max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
app/operational/admin/__init__.py
Anioko/reusable
0
12782651
<filename>app/operational/admin/__init__.py from app.operational.admin.views import admin # noqa from app.operational.admin.users import admin # noqa from app.operational.admin.contact import admin # noqa from app.operational.admin.payment import admin # noqa from app.operational.admin.pricingplan import admin # noqa from app.operational.admin.subscription import admin # noqa from app.operational.admin.organisation import admin # noqa from app.operational.admin.message import admin # noqa from app.operational.admin.texts import admin # noqa from app.operational.admin.marketplace import admin # noqa from app.operational.admin.frontend import admin # noqa
1.195313
1
convert_grayscale.py
Programista3/Python-OpenCV-Examples
0
12782652
<reponame>Programista3/Python-OpenCV-Examples import cv2 image = cv2.imread('media/Leaves.jpg', 1) # Load a color image gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert image to grayscale cv2.imshow('Image in grayscale', gray) # Show image cv2.waitKey(0) cv2.destroyAllWindows()
3.78125
4
src/profiling_command.py
chilin0525/model-layer-profiling
0
12782653
<gh_stars>0 def generate_command(model_type, gpu_idx, command): dlprof = "dlprof --reports all" + \ " --force=true" + \ " --mode=" + model_type + \ " --formats=json" + \ " --output_path=log " + command return dlprof
1.75
2
src/striga/service/sitebus/_stsvcsb_view.py
ateska/striga
0
12782654
import os, logging as L import striga.core.exception import striga.server.application from ._stsvcsb_utils import PathLimiter, LoabableObject ### class View(PathLimiter, LoabableObject): ''' Process bus object that executes Striga views ''' def __init__(self, rootdir, source, mode, entry = 'main', pathlimit = '==0'): app = striga.server.application.GetInstance() loadable = app.Services.Loader.LoadStrigaFile(os.path.abspath(os.path.join(rootdir, source)), buildmode = mode, doload = False) PathLimiter.__init__(self, pathlimit) LoabableObject.__init__(self, loadable) self.Entry = entry self.EntryPoint = None def __call__(self, ctx, path, *args, **kwargs): self.CheckPath(path) if self.EntryPoint is None: #TODO: Here is a correct place for lazy loading (when self.LoabableObject.IsLoaded is False and self.LoabableObject.GetError is None) # - launch worker that will call self.LoabableObject.Load() (retry option bellow must be implemented) #TODO: Implement error reporting (Striga file is not loaded - can contain error) #TODO: Handle a possiblity that loader is still running (error in self.LoabableObject is None) # - wait for some reasonable amount of time and retry if self.LoabableObject.IsLoaded(): L.warning("Striga view file '%s' is loaded but is doesn't provide striga view interface" % (str(self.LoabableObject))) raise striga.core.exception.StrigaBusError('NotFound') L.warning("Striga view '%s' is not loaded (yet) - it is in status '%s'" % (str(self.LoabableObject), self.LoabableObject.GetStatusString())) raise striga.core.exception.StrigaBusError('NotLoaded') ctx.res.SetContentType('text/html') ctx.res.SetCacheAge(0) out = self.LoabableObject.OutClass(ctx.res.Write) self.EntryPoint(ctx, out, *args, **kwargs) def _OnLOLoaded(self, strigafile): self.EntryPoint = None module = self.LoabableObject.GetModule() if not hasattr(module, self.Entry): L.warning("Striga file '%s' do not contain entry point '%s'" % (str(self.LoabableObject), self.Entry)) return EntryPoint = getattr(module, self.Entry) if not callable(EntryPoint): L.warning("Striga file '%s' entry point '%s' is not callable" % (str(self.LoabableObject), self.Entry)) return if not hasattr(EntryPoint ,'StrigaViewEntry'): L.warning("Striga file '%s' entry point '%s' is not Striga entry (use decorator @StrigaViewEntry)" % (str(self.LoabableObject), self.Entry)) return self.EntryPoint = EntryPoint L.info("Striga view '%s' loaded" % str(strigafile)) def _OnLOFailed(self, strigafile): self.EntryPoint = None L.info("Striga view '%s' unloaded" % str(strigafile))
2.078125
2
emulator/emulatorui/stack.py
joshwatson/f-ing-around-with-binaryninja
88
12782655
<reponame>joshwatson/f-ing-around-with-binaryninja from binaryninja import (BinaryDataNotification, BinaryReader, BinaryView, BinaryViewType, Settings) from PySide2.QtCore import QAbstractTableModel, Qt from PySide2.QtGui import QFont from PySide2.QtWidgets import QHeaderView, QTableView class EmulatorStackModel(QAbstractTableModel, BinaryDataNotification): def __init__(self, view: BinaryView): QAbstractTableModel.__init__(self) BinaryDataNotification.__init__(self) try: self.view = view self.view.session_data['emulator.stack.model'] = self self.memory_view = view.session_data.get('emulator.memory.view') self.font_name = Settings().get_string('ui.font.name') self.font_size = Settings().get_integer('ui.font.size') if self.memory_view is None: return self.memory_view.register_notification(self) self.br = BinaryReader(self.memory_view, self.view.endianness) if self.view.address_size == 1: self.br.read_ptr = self.br.read8 elif self.view.address_size == 2: self.br.read_ptr = self.br.read16 elif self.view.address_size == 4: self.br.read_ptr = self.br.read32 elif self.view.address_size == 8: self.br.read_ptr = self.br.read64 except Exception as e: print(e.msg) self.stack = [] def rowCount(self, parent): return 0x100 / self.view.address_size def columnCount(self, parent): return 2 def data(self, index, role=Qt.DisplayRole): if role == Qt.CheckStateRole: return None if role == Qt.FontRole: return QFont(self.font_name, self.font_size) size = len(self.stack) if 0 == size or size < index.row(): return return hex(self.stack[index.row()][index.column()]) def headerData(self, section, orientation, role=Qt.DisplayRole): if orientation == Qt.Orientation.Vertical: return None if role != Qt.DisplayRole: return None return ['Address', 'Value'][ section ] def setData(self, index, value, role=Qt.EditRole): if self.view.arch is None: return False emulator = self.view.session_data['emulator'] if value.startswith('0x'): try: value = int(value, 16) except ValueError: return False elif value.isnumeric(): value = int(value) else: return False offset = self.stack[index.row()][0] emulator.write_memory(offset, value, self.view.address_size) return True def flags(self, index): if index.column() == 1: return Qt.ItemIsEditable | Qt.ItemIsEnabled | Qt.ItemIsSelectable else: return Qt.NoItemFlags def data_written(self, view: BinaryView, offset: int, length: int) -> None: sp = self.view.arch.stack_pointer emulator = self.view.session_data['emulator'] try: stack_pointer = emulator.read_register(sp) except Exception as e: print(e) self.stack = [] return if offset > stack_pointer + 0x100 or offset < stack_pointer: return self.update(stack_pointer) def update(self, stack_pointer): self.beginResetModel() self.br.seek(stack_pointer) self.stack = [] for i in range(0, 0x100, self.view.address_size): self.stack.append((self.br.offset, self.br.read_ptr())) self.endResetModel() class EmulatorStackView(QTableView): def __init__(self, parent, view): super().__init__(parent) self.parent = parent self.view = view self.view.session_data['emulator.stack.widget'] = self self.verticalHeader().setVisible(False) self.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch)
2.265625
2
lib/galaxy/job_metrics/formatting.py
rikeshi/galaxy
1,085
12782656
<reponame>rikeshi/galaxy """Utilities related to formatting job metrics for human consumption.""" class JobMetricFormatter: """Format job metric key-value pairs for human consumption in Web UI.""" def format(self, key, value): return (str(key), str(value)) def seconds_to_str(value): """Convert seconds to a simple simple string describing the amount of time.""" mins, secs = divmod(value, 60) hours, mins = divmod(mins, 60) if value < 60: return f"{secs} second{'s' if secs != 1 else ''}" elif value < 3600: return f"{mins} minute{'s' if mins != 1 else ''}" else: return f"{hours} hour{'s' if hours != 1 else ''} and {mins} minute{'s' if mins != 1 else ''}"
3.078125
3
condolence_models/common.py
naitian/condolence-models
2
12782657
<reponame>naitian/condolence-models<filename>condolence_models/common.py<gh_stars>1-10 import logging import os import shutil import tempfile from itertools import islice import requests import torch from tqdm import tqdm from .bert_classifier.classifier import BertClassifier from .bert_classifier.utils import preprocess logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def load_model(model_type, path, device): if not os.path.isfile(path): logger.info(f'Model {model_type} does not exist at {path}. Attempting to download it.') model = f'{model_type}_model' fetch_pretrained_model(model, path) model = BertClassifier(2) model.load_state_dict(torch.load(path, map_location=device)) model.to(device) model.eval() return model def fetch_pretrained_model(model, model_path): PRETRAINED_MODEL_ARCHIVE_MAP = { 'condolence_model': [ 'http://www-personal.umich.edu/~naitian/files/condolence_model.pth', 'http://jurgens.people.si.umich.edu/models/condolence_model.pth' ], 'distress_model': [ 'http://www-personal.umich.edu/~naitian/files/distress_model.pth', 'http://jurgens.people.si.umich.edu/models/distress_model.pth' ], 'empathy_model': [ 'http://www-personal.umich.edu/~naitian/files/empathy.tar.gz', 'http://jurgens.people.si.umich.edu/models/empathy_model.tar.gz' ], } assert model in PRETRAINED_MODEL_ARCHIVE_MAP model_urls = PRETRAINED_MODEL_ARCHIVE_MAP[model] model_urls = PRETRAINED_MODEL_ARCHIVE_MAP[model] download_flag = False for idx, model_url in enumerate(model_urls): try: temp_file = tempfile.NamedTemporaryFile() logger.info(f'{model_path} not found in cache, downloading from {model_url} to {temp_file.name}') req = requests.get(model_url, stream=True) content_length = req.headers.get('Content-Length') total = int(content_length) if content_length is not None else None progress = tqdm(unit="KB", total=round(total / 1024)) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(1) temp_file.write(chunk) progress.close() temp_file.flush() temp_file.seek(0) download_flag = True break except Exception as e: logger.warning(f'Download from {idx + 1}/{len(model_urls)} mirror failed with an exception of\n{str(e)}') try: temp_file.close() except Exception as e_file: logger.warning(f'temp_file failed with an exception of \n{str(e_file)}') continue if not download_flag: logging.warning(f'Download from all mirrors failed. Please retry.') return logger.info(f'Model {model} was downloaded to a tmp file.') logger.info(f'Copying tmp file to {model_path}.') os.makedirs(os.path.dirname(model_path), exist_ok=True) with open(model_path, 'wb') as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info(f'Copied tmp model file to {model_path}.') temp_file.close() def batch_generator(iterable, tokenizer, batch_size=16, device="cpu"): ct = iterable piece = islice(ct, batch_size) while piece: input_list = [] for text in piece: tokens = tokenizer.tokenize(preprocess(text)) tokens = tokens[:128] indexed_toks = tokenizer.convert_tokens_to_ids(tokens) indexed_toks += [0] * (128 - len(indexed_toks)) input_list.append(torch.tensor(indexed_toks).unsqueeze(0)) if len(input_list) == 0: return batch_inputs = torch.cat(input_list, 0) yield batch_inputs.to(device) piee = islice(ct, batch_size)
2.21875
2
recipes/binutils/all/conanfile.py
dyndrite/conan-center-index
1
12782658
from conans import ConanFile, AutoToolsBuildEnvironment, tools from conans.errors import ConanInvalidConfiguration import functools import os import re import typing import unittest required_conan_version = ">=1.43.0" # This recipe includes a selftest to test conversion of os/arch to triplets (and vice verse) # Run it using `python -m unittest conanfile.py` class BinutilsConan(ConanFile): name = "binutils" description = "The GNU Binutils are a collection of binary tools." license = "GPL-2.0-or-later" url = "https://github.com/conan-io/conan-center-index/" homepage = "https://www.gnu.org/software/binutils" topics = ("binutils", "ld", "linker", "as", "assembler", "objcopy", "objdump") settings = "os", "arch", "compiler", "build_type" _PLACEHOLDER_TEXT = "__PLACEHOLDER__" options = { "multilib": [True, False], "with_libquadmath": [True, False], "target_arch": "ANY", "target_os": "ANY", "target_triplet": "ANY", "prefix": "ANY", } default_options = { "multilib": True, "with_libquadmath": True, "target_arch": _PLACEHOLDER_TEXT, # Initialized in configure, checked in validate "target_os": _PLACEHOLDER_TEXT, # Initialized in configure, checked in validate "target_triplet": _PLACEHOLDER_TEXT, # Initialized in configure, checked in validate "prefix": _PLACEHOLDER_TEXT, # Initialized in configure (NOT config_options, because it depends on target_{arch,os}) } @property def _source_subfolder(self): return "source_subfolder" @property def _settings_build(self): return getattr(self, "settings_build", self.settings) @property def _settings_target(self): return getattr(self, "settings_target", None) or self.settings def export_sources(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): self.copy(patch["patch_file"]) def config_options(self): del self.settings.compiler.cppstd del self.settings.compiler.libcxx def configure(self): if self.options.target_triplet == self._PLACEHOLDER_TEXT: if self.options.target_arch == self._PLACEHOLDER_TEXT: # If target triplet and target arch are not set, initialize it from the target settings self.options.target_arch = str(self._settings_target.arch) if self.options.target_os == self._PLACEHOLDER_TEXT: # If target triplet and target os are not set, initialize it from the target settings self.options.target_os = str(self._settings_target.os) # Initialize the target_triplet from the target arch and target os self.options.target_triplet = _GNUTriplet.from_archos(_ArchOs(arch=str(self.options.target_arch), os=str(self.options.target_os), extra=dict(self._settings_target.values_list))).triplet else: gnu_triplet_obj = _GNUTriplet.from_text(str(self.options.target_triplet)) archos = _ArchOs.from_triplet(gnu_triplet_obj) if self.options.target_arch == self._PLACEHOLDER_TEXT: # If target arch is not set, deduce it from the target triplet self.options.target_arch = archos.arch if self.options.target_os == self._PLACEHOLDER_TEXT: # If target arch is not set, deduce it from the target triplet self.options.target_os = archos.os if self.options.prefix == self._PLACEHOLDER_TEXT: self.options.prefix = f"{self.options.target_triplet}-" self.output.info(f"binutils:target_arch={self.options.target_arch}") self.output.info(f"binutils:target_os={self.options.target_os}") self.output.info(f"binutils:target_triplet={self.options.target_triplet}") def validate(self): if self.settings.compiler in ("msvc", "Visual Studio"): raise ConanInvalidConfiguration("This recipe does not support building binutils by this compiler") if self.options.target_os == "Macos": raise ConanInvalidConfiguration("cci does not support building binutils for Macos since binutils is degraded there (no as/ld + armv8 does not build)") # Check whether the actual target_arch and target_os option are valid (they should be in settings.yml) # FIXME: does there exist a stable Conan API to accomplish this? if self.options.target_arch not in self.settings.arch.values_range: raise ConanInvalidConfiguration(f"target_arch={self.options.target_arch} is invalid (possibilities={self.settings.arch.values_range})") if self.options.target_os not in self.settings.os.values_range: raise ConanInvalidConfiguration(f"target_os={self.options.target_os} is invalid (possibilities={self.settings.os.values_range})") target_archos = _ArchOs(str(self.options.target_arch), str(self.options.target_os)) target_gnu_triplet = _GNUTriplet.from_text(str(self.options.target_triplet)) if not target_archos.is_compatible(target_gnu_triplet): suggested_gnu_triplet = _GNUTriplet.from_archos(target_archos) suggested_archos = _ArchOs.from_triplet(target_gnu_triplet) raise ConanInvalidConfiguration(f"target_arch={target_archos.arch}/target_os={target_archos.os} is not compatible with {target_gnu_triplet.triplet}. Change target triplet to {suggested_gnu_triplet.triplet}, or change target_arch/target_os to {suggested_archos.arch}/{suggested_archos.os}.") # Check, when used as build requirement in a cross build, whether the target arch/os agree settings_target = getattr(self, "settings_target", None) if settings_target is not None: if self.options.target_arch != settings_target.arch: raise ConanInvalidConfiguration(f"binutils:target_arch={self.options.target_arch} does not match target architecture={settings_target.arch}") if self.options.target_os != settings_target.os: raise ConanInvalidConfiguration(f"binutils:target_os={self.options.target_os} does not match target os={settings_target.os}") def package_id(self): del self.info.settings.compiler def _raise_unsupported_configuration(self, key, value): raise ConanInvalidConfiguration(f"This configuration is unsupported by this conan recip. Please consider adding support. ({key}={value})") def build_requirements(self): if self._settings_build.os == "Windows" and not tools.get_env("CONAN_BASH_PATH"): self.build_requires("msys2/cci.latest") def requirements(self): self.requires("zlib/1.2.12") def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) @property def _exec_prefix(self): return os.path.join(self.package_folder, "bin", "exec_prefix") @functools.lru_cache(1) def _configure_autotools(self): autotools = AutoToolsBuildEnvironment(self, win_bash=self._settings_build.os == "Windows") yes_no = lambda tf : "yes" if tf else "no" conf_args = [ f"--target={self.options.target_triplet}", f"--enable-multilib={yes_no(self.options.multilib)}", "--with-system-zlib", "--disable-nls", f"--program-prefix={self.options.prefix}", f"exec_prefix={tools.unix_path(self._exec_prefix)}", ] autotools.configure(args=conf_args, configure_dir=self._source_subfolder) return autotools def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) autotools = self._configure_autotools() autotools.make() def package(self): self.copy("COPYING*", src=self._source_subfolder, dst="licenses") autotools = self._configure_autotools() autotools.install() tools.rmdir(os.path.join(self.package_folder, "share")) tools.remove_files_by_mask(os.path.join(self.package_folder, "lib"), "*.la") def package_info(self): bindir = os.path.join(self.package_folder, "bin") self.output.info("Appending PATH environment variable: {}".format(bindir)) self.env_info.PATH.append(bindir) target_bindir = os.path.join(self._exec_prefix, str(self.options.target_triplet), "bin") self.output.info("Appending PATH environment variable: {}".format(target_bindir)) self.env_info.PATH.append(target_bindir) self.output.info(f"GNU triplet={self.options.target_triplet}") self.user_info.gnu_triplet = self.options.target_triplet self.output.info(f"executable prefix={self.options.prefix}") self.user_info.prefix = self.options.prefix # Add recipe path to enable running the self test in the test package. # Don't use this property in production code. It's unsupported. self.user_info.recipe_path = os.path.realpath(__file__) class _ArchOs: def __init__(self, arch: str, os: str, extra: typing.Optional[typing.Dict[str, str]]=None): self.arch = arch self.os = os self.extra = extra if extra is not None else {} def is_compatible(self, triplet: "_GNUTriplet") -> bool: return self.arch in self.calculate_archs(triplet) and self.os == self.calculate_os(triplet) _MACHINE_TO_ARCH_LUT = { "arm": "armv7", "aarch64": ("armv8", "armv9"), "i386": "x86", "i486": "x86", "i586": "x86", "i686": "x86", "x86_64": "x86_64", "riscv32": "riscv32", "riscv64": "riscv64", } @classmethod def calculate_archs(cls, triplet: "_GNUTriplet") -> typing.Tuple[str]: if triplet.machine == "arm": archs = "armv7" + ("hf" if "hf" in triplet.abi else "") else: archs = cls._MACHINE_TO_ARCH_LUT[triplet.machine] if isinstance(archs, str): archs = (archs, ) return archs _GNU_OS_TO_OS_LUT = { None: "baremetal", "android": "Android", "mingw32": "Windows", "linux": "Linux", "freebsd": "FreeBSD", "darwin": "Macos", "none": "baremetal", "unknown": "baremetal", } @classmethod def calculate_os(cls, triplet: "_GNUTriplet") -> str: if triplet.abi and "android" in triplet.abi: return "Android" return cls._GNU_OS_TO_OS_LUT[triplet.os] @classmethod def from_triplet(cls, triplet: "_GNUTriplet") -> "_ArchOs": archs = cls.calculate_archs(triplet) os = cls.calculate_os(triplet) extra = {} if os == "Android" and triplet.abi: m = re.match(".*([0-9]+)", triplet.abi) if m: extra["os.api_level"] = m.group(1) # Assume first architecture return cls(arch=archs[0], os=os, extra=extra) def __eq__(self, other) -> bool: if type(self) != type(other): return False if not (self.arch == other.arch and self.os == other.os): return False self_extra_keys = set(self.extra.keys()) other_extra_keys = set(other.extra.keys()) if (self_extra_keys - other_extra_keys) or (other_extra_keys - self_extra_keys): return False return True def __repr__(self) -> str: return f"<{type(self).__name__}:arch='{self.arch}',os='{self.os}',extra={self.extra}>" class _GNUTriplet: def __init__(self, machine: str, vendor: typing.Optional[str], os: typing.Optional[str], abi: typing.Optional[str]): self.machine = machine self.vendor = vendor self.os = os self.abi = abi @property def triplet(self) -> str: return "-".join(p for p in (self.machine, self.vendor, self.os, self.abi) if p) @classmethod def from_archos(cls, archos: _ArchOs) -> "_GNUTriplet": gnu_machine = cls.calculate_gnu_machine(archos) gnu_vendor = cls.calculate_gnu_vendor(archos) gnu_os = cls.calculate_gnu_os(archos) gnu_abi = cls.calculate_gnu_abi(archos) return cls(gnu_machine, gnu_vendor, gnu_os, gnu_abi) @classmethod def from_text(cls, text: str) -> "_GNUTriplet": gnu_machine: str gnu_vendor: typing.Optional[str] gnu_os: typing.Optional[str] gnu_abi: typing.Optional[str] parts = text.split("-") if not 2 <= len(parts) <= 4: raise ValueError("Wrong number of GNU triplet components. Count must lie in range [2, 4]. format=$machine(-$vendor)?(-$os)?(-$abi)?") gnu_machine = parts[0] parts = parts[1:] if any(v in parts[-1] for v in cls.KNOWN_GNU_ABIS): gnu_abi = parts[-1] parts = parts[:-1] else: gnu_abi = None if len(parts) == 2: gnu_vendor = parts[0] gnu_os = parts[1] elif len(parts) == 1: if parts[0] in _GNUTriplet.UNKNOWN_OS_ALIASES: gnu_vendor = None gnu_os = parts[0] elif parts[0] in cls.OS_TO_GNU_OS_LUT.values(): gnu_vendor = None gnu_os = parts[0] else: gnu_vendor = parts[0] gnu_os = None else: gnu_vendor = None gnu_os = None return cls(gnu_machine, gnu_vendor, gnu_os, gnu_abi) ARCH_TO_GNU_MACHINE_LUT = { "x86": "i686", "x86_64": "x86_64", "armv7": "arm", "armv7hf": "arm", "armv8": "aarch64", "riscv32": "riscv32", "riscv64": "riscv64", } @classmethod def calculate_gnu_machine(cls, archos: _ArchOs) -> str: return cls.ARCH_TO_GNU_MACHINE_LUT[archos.arch] UNKNOWN_OS_ALIASES = ( "unknown", "none", ) OS_TO_GNU_OS_LUT = { "baremetal": "none", "Android": "linux", "FreeBSD": "freebsd", "Linux": "linux", "Macos": "darwin", "Windows": "mingw32", } @classmethod def calculate_gnu_os(cls, archos: _ArchOs) -> typing.Optional[str]: if archos.os in ("baremetal", ): if archos.arch in ("x86", "x86_64", ): return None elif archos.arch in ("riscv32", "riscv64"): return "unknown" return cls.OS_TO_GNU_OS_LUT[archos.os] OS_TO_GNU_VENDOR_LUT = { "Windows": "w64", "baremetal": None, } @classmethod def calculate_gnu_vendor(cls, archos: _ArchOs) -> typing.Optional[str]: if archos.os in ("baremetal", "Android"): return None if archos.os in ("Macos", "iOS", "tvOS", "watchOS"): return "apple" return cls.OS_TO_GNU_VENDOR_LUT.get(archos.os, "pc") @classmethod def calculate_gnu_abi(self, archos: _ArchOs) -> typing.Optional[str]: if archos.os in ("baremetal", ): if archos.arch in ("armv7",): return "eabi" else: return "elf" abi_start = None if archos.os in ("Linux", ): abi_start = "gnu" elif archos.os in ("Android", ): abi_start = "android" else: return None if archos.arch in ("armv7",): abi_suffix = "eabi" elif archos.arch in ("armv7hf",): abi_suffix = "eabihf" else: abi_suffix = "" if archos.os in ("Android", ): abi_suffix += str(archos.extra.get("os.api_level", "")) return abi_start + abi_suffix KNOWN_GNU_ABIS = ( "android", "gnu", "eabi", "elf", ) def __eq__(self, other: object) -> bool: if type(self) != type(other): return False other: "_GNUTriplet" return self.machine == other.machine and self.vendor == other.vendor and self.os == other.os and self.abi == other.abi def __repr__(self) -> str: def x(v): if v is None: return None return f"'{v}'" return f"<{type(self).__name__}:machine={x(self.machine)},vendor={x(self.vendor)},os={x(self.os)},abi={x(self.abi)}>" class _TestOsArch2GNUTriplet(unittest.TestCase): def test_linux_x86(self): archos = _ArchOs(arch="x86", os="Linux") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="i686", vendor="pc", os="linux", abi="gnu"), "i686-pc-linux-gnu") self.assertEqual(_ArchOs("x86", "Linux"), _ArchOs.from_triplet(_GNUTriplet.from_text("i386-linux"))) self.assertEqual(_ArchOs("x86", "Linux"), _ArchOs.from_triplet(_GNUTriplet.from_text("i686-linux"))) self.assertEqual(_GNUTriplet("i486", None, "linux", None), _GNUTriplet.from_text("i486-linux")) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("i486-linux"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("i486-linux-gnu"))) def test_linux_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Linux"), _GNUTriplet(machine="x86_64", vendor="pc", os="linux", abi="gnu"), "x86_64-pc-linux-gnu") def test_linux_armv7(self): archos = _ArchOs(arch="armv7", os="Linux") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="arm", vendor="pc", os="linux", abi="gnueabi"), "arm-pc-linux-gnueabi") self.assertEqual(_GNUTriplet("arm", "pc", None, "gnueabi"), _GNUTriplet.from_text("arm-pc-gnueabi")) self.assertEqual(_GNUTriplet("arm", "pc", None, "eabi"), _GNUTriplet.from_text("arm-pc-eabi")) self.assertEqual(_ArchOs("armv7hf", "baremetal"), _ArchOs.from_triplet(_GNUTriplet.from_text("arm-pc-gnueabihf"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-linux-gnueabi"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-linux-eabi"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-pc-linux-gnueabihf"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-pc-gnueabihf"))) def test_linux_armv7hf(self): archos = _ArchOs(arch="armv7hf", os="Linux") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="arm", vendor="pc", os="linux", abi="gnueabihf"), "arm-pc-linux-gnueabihf") self.assertEqual(_GNUTriplet("arm", "pc", None, "gnueabihf"), _GNUTriplet.from_text("arm-pc-gnueabihf")) self.assertEqual(_ArchOs("armv7", "baremetal"), _ArchOs.from_triplet(_GNUTriplet.from_text("arm-pc-gnueabi"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-linux-gnueabi"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-linux-eabi"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-pc-linux-gnueabihf"))) self.assertFalse(archos.is_compatible(_GNUTriplet.from_text("arm-pc-gnueabihf"))) def test_windows_x86(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86", os="Windows"), _GNUTriplet(machine="i686", vendor="w64", os="mingw32", abi=None), "i686-w64-mingw32") def test_windows_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Windows"), _GNUTriplet(machine="x86_64", vendor="w64", os="mingw32", abi=None), "x86_64-w64-mingw32") def test_macos_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Macos"), _GNUTriplet(machine="x86_64", vendor="apple", os="darwin", abi=None), "x86_64-apple-darwin") def test_freebsd_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="FreeBSD"), _GNUTriplet(machine="x86_64", vendor="pc", os="freebsd", abi=None), "x86_64-pc-freebsd") def test_baremetal_x86(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86", os="baremetal"), _GNUTriplet(machine="i686", vendor=None, os=None, abi="elf"), "i686-elf") def test_baremetal_x86_64(self): archos = _ArchOs(arch="x86_64", os="baremetal") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="x86_64", vendor=None, os=None, abi="elf"), "x86_64-elf") self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("x86_64-elf"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("x86_64-none-elf"))) self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("x86_64-unknown-elf"))) def test_baremetal_armv7(self): archos = _ArchOs(arch="armv7", os="baremetal") self._test_osarch_to_gnutriplet(archos, _GNUTriplet(machine="arm", vendor=None, os="none", abi="eabi"), "arm-none-eabi") self.assertTrue(archos.is_compatible(_GNUTriplet.from_text("arm-none-eabi"))) def test_baremetal_armv8(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="armv8", os="baremetal"), _GNUTriplet(machine="aarch64", vendor=None, os="none", abi="elf"), "aarch64-none-elf") def test_baremetal_riscv32(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="riscv32", os="baremetal"), _GNUTriplet(machine="riscv32", vendor=None, os="unknown", abi="elf"), "riscv32-unknown-elf") def test_baremetal_riscv64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="riscv64", os="baremetal"), _GNUTriplet(machine="riscv64", vendor=None, os="unknown", abi="elf"), "riscv64-unknown-elf") def test_android_armv7(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="armv7", os="Android", extra={"os.api_level": "31"}), _GNUTriplet(machine="arm", vendor=None, os="linux", abi="androideabi31"), "arm-linux-androideabi31") def test_android_armv8(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="armv8", os="Android", extra={"os.api_level": "24"}), _GNUTriplet(machine="aarch64", vendor=None, os="linux", abi="android24"), "aarch64-linux-android24") def test_android_x86(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86", os="Android", extra={"os.api_level": "16"}), _GNUTriplet(machine="i686", vendor=None, os="linux", abi="android16"), "i686-linux-android16") def test_android_x86_64(self): self._test_osarch_to_gnutriplet(_ArchOs(arch="x86_64", os="Android", extra={"os.api_level": "29"}), _GNUTriplet(machine="x86_64", vendor=None, os="linux", abi="android29"), "x86_64-linux-android29") self.assertEqual(_ArchOs(arch="x86_64", os="Android", extra={"os.api_level": "25"}), _ArchOs.from_triplet(_GNUTriplet.from_text("x86_64-linux-android29"))) def _test_osarch_to_gnutriplet(self, archos: _ArchOs, gnuobj_ref: _GNUTriplet, triplet_ref: str): gnuobj = _GNUTriplet.from_archos(archos) self.assertEqual(gnuobj_ref, gnuobj) self.assertEqual(triplet_ref, gnuobj.triplet) self.assertEqual(gnuobj_ref, _GNUTriplet.from_text(triplet_ref)) # self.assertEqual(triplet_ref, tools.get_gnu_triplet(archos.os, archos.arch, compiler="gcc"))
2.234375
2
tests/homework_1/task_1/test_vector.py
pyaiveoleg/semester_4_python
0
12782659
import unittest from homeworks.homework_1.task_1.vector import Vector class VectorTest(unittest.TestCase): def test_empty_vector(self): with self.assertRaises(ValueError): self.assertEqual(Vector([]).length(), 0) def test_int_length(self): self.assertEqual(Vector([3, 4]).length(), 5) def test_float_length(self): self.assertAlmostEqual(Vector([0.1, 4, 3.5]).length(), 5.316013544) def test_different_dimensions_scalar_product(self): with self.assertRaises(ValueError): Vector([1, 2]).scalar_product(Vector([1, 3, 4])) def test_int_scalar_product(self): self.assertEqual(Vector([2, 3]).scalar_product(Vector([1, 4])), 14) def test_float_scalar_product(self): first_v = Vector([3.5, 1.74, 0.896, 0.445]) second_v = Vector([1, -2.97, -1.065, -3.29]) self.assertAlmostEqual(first_v.scalar_product(second_v), -4.08609) def test_self_scalar_product(self): self.assertAlmostEqual(Vector([1, -2.97, -1.065]).scalar_product(Vector([1, -2.97, -1.065])), 10.955125) def test_different_dimensions_angle(self): with self.assertRaises(ValueError): Vector([1, 2]).angle(Vector([1, 3, 4])) def test_float_angle(self): first_v = Vector([3.5, 1.74, 0.896, 0.445]) second_v = Vector([1, -2.97, -1.065, -3.29]) self.assertAlmostEqual(first_v.angle(second_v), 102.53349294109442) def test_self_angle(self): self.assertAlmostEqual(Vector([1, -2.97, -1.065]).angle(Vector([1, -2.97, -1.065])), 0.0)
3.890625
4
aliyun-python-sdk-nlp-automl/aliyunsdknlp_automl/__init__.py
yndu13/aliyun-openapi-python-sdk
1,001
12782660
__version__ = '0.0.9'
1.054688
1
tempstore/tempstore.py
ryanrichholt/tempstore
0
12782661
<filename>tempstore/tempstore.py import os import tempfile import shutil from collections import OrderedDict class TempStore(object): def __init__(self, name=None): self.name = name self.objs = OrderedDict() self.dir = tempfile.TemporaryDirectory() def cleanup(self): """Cleanup all objects in this TempStore :return: None """ for obj in self.objs.values(): try: obj.cleanup() except AttributeError: obj.close() except FileNotFoundError: pass self.objs = OrderedDict() @property def paths(self): """Returns an OrderedDict that includes the paths to each object :return: OrderedDict """ return OrderedDict([(n, obj.name) for n, obj in self.objs.items()]) def create(self, name): """Creates a new tempfile and returns the path :param name: Name of the file to create :return: str """ if name in self.objs: raise ValueError('{} already exists'.format(name, self)) fp = tempfile.NamedTemporaryFile(dir=self.dir.name) self.objs[name] = fp return fp.name def copy(self, path, exist_ok=False): """Copy all objects in the TempStore to another location :param path: Path to a directory where they will be copied :param exist_ok: Ignore errors if the path already exists :return: None """ if self.name is not None: path = os.path.join(path, self.name) os.makedirs(path, exist_ok=exist_ok) for name, obj in self.objs.items(): src = obj.name dest = os.path.join(path, name) shutil.copy(src, dest)
3.375
3
recipe/import_test.py
regro-cf-autotick-bot/yeadon-feedstock
22
12782662
import yeadon import yeadon.exceptions import yeadon.human import yeadon.inertia import yeadon.segment import yeadon.solid import yeadon.ui import yeadon.utils import yeadon.tests try: import yeadon.gui except ImportError: # mayavi not installed pass
0.882813
1
sdk/attestation/azure-security-attestation/tests/preparers_async.py
rsdoherty/azure-sdk-for-python
2,728
12782663
<filename>sdk/attestation/azure-security-attestation/tests/preparers_async.py<gh_stars>1000+ # coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from typing import Awaitable, List from azure.security.attestation import AttestationType try: from typing import TYPE_CHECKING except ImportError: TYPE_CHECKING = False from typing import Awaitable, Callable, Dict, Optional, Any, TypeVar, overload T = TypeVar("T") def AllAttestationTypes(func: Callable[..., Awaitable[T]] = None, **kwargs: Any): """Decorator to apply to function to add attestation_type kwarg for each attestation type.""" async def wrapper(*args, **kwargs) -> Callable[..., Awaitable[T]]: for attestation_type in [ AttestationType.SGX_ENCLAVE, AttestationType.OPEN_ENCLAVE, AttestationType.TPM, ]: await func(*args, attestation_type=attestation_type, **kwargs) return wrapper def AllInstanceTypes( func: Callable[..., Awaitable[T]] = None, include_shared: bool = True, **kwargs: Any ): """Decorator to apply to function to add instance_url kwarg for each instance type.""" async def wrapper(*args, **kwargs) -> Callable[..., Awaitable[T]]: instances = [] # type:List[str] instances.append(kwargs.get("attestation_aad_url")) instances.append(kwargs.get("attestation_isolated_url")) if include_shared: instances.append( "https://shared" + kwargs.get("attestation_location_short_name") + "." + kwargs.get("attestation_location_short_name") + ".attest.azure.net" ) for instance_url in instances: await func(*args, instance_url=instance_url, **kwargs) return wrapper
2.140625
2
glowtts/transformer/pe.py
revsic/tf-glow-tts
5
12782664
import numpy as np import tensorflow as tf class PositionalEncodings(tf.keras.Model): """Sinusoidal positional encoding generator. """ def __init__(self, channels: int, presize: int = 128): """Initializer. Args: channels: size of the channels. presize: initial pe cache size. """ super().__init__() self.channels = channels self.size = presize self.buffer = self.generate(presize) def call(self, size: int) -> tf.Tensor: """Return cached positional encodings. Args: size: length of the pe. Returns: [tf.float32; [T, C]], sinusoidal positional encodings. """ if size <= self.size: return self.buffer[:size] # generate new cache self.buffer = self.generate(size) return self.buffer def generate(self, size: int) -> tf.Tensor: """Generate positional encodings. Args: size: length of the pe. Returns: [tf.float32; [T, C]], sinusoidal positional encodings. """ # [tf.int32; [T]] pos = tf.range(size) # [tf.int32; [C//2]] i = tf.range(0, self.channels, 2) # [C//C], casting for float64 denom = tf.exp(-np.log(10000) * tf.cast(i / self.channels, tf.float32)) # [T, C//2] context = tf.cast(pos, tf.float32)[:, None] * denom[None] # [T, C//2, 1] context = context[..., None] # [T, C//2, 2] pe = tf.concat([tf.sin(context), tf.cos(context)], axis=-1) # [T, C] pe = tf.reshape(pe, [size, self.channels]) return pe
2.46875
2
diskmth/DayGUI.py
Disk-MTH/How-to-install-python-on-windows
1
12782665
from tkinter import * from PIL import Image, ImageTk import Utils import MainGUI def day_gui(day_date): # Create the frame root = Tk() # Initialisation of some useful variables last_click_x = 0 last_click_y = 0 root_width = 700 root_height = 400 # Definition of some useful functions def get_picture(path, is_day_picture): if is_day_picture: try: picture = Image.open(Utils.get_resources_path("resources\\day\\day_" + str(day_date) + ".png")) resized_picture = picture.resize((700, 350), Image.ANTIALIAS) return ImageTk.PhotoImage(resized_picture) except FileNotFoundError: try: return PhotoImage(file=Utils.get_resources_path("resources\\day\\not_found.png")) except TclError: pass else: try: return PhotoImage(file=Utils.get_resources_path("resources\\" + path)) except TclError: pass def get_title(date): if date == 1: return "December 1st" elif date == 2: return "December 2nd" elif date == 3: return "December 3rd" else: return "December " + str(date) + "th" def move_frame(event): x, y = event.x - last_click_x + root.winfo_x(), event.y - last_click_y + root.winfo_y() root.geometry("+%s+%s" % (x, y)) def mapped_frame(event): root.overrideredirect(True) def reduce_frame(): Utils.button_click_sound(False) root.state('withdrawn') root.overrideredirect(False) root.state('iconic') def close_frame(): Utils.button_click_sound(False) root.destroy() MainGUI.main_gui() # Set basic parameters of frame root.wm_attributes("-topmost", True) root.geometry("700x400") root.resizable(width=False, height=False) root.iconbitmap(Utils.get_resources_path("resources\\icon\\app_icon.ico")) root.bind("<Map>", mapped_frame) # Add components to frame label_background = Label(bg="white", width=700, height=400, bd=0) label_background.place(x=0, y=0) label_title = Label(text=get_title(day_date), font=("Segoe Script", 18), bd=0, bg="White") label_title.place(x=root_width / 2 - label_title.winfo_reqwidth() / 2, y=25 - label_title.winfo_reqheight() / 2) label_move_area_picture = get_picture("day_move.png", False) label_move_area = Label(image=label_move_area_picture, width=40, height=40, bd=0) label_move_area.place(x=5, y=5) label_move_area.bind("<B1-Motion>", move_frame) button_reduce_picture = get_picture("buttons\\day_reduce.png", False) button_reduce = Button(image=button_reduce_picture, bd=0, highlightthickness=0, padx=40, pady=10, command=reduce_frame) button_reduce.place(x=610, y=20) button_close_picture = get_picture("buttons\\day_close.png", False) button_close = Button(image=button_close_picture, bd=0, highlightthickness=0, padx=40, pady=40, command=close_frame) button_close.place(x=655, y=5) label_day_picture = get_picture(day_date, True) label_day = Label(image=label_day_picture, width=700, height=350, bd=0) label_day.place(x=0, y=50) # Loop the frame root.mainloop()
3.28125
3
icIceFonksiyon.py
cyrionp/PythonLectures
0
12782666
<filename>icIceFonksiyon.py def greeting(name): print("Hello ",name) ''' print(greeting("Ali")) sayHello=greeting print(sayHello) print(greeting) del sayHello print(greeting) #print(sayHello) #Encapsulation def outer(num1): def inner_increment(num1): return num1+1 num2=inner_increment(num1) print(num1,num2) outer(10) ''' def factorial(number): if not isinstance(number,int): raise TypeError("Number must be an integer") if not number>=0: raise ValueError("Number must be zero or positive") def inner_factorial(number): if number<=1: return 1 return number*inner_factorial(number-1) return inner_factorial(number) try: print(factorial(-2)) except Exception as ex: print(ex)
3.921875
4
graphscale/kvetch/create_db.py
schrockntemp/graphscaletemp
0
12782667
<filename>graphscale/kvetch/create_db.py #import pymysql #import pymysql.cursors; #import pytest #from kvetch_dbschema import create_kvetch_edges_table_sql # # # #if __name__ == "__main__": # conn = pymysql.connect(host='localhost', # user='magnus', # password='<PASSWORD>', # db='unittest_mysql_db', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # sql = create_kvetch_edges_table_sql('test') # print(sql) # with conn.cursor() as cursor: # cursor.execute(sql) # conn.commit() #
2
2
core/__init__.py
BenSmithers/MultiHex2
0
12782668
from .coordinates import HexID, hex_to_screen, screen_to_hex from .core import Hex,Region, Catalog, RegionCatalog, EntityCatalog from .map_entities import Entity, Government, Settlement from .core import DRAWSIZE
1.054688
1
mrec/evaluation/__init__.py
imall100/mrec
392
12782669
class Evaluator(object): """ Compute metrics for recommendations that have been written to file. Parameters ---------- compute_metrics : function(list,list) The evaluation function which should accept two lists of predicted and actual item indices. max_items : int The number of recommendations needed to compute the evaluation function. """ def __init__(self,compute_metrics,max_items): self.compute_metrics = compute_metrics self.max_items = max_items def _add_metrics(self,predicted,actual): metrics = self.compute_metrics(predicted,actual) if metrics: for m,val in metrics.iteritems(): self.cum_metrics[m] += val self.count += 1 def process(self,testdata,recsfile,start,end,offset=1): """ Parameters ---------- testdata : scipy sparse matrix The test items for each user. recsfile : str Filepath to the recommendations. The file should contain TSV of the form: user, item, score. IMPORTANT: the recommendations must be sorted by user and score. start : int First user to evaluate. end: int One after the last user to evaluate. offset : int Index offset for users and items in recommendations file. Returns ------- cum_metrics : dict Aggregated metrics i.e. total values for all users. count : int The number of users for whom metrics were computed. """ from collections import defaultdict self.cum_metrics = defaultdict(float) self.count = 0 last_user = start recs = [] for line in open(recsfile): user,item,score = line.strip().split('\t') user = int(user)-1 # convert to 0-indxed item = int(item)-1 if user >= end: break if user < start: continue if user != last_user: self._add_metrics(recs,testdata[last_user,:].indices.tolist()) last_user = user recs = [] if len(recs) < self.max_items: recs.append(item) self._add_metrics(recs,testdata[last_user,:].indices.tolist()) return self.cum_metrics,self.count
3.171875
3
wab/core/emails/models.py
BinNguyenVNN/wab-rest
0
12782670
from django.db.models import BooleanField, CharField, TextField from wab.core.components.models import BaseModel class EmailTemplate(BaseModel): code = CharField("Specific code for core app", max_length=50, blank=True, null=True, editable=False, unique=True) is_protected = BooleanField("Is protected", default=False) content = TextField("Html content")
2.171875
2
sort_teams.py
jhallman5/fencing_tournament
0
12782671
<filename>sort_teams.py<gh_stars>0 import sys import csv from linked_list import Node, Linked_List from model import create_linked_list, determine_num_pools, create_init_pools LL = create_linked_list() num_pools = determine_num_pools(LL) create_init_pools(LL, num_pools)
2.140625
2
Puzzles/Easy/TextFormatting.py
Naheuldark/Codingame
0
12782672
<reponame>Naheuldark/Codingame<filename>Puzzles/Easy/TextFormatting.py import sys import math import re text = input().lower().strip() # Remove excessive spaces text = re.sub(r'\s{2,}', ' ', text) # Remove spaces before and after punctuations text = re.sub(r'\s?[^\s\w\d]\s?', lambda match: match.group().strip(), text) # Remove duplicated punctuations text = re.sub(r'[^\s\w\d]+', lambda match: match.group().strip()[0], text) # Convert to Pascal case def toPascalCase(s): if not s: return '' chars = list(s) chars[0] = chars[0].upper() return ''.join(chars) text = '.'.join(toPascalCase(s) for s in text.split('.')) # Add spaces after punctuation text = re.sub(r'[^\s\w\d]', lambda match: match.group() + ' ', text) print(text.strip())
3.6875
4
admin_toolbox/apps.py
sarendsen/django-admin-toolbox
12
12782673
<reponame>sarendsen/django-admin-toolbox from django.apps import AppConfig class SidebarConfig(AppConfig): name = 'admin_toolbox'
1.226563
1
scripts/plot_cumulative_time.py
christophebedard/christophebedard.github.io
0
12782674
