max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
rally/plugins/openstack/scenarios/nova/flavors.py
TeamXgrid/xgrid-rally
1
12782351
<gh_stars>1-10 # Copyright 2015: Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from rally.common.i18n import _LW from rally.common import logging from rally import consts from rally.plugins.openstack import scenario from rally.plugins.openstack.scenarios.nova import utils from rally.task import validation """Scenarios for Nova flavors.""" LOG = logging.getLogger(__name__) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(users=True) @scenario.configure(name="NovaFlavors.list_flavors") class ListFlavors(utils.NovaScenario): def run(self, detailed=True, **kwargs): """List all flavors. Measure the "nova flavor-list" command performance. :param detailed: True if the flavor listing should contain detailed information :param kwargs: Optional additional arguments for flavor listing """ self._list_flavors(detailed, **kwargs) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True) @scenario.configure(context={"admin_cleanup": ["nova"]}, name="NovaFlavors.create_and_list_flavor_access") class CreateAndListFlavorAccess(utils.NovaScenario): def run(self, ram, vcpus, disk, **kwargs): """Create a non-public flavor and list its access rules :param ram: Memory in MB for the flavor :param vcpus: Number of VCPUs for the flavor :param disk: Size of local disk in GB :param kwargs: Optional additional arguments for flavor creation """ # NOTE(pirsriva): access rules can be listed # only for non-public flavors if kwargs.get("is_public", False): LOG.warning(_LW("is_public cannot be set to True for listing " "flavor access rules. Setting is_public to False")) kwargs["is_public"] = False flavor = self._create_flavor(ram, vcpus, disk, **kwargs) self.assertTrue(flavor) self._list_flavor_access(flavor.id) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True) @scenario.configure(context={"admin_cleanup": ["nova"]}, name="NovaFlavors.create_flavor_and_add_tenant_access") class CreateFlavorAndAddTenantAccess(utils.NovaScenario): def run(self, ram, vcpus, disk, **kwargs): """Create a flavor and Add flavor access for the given tenant. :param ram: Memory in MB for the flavor :param vcpus: Number of VCPUs for the flavor :param disk: Size of local disk in GB :param kwargs: Optional additional arguments for flavor creation """ flavor = self._create_flavor(ram, vcpus, disk, **kwargs) self.assertTrue(flavor) self._add_tenant_access(flavor.id, self.context["tenant"]["id"]) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True) @scenario.configure(context={"admin_cleanup": ["nova"]}, name="NovaFlavors.create_flavor") class CreateFlavor(utils.NovaScenario): def run(self, ram, vcpus, disk, **kwargs): """Create a flavor. :param ram: Memory in MB for the flavor :param vcpus: Number of VCPUs for the flavor :param disk: Size of local disk in GB :param kwargs: Optional additional arguments for flavor creation """ self._create_flavor(ram, vcpus, disk, **kwargs) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True) @scenario.configure(context={"admin_cleanup": ["nova"]}, name="NovaFlavors.create_and_get_flavor") class CreateAndGetFlavor(utils.NovaScenario): """Scenario for create and get flavor.""" def run(self, ram, vcpus, disk, **kwargs): """Create flavor and get detailed information of the flavor. :param ram: Memory in MB for the flavor :param vcpus: Number of VCPUs for the flavor :param disk: Size of local disk in GB :param kwargs: Optional additional arguments for flavor creation """ flavor = self._create_flavor(ram, vcpus, disk, **kwargs) self._get_flavor(flavor.id) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True) @scenario.configure(context={"admin_cleanup": ["nova"]}, name="NovaFlavors.create_and_delete_flavor") class CreateAndDeleteFlavor(utils.NovaScenario): def run(self, ram, vcpus, disk, **kwargs): """Create flavor and delete the flavor. :param ram: Memory in MB for the flavor :param vcpus: Number of VCPUs for the flavor :param disk: Size of local disk in GB :param kwargs: Optional additional arguments for flavor creation """ flavor = self._create_flavor(ram, vcpus, disk, **kwargs) self._delete_flavor(flavor.id) @validation.required_services(consts.Service.NOVA) @validation.required_openstack(admin=True) @scenario.configure(context={"admin_cleanup": ["nova"]}, name="NovaFlavors.create_flavor_and_set_keys") class CreateFlavorAndSetKeys(utils.NovaScenario): def run(self, ram, vcpus, disk, extra_specs, **kwargs): """Create flavor and set keys to the flavor. Measure the "nova flavor-key" command performance. the scenario first create a flavor,then add the extra specs to it. :param ram: Memory in MB for the flavor :param vcpus: Number of VCPUs for the flavor :param disk: Size of local disk in GB :param extra_specs: additional arguments for flavor set keys :param kwargs: Optional additional arguments for flavor creation """ flavor = self._create_flavor(ram, vcpus, disk, **kwargs) self._set_flavor_keys(flavor, extra_specs)
1.835938
2
log_generator/es_settings.py
DobyLov/loggenerator
0
12782352
# es_settings index_template = { "index_patterns": ["loggen-*"], "settings": { "number_of_shards": 1, "number_of_replicas": 0, "index.lifecycle.name": "ilm_loggen", "index.lifecycle.rollover_alias": "loggen_rollov" } } test_index_template = { "index_patterns": ["loggen-*"], "settings": { "index.lifecycle.name": "ilm_loggen", "index.lifecycle.rollover_alias": "loggen_rollov" } } # es_index_settings settings = { "settings" : { "index" : { "number_of_shards" : "1", "number_of_replicas" : "0", } } } es_ilm_settings = { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_age": "5d", "max_size": "1gb" }, "set_priority": { "priority": 100 } } }, "delete": { "min_age": "5d", "actions": { "delete": {} } } } } } # es_mapping mapping = { "properties": { "age": { "type": "long" }, "country": { "properties": { "country_long": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "country_short": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "location": { "properties": { "latitude": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "longitude": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } } } }, "region": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "time_zone": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "town": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } } } }, "dateTime": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "hasTags": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "ip_address": { "type": "ip" }, "message_tweet": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "user": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "uuid": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } } } }
1.375
1
puchkidb/puchkidb_cli/commands/show.py
triump0870/puchkidb
0
12782353
from json import dumps from .base import Base class Show(Base): """Show the databases and the tables using this command. Usage: puchkidb show [options] options: dbs: show all the databases in the server tables: show all the tables inside a database Example: puchkidb show dbs """ def run(self): print('Hello, world!') print('You supplied the following options:', dumps(self.options, indent=2, sort_keys=True))
2.953125
3
Leetcoding-Actions/Explore-Monthly-Challenges/2020-12/15-squaresOfASortedArray.py
shoaibur/SWE
1
12782354
<gh_stars>1-10 class Solution: def sortedSquares(self, nums: List[int]) -> List[int]: n = len(nums) i, j, k = 0, n - 1, n - 1 result = [0] * n while i <= j: if abs(nums[j] > abs(nums[i])): result[k] = nums[j] * nums[j] j -= 1 else: result[k] = nums[i] * nums[i] i += 1 k -= 1 return result
3.046875
3
interview_qns/max_mushrooms_picked.py
shiram/learning-django-rest
0
12782355
<gh_stars>0 """ Problem: You are given a non-empty, zero-indexed array A of n (1 � n � 100 000) integers a0, a1, . . . , an−1 (0 � ai � 1 000). This array represents number of mushrooms growing on the consecutive spots along a road. You are also given integers k and m (0 � k, m < n). A mushroom picker is at spot number k on the road and should perform m moves. In one move she moves to an adjacent spot. She collects all the mushrooms growing on spots she visits. The goal is to calculate the maximum number of mushrooms that the mushroom picker can collect in m moves. For example, consider array A such that: 2 3 7 5 1 3 9 0 1 2 3 4 5 6 The mushroom picker starts at spot k = 4 and should perform m = 6 moves. She might move to spots 3, 2, 3, 4, 5, 6 and thereby collect 1 + 5 + 7 + 3 + 9 = 25 mushrooms. This is the maximal number of mushrooms she can collect. Solution O(m2): Note that the best strategy is to move in one direction optionally followed by some moves in the opposite direction. In other words, the mushroom picker should not change direction more than once. With this observation we can find the simplest solution. Make the first p = 0, 1, 2, . . . , m moves in one direction, then the next m − p moves in the opposite direction. This is just a simple simulation of the moves of the mushroom picker which requires O(m2) time. Solution O(n+m): A better approach is to use prefix sums. If we make p moves in one direction, we can calculate the maximal opposite location of the mushroom picker. The mushroom picker collects all mushrooms between these extremes. We can calculate the total number of collected mushrooms in constant time by using prefix sums. """ def prefix_sums(A): n = len(A) p = [0] * (n + 1) for k in range(1, n + 1): p[k] = p[k - 1] + A[k - 1] return p def count_total(P, x, y): return P[y + 1] - P[x] def mushrooms(A, k, m): n = len(A) result = 0 pref = prefix_sums(A) print("The Prefix Sum: {}".format(pref)) for p in range(min(m, k) + 1): left_pos = k - p print("Left Pos loop 1 index {} : {}".format(p, left_pos)) right_pos = min(n - 1, max(k, k + m - 2 * p)) print("Right Pos loop 1 index {} : {}".format(p, right_pos)) result = max(result, count_total(pref, left_pos, right_pos)) print("result loop 1 index {}: {}".format(p, result)) for p in range(min(m + 1, n - k)): left_pos = k + p print("Left Pos loop 2 index {} : {}".format(p, left_pos)) left_pos = max(0, min(k, k - (m - 2 * p))) print("Right Pos loop 2 index {} : {}".format(p, right_pos)) result = max(result, count_total(pref, left_pos, right_pos)) print("result loop 2 index {}: {}".format(p, result)) return result A = [2,3,7,5,1,3,9] m = 6 k = 4 res = mushrooms(A, k, m) print() print("-------------------------- RESULT ------------------------") print(res)
