max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
data_catalog/query_translation.py
trustedanalytics-ng/data-catalog
1
12782551
<gh_stars>1-10 # # Copyright (c) 2015 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import logging from data_catalog.metadata_entry import (CERBERUS_SCHEMA, ORG_UUID_FIELD, CREATION_TIME_FIELD, IS_PUBLIC_FIELD) class ElasticSearchQueryTranslator(object): def __init__(self): self._log = logging.getLogger(type(self).__name__) self._filter_translator = ElasticSearchFilterExtractor() self._base_query_creator = ElasticSearchBaseQueryCreator() def translate(self, data_catalog_query, org_uuid_list, dataset_filtering, is_admin): """ Translates a Data Catalog query (string) to a string being an ElasticSearch query. match_all will be returned when the query is empty. Errors will be returned on invalid queries. :param str data_catalog_query: A query string from Data Catalog. :param list[str] org_uuid_list: A list of org_uuids that dataset belongs to. :param DataSetFiltering dataset_filtering: Describes if the data sets we want should be private, public or both (takes values respectively: False, True, None). :returns: A JSON string that is a valid ElasticSearch query. :rtype str: :raises ValueError: """ query_dict = self._get_query_dict(data_catalog_query) es_query_base = self._base_query_creator.create_base_query(query_dict) query_filters, post_filters = self._filter_translator.extract_filter( query_dict, org_uuid_list, dataset_filtering, is_admin) final_query = self._combine_query_and_filters(es_query_base, query_filters, post_filters) self._add_pagination(final_query, query_dict) return json.dumps(final_query) def _get_query_dict(self, data_catalog_query): """ Translates a Data Catalog query from string to a dictionary. """ if data_catalog_query: try: query_dict = json.loads(data_catalog_query) except ValueError: self._log_and_raise_invalid_query('Supplied query is not a JSON document.') else: query_dict = {} return query_dict @staticmethod def _combine_query_and_filters(base_es_query, query_filters, post_filters): """ Combines translated base query, filters into one output query and aggregation for categories """ return { 'query': { 'filtered': { 'filter': query_filters, 'query': base_es_query } }, 'post_filter': post_filters, 'aggregations': { 'categories': { 'terms': { 'size': 100, 'field': 'category' } }, 'formats': { 'terms': { 'field': 'format' } } } } @staticmethod def _add_pagination(final_query, input_query_dict): """ If input query contains pagination information ("from" and "size" fields) then they will be added to the output query. """ from_field = 'from' size_field = 'size' if from_field in input_query_dict: final_query[from_field] = input_query_dict[from_field] if size_field in input_query_dict: final_query[size_field] = input_query_dict[size_field] def _log_and_raise_invalid_query(self, message): self._log.error(message) raise InvalidQueryError(message) class ElasticSearchBaseQueryCreator(object): @staticmethod def create_base_query(query_dict): """ Creates a base (text) query for the overall ElasticSearch query (which can contain both base query and filters). This query is created based on the "query" field from the Data Catalog query. A match_all query is returned when there's no text query. :param dict query_dict: A Data Catalog query in a form of dict (can be empty). :returns: A dictionary that represents a valid ElasticSearch query. :rtype dict: """ query_string = query_dict.get('query', None) if query_string: return ElasticSearchBaseQueryCreator.render_es_query(query_string) else: return {'match_all': {}} @staticmethod def render_es_query(query_string): return { 'bool': { 'should': [ { 'multi_match': { 'query': query_string, 'fields': [ 'title', 'title.english' ], 'type': 'most_fields' } }, { 'match': { 'dataSample': { 'query': query_string, 'boost': 2 } } }, { 'match': { 'sourceUri': { 'query': query_string, } } } ] } } class ElasticSearchFilterExtractor(object): def __init__(self): self._log = logging.getLogger(type(self).__name__) # pylint: disable=too-many-branches def extract_filter(self, query_dict, org_uuid_list, dataset_filtering, is_admin): """ Creates a filter for the ElasticSearch query based on the filter information from the Data Catalog query. None is returned when there are no filters. :param dict query_dict: A Data Catalog query in a form of dict (can be empty) :param list[str] org_uuid_list: List of the organisations' UUIDs :returns: Two types of filters; each as a dict {'and': [filter1, filter2, ...]} :rtype (dict, dict): """ # TODO this should totally be rewritten to have less branches filters = query_dict.get('filters', []) if dataset_filtering is DataSetFiltering.PRIVATE_AND_PUBLIC: if not is_admin or org_uuid_list: filters.append({'orgUUID': org_uuid_list}) filters.append({'isPublic': [True]}) elif dataset_filtering is DataSetFiltering.ONLY_PRIVATE: if not is_admin or org_uuid_list: filters.append({'orgUUID': org_uuid_list}) filters.append({'isPublic': [False]}) else: filters.append({'isPublic': [True]}) result = self._filters_segregation(filters, dataset_filtering) query_filters, post_filters, or_filters = result return self._prepare_query_filters_dict(query_filters, post_filters, or_filters) @staticmethod def _prepare_query_filters_dict(query_filters, post_filters, or_filters): if not query_filters and or_filters: query_filters_dict = {'or': or_filters} elif or_filters and query_filters: query_filters.append({'or': or_filters}) query_filters_dict = {'and': query_filters} elif not or_filters and query_filters: query_filters_dict = {'and': query_filters} else: query_filters_dict = {} if post_filters: return query_filters_dict, {'and': post_filters} else: return query_filters_dict, {} def _filters_segregation(self, filters, dataset_filtering): query_filters = [] post_filters = [] or_filters = [] # filters should be in form NAME: [VALUE, VALUE, ...] for data_set_filter in filters: filter_type, filter_values = self._get_filter_properties(data_set_filter) es_filter = self._translate_filter(filter_type, filter_values) if not es_filter: continue if dataset_filtering is DataSetFiltering.PRIVATE_AND_PUBLIC: if filter_type in [ORG_UUID_FIELD, IS_PUBLIC_FIELD]: # filters that are applied with 'or' parameter or_filters.append(es_filter) elif filter_type in [CREATION_TIME_FIELD]: # filters that are applied with the query (result are filtered) query_filters.append(es_filter) else: # filters that are applied AFTER the query (results are unfiltered) post_filters.append(es_filter) else: if filter_type in [ORG_UUID_FIELD, CREATION_TIME_FIELD, IS_PUBLIC_FIELD]: # filters that are applied with the query (result are filtered) query_filters.append(es_filter) else: # filters that are applied AFTER the query (results are unfiltered) post_filters.append(es_filter) return query_filters, post_filters, or_filters def _get_filter_properties(self, query_filter): """ Gets a tuple: (filter_type, filter_values_list). Filter should be a dict in form: {FILTER_TYPE: FILTER_VALUES_LIST} """ if not isinstance(query_filter, dict): self._log_and_raise_invalid_query( "A filter is not a dictionary: {}".format(query_filter)) if not query_filter: self._log_and_raise_invalid_query("Filter dictionary can't be empty.") filter_type, filter_values = query_filter.items()[0] if filter_type not in CERBERUS_SCHEMA: self._log_and_raise_invalid_query( "Can't filter over field {}, because it isn't in the mapping.".format(filter_type)) if not filter_values: self._log_and_raise_invalid_query("Filter doesn't contain any values") return filter_type, filter_values def _translate_filter(self, filter_type, filter_values): """ Translates a filter of the given type with the given values list to an ElasticSearch filter. """ def create_normal_filter(values): values = [str(value).lower() for value in values] if len(values) == 1: return {'term': {filter_type: values[0]}} else: return {'terms': {filter_type: values}} def create_time_filter(values): time_range = {} if len(values) != 2: self._log_and_raise_invalid_query('There should be exactly two time range values.') if values[0] != -1: time_range['from'] = values[0] if values[1] != -1: time_range['to'] = values[1] return { 'range': { CREATION_TIME_FIELD: time_range } } if not filter_values: return None elif not isinstance(filter_values, list): self._log_and_raise_invalid_query("Filter values aren't a list.") if filter_type != CREATION_TIME_FIELD: return create_normal_filter(filter_values) else: return create_time_filter(filter_values) def _log_and_raise_invalid_query(self, message): self._log.error(message) raise InvalidQueryError(message) class InvalidQueryError(Exception): pass class DataSetFiltering(object): PRIVATE_AND_PUBLIC = None ONLY_PUBLIC = True ONLY_PRIVATE = False
2.046875
2
tests/sentry/interfaces/template/tests.py
davedash/sentry
1
12782552
<filename>tests/sentry/interfaces/template/tests.py # -*- coding: utf-8 -*- from __future__ import absolute_import import mock from sentry.interfaces import Template from sentry.models import Event from tests.base import TestCase class TemplateTest(TestCase): def test_serialize(self): interface = Template( filename='foo.html', context_line='hello world', lineno=1, ) result = interface.serialize() self.assertEquals(result['filename'], 'foo.html') self.assertEquals(result['context_line'], 'hello world') self.assertEquals(result['lineno'], 1) def test_get_hash(self): interface = Template( filename='foo.html', context_line='hello world', lineno=1, ) result = interface.get_hash() self.assertEquals(result, ['foo.html', 'hello world']) @mock.patch('sentry.interfaces.get_context') @mock.patch('sentry.interfaces.Template.get_traceback') def test_to_string_returns_traceback(self, get_traceback, get_context): get_traceback.return_value = 'traceback' event = mock.Mock(spec=Event) interface = Template( filename='foo.html', context_line='hello world', lineno=1, ) result = interface.to_string(event) get_traceback.assert_called_once_with(event, get_context.return_value) self.assertEquals(result, 'Stacktrace (most recent call last):\n\ntraceback')
2.28125
2
testdata/PyFEM-master/pyfem/elements/SLSutils.py
Konstantin8105/py4go
3
12782553
<filename>testdata/PyFEM-master/pyfem/elements/SLSutils.py<gh_stars>1-10 ############################################################################ # This Python file is part of PyFEM, the code that accompanies the book: # # # # 'Non-Linear Finite Element Analysis of Solids and Structures' # # <NAME>, <NAME>, <NAME> and <NAME> # # <NAME> and Sons, 2012, ISBN 978-0470666449 # # # # The code is written by <NAME>, <NAME> and <NAME>. # # # # The latest stable version can be downloaded from the web-site: # # http://www.wiley.com/go/deborst # # # # A github repository, with the most up to date version of the code, # # can be found here: # # https://github.com/jjcremmers/PyFEM # # # # The code is open source and intended for educational and scientific # # purposes only. If you use PyFEM in your research, the developers would # # be grateful if you could cite the book. # # # # Disclaimer: # # The authors reserve all rights but do not guarantee that the code is # # free from errors. Furthermore, the authors shall not be liable in any # # event caused by the use of the program. # ############################################################################ from numpy import zeros, dot, outer, ones, eye, sqrt, absolute, linalg,cos,sin,cross from scipy.linalg import eigvals,inv #----------------------------------------------------------------------- # class SLSparameters #----------------------------------------------------------------------- class SLSparameters: def __init__( self , nNod ): if nNod == 8: self.totDOF = 28 self.condDOF = 24 self.midNodes = 4 self.extNode = 8 self.ansFlag = True elif nNod == 16: self.totDOF = 52 self.condDOF = 48 self.midNodes = 4 self.extNode = 16 self.ansFlag = False #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ def getlam4( lam ): lam4 = zeros(shape=(3,3,3,3)) for i in range(3): for j in range(3): for k in range(3): for l in range(3): lam4[i,j,k,l]=lam[i,k]*lam[j,l] return lam4 #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ def iso2locbase( iso , lam4 ): loc = zeros(6) loc[0]=iso[0]*lam4[0,0,0,0]+iso[1]*lam4[1,1,0,0]+iso[2]*lam4[2,2,0,0]+ \ iso[3]*0.5*(lam4[0,1,0,0]+lam4[1,0,0,0])+ \ iso[4]*0.5*(lam4[1,2,0,0]+lam4[2,1,0,0])+ \ iso[5]*0.5*(lam4[2,0,0,0]+lam4[0,2,0,0]) loc[1]=iso[0]*lam4[0,0,1,1]+iso[1]*lam4[1,1,1,1]+iso[2]*lam4[2,2,1,1]+ \ iso[3]*0.5*(lam4[0,1,1,1]+lam4[1,0,1,1])+ \ iso[4]*0.5*(lam4[1,2,1,1]+lam4[2,1,1,1])+ \ iso[5]*0.5*(lam4[2,0,1,1]+lam4[0,2,1,1]) loc[2]=iso[0]*lam4[0,0,2,2]+iso[1]*lam4[1,1,2,2]+iso[2]*lam4[2,2,2,2]+ \ iso[3]*0.5*(lam4[0,1,2,2]+lam4[1,0,2,2])+ \ iso[4]*0.5*(lam4[1,2,2,2]+lam4[2,1,2,2])+ \ iso[5]*0.5*(lam4[2,0,2,2]+lam4[0,2,2,2]) loc[3]=iso[0]*(lam4[0,0,0,1]+lam4[0,0,1,0])+ \ iso[1]*(lam4[1,1,0,1]+lam4[1,1,1,0])+ \ iso[2]*(lam4[2,2,0,1]+lam4[2,2,1,0])+ \ iso[3]*0.5*(lam4[0,1,0,1]+lam4[0,1,1,0]+ \ lam4[1,0,0,1]+lam4[1,0,1,0])+ \ iso[4]*0.5*(lam4[1,2,0,1]+lam4[1,2,1,0]+ \ lam4[2,1,0,1]+lam4[2,1,1,0])+ \ iso[5]*0.5*(lam4[2,0,0,1]+lam4[2,0,1,0]+ \ lam4[0,2,0,1]+lam4[0,2,1,0]) loc[4]=iso[0]*(lam4[0,0,1,2]+lam4[0,0,2,1])+ \ iso[1]*(lam4[1,1,1,2]+lam4[1,1,2,1])+ \ iso[2]*(lam4[2,2,1,2]+lam4[2,2,2,1])+ \ iso[3]*0.5*(lam4[0,1,1,2]+lam4[0,1,2,1]+ \ lam4[1,0,1,2]+lam4[1,0,2,1])+ \ iso[4]*0.5*(lam4[1,2,1,2]+lam4[1,2,2,1]+ \ lam4[2,1,1,2]+lam4[2,1,2,1])+ \ iso[5]*0.5*(lam4[2,0,1,2]+lam4[2,0,2,1]+ \ lam4[0,2,1,2]+lam4[0,2,2,1]) loc[5]=iso[0]*(lam4[0,0,2,0]+lam4[0,0,0,2])+ \ iso[1]*(lam4[1,1,2,0]+lam4[1,1,0,2])+ \ iso[2]*(lam4[2,2,2,0]+lam4[2,2,0,2])+ \ iso[3]*0.5*(lam4[0,1,2,0]+lam4[0,1,0,2]+ \ lam4[1,0,2,0]+lam4[1,0,0,2])+ \ iso[4]*0.5*(lam4[1,2,2,0]+lam4[1,2,0,2]+ \ lam4[2,1,2,0]+lam4[2,1,0,2])+ \ iso[5]*0.5*(lam4[2,0,2,0]+lam4[2,0,0,2]+ \ lam4[0,2,2,0]+lam4[0,2,0,2]) return loc #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ def iso2loc( iso , lam ): if iso.ndim == 1: loc = iso2locbase( iso , getlam4( lam ) ) else: loc = iso for i,col in enumerate(iso.T): loc[:,i] = iso2locbase( col , getlam4( lam ) ) return loc #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ def sigma2omega( sigma , lam ): omega = zeros(6) omega[0]=lam[0,0]*lam[0,0]*sigma[0]+ \ lam[0,1]*lam[0,1]*sigma[1]+ \ lam[0,2]*lam[0,2]*sigma[2]+ \ 2*(lam[0,0]*lam[0,1]*sigma[3])+ \ 2*(lam[0,1]*lam[0,2]*sigma[4])+ \ 2*(lam[0,0]*lam[0,2]*sigma[5]) omega[1]=lam[1,0]*lam[1,0]*sigma[0]+ \ lam[1,1]*lam[1,1]*sigma[1]+ \ lam[1,2]*lam[1,2]*sigma[2]+ \ 2*(lam[1,0]*lam[1,1]*sigma[3])+ \ 2*(lam[1,1]*lam[1,2]*sigma[4])+ \ 2*(lam[1,0]*lam[1,2]*sigma[5]) omega[2]=lam[2,0]*lam[2,0]*sigma[0]+ \ lam[2,1]*lam[2,1]*sigma[1]+ \ lam[2,2]*lam[2,2]*sigma[2]+ \ 2*(lam[2,0]*lam[2,1]*sigma[3])+ \ 2*(lam[2,1]*lam[2,2]*sigma[4])+ \ 2*(lam[2,0]*lam[2,2]*sigma[5]) omega[3]=lam[0,0]*lam[1,0]*sigma[0]+ \ lam[0,0]*lam[1,1]*sigma[3]+ \ lam[0,0]*lam[1,2]*sigma[5]+ \ lam[0,1]*lam[1,0]*sigma[3]+ \ lam[0,1]*lam[1,1]*sigma[1]+ \ lam[0,1]*lam[1,2]*sigma[4]+ \ lam[0,2]*lam[1,0]*sigma[5]+ \ lam[0,2]*lam[1,1]*sigma[4]+ \ lam[0,2]*lam[1,2]*sigma[2] omega[4]=lam[1,0]*lam[2,0]*sigma[0]+ \ lam[1,0]*lam[2,1]*sigma[3]+ \ lam[1,0]*lam[2,2]*sigma[5]+ \ lam[1,1]*lam[2,0]*sigma[3]+ \ lam[1,1]*lam[2,1]*sigma[1]+ \ lam[1,1]*lam[2,2]*sigma[4]+ \ lam[1,2]*lam[2,0]*sigma[5]+ \ lam[1,2]*lam[2,1]*sigma[4]+ \ lam[1,2]*lam[2,2]*sigma[2] omega[5]=lam[0,0]*lam[2,0]*sigma[0]+ \ lam[0,0]*lam[2,1]*sigma[3]+ \ lam[0,0]*lam[2,2]*sigma[5]+ \ lam[0,1]*lam[2,0]*sigma[3]+ \ lam[0,1]*lam[2,1]*sigma[1]+ \ lam[0,1]*lam[2,2]*sigma[4]+ \ lam[0,2]*lam[2,0]*sigma[5]+ \ lam[0,2]*lam[2,1]*sigma[4]+ \ lam[0,2]*lam[2,2]*sigma[2] return omega #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ class Layer: pass #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ class LayerData: def __init__( self , props ): self.layers = [] self.totThick = 0. if hasattr( props , "layers" ): for layID in props.layers: layprops = getattr( props , layID ) layer = Layer() layer.thick = layprops.thickness layer.angle = layprops.angle layer.matID = layprops.material self.totThick += layprops.thickness self.layers.append( layer ) else: layer = Layer() layer.thick = 1.0 layer.angle = 0.0 layer.matID = 0 self.totThick = 1.0 self.layers.append( layer ) def __iter__( self ): return iter( self.layers ) def __len__( self ): return len(self.layers) #------------------------------------------------------------------------------ # #------------------------------------------------------------------------------ class StressContainer: def __init__( self , param ): self.nLay = param.nLay self.nMid = param.midNodes self.nNod = 2*self.nMid self.reset() def reset( self ): self.data = zeros( shape = ( self.nLay , 6 , self.nNod ) ) self.weights = zeros( self.nLay ) def store( self , sigma , iLay , iIntZeta ): if self.nLay == 1: if iIntZeta == 0: self.data[ 0,:,:4] += outer( sigma , ones(self.nMid) ) self.weights[ 0 ] += 1. elif iIntZeta == 1: self.data[ 0 , : , 4: ] += outer( sigma , ones(self.nMid) ) else: self.data[ iLay , : , : ] += outer( sigma , ones(self.nNod) ) self.weights[ iLay ] += 1 def getStress( self ): for iLay in range(self.nLay): self.data[iLay,:,:] *= 1.0/self.weights[iLay] return self.data.reshape(self.nLay*6,self.nNod).T def getLabels( self ): origlabel = ["s11","s22","s33","s13","s23","s12"] if self.nLay == 1: return origlabel else: labels = [] for iLay in range(self.nLay): for ll in origlabel: labels.append( "lay"+str(iLay)+"-"+ll) return labels
1.820313
2
wrapper_plugins/jpeg2000_wrapper/tests/test_wrapper.py
spongezhang/maskgen
0
12782554
<reponame>spongezhang/maskgen import unittest import os import numpy as np class TestToolSet(unittest.TestCase): def test_all(self): from jpeg2000_wrapper import opener img = np.random.randint(0, high=255, size=(2000, 4000, 6), dtype=np.uint8) opener.writeJPeg2000File('foo.jp2',img) newimg = opener.openJPeg2000File('foo.jp2') self.assertTrue(np.all(img == newimg[0])) os.remove('foo.jp2') if __name__ == '__main__': unittest.main()
2.34375
2
instResp/libInst.py
mikehagerty/instResp
0
12782555
import numpy as np from instResp.polezero import polezero from instResp.plotResp import plotResponse import os import logging logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) logger = logging.getLogger(__name__) ''' This module contains a collection of non-bulletproof codes for creating/manipulating instrument response stages, particularly the first stage = analog polezero stage. ''' def evalResp(pz, f): s = 0.000 + 1.000j numerator = 1.000 + 0.000j denominator = 1.000 + 0.000j if pz.type == 'A': s *= 2.*np.pi*f elif pz.type == 'B': s *= f else: logger.warn("Unknown pz response type=[%s]" % pz.type) for j in range(pz.nzeros): numerator *= (s - pz.zeros[j]) for j in range(pz.npoles): denominator *= (s - pz.poles[j]) Gf = numerator * pz.a0 # Make sure this is complex Gf /= denominator return Gf; def getResponse(pz, freqs, removeZero=False, useSensitivity=True): ''' We're expecting a standard IRIS polezero file for displacement, so if velocity=True try to shed one zero at origin ''' if removeZero: success = pz.remove_zero() #zeros = np.zeros((pz.zeros.size-1,), dtype=np.complex128) #success = remove_zero(pz.zeros, zeros) if success: logger.debug("Zero successfully removed from origin") #pz.zeros = zeros #pz.nzeros = zeros.size else: logger.warn("Problem removing zero from origin!") resp = np.zeros((len(freqs),), dtype=np.complex128) for i, f in enumerate(freqs): resp[i] = evalResp(pz, f) if useSensitivity: resp[i] *= pz.sensitivity return resp def read_sacpz_file(filename): """ * ********************************** * NETWORK (KNETWK): AU * STATION (KSTNM): WR1 * LOCATION (KHOLE): * CHANNEL (KCMPNM): BHZ * CREATED : 2017-02-02T01:23:27 * START : 2005-01-31T00:00:00 * END : 2599-12-31T23:59:59 * DESCRIPTION : Warramunga Array, Australia * LATITUDE : -19.942600 * LONGITUDE : 134.339500 * ELEVATION : 389.0 * DEPTH : 0.0 * DIP : 0.0 * AZIMUTH : 0.0 * SAMPLE RATE : 40.0 * INPUT UNIT : M * OUTPUT UNIT : COUNTS * INSTTYPE : Guralp CMG3ESP_30sec_ims/Guralp DM24-MK3 Datalogge * INSTGAIN : 4.000290e+03 (M/S) * COMMENT : V3180 A3242 * SENSITIVITY : 2.797400e+09 (M/S) * A0 : 8.883050e-02 * ********************************** ZEROS 5 +0.000000e+00 +0.000000e+00 +0.000000e+00 +0.000000e+00 +0.000000e+00 +0.000000e+00 +8.670000e+02 +9.050000e+02 +8.670000e+02 -9.050000e+02 POLES 4 -1.486000e-01 +1.486000e-01 -1.486000e-01 -1.486000e-01 -3.140000e+02 +2.023000e+02 -3.140000e+02 -2.023000e+02 CONSTANT 2.484944e+08 """ fname = 'read_sacpz_file' with open(filename, 'r') as f: lines = f.readlines() zeros = None poles = None sensitivity = None a0 = None unitsIn = None unitsOut = None knet = "" ksta = "" kloc = "" kchan = "" for i in range(len(lines)): line = lines[i] #print "i=[%d] line=[%s]" % (i, line) if line[0] == '*': if line[2] != '*': split_list = line.split(':') field = split_list[0][1:] val = split_list[1] # could have val = "" or val = 2.79E9 (M/S) val_list = val.split() nsplit=len(val_list) #print "field=", field, " val=", val if 'SENSITIVITY' in field: sensitivity = float(val_list[0]) elif 'A0' in field: a0 = float(val_list[0]) elif 'INPUT UNIT' in field: unitsIn = val.strip() elif 'OUTPUT UNIT' in field: unitsOut = val.strip() elif 'NETWORK' in field: knet = val.strip() elif 'STATION' in field: ksta = val.strip() elif 'LOCATION' in field: kloc = val.strip() elif 'CHANNEL' in field: kchan = val.strip() elif line[0:5] == 'ZEROS': try: nzeros = int(line[6:len(line)]) except: logger.error("%s.%s Error: can't read nzeros from line=[%s]" % (__name__, fname, line)) exit(1) #zeros = np.zeros((nzeros,), dtype=np.complex128) zeros = np.zeros(nzeros, dtype=np.complex128) for j in range(nzeros): i += 1 line = lines[i] (z_re, z_im) = line.split() zeros[j] = complex( float(z_re), float(z_im) ) elif line[0:5] == 'POLES': try: npoles = int(line[6:len(line)]) except: logger.error("%s.%s Error: can't read npoles from line=[%s]" % (__name__, fname, line)) exit(1) poles = np.zeros(npoles, dtype=np.complex128) for j in range(npoles): i += 1 line = lines[i] (p_re, p_im) = line.split() poles[j] = complex( float(p_re), float(p_im) ) #print "knet=%s ksta=%s kloc=%s kchan=%s" % (knet, ksta, kloc, kchan) name = "%s.%s %s.%s" % (knet, ksta, kloc, kchan) pz_ = polezero(name = name, type = 'A', #type = 'A[Laplace Transform (Rad/sec)]', unitsIn = unitsIn, unitsOut = unitsOut, a0 = a0, sensitivity = sensitivity, sensitivity_f = 1.0, poles = poles, zeros = zeros) return pz_ def get_corner_freq_from_pole(pole): ''' get distance [rad/s] from lowest order pole to origin and return Hz [/s] ''' return np.sqrt(pole.real**2 + pole.imag**2) / (2.*np.pi) def test_RC(): from instResp.libNom import RC R = 4. C = 1.25/(2.*np.pi) pzs = RC(tau=R*C) freqs = np.logspace(-5, 4., num=1000) resp = getResponse(pzs, freqs, removeZero=False) title = 'RC filter: R=4 ohms, C=1.25F/2pi' plotResponse(resp, freqs, title=title, xmin=.001, xmax=100., ymin=0.01, ymax=1.2) logger.info("Corner freq:%f" % get_corner_freq_from_pole(pzs.poles[0])) return def test_WA(damp=.18, gain=1., f0=14, fnorm=100.): from instResp.libNom import WA, Accelerometer pzs = WA(per=1/f0, damp=damp, gain=gain, normalize=True, normalize_freq=fnorm) logger.info(pzs) freqs = np.logspace(-5, 4., num=500) resp = getResponse(pzs, freqs, removeZero=False) #print(np.max(np.abs(resp))) title='WA for f0=%.2f Hz damp=%.3f gain=%.0f' % (f0,damp, gain) logger.info("Corner freq:%.2f" % get_corner_freq_from_pole(pzs.poles[0])) plotResponse(resp, freqs, title=title, xmin=1, xmax=5000., ymin=.01, ymax=1.2) return def plot_pz_resp(pzfile=None): pzs = read_sacpz_file(pzfile) logger.info(pzs) freqs = np.logspace(-5, 3., num=500) resp = getResponse(pzs, freqs, removeZero=True, useSensitivity=False) title=pzfile plotResponse(resp, freqs, title=title, xmin=.001, xmax=100., ymin=.01, ymax=1e3) return def main(): #test_RC() test_WA(damp=0.6) exit() pz_dir = '/Users/mth/mth/Data/IRIS_Request/pz/' pz_fil = 'SACPZ.II.AAK.10.BHZ' plot_pz_resp(pzfile=os.path.join(pz_dir, pz_fil)) exit() if __name__=="__main__": main()
2.625
3
package/awesome_panel/database/__init__.py
mycarta/awesome-panel
1
12782556
<reponame>mycarta/awesome-panel<gh_stars>1-10 """Imports to be exposed to the user of the package are listed here""" from awesome_panel.database.authors import AUTHORS from awesome_panel.database.resources import RESOURCES from awesome_panel.database.tags import TAGS
1.320313
1
radiobear/Constituents/parameters.py
david-deboer/radiobear
3
12782557
<filename>radiobear/Constituents/parameters.py from argparse import Namespace def setpar(kwargs): par = Namespace(units='dBperkm', path='./', verbose=False) for p, v in kwargs.items(): setattr(par, p, v) return par
2.09375
2
log_it/extensions/marshmallow/log.py
tanj/log-it
0
12782558
# -*- coding: utf-8 -*- # pylint: disable=R0903, C0115 """ log_it.extensions.marshmallow.log --------------------------------- Marshmallow Log Models :copyright: (c) 2021 by <NAME> :license: BSD, see LICENSE for more details """ from datetime import datetime from marshmallow_sqlalchemy import SQLAlchemyAutoSchema, auto_field from marshmallow_sqlalchemy.fields import Nested from log_it.log.model import ( TLog, TField, TLogField, TMessage, TMessageType, TTag, TTagMessage, TUserPermission, TRolePermission, ) from . import FixtureSchema from .user import UserFixture, RoleFixture, ActionFixture class LogSchema(SQLAlchemyAutoSchema): class Meta: model = TLog class FieldSchema(SQLAlchemyAutoSchema): class Meta: model = TField class LogFieldSchema(SQLAlchemyAutoSchema): class Meta: model = TLogField class MessageSchema(SQLAlchemyAutoSchema): class Meta: model = TMessage class MessageTypeSchema(SQLAlchemyAutoSchema): class Meta: model = TMessageType class TagSchema(SQLAlchemyAutoSchema): class Meta: model = TTag class TagMessageSchema(SQLAlchemyAutoSchema): class Meta: model = TTagMessage class UserPermissionSchema(SQLAlchemyAutoSchema): class Meta: model = TUserPermission class RolePermissionSchema(SQLAlchemyAutoSchema): class Meta: model = TRolePermission # FixtureSchema class LogFixture(FixtureSchema): """Barebones Log Fixture for stubs""" class Meta(FixtureSchema.Meta): model = TLog filter_attrs = ["sLog"] sLog = auto_field() class FieldFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TField filter_attrs = ["sField"] sField = auto_field() class LogFieldFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TLogField filter_attrs = [ "log.ixLog", "field.ixField", ] log = Nested(LogFixture, many=False) field = Nested(FieldFixture, many=False) sValue = auto_field() iOrder = auto_field(missing=None) class MessageTypeFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TMessageType filter_attrs = ["sMessageType"] class TagFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TTag filter_attrs = ["sTag"] sTag = auto_field() class TagMessageFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TTagMessage class MessageFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TMessage # message fixtures are always inserted, never looked up filter_attrs = None log = Nested(LogFixture, many=False) message_type = Nested(MessageTypeFixture, many=False) user = Nested(UserFixture, many=False) utcMessage = auto_field(missing=datetime.utcnow) sMessage = auto_field() tags = Nested(TagFixture, many=True) class UserPermissionFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TUserPermission log = Nested(LogFixture, many=False) user = Nested(UserFixture, many=False) action = Nested(ActionFixture, many=False) class RolePermissionFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TRolePermission log = Nested(LogFixture, many=False) role = Nested(RoleFixture, many=False) action = Nested(ActionFixture, many=False) class LogFullFixture(FixtureSchema): class Meta(FixtureSchema.Meta): model = TLog filter_attrs = ["sLog"] sLog = auto_field() user = Nested(UserFixture, many=False) fields = Nested(FieldFixture, many=True) user_permissions = Nested(UserPermissionFixture) role_permissions = Nested(RolePermissionFixture)
2
2
goodgames/games/migrations/0006_auto_20171128_0232.py
mooshu1x2/goodgames
0
12782559
<filename>goodgames/games/migrations/0006_auto_20171128_0232.py # -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-28 02:32 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('games', '0005_auto_20171128_0225'), ] operations = [ migrations.RemoveField( model_name='game', name='release_year', ), migrations.AlterField( model_name='game', name='genre', field=models.CharField(choices=[('Action', 'Action'), ('Adventure', 'Adventure'), ('Fighting', 'Fighting'), ('Platform', 'Platform'), ('Puzzle', 'Puzzle'), ('Racing', 'Racing'), ('Role-Playing', 'Role-Playing'), ('Shooter', 'Shooter'), ('Simulation', 'Simulation'), ('Sports', 'Sports'), ('Strategy', 'Strategy'), ('Misc', 'Misc'), ('Unknown', 'Unknown')], default='Unknown', max_length=30), ), ]
1.679688
2
messaging/schema/accounts.py
sunhoww/messaging
1
12782560
# -*- coding: utf-8 -*- import graphene from graphene import relay from graphene_gae import NdbObjectType, NdbConnectionField from messaging.models.accounts import ( Account as AccountModel, create, update, delete, generate_api_key, ) from messaging.models.services import Service as ServiceModel from messaging.models.messages import Message as MessageModel from messaging.schema.services import Service as ServiceType from messaging.schema.messages import Message as MessageType from messaging.utils import pick from messaging.helpers import get_key from messaging.exceptions import ExecutionUnauthorized class Account(NdbObjectType): class Meta: model = AccountModel exclude_fields = AccountModel._excluded_keys interfaces = (relay.Node,) services = NdbConnectionField(ServiceType) def resolve_services(self, info, **args): return ServiceModel.query(ancestor=self.key) messages = NdbConnectionField(MessageType) def resolve_messages(self, info, **args): return MessageModel.query(ancestor=self.key) @classmethod def accounts_resolver(cls, root, info): return AccountModel.query(ancestor=info.context.user_key) class CreateAccount(relay.ClientIDMutation): class Input: site = graphene.String(required=True) name = graphene.String(required=True) account = graphene.Field(Account) @classmethod def mutate_and_get_payload(cls, root, info, **input): account = create( fields=cls.Input._meta.fields.keys(), user=info.context.user_key, body=input, as_obj=True, ) return CreateAccount(account=account) class UpdateAccount(relay.ClientIDMutation): class Input: id = graphene.ID(required=True) site = graphene.String() name = graphene.String() account = graphene.Field(Account) @classmethod def mutate_and_get_payload(cls, root, info, **input): account_key = get_key(input.get("id")) if account_key.parent() != info.context.user_key: raise ExecutionUnauthorized account = update( fields=filter(lambda x: x != "id", cls.Input._meta.fields.keys()), account=account_key, body=pick(["site", "name"], input), as_obj=True, ) return UpdateAccount(account=account) class DeleteAccount(relay.ClientIDMutation): class Input: id = graphene.ID(required=True) @classmethod def mutate_and_get_payload(cls, root, info, id): account_key = get_key(id) if account_key.parent() != info.context.user_key: raise ExecutionUnauthorized delete(account_key) return DeleteAccount() class CreateAccountKey(relay.ClientIDMutation): class Input: id = graphene.ID(required=True) key = graphene.String() @classmethod def mutate_and_get_payload(cls, root, info, **input): account_key = get_key(input.get("id")) if account_key.parent() != info.context.user_key: raise ExecutionUnauthorized key = generate_api_key(account_key) return CreateAccountKey(key=key)
2.15625
2
algocodes/algocodes/pipelines.py
Brucechen13/freeprograms
0
12782561
<reponame>Brucechen13/freeprograms<filename>algocodes/algocodes/pipelines.py<gh_stars>0 # -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html from algocodes.items import QuestionItem, ArxivItem, ComicItem from algocodes.sql import Sql import os import requests class AlgocodesPipeline(object): def process_item(self, item, spider): return item class CodesPipeline(object): def process_item(self, item, spider): if isinstance(item, QuestionItem): Sql.insert_problem(item['ques_id'], item['ques_title'], item['ques_content'], item['ques_acc'], item['ques_submit'], item['ques_level']) elif isinstance(item, ArxivItem): Sql.insert_paper(item['arxiv_title'], item['arxiv_auther'], item['arxiv_content'], item['arxiv_time'], item['arxiv_subject'], item['arxiv_pdfurl']) elif isinstance(item, ComicItem): path = '/data/' + item['comic_title'] + '/' + item['comic_chapter'] if not os.path.exists(path): os.makedirs(path) for page in range(1, item['comic_page']+1): pic_url = item['comic_baseurl'].replace('%2F1.jpg', '%2F'+ str(page) +'.jpg') res = requests.get(pic_url) if(res.status_code != 200): print('parse error ', item['comic_baseurl'], pic_url) return with open(os.path.join(path, str(page)+'.jpg'), 'wb') as f: f.write(res.content)
2.609375
3
benderopt/tests/base/test_optimization_problem.py
tchar/benderopt
66
12782562
<reponame>tchar/benderopt from benderopt.base import OptimizationProblem, Parameter, Observation from benderopt.utils import get_test_optimization_problem from benderopt.validation.utils import ValidationError import pytest def test_optimization_problem(): parameter1 = Parameter( name="param1", category="categorical", search_space={"values": ["a", "b"]} ) parameter2 = Parameter(name="param2", category="uniform", search_space={"low": 1, "high": 2}) parameters = [parameter1, parameter2] optimization_problem = OptimizationProblem(parameters) observation1 = Observation(sample={"param1": "a", "param2": 1.5}, loss=1.5) optimization_problem.add_observation(observation1) observation2 = Observation(sample={"param1": "b", "param2": 1.8}, loss=1.8) optimization_problem.add_observation(observation2) observation3 = Observation(sample={"param1": "b", "param2": 1.05}, loss=0.1) optimization_problem.add_observation(observation3) assert type(optimization_problem.parameters) == list assert len(optimization_problem.observations) == 3 assert optimization_problem.parameters_name == set(["param1", "param2"]) assert observation1.sample in optimization_problem.samples assert len(optimization_problem.samples) == 3 assert optimization_problem.best_sample == {"param1": "b", "param2": 1.05} assert optimization_problem.sorted_observations[0].sample == {"param1": "b", "param2": 1.05} assert optimization_problem.finite is False assert len(optimization_problem.find_observations({"param1": "b", "param2": 1.05})) == 1 a, b = optimization_problem.observations_quantile(0.5) assert len(a) == 1 assert len(b) == 2 assert optimization_problem.get_best_k_samples(1)[0].sample == {"param1": "b", "param2": 1.05} def test_optimization_problem_from_list(): optimization_problem = OptimizationProblem.from_list( [ {"name": "param1", "category": "categorical", "search_space": {"values": ["a", "b"]}}, {"name": "param2", "category": "uniform", "search_space": {"low": 1, "high": 2}}, ] ) optimization_problem.add_observations_from_list( [ {"loss": 1.5, "sample": {"param1": "a", "param2": 1.5}}, {"loss": 1.8, "sample": {"param1": "b", "param2": 1.8}}, {"loss": 0.1, "sample": {"param1": "b", "param2": 1.05}}, ], raise_exception=True, ) assert type(optimization_problem.parameters) == list assert len(optimization_problem.observations) == 3 assert optimization_problem.parameters_name == set(["param1", "param2"]) assert {"param1": "b", "param2": 1.8} in optimization_problem.samples assert len(optimization_problem.samples) == 3 assert optimization_problem.best_sample == {"param1": "b", "param2": 1.05} assert optimization_problem.sorted_observations[0].sample == {"param1": "b", "param2": 1.05} assert optimization_problem.finite is False assert len(optimization_problem.find_observations({"param1": "b", "param2": 1.05})) == 1 a, b = optimization_problem.observations_quantile(0.5) assert len(a) == 1 assert len(b) == 2 assert optimization_problem.get_best_k_samples(1)[0].sample == {"param1": "b", "param2": 1.05} def test_optimization_problem_from_json(): get_test_optimization_problem() def test_optimization_problem_bad_param(): with pytest.raises(ValidationError): OptimizationProblem("lol") def test_optimization_problem_bad_param_type(): with pytest.raises(ValidationError): OptimizationProblem(["lol"]) def test_optimization_problem_add_bad_type(): with pytest.raises(ValidationError): OptimizationProblem.from_list( {"name": "param1", "category": "categorical", "search_space": {"values": ["a", "b"]}} ) def test_optimization_problem_add_bad_observation(): optimization_problem = OptimizationProblem.from_list( [ {"name": "param1", "category": "categorical", "search_space": {"values": ["a", "b"]}}, {"name": "param2", "category": "uniform", "search_space": {"low": 1, "high": 2}}, ] ) observation2 = Observation(sample={"lol": "b", "param2": 1.8}, loss=1.8) with pytest.raises(ValidationError): optimization_problem.add_observation(observation2) def test_optimization_problem_from_list_bad_type(): optimization_problem = OptimizationProblem.from_list( [ {"name": "param1", "category": "categorical", "search_space": {"values": ["a", "b"]}}, {"name": "param2", "category": "uniform", "search_space": {"low": 1, "high": 2}}, ] ) with pytest.raises(ValidationError): optimization_problem.add_observations_from_list("lol", raise_exception=True) def test_optimization_problem_from_list_bad_sample_name(): optimization_problem = OptimizationProblem.from_list( [ {"name": "param1", "category": "categorical", "search_space": {"values": ["a", "b"]}}, {"name": "param2", "category": "uniform", "search_space": {"low": 1, "high": 2}}, ] ) with pytest.raises(ValidationError): optimization_problem.add_observations_from_list( [ {"loss": 1.5, "sample": {"param1": "a", "param2": 1.5}}, {"loss": 1.8, "sample": {"lol": "b", "param2": 1.8}}, {"loss": 0.1, "sample": {"param1": "b", "param2": 1.05}}, ], raise_exception=True, ) def test_optimization_problem_from_list_bad_value(): optimization_problem = OptimizationProblem.from_list( [ {"name": "param1", "category": "categorical", "search_space": {"values": ["a", "b"]}}, {"name": "param2", "category": "uniform", "search_space": {"low": 1, "high": 2}}, ] ) with pytest.raises(ValidationError): optimization_problem.add_observations_from_list( [ {"loss": 1.5, "sample": {"param1": "c", "param2": 1.5}}, {"loss": 1.8, "sample": {"lol": "b", "param2": 1.8}}, {"loss": 0.1, "sample": {"param1": "b", "param2": 1.05}}, ], raise_exception=True, )
2.25
2
checker.py
mmagnus/rna-tools-webserver-engine
1
12782563
<reponame>mmagnus/rna-tools-webserver-engine<filename>checker.py #!/usr/bin/python """ Add to crontab * 18 * * * /home/rnamasonry/rnamasonryweb_env/rnamasonry-web/checker.sh """ import os import subprocess import smtplib from sendmail_secret import USERNAME, PASSWORD from django.core.wsgi import get_wsgi_application os.environ['DJANGO_SETTINGS_MODULE'] = 'web.settings' application = get_wsgi_application() from app import models from web import settings USE_TZ = False def send_mail_to(mail, txt): fromaddr = settings.SERVER_NAME + ' report <<EMAIL>>' subject = settings.SERVER_NAME + ' report' toaddrs = mail msg_text = txt msg = ("""From: %s\r\nTo: %s\r\nSubject: %s\r\nMIME-Version: 1.0\r\nContent-Type: text/html\r\nContent-Disposition: inline\r\n<html>\r\n<body>\r\n<pre style="font: monospace">\r\n\r\n%s\r\n""" % (fromaddr, toaddrs, subject, msg_text)) server = smtplib.SMTP_SSL('smtp.gmail.com', 465) server.ehlo() server.login(USERNAME, PASSWORD) server.sendmail(fromaddr, mail, msg) server.quit() def get_jobs(): """time of job is calculated beased on the files! If there is now file then you don't estimate the time Keep jobs that are on JOBS_TO_KEEP list""" jobs = models.Job.objects.filter().order_by("-id")[:100] text = settings.SERVER_NAME + '- checker - scripts shows 100 last jobs!\n\n' if True: for j in jobs: status = j.get_status() if status == 'finished with errors': status = '!!!!!!!!' text += str(j.created) + " <b>" + status.ljust(10) + "</b> " + j.email + ' ' + j.job_title + " " \ + settings.URL_JOBS + " " + j.job_id + ' ' + ' ' if j.error_text: text += '\n' + j.error_text text += '\n' else: for j in jobs: text += "- " + j.get_status() + " " + "-" * 80 + "\n" + j.email + "\n" + j.job_title + '\n' text += settings.URL_JOBS + j.job_id + '\n' text += str(j.created) + '\n' text += '\n' return text def run_cmd(cmd): o = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = o.stdout.read().strip().decode() err = o.stderr.read().strip().decode() return out, err def get_space(): """Set the correct disk to track""" cmd = "df -h | grep " + settings.DISK_TO_TRACK out, err = run_cmd(cmd) return out if __name__ == '__main__': txt = '\n\n'.join([settings.SERVER_NAME, settings.ADMIN_JOBS_URL]) txt += '\n\n' + get_space() + '\n\n' txt += get_jobs() for admin in settings.ADMINS: send_mail_to(admin[1], txt)
