_optimizer() called = [0] def converter_impl(batch, device): self.check_converter_received_device_arg(device, device_arg) assert isinstance(batch, list) assert len(batch) == 2 assert batch[0] is obj1 assert batch[1] is obj2 called[0] += 1 return obj1, obj2 converter = self.get_converter(converter_impl) updater = self.create_updater( iterator, optimizer, converter, device_arg) updater.update_core() assert called[0] == 1 def check_converter_out_tuple(self, device_arg): iterator = DummyIterator([object()]) optimizer = self.create_optimizer() converter_out = (object(), object()) def converter_impl(batch, device): self.check_converter_received_device_arg(device, device_arg) return converter_out converter = self.get_converter(converter_impl) updater = self.create_updater( iterator, optimizer, converter, device_arg) updater.update_core() assert optimizer.update.call_count == 1 args, kwargs = optimizer.update.call_args assert len(args) == 3 loss, v1, v2 = args assert len(kwargs) == 0 assert loss is optimizer.target assert v1 is converter_out[0] assert v2 is converter_out[1] def check_converter_out_dict(self, device_arg): iterator = DummyIterator([object()]) optimizer = self.create_optimizer() converter_out = {'x': object(), 'y': object()} def converter_impl(batch, device): self.check_converter_received_device_arg(device, device_arg) return converter_out converter = self.get_converter(converter_impl) updater = self.create_updater( iterator, optimizer, converter, device_arg) updater.update_core() assert optimizer.update.call_count == 1 args, kwargs = optimizer.update.call_args assert len(args) == 1 loss, = args assert len(kwargs) == 2 assert loss is optimizer.target assert sorted(kwargs.keys()) == ['x', 'y'] assert kwargs['x'] is converter_out['x'] assert kwargs['y'] is converter_out['y'] def check_converter_out_obj(self, device_arg): iterator = DummyIterator([object()]) optimizer = self.create_optimizer() converter_out = object() def converter_impl(batch, device): self.check_converter_received_device_arg(device, device_arg) return converter_out converter = self.get_converter(converter_impl) updater = self.create_updater( iterator, optimizer, converter, device_arg) updater.update_core() assert optimizer.update.call_count == 1 args, kwargs = optimizer.update.call_args assert len(args) == 2 loss, v1 = args assert len(kwargs) == 0 assert loss is optimizer.target assert v1 is converter_out testing.run_module(__name__, __file__)
2.21875
2
landing/models.py
okfnepal/election-nepal
31
12782850
from __future__ import unicode_literals from mezzanine.core import fields from mezzanine.pages.models import Page from django.db import models DATASET_TYPES = [ ('Voters', 'Voters'), ('Candidates', 'Candidates'), ('Political Parties', 'Political Parties'), ('Federal', 'Federal'), ('Results', 'Results'), ('Others', 'Others'), ] DISTRICT = [ ('Achham ', 'Achham'), ('Arghakhanchi', 'Arghakhanchi'), ('Baglung', 'Baglung'), ('Baitadi', 'Baitadi'), ('Bajhang', 'Bajhang'), ('Bajura', 'Bajura'), ('Banke', 'Banke'), ('Bara', 'Bara'), ('Bardiya', 'Bardiya'), ('Bhaktapur', 'Bhaktapur'), ('Bhojpur', 'Bhojpur'), ('Chitwan', 'Chitwan'), ('Dadeldhura', 'Dadeldhura'), ('Dailekh', 'Dailekh'), ('Dang', 'Dang'), ('Darchula', 'Darchula'), ('Dhading', 'Dhading'), ('Dhankuta', 'Dhankuta'), ('Dhanusa', 'Dhanusa'), ('Dolakha', 'Dolakha'), ('Dolpa', 