3.796875
4
pythonidbot/inline/hints.py
hexatester/pythonidbot
0
12782356
import logging from fuzzywuzzy import process from telegram import ( Update, InlineQuery, InlineQueryResultArticle, InlineKeyboardButton, InlineKeyboardMarkup, ) from telegram.ext import CallbackContext from typing import List, Optional from pythonidbot.constants import HINTS from pythonidbot.utils.helpers import article, build_menu class Hints: def __init__(self, hints: Optional[List[dict]] = None): self.logger = logging.getLogger(__name__) self.score_cutoff = 60 self.hints = hints or list(HINTS.values()) self.hints_q_dict = dict(enumerate([hint["help"] for hint in self.hints])) self.hashtag_q_dict = dict(enumerate([hint["key"] for hint in self.hints])) @property def hints_article(self): return [self.article(hint) for hint in self.hints] def __call__( self, query: str, limit: int = 10, score_cutoff: int = 60, ) -> List[InlineQueryResultArticle]: return self.find(query, limit, score_cutoff) def find( self, query: str, limit: int = 10, score_cutoff: int = 60, ) -> List[InlineQueryResultArticle]: self.logger.debug(f"Mencari hint dengan keyword `{query}`") best_hints = process.extractBests( query=query, choices=self.hints_q_dict, score_cutoff=score_cutoff, limit=limit, ) self.logger.debug(f"Ditemukan {len(best_hints)} kemungkinan hint") return [self.hints_article[z] for (x, y, z) in best_hints] if best_hints else [] def article( self, data: dict, query: Optional[str] = None, markup: Optional[InlineKeyboardMarkup] = None, ) -> InlineQueryResultArticle: message: str = data["message"] if "{query}" in message: query = query or data["default"] message = message.replace("{query}", query) if "buttons" in data: markup = self.make_button(data["buttons"]) return article( title=data["help"], description=f'{data["key"]}: {message}', message_text=message, reply_markup=markup, ) def make_button(self, buttons: List[dict]) -> InlineKeyboardMarkup: keyboards: List[InlineKeyboardButton] = list() for data in buttons: keyboards.append(InlineKeyboardButton(**data)) menu = build_menu(keyboards, 1) return InlineKeyboardMarkup(menu) def hashtag_handler(self, update: Update, context: CallbackContext): if not update.inline_query: return query = update.inline_query.query query = query.lstrip("#") hashtag = query.split(" ")[0] query = query.lstrip(hashtag) if len(hashtag) < 3: return result = process.extractOne( hashtag, choices=self.hashtag_q_dict, score_cutoff=self.score_cutoff, ) if not result: return value, score, index = result results = [self.article(self.hints[index], query=query)] return update.inline_query.answer(results)
2.0625
2
plot/compare_algorithms.py
alod83/srp
2
12782357
# Compare Algorithms import pandas import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from sklearn import model_selection from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import label_binarize import os import sys config_path = "utilities/" sys.path.append(os.path.abspath(config_path)) from MyAPI import MyAPI api = MyAPI() X, Y = api.get_dataset(0, start_index=0,end_index=20000, nr=20000) # prepare models models = [] models.append(('KNN', KNeighborsClassifier())) models.append(('Decision Tree', DecisionTreeClassifier())) models.append(('Gaussian', GaussianNB())) models.append(('SVM', SVC())) classes=list(set(Y)) # prepare configuration for cross validation test harness seed = 7 # evaluate each model in turn results = [] names = [] scoring = 'accuracy' for name, model in models: kfold = model_selection.KFold(n_splits=10, random_state=seed) cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) # boxplot algorithm comparison fig = plt.figure() fig.suptitle('Algorithm Comparison') ax = fig.add_subplot(111) plt.boxplot(results) ax.set_xticklabels(names) plt.savefig('compare.png')
2.578125
3
cobl/lexicon/migrations/0148_fill_romanisedsymbol.py
Bibiko/CoBL-public
3
12782358
<reponame>Bibiko/CoBL-public<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function from django.db import migrations def forwards_func(apps, schema_editor): RomanisedSymbol = apps.get_model("lexicon", "RomanisedSymbol") allowedRomanised = { 'a', 'n', '-', 'm', 'i', 's', 'e', 't', '', 'ě', 'b', 'o', 'j', 'l', 'd', 'v', 'ý', 'r', 'h', 'k', 'š', '̆', 'y', 'u', 'p', 'c', 'ì', 'á', '′', 'z', 'ř', 'à', 'ò', 'ž', 'í', 'x', 'č', 'ḁ', 'è', 'f', 'ъ', '̀', 'é', 'ù', ' ', 'g', 'ä', 'ó', 'w', '̯', 'ɪ', '', 'ï', 'ŋ', '̀', '̥', 'ə', 'ɣ', 'ú', '́', 'ṡ', 'ç', 'ā', '̣', '(', ')', 'ſ', 'ω', 'ł', 'ę', 'ß', '[', ']', 'ô', '?', "'", 'ă', 'ġ', 'ẛ', 'ʾ', 'ʒ', '̌', 'ώ', 'ľ', 'ň', '≠', 'î', 'ṃ', 'û', 'ō', '́', 'ü', 'ḫ', 'ṣ', '̄', 'ū', '/', 'ș', 'ī', 'ḥ', '*', 'ẓ', 'ë', 'ṭ', 'ś', 'ḯ', 'ĩ', 'K', 'I', 'S', 'N', 'A', 'æ', 'q', 'ĕ', '̇', 'ḷ', 'V', 'ø', 'H', 'C', 'Z', 'U', 'ċ', 'J', 'ʌ', '̃', 'â', 'ː', 'ē', 'ʿ', 'D', 'O', 'M', 'L', 'ê', 'P', 'T', 'ṙ', 'R', '̧', 'ʰ', 'ǖ', '˜', 'ḍ', 'ć', 'ñ', 'ǧ', 'ṛ', 'å', 'ė', 'ů', 'E', '͡', 'G', 'W', 'ö', '~', 'ź', 'ɛ', 'ɜ', 'ț', 'ð', '.', 'B', 'ť', ':', '̐', 'F', '̲', 'ṇ', 'ɡ', '˳', 'ʊ', 'ǫ', 'ą', 'X', 'ż', 'ũ', 'ḗ', 'ʉ', '″', 'ď', 'ģ', 'ṅ', '̜', 'ẏ', 'ɨ', 'ŭ', 'β', 'ã', 'ṁ', 'ŕ', 'ǰ', 'ˊ', 'θ', 'Y', 'þ', 'ļ', '+', 'ŗ', 'õ', 'ɑ', '·', 'ḱ', 'ṓ', 'ń', 'ķ', 'ᵤ', ';', 'ọ', '=', 'ņ', 'ẽ', 'ṯ', 'ʸ', 'ɔ', '̱', 'ʈ', 'ŵ', 'ᵛ', 'χ', '¬', 'ş', 'ÿ', 'ȳ', 'ṕ', 'ĭ', '`', '₂', 'ǣ', '̂', '̈́', 'ˤ', 'œ', '̈', 'ˑ', 'ⁱ', 'ʷ', '&', 'ᴵ', 'ǝ', 'ƕ', 'Q', 'ẖ', 'ǘ', 'į', 'ǔ', 'ε', 'ν', 'ǵ', 'đ', 'ʎ', '̰', '̊', 'ˈ', 'Š', 'ų', 'Ä', '‑', 'ŷ', 'Ø', 'ŝ', 'ʁ', 'Ī', 'ɸ', 'ƫ', 'ы', 'к', 'ỹ', 'ɫ', '‘'} RomanisedSymbol.objects.bulk_create([ RomanisedSymbol(symbol=s) for s in allowedRomanised ]) def reverse_func(apps, schema_editor): RomanisedSymbol = apps.get_model("lexicon", "RomanisedSymbol") RomanisedSymbol.objects.all().delete() class Migration(migrations.Migration): dependencies = [('lexicon', '0147_romanisedsymbol')] operations = [ migrations.RunPython(forwards_func, reverse_func), ]
1.679688
2
lib/jsnes.py
Ekleog/jsmark
0
12782359
import os import subprocess as subp import sys class Bench: moreisbetter = False def run(interp): os.chdir(os.path.join(sys.path[0], 'vendor', 'jsnes', 'test')) res = subp.run([interp, 'shell-bench.js'], stdout=subp.PIPE, universal_newlines=True) if res.returncode != 0: return "Error when trying to run jsnes with interpreter " + interp + "!" warmup, result = 0., 0. nwarmup, nresult = 0., 0. for line in res.stdout.split('\n'): res = line.split(':') if len(res) != 2: continue if res[0] == 'warmup': warmup += float(res[1]) nwarmup += 1 elif res[0] == 'result': result += float(res[1]) nresult += 1 return { 'warmup': warmup / nwarmup, '~~~~ Result': result / nresult, }
2.296875
2
happy_birthder_script_tests.py
wis-software/rocketchat-tests-based-on-splinter
2
12782360
<filename>happy_birthder_script_tests.py #!/usr/bin/env python3 # Copyright 2018 <NAME> <<EMAIL>> # Copyright 2018 <NAME> <<EMAIL>> # Copyright 2018 <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests related to the hubot-happy-birthder script. """ # pylint: disable=fixme import re import sys import time from argparse import ArgumentParser from datetime import datetime, timedelta from selenium.webdriver.support.wait import WebDriverWait from base import RocketChatTestCase class HappyBirthderScriptTestCase(RocketChatTestCase): # pylint: disable=too-many-public-methods """Tests for the hubot-happy-birthder script. """ def __init__(self, addr, username, password, reminder_interval_time, **kwargs): RocketChatTestCase.__init__(self, addr, username, password, **kwargs) self.schedule_pre_test_case('choose_general_channel') self._reminder_interval_time = int(reminder_interval_time) self._test_birthday = '01.01.1990' self._test_incorrect_birthdays_dates = ['32.01.2000', '01.13.2000', '31.02.2000'] self._bot_name = 'meeseeks' self._test_user_for_blacklist = 'test_user_for_blacklist' self._fwd_date = datetime.now().replace(year=datetime.now().year - 1).strftime('%d.%m.%Y') # # Private methods # @staticmethod def _get_date_with_shift(shift): return (datetime.now() + timedelta(days=shift)).strftime('%d.%m.%Y') @staticmethod def _get_channel_pattern(name, date): d_m = date[:-5] return f'{name}-birthday-channel-{d_m}-id[0-9]{{3}}' @staticmethod def _get_congratulation_pattern(username): pattern = (f'https?://media.tenor.com/images/[0-9a-z]*/tenor.gif\n' f'Today is birthday of @{username}!\n' f'[w+]*') return pattern @staticmethod def _get_fwd_congratulation_pattern(usernames, years_counts): pattern = f'.*' for name, count in zip(usernames, years_counts): # pylint: disable=unused-variable pattern += (f'\n@{name} has been a part of our team for {count} ' f'{"year" if count==1 else "years"} and') return pattern[:-4] + "!" def _wait_reminder(self): time.sleep(self._reminder_interval_time) # # Public methods # def test_admins_birthday_set(self): """Tests if it's possible on behalf of the admin to set a birth date. """ self.choose_general_channel() # TODO: test with invalid dates self.send_message('{} birthday set {} {}'. format(self._bot_name, self.username, self._test_birthday)) assert self.check_latest_response_with_retries( "Saving {}'s birthday.".format(self.username)) def test_admins_birthdays_on(self): """Tests if it's possible on behalf of the admin to get the list of users with the specified birth date. """ day_month = self._test_birthday[:-5] # TODO: test with invalid dates self.send_message('{} birthdays on {}'. format(self._bot_name, day_month)) assert self.check_latest_response_with_retries( '@{}'.format(self.username)) def test_invoking_birthday_delete_by_admin(self): """Tests if it's possible on behalf of the admin to delete the specified birth date. """ self.send_message('{} birthday delete {}'. format(self._bot_name, self.username)) assert self.check_latest_response_with_retries( "Removing {}'s birthday.".format(self.username)) def test_specifying_date_birth_by_admin(self): """Tests if it's possible on behalf of the admin to specify their own birth date. """ self.switch_channel(self._bot_name) assert self.check_latest_response_with_retries( 'Hmm...