#!/usr/bin/env python3 # Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plot cumulative time based on daily time reporting data.""" from typing import List from typing import Optional from typing import Union from datetime import date import matplotlib.dates as mdates import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd include_plot_title = True save_plots = True def load_csv(filename: str) -> np.array: with open(filename, 'rb') as file: return np.loadtxt( file, delimiter=',', skiprows=1, usecols=(0,1), dtype=str, ) def filter_data(data: np.array) -> np.array: return np.array([d for d in data if d[0] not in ('', 'total')]) def convert_data(data: np.array) -> np.array: return np.array([[date.fromisoformat(d[0]), float(d[1])] for d in data]) def add_zeroth_datapoint(data: np.array) -> np.array: return np.vstack([[[data[0,0], 0.0]], data]) def data_to_cumsum(data: np.array, col: int = 1) -> np.array: data[:,col] = np.cumsum(data[:,col]) return data def get_data(filename: str): data = load_csv(filename) data = filter_data(data) data = convert_data(data) data = add_zeroth_datapoint(data) data = data_to_cumsum(data) return data def format_filename(string: str) -> str: string = string.replace('(', '') string = string.replace(')', '') string = string.replace(' ', '_') string = string.replace('\\', '') return string.lower() def plot_data( data: np.array, title: str, major_formatter_str: str, major_locator: Optional[mdates.RRuleLocator] = None, yaxis_multiple_locator: Optional[int] = None, colour: str = 'blue', ) -> None: fig, ax = plt.subplots(1, 1) ax.plot(data[:,0], data[:,1], '-', color=colour) if include_plot_title: ax.set(title=title) ax.set(ylabel='cumulative time (h)') if major_locator: ax.xaxis.set_major_locator(major_locator) ax.xaxis.set_major_formatter(mdates.DateFormatter(major_formatter_str)) if yaxis_multiple_locator: ax.yaxis.set_major_locator(ticker.MultipleLocator(yaxis_multiple_locator)) ax.set_ylim(0) ax.grid() fig.autofmt_xdate() if save_plots: filename = format_filename(title) fig.savefig(f'{filename}.png', bbox_inches='tight') fig.savefig(f'{filename}.svg', bbox_inches='tight') def plot_data_compare( data: List[np.array], title: str, legends: List[str], major_formatter_str: str, major_locator: Optional[mdates.RRuleLocator] = None, yaxis_multiple_locator: Optional[int] = None, colours: Union[str, List[str]] = 'blue', ) -> None: fig, ax = plt.subplots(1, 1) for i in range(len(data)): colour = colours if isinstance(colours, str) else colours[i] d = data[i] ax.plot(d[:,0], d[:,1], '-', color=colour) total_time = d[-1,1] legends[i] = legends[i] + f' ({total_time:g} h)' if include_plot_title: ax.set(title=title) ax.set(ylabel='cumulative time (h)') if major_locator: ax.xaxis.set_major_locator(major_locator) ax.xaxis.set_major_formatter(mdates.DateFormatter(major_formatter_str)) if yaxis_multiple_locator: ax.yaxis.set_major_locator(ticker.MultipleLocator(yaxis_multiple_locator)) ax.set_ylim(0) ax.legend(legends)#, loc='center', bbox_to_anchor=(0.3, 0.8)) ax.grid() fig.autofmt_xdate() if save_plots: filename = format_filename(title) fig.savefig(f'{filename}.png', bbox_inches='tight') fig.savefig(f'{filename}.svg', bbox_inches='tight') def main(): plt.rc('text', usetex=True) plt.rc('font', family='serif', size=14) plt.rc('axes', titlesize=20) plt.rc('legend', fontsize=14) # Under File, Download -> Comma-separated values (.csv, current sheet), # download the 'Time' and 'Blog' sheets data_time = get_data('rmw_email time tracking - Code.csv') data_blog = get_data('rmw_email time tracking - Blog.csv') plot_data( data_time, 'rmw\_email code time investment', '%Y %B', colour='green', ) plot_data( data_blog, 'rmw\_email blog post time investment', '%Y-%b-%d', mdates.DayLocator((1,5,10,15,20,25)), yaxis_multiple_locator=5, colour='blue', ) plot_data_compare( [data_time, data_blog], 'Overall rmw\_email time investment', ['code', 'blog post'], '%Y %B', colours=['green', 'blue'], ) plt.show() if __name__ == '__main__': main()
2.8125
3
ci.py
Glitter23/trying
0
12782675
<filename>ci.py #Compounnd Interest def ci(t,p,r): A = p *((1+(r/100))**t) CI = A - p return CI z=ci(4,50000,4) print(z) #amount def amount(p,r,t): A = p *((1+(r/100))**t) return A #rate def rate(A,p,t): r=((A/p)**(1/t)) - 1 return r k=rate(90000,45000,2) print(k)
3.4375
3
Data Structures/Linked Lists/Singly Linked List/Single-linked-list-operations.py
siddhi-244/CompetitiveProgrammingQuestionBank
931
12782676
# A pythom program for all operations performed on singly linked-list. # Time-Complexity = O(n) # Space-Complexity = O(n) class Node: def __init__(self, data=None, next=None): # Creation of Node self.data = data self.next = next class LinkedList: def __init__(self): self.head = None # head points the first node def print(self): if self.head is None: print("Linked list is empty") return itr = self.head llstr = '' # empty string while itr: llstr += str(itr.data)+' --> ' if itr.next else str(itr.data) itr = itr.next print(llstr) def length(self): # will calculate length of the linked list count = 0 itr = self.head while itr: count += 1 itr = itr.next return count def insert_at_begining(self, data): node = Node(data, self.head) # Creating a new node calling Node method self.head = node def insert_at_end(self, data): if self.head is None: self.head = Node(data, None) return itr = self.head while itr.next: itr = itr.next itr.next = Node(data, None) def insert_at(self, index, data): if index < 0 or index > self.length(): raise Exception("Invalid Index") if index == 0: self.insert_at_begining(data) return count = 0 itr = self.head while itr: if count == index - 1: node = Node(data, itr.next) itr.next = node break itr = itr.next count += 1 def remove_at(self, index): if index < 0 or index >= self.length(): raise Exception("Invalid Index") if index == 0: self.head = self.head.next return count = 0 itr = self.head while itr: if count == index - 1: itr.next = itr.next.next # to delete the specified node break itr = itr.next count += 1 def insert_values(self, data_list): self.head = None for data in data_list: self.insert_at_end(data) # removing element at linkedlist with Value def removeval(self, value): count = 0 temp = self.head while temp: if value != temp.data: count += 1 temp = temp.next if count == self.length(): print("Value is not present") else: if value == self.head.data: self.head = self.head.next return temp = self.head while temp: if value == temp.next.data: temp.next = temp.next.next break temp = temp.next if __name__ == '__main__': node1 = LinkedList() ins = list(input("Enter a values to be inserted by giving space[eg: python c++ java] : ").rstrip().split()) node1.insert_values(ins) node1.print() ind = int(input("Enter the index to be added: ")) val = input('Enter the value: ') node1.insert_at(ind, val) node1.print() remm = int(input('Enter the index to be removed: ')) node1.remove_at(remm) node1.print() remval = input('Enter the value to be removed: ') node1.removeval(remval) node1.print() inss = list(input("Enter a values to be inserted by giving space[eg: 45 30 22] : ").rstrip().split()) node1.insert_values(inss) node1. print() inend = int(input('Enter the number to be inserted at the end: ')) node1.insert_at_end(inend) node1.print() remval1 = input('Enter the value to be removed: ') node1.removeval(remval1) node1.print()
4.125
4
corrige_media/corrige_media.py
Arthurnevs/E1
0
12782677
<filename>corrige_media/corrige_media.py ''' UFCG PROGRAMAÇÃO 1 <NAME> DE BRITO - 119210204 CORRIGE MEDIA ''' nota1 = 10 nota2 = 5 media = (nota1 + nota2) / 2 print("Nota 1: {:4.1f}".format(nota1)) print("Nota 2: {:4.1f}".format(nota2)) print("Média : {:4.1f}".format(media))
2.40625
2
Exercicios Python/ex0018.py
AlanOliveira1998/ExerciciosPython01-100
0
12782678
<gh_stars>0 #Faça um programa que leia o comprimento do cateto oposto e do cateto adjacente e calcule e mostre a sua hipotenusa import math co = float(input('Digite o valor do cateto oposto:')) ca = float(input('Digite o valor do cateto adjacente:')) h = math.hypot(co, ca) print(f'O valor da hipotenusa corresponde a {h}') # h = (co ** 2 + ca ** 2) ** (1/2)
3.828125
4
pytest_tornado/test/test_server.py
FRI-DAY/pytest-tornado
0
12782679
import functools import pytest import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write('Hello, world') application = tornado.web.Application([ (r'/', MainHandler), (r'/f00', MainHandler), ]) @pytest.fixture(scope='module') def app(): return application def _fetch(http_client, url): return http_client.io_loop.run_sync( functools.partial(http_client.fetch, url)) def test_http_server(http_server): status = {'done': False} def _done(): status['done'] = True http_server.io_loop.stop() http_server.io_loop.add_callback(_done) http_server.io_loop.start() assert status['done'] def test_http_client(http_client, base_url): request = http_client.fetch(base_url) request.add_done_callback(lambda future: http_client.io_loop.stop()) http_client.io_loop.start() response = request.result() assert response.code == 200 def test_http_client_with_fetch_helper(http_client, base_url): response = _fetch(http_client, base_url) assert response.code == 200 @pytest.mark.gen_test def test_http_client_with_gen_test(http_client, base_url): response = yield http_client.fetch(base_url) assert response.code == 200 @pytest.mark.gen_test def test_get_url_with_path(http_client, base_url): response = yield http_client.fetch('%s/f00' % base_url) assert response.code == 200 @pytest.mark.gen_test def test_http_client_raises_on_404(http_client, base_url): with pytest.raises(tornado.httpclient.HTTPError): yield http_client.fetch('%s/bar' % base_url)
2.1875
2
geonode/geonode/api/resourcebase_api.py
ttungbmt/BecaGIS_GeoPortal
0
12782680
# -*- coding: utf-8 -*- ######################################################################### # # Copyright (C) 2016 OSGeo # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ######################################################################### import re import json import logging from django.urls import resolve from django.db.models import Q from django.http import HttpResponse from django.conf import settings from django.contrib.staticfiles.templatetags import staticfiles from tastypie.authentication import MultiAuthentication, SessionAuthentication from django.template.response import TemplateResponse from tastypie import http from tastypie.bundle import Bundle from tastypie.constants import ALL, ALL_WITH_RELATIONS from tastypie.resources import ModelResource from tastypie import fields from tastypie.utils import trailing_slash from guardian.shortcuts import get_objects_for_user from django.conf.urls import url from django.core.paginator import Paginator, InvalidPage from django.http import Http404 from django.core.exceptions import ObjectDoesNotExist from django.forms.models import model_to_dict from tastypie.utils.mime import build_content_type from geonode import get_version, qgis_server, geoserver from geonode.layers.models import Layer from geonode.maps.models import Map from geonode.documents.models import Document from geonode.base.models import ResourceBase from geonode.base.models import HierarchicalKeyword from geonode.groups.models import GroupProfile from geonode.utils import check_ogc_backend from geonode.security.utils import get_visible_resources from .authentication import OAuthAuthentication from .authorization import GeoNodeAuthorization, GeonodeApiKeyAuthentication from .api import ( TagResource, RegionResource, OwnersResource, ThesaurusKeywordResource, TopicCategoryResource, GroupResource, FILTER_TYPES) from .paginator import CrossSiteXHRPaginator from django.utils.translation import gettext as _ if settings.HAYSTACK_SEARCH: from haystack.query import SearchQuerySet # noqa logger = logging.getLogger(__name__) LAYER_SUBTYPES = { 'vector': 'dataStore', 'raster': 'coverageStore', 'remote': 'remoteStore', 'vector_time': 'vectorTimeSeries', } FILTER_TYPES.update(LAYER_SUBTYPES) class CommonMetaApi: authorization = GeoNodeAuthorization() allowed_methods = ['get'] filtering = { 'title': ALL, 'keywords': ALL_WITH_RELATIONS, 'tkeywords': ALL_WITH_RELATIONS, 'regions': ALL_WITH_RELATIONS, 'category': ALL_WITH_RELATIONS, 'group': ALL_WITH_RELATIONS, 'owner': ALL_WITH_RELATIONS, 'date': ALL, 'purpose': ALL, 'abstract': ALL } ordering = ['date', 'title', 'popular_count'] max_limit = None class CommonModelApi(ModelResource): keywords = fields.ToManyField(TagResource, 'keywords', null=True) regions = fields.ToManyField(RegionResource, 'regions', null=True) category = fields.ToOneField( TopicCategoryResource, 'category', null=True, full=True) group = fields.ToOneField( GroupResource, 'group', null=True, full=True) owner = fields.ToOneField(OwnersResource, 'owner', full=True) tkeywords = fields.ToManyField( ThesaurusKeywordResource, 'tkeywords', null=True) VALUES = [ # fields in the db 'id', 'uuid', 'title', 'date', 'date_type', 'edition', 'purpose', 'maintenance_frequency', 'restriction_code_type', 'constraints_other', 'license', 'language', 'spatial_representation_type', 'temporal_extent_start', 'temporal_extent_end', 'data_quality_statement', 'abstract', 'csw_wkt_geometry', 'csw_type', 'owner__username', 'share_count', 'popular_count', 'srid', 'bbox_x0', 'bbox_x1', 'bbox_y0', 'bbox_y1', 'category__gn_description', 'supplemental_information', 'site_url', 'thumbnail_url', 'detail_url', 'rating', 'group__name', 'has_time', 'is_approved', 'is_published', 'dirty_state', ] def build_filters(self, filters=None, ignore_bad_filters=False, **kwargs): if filters is None: filters = {} orm_filters = super(CommonModelApi, self).build_filters( filters=filters, ignore_bad_filters=ignore_bad_filters, **kwargs) if 'type__in' in filters and filters['type__in'] in FILTER_TYPES.keys(): orm_filters.update({'type': filters.getlist('type__in')}) if 'app_type__in' in filters: orm_filters.update({'polymorphic_ctype__model': filters['app_type__in'].lower()}) if 'extent' in filters: orm_filters.update({'extent': filters['extent']}) orm_filters['f_method'] = filters['f_method'] if 'f_method' in filters else 'and' if not settings.SEARCH_RESOURCES_EXTENDED: return self._remove_additional_filters(orm_filters) return orm_filters def _remove_additional_filters(self, orm_filters): orm_filters.pop('abstract__icontains', None) orm_filters.pop('purpose__icontains', None) orm_filters.pop('f_method', None) return orm_filters def apply_filters(self, request, applicable_filters): types = applicable_filters.pop('type', None) extent = applicable_filters.pop('extent', None) keywords = applicable_filters.pop('keywords__slug__in', None) filtering_method = applicable_filters.pop('f_method', 'and') if filtering_method == 'or': filters = Q() for f in applicable_filters.items(): filters |= Q(f) semi_filtered = self.get_object_list(request).filter(filters) else: semi_filtered = super( CommonModelApi, self).apply_filters( request, applicable_filters) filtered = None if types: for the_type in types: if the_type in LAYER_SUBTYPES.keys(): super_type = the_type if 'vector_time' == the_type: super_type = 'vector' if filtered: if 'time' in the_type: filtered = filtered | semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]).exclude(Layer___has_time=False) else: filtered = filtered | semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]) else: if 'time' in the_type: filtered = semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]).exclude(Layer___has_time=False) else: filtered = semi_filtered.filter( Layer___storeType=LAYER_SUBTYPES[super_type]) else: _type_filter = FILTER_TYPES[the_type].__name__.lower() if filtered: filtered = filtered | semi_filtered.filter(polymorphic_ctype__model=_type_filter) else: filtered = semi_filtered.filter(polymorphic_ctype__model=_type_filter) else: filtered = semi_filtered if settings.RESOURCE_PUBLISHING or settings.ADMIN_MODERATE_UPLOADS: filtered = self.filter_published(filtered, request) if settings.GROUP_PRIVATE_RESOURCES: filtered = self.filter_group(filtered, request) if extent: filtered = self.filter_bbox(filtered, extent) if keywords: filtered = self.filter_h_keywords(filtered, keywords) # Hide Dirty State Resources user = request.user if request else None if not user or not user.is_superuser: if user: filtered = filtered.exclude(Q(dirty_state=True) & ~( Q(owner__username__iexact=str(user)))) else: filtered = filtered.exclude(Q(dirty_state=True)) return filtered def filter_published(self, queryset, request): filter_set = get_visible_resources( queryset, request.user if request else None, request=request, admin_approval_required=settings.ADMIN_MODERATE_UPLOADS, unpublished_not_visible=settings.RESOURCE_PUBLISHING) return filter_set def filter_group(self, queryset, request): filter_set = get_visible_resources( queryset, request.user if request else None, request=request, private_groups_not_visibile=settings.GROUP_PRIVATE_RESOURCES) return filter_set def filter_h_keywords(self, queryset, keywords): filtered = queryset treeqs = HierarchicalKeyword.objects.none() if keywords and len(keywords) > 0: for keyword in keywords: try: kws = HierarchicalKeyword.objects.filter( Q(name__iexact=keyword) | Q(slug__iexact=keyword)) for kw in kws: treeqs = treeqs | HierarchicalKeyword.get_tree(kw) except ObjectDoesNotExist: # Ignore keywords not actually used? pass filtered = queryset.filter(Q(keywords__in=treeqs)) return filtered def filter_bbox(self, queryset, extent_filter): from geonode.utils import bbox_to_projection bbox = extent_filter.split(',') bbox = list(map(str, bbox)) intersects = (Q(bbox_x0__gte=bbox[0]) & Q(bbox_x1__lte=bbox[2]) & Q(bbox_y0__gte=bbox[1]) & Q(bbox_y1__lte=bbox[3])) for proj in Layer.objects.order_by('srid').values('srid').distinct(): if proj['srid'] != 'EPSG:4326': proj_bbox = bbox_to_projection(bbox + ['4326', ], target_srid=int(proj['srid'][5:])) if proj_bbox[-1] != 4326: intersects = intersects | (Q(bbox_x0__gte=proj_bbox[0]) & Q(bbox_x1__lte=proj_bbox[2]) & Q( bbox_y0__gte=proj_bbox[1]) & Q(bbox_y1__lte=proj_bbox[3])) return queryset.filter(intersects) def build_haystack_filters(self, parameters): from haystack.inputs import Raw from haystack.query import SearchQuerySet, SQ # noqa sqs = None # Retrieve Query Params # Text search query = parameters.get('q', None) # Types and subtypes to filter (map, layer, vector, etc) type_facets = parameters.getlist("type__in", []) # If coming from explore page, add type filter from resource_name resource_filter = self._meta.resource_name.rstrip("s") if resource_filter != "base" and resource_filter not in type_facets: type_facets.append(resource_filter) # Publication date range (start,end) date_end = parameters.get("date__lte", None) date_start = parameters.get("date__gte", None) # Topic category filter category = parameters.getlist("category__identifier__in") # Keyword filter keywords = parameters.getlist("keywords__slug__in") # Region filter regions = parameters.getlist("regions__name__in") # Owner filters owner = parameters.getlist("owner__username__in") # Sort order sort = parameters.get("order_by", "relevance") # Geospatial Elements bbox = parameters.get("extent", None) # Filter by Type and subtype if type_facets is not None: types = [] subtypes = [] for type in type_facets: if type in {"map", "layer", "document", "user"}: # Type is one of our Major Types (not a sub type) types.append(type) elif type in LAYER_SUBTYPES.keys(): subtypes.append(type) if 'vector' in subtypes and 'vector_time' not in subtypes: subtypes.append('vector_time') if len(subtypes) > 0: types.append("layer") sqs = SearchQuerySet().narrow(f"subtype:{','.join(map(str, subtypes))}") if len(types) > 0: sqs = (SearchQuerySet() if sqs is None else sqs).narrow( f"type:{','.join(map(str, types))}") # Filter by Query Params # haystack bug? if boosted fields aren't included in the # query, then the score won't be affected by the boost if query: if query.startswith('"') or query.startswith('\''): # Match exact phrase phrase = query.replace('"', '') sqs = (SearchQuerySet() if sqs is None else sqs).filter( SQ(title__exact=phrase) | SQ(description__exact=phrase) | SQ(content__exact=phrase) ) else: words = [ w for w in re.split( r'\W', query, flags=re.UNICODE) if w] for i, search_word in enumerate(words): if i == 0: sqs = (SearchQuerySet() if sqs is None else sqs) \ .filter( SQ(title=Raw(search_word)) | SQ(description=Raw(search_word)) | SQ(content=Raw(search_word)) ) elif search_word in {"AND", "OR"}: pass elif words[i - 1] == "OR": # previous word OR this word sqs = sqs.filter_or( SQ(title=Raw(search_word)) | SQ(description=Raw(search_word)) | SQ(content=Raw(search_word)) ) else: # previous word AND this word sqs = sqs.filter( SQ(title=Raw(search_word)) | SQ(description=Raw(search_word)) | SQ(content=Raw(search_word)) ) # filter by category if category: sqs = (SearchQuerySet() if sqs is None else sqs).narrow( f"category:{','.join(map(str, category))}") # filter by keyword: use filter_or with keywords_exact # not using exact leads to fuzzy matching and too many results # using narrow with exact leads to zero results if multiple keywords # selected if keywords: for keyword in keywords: sqs = ( SearchQuerySet() if sqs is None else sqs).filter_or( keywords_exact=keyword) # filter by regions: use filter_or with regions_exact # not using exact leads to fuzzy matching and too many results # using narrow with exact leads to zero results if multiple keywords # selected if regions: for region in regions: sqs = ( SearchQuerySet() if sqs is None else sqs).filter_or( regions_exact__exact=region) # filter by owner if owner: sqs = ( SearchQuerySet() if sqs is None else sqs).narrow( f"owner__username:{','.join(map(str, owner))}") # filter by date if date_start: sqs = (SearchQuerySet() if sqs is None else sqs).filter( SQ(date__gte=date_start) ) if date_end: sqs = (SearchQuerySet() if sqs is None else sqs).filter( SQ(date__lte=date_end) ) # Filter by geographic bounding box if bbox: left, bottom, right, top = bbox.split(',') sqs = ( SearchQuerySet() if sqs is None else sqs).exclude( SQ( bbox_top__lte=bottom) | SQ( bbox_bottom__gte=top) | SQ( bbox_left__gte=right) | SQ( bbox_right__lte=left)) # Apply sort if sort.lower() == "-date": sqs = ( SearchQuerySet() if sqs is None else sqs).order_by("-date") elif sort.lower() == "date": sqs = ( SearchQuerySet() if sqs is None else sqs).order_by("date") elif sort.lower() == "title": sqs = (SearchQuerySet() if sqs is None else sqs).order_by( "title_sortable") elif sort.lower() == "-title": sqs = (SearchQuerySet() if sqs is None else sqs).order_by( "-title_sortable") elif sort.lower() == "-popular_count": sqs = (SearchQuerySet() if sqs is None else sqs).order_by( "-popular_count") else: sqs = ( SearchQuerySet() if sqs is None else sqs).order_by("-date") return sqs def get_search(self, request, **kwargs): self.method_check(request, allowed=['get']) self.is_authenticated(request) self.throttle_check(request) # Get the list of objects that matches the filter sqs = self.build_haystack_filters(request.GET) if not settings.SKIP_PERMS_FILTER: filter_set = get_objects_for_user( request.user, 'base.view_resourcebase') filter_set = get_visible_resources( filter_set, request.user if request else None, admin_approval_required=settings.ADMIN_MODERATE_UPLOADS, unpublished_not_visible=settings.RESOURCE_PUBLISHING, private_groups_not_visibile=settings.GROUP_PRIVATE_RESOURCES) filter_set_ids = filter_set.values_list('id') # Do the query using the filterset and the query term. Facet the # results if len(filter_set) > 0: sqs = sqs.filter(id__in=filter_set_ids).facet('type').facet('subtype').facet( 'owner') .facet('keywords').facet('regions').facet('category') else: sqs = None else: sqs = sqs.facet('type').facet('subtype').facet( 'owner').facet('keywords').facet('regions').facet('category') if sqs: # Build the Facet dict facets = {} for facet in sqs.facet_counts()['fields']: facets[facet] = {} for item in sqs.facet_counts()['fields'][facet]: facets[facet][item[0]] = item[1] # Paginate the results paginator = Paginator(sqs, request.GET.get('limit')) try: page = paginator.page( int(request.GET.get('offset') or 0) / int(request.GET.get('limit') or 0 + 1)) except InvalidPage: raise Http404("Sorry, no results on that page.") if page.has_previous(): previous_page = page.previous_page_number() else: previous_page = 1 if page.has_next(): next_page = page.next_page_number() else: next_page = 1 total_count = sqs.count() objects = page.object_list else: next_page = 0 previous_page = 0 total_count = 0 facets = {} objects = [] object_list = { "meta": { "limit": settings.CLIENT_RESULTS_LIMIT, "next": next_page, "offset": int(getattr(request.GET, 'offset', 0)), "previous": previous_page, "total_count": total_count, "facets": facets, }, "objects": [self.get_haystack_api_fields(x) for x in objects], } self.log_throttled_access(request) return self.create_response(request, object_list) def get_haystack_api_fields(self, haystack_object): return {k: v for k, v in haystack_object.get_stored_fields().items() if not re.search('_exact$|_sortable$', k)} def get_list(self, request, **kwargs): """ Returns a serialized list of resources. Calls ``obj_get_list`` to provide the data, then handles that result set and serializes it. Should return a HttpResponse (200 OK). """ # TODO: Uncached for now. Invalidation that works for everyone may be # impossible. base_bundle = self.build_bundle(request=request) objects = self.obj_get_list( bundle=base_bundle, **self.remove_api_resource_names(kwargs)) sorted_objects = self.apply_sorting(objects, options=request.GET) paginator = self._meta.paginator_class( request.GET, sorted_objects, resource_uri=self.get_resource_uri(), limit=self._meta.limit, max_limit=self._meta.max_limit, collection_name=self._meta.collection_name) to_be_serialized = paginator.page() to_be_serialized = self.alter_list_data_to_serialize( request, to_be_serialized) return self.create_response( request, to_be_serialized, response_objects=objects) def format_objects(self, objects): """ Format the objects for output in a response. """ for key in ('site_url', 'has_time'): if key in self.VALUES: idx = self.VALUES.index(key) del self.VALUES[idx] # hack needed because dehydrate does not seem to work in CommonModelApi formatted_objects = [] for obj in objects: formatted_obj = model_to_dict(obj, fields=self.VALUES) if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL if formatted_obj['thumbnail_url'] and len(formatted_obj['thumbnail_url']) == 0: formatted_obj['thumbnail_url'] = staticfiles.static(settings.MISSING_THUMBNAIL) formatted_obj['owner__username'] = obj.owner.username formatted_obj['owner_name'] = obj.owner.get_full_name() or obj.owner.username # replace thumbnail_url with curated_thumbs if hasattr(obj, 'curatedthumbnail'): if hasattr(obj.curatedthumbnail.img_thumbnail, 'url'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url else: formatted_obj['thumbnail_url'] = '' formatted_objects.append(formatted_obj) return formatted_objects def create_response( self, request, data, response_class=HttpResponse, response_objects=None, **response_kwargs): """ Extracts the common "which-format/serialize/return-response" cycle. Mostly a useful shortcut/hook. """ # If an user does not have at least view permissions, he won't be able # to see the resource at all. filtered_objects_ids = None try: if data['objects']: filtered_objects_ids = [ item.id for item in data['objects'] if request.user.has_perm( 'view_resourcebase', item.get_self_resource())] except Exception: pass if isinstance( data, dict) and 'objects' in data and not isinstance( data['objects'], list): if filtered_objects_ids: data['objects'] = [ x for x in list( self.format_objects( data['objects'])) if x['id'] in filtered_objects_ids] else: data['objects'] = list(self.format_objects(data['objects'])) # give geonode version data['geonode_version'] = get_version() desired_format = self.determine_format(request) serialized = self.serialize(request, data, desired_format) return response_class( content=serialized, content_type=build_content_type(desired_format), **response_kwargs) def prepend_urls(self): if settings.HAYSTACK_SEARCH: return [ url(r"^(?P<resource_name>%s)/search%s$" % ( self._meta.resource_name, trailing_slash() ), self.wrap_view('get_search'), name="api_get_search"), ] else: return [] class ResourceBaseResource(CommonModelApi): """ResourceBase api""" class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = ResourceBase.objects.polymorphic_queryset() \ .distinct().order_by('-date') resource_name = 'base' excludes = ['csw_anytext', 'metadata_xml'] authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) class FeaturedResourceBaseResource(CommonModelApi): """Only the featured resourcebases""" class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = ResourceBase.objects.filter(featured=True).order_by('-date') resource_name = 'featured' authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) class LayerResource(CommonModelApi): """Layer API""" links = fields.ListField( attribute='links', null=True, use_in='all', default=[]) if check_ogc_backend(qgis_server.BACKEND_PACKAGE): default_style = fields.ForeignKey( 'geonode.api.api.StyleResource', attribute='qgis_default_style', null=True) styles = fields.ManyToManyField( 'geonode.api.api.StyleResource', attribute='qgis_styles', null=True, use_in='detail') elif check_ogc_backend(geoserver.BACKEND_PACKAGE): default_style = fields.ForeignKey( 'geonode.api.api.StyleResource', attribute='default_style', null=True) styles = fields.ManyToManyField( 'geonode.api.api.StyleResource', attribute='styles', null=True, use_in='detail') def format_objects(self, objects): """ Formats the object. """ formatted_objects = [] for obj in objects: # convert the object to a dict using the standard values. # includes other values values = self.VALUES + [ 'alternate', 'name' ] formatted_obj = model_to_dict(obj, fields=values) username = obj.owner.get_username() full_name = (obj.owner.get_full_name() or username) formatted_obj['owner__username'] = username formatted_obj['owner_name'] = full_name if obj.category: formatted_obj['category__gn_description'] = _(obj.category.gn_description) if obj.group: formatted_obj['group'] = obj.group try: formatted_obj['group_name'] = GroupProfile.objects.get(slug=obj.group.name) except GroupProfile.DoesNotExist: formatted_obj['group_name'] = obj.group formatted_obj['keywords'] = [k.name for k in obj.keywords.all()] if obj.keywords else [] formatted_obj['regions'] = [r.name for r in obj.regions.all()] if obj.regions else [] # provide style information bundle = self.build_bundle(obj=obj) formatted_obj['default_style'] = self.default_style.dehydrate( bundle, for_list=True) # Add resource uri formatted_obj['resource_uri'] = self.get_resource_uri(bundle) formatted_obj['links'] = self.dehydrate_ogc_links(bundle) if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL # Probe Remote Services formatted_obj['store_type'] = 'dataset' formatted_obj['online'] = True if hasattr(obj, 'storeType'): formatted_obj['store_type'] = obj.storeType if obj.storeType == 'remoteStore' and hasattr(obj, 'remote_service'): if obj.remote_service: formatted_obj['online'] = (obj.remote_service.probe == 200) else: formatted_obj['online'] = False formatted_obj['gtype'] = self.dehydrate_gtype(bundle) # replace thumbnail_url with curated_thumbs if hasattr(obj, 'curatedthumbnail'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url formatted_obj['processed'] = obj.instance_is_processed # put the object on the response stack formatted_objects.append(formatted_obj) return formatted_objects def _dehydrate_links(self, bundle, link_types=None): """Dehydrate links field.""" dehydrated = [] obj = bundle.obj link_fields = [ 'extension', 'link_type', 'name', 'mime', 'url' ] links = obj.link_set.all() if link_types: links = links.filter(link_type__in=link_types) for lnk in links: formatted_link = model_to_dict(lnk, fields=link_fields) dehydrated.append(formatted_link) return dehydrated def dehydrate_links(self, bundle): return self._dehydrate_links(bundle) def dehydrate_ogc_links(self, bundle): return self._dehydrate_links(bundle, ['OGC:WMS', 'OGC:WFS', 'OGC:WCS']) def dehydrate_gtype(self, bundle): return bundle.obj.gtype def populate_object(self, obj): """Populate results with necessary fields :param obj: Layer obj :type obj: Layer :return: """ if check_ogc_backend(qgis_server.BACKEND_PACKAGE): # Provides custom links for QGIS Server styles info # Default style try: obj.qgis_default_style = obj.qgis_layer.default_style except Exception: obj.qgis_default_style = None # Styles try: obj.qgis_styles = obj.qgis_layer.styles except Exception: obj.qgis_styles = [] return obj def build_bundle( self, obj=None, data=None, request=None, **kwargs): """Override build_bundle method to add additional info.""" if obj is None and self._meta.object_class: obj = self._meta.object_class() elif obj: obj = self.populate_object(obj) return Bundle( obj=obj, data=data, request=request, **kwargs) def patch_detail(self, request, **kwargs): """Allow patch request to update default_style. Request body must match this: { 'default_style': <resource_uri_to_style> } """ reason = 'Can only patch "default_style" field.' try: body = json.loads(request.body) if 'default_style' not in body: return http.HttpBadRequest(reason=reason) match = resolve(body['default_style']) style_id = match.kwargs['id'] api_name = match.kwargs['api_name'] resource_name = match.kwargs['resource_name'] if not (resource_name == 'styles' and api_name == 'api'): raise Exception() from geonode.qgis_server.models import QGISServerStyle style = QGISServerStyle.objects.get(id=style_id) layer_id = kwargs['id'] layer = Layer.objects.get(id=layer_id) except Exception: return http.HttpBadRequest(reason=reason) from geonode.qgis_server.views import default_qml_style request.method = 'POST' response = default_qml_style( request, layername=layer.name, style_name=style.name) if isinstance(response, TemplateResponse): if response.status_code == 200: return HttpResponse(status=200) return self.error_response(request, response.content) # copy parent attribute before modifying VALUES = CommonModelApi.VALUES[:] VALUES.append('typename') class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = Layer.objects.distinct().order_by('-date') resource_name = 'layers' detail_uri_name = 'id' include_resource_uri = True allowed_methods = ['get', 'patch'] excludes = ['csw_anytext', 'metadata_xml'] authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) filtering = CommonMetaApi.filtering # Allow filtering using ID filtering.update({ 'id': ALL, 'name': ALL, 'alternate': ALL, }) class MapResource(CommonModelApi): """Maps API""" def format_objects(self, objects): """ Formats the objects and provides reference to list of layers in map resources. :param objects: Map objects """ formatted_objects = [] for obj in objects: # convert the object to a dict using the standard values. formatted_obj = model_to_dict(obj, fields=self.VALUES) username = obj.owner.get_username() full_name = (obj.owner.get_full_name() or username) formatted_obj['owner__username'] = username formatted_obj['owner_name'] = full_name if obj.category: formatted_obj['category__gn_description'] = _(obj.category.gn_description) if obj.group: formatted_obj['group'] = obj.group try: formatted_obj['group_name'] = GroupProfile.objects.get(slug=obj.group.name) except GroupProfile.DoesNotExist: formatted_obj['group_name'] = obj.group formatted_obj['keywords'] = [k.name for k in obj.keywords.all()] if obj.keywords else [] formatted_obj['regions'] = [r.name for r in obj.regions.all()] if obj.regions else [] if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL # Probe Remote Services formatted_obj['store_type'] = 'map' formatted_obj['online'] = True # get map layers map_layers = obj.layers formatted_layers = [] map_layer_fields = [ 'id', 'stack_order', 'format', 'name', 'opacity', 'group', 'visibility', 'transparent', 'ows_url', 'layer_params', 'source_params', 'local' ] for layer in map_layers: formatted_map_layer = model_to_dict( layer, fields=map_layer_fields) formatted_layers.append(formatted_map_layer) formatted_obj['layers'] = formatted_layers # replace thumbnail_url with curated_thumbs try: if hasattr(obj, 'curatedthumbnail'): if hasattr(obj.curatedthumbnail.img_thumbnail, 'url'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url else: formatted_obj['thumbnail_url'] = '' except Exception as e: formatted_obj['thumbnail_url'] = '' logger.exception(e) formatted_objects.append(formatted_obj) return formatted_objects class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator queryset = Map.objects.distinct().order_by('-date') resource_name = 'maps' authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication()) class DocumentResource(CommonModelApi): """Documents API""" def format_objects(self, objects): """ Formats the objects and provides reference to list of layers in map resources. :param objects: Map objects """ formatted_objects = [] for obj in objects: # convert the object to a dict using the standard values. formatted_obj = model_to_dict(obj, fields=self.VALUES) username = obj.owner.get_username() full_name = (obj.owner.get_full_name() or username) formatted_obj['owner__username'] = username formatted_obj['owner_name'] = full_name if obj.category: formatted_obj['category__gn_description'] = _(obj.category.gn_description) if obj.group: formatted_obj['group'] = obj.group try: formatted_obj['group_name'] = GroupProfile.objects.get(slug=obj.group.name) except GroupProfile.DoesNotExist: formatted_obj['group_name'] = obj.group formatted_obj['keywords'] = [k.name for k in obj.keywords.all()] if obj.keywords else [] formatted_obj['regions'] = [r.name for r in obj.regions.all()] if obj.regions else [] if 'site_url' not in formatted_obj or len(formatted_obj['site_url']) == 0: formatted_obj['site_url'] = settings.SITEURL # Probe Remote Services formatted_obj['store_type'] = 'dataset' formatted_obj['online'] = True # replace thumbnail_url with curated_thumbs if hasattr(obj, 'curatedthumbnail'): try: if hasattr(obj.curatedthumbnail.img_thumbnail, 'url'): formatted_obj['thumbnail_url'] = obj.curatedthumbnail.thumbnail_url else: formatted_obj['thumbnail_url'] = '' except Exception: formatted_obj['thumbnail_url'] = '' formatted_objects.append(formatted_obj) return formatted_objects class Meta(CommonMetaApi): paginator_class = CrossSiteXHRPaginator filtering = CommonMetaApi.filtering filtering.update({'doc_type': ALL}) queryset = Document.objects.distinct().order_by('-date') resource_name = 'documents' authentication = MultiAuthentication(SessionAuthentication(), OAuthAuthentication(), GeonodeApiKeyAuthentication())
1.648438
2
PythonBaseDemo/CommonModules/10.8/Counter_test2.py
CypHelp/TestNewWorldDemo
0
12782681
<reponame>CypHelp/TestNewWorldDemo # coding: utf-8 ######################################################################### # 网站: <a href="http://www.crazyit.org">疯狂Java联盟</a> # # author yeeku.H.lee <EMAIL> # # # # version 1.0 # # # # Copyright (C), 2001-2018, yeeku.H.Lee # # # # This program is protected by copyright laws. # # # # Program Name: # # # # <br>Date: # ######################################################################### from collections import Counter # 创建Counter对象 cnt = Counter() # 访问并不存在的key,将输出该key的次数为0. print(cnt['Python']) # 0 for word in ['Swift', 'Python', 'Kotlin', 'Kotlin', 'Swift', 'Go']: cnt[word] += 1 print(cnt) # 只访问Counter对象的元素 print(list(cnt.elements())) # 将字符串(迭代器)转换成Counter chr_cnt = Counter('abracadabra') # 获取出现最多的3个字母 print(chr_cnt.most_common(3)) # [('a', 5), ('b', 2), ('r', 2)] c = Counter(a=4, b=2, c=0, d=-2) d = Counter(a=1, b=2, c=3, d=4) # 用Counter对象执行减法,其实就是减少各元素的出现次数 c.subtract(d) print(c) # Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6}) e = Counter({'x': 2, 'y': 3, 'z': -4}) # 调用del删除key-value对,会真正删除该key-value对 del e['y'] print(e) # 访问'w'对应的value,'w'没有出现过,因此返回0 print(e['w']) # 0 # 删除e['w'],删除该key-value对 del e['w'] # 再次访问'w'对应的value,'w'还是没有,因此返回0 print(e['w']) # 0
3.171875
3
run.py
wellcomecollection/file_auditor
0
12782682
#!/usr/bin/env python2 from __future__ import print_function import csv import datetime import errno import hashlib import os import sys import traceback import zipfile AUDIT_CSV_PATH = "audit.csv" AUDIT_ZIPFILES_CSV_PATH = "audit_with_zipfile_entries.csv" AUDIT_CSV_FIELDNAMES = ["path", "size", "last_modified_time", "sha256"] AUDIT_ZIPFILES_CSV_FIELDNAMES = ["path", "entry_filename", "size", "sha256"] def get_size_and_sha256(infile): """ Returns the size and SHA256 checksum (as hex) of the given file. """ h = hashlib.sha256() size = 0 while True: chunk = infile.read(8192) if not chunk: break h.update(chunk) size += len(chunk) return (size, h.hexdigest()) def get_file_paths_under(root): """Generates the paths to every file under ``root``.""" if not os.path.isdir(root): raise ValueError("Cannot find files under non-existent directory: %r" % root) for dirpath, _, filenames in os.walk(root): for f in filenames: if os.path.isfile(os.path.join(dirpath, f)): yield os.path.join(dirpath, f) def get_existing_audit_entries(): """ Returns a list of all the entries already saved in ``AUDIT_CSV_PATH``. """ try: with open(AUDIT_CSV_PATH) as infile: return list(csv.DictReader(infile)) except IOError as err: if err.errno == errno.ENOENT: with open(AUDIT_CSV_PATH, "w") as outfile: writer = csv.DictWriter(outfile, fieldnames=AUDIT_CSV_FIELDNAMES) writer.writeheader() return [] else: raise def get_existing_audit_zip_entries(path): """ Returns a list of all the entries already saved in ``AUDIT_ZIPFILES_CSV_PATH`` that match ``path``. """ try: with open(AUDIT_ZIPFILES_CSV_PATH) as infile: return [entry for entry in csv.DictReader(infile) if entry["path"] == path] except IOError as err: if err.errno == errno.ENOENT: with open(AUDIT_ZIPFILES_CSV_PATH, "w") as outfile: writer = csv.DictWriter( outfile, fieldnames=AUDIT_ZIPFILES_CSV_FIELDNAMES ) writer.writeheader() return [] else: raise def get_paths_to_audit(root): """ Generates a list of paths that should be audited. """ existing_audit_paths = {e["path"] for e in get_existing_audit_entries()} for path in get_file_paths_under(root): # These files are of no consequence. We can ignore them. if os.path.basename(path) in {".DS_Store", "Thumbs.db"}: continue if path in existing_audit_paths: continue yield path def record_audit_for_zipfile_entries(path): """ Record audit information for all the entries in a zipfile. """ assert path.endswith(".zip") existing_zip_entry_names = {e["name"] for e in get_existing_audit_zip_entries(path)} with open(AUDIT_ZIPFILES_CSV_PATH, "a") as outfile: writer = csv.DictWriter(outfile, fieldnames=AUDIT_ZIPFILES_CSV_FIELDNAMES) with zipfile.ZipFile(path) as zf: for info in zf.infolist(): if info.filename in existing_zip_entry_names: continue with zf.open(info) as entry: size, sha256 = get_size_and_sha256(entry) writer.writerow( { "path": path, "entry_filename": info.filename, "size": size, "sha256": sha256, } ) def record_audit_for_path(path): """ Record audit information for a single file. """ with open(AUDIT_CSV_PATH, "a") as outfile: writer = csv.DictWriter(outfile, fieldnames=AUDIT_CSV_FIELDNAMES) stat = os.stat(path) with open(path, "rb") as infile: size, sha256 = get_size_and_sha256(infile) mtime = os.stat(path).st_mtime last_modified_time = datetime.datetime.fromtimestamp(mtime).isoformat() writer.writerow( { "path": path, "size": size, "last_modified_time": last_modified_time, "sha256": sha256, } ) if __name__ == "__main__": try: root = sys.argv[1] except IndexError: sys.exit("Usage: %s <ROOT>" % __file__) for path in get_paths_to_audit(root=root): print(path) try: if path.endswith(".zip"): record_audit_for_zipfile_entries(path) record_audit_for_path(path) except Exception as exc: with open("exceptions.log", "a") as outfile: outfile.write("Exception while trying to audit %r:\n\n" % path) traceback.print_exc(file=outfile) outfile.write("\n---\n\n")
2.921875
3
userlib/analysislib/andika/python BEC analysis/QgasUtils.py
specialforcea/labscript_suite
0
12782683
""" Created on Mon Sep 9 15:51:35 2013 QgasUtils: Basic Quantum Gas Utilities functions @author: ispielman Modified on Wed Dec 10 11:26: 2014 @author: aputra """ import numpy import scipy.ndimage def ImageSlice(xVals, yVals, Image, r0, Width, Scaled = False): """ Produces a pair of slices from image of a band with 'Width' centered at r0 = [x y] Scaled : 'False' use pixels directly, and 'True' compute scaling from (xvals and yvals) assuming they are linearly spaced Currently Width and x,y are in scaled units, not pixel units. the return will be ((xvals xslice) (yvals yslice)), where each entry is a numpy array. these are copies, not views. """ if (Scaled): (xMin, yMin) = numpy.floor(GetPixelCoordsFromImage(r0, - Width/2, xVals, yVals)); (xMax, yMax) = numpy.ceil(GetPixelCoordsFromImage(r0, Width/2, xVals, yVals)); else: (xMin, yMin) = r0 - numpy.round(Width/2); (xMax, yMax) = r0 + numpy.round(Width/2); # Extract bands of desired width # These are slices, so views of the initial data if xMin<0: xMin =0 if yMin<0: yMin =0 if xMax>xVals.shape[1]: xMax = xVals.shape[1] if yMax>yVals.shape[0]: yMax = yVals.shape[0] # Compute averages ySlice = Image[:,xMin:xMax].mean(1); # along y, so use x center xSlice = Image[yMin:yMax,:].mean(0); # along x, so use y center yValsSlice = yVals[:,0].copy(); xValsSlice = xVals[0,:].copy(); return ((xValsSlice, xSlice), (yValsSlice, ySlice)); def ImageCrop(xVals, yVals, Image, r0, Width, Scaled = False, Center = True): """ crops an image along with the associated matrix of x and y to a specified area and returns the cropped image this will be a copy not a view Image, xVals, yVals : (2D image, xvals, yvals) r0 : center of ROI in physical units (two element list or array) Width : length of box-sides in physical units (two element list or array) Scaled : If true, will attempt to use the x and y waves, to generate pixel values Center : Recenter on cropped region """ error = False; Cropped_Image={'OptDepth':0,'xVals':0,'yVals':0,'Error':error} if (Scaled): if(ScaleTest(xVals, yVals)): rMinPixel = numpy.floor(GetPixelCoordsFromImage(r0, -Width/2, xVals, yVals)); rMaxPixel = numpy.ceil(GetPixelCoordsFromImage(r0, Width/2, xVals, yVals)); else: rMinPixel = numpy.floor(r0)-numpy.floor(Width/2); rMaxPixel = numpy.ceil(r0)+numpy.ceil(Width/2); error = True; else: rMinPixel = numpy.floor(r0)-numpy.floor(Width/2); rMaxPixel = numpy.ceil(r0)+numpy.ceil(Width/2); if rMinPixel[0]<0: rMinPixel[0]=0 if rMinPixel[1]<0: rMinPixel[1]=0 if rMaxPixel[0]>xVals.shape[1]: rMaxPixel[0] = xVals.shape[1] if rMaxPixel[1]>yVals.shape[0]: rMaxPixel[1] = yVals.shape[0] Cropped_Image['OptDepth'] = Image[rMinPixel[1]:rMaxPixel[1],rMinPixel[0]:rMaxPixel[0]].copy(); Cropped_Image['xVals'] = xVals[rMinPixel[1]:rMaxPixel[1],rMinPixel[0]:rMaxPixel[0]].copy(); Cropped_Image['yVals'] = yVals[rMinPixel[1]:rMaxPixel[1],rMinPixel[0]:rMaxPixel[0]].copy(); if (Center): Cropped_Image['xVals'] -= r0[0]; Cropped_Image['yVals'] -= r0[1]; return Cropped_Image; def ImageSliceFromMax(Image, width, pScale = True): """ Produces a pair of slices from image of a band with 'Width' centered at the maximum val of Image Scaled : 'False' use pixels directly, and 'True' compute scaling from (xvals and yvals) assuming they are linearly spaced Currently Width and x,y are in scaled units, not pixel units. the return will be ((xvals xslice) (yvals yslice)), where each entry is a numpy array. these are copies, not views. """ Z = scipy.ndimage.gaussian_filter(Image['OptDepth'], sigma=3); id = Z.argmax() r0max = (numpy.ravel(Image['xVals'])[id], numpy.ravel(Image['yVals'])[id]) imgSlice = ImageSlice(Image['xVals'], Image['yVals'], Image['OptDepth'], r0max, width, Scaled = pScale) imgSlicefromMax={'xVals':0,'yVals':0,'xSlice':0, 'ySlice':0, 'xMax':r0max[0], 'yMax':r0max[1]} imgSlicefromMax['yVals'] = imgSlice[1][0] imgSlicefromMax['xVals'] = imgSlice[0][0] imgSlicefromMax['ySlice'] = imgSlice[1][1] imgSlicefromMax['xSlice'] = imgSlice[0][1] return imgSlicefromMax def GetPixelCoordsFromImage(r0, Offset, xVals, yVals): """ Returns the pixel coordinates associated with the scaled values in the 2D arrays xVals and yVals remember in r0 the ordering is r0 = (x0, y0) """ # Assume that the correct arrays were passed dy = yVals[1][0] - yVals[0][0]; dx = xVals[0][1] - xVals[0][0]; y0 = yVals[0][0]; x0 = xVals[0][0]; #want offset to be an integer number of pixels Offset = numpy.round(Offset/numpy.array([dx,dy])); return (r0 - numpy.array([x0, y0])) /numpy.array([dx, dy])+Offset; def ScaleTest(xVals, yVals): """ Returns the pixel coordinates associated with the scaled values in the 2D arrays xVals and yVals remember in r0 the ordering is r0 = (x0, y0) """ # Assume that the correct arrays were passed dy = yVals[1][0] - yVals[0][0]; dx = xVals[0][1] - xVals[0][0]; if ((dx == 0) or (dy == 0)): print("ImageSlice: generating scaled axes failed"); print(dx,dy,xVals[0][1],xVals[0][0],yVals[1][0],yVals[0][0],xVals,yVals) return False; else: return True;