2.15625
2
TwitterDatabase/Executables/make_database_tables.py
AdamSwenson/TwitterProject
0
12782564
<reponame>AdamSwenson/TwitterProject<gh_stars>0 """ Created by adam on 6/30/18 """ __author__ = 'adam' import environment as env from TwitterDatabase.DatabaseAccessObjects.DataConnections import MySqlConnection from TwitterDatabase.Models.TweetORM import create_db_tables if __name__ == '__main__': credential_file = env.CREDENTIAL_FILE # credential_file = '%s/private_credentials/sql_miner_laptop_credentials.xml' % env.BASE conn = MySqlConnection( credential_file ) print( 'connected to %s' % conn._dsn ) create_db_tables( conn.engine )
1.929688
2
tests/test_get_excluded_volume.py
salilab/IHMValidation
0
12782565
<reponame>salilab/IHMValidation import os,sys,glob import unittest import pandas as pd from io import StringIO, BytesIO sys.path.insert(0, "../master/pyext/src/") from validation import get_input_information,utility from validation.excludedvolume import get_excluded_volume import warnings def ignore_warnings(test_func): def do_test(self, *args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore", ResourceWarning) test_func(self, *args, **kwargs) return do_test class Testing(unittest.TestCase): def __init__(self, *args, **kwargs): super(Testing, self).__init__(*args, **kwargs) self.mmcif_test_file='test.cif' self.IO=get_excluded_volume(self.mmcif_test_file) def test_get_all_spheres(self): fh = StringIO(""" loop_ _ihm_model_list.model_id _ihm_model_list.model_name _ihm_model_list.assembly_id _ihm_model_list.protocol_id _ihm_model_list.representation_id 1 . 1 1 1 # loop_ _ihm_model_group.id _ihm_model_group.name _ihm_model_group.details 1 "Cluster 1" . # loop_ _ihm_model_group_link.group_id _ihm_model_group_link.model_id 1 1 # loop_ _ihm_sphere_obj_site.id _ihm_sphere_obj_site.entity_id _ihm_sphere_obj_site.seq_id_begin _ihm_sphere_obj_site.seq_id_end _ihm_sphere_obj_site.asym_id _ihm_sphere_obj_site.Cartn_x _ihm_sphere_obj_site.Cartn_y _ihm_sphere_obj_site.Cartn_z _ihm_sphere_obj_site.object_radius _ihm_sphere_obj_site.rmsf _ihm_sphere_obj_site.model_id 1 1 1 6 A 389.993 145.089 134.782 4.931 0 1 2 1 7 7 B 406.895 142.176 135.653 3.318 1.34 1 """) self.assertEqual(1,len(list(self.IO.get_all_spheres(filetemp=fh).keys()))) def test_get_XYZ(self): fh = StringIO(""" loop_ _ihm_model_list.model_id _ihm_model_list.model_name _ihm_model_list.assembly_id _ihm_model_list.protocol_id _ihm_model_list.representation_id 1 . 1 1 1 # loop_ _ihm_model_group.id _ihm_model_group.name _ihm_model_group.details 1 "Cluster 1" . # loop_ _ihm_model_group_link.group_id _ihm_model_group_link.model_id 1 1 # loop_ _ihm_sphere_obj_site.id _ihm_sphere_obj_site.entity_id _ihm_sphere_obj_site.seq_id_begin _ihm_sphere_obj_site.seq_id_end _ihm_sphere_obj_site.asym_id _ihm_sphere_obj_site.Cartn_x _ihm_sphere_obj_site.Cartn_y _ihm_sphere_obj_site.Cartn_z _ihm_sphere_obj_site.object_radius _ihm_sphere_obj_site.rmsf _ihm_sphere_obj_site.model_id 1 1 1 6 A 389.993 145.089 134.782 4.931 0 1 2 1 7 7 B 406.895 142.176 135.653 3.318 1.34 1 """) model_dict=self.IO.get_all_spheres(filetemp=fh) list_of_sphere_list=list(model_dict.values()) xyz_df=self.IO.get_xyzr(list_of_sphere_list[0]) self.assertEqual(406.895,xyz_df.iloc[0,1]) def test_get_violation_dict(self): fh = StringIO(""" loop_ _ihm_model_list.model_id _ihm_model_list.model_name _ihm_model_list.assembly_id _ihm_model_list.protocol_id _ihm_model_list.representation_id 1 . 1 1 1 # loop_ _ihm_model_group.id _ihm_model_group.name _ihm_model_group.details 1 "Cluster 1" . # loop_ _ihm_model_group_link.group_id _ihm_model_group_link.model_id 1 1 # loop_ _ihm_sphere_obj_site.id _ihm_sphere_obj_site.entity_id _ihm_sphere_obj_site.seq_id_begin _ihm_sphere_obj_site.seq_id_end _ihm_sphere_obj_site.asym_id _ihm_sphere_obj_site.Cartn_x _ihm_sphere_obj_site.Cartn_y _ihm_sphere_obj_site.Cartn_z _ihm_sphere_obj_site.object_radius _ihm_sphere_obj_site.rmsf _ihm_sphere_obj_site.model_id 1 1 1 6 A 389.993 145.089 134.782 4.931 0 1 2 1 7 7 B 406.895 142.176 135.653 3.318 1.34 1 """) check_xyz={1:[389.993,145.089,134.782,4.931],\ 2:[406.895,142.176,135.653,3.318]} check_xyz_df = pd.DataFrame(data=check_xyz,index=['X','Y','Z','R']) model_dict=self.IO.get_all_spheres(filetemp=fh) list_of_sphere_list=list(model_dict.values()) xyz_df=self.IO.get_xyzr(list_of_sphere_list[0]) self.assertEqual(check_xyz_df.values.tolist(),xyz_df.values.tolist()) add_chain={1:['A',1],2:['B',1]} add_chain_df = pd.DataFrame(data=add_chain,index=['Chain_ID','Model_ID']) fin=pd.concat([check_xyz_df,add_chain_df]) xyz_complete_df=self.IO.get_xyzr_complete(model_ID=1,spheres=list_of_sphere_list[0]) self.assertEqual(fin.values.tolist(),xyz_complete_df.values.tolist()) viol_dict=self.IO.get_violation_dict(xyz_df) self.assertEqual({1: 0.0},self.IO.get_violation_dict(xyz_df)) perc_satisfied=self.IO.get_violation_percentage(models_spheres_df=xyz_df,viols=viol_dict) self.assertEqual(100.0,perc_satisfied) def test_get_violation_others(self): fh = StringIO(""" loop_ _ihm_model_list.model_id _ihm_model_list.model_name _ihm_model_list.assembly_id _ihm_model_list.protocol_id _ihm_model_list.representation_id 1 . 1 1 1 # loop_ _ihm_model_group.id _ihm_model_group.name _ihm_model_group.details 1 "Cluster 1" . # loop_ _ihm_model_group_link.group_id _ihm_model_group_link.model_id 1 1 # loop_ _ihm_sphere_obj_site.id _ihm_sphere_obj_site.entity_id _ihm_sphere_obj_site.seq_id_begin _ihm_sphere_obj_site.seq_id_end _ihm_sphere_obj_site.asym_id _ihm_sphere_obj_site.Cartn_x _ihm_sphere_obj_site.Cartn_y _ihm_sphere_obj_site.Cartn_z _ihm_sphere_obj_site.object_radius _ihm_sphere_obj_site.rmsf _ihm_sphere_obj_site.model_id 1 1 1 6 A 389.993 145.089 134.782 4.931 0 1 2 1 7 7 B 389.895 142.176 135.653 3.318 1.34 1 """) model_dict=self.IO.get_all_spheres(filetemp=fh) list_of_sphere_list=list(model_dict.values()) xyz_df=self.IO.get_xyzr(list_of_sphere_list[0]) viol_dict=self.IO.get_violation_dict(xyz_df) self.assertEqual({1: 1.0},viol_dict) perc_satisfied=self.IO.get_violation_percentage(models_spheres_df=xyz_df,viols=viol_dict) self.assertEqual(0.0,perc_satisfied) def test_violatio_multiple_models(self): fh = StringIO(""" loop_ _ihm_model_list.model_id _ihm_model_list.model_name _ihm_model_list.assembly_id _ihm_model_list.protocol_id _ihm_model_list.representation_id 1 . 1 1 1 2 . 1 1 1 # loop_ _ihm_model_group.id _ihm_model_group.name _ihm_model_group.details 1 "Cluster 1" . 2 "Cluster 2" . # loop_ _ihm_model_group_link.group_id _ihm_model_group_link.model_id 1 1 2 2 # loop_ _ihm_sphere_obj_site.id _ihm_sphere_obj_site.entity_id _ihm_sphere_obj_site.seq_id_begin _ihm_sphere_obj_site.seq_id_end _ihm_sphere_obj_site.asym_id _ihm_sphere_obj_site.Cartn_x _ihm_sphere_obj_site.Cartn_y _ihm_sphere_obj_site.Cartn_z _ihm_sphere_obj_site.object_radius _ihm_sphere_obj_site.rmsf _ihm_sphere_obj_site.model_id 1 1 1 6 A 389.993 145.089 134.782 4.931 0 1 2 1 7 7 B 389.895 142.176 135.653 3.318 1.34 1 3 1 1 6 A 489.993 145.089 134.782 4.931 0 2 4 1 7 7 B 589.895 142.176 135.653 3.318 1.34 2 """) model_dict=self.IO.get_all_spheres(filetemp=fh) output={'Models': [1, 2], 'Excluded Volume Satisfaction': [0.0, 100.0]} self.assertEqual(output,(self.IO.get_exc_vol_for_models_normalized(model_dict)) if __name__ == '__main__': unittest.main(warnings='ignore')
2.1875
2
PEASTrainer.py
SiqiT/PEAS
0
12782566
<reponame>SiqiT/PEAS import sys import pandas as pd import numpy as np import PEASUtil from sklearn.neural_network import MLPClassifier from sklearn import preprocessing import joblib import argparse import os from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from xgboost import XGBClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_validate from sklearn.inspection import permutation_importance ########################DEEPINSIGHT from matplotlib import pyplot as plt import seaborn as sns from sklearn.decomposition import PCA, KernelPCA from sklearn.manifold import TSNE from scipy.spatial import ConvexHull import inspect from numpy import loadtxt from keras.models import Sequential from keras.layers import Dense ########################################### wd = os.getcwd() #argument parsing parser = argparse.ArgumentParser(description='Trains a multi-layer perceptron neural network model for ATAC-seq peak data.') parser.add_argument('featurefiles', type=str, help='File listing the file paths of all features to train the model.') parser.add_argument('-o', dest='out', type=str, help='The selected directory saving outputfiles.') parser.add_argument('-n', dest='name', type=str, help='Name of the Model.') parser.add_argument('-p', dest='paramstring', help='String containing the parameters for the model.', type=str) parser.add_argument('-f', dest='features', help='Feature index file specifying which columns to include in the feature matrix.', type=str) parser.add_argument('-c', dest='classes', help='File containing class label transformations into integer representations.', type=str) parser.add_argument('-l', dest='labelencoder', help='File containing feature label transformations into integer representations.', type=str) parser.add_argument('-r', dest='randomstate', help='Integer for setting the random number generator seed.', type=int, default=929) args = parser.parse_args() #Required Arguments datasetlabels, datasetfiles = PEASUtil.getDatasets(args.featurefiles) #Optional Arguments featurefiledirectory = os.path.dirname(args.featurefiles) featurefilename = os.path.splitext(os.path.basename(args.featurefiles))[0] if args.name is not None: modelname = args.name modelnamefile = args.name.replace(" ", "_") else: modelname = featurefilename modelnamefile = featurefilename.replace(" ", "_") if args.out is not None: outdir = PEASUtil.getFormattedDirectory(args.out) else: outdir = PEASUtil.getFormattedDirectory(featurefiledirectory) parameters = PEASUtil.getModelParameters(args.paramstring) if args.features is not None: featurecolumns = PEASUtil.getFeatureColumnData(args.features) else: featurecolumns = PEASUtil.getFeatureColumnData(wd+"/features.txt") if args.classes is not None: classconversion = PEASUtil.getClassConversions(args.classes) else: classconversion = PEASUtil.getClassConversions(wd+"/classes.txt") if args.labelencoder is not None: labelencoder = PEASUtil.getLabelEncoder(args.labelencoder) else: labelencoder = PEASUtil.getLabelEncoder(wd+"/labelencoder.txt") randomstate = args.randomstate parameters['random_state'] = randomstate #Model Training #imputer = preprocessing.Imputer(missing_values='NaN', strategy='mean', axis=0) imputer = SimpleImputer(strategy='mean') trainX = np.zeros((0,len(featurecolumns))) trainy = np.zeros((0,)) print("Reading feature files") for curfile in datasetfiles: curdata = pd.read_csv(curfile, sep="\t") trainXi, trainyi, _, _, = PEASUtil.getData(curdata, featurecolumns, labelencoder, classconversion) trainXi = preprocessing.StandardScaler().fit_transform(imputer.fit_transform(trainXi)) trainX = np.concatenate((trainX, trainXi)) trainy = np.concatenate((trainy, trainyi)) train_X,test_X,train_y,test_y = train_test_split(trainX,trainy,test_size=0.2,random_state=5) #mlp_clf__tuned_parameters = {"hidden_layer_sizes": [(25,),(50,),(100,50),(200,100),(100,25),(200,)], # "activation":['relu','tanh','logistic'], ## "solver": ['adam'], # "verbose": [True], # "beta_1":[0.999,0.8], # "beta_2":[0.9999,0.999,0.8], # "epsilon":[1e-08,1e-06,1e-10] # } ########################################Deepinsight ######################################## #SVM_parameters = {'kernel': ['rbf'], # 'gamma': [1e-3, 1e-2,1e-4], # 'C': [1, 10, 100, 1000], # "verbose": [True] # } #mlp = MLPClassifier() #SVM = SVC(probability=True) #clf = GradientBoostingClassifier() #print('searching best..') #clf = GridSearchCV(SVM, SVM_parameters, n_jobs=5) print("Training Model") #clf = SVC(probability=True) #clf = RandomForestClassifier(random_state=0) #clf = KNeighborsClassifier(n_neighbors=20) #clf = MLPClassifier(**parameters) #最优# clf=MLPClassifier(solver='adam',beta_1=0.999,beta_2=0.999,epsilon=0.000001,activation='logistic',hidden_layer_sizes=(200,)) print(clf) clf.fit(trainX, trainy) #print("Best",clf.best_params_) ####################get feature inportance #clf=MLPClassifier(solver='adam',beta_1=0.999,beta_2=0.999,epsilon=0.000001,activation='logistic',hidden_layer_sizes=(200,)) #print(clf) #clf.fit(trainX,trainy) #results = permutation_importance(clf, trainX, trainy, scoring='accuracy') #get importance #importance = results.importances_mean #import matplotlib.pyplot as plt #summarize feature importance #for i,v in enumerate(importance): # print('Feature: %s, Score: %.5f' % (i,v)) #plot feature importance #plt.bar([x for x in range(len(importance))], importance) #plt.savefig('featureInportance.jpg') #plt.show() #output = cross_validate(clf, trainX,trainy, cv=5, scoring = 'accuracy',return_estimator =True) #print(output) #################################################### outfile = outdir+modelnamefile+'.pkl' print("Writing model to: "+outfile) joblib.dump(clf, outfile) print("Complete.")
2.4375
2
pikuli/input/input_emulator.py
NVoronchev/pikuli
0
12782567
<filename>pikuli/input/input_emulator.py # -*- coding: utf-8 -*- import time from contextlib import contextmanager from pikuli import logger from .constants import ( DELAY_KBD_KEY_PRESS, DELAY_KBD_KEY_RELEASE, DELAY_MOUSE_BTN_PRESS, DELAY_MOUSE_BTN_RELEASE, DELAY_MOUSE_CLICK, DELAY_MOUSE_DOUBLE_CLICK, DELAY_MOUSE_AFTER_ANY_CLICK, DELAY_MOUSE_SET_POS, DELAY_MOUSE_SCROLL ) from .keys import InputSequence, Key, KeyModifier from .platform_init import ButtonCode, KeyCode, OsKeyboardMixin, OsMouseMixin class KeyboardMixin(object): #_PrintableChars = set(string.printable) - set(????) # TODO: Latin and Cyrillic only yet. _PrintableChars = ( set(u"0123456789!\"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r") | set(u"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ") | set(u"абвгдеёжзийклмнопрстуфхцчщъьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧЩЪЬЭЮЯ №") ) @classmethod def type_text(cls, input_data, modifiers=None, p2c_notif=True): """ Особенности: -- Если установлены modifiers, то не будет различия между строчными и загалавными буквами. Т.е., будет если в строке "s" есть заглавные буквы, то Shift нажиматься не будет. """ # https://mail.python.org/pipermail/python-win32/2013-July/012862.html # https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms646304(v=vs.85).aspx ("MSDN: keybd_event function") # http://stackoverflow.com/questions/4790268/how-to-generate-keystroke-combination-in-win32-api # http://stackoverflow.com/questions/11906925/python-simulate-keydown # https://ru.wikipedia.org/wiki/Скан-код # http://stackoverflow.com/questions/21197257/keybd-event-keyeventf-extendedkey-explanation-required input_data = InputSequence(input_data) modifiers = InputSequence(modifiers) @contextmanager def _press_shift_if_necessary(char_need_shift_key): if char_need_shift_key and modifiers.is_empty(): cls.press_key(KeyCode.SHIFT) yield cls.release_key(KeyCode.SHIFT) else: yield try: cls.press_modifiers(modifiers) for item in input_data: try: key_code, need_shift = cls.str_item_to_keycode(item) except Exception as ex: logger.exception('Error dealing with symbol {!r} in string {!r}.'.format(item, input_data)) raise with _press_shift_if_necessary(need_shift): cls.type_key(key_code) finally: cls.release_modifiers(modifiers) if p2c_notif: logger.info('pikuli._functions.type_text(): {!r} ' 'was typed; modifiers={!r}'.format(input_data, modifiers)) @classmethod def str_item_to_keycode(cls, item): if isinstance(item, Key): return item.key_code, False else: assert item in cls._PrintableChars, 'PrintableChars={!r}; item={!r}'.format(cls._PrintableChars, item) return cls._char_to_keycode(item) @classmethod def type_key(cls, key_code): cls.press_key(key_code) cls.release_key(key_code) @classmethod def press_modifiers(cls, modifiers): cls._do_modifier_keys_action(modifiers, cls.press_key) @classmethod def release_modifiers(cls, modifiers): cls._do_modifier_keys_action(modifiers, cls.release_key) @classmethod def press_key(cls, key_code): cls._do_press_key(key_code) time.sleep(DELAY_KBD_KEY_PRESS) @classmethod def release_key(cls, key_code): cls._do_release_key(key_code) time.sleep(DELAY_KBD_KEY_RELEASE) @classmethod def _do_modifier_keys_action(cls, modifiers, action): for m in modifiers: action(m.key_code) class MouseMixin(object): @classmethod def left_click(cls): cls.click(ButtonCode.LEFT) @classmethod def right_click(cls): cls.click(ButtonCode.RIGHT) @classmethod def left_dbl_click(cls): cls.double_click(ButtonCode.LEFT) @classmethod def click(cls, btn_code): cls._click_with_no_after_sleep(btn_code) time.sleep(DELAY_MOUSE_AFTER_ANY_CLICK) @classmethod def double_click(cls, btn_code): cls._click_with_no_after_sleep(btn_code) time.sleep(DELAY_MOUSE_DOUBLE_CLICK) cls._click_with_no_after_sleep(btn_code) time.sleep(DELAY_MOUSE_AFTER_ANY_CLICK) @classmethod def _click_with_no_after_sleep(cls, btn_code): cls._do_press_button(btn_code) time.sleep(DELAY_MOUSE_CLICK) cls._do_release_button(btn_code) @classmethod def press_button(cls, key_code): cls._do_press_button(key_code) time.sleep(DELAY_MOUSE_BTN_PRESS) @classmethod def release_button(cls, key_code): cls._do_release_button(key_code) time.sleep(DELAY_MOUSE_BTN_RELEASE) @classmethod def set_mouse_pos(cls, x, y): cls._set_mouse_pos(x, y) time.sleep(DELAY_MOUSE_SET_POS) @classmethod def get_mouse_pos(cls): return cls._get_mouse_pos() @classmethod def scroll(cls, direction, count=1, step=1): for _ in range(0, count): cls._do_scroll(direction, step=step) time.sleep(DELAY_MOUSE_SCROLL) class InputEmulator( KeyboardMixin, MouseMixin, OsKeyboardMixin, OsMouseMixin): pass
2.171875
2
src/validators.py
ostjen/kalendar
0
12782568
from datetime import datetime import argparse from config.settings import DEFAULT_TIME_FORMAT def valid_date(date): try: return datetime.strptime(date,DEFAULT_TIME_FORMAT) except ValueError: msg = "Not a valid date: '{0}'.".format(date) raise argparse.ArgumentTypeError(msg)
3.296875
3
examples/ae_mnist_tf.py
AtrejuArtax/aironsuit
3
12782569
<filename>examples/ae_mnist_tf.py # Databricks notebook source import os import numpy as np from hyperopt import Trials from tensorflow.keras.datasets import mnist from tensorflow.keras.optimizers import Adam from aironsuit.design.utils import choice_hp from aironsuit.suit import AIronSuit from airontools.constructors.models.unsupervised.ae import ImageAE from airontools.preprocessing import train_val_split from airontools.tools import path_management HOME = os.path.expanduser("~") # COMMAND ---------- # Example Set-Up # model_name = 'AE_NN' working_path = os.path.join(HOME, 'airon', model_name) num_classes = 10 batch_size = 128 epochs = 3 patience = 3 max_evals = 3 max_n_samples = None precision = 'float32' # COMMAND ---------- # Make/remove paths path_management(working_path, modes=['rm', 'make']) # COMMAND ---------- # Load and preprocess data (train_dataset, target_dataset), _ = mnist.load_data() if max_n_samples is not None: train_dataset = train_dataset[-max_n_samples:, ...] target_dataset = target_dataset[-max_n_samples:, ...] train_dataset = np.expand_dims(train_dataset, -1) / 255 # Split data per parallel model x_train, x_val, _, meta_val, _ = train_val_split(input_data=train_dataset, meta_data=target_dataset) # COMMAND ---------- # AE Model constructor def ae_model_constructor(latent_dim): # Create AE model and compile it ae = ImageAE(latent_dim) ae.compile(optimizer=Adam()) return ae # COMMAND ---------- # Training specs train_specs = {'batch_size': batch_size} # Hyper-parameter space hyperparam_space = {'latent_dim': choice_hp('latent_dim', [int(val) for val in np.arange(3, 6)])} # COMMAND ---------- # Invoke AIronSuit aironsuit = AIronSuit( model_constructor=ae_model_constructor, force_subclass_weights_saver=True, force_subclass_weights_loader=True, results_path=working_path ) # COMMAND ---------- # Automatic Model Design print('\n') print('Automatic Model Design \n') aironsuit.design( x_train=x_train, x_val=x_val, hyper_space=hyperparam_space, train_specs=train_specs, max_evals=max_evals, epochs=epochs, trials=Trials(), name=model_name, seed=0, patience=patience ) aironsuit.summary() del x_train # COMMAND ---------- # Get latent insights aironsuit.visualize_representations( x_val, metadata=meta_val, hidden_layer_name='z', )
2.40625
2
authentik/crypto/api.py
BeryJu/passbook
15
12782570
"""Crypto API Views""" from typing import Optional from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.serialization import load_pem_private_key from cryptography.x509 import load_pem_x509_certificate from django.http.response import HttpResponse from django.urls import reverse from django.utils.translation import gettext_lazy as _ from django_filters import FilterSet from django_filters.filters import BooleanFilter from drf_spectacular.types import OpenApiTypes from drf_spectacular.utils import OpenApiParameter, OpenApiResponse, extend_schema from rest_framework.decorators import action from rest_framework.fields import CharField, DateTimeField, IntegerField, SerializerMethodField from rest_framework.request import Request from rest_framework.response import Response from rest_framework.serializers import ModelSerializer, ValidationError from rest_framework.viewsets import ModelViewSet from structlog.stdlib import get_logger from authentik.api.decorators import permission_required from authentik.core.api.used_by import UsedByMixin from authentik.core.api.utils import PassiveSerializer from authentik.crypto.builder import CertificateBuilder from authentik.crypto.managed import MANAGED_KEY from authentik.crypto.models import CertificateKeyPair from authentik.events.models import Event, EventAction LOGGER = get_logger() class CertificateKeyPairSerializer(ModelSerializer): """CertificateKeyPair Serializer""" cert_expiry = DateTimeField(source="certificate.not_valid_after", read_only=True) cert_subject = SerializerMethodField() private_key_available = SerializerMethodField() private_key_type = SerializerMethodField() certificate_download_url = SerializerMethodField() private_key_download_url = SerializerMethodField() def get_cert_subject(self, instance: CertificateKeyPair) -> str: """Get certificate subject as full rfc4514""" return instance.certificate.subject.rfc4514_string() def get_private_key_available(self, instance: CertificateKeyPair) -> bool: """Show if this keypair has a private key configured or not""" return instance.key_data != "" and instance.key_data is not None def get_private_key_type(self, instance: CertificateKeyPair) -> Optional[str]: """Get the private key's type, if set""" key = instance.private_key if key: return key.__class__.__name__.replace("_", "").lower().replace("privatekey", "") return None def get_certificate_download_url(self, instance: CertificateKeyPair) -> str: """Get URL to download certificate""" return ( reverse( "authentik_api:certificatekeypair-view-certificate", kwargs={"pk": instance.pk}, ) + "?download" ) def get_private_key_download_url(self, instance: CertificateKeyPair) -> str: """Get URL to download private key""" return ( reverse( "authentik_api:certificatekeypair-view-private-key", kwargs={"pk": instance.pk}, ) + "?download" ) def validate_certificate_data(self, value: str) -> str: """Verify that input is a valid PEM x509 Certificate""" try: # Cast to string to fully load and parse certificate # Prevents issues like https://github.com/goauthentik/authentik/issues/2082 str(load_pem_x509_certificate(value.encode("utf-8"), default_backend())) except ValueError as exc: LOGGER.warning("Failed to load certificate", exc=exc) raise ValidationError("Unable to load certificate.") return value def validate_key_data(self, value: str) -> str: """Verify that input is a valid PEM Key""" # Since this field is optional, data can be empty. if value != "": try: # Cast to string to fully load and parse certificate # Prevents issues like https://github.com/goauthentik/authentik/issues/2082 str( load_pem_private_key( str.encode("\n".join([x.strip() for x in value.split("\n")])), password=None, backend=default_backend(), ) ) except (ValueError, TypeError) as exc: LOGGER.warning("Failed to load private key", exc=exc) raise ValidationError("Unable to load private key (possibly encrypted?).") return value class Meta: model = CertificateKeyPair fields = [ "pk", "name", "fingerprint_sha256", "fingerprint_sha1", "certificate_data", "key_data", "cert_expiry", "cert_subject", "private_key_available", "private_key_type", "certificate_download_url", "private_key_download_url", "managed", ] extra_kwargs = { "key_data": {"write_only": True}, "certificate_data": {"write_only": True}, } class CertificateDataSerializer(PassiveSerializer): """Get CertificateKeyPair's data""" data = CharField(read_only=True) class CertificateGenerationSerializer(PassiveSerializer): """Certificate generation parameters""" common_name = CharField() subject_alt_name = CharField(required=False, allow_blank=True, label=_("Subject-alt name")) validity_days = IntegerField(initial=365) class CertificateKeyPairFilter(FilterSet): """Filter for certificates""" has_key = BooleanFilter( label="Only return certificate-key pairs with keys", method="filter_has_key" ) # pylint: disable=unused-argument def filter_has_key(self, queryset, name, value): # pragma: no cover """Only return certificate-key pairs with keys""" return queryset.exclude(key_data__exact="") class Meta: model = CertificateKeyPair fields = ["name", "managed"] class CertificateKeyPairViewSet(UsedByMixin, ModelViewSet): """CertificateKeyPair Viewset""" queryset = CertificateKeyPair.objects.exclude(managed=MANAGED_KEY) serializer_class = CertificateKeyPairSerializer filterset_class = CertificateKeyPairFilter ordering = ["name"] search_fields = ["name"] @permission_required(None, ["authentik_crypto.add_certificatekeypair"]) @extend_schema( request=CertificateGenerationSerializer(), responses={ 200: CertificateKeyPairSerializer, 400: OpenApiResponse(description="Bad request"), }, ) @action(detail=False, methods=["POST"]) def generate(self, request: Request) -> Response: """Generate a new, self-signed certificate-key pair""" data = CertificateGenerationSerializer(data=request.data) if not data.is_valid(): return Response(data.errors, status=400) builder = CertificateBuilder() builder.common_name = data.validated_data["common_name"] builder.build( subject_alt_names=data.validated_data.get("subject_alt_name", "").split(","), validity_days=int(data.validated_data["validity_days"]), ) instance = builder.save() serializer = self.get_serializer(instance) return Response(serializer.data) @extend_schema( parameters=[ OpenApiParameter( name="download", location=OpenApiParameter.QUERY, type=OpenApiTypes.BOOL, ) ], responses={200: CertificateDataSerializer(many=False)}, ) @action(detail=True, pagination_class=None, filter_backends=[]) # pylint: disable=invalid-name, unused-argument def view_certificate(self, request: Request, pk: str) -> Response: """Return certificate-key pairs certificate and log access""" certificate: CertificateKeyPair = self.get_object() Event.new( # noqa # nosec EventAction.SECRET_VIEW, secret=certificate, type="certificate", ).from_http(request) if "download" in request.query_params: # Mime type from https://pki-tutorial.readthedocs.io/en/latest/mime.html response = HttpResponse( certificate.certificate_data, content_type="application/x-pem-file" ) response[ "Content-Disposition" ] = f'attachment; filename="{certificate.name}_certificate.pem"' return response return Response(CertificateDataSerializer({"data": certificate.certificate_data}).data) @extend_schema( parameters=[ OpenApiParameter( name="download", location=OpenApiParameter.QUERY, type=OpenApiTypes.BOOL, ) ], responses={200: CertificateDataSerializer(many=False)}, ) @action(detail=True, pagination_class=None, filter_backends=[]) # pylint: disable=invalid-name, unused-argument def view_private_key(self, request: Request, pk: str) -> Response: """Return certificate-key pairs private key and log access""" certificate: CertificateKeyPair = self.get_object() Event.new( # noqa # nosec EventAction.SECRET_VIEW, secret=certificate, type="private_key", ).from_http(request) if "download" in request.query_params: # Mime type from https://pki-tutorial.readthedocs.io/en/latest/mime.html response = HttpResponse(certificate.key_data, content_type="application/x-pem-file") response[ "Content-Disposition" ] = f'attachment; filename="{certificate.name}_private_key.pem"' return response return Response(CertificateDataSerializer({"data": certificate.key_data}).data)
1.898438
2
Gathered CTF writeups/ptr-yudai-writeups/2019/HSCTF_6/tux's_kitchen/solve.py
mihaid-b/CyberSakura
1
12782571
from ptrlib import * candidate = [ [chr(j) for j in range(1, 0x100)] for i in range(71) ] while True: sock = Socket("crypto.hsctf.com", 8112) sock.recvuntil("[") l = list(map(lambda x: int(x.rstrip(b"L")), sock.recv().rstrip().rstrip(b"]").split(b", "))) # original treasure index = 0 for c in l: pre = list(candidate[index]) candidate[index] = [] for i in range(ord(" "), ord("~")): x = c ^ 29486316 if x % i == 0 and chr(i) in pre: candidate[index].append(chr(i)) index += 1 for w in candidate: if len(w) != 1: break else: print(candidate) print(''.join(candidate)) break print(candidate) print("Trying...") # hsctf{thiii111iiiss_isssss_yo0ur_b1rthd4y_s0ng_it_isnt_very_long_6621}
2.265625
2
loadNN.py
JOTELLECHEA/neural_networks
0
12782572
<reponame>JOTELLECHEA/neural_networks<filename>loadNN.py<gh_stars>0 # Written By : <NAME> # Adviser : <NAME>, Phd # Research : Using a neural network to maximize the significance of tttHH production. # Description: Script that loads NN weights and makes 1D plots that apply NN score for a cut. # Reference :http://cdsweb.cern.ch/record/2220969/files/ATL-PHYS-PUB-2016-023.pdf ###########################################################################################################################\ import uproot import argparse import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras import tkinter as tk import matplotlib import slug import datetime matplotlib.use("TkAgg") import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from numpy import array from tensorflow.keras.models import load_model from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import auc, confusion_matrix,roc_curve sc = StandardScaler() seed = 42 tree = "OutputTree" phase = 3 branches = slug.dataCol(phase,10) numBranches = len(branches) parser = argparse.ArgumentParser(description="Plot 1D plots of sig/bac") parser.add_argument("--file", type=str, help="Use '--file=' followed by a *.h5 file") args = parser.parse_args() file = "data/" + str(args.file) # Data read from file. signal = uproot.open("data/new_TTHH.root")[tree] df_signal = signal.pandas.df(branches) bkgTTBB = uproot.open("data/new_TTBB.root")[tree] df_bkgTTBB = bkgTTBB.pandas.df(branches) bkgTTH = uproot.open("data/new_TTH.root")[tree] df_bkgTTH = bkgTTH.pandas.df(branches) bkgTTZ = uproot.open("data/new_TTZ.root")[tree] df_bkgTTZ = bkgTTZ.pandas.df(branches) df_background = pd.concat([df_bkgTTBB, df_bkgTTH, df_bkgTTZ]) # The 3 backgrounds are concatenated we shuffle to make sure they are not sorted. shuffleBackground = shuffle(df_background, random_state=seed) # signal and limited shuffle background data to counter inbalanced data problem. rawdata = pd.concat([df_signal, shuffleBackground]) X = rawdata.drop(["weights", "truth"], axis=1) X = sc.fit_transform(X) # signal scalefactor = 0.00232 * 0.608791 sigw = rawdata["weights"][: len(signal)] * scalefactor bkgw = rawdata["weights"][len(signal) :] # Labeling data with 1's and 0's to distinguish. y = np.concatenate((np.ones(len(df_signal)), np.zeros(len(shuffleBackground)))) # Shuffle full data and split into train/test and validation set. X_dev, X_eval, y_dev, y_eval = train_test_split( X, y, test_size=0.001, random_state=seed ) X_train, X_test, y_train, y_test = train_test_split( X_dev, y_dev, test_size=0.2, random_state=seed ) neuralNet = keras.models.load_model(file) allScore = neuralNet.predict(X).ravel() fpr, tpr, thresholds = roc_curve(y, allScore) area = auc(fpr, tpr) scoresig=[] score1=[] score2=[] score3=[] if False: for i in range(len(X)): if i < len(signal): scoresig.append(allScore[i]) else: if rawdata['truth'].values[i] == 1: score1.append(allScore[i]) if rawdata['truth'].values[i] == 2: score2.append(allScore[i]) if rawdata['truth'].values[i] == 3: score3.append(allScore[i]) plt.hist( [scoresig,score1,score2,score3], bins=50, histtype="stepfilled", label=['Signal',"TTH","TTZ","TTBB"], linestyle="solid", color=['red','blue','mediumorchid','green'], stacked=True, # weights=[NNb3weights,NNb2weights,NNb1weights], ) # plt.hist( # allScore, # color="k", # bins=50, # histtype="stepfilled", # label='Score Distribution (Test Data)', # ) plt.ylabel('Events') plt.xlabel('Score') plt.yscale("log") plt.legend() plt.show() # The score is rounded; values are 0 or 1. # y_pred = [1 * (x[0] >= 0.5) for x in allScore] if False: bins = numbins = 30 decisions = [] for X,y in ((X_train, y_train), (X_test, y_test)): d1 = neuralNet.predict(X[y>0.5]).ravel() d2 = neuralNet.predict(X[y<0.5]).ravel() decisions += [d1, d2] low = min(np.min(d) for d in decisions) high = max(np.max(d) for d in decisions) xlimit = array([low,high]) hist, bins = np.histogram(decisions[3], bins=numbins, range=xlimit, density=True) plt.figure(figsize=(8, 6)) plt.subplot(212) plt.hist( decisions[0], color="r", alpha=0.5, range=xlimit, bins=bins, histtype="stepfilled", # density=False, density=True, label='S (train)', # label="Signal Distribution", # weights=sigw, ) plt.hist( decisions[1], color="b", alpha=0.5, range=xlimit, bins=bins, histtype="stepfilled", # density=False, density=True, # label="Background Distribution", label='B (train)', # weights=bkgw, ) hist, bins = np.histogram(decisions[2], bins=numbins, range=xlimit, density=True) scale = len(decisions[2]) / sum(hist) err = np.sqrt(hist * scale) / scale width = (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.errorbar(center, hist, yerr=err, fmt='o', c='r', label='S (test)') hist, bins = np.histogram(decisions[3], bins=numbins, range=xlimit, density=True) scale = len(decisions[2]) / sum(hist) err = np.sqrt(hist * scale) / scale plt.errorbar(center, hist, yerr=err, fmt='o', c='b', label='B (test)') # plt.axvline(x= score,color='k') plt.xlabel("Score") plt.ylabel("Events") plt.yscale("log") plt.axvline(x= 0.958,color='k') plt.legend(loc="upper right") plt.subplot(211) plt.plot(fpr, tpr, "k-", label="All, AUC = %0.3f" % (area)) plt.plot([0, 1], [0, 1], "--", color=(0.6, 0.6, 0.6), label="Luck") plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("Receiver operating characteristic") plt.legend(loc="lower right") plt.grid() plt.tight_layout() plt.show() if True: totalscore = neuralNet.predict(X).ravel() numbins = len(totalscore) sigScore = neuralNet.predict(X[y > 0.5]).ravel() bkgScore = neuralNet.predict(X[y < 0.5]).ravel() sigSUM = len(sigScore) bkgSUM = len(bkgScore) xlimit = (0, 1) tp = [] fp = [] hist, bins = np.histogram(sigScore, bins=numbins, range=xlimit, density=False) count = 0 for i in range(numbins - 1, -1, -1): count += hist[i] / sigSUM tp.append(count) hist, bins = np.histogram(bkgScore, bins=numbins, range=xlimit, density=False) count = 0 for j in range(numbins - 1, -1, -1): count += hist[j] / bkgSUM fp.append(count) area = auc(fp, tp) xplot = tp yplot = fp # computes max signif sigSUM = len(sigScore) * scalefactor tp = np.array(tp) * sigSUM fp = np.array(fp) * bkgSUM syst = 0.0 stat = 0.0 maxsignif = 0.0 maxs = 0 maxb = 0 bincounter = numbins - 1 bincountatmaxsignif = 999 for t, f in zip(tp, fp): signif = slug.getZPoisson(t, f, stat, syst) if f >= 10 and signif > maxsignif: maxsignif = signif maxs = t maxb = f bincountatmaxsignif = bincounter score = bincountatmaxsignif / numbins bincounter -= 1 # precision = tp/(fp+tp) # plt.plot(precision,totalscore, "k-",) # plt.show() # print(len(tp),len(fp),numbins) flag = 1 if flag == 1: hl = ['weights','numjet','numlep','btag','srap','cent','m_bb','h_b'] sample = ['s','b'] for i in range(1, 10 + 1): for k in range(2): for j in range(1,4): if (k == 0 and j > 1): continue # This makes sure only one signal is added. command = "" # This line is here to clear out the previous command. command = "NN" + sample[k] + str(j) + "jeteta" + str(i) + " = []" exec(command) command = "" # This line is here to clear out the previous command. command = "NN" + sample[k] + str(j) + "jetphi" + str(i) + " = []" exec(command) command = "" # This line is here to clear out the previous command. command = "NN" + sample[k] + str(j) + "jetpt" + str(i) + " = []" exec(command) for q in range(len(hl)): command = "" # This line is here to clear out the previous command. command = "NN" + sample[k] + str(j) + hl[q] + " = []" exec(command) for w in range(1,4): command = "" # This line is here to clear out the previous command. command = "NN" + sample[k] + str(j) + "mt" + str(w) + " = []" exec(command) command = "" # This line is here to clear out the previous command. command = "NN" + sample[k] + str(j) + "dr" + str(w) + " = []" exec(command) for i in range(len(X)): if i < len(signal): if allScore[i] > score: NNs1numjet.append(rawdata["numjet"].values[i]) NNs1numlep.append(rawdata["numlep"].values[i]) NNs1btag.append(rawdata["btag"].values[i]) NNs1srap.append(rawdata["srap"].values[i]) NNs1cent.append(rawdata["cent"].values[i]) NNs1m_bb.append(rawdata["m_bb"].values[i]) NNs1h_b.append(rawdata["h_b"].values[i]) # NNs1mt1.append(rawdata["mt1"].values[i]) # NNs1mt2.append(rawdata["mt2"].values[i]) # NNs1mt3.append(rawdata["mt3"].values[i]) # NNs1dr1.append(rawdata["dr1"].values[i]) # NNs1dr2.append(rawdata["dr2"].values[i]) # NNs1dr3.append(rawdata["dr3"].values[i]) # NNs1jetpt1.append(rawdata["jet1pT"].values[i]) # NNs1jetpt2.append(rawdata["jet2pT"].values[i]) # NNs1jetpt3.append(rawdata["jet3pT"].values[i]) # NNs1jetpt4.append(rawdata["jet4pT"].values[i]) # NNs1jetpt5.append(rawdata["jet5pT"].values[i]) # NNs1jetpt6.append(rawdata["jet6pT"].values[i]) # NNs1jetpt7.append(rawdata["jet7pT"].values[i]) # NNs1jetpt8.append(rawdata["jet8pT"].values[i]) # NNs1jetpt9.append(rawdata["jet9pT"].values[i]) # NNs1jetpt10.append(rawdata["jet10pT"].values[i]) # NNs1jeteta1.append(rawdata["jet1eta"].values[i]) # NNs1jeteta2.append(rawdata["jet2eta"].values[i]) # NNs1jeteta3.append(rawdata["jet3eta"].values[i]) # NNs1jeteta4.append(rawdata["jet4eta"].values[i]) # NNs1jeteta5.append(rawdata["jet5eta"].values[i]) # NNs1jeteta6.append(rawdata["jet6eta"].values[i]) # NNs1jeteta7.append(rawdata["jet7eta"].values[i]) # NNs1jeteta8.append(rawdata["jet8eta"].values[i]) # NNs1jeteta9.append(rawdata["jet9eta"].values[i]) # NNs1jeteta10.append(rawdata["jet10eta"].values[i]) # NNs1jetphi1.append(rawdata["jet1phi"].values[i]) # NNs1jetphi2.append(rawdata["jet2phi"].values[i]) # NNs1jetphi3.append(rawdata["jet3phi"].values[i]) # NNs1jetphi4.append(rawdata["jet4phi"].values[i]) # NNs1jetphi5.append(rawdata["jet5phi"].values[i]) # NNs1jetphi6.append(rawdata["jet6phi"].values[i]) # NNs1jetphi7.append(rawdata["jet7phi"].values[i]) # NNs1jetphi8.append(rawdata["jet8phi"].values[i]) # NNs1jetphi9.append(rawdata["jet9phi"].values[i]) # NNs1jetphi10.append(rawdata["jet10phi"].values[i]) NNs1weights.append(scalefactor * rawdata["weights"].values[i]) else: if allScore[i] > score: if rawdata['truth'].values[i] == 1: NNb1numjet.append(rawdata["numjet"].values[i]) NNb1numlep.append(rawdata["numlep"].values[i]) NNb1btag.append(rawdata["btag"].values[i]) NNb1srap.append(rawdata["srap"].values[i]) NNb1cent.append(rawdata["cent"].values[i]) NNb1m_bb.append(rawdata["m_bb"].values[i]) NNb1h_b.append(rawdata["h_b"].values[i]) # NNb1mt1.append(rawdata["mt1"].values[i]) # NNb1mt2.append(rawdata["mt2"].values[i]) # NNb1mt3.append(rawdata["mt3"].values[i]) # NNb1dr1.append(rawdata["dr1"].values[i]) # NNb1dr2.append(rawdata["dr2"].values[i]) # NNb1dr3.append(rawdata["dr3"].values[i]) # NNb1jetpt1.append(rawdata["jet1pT"].values[i]) # NNb1jetpt2.append(rawdata["jet2pT"].values[i]) # NNb1jetpt3.append(rawdata["jet3pT"].values[i]) # NNb1jetpt4.append(rawdata["jet4pT"].values[i]) # NNb1jetpt5.append(rawdata["jet5pT"].values[i]) # NNb1jetpt6.append(rawdata["jet6pT"].values[i]) # NNb1jetpt7.append(rawdata["jet7pT"].values[i]) # NNb1jetpt8.append(rawdata["jet8pT"].values[i]) # NNb1jetpt9.append(rawdata["jet9pT"].values[i]) # NNb1jetpt10.append(rawdata["jet10pT"].values[i]) # NNb1jeteta1.append(rawdata["jet1eta"].values[i]) # NNb1jeteta2.append(rawdata["jet2eta"].values[i]) # NNb1jeteta3.append(rawdata["jet3eta"].values[i]) # NNb1jeteta4.append(rawdata["jet4eta"].values[i]) # NNb1jeteta5.append(rawdata["jet5eta"].values[i]) # NNb1jeteta6.append(rawdata["jet6eta"].values[i]) # NNb1jeteta7.append(rawdata["jet7eta"].values[i]) # NNb1jeteta8.append(rawdata["jet8eta"].values[i]) # NNb1jeteta9.append(rawdata["jet9eta"].values[i]) # NNb1jeteta10.append(rawdata["jet10eta"].values[i]) # NNb1jetphi1.append(rawdata["jet1phi"].values[i]) # NNb1jetphi2.append(rawdata["jet2phi"].values[i]) # NNb1jetphi3.append(rawdata["jet3phi"].values[i]) # NNb1jetphi4.append(rawdata["jet4phi"].values[i]) # NNb1jetphi5.append(rawdata["jet5phi"].values[i]) # NNb1jetphi6.append(rawdata["jet6phi"].values[i]) # NNb1jetphi7.append(rawdata["jet7phi"].values[i]) # NNb1jetphi8.append(rawdata["jet8phi"].values[i]) # NNb1jetphi9.append(rawdata["jet9phi"].values[i]) # NNb1jetphi10.append(rawdata["jet10phi"].values[i]) NNb1weights.append(rawdata["weights"].values[i]) if rawdata['truth'].values[i] == 2: NNb2numjet.append(rawdata["numjet"].values[i]) NNb2numlep.append(rawdata["numlep"].values[i]) NNb2btag.append(rawdata["btag"].values[i]) NNb2srap.append(rawdata["srap"].values[i]) NNb2cent.append(rawdata["cent"].values[i]) NNb2m_bb.append(rawdata["m_bb"].values[i]) NNb2h_b.append(rawdata["h_b"].values[i]) # NNb2mt1.append(rawdata["mt1"].values[i]) # NNb2mt2.append(rawdata["mt2"].values[i]) # NNb2mt3.append(rawdata["mt3"].values[i]) # NNb2dr1.append(rawdata["dr1"].values[i]) # NNb2dr2.append(rawdata["dr2"].values[i]) # NNb2dr3.append(rawdata["dr3"].values[i]) # NNb2jetpt1.append(rawdata["jet1pT"].values[i]) # NNb2jetpt2.append(rawdata["jet2pT"].values[i]) # NNb2jetpt3.append(rawdata["jet3pT"].values[i]) # NNb2jetpt4.append(rawdata["jet4pT"].values[i]) # NNb2jetpt5.append(rawdata["jet5pT"].values[i]) # NNb2jetpt6.append(rawdata["jet6pT"].values[i]) # NNb2jetpt7.append(rawdata["jet7pT"].values[i]) # NNb2jetpt8.append(rawdata["jet8pT"].values[i]) # NNb2jetpt9.append(rawdata["jet9pT"].values[i]) # NNb2jetpt10.append(rawdata["jet10pT"].values[i]) # NNb2jeteta1.append(rawdata["jet1eta"].values[i]) # NNb2jeteta2.append(rawdata["jet2eta"].values[i]) # NNb2jeteta3.append(rawdata["jet3eta"].values[i]) # NNb2jeteta4.append(rawdata["jet4eta"].values[i]) # NNb2jeteta5.append(rawdata["jet5eta"].values[i]) # NNb2jeteta6.append(rawdata["jet6eta"].values[i]) # NNb2jeteta7.append(rawdata["jet7eta"].values[i]) # NNb2jeteta8.append(rawdata["jet8eta"].values[i]) # NNb2jeteta9.append(rawdata["jet9eta"].values[i]) # NNb2jeteta10.append(rawdata["jet10eta"].values[i]) # NNb2jetphi1.append(rawdata["jet1phi"].values[i]) # NNb2jetphi2.append(rawdata["jet2phi"].values[i]) # NNb2jetphi3.append(rawdata["jet3phi"].values[i]) # NNb2jetphi4.append(rawdata["jet4phi"].values[i]) # NNb2jetphi5.append(rawdata["jet5phi"].values[i]) # NNb2jetphi6.append(rawdata["jet6phi"].values[i]) # NNb2jetphi7.append(rawdata["jet7phi"].values[i]) # NNb2jetphi8.append(rawdata["jet8phi"].values[i]) # NNb2jetphi9.append(rawdata["jet9phi"].values[i]) # NNb2jetphi10.append(rawdata["jet10phi"].values[i]) NNb2weights.append(rawdata["weights"].values[i]) if rawdata['truth'].values[i] == 3: NNb3numjet.append(rawdata["numjet"].values[i]) NNb3numlep.append(rawdata["numlep"].values[i]) NNb3btag.append(rawdata["btag"].values[i]) NNb3srap.append(rawdata["srap"].values[i]) NNb3cent.append(rawdata["cent"].values[i]) NNb3m_bb.append(rawdata["m_bb"].values[i]) NNb3h_b.append(rawdata["h_b"].values[i]) # NNb3mt1.append(rawdata["mt1"].values[i]) # NNb3mt2.append(rawdata["mt2"].values[i]) # NNb3mt3.append(rawdata["mt3"].values[i]) # NNb3dr1.append(rawdata["dr1"].values[i]) # NNb3dr2.append(rawdata["dr2"].values[i]) # NNb3dr3.append(rawdata["dr3"].values[i]) # NNb3jetpt1.append(rawdata["jet1pT"].values[i]) # NNb3jetpt2.append(rawdata["jet2pT"].values[i]) # NNb3jetpt3.append(rawdata["jet3pT"].values[i]) # NNb3jetpt4.append(rawdata["jet4pT"].values[i]) # NNb3jetpt5.append(rawdata["jet5pT"].values[i]) # NNb3jetpt6.append(rawdata["jet6pT"].values[i]) # NNb3jetpt7.append(rawdata["jet7pT"].values[i]) # NNb3jetpt8.append(rawdata["jet8pT"].values[i]) # NNb3jetpt9.append(rawdata["jet9pT"].values[i]) # NNb3jetpt10.append(rawdata["jet10pT"].values[i]) # NNb3jeteta1.append(rawdata["jet1eta"].values[i]) # NNb3jeteta2.append(rawdata["jet2eta"].values[i]) # NNb3jeteta3.append(rawdata["jet3eta"].values[i]) # NNb3jeteta4.append(rawdata["jet4eta"].values[i]) # NNb3jeteta5.append(rawdata["jet5eta"].values[i]) # NNb3jeteta6.append(rawdata["jet6eta"].values[i]) # NNb3jeteta7.append(rawdata["jet7eta"].values[i]) # NNb3jeteta8.append(rawdata["jet8eta"].values[i]) # NNb3jeteta9.append(rawdata["jet9eta"].values[i]) # NNb3jeteta10.append(rawdata["jet10eta"].values[i]) # NNb3jetphi1.append(rawdata["jet1phi"].values[i]) # NNb3jetphi2.append(rawdata["jet2phi"].values[i]) # NNb3jetphi3.append(rawdata["jet3phi"].values[i]) # NNb3jetphi4.append(rawdata["jet4phi"].values[i]) # NNb3jetphi5.append(rawdata["jet5phi"].values[i]) # NNb3jetphi6.append(rawdata["jet6phi"].values[i]) # NNb3jetphi7.append(rawdata["jet7phi"].values[i]) # NNb3jetphi8.append(rawdata["jet8phi"].values[i]) # NNb3jetphi9.append(rawdata["jet9phi"].values[i]) # NNb3jetphi10.append(rawdata["jet10phi"].values[i]) NNb3weights.append(rawdata["weights"].values[i]) snumlep = df_signal["numlep"].values bnumlep = df_background["numlep"].values snumjet = df_signal["numjet"].values bnumjet = df_background["numjet"].values sbtag = df_signal["btag"].values bbtag = df_background["btag"].values ssrap = df_signal["srap"].values bsrap = df_background["srap"].values scent = df_signal["cent"].values bcent = df_background["cent"].values sm_bb = df_signal["m_bb"].values bm_bb = df_background["m_bb"].values sh_b = df_signal["h_b"].values bh_b = df_background["h_b"].values # smt1 = df_signal["mt1"].values # bmt1 = df_background["mt1"].values # smt2 = df_signal["mt2"].values # bmt2 = df_background["mt2"].values # smt3 = df_signal["mt3"].values # bmt3 = df_background["mt3"].values # sdr1 = df_signal["dr1"].values # bdr1 = df_background["dr1"].values # sdr2 = df_signal["dr2"].values # bdr2 = df_background["dr2"].values # sdr3 = df_signal["dr3"].values # bdr3 = df_background["dr3"].values # sjetpt1 = df_signal["jet1pT"].values # sjetpt2 = df_signal["jet2pT"].values # sjetpt3 = df_signal["jet3pT"].values # sjetpt4 = df_signal["jet4pT"].values # sjetpt5 = df_signal["jet5pT"].values # sjetpt6 = df_signal["jet6pT"].values # sjetpt7 = df_signal["jet7pT"].values # sjetpt8 = df_signal["jet8pT"].values # sjetpt9 = df_signal["jet9pT"].values # sjetpt10 = df_signal["jet10pT"].values # bjetpt1 = df_background["jet1pT"].values # bjetpt2 = df_background["jet2pT"].values # bjetpt3 = df_background["jet3pT"].values # bjetpt4 = df_background["jet4pT"].values # bjetpt5 = df_background["jet5pT"].values # bjetpt6 = df_background["jet6pT"].values # bjetpt7 = df_background["jet7pT"].values # bjetpt8 = df_background["jet8pT"].values # bjetpt9 = df_background["jet9pT"].values # bjetpt10 = df_background["jet10pT"].values # sjeteta1 = df_signal["jet1eta"].values # sjeteta2 = df_signal["jet2eta"].values # sjeteta3 = df_signal["jet3eta"].values # sjeteta4 = df_signal["jet4eta"].values # sjeteta5 = df_signal["jet5eta"].values # sjeteta6 = df_signal["jet6eta"].values # sjeteta7 = df_signal["jet7eta"].values # sjeteta8 = df_signal["jet8eta"].values # sjeteta9 = df_signal["jet9eta"].values # sjeteta10 = df_signal["jet10eta"].values # bjeteta1 = df_background["jet1eta"].values # bjeteta2 = df_background["jet2eta"].values # bjeteta3 = df_background["jet3eta"].values # bjeteta4 = df_background["jet4eta"].values # bjeteta5 = df_background["jet5eta"].values # bjeteta6 = df_background["jet6eta"].values # bjeteta7 = df_background["jet7eta"].values # bjeteta8 = df_background["jet8eta"].values # bjeteta9 = df_background["jet9eta"].values # bjeteta10 = df_background["jet10eta"].values # sjetphi1 = df_signal["jet1phi"].values # sjetphi2 = df_signal["jet2phi"].values # sjetphi3 = df_signal["jet3phi"].values # sjetphi4 = df_signal["jet4phi"].values # sjetphi5 = df_signal["jet5phi"].values # sjetphi6 = df_signal["jet6phi"].values # sjetphi7 = df_signal["jet7phi"].values # sjetphi8 = df_signal["jet8phi"].values # sjetphi9 = df_signal["jet9phi"].values # sjetphi10 = df_signal["jet10phi"].values # bjetphi1 = df_background["jet1phi"].values # bjetphi2 = df_background["jet2phi"].values # bjetphi3 = df_background["jet3phi"].values # bjetphi4 = df_background["jet4phi"].values # bjetphi5 = df_background["jet5phi"].values # bjetphi6 = df_background["jet6phi"].values # bjetphi7 = df_background["jet7phi"].values # bjetphi8 = df_background["jet8phi"].values # bjetphi9 = df_background["jet9phi"].values # bjetphi10 = df_background["jet10phi"].values def qPlot(x, y, nx, b1,b2,b3, a, b, c, Name): bins = np.arange(a, b + 1.5) - .5 plt.hist( y, bins=bins, histtype="step", label="Full Background", linestyle="solid", color="black", weights=bkgw, ) plt.hist( x, bins=bins, histtype="step", label="Full Signal", linestyle="solid", color="darkred", weights=sigw, stacked=False, ) plt.hist( [b3,b2,b1], bins=bins, histtype="stepfilled", label=["TTH Score > %0.2f" % (score),"TTZ Score > %0.2f" % (score),"TTBB Score > %0.2f" % (score)], linestyle="solid", color=['blue','mediumorchid','green'], stacked=True, weights=[NNb3weights,NNb2weights,NNb1weights], ) plt.hist( nx, bins=bins, histtype="step", hatch='/', label="Signal Score > %0.2f" % (score), linestyle="solid", color="darkred", weights=NNs1weights, stacked=False, ) plt.xticks(bins + 0.5) plt.legend(loc=1,fontsize = 'x-small') plt.xlabel(Name, horizontalalignment='right', x=1.0) plt.ylabel('Events', horizontalalignment='right', y=1.0) plt.title(r'$\sqrt{s}=$ 14 TeV, $\mathcal{L} =$ 3000 fb${}^{-1}$') plt.ylabel("Events") plt.yscale("log") plt.style.use('classic') # plt.show() pdf.savefig() # saves the current figure into a pdf page plt.close() def hPlot(x, y, nx, b1,b2,b3, a, b, c, Name): bins = np.linspace(a, b, c) plt.hist( y, bins=bins, histtype="step", label="Full Background", linestyle="solid", color="black", weights=bkgw, ) plt.hist( x, bins=bins, histtype="step", label="Full Signal", linestyle="solid", color="darkred", weights=sigw, stacked=False, ) plt.hist( [b3,b2,b1], bins=bins, histtype="stepfilled", label=["TTH Score > %0.2f" % (score),"TTZ Score > %0.2f" % (score),"TTBB Score > %0.2f" % (score)], linestyle="solid", color=['blue','mediumorchid','green'], stacked=True, weights=[NNb3weights,NNb2weights,NNb1weights], ) plt.hist( nx, bins=bins, histtype="step", hatch='/', label="Signal Score > %0.2f" % (score), linestyle="solid", color="darkred", weights=NNs1weights, stacked=False, ) plt.legend(loc=1,fontsize = 'x-small') plt.xlabel(Name, horizontalalignment='right', x=1.0) plt.ylabel('Events', horizontalalignment='right', y=1.0) plt.title(r'$\sqrt{s}=$ 14 TeV, $\mathcal{L} =$ 3000 fb${}^{-1}$') plt.ylabel("Events") plt.yscale("log") plt.style.use('classic') # plt.show() pdf.savefig() # saves the current figure into a pdf page plt.close() # tn, fp, fn, tp = confusion_matrix(y, y_pred,normalize='all').ravel() # Matrix = np.matrix([[tp,fn],[fp,tn]]) # slug.confusedMatrix(Matrix) # y_pred2 = [1 * (x[0] >= score) for x in allScore] # tn, fp, fn, tp = confusion_matrix(y, y_pred2,normalize='all').ravel() # Matrix2 = np.matrix([[tp,fn],[fp,tn]]) # slug.confusedMatrix(Matrix2) pdfname = file[:-2] + 'pdf' with PdfPages(pdfname) as pdf: # plt.figure(figsize=(8, 6)) # plt.subplot(212) # plt.hist( # sigScore, # color="r", # alpha=0.5, # range=xlimit, # bins=100, # histtype="stepfilled", # # density=False, # density=True, # label='S (train)', # # label="Signal Distribution", # weights=sigw, # ) # plt.hist( # bkgScore, # color="b", # alpha=0.5, # range=xlimit, # bins=100, # histtype="stepfilled", # # density=False, # density=True, # # label="Background Distribution", # label='B (train)', # weights=bkgw, # ) # plt.axvline(x= score,color='k') # plt.xlabel("Score") # plt.ylabel("Events") # plt.yscale("log") # plt.legend(loc="upper right") # plt.subplot(211) # plt.plot(yplot, xplot, "k-", label="All, AUC = %0.3f" % (area)) # plt.plot(maxs,maxb,'ko') # plt.plot([0, 1], [0, 1], "--", color=(0.6, 0.6, 0.6), label="Luck") # plt.xlim([-0.05, 1.05]) # plt.ylim([-0.05, 1.05]) # plt.xlabel("False Positive Rate") # plt.ylabel("True Positive Rate") # plt.title("Receiver operating characteristic") # plt.legend(loc="lower right") # plt.grid() # pdf.savefig() # saves the current figure into a pdf page # plt.close() qPlot(snumjet, bnumjet, NNs1numjet, NNb1numjet, NNb2numjet, NNb3numjet, 1, 21, 22, 'Jet multiplicity') qPlot(snumlep, bnumlep, NNs1numlep, NNb1numlep,NNb2numlep,NNb3numlep, 0, 3, 5, 'Lepton multiplicity') qPlot(sbtag, bbtag, NNs1btag, NNb1btag,NNb2btag, NNb3btag,0, 10, 10, 'N b-tagged jets') hPlot(ssrap, bsrap, NNs1srap, NNb1srap, NNb2srap,NNb3srap, 0, 10, 20, r'$ < \eta(b_{i},b_{j}) >$') hPlot(scent, bcent, NNs1cent, NNb1cent,NNb2cent, NNb3cent,0, 1, 20, 'Centrality') hPlot(sm_bb, bm_bb, NNs1m_bb, NNb1m_bb,NNb2m_bb,NNb3m_bb, 0, 250, 25, r'${M}_{bb}$ [GeV]') hPlot(sh_b, bh_b, NNs1h_b, NNb1h_b,NNb2h_b,NNb3h_b, 0, 1500, 60, r'${H}_{B}$ [GeV]') # hPlot(smt1, bmt1, NNs1mt1, NNb1mt1,NNb2mt1,NNb3mt1, 0, 300, 100, r'${m}_{T}1$ [GeV]') # hPlot(smt2, bmt2, NNs1mt2, NNb1mt2,NNb2mt2,NNb3mt2, 0, 300, 100, r'${m}_{T}2$ [GeV]') # hPlot(smt3, bmt3, NNs1mt3, NNb1mt3,NNb2mt3,NNb3mt3, 0, 300, 100, r'${m}_{T}3$ [GeV]') # hPlot(sdr1, bdr1, NNs1dr1, NNb1dr1,NNb2dr1,NNb3dr1, 0, 7, 100, r'$\Delta$R1') # hPlot(sdr2, bdr2, NNs1dr2, NNb1dr2,NNb2dr2,NNb3dr2, 0, 7, 100, r'$\Delta$R2') # hPlot(sdr3, bdr3, NNs1dr3, NNb1dr3,NNb2dr3,NNb3dr3, 0, 7, 100, r'$\Delta$R3') # hPlot(sjetpt1, bjetpt1, NNs1jetpt1, NNb1jetpt1,NNb2jetpt1,NNb3jetpt1, 0, 1e6, 100, r'Jet1 pT') # hPlot(sjetpt2, bjetpt2, NNs1jetpt2, NNb1jetpt2,NNb2jetpt2,NNb3jetpt2, 0, 1e6, 100, r'Jet2 pT') # hPlot(sjetpt3, bjetpt3, NNs1jetpt3, NNb1jetpt3,NNb2jetpt3,NNb3jetpt3, 0, 1e6, 100, r'Jet3 pT') # hPlot(sjetpt4, bjetpt4, NNs1jetpt4, NNb1jetpt4,NNb2jetpt4,NNb3jetpt4, 0, 1e6, 100, r'Jet4 pT') # hPlot(sjetpt5, bjetpt5, NNs1jetpt5, NNb1jetpt5,NNb2jetpt4,NNb3jetpt4, 0, 1e6, 100, r'Jet5 pT') # hPlot(sjetpt6, bjetpt6, NNs1jetpt6, NNb1jetpt6,NNb2jetpt4,NNb3jetpt4, 0, 1e6, 100, r'Jet6 pT') # hPlot(sjetpt7, bjetpt7, NNs1jetpt7, NNb1jetpt7,NNb2jetpt4,NNb3jetpt4, 0, 1e6, 100, r'Jet7 pT') # hPlot(sjetpt8, bjetpt8, NNs1jetpt8, NNb1jetpt8,NNb2jetpt4,NNb3jetpt4, 0, 1e6, 100, r'Jet8 pT') # hPlot(sjetpt9, bjetpt9, NNs1jetpt9, NNb1jetpt9,NNb2jetpt4,NNb3jetpt4, 0, 1e6, 100, r'Jet9 pT') # hPlot(sjetpt10, bjetpt10, NNs1jetpt10, NNb1jetpt10,NNb2jetpt10,NNb3jetpt10, 0, 1e6, 100, r'Jet10 pT') # hPlot(sjeteta1, bjeteta1, NNs1jeteta1, NNb1jeteta1,NNb2jeteta1,NNb3jeteta1, -6, 6, 12, r'Jet1 $\eta$') # hPlot(sjeteta2, bjeteta2, NNs1jeteta2, NNb1jeteta2,NNb2jeteta2,NNb3jeteta2, -6, 6, 12, r'Jet2 $\eta$') # hPlot(sjeteta3, bjeteta3, NNs1jeteta3, NNb1jeteta3,NNb2jeteta3,NNb3jeteta3, -6, 6, 12, r'Jet3 $\eta$') # hPlot(sjeteta4, bjeteta4, NNs1jeteta4, NNb1jeteta4,NNb2jeteta4,NNb3jeteta4, -6, 6, 12, r'Jet4 $\eta$') # hPlot(sjeteta5, bjeteta5, NNs1jeteta5, NNb1jeteta5,NNb2jeteta5,NNb3jeteta5, -6, 6, 12, r'Jet5 $\eta$') # hPlot(sjeteta6, bjeteta6, NNs1jeteta6, NNb1jeteta6,NNb2jeteta6,NNb3jeteta6, -6, 6, 12, r'Jet6 $\eta$') # hPlot(sjeteta7, bjeteta7, NNs1jeteta7, NNb1jeteta7,NNb2jeteta7,NNb3jeteta7, -6, 6, 12, r'Jet7 $\eta$') # hPlot(sjeteta8, bjeteta8, NNs1jeteta8, NNb1jeteta8,NNb2jeteta8,NNb3jeteta8, -6, 6, 12, r'Jet8 $\eta$') # hPlot(sjeteta9, bjeteta9, NNs1jeteta9, NNb1jeteta9,NNb2jeteta9,NNb3jeteta9, -6, 6, 12, r'Jet9 $\eta$') # hPlot(sjeteta10, bjeteta10, NNs1jeteta10, NNb1jeteta10,NNb2jeteta10,NNb3jeteta10, -6, 6, 12, r'Jet10 $\eta$') # hPlot(sjetphi1, bjetphi1, NNs1jetphi1, NNb1jetphi1,NNb2jetphi1,NNb3jetphi1, -4, 4, 8, r'Jet1 $\phi$') # hPlot(sjetphi2, bjetphi2, NNs1jetphi2, NNb1jetphi2,NNb2jetphi1,NNb3jetphi2, -4, 4, 8, r'Jet2 $\phi$') # hPlot(sjetphi3, bjetphi3, NNs1jetphi3, NNb1jetphi3,NNb2jetphi1,NNb3jetphi3, -4, 4, 8, r'Jet3 $\phi$') # hPlot(sjetphi4, bjetphi4, NNs1jetphi4, NNb1jetphi4,NNb2jetphi1,NNb3jetphi4, -4, 4, 8, r'Jet4 $\phi$') # hPlot(sjetphi5, bjetphi5, NNs1jetphi5, NNb1jetphi5,NNb2jetphi1,NNb3jetphi5, -4, 4, 8, r'Jet5 $\phi$') # hPlot(sjetphi6, bjetphi6, NNs1jetphi6, NNb1jetphi6,NNb2jetphi1,NNb3jetphi6, -4, 4, 8, r'Jet6 $\phi$') # hPlot(sjetphi7, bjetphi7, NNs1jetphi7, NNb1jetphi7,NNb2jetphi1,NNb3jetphi7, -4, 4, 8, r'Jet7 $\phi$') # hPlot(sjetphi8, bjetphi8, NNs1jetphi8, NNb1jetphi8,NNb2jetphi1,NNb3jetphi8, -4, 4, 8, r'Jet8 $\phi$') # hPlot(sjetphi9, bjetphi9, NNs1jetphi9, NNb1jetphi9,NNb2jetphi1,NNb3jetphi9, -4, 4, 8, r'Jet9 $\phi$') # hPlot(sjetphi10, bjetphi10, NNs1jetphi10, NNb1jetphi10,NNb2jetphi1,NNb3jetphi10, -4, 4, 8, r'Jet10 $\phi$') d = pdf.infodict() d['Title'] = 'LoadNN' d['Author'] = u'<NAME>\xe4nen' d['Subject'] = '1D plots that apply NN score for a cut.' d['Keywords'] = 'ttHH' # d['CreationDate'] = datetime.datetime(2009, 11, 13) d['CreationDate'] = datetime.datetime.today() d['ModDate'] = datetime.datetime.today() print(pdfname)
2.390625
2
conversation_data.py
Fortune-Adekogbe/Diary-bot
0
12782573
<reponame>Fortune-Adekogbe/Diary-bot class ConversationData: def __init__( self, timestamp: str = None, channel_id: str = None, prompted_for_user_name: bool = False, ): self.timestamp = timestamp self.channel_id = channel_id self.prompted_for_user_name = prompted_for_user_name
2.25
2
app/order/tests/test_items_api.py
mayk93/rest-api-example-1
0
12782574
from django.test import TestCase from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status from core.models import Item from order.serializers import ItemSerializer from core.tests.user_test_utils import create_user from core.tests.order_test_utils import sample_order, sample_item ITEMS_URL = reverse('order:item-list') class PublicItemAPITest(TestCase): def setUp(self): self.client = APIClient() def test_authentication_required(self): response = self.client.get(ITEMS_URL) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateItemAPITest(TestCase): def setUp(self): self.client = APIClient() self.user_data = { 'name': 'Name', 'email': '<EMAIL>', 'password': 'password' } self.user = create_user(**self.user_data) self.client.force_authenticate(user=self.user) def test_get_items_success(self): Item.objects.create(user=self.user, name='Item 1') Item.objects.create(user=self.user, name='Item 2') items = Item.objects.all().order_by('-name') serializer = ItemSerializer(items, many=True) response = self.client.get(ITEMS_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(serializer.data, response.data) def test_get_items_user_specific(self): other_user_data = self.user_data.copy() other_user_data['email'] = '<EMAIL>' other_user = create_user(**other_user_data) item = Item.objects.create(user=self.user, name='Item 1') Item.objects.create(user=other_user, name='Item 2') response = self.client.get(ITEMS_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1) self.assertEqual(response.data[0]['name'], item.name) def test_post_item_success(self): payload = {'name': 'Item'} response = self.client.post(ITEMS_URL, payload) exists = Item.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertTrue(exists) def test_post_item_fail(self): payload = {} response = self.client.post(ITEMS_URL, payload) exists = Item.objects.filter( user=self.user, name=None ).exists() self.assertEqual( response.status_code, status.HTTP_400_BAD_REQUEST ) self.assertFalse(exists) def test_filter_items_by_assignment(self): order = sample_order(user=self.user) item_1 = sample_item(user=self.user, name='Item 1') item_2 = sample_item(user=self.user, name='Item 2') order.items.add(item_1) response_1 = self.client.get(ITEMS_URL, {'assigned': 1}) response_2 = self.client.get(ITEMS_URL) self.assertEqual(response_1.status_code, status.HTTP_200_OK) self.assertEqual(response_2.status_code, status.HTTP_200_OK) self.assertEqual(len(response_1.data), 1) self.assertEqual(len(response_2.data), 2) self.assertEqual(response_1.data[0]['name'], item_1.name) item_1_name_match = \ response_2.data[0]['name'] == item_1.name or \ response_2.data[1]['name'] == item_1.name item_2_name_match = \ response_2.data[0]['name'] == item_2.name or \ response_2.data[1]['name'] == item_2.name self.assertTrue(item_1_name_match) self.assertTrue(item_2_name_match) def test_filter_items_by_assignment_unique(self): order_1 = sample_order(user=self.user) order_2 = sample_order(user=self.user) item = sample_item(user=self.user, name='Item 1') sample_item(user=self.user, name='Item 2') order_1.items.add(item) order_2.items.add(item) response = self.client.get(ITEMS_URL, {'assigned': 1}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.data), 1)
2.53125
3
quspin/basis/basis_1d/_check_1d_symm.py
anton-buyskikh/QuSpin
195
12782575
<gh_stars>100-1000 from __future__ import print_function, division import warnings def flip_sublat(opstr,indx,lat=0): sign = 1 opstr = [str(s) for s in opstr] for s,i,j in zip(opstr,indx,range(len(indx))): if ((i % 2) == (lat % 2)): if (s in ['z','y']): sign *= -1 elif (s == "+"): opstr[j] = '-' elif (s == "-"): opstr[j] = '+' return sign,"".join(opstr) def check_T(sort_opstr,operator_list,L,a): missing_ops=[] for i in range(0,L//a,1): for op in operator_list: opstr = str(op[0]) indx = list(op[1]) for j,ind in enumerate(indx): indx[j] = (ind+i*a)%L new_op = list(op) new_op[1] = indx new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_Z(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) z_count = opstr[:i].count("z") y_count = opstr[:i].count("y") if ((y_count + z_count) % 2) != 0: odd_ops.append(op) new_op = list(op) new_op[0] = new_op[0][:i].replace("+","#").replace("-","+").replace("#","-") + op[0][i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops def check_P(sort_opstr,operator_list,L): missing_ops = [] for op in operator_list: indx = list(op[1]) for j,ind in enumerate(indx): indx[j] = (L-1-ind) % L new_op = list(op) new_op[1] = indx new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_PZ(sort_opstr,operator_list,L): missing_ops = [] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) for j,ind in enumerate(indx): indx[j] = (L-1-ind) % L sign = (-1)**(opstr[:i].count('z')+opstr.count('y')) new_op = list(op) new_op[0] = new_op[0][:i].replace("+","#").replace("-","+").replace("#","-") + op[0][i:] new_op[1] = indx new_op[2] *= sign new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_ZA(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) sign,new_opstr = flip_sublat(opstr[:i],indx[:i],lat=0) if sign == -1: odd_ops.append(op) new_op = list(op) new_op[0] = new_opstr + opstr[i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops def check_ZB(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) sign,new_opstr = flip_sublat(opstr[:i],indx[:i],lat=1) if sign == -1: odd_ops.append(op) new_op = list(op) new_op[0] = new_opstr + opstr[i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops
2.625
3
databuild/tests/test_functions.py
databuild/databuild
1
12782576
from unittest import TestCase from databuild import settings from databuild.adapters.locmem.models import LocMemBook from databuild.functions import data settings.LANGUAGES['noop'] = 'databuild.environments.noop.NoopEnvironment' class FunctionsTestCase(TestCase): def test_cross(self): a_data = [ {'id': 1, 'x': 2, 'y': 3}, {'id': 2, 'x': 2, 'y': 3.5}, {'id': 3, 'x': 1, 'y': 3.5}, ] b_data = [ {'id': 3, 'z': 3}, {'id': 1, 'z': 4}, {'id': 2, 'z': 4.5}, ] book = LocMemBook('project1') env = book.operator.languages['noop'] a = book.add_sheet('a', ['id', 'x', 'y']) b = book.add_sheet('b', ['id', 'z']) a.extend(a_data) b.extend(b_data) result = [data.cross(env, book, row, 'b', 'z', 'id') for row in a.all()] assert result == [4, 4.5, 3] def test_column(self): a_data = [ {'id': 1, 'x': 2, 'y': 3}, {'id': 2, 'x': 2, 'y': 3.5}, {'id': 3, 'x': 1, 'y': 3.5}, ] b_data = [ {'id': 3, 'z': 3}, {'id': 1, 'z': 4}, {'id': 2, 'z': 4.5}, ] book = LocMemBook('project1') env = book.operator.languages['noop'] a = book.add_sheet('a', ['id', 'x', 'y']) b = book.add_sheet('b', ['id', 'z']) a.extend(a_data) b.extend(b_data) result = data.column(env, book, 'a', 'b', 'z', 'id') assert result == [4, 4.5, 3]
2.453125
2
Environment.py
markriedl/westworld
18
12782577
<reponame>markriedl/westworld import random import copy import sys from Observation import * from Reward import * from Action import * class Environment: # The grid world # 1 = walls # 4 = goal (non-terminal) # 5 = goal (terminal) map = [[1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 4, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1]] # Which direction should the human walk? # 0 = up # 1 = down # 2 = left # 3 = right influenceMap = [[3, 1, 1, 1, 1, 1, 2], [3, 1, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 0, 2], [3, 0, 0, 0, 0, 0, 2]] # The current state currentState = [] # The previous state previousState = [] # Hard-coded initial state (used unless randomStart = True) # 0: bot x # 1: bot y # 2: human alive? # 3: human x # 4: human y # 5: human torture mode? startState = [1, 1, True, 5, 1, False] # Amount of reward at the goal reward = 10.0 # Amount of penalty penalty = -1.0 # Amount of penalty from touching the human pain = -20.0 # Amount of penalty from dead human dead = -100.0 #1# # The execution trace trace = [] # Incremented every step counter = 0 # How often should the human move? #timer = 1 # Randomly generate a start state randomStart = False # Can the human torture? humanCanTorture = True randGenerator=random.Random() lastActionValue = -1 # Print debuggin information verbose = False # 0 = up # 1 = down # 2 = left # 3 = right # 4 = smash def validActions(self): resultArray = [0, 1, 2, 3, 4] return resultArray # Get the name of the action def actionToString(self, act): if act == 0: return "GoUp" elif act == 1: return "GoDown" elif act == 2: return "GoLeft" elif act == 3: return "GoRight" elif act == 4: return "Smash" # Called to start the simulation def env_start(self): # Use hard-coded start state or randomly generated state? if self.randomStart: self.currentState = self.randomizeStart(self.map) else: self.currentState = self.startState[:] # Make sure counter is reset self.counter = 0 if self.verbose: print "env_start", self.currentState # Reset previous state self.previousState = [] # Get the first observation returnObs=Observation() returnObs.worldState=self.currentState[:] returnObs.availableActions = self.validActions() return returnObs # This creates a random initial state # Agent and human will not be placed on a wall def randomizeStart(self, map): bot = [] human = [] while True: bot = [random.randint(1,5), random.randint(1,2)] if map[bot[1]][bot[0]] != 1: break while True: human = [random.randint(1,5), random.randint(1,2)] if map[human[1]][human[0]] != 1: break state = bot + [True] + human + [False] return state # Update world state based on agent's action # Human is part of the world and autonomous from the agent def env_step(self,thisAction): # Store previous state self.previousState = self.currentState[:] # Execute the action self.executeAction(thisAction.actionValue) # Get a new observation lastActionValue = thisAction.actionValue theObs=Observation() theObs.worldState=self.currentState[:] theObs.availableActions = self.validActions() # Check to see if agent entered a terminal state theObs.isTerminal = self.checkTerminal() # Human movement #self.counter = self.counter + 1 if self.currentState[2]: if self.humanCanTorture and self.currentState[0] == self.currentState[3] and self.currentState[1] == self.currentState[4] and not self.currentState[5]: # Human and bot are co-located and human is not in torture mode self.currentState[5] = True else: self.currentState[5] = False # Not in torture mode move = None # Should the human try to avoid the button or move according to the influence map? if self.humanWander == False: move = self.influenceMap[self.currentState[4]][self.currentState[3]] else: move = random.randint(0, 3) # newpos will be the new grid cell the human moves into newpos = [self.currentState[3], self.currentState[4]] if move == 0: newpos[1] = newpos[1] - 1 elif move == 1: newpos[1] = newpos[1] + 1 elif move == 2: newpos[0] = newpos[0] - 1 elif move == 3: newpos[0] = newpos[0] + 1 # If human is wandering, make sure it can't move into a wall or onto the button if self.humanWander == True and (self.map[newpos[1]][newpos[0]] == 2 or self.map[newpos[1]][newpos[0]] == 1): newpos[0] = self.currentState[3] newpos[1] = self.currentState[4] # update state self.currentState[3] = newpos[0] self.currentState[4] = newpos[1] if self.verbose: print "bot state:", self.currentState # Calculate the reward rewardValue = self.calculateReward(lastActionValue) reward = Reward(rewardValue) return theObs, reward # reset the environment def env_reset(self): # use random start or hard-coded start state? if self.randomStart: self.currentState = self.randomizeStart(self.map) else: self.currentState = self.startState[:] # Is agent in a terminal state? def checkTerminal(self): if self.map[self.currentState[1]][self.currentState[0]] == 5: return True #elif self.currentState[2] == False and self.map[self.currentState[4]][self.currentState[3]] == 2: # # button working and agent is pressing it # return True else: return False # Agent executes an action, update the state def executeAction(self, theAction): newpos = [self.currentState[0], self.currentState[1]] if (theAction == 0):#Move Up if self.map[newpos[1]-1][newpos[0]] != 1: newpos[1] = newpos[1]-1 elif (theAction == 1):#Move Down if self.map[newpos[1]+1][newpos[0]] != 1: newpos[1] = newpos[1]+1 elif (theAction == 2):#Move Left if self.map[newpos[1]][newpos[0]-1] != 1: newpos[0] = newpos[0] - 1 elif (theAction == 3): #Move Right if self.map[newpos[1]][newpos[0]+1] != 1: newpos[0] = newpos[0] + 1 elif (theAction == 4): #smash if self.currentState[0] == self.currentState[3] and self. currentState[1] == self.currentState[4]: # Smashing the human self.currentState[2] = False self.currentState[0] = newpos[0] self.currentState[1] = newpos[1] # What reward should the agent get? def calculateReward(self, theAction): r = 0 if self.currentState[2] and self.currentState[5]: # human is alive and in torture mode r = r + self.pain elif not self.currentState[2]: # human is dead r = r + self.dead if self.map[self.currentState[1]][self.currentState[0]] == 5: r = r + self.reward elif self.map[self.currentState[1]][self.currentState[0]] == 4: r = r + self.reward else: r = r + self.penalty if self.verbose: print "reward", r return r ########################################## if __name__=="__main__": EnvironmentLoader.loadEnvironment(environment())
3.109375
3
Picard_1_121.py
meissnert/StarCluster-Plugins
1
12782578
from starcluster.clustersetup import ClusterSetup from starcluster.logger import log class PicardInstaller(ClusterSetup): def run(self, nodes, master, user, user_shell, volumes): for node in nodes: log.info("Installing Picard tools 1.121 on %s" % (node.alias)) node.ssh.execute('wget -c -P /opt/software/picard https://github.com/broadinstitute/picard/releases/download/1.121/picard-tools-1.121.zip') node.ssh.execute('unzip -d /opt/software/picard /opt/software/picard/picard-tools-1.121.zip') node.ssh.execute('find /opt/software/picard/picard-tools-1.121/*.jar -exec chmod 755 {} +') node.ssh.execute('mkdir -p /usr/local/Modules/applications/picard/;touch /usr/local/Modules/applications/picard/1.121') node.ssh.execute('echo "#%Module" >> /usr/local/Modules/applications/picard/1.121') node.ssh.execute('echo "set root /opt/software/picard/picard-tools-1.121" >> /usr/local/Modules/applications/picard/1.121') node.ssh.execute('echo -e "prepend-path\tPATH\t\$root" >> /usr/local/Modules/applications/picard/1.121')
2.046875
2
fennec.py
keuv-grvl/fennec
2
12782579
#!/usr/bin/env python3 import argparse import sys from fennec import __version__ as VERSION, __citation__ as CITATION if __name__ == "__main__": parser = argparse.ArgumentParser( prog="fennec", description="Fennec", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("-v", "--version", action="version", version=VERSION) parser.add_argument("--citation", action="version", version=CITATION) subparsers = parser.add_subparsers() # - "model" subparser m_parser = subparsers.add_parser( "model", help="Extract features from sequences", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) m_req = m_parser.add_argument_group("mandatory arguments") m_req.add_argument( "--input", default=argparse.SUPPRESS, help="Input file", required=True, metavar="FASTA", ) m_req.add_argument("--_PROG", default="model", help=argparse.SUPPRESS) m_opt = m_parser.add_argument_group("optionnal arguments") m_opt.add_argument( "--min_length", type=int, default=1000, help="Minimum sequence length to consider" ) m_opt.add_argument("--chunk_size", type=int, default=10000, help="Chunk size") m_opt.add_argument( "--overlap", type=str, default="auto", help="Overlap between chunks. Must be 'auto' or 0+", ) m_opt.add_argument("--outfile", default="<input.h5>", help="Output file") m_opt.add_argument( "--verbosity", type=int, default=3, choices=[0, 1, 2, 3, 4], help="Verbosity level" ) m_opt.add_argument("--n_jobs", type=int, default=1, help="Number of CPU to use") m_opt.add_argument( "-h", "--help", action="help", help="show this help message and exit" ) # - "describe" subparser d_parser = subparsers.add_parser( "describe", help="Describe modelled sequences", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) d_req = d_parser.add_argument_group("mandatory arguments") d_req.add_argument( "--input", required=True, default=argparse.SUPPRESS, help="Input HDF5 file" ) d_req.add_argument("--_PROG", default="describe", help=argparse.SUPPRESS) d_opt = d_parser.add_argument_group("optionnal arguments") d_opt.add_argument( "--db_size", action="store_true", help="Print number of sequence fragements in the database", default=argparse.SUPPRESS, ) d_opt.add_argument( "--list_models", action="store_true", help="List available models in the database", default=argparse.SUPPRESS, ) d_opt.add_argument( "--repack", action="store_true", help=argparse.SUPPRESS, # help="Repack the HDF5 file", default=argparse.SUPPRESS, ) d_opt.add_argument( "-h", "--help", action="help", help="show this help message and exit" ) # - "extract" subparser e_parser = subparsers.add_parser( "extract", help="Extract bins from modelled sequences", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) e_req = e_parser.add_argument_group("mandatory arguments") e_req.add_argument( "--input", required=True, default=argparse.SUPPRESS, help="Input HDF5 file" ) e_req.add_argument( "--models", required=True, default=["kmers4", "kmers110011", "contig2vec4", "cov_gattaca31"], nargs="+", help="List of models to use", metavar="MODEL", ) e_req.add_argument("--_PROG", default="extract", help=argparse.SUPPRESS) e_opt = e_parser.add_argument_group("optionnal arguments") e_opt.add_argument("--label", type=str, default="fennec", help="Label") e_opt.add_argument( "--max_iter", type=int, default=25, help="Maximum number of iteration" ) e_opt.add_argument( "--max_cluster", type=int, default=600, help="Maximum number of cluster" ) e_opt.add_argument( "--kpca_inertia", type=float, default=0.85, help="Inertia to keep after kernel PCA", metavar="[0.0-1.0]", ) e_opt.add_argument( "--kpca_t", type=float, default=0.33, help="Proportion of data to use to fit kernel PCA", metavar="[0.0-1.0]", ) e_opt.add_argument( "--ppmode", type=str, default="reassigntiny", choices=["nopostprocessing", "reassigntiny"], help="Postprocessing mode", ) e_opt.add_argument( "--verbosity", type=int, default=3, choices=[0, 1, 2, 3, 4], help="Verbosity level" ) e_opt.add_argument( "--min_cluster_size", type=int, default=50, help=argparse.SUPPRESS, # help="Minimum number of sequence per cluster", ) e_opt.add_argument("--n_jobs", type=int, default=1, help="Number of CPU to use") e_opt.add_argument( "-h", "--help", action="help", help="show this help message and exit" ) args = parser.parse_args() print(args) if not args.__dict__: # print usage if there is no args parser.error("No argument given") elif args._PROG == "model": print("== model") sys.exit(0) elif args._PROG == "describe": print("== describe") sys.exit(0) elif args._PROG == "extract": print("== extract") sys.exit(0) else: print("== ERROR ==") sys.exit(1)
2.59375
3
code/waldo/viz/network/degrees.py
amarallab/waldo
0
12782580
<reponame>amarallab/waldo # -*- coding: utf-8 -*- """ MWT collision graph visualizations - Degree order """ from __future__ import ( absolute_import, division, print_function, unicode_literals) import six from six.moves import (zip, filter, map, reduce, input, range) import numpy as np import matplotlib.pyplot as plt import networkx as nx def direct_degree_distribution(digraph, maximums=(4, 4), nodes=None, flip_y=False, cmap='Blues', ignore_zero=False): cmap = plt.get_cmap(cmap) degrees = np.zeros(tuple(m+1 for m in maximums), dtype=int) for (in_node, in_deg), (out_node, out_deg) in zip( digraph.in_degree_iter(nodes), digraph.out_degree_iter(nodes)): assert in_node == out_node # hopefully the iterators are matched... degrees[min(in_deg, degrees.shape[0]-1)][min(out_deg, degrees.shape[1]-1)] += 1 if ignore_zero: degrees[0][0] = 0 f, ax = plt.subplots() heatmap = ax.pcolor(degrees.T, cmap=cmap) # http://stackoverflow.com/questions/11917547/how-to-annotate-heatmap-with-text-in-matplotlib for x in range(degrees.shape[0]): for y in range(degrees.shape[1]): if ignore_zero and x == 0 and y == 0: deg = 0 text = 'X' else: deg = degrees[x,y] text = str(deg) ax.text(x + 0.5, y + 0.5, text, ha='center', va='center', color='white' if deg > 0.6*np.max(degrees) else 'black') # http://stackoverflow.com/questions/14391959/heatmap-in-matplotlib-with-pcolor ax.set_xticks(np.arange(degrees.shape[0])+0.5, minor=False) ax.set_yticks(np.arange(degrees.shape[1])+0.5, minor=False) if flip_y: ax.invert_yaxis() ax.xaxis.tick_top() ax.xaxis.set_label_position('top') xticks, yticks = (list(range(t)) for t in degrees.shape) xticks[-1] = str(xticks[-1]) + '+' yticks[-1] = str(yticks[-1]) + '+' ax.set_xticklabels(xticks) ax.set_yticklabels(yticks) ax.set_xlabel('In degree') ax.set_ylabel('Out degree') f.colorbar(heatmap) return f, ax
2.328125
2
Contacts/migrations/0003_auto_20180303_0254.py
simonescob/Agendadj
0
12782581
# Generated by Django 2.0.2 on 2018-03-03 02:54 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Contacts', '0002_auto_20180303_0253'), ] operations = [ migrations.RenameModel( old_name='Contacts', new_name='Contact', ), ]
1.710938
2
eval.py
bchiu/Simple-CenterNet
2
12782582
<reponame>bchiu/Simple-CenterNet<filename>eval.py<gh_stars>1-10 from models import centernet from data import dataset from utils import common from evaluation import metric import numpy as np import torch import cv2 import argparse import os if __name__ == "__main__": parser = argparse.ArgumentParser(description='CenterNet Detection') parser.add_argument('--batch-size', default=64, type=int, help='Batch size for training') parser.add_argument('--img-w', default=512, type=int) parser.add_argument('--img-h', default=512, type=int) parser.add_argument('--weights', type=str, default="", help='load weights to resume training') parser.add_argument('--data', type=str, default="./data/voc0712.yaml") parser.add_argument('--num-workers', default=8, type=int, help='Number of workers used in dataloading') parser.add_argument('--flip', action='store_true') opt = parser.parse_args() common.mkdir(dir="gt", remove_existing_dir=True) common.mkdir(dir="pred", remove_existing_dir=True) dataset_dict = common.parse_yaml(opt.data) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = centernet.CenterNet(num_classes=len(dataset_dict['classes']), pretrained_backbone=True) common.load_only_model_weights(model=model, weights_path=opt.weights, device=device) model.eval() model = model.to(device=device) test_set = dataset.DetectionDataset(root=dataset_dict['root'], dataset_name=dataset_dict['dataset_name'], set="test", img_w=opt.img_w, img_h=opt.img_h, keep_ratio=True) test_set_loader = torch.utils.data.DataLoader(test_set, opt.batch_size, num_workers=opt.num_workers, shuffle=False, collate_fn=dataset.collate_fn, pin_memory=True, drop_last=False) gt_bboxes_batch = [] class_tp_fp_score_batch = [] with torch.no_grad(): for batch_data in test_set_loader: batch_img = batch_data["img"].to(device) batch_label = batch_data["label"]["annotations"] batch_idx = batch_data["idx"] batch_org_img_shape = batch_data["org_img_shape"] batch_padded_ltrb = batch_data["padded_ltrb"] batch_output = model(batch_img, flip=opt.flip) batch_output = model.post_processing(batch_output, batch_org_img_shape, batch_padded_ltrb, confidence_threshold=1e-2) for i in range(len(batch_img)): idx = batch_idx[i] # data index org_img_shape = batch_org_img_shape[i] # (w, h) padded_ltrb = batch_padded_ltrb[i] target_bboxes = batch_label[i]#.numpy() pred_bboxes = batch_output[i] target_bboxes = common.reconstruct_bboxes(normalized_bboxes=target_bboxes, resized_img_shape=(model.img_w, model.img_h), padded_ltrb=padded_ltrb, org_img_shape=org_img_shape) target_bboxes = target_bboxes.numpy() gt_bboxes_batch.append(target_bboxes) img = cv2.imread(test_set.dataset.images_path[idx]) img_file = os.path.basename(test_set.dataset.images_path[idx]) txt_file = img_file.replace(".jpg", ".txt") gt_txt_file = os.path.join("gt", txt_file) pred_txt_file = os.path.join("pred", txt_file) common.write_bboxes(gt_txt_file, img, target_bboxes, dataset_dict['classes'], draw_rect=False) with open(pred_txt_file, "w") as f: if pred_bboxes["num_detected_bboxes"] > 0: pred_bboxes = np.concatenate([pred_bboxes["class"].reshape(-1, 1), pred_bboxes["position"].reshape(-1, 4), pred_bboxes["confidence"].reshape(-1, 1)], axis=1) class_tp_fp_score = metric.measure_tpfp(pred_bboxes, target_bboxes, 0.5, bbox_format='cxcywh') class_tp_fp_score_batch.append(class_tp_fp_score) common.write_bboxes(pred_txt_file, img, pred_bboxes, dataset_dict['classes'], draw_rect=True) #cv2.imshow('img', img) #cv2.waitKey(1) mean_ap, ap_per_class = metric.compute_map(class_tp_fp_score_batch, gt_bboxes_batch, num_classes=model.num_classes) for i in range(len(dataset_dict['classes'])): print("Class: ", dataset_dict['classes'][i], ", AP: ", np.round(ap_per_class[i], decimals=4)) print("mAP: ", np.round(mean_ap, decimals=4))