'Dolpa'), ('Doti', 'Doti'), ('Gorkha', 'Gorkha'), ('Gulmi', 'Gulmi'), ('Humla', 'Humla'), ('Ilam', 'Ilam'), ('Jajarkot', 'Jajarkot'), ('Jhapa', 'Jhapa'), ('Jumla', 'Jumla'), ('Kailali', 'Kailali'), ('Kalikot', 'Kalikot'), ('Kanchanpur', 'Kanchanpur'), ('Kapilbastu', 'Kapilbastu'), ('Kaski', 'Kaski'), ('Kathmandu', 'Kathmandu'), ('Kavrepalanchok', 'Kavrepalanchok'), ('Khotang', 'Khotang'), ('Lalitpur', 'Lalitpur'), ('Lamjung', 'Lamjung'), ('Mahottari', 'Mahottari'), ('Makwanpur', 'Makwanpur'), ('Manang', 'Manang'), ('Morang', 'Morang'), ('Mugu', 'Mugu'), ('Mustang', 'Mustang'), ('Myagdi', 'Myagdi'), ('Nawalparasi', 'Nawalparasi'), ('Nuwakot', 'Nuwakot'), ('Okhaldhunga', 'Okhaldhunga'), ('Palpa', 'Palpa'), ('Panchthar', 'Panchthar'), ('Parbat', 'Parbat'), ('Parsa', 'Parsa'), ('Pyuthan', 'Pyuthan'), ('Ramechhap', 'Ramechhap'), ('Rasuwa', 'Rasuwa'), ('Rautahat', 'Rautahat'), ('Rolpa', 'Rolpa'), ('Rukum', 'Rukum'), ('Rupandehi', 'Rupandehi'), ('Salyan', 'Salyan'), ('Sankhuwasabha', 'Sankhuwasabha'), ('Saptari', 'Saptari'), ('Sarlahi', 'Sarlahi'), ('Sindhuli', 'Sindhuli'), ('Sindhupalchok', 'Sindhupalchok'), ('Siraha', 'Siraha'), ('Solukhumbu', 'Solukhumbu'), ('Sunsari', 'Sunsari'), ('Surkhet', 'Surkhet'), ('Syangja', 'Syangja'), ('Tanahu', 'Tanahu'), ('Taplejung', 'Taplejung'), ('Terhathum', 'Terhathum'), ('Udayapur', 'Udayapur'), ] PROVINCE_NO = [ (1, 1),(2, 2),(3, 3),(4, 4),(5, 5),(6, 6),(7, 7)] # Create your models here. class SiteInformation(models.Model): Logo=fields.FileField("Logo", format="Image") Site_Title = models.CharField(max_length=100, null=False, blank=False) Site_Meta_Key = models.CharField(max_length=160, null=False, blank=False) Site_Meta_Description = models.TextField(max_length=160, null=False, blank=False) Footer_Logo=fields.FileField("Footer Logo", format="Image") def __str__(self): return "Edit Here" def __unicode__(self): return "Edit Here" class Meta: verbose_name_plural = 'Site Information' class AboutUs(models.Model): Content=fields.RichTextField(null=True, blank=True) def __str__(self): return "About Us" def __unicode__(self): return "About Us" class Meta: verbose_name_plural = 'About Us' class Data_template(Page): pass def __str__(self): return "Projects" class Meta: verbose_name = 'Data' verbose_name_plural = 'Dataset' class Data(models.Model): Data_Title = models.CharField(max_length=100, null=False, blank=False) GitHub_Link = models.URLField() added = models.DateTimeField(auto_now_add=True) type=models.CharField(max_length=100, null=True, blank=True, choices=DATASET_TYPES) district=models.CharField(max_length=100, null=True, blank=True,choices=DISTRICT) province=models.IntegerField(null=True, blank=True,choices=PROVINCE_NO) def __str__(self): return self.Data_Title def __unicode__(self): return self.Data_Title class Visualization_template(Page): pass def __str__(self): return "Visualization" class Meta: verbose_name = 'Visualizations' verbose_name_plural = 'Visualization' class Visualization(models.Model): Data_Title = models.CharField(max_length=100, null=False, blank=False) Inforgraphic =fields.FileField("Viusalization Image", format="Image") GitHub_Link = models.URLField(null=True, blank=True) added = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True,) def __str__(self): return self.Data_Title def __unicode__(self): return self.Data_Title
1.804688
2