2.84375
3
adls_management/utils/settings.py
jacbeekers/metalake-file-management
0
12782684
<reponame>jacbeekers/metalake-file-management import json from adls_management.utils import messages class GenericSettings: """ Some generic utilities, e.g. reading the config.json """ code_version = "0.1.0" def __init__(self, configuration_file="resources/connection_config.json"): # config.json settings self.main_config_file = configuration_file self.meta_version = None self.output_directory = None self.log_config = None self.suppress_azure_call = False self.azure_http_proxy = None self.azure_https_proxy = None self.storage_account_name = None self.storage_account_key = None self.storage_container = None self.azure_secrets = None self.file_locations = None self.incoming = None self.todo = None self.busy = None self.done = None self.redo = None self.hist = None self.process_locations = False self.download_location = "jsons" def get_config(self): """ get the main configuration settings. default file is resources/config.json """ module = __name__ + ".get_config" result = messages.message["undetermined"] try: with open(self.main_config_file) as config: data = json.load(config) # self.schema_directory = self.base_schema_folder + self.meta_version + "/" if "azure_secrets" in data: self.azure_secrets = data["azure_secrets"] if "file_locations" in data: self.file_locations = data["file_locations"] if "suppress_azure_call" in data: if data["suppress_azure_call"] == "True": self.suppress_azure_call = True elif data["suppress_azure_call"] == "False": self.suppress_azure_call = False else: print("Incorrect config value >" + data["suppress_azure_call"] + "< for suppress_azure_call. Must be True or False. Will default to False") self.suppress_azure_call = False if "download_location" in data: self.download_location = data["download_location"] result = messages.message["ok"] except FileNotFoundError: print("FATAL:", module, "could find not main configuration file >" + self.main_config_file + "<.") return messages.message["main_config_not_found"] if self.azure_secrets is None: print("azure secrets are unknown. Please set azure_secrets in the main config file.") else: azure_secrets_result = self.get_azure_secrets(self.azure_secrets) if azure_secrets_result["code"] != "OK": # print("get_azure_secrets returned: " + azure_secrets_result["code"], module) return azure_secrets_result if self.file_locations is None: print("file locations are unknown. Please set file_locations in the main config file.") else: file_locations_result = self.get_file_locations(self.file_locations) if file_locations_result["code"] != "OK": # print("get_file_locations returned: " + file_locations_result["code"], module) return file_locations_result return result def get_azure_proxy(self): if self.azure_http_proxy == "None": self.azure_http_proxy = None if self.azure_https_proxy == "None": self.azure_https_proxy = None proxies = { "http": self.azure_http_proxy, "https": self.azure_https_proxy } return proxies def get_file_locations(self, config_file): if config_file is None: return messages.message["not_provided"] try: with open(config_file) as locations: data = json.load(locations) self.incoming = data["incoming"] self.todo = data["todo"] self.busy = data["busy"] self.done = data["done"] self.redo = data["redo"] self.hist = data["hist"] self.process_locations = True except FileNotFoundError as e: print("File with file_locations >" + self.file_locations + "< could not be found.") return messages.message["file_locations_not_found"] return messages.message["ok"] def get_azure_secrets(self, azure_secrets="resources/azure.secrets"): module = __name__ + ".get_azure_secrets" try: with open(azure_secrets) as azure: data = json.load(azure) result = self.determine_azure_secrets(data) if result["code"] != "OK": print("ERROR: Determine azure secrets returned: " + result["code"]) return result except FileNotFoundError: print("ERROR: Cannot find provided azure_secrets file >" + self.azure_secrets + "<." , module) return messages.message["azure_secrets_not_found"] return messages.message["ok"] def determine_azure_secrets(self, data): module = __name__ + ".determine_azure_secrets" if "meta_version" in data: main_meta_version = data["meta_version"][:3] if main_meta_version != "0.1": print("Unsupported meta_version >" + data["meta_version"] + "<." , module) return messages.message["unsupported_meta_version_azure_secrets"] else: print("Backward compatible azure secrets file detected. Please update to a later version." , module) self.storage_account_name = data["storage_account_name"] self.storage_account_key = data["storage_account_key"] self.storage_container = data["container"] # print("container: ", self.storage_container) if "azure_http_proxy" in data: self.azure_http_proxy = data["azure_http_proxy"] # print("HTTP Proxy for Azure taken from azure secrets file: " # + self.azure_http_proxy, module) # else: # print("No HTTP Proxy for Azure found in azure secrets file. " # + "This is OK if no proxy is needed or has been set through the environment variable HTTP_PROXY" # , module) if "azure_https_proxy" in data: self.azure_https_proxy = data["azure_https_proxy"] # print("HTTPS Proxy for Azure taken from azure secrets file: " # + self.azure_https_proxy, module) # else: # print("No HTTPS Proxy for Azure found in azure secrets file. " # + "This is OK if no proxy is needed or has been set through the environment variable HTTPS_PROXY" # , module) return messages.message["ok"]
2.265625
2
src/strategy/Hand.py
fuqinshen/Python--
31
12782685
HANDVALUE_GUU = 0 HANDVALUE_CHO = 1 HANDVALUE_PAA = 2 name = ["石头", "剪刀", "布"] class Hand: def __init__(self, handvalue): self.handvalue = handvalue @staticmethod def get_hand(handvalue): return hand[handvalue] def is_stronger_than(self, h): return self.fight(h) == 1 def is_weaker_than(self, h): return self.fight(h) == -1 def fight(self, h): if self == h: return 0 elif (self.handvalue + 1) % 3 == h.handvalue: return 1 else: return -1 def __str__(self): return name[self.handvalue] hand = [Hand(HANDVALUE_GUU), Hand(HANDVALUE_CHO), Hand(HANDVALUE_PAA)]
3.515625
4
data/train/python/6b731386581fcd9f07149ee9c71d2e795e33dc18__init__.py
harshp8l/deep-learning-lang-detection
84
12782686
# -*- coding: utf-8 -*- # vim: sw=4 ts=4 fenc=utf-8 et # ============================================================================== # Copyright © 2010 UfSoft.org - <NAME> <<EMAIL>> # # License: BSD - Please view the LICENSE file for additional information. # ============================================================================== from ilog.views import account, admin, base, networks from ilog.views.admin import options from ilog.views.admin.manage import (users, groups, networks as admin_networks, channels, bots) all_views = { # Main Handler 'index' : base.index, # Account Handlers 'account.rpx' : account.rpx_post, 'account.login' : account.login, 'account.logout' : account.logout, 'account.delete' : account.delete, 'account.profile' : account.profile, 'account.register' : account.register, 'account.activate' : account.activate_account, 'account.dashboard' : account.dashboard, 'account.rpx_providers' : account.rpx_providers_post, # Network Handlers 'network.index' : networks.index, 'network.channels' : networks.channels, # Channel Handlers 'channel.index' : '', 'channel.browse' : '', # Administration 'admin.index' : admin.index, 'admin.manage.groups' : groups.list, 'admin.manage.groups.new' : groups.edit, 'admin.manage.groups.edit' : groups.edit, 'admin.manage.groups.delete' : groups.delete, 'admin.manage.users' : users.list, 'admin.manage.users.new' : users.edit, 'admin.manage.users.edit' : users.edit, 'admin.manage.users.delete' : users.delete, 'admin.manage.networks' : admin_networks.list, 'admin.manage.networks.new' : admin_networks.edit, 'admin.manage.networks.edit' : admin_networks.edit, 'admin.manage.networks.delete' : admin_networks.delete, 'admin.manage.bots' : users.list, 'admin.manage.bots.new' : users.edit, 'admin.manage.bots.edit' : users.edit, 'admin.manage.bots.delete' : users.delete, 'admin.options.basic' : options.basic_options, 'admin.options.advanced' : options.advanced_options, 'admin.options.rpxnow' : options.rpxnow_options, 'admin.options.gravatar' : options.gravatar_options, 'admin.options.email' : options.email_options, 'admin.options.cache' : options.cache_options, }
1.710938
2
utils/aneurysm_utils/evaluation.py
leoseg/AneurysmSegmentation
1
12782687
import os import json import multiprocessing from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import scipy as sp import matplotlib.pyplot as plt import matplotlib as mpl import pandas as pd import matplotlib.animation from sklearn.model_selection import train_test_split from tqdm import tqdm from typing import List import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from scipy.spatial import distance_matrix import nibabel as nib from scipy.ndimage.interpolation import zoom from scipy import ndimage from sklearn.metrics import jaccard_score from skimage.metrics import hausdorff_distance from scipy.stats import pearsonr from aneurysm_utils.preprocessing import resize_mri from aneurysm_utils.environment import Environment from collections import defaultdict from sklearn import metrics as sk_metrics from sklearn.preprocessing import MinMaxScaler #import open3d def evaluate_model( y_true: list, y_pred: list, segmentation: bool = None, prefix: str = None ) -> dict: metrics = {} if segmentation: y_true = np.concatenate(y_true).ravel() y_pred = np.concatenate(y_pred).ravel() if not prefix: prefix = "" else: prefix = prefix + "_" metrics[prefix + "accuracy"] = sk_metrics.accuracy_score(y_true, y_pred) metrics[prefix + "bal_acc"] = sk_metrics.balanced_accuracy_score(y_true, y_pred) try: metrics[prefix + "precision"] = sk_metrics.precision_score(y_true, y_pred) metrics[prefix + "recall"] = sk_metrics.recall_score(y_true, y_pred) metrics[prefix + "spec"] = sk_metrics.recall_score(y_true, y_pred, pos_label=0) metrics[prefix + "sen"] = sk_metrics.recall_score(y_true, y_pred, pos_label=1) metrics[prefix + "f1"] = sk_metrics.f1_score(y_true, y_pred) except Exception: print( "precision/recall/spec/sen/f1 are not supported for non-binary classification." ) print("Accuracy (" + prefix + "): " + str(metrics[prefix + "accuracy"])) print("Balanced Accuracy (" + prefix + "): " + str(metrics[prefix + "bal_acc"])) print(sk_metrics.classification_report(y_true, y_pred)) return metrics # Transparent colormap (alpha to red), that is used for plotting an overlay. # See https://stackoverflow.com/questions/37327308/add-alpha-to-an-existing-matplotlib-colormap alpha_to_red_cmap = np.zeros((256, 4)) alpha_to_red_cmap[:, 0] = 0.8 alpha_to_red_cmap[:, -1] = np.linspace(0, 1, 256) # cmap.N-20) # alpha values alpha_to_red_cmap = mpl.colors.ListedColormap(alpha_to_red_cmap) red_to_alpha_cmap = np.zeros((256, 4)) red_to_alpha_cmap[:, 0] = 0.8 red_to_alpha_cmap[:, -1] = np.linspace(1, 0, 256) # cmap.N-20) # alpha values red_to_alpha_cmap = mpl.colors.ListedColormap(red_to_alpha_cmap) def animate_slices( struct_arr, overlay=None, axis=0, reverse_direction=False, interval=40, vmin=None, vmax=None, overlay_vmin=None, overlay_vmax=None, ): """ Create a matplotlib animation that moves through a 3D image along a specified axis. """ if vmin is None: vmin = struct_arr.min() if vmax is None: vmax = struct_arr.max() if overlay_vmin is None and overlay is not None: overlay_vmin = overlay.min() if overlay_vmax is None and overlay is not None: overlay_vmax = overlay.max() fig, ax = plt.subplots() axis_label = ["x", "y", "z"][axis] # TODO: If I select slice 50 here at the beginning, the plots look different. im = ax.imshow( np.take(struct_arr, 0, axis=axis), vmin=vmin, vmax=vmax, cmap="gray", interpolation=None, animated=True, ) if overlay is not None: im_overlay = ax.imshow( np.take(overlay, 0, axis=axis), vmin=overlay_vmin, vmax=overlay_vmax, cmap=alpha_to_red_cmap, interpolation=None, animated=True, ) text = ax.text( 0.03, 0.97, "{}={}".format(axis_label, 0), color="white", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) ax.axis("off") def update(i): im.set_array(np.take(struct_arr, i, axis=axis)) if overlay is not None: im_overlay.set_array(np.take(overlay, i, axis=axis)) text.set_text("{}={}".format(axis_label, i)) return im, text num_frames = struct_arr.shape[axis] if reverse_direction: frames = np.arange(num_frames - 1, 0, -1) else: frames = np.arange(0, num_frames) return mpl.animation.FuncAnimation( fig, update, frames=frames, interval=interval, blit=True ) def plot_slices( struct_arr, num_slices=7, cmap="gray", vmin=None, vmax=None, overlay=None, overlay_cmap=alpha_to_red_cmap, overlay_vmin=None, overlay_vmax=None, ): """ Plot equally spaced slices of a 3D image (and an overlay) along every axis Args: struct_arr (3D array or tensor): The 3D array to plot (usually from a nifti file). num_slices (int): The number of slices to plot for each dimension. cmap: The colormap for the image (default: `'gray'`). vmin (float): Same as in matplotlib.imshow. If `None`, take the global minimum of `struct_arr`. vmax (float): Same as in matplotlib.imshow. If `None`, take the global maximum of `struct_arr`. overlay (3D array or tensor): The 3D array to plot as an overlay on top of the image. Same size as `struct_arr`. overlay_cmap: The colomap for the overlay (default: `alpha_to_red_cmap`). overlay_vmin (float): Same as in matplotlib.imshow. If `None`, take the global minimum of `overlay`. overlay_vmax (float): Same as in matplotlib.imshow. If `None`, take the global maximum of `overlay`. """ if vmin is None: vmin = struct_arr.min() if vmax is None: vmax = struct_arr.max() if overlay_vmin is None and overlay is not None: overlay_vmin = overlay.min() if overlay_vmax is None and overlay is not None: overlay_vmax = overlay.max() print(vmin, vmax, overlay_vmin, overlay_vmax) fig, axes = plt.subplots(3, num_slices, figsize=(15, 6)) intervals = np.asarray(struct_arr.shape) / num_slices for axis, axis_label in zip([0, 1, 2], ["x", "y", "z"]): for i, ax in enumerate(axes[axis]): i_slice = int(np.round(intervals[axis] / 2 + i * intervals[axis])) # print(axis_label, 'plotting slice', i_slice) plt.sca(ax) plt.axis("off") plt.imshow( sp.ndimage.rotate(np.take(struct_arr, i_slice, axis=axis), 90), vmin=vmin, vmax=vmax, cmap=cmap, interpolation=None, ) plt.text( 0.03, 0.97, "{}={}".format(axis_label, i_slice), color="white", horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, ) if overlay is not None: plt.imshow( sp.ndimage.rotate(np.take(overlay, i_slice, axis=axis), 90), cmap=overlay_cmap, vmin=overlay_vmin, vmax=overlay_vmax, interpolation=None, ) def draw_mask_3d(image:np.array,ax:Axes3D=None,zorder:int=0,markersize:float=0.8,alpha:float=1,c=None): """ Draws all points which are not zero of given image in scatterplot Parameters ---------- image: where to get mask from ax: if given uses this axis object zorder: order of points drawn markersize: size of points alpha: transparency of points c: if anything points will be black """ fig = plt.figure() if ax==None: ax = Axes3D(fig) else: ax=ax for cluster in range(1,int(np.unique(image)[-1]+1)): if len(np.argwhere(image==cluster))==0: print("no aneurysm found") continue if c==None: ax.scatter(np.argwhere(image==cluster).T[0],np.argwhere(image==cluster).T[1],np.argwhere(image==cluster).T[2],s=markersize,alpha=alpha,zorder=zorder) else: ax.scatter(np.argwhere(image==cluster).T[0],np.argwhere(image==cluster).T[1],np.argwhere(image==cluster).T[2],s=3,alpha=alpha,zorder=zorder,c="black") def draw_image(image:np.array,ax:Axes3D=None,zorder:int=0,markersize:float=0.8,transparency:bool=True): """ Draws all points which are not zero of given image in scatterplot in colors according to their intensity Parameters ---------- image: where to get mask from ax: if given uses this axis object zorder: order of points drawn markersize: size of points transparency: if true scales transparency with intensity values """ fig = plt.figure() if ax==None: ax = Axes3D(fig) else: ax=ax if transparency: alpha= image[image>0] alpha = np.where(alpha>0.15,alpha,0.01) else: alpha=1 cmap = plt.get_cmap('YlOrRd') ax.scatter(np.argwhere(image>0).T[0],np.argwhere(image>0).T[1],np.argwhere(image>0).T[2],s=markersize,alpha=image[image>0],zorder=zorder,c=cmap(image[image>0])) def draw_bounding_box(candidates,ax:Axes3D=None): """ Draws bounding box of given bounding box dictionary -> see postprocessing function Parameters ---------- image: list of dictionaries where entry vertices contains the points of the bounding box ax: if given uses this axis object """ fig = plt.figure() if ax==None: ax = Axes3D(fig) else: ax=ax for candidate in candidates: Z= candidate["vertices"] Z=np.array(Z) verts= [(Z[0],Z[1]),(Z[0],Z[2]),(Z[0],Z[3]),(Z[6],Z[1]),(Z[7],Z[1]),(Z[2],Z[5]), (Z[2],Z[7]),(Z[3],Z[5]),(Z[3],Z[6]),(Z[4],Z[7]),(Z[4],Z[6]),(Z[4],Z[5])] for element in verts: x=[element[0][0],element[1][0]] y=[element[0][1],element[1][1]] z=[element[0][2],element[1][2]] ax.plot(x,y,z,c='r',linewidth=2,alpha=1) fig.show()
1.828125
2
power_generalise_gs.py
syzhang/adec_power
0
12782688
<gh_stars>0 """ simulated power calculation for generalisation instrumetnal avoidance task (with gen in model) """ import sys, os import pickle import numpy as np import pandas as pd import pystan # from hbayesdm.models import generalise_gs # from hbayesdm import rhat, print_fit, plot_hdi, hdi def sigmoid(p): return 1./(1.+np.exp(-p)) def softmax_perception(s_cue, Q, beta, bias): """probability of avoidance given stim and params""" avoid_cost = 0.2 # fixed if s_cue == 1: pred_V = 0.75*Q[s_cue-1] + 0.25*Q[2-1] elif s_cue == 3: pred_V = 0.75*Q[s_cue-1] + 0.25*Q[2-1] elif s_cue == 5: pred_V = 0.75*Q[s_cue-1] + 0.25*Q[6-1] elif s_cue == 7: pred_V = 0.75*Q[s_cue-1] + 0.25*Q[6-1] else: pred_V = Q[s_cue-1] # avoidance probability gx = 1./(1. + np.exp(-beta*(0. - pred_V - avoid_cost - bias))) return gx def draw_cue(num_trial): """drawing cues based on given probability""" trial_type = [] p_cues = [0.052, 0.264, 0.052, 0.264, 0.052, 0.264, 0.052] for i in range(num_trial): smp = np.random.choice(7, p=p_cues) trial_type.append(smp+1) # match matlab number return trial_type def model_generalise_gs(param_dict, subjID, num_trial=190): """simulate shapes, avoid actions, and shock outcomes""" # load predefined image sequences (38 trials x 5 blocks) # trial_type = np.squeeze(pd.read_csv('./probs/generalise_stim.csv').values) # 1:7 trial_type = draw_cue(num_trial) num_state = len(np.unique(trial_type)) # initialise values (values from AN's VBA code) # Q = sigmoid(-0.2) * np.ones(num_state) # 7 possible cues Q = np.zeros(num_state) # 7 possible cues alpha = sigmoid(0.95) * np.ones(1) # initial learning rate # initialise output data_out = [] # simulate trials for t in range(num_trial): # a cue is shown (not sure how it's generated) s_cue = int(trial_type[t]) # avoid or not p_avoid = softmax_perception(s_cue, Q, param_dict['beta'], param_dict['bias']) a = int(np.random.binomial(size=1, n=1, p=p_avoid)) # a = int(np.random.choice([0,1], size=1, # p=[1-p_avoid, p_avoid], replace=True)) # print(p_avoid, a) # deliver shock or not if (s_cue == 2 or s_cue == 4) and a == 0: # if CS+1 or 2 shock trials and no avoidance made r = -1 else: r = 0 # define sensory params # mean_theta = 0.25 # rhos = [0.25-mean_theta, 0.25, 0.25+mean_theta, 0.75-2*mean_theta, 0.75-mean_theta, 0.75, 0.75+mean_theta] rhos = np.array([0.0, 0.25, 0.5, 0.25, 0.5, 0.75, 1.0]) # compute PE and update values if a == 0: # did not avoid # PE update PE = r - Q[s_cue-1] # define sigma if r == 0: # no shock sigma_t = param_dict['sigma_n'] else: # shock sigma_t = param_dict['sigma_a'] # update Q # for s in range(num_state): # rho = rhos[s] # G = 1./np.exp((rho-cue_rho)**2. / (2.*sigma_t**2.)) # Q[s] += param_dict['kappa'] * alpha * PE * G # current cue rho value cue_rho = rhos[s_cue-1] * np.ones(num_state) diff2 = (rhos-cue_rho)**2. / (2.*(sigma_t**2.)) G = 1./np.exp(diff2) Q += param_dict['kappa'] * alpha * PE * G else: # avoided PE = 0. Q = Q # update alpha alpha = param_dict['eta']*np.abs(PE) + (1-param_dict['eta'])*alpha # output data_out.append([subjID, t, s_cue, a, r]) df_out = pd.DataFrame(data_out) df_out.columns = ['subjID', 'trial', 'cue', 'choice', 'outcome'] # print(df_out) return df_out def sim_generalise_gs(param_dict, sd_dict, group_name, seed, num_sj=50, num_trial=190, model_name='generalise_gs'): """simulate generalise instrumental avoidance task for multiple subjects""" multi_subject = [] # generate new params np.random.seed(seed) sample_params = dict() for key in param_dict: sample_params[key] = np.random.normal(param_dict[key], sd_dict[key], size=1)[0] for sj in range(num_sj): df_sj = model_generalise_gs(sample_params, sj, num_trial) multi_subject.append(df_sj) df_out = pd.concat(multi_subject) # saving output output_dir = './tmp_output/generalise_sim/' if not os.path.isdir(output_dir): os.mkdir(output_dir) f_name = model_name+'_'+group_name+'_'+str(seed) df_out.to_csv(output_dir+f_name+'.txt', sep='\t', index=False) print(df_out) def generalise_gs_preprocess_func(txt_path): """parse simulated data for pystan""" # Iterate through grouped_data subj_group = pd.read_csv(txt_path, sep='\t') # Use general_info(s) about raw_data subj_ls = np.unique(subj_group['subjID']) n_subj = len(subj_ls) t_subjs = np.array([subj_group[subj_group['subjID']==x].shape[0] for x in subj_ls]) t_max = max(t_subjs) # Initialize (model-specific) data arrays cue = np.full((n_subj, t_max), 0, dtype=int) choice = np.full((n_subj, t_max), -1, dtype=int) outcome = np.full((n_subj, t_max), -1, dtype=float) # Write from subj_data to the data arrays for s in range(n_subj): subj_data = subj_group[subj_group['subjID']==s] t = t_subjs[s] cue[s][:t] = subj_data['cue'] choice[s][:t] = subj_data['choice'] outcome[s][:t] = -1 * np.abs(subj_data['outcome']) # Use abs # Wrap into a dict for pystan data_dict = { 'N': n_subj, 'T': t_max, 'Tsubj': t_subjs, 'cue': cue, 'choice': choice, 'outcome': outcome, } # print(data_dict) # Returned data_dict will directly be passed to pystan return data_dict if __name__ == "__main__": # parameters AMT dataset (highest 10% approx patient params, low 40% approx as control params) # params made up param_dict_hc = { 'sigma_a': 0.45, # generalisation param for shock 'sigma_n': 0.06, # generalisation param for no shock 'eta': 0.17, # p_h dynamic learning rate 'kappa': 0.75, # p_h dynamic learning rate 'beta': 9.5, # softmax beta 'bias': 0.3 # softmax bias } # hc sd sd_dict_hc = { 'sigma_a': 0.05, # generalisation param for shock 'sigma_n': 0.01, # generalisation param for no shock 'eta': 0.1, # p_h dynamic learning rate 'kappa': 0.2, # p_h dynamic learning rate 'beta': 2, # softmax beta 'bias': 0.1 # softmax bias } # patient params param_dict_pt = { 'sigma_a': 0.85, # generalisation param for shock 'sigma_n': 0.03, # generalisation param for no shock 'eta': 0.18, # p_h dynamic learning rate 'kappa': 0.76, # p_h dynamic learning rate 'beta': 4.3, # softmax beta 'bias': 0.3 # softmax bias } # patient sd sd_dict_pt = { 'sigma_a': 0.05, # generalisation param for shock 'sigma_n': 0.01, # generalisation param for no shock 'eta': 0.10, # p_h dynamic learning rate 'kappa': 0.2, # p_h dynamic learning rate 'beta': 2, # softmax beta 'bias': 0.1 # softmax bias } # parsing cl arguments group_name = sys.argv[1] # pt=patient, hc=control seed_num = int(sys.argv[2]) # seed number subj_num = int(sys.argv[3]) # subject number to simulate trial_num = int(sys.argv[4]) # trial number to simulate model_name = 'generalise_gs' if group_name == 'hc': # simulate hc subjects with given params sim_generalise_gs(param_dict_hc, sd_dict_hc, group_name, seed=seed_num,num_sj=subj_num, model_name=model_name) elif group_name == 'pt': # simulate pt subjects with given params sim_generalise_gs(param_dict_pt, sd_dict_pt, group_name, seed=seed_num, num_sj=subj_num, model_name=model_name) else: print('check group name (hc or pt)') # parse simulated data txt_path = f'./tmp_output/generalise_sim/generalise_gs_{group_name}_{seed_num}.txt' data_dict = generalise_gs_preprocess_func(txt_path) # fit stan model sm = pystan.StanModel(file='generalise_gs.stan') fit = sm.sampling(data=data_dict, iter=3000, chains=2) print(fit) # saving pars = ['mu_sigma_a', 'mu_sigma_n', 'mu_eta', 'mu_kappa', 'mu_beta', 'mu_bias'] extracted = fit.extract(pars=pars, permuted=True) # print(extracted) sfile = f'./tmp_output/generalise_sim/{group_name}_sim_{seed_num}.pkl' with open(sfile, 'wb') as op: tmp = { k: v for k, v in extracted.items() if k in pars } # dict comprehension pickle.dump(tmp, op) # hbayesdm method # # fit # # Run the model and store results in "output" # output = generalise_gs('./tmp_output/generalise_sim/'+model_name+'_'+group_name+'_'+str(seed_num)+'.txt', niter=3000, nwarmup=1500, nchain=4, ncore=16) # # debug # print(output.fit) # # saving # sfile = './tmp_output/generalise_sim/'+group_name+'_sim_'+str(seed_num)+'.pkl' # with open(sfile, 'wb') as op: # tmp = { k: v for k, v in output.par_vals.items() if k in ['mu_sigma_a', 'mu_sigma_n', 'mu_eta', 'mu_kappa', 'mu_beta', 'mu_bias'] } # dict comprehension # pickle.dump(tmp, op)
2.203125
2
pure_fa_exporter.py
zleinweber/pure-exporter
22
12782689
#!/usr/bin/env python from flask import Flask, request, abort, make_response from flask_httpauth import HTTPTokenAuth from urllib.parse import parse_qs import re from prometheus_client import generate_latest, CollectorRegistry, CONTENT_TYPE_LATEST from flasharray_collector import FlasharrayCollector import logging class InterceptRequestMiddleware: def __init__(self, wsgi_app): self.wsgi_app = wsgi_app def __call__(self, environ, start_response): d = parse_qs(environ['QUERY_STRING']) api_token = d.get('apitoken', [''])[0] # Returns the first api-token value if 'HTTP_AUTHORIZATION' not in environ: environ['HTTP_AUTHORIZATION'] = 'Bearer ' + api_token return self.wsgi_app(environ, start_response) app = Flask(__name__) app.logger.setLevel(logging.INFO) app.wsgi_app = InterceptRequestMiddleware(app.wsgi_app) auth = HTTPTokenAuth(scheme='Bearer') @auth.verify_token def verify_token(token): pattern_str = r"^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$" regx = re.compile(pattern_str) match = regx.search(token) return token if match is not None else False @app.route('/') def route_index(): """Display an overview of the exporters capabilities.""" return ''' <h1>Pure Storage Prometeus Exporter</h1> <table> <thead> <tr> <td>Type</td> <td>Endpoint</td> <td>GET parameters</td> </tr> </thead> <tbody> <tr> <td>Full metrics</td> <td><a href="/metrics?endpoint=host&apitoken=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx">/metrics</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> </tr> <tr> <td>Volume metrics</td> <td><a href="/metrics/volumes?endpoint=host&apitoken=<KEY>">/metrics/volumes</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> <td>Retrieves only volume related metrics</td> </tr> <tr> <td>Host metrics</td> <td><a href="/metrics/hosts?endpoint=host&apitoken=<KEY>">/metrics/hosts</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> <td>Retrieves only host related metrics</td> </tr> <tr> <td>Pod metrics</td> <td><a href="/metrics/pods?endpoint=host&apitoken=<KEY>">/metrics/pods</a></td> <td>endpoint, apitoken (optional, required only if authentication tokem is not provided)</td> <td>Retrieves only pod related metrics</td> </tr> </tbody> </table> ''' @app.route('/metrics/<m_type>', methods=['GET']) @auth.login_required def route_flasharray(m_type: str): """Produce FlashArray metrics.""" if not m_type in ['array', 'volumes', 'hosts', 'pods']: m_type = 'all' collector = FlasharrayCollector registry = CollectorRegistry() try: endpoint = request.args.get('endpoint', None) token = auth.current_user() registry.register(collector(endpoint, token, m_type)) except Exception as e: app.logger.warn('%s: %s', collector.__name__, str(e)) abort(500) resp = make_response(generate_latest(registry), 200) resp.headers['Content-type'] = CONTENT_TYPE_LATEST return resp @app.route('/metrics', methods=['GET']) def route_flasharray_all(): return route_flasharray('all') @app.errorhandler(400) def route_error_400(error): """Handle invalid request errors.""" return 'Invalid request parameters', 400 @app.errorhandler(404) def route_error_404(error): """ Handle 404 (HTTP Not Found) errors.""" return 'Not found', 404 @app.errorhandler(500) def route_error_500(error): """Handle server-side errors.""" return 'Internal server error', 500 # Run in debug mode when not called by WSGI if __name__ == "__main__": app.logger.setLevel(logging.DEBUG) app.logger.debug('running in debug mode...') app.run(host="0.0.0.0", port=8080, debug=True)
2.203125
2
LumiGAN/matplotlibstyle.py
acdc-pv-unsw/LumiGAN
0
12782690
"Defines matplotlib stylesheet" import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np # %%-- Matplotlib style sheet mpl.style.use('seaborn-paper') mpl.rcParams['font.family'] = 'serif' mpl.rcParams['font.serif'] ='STIXGeneral' mpl.rcParams['font.size'] = 14 mpl.rcParams['mathtext.default'] = 'rm' mpl.rcParams['mathtext.fallback'] = 'cm' mpl.rcParams['mathtext.fontset'] = 'stix' mpl.rcParams['axes.labelsize'] = 16 mpl.rcParams['axes.labelweight'] = 'normal' mpl.rcParams['axes.grid.which']='both' mpl.rcParams['axes.xmargin']=0.05 mpl.rcParams['axes.ymargin']=0.05 mpl.rcParams['grid.linewidth']= 0 mpl.rcParams['xtick.labelsize'] = 14 mpl.rcParams['xtick.bottom'] = True mpl.rcParams['xtick.top'] = True mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.left'] = True mpl.rcParams['ytick.right'] = True mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['ytick.labelsize'] = 14 mpl.rcParams['legend.fontsize'] = 14 mpl.rcParams['figure.titlesize'] = 18 mpl.rcParams['figure.figsize'] = (8.09,5) mpl.rcParams['figure.autolayout'] = False mpl.rcParams['figure.dpi'] = 75 mpl.rcParams['image.cmap'] = "viridis" mpl.rcParams['savefig.dpi'] = 150 mpl.rcParams['errorbar.capsize'] = 3 mpl.rcParams['axes.prop_cycle'] = plt.cycler(color = plt.cm.viridis([0.8,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9])) mpl.rcParams['axes.titlesize'] = 16 # %%-
2.515625
3
web-server/model/__init__.py
sanfengliao/DeepNavi
0
12782691
<gh_stars>0 from .map import * from .edge import * from .point import * from .basic_pb2 import * from .loc import *
1.070313
1
solutions/2021/prob_07.py
PolPtoAmo/HPCodeWarsBCN
1
12782692
chars = list() kjdas = False for char in input().lower().replace(".", "").replace(",", "").replace("#", "").replace("'", "").replace("\"", "").replace(":", "").replace(";", "").replace("-", ""): if char in chars: print("Not an isogram") kjdas = True break chars.append(char) if not kjdas: print("Isogram detected")
4.03125
4
relevanceai/operations_new/cluster/ops.py
RelevanceAI/RelevanceAI
21
12782693
<reponame>RelevanceAI/RelevanceAI import warnings from copy import deepcopy from typing import Optional, Union, Callable, Dict, Any, Set, List from relevanceai.utils.decorators.analytics import track from relevanceai.operations_new.apibase import OperationAPIBase from relevanceai.operations_new.cluster.alias import ClusterAlias from relevanceai.operations_new.cluster.base import ClusterBase from relevanceai.constants import Warning from relevanceai.constants.errors import MissingClusterError from relevanceai.constants import MissingClusterError, Warning class ClusterOps(ClusterBase, OperationAPIBase, ClusterAlias): """ Cluster-related functionalities """ # These need to be instantiated on __init__ model_name: str def __init__( self, dataset_id: str, vector_fields: list, alias: str, cluster_field: str = "_cluster_", verbose: bool = False, model=None, model_kwargs=None, *args, **kwargs, ): """ ClusterOps objects """ self.dataset_id = dataset_id self.vector_fields = vector_fields self.cluster_field = cluster_field self.verbose = verbose self.model = model if isinstance(self.model, str): self.model_name = self.model else: self.model_name = str(self.model) if model_kwargs is None: model_kwargs = {} self.model_kwargs = model_kwargs for k, v in kwargs.items(): setattr(self, k, v) super().__init__( dataset_id=dataset_id, vector_fields=vector_fields, alias=alias, cluster_field=cluster_field, verbose=verbose, model=model, model_kwargs=model_kwargs, **kwargs, ) # alias is set after model so that we can get the number of clusters # if the model needs ot be instantiated self.alias = self._get_alias(alias) def _operate(self, cluster_id: str, field: str, output: dict, func: Callable): """ Internal function for operations It takes a cluster_id, a field, an output dictionary, and a function, and then it gets all the documents in the cluster, gets the field across all the documents, and then applies the function to the field Parameters ---------- cluster_id : str str, field: str, output: dict, func: Callable field : str the field you want to get the value for output : dict dict func : Callable Callable """ cluster_field = self._get_cluster_field_name() # TODO; change this to fetch all documents documents = self._get_all_documents( self.dataset_id, filters=[ { "field": cluster_field, "filter_type": "exact_match", "condition": "==", "condition_value": cluster_id, }, { "field": field, "filter_type": "exists", "condition": ">=", "condition_value": " ", }, ], select_fields=[field, cluster_field], show_progress_bar=False, ) # get the field across each arr = self.get_field_across_documents(field, documents) output[cluster_id] = func(arr) def _operate_across_clusters(self, field: str, func: Callable): output: Dict[str, Any] = dict() for cluster_id in self.list_cluster_ids(): self._operate(cluster_id=cluster_id, field=field, output=output, func=func) return output def list_cluster_ids( self, alias: str = None, minimum_cluster_size: int = 0, num_clusters: int = 1000, ): """ List unique cluster IDS Example --------- .. code-block:: from relevanceai import Client client = Client() cluster_ops = client.ClusterOps( alias="kmeans_8", vector_fields=["sample_vector_] ) cluster_ops.list_cluster_ids() Parameters ------------- alias: str The alias to use for clustering minimum_cluster_size: int The minimum size of the clusters num_clusters: int The number of clusters """ # Mainly to be used for subclustering # Get the cluster alias cluster_field = self._get_cluster_field_name() # currently the logic for facets is that when it runs out of pages # it just loops - therefore we need to store it in a simple hash # and then add them to a list all_cluster_ids: Set = set() while len(all_cluster_ids) < num_clusters: facet_results = self.datasets.facets( dataset_id=self.dataset_id, fields=[cluster_field], page_size=int(self.config["data.max_clusters"]), page=1, asc=True, ) if "results" in facet_results: facet_results = facet_results["results"] if cluster_field not in facet_results: raise MissingClusterError(alias=alias) for facet in facet_results[cluster_field]: if facet["frequency"] > minimum_cluster_size: curr_len = len(all_cluster_ids) all_cluster_ids.add(facet[cluster_field]) new_len = len(all_cluster_ids) if new_len == curr_len: return list(all_cluster_ids) return list(all_cluster_ids) def insert_centroids( self, centroid_documents, ) -> None: """ Insert centroids Centroids look below .. code-block:: cluster_ops = client.ClusterOps( vector_field=["sample_1_vector_"], alias="sample" ) cluster_ops.insert_centroids( centorid_documents={ "cluster-0": [1, 1, 1], "cluster-2": [2, 1, 1] } ) """ # Centroid documents are in the format {"cluster-0": [1, 1, 1]} return self.datasets.cluster.centroids.insert( dataset_id=self.dataset_id, cluster_centers=self.json_encoder(centroid_documents), vector_fields=self.vector_fields, alias=self.alias, ) def create_centroids(self): """ Calculate centroids from your vectors Example -------- .. code-block:: from relevanceai import Client client = Client() ds = client.Dataset("sample") cluster_ops = ds.ClusterOps( alias="kmeans-25", vector_fields=['sample_vector_'] ) centroids = cluster_ops.create_centroids() """ # Get an array of the different vectors if len(self.vector_fields) > 1: raise NotImplementedError( "Do not currently support multiple vector fields for centroid creation." ) # calculate the centroids centroid_vectors = self.calculate_centroids() self.insert_centroids( centroid_documents=centroid_vectors, ) return centroid_vectors def calculate_centroids(self): import numpy as np # calculate the centroids centroid_vectors = {} def calculate_centroid(vectors): X = np.array(vectors) return X.mean(axis=0) centroid_vectors = self._operate_across_clusters( field=self.vector_fields[0], func=calculate_centroid ) # Does this insert properly? if isinstance(centroid_vectors, dict): centroid_vectors = [ {"_id": k, self.vector_fields[0]: v} for k, v in centroid_vectors.items() ] return centroid_vectors def get_centroid_documents(self): centroid_vectors = {} if self.model._centroids is not None: centroid_vectors = self.model._centroids # get the cluster label function labels = range(len(centroid_vectors)) cluster_ids = self.format_cluster_labels(labels) if len(self.vector_fields) > 1: warnings.warn( "Currently do not support inserting centroids with multiple vector fields" ) centroids = [ {"_id": k, self.vector_fields[0]: v} for k, v in zip(cluster_ids, centroid_vectors) ] else: centroids = self.create_centroids() return centroids def list_closest( self, cluster_ids: Optional[list] = None, select_fields: Optional[List] = None, approx: int = 0, page_size: int = 1, page: int = 1, similarity_metric: str = "cosine", filters: Optional[list] = None, facets: Optional[list] = None, include_vector: bool = False, cluster_properties_filters: Optional[Dict] = None, include_count: bool = False, include_facets: bool = False, verbose: bool = False, ): """ List of documents closest from the center. Parameters ---------- dataset_id: string Unique name of dataset vector_fields: list The vector fields where a clustering task runs cluster_ids: list Any of the cluster ids alias: string Alias is used to name a cluster centroid_vector_fields: list Vector fields stored select_fields: list Fields to include in the search results, empty array/list means all fields approx: int Used for approximate search to speed up search. The higher the number, faster the search but potentially less accurate sum_fields: bool Whether to sum the multiple vectors similarity search score as 1 or seperate page_size: int Size of each page of results page: int Page of the results similarity_metric: string Similarity Metric, choose from ['cosine', 'l1', 'l2', 'dp'] filters: list Query for filtering the search results facets: list Fields to include in the facets, if [] then all min_score: int Minimum score for similarity metric include_vectors: bool Include vectors in the search results include_count: bool Include the total count of results in the search results include_facets: bool Include facets in the search results cluster_properties_filter: dict Filter if clusters with certain characteristics should be hidden in results """ if cluster_properties_filters is None: cluster_properties_filters = {} return self.datasets.cluster.centroids.list_closest_to_center( dataset_id=self.dataset_id, vector_fields=self.vector_fields, alias=self.alias, cluster_ids=cluster_ids, select_fields=select_fields, approx=approx, page_size=page_size, page=page, similarity_metric=similarity_metric, filters=filters, facets=facets, include_vector=include_vector, include_count=include_count, include_facets=include_facets, cluster_properties_filter=cluster_properties_filters, verbose=verbose, ) @track def list_furthest( self, cluster_ids: Optional[List] = None, centroid_vector_fields: Optional[List] = None, select_fields: Optional[List] = None, approx: int = 0, sum_fields: bool = True, page_size: int = 3, page: int = 1, similarity_metric: str = "cosine", filters: Optional[List] = None, # facets: List = [], min_score: int = 0, include_vector: bool = False, include_count: bool = True, cluster_properties_filter: Optional[Dict] = {}, ): """ List documents furthest from the center. Parameters ---------- dataset_id: string Unique name of dataset vector_fields: list The vector field where a clustering task was run. cluster_ids: list Any of the cluster ids alias: string Alias is used to name a cluster select_fields: list Fields to include in the search results, empty array/list means all fields approx: int Used for approximate search to speed up search. The higher the number, faster the search but potentially less accurate sum_fields: bool Whether to sum the multiple vectors similarity search score as 1 or seperate page_size: int Size of each page of results page: int Page of the results similarity_metric: string Similarity Metric, choose from ['cosine', 'l1', 'l2', 'dp'] filters: list Query for filtering the search results facets: list Fields to include in the facets, if [] then all min_score: int Minimum score for similarity metric include_vectors: bool Include vectors in the search results include_count: bool Include the total count of results in the search results include_facets: bool Include facets in the search results """ return self.datasets.cluster.centroids.list_furthest_from_center( dataset_id=self.dataset_id, vector_fields=self.vector_fields, alias=self.alias, cluster_ids=cluster_ids, centroid_vector_fields=centroid_vector_fields, select_fields=select_fields, approx=approx, sum_fields=sum_fields, page_size=page_size, page=page, similarity_metric=similarity_metric, filters=filters, min_score=min_score, include_vector=include_vector, include_count=include_count, cluster_properties_filter=cluster_properties_filter, ) def explain_text_clusters( self, text_field, encode_fn_or_model, n_closest: int = 5, highlight_output_field="_explain_", algorithm: str = "relational", model_kwargs: Optional[dict] = None, ): """ It takes a text field and a function that encodes the text field into a vector. It then returns the top n closest vectors to each cluster centroid. .. code-block:: def encode(X): return [1, 2, 1] cluster_ops.explain_text_clusters(text_field="hey", encode_fn_or_model=encode) Parameters ---------- text_field The field in the dataset that contains the text to be explained. encode_fn This is the function that will be used to encode the text. n_closest : int, optional The number of closest documents to each cluster to return. highlight_output_field, optional The name of the field that will be added to the output dataset. algorithm: str Algorithm is either "centroid" or "relational" Returns ------- A new dataset with the same data as the original dataset, but with a new field called _explain_ """ if isinstance(encode_fn_or_model, str): # Get the model from relevanceai.operations_new.vectorize.text.base import VectorizeTextBase self.model = VectorizeTextBase._get_model(encode_fn_or_model) encode_fn = self.model.encode else: encode_fn = encode_fn_or_model from relevanceai.operations_new.cluster.text.explainer.ops import ( TextClusterExplainerOps, ) ops = TextClusterExplainerOps(credentials=self.credentials) if algorithm == "centroid": return ops.explain_clusters( dataset_id=self.dataset_id, alias=self.alias, vector_fields=self.vector_fields, text_field=text_field, encode_fn=encode_fn, n_closest=n_closest, highlight_output_field=highlight_output_field, ) elif algorithm == "relational": return ops.explain_clusters_relational( dataset_id=self.dataset_id, alias=self.alias, vector_fields=self.vector_fields, text_field=text_field, encode_fn=encode_fn, n_closest=n_closest, highlight_output_field=highlight_output_field, ) raise ValueError("Algorithm needs to be either `relational` or `centroid`.") def store_operation_metadatas(self): self.store_operation_metadata( operation="cluster", values=str( { "model": self.model, "vector_fields": self.vector_fields, "alias": self.alias, "model_kwargs": self.model_kwargs, } ), ) @property def centroids(self): """ Access the centroids of your dataset easily .. code-block:: ds = client.Dataset("sample") cluster_ops = ds.ClusterOps( vector_fields=["sample_vector_"], alias="simple" ) cluster_ops.centroids """ if not hasattr(self, "_centroids"): self._centroids = self.datasets.cluster.centroids.documents( dataset_id=self.dataset_id, vector_fields=self.vector_fields, alias=self.alias, page_size=9999, include_vector=True, )["results"] return self._centroids def get_centroid_from_id( self, cluster_id: str, ) -> Dict[str, Any]: """> It takes a cluster id and returns the centroid with that id Parameters ---------- cluster_id : str The id of the cluster to get the centroid for. Returns ------- The centroid with the given id. """ for centroid in self.centroids: if centroid["_id"] == cluster_id: return centroid raise ValueError(f"Missing the centorid with id {cluster_id}") @staticmethod def _get_filters( filters: List[Dict[str, Union[str, int]]], vector_fields: List[str], ) -> List[Dict[str, Union[str, int]]]: """It takes a list of filters and a list of vector fields and returns a list of filters that includes the original filters and a filter for each vector field that checks if the vector field exists Parameters ---------- filters : List[Dict[str, Union[str, int]]] List[Dict[str, Union[str, int]]] vector_fields : List[str] List[str] = ["vector_field_1", "vector_field_2"] Returns ------- A list of dictionaries. """ vector_field_filters = [ { "field": vector_field, "filter_type": "exists", "condition": ">=", "condition_value": " ", } for vector_field in vector_fields ] filters = deepcopy(filters) if filters is None: filters = vector_field_filters else: filters += vector_field_filters # type: ignore return filters def merge(self, cluster_ids: list): """ Merge clusters into the first one. The centroids are re-calculated and become a new middle. """ return self.datasets.cluster.merge( dataset_id=self.dataset_id, vector_fields=self.vector_fields, alias=self.alias, cluster_ids=cluster_ids, )