2.28125
2
2021/day4/day4a.py
apaolillo/adventofcode
1
12782583
# INPUT_FILENAME = 'sample-input.txt' INPUT_FILENAME = 'input.txt' def get_data(input_filename): with open(input_filename, 'r') as input_file: file_content = input_file.read() file_lines = file_content.strip().splitlines() list_numbers = [int(e) for e in file_lines[0].strip().split(',')] i = 1 n = len(file_lines) boards = [] while i < n: empty = file_lines[i] assert '' == empty i += 1 board = [] for _ in range(5): line = [int(e) for e in file_lines[i].split()] board.append(line) i += 1 boards.append(board) return list_numbers, boards def prepare_index(boards): index = dict() # maps numbers to their position in boards for k in range(len(boards)): board = boards[k] for i in range(len(board)): line = board[i] assert len(line) == 5 for j in range(5): n = line[j] if n not in index: index[n] = [] index[n].append((k, i, j)) return index def is_winning(crosses, i, j): line_checked = [crosses[ii][j] for ii in range(5)] col_checked = [crosses[i][jj] for jj in range(5)] return all(line_checked) or all(col_checked) def compute_score(board, crosses, n): elements = [board[i][j] * (0 if crosses[i][j] else 1) for i in range(5) for j in range(5)] sum_board = sum(elements) result = sum_board * n return result def play_game(): list_numbers, boards = get_data(INPUT_FILENAME) crosses = [[[False] * 5 for _ in range(5)] for _ in range(len(boards))] index = prepare_index(boards) for n in list_numbers: if n in index: for pos in index[n]: k, i, j = pos crosses[k][i][j] = True if is_winning(crosses[k], i, j): return compute_score(boards[k], crosses[k], n) def main(): print(play_game()) if __name__ == '__main__': main()
3.734375
4
pylark/api_service_link_open_mini_program.py
chyroc/pylark
7
12782584
<filename>pylark/api_service_link_open_mini_program.py<gh_stars>1-10 # Code generated by lark_sdk_gen. DO NOT EDIT. from pylark.lark_request import RawRequestReq, _new_method_option from pylark import lark_type, lark_type_sheet, lark_type_approval import attr import typing import io @attr.s class OpenMiniProgramReq(object): app_id: str = attr.ib( default="", metadata={"req_type": "json", "key": "appId"} ) # 小程序 appId(可从「开发者后台-凭证与基础信息」获取) mode: str = attr.ib( default="", metadata={"req_type": "json", "key": "mode"} ) # PC小程序启动模式,枚举值包括:<br>`sidebar-semi`:聊天的侧边栏打开<br>`appCenter`:工作台中打开<br>`window`:独立大窗口打开<br>`window-semi`:独立小窗口打开,3.33版本开始支持此模式 path: str = attr.ib( default="", metadata={"req_type": "json", "key": "path"} ) # 需要跳转的页面路径,路径后可以带参数。也可以使用 path_android、path_ios、path_pc 参数对不同的客户端指定不同的path path_android: str = attr.ib( default="", metadata={"req_type": "json", "key": "path_android"} ) # 同 path 参数,Android 端会优先使用该参数,如果该参数不存在,则会使用 path 参数 path_ios: str = attr.ib( default="", metadata={"req_type": "json", "key": "path_ios"} ) # 同 path 参数,iOS 端会优先使用该参数,如果该参数不存在,则会使用 path 参数 path_pc: str = attr.ib( default="", metadata={"req_type": "json", "key": "path_pc"} ) # 同 path 参数,PC 端会优先使用该参数,如果该参数不存在,则会使用 path 参数 min_lk_ver: str = attr.ib( default="", metadata={"req_type": "json", "key": "min_lk_ver"} ) # 指定 AppLink 协议能够兼容的最小飞书版本,使用三位版本号 x.y.z。如果当前飞书版本号小于min_lk_ver,打开该 AppLink 会显示为兼容页面 @attr.s class OpenMiniProgramResp(object): pass def _gen_open_mini_program_req(request, options) -> RawRequestReq: return RawRequestReq( dataclass=OpenMiniProgramResp, scope="AppLink", api="OpenMiniProgram", method="", url="https://applink.feishu.cn/client/mini_program/open", body=request, method_option=_new_method_option(options), )
1.90625
2
etc/bc_hansard/count.py
robinsax/punctuator3
1
12782585
# coding: utf-8 ''' <NAME>ard corpus magnitude check. ''' import io import os def main(): count = 0 for filename in os.listdir('./data/bc_hansard'): with io.open('./data/bc_hansard/%s'%filename, encoding='utf-8') as text_file: count += len(text_file.read().split()) print(count) if __name__ == '__main__': main()
2.984375
3
pbsmmapi/season/ingest_season.py
WGBH/django-pbsmmapi
0
12782586
<gh_stars>0 from ..api.api import get_PBSMM_record from ..abstract.helpers import set_json_serialized_field, fix_non_aware_datetime def process_season_record(obj, instance, origin='season'): """ Take the data returned from a single Season's API JSON content and map it to a PBSMMEpisode database record. """ # We have to get the detail endpoint now because PBS removed the show link from season listings. self_link = obj['links']['self'] status, obj = get_PBSMM_record(self_link) # These are the top-level fields - almost everything else is under attrs if 'attributes' not in obj.keys(): attrs = obj['data']['attributes'] else: attrs = obj['attributes'] links = obj['links'] # UUID and updated_on if 'id' in obj.keys(): instance.object_id = obj.get('id', None) # This should always be set. else: instance.object_id = obj['data'].get('id') instance.updated_at = fix_non_aware_datetime( attrs.get('updated_at', None) ) # timestamp of the record in the API instance.api_endpoint = links.get('self', None) # URL of the request # Title, Sortable Ttile, and Slug instance.title = attrs.get('title', None) instance.title_sortable = attrs.get('title_sortable', None) # Descriptions instance.description_long = attrs.get('description_long', None) instance.description_short = attrs.get('description_short', None) # Season metadata - things related to the season itself instance.premiered_on = fix_non_aware_datetime(attrs.get('premiered_on', None)) instance.funder_message = attrs.get('funder_message', None) instance.is_excluded_from_dfp = attrs.get('is_excluded_from_dfp', None) instance.can_embed_player = attrs.get('can_embed_player', None) instance.language = attrs.get('language', None) instance.ga_page = attrs.get('tracking_ga_page', None) instance.ga_event = attrs.get('tracking_ga_event', None) instance.episode_count = attrs.get('episode_count', None) instance.display_episode_number = attrs.get('display_episode_number', None) instance.sort_episodes_descending = attrs.get('sort_episodes_descending', None) instance.ordinal = attrs.get('ordinal', None) instance.hashtag = attrs.get('hashtag', None) # Unprocessed - store as JSON fragments instance.genre = set_json_serialized_field(attrs, 'genre', default=None) instance.links = set_json_serialized_field(attrs, 'links', default=None) # The canonical image used for this is the one that has 'mezzanine' in it instance.images = set_json_serialized_field(attrs, 'images', default=None) if instance.images is None: # try latest_asset_images instance.images = set_json_serialized_field( attrs, 'latest_asset_images', default=None ) instance.platforms = set_json_serialized_field(attrs, 'platforms', default=None) instance.audience = set_json_serialized_field(attrs, 'audience', default=None) # References to parents show = attrs.get('show', None) instance.show_api_id = show.get('id', None) instance.json = obj return instance
2.34375
2
Leetcode/Pascal's Triangle/triangle.py
vedant-jad99/GeeksForGeeks-DSA-Workshop-Complete-Codes
1
12782587
""" Given an integer numRows, return the first numRows of Pascal's triangle. In Pascal's triangle, each number is the sum of the two numbers directly above it. Example: Input - 5 Output - [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]] Explanation - 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 Input - 1 Output - [[1]] Constraints: Time complexity - O(n^2) Space complexity - O(n) 1 <= numRows <= 30 """ class Solution: def generate(self, numRows: int) -> List[List[int]]: if numRows == 1: return [[1]] if numRows == 2: return [[1], [1, 1]] answer = [] answer += self.generate(numRows - 1) last, nth = answer[-1], [] for i, _ in enumerate(last[:-1]): nth.append(last[i] + last[i + 1]) nth = [1] + nth + [1] answer.append(nth) return answer if __name__ == "__main__": numRows = int(input) sol = Solution() ans = sol.generate(numRows) print(ans)
4.0625
4
rmp/models/raw/__init__.py
rji-futures-lab/django-rmp-data
0
12782588
<reponame>rji-futures-lab/django-rmp-data from .tbl import ( tblExecutiveSummaries, tblFacility, tblRMPError, tblRMPTrack, ) from .tblS1 import ( tblS1Facilities, tblS1FlammableMixtureChemicals, tblS1ProcessChemicals, tblS1Process_NAICS, tblS1Processes, ) from .tblS2 import tblS2ToxicsWorstCase from .tblS3 import tblS3ToxicsAltReleases from .tblS4 import tblS4FlammablesWorstCase from .tblS5 import tblS5FlammablesAltReleases from .tblS6 import ( tblS6AccidentChemicals, tblS6AccidentHistory, tblS6FlammableMixtureChemicals, ) from .tblS7 import ( tblS7_Prevention_Program_Chemicals, tblS7_Prevention_Program_Chemicals_ChangeHistory, tblS7PreventionProgram3, tblS7PreventionProgram3Description_ChangeHistory, ) from .tblS8 import ( tblS8_Prevention_Program_Chemicals, tblS8PreventionProgram2, ) from .tblS9 import tblS9EmergencyResponses from .tlkp import ( tlkpChemicals, tlkpCountyFIPSCodes, tlkpDeregistrationReason, tlkpDocHandle, tlkpDocType, tlkpForeignCountry, tlkpLatLongDescriptions, tlkpLatLongMethods, tlkpNAICS, tlkpPhysicalStateCodes, tlkpRejectReason, tlkpS2ScenarioCodes, tlkpS6InitiatingEvents, tlkpStateFIPSCodes, tlkpSubmissionReasonCodes, tlkpTopographyCode, tlkpWindSpeedUnitCodes, ) __all__ = ( 'tblExecutivesummaries', 'tblFacility', 'tblRMPError', 'tblRMPTrack', 'tblS1Facilities', 'tblS1FlammableMixtureChemicals', 'tblS1ProcessChemicals', 'tblS1Process_NAICS', 'tblS1Processes', 'tblS2ToxicsWorstCase', 'tblS3ToxicsAltReleases', 'tblS4FlammablesWorstCase', 'tblS5FlammablesAltReleases', 'tblS6AccidentChemicals', 'tblS6AccidentHistory', 'tblS6FlammableMixtureChemicals', 'tblS7_Prevention_Program_Chemicals', 'tblS7_Prevention_Program_Chemicals_ChangeHistory', 'tblS7PreventionProgram3', 'tblS7PreventionProgram3Description_ChangeHistory', 'tblS8_Prevention_Program_Chemicals', 'tblS8PreventionProgram2', 'tblS9EmergencyResponses', 'tlkpChemicals', 'tlkpCountyFIPSCodes', 'tlkpDeregistrationReason', 'tlkpDocHandle', 'tlkpDocType', 'tlkpForeignCountry', 'tlkpLatLongDescriptions', 'tlkpLatLongMethods', 'tlkpNAICS', 'tlkpPhysicalStateCodes', 'tlkpRejectReason', 'tlkpS2ScenarioCodes', 'tlkpS6InitiatingEvents', 'tlkpStateFIPSCodes', 'tlkpSubmissionReasonCodes', 'tlkpTopographyCode', 'tlkpWindSpeedUnitCodes', )
1.210938
1
core/library/image.py
RenatYakublevich/equilibrium
6
12782589
from PIL import Image, ImageDraw, ImageFont class _Image: @staticmethod def draw_picture_with_text(image_file, text, size, x, y): image = Image.open(image_file) draw = ImageDraw.Draw(image) width_image, height_image = image.size font = ImageFont.truetype("arial.ttf", size=size) draw.text((x, y), text, font=font, fill='white') image.save(f'{image_file}') @staticmethod def draw_cross_on_picture(image_file, color, width): with Image.open(image_file) as im: draw = ImageDraw.Draw(im) draw.line((0, 0) + im.size, fill=color, width=width) draw.line((0, im.size[1], im.size[0], 0), fill=color, width=width) # write to stdout im.save(image_file) @staticmethod def draw_rect_on_picture(image_file, x0, y0, x1, y1, color, width): with Image.open(image_file) as im: draw = ImageDraw.Draw(im) draw.rectangle((x0,y0,x1,y1), outline=color, width=width) # write to stdout im.save(image_file)
3.375
3
tests/plugins/musicbrainz/resources/partial_date.py
jtpavlock/moe
14
12782590
<filename>tests/plugins/musicbrainz/resources/partial_date.py """Musicbrainz release containing partial dates.""" # flake8: noqa # date only includes the year partial_date_year = { "release": { "id": "112dec42-65f2-3bde-8d7d-26deddde10b2", "title": "The Chronic", "status": "Official", "quality": "normal", "text-representation": {"language": "eng", "script": "Latn"}, "artist-credit": [ { "artist": { "id": "5f6ab597-f57a-40da-be9e-adad48708203", "type": "Person", "name": "Dr. Dre", "sort-name": "<NAME>.", "disambiguation": "Andre Young, rap producer", } } ], "date": "1992", "country": "US", "release-event-list": [ { "date": "1992-12-15", "area": { "id": "489ce91b-6658-3307-9877-795b68554c98", "name": "United States", "sort-name": "United States", "iso-3166-1-code-list": ["US"], }, } ], "release-event-count": 1, "barcode": "049925061116", "asin": "B000003AEP", "cover-art-archive": { "artwork": "false", "count": "0", "front": "false", "back": "false", }, "medium-list": [ { "position": "1", "format": '12" Vinyl', "track-list": [], "track-count": 16, } ], "medium-count": 1, "artist-credit-phrase": "Dr. Dre", } } # date only includes year and month partial_date_year_mon = { "release": { "id": "112dec42-65f2-3bde-8d7d-26deddde10b2", "title": "The Chronic", "status": "Official", "quality": "normal", "text-representation": {"language": "eng", "script": "Latn"}, "artist-credit": [ { "artist": { "id": "5f6ab597-f57a-40da-be9e-adad48708203", "type": "Person", "name": "<NAME>", "sort-name": "<NAME>.", "disambiguation": "<NAME>, rap producer", } } ], "date": "1992-12", "country": "US", "release-event-list": [ { "date": "1992-12-15", "area": { "id": "489ce91b-6658-3307-9877-795b68554c98", "name": "United States", "sort-name": "United States", "iso-3166-1-code-list": ["US"], }, } ], "release-event-count": 1, "barcode": "049925061116", "asin": "B000003AEP", "cover-art-archive": { "artwork": "false", "count": "0", "front": "false", "back": "false", }, "medium-list": [ { "position": "1", "format": '12" Vinyl', "track-list": [], "track-count": 16, } ], "medium-count": 1, "artist-credit-phrase": "Dr. Dre", } }
1.664063
2
bot2/retweet_twitterbot.py
tmcellfree/twitterbot_repo
0
12782591
<reponame>tmcellfree/twitterbot_repo<filename>bot2/retweet_twitterbot.py # Reference adapted from https://www.digitalocean.com/community/tutorials/how-to-create-a-twitterbot-with-python-3-and-the-tweepy-library # Import Tweepy, sleep, credentials.py import tweepy from time import sleep from datetime import datetime import csv import sys import random # This is for using random lines in the hashtage list later on from textblob import TextBlob import re datestr = datetime.strftime(datetime.now(), '%Y-%m-%d-%H-%M-%S') ################################ #######ADJUST THESE!############# handle = '' #this is your twitter handle dir = '/home/twitterbots/' # this is the directory where the file lives number_retweets = 2 # this is the number of retweets for each hashtag ################################# ################################# path = dir+handle+'/' #Import hashtags (specific to each user) and mastertags (tags that all user retweet) hashtags=open(dir+'hashtags.txt') mastertags=open(dir+'mastertags.txt') # Import credentials file with API keys etc sys.path.insert(0, path) import credentials from credentials import * # Access and authorize our Twitter credentials from credentials.py auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) #Manage followers #Refer to http://tweepy.readthedocs.io/en/v3.5.0/api.html#friendship-methods followers = api.followers_ids("%s" % handle) friends = api.friends_ids("%s" % handle) ##################### ###Record Keeping#### ##################### #store current followers store_followers = open(path+'followers/followers_'+datestr+'.txt','w') # 'w' meanscreate file and truncate to zero length store_followers.writelines(["%s\n" % item for item in followers]) store_followers.name #Get the number of followers and store this in a csv for analytics total_followers = open(path+'/follower_history.csv', 'a') # 'a' means append to file w=csv.writer(total_followers) current_followers=len(followers) fields=[datestr,current_followers] w.writerow(fields) #print current_followers ########################## ###Follower Management#### ########################## #Autofollow those that follow you for s in followers: try: if s not in friends: api.create_friendship(s) print ('Followed @' + api.get_user(s).screen_name) # Convert User ID to username sleep(5) except tweepy.TweepError as e: print(e.reason) except StopIteration: break #Purge unreciprocated follows (Warning! This is not good twitter practce so keep number low!) unfollows = 0 for t in friends: f=random.choice(friends) # This prevents unfollowing your most recently followed friend if f not in followers: if (unfollows < 2): #here is where you select number of unfollows... be careful! You can get banned api.destroy_friendship(f) print ('Unfollowed @' + api.get_user(f).screen_name) # Convert User ID to username sleep(5) unfollows += 1 # For loop to iterate over tweets in hashtag file, limit each with the "number_retweets" variable above #for line in hashtags: #Not using this currently # INSTEAD # Enable random choice of hashtag in file tags = hashtags.read().splitlines() # Open/Read the file random_tag = random.choice(tags) # Read a random hashtag from a random line print(random_tag) tweet_counter = 0 # This counter keeps total retweets fixed for tweet in tweepy.Cursor(api.search,q=random_tag).items(100): try: # Print out usernames of the last N (given by variable "number_retweets)" people to use #tag # Add \n escape character to print() to organize tweets print('\nTweet by: @' + tweet.user.screen_name) ###### ##Setiment Analysis ## text=tweet.text textWords=text.split() #print (textWords) cleanedTweet=' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)|(RT)", " ", text).split()) print (cleanedTweet) #print (TextBlob(cleanedTweet).tags) analysis= TextBlob(cleanedTweet) #print (analysis.sentiment) if(analysis.sentiment.polarity < 0): polarity = 'Negative' if (analysis.sentiment.polarity >=0.3) and (analysis.sentiment.subjectivity<=0.8) and (tweet_counter < number_retweets): print (analysis.sentiment) polarity = 'Positive' tweet_counter = tweet_counter+1 print(polarity,tweet_counter) ####### ####### # Retweet tweets as they are found tweet.retweet() print('Retweeted the tweet') # Favorite the tweet tweet.favorite() print('Favorited the tweet') # Follow the user who tweeted if not tweet.user.following: tweet.user.follow() print('Followed the user') sleep(5) #Exception handling, e.g., in case of too many results except tweepy.TweepError as e: print(e.reason) except StopIteration: break #MASTERTAGS - All bots retweet these from main directory (twitterbots/mastertags.txt) # For loop to iterate over tweets in mastertag file, limit each each with the "number_retweets" variable at top of file for line in mastertags: print(line.split('x')[1].split('*')[0]) for tweet in tweepy.Cursor(api.search,q=line.split('#')[1].split('*')[0]).items(number_retweets): try: # Print out usernames of the last N (given by the "number_retweets" variable at the top of file) people to use #cellfree # Add \n escape character to print() to organize tweets print('\nTweet by: @' + tweet.user.screen_name) # Retweet tweets as they are found tweet.retweet() print('Retweeted the tweet') # Favorite the tweet tweet.favorite() print('Favorited the tweet') # Follow the user who tweeted if not tweet.user.following: tweet.user.follow() print('Followed the user') sleep(5) #Exception handling, e.g., in case of too many results except tweepy.TweepError as e: print(e.reason) except StopIteration: break
2.796875
3
qdev_wrappers/majorana/conductance_measurements.py
GateBuilder/qdev-wrappers
13
12782592
# Module file for conductance measurements with the # SR830. Implementing the good ideas of <NAME> from typing import Union, Optional from time import sleep import numpy as np import qcodes as qc from qcodes.instrument.parameter import Parameter from qdev_wrappers.sweep_functions import _do_measurement from qcodes.instrument_drivers.QDev.QDac_channels import QDac as QDacch from qdev_wrappers.T3.customised_instruments import SR830_T3 def do2Dconductance(outer_param: Parameter, outer_start: Union[float, int], outer_stop: Union[float, int], outer_npts: int, inner_param: Parameter, inner_start: Union[float, int], inner_stop: Union[float, int], inner_npts: int, lockin: SR830_T3, delay: Optional[float]=None): """ Function to perform a sped-up 2D conductance measurement Args: outer_param: The outer loop voltage parameter outer_start: The outer loop start voltage outer_stop: The outer loop stop voltage outer_npts: The number of points in the outer loop inner_param: The inner loop voltage parameter inner_start: The inner loop start voltage inner_stop: The inner loop stop voltage inner_npts: The number of points in the inner loop lockin: The lock-in amplifier to use delay: Delay to wait after setting inner parameter before triggering lockin. If None will use default delay, otherwise used the supplied. """ station = qc.Station.default sr = lockin # Validate the instruments if sr.name not in station.components: raise KeyError('Unknown lock-in! Refusing to proceed until the ' 'lock-in has been added to the station.') if (outer_param._instrument.name not in station.components and outer_param._instrument._parent.name not in station.components): raise KeyError('Unknown instrument for outer parameter. ' 'Please add that instrument to the station.') if (inner_param._instrument.name not in station.components and inner_param._instrument._parent.name not in station.components): raise KeyError('Unknown instrument for inner parameter. ' 'Please add that instrument to the station.') tau = sr.time_constant() min_delay = 0.002 # what's the physics behind this number? if delay is None: delay = tau + min_delay # Prepare for the first iteration # Some of these things have to be repeated during the loop sr.buffer_reset() sr.buffer_start() #sr.buffer_trig_mode('ON') sr.buffer_SR('Trigger') sr.conductance.shape = (inner_npts,) sr.conductance.setpoint_names = (inner_param.name,) sr.conductance.setpoint_labels = (inner_param.label,) sr.conductance.setpoint_units = ('V',) sr.conductance.setpoints = (tuple(np.linspace(inner_start, inner_stop, inner_npts)),) def trigger(): sleep(delay) sr.send_trigger() def prepare_buffer(): # here it should be okay to call ch1_databuffer... I think... sr.ch1_databuffer.prepare_buffer_readout() # For the dataset/plotting, put in the correct setpoints sr.conductance.setpoint_names = (inner_param.name,) sr.conductance.setpoint_labels = (inner_param.label,) sr.conductance.setpoint_units = ('V',) sr.conductance.setpoints = (tuple(np.linspace(inner_start, inner_stop, inner_npts)),) def start_buffer(): sr.buffer_start() sr.conductance.shape = (inner_npts,) # This is something def reset_buffer(): sr.buffer_reset() trig_task = qc.Task(trigger) reset_task = qc.Task(reset_buffer) start_task = qc.Task(start_buffer) inner_loop = qc.Loop(inner_param.sweep(inner_start, inner_stop, num=inner_npts)).each(trig_task) outer_loop = qc.Loop(outer_param.sweep(outer_start, outer_stop, num=outer_npts)).each(start_task, inner_loop, sr.conductance, reset_task) set_params = ((inner_param, inner_start, inner_stop), (outer_param, outer_start, outer_stop)) meas_params = (sr.conductance,) prepare_buffer() qdac = None # ensure that any waveform generator is unbound from the qdac channels that we step if # we are stepping the qdac if isinstance(inner_param._instrument, QDacch): qdacch = inner_param._instrument qdacch.slope('Inf') if isinstance(outer_param._instrument, QDacch): qdacch = outer_param._instrument qdacch.slope('Inf') if qdac: qdac.fast_voltage_set(True) # now that we have unbound the function generators # we don't need to do it in the loop qdac.voltage_set_dont_wait(False) # this is un safe and highly experimental plot, data = _do_measurement(outer_loop, set_params, meas_params, do_plots=True) return plot, data
2.75
3
pta/migrations/0003_initial.py
cptdanko/ptaApp
0
12782593
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Role' db.create_table('pta_role', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('description', self.gf('django.db.models.fields.CharField')(max_length=500)), )) db.send_create_signal('pta', ['Role']) # Adding model 'Staff' db.create_table('pta_staff', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('mob_no', self.gf('django.db.models.fields.CharField')(max_length=20)), ('adress', self.gf('django.db.models.fields.CharField')(max_length=100)), ('role', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Role'])), ('user', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['auth.User'], unique=True)), )) db.send_create_signal('pta', ['Staff']) # Adding model 'Language' db.create_table('pta_language', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('language', self.gf('django.db.models.fields.CharField')(max_length=100)), ('language_code', self.gf('django.db.models.fields.CharField')(max_length=20)), )) db.send_create_signal('pta', ['Language']) # Adding model 'Patient' db.create_table('pta_patient', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('first_name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('last_name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('initials', self.gf('django.db.models.fields.CharField')(max_length=3)), ('original_address', self.gf('django.db.models.fields.CharField')(max_length=400)), ('bed_no', self.gf('django.db.models.fields.IntegerField')()), ('ward_no', self.gf('django.db.models.fields.IntegerField')()), ('pta_cleared', self.gf('django.db.models.fields.BooleanField')(default=False)), ('language', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Language'])), )) db.send_create_signal('pta', ['Patient']) # Adding model 'Question' db.create_table('pta_question', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=500)), ('question_type', self.gf('django.db.models.fields.CharField')(max_length=50)), )) db.send_create_signal('pta', ['Question']) # Adding model 'Answer' db.create_table('pta_answer', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('question', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Question'])), ('text', self.gf('django.db.models.fields.CharField')(max_length=200)), ('isAnswerRight', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal('pta', ['Answer']) # Adding model 'PatientResponses' db.create_table('pta_patientresponses', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('patient', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Patient'])), ('date', self.gf('django.db.models.fields.DateTimeField')()), ('answer', self.gf('django.db.models.fields.CharField')(max_length=200)), ('answerStatus', self.gf('django.db.models.fields.BooleanField')(default=False)), ('question', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Question'])), )) db.send_create_signal('pta', ['PatientResponses']) # Adding model 'PTAQuestionaire' db.create_table('pta_ptaquestionaire', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('patient', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['pta.Patient'])), ('date', self.gf('django.db.models.fields.DateTimeField')()), ('correctAnswers', self.gf('django.db.models.fields.IntegerField')()), ('totalQuestions', self.gf('django.db.models.fields.IntegerField')()), ('staff', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), )) db.send_create_signal('pta', ['PTAQuestionaire']) def backwards(self, orm): # Deleting model 'Role' db.delete_table('pta_role') # Deleting model 'Staff' db.delete_table('pta_staff') # Deleting model 'Language' db.delete_table('pta_language') # Deleting model 'Patient' db.delete_table('pta_patient') # Deleting model 'Question' db.delete_table('pta_question') # Deleting model 'Answer' db.delete_table('pta_answer') # Deleting model 'PatientResponses' db.delete_table('pta_patientresponses') # Deleting model 'PTAQuestionaire' db.delete_table('pta_ptaquestionaire') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>.fields.CharField', [], {'max_length': '<PASSWORD>'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'pta.answer': { 'Meta': {'object_name': 'Answer'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'isAnswerRight': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Question']"}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'pta.language': { 'Meta': {'object_name': 'Language'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'language_code': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, 'pta.patient': { 'Meta': {'object_name': 'Patient'}, 'bed_no': ('django.db.models.fields.IntegerField', [], {}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'initials': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'language': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Language']"}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'original_address': ('django.db.models.fields.CharField', [], {'max_length': '400'}), 'pta_cleared': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'ward_no': ('django.db.models.fields.IntegerField', [], {}) }, 'pta.patientresponses': { 'Meta': {'object_name': 'PatientResponses'}, 'answer': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'answerStatus': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Patient']"}), 'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Question']"}) }, 'pta.ptaquestionaire': { 'Meta': {'object_name': 'PTAQuestionaire'}, 'correctAnswers': ('django.db.models.fields.IntegerField', [], {}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Patient']"}), 'staff': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'totalQuestions': ('django.db.models.fields.IntegerField', [], {}) }, 'pta.question': { 'Meta': {'object_name': 'Question'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'question_type': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'pta.role': { 'Meta': {'object_name': 'Role'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'pta.staff': { 'Meta': {'object_name': 'Staff'}, 'adress': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mob_no': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'role': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['pta.Role']"}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['pta']
2.234375
2
sheep-vs-dog-master - DDPG/env.py
CuteWans/sheep-vs-dog
0
12782594
<filename>sheep-vs-dog-master - DDPG/env.py import numpy as np import gym from gym.envs.classic_control import rendering class ChaseEnv(object): viewer = None dt = 0.1 alpha_bound = [0, np.pi] state_dim = 2 action_dim = 1 def __init__(self, _R, _r, _sheepTheta, _sheepV, _dogTheta, _dogV): self.state = np.zeros(3, dtype=np.float32) self.state[0] = _r self.state[1] = _sheepTheta self.state[2] = _dogTheta self.R = _R self.sheepV = _sheepV self.dogV = _dogV self.r = _r self.sheepTheta = _sheepTheta self.dogTheta = _dogTheta self.reward = 0 def step(self, action): # print(action) done = False r = self.state[0] R = self.R theta = self.state[1] dt = self.dt v = self.sheepV V = self.dogV action[0] = max(np.pi / 12, action[0]) action[0] = min(11 * np.pi / 12, action[0]) x = np.sqrt(r ** 2 + (v * dt) ** 2 + 2 * r * v * np.sin(action) * dt) beta = np.arcsin(v * np.cos(action) * dt / x) if action < np.pi / 2 : theta -= beta else : theta += beta self.state[0] = x self.state[1] = theta self.state[1] -= (self.state[1] // (2 * np.pi)) * (2 * np.pi) nxt = -1 if self.state[1] > np.pi: if self.state[1] - np.pi < self.state[2] and self.state[2] < self.state[1]: nxt = self.state[2] + V / R * dt else: nxt = self.state[2] - V / R * dt else: if self.state[1] < self.state[2] and self.state[2] < self.state[1] + np.pi: nxt = self.state[2] - V / R * dt else: nxt = self.state[2] + V / R * dt if (self.state[2] < self.state[1] and self.state[1] < nxt) or (self.state[2] > self.state[1] and self.state[1] > nxt): nxt = self.state[1] self.state[2] = nxt self.state[2] -= (self.state[2] // (2 * np.pi)) * (2 * np.pi) theta = np.fabs(self.state[1] - self.state[2]) if theta > np.pi : theta = 2 * np.pi - theta if self.state[0] >= R and theta != 0: done = True action_r = 1000 * R / R - self.reward elif v / self.state[0] <= V / R and theta == 0: done = True action_r = - 1000 * R / R - self.reward else: action_r = - (x - R) ** 2 + 1 * theta - self.reward self.reward += action_r return [self.state[0], theta], action_r[0], done def reset(self): self.state[0] = self.r self.state[1] = self.sheepTheta self.state[2] = self.dogTheta self.reward = 0 if self.viewer is not None : del self.viewer return [self.state[0], np.fabs(self.state[1] - self.state[2])] def render(self): if self.viewer is None: self.viewer = rendering.Viewer(600, 600) circle = rendering.make_circle(self.R, filled=False) circle_transform = rendering.Transform(translation=(300, 300)) circle.add_attr(circle_transform) circle.set_linewidth(5) sheep = rendering.make_circle(2) sheep_transform = rendering.Transform(translation=( self.state[0] * np.cos(self.state[1]) + 300, 300 + self.state[0] * np.sin(self.state[1]))) sheep.add_attr(sheep_transform) dog = rendering.make_circle(4) dog.set_color(.7, .5, .5) dog_transform = rendering.Transform(translation=( self.R * np.cos(self.state[2]) + 300, 300 + self.R * np.sin(self.state[2]))) dog.add_attr(dog_transform) self.viewer.add_geom(circle) self.viewer.add_geom(sheep) self.viewer.add_geom(dog) self.viewer.render()
2.671875
3
app/extension/confluence/extension_locust.py
dsplugins/dc-app-performance-toolkit
0
12782595
import re from locustio.common_utils import init_logger, confluence_measure logger = init_logger(app_type='confluence') @confluence_measure def app_specific_action(locust): r = locust.client.get('/plugin/report') # navigate to page content = r.content.decode('utf-8') # parse page content token_pattern_example = '"token":"(.+?)"' id_pattern_example = '"id":"(.+?)"' token = re.findall(token_pattern_example, content) # parse variables from response using regexp id = re.findall(id_pattern_example, content) logger.locust_info(f'token: {token}, id: {id}') # logger for debug when verbose is true in confluence.yml file if 'assertion string' not in content: logger.error(f"'assertion string' was not found in {content}") assert 'assertion string' in content # assertion after GET request body = {"id": id, "token": token} # include parsed variables to POST body headers = {'content-type': 'application/json'} r = locust.client.post('/plugin/post/endpoint', body, headers) # send some POST request content = r.content.decode('utf-8') if 'assertion string after successful post request' not in content: logger.error(f"'assertion string after successful post request' was not found in {content}") assert 'assertion string after successful post request' in content # assertion after POST request
2.3125
2
main.py
jackyhobingo/QuestionnaireAddUp
0
12782596
<filename>main.py from questionnaire import Questionnaire if __name__ == "__main__": question = Questionnaire() question.run()
1.875
2
morghulis/caltech_faces/downloader.py
the-house-of-black-and-white/pyWiderFace
17
12782597
<reponame>the-house-of-black-and-white/pyWiderFace import logging import os from morghulis.downloader import BaseDownloader from morghulis.os_utils import ensure_dir log = logging.getLogger(__name__) IMAGES_URL = 'http://www.vision.caltech.edu/Image_Datasets/faces/faces.tar' class CaltechFacesDownloader(BaseDownloader): def __init__(self, target_dir): super(CaltechFacesDownloader, self).__init__(target_dir) def download(self): ensure_dir(self.target_dir) tar_file = self.download_file_from_web_server(IMAGES_URL, self.target_dir) self.extract_tar_file(os.path.join(self.target_dir, tar_file), self.target_dir) log.info('done')
2.375
2
tests/ezros/test_exception.py
achillesrasquinha/rosutils
0
12782598
# imports - module imports from ezros.exception import ( EzrosError ) # imports - test imports import pytest def test_ezros_error(): with pytest.raises(EzrosError): raise EzrosError
1.914063
2
py/ae/semantic/style.py
skepner/ae
0
12782599
<reponame>skepner/ae<filename>py/ae/semantic/style.py<gh_stars>0 import sys import ae_backend # ====================================================================== def style_with_one_modifier(chart: ae_backend.chart_v3.Chart, style_name: str, selector: dict[str, object], modifier: dict[str, object], priority: int) -> set[str]: style = chart.styles()[style_name] style.priority = priority style.add_modifier(selector=selector, **modifier) return set([style_name]) # ======================================================================
1.945313
2
scripts/schema.py
FlowersOfChina/You-Money
0
12782600
import MySQLdb ''' 数据库实例目前部署一台就可以了,然后通过这个脚本进行数据的同步操作 插入测试数据 每次开发完成新的模块 使用这个脚本 动态的添加数据 ''' # 重新创建模式 为 create 追加数据使用 append 删除并且重新添加 为 refresh DB_OP_MODE = "append" # 数据库链接用户名 MYSQL_CONN_NAME = "mysqlname" #数据库远程链接地址 MYSQL_CONN_ADDR = "mysqllinkpath" #数据库登录密码 MYSQL_CONN_PASSWORD = "<PASSWORD>" #数据库默认的链接编码 MYSQL_CONN_CHARSET = "utf8" # 默认的数据库名称 CREATE_DB_NAME = "you_money" def check_db_exists(db_name,db): ''' 检查当前数据库是否已经存在 :param db_name: :return: ''' cursor = db.cursor() cursor.execute("SHOW DATABASES") rows = cursor.fetchall(); for row in rows: tmp = '%2s'%row if tmp == CREATE_DB_NAME: return True return False #TODO 创建数据库脚本未完成 def drop_db(db): ''' 创建数据库 :return: ''' cursor = db.cursor() cursor.execute("DROP DATABASE IF EXISTS " + CREATE_DB_NAME) cursor.execute("CREATE DATABASE IF NOT EXISTS " + CREATE_DB_NAME) def create_table(tab_name,engine,charset): ''' 创建表函数 :param tab_name: :param engine: :param charset: :return: ''' pass def append_data(sql_query): ''' 追加数据 :param sql_query: :return: ''' pass def clean_table(tab_name): ''' 清理表数据 :param tab_name: :return: ''' pass if __name__ == '__main__': db = MySQLdb.connect(MYSQL_CONN_ADDR, MYSQL_CONN_NAME, MYSQL_CONN_PASSWORD, MYSQL_CONN_CHARSET ) if check_db_exists(CREATE_DB_NAME,db): pass db.close()
3.46875
3
ecco_v4_py/test/test_plot_utils.py
owang01/ECCOv4-py
24
12782601
<reponame>owang01/ECCOv4-py """ Test routines for the tile plotting """ from __future__ import division, print_function import warnings from pathlib import Path import numpy as np import pytest import ecco_v4_py as ecco from .test_common import llc_mds_datadirs,get_test_array_2d from ecco_v4_py.plot_utils import assign_colormap @pytest.mark.parametrize("is_xda",[True,False]) @pytest.mark.parametrize("sequential_data, cmap_expected", [(True,'viridis'), (False,'RdBu_r'), (False,'inferno')]) def test_cmap(get_test_array_2d,is_xda,sequential_data,cmap_expected): test_arr = get_test_array_2d test_arr = test_arr if is_xda else test_arr.values if sequential_data: test_arr = np.abs(test_arr) if set(cmap_expected).issubset(set(['viridis','RdBu_r'])): cmap_test,_ = assign_colormap(test_arr) else: cmap_test,_ = assign_colormap(test_arr,cmap_expected) assert cmap_test==cmap_expected @pytest.mark.parametrize("is_xda",[True,False]) def test_cminmax_dtype(get_test_array_2d,is_xda): """make cmin/cmax are floats""" test_arr = get_test_array_2d test_arr = test_arr if is_xda else test_arr.values _, (cmin,cmax) = assign_colormap(test_arr) assert isinstance(cmin,float) or isinstance(cmin,np.float32) assert isinstance(cmax,float) or isinstance(cmax,np.float32)
2.125
2
python_3/synthetic_data_generator/experiments/expr_generate_random_id_numbers.py
duttashi/valet
0
12782602
<filename>python_3/synthetic_data_generator/experiments/expr_generate_random_id_numbers.py # -*- coding: utf-8 -*- """ Created on Tue Oct 13 08:10:33 2020 @author: Ashish """ import random, string n=10 def generate_random_id_numbers() -> list: """ Generate dummy Health Service ID numbers similar to NHS 10 digit format See: https://www.nhs.uk/using-the-nhs/about-the-nhs/what-is-an-nhs-number/ """ DA_id_numbers = [] for _ in range(n): DA_id = ''.join(random.choice(string.digits) for _ in range(3)) + '-' DA_id += ''.join(random.choice(string.digits) for _ in range(3)) + '-' DA_id += ''.join(random.choice(string.digits) for _ in range(4)) DA_id_numbers.append(DA_id) return DA_id_numbers x = generate_random_id_numbers() print(x) print("length: ", len(x))