\n' 'It looks like you forgot to set the date of birth.\n' 'Please enter it (DD.MM.YYYY).' ) self.send_message(self._test_birthday) assert self.check_latest_response_with_retries( 'I memorized you birthday, well done! 😉' ) def test_specifying_date_birth_by_new_user(self): """Tests if it's possible on behalf of an ordinary user to specify their own birth date. """ self.create_user() close_btn = self.find_by_css('button[data-action="close"]') assert close_btn close_btn.click() self.logout() self.login(use_test_user=True) self.switch_channel(self._bot_name) try: assert self.check_latest_response_with_retries( 'Welcome to WIS Software! 🎉\n' 'Emm... where was I?\n' 'Oh! Please, enter your date birth (DD.MM.YYYY).' ) except AssertionError: assert self.check_latest_response_with_retries( 'Hmm...\n' 'It looks like you forgot to set the date of birth.\n' 'Please enter it (DD.MM.YYYY).' ) self.send_message(self._test_birthday) assert self.check_latest_response_with_retries( 'I memorized you birthday, well done! 😉' ) def test_invoking_birthday_set_by_ordinary_user(self): """Test if it's not possible on behalf of an ordinary user to specify someone's birth date. """ self.choose_general_channel() self.send_message('{} birthday set {} {}'.format(self._bot_name, self.username, self._test_birthday)) assert self.check_latest_response_with_retries('Permission denied.') def test_invoking_birthday_delete_by_ordinary_user(self): """Test if it's not possible on behalf of an ordinary user to delete someone's birth date. """ self.send_message('{} birthday delete {} {}'.format( self._bot_name, self.username, self._test_birthday)) assert self.check_latest_response_with_retries('Permission denied.') self.logout() self.login() def test_creating_birthday_channel(self): """Tests if a birthday channel is automatically created. """ self.choose_general_channel() test_date = self._get_date_with_shift(7) self.send_message('{} birthday set {} {}'. format(self._bot_name, self.test_username, test_date)) assert self.check_latest_response_with_retries( "Saving {}'s birthday.".format(self.test_username) ) self._wait_reminder() private_channels = self.find_by_css('.rooms-list__list.type-p') assert private_channels lst_of_channels = private_channels.text.split('\n') assert lst_of_channels pattern = self._get_channel_pattern(self.test_username, self._get_date_with_shift(0)) assert bool(re.match(pattern, lst_of_channels[-1])) self.switch_channel(lst_of_channels[-1]) assert self.check_latest_response_with_retries( '@{} is having a birthday soon, so let\'s discuss a present.' .format(self.test_username) ) def test_checking_absence_of_test_user_in_channel(self): """Tests if the user, who is having a birthday soon, is not in the birthday channel. """ channel_options = self.find_by_css( '.rc-room-actions__action.tab-button.js-action') assert len(channel_options) >= 3 channel_options[2].click() members_list = self.find_by_css('.rc-member-list__user') assert members_list assert all([member.text != self.test_username for member in members_list]) def test_reminder_of_upcoming_birthday_7_days_in_advance(self): """Tests the bot reminds about the upcoming birthday 7 days in advance. """ self.switch_channel(self._bot_name) assert self.check_latest_response_with_retries( '@{} is having a birthday on {}.' .format(self.test_username, self._get_date_with_shift(7)[:-5]) ) def test_reminder_of_upcoming_birthday_1_days_in_advance(self): """Makes sure the bot reminds about the upcoming birthday 1 days in advance. """ self.choose_general_channel() self.send_message('{} birthday set {} {}'. format(self._bot_name, self.test_username, self._get_date_with_shift(1))) self.switch_channel(self._bot_name) assert self.check_latest_response_with_retries( '@{} is having a birthday tomorrow.'.format(self.test_username), attempts_number=self._reminder_interval_time ) def test_deleting_birthday_channel(self): """Tests if a birthday channel is automatically deleted. """ self.choose_general_channel() test_date = self._get_date_with_shift(-3) self.send_message('{} birthday set {} {}'.format(self._bot_name, self.test_username, test_date)) self._wait_reminder() private_channels = self.find_by_css('.rooms-list__list.type-p') assert private_channels lst_of_channels = private_channels.text.split('\n') assert lst_of_channels pattern = self._get_channel_pattern(self.test_username, test_date) assert all([not bool(re.match(pattern, channel)) for channel in lst_of_channels]) def test_birthday_message(self): """Makes sure the bot writes a birthday message to #general devoted to the user who is having a birthday. """ self.choose_general_channel() self.send_message('{} birthday set {} {}'. format(self._bot_name, self.username, self._get_date_with_shift(0))) pattern = self._get_congratulation_pattern(self.username) assert self.check_latest_response_with_retries(pattern, match=True, attempts_number=self._reminder_interval_time) def test_birthdays_list_command_with_no_birthday(self): """Tests the case when someone is invoking 'birthdays list' but there is no any birth date stored. """ self.send_message('{} birthday delete {}'.format(self._bot_name, self.username)) self.send_message('{} birthday delete {}'.format(self._bot_name, self.test_username)) self.send_message('{} birthdays list'.format(self._bot_name)) assert self.check_latest_response_with_retries('Oops... No results.') def test_invoking_birthdays_list_with_1_birth_date(self): """Tests the case when someone is invoking 'birthdays list' but there is the only birth date stored. """ self.send_message('{} birthday set {} {}'.format(self._bot_name, self.username, self._test_birthday)) self.send_message('{} birthdays list'.format(self._bot_name)) assert self.check_latest_response_with_retries( '*Birthdays list*\n@{} was born on {}'.format(self.username, self._test_birthday)) def test_invoking_birthdays_list_with_2_birth_dates(self): """Tests the case when someone is invoking 'birthdays list' but there are only 2 birth dates stored. """ self.choose_general_channel() admins_birthday = self._get_date_with_shift(25) self.send_message('{} birthday set {} {}'.format(self._bot_name, self.username, admins_birthday)) users_birthday = self._get_date_with_shift(20) self.send_message('{} birthday set {} {}'.format(self._bot_name, self.test_username, users_birthday)) # test user should be first in birthdays list self.send_message('{} birthdays list'.format(self._bot_name)) assert self.check_latest_response_with_retries( '*Birthdays list*\n' '@{} was born on {}\n' '@{} was born on {}'.format(self.test_username, users_birthday, self.username, admins_birthday)) def test_birthday_channel_blacklist(self): # pylint: disable=too-many-locals,too-many-statements """Makes sure that the user, who is in the blacklist, is not invited in birthday channels. """ # create user for blacklist options_btn = self.browser.find_by_css( '.sidebar__toolbar-button.rc-tooltip.rc-tooltip--down.js-button' ) options_btn.last.click() administration_btn = self.browser.find_by_css('.rc-popover__item-text') administration_btn.click() users_btn = self.browser.driver.find_elements_by_css_selector( 'a.sidebar-item__link[aria-label="Users"]') assert users_btn self.browser.driver.execute_script('arguments[0].click();', users_btn[0]) add_user_btn = self.find_by_css('button[aria-label="Add User"]') assert add_user_btn add_user_btn.click() input_name_el = self.find_by_css('input#name') assert input_name_el input_name_el.first.fill(self._test_user_for_blacklist) input_username_el = self.find_by_css('input#username') assert input_username_el input_username_el.first.fill(self._test_user_for_blacklist) input_email_el = self.find_by_css('input#email') assert input_email_el input_email_el.first.fill( <EMAIL>'.format(self._test_user_for_blacklist)) verified_btn = self.find_by_css('label.rc-switch__label') assert verified_btn verified_btn.first.click() input_password_el = self.find_by_css('input#password') assert input_password_el input_password_el.first.fill('<PASSWORD>') verified_btn = self.find_by_css('label.rc-switch__label') assert verified_btn verified_btn.last.click() role_option = self.find_by_css('option[value="user"]') assert role_option role_option.first.click() add_role_btn = self.find_by_css('button#addRole') assert add_role_btn add_role_btn.first.click() welcome_ckbx = self.find_by_css('label[for="sendWelcomeEmail"]') assert welcome_ckbx welcome_ckbx.first.click() save_btn = self.find_by_css('.rc-button.rc-button--primary.save') assert save_btn save_btn.first.click() close_btn = self.find_by_css('button[data-action="close"]') assert close_btn close_btn.click() self.choose_general_channel() test_date = self._get_date_with_shift(7) self.send_message('{} birthday set {} {}'. format(self._bot_name, self.test_username, test_date)) self._wait_reminder() private_channels = self.find_by_css('.rooms-list__list.type-p') assert private_channels lst_of_channels = private_channels.text.split('\n') assert lst_of_channels self.switch_channel(lst_of_channels[-1]) channel_options = self.find_by_css( '.rc-room-actions__action.tab-button.js-action') assert len(channel_options) >= 3 channel_options[2].click() members_list = self.find_by_css('.rc-member-list__user') assert len(members_list) == 2 self.choose_general_channel() # for deleting birthdays chat test_date = self._get_date_with_shift(-3) self.send_message('{} birthday set {} {}'. format(self._bot_name, self.test_username, test_date)) self._wait_reminder() self.send_message('{} birthday delete {}'. format(self._bot_name, self.test_username)) self.send_message('{} birthday delete {}'. format(self._bot_name, self.test_username)) options_btn = self.browser.driver.find_elements_by_css_selector( '.sidebar__toolbar-button.rc-tooltip.rc-tooltip--down.js-button') assert options_btn self.browser.driver.execute_script('arguments[0].click();', options_btn[-1]) administration_btn = self.browser.find_by_css('.rc-popover__item-text') administration_btn.click() users_btn = self.browser.driver.find_elements_by_css_selector( 'a.sidebar-item__link[aria-label="Users"]') assert users_btn self.browser.driver.execute_script('arguments[0].click();', users_btn[0]) selected_user = self.browser.find_by_xpath( '//td[@class="border-component-color"][text()="{0}"]' .format(self._test_user_for_blacklist)) assert selected_user selected_user.first.click() try: delete_btn = self.find_by_xpath( '//button[@class="js-action rc-user-info-action__item"]' '[text()="Delete"]' ) assert delete_btn except AssertionError: more_btn = self.find_by_css( 'button.rc-tooltip.rc-room-actions__button.js-more' '[aria-label="More"]' ) assert more_btn more_btn.first.click() delete_btn = self.find_by_xpath( '//li[@class="rc-popover__item js-action"]' '/span[text()="Delete"]' ) assert delete_btn delete_btn.first.click() confirm_btn = self.find_by_css('input[value="Yes, delete it!"]') assert confirm_btn confirm_btn.first.click() WebDriverWait(self.browser.driver, 10).until( lambda _: self._check_modal_window_visibility()) close_btn = self.browser.driver.find_elements_by_css_selector( 'button[data-action="close"]') assert close_btn self.browser.driver.execute_script('arguments[0].click();', close_btn[0]) def test_fwd_set_for_admin(self): """Tests if it's possible on behalf of the admin to specify a first working date for a user. """ self.switch_channel(self._bot_name) self.send_message('{} fwd set {} {}'. format(self._bot_name, self.username, self._fwd_date)) assert self.check_latest_response_with_retries( "Saving {}'s first working day.".format(self.username)) def test_fwd_reminder_for_admin(self): """Makes sure the bot writes a message to #general containing a congratulation on the work anniversary (the case when there is the only user celebrating the work anniversary). """ self.choose_general_channel() assert self.check_latest_response_with_retries( self._get_fwd_congratulation_pattern([self.username, ], [1, ]), match=True, attempts_number=80) def test_fwd_reminder_for_new_user(self): """Makes sure the bot writes a message to #general containing a congratulation on the work anniversary (the case when there are two users celebrating the work anniversary). """ self.switch_channel(self._bot_name) self.send_message('{} fwd set {} {}'. format(self._bot_name, self.test_username, self._fwd_date)) assert self.check_latest_response_with_retries( "Saving {}'s first working day.".format(self.test_username)) self.choose_general_channel() users = [self.username, self.test_username] assert self.check_latest_response_with_retries( self._get_fwd_congratulation_pattern(users, [1, 1]), match=True, attempts_number=self._reminder_interval_time) def test_fwd_list(self): """Tests the case when someone is invoking 'fwd list' but there are only 2 dates stored. """ self.switch_channel(self._bot_name) self.send_message('{} fwd list'.format(self._bot_name)) assert self.check_latest_response_with_retries( '*First working days list*\n' '@{} joined our team {}\n' '@{} joined our team {}'.format(self.username, self._fwd_date, self.test_username, self._fwd_date), attempts_number=self._reminder_interval_time) self.remove_user() self.switch_channel(self._bot_name) self.send_message('{} fwd list'.format(self._bot_name)) assert self.check_latest_response_with_retries( '*First working days list*\n' '@{} joined our team {}'.format(self.username, self._fwd_date), attempts_number=self._reminder_interval_time) def main(): """The main entry point. """ parser = ArgumentParser(description='usage: %prog [options] arguments') parser.add_argument('-a', '--host', dest='host', type=str, help='allows specifying domain or IP of the Rocket.Chat host') parser.add_argument('-u', '--username', dest='username', type=str, help='allows specifying admin username') parser.add_argument('-p', '--password', dest='password', type=str, help='allows specifying admin password') parser.add_argument('-w', '--wait', dest='wait', type=int, help="allows specifying time " "for waiting reminder\'s work(secs)") options = parser.parse_args() if not options.host: options.host = 'http://127.0.0.1:8006' sys.stderr.write( 'Host is not specified. Defaults to {}.\n'.format(options.host) ) if not options.username: parser.error('Username is not specified') if not options.password: parser.error('Password is not specified') if not options.wait: options.wait = '100' sys.stderr.write( 'Waiting time is not specified. Defaults to {}.\n'.format(options.wait) ) test_cases = HappyBirthderScriptTestCase(options.host, options.username, options.password, reminder_interval_time=options.wait, create_test_user=False) exit_code = test_cases.run() sys.exit(exit_code) if __name__ == '__main__': main()
2.15625
2
cropper.py
alfcrisci/pySIC
1
12782361
############################################################### import os import cv2 import math import numpy as np from scipy.ndimage import interpolation as inter from scipy.ndimage import rotate ############################################################### C_percentage = 0 ACCEPTED_EXTENSIONS = (".jpeg", ".jpg", ".png", ".tif", ".tiff", ".bmp", ".dib", ".jpe", ".jp2", ".webp", ".pbm", ".pgm", ".ppm", ".sr", ".ras") ############################################################### def euclidian_distance(first, second): return math.sqrt(sum([pow(max(x, y) - min(x, y), 2) for x, y in zip(first, second)])) def color_difference(first, second, precision = 100): return euclidian_distance(first, second) > precision def precision(arr, angle): hit = np.sum(inter.rotate(arr, angle, reshape = False, order = 0), axis = 1) prec = np.sum((hit[1:]-hit[:-1])**2) return prec def rotateImage(image, angle): image_center = tuple(np.array(image.shape[1::-1]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(255,255,255)) return result def crop(abs_folder_in, abs_folder_out, debug): global C_percentage images_list = [i for i in os.listdir(abs_folder_in) if i.endswith(ACCEPTED_EXTENSIONS) and i[:2] != "ad"] if debug: print("\n".join(images_list)) images_list = sorted(images_list, key = lambda i: int(i[:-4])) for c, image_path in enumerate(images_list, 1): original_image = cv2.imread(os.path.join(abs_folder_in, image_path), 0) sheet = cv2.resize(original_image, (0, 0), fx = 0.125, fy = 0.125) ret, sheet = cv2.threshold(sheet, 127, 255, cv2.THRESH_BINARY) wd, ht = sheet.shape pix = np.array(sheet, np.uint8) bin_img = 1 - (pix / 255.0) limit, delta = 10, 1 angles = np.arange(-limit, limit+delta, delta) scores = [precision(bin_img, angle) for angle in angles] best = angles[scores.index(max(scores))] original_image = rotateImage(cv2.imread(os.path.join(abs_folder_in, image_path)), best) w, h, z = original_image.shape K = 500 / max(w, h) resized_image = cv2.resize(original_image, (0, 0), fx = K, fy = K) w, h, z = resized_image.shape mx, my = int(w / 2), int(h / 2) startx = 0 starty = 0 endx = w endy = h for i in range(1, w): if color_difference(resized_image[i, my], resized_image[i - 1, my]): startx = i break for i in range(w - 2, 0, -1): if color_difference(resized_image[i, my], resized_image[i + 1, my]): endx = i break for i in range(1, h): if color_difference(resized_image[mx, i], resized_image[mx, i - 1]): starty = i break for i in range(h - 2, 0, -1): if color_difference(resized_image[mx, i], resized_image[mx, i + 1]): endy = i break if endx <= startx: endx = w if endy <= starty: endy = h startx, starty, endx, endy = int(startx * (1 / K)), int(starty * (1 / K)), int(endx * (1 / K)), int(endy * (1 / K)) jump = int(1 / K * 10) if debug: print("Angle : ", best) print("K : ", K, " jump : ", jump) print("(", startx, ", ", starty, ") -> (", endx, ", ", endy, ")") print("Saving...") if (endx-jump) - (startx+jump) < (w*K)/3 or (endy-jump) - (starty+jump) < (h*K)/3: cv2.imwrite(os.path.join(abs_folder_out, str(c) + ".jpg"), original_image) else: cv2.imwrite(os.path.join(abs_folder_out, str(c) + ".jpg"), original_image[startx + jump : endx - jump, starty + jump : endy - jump]) if debug: print("Done ", c, " of ", len(images_list)) C_percentage += 1 / len(images_list) C_percentage = 0 def get_percentage(): global C_percentage return C_percentage ###############################################################
2.296875
2
cogs/admin.py
staciax/ValorantStoreChecker-discord-bot
37
12782362
<reponame>staciax/ValorantStoreChecker-discord-bot import discord from discord.ext import commands class Admin(commands.Cog): """Error handler""" def __init__(self, bot: commands.Bot) -> None: self.bot = bot @commands.command() # @commands.is_owner() async def sync(self, ctx: commands.Context, sync_type: str = None) -> None: if self.bot.owner_id is None: if ctx.author.guild_permissions.administrator != True: await ctx.reply("You don't have **Administrator permission(s)** to run this command!", delete_after=30) return if sync_type is None: return await ctx.send('you need to specify a sync type.') try: if sync_type == 'guild': guild = discord.Object(id=ctx.guild.id) self.bot.tree.copy_global_to(guild=guild) await self.bot.tree.sync(guild=guild) await ctx.reply(f"Synced guild !") elif sync_type == 'global': await self.bot.tree.sync() await ctx.reply(f"Synced global !") except discord.Forbidden: await ctx.send("Bot don't have permission to sync. : https://cdn.discordapp.com/attachments/939097458288496682/950613059150417970/IMG_3279.png") except discord.HTTPException: await ctx.send('Failed to sync.', delete_after=30) @commands.command() # @commands.is_owner() async def unsync(self, ctx: commands.Context, unsync_type: str = None) -> None: if self.bot.owner_id is None: if ctx.author.guild_permissions.administrator != True: await ctx.reply("You don't have **Administrator permission(s)** to run this command!", delete_after=30) return if unsync_type is None: return await ctx.send('you need to specify a unsync type.') try: if unsync_type == 'guild': guild = discord.Object(id=ctx.guild.id) commands = self.bot.tree.get_commands(guild=guild) for command in commands: self.bot.tree.remove_command(command, guild=guild) await self.bot.tree.sync(guild=guild) await ctx.reply(f"Un-Synced guild !") elif unsync_type == 'global': commands = self.bot.tree.get_commands() for command in commands: self.bot.tree.remove_command(command) await self.bot.tree.sync() await ctx.reply(f"Un-Synced global !") except discord.Forbidden: await ctx.send("Bot don't have permission to unsync. : https://cdn.discordapp.com/attachments/939097458288496682/950613059150417970/IMG_3279.png") except discord.HTTPException: await ctx.send('Failed to unsync.', delete_after=30) async def setup(bot: commands.Bot) -> None: await bot.add_cog(Admin(bot))