2.078125
2
subtask1/torch_ans_sel/run_model.py
DeepInEvil/NOESIS-II_deep
0
12782694
from data_utils import UDC from transformer_rnn import TransformerRNN from args import get_args from eval import eval_model import torch import numpy as np from tqdm import tqdm import torch.optim as optim import torch.nn.functional as F from sklearn.metrics import f1_score import torch.nn as nn args = get_args() if args.gpu: torch.cuda.manual_seed(args.randseed) data = UDC(train_inp=args.train_inp, val_inp=args.val_inp) model = TransformerRNN(emb_dim=args.input_size, n_vocab=data.bpe.vocab_size(), rnn_h_dim=256, gpu = args.gpu) criteria = nn.NLLLoss() solver = optim.Adam(model.parameters(), lr=args.lr) def train(): for epoch in range(args.epochs): model.train() print('\n\n-------------------------------------------') print('Epoch-{}'.format(epoch)) print('-------------------------------------------') train_iter = enumerate(data.get_batches('train')) if not args.no_tqdm: train_iter = tqdm(train_iter) train_iter.set_description_str('Training') train_iter.total = len(data.train) for it, mb in train_iter: c, c_u_m, c_m, r, r_u_m, r_m, y = mb # print (c, c_u_m, c_m, r, y) # getting predictions pred = model(c, c_u_m, c_m, r, r_u_m, r_m) #train_iter.set_description(model.print_loss()) #loss = F.nll_loss(pred, r) #loss = criteria(pred, y) #y = torch.argmax(y) #print (y.size()) loss = criteria(pred, y) loss.backward() #print (model.conv3.grad) #clip_gradient_threshold(model, -10, 10) solver.step() solver.zero_grad() val_mrr = eval_model(model, data, 'valid') print ('Validation MRR for this epoch:'+str(val_mrr)) if __name__ == '__main__': train()
2.171875
2
lib/TaxaTransfer/InsertExternalDatabase.py
ZFMK/gbif2tnt
0
12782695
import logging import logging.config logger = logging.getLogger('sync_gbif2tnt') import re import pudb from configparser import ConfigParser config = ConfigParser() config.read('config.ini') from .InsertIntoTablesBase import InsertIntoTablesBase class InsertExternalDatabaseBase(InsertIntoTablesBase): def __init__(self, tntdbcon, temptablename): InsertIntoTablesBase.__init__(self, tntdbcon) self.temptable = temptablename self.externaldatabasetable = 'TaxonNameExternalDatabase' self.idcolumn = 'ExternalDatabaseID' self.externalidstable = 'TaxonNameExternalID' self.gbif_source = dict(config['gbif_source_details']) self.edb_uri = self.gbif_source['uri'] self.edb_name = self.gbif_source['name'] self.edb_accession_date = self.gbif_source['accessiondate'] self.edb_version = self.gbif_source['version'] self.edb_license = self.gbif_source['license'] self.insertExternalDatabase() self.insertExternalIDs() def getExternalDatabaseID(self): query = """ SELECT [ExternalDatabaseID] FROM [{0}] WHERE [ExternalDatabaseURI] = ? AND [ExternalDatabaseName] = ? AND [ExternalDatabaseVersion] = ? """.format(self.externaldatabasetable) self.cur.execute(query, [ self.edb_uri, self.edb_name, self.edb_version ]) row = self.cur.fetchone() if row is None: return None else: return row[0] def insertExternalDatabase(self): self.databaseid = self.getExternalDatabaseID() if self.databaseid is not None: return else: maxid = self.getMaxID(self.externaldatabasetable, self.idcolumn) query = """ INSERT INTO [{0}] ( [ExternalDatabaseID] , [ExternalDatabaseURI] , [ExternalDatabaseName] , [InternalNotes] , [ExternalDatabaseVersion] , [Rights] ) VALUES (?, ?, ?, ?, ?, ?) ;""".format(self.externaldatabasetable) self.cur.execute(query, [ maxid + 1, self.edb_uri, self.edb_name, self.edb_accession_date, self.edb_version, self.edb_license ]) self.con.commit() self.databaseid = maxid + 1 return def insertExternalIDs(self): query = """ INSERT INTO [{0}] ( [NameID], [ExternalDatabaseID], [ExternalNameURI] ) SELECT [NameID] , {1} AS [ExternalDatabaseID] , [GBIFTaxonURL] FROM [{2}] ;""".format(self.externalidstable, self.databaseid, self.temptable) self.cur.execute(query) self.con.commit()
2.34375
2
lightkurve/correctors/corrector.py
burke86/lightkurve
0
12782696
<filename>lightkurve/correctors/corrector.py<gh_stars>0 """Implements the abstract `Corrector` base class. """ from abc import ABC, abstractmethod import matplotlib import numpy as np from .. import LightCurve from .metrics import overfit_metric_lombscargle, underfit_metric_neighbors class Corrector(ABC): """Abstract base class documenting the required structure of classes designed to remove systematic noise from light curves. Attributes ---------- original_lc : LightCurve The uncorrected light curve. Must be passed into (or computed by) the constructor method. corrected_lc : LightCurve Corrected light curve. Must be updated upon each call to the `correct()` method. cadence_mask : np.array of dtype=bool Boolean array with the same length as `original_lc`. True indicates that a cadence should be used to fit the noise model. By setting certain cadences to False, users can exclude those cadences from informing the noise model, which will help prevent the overfitting of those signals (e.g. exoplanet transits). By default, the cadence mask is True across all cadences. Methods ------- __init__() Accepts all the data required to execute the correction. The constructor must set the `original_lc` attribute. correct() -> LightCurve Executes the correction, optionally accepting meaningful parameters that can be used to modify the way the correction is applied. This method must set or update the `corrected_lc` attribute on each run. diagnose() -> matplotlib.axes.Axes Creates plots to elucidate the user's most recent call to `correct()`. """ @property def original_lc(self) -> LightCurve: if hasattr(self, "_original_lc"): return self._original_lc else: raise AttributeError("`original_lc` has not been instantiated yet.") @original_lc.setter def original_lc(self, original_lc): self._original_lc = original_lc @property def corrected_lc(self) -> LightCurve: if hasattr(self, "_corrected_lc"): return self._corrected_lc else: raise AttributeError( "You need to call the `correct()` method " "before you can access `corrected_lc`." ) @corrected_lc.setter def corrected_lc(self, corrected_lc): self._corrected_lc = corrected_lc @property def cadence_mask(self) -> np.array: if not hasattr(self, "_cadence_mask"): self._cadence_mask = np.ones(len(self.original_lc), dtype=bool) return self._cadence_mask @cadence_mask.setter def cadence_mask(self, cadence_mask): self._cadence_mask = cadence_mask def __init__(self, original_lc: LightCurve) -> None: """Constructor method. The constructor shall: * accept all data required to run the correction (e.g. light curves, target pixel files, engineering data). * instantiate the `original_lc` property. """ self.original_lc = original_lc @abstractmethod def correct( self, cadence_mask: np.array = None, optimize: bool = False ) -> LightCurve: """Returns a `LightCurve` from which systematic noise has been removed. This method shall: * accept meaningful parameters that can be used to tune the correction, including: - `optimize`: should an optimizer be used to tune the parameters? - `cadence_mask`: flags cadences to be used to fit the noise model. * store all parameters as object attributes (e.g. `self.optimize`, `self.cadence_mask`); * store helpful diagnostic information as object attributes; * store the result in the `self.corrected_lc` attribute; * return `self.corrected_lc`. """ if cadence_mask: self.cadence_mask = cadence_mask # ... perform correction ... # self.corrected_lc = corrected_lc # return corrected_lc @abstractmethod def diagnose(self) -> matplotlib.axes.Axes: """Returns plots which elucidate the most recent call to `correct()`. This method shall plot useful diagnostic information which have been stored as object attributes during the most recent call to `correct()`. """ pass def compute_overfit_metric(self, **kwargs) -> float: """ Measures the degree of over-fitting in the correction. See the docstring of `lightkurve.correctors.metrics.overfit_metric_lombscargle` for details. Returns ------- overfit_metric : float A float in the range [0,1] where 0 => Bad, 1 => Good """ return overfit_metric_lombscargle( # Ignore masked cadences in the computation self.original_lc[self.cadence_mask], self.corrected_lc[self.cadence_mask], **kwargs ) def compute_underfit_metric(self, **kwargs) -> float: """Measures the degree of under-fitting the correction. See the docstring of `lightkurve.correctors.metrics.underfit_metric_neighbors` for details. Returns ------- underfit_metric : float A float in the range [0,1] where 0 => Bad, 1 => Good """ return underfit_metric_neighbors(self.corrected_lc[self.cadence_mask], **kwargs)
2.578125
3
mmdet/datasets/coco_with_sub_image.py
ArthurWish/mmdetection
0
12782697
<reponame>ArthurWish/mmdetection<filename>mmdet/datasets/coco_with_sub_image.py import os.path from .builder import DATASETS from .coco import CocoDataset @DATASETS.register_module() class CocoDatasetWithSubImage(CocoDataset): def __init__(self, sub_images=(), **kwargs): self.sub_images = sub_images super(CocoDatasetWithSubImage, self).__init__(**kwargs) def load_annotations(self, ann_file): data_infos = super().load_annotations(ann_file) for index,info in enumerate(data_infos): data_infos[index]['filename'] = [os.path.join(info['filename'], sub_image_name) for sub_image_name in self.sub_images] return data_infos def _parse_ann_info(self, img_info, ann_info): filename_list = img_info['filename'] img_info['filename'] = filename_list[0] ann = super()._parse_ann_info(img_info, ann_info) img_info['filename'] = filename_list return ann
2.359375
2
Beakjoon_Online_Judge/ready_winter.py
pkch93/Algorithm
2
12782698
<gh_stars>1-10 def solution(acorns): n = len(acorns) dp = [0]*n for i in range(n): temp = acorns[i] if i == 0: dp[i] = temp else: dp[i] = max(dp[i-1]+temp, temp) acorns.sort(reverse=True) smart = 0 for i in range(n): if i != 0 and acorns[i] <= 0: break smart += acorns[i] return max(dp), smart def main(): n = int(input()) acorns = list(map(int, input().split())) print(*solution(acorns)) if __name__ == '__main__': main()
3.0625
3
Financely/basic_app/get_stock_info.py
Frostday/Financely
8
12782699
import urllib.request, json def getStockInfo(var): var = var.replace(' ','') url = "https://finance.yahoo.com/_finance_doubledown/api/resource/searchassist;searchTerm={}?device=console&returnMeta=true".format(var) response = urllib.request.urlopen(url) data = json.loads(response.read()) return data['data']['items']
3.09375
3
src/models/spikingpool2D.py
k-timy/snn_pytorch
0
12782700
<filename>src/models/spikingpool2D.py """ Author: <NAME> April 2021 """ import types import torch import torch.nn as nn import torch.nn.functional as F GLOBAL_DEBUG = False class SpikingAveragePool2D(nn.Module): """ Applies a 2D Convolution transformation on the input spikes. And holds the states of the neurons. It's weights are initialized from a regular 2D convolution layer with no bias. batch_size : can be given in constructor. Or once the layer is applied on some data. inputs to this layer are one single time step of spikes. And the outputs are also one single time step. """ def __init__(self,kernel_size : int = 2, stride : int = 2, padding : int = 0, count_include_pad : bool = False,device=None, **kwargs ): super(SpikingAveragePool2D,self).__init__() self.kernel_size = kernel_size self.stride = stride self.padding = padding self.count_include_pad = count_include_pad self._sim_params_dict = { "batch_size" : None, "dt" : torch.as_tensor(0.001,dtype=torch.float32), "threshold" : torch.as_tensor(1,dtype=torch.float32), "ref_period" : torch.as_tensor(0,dtype=torch.float32), "dtype" : torch.float32, # TODO get this from input layer } self.sim_params = types.SimpleNamespace() self.device = device self.spike_params_shape = None # set whatever parameters are available in the constructor self._init_sim_params(**kwargs) self.zero = torch.as_tensor(0,dtype=self._sim_params_dict['dtype']) if device is not None: self.zero = self.zero.to(device) def init_spiking_params(self): self.neuron_ref_cooldown = torch.zeros(self.spike_params_shape,requires_grad=False) self.sum_spikes = torch.zeros(self.spike_params_shape,requires_grad=False) self.membrane_potential = torch.zeros(self.spike_params_shape,requires_grad=False) self.zeros = torch.zeros(self.spike_params_shape,requires_grad=False) if self.device is not None: self.neuron_ref_cooldown = self.neuron_ref_cooldown.to(self.device) self.sum_spikes = self.sum_spikes.to(self.device) self.membrane_potential = self.membrane_potential.to(self.device) self.zeros = self.zeros.to(self.device) def set_threshold(self,new_threshold): self.sim_params.threshold = torch.as_tensor(new_threshold,dtype=self.sim_params.dtype,device=self.device) def reset_layer(self): self.init_spiking_params() def _init_sim_params(self,**kwargs): for k,v in self._sim_params_dict.items(): varg = kwargs.get(k) # if varg is not set if varg is not None: if k in ["batch_size","dtype"]: setattr(self.sim_params, k, varg) else: if self.device is not None: setattr(self.sim_params, k, torch.as_tensor(varg,dtype=self._sim_params_dict["dtype"]).to(self.device)) else: setattr(self.sim_params, k, torch.as_tensor(varg,dtype=self._sim_params_dict["dtype"])) # if varg == None else: if k in ["batch_size","dtype"]: setattr(self.sim_params, k, v) else: v_ = torch.as_tensor(v,dtype=self._sim_params_dict["dtype"]) if self.device is not None: setattr(self.sim_params, k, v_.to(self.device)) else: setattr(self.sim_params, k, v_) def clone(self): raise Exception("TODO: Not implemented yet!") def _get_shape_of_output(self, spikes) -> torch.Tensor.shape: """ Regardless of the Batchsize, Channels, Height and Width of the input data, The pooling layer works. However, the spike neurons should be able to keep track of the membraine poteintials, refactory cooldown, etc. So this function gets the shape of the output based on a batch of input spikes and lazily initializes the SNN parameters. """ sample_out = None with torch.no_grad(): sample_ones = torch.ones_like(spikes) sample_out = self._pool_spikes(sample_ones) return sample_out.shape def _pool_spikes(self, spikes): return F.avg_pool2d(spikes, kernel_size = self.kernel_size,stride = self.stride,padding = self.padding,count_include_pad=self.count_include_pad) def forward(self, spikes): if self.spike_params_shape is None: self.sim_params.batch_size = spikes.shape[0] self.spike_params_shape = self._get_shape_of_output(spikes) self.init_spiking_params() device = self.device with torch.no_grad(): # Get input impulse from incoming spikes impulse = self._pool_spikes(spikes) # Do not add impulse if neuron is in refactory period in_ref_per = self.neuron_ref_cooldown > self.zero if device is not None: in_ref_per = in_ref_per.to(device) impulse = torch.where(in_ref_per, self.zero, impulse) # Add input impulse to membrane potentials self.membrane_potential = self.membrane_potential + impulse # Check for spiking neurons spikings_bool = self.membrane_potential >= self.sim_params.threshold if device is not None: spikings_bool = spikings_bool.to(device) # Reset the potential of the membrane if it has exceeded the threshold self.membrane_potential = torch.where(spikings_bool, self.zero, self.membrane_potential) # Excited neurons should go to cooldown state self.neuron_ref_cooldown = torch.where(spikings_bool, self.sim_params.ref_period, self.neuron_ref_cooldown) # Cooldown timer count-down self.neuron_ref_cooldown = self.neuron_ref_cooldown - self.sim_params.dt # Prevent from getting negative values self.neuron_ref_cooldown = torch.max(self.neuron_ref_cooldown,self.zero) # calculate the output of this layer out_spikes = spikings_bool.type(self.sim_params.dtype) self.sum_spikes = self.sum_spikes + out_spikes return out_spikes
3.375
3
tests/base_tests/linear_tests/test_translate.py
lycantropos/gon
10
12782701
<filename>tests/base_tests/linear_tests/test_translate.py from typing import Tuple from hypothesis import given from gon.base import Linear from gon.hints import Scalar from . import strategies @given(strategies.linear_geometries_with_coordinates_pairs) def test_isometry(linear_with_steps: Tuple[Linear, Scalar, Scalar]) -> None: linear, step_x, step_y = linear_with_steps result = linear.translate(step_x, step_y) assert result.length == linear.length
1.945313
2
statsig/statsig.py
ramikhalaf/python-sdk
0
12782702
<gh_stars>0 from .statsig_server import StatsigServer __instance = StatsigServer() def initialize(secretKey, options = None): __instance.initialize(secretKey, options) def check_gate(user, gate): return __instance.check_gate(user, gate) def get_config(user, config): return __instance.get_config(user, config) def get_experiment(user, experiment): return get_config(user, experiment) def log_event(event): __instance.log_event(event) def shutdown(): __instance.shutdown()
1.898438
2
speedysvc/client_server/network/NetworkClient.py
mcyph/shmrpc
4
12782703
import time import warnings import socket from _thread import allocate_lock from os import getpid from speedysvc.toolkit.documentation.copydoc import copydoc from speedysvc.client_server.base_classes.ClientProviderBase import ClientProviderBase from speedysvc.client_server.network.consts import len_packer, response_packer from speedysvc.compression.compression_types import zlib_compression class NetworkClient(ClientProviderBase): def __init__(self, server_methods, host='127.0.0.1', port=None, compression_inst=zlib_compression): """ :param server_methods: :param host: """ self.host = host self.port = port self.lock = allocate_lock() ClientProviderBase.__init__(self, server_methods) self.compression_inst = compression_inst self.__connect() def __connect(self): self.conn_to_server = conn_to_server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn_to_server.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1) conn_to_server.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, 65536) conn_to_server.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 65536) conn_to_server.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) port = ( self.port if self.port is not None else self.server_methods.port ) conn_to_server.connect((self.host, port)) conn_to_server.send( self.compression_inst.typecode ) def __del__(self): self.conn_to_server.close() @copydoc(ClientProviderBase.send) def send(self, fn, data): with self.lock: return self._send(fn, data) def _send(self, fn, data): actually_compressed, data = \ self.compression_inst.compress(fn.serialiser.dumps(data)) cmd = fn.__name__.encode('ascii') prefix = len_packer.pack(int(actually_compressed), len(data), len(cmd)) displayed_reconnect_msg = False while True: # Try to keep reconnecting if # connection no longer functioning try: self.conn_to_server.send(prefix + cmd + data) def recv(amount): # Note string concatenation is slower in earlier versions # of python, but should be faster than list concat in later # versions after 3. r = b'' while len(r) != amount: add_me = self.conn_to_server.recv(amount) if not add_me: raise ConnectionResetError() r += add_me return r actually_compressed, data_len, status = \ response_packer.unpack(recv(response_packer.size)) data = recv(data_len) break except (socket.error, ConnectionResetError): if not displayed_reconnect_msg: displayed_reconnect_msg = True warnings.warn( f"Client [pid {getpid()}]: " f"TCP connection to service " f"{self.server_methods.name} reset - " f"the service may need to be checked/restarted!" ) while True: try: import time time.sleep(1) self.__connect() except (ConnectionRefusedError, ConnectionError): continue break if actually_compressed: data = self.compression_inst.decompress(data) if status == b'+': return fn.serialiser.loads(data) else: self._handle_exception(data) raise Exception(data.decode('utf-8')) if __name__ == '__main__': inst = NetworkClient(5555) t = time.time() for x in range(500000): i = b"my vfdsfdsfsdfsdfsdfdsfsdaluetasdsadasdsadsadsaest"# bytes([randint(0, 255)])*500 #print('SEND:', i) assert inst.send('echo', i) == i print(time.time()-t)
2.328125
2
pyjdbc/java.py
manifoldai/pyjdbc
2
12782704
<reponame>manifoldai/pyjdbc<filename>pyjdbc/java.py import jpype from jpype import JClass # Enable Java imports from jpype import JArray def get_url(path: str): """ Formats a given path into a url object. Converts `/home/myfile.txt` into `file:/home/myfile.txt` :param path: :return: """ Paths = JClass('java.nio.file.Paths') url = Paths.get(path).toUri().toURL() # todo add exception handling if the path isnt valid return url class System: """ Wrapper around java.lang.System """ @staticmethod def _system(): return JClass('java.lang.System') @classmethod def get_property(cls, name): return cls._system().getProperty(name) @classmethod def set_property(cls, name, value): cls._system().setProperty(name, value) @classmethod def clear_property(cls, name): return cls._system().clearProperty(name) @classmethod def get_env(cls, name): return cls._system().getenv(name) class Properties: PROPERTIES_CLASS = 'java.util.Properties' @classmethod def from_dict(cls, dictionary): JProperties = JClass(cls.PROPERTIES_CLASS) jprops = JProperties() for k, v in dictionary.items(): if not isinstance(k, str): raise ValueError('[{}] keys must be strings, got: {}'.format(cls.PROPERTIES_CLASS, type(k))) jprops.setProperty(k, v) return jprops @classmethod def from_tuple(cls, sequence): as_dict = dict(sequence) return cls.from_dict(as_dict) @staticmethod def to_dict(properties): keys = properties.stringPropertyNames() dictionary = {key: properties.getProperty(key) for key in keys} return dictionary @staticmethod def to_tuple(properties): keys = properties.stringPropertyNames() sequence = [(key, properties.getProperty(key)) for key in keys] return sequence class Classpath: """ utilities for dealing with the java classpath """ @staticmethod def add(*paths): for path in paths: jpype.addClassPath(path) @staticmethod def get(): return jpype.getClassPath() @staticmethod def load_jar_class(jar_path, class_name): """ Load a class at runtime directly from a jar file. Note that with some libraries this can cause problems because the library will not be *visible* to the default class loader. :param jar_path: Path to the `.jar` file. :param class_name: The fully qualified Class Name within the jar to load. :return: """ URL = JClass('java.net.URL') URLClassLoader = JClass('java.net.URLClassLoader') Class = JClass('java.lang.Class') UrlArray = JArray(URL) urls = UrlArray(1) urls[0] = get_url(jar_path) java_class = JClass(Class.forName(class_name, True, URLClassLoader(urls))) return java_class class Jvm: ARGS = {} @classmethod def add_argument(cls, identifier, option): """ Add an argument to the jvm, (this must be used BEFORE the jvm is started) If the jvm is already running RuntimeError will be raised Set a jvm argument, examples include: -Xmx1099m -Djava.class.path=PATH_TO_JAR :param identifier: a string identifier so Jvm options aren't duplicated: ie: ``javax.net.ssl.trustStore`` :type identifier: str :param option: the full jvm option argument, ie: ``-Djavax.net.ssl.trustStore=trust.jks`` :type option: str :raises: RuntimeError :return: """ if cls.is_running(): raise RuntimeError('The JVM has been started, any options set after the JVM is started will have no ' 'effect.\n' 'Set jvm options before acquiring any connections with `pyjdbc`') if not any((option.startswith('-D'), option.startswith('-X'))): raise ValueError('invalid argument "option": {}, jvm arguments must start with "-D" or "-X" \n' 'Examples:\n' ' -Xmx1099m\n', ' -Djavax.net.ssl.trustStore=trust.jks'.format(option)) cls.ARGS[identifier] = option @classmethod def start(cls): # start the jvm jpype.startJVM(*cls.ARGS.values(), interrupt=True) @staticmethod def stop(): jpype.shutdownJVM() @staticmethod def is_running(): return jpype.isJVMStarted() @classmethod def check_running(cls): if cls.is_running(): raise RuntimeError('The jvm is already running') @staticmethod def path(): return jpype.getDefaultJVMPath() @staticmethod def version(): return jpype.getJVMVersion()
2.625
3
repokid/utils/logging.py
maramSalamouny/repokid
0
12782705
<gh_stars>0 # Copyright 2020 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime import json import logging from socket import gethostname import traceback LOGGER = logging.getLogger("repokid") class JSONFormatter(logging.Formatter): """Custom formatter to output log records as JSON.""" hostname = gethostname() def format(self, record): """Format the given record into JSON.""" message = { "time": datetime.utcfromtimestamp(record.created).isoformat(), "level": record.levelname, "name": record.name, "message": record.getMessage(), "process": record.process, "thread": record.threadName, "hostname": self.hostname, "filename": record.filename, "function": record.funcName, "lineNo": record.lineno, } if record.exc_info: message[ "exception" ] = f"{record.exc_info[0].__name__}: {record.exc_info[1]}" message["traceback"] = traceback.format_exc() return json.dumps(message, ensure_ascii=False) def log_deleted_and_repoed_policies( deleted_policy_names, repoed_policies, role_name, account_number ): """Logs data on policies that would otherwise be modified or deleted if the commit flag were set. Args: deleted_policy_names (list<string>) repoed_policies (list<dict>) role_name (string) account_number (string) Returns: None """ for name in deleted_policy_names: LOGGER.info( "Would delete policy from {} with name {} in account {}".format( role_name, name, account_number ) ) if repoed_policies: LOGGER.info( "Would replace policies for role {} with: \n{} in account {}".format( role_name, json.dumps(repoed_policies, indent=2, sort_keys=True), account_number, ) )
2
2
tests/test_0123-atlas-issues.py
nikoladze/uproot4
0
12782706
# BSD 3-Clause License; see https://github.com/scikit-hep/uproot4/blob/master/LICENSE from __future__ import absolute_import import pytest import skhep_testdata import uproot4 def test_version(): assert uproot4.classname_decode( uproot4.classname_encode("xAOD::MissingETAuxAssociationMap_v2") ) == ("xAOD::MissingETAuxAssociationMap_v2", None) assert uproot4.classname_decode( uproot4.classname_encode("xAOD::MissingETAuxAssociationMap_v2", 9) ) == ("xAOD::MissingETAuxAssociationMap_v2", 9)
1.484375
1
cr_week6_test/scripts/robot_expression_prediction.py
Ani997/Human-Robot-Interaction-
0
12782707
<reponame>Ani997/Human-Robot-Interaction- #!/usr/bin/env python import rospy from cr_week6_test.msg import perceived_info from cr_week6_test.msg import robot_info from cr_week6_test.srv import predict_robot_expression import random from bayesian_belief_networks.ros_utils import * def human_expression_prob(human_expression): return 0.33 def human_action_prob(human_action): return 0.33 def object_size_prob(object_size): return 0.50 ## Implementation of conditional probability table def Happy(human_expression, human_action, object_size): table = dict() table['HRS'] = 0.8 table['HRB'] = 1.0 table['HOS'] = 0.8 table['HOB'] = 1.0 table['HAS'] = 0.6 table['HAB'] = 0.8 table['SRS'] = 0 table['SRB'] = 0 table['SOS'] = 0 table['SOB'] = 0.1 table['SAS'] = 0 table['SAB'] = 0.2 table['NRS'] = 0.7 table['NRB'] = 0.8 table['NOS'] = 0.8 table['NOB'] = 0.9 table['NAS'] = 0.6 table['NAB'] = 0.7 key = '' if human_expression == 1: key = key + 'Happy' elif human_expression == 2: key = key + 'Sad' else: key = key + 'Neutral' if human_action == 1: key = key + 'Looking at Robot' elif human_action == 2: key = key + 'Object' else: key = key + 'Away' if object_size == 1: key = key + 'Small' else: key = key + 'Big' return table[key] def Sad(human_expression, human_action, object_size): table = dict() table['HRS'] = 0.2 table['HRB'] = 0 table['HOS'] = 0.2 table['HOB'] = 0 table['HAS'] = 0.2 table['HAB'] = 0.2 table['SRS'] = 0 table['SRB'] = 0 table['SOS'] = 0.1 table['SOB'] = 0.1 table['SAS'] = 0.2 table['SAB'] = 0.2 table['NRS'] = 0.3 table['NRB'] = 0.2 table['NOS'] = 0.2 table['NOB'] = 0.1 table['NAS'] = 0.2 table['NAB'] = 0.2 key = '' if human_expression == 1: key = key + 'Happy' elif human_expression == 2: key = key + 'Sad' else: key = key + 'Neutral' if human_action == 1: key = key + 'Looking at Robot' elif human_action == 2: key = key + 'Object' else : key = key + 'Away' if object_size == 1: key = key + 'Small' else: key = key + 'Big' return table[key] def Neutral(human_expression, human_action, object_size): table = dict() table['HRS'] = 0 table['HRB'] = 0 table['HOS'] = 0 table['HOB'] = 0 table['HAS'] = 0.2 table['HAB'] = 0 table['SRS'] = 1 table['SRB'] = 1 table['SOS'] = 0.9 table['SOB'] = 0.8 table['SAS'] = 0.8 table['SAB'] = 0.6 table['NRS'] = 0 table['NRB'] = 0 table['NOS'] = 0 table['NOB'] = 0 table['NAS'] = 0.2 table['NAB'] = 0.1 key = '' if human_expression == 1: key = key + 'Happy' elif human_expression == 2: key = key + 'Sad' else: key = key + 'Neutral' if human_action == 1: key = key + 'Looking at Robot' elif human_action == 2: key = key + 'Object' else: key = key + 'Away' if object_size == 1: key = key + 'Small' else: key = key + 'Big' return table[key] ## Building the Bayesian Belief Network(BBN) def Predictor(BBN): BBN = ros_build_bbn( human_expression_prob, human_action_prob, Happy, Sad, Neutral) return BBN def expression_prediction_server(): rospy.init_node('robot_expression_prediction') #node initialised serv = rospy.Service('RobotExpressionPrediction', predict_robot_expression, Predictor) #service started rospy.spin() if __name__ == "__main__": expression_prediction_server()
2.4375
2
cdrouter/users.py
qacafe/cdrouter.py
4
12782708
<reponame>qacafe/cdrouter.py # # Copyright (c) 2017-2020 by QA Cafe. # All Rights Reserved. # """Module for accessing CDRouter Users.""" import collections from marshmallow import Schema, fields, post_load from .cdr_error import CDRouterError from .cdr_datetime import DateTime from .filters import Field as field class User(object): """Model for CDRouter Users. :param id: (optional) User ID as an int. :param admin: (optional) Bool `True` if user is an administrator. :param disabled: (optional) Bool `True` if user is disabled. :param name: (optional) User name as string. :param description: (optional) User description as string. :param created: (optional) User creation time as `DateTime`. :param updated: (optional) User last-updated time as `DateTime`. :param token: (optional) User's API token as string. """ def __init__(self, **kwargs): self.id = kwargs.get('id', None) self.admin = kwargs.get('admin', None) self.disabled = kwargs.get('disabled', None) self.name = kwargs.get('name', None) self.description = kwargs.get('description', None) self.created = kwargs.get('created', None) self.updated = kwargs.get('updated', None) self.token = kwargs.get('token', None) # only needed for change_password self.password = kwargs.get('password', None) self.password_confirm = kwargs.get('password_confirm', None) class UserSchema(Schema): id = fields.Int(as_string=True) admin = fields.Bool() disabled = fields.Bool() name = fields.Str() description = fields.Str() created = DateTime() updated = DateTime() token = fields.Str() password = fields.Str() password_confirm = fields.Str() @post_load def post_load(self, data): return User(**data) class Page(collections.namedtuple('Page', ['data', 'links'])): """Named tuple for a page of list response data. :param data: :class:`users.User <users.User>` list :param links: :class:`cdrouter.Links <cdrouter.Links>` object """ class UsersService(object): """Service for accessing CDRouter Users.""" RESOURCE = 'users' BASE = RESOURCE + '/' def __init__(self, service): self.service = service self.base = self.BASE def list(self, filter=None, type=None, sort=None, limit=None, page=None, detailed=None): # pylint: disable=redefined-builtin """Get a list of users. :param filter: (optional) Filters to apply as a string list. :param type: (optional) `union` or `inter` as string. :param sort: (optional) Sort fields to apply as string list. :param limit: (optional) Limit returned list length. :param page: (optional) Page to return. :param detailed: (optional) Return all fields if Bool `True`. :return: :class:`users.Page <users.Page>` object """ schema = UserSchema() if not detailed: schema = UserSchema(exclude=('created', 'updated', 'token', 'password', 'password_confirm')) resp = self.service.list(self.base, filter, type, sort, limit, page, detailed=detailed) us, l = self.service.decode(schema, resp, many=True, links=True) return Page(us, l) def iter_list(self, *args, **kwargs): """Get a list of users. Whereas ``list`` fetches a single page of users according to its ``limit`` and ``page`` arguments, ``iter_list`` returns all users by internally making successive calls to ``list``. :param args: Arguments that ``list`` takes. :param kwargs: Optional arguments that ``list`` takes. :return: :class:`users.User <users.User>` list """ return self.service.iter_list(self.list, *args, **kwargs) def get(self, id): # pylint: disable=invalid-name,redefined-builtin """Get a user. :param id: User ID as an int. :return: :class:`users.User <users.User>` object :rtype: users.User """ schema = UserSchema() resp = self.service.get_id(self.base, id) return self.service.decode(schema, resp) def get_by_name(self, name): # pylint: disable=invalid-name,redefined-builtin """Get a user by name. :param name: User name as string. :return: :class:`users.User <users.User>` object :rtype: users.User """ rs, _ = self.list(filter=field('name').eq(name), limit=1) if len(rs) == 0: raise CDRouterError('no such user') return rs[0] def create(self, resource): """Create a new user. :param resource: :class:`users.User <users.User>` object :return: :class:`users.User <users.User>` object :rtype: users.User """ schema = UserSchema(exclude=('id', 'created', 'updated', 'token')) json = self.service.encode(schema, resource) schema = UserSchema(exclude=('password', 'password_confirm')) resp = self.service.create(self.base, json) return self.service.decode(schema, resp) def edit(self, resource): """Edit a user. :param resource: :class:`users.User <users.User>` object :return: :class:`users.User <users.User>` object :rtype: users.User """ schema = UserSchema(exclude=('id', 'created', 'updated', 'token', 'password', 'password_confirm')) json = self.service.encode(schema, resource) schema = UserSchema(exclude=('password', 'password_confirm')) resp = self.service.edit(self.base, resource.id, json) return self.service.decode(schema, resp) def change_password(self, id, new, old=None, change_token=True): # pylint: disable=invalid-name,redefined-builtin """Change a user's password. :param id: User ID as an int. :param new: New password as string. :param old: (optional) Old password as string (required if performing action as non-admin). :param change_token: (optional) If bool `True`, also generate a new API token for user. :return: :class:`users.User <users.User>` object :rtype: users.User """ schema = UserSchema(exclude=('password', 'password_confirm')) resp = self.service.post(self.base+str(id)+'/password/', params={'change_token': change_token}, json={'old': old, 'new': new, 'new_confirm': new}) return self.service.decode(schema, resp) def change_token(self, id): # pylint: disable=invalid-name,redefined-builtin """Change a user's token. :param id: User ID as an int. :return: :class:`users.User <users.User>` object :rtype: users.User """ schema = UserSchema(exclude=('password', 'password_confirm')) resp = self.service.post(self.base+str(id)+'/token/') return self.service.decode(schema, resp) def delete(self, id): # pylint: disable=invalid-name,redefined-builtin """Delete a user. :param id: User ID as an int. """ return self.service.delete_id(self.base, id) def bulk_copy(self, ids): """Bulk copy a set of users. :param ids: Int list of user IDs. :return: :class:`users.User <users.User>` list """ schema = UserSchema() return self.service.bulk_copy(self.base, self.RESOURCE, ids, schema) def bulk_edit(self, _fields, ids=None, filter=None, type=None, all=False): # pylint: disable=redefined-builtin """Bulk edit a set of users. :param _fields: :class:`users.User <users.User>` object :param ids: (optional) Int list of user IDs. :param filter: (optional) String list of filters. :param type: (optional) `union` or `inter` as string. :param all: (optional) Apply to all if bool `True`. """ schema = UserSchema(exclude=('id', 'created', 'updated', 'token', 'password', 'password_confirm')) _fields = self.service.encode(schema, _fields, skip_none=True) return self.service.bulk_edit(self.base, self.RESOURCE, _fields, ids=ids, filter=filter, type=type, all=all) def bulk_delete(self, ids=None, filter=None, type=None, all=False): # pylint: disable=redefined-builtin """Bulk delete a set of users. :param ids: (optional) Int list of user IDs. :param filter: (optional) String list of filters. :param type: (optional) `union` or `inter` as string. :param all: (optional) Apply to all if bool `True`. """ return self.service.bulk_delete(self.base, self.RESOURCE, ids=ids, filter=filter, type=type, all=all)
2.46875
2
nidhogg/__init__.py
ifxit/nidho
11
12782709
<reponame>ifxit/nidho # -*- coding: utf-8 -*- from __future__ import unicode_literals from .sevenmode import SevenMode from .clustermode import ClusterMode from .core import NidhoggException __all__ = ["get_netapp", "get_best_volume_by_size", "get_best_volume_by_quota"] def get_netapp(url, username, password, verify=False): """Return the correct connection object to the filer. You do not have to care if the filer is a cluster-mode or a seven-mode filer. .. note:: Provided user must be authorized to use the Netapp API of the filer. :param url: hostname of the netapp filer :type url: str :param username: username to connect to the Netapp API. :type username: str :param password: <PASSWORD> :type password: <PASSWORD> :param verify: check SSL certificate :type verify: bool :return: Nidhogg instance :rtype: :class:`~nidhogg.sevenmode.SevenMode` (if the filer is a seven-mode filer) :rtype: :class:`~nidhogg.clustermode.ClusterMode` (if the filer is a cluster-mode filer) Example: .. code-block:: python import nidhogg filer = nidhogg.get_netapp("filer99.example.com", "<username>", "<password>") filer.list_volumes() """ # prepend https if not specified if not url.startswith("https://"): url = "https://" + url nidhogg = SevenMode(url, username, password, 1, 15, verify) if nidhogg.clustered: return ClusterMode(url, username, password, 1, 21, verify) return nidhogg def get_best_volume_by_size(volumes, filter_func=None, **kwargs): """Return the best volume from the list of volumes with the biggest free size. Apply filter function before if specified. :param volumes: list of volumes :type volumes: list of :class:`~nidhogg.compatible.Volume` :param filter_func: filter function applied before :type filter_func: function :return: volume with the biggest free size :rtype: :class:`~nidhogg.compatible.Volume` """ if hasattr(filter_func, '__call__'): volumes = [v for v in volumes if filter_func(v, **kwargs)] if not volumes: raise NidhoggException("No volume available.") # use max() to get the volume with the biggest free size return max(volumes) def get_best_volume_by_quota(volumes, filter_func=None, **kwargs): """Return the best volume from the list of volumes with the smallest quota ration. :param volumes: list of volumes :type volumes: list of :class:`~nidhogg.compatible.VolumeWithQuotaRatio` :param filter_func: filter function applied before :type filter_func: function :return: volume with the smallest quota ratio (allocated quota size / volume size) :rtype: :class:`~nidhogg.compatible.VolumeWithQuotaRatio` """ if hasattr(filter_func, '__call__'): volumes = [v for v in volumes if filter_func(v, **kwargs)] if not volumes: raise NidhoggException("No volume available.") # use min() to get the volume with the smallest ratio return min(volumes)
2.203125
2
bika/lims/browser/reports/qualitycontrol_referenceanalysisqc.py
hocinebendou/bika.gsoc
0
12782710
import json import tempfile from AccessControl import getSecurityManager from DateTime import DateTime from Products.CMFCore.utils import getToolByName from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from bika.lims import bikaMessageFactory as _ from bika.lims.utils import t, isAttributeHidden from bika.lims.browser import BrowserView from bika.lims.browser.reports.selection_macros import SelectionMacrosView from gpw import plot from bika.lims.utils import to_utf8 from plone.app.content.browser.interfaces import IFolderContentsView from plone.app.layout.globals.interfaces import IViewView from zope.interface import implements import os import plone class Report(BrowserView): implements(IViewView) template = ViewPageTemplateFile( "templates/qualitycontrol_referenceanalysisqc.pt") # if unsuccessful we return here: default_template = ViewPageTemplateFile("templates/qualitycontrol.pt") def __init__(self, context, request, report=None): super(Report, self).__init__(context, request) self.report = report self.selection_macros = SelectionMacrosView(self.context, self.request) def __call__(self): header = _("Reference analysis QC") subheader = _("Reference analysis quality control graphs ") MinimumResults = self.context.bika_setup.getMinimumResults() warning_icon = "<img src='" + self.portal_url + "/++resource++bika.lims.images/warning.png' height='9' width='9'/>" error_icon = "<img src='" + self.portal_url + "/++resource++bika.lims.images/exclamation.png' height='9' width='9'/>" self.parms = [] titles = [] sample_uid = self.request.form.get('ReferenceSampleUID', '') sample = self.reference_catalog.lookupObject(sample_uid) if not sample: message = _("No reference sample was selected.") self.context.plone_utils.addPortalMessage(message, 'error') return self.default_template() self.parms.append( {'title': _("Reference Sample"), 'value': sample.Title()}) titles.append(sample.Title()) service_uid = self.request.form.get('ReferenceServiceUID', '') service = self.reference_catalog.lookupObject(service_uid) if not service: message = _("No analysis services were selected.") self.context.plone_utils.addPortalMessage(message, 'error') return self.default_template() self.contentFilter = {'portal_type': 'ReferenceAnalysis', 'review_state': ['verified', 'published'], 'path': { "query": "/".join(sample.getPhysicalPath()), "level": 0}} self.parms.append( {'title': _("Analysis Service"), 'value': service.Title()}) titles.append(service.Title()) val = self.selection_macros.parse_daterange(self.request, 'getDateVerified', 'DateVerified') if val: self.contentFilter[val['contentFilter'][0]] = val['contentFilter'][1] self.parms.append(val['parms']) titles.append(val['titles']) proxies = self.bika_analysis_catalog(self.contentFilter) if not proxies: message = _("No analyses matched your query") self.context.plone_utils.addPortalMessage(message, 'error') return self.default_template() # Compile a list with all relevant analysis data analyses = [] out_of_range_count = 0 results = [] capture_dates = [] plotdata = "" tabledata = [] for analysis in proxies: analysis = analysis.getObject() service = analysis.getService() resultsrange = \ [x for x in sample.getReferenceResults() if x['uid'] == service_uid][ 0] try: result = float(analysis.getResult()) results.append(result) except: result = analysis.getResult() capture_dates.append(analysis.getResultCaptureDate()) if result < float(resultsrange['min']) or result > float( resultsrange['max']): out_of_range_count += 1 try: precision = str(analysis.getPrecision()) except: precision = "2" try: formatted_result = str("%." + precision + "f") % result except: formatted_result = result tabledata.append({_("Analysis"): analysis.getId(), _("Result"): formatted_result, _("Analyst"): analysis.getAnalyst(), _( "Captured"): analysis.getResultCaptureDate().strftime( self.date_format_long)}) plotdata += "%s\t%s\t%s\t%s\n" % ( analysis.getResultCaptureDate().strftime(self.date_format_long), result, resultsrange['min'], resultsrange['max'] ) plotdata.encode('utf-8') result_values = [int(r) for r in results] result_dates = [c for c in capture_dates] self.parms += [ {"title": _("Total analyses"), "value": len(proxies)}, ] # # This variable is output to the TAL self.report_data = { 'header': header, 'subheader': subheader, 'parms': self.parms, 'tables': [], 'footnotes': [], } if MinimumResults <= len(proxies): plotscript = """ set terminal png transparent truecolor enhanced size 700,350 font "Verdana, 8" set title "%(title)s" set xlabel "%(xlabel)s" set ylabel "%(ylabel)s" set key off #set logscale set timefmt "%(timefmt)s" set xdata time set format x "%(xformat)s" set xrange ["%(x_start)s":"%(x_end)s"] set auto fix set offsets graph 0, 0, 1, 1 set xtics border nomirror rotate by 90 font "Verdana, 5" offset 0,-3 set ytics nomirror f(x) = mean_y fit f(x) 'gpw_DATAFILE_gpw' u 1:3 via mean_y stddev_y = sqrt(FIT_WSSR / (FIT_NDF + 1)) plot mean_y-stddev_y with filledcurves y1=mean_y lt 1 lc rgb "#efefef",\ mean_y+stddev_y with filledcurves y1=mean_y lt 1 lc rgb "#efefef",\ mean_y with lines lc rgb '#ffffff' lw 3,\ "gpw_DATAFILE_gpw" using 1:3 title 'data' with points pt 7 ps 1 lc rgb '#0000ee' lw 2,\ '' using 1:3 smooth unique lc rgb '#aaaaaa' lw 2,\ '' using 1:4 with lines lc rgb '#000000' lw 1,\ '' using 1:5 with lines lc rgb '#000000' lw 1""" % \ { 'title': "", 'xlabel': "", 'ylabel': service.getUnit(), 'x_start': "%s" % min(result_dates).strftime( self.date_format_short), 'x_end': "%s" % max(result_dates).strftime( self.date_format_short), 'timefmt': r'%Y-%m-%d %H:%M', 'xformat': '%%Y-%%m-%%d\n%%H:%%M', } plot_png = plot(str(plotdata), plotscript=str(plotscript), usefifo=False) # Temporary PNG data file fh, data_fn = tempfile.mkstemp(suffix='.png') os.write(fh, plot_png) plot_url = data_fn self.request['to_remove'].append(data_fn) plot_url = data_fn else: plot_url = "" table = { 'title': "%s: %s (%s)" % ( t(_("Analysis Service")), service.Title(), service.getKeyword() ), 'columns': [_('Analysis'), _('Result'), _('Analyst'), _('Captured')], 'parms': [], 'data': tabledata, 'plot_url': plot_url, } self.report_data['tables'].append(table) translate = self.context.translate ## footnotes if out_of_range_count: msgid = _("Analyses out of range") self.report_data['footnotes'].append( "%s %s" % (error_icon, t(msgid))) self.report_data['parms'].append( {"title": _("Analyses out of range"), "value": out_of_range_count}) title = t(header) if titles: title += " (%s)" % " ".join(titles) return { 'report_title': title, 'report_data': self.template(), } def isSamplePointHidden(self): return isAttributeHidden('AnalysisRequest', 'SamplePoint')