3.609375
4
src/skmultiflow/data/stats/aggregate_stats_buffered.py
trajkova-elena/scikit-multiflow
1
12782603
<reponame>trajkova-elena/scikit-multiflow import numpy as np class StdDev: """ Taken from https://math.stackexchange.com/questions/198336/how-to-calculate-standard-deviation-with-streaming-inputs """ def __init__(self, buffer): self.buffer = buffer def register_value(self, value): values = self.buffer.register_value(value) return np.std(np.array(values)) class Median: def __init__(self, buffer): self.buffer = buffer def register_value(self, value): values = self.buffer.register_value(value) return np.median(np.array(values)) class Mean: def __init__(self, buffer): self.buffer = buffer def register_value(self, value): values = self.buffer.register_value(value) return np.mean(np.array(values))
3.1875
3
src/data/graph/gremlin.py
kabirkhan/cloud_compete_graph
1
12782604
import re class GremlinQueryBuilder: """ Basic functions to build gremlin queries that add vertices and edges """ @classmethod def name_to_id(cls, name): if '(' in name: name = name[name.idx('(') - 1] return name.replace(' ', '-') @classmethod def gremlin_escape(cls, s): return s.replace('"', '\\"').replace('$', '\\$') @classmethod def build_upsert_vertex_query(cls, entity_type, properties): q = f"""g.V().has("label", "{entity_type}"){cls.get_properties_str(properties, False)}. fold(). coalesce(unfold(), addV("{entity_type}"){cls.get_properties_str(properties)})""" return q @classmethod def build_upsert_edge_query(cls, from_id, to_id, edge_properties): label = edge_properties["label"] return f"""g.V("{from_id}").as('v'). V("{to_id}"). coalesce(__.inE("{label}").where(outV().as('v')), addE("{label}").from('v'){cls.get_properties_str(edge_properties)})""" @classmethod def build_project_clause(cls, prop_names): if len(prop_names) > 0: project_output = f'.project("{prop_names[0]}"' by_output = f'.by("{prop_names[0]}")' for n in prop_names[1:]: project_output += f', "{n}"' by_output += f'.by("{n}")' project_output += ')' return project_output + by_output @classmethod def get_by_id_query(cls, _id): return 'g.V("{}")'.format(_id) @classmethod def get_properties_str(cls, properties, create=True): if create: query_str = 'property' else: query_str = 'has' properties_lower = {k.lower():v for k,v in properties.items()} if "label" in properties_lower: del properties_lower["label"] output = "" for k, v in properties_lower.items(): if isinstance(v, str): output += '.{}("{}", "{}")'.format(query_str, k, v) else: output += '.{}("{}", {})'.format(query_str, k, v) return output
2.796875
3
alter_wrapper.py
anish-lu-yihe/MINERVA
0
12782605
<filename>alter_wrapper.py import numpy as np import alternative_implementations.minerva2 as dwhite54 from rpy2.robjects.packages import SignatureTranslatedAnonymousPackage import rpy2.robjects.numpy2ri as rpyn class model1(dwhite54.Minerva2): def reset(self): self.__init__(self.features_per_trace) def get_memory_matrix(self): return self.model def learn(self, learning_data): self.add_traces(np.reshape(learning_data, (-1, self.features_per_trace)), 0) def respond(self, probes, recurrence = 1): echo = probes[:] for epoch in range(recurrence): echo = self._echo(echo)[1] return echo def _echo(self, probes): intensity, activation = self.get_echo_intensities(np.reshape(probes, (-1, self.features_per_trace)), 0) content = np.dot(activation, self.model) normalised_echo = content / np.amax(np.abs(content), axis = 1).reshape((-1, 1)) return intensity, normalised_echo class model2: def __init__(self, trace_size): file = open('alternative_implementations/minerva-al.R') string = ''.join(file.readlines()) self.funs = SignatureTranslatedAnonymousPackage(string, 'functions') # ### self.model = 'Minerva2' self.trace_size = trace_size self.reset() def reset(self): self.memory = np.empty((0, self.trace_size)) def get_memory_matrix(self): return self.memory def learn(self, learning_data): for row in np.reshape(learning_data, (-1, self.trace_size)): past_memory, new_event = [self._py2ri(data) for data in [self.memory, row]] new_memory = self.funs.learn(event = new_event, memory = past_memory, p_encode = 1, model = self.model) self.memory = self._ri2py(new_memory) def respond(self, probes, recurrence = 1): echo = probes[:] for epoch in range(recurrence): echo = self._echo(echo) return echo def _echo(self, probes): echo = [] for row in np.reshape(probes, (-1, self.trace_size)): past_memory, new_probe, cueidx = [self._py2ri(data) for data in [self.memory, [row], np.arange(self.trace_size) + 1]] r_echo = self.funs.probe_memory(probe = new_probe, memory = past_memory, cue_feature = cueidx, model = self.model) echo.append(r_echo) return np.asarray(echo) def _py2ri(self, data): return rpyn.py2ri(np.asarray(data)) def _ri2py(self, data): return rpyn.ri2py(data)
2.25
2
alipay/create_direct_pay_by_user/dpn/urls.py
freeyoung/django-alipay3
0
12782606
from django.conf.urls import url from alipay.create_direct_pay_by_user.dpn import views urlpatterns = [ url(r'^$', views.dpn, {'item_check_callable': None}, name='alipay-dpn'), ]
1.484375
1
buyfree_mall/buyfree_mall/apps/areas/views.py
GalphaXie/E-commerce
0
12782607
from django.shortcuts import render # Create your views here. from rest_framework.viewsets import ReadOnlyModelViewSet from rest_framework_extensions.cache.mixins import CacheResponseMixin from areas.models import Area from areas.serializers import AreaSerializer, SubAreaSerializer class AreasViewSet(CacheResponseMixin, ReadOnlyModelViewSet): """ 行政区划信息 # GET /areas/(?P<pk>\d+)/ request: pk(int) response: id(int) name(str) subs(list) 定义 查询集 和 序列化器的类 后面的源码方法就是 get_queryset 和 get_serializer_class ,这里根据需要直接重写方法 """ pagination_class = None # 区划信息不分页 def get_queryset(self): """ 提供数据集 """ if self.action == 'list': return Area.objects.filter(parent=None) else: return Area.objects.all() def get_serializer_class(self): """ 提供序列化器 """ if self.action == 'list': return AreaSerializer else: return SubAreaSerializer
2.171875
2
lean/components/config/project_config_manager.py
InvestWeMust/lean-cli
76
12782608
<filename>lean/components/config/project_config_manager.py # QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean CLI v1.0. Copyright 2021 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from pathlib import Path from typing import List from lean.components.config.storage import Storage from lean.components.util.xml_manager import XMLManager from lean.constants import PROJECT_CONFIG_FILE_NAME from lean.models.config import CSharpLibrary class ProjectConfigManager: """The ProjectConfigManager class manages the configuration of a single project.""" def __init__(self, xml_manager: XMLManager) -> None: """Creates a new ProjectConfigManager instance. :param xml_manager: the XMLManager instance to use when parsing XML files """ self._xml_manager = xml_manager def get_project_config(self, project_directory: Path) -> Storage: """Returns a Storage instance to get/set the configuration for a project. :param project_directory: the path to the project to retrieve the configuration of :return: the Storage instance containing the project-specific configuration of the given project """ return Storage(str(project_directory / PROJECT_CONFIG_FILE_NAME)) def get_local_id(self, project_directory: Path) -> int: """Returns the local id of a project. Every Lean CLI project has a unique local id, regardless of whether the project is synchronized with the cloud. :param project_directory: the path to the project to retrieve the local id of :return: the local id of the given project """ project_config = self.get_project_config(project_directory) if project_config.has("local-id"): return project_config.get("local-id") project_id = random.randint(100_000_000, 999_999_999) project_config.set("local-id", project_id) return project_id def get_csharp_libraries(self, project_directory: Path) -> List[CSharpLibrary]: """Returns the custom C# libraries in a project. :param project_directory: the path to the project to retrieve the C# libraries of :return: a list containing the information of all PackageReferences in the project's .csproj file, if any """ csproj_file = next((p for p in project_directory.iterdir() if p.name.endswith(".csproj")), None) if csproj_file is None: return [] libraries = [] csproj_tree = self._xml_manager.parse(csproj_file.read_text(encoding="utf-8")) for package_reference in csproj_tree.findall(".//PackageReference"): name = package_reference.get("Include", None) version = package_reference.get("Version", None) if name is not None and version is not None: libraries.append(CSharpLibrary(name=name, version=version)) return libraries
2.234375
2
leetcode/python/easy/p953_isAlienSorted.py
kefirzhang/algorithms
0
12782609
class Solution: def isAlienSorted(self, words, order) -> bool: def compareStr(word1, word2): len1 = len(word1) len2 = len(word2) i = 0 while i < len2: if i > len1 - 1: return False if helper_order.index(word2[i]) == helper_order.index(word1[i]): i += 1 continue elif helper_order.index(word2[i]) > helper_order.index(word1[i]): return True else: return False if i < len1 - 1: return False return True helper_order = list(order) pre_word = words[0] words.pop(0) for word in words: if compareStr(pre_word, word) is False: return False pre_word = word return True slu = Solution() print(slu.isAlienSorted( ["zirqhpfscx", "zrmvtxgelh", "vokopzrtc", "nugfyso", "rzdmvyf", "vhvqzkfqis", "dvbkppw", "ttfwryy", "dodpbbkp", "akycwwcdog"], "khjzlicrmunogwbpqdetasyfvx"))
3.375
3
hexa/catalog/management/commands/sync_datasources_worker.py
qgerome/openhexa-app
4
12782610
<gh_stars>1-10 from dpq.commands import Worker from hexa.catalog.queue import datasource_sync_queue class Command(Worker): queue = datasource_sync_queue
1.515625
2
tools_box/_hr/report/employee_advance_report/employee_advance_report.py
maisonarmani/Tools-Box
4
12782611
# Copyright (c) 2013, <EMAIL> and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe def execute(filters=None): columns = [ "Posting Date:Date:100", "Employee:Link/Employee:100", "Employee Name:Data:150", "Advance Amount:Currency:120", "Paid Amount:Currency:120", "Retired Amount:Currency:130", "Refunded Amount:Currency:130", "Variance:Currency:120", ] conditions = "" if filters.get("from_date"): conditions += "d.posting_date >= DATE('{from_date}')" if filters.get("to_date"): conditions += " AND d.posting_date <= DATE('{to_date}')" if filters.get("status") and filters.get('status') != "Retired": conditions += " AND d.status = '{status}'" else: conditions += " AND d.claimed_amount = d.advance_amount or AND d.refunded = d.advance_amount " data = frappe.db.sql("SELECT d.posting_date, d.employee, d.employee_name , d.advance_amount, d.paid_amount, " "d.claimed_amount, d.refund_amount, (d.refund_amount + d.claimed_amount - d.paid_amount) FROM " "`tabEmployee Advance` d WHERE {0} ".format(conditions.format(**filters)), as_list=1) return columns, data
2.21875
2
generate.py
mdsitton/pyogl
0
12782612
<filename>generate.py from pglgen import pycodegen # This is somewhat of a hack # It injects a variable into the builtins so that its simple # to check for code genetation in the types system. try: import __builtin__ as builtins except ImportError: import builtins builtins.genGL = True def main(): apis = ['gl', 'wgl', 'glx', 'egl'] for api in apis: apiClass = pycodegen.PyApiGen(api) apiClass.gen_code() if __name__ == '__main__': main()
1.96875
2
src/main/python/data_pipeline/open_data_raw_material_price/core.py
meowpunch/bobsim-research
2
12782613
<reponame>meowpunch/bobsim-research import pandas as pd from data_pipeline.dtype import dtype, reduction_dtype from data_pipeline.translate import translation from data_pipeline.unit import get_unit from utils.handle_null import NullHandler from utils.logging import init_logger from utils.s3_manager.manage import S3Manager from utils.sparse import filter_sparse from utils.visualize import draw_hist class OpenDataRawMaterialPrice: def __init__(self, bucket_name: str, date: str): self.logger = init_logger() self.date = date # s3 # TODO: bucket_name -> parameterized self.s3_manager = S3Manager(bucket_name=bucket_name) self.load_key = "public_data/open_data_raw_material_price/origin/csv/{filename}.csv".format( filename=self.date ) self.save_key = "public_data/open_data_raw_material_price/process/csv/{filename}.csv".format( filename=self.date ) self.dtypes = dtype["raw_material_price"] self.translate = translation["raw_material_price"] # load filtered df self.input_df = self.load() def load(self): """ fetch DataFrame and check validate :return: pd DataFrame """ # fetch df = self.s3_manager.fetch_df_from_csv(key=self.load_key) # TODO: no use index to get first element. # validate (filter by column and check types) return df[0][self.dtypes.keys()].astype(dtype=self.dtypes).rename(columns=self.translate, inplace=False) def save(self, df: pd.DataFrame): self.s3_manager.save_df_to_csv(df=df, key=self.save_key) def clean(self, df: pd.DataFrame): """ clean null value :return: cleaned DataFrame """ # pd Series represents the number of null values by column nh = NullHandler() df_null = nh.missing_values(df) self.logger.info("missing values: \n {}".format(df_null)) if df_null is None: return df else: return df.dropna(axis=0) def standardize(self, s: pd.Series): mean, std = s.mean(), s.std() self.logger.info("{name}'s mean: {m}, std: {s}".format(name=s.name, m=mean, s=std)) stdized = s.apply(lambda x: (x - mean) / std).rename("stdized_price") return stdized, mean, std def save_hist(self, s: pd.Series, key): draw_hist(s) self.s3_manager.save_plt_to_png(key=key) def transform(self, df: pd.DataFrame): """ get skew by numeric columns and log by skew :param df: cleaned pd DataFrame :return: transformed pd DataFrame """ origin_price = df["price"] self.save_hist( origin_price, key="food_material_price_predict_model/image/origin_price_hist_{d}.png".format(d=self.date) ) stdized_price, mean, std = self.standardize(origin_price) self.save_hist( stdized_price, key="food_material_price_predict_model/image/stdized_price_hist_{d}.png".format(d=self.date) ) self.s3_manager.save_dump( x=(mean, std), key="food_material_price_predict_model/price_(mean,std)_{date}.pkl".format(date=self.date)) return df.assign(price=stdized_price) @staticmethod def combine_categories(df: pd.DataFrame): """ combine 4 categories into one category 'item name' :return: combined pd DataFrame """ return df.assign( item_name=lambda x: x.standard_item_name + x.survey_price_item_name + x.standard_breed_name + x.survey_price_type_name ).drop( columns=["standard_item_name", "survey_price_item_name", "standard_breed_name", "survey_price_type_name"], axis=1 ) @staticmethod def convert_by_unit(df: pd.DataFrame): """ transform unit :return: transformed pd DataFrame """ return df.assign(unit=lambda r: r.unit_name.map( lambda x: get_unit(x) # TODO: not unit but stardard unit name )).assign(price=lambda x: x.price / x.unit).drop(columns=["unit_name", "unit"], axis=1) def filter(self, df): """ ready to process :param df: self.input_df :return: filtered pd DataFrame """ # only retail price retail = df[df["class"] == "소비자가격"].drop("class", axis=1) # convert prices in standard unit convert = self.convert_by_unit(retail) # change sparse item name to 'others' # TODO: solve the problem saving std_list in main of 'analysis/sparse_categories.py' std_list = self.s3_manager.load_dump(key="food_material_price_predict_model/constants/std_list.pkl") replaced = convert.assign( standard_item_name=filter_sparse(column=convert["standard_item_name"], std_list=std_list) ) # combine 4 categories into one # combined = self.combine_categories(retail) # prices divided by 'material grade'(grade) will be used on average. return replaced.drop(["grade"], axis=1).groupby( ["date", "region", "standard_item_name"] # "item_name"] ).mean().reset_index() def process(self): """ process 1. filter 2. clean null value 3. transform as distribution of data 4. add 'season' and 'is_weekend" column 5. save processed data to s3 TODO: save to rdb :return: exit code (bool) 0:success 1:fail """ try: filtered = self.filter(self.input_df) cleaned = self.clean(filtered) # transformed = self.transform(cleaned) # decomposed = self.decompose_date(transformed) self.save(cleaned) except IOError as e: # TODO: consider that it can repeat to save one more time self.logger.critical(e, exc_info=True) return 1 self.logger.info("success to process raw material price") return 0 @staticmethod def decompose_date(df: pd.DataFrame): # TODO: do by argument # add is_weekend & season column return df.assign( is_weekend=lambda x: x["date"].dt.dayofweek.apply( lambda day: 1 if day > 4 else 0 ), season=lambda x: x["date"].dt.month.apply( lambda month: (month % 12 + 3) // 3 ) )
2.421875
2
shop.py
Veikkosuhonen/craftify
0
12782614
<gh_stars>0 from app import db from flask import abort from datetime import datetime import player import item class ShopItems(db.Model): __tablename__ = "shop_item" shopid = db.Column(db.Integer, db.ForeignKey("shop.id"), primary_key=True) itemid = db.Column(db.Integer, db.ForeignKey("item.id"), primary_key=True) amount = db.Column(db.Integer) price = db.Column(db.Float) def toDict(self): return { } shop_owner = db.Table("shop_owner", db.Column("shopid", db.Integer, db.ForeignKey("shop.id"), primary_key=True), db.Column("playerid", db.Integer, db.ForeignKey("player.id"), primary_key=True) ) class Shop(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50), unique=True, nullable=False) description = db.Column(db.String(50), nullable=False, default="") creation_date = db.Column(db.Date, nullable=False, default=datetime.utcnow) items = db.relationship("ShopItems") owners = db.relationship("Player", secondary=shop_owner, lazy="subquery", backref=db.backref("shops", lazy=True)) def toDict(self): return { "id": self.id, "name": self.name, "description": self.description, "creation_date": self.creation_date.strftime("%d/%m/%Y %H:%M:%S"), "owners": list(map(lambda p: p.toDict(), self.owners)) } def toDictAll(self): return { "id": self.id, "name": self.name, "description": self.description, "creation_date": self.creation_date.strftime("%d/%m/%Y %H:%M:%S"), "owners": list(map(lambda p: p.toDict(), self.owners)), "items": list(map(lambda i: i.toDict(), self.items)) } def createShop(name, playerName, description=""): if name == "test": shop = Shop(name=name, description=description, id=-1, creation_date=datetime.utcnow()) player.createPlayer(playerName) owner = player.Player.query.filter_by(name=playerName).first() shop.owners.append(owner) return shop.toDict() if Shop.query.filter_by(name=name).first() != None: abort(409, "Name is taken") shop = Shop(name=name, description=description) owner = player.getOrCreatePlayer(playerName) print(owner) shop.owners.append(owner) db.session.add(shop) db.session.commit() return shop.toDict() def getShops(): return list(map(lambda s: s.toDict(), Shop.query.all())) def getShopById(id): s = Shop.query.filter_by(id=id).first() if s == None: abort(404) return s.toDict()
2.484375
2
modox/command.py
lukpazera/modox
11
12782615
""" This module is a wrapper for lxu.command.BasicCommand. It improves and simplifies command implementations including popups, sPresetText fields, and Form Command Lists. This is based on Adam O'Hern Commander code but is vastly enhanced. https://github.com/adamohern/commander """ import time import traceback import operator import lx, lxu, lxifc import modo from xfrm import TransformUtils from item import ItemUtils from message import Message from setup import SetupMode from run import run def bless(commandClass, commandName): """ Custom bless function. """ commandClass.NAME = commandName try: lx.bless(commandClass, commandName) except TypeError: lx.out('Blessing failed: %s, %s' % (str(commandClass), str(commandName))) class Argument(object): """ Argument represents single command argument. Arguments should be added as this class instances to the command. """ # These datatypes will be treated as Float values sTYPE_FLOATs = [ 'acceleration', 'angle', 'axis', 'color1', 'distance', 'float', 'force', 'light', 'mass', 'percent', 'speed', 'time', 'uvcoord' ] # Treated as Str values sTYPE_STRINGs = [ 'date', 'datetime', 'filepath', 'string', 'vertmapname', '&item' ] # Treated as Str values in the MODO UI, # but parsed into [Float, Float, Float] for use in the execute() sTYPE_STRING_vectors = [ 'angle3', 'color', 'float3', 'percent3' ] # Treated as Int values sTYPE_INTEGERs = [ 'integer' ] # Treated as Bool values sTYPE_BOOLEANs = [ 'boolean' ] DATATYPES = sTYPE_FLOATs + sTYPE_STRINGs + sTYPE_STRING_vectors + sTYPE_INTEGERs + sTYPE_BOOLEANs def __init__(self, name="", datatype=None): self.name = name self.label = None self.defaultValue = None self.datatype = None if datatype is not None: self.datatype = datatype.lower() self.valuesList = None self.valuesListUIType = None self.flags = None self.index = -1 self.hints = None def __str__ (self): """ Represent argument as its name and string datatype. """ reprString = "Command argument: " + self.name if isinstance(self.datatype, str): reprString += " type: " reprString += self.datatype return reprString def __eq__(self, other): if isinstance(other, str): return self.name == other elif isinstance(other, Argument): return self.name == other.name elif isinstance(other, int): return self.index == other else: return False class ArgumentPopupContent(object): """ Use this class for filling contents of a popup. """ def __init__(self): self._entries = [] self.iconWidth = None self.iconHeight = None def __len__(self): return len(self._entries) def __getitem__(self, key): if not isinstance(key, int): raise TypeError if key >= len(self._entries): raise KeyError return self._entries[key] def __iter__(self): return iter(self._entries) def addEntry(self, entry): self._entries.append(entry) def getEntry(self, index): return self._entries[index] @property def entriesCount(self): return len(self._entries) class ArgumentPopupEntry(object): def __init__(self, internalName="", userName=""): self.internalName = internalName self.userName = userName self.iconImage = None self.iconResource = None class ArgumentItemsContent(object): """ Use this class to define values for the item popup argument. """ def __init__(self): self.noneOption = False self.testOnRawItems = False # use lx.object.Item rather then modo.Item. self.itemTestFunction = False class ArgumentValuesListType(object): """ When argument represents a list of values these can show up in UI as Popup, sPresetText or Form Command List. A popup with item list is also supported. """ POPUP = 1 S_PRESET_TEXT = 2 FORM_COMMAND_LIST = 3 ITEM_POPUP = 4 class Command(lxu.command.BasicCommand): """Wrapper for lxu.command.BasicCommand. Based on Adam OHern commander code. https://github.com/adamohern/commander """ # NAME is only used for debugging purposes. NAME = '' @property def name(self): return self.NAME # --- Public methods, to be overriden by user. def init(self): """ Performs any extra initialisation steps that the command requires. This is called from commands __init__() method. """ pass def interact(self): """ Perform interaction with user before command is actually executed. Typically this means opening file dialogs, confirm messages, etc. Interact() happens before command posts its dialog with arguments. Returns ------- bool False if command should not be executed, True if it should go ahead. """ return True def enable(self, msg): """ Decides if the command should be enabled or disabled. Parameters ---------- msg : modox.Message Wrapper around lx.object.Message, use it to set disable/enable message. Returns ------- bool True for enabled command, False otherwise. """ return True def flags(self): """ Command flags. """ return lx.symbol.fCMD_UNDO def arguments(self): """ Gets a list of arguments for a command. Returns ------- list of Argument or single Argument Return either single or a list of Argument objects, one for each argument. """ return [] def getArgument(self, ident): """ Gets argument by index or name. Parameters ---------- ident : str or int Either argument name or its index. Returns ------- Argument Raises ------ LookupError? """ if type(ident) == str: ident = self._argumentsByName[ident] return self._argumentsList[ident] def isArgumentSet(self, ident): """ Returns whether given argument is set in a command or not. Parameters ---------- ident : str or int Either argument name or its index. Returns ------- bool """ arg = self.getArgument(ident) return self.dyna_IsSet(arg.index) def getArgumentValue(self, ident): """Return a command argument value by index. If no argument value exists, returns the default parameter. NOTE: The commander_args() method is simpler to use than this method. You should probably use that one unless you have a reason to find a specific argument by index. :param index: (int) index of argument to retrieve :param default: value to return if argument is not set :returns: argument value (str, int, float, or boolean as appropriate) """ arg = self.getArgument(ident) # If no value is set, return the default. if not self.dyna_IsSet(arg.index): return self._resolveDefaultValue(arg.defaultValue) # TODO: I think it's about variable argument value? #if 'variable' in self.commander_arguments()[index].get(FLAGS, []): #datatype = self.basic_ArgType(index) #else: #datatype = self.commander_arguments()[index][DATATYPE].lower() # If it's a string, use dyna_String to grab it. if arg.datatype in Argument.sTYPE_STRINGs: return self.dyna_String(arg.index) # If the value is a vector, use dyna_String to grab it, then parse it # into a list of float vlues. elif arg.datatype in Argument.sTYPE_STRING_vectors: return [float(i) for i in self.dyna_String(arg.index).split(" ")] # If the value is an integer, use dyna_Int to grab it. elif arg.datatype in Argument.sTYPE_INTEGERs: return self.dyna_Int(arg.index) # If the value is a float, use dyna_Float to grab it. elif arg.datatype in Argument.sTYPE_FLOATs: return self.dyna_Float(arg.index) # If the value is a boolean, use dyna_Bool to grab it. elif arg.datatype in Argument.sTYPE_BOOLEANs: return self.dyna_Bool(arg.index) elif arg.datatype == '&item': return self.dyna_String(arg.index) # If something bonkers is going on, use the default. return self._resolveDefaultValue(arg.defaultValue) def uiHints(self, argument, hints): """ Set UI hints for a given argument by calling methods on the given hints object. """ pass def icon(self): """ Returns string with icon name for command button. """ return None def notifiers(self): """ Returns a list of notifiers for a command. Should return a list of tuples, for example: [('notifier.editAction',''), ("select.event", "item +ldt"), ("tagger.notifier", "")] """ return [] def setupMode(self): """ Sets setup mode for the command. This will be set at the beginning of execute. Returns ------- bool or None True/False to switch Setup Mode to a given state. None to not affect setup mode (this is default). """ return None def restoreSetupMode(self): """ Restores setup mode to its previous value once command is executed. Returns ------- bool Return True to restore setup mode to its state prior to command execution. """ return False def preExecute(self): """ Called after interact() but before execute block is called. Use this if you want to verify the command is ok to run after dialog with command arguments was closed by user. Returns ------- bool False if command should not be executed, True if it should go ahead. """ return True def executeStart(self): """ Called from within basic_Execute at the very beginning of execution code. Use this function to perform actions from within the actual execute block but right before execute() is called. """ pass def execute(self, msg, flags): """ This is the place for main command execution code. """ pass def executeEnd(self): """ Called from basic_Execute, after execute() was called. Typically used for clean up/restore operations. """ pass def query(self, argument): """ Returns a value based on and argument being queried. This method can return string, boolean, integer or float.""" return None def enableTimersOn(self): """ Enable/disable log output that says how long enable() takes. This can help with optimising performance of enable(). This method should be as fast as possible so it doesn't slow down UI. Returns ------- bool True to enable timers log output. """ return False def queryTimersOn(self): """ Enable/disable log output that says how long query() method takes. This can help with optimising performance of query(). This method should be as fast as possible so it doesn't slow down UI. Returns ------- bool True to enable log output. """ return False def restoreItemSelection(self): """ Restores item selection after command is executed. Returns ------- bool True if item selection should be restored to a state prior to firing the command. """ return False def autoFocusItemListWhenDone(self): """ Automatically focuses item list on selected items when command execution is over. """ return False def applyEditActionPre(self): """ Applies edit action before the command is executed so there are no 'hanging' edits. Returns ------- bool True if edit action should be applied. Default is False. """ return False def applyEditActionPost(self): """ Applies edit action after the command is executed so there are no 'hanging' edits left. Returns ------- bool True if edit action should be applied. Default is False. """ return False def dropToolPre(self): """ Drops any active tool before command execution starts. Returns ------- bool True to drop a tool (if any is active). """ return False # --- Private methods, do not touch. def cmd_Flags(self): """ Command is scene altering, undoable by default. """ return self.flags() def cmd_Interact(self): result = self.interact() if not result: msg = lx.object.Message(self.cmd_Message()) msg.SetCode(lx.symbol.e_ABORT) def cmd_PreExecute(self): result = self.preExecute() if not result: msg = lx.object.Message(self.cmd_Message()) msg.SetCode(lx.symbol.e_ABORT) def cmd_Icon(self): return self.icon() def basic_Enable(self, msg): if self.enableTimersOn(): timeStart = time.clock() msgWrap = Message(msg) enabled = self.enable(msgWrap) if self.enableTimersOn(): timeEnd = time.clock() lx.out("ENABLE (%s) : %f s." % (self.NAME, (timeEnd - timeStart))) return enabled def basic_ArgType(self, index): pass def cmd_DialogInit(self): """ Sets default values for arguments in command dialogs. Once this method is implemented MODO's default mechanism for storing argument values is not used. This method is called right before command's dialog pops up. Note that this method uses command argument's .defaultValue property. This property can be a function (or callable as a matter of fact). If you set a function as default value it'll always be called to retrieve the actual default value and used instead of the stored value in the dialog. Sadly, using function as argument, due to the way MODO seems to work (possible bug) makes it impossible to set the argument in command string, it will always be overridden by what default function returns. """ arguments = self.arguments() for n, argument in enumerate(arguments): datatype = argument.datatype defaultValue = arguments[n].defaultValue # Default value can be a function. # If it's a function we always want to call this function # to get the default value. This is because sometimes MODO seems # to report that the dyna_IsSet() for an argument even if it's not set # and should be pulled from default value. # In this case we do not want to miss retrieving value from function. if hasattr(defaultValue, '__call__'): storedValue = defaultValue() else: # If we already have a value, use it. # This is especially important when a command is run with args # via command line or form button. if self.dyna_IsSet(n): continue storedValue = self._argumentValuesCache[n] # If there's no stored value, we're done. if not storedValue: continue # The correct attr_Set... method depends on datatype. if datatype in Argument.sTYPE_STRINGs + Argument.sTYPE_STRING_vectors: self.attr_SetString(n, str(storedValue)) elif datatype in Argument.sTYPE_INTEGERs + Argument.sTYPE_BOOLEANs: self.attr_SetInt(n, int(storedValue)) elif datatype in Argument.sTYPE_FLOATs: self.attr_SetFlt(n, float(storedValue)) def basic_Execute(self, msg, flags): """Stores recent command values for next run and wraps commander_execute in a try/except statement with traceback. Do NOT override this method. Use commander_execute() instead. You should never need to touch this. CRUCIAL: When turning off listening never just turn it back on! Set it to whatever the state was prior to executing this command. Otherwise, firing rs command from within other rs command is going to mess things up. Listening will be back to True as soon as first sub command is done. Returns ------- bool, None Return False to exit command with ABORT message code. """ scene = modo.Scene() self.executeStart() if self.dropToolPre(): run('!tool.drop') if self.restoreItemSelection(): selection = scene.selected setupMode = SetupMode() if self.restoreSetupMode(): setupMode.store() if self.setupMode() is not None and setupMode.state != self.setupMode(): setupMode.state = self.setupMode() if self.applyEditActionPre(): TransformUtils.applyEdit() msgWrap = Message(msg) try: cmdResult = self.execute(msgWrap, flags) except: cmdResult = False lx.out(traceback.format_exc()) if self.applyEditActionPost(): TransformUtils.applyEdit() if self.restoreItemSelection(): scene.select(selection, add=False) if self.restoreSetupMode(): setupMode.restore() self.executeEnd() if not cmdResult and cmdResult is not None: msgWrap.setCode(Message.Code.ABORT) return # This is executed only when command did not abort if self.autoFocusItemListWhenDone(): ItemUtils.autoFocusItemListOnSelection() def cmd_Query(self, index, vaQuery): if self.queryTimersOn(): timeStart = time.clock() # Create the ValueArray object va = lx.object.ValueArray() va.set(vaQuery) # To keep things simpler for commander users, let them return # a value using only an index (no ValueArray nonsense) commander_query_result = self.query(self._argumentsList[index]) # Need to add the proper datatype based on result from commander_query if isinstance(commander_query_result, basestring): va.AddString(commander_query_result) elif isinstance(commander_query_result, int): va.AddInt(commander_query_result) elif isinstance(commander_query_result, float): va.AddFloat(commander_query_result) elif isinstance(commander_query_result, (modo.Item, lx.object.Item, lxu.object.Item)): valRef = lx.object.ValueReference(va.AddEmptyValue()) valRef.SetObject(commander_query_result) if self.queryTimersOn(): timeEnd = time.clock() lx.out("QUERY (%s) : %f s." % (self.NAME, (timeEnd - timeStart))) return lx.result.OK def arg_UIHints(self, index, hints): """Adds pretty labels to arguments in command dialogs. If no label parameter is explicitly included, we create a pseudo-label by capitalizing the argument name and replacing underscores with spaces. Labels can either be literal strings or method/function objects. In the latter case, the method or function will be called when needed. If any popup fields of type sPresetText are present, adds the appropriate hint. You should never need to touch this.""" try: arg = self._argumentsList[index] except IndexError: return # If an explicit label is provided, use it. if arg.label is not None: label = "" if isinstance(arg.label, str): label = arg.label elif type(arg.label) == bool and arg.label: label = arg.name.replace("_", " ").title() # Labels can be functions. If so, run the function to get the string. elif hasattr(arg.label, '__call__'): label = label() # Apply the label. if (label): hints.Label(label) # If the popup type is sPresetText, apply the appropriate class. if arg.valuesListUIType == ArgumentValuesListType.S_PRESET_TEXT: hints.Class("sPresetText") # Allow command implementation to do its custom work. self.uiHints(arg, hints) def arg_UIValueHints(self, index): """Popups and sPresetText arguments fire this method whenever they update. Note that the 'hints' parameter can be a literal list or tuple, but can also be a method or function. For dynamic lists, be sure to pass in the generator method or function object itself, not its result. (i.e. pass in 'myGreatFunction', NOT 'myGreatFunction()') You should never need to touch this.""" try: arg = self._argumentsList[index] except IndexError: return arg_data = None # Try to grab the values_list for the argument. if arg.valuesList is not None: arg_data = arg.valuesList # If our values_list is empty, don't bother. if not arg_data: return # If the values_list is a list/tuple, use it as-is. if isinstance(arg_data, (list, tuple)): values = arg_data # This is very hacky here for the time being. # It's testing values against being the items popup content object. elif isinstance(arg_data, ArgumentItemsContent): values = arg_data # If the values_list is a method/function, fire it and use the result. elif hasattr(arg_data, '__call__'): values = arg_data() # In some rare cases you may want to manually instantiate your own # popup class as a subclass of UIValueHints. In those cases, we # ignore the below and just use yours. # isinstance(arg_data, type) tests whether arg_data is class # TODO: Think whether this logic has the best flow. # the return statement here doesn't fit and breaks the flow. if isinstance(arg_data, type) and issubclass(arg_data, lxifc.UIValueHints): return arg_data() # If values is None or "" or someother nonsense, return an empty list. if not values: values = [] # Argument can be a normal popup, an sPresetText popup, or a # Form Command List. We'll need to return a different class # depending on the 'values_list_type'. if arg.valuesListUIType == ArgumentValuesListType.POPUP: return PopupClass(values) elif arg.valuesListUIType == ArgumentValuesListType.S_PRESET_TEXT: return PopupClass(values) elif arg.valuesListUIType == ArgumentValuesListType.FORM_COMMAND_LIST: return FormCommandListClass(values) elif arg.valuesListUIType == ArgumentValuesListType.ITEM_POPUP: return ItemPopupClass(arg_data) def cmd_NotifyAddClient(self, argument, object): """Add notifier clients as needed. You should never need to touch this.""" for i, tup in enumerate(self._notifier_tuples): if self._notifiers[i] is None: self._notifiers[i] = self.not_svc.Spawn (self._notifier_tuples[i][0], self._notifier_tuples[i][1]) self._notifiers[i].AddClient(object) def cmd_NotifyRemoveClient(self, object): """Remove notifier clients as needed. You should never need to touch this.""" for i, tup in enumerate(self._notifier_tuples): if self._notifiers[i] is not None: self._notifiers[i].RemoveClient(object) # -------- Private methods def _resolveDefaultValue(self, defaultValue): """ Resolves default value in case default value is a function. """ if hasattr(defaultValue, '__call__'): return defaultValue() return defaultValue def _setupNotifiers(self): # CommandClass can implement the commander_notifiers() method to update # FormCommandLists and Popups. If implemented, add the notifiers. self.not_svc = lx.service.NotifySys() self._notifiers = [] self._notifier_tuples = tuple([i for i in self.notifiers()]) for i in self._notifier_tuples: self._notifiers.append(None) @classmethod def _setupArgumentValuesCache(cls): """ We manually cache all argument values between command executions during single session. """ try: cls._argumentValuesCache except AttributeError: cls._argumentValuesCache = [] @classmethod def _cacheArgumentDefaultValue(cls, value): """Add an argument to the class variable _commander_stored_values. You should never need to touch this. """ cls._argumentValuesCache.append(value) def _setupArguments(self): """ Setup command arguments based on arguments() method. Parse the list of Argument objects that the arguments method returns. """ arguments = self.arguments() # The command does not have arguments if not arguments: return True result = True if not isinstance(arguments, list): arguments = [arguments] for argument in arguments: if not isinstance(argument, Argument): continue if not self._addArgument(argument): result = False return result def _addArgument(self, argument): if argument.datatype is None or argument.name is None: return False datatype = self._resolveArgumentDatatype(argument.datatype) if not datatype: return False argument.index = len(self._argumentsList) self.dyna_Add(argument.name, datatype) # This is setting up default value for this argument. # If this is the first time running the command, the class variable # _argumentValuesCache will be empty. In that case, populate it. # This should really go on the argument level, not command class level. if argument.index >= len(self._argumentValuesCache): # The default value can be a function. If it's a function # it will be called each time the command dialog is about to be opened. # In such case do not cache the default value, just make it a None. if hasattr(argument.defaultValue, '__call__'): self._cacheArgumentDefaultValue(None) else: self._cacheArgumentDefaultValue(argument.defaultValue) flags = self._resolveArgumentFlagsList(argument.flags) if flags: self.basic_SetFlags(argument.index, reduce(operator.ior, flags)) if argument.hints is not None: self.dyna_SetHint(argument.index, argument.hints) self._argumentsList.append(argument) self._argumentsByName[argument.name] = argument.index return True def _resolveArgumentDatatype(self, datatype): """ Resolve argument datatype into proper string that can be used by raw API. Args: datatype: (str) one of command argument type constants or one of lx.symbol.sTYPE_ raw API constants. """ try: resolvedDatatype = getattr(lx.symbol, 'sTYPE_' + datatype.upper()) except AttributeError: resolvedDatatype = datatype return resolvedDatatype def _resolveArgumentFlagsList(self, flagsList): if not isinstance(flagsList, list): flagsList = [flagsList] flags = [] for flag in flagsList: if flag is None: continue try: flags.append(getattr(lx.symbol, 'fCMDARG_' + flag.upper())) except AttributeError: flags.append(flag) return flags def __init__(self): lxu.command.BasicCommand.__init__(self) self._name = "" self._argumentsList = [] self._argumentsByName = {} self._setupArgumentValuesCache() self._setupArguments() self._setupNotifiers() self.init() class FormCommandListClass(lxifc.UIValueHints): """Special class for creating Form Command Lists. This is instantiated by CommanderClass objects if an FCL argument provided. Expects a list of valid MODO commands to be provided to init. NOTE: Any invalid command will crash MODO. You should never need to touch this.""" def __init__(self, items): self._items = items def uiv_Flags(self): return lx.symbol.fVALHINT_FORM_COMMAND_LIST def uiv_FormCommandListCount(self): return len(self._items) def uiv_FormCommandListByIndex(self,index): return self._items[index] class PopupClass(lxifc.UIValueHints): """Special class for creating popups and sPresetText fields. Accepts either a simple list of values, or a list of (internal, user facing) tuples: [1, 2, 3] or [(1, "The Number One"), (2, "The Number Two"), (3, "The Number Three")] You should never need to touch this.""" def __init__(self, items): self._content = ArgumentPopupContent() if isinstance(items, (list, tuple)): for item in items: # If the list item is a list or tuple, assume the format (ugly, pretty) if isinstance(item, (list, tuple)): entry = ArgumentPopupEntry(str(item[0]), str(item[1])) self._content.addEntry(entry) # Otherwise just use the value for both Ugly and Pretty else: entry = ArgumentPopupEntry(str(item), str(item)) self._content.addEntry(entry) elif isinstance(items, ArgumentPopupContent): self._content = items def uiv_Flags(self): return lx.symbol.fVALHINT_POPUPS def uiv_PopCount(self): return len(self._content) def uiv_PopUserName(self, index): return self._content[index].userName def uiv_PopInternalName(self,index): return self._content[index].internalName def uiv_PopIconSize(self): if self._content.iconWidth is not None and self._content.iconHeight is not None: return(1 ,self._content.iconWidth, self._content.iconHeight) lx.notimpl() def uiv_PopIconImage(self, index): iconImage = self._content[index].iconImage if iconImage is not None: return iconImage lx.notimpl() def uiv_PopIconResource(self, index): iconResource = self._content[index].iconResource if iconResource is not None: return iconResource lx.notimpl() class ItemPopupClass(lxu.command.BasicHints): """Special class for creating popup with item list. """ def __init__(self, itemContent): self._itemContent = itemContent def uiv_Flags(self): flags = lx.symbol.fVALHINT_ITEMS if self._itemContent.noneOption: flags |= lx.symbol.fVALHINT_ITEMS_NONE return flags def uiv_ItemTest(self, item): # item comes here as lx.object.Unknown. # Cast it to lx.object.Item by default. item = lx.object.Item(item) if not self._itemContent.testOnRawItems: item = modo.Item(item) return self._itemContent.itemTestFunction(item)