2.28125
2
day-16/part-1/chloe.py
lypnol/adventofcode-2017
16
12782363
from runners.python import Submission class ChloeSubmission(Submission): def run(self, s): string = list('abcdefghijklmnop') choregraphie = s.split(',') for mouvement in choregraphie: if mouvement[0] == 's': longueur_groupe = int(mouvement[1:]) stringA = string[len(string) - longueur_groupe:] stringB = string[: len(string) - longueur_groupe] string = stringA + stringB if mouvement[0] == 'x': position1 = int(mouvement[mouvement.index('x') + 1: mouvement.index('/')]) position2 = int(mouvement[mouvement.index('/') + 1:]) exchange = string[position1] string[position1] = string[position2] string[position2] = exchange if mouvement[0] == 'p': element1 = mouvement[mouvement.index('p') + 1: mouvement.index('/')] element2 = mouvement[mouvement.index('/') + 1:] position1 = string.index(element1) position2 = string.index(element2) partner = string[position1] string[position1] = string[position2] string[position2] = partner return ''.join(string)
3.46875
3
stubs.min/Autodesk/Revit/DB/__init___parts/Sweep.py
ricardyn/ironpython-stubs
1
12782364
<reponame>ricardyn/ironpython-stubs<gh_stars>1-10 class Sweep(GenericForm,IDisposable): """ A sweep solid or void form. """ def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass IsTrajectorySegmentationEnabled=property(lambda self: object(),lambda self,v: None,lambda self: None) """The trajectory segmentation option for the sweep. Get: IsTrajectorySegmentationEnabled(self: Sweep) -> bool Set: IsTrajectorySegmentationEnabled(self: Sweep)=value """ MaxSegmentAngle=property(lambda self: object(),lambda self,v: None,lambda self: None) """The maximum segment angle of the sweep in radians. Get: MaxSegmentAngle(self: Sweep) -> float Set: MaxSegmentAngle(self: Sweep)=value """ Path3d=property(lambda self: object(),lambda self,v: None,lambda self: None) """The selected curves used for the sweep path. Get: Path3d(self: Sweep) -> Path3d """ PathSketch=property(lambda self: object(),lambda self,v: None,lambda self: None) """The sketched path for the sweep. Get: PathSketch(self: Sweep) -> Sketch """ ProfileSketch=property(lambda self: object(),lambda self,v: None,lambda self: None) """The profile sketch of the sweep. Get: ProfileSketch(self: Sweep) -> Sketch """ ProfileSymbol=property(lambda self: object(),lambda self,v: None,lambda self: None) """The family symbol profile details for the sweep. Get: ProfileSymbol(self: Sweep) -> FamilySymbolProfile """
2.03125
2
Posture/show_marked.py
TY-Projects/Virtual-Yoga-App
0
12782365
<filename>Posture/show_marked.py<gh_stars>0 import cv2 import numpy as np cap = cv2.VideoCapture("./Videos/yoga_women7.avi") semaPhore = False while True: ret, frame = cap.read() if not ret: break print(frame[0,0,0]) if(not ret): break if(frame[0,0,0] > 250): semaPhore = not semaPhore if(semaPhore): cv2.imshow("Window", frame) k = cv2.waitKey(30) if k == 27 or k == 32: break
2.75
3
hyk/information/models/info_rutine.py
morwen1/hack_your_body
0
12782366
<reponame>morwen1/hack_your_body #django from django.db import models #utils from hyk.utils.models.abstract_hyb import HybModel from .Info_abstract import Info class Info_rutine (Info) : reps = models.IntegerField()
2.09375
2
PyQt5/Widget/DrawPointDemo.py
zhaokai0402/PyQt5-Study
0
12782367
<gh_stars>0 import sys, os, math #pylint: disable=E0602 sys.path.append(os.getcwd()) from importQt import * class DrawPointDemo(QWidget): def __init__(self): super().__init__() self.resize(300, 200) self.setWindowTitle("draw Point in window") def paintEvent(self, event): painter = QPainter(self) self.drawPoints(painter) def drawPoints(self, painter): painter.setPen(Qt.red) size = self.size() for i in range(1000): x = 100 * ( -1 + 2.0 * i / 1000.0) + size.width() / 2.0 y = (-50 * math.sin((x - size.width() / 2.0) * math.pi / 50.0) + size.height() / 2.0) painter.drawPoint(x, y) if __name__ == '__main__': app = QApplication(sys.argv) demo = DrawPointDemo() demo.show() sys.exit(app.exec())
2.6875
3
2021_TetCTF/SuperCalc/findingChars.py
Haltz01/CTFs_Writeups
0
12782368
<gh_stars>0 #!/usr/bin/python3 wantedChars = ['$', '_', 'G', 'E', 'T', '[', ']'] availableChars = [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '(', ')', '.', '~', '^', '|', '&', '+', '-', '*', '/' ] for char1 in availableChars: for char2 in availableChars: if (chr(ord(char1) ^ ord(char2)) in wantedChars): print(char1 + " ^ " + char2 + " = " + chr(ord(char1) ^ ord(char2))) wantedChars.remove(chr(ord(char1) ^ ord(char2))) if (chr(ord(char1) & ord(char2)) in wantedChars): print(char1 + " & " + char2 + " = " + chr(ord(char1) & ord(char2))) wantedChars.remove(chr(ord(char1) & ord(char2))) if (chr(ord(char1) | ord(char2)) in wantedChars): print(char1 + " | " + char2 + " = " + chr(ord(char1) | ord(char2))) wantedChars.remove(chr(ord(char1) | ord(char2))) print("===============================") for char1 in availableChars: for char2 in availableChars: for char3 in availableChars: if (chr(ord(char1) ^ ord(char2) ^ ord(char3)) in wantedChars): print(char1 + " ^ " + char2 + " ^ " + char3 + " = " + chr(ord(char1) ^ ord(char2) ^ ord(char3))) wantedChars.remove(chr(ord(char1) ^ ord(char2) ^ ord(char3))) if (chr(ord(char1) & ord(char2) ^ ord(char3)) in wantedChars): print(char1 + " & " + char2 + " ^ " + char3 + " = " + chr(ord(char1) & ord(char2) ^ ord(char3))) wantedChars.remove(chr(ord(char1) & ord(char2) ^ ord(char3))) if (chr(ord(char1) | ord(char2) ^ ord(char3)) in wantedChars): print(char1 + " | " + char2 + " ^ " + char3 + " = " + chr(ord(char1) | ord(char2) ^ ord(char3))) wantedChars.remove(chr(ord(char1) | ord(char2) ^ ord(char3)))
3.625
4
daireVeMerkeziKareler/daireVeMerkeziKareler.py
emremrt98/Python-Projeleri
0
12782369
import turtle captain = turtle.Turtle() print("\n--------------------------") print("Ad ve Soyad : <NAME>\nOkul No : 203305028") print("----------------------------") kenar = float(input("Kenar Uzunluklarini Gir : ")) yariCap = float(input("Dairenin Yaricapini Gir : ")) x = 0 y = 0 count = 0 kenar += yariCap captain.shape("circle") for i in range(4): captain.up() captain.goto(x,y) captain.down() captain.circle(yariCap) count += 1 if(count == 1): x = kenar + yariCap elif(count == 2): x = 0 y = (-kenar) - yariCap elif(count == 3): x = kenar + yariCap captain.up() captain.goto(0,yariCap) captain.down() for i in range(4): captain.shape("arrow") captain.dot() captain.forward(x) captain.right(90)
3.796875
4
setup.py
vvanholl/smsgateway
23
12782370
<filename>setup.py #!/usr/bin/env python from setuptools import setup with open('VERSION') as version_file: version = version_file.read() with open('README.rst') as readme_file: long_description = readme_file.read() with open('requirements.txt') as requirements_file: install_requires = requirements_file.read().splitlines() classifiers = [ 'Development Status :: 3 - Alpha', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.0', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Communications', 'Topic :: Communications :: Telephony', 'Topic :: System :: Networking', 'Topic :: System :: Networking :: Monitoring', ] data_files = [ ('/etc', ['etc/smsgateway.yml']) ] scripts = [ 'bin/smsgateway' ] setup( name='smsgateway-gammu', version=version, description='Send SMS messages via REST api using Gammu', long_description=long_description, url='https://github.com/vvanholl/smsgateway-gammu', author='<NAME>', author_email='<EMAIL>', license='Apache License, Version 2.0', install_requires=install_requires, classifiers=classifiers, data_files=data_files, scripts=scripts )
1.390625
1
sponge-app/sponge-app-demo-service/sponge/sponge_demo_context_actions_active.py
mnpas/sponge
9
12782371
""" Sponge Knowledge Base Demo - Action - Active context actions """ class ContextActionsActiveInactive(Action): def onConfigure(self): self.withLabel("Action with active/inactive context actions").withArgs([ BooleanType("active").withLabel("Active").withDefaultValue(False) ]).withNonCallable().withFeatures({"contextActions":[ SubAction("ContextActionsActiveInactive_ContextAction1").withArg("active", "active"), SubAction("ContextActionsActiveInactive_ContextAction2") ]}) class ContextActionsActiveInactive_ContextAction1(Action): def onConfigure(self): self.withLabel("Active/inactive context action").withArg(BooleanType("active").withNullable().withFeature("visible", False)).withNoResult() self.withActivatable() def onIsActive(self, context): return context.args[0] if context.args is not None and context.args[0] is not None else False def onCall(self, active): pass class ContextActionsActiveInactive_ContextAction2(Action): def onConfigure(self): self.withLabel("Context action 2").withNoArgs().withNoResult().withFeature("visible", False) def onCall(self): pass
2.640625
3
WEEKS/CD_Sata-Structures/_RESOURCES/sprint-prep/codesignal-my-solutions-master/boxBlurImage/boxBlurImage.py
webdevhub42/Lambda
0
12782372
<filename>WEEKS/CD_Sata-Structures/_RESOURCES/sprint-prep/codesignal-my-solutions-master/boxBlurImage/boxBlurImage.py def boxBlur(image): m = len(image) - 2 n = len(image[0]) - 2 blur_img = [[0] * n for _ in range(m)] for i in range(1, m + 1): for j in range(1, n + 1): indexes = [ [i - 1, j - 1], [i - 1, j], [i - 1, j + 1], [i, j - 1], [i, j], [i, j + 1], [i + 1, j - 1], [i + 1, j], [i + 1, j + 1], ] avg = int(math.floor(sum([image[k][l] for (k, l) in indexes]) / 9)) blur_img[i - 1][j - 1] = avg return blur_img
3.0625
3
tensorflow/python/ops/filesystem_ops.py
wainshine/tensorflow
54
12782373