1.742188
2
tests/test_core.py
uezo/minette-python
31
12782711
import sys import os sys.path.append(os.pardir) import pytest from pytz import timezone from logging import Logger, FileHandler, getLogger from datetime import datetime from types import GeneratorType from minette import ( Minette, DialogService, SQLiteConnectionProvider, SQLiteContextStore, SQLiteUserStore, SQLiteMessageLogStore, Tagger, Config, DialogRouter, StoreSet, Message, User, Group, DependencyContainer, Payload ) from minette.utils import date_to_unixtime from minette.tagger.janometagger import JanomeTagger now = datetime.now() user_id = "user_id" + str(date_to_unixtime(now)) print("user_id: {}".format(user_id)) class CustomTagger(Tagger): pass class CustomConnectionProvider(SQLiteConnectionProvider): pass class CustomContextStore(SQLiteContextStore): pass class CustomUserStore(SQLiteUserStore): pass class CustomMessageLogStore(SQLiteMessageLogStore): pass class CustomDataStores(StoreSet): connection_provider = CustomConnectionProvider context_store = CustomContextStore user_store = CustomUserStore messagelog_store = CustomMessageLogStore class MyDialog(DialogService): def compose_response(self, request, context, connection): return "res:" + request.text class ErrorDialog(DialogService): def compose_response(self, request, context, connection): 1 / 0 return "res:" + request.text class MyDialogRouter(DialogRouter): def __init__(self, custom_router_arg=None, **kwargs): super().__init__(**kwargs) self.custom_attr = custom_router_arg class TaggerDialog(DialogService): def compose_response(self, request, context, connection): return request.to_reply( text=request.text, payloads=[Payload(content_type="data", content=request.words)]) class TaggerManuallyParseDialog(DialogService): def compose_response(self, request, context, connection): assert request.words == [] request.words = self.dependencies.tagger.parse(request.text, max_length=10) return request.to_reply( text=request.text, payloads=[Payload(content_type="data", content=request.words)]) class TaggerManuallyParseGeneratorDialog(DialogService): def compose_response(self, request, context, connection): assert request.words == [] request.words = self.dependencies.tagger.parse_as_generator(request.text, max_length=10) return request.to_reply( text=request.text, payloads=[Payload(content_type="data", content=request.words)]) def test_init(): # without config bot = Minette() assert bot.config.get("timezone") == "UTC" assert bot.timezone == timezone("UTC") assert isinstance(bot.logger, Logger) assert bot.logger.name == "minette" assert isinstance(bot.connection_provider, SQLiteConnectionProvider) assert isinstance(bot.context_store, SQLiteContextStore) assert isinstance(bot.user_store, SQLiteUserStore) assert isinstance(bot.messagelog_store, SQLiteMessageLogStore) assert bot.default_dialog_service is None assert isinstance(bot.tagger, Tagger) def test_init_config(): bot = Minette(config_file="./config/test_config.ini") assert bot.timezone == timezone("Asia/Tokyo") for handler in bot.logger.handlers: if isinstance(handler, FileHandler): assert handler.baseFilename == \ os.path.join(os.path.dirname(os.path.abspath(__file__)), bot.config.get("log_file")) assert bot.connection_provider.connection_str != "" assert bot.connection_provider.connection_str == \ bot.config.get("connection_str") assert bot.context_store.timeout == bot.config.get("context_timeout") assert bot.context_store.table_name == bot.config.get("context_table") assert bot.user_store.table_name == bot.config.get("user_table") assert bot.messagelog_store.table_name == \ bot.config.get("messagelog_table") def test_init_args(): # initialize arguments config = Config("") config.confg_parser.add_section("test_section") config.confg_parser.set("test_section", "test_key", "test_value") tz = timezone("Asia/Tokyo") logger = getLogger("test_core_logger") print(logger.name) connection_provider = CustomConnectionProvider context_store = CustomContextStore user_store = CustomUserStore messagelog_store = CustomMessageLogStore data_stores = CustomDataStores default_dialog_service = MyDialog dialog_router = MyDialogRouter tagger = CustomTagger custom_router_arg = "router_value" # create bot bot = Minette( config=config, timezone=tz, logger=logger, connection_provider=connection_provider, context_store=context_store, user_store=user_store, messagelog_store=messagelog_store, default_dialog_service=default_dialog_service, dialog_router=dialog_router, custom_router_arg=custom_router_arg, tagger=tagger, prepare_table=True ) assert bot.config.get("test_key", section="test_section") == "test_value" assert bot.timezone == timezone("Asia/Tokyo") assert bot.logger.name == "test_core_logger" assert isinstance(bot.connection_provider, CustomConnectionProvider) assert isinstance(bot.context_store, CustomContextStore) assert isinstance(bot.user_store, CustomUserStore) assert isinstance(bot.messagelog_store, CustomMessageLogStore) assert bot.default_dialog_service is MyDialog assert isinstance(bot.dialog_router, MyDialogRouter) assert bot.dialog_router.custom_attr == "router_value" assert isinstance(bot.tagger, CustomTagger) # create bot with data_stores bot = Minette( config=config, timezone=tz, logger=logger, data_stores=data_stores, default_dialog_service=default_dialog_service, dialog_router=dialog_router, custom_router_arg=custom_router_arg, tagger=tagger, prepare_table=True ) assert bot.config.get("test_key", section="test_section") == "test_value" assert bot.timezone == timezone("Asia/Tokyo") assert bot.logger.name == "test_core_logger" assert isinstance(bot.connection_provider, CustomConnectionProvider) assert isinstance(bot.context_store, CustomContextStore) assert isinstance(bot.user_store, CustomUserStore) assert isinstance(bot.messagelog_store, CustomMessageLogStore) assert bot.default_dialog_service is MyDialog assert isinstance(bot.dialog_router, MyDialogRouter) assert bot.dialog_router.custom_attr == "router_value" assert isinstance(bot.tagger, CustomTagger) def test_get_user(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register user for test u = bot.user_store.get( channel="get_user_test", channel_user_id=user_id, connection=connection) u.name = "user channel" bot.user_store.save(u, connection) u_detail = bot.user_store.get( channel="get_user_test_detail", channel_user_id=user_id, connection=connection) u_detail.name = "user detail" bot.user_store.save(u_detail, connection) # without detail request = Message( text="hello", channel="get_user_test", channel_user_id=user_id) user = bot._get_user(request, connection) assert user.channel == "get_user_test" assert user.channel_user_id == user_id assert user.name == "user channel" # with detail bot.config.confg_parser.set("minette", "user_scope", "channel_detail") request = Message( text="hello", channel="get_user_test", channel_detail="detail", channel_user_id=user_id) user = bot._get_user(request, connection) assert user.channel == "get_user_test_detail" assert user.channel_user_id == user_id assert user.name == "user detail" def test_save_user(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register user for test u = bot.user_store.get( channel="save_user_test", channel_user_id=user_id, connection=connection) u.name = "<NAME>" # save bot._save_user(u, connection) # check request = Message( text="hello", channel="save_user_test", channel_user_id=user_id) user = bot._get_user(request, connection) assert user.channel == "save_user_test" assert user.channel_user_id == user_id assert user.name == "<NAME>" def test_get_context(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register context for test ctx = bot.context_store.get( channel="get_context_test", channel_user_id=user_id, connection=connection) ctx.data["unixtime"] = date_to_unixtime(now) bot.context_store.save(ctx, connection) ctx_group = bot.context_store.get( channel="get_context_test", channel_user_id="group_" + user_id, connection=connection) ctx_group.data["unixtime"] = date_to_unixtime(now) bot.context_store.save(ctx_group, connection) ctx_detail = bot.context_store.get( channel="get_context_test_detail", channel_user_id=user_id, connection=connection) ctx_detail.data["unixtime"] = date_to_unixtime(now) bot.context_store.save(ctx_detail, connection) # without detail request = Message( text="hello", channel="get_context_test", channel_user_id=user_id) context = bot._get_context(request, connection) assert context.channel == "get_context_test" assert context.channel_user_id == user_id assert context.data["unixtime"] == date_to_unixtime(now) # group without group request = Message( text="hello", channel="get_context_test", channel_user_id=user_id) request.group = Group(id="group_" + user_id) context = bot._get_context(request, connection) assert context.channel == "get_context_test" assert context.channel_user_id == "group_" + user_id assert context.data["unixtime"] == date_to_unixtime(now) # with detail bot.config.confg_parser.set( "minette", "context_scope", "channel_detail") request = Message( text="hello", channel="get_context_test", channel_detail="detail", channel_user_id=user_id) context = bot._get_context(request, connection) assert context.channel == "get_context_test_detail" assert context.channel_user_id == user_id assert context.data["unixtime"] == date_to_unixtime(now) def test_save_context(): bot = Minette(prepare_table=True) with bot.connection_provider.get_connection() as connection: # register context for test ctx = bot.context_store.get( channel="save_context_test", channel_user_id=user_id, connection=connection) ctx.data["unixtime"] = date_to_unixtime(now) # save ctx.topic.keep_on = True bot._save_context(ctx, connection) # check request = Message( text="hello", channel="save_context_test", channel_user_id=user_id) context = bot._get_context(request, connection) assert context.channel == "save_context_test" assert context.channel_user_id == user_id assert context.data["unixtime"] == date_to_unixtime(now) def test_chat(): bot = Minette(default_dialog_service=MyDialog) res = bot.chat("hello") assert res.messages[0].text == "res:hello" def test_chat_error(): bot = Minette(default_dialog_service=MyDialog) bot.connection_provider = None res = bot.chat("hello") assert res.messages == [] def test_chat_messagelog_error(): bot = Minette(default_dialog_service=MyDialog) bot.messagelog_store = None res = bot.chat("hello") assert res.messages[0].text == "res:hello" def test_chat_dialog_error(): bot = Minette(default_dialog_service=ErrorDialog) res = bot.chat("hello") assert res.messages[0].text == "?" def test_chat_timezone(): bot = Minette(default_dialog_service=MyDialog, timezone=timezone("Asia/Tokyo")) res = bot.chat("hello") # bot.timezone itself is +9:19 assert res.messages[0].timestamp.tzinfo == datetime.now(tz=bot.timezone).tzinfo def test_chat_with_tagger(): bot = Minette( default_dialog_service=TaggerDialog, tagger=JanomeTagger) res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" words = res.messages[0].payloads[0].content assert words[0].surface == "今日" assert words[1].surface == "は" assert words[2].surface == "いい" assert words[3].surface == "天気" assert words[4].surface == "です" def test_chat_with_tagger_no_parse(): bot = Minette( default_dialog_service=TaggerDialog, tagger=JanomeTagger, tagger_max_length=0) assert bot.tagger.max_length == 0 res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" words = res.messages[0].payloads[0].content assert words == [] def test_chat_parse_morph_manually(): bot = Minette( default_dialog_service=TaggerManuallyParseDialog, tagger=JanomeTagger, tagger_max_length=0) bot.dialog_uses(tagger=bot.tagger) res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" words = res.messages[0].payloads[0].content assert words[0].surface == "今日" assert words[1].surface == "は" assert words[2].surface == "いい" assert words[3].surface == "天気" assert words[4].surface == "です" def test_chat_parse_morph_manually_generator(): bot = Minette( default_dialog_service=TaggerManuallyParseGeneratorDialog, tagger=JanomeTagger, tagger_max_length=0) bot.dialog_uses(tagger=bot.tagger) res = bot.chat("今日はいい天気です。") assert res.messages[0].text == "今日はいい天気です。" assert isinstance(res.messages[0].payloads[0].content, GeneratorType) words = [w for w in res.messages[0].payloads[0].content] assert words[0].surface == "今日" assert words[1].surface == "は" assert words[2].surface == "いい" assert words[3].surface == "天気" assert words[4].surface == "です" def test_dialog_uses(): class HighCostToCreate: pass class OnlyForFooDS: pass class FooFialog(DialogService): pass # run once when create bot hctc = HighCostToCreate() offds = OnlyForFooDS() # create bot bot = Minette() # set dependencies to dialogs bot.dialog_uses( { FooFialog: {"api": offds} }, highcost=hctc ) assert bot.dialog_router.dependencies.highcost == hctc assert hasattr(bot.dialog_router.dependencies, "api") is False assert bot.dialog_router.dependency_rules[FooFialog]["api"] == offds # create bot and not set dialog dependencies bot_no_dd = Minette() assert bot_no_dd.dialog_router.dependencies is None bot_no_dd.dialog_uses() assert isinstance(bot_no_dd.dialog_router.dependencies, DependencyContainer)
2.1875
2
performance_vs_training.py
medvidov/IMaSC
0
12782712
<filename>performance_vs_training.py from __future__ import unicode_literals, print_function import plac import random import warnings from pathlib import Path import spacy from spacy.util import minibatch, compounding import json import imblearn from utils import prodigy_to_spacy from metrics_clean import Metrics from tqdm import tqdm class PerformanceVsTraining: def __init__(self, n:int = 20, verbose:bool = False, train_path: str = "training_annotations.jsonl", test_path: str = "shaya_validate_test.jsonl", label: list = ['INSTRUMENT', 'SPACECRAFT']) -> None: #starters from parameters self.train_path = train_path self.train_file = None self.test_path = test_path self.test_file = None self.num_data_points = n self.anns_per_point = None self.anns_this_round = 0 #changes with each round self.label = label self.metrics = Metrics("Baby", "shaya_validate_test.jsonl") self.t_vs_p = {} self.nlp = None self.verbose = verbose def _reset_data(self) -> None: #reset all metrics things between rounds self.tp = 0.0 self.fp = 0.0 self.fn = 0.0 self.truths = set() self.guesses = set() self.num_truths = 0 self.accuracy = 0.0 self.recall = 0.0 self.f1 = 0.0 self.precision = 0.0 self.data_annotated = open(self.annotated_path) self.data_raw = open(self.raw_path) def _prep_data(self) -> None: self.train_file = prodigy_to_spacy(self.train_path) num_anns = sum(1 for item in self.train_file) #total number of annotations self.train_file = prodigy_to_spacy(self.train_path) self.anns_per_point = num_anns / self.num_data_points self.test_file = prodigy_to_spacy(self.test_path) def _run_metrics(self) -> int: return self.metrics.calculate() def _train_one_round(self, i: int) -> None: n_iter = 100 #number of iterations. could make this customizable but I feel that it would be too messy #train model and save to self.nlp self.anns_this_round = i * self.anns_per_point if self.verbose: print("Training on %s annotations" % (self.anns_this_round)) count = 0 train_data = [] for line in self.train_file: train_data.append(line) count += 1 if count >= self.anns_this_round: break """Set up the pipeline and entity recognizer, and train the new entity.""" random.seed(0) self.nlp = spacy.blank("en") # create blank Language class # Add entity recognizer to model if it's not in the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in self.nlp.pipe_names: ner = self.nlp.create_pipe("ner") self.nlp.add_pipe(ner) # otherwise, get it, so we can add labels to it else: ner = self.nlp.get_pipe("ner") for label in self.label: ner.add_label(label) # add new entity label to entity recognizer optimizer = self.nlp.begin_training() move_names = list(ner.move_names) # get names of other pipes to disable them during training pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"] other_pipes = [pipe for pipe in self.nlp.pipe_names if pipe not in pipe_exceptions] # only train NER with self.nlp.disable_pipes(*other_pipes) and warnings.catch_warnings(): # show warnings for misaligned entity spans once warnings.filterwarnings("once", category=UserWarning, module='spacy') sizes = compounding(1.0, 4.0, 1.001) # batch up the examples using spaCy's minibatch for itn in range(n_iter): random.shuffle(train_data) # Need some oversampling somewhere in here batches = minibatch(train_data, size=sizes) losses = {} for batch in batches: texts, annotations = zip(*batch) self.nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses) #print("Losses", losses) output_dir = Path("Baby") if not output_dir.exists(): output_dir.mkdir() self.nlp.meta["name"] = "BabyModel" # rename model self.nlp.to_disk(output_dir) def run_test(self): self._prep_data() for i in tqdm(range(1, self.num_data_points + 1)): self._train_one_round(i) f1 = self._run_metrics() self.t_vs_p[round(self.anns_this_round,3)] = round(f1, 3) print(self.t_vs_p) # @plac.annotations( # model=("Model name. Defaults to blank 'en' model.", "option", "m", str), # new_model_name=("New model name for model meta.", "option", "nm", str), # output_dir=("Optional output directory", "option", "o", Path), # n_iter=("Number of training iterations", "option", "n", int), # ) def main(): p = PerformanceVsTraining(100, True) p.run_test() if __name__ == "__main__": plac.call(main)
2.359375
2
pySDC/tests/test_Q_transfer.py
janEbert/pySDC
0
12782713
import nose import numpy as np from numpy.polynomial.polynomial import polyval import pySDC.helpers.transfer_helper as th from pySDC.core.Collocation import CollBase from pySDC.tests.test_helpers import get_derived_from_in_package classes = [] def setup(): global classes, t_start, t_end # generate random boundaries for the time slice with 0.0 <= t_start < 0.2 and 0.8 <= t_end < 1.0 t_start = np.random.rand(1) * 0.2 t_end = 0.8 + np.random.rand(1) * 0.2 classes = get_derived_from_in_package(CollBase, 'pySDC/implementations/collocation_classes') @nose.tools.with_setup(setup) def test_Q_transfer(): for collclass in classes: yield check_Q_transfer, collclass def check_Q_transfer(collclass): """ A simple test program to check the order of the Q interpolation/restriction """ for M in range(3, 9): Mfine = M Mcoarse = int((Mfine+1)/2.0) coll_fine = collclass(Mfine, 0, 1) coll_coarse = collclass(Mcoarse, 0, 1) assert coll_fine.left_is_node == coll_coarse.left_is_node, 'ERROR: should be using the same class for coarse and fine Q' fine_grid = coll_fine.nodes coarse_grid = coll_coarse.nodes for order in range(2,coll_coarse.num_nodes+1): Pcoll = th.interpolation_matrix_1d(fine_grid, coarse_grid, k=order, pad=0, equidist_nested=False) Rcoll = th.restriction_matrix_1d(fine_grid, coarse_grid, k=order, pad=0) for polyorder in range(1,order+2): coeff = np.random.rand(polyorder) ufine = polyval(fine_grid,coeff) ucoarse = polyval(coarse_grid,coeff) uinter = Pcoll.dot(ucoarse) urestr = Rcoll.dot(ufine) err_inter = np.linalg.norm(uinter-ufine, np.inf) err_restr = np.linalg.norm(urestr-ucoarse, np.inf) if polyorder <= order: assert err_inter < 2E-15, "ERROR: Q-interpolation order is not reached, got %s" %err_inter assert err_restr < 2E-15, "ERROR: Q-restriction order is not reached, got %s" % err_restr else: assert err_inter > 2E-15, "ERROR: Q-interpolation order is higher than expected, got %s" % polyorder @nose.tools.with_setup(setup) def test_Q_transfer_minimal(): for collclass in classes: yield check_Q_transfer_minimal, collclass def check_Q_transfer_minimal(collclass): """ A simple test program to check the order of the Q interpolation/restriction for only 2 coarse nodes """ Mcoarse = 2 coll_coarse = collclass(Mcoarse, 0, 1) for M in range(3, 9): Mfine = M coll_fine = collclass(Mfine, 0, 1) assert coll_fine.left_is_node == coll_coarse.left_is_node, 'ERROR: should be using the same class for coarse and fine Q' fine_grid = coll_fine.nodes coarse_grid = coll_coarse.nodes Pcoll = th.interpolation_matrix_1d(fine_grid, coarse_grid, k=2, pad=0, equidist_nested=False) Rcoll = th.restriction_matrix_1d(fine_grid, coarse_grid, k=2, pad=0) for polyorder in range(1,3): coeff = np.random.rand(polyorder) ufine = polyval(fine_grid,coeff) ucoarse = polyval(coarse_grid,coeff) uinter = Pcoll.dot(ucoarse) urestr = Rcoll.dot(ufine) err_inter = np.linalg.norm(uinter-ufine, np.inf) err_restr = np.linalg.norm(urestr-ucoarse, np.inf) if polyorder <= 2: assert err_inter < 2E-15, "ERROR: Q-interpolation order is not reached, got %s" %err_inter assert err_restr < 2E-15, "ERROR: Q-restriction order is not reached, got %s" % err_restr else: assert err_inter > 2E-15, "ERROR: Q-interpolation order is higher than expected, got %s" % polyorder
2.03125
2
examples/basic/hello_world_with_magic.py
osomdev/pyshrimp
6
12782714
#!/usr/bin/env pyshrimp # $opts: magic from pyshrimp import log, shell_cmd print('You can run this as any other script') print('But then what is the point? :)') log('You can use log with a bit more details!') log('The log is initialized by run... but with magic it gets magically invoked!') log('To do that just add magic to opts: # $opts: magic') log('The downside is: script will run differently when invoked directly using %> python script.py') log('Also if you forget to turn on magic those logs will not appear...') shell_cmd('echo You can also run shell scripts easily', capture=False).exec()
2.09375
2
src/modules/agents/__init__.py
simsimiSION/pymarl-algorithm-extension
10
12782715
<gh_stars>1-10 REGISTRY = {} from .rnn_agent import RNNAgent from .commnet_agent import CommAgent from .g2a_agent import G2AAgent from .maven_agent import MAVENAgent REGISTRY["rnn"] = RNNAgent REGISTRY['commnet'] = CommAgent REGISTRY['g2a'] = G2AAgent REGISTRY['maven'] = MAVENAgent
1.117188
1
tool/klint/fullstack/reg_util.py
kylerky/klint
2
12782716
import claripy from kalm import utils from . import ast_util from . import spec_act from . import spec_reg # TODO: Akvile had put a cache here, which is a good idea since the read-then-write pattern is common; # I removed it cause it depended on state.globals, but we should put it back somehow def __constrain_field(symb, start, end, value): """ Makes the constrain symb[end:start] = value on the state solver. """ if value & (2**(1 + end - start) - 1) != value: raise Exception(f"The value {value} does not fit in the specified range {symb}[{end}:{start}].") value = claripy.BVV(value, end - start + 1) if start == 0: if end == symb.size() - 1: return value return symb[symb.size()-1:end+1].concat(value) if end == symb.size() - 1: return value.concat(symb[start-1:0]) return symb[symb.size()-1:end+1].concat(value).concat(symb[start-1:0]) def __init_reg_val_symb(name, data): """ Creates and returns a Symbolic Bit Vector for the identified register based on initial register field values :param name: the name of the register :param data: dictionary associated with the register reg :return: the symbolic register value """ symb = claripy.BVS(name, data['length']) last = 0 # Last unconstrained bit for field, info in data['fields'].items(): if info['init'] == 'X': # Floating value can be modeled as uncontrained last = info['end'] + 1 continue if last != info['start']: # There is an implicit Reserved block symb = __constrain_field(symb, last, info['start'] - 1, 0) last = info['start'] symb = __constrain_field(symb, info['start'], info['end'], info['init']) last = info['end'] + 1 if last != data['length']: # There is a reserved field at the end symb = __constrain_field(symb, last, data['length'] - 1, 0) return symb def __init_reg_val_con(data): """ Creates and returns a Bit Vector for the indentified register based on initial register field values. Returns None if the register cannot be made concrete. :param data: dictionary associated with the register :return: BVV or None """ value = 0 for field, info in data['fields'].items(): if info['init'] == 'X': # Floating value can be modeled as uncontrained return None value = value | (info['init'] << info['start']) bvv = claripy.BVV(value, data['length']) return bvv def get_pci_reg(base, spec): for name, info in spec.items(): b, m, _ = info['addr'][0] assert m == 0, "PCI m must be 0" if b == base: return name raise Exception(f"PCI register with address 0x{base:x} is not in the spec.") def find_reg_from_addr(state, addr, _cache={}): if len(_cache) == 0: for reg, data in spec_reg.registers.items(): idx = 0 for b, m, l in data['addr']: for n in range(0, l+1-idx): _cache[b + n*m] = (reg, n+idx) idx += l + 1 """ Finds which register the address refers to. :return: the name of the register and its index. """ # Optimization: if addr isn't symbolic then deal with it quickly if not isinstance(addr, claripy.ast.Base) or not addr.symbolic: conc_addr = state.solver.eval(addr) cached = _cache.get(conc_addr, None) if cached is not None: return cached for reg, data in spec_reg.registers.items(): len_bytes = data['length'] // 8 idx = 0 for b, m, l in data['addr']: high = b + (l-idx)*m + len_bytes if b <= conc_addr and conc_addr < high: reg_index = 0 if m == 0 else ((conc_addr - b) // m + idx) if int(reg_index) == reg_index: reg_index = int(reg_index) # they compare as equal but without this reg_index is still a float #print(f"{reg}[{reg_index}]") return reg, reg_index idx += l + 1 raise Exception("Need to double-check logic below for symbolic indices...") n = claripy.BVS("n", 64) for reg, data in spec_reg.registers.items(): len_bytes = data['length'] // 8 p = 0 for b, m, l in data['addr']: low = b + (n-p)*m high = low + len_bytes constraint = (n - p >= 0) & (n <= l) & (low <= addr) & (addr < high) if utils.definitely_false(state.solver, constraint): # Continue the search p += l + 1 continue if m != 0: n_con = state.solver.eval(n, extra_constraints=[constraint]) #if not (n_con in state.globals['indices']): # state.globals['indices'] += [n_con] #print(f"{reg}[{n_con}]") return reg, n_con #print(f"{reg}") return reg, None raise Exception(f"Cannot find register at {addr}.") def is_reg_indexed(data): _, m, _ = data['addr'][0] return (m != 0) def fetch_reg(reg_dict, reg, index, data, use_init): """ Fetches register from state global store. Initialises it if needed. """ if reg in reg_dict: d = reg_dict[reg] if is_reg_indexed(data): if index in d.keys(): return d[index] #else: # raise "what do I do here?" else: return d if use_init: reg_bv = __init_reg_val_con(data) if reg_bv is None: # If a concrete value cannot be created, try symbolic reg_bv = __init_reg_val_symb(reg, data) else: reg_bv = claripy.BVS(reg, data['length']) update_reg(reg_dict, reg, index, data, reg_bv) return reg_bv def update_reg(reg_dict, reg, index, data, expr): """ Update register value in the state. :param data: dictionary associated with the register reg """ if not is_reg_indexed(data): reg_dict[reg] = expr elif reg in reg_dict: reg_dict[reg][index] = expr else: reg_dict[reg] = {index: expr} def find_fields_on_write(state, prev, new, reg, spec): """ Finds which named fields of the register have been changed and returns this information as a list. """ data = spec[reg] fields = [] for field, info in data['fields'].items(): s = info['start'] e = info['end'] if not (prev[e:s] == new[e:s]).is_true(): #ideally, utils.can_be_false(state.solver, prev[e:s] == new[e:s]), but that's slow so let's be conservative p = prev[e:s] n = new[e:s] fields += [(field, p, n)] return fields def check_access_write(old_val, new_val, reg, data, fields): """ Determines which fields are written and whether it is legal to do so. """ reg_access = data['access'] if len(fields) == 0 and reg_access == spec_reg.Access.RO: # NOTE: This permits writing to reserved fields raise Exception(f"Illegal attempt to write to register {reg}") for i, f_info in enumerate(fields): (f, p, n) = f_info field_access = data['fields'][f]['access'] if field_access == spec_reg.Access.IW: fields[i] = (fields[i][0],fields[i][1],fields[i][1]) # new is prev return illegal = (field_access == spec_reg.Access.NA) illegal |= (field_access == spec_reg.Access.RO) if illegal: raise Exception(f"Illegal attempt to write to {reg}.{f}") def change_reg_field(state, device, name, index, registers, new): """ Changes a single field in a register and saves the new value. :param name: register indentifier of the form REG.FIELD :param register: register spec :param new: new field value. If the field is to be made symbolic, should be 'X'. """ reg, field = name.split('.', 1) data = registers[reg] prev = -1 dev_regs = device.regs if registers == spec_reg.pci_regs: dev_regs = device.pci_regs reg_old = fetch_reg(dev_regs, reg, index, data, device.use_init[0]) reg_new = None f_info = data['fields'][field] if reg_old.op == 'BVV' and new != 'X': val = 0 if f_info['start'] > 0: before = state.solver.eval_one(reg_old[f_info['start']-1:0]) val = val | before val = val | (new << f_info['start']) if f_info['end'] < data['length'] - 1: after = state.solver.eval_one(reg_old[data['length']-1:f_info['end']+1]) val = val | (after << f_info['end']+1) reg_new = claripy.BVV(val, data['length']) else: if new == 'X': raise "oops" value_len = f_info['end'] - f_info['start'] + 1 if f_info['start'] == 0: reg_new = claripy.BVV(new, value_len) else: reg_new = claripy.BVV(new, value_len).concat(reg_old[f_info['start']-1:0]) if f_info['end'] < data['length'] - 1: reg_new = reg_old[data['length']-1:f_info['end']+1].concat(reg_new) update_reg(dev_regs, reg, index, data, reg_new) def verify_write(state, device, fields, reg, index, reg_dict, _cache={}): """ Verifies if the write can be matched to an action. Raises an exception if it can't be matched. """ if len(_cache) == 0: for action, info in spec_act.actions.items(): for r in info['action'].getRegisters(): if r in _cache: _cache[r].append((action, info)) else: _cache[r] = [(action, info)] counter = device.counter[0] for f_info in fields: (f, prev, new) = f_info # Actions which preconditions fail - useful for debuging rejected = [] # The write to this field is invalid until a matching # action is found valid = False if reg_dict[reg]['fields'][f]['access'] == spec_reg.Access.IW: # Validating this field is optional valid = True for action, info in _cache.get(reg, []): # Does the action match writing to this field? action_matches = False if reg_dict[reg]['fields'][f]['end'] != reg_dict[reg]['fields'][f]['start']: action_matches = info['action'].isWriteFieldCorrect(state, f"{reg}.{f}", new) elif info['action'].isFieldSetOrCleared(f"{reg}.{f}", ast_util.AST.Set) and utils.definitely_true(state.solver, new == claripy.BVV(-1, new.size())): action_matches = True elif info['action'].isFieldSetOrCleared(f"{reg}.{f}", ast_util.AST.Clear) and utils.definitely_true(state.solver, new == 0): action_matches = True if not action_matches: continue # If there is no precondition, the action is valid precond_sat = True if info['precond'] != None: con = info['precond'].generateConstraints(device, spec_reg.registers, spec_reg.pci_regs, index) precond_sat = utils.definitely_true(state.solver, con) if not precond_sat: rejected.append(action) continue valid = True print("Action: ", action) if action == 'Initiate Software Reset': device.use_init[0] = True device.latest_action[0] = action if action in device.actions.keys(): # We have seen this action before device.actions[action] = device.actions[action] + [counter] else: device.actions[action] = [counter] if valid: continue if len(rejected) == 0: raise Exception(f"Cannot validate writing to {reg}.{f}. There are no actions that match writing to this field.") if not valid: raise Exception(f"Cannot validate writing to {reg}.{f}. Matching but rejected actions: {rejected}. Maybe the precondition is not satisfied for one of them?") # If we did not raise any exception, that means we are able to match # concurrent writes to actions. Increment counter to establish # action order. device.counter[0] = counter + 1
2.078125
2
cohesivenet/macros/admin.py
cohesive/python-cohesivenet-sdk
0
12782717
<reponame>cohesive/python-cohesivenet-sdk<gh_stars>0 import time from typing import Dict, List from cohesivenet import VNS3Client, data_types from cohesivenet.macros import api_operations def roll_api_password( new_password, clients: List[VNS3Client] ) -> data_types.BulkOperationResult: """roll_api_password Update all passwords for clients Arguments: new_password {str} clients {List[VNS3Client]} Returns: BulkOperationResult - tuple containing the clients that succeeded and the clients that failed with their exceptions """ def _update_password(_client): resp = _client.config.put_update_api_password(password=<PASSWORD>) _client.configuration.password = <PASSWORD> return resp return api_operations.__bulk_call_client( clients, _update_password, parallelize=True ) def disable_uis(clients: List[VNS3Client]): """disable_uis Disable all UIs for clients Arguments: clients {List} -- List of VNS3Clients Returns: BulkOperationResult """ def _disable_ui(_client): resp = _client.config.put_update_admin_ui(enabled=False) # required to avoid 502 from api resetting itself time.sleep(2.0) return resp return api_operations.__bulk_call_client(clients, _disable_ui) def roll_ui_credentials( new_credentials: Dict, clients: List[VNS3Client], enable_ui=False ): """Update UI credentials to common credentials Arguments: new_credentials {dict} -- {username: str, password: str} clients {List} -- List of VNS3 clients enable_ui {Bool} -- whether to enable UI Returns: BulkOperationResult """ assert "username" in new_credentials, '"username" required in new_credentials arg' assert "password" in new_credentials, '"password" required in new_credentials arg' def _update_ui_credentials(_client): resp = _client.config.put_update_admin_ui( **{ "admin_username": new_credentials.get("username"), "admin_password": <PASSWORD>.get("password"), "enabled": enable_ui, } ) # required to avoid 502 from api resetting itself time.sleep(2.0) return resp return api_operations.__bulk_call_client( clients, _update_ui_credentials, parallelize=True )
2.3125
2
streamlit_server_state/hash.py
whitphx/streamlit-server-state
20
12782718
from typing import Any, Optional, Tuple, Union ReprHash = Union[str, int] ObjDictHash = Optional[str] Hash = Tuple[ReprHash, ObjDictHash] def calc_hash(val: Any) -> Hash: dict_hash: ObjDictHash = None if hasattr(val, "__dict__") and isinstance(val.__dict__, dict): dict_hash = repr(val.__dict__) repr_hash: ReprHash try: repr_hash = repr(val) except Exception: repr_hash = id(val) return (repr_hash, dict_hash)
2.890625
3
codigos-aula/cod3.py
maumneto/exercicio-python
0
12782719
<reponame>maumneto/exercicio-python<gh_stars>0 # import math peso = float(input('Qual o seu peso: ')) altura = float(input('Qual a sua altura: ')) imc = peso/(altura*altura) # imc = peso/(math.pow(altura, 2)) print('O resultado do IMC é ', imc)
3.515625
4
run.py
Bidulman/bidoyon
0
12782720
from app import app HOST = "localhost" PORT = 5000 if __name__ == '__main__': app.run(HOST, PORT, debug=True)
1.8125
2
aegea/top.py
lvreynoso/aegea
57
12782721
from __future__ import absolute_import, division, print_function, unicode_literals import os, sys from datetime import datetime from typing import List import boto3 import botocore.exceptions from . import register_parser from .util import ThreadPoolExecutor from .util.printing import format_table, page_output def get_stats_for_region(region): try: session = boto3.Session(region_name=region) num_instances = len(list(session.resource("ec2").instances.all())) num_amis = len(list(session.resource("ec2").images.filter(Owners=["self"]))) num_vpcs = len(list(session.resource("ec2").vpcs.all())) num_enis = len(list(session.resource("ec2").network_interfaces.all())) num_volumes = len(list(session.resource("ec2").volumes.all())) except botocore.exceptions.ClientError: num_instances, num_amis, num_vpcs, num_enis, num_volumes = ["Access denied"] * 5 # type: ignore return [region, num_instances, num_amis, num_vpcs, num_enis, num_volumes] def top(args): table = [] # type: List[List] columns = ["Region", "Instances", "AMIs", "VPCs", "Network interfaces", "EBS volumes"] executor = ThreadPoolExecutor() table = list(executor.map(get_stats_for_region, boto3.Session().get_available_regions("ec2"))) page_output(format_table(table, column_names=columns, max_col_width=args.max_col_width)) parser = register_parser(top, help='Show an overview of AWS resources per region')
2.28125
2
src/domain/cargo_space.py
KlemenGrebovsek/Cargo-stowage-optimization
2
12782722
from numpy import ndarray from src.domain.cs_column import Column import numpy as np from src.model.stop_at_station_summary import StopAtStationSummary class CargoSpace(object): """ Represents cargo space in transport vehicle/ship ect. """ def __init__(self, width: int, height: int): self._width: int = width self._height: int = height self._columns: list = [Column(height) for i in range(width)] @property def columns(self) -> list: return self._columns def simulate_stop_at_station(self, station_index: int, packages_to_load: list) -> StopAtStationSummary: """ Simulates stop at station, unloads, loads packages and monitors activities. Args: station_index: Current station index. packages_to_load: List of packages to load at this station. Returns: Summary of process and current state of cargo space. """ movements_sum = 0 wait_que = [] packages_per_col = np.zeros(len(self._columns), dtype=int) # Unload packages for current station. movements_sum += self._unload_packages(packages_per_col, wait_que, station_index) # Load packages for current station. movements_sum += self._load_packages(packages_to_load, packages_per_col) # Load packages from waiting que. movements_sum += self._load_packages(wait_que, packages_per_col) return StopAtStationSummary( movements_sum=movements_sum, layout_dist=packages_per_col.tolist(), weight_dist=[column.sum_weight for column in self._columns] ) def _unload_packages(self, packages_per_col: ndarray, wait_que: list, station_index: int) -> int: movement = 0 for index, column in enumerate(self._columns): ret_que, ret_movements = column.unload_at_station(station_index) movement += ret_movements wait_que += ret_que packages_per_col[index] = column.count() return movement def _load_packages(self, packages_to_load: list, packages_per_col: ndarray) -> int: movements = 0 for package in packages_to_load: add_index = package.given_col_index if packages_per_col[add_index] == self._height: add_index = np.argmin(packages_per_col) self._columns[add_index].add(package) packages_per_col[add_index] += 1 movements += 1 return movements
2.625
3
src/pycropml/pparse.py
sielenk-yara/PyCrop2ML
0
12782723
""" License, Header """ from __future__ import absolute_import from __future__ import print_function from copy import copy import xml.etree.ElementTree as xml from . import modelunit as munit from . import description from . import inout from . import parameterset as pset from . import checking from . import algorithm from . import function from . import initialization import os.path import os from path import Path class Parser(object): """ Read an XML file and transform it in our object model. """ def parse(self, crop2ml_dir): raise Exception('Not Implemented') def dispatch(self, elt): return self.__getattribute__(elt.tag)(elt) class ModelParser(Parser): """ Read an XML file and transform it in our object model. """ def parse(self, crop2ml_dir): self.models = [] self.crop2ml_dir = crop2ml_dir xmlrep = Path(os.path.join(self.crop2ml_dir,'crop2ml')) self.algorep = Path(os.path.join(self.crop2ml_dir,'crop2ml')) fn = xmlrep.glob('unit*.xml')+xmlrep.glob('function*.xml')+xmlrep.glob('init*.xml') try: for f in fn: # Current proxy node for managing properties doc = xml.parse(f) root = doc.getroot() self.dispatch(root) except Exception as e: print(("%s is NOT in CropML Format ! %s" % (f, e))) return self.models def dispatch(self, elt): #try: return self.__getattribute__(elt.tag)(elt) #except Exception, e: # print e #raise Exception("Unvalid element %s" % elt.tag) def ModelUnit(self, elts): """ ModelUnit (Description,Inputs,Outputs,Algorithm,Parametersets, Testsets) """ #print('ModelUnit') kwds = elts.attrib self._model = munit.ModelUnit(kwds) self._model.path = os.path.abspath(self.crop2ml_dir) self.models.append(self._model) for elt in list(elts): self.dispatch(elt) def Description(self, elts): """ Description (Title,Author,Institution,Reference,Abstract) """ #print('Description') desc = description.Description() for elt in list(elts): self.name = desc.__setattr__(elt.tag, elt.text) self._model.add_description(desc) def Inputs(self, elts): """ Inputs (Input) """ #print('Inputs') for elt in list(elts): self.dispatch(elt) def Input(self, elts): """ Input """ #print('Input: ') properties = elts.attrib _input = inout.Input(properties) self._model.inputs.append(_input) def Outputs(self, elts): """ Ouputs (Output) """ #print('Outputs') for elt in list(elts): self.dispatch(elt) def Output(self, elts): """ Output """ #print('Output: ') properties = elts.attrib _output = inout.Output(properties) self._model.outputs.append(_output) def Initialization(self, elt): language=elt.attrib["language"] name=elt.attrib["name"] filename=elt.attrib["filename"] #description =elt.attrib["description"] code = initialization.Initialization(name,language, filename) self._model.initialization.append(code) def Function(self, elt): language=elt.attrib["language"] name=elt.attrib["name"] filename=elt.attrib["filename"] type=elt.attrib["type"] description =elt.attrib["description"] code = function.Function(name, language, filename, type, description) self._model.function.append(code) def Algorithm(self, elt): """ Algorithm """ #print('Algorithm') language=elt.attrib["language"] platform=elt.attrib["platform"] if "filename" in elt.attrib: filename=elt.attrib["filename"] #file = self.algorep/ os.path.splitext(filename)[1][1:]/filename file = Path(os.path.join(self.algorep,filename)) with open(file, 'r') as f: development = f.read() algo = algorithm.Algorithm(language, development, platform, filename) else: development = elt.text algo = algorithm.Algorithm(language, development, platform) self._model.algorithms.append(algo) def Parametersets(self, elts): """ Parametersets (Parameterset) """ #print('Parametersets') for elt in list(elts): self.Parameterset(elt) def Parameterset(self, elts): """ Parameterset """ #print('Parameterset: ') properties = elts.attrib name = properties.pop('name') _parameterset = pset.parameterset(self._model, name, properties) for elt in list(elts): self.param(_parameterset, elt) name = _parameterset.name self._model.parametersets[name] = _parameterset def param(self, pset, elt): """ Param """ #print('Param: ', elt.attrib, elt.text) properties = elt.attrib name = properties['name'] pset.params[name] = elt.text def Testsets(self, elts): """ Testsets (Testset) """ #print('Testsets') for elt in list(elts): self.Testset(elt) self.testsets = self._model.testsets def Testset(self, elts): """ Testset(Test) """ #print('Testset') properties = elts.attrib name = properties.pop('name') #print name _testset = checking.testset(self._model, name, properties) for elt in list(elts): #print elt testname = elt.attrib['name'] # name of test #print(testname) input_test={} output_test={} param_test={} #_test = checking.Test(name) for j in elt.findall("InputValue"): # all inputs name = j.attrib["name"] input_test[name]=j.text for j in elt.findall("OutputValue"): # all outputs name = j.attrib["name"] if len(j.attrib)==2: output_test[name]=[j.text,j.attrib["precision"]] else: output_test[name]=[j.text] param_test = {"inputs":input_test, "outputs":output_test} _testset.test.append({testname:param_test}) #self._model.testsets.setdefault(name, []).append(_testset) self._model.testsets.append(_testset) def model_parser(crop2ml_dir): """ Parse a set of models as xml files contained in crop2ml directory and algorithm in src directory This function returns models as python object. Returns ModelUnit object of the Crop2ML Model. """ parser = ModelParser() return parser.parse(crop2ml_dir)
2.375
2
tests/test_chi_water.py
noahkconley/city-scrapers
0
12782724