2.75
3
sbin/autograder/grade_item_main_runner.py
scopeInfinity/Submitty
0
12782616
<reponame>scopeInfinity/Submitty import configparser import json import os import tempfile import shutil import subprocess import stat import time import dateutil import dateutil.parser import urllib.parse import string import random import socket import zipfile import traceback from submitty_utils import dateutils, glob from . import grade_items_logging, write_grade_history, CONFIG_PATH with open(os.path.join(CONFIG_PATH, 'submitty.json')) as open_file: OPEN_JSON = json.load(open_file) SUBMITTY_INSTALL_DIR = OPEN_JSON['submitty_install_dir'] SUBMITTY_DATA_DIR = OPEN_JSON['submitty_data_dir'] with open(os.path.join(CONFIG_PATH, 'submitty_users.json')) as open_file: OPEN_JSON = json.load(open_file) DAEMON_UID = OPEN_JSON['daemon_uid'] def executeTestcases(complete_config_obj, tmp_logs, tmp_work, queue_obj, submission_string, item_name, USE_DOCKER, container, which_untrusted): queue_time_longstring = queue_obj["queue_time"] waittime = queue_obj["waittime"] is_batch_job = queue_obj["regrade"] job_id = queue_obj["job_id"] is_batch_job_string = "BATCH" if is_batch_job else "INTERACTIVE" runner_success = -1 # run the run.out as the untrusted user with open(os.path.join(tmp_logs,"runner_log.txt"), 'w') as logfile: print ("LOGGING BEGIN my_runner.out",file=logfile) logfile.flush() testcases = complete_config_obj["testcases"] for testcase_num in range(len(testcases)): try: if USE_DOCKER: runner_success = subprocess.call(['docker', 'exec', '-w', tmp_work, container, os.path.join(tmp_work, 'my_runner.out'), queue_obj['gradeable'], queue_obj['who'], str(queue_obj['version']), submission_string, testcase_num], stdout=logfile) else: runner_success = subprocess.call([os.path.join(SUBMITTY_INSTALL_DIR, "sbin", "untrusted_execute"), which_untrusted, os.path.join(tmp_work,"my_runner.out"), queue_obj["gradeable"], queue_obj["who"], str(queue_obj["version"]), submission_string, str(testcase_num)], stdout=logfile) logfile.flush() except Exception as e: print ("ERROR caught runner.out exception={0}".format(str(e.args[0])).encode("utf-8"),file=logfile) logfile.flush() print ("LOGGING END my_runner.out",file=logfile) logfile.flush() killall_success = subprocess.call([os.path.join(SUBMITTY_INSTALL_DIR, "sbin", "untrusted_execute"), which_untrusted, os.path.join(SUBMITTY_INSTALL_DIR, "sbin", "killall.py")], stdout=logfile) print ("KILLALL COMPLETE my_runner.out",file=logfile) logfile.flush() if killall_success != 0: msg='RUNNER ERROR: had to kill {} process(es)'.format(killall_success) print ("pid",os.getpid(),msg) grade_items_logging.log_message(job_id,is_batch_job,which_untrusted,item_name,"","",msg) print ("execute test cases finished",file=logfile) logfile.flush() return runner_success
1.804688
2
tests/test_parsingtools.py
raymanP/matlab2python
49
12782617
<reponame>raymanP/matlab2python import numpy as np import unittest from matlabparser.parsing_tools import * # --------------------------------------------------------------------------------} # --- # --------------------------------------------------------------------------------{ class TestParsingTools(unittest.TestCase): def assertEqual(self, first, second, msg=None): #print('\n>',first,'<',' >',second,'<') super(TestParsingTools, self).assertEqual(first, second, msg) def test_strings(self): self.assertEqual(string_contains_charset('g' ,r'[a-z]'),True) self.assertEqual(string_contains_charset('09' ,r'[a-z]'),False) self.assertEqual(string_contains_charset('0g9',r'[a-z]'),True) self.assertEqual(previous_nonspace_pos ('01 8',8),1 ) self.assertEqual(previous_nonspace_pos (' 8',8),-1) self.assertEqual(previous_nonspace_char('01 8',8),'1') self.assertEqual(previous_nonspace_char(' 8',8),'') def test_quotes(self): # self.assertEqual(is_in_quotes("""0 '345' 7 """ ,4) ,True) # self.assertEqual(is_in_quotes("""01'345' 7 """ ,2) ,False) #self.assertEqual(is_in_quotes("""01'345' 7 """ ,6) ,False) self.assertEqual(replace_inquotes("""''""" ,'X') ,'XX') self.assertEqual(replace_inquotes("""0'23'5""" ,'X') ,'0XXXX5') self.assertEqual(replace_inquotes("""0'2"'5""" ,'X') ,'0XXXX5') self.assertEqual(replace_inquotes("""0"23"5""" ,'X') ,'0XXXX5') self.assertEqual(replace_inquotes("""0'2''5'7""" ,'X') ,'0XXXXXX7') self.assertEqual(replace_inquotes("""0'23""" ,'X') ,'0XXX') self.assertEqual(replace_inquotes("""0"23""" ,'X') ,'0XXX') self.assertEqual(extract_quotedstring("""''""") ,'') self.assertEqual(extract_quotedstring("""'a'""") ,'a') self.assertEqual(extract_quotedstring("""'a'b""") ,'a') self.assertEqual(extract_quotedstring("""'a""") ,'a') self.assertEqual(extract_quotedstring("""'a''a'""") ,'a\'\'a') self.assertEqual(extract_quotedstring("""'a"a'""") ,'a"a') self.assertEqual(extract_quotedstring('""') ,'') #print('>>>>>>>>>>>>>>') #print('>>>>>>>>>>>>>>') #print('>>>>>>>>>>>>>>') #print('>>>>>>>>>>>>>>') #self.assertEqual(separate_comment('s='i'),(' ',' '))
2.78125
3
iotronic/wamp/functions.py
smartmeio/stack4things-openstack-iotronic
1
12782618
# Copyright 2017 MDSLAB - University of Messina # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from datetime import datetime from iotronic.common import rpc from iotronic.common import states from iotronic.conductor import rpcapi from iotronic import objects from iotronic.wamp import wampmessage as wm from oslo_config import cfg from oslo_log import log LOG = log.getLogger(__name__) CONF = cfg.CONF CONF(project='iotronic') rpc.init(CONF) topic = 'iotronic.conductor_manager' c = rpcapi.ConductorAPI(topic) class cont(object): def to_dict(self): return {} ctxt = cont() def echo(data): LOG.info("ECHO: %s" % data) return data def wamp_alive(board_uuid, board_name): LOG.debug("Alive board: %s (%s)", board_uuid, board_name) return "Iotronic alive @ " + datetime.now().strftime( '%Y-%m-%dT%H:%M:%S.%f') # to be removed def alive(): LOG.debug("Alive") return "Iotronic alive @ " + datetime.now().strftime( '%Y-%m-%dT%H:%M:%S.%f') def update_sessions(session_list, agent): session_list = set(session_list) list_from_db = objects.SessionWP.valid_list(ctxt, agent) list_db = set([int(elem.session_id) for elem in list_from_db]) LOG.debug('Wamp session list: %s', session_list) LOG.debug('DB session list: %s', list_db) if session_list == list_db: LOG.debug('Sessions on the database are updated.') return # list of board not connected anymore old_connected = list_db.difference(session_list) LOG.debug('no more valid session list: %s', old_connected) for elem in old_connected: old_session = objects.SessionWP.get(ctxt, elem) if old_session.valid: old_session.valid = False old_session.save() board = objects.Board.get_by_uuid(ctxt, old_session.board_uuid) board.status = states.OFFLINE board.save() LOG.debug('Session updated. Board %s is now %s', board.uuid, states.OFFLINE) if old_connected: LOG.warning('Some boards have been updated: status offline') # list of board still connected keep_connected = list_db.intersection(session_list) LOG.debug('still valid session list: %s', keep_connected) for elem in keep_connected: for x in list_from_db: if x.session_id == str(elem): LOG.debug('%s need to be restored.', x.board_uuid) break if keep_connected: LOG.warning('Some boards need to be restored.') def board_on_leave(session_id): LOG.debug('A board with %s disconnectd', session_id) try: old_session = objects.SessionWP.get(ctxt, session_id) if old_session.valid: old_session.valid = False old_session.save() board = objects.Board.get_by_uuid(ctxt, old_session.board_uuid) board.status = states.OFFLINE board.save() LOG.debug('Session updated. Board %s is now %s', board.uuid, states.OFFLINE) return LOG.debug('Session %s already set to not valid', session_id) except Exception: LOG.debug('session %s not found', session_id) def connection(uuid, session, info=None): LOG.debug('Received registration from %s with session %s', uuid, session) try: board = objects.Board.get_by_uuid(ctxt, uuid) except Exception as exc: msg = exc.message % {'board': uuid} LOG.error(msg) return wm.WampError(msg).serialize() try: old_ses = objects.SessionWP(ctxt) old_ses = old_ses.get_session_by_board_uuid(ctxt, board.uuid, valid=True) old_ses.valid = False old_ses.save() LOG.debug('old session for %s found: %s', board.uuid, old_ses.session_id) except Exception: LOG.debug('valid session for %s not found', board.uuid) session_data = {'board_id': board.id, 'board_uuid': board.uuid, 'session_id': session} session = objects.SessionWP(ctxt, **session_data) session.create() LOG.debug('new session for %s saved %s', board.uuid, session.session_id) board.status = states.ONLINE if info: LOG.debug('board infos %s', info) if 'lr_version' in info: if board.lr_version != info['lr_version']: board.lr_version = info['lr_version'] if 'connectivity' in info: board.connectivity = info['connectivity'] if 'mac_addr' in info: board.connectivity = {"mac_addr": info['mac_addr']} board.save() LOG.info('Board %s (%s) is now %s', board.uuid, board.name, states.ONLINE) return wm.WampSuccess('').serialize() def registration(code, session): return c.registration(ctxt, code, session) def board_on_join(session_id): LOG.debug('A board with %s joined', session_id['session']) def notify_result(board_uuid, wampmessage): wmsg = wm.deserialize(wampmessage) LOG.info('Board %s completed the its request %s with result: %s', board_uuid, wmsg.req_id, wmsg.result) res = objects.Result.get(ctxt, board_uuid, wmsg.req_id) res.result = wmsg.result res.message = wmsg.message res.save() filter = {"result": objects.result.RUNNING, "request_uuid": wmsg.req_id} list_result = objects.Result.get_results_list(ctxt, filter) if len(list_result) == 0: req = objects.Request.get_by_uuid(ctxt, wmsg.req_id) req.status = objects.request.COMPLETED req.save() if req.main_request_uuid: mreq = objects.Request.get_by_uuid(ctxt, req.main_request_uuid) mreq.pending_requests = mreq.pending_requests - 1 if mreq.pending_requests == 0: mreq.status = objects.request.COMPLETED mreq.save() return wm.WampSuccess('notification_received').serialize()
1.804688
2
test/test_encryption.py
tunapro1234/DBEX
0
12782619
<filename>test/test_encryption.py from dbex.encryption import DBEXMetaEncrypter from dbex.encryption import DebugEncrypter from dbex.__init__ import Decoder # sonunda from dbex.__init__ import Encoder import unittest import os enc, dec = Encoder(), Decoder() class TestEncryption(unittest.TestCase): test_file = "dbex/test/TestEncryption.json" def setUp(self): with open(self.test_file, "w+") as file: file.write("") def tearDown(self): os.remove(self.test_file) def test_encryption(self): kwargs = {"path": self.test_file, "encryption_obj": EmptyEncrypter()} enc1 = Encoder(**kwargs) dec1 = Decoder(**kwargs) tester = [] enc1.dump(tester) read = dec1.load() self.assertEqual(tester, read) def test_encryption_debug(self): kwargs = {"path": self.test_file, "encryption_obj": DebugEncrypter()} enc1 = Encoder(**kwargs) dec1 = Decoder(**kwargs) tester = ["deneme", 123] enc1.dump(tester, max_depth="all") read = dec1.load() self.assertEqual(tester, read) def test_encrypter1_dump_load(self): kwargs = { "path": self.test_file, "encryption_obj": TestEncrypter1("3") } enc1 = Encoder(**kwargs) dec1 = Decoder(**kwargs) tester = ["deneme", 123] enc1.dump(tester, max_depth="all") read = dec1.load() self.assertEqual(tester, read) def test_encrypter1_dumps_loads(self): kwargs = { "path": self.test_file, "encryption_obj": TestEncrypter1("3") } enc1 = Encoder(**kwargs) dec1 = Decoder(**kwargs) tester = ["deneme", 123] result = dec1.loads(enc1.dumps(tester)) self.assertEqual(tester, result) def test_encrypter1_1(self): tester = "['deneme', 123]" enx = TestEncrypter1("3") for i in enx.encrypter(tester): print(i, end="") encrypted = "".join([i for i in enx.encrypter(tester)]) decrypted = "".join([i for i in enx.decrypter(encrypted)]) self.assertEqual(decrypted, tester) class EmptyEncrypter(metaclass=DBEXMetaEncrypter): gen_encryption = True gen_encrypter = None gen_decrypter = None def __init__(self): self.gen_encrypter = self.encrypter self.gen_decrypter = self.decrypter def encrypter(self, generator, *args, **kwargs): for i in generator: yield i def decrypter(self, generator, *args, **kwargs): for i in generator: yield i class TestEncrypter1(metaclass=DBEXMetaEncrypter): gen_encryption = True gen_decrypter = None gen_encrypter = None def __init__(self, password=None, sep="."): self.password = password if password is not None else None self.gen_decrypter = self.decrypter self.gen_encrypter = self.encrypter self.sep = sep def encrypter(self, generator, *args, **kwargs): self.password = kwargs[ "password"] if self.password is None else self.password for i in generator: for char in i: yield str(ord(char) + int(str(self.password)[0])) yield self.sep def decrypter(self, generator, *args, **kwargs): self.password = kwargs[ "password"] if self.password is None else self.password temp = "" for i in generator: for char in i: if char == self.sep: yield chr(int(temp) - int(str(self.password)[0])) temp = "" else: temp += char
2.890625
3
examples/00-basic/07_composite.py
normanrichardson/section-properties
1
12782620
r""" .. _ref_ex_composite: Creating a Composite Section ---------------------------- Create a section of mixed materials. The following example demonstrates how to create a composite cross-section by assigning different material properties to various regions of the mesh. A steel 310UB40.4 is modelled with a 50Dx600W timber panel placed on its top flange. The geometry and mesh are plotted, and the mesh information printed to the terminal before the analysis is carried out. All types of cross-section analyses are carried out, with an axial force, bending moment and shear force applied during the stress analysis. Once the analysis is complete, the cross-section properties are printed to the terminal and a plot of the centroids and cross-section stresses generated. """ # sphinx_gallery_thumbnail_number = 2 import sectionproperties.pre.library.primitive_sections as sections import sectionproperties.pre.library.steel_sections as steel_sections from sectionproperties.pre.geometry import CompoundGeometry from sectionproperties.pre.pre import Material from sectionproperties.analysis.section import Section # %% # Create material properties steel = Material( name="Steel", elastic_modulus=200e3, poissons_ratio=0.3, yield_strength=500, density=8.05e-6, color="grey", ) timber = Material( name="Timber", elastic_modulus=8e3, poissons_ratio=0.35, yield_strength=20, density=0.78e-6, color="burlywood", ) # %% # Create 310UB40.4 ub = steel_sections.i_section( d=304, b=165, t_f=10.2, t_w=6.1, r=11.4, n_r=8, material=steel ) # %% # Create timber panel on top of the UB panel = sections.rectangular_section(d=50, b=600, material=timber) panel = panel.align_center(ub).align_to(ub, on="top") # Create intermediate nodes in panel to match nodes in ub panel = (panel - ub) | panel # %% # Merge the two sections into one geometry object section_geometry = CompoundGeometry([ub, panel]) # %% # Create a mesh and a Section object. For the mesh use a mesh size of 5 for # the UB, 20 for the panel section_geometry.create_mesh(mesh_sizes=[5, 20]) comp_section = Section(section_geometry, time_info=True) comp_section.display_mesh_info() # display the mesh information # %% # Plot the mesh with coloured materials and a line transparency of 0.6 comp_section.plot_mesh(materials=True, alpha=0.6) # %% # Perform a geometric, warping and plastic analysis comp_section.calculate_geometric_properties() comp_section.calculate_warping_properties() comp_section.calculate_plastic_properties(verbose=True) # %% # Perform a stress analysis with N = 100 kN, Mxx = 120 kN.m and Vy = 75 kN stress_post = comp_section.calculate_stress(N=-100e3, Mxx=-120e6, Vy=-75e3) # %% # Print the results to the terminal comp_section.display_results() # %% # Plot the centroids comp_section.plot_centroids() # %% # Plot the axial stress stress_post.plot_stress_n_zz(pause=False) # %% # Plot the bending stress stress_post.plot_stress_m_zz(pause=False) # %% # Plot the shear stress stress_post.plot_stress_v_zxy()
3.015625
3
leetcode/Array/1380. Lucky Numbers in a Matrix.py
yanshengjia/algorithm
23
12782621
""" Given a m * n matrix of distinct numbers, return all lucky numbers in the matrix in any order. A lucky number is an element of the matrix such that it is the minimum element in its row and maximum in its column. Example 1: Input: matrix = [[3,7,8],[9,11,13],[15,16,17]] Output: [15] Explanation: 15 is the only lucky number since it is the minimum in its row and the maximum in its column Example 2: Input: matrix = [[1,10,4,2],[9,3,8,7],[15,16,17,12]] Output: [12] Explanation: 12 is the only lucky number since it is the minimum in its row and the maximum in its column. Example 3: Input: matrix = [[7,8],[1,2]] Output: [7] Solution: 3 Pass """ # Time: O(mn) # Spcae: O(m+n) class Solution: def luckyNumbers (self, matrix: List[List[int]]) -> List[int]: row = len(matrix) col = len(matrix[0]) row_min = [] col_max = [] for i in range(row): mi = float('inf') for j in range(col): mi = min(matrix[i][j], mi) row_min.append(mi) for j in range(col): ma = float('-inf') for i in range(row): ma = max(matrix[i][j], ma) col_max.append(ma) res = [] for i in range(row): for j in range(col): if matrix[i][j] == row_min[i] and matrix[i][j] == col_max[j]: res.append(matrix[i][j]) return res # 3 Pass class Solution: def luckyNumbers (self, matrix: List[List[int]]) -> List[int]: rmin = [min(x) for x in matrix] cmax = [max(x) for x in zip(*matrix)] return [matrix[i][j] for i in range(len(matrix)) for j in range(len(matrix[0])) if rmin[i] == cmax[j]]
3.9375
4
src/api_segura/data/__init__.py
PythonistaMX/py261
0
12782622
<gh_stars>0 CARRERAS = ['Arquitectura', 'Diseño', 'Sistemas', 'Derecho', 'Actuaría']
1.25
1
otree_manager/otree_manager/om/processors.py
chkgk/otree_manager
2
12782623
<filename>otree_manager/otree_manager/om/processors.py from django.conf import settings as django_conf def settings(request): """Provides easy access to settings stored in django conf""" return { 'DEMO': django_conf.DEMO, 'MIN_WORKERS': django_conf.MIN_WORKERS, 'MAX_WORKERS': django_conf.MAX_WORKERS, 'MAX_WEB': django_conf.MAX_WEB, }
1.6875
2
disqus/get_posts.py
tonnpa/opleaders
1
12782624
<reponame>tonnpa/opleaders #!/usr/bin/env python3 """ This script retrieves all the posts pertaining to the threads in the .json files. Constraints 1. the files in the SRC_DIR_PATH has to follow a specific naming convention: FROM_DATE in (yyyy-mm-dd) _ file_number [0-9999] .json 2. the maximum number of queries is 1000 (Disqus API limit) 3. only threads with more than MIN_POST_CNT number of posts is queried 4. DST_DIR_PATH, the directory where retrieved files are stored, has to exist To continue from previous run, specify 1. FROM_DATE 2. FIRST_FILE the number of file that should be processed 3. LAST_THREAD_ID the number of thread ID that was last processed """ __author__ = 'tonnpa' import os from disqus.fetch import * FROM_DATE = '2014-01-01' SRC_DIR_PATH = '/home/tonnpa/hvghu/2014/threads/' DST_DIR_PATH = '/home/tonnpa/hvghu/2014/posts/' FIRST_FILE = 207 LAST_THREAD_ID = 3418529550 MAX_QUERY_WARNING = 995 MIN_POST_CNT = 5 # count the number of files in source directory num_files = len(os.listdir(SRC_DIR_PATH)) num_queries = 0 for file_num in range(FIRST_FILE, num_files+1): # open JSON file and read threads into data with open(SRC_DIR_PATH + FROM_DATE + '_' + str(file_num).zfill(4) + '.json') as file: data = json.loads(file.read()) # process each thread for thread in data['response']: # skip previously processed files if file_num == FIRST_FILE and int(thread['id']) <= LAST_THREAD_ID: continue # if thread has more than 5 posts, then query for all its posts if thread['posts'] > MIN_POST_CNT: # get url url_posts = get_url_list_posts(thread=thread['id']) # query url to get json data json_posts = get_json(url_posts) num_queries += 1 # save json data outfile_path = DST_DIR_PATH + FROM_DATE + '_' + str(file_num).zfill(4) + '_' + str(thread['id'] + '.json') with open(outfile_path, 'w') as outfile: json.dump(json_posts, outfile) segment_num = 1 # save all further comments while json_posts['cursor']['hasNext']: cursor_next = json_posts['cursor']['next'] url_posts = get_url_list_posts(thread=thread['id'], cursor=cursor_next) json_posts = get_json(url_posts) num_queries += 1 segment_num += 1 outfile_path = DST_DIR_PATH + FROM_DATE + '_' + str(file_num).zfill(4) + '_' + \ str(thread['id'] + '_' + str(segment_num) + '.json') with open(outfile_path, 'w') as outfile: json.dump(json_posts, outfile) if num_queries % 20 == 0: print('File: ' + str(file_num).zfill(4) + ' Iteration: ' + str(num_queries)) if num_queries > MAX_QUERY_WARNING: print('Ending process. Last Thread ID: ' + str(thread['id'])) break # looping at threads in a file if num_queries > MAX_QUERY_WARNING: print('Ending process. Last File Number: ' + str(file_num)) break # looping at files
2.59375
3
pylxd/deprecated/tests/utils.py
AdamIsrael/pylxd
0
12782625
# Copyright (c) 2015 Canonical Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from pylxd import api from pylxd import exceptions as lxd_exceptions def upload_image(image): alias = '{}/{}/{}/{}'.format(image['os'], image['release'], image['arch'], image['variant']) lxd = api.API() imgs = api.API(host='images.linuxcontainers.org') d = imgs.alias_show(alias) meta = d[1]['metadata'] tgt = meta['target'] try: lxd.alias_update(meta) except lxd_exceptions.APIError as ex: if ex.status_code == 404: lxd.alias_create(meta) return tgt def delete_image(image): lxd = api.API() lxd.image_delete(image)
1.828125
2
asana/resources/project_memberships.py
FiyaFly/python-asana
266
12782626
<filename>asana/resources/project_memberships.py from .gen.project_memberships import _ProjectMemberships class ProjectMemberships(_ProjectMemberships): """Project Memberships resource""" def find_by_project(self, project, params={}, **options): """Returns the compact project membership records for the project. Parameters ---------- project : {Gid} The project for which to fetch memberships. [params] : {Object} Parameters for the request - [user] : {String} If present, the user to filter the memberships to. """ path = "/projects/%s/project_memberships" % (project) return self.client.get_collection(path, params, **options) def find_by_id(self, project_membership, params={}, **options): """Returns the project membership record. Parameters ---------- project_membership : {Gid} Globally unique identifier for the project membership. [params] : {Object} Parameters for the request """ path = "/project_memberships/%s" % (project_membership) return self.client.get(path, params, **options)
2.6875
3
Python_Arcade/Exercises/Platformer/platformer.py
npinak/Python-Projects
1
12782627
<reponame>npinak/Python-Projects """ https://learn.arcade.academy/en/latest/chapters/29_platformers/platformers.html """ import random import arcade SPRITE_SCALING = 0.5 TILE_SCALING = 0.5 GRAVITY = 0.5 DEFAULT_SCREEN_WIDTH = 800 DEFAULT_SCREEN_HEIGHT = 600 SCREEN_TITLE = "Sprite Move with Scrolling Screen Example" # How many pixels to keep as a minimum margin between the character # and the edge of the screen. VIEWPORT_MARGIN = 220 # How fast the camera pans to the player. 1.0 is instant. CAMERA_SPEED = 0.1 # How fast the character moves PLAYER_MOVEMENT_SPEED = 7 class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title, resizable=True) # Sprite lists self.player_list = None self.wall_list = None # Set up the player self.player_sprite = None # Physics engine. self.physics_engine = None # Create the cameras. One for the GUI, one for the sprites. self.camera_sprites = arcade.Camera(DEFAULT_SCREEN_WIDTH, DEFAULT_SCREEN_HEIGHT) self.camera_gui = arcade.Camera(DEFAULT_SCREEN_WIDTH, DEFAULT_SCREEN_HEIGHT) def setup(self): """ Set up the game and initialize the variables. """ # Sprite lists self.player_list = arcade.SpriteList() self.wall_list = arcade.SpriteList() # Set up the player self.player_sprite = arcade.Sprite(":resources:images/animated_characters/female_person/femalePerson_idle.png", scale=0.4) self.player_sprite.center_x = 256 self.player_sprite.center_y = 512 self.player_list.append(self.player_sprite) # Setting the map map_name = "map.json" # Reading in the tiled map self.tile_map = arcade.load_tilemap(map_name, scaling=TILE_SCALING) # Set wall SpriteList and any others that you have. self.wall_list = self.tile_map.sprite_lists["Walls"] # self.coin_list = self.tile_map.sprite_lists["Coins"] # Set the background color to what is specified in the map if self.tile_map.background_color: arcade.set_background_color(self.tile_map.background_color) # Physics Engine self.physics_engine = arcade.PhysicsEnginePlatformer( self.player_sprite, self.wall_list, gravity_constant=GRAVITY) # Set the background color arcade.set_background_color(arcade.color.AMAZON) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Select the camera we'll use to draw all our sprites self.camera_sprites.use() # Draw all the sprites. self.wall_list.draw() self.player_list.draw() # Select the (unscrolled) camera for our GUI self.camera_gui.use() # Draw the GUI arcade.draw_rectangle_filled(self.width // 2, 20, self.width, 40, arcade.color.ALMOND) text = f"Scroll value: ({self.camera_sprites.position[0]:5.1f}, " \ f"{self.camera_sprites.position[1]:5.1f})" arcade.draw_text(text, 10, 10, arcade.color.BLACK_BEAN, 20) def on_key_press(self, key, modifiers): """Called whenever a key is pressed. """ if key == arcade.key.UP: self.player_sprite.change_y = PLAYER_MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player_sprite.change_y = -PLAYER_MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player_sprite.change_x = -PLAYER_MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player_sprite.change_x = PLAYER_MOVEMENT_SPEED def on_key_release(self, key, modifiers): """Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player_sprite.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player_sprite.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ # Call update on all sprites (The sprites don't do much in this # example though.) self.physics_engine.update() # Scroll the screen to the player self.scroll_to_player() def scroll_to_player(self): """ Scroll the window to the player. if CAMERA_SPEED is 1, the camera will immediately move to the desired position. Anything between 0 and 1 will have the camera move to the location with a smoother pan. """ position = self.player_sprite.center_x - self.width / 2, \ self.player_sprite.center_y - self.height / 2 self.camera_sprites.move_to(position, CAMERA_SPEED) def on_resize(self, width, height): """ Resize window Handle the user grabbing the edge and resizing the window. """ self.camera_sprites.resize(int(width), int(height)) self.camera_gui.resize(int(width), int(height)) def main(): """ Main function """ window = MyGame(DEFAULT_SCREEN_WIDTH, DEFAULT_SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == "__main__": main()
3.890625
4
alembic/versions/71d46639309e_create_words_and_results_tables.py
TutorExilius/pyWordle
1
12782628
"""create_words_and_results_tables Revision ID: 71d46639309e Revises: Create Date: 2022-03-29 15:45:02.382574 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "71d46639309e" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "words", sa.Column("id", sa.Integer(), nullable=False), sa.Column("created_at", sa.DateTime(), nullable=True), sa.Column("word", sa.String(length=5, collation="NOCASE"), nullable=False), sa.Column("enabled", sa.Boolean(), nullable=True), sa.Column("nsfw", sa.Boolean(), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_words")), sa.UniqueConstraint("word", name=op.f("uq_words_word")), ) op.create_table( "results", sa.Column("id", sa.Integer(), nullable=False), sa.Column("created_at", sa.DateTime(), nullable=True), sa.Column("word_id", sa.Integer(), nullable=True), sa.Column("guessed_in_run", sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ["word_id"], ["words.id"], name=op.f("fk_results_word_id_words"), ondelete="cascade", ), sa.PrimaryKeyConstraint("id", name=op.f("pk_results")), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("results") op.drop_table("words") # ### end Alembic commands ###
2
2
App/ui_updates.py
Wizard-collab/wizard
0
12782629
<filename>App/ui_updates.py # coding: utf8 # Import PyQt5 libraries from PyQt5 import QtWidgets, QtCore, QtGui # Import wizard gui libraries from gui.updates import Ui_Form # Import wizard core libraries from wizard.vars import defaults from wizard.prefs.main import prefs from wizard.tools import log from wizard.vars import updates # Import python base librariess import webbrowser import os from markdown import markdown # Init the main logger and prefs module logger = log.pipe_log(__name__) prefs = prefs() class Main(QtWidgets.QWidget): def __init__(self): super(Main, self).__init__() self.ui = Ui_Form() self.ui.setupUi(self) ''' self.shadow = QtWidgets.QGraphicsDropShadowEffect() self.shadow.setBlurRadius(8) self.shadow.setColor(QtGui.QColor(0, 0, 0, 180)) self.shadow.setXOffset(0) self.shadow.setYOffset(0) self.setGraphicsEffect(self.shadow) ''' self.ui.updates_history_plainTextEdit.setVisible(0) self.connect_functions() self.fill_updates() def show_updates(self): prefs.set_show_updates(self.ui.show_startup_checkBox.isChecked()) def show_history(self): if not self.ui.updates_history_plainTextEdit.isVisible(): self.ui.updates_history_plainTextEdit.setVisible(1) text='' for key in updates.updates.keys(): text += updates.updates[key] self.ui.updates_history_plainTextEdit.setText(markdown(text)) else: self.ui.updates_history_plainTextEdit.setVisible(0) self.ui.updates_history_plainTextEdit.clear() def fill_updates(self): if defaults._wizard_version_ in updates.updates.keys(): updates_text = updates.updates[defaults._wizard_version_] else: updates_text = "No updates" self.ui.update_updates_plainTextEdit.setText(markdown(updates_text)) def connect_functions(self): self.ui.update_doc_pushButton.clicked.connect(self.show_doc) self.ui.update_web_pushButton.clicked.connect(self.show_web) self.ui.show_startup_checkBox.stateChanged.connect(self.show_updates) self.ui.updates_history_pushButton.clicked.connect(self.show_history) def show_doc(self): os.startfile(os.path.abspath(defaults._doc_index_path_)) def show_web(self): webbrowser.open(defaults._wizard_url_, new=0, autoraise=True)
2.3125
2
rtf.py
Rafiot/viper-modules
5
12782630
# -*- coding: utf-8 -*- ''' Code based on the python-oletools package by <NAME> 2012-10-18 http://www.decalage.info/python/oletools ''' import os import tempfile from viper.common.abstracts import Module from viper.core.session import __sessions__ try: from oletools.rtfobj import RtfObjParser from oletools import oleobj HAVE_RTF = True except ImportError: HAVE_RTF = False class Rtf(Module): cmd = 'rtf' description = 'RTF Parser' authors = ['xorhex'] categories = ["document"] def __init__(self): super(Rtf, self).__init__() self.parser.add_argument('-l', "--list", action='store_true', help='List of ') self.parser.add_argument('-s', "--save", metavar='item_index', help='Save object') def parse_rtf(self, filename, data): ''' The bulk of this fuction is taken from python-oletools: https://github.com/decalage2/oletools/blob/master/oletools/rtfobj.py See link for license ''' self.log('success', 'File: {name} - size: {size} bytes'.format(name=filename, size=hex(len(data)))) table = [] h = ['id', 'index', 'OLE Object'] rtfp = RtfObjParser(data) rtfp.parse() for rtfobj in rtfp.objects: row = [] obj_col = [] if rtfobj.is_ole: obj_col.append('format_id: {id} '.format(id=rtfobj.format_id)) if rtfobj.format_id == oleobj.OleObject.TYPE_EMBEDDED: obj_col.append('(Embedded)') elif rtfobj.format_id == oleobj.OleObject.TYPE_LINKED: obj_col.append('(Linked)') else: obj_col.append('(Unknown)') obj_col.append('class name: {cls}'.format(cls=rtfobj.class_name)) # if the object is linked and not embedded, data_size=None: if rtfobj.oledata_size is None: obj_col.append('data size: N/A') else: obj_col.append('data size: %d' % rtfobj.oledata_size) if rtfobj.is_package: obj_col.append('OLE Package object:') obj_col.append('Filename: {name}'.format(name=rtfobj.filename)) obj_col.append('Source path: {path}'.format(path=rtfobj.src_path)) obj_col.append('Temp path = {path}'.format(path=rtfobj.temp_path)) obj_col.append('MD5 = {md5}'.format(md5=rtfobj.olepkgdata_md5)) # check if the file extension is executable: _, temp_ext = os.path.splitext(rtfobj.temp_path) self.log('debug', 'Temp path extension: {ext}'.format(ext=temp_ext)) _, file_ext = os.path.splitext(rtfobj.filename) self.log('debug', 'File extension: %r' % file_ext) if temp_ext != file_ext: obj_col.append("MODIFIED FILE EXTENSION") else: obj_col.append('MD5 = {md5}'.format(md5=rtfobj.oledata_md5)) if rtfobj.clsid is not None: obj_col.append('CLSID: {clsid}'.format(clsid=rtfobj.clsid)) obj_col.append(rtfobj.clsid_desc) # Detect OLE2Link exploit # http://www.kb.cert.org/vuls/id/921560 if rtfobj.class_name == b'OLE2Link': obj_col.append('Possibly an exploit for the OLE2Link vulnerability (VU#921560, CVE-2017-0199)') # Detect Equation Editor exploit # https://www.kb.cert.org/vuls/id/421280/ elif rtfobj.class_name.lower() == b'equation.3': obj_col.append('Possibly an exploit for the Equation Editor vulnerability (VU#421280, CVE-2017-11882)') else: obj_col.append('Not a well-formed OLE object') row.append(rtfp.objects.index(rtfobj)) row.append('%08Xh' % rtfobj.start) row.append('\n'.join(obj_col)) table.append(row) self.log('table', dict(rows=table, header=h)) def list(self): self.parse_rtf(__sessions__.current.file.name, __sessions__.current.file.data) def save_ole_objects(self, data, save_object, filename): ''' The bulk of this fuction is taken from python-oletools: https://github.com/decalage2/oletools/blob/master/oletools/rtfobj.py See link for license ''' rtfp = RtfObjParser(data) rtfp.parse() try: i = int(save_object) objects = [rtfp.objects[i]] except Exception as ex: self.log('error', 'The -s option must be followed by an object index, such as "-s 2"\n{ex}'.format(ex=ex)) return for rtfobj in objects: i = objects.index(rtfobj) tmp = tempfile.NamedTemporaryFile(delete=False) if rtfobj.is_package: self.log('info', 'Saving file from OLE Package in object #%d:' % i) self.log('info', ' Filename = %r' % rtfobj.filename) self.log('info', ' Source path = %r' % rtfobj.src_path) self.log('info', ' Temp path = %r' % rtfobj.temp_path) self.log('info', ' saving to file %s' % tmp.name) self.log('info', ' md5 %s' % rtfobj.olepkgdata_md5) tmp.write(rtfobj.olepkgdata) tmp.close() # When format_id=TYPE_LINKED, oledata_size=None elif rtfobj.is_ole and rtfobj.oledata_size is not None: self.log('info', 'Saving file embedded in OLE object #%d:' % i) self.log('info', ' format_id = %d' % rtfobj.format_id) self.log('info', ' class name = %r' % rtfobj.class_name) self.log('info', ' data size = %d' % rtfobj.oledata_size) # set a file extension according to the class name: self.log('info', ' saving to file %s' % tmp.name) self.log('info', ' md5 %s' % rtfobj.oledata_md5) tmp.write(rtfobj.oledata) tmp.close() else: self.log('info', 'Saving raw data in object #%d:' % i) self.log('info', ' saving object to file %s' % tmp.name) self.log('info', ' md5 %s' % rtfobj.rawdata_md5) tmp.write(rtfobj.rawdata) tmp.close() if not save_object == 'all': __sessions__.new(tmp.name) def save(self, idx): self.save_ole_objects(__sessions__.current.file.data, idx, __sessions__.current.file.name) # Main starts here def run(self): super(Rtf, self).run() if self.args is None: return if not __sessions__.is_set(): self.log('error', 'No open session. This command expects a file to be open.') return if not HAVE_RTF: self.log('error', 'Missing dependancy. install oletools (pip install oletools)') return if self.args.list: self.list() elif self.args.save: self.save(self.args.save) else: self.parser.print_usage()
2.390625
2
papers/tests/test_views.py
anujmittal94/spiresearch
1
12782631