<reponame>wainshine/tensorflow # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Filesystem related operations.""" from tensorflow.python.ops import gen_filesystem_ops as _gen_filesystem_ops from tensorflow.python.util.tf_export import tf_export # pylint: disable=protected-access @tf_export('experimental.filesystem_set_configuration') def filesystem_set_configuration(scheme, key, value, name=None): """Set configuration of the file system. Args: scheme: File system scheme. key: The name of the configuration option. value: The value of the configuration option. name: A name for the operation (optional). Returns: None. """ return _gen_filesystem_ops.file_system_set_configuration( scheme, key=key, value=value, name=name) # pylint: enable=protected-access
1.546875
2
gym_rubiks_cube/envs/functions.py
marc131183/3DimensionalRendering
0
12782374
from logging import error import numpy as np class Plane: def __init__(self, origin: np.array, vector1: np.array, vector2: np.array) -> None: self.origin = origin self.vector1 = vector1 self.vector2 = vector2 def getBarycentricCoordinates(self, point: np.array, direction: np.array): a = np.array([self.vector1, self.vector2, -direction]).T b = point - self.origin sol = np.linalg.solve(a, b) return np.array([sol[0], sol[1]]) def convertBarycentricCoordinates(self, x, y): return self.origin + x * self.vector1 + y * self.vector2 class Sphere: """https://math.stackexchange.com/questions/268064/move-a-point-up-and-down-along-a-sphere""" def __init__(self, radius) -> None: self.radius = radius self.current_pos = [90, -90] def rotate(self, x, y): self.current_pos[0] = (self.current_pos[0] + x) % 360 self.current_pos[1] = (self.current_pos[1] + y) % 360 theta, phi = np.deg2rad(self.current_pos[0]), np.deg2rad(self.current_pos[1]) return np.array( [ self.radius * np.sin(theta) * np.cos(phi), self.radius * np.sin(theta) * np.sin(phi), self.radius * np.cos(theta), ] ) class RotationMatrix3D: def __init__(self) -> None: pass def __call__( self, object_to_rotate: np.ndarray, axis: int, angle: float ) -> np.ndarray: if axis == 0: rotation_matrix = np.array( [ [1, 0, 0], [0, np.cos(angle), -np.sin(angle)], [0, np.sin(angle), np.cos(angle)], ] ) elif axis == 1: rotation_matrix = np.array( [ [np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)], ] ) elif axis == 2: rotation_matrix = np.array( [ [np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1], ] ) else: raise error("Invalid argument for axis, options are 0, 1, 2") return np.matmul(rotation_matrix, object_to_rotate) def getQuadrant(x: float, y: float): if x == 0 and y == 0: return -1 if x >= 0 and y >= 0: return 1 elif x > 0 and y < 0: return 2 elif x <= 0 and y <= 0: return 3 elif x < 0 and y > 0: return 4
3.140625
3
networks/dorn/dp/metircs/__init__.py
EvoCargo/mono_depth
0
12782375
<gh_stars>0 #!/usr/bin/python3 # -*- coding: utf-8 -*- def build_metrics(cfg): mod = __import__("{}.{}".format(__name__, "metrics"), fromlist=['']) return getattr(mod, "Metrics")() # noqa # return mod.Metrics
1.585938
2
tests/test_numba_toolbox_gpu.py
3d-pli/SLIX
5
12782376
import SLIX if SLIX.toolbox.gpu_available: print(SLIX.toolbox.gpu_available) from SLIX.GPU import _toolbox as ntoolbox import cupy from numba import cuda threads_per_block = (1, 1) blocks_per_grid = (1, 1) class TestNumbaToolboxGPU: def test_peak_cleanup(self): test_one_peak = cupy.array([0, 1, 0, 0]).reshape((1, 1, 4)) result = cupy.zeros(test_one_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_one_peak, result) cuda.synchronize() assert cupy.all(cupy.array([0, 1, 0, 0]) == result) test_two_peak = cupy.array([0, 1, 1, 0]).reshape((1, 1, 4)) result = cupy.zeros(test_two_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_two_peak, result) assert cupy.all(cupy.array([0, 1, 0, 0]) == result) test_three_peak = cupy.array([0, 1, 1, 1, 0]).reshape((1, 1, 5)) result = cupy.zeros(test_three_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_three_peak, result) assert cupy.all(cupy.array([0, 0, 1, 0, 0]) == result) test_double_three_peak = cupy.array([0, 1, 1, 1, 0, 1, 1, 1, 0]).reshape((1, 1, 9)) result = cupy.zeros(test_double_three_peak.shape, dtype='int8') ntoolbox._peaks[blocks_per_grid, threads_per_block](test_double_three_peak, result) assert cupy.all(cupy.array([0, 0, 1, 0, 0, 0, 1, 0, 0]) == result) def test_prominence(self): test_array = cupy.array([0, 0.1, 0.2, 0.4, 0.8, 1, 0.5, 0.7, 0.9, 0.5, 0.3, 0.95, 0], dtype='float32')\ .reshape((1, 1, 13)) peaks = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0], dtype='int8').reshape((1, 1, 13)) expected_prominence = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 0.4, 0, 0, 0.65, 0]).reshape((1, 1, 13)) toolbox_prominence = cupy.zeros(expected_prominence.shape, dtype='float32') ntoolbox._prominence[blocks_per_grid, threads_per_block](test_array, peaks, toolbox_prominence) print(toolbox_prominence) assert cupy.all(cupy.isclose(expected_prominence, toolbox_prominence)) def test_peakwidth(self): test_array = cupy.array([0, 0.1, 0.2, 0.5, 0.8, 1, 0.77, 0.7, 0.66, 0.5, 0.74, 0.98, 0.74], dtype='float32')\ .reshape((1, 1, 13)) peaks = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], dtype='int8').reshape((1, 1, 13)) prominence = cupy.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0.48, 0], dtype='float32').reshape((1, 1, 13)) expected_width = cupy.array([0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0]).reshape((1, 1, 13)) toolbox_width = cupy.zeros(expected_width.shape, dtype='float32') ntoolbox._peakwidth[blocks_per_grid, threads_per_block](test_array, peaks, prominence, toolbox_width, 0.5) assert cupy.all(toolbox_width == expected_width) def test_peakdistance(self): test_arr = cupy.array(([False, False, True, False, False, False, False, True, False] + [False] * 15), dtype='int8')\ .reshape((1, 1, 24)) expected_distance = 75 toolbox_distance = cupy.zeros(test_arr.shape, dtype='float32') ntoolbox._peakdistance[blocks_per_grid, threads_per_block]\ (test_arr, cupy.zeros(test_arr.shape, dtype='float32'), cupy.array([[2]], dtype='int8'), toolbox_distance) assert toolbox_distance[0, 0, 2] == expected_distance assert toolbox_distance[0, 0, 7] == 360 - expected_distance def test_direction(self): # Test for one peak one_peak_arr = cupy.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)).astype('int8') expected_direction = cupy.array([45, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]) toolbox_direction = cupy.zeros((1, 1, 3), dtype='float32') ntoolbox._direction[blocks_per_grid, threads_per_block]\ (one_peak_arr, cupy.zeros(one_peak_arr.shape, dtype='float32'), cupy.array([[1]], dtype='int8'), toolbox_direction, 0) assert cupy.all(expected_direction == toolbox_direction) # Test for one direction with 180°+-35° distance two_peak_arr = cupy.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)).astype('int8') expected_direction = cupy.array([135, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]) ntoolbox._direction[blocks_per_grid, threads_per_block]\ (two_peak_arr, cupy.zeros(two_peak_arr.shape, dtype='float32'), cupy.array([[2]], dtype='int8'), toolbox_direction, 0) assert cupy.all(expected_direction == toolbox_direction) # Test for (invalid) two directions with 180°+-35° distance four_peak_arr = cupy.array([0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) \ .reshape((1, 1, 24)).astype('int8') expected_direction = cupy.array([ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR, ntoolbox.BACKGROUND_COLOR]) ntoolbox._direction[blocks_per_grid, threads_per_block] \ (four_peak_arr, cupy.zeros(four_peak_arr.shape, dtype='float32'), cupy.array([[4]], dtype='int8'), toolbox_direction, 0) assert cupy.all(expected_direction == toolbox_direction) def test_centroid_correction_bases(self): # simple test case: one distinct peak test_array = cupy.array([0] * 9 + [1] + [0] * 14).reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) left_bases = cupy.zeros(test_array.shape, dtype='uint8') right_bases = cupy.zeros(test_array.shape, dtype='uint8') ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block]\ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 1 assert cupy.sum(right_bases) == 1 # simple test case: one distinct peak test_array = cupy.array([0] * 8 + [0.95, 1, 0.5] + [0] * 13, dtype='float32').reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block] \ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 2 assert cupy.sum(right_bases) == 1 # simple test case: centroid is between two measurements test_array = cupy.array([0] * 8 + [1, 1] + [0] * 14).reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block] \ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 1 assert cupy.sum(right_bases) == 2 # more complicated test case: wide peak plateau test_array = cupy.array([0] * 8 + [1, 1, 1] + [0] * 13).reshape((1, 1, 24)) test_high_peaks = SLIX.toolbox.peaks(test_array) test_reverse_peaks = SLIX.toolbox.peaks(-test_array) ntoolbox._centroid_correction_bases[blocks_per_grid, threads_per_block] \ (test_array, test_high_peaks, test_reverse_peaks, left_bases, right_bases) assert cupy.sum(left_bases) == 2 assert cupy.sum(right_bases) == 2 def test_centroid(self): image = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) left = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) right = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) peak = cupy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\ .reshape((1, 1, 24)) result_centroid = cupy.zeros(image.shape, dtype='float32') ntoolbox._centroid[blocks_per_grid, threads_per_block](image, peak, left, right, result_centroid) assert cupy.sum(result_centroid) == 0
2.125
2
antlir/vm/tpm.py
vmagro/antlir
0
12782377