from datetime import date, time import pytest import json from city_scrapers.spiders.chi_water import Chi_waterSpider test_response = [] with open('tests/files/chi_water_test.json') as f: test_response.extend(json.loads(f.read())) spider = Chi_waterSpider() # This line throws error parsed_items = [item for item in spider._parse_events(test_response)] ##### Test Single Instance ##### def test_name(): assert parsed_items[0]['name'] == 'Board of Commissioners' def test_description(): assert parsed_items[0]['event_description'] == 'no agenda posted' def test_start_time(): assert parsed_items[0]['start'] == { 'date': date(2018, 12, 20), 'time': time(10, 30, 00), 'note': '' } def test_id(): assert parsed_items[0]['id'] == 'chi_water/201812201030/x/board_of_commissioners' def test_location(): assert parsed_items[0]['location'] == { 'address': '100 East Erie Street Chicago, IL 60611', 'name': 'Board Room', 'neighborhood': 'River North' } def test_sources(): assert parsed_items[0]['sources'] == [{'note': '', 'url': 'https://mwrd.legistar.com/DepartmentDetail.aspx?ID=1622&GUID=5E16B4CD-0692-4016-959D-3F080D6CFFB4'}] def test_documents(): assert parsed_items[0]['documents'] == [ { 'url': 'https://mwrd.legistar.com/MeetingDetail.aspx?ID=570944&GUID=DF1E81E4-2660-42AF-A398-8296420B9341&Options=info&Search=', 'note': 'meeting details' }, ] def test_documents_with_agenda(): assert parsed_items[-2]['documents'] == [ {'url': 'https://mwrd.legistar.com/MeetingDetail.aspx?ID=437015&GUID=639F6AB7-6E76-4429-B6F5-FCEB3DC609C5&Options=info&Search=', 'note': 'meeting details'}, {'url': 'https://mwrd.legistar.com/View.ashx?M=A&ID=437015&GUID=639F6AB7-6E76-4429-B6F5-FCEB3DC609C5', 'note': 'agenda'} ] @pytest.mark.parametrize('item', parsed_items) def test_name_not_study_session(item): assert item['name'] != 'Study Session' def test_status(): assert parsed_items[-1]['status'] == 'passed' ##### Parameterized Tests ##### @pytest.mark.parametrize('item', parsed_items) def test_type(item): assert item['_type'] is 'event' @pytest.mark.parametrize('item', parsed_items) def test_all_day(item): assert item['all_day'] is False @pytest.mark.parametrize('item', parsed_items) def test_classification(item): assert item['classification'] == '' @pytest.mark.parametrize('item', parsed_items) def test_end_time(item): assert item['end'] == { 'date': None, 'time': None, 'note': '' }
2.6875
3
database_service/run.py
Fox520/PaymentGateway
1
12782725
<reponame>Fox520/PaymentGateway from db_api import app app.run(host="0.0.0.0", port=6001, debug=True)
1.101563
1
src/sensor.py
VirtualWolf/esp32-air-quality-reader-mqtt
1
12782726
import gc import uasyncio as asyncio import ujson import utime from machine import UART, WDT import ustruct as struct import logger from config import read_configuration c = read_configuration() wdt = WDT(timeout=600000) async def start_readings(client): while True: logger.log('Initialising UART bus') uart = UART(1, 9600) uart.init(9600, bits=8, parity=None, rx=16, timeout=250) count = 0 while count < 30: # logger.log('Warming sensor up, reading #%d of 30' % count) await read_sensor(uart) count = count + 1 await asyncio.sleep(1) logger.log('Finished warming up') data = await read_sensor(uart) if data is None: await asyncio.sleep(1) await read_sensor(uart) logger.log(data) logger.log('Turning off UART bus') uart.deinit() timestamp = (utime.time() + 946684800) * 1000 data['timestamp'] = timestamp json = ujson.dumps(data) await client.publish(c['topic'], json, qos = 1, retain = True) wdt.feed() await asyncio.sleep(180) async def read_sensor(uart): try: buffer = [] data = uart.read(32) if data is None: logger.log('No data received, re-running') await asyncio.sleep(1) return data = list(data) gc.collect() buffer += data while buffer and buffer[0] != 0x42: buffer.pop(0) # Avoid an overrun if all bad data if len(buffer) > 200: buffer = [] if len(buffer) < 32: logger.log('Buffer length > 32, re-running') await asyncio.sleep(1) await read_sensor(uart) if buffer[1] != 0x4d: logger.log('Second element of buffer was not 0x4d, re-running') buffer.pop(0) await asyncio.sleep(1) await read_sensor(uart) frame_len = struct.unpack(">H", bytes(buffer[2:4]))[0] gc.collect() if frame_len != 28: buffer = [] logger.log('Frame length was not 28, re-running') await asyncio.sleep(1) await read_sensor(uart) # In order: # - PM1.0 standard # - PM2.5 standard # - PM10 standard # - PM1.0 environmental # - PM2.5 environmental # - PM10 environmental # - Particles > 0.3m / 0.1L air # - Particles > 0.5um / 0.1L air # - Particles > 1.0um / 0.1L air # - Particles > 2.5um / 0.1L air # - Particles > 5.0um / 0.1L air # - Particles > 10um / 0.1L air # - Skip # - Checksum frame = struct.unpack(">HHHHHHHHHHHHHH", bytes(buffer[4:])) check = sum(buffer[0:30]) if check != frame[-1]: buffer = [] logger.log('Checksums don\'t match, re-running') await asyncio.sleep(1) await read_sensor(uart) buffer = buffer[32:] return { 'pm_1_0': frame[3], 'pm_2_5': frame[4], 'pm_10': frame[5], 'particles_0_3um': frame[6], 'particles_0_5um': frame[7], 'particles_1_0um': frame[8], 'particles_2_5um': frame[9], 'particles_5_0um': frame[10], 'particles_10um': frame[11], } except Exception as e: logger.log(e)
2.53125
3
client/python/ProjectName/Client/__init__.py
KaNaDaAT/java-spring-template
0
12782727
# flake8: noqa """ OpenAPI definition No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v0 Generated by: https://openapi-generator.tech """ __version__ = "0.1.0" # import ApiClient from ProjectName.Client.api_client import ApiClient # import Configuration from ProjectName.Client.configuration import Configuration # import exceptions from ProjectName.Client.exceptions import OpenApiException from ProjectName.Client.exceptions import ApiAttributeError from ProjectName.Client.exceptions import ApiTypeError from ProjectName.Client.exceptions import ApiValueError from ProjectName.Client.exceptions import ApiKeyError from ProjectName.Client.exceptions import ApiException
1.054688
1
interpreter/lexical_analysis/lexer.py
rand0musername/CInterpreter
0
12782728
""" SCI - Simple C Interpreter """ from .token_type import * from .token import Token # maps strings that have a special meaning to corresponding tokens RESERVED_KEYWORDS = { 'char': Token(CHAR, 'char'), 'int': Token(INT, 'int'), 'float': Token(FLOAT, 'float'), 'double': Token(DOUBLE, 'double'), 'long': Token(LONG, 'long'), 'short': Token(SHORT, 'short'), 'signed': Token(SIGNED, 'signed'), 'unsigned': Token(UNSIGNED, 'unsigned'), 'if': Token(IF, 'if'), 'else': Token(ELSE, 'else'), 'for': Token(FOR, 'for'), 'while': Token(WHILE, 'while'), 'do': Token(DO, 'do'), 'return': Token(RETURN, 'return'), 'break': Token(BREAK, 'break'), 'continue': Token(CONTINUE, 'continue'), 'switch': Token(SWITCH, 'switch'), 'case': Token(CASE, 'case'), 'default': Token(DEFAULT, 'default'), 'struct': Token(STRUCT, 'struct'), } class LexicalError(Exception): pass class Lexer(object): def __init__(self, text): """ Initializes the lexer. text: the source code to be lexically analyzed pos: the current lexer position current_char: the character at the current lexer position line: the current line number """ self.text = text self.pos = 0 self.current_char = self.text[self.pos] self.line = 1 def error(self, message): """ Raises a lexical error. """ raise LexicalError("LexicalError: " + message) def advance(self, n=1): """ Advances the `pos` pointer and sets the `current_char` variable. """ self.pos += n if self.pos >= len(self.text): self.current_char = None # Indicates end of input else: self.current_char = self.text[self.pos] def peek(self, n): """ Returns the n-th char from the current positions but don't change state. """ peek_pos = self.pos + n if peek_pos > len(self.text) - 1: return None else: return self.text[peek_pos] def skip_whitespace(self): """ Skips all whitespace starting from the current position. """ while self.current_char is not None and self.current_char.isspace(): if self.current_char == '\n': self.line += 1 self.advance() def skip_comment(self): """ Skips a single line comment starting at the current position. """ self.advance(2) while self.current_char is not None: if self.current_char == '\n': self.line += 1 self.advance() return self.advance() def skip_multiline_comment(self): """ Skip a multi line comment starting at the current position. """ self.advance(2) while self.current_char is not None: if self.current_char == '*' and self.peek(1) == '/': self.advance(2) return if self.current_char == '\n': self.line += 1 self.advance() self.error("Unterminated comment at line {}".format(self.line)) def number(self): """Handles an integer or a real number.""" result = '' while self.current_char is not None and self.current_char.isdigit(): result += self.current_char self.advance() if self.current_char == '.': result += self.current_char self.advance() while self.current_char is not None and self.current_char.isdigit(): result += self.current_char self.advance() token = Token(REAL_CONST, float(result)) else: token = Token(INTEGER_CONST, int(result)) return token def string(self): """ Handles a string literal. """ result = '' self.advance() while self.current_char is not '"': if self.current_char is None: self.error( message='Unterminated string literal at line {}'.format(self.line) ) result += self.current_char self.advance() self.advance() result = result.replace('\\n', '\n') return Token(STRING, result) def char(self): """ Handles a character literal. """ self.advance() ch = self.current_char self.advance() if ch == '\\' and self.current_char == 'n': ch = '\n' self.advance() if self.current_char != '\'': self.error("Unterminated char literal at line {}".format(self.line)) self.advance() return Token(CHAR_CONST, ord(ch)) def _id(self): """ Handles identifiers and reserved keywords. """ result = '' while self.current_char is not None and (self.current_char.isalnum() or self.current_char == '_'): result += self.current_char self.advance() # Return a reserved keyword token or an id token. token = RESERVED_KEYWORDS.get(result, Token(ID, result)) return token @property def get_next_token(self): """ The main lexer method that returns the next token in the text. """ while self.current_char is not None: if self.current_char.isspace(): self.skip_whitespace() continue if self.current_char == '/' and self.peek(1) == '/': self.skip_comment() continue if self.current_char == '/' and self.peek(1) == '*': self.skip_multiline_comment() continue if self.current_char.isalpha(): return self._id() if self.current_char.isdigit(): return self.number() if self.current_char == '"': return self.string() if self.current_char == '\'': return self.char() # three-char tokens if self.current_char == '<' and self.peek(1) == '<' and self.peek(2) == '=': self.advance(3) return Token(LEFT_ASSIGN, '<<=') if self.current_char == '>' and self.peek(1) == '>' and self.peek(2) == '=': self.advance(3) return Token(RIGHT_ASSIGN, '>>=') # two-char tokens if self.current_char == '+' and self.peek(1) == '=': self.advance(2) return Token(ADD_ASSIGN, '+=') if self.current_char == '-' and self.peek(1) == '=': self.advance(2) return Token(SUB_ASSIGN, '-=') if self.current_char == '*' and self.peek(1) == '=': self.advance(2) return Token(MUL_ASSIGN, '*=') if self.current_char == '/' and self.peek(1) == '=': self.advance() self.advance() return Token(DIV_ASSIGN, '/=') if self.current_char == '%' and self.peek(1) == '=': self.advance(2) return Token(MOD_ASSIGN, '%=') if self.current_char == '&' and self.peek(1) == '=': self.advance(2) return Token(AND_ASSIGN, '&=') if self.current_char == '^' and self.peek(1) == '=': self.advance(2) return Token(XOR_ASSIGN, '^=') if self.current_char == '|' and self.peek(1) == '=': self.advance(2) return Token(OR_ASSIGN, '|=') if self.current_char == '>' and self.peek(1) == '>': self.advance(2) return Token(RIGHT_OP, '>>') if self.current_char == '<' and self.peek(1) == '<': self.advance(2) return Token(LEFT_OP, '<<') if self.current_char == '+' and self.peek(1) == '+': self.advance(2) return Token(INC_OP, '++') if self.current_char == '-' and self.peek(1) == '-': self.advance(2) return Token(DEC_OP, '--') if self.current_char == '&' and self.peek(1) == '&': self.advance(2) return Token(LOG_AND_OP, '&&') if self.current_char == '|' and self.peek(1) == '|': self.advance(2) return Token(LOG_OR_OP, '||') if self.current_char == '<' and self.peek(1) == '=': self.advance(2) return Token(LE_OP, '<=') if self.current_char == '>' and self.peek(1) == '=': self.advance(2) return Token(GE_OP, '>=') if self.current_char == '=' and self.peek(1) == '=': self.advance(2) return Token(EQ_OP, '==') if self.current_char == '!' and self.peek(1) == '=': self.advance(2) return Token(NE_OP, '!=') if self.current_char == '-' and self.peek(1) == '>': self.advance(2) return Token(ARROW, '->') # one-char tokens if self.current_char == '<': self.advance() return Token(LT_OP, '<') if self.current_char == '>': self.advance() return Token(GT_OP, '>') if self.current_char == '=': self.advance() return Token(ASSIGN, '=') if self.current_char == '!': self.advance() return Token(LOG_NEG, '!') if self.current_char == '&': self.advance() return Token(AMPERSAND, '&') if self.current_char == '|': self.advance() return Token(OR_OP, '|') if self.current_char == '^': self.advance() return Token(XOR_OP, '|') if self.current_char == '+': self.advance() return Token(PLUS, '+') if self.current_char == '-': self.advance() return Token(MINUS, '-') if self.current_char == '*': self.advance() return Token(ASTERISK, '*') if self.current_char == '/': self.advance() return Token(DIV_OP, '/') if self.current_char == '%': self.advance() return Token(MOD_OP, '%') if self.current_char == '(': self.advance() return Token(LPAREN, '(') if self.current_char == ')': self.advance() return Token(RPAREN, ')') if self.current_char == '{': self.advance() return Token(LBRACKET, '{') if self.current_char == '}': self.advance() return Token(RBRACKET, '}') if self.current_char == ';': self.advance() return Token(SEMICOLON, ';') if self.current_char == ':': self.advance() return Token(COLON, ':') if self.current_char == ',': self.advance() return Token(COMMA, ',') if self.current_char == '.': self.advance() return Token(DOT, '.') if self.current_char == '#': self.advance() return Token(HASH, '#') if self.current_char == '?': self.advance() return Token(QUESTION_MARK, '?') self.error( message="Invalid char {} at line {}".format(self.current_char, self.line) ) return Token(EOF, None)
3.828125
4
utils/reader.py
syth0le/Neural-Networks-Labs
0
12782729
<reponame>syth0le/Neural-Networks-Labs<gh_stars>0 from typing import List # from keras.datasets import mnist from openpyxl import load_workbook class Reader: def __init__(self): pass # (train_X, train_y), (test_X, test_y) = mnist.load_data() # self.train_X = train_X # self.train_y = train_y # self.test_X = test_X # self.test_y = test_y @classmethod def read_train_data(cls): X = [] table = load_workbook('number_train.xlsx') table_sheet_names = table.sheetnames for sheet in range(len(table.sheetnames)): X.append([]) for i in range(5): for j in range(7): X[len(X) - 1].append( table.get_sheet_by_name(str(table_sheet_names[sheet])).cell(row=j + 1, column=i + 1).value) return X @classmethod def read_test_data(cls): X = [] table = load_workbook('number_data.xlsx') table_sheet = table.get_sheet_by_name("0") for i in range(5): for j in range(7): X.append(table_sheet.cell(row=j + 1, column=i + 1).value) return X @staticmethod def get_target_data(number: int) -> List[float]: table = load_workbook('number_target.xlsx') target = [] for i in range(10): target.append(table.get_sheet_by_name(str(1)).cell(row=i + 1, column=number + 1).value) return target
2.765625
3
openpifpaf/train_instance_scorer.py
adujardin/openpifpaf
0
12782730
import json import random import pysparkling import torch from .decoder.utils.instance_scorer import InstanceScorer from . import show DATA_FILE = ('outputs/resnet101block5-pif-paf-edge401-190412-151013.pkl' '.decodertraindata-edge641-samples0.json') # pylint: skip-file def plot_training_data(train_data, val_data, entry=0, entryname=None): train_x, train_y = train_data val_x, val_y = val_data with show.canvas() as ax: ax.hist([xx[entry] for xx in train_x[train_y[:, 0] == 1]], bins=50, alpha=0.3, density=True, color='navy', label='train true') ax.hist([xx[entry] for xx in train_x[train_y[:, 0] == 0]], bins=50, alpha=0.3, density=True, color='orange', label='train false') ax.hist([xx[entry] for xx in val_x[val_y[:, 0] == 1]], histtype='step', bins=50, density=True, color='navy', label='val true') ax.hist([xx[entry] for xx in val_x[val_y[:, 0] == 0]], histtype='step', bins=50, density=True, color='orange', label='val false') if entryname: ax.set_xlabel(entryname) ax.legend() def train_val_split_score(data, train_fraction=0.6, balance=True): xy_list = data.map(lambda d: ([d['score']], [float(d['target'])])).collect() if balance: n_true = sum(1 for x, y in xy_list if y[0] == 1.0) n_false = sum(1 for x, y in xy_list if y[0] == 0.0) p_true = min(1.0, n_false / n_true) p_false = min(1.0, n_true / n_false) xy_list = [(x, y) for x, y in xy_list if random.random() < (p_true if y[0] == 1.0 else p_false)] n_train = int(train_fraction * len(xy_list)) return ( (torch.tensor([x for x, _ in xy_list[:n_train]]), torch.tensor([y for _, y in xy_list[:n_train]])), (torch.tensor([x for x, _ in xy_list[n_train:]]), torch.tensor([y for _, y in xy_list[n_train:]])), ) def train_val_split_keypointscores(data, train_fraction=0.6): xy_list = ( data .map(lambda d: ([d['score']] + [xyv[2] for xyv in d['keypoints']] + d['joint_scales'], [float(d['target'])])) .collect() ) n_train = int(train_fraction * len(xy_list)) return ( (torch.tensor([x for x, _ in xy_list[:n_train]]), torch.tensor([y for _, y in xy_list[:n_train]])), (torch.tensor([x for x, _ in xy_list[n_train:]]), torch.tensor([y for _, y in xy_list[n_train:]])), ) def train_epoch(model, loader, optimizer): epoch_loss = 0.0 for x, y in loader: optimizer.zero_grad() y_hat = model(x) loss = torch.nn.functional.binary_cross_entropy(y_hat, y) epoch_loss += float(loss.item()) loss.backward() optimizer.step() return epoch_loss / len(loader) def val_epoch(model, loader): epoch_loss = 0.0 with torch.no_grad(): for x, y in loader: y_hat = model(x) loss = torch.nn.functional.binary_cross_entropy(y_hat, y) epoch_loss += float(loss.item()) return epoch_loss / len(loader) def main(): sc = pysparkling.Context() data = sc.textFile(DATA_FILE).map(json.loads).cache() train_data_score, val_data_score = train_val_split_score(data) plot_training_data(train_data_score, val_data_score, entryname='score') train_data, val_data = train_val_split_keypointscores(data) model = InstanceScorer() train_dataset = torch.utils.data.TensorDataset(*train_data) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=256, shuffle=True) val_dataset = torch.utils.data.TensorDataset(*val_data) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=256, shuffle=False) optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9) for epoch_i in range(100): train_loss = train_epoch(model, train_loader, optimizer) val_loss = val_epoch(model, val_loader) print(epoch_i, train_loss, val_loss) with torch.no_grad(): post_train_data = (model(train_data[0]), train_data[1]) post_val_data = (model(val_data[0]), val_data[1]) plot_training_data(post_train_data, post_val_data, entryname='optimized score') torch.save(model, 'instance_scorer.pkl') if __name__ == '__main__': main()
2.296875
2
inverter.py
akarasman/yolo-heatmaps
0
12782731
# trunk-ignore(black-py) import torch from torch.nn import Conv1d, Conv2d, Conv3d, MaxPool1d, MaxPool2d, MaxPool3d, Linear, Upsample from lrp.utils import Flatten from inverter_util import ( upsample_inverse, max_pool_nd_inverse, max_pool_nd_fwd_hook, conv_nd_fwd_hook, linear_fwd_hook, upsample_fwd_hook, silent_pass ) FWD_HOOK = { torch.nn.MaxPool1d : max_pool_nd_fwd_hook, torch.nn.MaxPool2d : max_pool_nd_fwd_hook, torch.nn.MaxPool3d : max_pool_nd_fwd_hook, torch.nn.Conv1d : conv_nd_fwd_hook, torch.nn.Conv2d : conv_nd_fwd_hook, torch.nn.Conv3d : conv_nd_fwd_hook, torch.nn.Linear : linear_fwd_hook, torch.nn.Upsample : upsample_fwd_hook, torch.nn.BatchNorm1d : silent_pass, torch.nn.BatchNorm2d : silent_pass, torch.nn.BatchNorm3d : silent_pass, torch.nn.ReLU : silent_pass, torch.nn.modules.activation.ReLU : silent_pass, torch.nn.ELU : silent_pass, Flatten : silent_pass, torch.nn.Dropout : silent_pass, torch.nn.Dropout2d : silent_pass, torch.nn.Dropout3d : silent_pass, torch.nn.Softmax : silent_pass, torch.nn.LogSoftmax : silent_pass, torch.nn.Sigmoid : silent_pass, torch.nn.SiLU : conv_nd_fwd_hook } # Rule-independant inversion functions IDENTITY_MAPPINGS = ( torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.ReLU, torch.nn.modules.activation.ReLU, torch.nn.ELU, Flatten, torch.nn.Dropout, torch.nn.Dropout2d, torch.nn.Dropout3d, torch.nn.Softmax, torch.nn.LogSoftmax, torch.nn.Sigmoid, torch.nn.SiLU ) def module_tracker(fwd_hook_func): """ Wrapper for tracking the layers throughout the forward pass. Arguments --------- fwd_hook_func : function Forward hook function to be wrapped. Returns ------- function : Wrapped hook function """ def hook_wrapper(layer, *args): return fwd_hook_func(layer, *args) return hook_wrapper class Inverter(torch.nn.Module): """ Class for computing the relevance propagation and supplying the necessary forward hooks for all layers. Attributes ---------- linear_rule : LinearRule Propagation rule to use for linear layers conv_rule : ConvRule Propagation rule for convolutional layers pass_not_implemented : bool Silent pass layers that have no registered forward hooks device : torch.device Device to put relevance data Methods ------- Propagates incoming relevance for the specified layer, applying any necessary inversion functions along the way. """ # Implemented rules for relevance propagation. def __init__(self, linear_rule=None, conv_rule=None, pass_not_implemented=False, device=torch.device('cpu'),): self.device = device self.warned_log_softmax = False self.linear_rule = linear_rule self.conv_rule = conv_rule self.fwd_hooks = FWD_HOOK self.inv_funcs= {} self.pass_not_implemented = pass_not_implemented self.module_list = [] def register_fwd_hook(self, module, fwd_hook): """ Register forward hook function to module. """ if module in self.fwd_hooks.keys(): print('Warning: Replacing previous fwd hook registered for {}'. format(module)) self.fwd_hooks[module] = fwd_hook def register_inv_func(self, module, inv_func): """ Register inverse function to module. """ if module in self.inv_funcs.keys(): print('Warning: Replacing previous inverse registered for {}'. format(module)) self.inv_funcs[module] = inv_func def get_layer_fwd_hook(self, layer) : """ Interface for getting any layer's forward hook """ try : return self.fwd_hooks[type(layer)] except : if self.pass_not_implemented : return silent_pass raise \ NotImplementedError('Forward hook for layer type \"{}\" not implemented'. format(type(layer))) def invert(self, layer : torch.nn.Module, relevance : torch.Tensor, **kwargs) -> torch.Tensor : """ This method computes the backward pass for the incoming relevance for the specified layer. Arguments --------- layer : torch.nn.Module Layer to propagate relevance through. Can be Conv1d, Conv2d or any combination thereof in a higher level module. relevance : torch.Tensor Incoming relevance from higher up in the network. Returns ------ torch.Tensor : Redistributed relevance going to the lower layers in the network. """ if isinstance(layer, (Conv1d, Conv2d, Conv3d)): if self.conv_rule is None : raise Exception('Model contains conv layers but the conv rule was not set !') return self.conv_rule(layer, relevance, **kwargs) elif isinstance(layer, (MaxPool1d, MaxPool2d, MaxPool3d)): return max_pool_nd_inverse(layer, relevance) elif isinstance(layer, Linear) : if self.linear_rule is None : raise Exception('Model contains linear layers but the linear rule was not set !') return self.linear_rule(layer, relevance.tensor, **kwargs) elif isinstance(layer, Upsample): return upsample_inverse(layer, relevance) elif isinstance(layer, torch.nn.modules.container.Sequential): for l in layer[::-1] : relevance = self.invert(l, relevance) return relevance elif type(layer) in IDENTITY_MAPPINGS : return relevance elif hasattr(layer, 'propagate'): return layer.propagate(self, relevance) else : try : return self.inv_funcs[type(layer)](self, layer, relevance, **kwargs) except KeyError : raise NotImplementedError(f'Relevance propagation not implemented for layer type {type(layer)}') def __call__(self, layer : torch.nn.Module, relevance : torch.Tensor, **kwargs) -> torch.Tensor : """ Wrapper for invert method """ return self.invert(layer, relevance, **kwargs)
1.9375
2
_modules/utils/html/escape(text)/tests.py
looking-for-a-job/django-examples
0
12782732
<filename>_modules/utils/html/escape(text)/tests.py #!/usr/bin/env python from django.utils.html import escape """ https://docs.djangoproject.com/en/dev/ref/utils/#django.utils.html.escape escape(text) """ text = "<script>alert('test')</script>" print(escape(text))
1.710938
2
admin/route_manager.py
modcastpodcast/link-shortener-backend
4
12782733
""" Module to take in a directory, iterate through it and create a Starlette routing map. """ import importlib import inspect from pathlib import Path from typing import Union from starlette.routing import Route as StarletteRoute, Mount from nested_dict import nested_dict from admin.route import Route def construct_route_map_from_dict(route_dict: dict): route_map = [] for mount, item in route_dict.items(): if inspect.isclass(item): route_map.append(StarletteRoute(mount, item)) else: route_map.append(Mount(mount, routes=construct_route_map_from_dict(item))) return route_map def create_route_map(): routes_directory = Path("admin") / "routes" route_dict = nested_dict() for file in routes_directory.rglob("*.py"): import_name = f"{str(file.parent).replace('/', '.')}.{file.stem}" route = importlib.import_module(import_name) for _member_name, member in inspect.getmembers(route): if inspect.isclass(member): if issubclass(member, Route) and member != Route: member.check_parameters() levels = str(file.parent).split("/")[2:] current_level = None for level in levels: if current_level is None: current_level = route_dict[f"/{level}"] else: current_level = current_level[f"/{level}"] if current_level is not None: current_level[member.path] = member else: route_dict[member.path] = member route_map = construct_route_map_from_dict(route_dict.to_dict()) return route_map
3.015625
3
bayesian_linear_regressor.py
KoyoteScience/BayesianLinearRegressor
0
12782734
import numpy as np class BayesLinearRegressor: def __init__(self, number_of_features, alpha=1e6): ''' :param number_of_features: Integer number of features in the training rows, excluding the intercept and output values :param alpha: Float inverse ridge regularizaiton constant, set to 1e6 ''' # alpha is our initial guess on the variance, basically, all parameters initialized to 0 with alpha variance # so, you know, just set it super-high. This is the same as L2 regularization, btw! # all those weird Bayesian update rules actually amount to very standard linear algebra identities # Once you see that it's just updating the moment matrix and the sum of squared residuals, it's straightforward! # So those are our internal variables that everything else depends upon self.number_of_features = number_of_features self.alpha = alpha self.beta_means = np.array([0] * (number_of_features + 1), dtype=np.float) # + 1 for the intercept self.number_of_updates = 0 self.residual_sum_squares = 0 self.moment_matrix = np.eye(number_of_features + 2) * 0.0 # + 2 for the intercept and the output self.regularization_matrix = np.eye(self.number_of_features + 1) / self.alpha self.regularization_matrix[0, 0] = 0 # we don't regularize the intercept term def partial_fit(self, X, Y, W=None, reverse=False): ''' The online updating rules :param X: Input feature vector(s) as 2D numpy array :param Y: Input output values as 1D numpy array :param W: Data weights (relative to unity) as a 1D numpy array :param reverse: Boolean, True means that we "unfit" the training rows, otherwise acts as normal :return: None ''' # see http://www.biostat.umn.edu/~ph7440/pubh7440/BayesianLinearModelGoryDetails.pdf for gory details # clear the frozen parameter sample since we are updating the parameter distributions self.frozen_parameter_sample = None moment_of_X_before = self.moment_matrix[:-1, :-1] beta_means_before = self.beta_means.copy() inverted_covariance_matrix_before = moment_of_X_before + self.regularization_matrix # Here we concatenate the intercept input value (constant 1), the input vector, and the output value: rank_n_obs_update_matrix = np.array([[1] + row + output for row, output in zip(X.tolist(), Y.tolist())]) if W is None: moment_matrix_update_term = rank_n_obs_update_matrix.T @ rank_n_obs_update_matrix else: moment_matrix_update_term = rank_n_obs_update_matrix.T @ np.diag(W.tolist()) @ rank_n_obs_update_matrix if not reverse: self.moment_matrix += moment_matrix_update_term moment_of_Y_update_term = Y.T @ Y self.number_of_updates += 1 else: self.moment_matrix -= moment_matrix_update_term moment_of_Y_update_term = -Y.T @ Y self.number_of_updates -= 1 moment_of_X = self.moment_matrix[:-1, :-1] moment_of_X_and_Y = self.moment_matrix[:-1, -1] moment_of_X_and_Y_update_term = moment_matrix_update_term[:-1, -1] inverted_covariance_matrix = moment_of_X + self.regularization_matrix covariance_matrix = np.linalg.inv(inverted_covariance_matrix) # these two statements are equivalent, so I choose the simpler one, although the latter # one is more consistent with the notation I come across in the literature self.beta_means = covariance_matrix @ (moment_of_X_and_Y) # self.beta_means = covariance_matrix @ (inverted_covariance_matrix_before @ beta_means_before + moment_of_X_and_Y_update_term) if self.number_of_updates > len(covariance_matrix) - 1: self.residual_sum_squares += ( moment_of_Y_update_term - self.beta_means.T @ inverted_covariance_matrix @ self.beta_means + beta_means_before.T @ inverted_covariance_matrix_before @ beta_means_before ) def partial_unfit(self, X, Y): return self.partial_fit(X, Y, reverse=True) def predict(self, X, use_means=False, freeze_parameter_sample=False): ''' :param X: Input feature vector excluding the intercept constant as a 2D numpy array :param use_means: Boolean where True means we just provide the prediciton at the mean of the coefficients (sometimes referred to as deterministic prediction); otherwise sample parameters from the multivariate norm and incorporate the uncertainty of the parameters in your prediction :param freeze_parameter_sample: Boolean. When set to True, we sample from the parameters only once for each prediction :return: ''' X_with_intercept = np.array([[1] + row.tolist() for row in X]) scale_multiplier = 1.0 / max(1.0, (self.number_of_updates - self.number_of_features - 1)) if use_means: return X_with_intercept @ self.beta_means else: if freeze_parameter_sample: if self.frozen_parameter_sample is not None: self.frozen_parameter_sample = np.random.multivariate_normal( self.beta_means.T[0], self.residual_sum_squares * scale_multiplier * self.cov ) beta = self.frozen_parameter_sample else: beta = np.random.multivariate_normal( self.beta_means.T[0], self.residual_sum_squares * scale_multiplier * self.cov_params ) return X_with_intercept @ beta @property def coef_(self): return self.beta_means[1:] @property def intercept_(self): return float(self.beta_means[0]) @property def cov_params(self): scale_multiplier = 1.0 / max(1.0, (self.number_of_updates - self.number_of_features - 1)) moment_of_X = self.moment_matrix[:-1, :-1] inverted_covariance_matrix = moment_of_X + np.eye(self.number_of_features + 1) / self.alpha return np.linalg.inv(inverted_covariance_matrix) * self.residual_sum_squares * scale_multiplier
3.0625
3
opennre/tokenization/word_piece_tokenizer.py
WinterSoHot/OpenNRE
3,284
12782735
<filename>opennre/tokenization/word_piece_tokenizer.py # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WordpieceTokenizer classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unicodedata from .utils import (load_vocab, convert_to_unicode, clean_text, split_on_whitespace, convert_by_vocab, tokenize_chinese_chars) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab = None, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = load_vocab(vocab) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: output_tokens: A list of wordpiece tokens. current_positions: A list of the current positions for the original words in text . """ text = convert_to_unicode(text) text = clean_text(text) text = tokenize_chinese_chars(text) output_tokens = [] current_positions = [] token_list = split_on_whitespace(text) for chars in token_list: if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) if start > 0: substr = "##" + chars[start:end] else: substr = chars[start:end] cur_substr = None while start < end: if substr in self.vocab: cur_substr = substr break end -= 1 substr = substr[:-1] if cur_substr is None: is_bad = True break else: sub_tokens.append(cur_substr) start = end current_positions.append([]) if is_bad: current_positions[-1].append(len(output_tokens)) output_tokens.append(self.unk_token) current_positions[-1].append(len(output_tokens)) else: current_positions[-1].append(len(output_tokens)) output_tokens.extend(sub_tokens) current_positions[-1].append(len(output_tokens)) return output_tokens, current_positions def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids)
2.578125
3
indy_node/server/req_handlers/read_req_handlers/get_revoc_reg_handler.py
rantwijk/indy-node
0
12782736
<reponame>rantwijk/indy-node from plenum.server.request_handlers.handler_interfaces.read_request_handler import ReadRequestHandler class GetRevocRegHandler(ReadRequestHandler): pass
1.421875
1
generate_maze.py
temibabs/MPHRL
8
12782737
<filename>generate_maze.py<gh_stars>1-10 import os import numpy as np import tensorflow as tf from config import c, n import utils def calc_lookat(corridors): l, t, r, b = zip(* [i['pos'] for i in corridors]) min_l = min(l) max_r = max(r) min_b = min(b) max_t = max(t) return [np.mean([min_l, max_r]), np.mean([min_b, max_t]), 0] def validate_paths(corridors): for i in range(len(corridors)): for j in range(i + 1, len(corridors)): l1, t1, r1, b1 = corridors[i]['pos'] l2, t2, r2, b2 = corridors[j]['pos'] if intersect(l1, l2, r1, r2) and intersect(b1, b2, t1, t2): return False return True def intersect(l1, l2, r1, r2): if l1 < l2 < r1 or l1 < r2 < r1 or l2 < l1 < r2 or l2 < r1 < r2: print('no good...', l1, l2, r1, r2) return True return False def main(): mazes = [] goals = [] direction = 2 for i in range(c.num_mazes): valid = False while not valid: paths = [[0, 0]] # NOTE: MAZE for j in range(c.num_corr[i]): # NOTE: CORRIDOR corr_len = np.random.randint(low=c.min_corr_len, high=c.max_corr_len) xy = np.zeros(2).tolist() if direction < 2: direction = 1 - direction else: direction = np.random.randint(low=0, high=2) xy[direction] = paths[-1][direction] + corr_len * ( np.random.randint(low=0, high=2) * 2 - 1) xy[1 - direction] = paths[-1][1 - direction] paths.append(xy) paths = np.array(paths) valid = validate_paths(utils.calc_corridors(paths)) mazes.append(paths) goals.append(paths[-1]) for i in range(c.num_mazes): c.paths = mazes[i] c.goal[0] = goals[i][0] c.goal[1] = goals[i][1] c.max_frames = 1 c.viewer = True c.finalize = False c.corridors = utils.calc_corridors(c.paths) utils.modify_xml(task_id=None, seed=seed) # TODO(jkg) algo = algo_class(0, False, False, 0) algo.record_one_rollout() tf.reset_default_graph() print(np.array(mazes).tolist()) if __name__ == "__main__": module = __import__("algorithms.%s" % c.algo, fromlist=[c.algo]) algo_class = getattr(module, c.algo) for f in os.listdir(os.path.join('results', c.ckpt_path)): if '.gif' in f or '.png' or '.mp4' in f: os.remove(os.path.join('results', c.ckpt_path, f)) main()
2.671875
3
discordbot.py
umeharaumeo/discordpy-startup
0
12782738
<filename>discordbot.py import discord import os token = os.environ['TOKEN_ON_TOKEN'] # 接続に必要なオブジェクトを生成 client = discord.Client() # メッセージ受信時に動作する処理 @client.event async def on_message(message): # メッセージ送信者がBotだった場合は無視する if message.author.bot: return if message.content == 'ID': embed = discord.Embed(title='おのすにゃん', description='', color=0xff0000) embed.add_field(name="Switch", value="0884-9004-7707", inline=True) embed.add_field(name="Origin", value="mgmgOI4i", inline=True) embed.add_field(name="VALORANT", value="もぐもぐおいしい #JP1", inline=True) await message.channel.send(embed=embed) if message.content == 'ふれんど': embed = discord.Embed(title='はづぴす', description='', color=0xff0000) embed.add_field(name="VALORANT", value="hazupisu#JP1", inline=True) embed.add_field(name="Origin", value="hazupisu", inline=True) embed.add_field(name="Steam", value="Hazuki.JP", inline=True) await message.channel.send(embed=embed) if message.content == 'クラウド': await message.channel.send('時代はクラウド') if message.content == 'にこちゃん': await message.channel.send('にっこにっこに~!') if message.content == 'ねえ': await message.channel.send('はい!!') if message.content == 'クリエイトアドバイザー': await message.channel.send('おのすにゃん') if message.content == '制作者': await message.channel.send('はづぴす') if message.content == '制作': await message.channel.send('協力 おのすにゃん\n\n©︎ 2020-2021 はづぴす') if message.content == 'MJ': await message.channel.send('PW 1234\n部屋名 はづぴす') if message.content == 'すき': await message.channel.send('らぶにこっ(⋈◍>◡<◍)。✧♡') if message.content == 'おかえり': await message.channel.send('ただいま♡') if message.content == 'はづぴす': await message.channel.send('ママ大好き♡') if message.content == 'ただいま': await message.channel.send('おかえり♡') if message.content == '30歳無職彼氏無し': await message.channel.send('はづぴす') # Botの起動とDiscordサーバーへの接続 client.run(token)
2.59375
3
boto/redshift/layer1.py
adastreamer/boto
1
12782739
# Copyright (c) 2013 Amazon.com, Inc. or its affiliates. All Rights Reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # import json import boto from boto.connection import AWSQueryConnection from boto.regioninfo import RegionInfo from boto.exception import JSONResponseError from boto.redshift import exceptions class RedshiftConnection(AWSQueryConnection): """ Amazon Redshift **Overview** This is the Amazon Redshift API Reference. This guide provides descriptions and samples of the Amazon Redshift API. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. **Are You a First-Time Amazon Redshift User?** If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the following sections: + Service Highlights and Pricing - The `product detail page`_ provides the Amazon Redshift value proposition, service highlights and pricing. + Getting Started - The `Getting Started Guide`_ includes an example that walks you through the process of creating a cluster, creating database tables, uploading data, and testing queries. After you complete the Getting Started Guide, we recommend that you explore one of the following guides: + Cluster Management - If you are responsible for managing Amazon Redshift clusters, the `Cluster Management Guide`_ shows you how to create and manage Amazon Redshift clusters. If you are an application developer, you can use the Amazon Redshift Query API to manage clusters programmatically. Additionally, the AWS SDK libraries that wrap the underlying Amazon Redshift API simplify your programming tasks. If you prefer a more interactive way of managing clusters, you can use the Amazon Redshift console and the AWS command line interface (AWS CLI). For information about the API and CLI, go to the following manuals : + API Reference ( this document ) + `CLI Reference`_ + Amazon Redshift Database Database Developer - If you are a database developer, the Amazon Redshift `Database Developer Guide`_ explains how to design, build, query, and maintain the databases that make up your data warehouse. For a list of supported AWS regions where you can provision a cluster, go to the `Regions and Endpoints`_ section in the Amazon Web Services Glossary . """ APIVersion = "2012-12-01" DefaultRegionName = "us-east-1" DefaultRegionEndpoint = "redshift.us-east-1.amazonaws.com" ResponseError = JSONResponseError _faults = { "ClusterNotFound": exceptions.ClusterNotFoundFault, "InvalidClusterSubnetState": exceptions.InvalidClusterSubnetStateFault, "InvalidClusterParameterGroupState": exceptions.InvalidClusterParameterGroupStateFault, "ReservedNodeQuotaExceeded": exceptions.ReservedNodeQuotaExceededFault, "InvalidClusterState": exceptions.InvalidClusterStateFault, "InvalidRestore": exceptions.InvalidRestoreFault, "ClusterSecurityGroupAlreadyExists": exceptions.ClusterSecurityGroupAlreadyExistsFault, "NumberOfNodesQuotaExceeded": exceptions.NumberOfNodesQuotaExceededFault, "ReservedNodeOfferingNotFound": exceptions.ReservedNodeOfferingNotFoundFault, "InsufficientClusterCapacity": exceptions.InsufficientClusterCapacityFault, "UnauthorizedOperation": exceptions.UnauthorizedOperationFault, "ClusterQuotaExceeded": exceptions.ClusterQuotaExceededFault, "InvalidVPCNetworkState": exceptions.InvalidVPCNetworkStateFault, "ClusterSnapshotNotFound": exceptions.ClusterSnapshotNotFoundFault, "AuthorizationQuotaExceeded": exceptions.AuthorizationQuotaExceededFault, "InvalidSubne": exceptions.InvalidSubnet, "ResizeNotFound": exceptions.ResizeNotFoundFault, "ClusterSubnetGroupNotFound": exceptions.ClusterSubnetGroupNotFoundFault, "ClusterSnapshotQuotaExceeded": exceptions.ClusterSnapshotQuotaExceededFault, "AccessToSnapshotDenied": exceptions.AccessToSnapshotDeniedFault, "InvalidClusterSecurityGroupState": exceptions.InvalidClusterSecurityGroupStateFault, "NumberOfNodesPerClusterLimitExceeded": exceptions.NumberOfNodesPerClusterLimitExceededFault, "ClusterSubnetQuotaExceeded": exceptions.ClusterSubnetQuotaExceededFault, "UnsupportedOption": exceptions.UnsupportedOptionFault, "ClusterSecurityGroupNotFound": exceptions.ClusterSecurityGroupNotFoundFault, "ClusterAlreadyExists": exceptions.ClusterAlreadyExistsFault, "ClusterSnapshotAlreadyExists": exceptions.ClusterSnapshotAlreadyExistsFault, "ReservedNodeAlreadyExists": exceptions.ReservedNodeAlreadyExistsFault, "ClusterSubnetGroupQuotaExceeded": exceptions.ClusterSubnetGroupQuotaExceededFault, "ClusterParameterGroupNotFound": exceptions.ClusterParameterGroupNotFoundFault, "AuthorizationNotFound": exceptions.AuthorizationNotFoundFault, "ClusterSecurityGroupQuotaExceeded": exceptions.ClusterSecurityGroupQuotaExceededFault, "AuthorizationAlreadyExists": exceptions.AuthorizationAlreadyExistsFault, "InvalidClusterSnapshotState": exceptions.InvalidClusterSnapshotStateFault, "ClusterParameterGroupQuotaExceeded": exceptions.ClusterParameterGroupQuotaExceededFault, "ClusterSubnetGroupAlreadyExists": exceptions.ClusterSubnetGroupAlreadyExistsFault, "ReservedNodeNotFound": exceptions.ReservedNodeNotFoundFault, "InvalidClusterSubnetGroupState": exceptions.InvalidClusterSubnetGroupStateFault, "ClusterParameterGroupAlreadyExists": exceptions.ClusterParameterGroupAlreadyExistsFault, "SubnetAlreadyInUse": exceptions.SubnetAlreadyInUse, "AccessToSnapshotDenied": exceptions.AccessToSnapshotDeniedFault, "UnauthorizedOperation": exceptions.UnauthorizedOperationFault, } def __init__(self, **kwargs): region = kwargs.pop('region', None) if not region: region = RegionInfo(self, self.DefaultRegionName, self.DefaultRegionEndpoint) kwargs['host'] = region.endpoint AWSQueryConnection.__init__(self, **kwargs) self.region = region def _required_auth_capability(self): return ['hmac-v4'] def authorize_cluster_security_group_ingress(self, cluster_security_group_name, cidrip=None, ec2_security_group_name=None, ec2_security_group_owner_id=None): """ Adds an inbound (ingress) rule to an Amazon Redshift security group. Depending on whether the application accessing your cluster is running on the Internet or an EC2 instance, you can authorize inbound access to either a Classless Interdomain Routing (CIDR) IP address range or an EC2 security group. You can add as many as 20 ingress rules to an Amazon Redshift security group. The EC2 security group must be defined in the AWS region where the cluster resides. For an overview of CIDR blocks, see the Wikipedia article on `Classless Inter-Domain Routing`_. You must also associate the security group with a cluster so that clients running on these IP addresses or the EC2 instance are authorized to connect to the cluster. For information about managing security groups, go to `Working with Security Groups`_ in the Amazon Redshift Management Guide . :type cluster_security_group_name: string :param cluster_security_group_name: The name of the security group to which the ingress rule is added. :type cidrip: string :param cidrip: The IP range to be added the Amazon Redshift security group. :type ec2_security_group_name: string :param ec2_security_group_name: The EC2 security group to be added the Amazon Redshift security group. :type ec2_security_group_owner_id: string :param ec2_security_group_owner_id: The AWS account number of the owner of the security group specified by the EC2SecurityGroupName parameter. The AWS Access Key ID is not an acceptable value. Example: `111122223333` """ params = { 'ClusterSecurityGroupName': cluster_security_group_name, } if cidrip is not None: params['CIDRIP'] = cidrip if ec2_security_group_name is not None: params['EC2SecurityGroupName'] = ec2_security_group_name if ec2_security_group_owner_id is not None: params['EC2SecurityGroupOwnerId'] = ec2_security_group_owner_id return self._make_request( action='AuthorizeClusterSecurityGroupIngress', verb='POST', path='/', params=params) def authorize_snapshot_access(self, snapshot_identifier, account_with_restore_access, snapshot_cluster_identifier=None): """ Authorizes the specified AWS customer account to restore the specified snapshot. For more information about working with snapshots, go to `Amazon Redshift Snapshots`_ in the Amazon Redshift Management Guide . :type snapshot_identifier: string :param snapshot_identifier: The identifier of the snapshot the account is authorized to restore. :type snapshot_cluster_identifier: string :param snapshot_cluster_identifier: :type account_with_restore_access: string :param account_with_restore_access: The identifier of the AWS customer account authorized to restore the specified snapshot. """ params = { 'SnapshotIdentifier': snapshot_identifier, 'AccountWithRestoreAccess': account_with_restore_access, } if snapshot_cluster_identifier is not None: params['SnapshotClusterIdentifier'] = snapshot_cluster_identifier return self._make_request( action='AuthorizeSnapshotAccess', verb='POST', path='/', params=params) def copy_cluster_snapshot(self, source_snapshot_identifier, target_snapshot_identifier, source_snapshot_cluster_identifier=None): """ Copies the specified automated cluster snapshot to a new manual cluster snapshot. The source must be an automated snapshot and it must be in the available state. When you delete a cluster, Amazon Redshift deletes any automated snapshots of the cluster. Also, when the retention period of the snapshot expires, Amazon Redshift automatically deletes it. If you want to keep an automated snapshot for a longer period, you can make a manual copy of the snapshot. Manual snapshots are retained until you delete them. For more information about working with snapshots, go to `Amazon Redshift Snapshots`_ in the Amazon Redshift Management Guide . :type source_snapshot_identifier: string :param source_snapshot_identifier: The identifier for the source snapshot. Constraints: + Must be the identifier for a valid automated snapshot whose state is "available". :type source_snapshot_cluster_identifier: string :param source_snapshot_cluster_identifier: :type target_snapshot_identifier: string :param target_snapshot_identifier: The identifier given to the new manual snapshot. Constraints: + Cannot be null, empty, or blank. + Must contain from 1 to 255 alphanumeric characters or hyphens. + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. + Must be unique for the AWS account that is making the request. """ params = { 'SourceSnapshotIdentifier': source_snapshot_identifier, 'TargetSnapshotIdentifier': target_snapshot_identifier, } if source_snapshot_cluster_identifier is not None: params['SourceSnapshotClusterIdentifier'] = source_snapshot_cluster_identifier return self._make_request( action='CopyClusterSnapshot', verb='POST', path='/', params=params) def create_cluster(self, cluster_identifier, node_type, master_username, master_user_password, db_name=None, cluster_type=None, cluster_security_groups=None, vpc_security_group_ids=None, cluster_subnet_group_name=None, availability_zone=None, preferred_maintenance_window=None, cluster_parameter_group_name=None, automated_snapshot_retention_period=None, port=None, cluster_version=None, allow_version_upgrade=None, number_of_nodes=None, publicly_accessible=None, encrypted=None): """ Creates a new cluster. To create the cluster in virtual private cloud (VPC), you must provide cluster subnet group name. If you don't provide a cluster subnet group name or the cluster security group parameter, Amazon Redshift creates a non-VPC cluster, it associates the default cluster security group with the cluster. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide . :type db_name: string :param db_name: The name of the first database to be created when the cluster is created. To create additional databases after the cluster is created, connect to the cluster with a SQL client and use SQL commands to create a database. For more information, go to `Create a Database`_ in the Amazon Redshift Developer Guide. Default: `dev` Constraints: + Must contain 1 to 64 alphanumeric characters. + Must contain only lowercase letters. + Cannot be a word that is reserved by the service. A list of reserved words can be found in `Reserved Words`_ in the Amazon Redshift Developer Guide. :type cluster_identifier: string :param cluster_identifier: A unique identifier for the cluster. You use this identifier to refer to the cluster for any subsequent cluster operations such as deleting or modifying. The identifier also appears in the Amazon Redshift console. Constraints: + Must contain from 1 to 63 alphanumeric characters or hyphens. + Alphabetic characters must be lowercase. + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. + Must be unique for all clusters within an AWS account. Example: `myexamplecluster` :type cluster_type: string :param cluster_type: The type of the cluster. When cluster type is specified as + `single-node`, the **NumberOfNodes** parameter is not required. + `multi-node`, the **NumberOfNodes** parameter is required. Valid Values: `multi-node` | `single-node` Default: `multi-node` :type node_type: string :param node_type: The node type to be provisioned for the cluster. For information about node types, go to ` Working with Clusters`_ in the Amazon Redshift Management Guide . Valid Values: `dw.hs1.xlarge` | `dw.hs1.8xlarge`. :type master_username: string :param master_username: The user name associated with the master user account for the cluster that is being created. Constraints: + Must be 1 - 128 alphanumeric characters. + First character must be a letter. + Cannot be a reserved word. A list of reserved words can be found in `Reserved Words`_ in the Amazon Redshift Developer Guide. :type master_user_password: string :param master_user_password: The password associated with the master user account for the cluster that is being created. Constraints: + Must be between 8 and 64 characters in length. + Must contain at least one uppercase letter. + Must contain at least one lowercase letter. + Must contain one number. + Can be any printable ASCII character (ASCII code 33 to 126) except ' (single quote), " (double quote), \, /, @, or space. :type cluster_security_groups: list :param cluster_security_groups: A list of security groups to be associated with this cluster. Default: The default cluster security group for Amazon Redshift. :type vpc_security_group_ids: list :param vpc_security_group_ids: A list of Virtual Private Cloud (VPC) security groups to be associated with the cluster. Default: The default VPC security group is associated with the cluster. :type cluster_subnet_group_name: string :param cluster_subnet_group_name: The name of a cluster subnet group to be associated with this cluster. If this parameter is not provided the resulting cluster will be deployed outside virtual private cloud (VPC). :type availability_zone: string :param availability_zone: The EC2 Availability Zone (AZ) in which you want Amazon Redshift to provision the cluster. For example, if you have several EC2 instances running in a specific Availability Zone, then you might want the cluster to be provisioned in the same zone in order to decrease network latency. Default: A random, system-chosen Availability Zone in the region that is specified by the endpoint. Example: `us-east-1d` Constraint: The specified Availability Zone must be in the same region as the current endpoint. :type preferred_maintenance_window: string :param preferred_maintenance_window: The weekly time range (in UTC) during which automated cluster maintenance can occur. Format: `ddd:hh24:mi-ddd:hh24:mi` Default: A 30-minute window selected at random from an 8-hour block of time per region, occurring on a random day of the week. The following list shows the time blocks for each region from which the default maintenance windows are assigned. + **US-East (Northern Virginia) Region:** 03:00-11:00 UTC + **US-West (Oregon) Region** 06:00-14:00 UTC Valid Days: Mon | Tue | Wed | Thu | Fri | Sat | Sun Constraints: Minimum 30-minute window. :type cluster_parameter_group_name: string :param cluster_parameter_group_name: The name of the parameter group to be associated with this cluster. Default: The default Amazon Redshift cluster parameter group. For information about the default parameter group, go to `Working with Amazon Redshift Parameter Groups`_ Constraints: + Must be 1 to 255 alphanumeric characters or hyphens. + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. :type automated_snapshot_retention_period: integer :param automated_snapshot_retention_period: The number of days that automated snapshots are retained. If the value is 0, automated snapshots are disabled. Even if automated snapshots are disabled, you can still create manual snapshots when you want with CreateClusterSnapshot. Default: `1` Constraints: Must be a value from 0 to 35. :type port: integer :param port: The port number on which the cluster accepts incoming connections. The cluster is accessible only via the JDBC and ODBC connection strings. Part of the connection string requires the port on which the cluster will listen for incoming connections. Default: `5439` Valid Values: `1150-65535` :type cluster_version: string :param cluster_version: The version of the Amazon Redshift engine software that you want to deploy on the cluster. The version selected runs on all the nodes in the cluster. Constraints: Only version 1.0 is currently available. Example: `1.0` :type allow_version_upgrade: boolean :param allow_version_upgrade: If `True`, upgrades can be applied during the maintenance window to the Amazon Redshift engine that is running on the cluster. When a new version of the Amazon Redshift engine is released, you can request that the service automatically apply upgrades during the maintenance window to the Amazon Redshift engine that is running on your cluster. Default: `True` :type number_of_nodes: integer :param number_of_nodes: The number of compute nodes in the cluster. This parameter is required when the **ClusterType** parameter is specified as `multi-node`. For information about determining how many nodes you need, go to ` Working with Clusters`_ in the Amazon Redshift Management Guide . If you don't specify this parameter, you get a single-node cluster. When requesting a multi-node cluster, you must specify the number of nodes that you want in the cluster. Default: `1` Constraints: Value must be at least 1 and no more than 100. :type publicly_accessible: boolean :param publicly_accessible: If `True`, the cluster can be accessed from a public network. :type encrypted: boolean :param encrypted: If `True`, the data in cluster is encrypted at rest. Default: false """ params = { 'ClusterIdentifier': cluster_identifier, 'NodeType': node_type, 'MasterUsername': master_username, 'MasterUserPassword': <PASSWORD>, } if db_name is not None: params['DBName'] = db_name if cluster_type is not None: params['ClusterType'] = cluster_type if cluster_security_groups is not None: self.build_list_params(params, cluster_security_groups, 'ClusterSecurityGroups.member') if vpc_security_group_ids is not None: self.build_list_params(params, vpc_security_group_ids, 'VpcSecurityGroupIds.member') if cluster_subnet_group_name is not None: params['ClusterSubnetGroupName'] = cluster_subnet_group_name if availability_zone is not None: params['AvailabilityZone'] = availability_zone if preferred_maintenance_window is not None: params['PreferredMaintenanceWindow'] = preferred_maintenance_window if cluster_parameter_group_name is not None: params['ClusterParameterGroupName'] = cluster_parameter_group_name if automated_snapshot_retention_period is not None: params['AutomatedSnapshotRetentionPeriod'] = automated_snapshot_retention_period if port is not None: params['Port'] = port if cluster_version is not None: params['ClusterVersion'] = cluster_version if allow_version_upgrade is not None: params['AllowVersionUpgrade'] = str( allow_version_upgrade).lower() if number_of_nodes is not None: params['NumberOfNodes'] = number_of_nodes if publicly_accessible is not None: params['PubliclyAccessible'] = str( publicly_accessible).lower() if encrypted is not None: params['Encrypted'] = str( encrypted).lower() return self._make_request( action='CreateCluster', verb='POST', path='/', params=params) def create_cluster_parameter_group(self, parameter_group_name, parameter_group_family, description): """ Creates an Amazon Redshift parameter group. Creating parameter groups is independent of creating clusters. You can associate a cluster with a parameter group when you create the cluster. You can also associate an existing cluster with a parameter group after the cluster is created by using ModifyCluster. Parameters in the parameter group define specific behavior that applies to the databases you create on the cluster. For more information about managing parameter groups, go to `Amazon Redshift Parameter Groups`_ in the Amazon Redshift Management Guide . :type parameter_group_name: string :param parameter_group_name: The name of the cluster parameter group. Constraints: + Must be 1 to 255 alphanumeric characters or hyphens + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. + Must be unique withing your AWS account. This value is stored as a lower-case string. :type parameter_group_family: string :param parameter_group_family: The Amazon Redshift engine version to which the cluster parameter group applies. The cluster engine version determines the set of parameters. To get a list of valid parameter group family names, you can call DescribeClusterParameterGroups. By default, Amazon Redshift returns a list of all the parameter groups that are owned by your AWS account, including the default parameter groups for each Amazon Redshift engine version. The parameter group family names associated with the default parameter groups provide you the valid values. For example, a valid family name is "redshift-1.0". :type description: string :param description: A description of the parameter group. """ params = { 'ParameterGroupName': parameter_group_name, 'ParameterGroupFamily': parameter_group_family, 'Description': description, } return self._make_request( action='CreateClusterParameterGroup', verb='POST', path='/', params=params) def create_cluster_security_group(self, cluster_security_group_name, description): """ Creates a new Amazon Redshift security group. You use security groups to control access to non-VPC clusters. For information about managing security groups, go to`Amazon Redshift Cluster Security Groups`_ in the Amazon Redshift Management Guide . :type cluster_security_group_name: string :param cluster_security_group_name: The name for the security group. Amazon Redshift stores the value as a lowercase string. Constraints: + Must contain no more than 255 alphanumeric characters or hyphens. + Must not be "Default". + Must be unique for all security groups that are created by your AWS account. Example: `examplesecuritygroup` :type description: string :param description: A description for the security group. """ params = { 'ClusterSecurityGroupName': cluster_security_group_name, 'Description': description, } return self._make_request( action='CreateClusterSecurityGroup', verb='POST', path='/', params=params) def create_cluster_snapshot(self, snapshot_identifier, cluster_identifier): """ Creates a manual snapshot of the specified cluster. The cluster must be in the "available" state. For more information about working with snapshots, go to `Amazon Redshift Snapshots`_ in the Amazon Redshift Management Guide . :type snapshot_identifier: string :param snapshot_identifier: A unique identifier for the snapshot that you are requesting. This identifier must be unique for all snapshots within the AWS account. Constraints: + Cannot be null, empty, or blank + Must contain from 1 to 255 alphanumeric characters or hyphens + First character must be a letter + Cannot end with a hyphen or contain two consecutive hyphens Example: `my-snapshot-id` :type cluster_identifier: string :param cluster_identifier: The cluster identifier for which you want a snapshot. """ params = { 'SnapshotIdentifier': snapshot_identifier, 'ClusterIdentifier': cluster_identifier, } return self._make_request( action='CreateClusterSnapshot', verb='POST', path='/', params=params) def create_cluster_subnet_group(self, cluster_subnet_group_name, description, subnet_ids): """ Creates a new Amazon Redshift subnet group. You must provide a list of one or more subnets in your existing Amazon Virtual Private Cloud (Amazon VPC) when creating Amazon Redshift subnet group. For information about subnet groups, go to`Amazon Redshift Cluster Subnet Groups`_ in the Amazon Redshift Management Guide . :type cluster_subnet_group_name: string :param cluster_subnet_group_name: The name for the subnet group. Amazon Redshift stores the value as a lowercase string. Constraints: + Must contain no more than 255 alphanumeric characters or hyphens. + Must not be "Default". + Must be unique for all subnet groups that are created by your AWS account. Example: `examplesubnetgroup` :type description: string :param description: A description for the subnet group. :type subnet_ids: list :param subnet_ids: An array of VPC subnet IDs. A maximum of 20 subnets can be modified in a single request. """ params = { 'ClusterSubnetGroupName': cluster_subnet_group_name, 'Description': description, } self.build_list_params(params, subnet_ids, 'SubnetIds.member') return self._make_request( action='CreateClusterSubnetGroup', verb='POST', path='/', params=params) def delete_cluster(self, cluster_identifier, skip_final_cluster_snapshot=None, final_cluster_snapshot_identifier=None): """ Deletes a previously provisioned cluster. A successful response from the web service indicates that the request was received correctly. If a final cluster snapshot is requested the status of the cluster will be "final-snapshot" while the snapshot is being taken, then it's "deleting" once Amazon Redshift begins deleting the cluster. Use DescribeClusters to monitor the status of the deletion. The delete operation cannot be canceled or reverted once submitted. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide . :type cluster_identifier: string :param cluster_identifier: The identifier of the cluster to be deleted. Constraints: + Must contain lowercase characters. + Must contain from 1 to 63 alphanumeric characters or hyphens. + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. :type skip_final_cluster_snapshot: boolean :param skip_final_cluster_snapshot: Determines whether a final snapshot of the cluster is created before Amazon Redshift deletes the cluster. If `True`, a final cluster snapshot is not created. If `False`, a final cluster snapshot is created before the cluster is deleted. The FinalClusterSnapshotIdentifier parameter must be specified if SkipFinalClusterSnapshot is `False`. Default: `False` :type final_cluster_snapshot_identifier: string :param final_cluster_snapshot_identifier: The identifier of the final snapshot that is to be created immediately before deleting the cluster. If this parameter is provided, SkipFinalClusterSnapshot must be `False`. Constraints: + Must be 1 to 255 alphanumeric characters. + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. """ params = {'ClusterIdentifier': cluster_identifier, } if skip_final_cluster_snapshot is not None: params['SkipFinalClusterSnapshot'] = str( skip_final_cluster_snapshot).lower() if final_cluster_snapshot_identifier is not None: params['FinalClusterSnapshotIdentifier'] = final_cluster_snapshot_identifier return self._make_request( action='DeleteCluster', verb='POST', path='/', params=params) def delete_cluster_parameter_group(self, parameter_group_name): """ Deletes a specified Amazon Redshift parameter group. You cannot delete a parameter group if it is associated with a cluster. :type parameter_group_name: string :param parameter_group_name: The name of the parameter group to be deleted. Constraints: + Must be the name of an existing cluster parameter group. + Cannot delete a default cluster parameter group. """ params = {'ParameterGroupName': parameter_group_name, } return self._make_request( action='DeleteClusterParameterGroup', verb='POST', path='/', params=params) def delete_cluster_security_group(self, cluster_security_group_name): """ Deletes an Amazon Redshift security group. You cannot delete a security group that is associated with any clusters. You cannot delete the default security group. For information about managing security groups, go to`Amazon Redshift Cluster Security Groups`_ in the Amazon Redshift Management Guide . :type cluster_security_group_name: string :param cluster_security_group_name: The name of the cluster security group to be deleted. """ params = { 'ClusterSecurityGroupName': cluster_security_group_name, } return self._make_request( action='DeleteClusterSecurityGroup', verb='POST', path='/', params=params) def delete_cluster_snapshot(self, snapshot_identifier, snapshot_cluster_identifier=None): """ Deletes the specified manual snapshot. The snapshot must be in the "available" state, with no other users authorized to access the snapshot. Unlike automated snapshots, manual snapshots are retained even after you delete your cluster. Amazon Redshift does not delete your manual snapshots. You must delete manual snapshot explicitly to avoid getting charged. If other accounts are authorized to access the snapshot, you must revoke all of the authorizations before you can delete the snapshot. :type snapshot_identifier: string :param snapshot_identifier: The unique identifier of the manual snapshot to be deleted. Constraints: Must be the name of an existing snapshot that is in the `available` state. :type snapshot_cluster_identifier: string :param snapshot_cluster_identifier: """ params = {'SnapshotIdentifier': snapshot_identifier, } if snapshot_cluster_identifier is not None: params['SnapshotClusterIdentifier'] = snapshot_cluster_identifier return self._make_request( action='DeleteClusterSnapshot', verb='POST', path='/', params=params) def delete_cluster_subnet_group(self, cluster_subnet_group_name): """ Deletes the specified cluster subnet group. :type cluster_subnet_group_name: string :param cluster_subnet_group_name: The name of the cluster subnet group name to be deleted. """ params = { 'ClusterSubnetGroupName': cluster_subnet_group_name, } return self._make_request( action='DeleteClusterSubnetGroup', verb='POST', path='/', params=params) def describe_cluster_parameter_groups(self, parameter_group_name=None, max_records=None, marker=None): """ Returns a list of Amazon Redshift parameter groups, including parameter groups you created and the default parameter group. For each parameter group, the response includes the parameter group name, description, and parameter group family name. You can optionally specify a name to retrieve the description of a specific parameter group. For more information about managing parameter groups, go to `Amazon Redshift Parameter Groups`_ in the Amazon Redshift Management Guide . :type parameter_group_name: string :param parameter_group_name: The name of a specific parameter group for which to return details. By default, details about all parameter groups and the default parameter group are returned. :type max_records: integer :param max_records: The maximum number of parameter group records to include in the response. If more records exist than the specified `MaxRecords` value, the response includes a marker that you can use in a subsequent DescribeClusterParameterGroups request to retrieve the next set of records. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned by a previous DescribeClusterParameterGroups request to indicate the first parameter group that the current request will return. """ params = {} if parameter_group_name is not None: params['ParameterGroupName'] = parameter_group_name if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeClusterParameterGroups', verb='POST', path='/', params=params) def describe_cluster_parameters(self, parameter_group_name, source=None, max_records=None, marker=None): """ Returns a detailed list of parameters contained within the specified Amazon Redshift parameter group. For each parameter the response includes information such as parameter name, description, data type, value, whether the parameter value is modifiable, and so on. You can specify source filter to retrieve parameters of only specific type. For example, to retrieve parameters that were modified by a user action such as from ModifyClusterParameterGroup, you can specify source equal to user . For more information about managing parameter groups, go to `Amazon Redshift Parameter Groups`_ in the Amazon Redshift Management Guide . :type parameter_group_name: string :param parameter_group_name: The name of a cluster parameter group for which to return details. :type source: string :param source: The parameter types to return. Specify `user` to show parameters that are different form the default. Similarly, specify `engine-default` to show parameters that are the same as the default parameter group. Default: All parameter types returned. Valid Values: `user` | `engine-default` :type max_records: integer :param max_records: The maximum number of records to include in the response. If more records exist than the specified `MaxRecords` value, response includes a marker that you can specify in your subsequent request to retrieve remaining result. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned from a previous **DescribeClusterParameters** request. If this parameter is specified, the response includes only records beyond the specified marker, up to the value specified by `MaxRecords`. """ params = {'ParameterGroupName': parameter_group_name, } if source is not None: params['Source'] = source if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeClusterParameters', verb='POST', path='/', params=params) def describe_cluster_security_groups(self, cluster_security_group_name=None, max_records=None, marker=None): """ Returns information about Amazon Redshift security groups. If the name of a security group is specified, the response will contain only information about only that security group. For information about managing security groups, go to`Amazon Redshift Cluster Security Groups`_ in the Amazon Redshift Management Guide . :type cluster_security_group_name: string :param cluster_security_group_name: The name of a cluster security group for which you are requesting details. You can specify either the **Marker** parameter or a **ClusterSecurityGroupName** parameter, but not both. Example: `securitygroup1` :type max_records: integer :param max_records: The maximum number of records to be included in the response. If more records exist than the specified `MaxRecords` value, a marker is included in the response, which you can use in a subsequent DescribeClusterSecurityGroups request. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned by a previous DescribeClusterSecurityGroups request to indicate the first security group that the current request will return. You can specify either the **Marker** parameter or a **ClusterSecurityGroupName** parameter, but not both. """ params = {} if cluster_security_group_name is not None: params['ClusterSecurityGroupName'] = cluster_security_group_name if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeClusterSecurityGroups', verb='POST', path='/', params=params) def describe_cluster_snapshots(self, cluster_identifier=None, snapshot_identifier=None, snapshot_type=None, start_time=None, end_time=None, max_records=None, marker=None, owner_account=None): """ Returns one or more snapshot objects, which contain metadata about your cluster snapshots. By default, this operation returns information about all snapshots of all clusters that are owned by you AWS customer account. No information is returned for snapshots owned by inactive AWS customer accounts. :type cluster_identifier: string :param cluster_identifier: The identifier of the cluster for which information about snapshots is requested. :type snapshot_identifier: string :param snapshot_identifier: The snapshot identifier of the snapshot about which to return information. :type snapshot_type: string :param snapshot_type: The type of snapshots for which you are requesting information. By default, snapshots of all types are returned. Valid Values: `automated` | `manual` :type start_time: timestamp :param start_time: A value that requests only snapshots created at or after the specified time. The time value is specified in ISO 8601 format. For more information about ISO 8601, go to the `ISO8601 Wikipedia page.`_ Example: `2012-07-16T18:00:00Z` :type end_time: timestamp :param end_time: A time value that requests only snapshots created at or before the specified time. The time value is specified in ISO 8601 format. For more information about ISO 8601, go to the `ISO8601 Wikipedia page.`_ Example: `2012-07-16T18:00:00Z` :type max_records: integer :param max_records: The maximum number of snapshot records to include in the response. If more records exist than the specified `MaxRecords` value, the response returns a marker that you can use in a subsequent DescribeClusterSnapshots request in order to retrieve the next set of snapshot records. Default: `100` Constraints: Must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned by a previous DescribeClusterSnapshots request to indicate the first snapshot that the request will return. :type owner_account: string :param owner_account: The AWS customer account used to create or copy the snapshot. Use this field to filter the results to snapshots owned by a particular account. To describe snapshots you own, either specify your AWS customer account, or do not specify the parameter. """ params = {} if cluster_identifier is not None: params['ClusterIdentifier'] = cluster_identifier if snapshot_identifier is not None: params['SnapshotIdentifier'] = snapshot_identifier if snapshot_type is not None: params['SnapshotType'] = snapshot_type if start_time is not None: params['StartTime'] = start_time if end_time is not None: params['EndTime'] = end_time if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker if owner_account is not None: params['OwnerAccount'] = owner_account return self._make_request( action='DescribeClusterSnapshots', verb='POST', path='/', params=params) def describe_cluster_subnet_groups(self, cluster_subnet_group_name=None, max_records=None, marker=None): """ Returns one or more cluster subnet group objects, which contain metadata about your cluster subnet groups. By default, this operation returns information about all cluster subnet groups that are defined in you AWS account. :type cluster_subnet_group_name: string :param cluster_subnet_group_name: The name of the cluster subnet group for which information is requested. :type max_records: integer :param max_records: The maximum number of cluster subnet group records to include in the response. If more records exist than the specified `MaxRecords` value, the response returns a marker that you can use in a subsequent DescribeClusterSubnetGroups request in order to retrieve the next set of cluster subnet group records. Default: 100 Constraints: Must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned by a previous DescribeClusterSubnetGroups request to indicate the first cluster subnet group that the current request will return. """ params = {} if cluster_subnet_group_name is not None: params['ClusterSubnetGroupName'] = cluster_subnet_group_name if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeClusterSubnetGroups', verb='POST', path='/', params=params) def describe_cluster_versions(self, cluster_version=None, cluster_parameter_group_family=None, max_records=None, marker=None): """ Returns descriptions of the available Amazon Redshift cluster versions. You can call this operation even before creating any clusters to learn more about the Amazon Redshift versions. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide :type cluster_version: string :param cluster_version: The specific cluster version to return. Example: `1.0` :type cluster_parameter_group_family: string :param cluster_parameter_group_family: The name of a specific cluster parameter group family to return details for. Constraints: + Must be 1 to 255 alphanumeric characters + First character must be a letter + Cannot end with a hyphen or contain two consecutive hyphens :type max_records: integer :param max_records: The maximum number of records to include in the response. If more than the `MaxRecords` value is available, a marker is included in the response so that the following results can be retrieved. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: The marker returned from a previous request. If this parameter is specified, the response includes records beyond the marker only, up to `MaxRecords`. """ params = {} if cluster_version is not None: params['ClusterVersion'] = cluster_version if cluster_parameter_group_family is not None: params['ClusterParameterGroupFamily'] = cluster_parameter_group_family if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeClusterVersions', verb='POST', path='/', params=params) def describe_clusters(self, cluster_identifier=None, max_records=None, marker=None): """ Returns properties of provisioned clusters including general cluster properties, cluster database properties, maintenance and backup properties, and security and access properties. This operation supports pagination. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide . :type cluster_identifier: string :param cluster_identifier: The unique identifier of a cluster whose properties you are requesting. This parameter isn't case sensitive. The default is that all clusters defined for an account are returned. :type max_records: integer :param max_records: The maximum number of records that the response can include. If more records exist than the specified `MaxRecords` value, a `marker` is included in the response that can be used in a new **DescribeClusters** request to continue listing results. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned by a previous **DescribeClusters** request to indicate the first cluster that the current **DescribeClusters** request will return. You can specify either a **Marker** parameter or a **ClusterIdentifier** parameter in a **DescribeClusters** request, but not both. """ params = {} if cluster_identifier is not None: params['ClusterIdentifier'] = cluster_identifier if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeClusters', verb='POST', path='/', params=params) def describe_default_cluster_parameters(self, parameter_group_family, max_records=None, marker=None): """ Returns a list of parameter settings for the specified parameter group family. For more information about managing parameter groups, go to `Amazon Redshift Parameter Groups`_ in the Amazon Redshift Management Guide . :type parameter_group_family: string :param parameter_group_family: The name of the cluster parameter group family. :type max_records: integer :param max_records: The maximum number of records to include in the response. If more records exist than the specified `MaxRecords` value, a marker is included in the response so that the remaining results may be retrieved. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned from a previous **DescribeDefaultClusterParameters** request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by `MaxRecords`. """ params = {'ParameterGroupFamily': parameter_group_family, } if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeDefaultClusterParameters', verb='POST', path='/', params=params) def describe_events(self, source_identifier=None, source_type=None, start_time=None, end_time=None, duration=None, max_records=None, marker=None): """ Returns events related to clusters, security groups, snapshots, and parameter groups for the past 14 days. Events specific to a particular cluster, security group, snapshot or parameter group can be obtained by providing the name as a parameter. By default, the past hour of events are returned. :type source_identifier: string :param source_identifier: The identifier of the event source for which events will be returned. If this parameter is not specified, then all sources are included in the response. Constraints: If SourceIdentifier is supplied, SourceType must also be provided. + Specify a cluster identifier when SourceType is `cluster`. + Specify a cluster security group name when SourceType is `cluster- security-group`. + Specify a cluster parameter group name when SourceType is `cluster- parameter-group`. + Specify a cluster snapshot identifier when SourceType is `cluster- snapshot`. :type source_type: string :param source_type: The event source to retrieve events for. If no value is specified, all events are returned. Constraints: If SourceType is supplied, SourceIdentifier must also be provided. + Specify `cluster` when SourceIdentifier is a cluster identifier. + Specify `cluster-security-group` when SourceIdentifier is a cluster security group name. + Specify `cluster-parameter-group` when SourceIdentifier is a cluster parameter group name. + Specify `cluster-snapshot` when SourceIdentifier is a cluster snapshot identifier. :type start_time: timestamp :param start_time: The beginning of the time interval to retrieve events for, specified in ISO 8601 format. For more information about ISO 8601, go to the `ISO8601 Wikipedia page.`_ Example: `2009-07-08T18:00Z` :type end_time: timestamp :param end_time: The end of the time interval for which to retrieve events, specified in ISO 8601 format. For more information about ISO 8601, go to the `ISO8601 Wikipedia page.`_ Example: `2009-07-08T18:00Z` :type duration: integer :param duration: The number of minutes prior to the time of the request for which to retrieve events. For example, if the request is sent at 18:00 and you specify a duration of 60, then only events which have occurred after 17:00 will be returned. Default: `60` :type max_records: integer :param max_records: The maximum number of records to include in the response. If more records exist than the specified `MaxRecords` value, a marker is included in the response so that the remaining results may be retrieved. Default: `100` Constraints: Value must be at least 20 and no more than 100. :type marker: string :param marker: An optional marker returned from a previous **DescribeEvents** request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by `MaxRecords`. """ params = {} if source_identifier is not None: params['SourceIdentifier'] = source_identifier if source_type is not None: params['SourceType'] = source_type if start_time is not None: params['StartTime'] = start_time if end_time is not None: params['EndTime'] = end_time if duration is not None: params['Duration'] = duration if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeEvents', verb='POST', path='/', params=params) def describe_orderable_cluster_options(self, cluster_version=None, node_type=None, max_records=None, marker=None): """ Returns a list of orderable cluster options. Before you create a new cluster you can use this operation to find what options are available, such as the EC2 Availability Zones (AZ) in the specific AWS region that you can specify, and the node types you can request. The node types differ by available storage, memory, CPU and price. With the cost involved you might want to obtain a list of cluster options in the specific region and specify values when creating a cluster. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide :type cluster_version: string :param cluster_version: The version filter value. Specify this parameter to show only the available offerings matching the specified version. Default: All versions. Constraints: Must be one of the version returned from DescribeClusterVersions. :type node_type: string :param node_type: The node type filter value. Specify this parameter to show only the available offerings matching the specified node type. :type max_records: integer :param max_records: The maximum number of records to include in the response. If more records exist than the specified `MaxRecords` value, a marker is included in the response so that the remaining results may be retrieved. Default: `100` Constraints: minimum 20, maximum 100. :type marker: string :param marker: An optional marker returned from a previous **DescribeOrderableClusterOptions** request. If this parameter is specified, the response includes only records beyond the marker, up to the value specified by `MaxRecords`. """ params = {} if cluster_version is not None: params['ClusterVersion'] = cluster_version if node_type is not None: params['NodeType'] = node_type if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeOrderableClusterOptions', verb='POST', path='/', params=params) def describe_reserved_node_offerings(self, reserved_node_offering_id=None, max_records=None, marker=None): """ Returns a list of the available reserved node offerings by Amazon Redshift with their descriptions including the node type, the fixed and recurring costs of reserving the node and duration the node will be reserved for you. These descriptions help you determine which reserve node offering you want to purchase. You then use the unique offering ID in you call to PurchaseReservedNodeOffering to reserve one or more nodes for your Amazon Redshift cluster. For more information about managing parameter groups, go to `Purchasing Reserved Nodes`_ in the Amazon Redshift Management Guide . :type reserved_node_offering_id: string :param reserved_node_offering_id: The unique identifier for the offering. :type max_records: integer :param max_records: The maximum number of records to include in the response. If more records exist than the specified `MaxRecords` value, a marker is included in the response so that the remaining results may be retrieved. Default: `100` Constraints: minimum 20, maximum 100. :type marker: string :param marker: An optional marker returned by a previous DescribeReservedNodeOfferings request to indicate the first offering that the request will return. You can specify either a **Marker** parameter or a **ClusterIdentifier** parameter in a DescribeClusters request, but not both. """ params = {} if reserved_node_offering_id is not None: params['ReservedNodeOfferingId'] = reserved_node_offering_id if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeReservedNodeOfferings', verb='POST', path='/', params=params) def describe_reserved_nodes(self, reserved_node_id=None, max_records=None, marker=None): """ Returns the descriptions of the reserved nodes. :type reserved_node_id: string :param reserved_node_id: Identifier for the node reservation. :type max_records: integer :param max_records: The maximum number of records to include in the response. If more records exist than the specified `MaxRecords` value, a marker is included in the response so that the remaining results may be retrieved. Default: `100` Constraints: minimum 20, maximum 100. :type marker: string :param marker: An optional marker returned by a previous DescribeReservedNodes request to indicate the first parameter group that the current request will return. """ params = {} if reserved_node_id is not None: params['ReservedNodeId'] = reserved_node_id if max_records is not None: params['MaxRecords'] = max_records if marker is not None: params['Marker'] = marker return self._make_request( action='DescribeReservedNodes', verb='POST', path='/', params=params) def describe_resize(self, cluster_identifier): """ Returns information about the last resize operation for the specified cluster. If no resize operation has ever been initiated for the specified cluster, a `HTTP 404` error is returned. If a resize operation was initiated and completed, the status of the resize remains as `SUCCEEDED` until the next resize. A resize operation can be requested using ModifyCluster and specifying a different number or type of nodes for the cluster. :type cluster_identifier: string :param cluster_identifier: The unique identifier of a cluster whose resize progress you are requesting. This parameter isn't case- sensitive. By default, resize operations for all clusters defined for an AWS account are returned. """ params = {'ClusterIdentifier': cluster_identifier, } return self._make_request( action='DescribeResize', verb='POST', path='/', params=params) def modify_cluster(self, cluster_identifier, cluster_type=None, node_type=None, number_of_nodes=None, cluster_security_groups=None, vpc_security_group_ids=None, master_user_password=<PASSWORD>, cluster_parameter_group_name=None, automated_snapshot_retention_period=None, preferred_maintenance_window=None, cluster_version=None, allow_version_upgrade=None): """ Modifies the settings for a cluster. For example, you can add another security or parameter group, update the preferred maintenance window, or change the master user password. Resetting a cluster password or modifying the security groups associated with a cluster do not need a reboot. However, modifying parameter group requires a reboot for parameters to take effect. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide You can also change node type and the number of nodes to scale up or down the cluster. When resizing a cluster, you must specify both the number of nodes and the node type even if one of the parameters does not change. If you specify the same number of nodes and node type that are already configured for the cluster, an error is returned. :type cluster_identifier: string :param cluster_identifier: The unique identifier of the cluster to be modified. Example: `examplecluster` :type cluster_type: string :param cluster_type: The new cluster type. When you submit your cluster resize request, your existing cluster goes into a read-only mode. After Amazon Redshift provisions a new cluster based on your resize requirements, there will be outage for a period while the old cluster is deleted and your connection is switched to the new cluster. You can use DescribeResize to track the progress of the resize request. Valid Values: ` multi-node | single-node ` :type node_type: string :param node_type: The new node type of the cluster. If you specify a new node type, you must also specify the number of nodes parameter also. When you submit your request to resize a cluster, Amazon Redshift sets access permissions for the cluster to read-only. After Amazon Redshift provisions a new cluster according to your resize requirements, there will be a temporary outage while the old cluster is deleted and your connection is switched to the new cluster. When the new connection is complete, the original access permissions for the cluster are restored. You can use the DescribeResize to track the progress of the resize request. Valid Values: ` dw.hs1.xlarge` | `dw.hs1.8xlarge` :type number_of_nodes: integer :param number_of_nodes: The new number of nodes of the cluster. If you specify a new number of nodes, you must also specify the node type parameter also. When you submit your request to resize a cluster, Amazon Redshift sets access permissions for the cluster to read-only. After Amazon Redshift provisions a new cluster according to your resize requirements, there will be a temporary outage while the old cluster is deleted and your connection is switched to the new cluster. When the new connection is complete, the original access permissions for the cluster are restored. You can use DescribeResize to track the progress of the resize request. Valid Values: Integer greater than `0`. :type cluster_security_groups: list :param cluster_security_groups: A list of cluster security groups to be authorized on this cluster. This change is asynchronously applied as soon as possible. Security groups currently associated with the cluster and not in the list of groups to apply, will be revoked from the cluster. Constraints: + Must be 1 to 255 alphanumeric characters or hyphens + First character must be a letter + Cannot end with a hyphen or contain two consecutive hyphens :type vpc_security_group_ids: list :param vpc_security_group_ids: A list of Virtual Private Cloud (VPC) security groups to be associated with the cluster. :type master_user_password: string :param master_user_password: The new password for the cluster master user. This change is asynchronously applied as soon as possible. Between the time of the request and the completion of the request, the `MasterUserPassword` element exists in the `PendingModifiedValues` element of the operation response. Operations never return the password, so this operation provides a way to regain access to the master user account for a cluster if the password is lost. Default: Uses existing setting. Constraints: + Must be between 8 and 64 characters in length. + Must contain at least one uppercase letter. + Must contain at least one lowercase letter. + Must contain one number. + Can be any printable ASCII character (ASCII code 33 to 126) except ' (single quote), " (double quote), \, /, @, or space. :type cluster_parameter_group_name: string :param cluster_parameter_group_name: The name of the cluster parameter group to apply to this cluster. This change is applied only after the cluster is rebooted. To reboot a cluster use RebootCluster. Default: Uses existing setting. Constraints: The cluster parameter group must be in the same parameter group family that matches the cluster version. :type automated_snapshot_retention_period: integer :param automated_snapshot_retention_period: The number of days that automated snapshots are retained. If the value is 0, automated snapshots are disabled. Even if automated snapshots are disabled, you can still create manual snapshots when you want with CreateClusterSnapshot. If you decrease the automated snapshot retention period from its current value, existing automated snapshots which fall outside of the new retention period will be immediately deleted. Default: Uses existing setting. Constraints: Must be a value from 0 to 35. :type preferred_maintenance_window: string :param preferred_maintenance_window: The weekly time range (in UTC) during which system maintenance can occur, if necessary. If system maintenance is necessary during the window, it may result in an outage. This maintenance window change is made immediately. If the new maintenance window indicates the current time, there must be at least 120 minutes between the current time and end of the window in order to ensure that pending changes are applied. Default: Uses existing setting. Format: ddd:hh24:mi-ddd:hh24:mi, for example `wed:07:30-wed:08:00`. Valid Days: Mon | Tue | Wed | Thu | Fri | Sat | Sun Constraints: Must be at least 30 minutes. :type cluster_version: string :param cluster_version: The new version number of the Amazon Redshift engine to upgrade to. For major version upgrades, if a non-default cluster parameter group is currently in use, a new cluster parameter group in the cluster parameter group family for the new version must be specified. The new cluster parameter group can be the default for that cluster parameter group family. For more information about managing parameter groups, go to `Amazon Redshift Parameter Groups`_ in the Amazon Redshift Management Guide . Example: `1.0` :type allow_version_upgrade: boolean :param allow_version_upgrade: If `True`, upgrades will be applied automatically to the cluster during the maintenance window. Default: `False` """ params = {'ClusterIdentifier': cluster_identifier, } if cluster_type is not None: params['ClusterType'] = cluster_type if node_type is not None: params['NodeType'] = node_type if number_of_nodes is not None: params['NumberOfNodes'] = number_of_nodes if cluster_security_groups is not None: self.build_list_params(params, cluster_security_groups, 'ClusterSecurityGroups.member') if vpc_security_group_ids is not None: self.build_list_params(params, vpc_security_group_ids, 'VpcSecurityGroupIds.member') if master_user_password is not None: params['MasterUserPassword'] = <PASSWORD> if cluster_parameter_group_name is not None: params['ClusterParameterGroupName'] = cluster_parameter_group_name if automated_snapshot_retention_period is not None: params['AutomatedSnapshotRetentionPeriod'] = automated_snapshot_retention_period if preferred_maintenance_window is not None: params['PreferredMaintenanceWindow'] = preferred_maintenance_window if cluster_version is not None: params['ClusterVersion'] = cluster_version if allow_version_upgrade is not None: params['AllowVersionUpgrade'] = str( allow_version_upgrade).lower() return self._make_request( action='ModifyCluster', verb='POST', path='/', params=params) def modify_cluster_parameter_group(self, parameter_group_name, parameters): """ Modifies the parameters of a parameter group. For more information about managing parameter groups, go to `Amazon Redshift Parameter Groups`_ in the Amazon Redshift Management Guide . :type parameter_group_name: string :param parameter_group_name: The name of the parameter group to be modified. :type parameters: list :param parameters: An array of parameters to be modified. A maximum of 20 parameters can be modified in a single request. For each parameter to be modified, you must supply at least the parameter name and parameter value; other name-value pairs of the parameter are optional. """ params = {'ParameterGroupName': parameter_group_name, } self.build_complex_list_params( params, parameters, 'Parameters.member', ('ParameterName', 'ParameterValue', 'Description', 'Source', 'DataType', 'AllowedValues', 'IsModifiable', 'MinimumEngineVersion')) return self._make_request( action='ModifyClusterParameterGroup', verb='POST', path='/', params=params) def modify_cluster_subnet_group(self, cluster_subnet_group_name, subnet_ids, description=None): """ Modifies a cluster subnet group to include the specified list of VPC subnets. The operation replaces the existing list of subnets with the new list of subnets. :type cluster_subnet_group_name: string :param cluster_subnet_group_name: The name of the subnet group to be modified. :type description: string :param description: A text description of the subnet group to be modified. :type subnet_ids: list :param subnet_ids: An array of VPC subnet IDs. A maximum of 20 subnets can be modified in a single request. """ params = { 'ClusterSubnetGroupName': cluster_subnet_group_name, } self.build_list_params(params, subnet_ids, 'SubnetIds.member') if description is not None: params['Description'] = description return self._make_request( action='ModifyClusterSubnetGroup', verb='POST', path='/', params=params) def purchase_reserved_node_offering(self, reserved_node_offering_id, node_count=None): """ Allows you to purchase reserved nodes. Amazon Redshift offers a predefined set of reserved node offerings. You can purchase one of the offerings. You can call the DescribeReservedNodeOfferings API to obtain the available reserved node offerings. You can call this API by providing a specific reserved node offering and the number of nodes you want to reserve. For more information about managing parameter groups, go to `Purchasing Reserved Nodes`_ in the Amazon Redshift Management Guide . :type reserved_node_offering_id: string :param reserved_node_offering_id: The unique identifier of the reserved node offering you want to purchase. :type node_count: integer :param node_count: The number of reserved nodes you want to purchase. Default: `1` """ params = { 'ReservedNodeOfferingId': reserved_node_offering_id, } if node_count is not None: params['NodeCount'] = node_count return self._make_request( action='PurchaseReservedNodeOffering', verb='POST', path='/', params=params) def reboot_cluster(self, cluster_identifier): """ Reboots a cluster. This action is taken as soon as possible. It results in a momentary outage to the cluster, during which the cluster status is set to `rebooting`. A cluster event is created when the reboot is completed. Any pending cluster modifications (see ModifyCluster) are applied at this reboot. For more information about managing clusters, go to `Amazon Redshift Clusters`_ in the Amazon Redshift Management Guide :type cluster_identifier: string :param cluster_identifier: The cluster identifier. """ params = {'ClusterIdentifier': cluster_identifier, } return self._make_request( action='RebootCluster', verb='POST', path='/', params=params) def reset_cluster_parameter_group(self, parameter_group_name, reset_all_parameters=None, parameters=None): """ Sets one or more parameters of the specified parameter group to their default values and sets the source values of the parameters to "engine-default". To reset the entire parameter group specify the ResetAllParameters parameter. For parameter changes to take effect you must reboot any associated clusters. :type parameter_group_name: string :param parameter_group_name: The name of the cluster parameter group to be reset. :type reset_all_parameters: boolean :param reset_all_parameters: If `True`, all parameters in the specified parameter group will be reset to their default values. Default: `True` :type parameters: list :param parameters: An array of names of parameters to be reset. If ResetAllParameters option is not used, then at least one parameter name must be supplied. Constraints: A maximum of 20 parameters can be reset in a single request. """ params = {'ParameterGroupName': parameter_group_name, } if reset_all_parameters is not None: params['ResetAllParameters'] = str( reset_all_parameters).lower() if parameters is not None: self.build_complex_list_params( params, parameters, 'Parameters.member', ('ParameterName', 'ParameterValue', 'Description', 'Source', 'DataType', 'AllowedValues', 'IsModifiable', 'MinimumEngineVersion')) return self._make_request( action='ResetClusterParameterGroup', verb='POST', path='/', params=params) def restore_from_cluster_snapshot(self, cluster_identifier, snapshot_identifier, snapshot_cluster_identifier=None, port=None, availability_zone=None, allow_version_upgrade=None, cluster_subnet_group_name=None, publicly_accessible=None, owner_account=None): """ Creates a new cluster from a snapshot. Amazon Redshift creates the resulting cluster with the same configuration as the original cluster from which the snapshot was created, except that the new cluster is created with the default cluster security and parameter group. After Amazon Redshift creates the cluster you can use the ModifyCluster API to associate a different security group and different parameter group with the restored cluster. If a snapshot is taken of a cluster in VPC, you can restore it only in VPC. In this case, you must provide a cluster subnet group where you want the cluster restored. If snapshot is taken of a cluster outside VPC, then you can restore it only outside VPC. For more information about working with snapshots, go to `Amazon Redshift Snapshots`_ in the Amazon Redshift Management Guide . :type cluster_identifier: string :param cluster_identifier: The identifier of the cluster that will be created from restoring the snapshot. Constraints: + Must contain from 1 to 63 alphanumeric characters or hyphens. + Alphabetic characters must be lowercase. + First character must be a letter. + Cannot end with a hyphen or contain two consecutive hyphens. + Must be unique for all clusters within an AWS account. :type snapshot_identifier: string :param snapshot_identifier: The name of the snapshot from which to create the new cluster. This parameter isn't case sensitive. Example: `my-snapshot-id` :type snapshot_cluster_identifier: string :param snapshot_cluster_identifier: :type port: integer :param port: The port number on which the cluster accepts connections. Default: The same port as the original cluster. Constraints: Must be between `1115` and `65535`. :type availability_zone: string :param availability_zone: The Amazon EC2 Availability Zone in which to restore the cluster. Default: A random, system-chosen Availability Zone. Example: `us-east-1a` :type allow_version_upgrade: boolean :param allow_version_upgrade: If `True`, upgrades can be applied during the maintenance window to the Amazon Redshift engine that is running on the cluster. Default: `True` :type cluster_subnet_group_name: string :param cluster_subnet_group_name: The name of the subnet group where you want to cluster restored. A snapshot of cluster in VPC can be restored only in VPC. Therefore, you must provide subnet group name where you want the cluster restored. :type publicly_accessible: boolean :param publicly_accessible: If `True`, the cluster can be accessed from a public network. :type owner_account: string :param owner_account: The AWS customer account used to create or copy the snapshot. Required if you are restoring a snapshot you do not own, optional if you own the snapshot. """ params = { 'ClusterIdentifier': cluster_identifier, 'SnapshotIdentifier': snapshot_identifier, } if snapshot_cluster_identifier is not None: params['SnapshotClusterIdentifier'] = snapshot_cluster_identifier if port is not None: params['Port'] = port if availability_zone is not None: params['AvailabilityZone'] = availability_zone if allow_version_upgrade is not None: params['AllowVersionUpgrade'] = str( allow_version_upgrade).lower() if cluster_subnet_group_name is not None: params['ClusterSubnetGroupName'] = cluster_subnet_group_name if publicly_accessible is not None: params['PubliclyAccessible'] = str( publicly_accessible).lower() if owner_account is not None: params['OwnerAccount'] = owner_account return self._make_request( action='RestoreFromClusterSnapshot', verb='POST', path='/', params=params) def revoke_cluster_security_group_ingress(self, cluster_security_group_name, cidrip=None, ec2_security_group_name=None, ec2_security_group_owner_id=None): """ Revokes an ingress rule in an Amazon Redshift security group for a previously authorized IP range or Amazon EC2 security group. To add an ingress rule, see AuthorizeClusterSecurityGroupIngress. For information about managing security groups, go to`Amazon Redshift Cluster Security Groups`_ in the Amazon Redshift Management Guide . :type cluster_security_group_name: string :param cluster_security_group_name: The name of the security Group from which to revoke the ingress rule. :type cidrip: string :param cidrip: The IP range for which to revoke access. This range must be a valid Classless Inter-Domain Routing (CIDR) block of IP addresses. If `CIDRIP` is specified, `EC2SecurityGroupName` and `EC2SecurityGroupOwnerId` cannot be provided. :type ec2_security_group_name: string :param ec2_security_group_name: The name of the EC2 Security Group whose access is to be revoked. If `EC2SecurityGroupName` is specified, `EC2SecurityGroupOwnerId` must also be provided and `CIDRIP` cannot be provided. :type ec2_security_group_owner_id: string :param ec2_security_group_owner_id: The AWS account number of the owner of the security group specified in the `EC2SecurityGroupName` parameter. The AWS access key ID is not an acceptable value. If `EC2SecurityGroupOwnerId` is specified, `EC2SecurityGroupName` must also be provided. and `CIDRIP` cannot be provided. Example: `111122223333` """ params = { 'ClusterSecurityGroupName': cluster_security_group_name, } if cidrip is not None: params['CIDRIP'] = cidrip if ec2_security_group_name is not None: params['EC2SecurityGroupName'] = ec2_security_group_name if ec2_security_group_owner_id is not None: params['EC2SecurityGroupOwnerId'] = ec2_security_group_owner_id return self._make_request( action='RevokeClusterSecurityGroupIngress', verb='POST', path='/', params=params) def revoke_snapshot_access(self, snapshot_identifier, account_with_restore_access, snapshot_cluster_identifier=None): """ Removes the ability of the specified AWS customer account to restore the specified snapshot. If the account is currently restoring the snapshot, the restore will run to completion. For more information about working with snapshots, go to `Amazon Redshift Snapshots`_ in the Amazon Redshift Management Guide . :type snapshot_identifier: string :param snapshot_identifier: The identifier of the snapshot that the account can no longer access. :type snapshot_cluster_identifier: string :param snapshot_cluster_identifier: :type account_with_restore_access: string :param account_with_restore_access: The identifier of the AWS customer account that can no longer restore the specified snapshot. """ params = { 'SnapshotIdentifier': snapshot_identifier, 'AccountWithRestoreAccess': account_with_restore_access, } if snapshot_cluster_identifier is not None: params['SnapshotClusterIdentifier'] = snapshot_cluster_identifier return self._make_request( action='RevokeSnapshotAccess', verb='POST', path='/', params=params) def _make_request(self, action, verb, path, params): params['ContentType'] = 'JSON' response = self.make_request(action=action, verb='POST', path='/', params=params) body = response.read() boto.log.debug(body) if response.status == 200: return json.loads(body) else: json_body = json.loads(body) fault_name = json_body.get('Error', {}).get('Code', None) exception_class = self._faults.get(fault_name, self.ResponseError) raise exception_class(response.status, response.reason, body=json_body)
1.296875
1
tests/test_groupings.py
p-snft/oemof.network
0
12782740
<reponame>p-snft/oemof.network """ Specific tests for the `oemof.groupings` module. Most parts of the `groupings` module are tested via other tests, but certain code paths don't get covered by those, which is what this module is for. This file is part of project oemof (github.com/oemof/oemof). It's copyrighted by the contributors recorded in the version control history of the file, available from its original location oemof/tests/tests_groupings.py SPDX-License-Identifier: MIT """ from types import MappingProxyType as MaProTy from nose.tools import assert_raises from nose.tools import eq_ from oemof.network.groupings import Grouping def test_initialization_argument_checks(): """ `Grouping` constructor should raise `TypeError` on bad arguments. """ message = "\n`Grouping` constructor did not check mandatory arguments." with assert_raises(TypeError, msg=message): Grouping() message = "\n`Grouping` constructor did not check conflicting arguments." with assert_raises(TypeError, msg=message): Grouping(key=lambda x: x, constant_key='key') def test_notimplementederrors(): """ `Grouping` should raise an error when reaching unreachable code. """ message = "\n`Grouping.key` not overriden, but no error raised." with assert_raises(NotImplementedError, msg=message): g = Grouping(key="key") del g.key g.key("dummy argument") message = "\n`Grouping.filter` not overriden, but no error raised." with assert_raises(NotImplementedError, msg=message): g = Grouping(key="key") del g.filter g.filter("dummy argument") def test_mutable_mapping_groups(): g = Grouping( key=lambda x: len(x), value=lambda x: {y: len([z for z in x if z == y]) for y in x}) groups = {} expected = {3: {'o': 2, 'f': 1}} g("foo", groups) eq_(groups, expected, "\n Expected: {} \n Got : {}".format(expected, groups)) def test_immutable_mapping_groups(): g = Grouping( key=lambda x: len(x), value=lambda x: MaProTy( {y: len([z for z in x if z == y]) for y in x})) groups = {} expected = {3: MaProTy({'o': 2, 'f': 1})} g("foo", groups) eq_(groups, expected, "\n Expected: {} \n Got : {}".format(expected, groups))
2.46875
2
LC/448.py
szhu3210/LeetCode_Solutions
2
12782741
class Solution(object): def findDisappearedNumbers0(self, nums): """ :type nums: List[int] :rtype: List[int] """ if not nums: return [] nums.append(len(nums)+1) nums.append(0) nums.sort() res = [] last = nums[0] for num in nums[1:]: if num-last>1: res += range(last+1, num) last = num return res def findDisappearedNumbers(self, nums): """ :type nums: List[int] :rtype: List[int] """ for n in nums: nums[abs(n)-1]=-abs(nums[abs(n)-1]) # print nums res = [] for i,n in enumerate(nums): if n>0: res.append(i+1) return res
3.21875
3
minst/model.py
oriolromani/minst-dataset
44
12782742
import copy import json import jsonschema import logging import pandas as pd import os from sklearn.cross_validation import train_test_split import minst.utils as utils logger = logging.getLogger(__name__) class MissingDataException(Exception): pass class Observation(object): """Document model each item in the collection.""" # This should use package resources :o( SCHEMA_PATH = os.path.join(os.path.dirname(__file__), 'schema', 'observation.json') SCHEMA = json.load(open(SCHEMA_PATH)) def __init__(self, index, dataset, audio_file, instrument, source_index, start_time, duration, note_number=None, dynamic='', partition=''): """Model definition for an instrument observation. Parameters ---------- index : dataset : audio_file : str Relative file path to an audiofile. instrument : source_index : start_time : duration : note_number : dynamic : partition : Returns ------- obs : Observation Populated observation """ self.index = index self.dataset = dataset self.audio_file = audio_file self.instrument = instrument self.source_index = source_index self.start_time = start_time self.duration = duration self.note_number = note_number self.dynamic = dynamic self.partition = partition def to_builtin(self): return self.__dict__.copy() @classmethod def from_series(cls, series): """Convert a pd.Series to an Observation.""" return cls(index=series.name, **series.to_dict()) def to_series(self): """Convert to a flat series (ie make features a column) Returns ------- pandas.Series """ flat_dict = self.to_dict() name = flat_dict.pop("index") return pd.Series(data=flat_dict, name=name) def to_dict(self): return self.__dict__.copy() def __getitem__(self, key): return self.__dict__[key] def validate(self, schema=None, verbose=False, check_files=True): """Returns True if valid. """ schema = self.SCHEMA if schema is None else schema success = True try: jsonschema.validate(self.to_builtin(), schema) except jsonschema.ValidationError as derp: success = False if verbose: print("Failed schema test: \n{}".format(derp)) if success and check_files: success &= utils.check_audio_file(self.audio_file)[0] if not success and verbose: print("Failed file check: \n{}".format(self.audio_file)) return success def _enforce_obs(obs, audio_root='', strict=True): """Get dict from an Observation if an observation, else just dict""" audio_file = obs['audio_file'] escaped_audio_file = os.path.join(audio_root, audio_file) file_checks = [os.path.exists(audio_file), os.path.exists(escaped_audio_file)] if not any(file_checks) and strict: raise MissingDataException( "Audio file(s) missing:\n\tbase: {}\n\tescaped:{}" "".format(audio_file, escaped_audio_file)) if isinstance(obs, Observation): obs = obs.to_dict() obs['audio_file'] = escaped_audio_file if file_checks[1] else audio_file return obs class Collection(object): """Dictionary-like collection of Observations (maintains order). Expands relative audio files to a given `audio_root` path. """ # MODEL = Observation def __init__(self, observations, audio_root='', strict=False): """ Parameters ---------- observations : list List of Observations (as dicts or Observations.) If they're dicts, this will convert them to Observations. data_root : str or None Path to look for an observation, if not None """ self._observations = [Observation(**_enforce_obs(x, audio_root, strict)) for x in observations] self.audio_root = audio_root self.strict = strict def __eq__(self, a): is_eq = False if hasattr(a, 'to_builtin'): is_eq = self.to_builtin() == a.to_builtin() return is_eq def __len__(self): return len(self.values()) def __getitem__(self, n): """Return the observation for a given integer index.""" return self._observations[n] def items(self): return [(v.index, v) for v in self.values()] def values(self): return self._observations def keys(self): return [v.index for v in self.values()] def append(self, observation, audio_root=None): audio_root = self.audio_root if audio_root is None else audio_root obs = _enforce_obs(observation, audio_root, self.strict) self._observations += [Observation(**obs)] def to_builtin(self): return [v.to_builtin() for v in self.values()] @classmethod def read_json(cls, json_path, audio_root=''): with open(json_path, 'r') as fh: return cls(json.load(fh), audio_root=audio_root) def to_json(self, json_path=None, **kwargs): """Pandas-like `to_json` method. Parameters ---------- json_path : str, or None If given, will attempt to write JSON to disk; else returns a string of serialized data. **kwargs : keyword args Pass-through parameters to the JSON serializer. """ sdata = json.dumps(self.to_builtin(), **kwargs) if json_path is not None: with open(json_path, 'w') as fh: fh.write(sdata) else: return sdata def validate(self, verbose=False, check_files=True): """Returns True if all are valid.""" return all([x.validate(verbose=verbose, check_files=check_files) for x in self.values()]) def to_dataframe(self): return pd.DataFrame([x.to_series() for x in self.values()]) @classmethod def from_dataframe(cls, dframe, audio_root=''): return cls([Observation.from_series(x) for _, x in dframe.iterrows()], audio_root=audio_root) def copy(self, deep=True): return Collection(copy.deepcopy(self._observations)) def view(self, column, filter_value): """Returns a copy of the collection restricted to the filter value. Parameters ---------- column : str Name of the column for filtering. filter_value : obj Value to restrict the collection. Returns ------- """ thecopy = copy.copy(self.to_dataframe()) ds_view = thecopy[thecopy[column] == filter_value] return Collection.from_dataframe(ds_view, self.audio_root) def load(filename, audio_root): """ """ return Collection.load(filename) def partition_collection(collection, test_set, train_val_split=0.2, max_files_per_class=None): """Returns Datasets for train and validation constructed from the datasets not in the test_set, and split with the ratio train_val_split. * First selects from only the datasets given in datasets. * Then **for each instrument** (so the distribution from each instrument doesn't change) * train_test_split to generate training and validation sets. * if max_files_per_class, also then restrict the training set to a maximum of that number of files for each train and test Parameters ---------- test_set : str String in ["rwc", "uiowa", "philharmonia"] which selects the hold-out-set to be used for testing. Returns ------- partition_df : pd.DataFrame DataFrame with only an index to the original table, and the partiition in ['train', 'valid', 'test'] """ df = collection.to_dataframe() test_df = collection.view( column='dataset', filter_value=test_set).to_dataframe() datasets = set(df["dataset"].unique()) - set([test_set]) search_df = df[df["dataset"].isin(datasets)] selected_instruments_train = [] selected_instruments_valid = [] for instrument in search_df["instrument"].unique(): instrument_df = search_df[search_df["instrument"] == instrument] if len(instrument_df) < 2: logger.warning("Instrument {} doesn't haven enough samples " "to split.".format(instrument)) continue groups = instrument_df.groupby(['source_index']) train_grps, valid_grps = train_test_split( list(groups), test_size=train_val_split) # Groups get backed out as (source_index, dataframe) tuples, so stick # these back together now that they've been partitioned. traindf = pd.concat(x[1] for x in train_grps) validdf = pd.concat(x[1] for x in valid_grps) if max_files_per_class: replace = False if len(traindf) > max_files_per_class else True traindf = traindf.sample(n=max_files_per_class, replace=replace) selected_instruments_train.append(traindf) selected_instruments_valid.append(validdf) train_df = pd.concat(selected_instruments_train) valid_df = pd.concat(selected_instruments_valid) # Create the final dataframe partition = (['train'] * len(train_df) + ['valid'] * len(valid_df) + ['test'] * len(test_df)) index = (train_df.index.tolist() + valid_df.index.tolist() + test_df.index.tolist()) result = pd.DataFrame(partition, columns=['partition'], index=index) return result
2.59375
3
Curso_em_Video_Exercicios/ex067.py
Cohuzer/Exercicios-do-Curso-em-Video
0
12782743
<filename>Curso_em_Video_Exercicios/ex067.py #Tabauada dos números digitados pelo úsuario- para qnd o valor for negativo while True: print('-' * 30) n = int(input('QUAL TABUADA VOCÊ DESEJA VER? ')) print('-' * 30) c = 0 if n < 0: break while c != 11: print(f'{n} X {c} = {n * c}') c += 1 print('FIM DO PROCESSO')
3.609375
4
mlmodels/model_tf/misc/tf_nlp/language-detection/1.fast-text-ngrams.py
gitter-badger/mlmodels
1
12782744
<filename>mlmodels/model_tf/misc/tf_nlp/language-detection/1.fast-text-ngrams.py #!/usr/bin/env python # coding: utf-8 # In[1]: import re import time import numpy as np import pandas as pd import tensorflow as tf from sklearn import metrics from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tqdm import tqdm # In[2]: lang = pd.read_csv("sentences.csv", sep="\t") lang = lang.dropna() lang.head() # In[3]: X, Y = [], [] for no, ln in enumerate(lang.cmn.unique()): langs = lang.loc[lang.cmn == ln] if langs.shape[0] < 500: continue print(no, ln) langs = langs.iloc[:500, -1].tolist() X.extend(langs) Y.extend([ln] * len(langs)) # In[4]: def clean_text(string): string = re.sub("[0-9!@#$%^&*()_\-+{}|\~`'\";:?/.>,<]", " ", string.lower(), flags=re.UNICODE) return re.sub(r"[ ]+", " ", string.lower()).strip() # In[5]: X = [clean_text(s) for s in X] # In[6]: bow_chars = CountVectorizer(ngram_range=(3, 5), analyzer="char_wb", max_features=700000).fit(X) delattr(bow_chars, "stop_words_") target = LabelEncoder().fit_transform(Y) features = bow_chars.transform(X) features.shape # In[7]: train_X, test_X, train_Y, test_Y = train_test_split(features, target, test_size=0.2) del features # In[8]: # In[9]: def convert_sparse_matrix_to_sparse_tensor(X, limit=5): coo = X.tocoo() indices = np.mat([coo.row, coo.col]).transpose() coo.data[coo.data > limit] = limit return ( tf.SparseTensorValue(indices, coo.col, coo.shape), tf.SparseTensorValue(indices, coo.data, coo.shape), ) # In[10]: labels = np.unique(Y, return_counts=True)[0] labels # In[11]: class Model: def __init__(self, learning_rate): self.X = tf.sparse_placeholder(tf.int32) self.W = tf.sparse_placeholder(tf.int32) self.Y = tf.placeholder(tf.int32, [None]) embeddings = tf.Variable(tf.truncated_normal([train_X.shape[1], 64])) embed = tf.nn.embedding_lookup_sparse(embeddings, self.X, self.W, combiner="mean") self.logits = tf.layers.dense(embed, len(labels)) self.cost = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.Y) ) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.cost) correct_pred = tf.equal(tf.argmax(self.logits, 1, output_type=tf.int32), self.Y) self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # In[12]: sess = tf.InteractiveSession() model = Model(1e-4) sess.run(tf.global_variables_initializer()) # In[13]: batch_size = 64 for e in range(50): lasttime = time.time() train_acc, train_loss, test_acc, test_loss = 0, 0, 0, 0 pbar = tqdm(range(0, train_X.shape[0], batch_size), desc="train minibatch loop") for i in pbar: batch_x = convert_sparse_matrix_to_sparse_tensor( train_X[i : min(i + batch_size, train_X.shape[0])] ) batch_y = train_Y[i : min(i + batch_size, train_X.shape[0])] acc, cost, _ = sess.run( [model.accuracy, model.cost, model.optimizer], feed_dict={model.X: batch_x[0], model.W: batch_x[1], model.Y: batch_y}, ) assert not np.isnan(cost) train_loss += cost train_acc += acc pbar.set_postfix(cost=cost, accuracy=acc) pbar = tqdm(range(0, test_X.shape[0], batch_size), desc="test minibatch loop") for i in pbar: batch_x = convert_sparse_matrix_to_sparse_tensor( test_X[i : min(i + batch_size, test_X.shape[0])] ) batch_y = test_Y[i : min(i + batch_size, test_X.shape[0])] batch_x_expand = np.expand_dims(batch_x, axis=1) acc, cost = sess.run( [model.accuracy, model.cost], feed_dict={model.X: batch_x[0], model.W: batch_x[1], model.Y: batch_y}, ) test_loss += cost test_acc += acc pbar.set_postfix(cost=cost, accuracy=acc) train_loss /= train_X.shape[0] / batch_size train_acc /= train_X.shape[0] / batch_size test_loss /= test_X.shape[0] / batch_size test_acc /= test_X.shape[0] / batch_size print("time taken:", time.time() - lasttime) print( "epoch: %d, training loss: %f, training acc: %f, valid loss: %f, valid acc: %f\n" % (e, train_loss, train_acc, test_loss, test_acc) ) # In[14]: real_Y, predict_Y = [], [] pbar = tqdm(range(0, test_X.shape[0], batch_size), desc="validation minibatch loop") for i in pbar: batch_x = convert_sparse_matrix_to_sparse_tensor( test_X[i : min(i + batch_size, test_X.shape[0])] ) batch_y = test_Y[i : min(i + batch_size, test_X.shape[0])].tolist() predict_Y += np.argmax( sess.run( model.logits, feed_dict={model.X: batch_x[0], model.W: batch_x[1], model.Y: batch_y} ), 1, ).tolist() real_Y += batch_y # In[15]: print(metrics.classification_report(real_Y, predict_Y, target_names=labels))
2.640625
3
app/models/group.py
Saevon/PersOA
2
12782745
<reponame>Saevon/PersOA from django.db import models from app.constants.database import MAX_CHAR_LENGTH from app.models.abstract import AbstractPersOAModel from itertools import chain from utils.decorators import seeded class TraitGroup(AbstractPersOAModel): """ A grouping for Traits. """ name = models.CharField( max_length=MAX_CHAR_LENGTH, blank=False, unique=True) desc = models.TextField(blank=True) basic_traits = models.ManyToManyField( 'BasicTrait', related_name='groups', blank=True ) linear_traits = models.ManyToManyField( 'LinearTrait', related_name='groups', blank=True, ) def __unicode__(self): return unicode(self.name) @property def traits(self): """" Combines the list of Traits """ return chain(self.basic_traits.all(), self.linear_traits.all()) @seeded(2) def generate(self, num=None, seed=None, include=None): """ Returns a choice for each of the groupings traits """ if num is None: num = 1 groups = [] for i in range(num): group = {} for trait in self.traits: group[trait.name] = [ i.details(include) for i in trait.generate(seed=seed) ] groups.append(group) return group def details(self, include=None): """ Returns a dict with the choice's details """ details = self.data() if include is None: pass elif include['group_name']: return self.name include['group'] = False if include['trait']: details.update({ 'traits': [trait.details(include) for trait in self.traits] }) return details def data(self): """ Returns a dict with the basic details """ return { 'name': self.name, 'desc': self.desc, }
2.453125
2
tests/test_tutorial/importers/test_tutorial001.py
ta4tsering/openpecha-toolkit
1
12782746
from pathlib import Path from docs_src.importers.hfml.tutorial001 import result def test_hfml_base(): output_fn = Path("tests") / "formatters" / "hfml" / "data" / "kangyur_base.txt" expected = output_fn.read_text() assert result == expected
2.1875
2
lib/mapper/label.py
hashnfv/hashnfv-domino
0
12782747
#!/usr/bin/env python # # Licence statement goes here # #from toscaparser.tosca_template import ToscaTemplate #Current version: #Parses policy rules, extracts targets, extracts policy properties #Returns set of policy properties for each target in a dictionary object #e.g., node_labels['VNF1'] = {label1, label2, ..., labeln} def extract_labels(tpl): node_labels = dict() #stores labels for each node if tpl.has_key('topology_template'): if tpl['topology_template'].has_key('policies'): policies = tpl['topology_template']['policies'] else: return node_labels else: return node_labels #extract label sets for each policy target for p in policies: for rule in p: targetlist = p[rule]['targets'] for props in p[rule]['properties']: prop_list = p[rule]['properties'][props] for values in prop_list: labelkey = p[rule]['type']+ ':properties:' + props + ":" + values for target in targetlist: if node_labels.has_key(target): node_labels[target].update(set([labelkey])) else: node_labels[target] = set([labelkey]) return node_labels # Returns a map from nodes to regions based on label matching def map_nodes(site_labels,node_labels): sitemap = dict() #stores mapping #for each target find a map of sites for node in node_labels: sitemap[node] = set() for site in site_labels: if node_labels[node].issubset(site_labels[site]): sitemap[node].add(site) return sitemap # Selects sites for nodes if multiple candidates exist # First iterate for nodes with single candidate site # Rank sites with most nodes higher def select_site( site_map ): node_site = dict() counter = dict() #SHALL I CHECK IF ANY KEY HAS AN EMPTY SET TO THROW EXCEPTION? #For now, I assume input as safe for node in site_map: node_site[node] = [] if len(site_map[node]) == 1: for site in site_map[node]: node_site[node] = site if counter.has_key(site): counter[site] = counter[site] + 1 else: counter[site] = 1 for node in site_map: if len(site_map[node]) > 1: maxval = 0 maxkey = '-1' for site in site_map[node]: if counter.has_key(site) and counter[site] >= maxval: maxval = counter[site] maxkey = site elif counter.has_key(site) == False: counter[site] = 0 if maxval == 0: maxval = 1 maxkey = site node_site[node] = maxkey counter[node_site[node]] = counter[node_site[node]] + 1 return node_site
2.40625
2
main/codeSamples/DataStructures/binary_trees/0x00-python-binary_trees/0-binary_tree.py
JKUATSES/dataStructuresAlgorithms
0
12782748
<gh_stars>0 #!/usr/bin/python3 """0-binary_tree module defines classes for creating and interacting with a binary tree """ class Node: """ Class Node defines the structure of a single node of a binary tree Attributes: __data: Int value held by the node __left: Pointer to the left child of a parent/root __right: Pointer to the right child of parent/root """ def __init__(self, data=None, left=None, right=None): """This method initializes a single node. Args: left (Node): This is a pointer to the left child of a parent/root data (Any): This defines the data that the node holds right (Node): This is a pointer to the right child of a parent/root """ if type(data) is not int: raise TypeError("Data must be an integer value") elif (not isinstance(left, Node) and left is not None): raise TypeError("left must be an instance of Node") elif (not isinstance(right, Node) and right is not None): raise TypeError("right must be an instance of Node") else: self.__left = left self.__data = data self.__right = right @property def left(self): """This method returns the left child of parent/root.""" return (self.__left) @left.setter def left(self, left=None): """This method sets left child of parent/root. Args: left (Node): This is a pointer to the left child of a parent/root Raises: TypeError: When arguement is not of type Node """ if (not isinstance(left, Node) and left is not None): raise TypeError("left must be an instance of Node") self.__left = left @property def data(self): """This method returns the data held by the node""" return (self.__data) @data.setter def data(self, data=None): """This method sets the data of the node. Args: data (int): This holds the data of the node. Raises: TypeError: When argument is not of type int """ if type(data) is not int: raise TypeError("Data must be an integer value") self.__data = data @property def right(self): """This method returns the right child of parent/root.""" return (self.__right) @right.setter def right(self, right=None): """This method sets right child of parent/root. Args: right_pointer (Node): This is a pointer to the right child of a parent/root Raises: TypeError: When arguement is not of type Node """ if (not isinstance(right, Node) and right is not None): raise TypeError("right must be an instance of Node") self.__right = right class BinaryTree: """ Class BinaryTree provides methods for creating, manipulating and traversing a binary tree. This class has no public class attributes """ def __init__(self): """ This method initializes a single node """ self.root = None def add(self, data): """This method creates the root of the binary tree if the root is None. Otherwise, it calls the _add() method and supplies it with the required arguement Args: data (Int): An integer value """ if(self.root == None): self.root = Node(data) else: self._add(data, self.root) def _add(self, data, node): """ This method adds a node to the the binary tree. Args: data (Int): An integer value node (Node): A node in the tree """ if(data < node.data): if(node.left != None): self._add(data, node.left) else: node.left = Node(data) else: if(node.right != None): self._add(data, node.right) else: node.right = Node(data) def delete_binary_tree(self): """ This method deletes a binary tree """ self.root = None def is_empty(self): """ This method checks whether the binary tree is empty""" return (self.root == None) def print_tree(self): """ This method prints calls the _print_tree() method if the root of the tree is not None """ if(self.root != None): self._print_tree(self.root) else: print("The binary tree is empty") def _print_tree(self, node): """ This method recursively prints the values of the nodes in the tree Args: node (Node): A node in the tree """ if (node != None): self._print_tree(node.left) print("{:d} is a value held in a node".format(node.data)) self._print_tree(node.right) def find(self, data): """ This calls the _find() method if the tree is not empty Args: data (Int): Integer value """ if type(data) is not int: raise TypeError("Data must be an integer value") if(self.root != None): self._find(data, self.root) else: print("Found None") def _find(self, data, node): """ This method recursively searches the tree for the arguement supplied Args: data (Int): Integer value node (Node): A node in the tree """ if (data == node.data): print("Found {:d} in {}".format(node.data, node)) elif (data < node.data and node.left != None): self._find(data, node.left) elif (data > node.data and node.right != None): self._find(data, node.right) def main(): binary_tree = BinaryTree() binary_tree.add(4) binary_tree.add(5) binary_tree.add(3) binary_tree.add(7) binary_tree.add(13) binary_tree.add(10) binary_tree.add(2) binary_tree.add(9) binary_tree.print_tree() binary_tree.find(10) if __name__ == '__main__': main()
4.25
4
python_collector/peimar/inverter/config.py
cislow970/raspberry-solar-mon
6
12782749
import array as arr import pytz # Owned __project__ = "peimar" __author__ = "<NAME>" __license__ = "MIT" __version__ = "0.0.4" __date__ = "02/11/2021" __email__ = "<<EMAIL>>" # Inverter Web Server inverter_server = "192.168.1.8" inverter_port = 80 # Inverter metric decimals cf = arr.array('I', [0, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1]) # Inverter timezone timezone = pytz.timezone("Europe/Rome") # Production time slot start_hour = '07' start_minute = '30' end_hour = '19' end_minute = '00' dst_start_hour = '06' dst_start_minute = '00' dst_end_hour = '21' dst_end_minute = '30' # InfluxDB Connection influxdb_host = "localhost" influxdb_port = 8086 influxdb_repo = "peimar" influxdb_user = "peimar" influxdb_pwd = "<PASSWORD>" # Log path logdefaultpath = "/var/log/peimar/default.log" loginfopath = "/var/log/peimar/info.log"
2.28125
2
AD14-flask-admin-backup-demo/app/admin_backup/__init__.py
AngelLiang/Flask-Demos
3
12782750
import os from sqlalchemy.exc import IntegrityError, InvalidRequestError from .backup import Backup from .serializer import Serializer from .autoclean import BackupAutoClean from .mixins import AdminBackupModelViewMixin from .fileadmin import BackupFileAdmin class FlaskAdminBackup: def __init__(self, app=None, db=None, admin=None): if app is not None: self.init_app(app) def init_app(self, app, db=None, admin=None, backup=None, serializer=None): if not hasattr(app, 'extensions'): app.extensions = {} app.extensions['flask-admin-backup'] = self app.config.setdefault('ADMIN_BACKUP_FOLDER_NAME', 'databackup') app.config.setdefault('ADMIN_BACKUP_PATH', os.getcwd()) app.config.setdefault('ADMIN_BACKUP_PREFIX', 'db-bkp') app.config.setdefault('ADMIN_BACKUP_FILEADMIN_NAME', 'Backup') self.app = app self.db = db self.fileadmin_name = self.app.config['ADMIN_BACKUP_FILEADMIN_NAME'] self.prefix = self.app.config['ADMIN_BACKUP_PREFIX'] self.folder_path = os.path.join( self.app.config['ADMIN_BACKUP_PATH'], self.app.config['ADMIN_BACKUP_FOLDER_NAME']) self.backup = backup or Backup( path=self.folder_path, prefix=self.prefix) self.target = self.backup.get_target() self.serializer = serializer or Serializer(db=db) if admin: self.add_file_view(admin) def add_file_view(self, admin): admin.add_view(BackupFileAdmin( self.folder_path, name=self.fileadmin_name)) def create(self, class_name, contents): """备份数据 :param class_name: str, :param contents: list, :return: bool """ data = self.serializer.dump_data(contents) filename = self.backup.generate_name(class_name) # 生成文件名称 full_path = self.target.create_file(filename, data) rows = len(self.serializer.load_data(data)) if full_path: print('==> {} rows from {} saved as {}'.format( rows, class_name, full_path)) return True else: print('==> Error creating {} at {}'.format( filename, self.target.path)) return False def restore(self, path): """恢复数据 :param path: 备份文件路径 """ contents = self.target.read_file(path) successes = [] fails = [] db = self.db rows = self.serializer.load_data(contents) for row in rows: try: db.session.merge(row) # 使用了 db.session.merge db.session.commit() # 是否可以换成 flush ? successes.append(row) except (IntegrityError, InvalidRequestError): db.session.rollback() fails.append(row) return successes, fails def autoclean(self): """ Remove a series of backup files based on the following rules: * Keeps all the backups from the last 7 days * Keeps the most recent backup from each week of the last month * Keeps the most recent backup from each month of the last year * Keeps the most recent backup from each year of the remaining years """ backup = self.backup backup.files = tuple(backup.target.get_files()) if not backup.files: print('==> No backups found.') return None cleaning = BackupAutoClean(backup.get_timestamps()) white_list = cleaning.white_list black_list = cleaning.black_list if not black_list: print('==> No backup to be deleted.') return None
2.25
2