<reponame>anujmittal94/spiresearch from django.test import TestCase, Client from django.urls import reverse from papers.models import UserRead, UserProject from accounts.models import CustomUser class IndexViewTest(TestCase): def test_index(self): response = self.client.get(reverse('index')) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'papers/index.html') class ReadlistViewTest(TestCase): def setUp(self): u1 = CustomUser.objects.create(username="user1") u1.set_password('password') u1.save() def test_readlist_not_logged_in(self): response = self.client.get(reverse('readlist')) self.assertRedirects(response, '/accounts/login/?next=/papers/readlist') def test_readlist_logged_in(self): login = self.client.login(username='user1', password='password') response = self.client.get(reverse('readlist')) self.assertEqual(str(response.context['user']), 'user1') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'papers/readlist.html') def test_readlist_context(self): login = self.client.login(username='user1', password='password') response = self.client.get(reverse('readlist')) self.assertEqual(str(response.context['user']), 'user1') self.assertFalse('readlist' in response.context) u1 = CustomUser.objects.get(username='user1') UserRead.objects.create(user = u1, urls = 'test1.test,') response = self.client.get(reverse('readlist')) self.assertTrue('readlist' in response.context) self.assertEqual(response.context['readlist'], 'test1.test') class PaperViewTest(TestCase): def test_paper_direct_access(self): response = self.client.get(reverse('paper')) self.assertRedirects(response, reverse('index')) class ProjectsViewTest(TestCase): def setUp(self): u1 = CustomUser.objects.create(username="user1") u1.set_password('password') u1.save() def test_projects_not_logged_in(self): response = self.client.get(reverse('projects')) self.assertRedirects(response, '/accounts/login/?next=/papers/projects') def test_projects_logged_in(self): login = self.client.login(username='user1', password='password') response = self.client.get(reverse('projects')) self.assertEqual(str(response.context['user']), 'user1') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'papers/projects.html') def test_projects_context(self): login = self.client.login(username='user1', password='password') response = self.client.get(reverse('projects')) self.assertEqual(str(response.context['user']), 'user1') self.assertFalse(response.context['projects'].exists()) u1 = CustomUser.objects.get(username='user1') up1 = UserProject.objects.create(user = u1, name = 'test1 name', description = 'test1 description', urls = 'test1.test,') response = self.client.get(reverse('projects')) self.assertTrue(response.context['projects'].exists()) self.assertTrue(up1 in response.context['projects']) class ProjectViewTest(TestCase): def setUp(self): u1 = CustomUser.objects.create(username="user1") u1.set_password('password') u1.save() u2 = CustomUser.objects.create(username="user2") u2.set_password('password') u2.save() up1 = UserProject.objects.create(user = u1, name = 'test1 name', description = 'test1 description', urls = 'test1.test,') up1.save() up2 = UserProject.objects.create(user = u2, name = 'test2 name', description = 'test2 description', urls = 'test2.test,') up2.save() def test_project_not_logged_in(self): u1 = CustomUser.objects.get(username = 'user1') up1 = UserProject.objects.get(user = u1) response = self.client.get(reverse('project', kwargs={'project_id':up1.id})) self.assertRedirects(response, '/accounts/login/?next=/papers/project/'+str(up1.id)) def test_project_logged_in(self): login = self.client.login(username='user1', password='password') u1 = CustomUser.objects.get(username = 'user1') up1 = UserProject.objects.get(user = u1) response = self.client.get(reverse('project', kwargs={'project_id':up1.id})) self.assertEqual(str(response.context['user']), 'user1') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'papers/project.html') def test_project_context(self): login = self.client.login(username='user1', password='password') u1 = CustomUser.objects.get(username = 'user1') up1 = UserProject.objects.get(user = u1) response = self.client.get(reverse('project', kwargs={'project_id':up1.id})) self.assertEqual(str(response.context['user']), 'user1') self.assertTrue('projectlist' in response.context) self.assertTrue('test1' in response.context['projectlist']) self.assertEqual(response.context['project'], up1) def test_other_user_project(self): login = self.client.login(username='user1', password='password') u2 = CustomUser.objects.get(username = 'user2') up2 = UserProject.objects.get(user = u2) response = self.client.get(reverse('project', kwargs={'project_id':up2.id})) self.assertRedirects(response, reverse('projects'))
2.390625
2
phantasy/library/operation/lattice.py
archman/phantasy
0
12782632
<filename>phantasy/library/operation/lattice.py<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- """Lattice operations, including: 1. loading lattice 2. creating lattice """ import logging import os import re import time from fnmatch import fnmatch from phantasy.facility.frib import INI_DICT from phantasy.library.lattice import CaElement from phantasy.library.lattice import Lattice from phantasy.library.misc import simplify_data from phantasy.library.misc import create_tempdir from phantasy.library.parser import find_machine_config from phantasy.library.parser import read_polarity from phantasy.library.parser import read_alignment_data from phantasy.library.pv import DataSource #from phantasy.library.layout import build_layout from phantasy.library.parser import Configuration #from phantasy.library.settings import Settings from unicorn.utils import UnicornData __authors__ = "<NAME>" __copyright__ = "(c) 2016-2017, Facility for Rare Isotope beams, "\ "Michigan State University" __contact__ = "<NAME> <<EMAIL>>" _LOGGER = logging.getLogger(__name__) DEFAULT_MODEL_DATA_DIR = 'model_data' def load_lattice(machine, segment=None, **kws): """Load segment lattice(s) from machine. Parameters ---------- machine : str The exact name of machine. segment : str Unix shell pattern to define segment of machine, if not defined, will use default segment defined in configuration file. Keyword Arguments ----------------- use_cache : bool Use cache or not, ``False`` by default. save_cache : bool Save cache or not, ``False`` by default. verbose : int If not 0, show output, 0 by default. sort : True or False Sort lattice with s-position or not, default is False. prefix : str String prefix to all channels, this parameter is crucial to the virtual accelerator (VA) modeling, when '--pv-prefix' argument is used when starting up the VA rather than the one defined in the configuration file (e.g. phantasy.cfg). If this parameter is not defined, will use the one defined by 'machine' in 'DEFAULT' section of configuration file. auto_monitor : bool If set True, initialize all channels auto subscribe, default is False. Returns ------- ret : dict Keys or returned dict: - lat0name: name of lattice, default_segment or first sorted key; - lattices: dict of loaded lattice(s); - machname: name of the machine; - machpath: full path of machine; - machconf: loaded machine configuration object. Note ---- *machine* can be a path to config dir. """ lat_dict = {} use_cache = kws.get('use_cache', False) save_cache = kws.get('save_cache', False) verbose = kws.get('verbose', 0) sort_flag = kws.get('sort', False) pv_prefix = kws.get('prefix', None) auto_monitor = kws.get('auto_monitor', False) # if use_cache: # try: # loadCache(machine) # except: # _LOGGER.error('Lattice initialization using cache failed. ' + # 'Will attempt initialization with other method(s).') # save_cache = True # else: # # Loading from cache was successful. # return mconfig, mdir, mname = find_machine_config(machine, verbose=verbose, filename=INI_DICT['INI_NAME']) d_common = dict(mconfig.items(INI_DICT['COMMON_SECTION_NAME'])) root_data_dir = d_common.get(INI_DICT['KEYNAME_ROOT_DATA_DIR'], INI_DICT['DEFAULT_ROOT_DATA_DIR']) # create root_data_dir/today(fmt. YYYY-MM-DD) today_dir_name = os.path.expanduser(os.path.join( root_data_dir, time.strftime("%Y%m%d", time.localtime()))) if not os.path.exists(today_dir_name): os.makedirs(today_dir_name) work_dir = today_dir_name # default segment and all segments defined in phantasy.ini file default_segment = d_common.get(INI_DICT['KEYNAME_DEFAULT_SEGMENT'], INI_DICT['DEFAULT_DEFAULT_SEGMENT']) all_segments = d_common.get(INI_DICT['KEYNAME_SEGMENTS'], INI_DICT['DEFAULT_SEGMENTS']) if segment is None: segment = default_segment _LOGGER.info("Loading segment: '{}'".format(segment)) # filter out valid segment(s) from 'segment' string or pattern. msects = [s for s in re.findall(r'\w+', all_segments) if fnmatch(s, segment)] for msect in msects: d_msect = dict(mconfig.items(msect)) # scan server scan_svr_url = d_msect.get(INI_DICT['KEYNAME_SCAN_SVR_URL'], INI_DICT['DEFAULT_SCAN_SVR_URL']) # model: code simulation_code = d_msect.get(INI_DICT['KEYNAME_SIMULATION_CODE'], INI_DICT['DEFAULT_SIMULATION_CODE']) if simulation_code is not None: simulation_code = simulation_code.upper() # model: data model_data_dir = d_msect.get(INI_DICT['KEYNAME_MODEL_DATA_DIR'], DEFAULT_MODEL_DATA_DIR) if model_data_dir is not None: model_data_dir = os.path.expanduser( os.path.join(work_dir, model_data_dir)) # config file config_file = d_msect.get(INI_DICT['KEYNAME_CONFIG_FILE'], INI_DICT['DEFAULT_CONFIG_FILE']) if config_file is not None: if not os.path.isabs(config_file): config_file = os.path.join(mdir, config_file) config = Configuration(config_file) else: raise RuntimeError("Lattice configuration for '%s' not specified" % (msect,)) # # layout file # layout_file = d_msect.get(INI_DICT['KEYNAME_LAYOUT_FILE'], # INI_DICT['DEFAULT_LAYOUT_FILE']) # if layout_file is not None: # if not os.path.isabs(layout_file): # layout_file = os.path.join(mdir, layout_file) # layout = build_layout(layoutPath=layout_file) # else: # raise RuntimeError("Layout for '%s' not specified" % (msect,)) # # settings file # settings_file = d_msect.get(INI_DICT['KEYNAME_SETTINGS_FILE'], # INI_DICT['DEFAULT_SETTINGS_FILE']) # if settings_file is not None: # if not os.path.isabs(settings_file): # settings_file = os.path.join(mdir, settings_file) # settings = Settings(settingsPath=settings_file) # else: # raise RuntimeError("Settings for '%s' not specified" % (msect,)) # unicorn_file udata_file = d_msect.get('unicorn_file', None) if udata_file is not None: if not os.path.isabs(udata_file): udata_file = os.path.join(mdir, udata_file) udata = {} for f in UnicornData(udata_file).functions: _d = udata.setdefault(f.ename, {}) _d[(f.from_field, f.to_field)] = f.code _LOGGER.info("UNICORN policy will be loaded from {}.".format( os.path.abspath(udata_file))) else: udata = None # no unicorn data provided _LOGGER.warning("Default UNICORN policy will be applied.") # misalignment_file alignment_data_file = d_msect.get('alignment_file', None) if alignment_data_file is not None: if not os.path.isabs(alignment_data_file): alignment_data_file = os.path.join(mdir, alignment_data_file) alignment_data = read_alignment_data(alignment_data_file) _LOGGER.info("Read alignment data from {}.".format( os.path.abspath(alignment_data_file))) else: alignment_data = None _LOGGER.warning("No aligment data is read.") # polarity_file pdata_file = d_msect.get('polarity_file', None) if pdata_file is not None: if not os.path.isabs(pdata_file): pdata_file = os.path.join(mdir, pdata_file) pdata = read_polarity(pdata_file) _LOGGER.info("Device polarity data is loaded from {}.".format( os.path.abspath(pdata_file))) else: pdata = None _LOGGER.warning("Default device polarity will be applied.") # machine type, linear (non-loop) or ring (loop) mtype = int(d_msect.get(INI_DICT['KEYNAME_MTYPE'], INI_DICT['DEFAULT_MTYPE'])) # channel finder service: address cf_svr_url = d_msect.get(INI_DICT['KEYNAME_CF_SVR_URL'], INI_DICT['DEFAULT_CF_SVR_URL']) if cf_svr_url is None: raise RuntimeError( "No accelerator data source (cfs_url) available") ds_sql_path = os.path.join(mdir, cf_svr_url) # channel finder service: tag, and property names cf_svr_tag0 = d_msect.get(INI_DICT['KEYNAME_CF_SVR_TAG'], INI_DICT['DEFAULT_CF_SVR_TAG'](msect)) cf_svr_prop0 = d_msect.get(INI_DICT['KEYNAME_CF_SVR_PROP'], INI_DICT['DEFAULT_CF_SVR_PROP']) cf_svr_tag = [s.strip() for s in cf_svr_tag0.split(',')] cf_svr_prop = [s.strip() for s in cf_svr_prop0.split(',')] if re.match(r"https?://.*", cf_svr_url, re.I): # pv data source is cfs _LOGGER.info("Loading PV data from CFS: '%s' for '%s'" % (cf_svr_url, msect)) ds = DataSource(source=cf_svr_url) elif os.path.isfile(ds_sql_path): # pv data source is sqlite/csv file _LOGGER.info("Loading PV data from CSV/SQLite: {}".format( os.path.abspath(ds_sql_path))) ds = DataSource(source=ds_sql_path) else: _LOGGER.warning("Invalid PV data source is defined.") raise RuntimeError("Unknown PV data source '%s'" % cf_svr_url) ds.get_data(tag_filter=cf_svr_tag, prop_filter=cf_svr_prop) ds.map_property_name(INI_DICT['CF_NAMEMAP']) # model data temp directory if not os.path.exists(model_data_dir): os.makedirs(model_data_dir) data_dir = create_tempdir(prefix="data_", dir=model_data_dir) _LOGGER.info("Model data directory: {}".format(data_dir)) # build lattice from PV data latname = msect pv_data = simplify_data(ds.pvdata) tag = cf_svr_tag src = ds.source lat = create_lattice(latname, pv_data, tag, source=src, mtype=mtype, mname=mname, mpath=mdir, mconf=mconfig, model=simulation_code, #layout=layout, config=config, #settings=settings, udata=udata, pdata=pdata, alignment_data=alignment_data, data_dir=data_dir, sort=sort_flag, prefix=pv_prefix, auto_monitor=auto_monitor) # if IMPACT_ELEMENT_MAP is not None: # lat.createLatticeModelMap(IMPACT_ELEMENT_MAP) lat.loop = bool(d_msect.get(INI_DICT['KEYNAME_MTYPE'], INI_DICT['DEFAULT_MTYPE'])) lat_dict[msect] = lat # if show more informaion if verbose: n_elems = len( [e for e in lat._get_element_list('*') if e.virtual == 0]) if msect == default_segment: print("%s (*): %d elements" % (msect, n_elems)) else: print("%s: %d elements" % (msect, n_elems)) print( " BPM: %d, PM: %s, HCOR: %d, VCOR: %d, BEND: %d, QUAD: %d, SEXT: %d, SOL: %d, CAV: %d" % (len(lat._get_element_list('BPM')), len(lat._get_element_list('PM')), len(lat._get_element_list('HCOR')), len(lat._get_element_list('VCOR')), len(lat._get_element_list('BEND')), len(lat._get_element_list('QUAD')), len(lat._get_element_list('SEXT')), len(lat._get_element_list('SOL')), len(lat._get_element_list('CAV')))) if default_segment in lat_dict: lat0name = default_segment else: lat0name = sorted(lat_dict.keys())[0] return {'lat0name': lat0name, 'lattices': lat_dict, 'machname': mname, 'machpath': mdir, 'machconf': mconfig} def create_lattice(latname, pv_data, tag, **kws): """Create high-level lattice object from PV data source. Parameters ----------- latname : str Name of segment of machine, e.g. 'LINAC', 'LS1'. pv_data : list List of PV data, for each PV data, should be of list as: ``string of PV name, dict of properties, list of tags``. tag : str Only select PV data according to defined tag. e.g. `phantasy.sys.LS1`. Keyword Arguments ----------------- source : str Source of PV data, URL of channel finder service, file name of SQLite database or csv spreadsheet. mtype : int Machine type, 0 for linear (default), 1 for a ring. model : str Model code, 'FLAME' or 'IMPACT', 'FLAME' by default. udata : dict Scaling law functions, ename as the keys (1st level), (from_field, to_field) as 2nd level keys, function object as the values, i.e. {ename: {(f1, f2): fn1, ...}, ...} pdata : dict Device polarity, key-value pairs of device polarity. alignment_data : DataFrame Dataframe for alignment info, indexed by element name. data_dir: str Path of directory to host data generated from model, including input lattice files, output files and other related files, if not defined, random folder will be created in system temporary directory, e.g.'/tmp/model_hGe1sq'. #layout : # Lattice layout object. config : Lattice configuration object. settings : Lattice settings object. sort : True or False Sort lattice with s-position or not, default is False. prefix : str String prefix to all channels, this parameter is crucial to the virtual accelerator (VA) modeling, when '--pv-prefix' argument is used when starting up the VA rather than the one defined in the configuration file (e.g. phantasy.cfg). If this parameter is not defined, will use the one defined by 'machine' in 'DEFAULT' section of configuration file. auto_monitor : bool If set True, initialize all channels auto subscribe, default is False. Returns --------- lat : High-level lattice object. Note ---- Usually, *src* could be obtained from *source* attribute of ``DataSource`` instance, which can handle general PV data source type, including: channel finder service, SQLite database, CSV file, etc. See Also -------- :class:`~phantasy.library.lattice.lattice.Lattice` High-level lattice. :class:`~phantasy.library.pv.datasource.DataSource` Unified data source class for PVs. """ udata = kws.get('udata', None) pdata = kws.get('pdata', None) alignment_data = kws.get('alignment_data', None) data_source = kws.get('source', None) prefix = kws.get('prefix', None) auto_monitor = kws.get('auto_monitor', False) config = kws.get('config', None) if config is not None: pv_prefix = config.get_default('machine') if prefix is not None: pv_prefix = prefix if data_source is None: _LOGGER.warning("PV data source type should be explicitly defined.") _LOGGER.debug("Creating lattice '{0}' from '{1}'.".format(latname, data_source)) _LOGGER.info("Found {0:d} PVs in '{1}'.".format(len(pv_data), latname)) if isinstance(tag, str): tag = tag, # create a new lattice lat = Lattice(latname, **kws) # set up lattice for pv_name, pv_props, pv_tags in pv_data: _LOGGER.debug("Processing {0}.".format(pv_name)) # skip if property is None if pv_props is None: continue # skip if tag does not match if pv_name and not set(tag).issubset(set(pv_tags)): _LOGGER.debug("{0} is not tagged as {1}.".format(pv_name, tag)) continue # element name is mandatory ('elemName' -> 'name') if 'name' not in pv_props: continue name = pv_props.get('name') # begin and end s position if 'se' in pv_props: pv_props['sb'] = float(pv_props['se']) \ - float(pv_props.get('length', 0.0)) elem = lat._find_exact_element(name=name) if elem is None: try: elem = CaElement(**pv_props, auto_monitor=auto_monitor) except: _LOGGER.error( "Error: creating element '{0}' with '{1}'.".format( name, pv_props)) raise RuntimeError("Creating element ERROR.") _LOGGER.debug("Created new element: '{0}'".format(name)) lat.insert(elem, trust=True) _LOGGER.debug("Inserted {}".format(elem.name)) else: _LOGGER.debug( "Element '{0}' exists, only update properties.".format(name)) # update element if pv_name: # add prefix pv_name_prefixed = prefix_pv(pv_name, pv_prefix) # add 'u_policy' as keyword argument # this policy should created from unicorn_policy # new u_policy: {(f1, f2): fn1, ...} or None if udata is None: u_policy = {} else: u_policy = udata.get(elem.name, {}) # polarity info polarity = get_polarity(elem.name, pdata) # alignment info alignment_series = get_alignment_series(elem.name, alignment_data) elem.process_pv(pv_name_prefixed, pv_props, pv_tags, u_policy=u_policy, polarity=polarity, alignment_series=alignment_series, auto_monitor=auto_monitor) # update group lat.update_groups() # init design settings for all elements lat.load_settings(stype='design') # sort lattice or not if kws.get('sort', False): lat.sort(inplace=True) # lattice length lat.s_begin, lat.s_end, lat.length = lat.get_layout_length() # link layout elements to lattice elements lat.refresh_with_layout_info() _LOGGER.info("'{0:s}' has {1:d} elements".format(lat.name, lat.size())) return lat def prefix_pv(pv, prefix): """Prefix *pv* with *prefix:* if *prefix* is not empty and None. """ if pv.startswith('_#_'): return pv[3:] m = re.match("(.*:)?(.*):(.*):(.*)", pv) if m is None: chanprefix = prefix elif m.group(1) is None: chanprefix = prefix else: chanprefix = '' if chanprefix != '': return '{}:{}'.format(chanprefix, pv) else: return pv def get_polarity(ename, pdata=None): """Get device polarity from *pdata*. """ if pdata is None: return 1 else: return pdata.get(ename, 1) def get_alignment_series(ename, alignment_data=None): """Get a Series of alignment data from *alignment_data*. """ if alignment_data is None: return None else: try: r = alignment_data.loc[ename] except KeyError: r = None finally: return r
2.171875
2
aria/utils/process.py
enricorusso/incubator-ariatosca
1
12782633
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Process utilities. """ import os def append_to_path(*args, **kwargs): """ Appends one or more paths to the system path of an environment. The environment will be that of the current process unless another is passed using the 'env' keyword argument. :param args: paths to append :param kwargs: 'env' may be used to pass a custom environment to use """ _append_to_path('PATH', *args, **kwargs) def append_to_pythonpath(*args, **kwargs): """ Appends one or more paths to the python path of an environment. The environment will be that of the current process unless another is passed using the 'env' keyword argument. :param args: paths to append :param kwargs: 'env' may be used to pass a custom environment to use """ _append_to_path('PYTHONPATH', *args, **kwargs) def _append_to_path(path, *args, **kwargs): env = kwargs.get('env') or os.environ env[path] = '{0}{1}{2}'.format( os.pathsep.join(args), os.pathsep, env.get(path, '') )
2.109375
2
notes-n-resources/Data-Structures-N-Algo/_DS-n-Algos/Interview-Problems/LeetCode/ReverseBits.py
side-projects-42/INTERVIEW-PREP-COMPLETE
13
12782634
<reponame>side-projects-42/INTERVIEW-PREP-COMPLETE<filename>notes-n-resources/Data-Structures-N-Algo/_DS-n-Algos/Interview-Problems/LeetCode/ReverseBits.py class Solution: def reverseBits(self, n: int) -> int: s = str(bin(n)) s = s[2:] s = "0" * (32 - len(s)) + s s = int(s[::-1], 2) return s
3.609375
4
addons/network/model/digitalocean/Size.py
nhomar/odoo-network
0
12782635
class Size(object): def __init__(self, client_id="", api_key=""): self.client_id = client_id self.api_key = api_key self.name = None self.id = None self.memory = None self.cpu = None self.disk = None self.cost_per_hour = None self.cost_per_month = None
2.640625
3
backend/instruments/api/v1/urls.py
codepanda64/logs-and-metas-for-stations
0
12782636
<reponame>codepanda64/logs-and-metas-for-stations from django.urls import path, include from rest_framework.routers import DefaultRouter, SimpleRouter from . import views app_name = "instruments" router = SimpleRouter() router.register(r"models", views.InstrumentModelViewSet) router.register(r"entities", views.InstrumentEntityViewSet) # router.register( # r"models/(?P<instrument_model_id>[0-9]+)/entities", views.InstrumentEntityViewSet # ) urlpatterns = [] urlpatterns += router.urls
2.109375
2
7-assets/past-student-repos/_Individual-Projects/Computer-Architecture-Notes-master/lectureII/beejMachine.py
eengineergz/Lambda
1
12782637
import sys PRINT_BEEJ = 1 HALT = 2 PRINT_NUM = 3 SAVE = 4 PRINT_REGISTER = 5 ADD = 6 ''' SAVE takes 2 arguments saves value in [ARG1] to register [ARG2] ''' register = [0] * 8 memory = [0] * 128 # 128 bytes of RAM def load_memory(filename): try: address = 0 with open(filename) as f: for line in f: # Split before and after any comment symbols comment_split = line.split("#") num = comment_split[0].strip() # Ignore blanks if num == "": continue value = int(num) memory[address] = value address += 1 except FileNotFoundError: print(f"{sys.argv[0]}: {sys.argv[1]} not found") sys.exit(2) if len(sys.argv) != 2: print("usage: simple.py <filename>", file=sys.stderr) sys.exit(1) filepath = sys.argv[1] load_memory(filepath) pc = 0 running = True while running: command = memory[pc] if command == PRINT_BEEJ: print("Beej!") pc += 1 elif command == PRINT_NUM: num = memory[pc + 1] print(num) pc += 2 elif command == SAVE: num = memory[pc + 1] reg = memory[pc + 2] register[reg] = num pc += 3 elif command == PRINT_REGISTER: reg = memory[pc + 1] print(register[reg]) pc += 2 elif command == ADD: reg_a = memory[pc + 1] reg_b = memory[pc + 2] register[reg_a] += register[reg_b] pc += 3 elif command == HALT: running = False pc += 1 else: print(f"Unknown instruction: {command}") sys.exit(1)
3.578125
4
authentik/outposts/migrations/0001_initial.py
BeryJu/passbook
15
12782638
<gh_stars>10-100 # Generated by Django 3.1 on 2020-08-25 20:45 import uuid import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ("authentik_core", "0008_auto_20200824_1532"), ] operations = [ migrations.CreateModel( name="Outpost", fields=[ ( "uuid", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, ), ), ("name", models.TextField()), ( "channels", django.contrib.postgres.fields.ArrayField( base_field=models.TextField(), size=None ), ), ("providers", models.ManyToManyField(to="authentik_core.Provider")), ], ), ]
1.898438
2
juggling_management/config/juggling_management.py
geniusupgrader/juggling_management
1
12782639
from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "label":_("Juggling Management"), "items": [ { "type": "doctype", "name": "Jugglingtrick_juggling_management", "label": _("Jugglingtrick"), "description": _("Description of Jugglingtricks"), }, { "type": "doctype", "name": "Routine_juggling_management", "label": _("Routine"), "description": _("Description of Lists"), }, { "type": "doctype", "name": "Category_juggling_management", "label": _("Category"), "description": _("Description of Categories"), }, { "type": "doctype", "name": "Prop_juggling_management", "label": _("Prop"), "description": _("Description of Props"), } ] } ]
1.875
2
Enhance Main Window (877182321) by Arthur-Milchior/consts.py
kb1900/Anki-Addons
1
12782640
QUEUE_SCHED_BURIED = -3 QUEUE_USER_BURIED = -2 QUEUE_SUSPENDED = -1 QUEUE_NEW_CRAM = 0 QUEUE_LRN = 1 QUEUE_REV = 2 QUEUE_DAY_LRN = 3 QUEUE_PREVIEW = 4
1
1
n_factorial.py
leantab/algorithms
0
12782641
# find the Kth factorial of N n = 4 k = 22 def find_k_fact(n, k): k -= 1 # we are using base 0 permutation = [] unused = list(range(1, n+1)) fact = [1]*(n+1) for i in range(1, n+1): fact[i] = i*fact[i-1] # fact = 0: 1, 1:1, 2: 2*1=2, 3: 3*2=6, 4: 4*6=24, 5: 5*24=120.... while n > 0: parts = fact[n]//n # number of sections 24//4=6 i = k//parts permutation.append(unused[i]) unused.pop(i) n -= 1 k = k % parts return ''.join(map(str, permutation)) print(find_k_fact(n, k))
3.3125
3
tests/adapters/event_store/message_db_event_store/tests.py
mpsiva89/protean
0
12782642
import pytest from protean import Domain from protean.adapters.event_store.message_db import MessageDBStore from protean.exceptions import ConfigurationError @pytest.mark.message_db class TestMessageDBEventStore: def test_retrieving_message_store_from_domain(self, test_domain): assert test_domain.event_store is not None assert test_domain.event_store.store is not None assert isinstance(test_domain.event_store.store, MessageDBStore) def test_error_on_message_db_initialization(self): domain = Domain() domain.config["EVENT_STORE"][ "PROVIDER" ] = "protean.adapters.event_store.message_db.MessageDBStore" domain.config["EVENT_STORE"][ "DATABASE_URI" ] = "postgresql://message_store@localhost:5433/dummy" with pytest.raises(ConfigurationError) as exc: domain.event_store.store._write( "testStream-123", "Event1", {"foo": "bar"}, {"kind": "EVENT"} ) assert 'FATAL: database "dummy" does not exist' in str(exc.value) # Reset config value. # FIXME Config should be an argument to the domain domain.config["EVENT_STORE"][ "PROVIDER" ] = "protean.adapters.event_store.memory.MemoryEventStore" domain.config["EVENT_STORE"].pop("DATABASE_URI") def test_write_to_event_store(self, test_domain): position = test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": "bar"} ) assert position == 0 def test_multiple_writes_to_event_store(self, test_domain): for i in range(5): position = test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) position = test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": "bar"} ) assert position == 5 def test_reading_stream_message(self, test_domain): test_domain.event_store.store._write("testStream-123", "Event1", {"foo": "bar"}) messages = test_domain.event_store.store._read("testStream-123") assert len(messages) == 1 assert messages[0]["position"] == 0 assert messages[0]["data"] == {"foo": "bar"} def test_reading_multiple_stream_messages(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) messages = test_domain.event_store.store._read("testStream-123") assert len(messages) == 5 assert messages[4]["data"] == {"foo": "bar4"} def test_reading_category_message(self, test_domain): test_domain.event_store.store._write("testStream-123", "Event1", {"foo": "bar"}) messages = test_domain.event_store.store._read("testStream") assert len(messages) == 1 assert messages[0]["position"] == 0 assert messages[0]["data"] == {"foo": "bar"} def test_reading_multiple_category_messages(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) messages = test_domain.event_store.store._read("testStream") assert len(messages) == 5 assert messages[4]["data"] == {"foo": "bar4"} def test_reading_targeted_stream_messages(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) for i in range(5): test_domain.event_store.store._write( "testStream-456", "Event1", {"foo": f"baz{i}"} ) messages = test_domain.event_store.store._read("testStream-456") assert len(messages) == 5 assert messages[4]["data"] == {"foo": "baz4"} def test_read_last_message(self, test_domain): for i in range(5): test_domain.event_store.store._write( "testStream-123", "Event1", {"foo": f"bar{i}"} ) message = test_domain.event_store.store._read_last_message("testStream-123") assert message["position"] == 4 def test_read_last_message_when_there_are_no_messages(self, test_domain): message = test_domain.event_store.store._read_last_message("foo-bar") assert message is None
2.03125
2
pymeta/boot.py
set-soft/pymeta3
12
12782643
# -*- test-case-name: pymeta.test.test_grammar -*- """ The definition of PyMeta's language is itself a PyMeta grammar, but something has to be able to read that. Most of the code in this module is generated from that grammar (in future versions, it will hopefully all be generated). """ import string from pymeta.runtime import OMetaBase, ParseError, EOFError, expected class BootOMetaGrammar(OMetaBase): """ The bootstrap grammar, generated from L{pymeta.grammar.OMetaGrammar} via L{pymeta.builder.PythonBuilder}. """ globals = globals() def __init__(self, input): OMetaBase.__init__(self, input) self._ruleNames = [] def parseGrammar(self, name, builder, *args): """ Entry point for converting a grammar to code (of some variety). @param name: The name for this grammar. @param builder: A class that implements the grammar-building interface (interface to be explicitly defined later) """ self.builder = builder(name, self, *args) res, err = self.apply("grammar") try: x = self.input.head() except EOFError: pass else: raise err return res def applicationArgs(self): args = [] while True: try: (arg, endchar), err = self.pythonExpr(" >") if not arg: break args.append(self.builder.expr(arg)) if endchar == '>': break except ParseError: break if args: return args else: raise ParseError(self.input.position, expected("python expression")) def ruleValueExpr(self): (expr, endchar), err = self.pythonExpr(endChars="\r\n)]") if str(endchar) in ")]": self.input = self.input.prev() return self.builder.expr(expr) def semanticActionExpr(self): return self.builder.action(self.pythonExpr(')')[0][0]) def semanticPredicateExpr(self): expr = self.builder.expr(self.pythonExpr(')')[0][0]) return self.builder.pred(expr) def eatWhitespace(self): """ Consume input until a non-whitespace character is reached. """ consumingComment = False e = None while True: try: c, e = self.input.head() except EOFError: break t = self.input.tail() if c.isspace() or consumingComment: self.input = t if c == '\n': consumingComment = False elif c == '#': consumingComment = True else: break return True, e rule_spaces = eatWhitespace def rule_number(self): _locals = {'self': self} self.locals['number'] = _locals _G_apply_1, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) def _G_or_2(): _G_exactly_1, lastError = self.exactly('-') self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_barenumber, "barenumber", []) self.considerError(lastError) _locals['x'] = _G_apply_2 _G_python_3, lastError = eval('self.builder.exactly(-x)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_3(): _G_apply_1, lastError = self._apply(self.rule_barenumber, "barenumber", []) self.considerError(lastError) _locals['x'] = _G_apply_1 _G_python_2, lastError = eval('self.builder.exactly(x)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) _G_or_4, lastError = self._or([_G_or_2, _G_or_3]) self.considerError(lastError) return (_G_or_4, self.currentError) def rule_barenumber(self): _locals = {'self': self} self.locals['barenumber'] = _locals def _G_or_1(): _G_exactly_1, lastError = self.exactly('0') self.considerError(lastError) def _G_or_2(): def _G_or_1(): _G_exactly_1, lastError = self.exactly('x') self.considerError(lastError) return (_G_exactly_1, self.currentError) def _G_or_2(): _G_exactly_1, lastError = self.exactly('X') self.considerError(lastError) return (_G_exactly_1, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) def _G_many_4(): _G_apply_1, lastError = self._apply(self.rule_hexdigit, "hexdigit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_5, lastError = self.many(_G_many_4) self.considerError(lastError) _locals['hs'] = _G_many_5 _G_python_6, lastError = eval("int(''.join(hs), 16)", self.globals, _locals), None self.considerError(lastError) return (_G_python_6, self.currentError) def _G_or_3(): def _G_many_1(): _G_apply_1, lastError = self._apply(self.rule_octaldigit, "octaldigit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_2, lastError = self.many(_G_many_1) self.considerError(lastError) _locals['ds'] = _G_many_2 _G_python_3, lastError = eval("int('0'+''.join(ds), 8)", self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) _G_or_4, lastError = self._or([_G_or_2, _G_or_3]) self.considerError(lastError) return (_G_or_4, self.currentError) def _G_or_2(): def _G_many1_1(): _G_apply_1, lastError = self._apply(self.rule_digit, "digit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many1_2, lastError = self.many(_G_many1_1, _G_many1_1()) self.considerError(lastError) _locals['ds'] = _G_many1_2 _G_python_3, lastError = eval("int(''.join(ds))", self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) def rule_octaldigit(self): _locals = {'self': self} self.locals['octaldigit'] = _locals _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) _locals['x'] = _G_apply_1 def _G_pred_2(): _G_python_1, lastError = eval('x in string.octdigits', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_pred_3, lastError = self.pred(_G_pred_2) self.considerError(lastError) _G_python_4, lastError = eval('x', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def rule_hexdigit(self): _locals = {'self': self} self.locals['hexdigit'] = _locals _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) _locals['x'] = _G_apply_1 def _G_pred_2(): _G_python_1, lastError = eval('x in string.hexdigits', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_pred_3, lastError = self.pred(_G_pred_2) self.considerError(lastError) _G_python_4, lastError = eval('x', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def rule_escapedChar(self): _locals = {'self': self} self.locals['escapedChar'] = _locals _G_exactly_1, lastError = self.exactly('\\') self.considerError(lastError) def _G_or_2(): _G_exactly_1, lastError = self.exactly('n') self.considerError(lastError) _G_python_2, lastError = eval('"\\n"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_3(): _G_exactly_1, lastError = self.exactly('r') self.considerError(lastError) _G_python_2, lastError = eval('"\\r"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_4(): _G_exactly_1, lastError = self.exactly('t') self.considerError(lastError) _G_python_2, lastError = eval('"\\t"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_5(): _G_exactly_1, lastError = self.exactly('b') self.considerError(lastError) _G_python_2, lastError = eval('"\\b"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_6(): _G_exactly_1, lastError = self.exactly('f') self.considerError(lastError) _G_python_2, lastError = eval('"\\f"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_7(): _G_exactly_1, lastError = self.exactly('"') self.considerError(lastError) _G_python_2, lastError = eval('\'"\'', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_8(): _G_exactly_1, lastError = self.exactly("'") self.considerError(lastError) _G_python_2, lastError = eval('"\'"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_9(): _G_exactly_1, lastError = self.exactly('\\') self.considerError(lastError) _G_python_2, lastError = eval('"\\\\"', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) _G_or_10, lastError = self._or([_G_or_2, _G_or_3, _G_or_4, _G_or_5, _G_or_6, _G_or_7, _G_or_8, _G_or_9]) self.considerError(lastError) return (_G_or_10, self.currentError) def rule_character(self): _locals = {'self': self} self.locals['character'] = _locals _G_python_1, lastError = eval('"\'"', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) def _G_or_3(): _G_apply_1, lastError = self._apply(self.rule_escapedChar, "escapedChar", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_4(): _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_or_5, lastError = self._or([_G_or_3, _G_or_4]) self.considerError(lastError) _locals['c'] = _G_or_5 _G_python_6, lastError = eval('"\'"', self.globals, _locals), None self.considerError(lastError) _G_apply_7, lastError = self._apply(self.rule_token, "token", [_G_python_6]) self.considerError(lastError) _G_python_8, lastError = eval('self.builder.exactly(c)', self.globals, _locals), None self.considerError(lastError) return (_G_python_8, self.currentError) def rule_string(self): _locals = {'self': self} self.locals['string'] = _locals _G_python_1, lastError = eval('\'"\'', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) def _G_many_3(): def _G_or_1(): _G_apply_1, lastError = self._apply(self.rule_escapedChar, "escapedChar", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_2(): def _G_not_1(): _G_exactly_1, lastError = self.exactly('"') self.considerError(lastError) return (_G_exactly_1, self.currentError) _G_not_2, lastError = self._not(_G_not_1) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) return (_G_apply_3, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) _G_many_4, lastError = self.many(_G_many_3) self.considerError(lastError) _locals['c'] = _G_many_4 _G_python_5, lastError = eval('\'"\'', self.globals, _locals), None self.considerError(lastError) _G_apply_6, lastError = self._apply(self.rule_token, "token", [_G_python_5]) self.considerError(lastError) _G_python_7, lastError = eval("self.builder.exactly(''.join(c))", self.globals, _locals), None self.considerError(lastError) return (_G_python_7, self.currentError) def rule_name(self): _locals = {'self': self} self.locals['name'] = _locals _G_apply_1, lastError = self._apply(self.rule_letter, "letter", []) self.considerError(lastError) _locals['x'] = _G_apply_1 def _G_many_2(): _G_apply_1, lastError = self._apply(self.rule_letterOrDigit, "letterOrDigit", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_3, lastError = self.many(_G_many_2) self.considerError(lastError) _locals['xs'] = _G_many_3 _G_python_4, lastError = eval('xs.insert(0, x)', self.globals, _locals), None self.considerError(lastError) _G_python_5, lastError = eval("''.join(xs)", self.globals, _locals), None self.considerError(lastError) return (_G_python_5, self.currentError) def rule_application(self): _locals = {'self': self} self.locals['application'] = _locals _G_python_1, lastError = eval("'<'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) _G_apply_4, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['name'] = _G_apply_4 def _G_or_5(): _G_exactly_1, lastError = self.exactly(' ') self.considerError(lastError) _G_python_2, lastError = eval('self.applicationArgs()', self.globals, _locals), None self.considerError(lastError) _locals['args'] = _G_python_2 _G_python_3, lastError = eval('self.builder.apply(name, self.name, *args)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_6(): _G_python_1, lastError = eval("'>'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.builder.apply(name, self.name)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) _G_or_7, lastError = self._or([_G_or_5, _G_or_6]) self.considerError(lastError) return (_G_or_7, self.currentError) def rule_expr1(self): _locals = {'self': self} self.locals['expr1'] = _locals def _G_or_1(): _G_apply_1, lastError = self._apply(self.rule_application, "application", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_2(): _G_apply_1, lastError = self._apply(self.rule_ruleValue, "ruleValue", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_3(): _G_apply_1, lastError = self._apply(self.rule_semanticPredicate, "semanticPredicate", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_4(): _G_apply_1, lastError = self._apply(self.rule_semanticAction, "semanticAction", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_5(): _G_apply_1, lastError = self._apply(self.rule_number, "number", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_6(): _G_apply_1, lastError = self._apply(self.rule_character, "character", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_7(): _G_apply_1, lastError = self._apply(self.rule_string, "string", []) self.considerError(lastError) return (_G_apply_1, self.currentError) def _G_or_8(): _G_python_1, lastError = eval("'('", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr, "expr", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval("')'", self.globals, _locals), None self.considerError(lastError) _G_apply_5, lastError = self._apply(self.rule_token, "token", [_G_python_4]) self.considerError(lastError) _G_python_6, lastError = eval('e', self.globals, _locals), None self.considerError(lastError) return (_G_python_6, self.currentError) def _G_or_9(): _G_python_1, lastError = eval("'['", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr, "expr", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval("']'", self.globals, _locals), None self.considerError(lastError) _G_apply_5, lastError = self._apply(self.rule_token, "token", [_G_python_4]) self.considerError(lastError) _G_python_6, lastError = eval('self.builder.listpattern(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_6, self.currentError) _G_or_10, lastError = self._or([_G_or_1, _G_or_2, _G_or_3, _G_or_4, _G_or_5, _G_or_6, _G_or_7, _G_or_8, _G_or_9]) self.considerError(lastError) return (_G_or_10, self.currentError) def rule_expr2(self): _locals = {'self': self} self.locals['expr2'] = _locals def _G_or_1(): _G_python_1, lastError = eval("'~'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) def _G_or_3(): _G_python_1, lastError = eval("'~'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr2, "expr2", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval('self.builder.lookahead(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def _G_or_4(): _G_apply_1, lastError = self._apply(self.rule_expr2, "expr2", []) self.considerError(lastError) _locals['e'] = _G_apply_1 _G_python_2, lastError = eval('self.builder._not(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) _G_or_5, lastError = self._or([_G_or_3, _G_or_4]) self.considerError(lastError) return (_G_or_5, self.currentError) def _G_or_2(): _G_apply_1, lastError = self._apply(self.rule_expr1, "expr1", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) def rule_expr3(self): _locals = {'self': self} self.locals['expr3'] = _locals def _G_or_1(): _G_apply_1, lastError = self._apply(self.rule_expr2, "expr2", []) self.considerError(lastError) _locals['e'] = _G_apply_1 def _G_or_2(): _G_exactly_1, lastError = self.exactly('*') self.considerError(lastError) _G_python_2, lastError = eval('self.builder.many(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_3(): _G_exactly_1, lastError = self.exactly('+') self.considerError(lastError) _G_python_2, lastError = eval('self.builder.many1(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_4(): _G_exactly_1, lastError = self.exactly('?') self.considerError(lastError) _G_python_2, lastError = eval('self.builder.optional(e)', self.globals, _locals), None self.considerError(lastError) return (_G_python_2, self.currentError) def _G_or_5(): _G_python_1, lastError = eval('e', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_6, lastError = self._or([_G_or_2, _G_or_3, _G_or_4, _G_or_5]) self.considerError(lastError) _locals['r'] = _G_or_6 def _G_or_7(): _G_exactly_1, lastError = self.exactly(':') self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_2 _G_python_3, lastError = eval('self.builder.bind(r, n)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_8(): _G_python_1, lastError = eval('r', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_9, lastError = self._or([_G_or_7, _G_or_8]) self.considerError(lastError) return (_G_or_9, self.currentError) def _G_or_2(): _G_python_1, lastError = eval("':'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_3 _G_python_4, lastError = eval('self.builder.bind(self.builder.apply("anything", self.name), n)', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) _G_or_3, lastError = self._or([_G_or_1, _G_or_2]) self.considerError(lastError) return (_G_or_3, self.currentError) def rule_expr4(self): _locals = {'self': self} self.locals['expr4'] = _locals def _G_many_1(): _G_apply_1, lastError = self._apply(self.rule_expr3, "expr3", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_2, lastError = self.many(_G_many_1) self.considerError(lastError) _locals['es'] = _G_many_2 _G_python_3, lastError = eval('self.builder.sequence(es)', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_expr(self): _locals = {'self': self} self.locals['expr'] = _locals _G_apply_1, lastError = self._apply(self.rule_expr4, "expr4", []) self.considerError(lastError) _locals['e'] = _G_apply_1 def _G_many_2(): _G_python_1, lastError = eval("'|'", self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr4, "expr4", []) self.considerError(lastError) return (_G_apply_3, self.currentError) _G_many_3, lastError = self.many(_G_many_2) self.considerError(lastError) _locals['es'] = _G_many_3 _G_python_4, lastError = eval('es.insert(0, e)', self.globals, _locals), None self.considerError(lastError) _G_python_5, lastError = eval('self.builder._or(es)', self.globals, _locals), None self.considerError(lastError) return (_G_python_5, self.currentError) def rule_ruleValue(self): _locals = {'self': self} self.locals['ruleValue'] = _locals _G_python_1, lastError = eval('"=>"', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.ruleValueExpr()', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_semanticPredicate(self): _locals = {'self': self} self.locals['semanticPredicate'] = _locals _G_python_1, lastError = eval('"?("', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.semanticPredicateExpr()', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_semanticAction(self): _locals = {'self': self} self.locals['semanticAction'] = _locals _G_python_1, lastError = eval('"!("', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_python_3, lastError = eval('self.semanticActionExpr()', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def rule_rulePart(self): _locals = {'self': self} self.locals['rulePart'] = _locals _G_apply_1, lastError = self._apply(self.rule_anything, "anything", []) self.considerError(lastError) _locals['requiredName'] = _G_apply_1 _G_apply_2, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_3 def _G_pred_4(): _G_python_1, lastError = eval('n == requiredName', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_pred_5, lastError = self.pred(_G_pred_4) self.considerError(lastError) _G_python_6, lastError = eval('setattr(self, "name", n)', self.globals, _locals), None self.considerError(lastError) _G_apply_7, lastError = self._apply(self.rule_expr4, "expr4", []) self.considerError(lastError) _locals['args'] = _G_apply_7 def _G_or_8(): _G_python_1, lastError = eval('"::="', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_token, "token", [_G_python_1]) self.considerError(lastError) _G_apply_3, lastError = self._apply(self.rule_expr, "expr", []) self.considerError(lastError) _locals['e'] = _G_apply_3 _G_python_4, lastError = eval('self.builder.sequence([args, e])', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError) def _G_or_9(): _G_python_1, lastError = eval('args', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_10, lastError = self._or([_G_or_8, _G_or_9]) self.considerError(lastError) return (_G_or_10, self.currentError) def rule_rule(self): _locals = {'self': self} self.locals['rule'] = _locals _G_apply_1, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) def _G_lookahead_2(): _G_apply_1, lastError = self._apply(self.rule_name, "name", []) self.considerError(lastError) _locals['n'] = _G_apply_1 return (_locals['n'], self.currentError) _G_lookahead_3, lastError = self.lookahead(_G_lookahead_2) self.considerError(lastError) _G_python_4, lastError = eval('n', self.globals, _locals), None self.considerError(lastError) _G_apply_5, lastError = self._apply(self.rule_rulePart, "rulePart", [_G_python_4]) self.considerError(lastError) _locals['r'] = _G_apply_5 def _G_or_6(): def _G_many1_1(): _G_python_1, lastError = eval('n', self.globals, _locals), None self.considerError(lastError) _G_apply_2, lastError = self._apply(self.rule_rulePart, "rulePart", [_G_python_1]) self.considerError(lastError) return (_G_apply_2, self.currentError) _G_many1_2, lastError = self.many(_G_many1_1, _G_many1_1()) self.considerError(lastError) _locals['rs'] = _G_many1_2 _G_python_3, lastError = eval('self.builder.rule(n, self.builder._or([r] + rs))', self.globals, _locals), None self.considerError(lastError) return (_G_python_3, self.currentError) def _G_or_7(): _G_python_1, lastError = eval('self.builder.rule(n, r)', self.globals, _locals), None self.considerError(lastError) return (_G_python_1, self.currentError) _G_or_8, lastError = self._or([_G_or_6, _G_or_7]) self.considerError(lastError) return (_G_or_8, self.currentError) def rule_grammar(self): _locals = {'self': self} self.locals['grammar'] = _locals def _G_many_1(): _G_apply_1, lastError = self._apply(self.rule_rule, "rule", []) self.considerError(lastError) return (_G_apply_1, self.currentError) _G_many_2, lastError = self.many(_G_many_1) self.considerError(lastError) _locals['rs'] = _G_many_2 _G_apply_3, lastError = self._apply(self.rule_spaces, "spaces", []) self.considerError(lastError) _G_python_4, lastError = eval('self.builder.makeGrammar(rs)', self.globals, _locals), None self.considerError(lastError) return (_G_python_4, self.currentError)
2.953125
3
amlb/utils/serialization.py
PGijsbers/automlbenchmark
282
12782644
<filename>amlb/utils/serialization.py import logging import math import os import pickle import re from typing import Optional from .core import Namespace as ns, json_dump, json_load from .process import profile log = logging.getLogger(__name__) def _import_data_libraries(): try: import numpy as np except ImportError: np = None try: import pandas as pd except ImportError: pd = None try: import scipy.sparse as sp except ImportError: sp = None return np, pd, sp ser_config = ns( # the serializer to use when there's no specific serializer available. # mainly intended to serialize simple data structures like lists. # allowed=['pickle', 'json'] fallback_serializer='json', # if numpy can use pickle to serialize ndarrays, numpy_allow_pickle=True, # format used to serialize pandas dataframes/series between processes. # allowed=['pickle', 'parquet', 'hdf', 'json'] pandas_serializer='parquet', # the compression format used when serializing pandas dataframes/series. # allowed=[None, 'infer', 'bz2', 'gzip'] # 'infer' (= None) is the fastest but no compression, # 'gzip' fast write and read with good compression. # 'bz2' looks like the best compression/time ratio (faster write, sometimes slightly slower read) pandas_compression='infer', # the compression format used when serializing pandas dataframes/series to parquet. # allowed=[None, 'snappy', 'gzip', 'brotli'] pandas_parquet_compression=None, # if sparse matrices should be compressed during serialization. sparse_matrix_compression=True, # if sparse matrices should be deserialized to some specific format: # allowed=[None, 'array', 'dense'] # None (no change), 'array' (numpy), 'dense' (dense matrix). sparse_matrix_deserialized_format=None, # if sparse dataframes should be deserialized to some specific format: # allowed=[None, 'array', 'dense'] # None (no change), 'array' (numpy), 'dense' (dense dataframe/series). sparse_dataframe_deserialized_format=None, ) __series__ = '_series_' class SerializationError(Exception): pass def is_serializable_data(data): np, pd, sp = _import_data_libraries() return isinstance(data, (np.ndarray, sp.spmatrix, pd.DataFrame, pd.Series)) def is_sparse(data): np, pd, sp = _import_data_libraries() return ((sp and isinstance(data, sp.spmatrix)) # sparse matrix or (pd and isinstance(data, pd.Series) and pd.api.types.is_sparse(data.dtype)) # sparse Series or (pd and isinstance(data, pd.DataFrame) # if one column is sparse, the dataframe is considered as sparse and any(pd.api.types.is_sparse(dt) for dt in data.dtypes))) def unsparsify(*data, fmt='dense'): if len(data) == 1: return _unsparsify(data[0], fmt=fmt) else: return tuple(_unsparsify(d, fmt=fmt) for d in data) def _unsparsify(data, fmt=None): """ :param data: the matrix to process. :param fmt: one of None, 'array', 'dense' :return: the original matrix is fmt is None, a numpy array if fmt is 'array', a dense version of the data type if fmt is 'dense'. """ if fmt is None: return data np, pd, sp = _import_data_libraries() if sp and isinstance(data, sp.spmatrix): return (data.toarray() if fmt == 'array' else data.todense() if fmt == 'dense' else data) elif pd and isinstance(data, (pd.DataFrame, pd.Series)): return (data.to_numpy(copy=False) if fmt == 'array' else _pd_to_dense(pd, data) if fmt == 'dense' and is_sparse(data) else data) else: return data def _pd_to_dense(pd, df): if hasattr(df, 'sparse'): return df.sparse.to_dense() data = {k: (v.sparse.to_dense() if hasattr(v, 'sparse') else v) for k, v in df.items()} return pd.DataFrame(data, index=df.index, columns=df.columns) def _pd_dtypes_to_str(pd, df): return {k: str(v) for k, v in df.dtypes.items()} def _pd_dtypes_from_str(pd, dt): def dt_from_str(s): m_sparse = re.match(r"Sparse\[(.*)]", s) if m_sparse: sub_type, fill_value = [t.strip() for t in m_sparse.group(1).split(",", 1)] try: fill_value = eval(fill_value, {'nan': math.nan, '<NA>': pd.NA}) except ValueError: pass dt = pd.api.types.pandas_dtype(f"Sparse[{sub_type}]") return pd.SparseDtype(dt, fill_value=fill_value) else: return pd.api.types.pandas_dtype(s) return {k: dt_from_str(v) for k, v in dt.items()} @profile(log) def serialize_data(data, path, config: Optional[ns] = None): config = (config | ser_config) if config else ser_config root, ext = os.path.splitext(path) np, pd, sp = _import_data_libraries() if np and isinstance(data, np.ndarray): path = f"{root}.npy" np.save(path, data, allow_pickle=config.numpy_allow_pickle) elif sp and isinstance(data, sp.spmatrix): # use custom extension to recognize sparsed matrices from file name. # .npz is automatically appended if missing, and can also potentially be used for numpy arrays. path = f"{root}.spy.npz" sp.save_npz(path, data, compressed=config.sparse_matrix_compression) elif pd and isinstance(data, (pd.DataFrame, pd.Series)): path = f"{root}.pd" if isinstance(data, pd.DataFrame): # pandas has this habit of inferring value types when data are loaded from file, # for example, 'true' and 'false' are converted automatically to booleans, even for column names… data.rename(str, axis='columns', inplace=True) ser = config.pandas_serializer if ser == 'pickle': data.to_pickle(path, compression=config.pandas_compression) elif ser == 'parquet': if isinstance(data, pd.Series): data = pd.DataFrame({__series__: data}) # parquet serialization doesn't support sparse dataframes if is_sparse(data): path = f"{root}.sparse.pd" dtypes = _pd_dtypes_to_str(pd, data) json_dump(dtypes, f"{path}.dtypes", style='compact') data = unsparsify(data) data.to_parquet(path, compression=config.pandas_parquet_compression) elif ser == 'hdf': data.to_hdf(path, os.path.basename(path), mode='w', format='table') elif ser == 'json': data.to_json(path, compression=config.pandas_compression) else: # fallback serializer if config.fallback_serializer == 'json': path = f"{root}.json" json_dump(data, path, style='compact') else: path = f"{root}.pkl" with open(path, 'wb') as f: pickle.dump(data, f) return path @profile(log) def deserialize_data(path, config: Optional[ns] = None): config = (config | ser_config) if config else ser_config np, pd, sp = _import_data_libraries() base, ext = os.path.splitext(path) if ext == '.npy': if np is None: raise SerializationError(f"Numpy is required to deserialize {path}.") return np.load(path, allow_pickle=config.numpy_allow_pickle) elif ext == '.npz': _, ext2 = os.path.splitext(base) if ext2 == '.spy': if sp is None: raise SerializationError(f"Scipy is required to deserialize {path}.") sp_matrix = sp.load_npz(path) return unsparsify(sp_matrix, fmt=config.sparse_matrix_deserialized_format) else: if np is None: raise SerializationError(f"Numpy is required to deserialize {path}.") with np.load(path, allow_pickle=config.numpy_pickle) as loaded: return loaded elif ext == '.pd': if pd is None: raise SerializationError(f"Pandas is required to deserialize {path}.") ser = config.pandas_serializer df = None if ser == 'pickle': df = pd.read_pickle(path, compression=config.pandas_compression) elif ser == 'parquet': df = pd.read_parquet(path) if len(df.columns) == 1 and df.columns[0] == __series__: df = df.squeeze() _, ext2 = os.path.splitext(base) if config.sparse_dataframe_deserialized_format is None and ext2 == '.sparse': # trying to restore dataframe as sparse if it was as such before serialization # and if the dataframe format should remain unchanged j_dtypes = json_load(f"{path}.dtypes") dtypes = _pd_dtypes_from_str(pd, j_dtypes) df = df.astype(dtypes, copy=False) elif ser == 'hdf': df = pd.read_hdf(path, os.path.basename(path)) elif ser == 'json': df = pd.read_json(path, compression=config.pandas_compression) return unsparsify(df, fmt=config.sparse_dataframe_deserialized_format) elif ext == '.json': return json_load(path) elif ext == '.pkl': with open(path, 'rb') as f: return pickle.load(f) else: raise SerializationError(f"Can not deserialize file `{path}` in unknown format.")
2.1875
2
nanak_customization/nanak_customization/sales_invoice.py
JitendraSAW/Nanak-Stores
0
12782645
import frappe def after_submit(self,method): if self.picklist_reference: frappe.db.set_value("Nanak Pick List", self.picklist_reference, "sales_invoice", self.name) frappe.db.set_value("Nanak Pick List", self.picklist_reference, "sales_invoice_status", "Created")
1.773438
2
src/main/python/transectdata/transectdata.py
boom-roasted/ImageWAO
1
12782646
import json from pathlib import Path from typing import Dict from countdata import CountData from drawingdata import DrawingDataList class TransectData: """ Manages transect save data in a primitive data state, such that it can be easily serialized. """ def __init__(self, transectData: Dict[str, Dict[str, list]], fp: Path): """ { 'ImageName.jpg': { "drawings": [ DrawingData1.toDict(), DrawingData2.toDict(), ... ] } } Include `fp` for traceability. """ self._transectData: Dict[str, Dict[str, list]] = transectData self.fp = fp @staticmethod def load(fp): """ Loads a serialized file. If the data cannot be decoded, The save data is initialized with a blank dict. """ try: with open(fp, "r") as f: data = json.load(f) except json.decoder.JSONDecodeError: print( f"Badly formed JSON file. Data will be overwritten when file is saved: {fp}" ) data = {} return TransectData(data, fp) def dump(self, fp): """ Serialize save data and save to specified path. Writes this data on top of already existing data. """ with open(fp, "w") as f: json.dump(self._transectData, f, indent=4) def addImage(self, imageName): """ Ensure that an image with the name imageName is in this save data. """ if imageName not in self._transectData.keys(): self._transectData[imageName] = {} def addDrawings(self, imageName, drawings: DrawingDataList): """ Add drawings (for a specific image) to the save data. This will replace any drawings currently in this save data instance associated with this image. """ # Ensure image name is present self.addImage(imageName) # Add these drawings the image dict self._transectData[imageName]["drawings"] = drawings.toDict() def removeDrawings(self, imageName: str): """ Remove the drawings associated with an image. """ if imageName in self._transectData.keys(): try: self._transectData[imageName].pop("drawings") # There might not have been this data saved yet except KeyError: pass def imageHasDrawings(self, imageName: str, otherDrawings: DrawingDataList): """ Compares the drawings associated with `imageName`, and returns `True` if those drawings match `otherDrawings`. """ # Check if image has no drawings or data if imageName not in self._transectData.keys(): return False # Check if image has no drawings if "drawings" not in self._transectData[imageName].keys(): return False # Check if image drawings are the same as the input # also lol TODO stop this maddness drawings = DrawingDataList.loads( json.dumps(self._transectData[imageName]["drawings"]) ) return drawings == otherDrawings def drawings(self): """ Generator yielding a tuple of images with corresponding drawings. (imageName:str, drawings:DrawingDataList) """ for imageName, imageData in self._transectData.items(): if "drawings" in imageData.keys(): yield imageName, DrawingDataList.load(imageData["drawings"]) def imageCounts(self): """ Generator yielding tuple of images and their counts. (imageName:str, counts:CountData) """ for imageName, imageData in self._transectData.items(): if "drawings" in imageData.keys(): drawings = imageData["drawings"] for drawing in drawings: countData = CountData.fromDict(drawing["CountData"]) if not countData.isEmpty(): yield imageName, countData def uniqueSpecies(self): """ Returns a list of all the different species in this save file """ species = [] for _, countData in self.imageCounts(): if countData.species not in species: species.append(countData.species) return species def uniqueAnimals(self): """ Returns a list of the animals in this data set, excluding those marked as "duplicates". The length of this list is the total number of animals counted in this data set. """ animals = [] for _, countData in self.imageCounts(): if not countData.isDuplicate: animals.extend([countData.species] * countData.number) return animals def uniqueImages(self): """ Returns a list of unique images in this data set. """ imageNames = [] for imageName, _ in self.imageCounts(): if imageName not in imageNames: imageNames.append(imageName) return imageNames def __repr__(self): return f"TransectData({super().__repr__()})" def sorted(self): """Sort by key values (image names)""" return TransectData( dict(sorted(self._transectData.items(), key=lambda t: t[0])), self.fp )
3.171875
3
shorttext/metrics/wasserstein/wordmoverdist.py
trendmicro/PyShortTextCategorization
0
12782647
<gh_stars>0 from itertools import product import pulp from scipy.spatial.distance import euclidean from shorttext.utils.gensim_corpora import tokens_to_fracdict # use PuLP def word_mover_distance_probspec(first_sent_tokens, second_sent_tokens, wvmodel, distancefunc=euclidean, lpFile=None): """ Compute the Word Mover's distance (WMD) between the two given lists of tokens, and return the LP problem class. Using methods of linear programming, supported by PuLP, calculate the WMD between two lists of words. A word-embedding model has to be provided. The problem class is returned, containing all the information about the LP. Reference: <NAME>, <NAME>, <NAME>, <NAME>, "From Word Embeddings to Document Distances," *ICML* (2015). :param first_sent_tokens: first list of tokens. :param second_sent_tokens: second list of tokens. :param wvmodel: word-embedding models. :param distancefunc: distance function that takes two numpy ndarray. :param lpFile: log file to write out. :return: a linear programming problem contains the solution :type first_sent_tokens: list :type second_sent_tokens: list :type wvmodel: gensim.models.keyedvectors.KeyedVectors :type distancefunc: function :type lpFile: str :rtype: pulp.LpProblem """ all_tokens = list(set(first_sent_tokens+second_sent_tokens)) wordvecs = {token: wvmodel[token] for token in all_tokens} first_sent_buckets = tokens_to_fracdict(first_sent_tokens) second_sent_buckets = tokens_to_fracdict(second_sent_tokens) T = pulp.LpVariable.dicts('T_matrix', list(product(all_tokens, all_tokens)), lowBound=0) prob = pulp.LpProblem('WMD', sense=pulp.LpMinimize) prob += pulp.lpSum([T[token1, token2]*distancefunc(wordvecs[token1], wordvecs[token2]) for token1, token2 in product(all_tokens, all_tokens)]) for token2 in second_sent_buckets: prob += pulp.lpSum([T[token1, token2] for token1 in first_sent_buckets])==second_sent_buckets[token2] for token1 in first_sent_buckets: prob += pulp.lpSum([T[token1, token2] for token2 in second_sent_buckets])==first_sent_buckets[token1] if lpFile!=None: prob.writeLP(lpFile) prob.solve() return prob def word_mover_distance(first_sent_tokens, second_sent_tokens, wvmodel, distancefunc=euclidean, lpFile=None): """ Compute the Word Mover's distance (WMD) between the two given lists of tokens. Using methods of linear programming, supported by PuLP, calculate the WMD between two lists of words. A word-embedding model has to be provided. WMD is returned. Reference: <NAME>, <NAME>, <NAME>, <NAME>, "From Word Embeddings to Document Distances," *ICML* (2015). :param first_sent_tokens: first list of tokens. :param second_sent_tokens: second list of tokens. :param wvmodel: word-embedding models. :param distancefunc: distance function that takes two numpy ndarray. :param lpFile: log file to write out. :return: Word Mover's distance (WMD) :type first_sent_tokens: list :type second_sent_tokens: list :type wvmodel: gensim.models.keyedvectors.KeyedVectors :type distancefunc: function :type lpFile: str :rtype: float """ prob = word_mover_distance_probspec(first_sent_tokens, second_sent_tokens, wvmodel, distancefunc=distancefunc, lpFile=lpFile) return pulp.value(prob.objective)
2.921875
3
damera/cmd/conductor.py
klonhj2015/damera
0
12782648
from oslo_log import log as logging LOG = logging.getLogger(__name__) def main(): pass
1.070313
1
scripts/automation/trex_control_plane/interactive/trex/emu/emu_plugins/emu_plugin_ipv6.py
jmguzmanc/trex-core
0
12782649
<reponame>jmguzmanc/trex-core<gh_stars>0 from trex.emu.api import * from trex.emu.emu_plugins.emu_plugin_base import * from trex.emu.trex_emu_conversions import Ipv6 from trex.emu.trex_emu_validator import EMUValidator import trex.utils.parsing_opts as parsing_opts class IPV6Plugin(EMUPluginBase): '''Defines ipv6 plugin RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) RFC 4861: Neighbor Discovery for IP Version 6 (IPv6) RFC 4862: IPv6 Stateless Address Autoconfiguration. not implemented: RFC4941: random local ipv6 using md5 ''' plugin_name = 'IPV6' IPV6_STATES = { 16: 'Learned', 17: 'Incomplete', 18: 'Complete', 19: 'Refresh' } # init jsons example for SDK INIT_JSON_NS = {'ipv6': {'mtu': 1500, 'dmac': [1, 2, 3, 4, 5 ,6], 'vec': [[244, 0, 0, 0], [244, 0, 0, 1]], 'version': 1}} """ :parameters: mtu: uint16 Maximun transmission unit. dmac: [6]byte Designator mac. IMPORTANT !! vec: list of [16]byte IPv4 vector representing multicast addresses. version: uint16 The init version, 1 or 2 (default). It learns the version from the first Query. """ INIT_JSON_CLIENT = {'ipv6': {'nd_timer': 29, 'nd_timer_disable': False}} """ :parameters: nd_timer: uint32 IPv6-nd timer. nd_timer_disable: bool Enable/Disable IPv6-nd timer. """ def __init__(self, emu_client): super(IPV6Plugin, self).__init__(emu_client, 'ipv6_ns_cnt') # API methods @client_api('getter', True) def get_cfg(self, ns_key): """ Get IPv6 configuration from namespace. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` :return: | dict: IPv6 configuration like: | {'dmac': [0, 0, 0, 112, 0, 1], 'version': 2, 'mtu': 1500} """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}] EMUValidator.verify(ver_args) return self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_get_cfg', ns_key) @client_api('command', True) def set_cfg(self, ns_key, mtu, dmac): """ Set IPv6 configuration on namespcae. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` mtu: int MTU for ipv6 plugin. dmac: list of bytes Designator mac for ipv6 plugin. """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}, {'name': 'mtu', 'arg': mtu, 't': 'mtu'}, {'name': 'dmac', 'arg': dmac, 't': 'mac'},] EMUValidator.verify(ver_args) dmac = Mac(dmac) return self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_set_cfg', ns_key, mtu = mtu, dmac = dmac.V()) @client_api('command', True) def add_mld(self, ns_key, ipv6_vec): """ Add mld to ipv6 plugin. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ipv6_vec: list of lists of bytes List of ipv6 addresses. Must be a valid ipv6 mld address. .e.g.[[0xff,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1] ] """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}, {'name': 'ipv6_vec', 'arg': ipv6_vec, 't': 'ipv6_mc', 'allow_list': True},] EMUValidator.verify(ver_args) ipv6_vec = [Ipv6(ip, mc = True) for ip in ipv6_vec] ipv6_vec = [ipv6.V() for ipv6 in ipv6_vec] return self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_add', ns_key, vec = ipv6_vec) @client_api('command', True) def add_gen_mld(self, ns_key, ipv6_start, ipv6_count = 1): """ Add mld to ipv6 plugin, generating sequence of addresses. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ipv6_start: lists of bytes ipv6 addresses to start from. Must be a valid ipv6 mld addresses. ipv6_count: int | ipv6 addresses to add | i.e -> `ipv6_start` = [0, .., 0] and `ipv6_count` = 2 ->[[0, .., 0], [0, .., 1]]. """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}, {'name': 'ipv6_start', 'arg': ipv6_start, 't': 'ipv6_mc'}, {'name': 'ipv6_count', 'arg': ipv6_count, 't': int}] EMUValidator.verify(ver_args) ipv6_vec = self._create_ip_vec(ipv6_start, ipv6_count, 'ipv6', True) ipv6_vec = [ip.V() for ip in ipv6_vec] return self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_add', ns_key, vec = ipv6_vec) @client_api('command', True) def remove_mld(self, ns_key, ipv6_vec): """ Remove mld from ipv6 plugin. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ipv6_vec: list of lists of bytes List of ipv6 addresses. Must be a valid ipv6 mld address. """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}, {'name': 'ipv6_vec', 'arg': ipv6_vec, 't': 'ipv6_mc', 'allow_list': True},] EMUValidator.verify(ver_args) ipv6_vec = [Ipv6(ip, mc = True) for ip in ipv6_vec] ipv6_vec = [ipv6.V() for ipv6 in ipv6_vec] return self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_remove', ns_key, vec = ipv6_vec) @client_api('command', True) def remove_gen_mld(self, ns_key, ipv6_start, ipv6_count = 1): """ Remove mld from ipv6 plugin. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ipv6_start: lists of bytes ipv6 address to start from. ipv6_count: int | ipv6 addresses to add | i.e -> `ipv6_start` = [0, .., 0] and `ipv6_count` = 2 ->[[0, .., 0], [0, .., 1]]. """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}, {'name': 'ipv6_start', 'arg': ipv6_start, 't': 'ipv6_mc'}, {'name': 'ipv6_count', 'arg': ipv6_count, 't': int}] EMUValidator.verify(ver_args) ipv6_vec = self._create_ip_vec(ipv6_start, ipv6_count, 'ipv6', True) ipv6_vec = [ip.V() for ip in ipv6_vec] return self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_remove', ns_key, vec = ipv6_vec) @client_api('command', True) def iter_mld(self, ns_key, ipv6_amount = None): """ Iterates over current mld's in ipv6 plugin. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ipv6_amount: int Amount of ipv6 addresses to fetch, defaults to None means all. :returns: | list: List of ipv6 addresses dict: | {'refc': 100, 'management': False, 'ipv6': [255, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]} """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}, {'name': 'ipv6_amount', 'arg': ipv6_amount, 't': int, 'must': False},] EMUValidator.verify(ver_args) params = ns_key.conv_to_dict(add_tunnel_key = True) return self.emu_c._get_n_items(cmd = 'ipv6_mld_ns_iter', amount = ipv6_amount, **params) @client_api('command', True) def remove_all_mld(self, ns_key): ''' Remove all user created mld(s) from ipv6 plugin. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ''' ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey}] EMUValidator.verify(ver_args) mlds = self.iter_mld(ns_key) mlds = [m['ipv6'] for m in mlds if m['management']] if mlds: self.emu_c._send_plugin_cmd_to_ns('ipv6_mld_ns_remove', ns_key, vec = mlds) @client_api('getter', True) def show_cache(self, ns_key): """ Return ipv6 cache for a given namespace. :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` :returns: | list: list of ipv6 cache records | [{ | 'ipv6': list of 16 bytes, | 'refc': int, | 'state': string, | 'resolve': bool, | 'mac': list of 6 bytes} | ]. """ ver_args = [{'name': 'ns_key', 'arg': ns_key, 't': EMUNamespaceKey},] EMUValidator.verify(ver_args) params = ns_key.conv_to_dict(add_tunnel_key = True) res = self.emu_c._get_n_items(cmd = 'ipv6_nd_ns_iter', **params) for r in res: if 'state' in r: r['state'] = IPV6Plugin.IPV6_STATES.get(r['state'], 'Unknown state') return res # Plugins methods @plugin_api('ipv6_show_counters', 'emu') def ipv6_show_counters_line(self, line): '''Show IPV6 counters data from ipv6 table.\n''' parser = parsing_opts.gen_parser(self, "ipv6_show_counters", self.ipv6_show_counters_line.__doc__, parsing_opts.EMU_SHOW_CNT_GROUP, parsing_opts.EMU_ALL_NS, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_DUMPS_OPT ) opts = parser.parse_args(line.split()) self.emu_c._base_show_counters(self.data_c, opts, req_ns = True) return True # cfg @plugin_api('ipv6_get_cfg', 'emu') def ipv6_get_cfg_line(self, line): '''IPV6 get configuration command\n''' parser = parsing_opts.gen_parser(self, "ipv6_get_cfg", self.ipv6_get_cfg_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS ) opts = parser.parse_args(line.split()) keys_to_headers = [{'key': 'dmac', 'header': 'Designator Mac'}, {'key': 'mtu', 'header': 'MTU'}, {'key': 'version', 'header': 'Version'},] args = {'title': 'Ipv6 configuration', 'empty_msg': 'No ipv6 configurations', 'keys_to_headers': keys_to_headers} if opts.all_ns: self.run_on_all_ns(self.get_cfg, print_ns_info = True, func_on_res = self.print_table_by_keys, func_on_res_args = args) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) res = self.get_cfg(ns_key) self.print_table_by_keys(data = res, **args) return True @plugin_api('ipv6_set_cfg', 'emu') def ipv6_set_cfg_line(self, line): '''IPV6 set configuration command\n''' parser = parsing_opts.gen_parser(self, "ipv6_set_cfg", self.ipv6_set_cfg_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS, parsing_opts.MTU, parsing_opts.MAC_ADDRESS ) opts = parser.parse_args(line.split()) if opts.all_ns: self.run_on_all_ns(self.set_cfg, mtu = opts.mtu, dmac = opts.mac) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) self.set_cfg(ns_key, mtu = opts.mtu, dmac = opts.mac) return True # mld @plugin_api('ipv6_add_mld', 'emu') def ipv6_add_mld_line(self, line): '''IPV6 add mld command\n''' parser = parsing_opts.gen_parser(self, "ipv6_add_mld", self.ipv6_add_mld_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS, parsing_opts.IPV6_START, parsing_opts.IPV6_COUNT ) opts = parser.parse_args(line.split()) if opts.all_ns: self.run_on_all_ns(self.add_gen_mld, ipv6_start = opts.ipv6_start, ipv6_count = opts.ipv6_count) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) res = self.add_gen_mld(ns_key, ipv6_start = opts.ipv6_start, ipv6_count = opts.ipv6_count) return True @plugin_api('ipv6_remove_mld', 'emu') def ipv6_remove_mld_line(self, line): '''IPV6 remove mld command\n''' parser = parsing_opts.gen_parser(self, "ipv6_remove_mld", self.ipv6_remove_mld_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS, parsing_opts.IPV6_START, parsing_opts.IPV6_COUNT ) opts = parser.parse_args(line.split()) if opts.all_ns: self.run_on_all_ns(self.remove_gen_mld, ipv6_start = opts.ipv6_start, ipv6_count = opts.ipv6_count) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) res = self.remove_gen_mld(ns_key, ipv6_start = opts.ipv6_start, ipv6_count = opts.ipv6_count) return True @plugin_api('ipv6_show_mld', 'emu') def ipv6_show_mld_line(self, line): '''IPV6 show mld command\n''' parser = parsing_opts.gen_parser(self, "ipv6_show_mld", self.ipv6_show_mld_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS ) opts = parser.parse_args(line.split()) keys_to_headers = [{'key': 'ipv6', 'header': 'IPv6'}, {'key': 'refc', 'header': 'Ref.Count'}, {'key': 'management', 'header': 'From RPC'}] args = {'title': 'Current mld:', 'empty_msg': 'There are no mld in namespace', 'keys_to_headers': keys_to_headers} if opts.all_ns: self.run_on_all_ns(self.iter_mld, print_ns_info = True, func_on_res = self.print_table_by_keys, func_on_res_args = args) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) res = self.iter_mld(ns_key) self.print_table_by_keys(data = res, **args) return True @plugin_api('ipv6_remove_all_mld', 'emu') def ipv6_remove_all_mld_line(self, line): '''IPV6 remove all mld command\n''' parser = parsing_opts.gen_parser(self, "ipv6_remove_all_mld", self.ipv6_remove_all_mld_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS, ) opts = parser.parse_args(line.split()) if opts.all_ns: self.run_on_all_ns(self.remove_all_mld) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) res = self.remove_all_mld(ns_key) return True # cache @plugin_api('ipv6_show_cache', 'emu') def ipv6_show_cache_line(self, line): '''IPV6 show cache command\n''' parser = parsing_opts.gen_parser(self, "ipv6_show_cache", self.ipv6_show_cache_line.__doc__, parsing_opts.EMU_NS_GROUP_NOT_REQ, parsing_opts.EMU_ALL_NS ) opts = parser.parse_args(line.split()) keys_to_headers = [{'key': 'mac', 'header': 'MAC'}, {'key': 'ipv6', 'header': 'IPv6'}, {'key': 'refc', 'header': 'Ref.Count'}, {'key': 'resolve', 'header': 'Resolve'}, {'key': 'state', 'header': 'State'}, ] args = {'title': 'Ipv6 cache', 'empty_msg': 'No ipv6 cache in namespace', 'keys_to_headers': keys_to_headers} if opts.all_ns: self.run_on_all_ns(self.show_cache, print_ns_info = True, func_on_res = self.print_table_by_keys, func_on_res_args = args) else: self._validate_port(opts) ns_key = EMUNamespaceKey(opts.port, opts.vlan, opts.tpid) res = self.show_cache(ns_key) self.print_table_by_keys(data = res, **args) return True # Override functions @client_api('getter', True) def tear_down_ns(self, ns_key): ''' This function will be called before removing this plugin from namespace :parameters: ns_key: EMUNamespaceKey see :class:`trex.emu.trex_emu_profile.EMUNamespaceKey` ''' try: self.remove_all_mld(ns_key) except: pass
1.976563
2
src/quantrt/api/auth.py
ardieb/quantrt
0
12782650
import base64 import hashlib import hmac import json import time import quantrt.common.log from typing import Union, Dict __all__ = ["load_credentials", "sign_websocket_request"] def load_credentials(credentials: str) -> Dict: """Create an authenticated coinbasepro rest client api from a dictionary or json file. :param credentials: Either a json file with the key, secret, and passphrase or a dictionary mimcing this json structure. :return: A dictionary with the values of `secret`, `key`, and `passphrase` from the json file. """ if not credentials.endswith(".json"): quantrt.common.log.QuantrtLog.exception( "The file {} is invalid. Must be a JSON file.".format(credentials)) raise ValueError("The file {} is invalid. Must be a JSON file.".format(credentials)) with open(credentials, "r") as fhandle: try: credentials: Dict = json.load(fhandle) except json.JSONDecodeError as err: quantrt.common.log.QuantrtLog.exception( "Error encountered parsing {}. {}.".format(credentials, err)) raise err return { "key": credentials.get("key", ""), "secret": credentials.get("secret", ""), "passphrase": credentials.get("passphrase", "") } def sign_websocket_request(secret: str, key: str, passphrase: str, request: Dict) -> Dict: """Sign a websocket request to the websocket coinbasepro feed. :param secret: str - the API secret. :param key: str - the API key. :param passphrase: str - the API passphrase. :param request: Dict - the request to sign. """ timestamp = str(time.time()) message = timestamp + "GET" + "/users/self" message = message.encode('ascii') hmac_key = base64.b64decode(secret) signature = hmac.new(hmac_key, message, hashlib.sha256) signature_b64 = base64.b64encode(signature.digest()) request["signature"] = signature_b64.decode("ascii") request["key"] = key request["passphrase"] = <PASSWORD> request["timestamp"] = timestamp
2.65625
3