<reponame>vmagro/antlir #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import subprocess import threading from dataclasses import dataclass, field from typing import Iterable, List, Union, Awaitable from antlir.fs_utils import Path from antlir.unshare import Unshare from antlir.vm.common import SidecarProcess logger = logging.getLogger(__name__) class TPMError(Exception): pass # NOTE: all the sidecars in vm.py use async api, while the QEMU process # uses subprocess.Popen; since we want the TPM messages to be piped to stdout # in real time (as opposed to next schedule point of the async loop), this # software TPM process also needs to use subprocess.Popen along with an output # reader thread that pipes to logger. # The wait method here is marked async for the same reason. class PseudoAsyncProcess(SidecarProcess): def __init__(self, args: List[Union[str, bytes]]): proc = subprocess.Popen( args, preexec_fn=os.setpgrp, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE, text=True, ) super().__init__(proc) self.__reader = threading.Thread( target=self.__pipe_output, ) self.__reader.start() def __pipe_output(self): for line in self._proc.stderr: logger.debug("TPM: {}".format(line.strip())) async def wait(self): # other side of the read pipe is closed by the kill self.__reader.join() self._proc.stderr.close() self._proc.wait() @dataclass(frozen=True) class VmTPM(object): context_path: Path sock_path: Path = field(init=False) state_path: Path = field(init=False) def __post_init__(self): # sacrifices for a frozen instance with init fields, see: # https://docs.python.org/3/library/dataclasses.html#frozen-instances object.__setattr__( self, "sock_path", self.context_path / "tpm_ctrl.sock" ) object.__setattr__(self, "state_path", self.context_path / "tpm_state") os.mkdir(self.state_path) async def start_sidecar( self, ns: Unshare, binary: str, timeout_ms: int, ) -> PseudoAsyncProcess: logger.debug(f"Starting software TPM... [context: {self.context_path}]") proc = PseudoAsyncProcess( ns.nsenter_as_user(binary, *self.__get_sidecar_args()) ) try: self.sock_path.wait_for(timeout_ms=timeout_ms) except FileNotFoundError: await proc.kill() raise TPMError( f"Software TPM device fail to create socket in: {timeout_ms}ms" ) logger.debug(f"TPM sidecar PID: {proc.pid}") return proc def __get_sidecar_args(self) -> Iterable[str]: args = [ "socket", "--tpm2", "--tpmstate", f"dir={self.state_path}", "--ctrl", f"type=unixio,path={self.sock_path}", ] if 0 < logger.getEffectiveLevel() <= logging.DEBUG: # this level 20 is basically binary, anything >= 5 generates output args.extend( [ "--log", "level=20", ] ) return args @property def qemu_args(self) -> Iterable[str]: return ( "-chardev", f"socket,id=chtpm,path={self.sock_path}", "-tpmdev", "emulator,id=tpm0,chardev=chtpm", "-device", "tpm-tis,tpmdev=tpm0", )
2.015625
2
src/thexb/UTIL_converters.py
harris-2374/THEx
0
12782378
def convert_window_size_to_int(ws): """This function converts the shorthand input window size and returns an integer of the same value (i.e. "100kb" == int(100000))""" ws = ws.lower() window_units = ws[-2:] try: window_int = int(ws[:-2]) except ValueError: raise ValueError("Please give window size as integer (i.e., 10kb)") converters = { 'bp': int(ws[:-2]), 'kb': int(ws[:-2])*(10**3), 'mb': int(ws[:-2])*(10**6), 'gb': int(ws[:-2])*(10**9) } try: return converters[window_units] except KeyError: print(window_units) raise KeyError("Invalid unit type provided. Options=[bp, kb, mb, gb]") # raise TypeError("Invalid window size value, must be a integer followed by bp, kb, mb, gb (i.e., 10bp, 10kb, 10mb, 10gb)")
3.984375
4
mapocr/segmentation.py
karimbahgat/mapocr
0
12782379
<reponame>karimbahgat/mapocr<filename>mapocr/segmentation.py import itertools import math import numpy as np import PIL from PIL import Image, ImageCms, ImageMorph, ImageFilter, ImageOps, ImageMath import cv2 from colormath.color_objects import sRGBColor, LabColor from colormath.color_conversions import convert_color from colormath.color_diff_matrix import delta_e_cie2000 def rgb_to_lab(im): srgb_p = ImageCms.createProfile("sRGB") lab_p = ImageCms.createProfile("LAB") rgb2lab = ImageCms.buildTransformFromOpenProfiles(srgb_p, lab_p, "RGB", "LAB") im = ImageCms.applyTransform(im, rgb2lab) return im def color_difference(im, color): im_arr = np.array(im) # If wanna do larger more quicker, then do it tiled, eg: ## tw,th = 300,300 ## diff = np.zeros(tuple(reversed(im.size))) ## for y in range(0,im.size[1],th): ## print y ## for x in range(0,im.size[0],tw): ## x2 = min(x + tw, im.size[0]) ## y2 = min(y + th, im.size[1]) ## tile = im.crop([x,y,x2,y2]) ## tdiff = mapfit.segmentation.color_difference(tile, col) ## tdiff[tdiff>thresh] = 255 ## diff[y:y2, x:x2] = tdiff ## Image.fromarray(diff).show() #target = color #diffs = [pairdiffs[tuple(sorted([target,oth]))] for oth in colors if oth != target] target = convert_color(sRGBColor(*color, is_upscaled=True), LabColor).get_value_tuple() counts,colors = zip(*im.getcolors(256)) # somehow much faster than numpy... #colors,counts = np.unique(im_arr.reshape(-1, 3), return_counts=True, axis=0) colors,counts = list(map(tuple,colors)), list(map(int,counts)) colors_lab = [convert_color(sRGBColor(*col, is_upscaled=True), LabColor).get_value_tuple() for col in colors] diffs = delta_e_cie2000(target, np.array(colors_lab)) difftable = dict(list(zip(colors,diffs))) diff_im = np.zeros((im.height,im.width)) im_arr_idx = im_arr.dot(np.array([1, 256, 65536])) #im_arr[:,:,0] + (im_arr[:,:,1]*256) + (im_arr[:,:,2]*256*256) for col,diff in difftable.items(): #print col #diff_im[(im_arr[:,:,0]==col[0])&(im_arr[:,:,1]==col[1])&(im_arr[:,:,2]==col[2])] = diff # 3 lookup is slow #wherecolor = (im_arr==col).all(axis=2) #diff_im[wherecolor] = diff wherecolor = im_arr_idx == (col[0] + (col[1]*256) + (col[2]*256*256)) diff_im[wherecolor] = diff return diff_im def color_differences(colors): colors_lab = [convert_color(sRGBColor(*col, is_upscaled=True), LabColor).get_value_tuple() for col in colors] pairdiffs = dict() for lcol1,group in itertools.groupby(itertools.combinations(colors_lab, 2), key=lambda pair: pair[0]): group = list(group) #print lcol1, len(group), group[0] _,lcol2s = zip(*group) diffs = delta_e_cie2000(lcol1, np.array(lcol2s)) col1 = colors[colors_lab.index(lcol1)] for lcol2,diff in zip(lcol2s, diffs): col2 = colors[colors_lab.index(lcol2)] pair = tuple(sorted([col1,col2])) pairdiffs[pair] = diff #print len(colors_lab)*len(colors_lab), pairdiffs.shape #PIL.Image.fromarray(pairdiffs).show() #fsdfs return pairdiffs def group_colors(colors, thresh=10, categories=None): pairdiffs = color_differences(colors) diffgroups = dict([(c,[]) for c in categories]) if categories else dict() for c in colors: # find closest existing group that is sufficiently similar dists = [(gc,pairdiffs[tuple(sorted([c,gc]))]) for gc in diffgroups.keys()] similar = [(gc,dist) for gc,dist in dists if c != gc and dist < thresh] if similar: # find the most similar group color nearest = sorted(similar, key=lambda x: x[1])[0][0] diffgroups[nearest].append(c) # update that group key as the new central color (lowest avg dist to group members) gdists = [(gc1,[pairdiffs[tuple(sorted([c,gc]))] for gc2 in diffgroups[nearest]]) for gc1 in diffgroups[nearest]] central = sorted(gdists, key=lambda gc_gds: sum(gc_gds[1])/float(len(gc_gds[1])))[0][0] diffgroups[central] = diffgroups.pop(nearest) else: # create new group diffgroups[c] = [c] # set each group key to avg color of group members ## for c,gcols in diffgroups.items(): ## rs,gs,bs = zip(*gcols) ## avgcol = np.mean(rs), np.mean(gs), np.mean(bs) ## diffgroups[avgcol] = diffgroups.pop(c) return diffgroups def view_colors(colors): import pyagg c=pyagg.Canvas(1000,200) c.percent_space() x = 2 for i,g in enumerate(colors): #print(i, g) x += 2 c.draw_line([(x,0),(x,100)], fillcolor=g, fillsize=2) c.get_image().show() def quantize(im): quant = im.convert('P', palette=PIL.Image.ADAPTIVE, colors=256).convert('RGB') return quant def mask_image(im, poly, invert=False): mask = np.zeros((im.size[1], im.size[0])) cv2.drawContours(mask, [poly], -1, 255, -1) #PIL.Image.fromarray(mask).show() new_im = np.array(im) trueval = 255 if invert else 0 new_im[mask==trueval] = 0 new_im = PIL.Image.fromarray(new_im) return new_im def edge_filter(im): # preprocess #im = im.filter(ImageFilter.BoxBlur(3)) #im = im.filter(ImageFilter.EDGE_ENHANCE()) #im.show() # lab values lab = rgb_to_lab(im) l,a,b = lab.split() # find edges of avg ## avg = (np.array(l) + np.array(a) + np.array(b)) / 3.0 ## avg = PIL.Image.fromarray(avg.astype(np.uint8)) ## edges = avg.filter(ImageFilter.FIND_EDGES()) # find max edge edges_l = l.filter(ImageFilter.FIND_EDGES()) edges_a = a.filter(ImageFilter.FIND_EDGES()) edges_b = b.filter(ImageFilter.FIND_EDGES()) edges = ImageMath.eval('convert(max(max(l,a),b), "L")', {'l':edges_l, 'a':edges_a, 'b':edges_b}) # threshold edges = edges.point(lambda v: 255 if v >= 255/2 else 0) #edges.show() # remove outer edge? edges = ImageOps.crop(edges, 1) edges = ImageOps.expand(edges, 1, fill=0) return edges def color_changes(im, neighbours=1): im_arr = np.array(im) # quantize and convert colors quant = im.convert('P', palette=PIL.Image.ADAPTIVE, colors=256) quant_arr = np.array(quant) qcounts,qcolors = zip(*sorted(quant.getcolors(256), key=lambda x: x[0])) counts,colors = zip(*sorted(quant.convert('RGB').getcolors(256), key=lambda x: x[0])) # calc diffs pairdiffs = color_differences(colors) pairdiffs_arr = np.zeros((256,256)) for k,v in list(pairdiffs.items()): qx,qy = (qcolors[colors.index(k[0])], qcolors[colors.index(k[1])]) pairdiffs_arr[qx,qy] = v #PIL.Image.fromarray(pairdiffs_arr*50).show() # detect color edges orig_flat = np.array(quant).flatten() diff_im_flat = np.zeros(quant.size).flatten() buff = (neighbours,neighbours) for xoff in range(-buff[0], buff[0]+1, 1): for yoff in range(-buff[1], buff[1]+1, 1): if xoff == yoff == 0: continue off_flat = np.roll(quant, (xoff,yoff), (0,1)).flatten() #diff_im_flat = diff_im_flat + pairdiffs_arr[orig_flat,off_flat] diff_im_flat = np.maximum(diff_im_flat, pairdiffs_arr[orig_flat,off_flat]) #diff_im_flat = diff_im_flat / 8.0 diff_im = diff_im_flat.reshape((im.height, im.width)) return diff_im def close_edge_gaps(im): grow = ImageMorph.MorphOp(op_name='dilation4') changes,im = grow.apply(im) #changes,im = grow.apply(im) shrink = ImageMorph.MorphOp(op_name='erosion4') changes,im = shrink.apply(im) #changes,im = shrink.apply(im) return im def detect_map_outline(im): # assumes image shows grayscale edges edges = im # find contours contours,_ = cv2.findContours(np.array(edges), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) # find map frame as contour larger than third of the image largest = sorted(contours, key=lambda cnt: cv2.contourArea(cnt))[-1] w,h = im.size im_area = w*h if cv2.contourArea(largest) > im_area/(3.0**2): # maybe also require that contour doesnt touch edges of the image xbuf,ybuf = 2,2 #w/100.0, h/100.0 # 1 percent if largest[:,:,0].min() > 0+xbuf and largest[:,:,0].max() < w-xbuf \ and largest[:,:,1].max() > 0+ybuf and largest[:,:,1].max() < h-ybuf: return largest def detect_boxes(im): # detect boxes from contours # https://stackoverflow.com/questions/11424002/how-to-detect-simple-geometric-shapes-using-opencv # https://stackoverflow.com/questions/46641101/opencv-detecting-a-circle-using-findcontours # see esp: https://www.learnopencv.com/blob-detection-using-opencv-python-c/ contours,_ = cv2.findContours(np.array(im), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) #im_arr_draw = cv2.cvtColor(np.array(im), cv2.COLOR_GRAY2RGB) #from random import randrange boxes = [] im_area = im.size[0] * im.size[1] for cnt in contours: #sorted(contours,key=lambda c: cv2.contourArea(c), reverse=True)[:10]: #cv2.drawContours(im_arr_draw, [cnt], -1, (randrange(0,255),randrange(0,255),randrange(0,255)), -1) #-1, (0,255,0), 1) epsilon = 5 # pixels # 0.01*cv2.arcLength(cnt,True) approx = cv2.approxPolyDP(cnt,epsilon,True) if len(approx) == 4: # less than half the size (a quarter corner), and bigger than one-sixteenth (half of half of half of a quarter corner) if (im_area/(2.0**2)) > cv2.contourArea(cnt) > (im_area/(16.0**2)): boxes.append(cnt) #approx #PIL.Image.fromarray(im_arr_draw).show() return boxes ##class Quad: ## def __init__(self, x, y, w, h): ## self.x = x ## self.y = y ## self.w = w ## self.h = h ## self.children = [] ## ## def __repr__(self): ## return 'Quad({}, {}, {}, {}, children={})'.format(self.x, self.y, self.w, self.h, len(self.children)) ## ## def bbox(self): ## x1,y1 = self.x - self.w/2.0, self.y - self.h/2.0 ## x2,y2 = x1+self.w, y1+self.h ## return x1,y1,x2,y2 ## ## def split(self): ## if self.children: ## for subq in self.children: ## subq.split() ## else: ## halfwidth = self.w/2.0 ## halfheight = self.h/2.0 ## quad = Quad(self.x-halfwidth/2.0, self.y-halfheight/2.0, ## halfwidth, halfheight) ## self.children.append(quad) ## quad = Quad(self.x+halfwidth/2.0, self.y-halfheight/2.0, ## halfwidth, halfheight) ## self.children.append(quad) ## quad = Quad(self.x+halfwidth/2.0, self.y+halfheight/2.0, ## halfwidth, halfheight) ## self.children.append(quad) ## quad = Quad(self.x-halfwidth/2.0, self.y+halfheight/2.0, ## halfwidth, halfheight) ## self.children.append(quad) ## ## def sample(self): ## if self.children: ## q = self.children.pop(0) ## if q.children: ## # if child quad has children ## subq = q.sample() # sample the quad ## self.children.append(q) # send to back of the line ## return subq ## else: ## return q class Quad: def __init__(self, x, y, w, h): '''Breadth-first quad tree that infinitely samples each quad to get a spatially balanced sampling with finer and finer detail, and splits subquads when necessary''' self.x = x self.y = y self.w = w self.h = h self.children = [] def __repr__(self): return 'Quad({}, {}, {}, {}, children={})'.format(self.x, self.y, self.w, self.h, len(self.children)) def bbox(self): x1,y1 = self.x - self.w/2.0, self.y - self.h/2.0 x2,y2 = x1+self.w, y1+self.h return x1,y1,x2,y2 def split(self): if self.children: # already has children, use existing pass else: halfwidth = self.w/2.0 halfheight = self.h/2.0 # upper left quad = Quad(self.x-halfwidth/2.0, self.y-halfheight/2.0, halfwidth, halfheight) self.children.append(quad) # lower right quad = Quad(self.x+halfwidth/2.0, self.y+halfheight/2.0, halfwidth, halfheight) self.children.append(quad) # upper right quad = Quad(self.x+halfwidth/2.0, self.y-halfheight/2.0, halfwidth, halfheight) self.children.append(quad) # lower left quad = Quad(self.x-halfwidth/2.0, self.y+halfheight/2.0, halfwidth, halfheight) self.children.append(quad) def sample(self): '''Samples this quad, either as itself or by further sampling the next in line of its child quads.''' # if doesnt have any children, split and return self if not self.children: self.split() return self # get next quad q = self.children.pop(0) samp = q.sample() self.children.append(q) # send to back of the line return samp ##################### def image_segments(im): '''This is the main user function''' # resize to smaller resolution w,h = im.size dw,dh = 1000,1000 ratio = max(w/float(dw), h/float(dh)) im_small = im.resize((int(w/ratio), int(h/ratio)), PIL.Image.NEAREST) #im_small.show() # filter to edges #edges = edge_filter(im_small) # OR edges from 3x3 color changes changes = color_changes(im_small, neighbours=1) thresh = 10 changes[changes < thresh] = 0 changes[changes >= thresh] = 255 edges = PIL.Image.fromarray(changes.astype(np.uint8)) # grow to close small edge holes #edges = close_edge_gaps(edges) # NOTE: masking should be done on each sample image # find map outline #edges.show() map_outline = detect_map_outline(edges) if map_outline is not None: # convert back to original image coords map_outline = (map_outline * ratio).astype(np.uint64) # find boxes #edges = edges.point(lambda v: 255-v) # inverse, since we expect the inside of boxes to be cleaner/less noise? #edges.show() boxes = detect_boxes(edges) # convert back to original image coords boxes = [(box*ratio).astype(np.uint64) for box in boxes] return map_outline, boxes def sample_quads(bbox, samplesize): '''Samples quads of samplesize from a bbox region in a rotating fashion, until all parts of bbox region has been sampled''' x1,y1,x2,y2 = bbox w = abs(x2-x1) h = abs(y2-y1) sw,sh = samplesize # divide image into quad tiles cx = (x1+x2)/2.0 cy = (y1+y2)/2.0 quads = Quad(cx, cy, w, h) quads.split() # sample quads in a rotating fashion until all parts of bbox has been covered by the samplesize #xmin,ymin,xmax,ymax = min(x1,x2),min(y1,y2),max(x1,x2),max(y1,y2) #sxmin,symin,sxmax,symax = cx,cy,cx,cy intersects_centroid = 0 while True: # sample 4 quads for _ in range(4): q = quads.sample() sq = Quad(q.x, q.y, sw, sh) yield sq # check if sample quad intersects the region centroid _sxmin,_symin,_sxmax,_symax = sq.bbox() if not (_sxmax < cx or _sxmin > cx or _symax < cy or _symin > cy): intersects_centroid += 1 # when 4 sample quads touches the region centroid, the entire region has been covered if intersects_centroid >= 4: break
2.78125
3
src/tests/unit/test_mail_models.py
uescher/byro
0
12782380
<gh_stars>0 import pytest from byro.mails.models import EMail from byro.mails.send import SendMailException @pytest.mark.django_db @pytest.mark.parametrize('skip_queue', (True, False)) def test_template_to_mail(mail_template, skip_queue): count = EMail.objects.count() mail_template.to_mail('test@localhost', skip_queue=skip_queue) assert EMail.objects.count() == count + 1 obj = EMail.objects.last() assert obj.subject == mail_template.subject assert obj.text == mail_template.text assert obj.to == 'test@localhost' assert (obj.sent is None) is not skip_queue assert str(mail_template) == mail_template.subject @pytest.mark.django_db def test_template_to_mail_fail(mail_template): mail_template.subject = '{incorrect_key}' count = EMail.objects.count() with pytest.raises(SendMailException): mail_template.to_mail('test@localhost') assert EMail.objects.count() == count @pytest.mark.django_db def test_mail_cannot_send_sent_mail(sent_email): with pytest.raises(Exception): sent_email.send() @pytest.mark.django_db def test_mail_can_copy_to_draft(sent_email): count = EMail.objects.count() assert sent_email.sent is not None new_mail = sent_email.copy_to_draft() assert new_mail.subject == sent_email.subject assert new_mail.to == sent_email.to assert new_mail.sent is None assert new_mail.pk != sent_email.pk assert EMail.objects.count() == count + 1 @pytest.mark.django_db def test_mail_can_send_regular_mail(email): assert email.sent is None email.send() email.refresh_from_db() assert email.sent is not None @pytest.mark.django_db def test_attachment_ids(email): assert email.attachment_ids == []
2.140625
2
02.NeoRegionLoader.py
buzzfactoryFE/AwsGraphDB
8
12782381
import os, csv, json from py2neo import Graph with open("./AWSNEoConfig.json") as c: conf = json.load(c) c.close graph = Graph(conf[0]["NeoParametes"][0]["Url"], auth=(conf[0]["NeoParametes"][0]["Username"], conf[0]["NeoParametes"][0]["Password"])) regions ="US East (Ohio),us-east-2\n\ US East (N. Virginia),us-east-1\n\ US West (N. California),us-west-1\n\ US West (Oregon),us-west-2\n\ Asia Pacific (Hong Kong),ap-east-1\n\ Asia Pacific (Mumbai),ap-south-1\n\ Asia Pacific (Osaka-Local),ap-northeast-3\n\ Asia Pacific (Seoul),ap-northeast-2\n\ Asia Pacific (Singapore),ap-southeast-1\n\ Asia Pacific (Sydney),ap-southeast-2\n\ Asia Pacific (Tokyo),ap-northeast-1\n\ Canada (Central),ca-central-1\n\ Europe (Frankfurt),eu-central-1\n\ Europe (Ireland),eu-west-1\n\ Europe (London),eu-west-2\n\ Europe (Paris),eu-west-3\n\ Europe (Stockholm),eu-north-1\n\ Middle East (Bahrain),me-south-1\n\ South America (São Paulo),sa-east-1" def NeoInsertRegions(Name,id):# query = 'MERGE (: AWSRegion { Name: "'+Name+'" , Id : "'+id+'" })' print(query) result = graph.run(query).to_table() print(result) #print(regions) reader = csv.reader(regions.split('\n'), delimiter=',') for row in reader: NeoInsertRegions(row[0],row[1])
2.84375
3
background/send_fake_charge_message.py
B-ROY/TESTGIT
2
12782382
<gh_stars>1-10 # -*- coding: utf-8 -*- import os import sys PROJECT_ROOT = os.path.realpath(os.path.dirname(__file__)) sys.path.insert(0, os.path.join(PROJECT_ROOT, os.pardir)) sys.path.append(os.path.abspath(os.path.join(os.path.abspath(__file__), '../'))) sys.path.append(os.path.abspath(os.path.join(os.path.abspath(__file__), '../push_util'))) sys.path.append(os.path.abspath(os.path.join(os.path.abspath(__file__), '../../'))) sys.path.append(os.path.abspath(os.path.join(os.path.abspath(__file__), '../../..'))) sys.path.append(os.path.abspath(os.path.join(os.path.abspath(__file__), '../../../..'))) from base.settings import load_django_settings load_django_settings('live_video.base', 'live_video.app') from app.util.messageque.msgsender import MessageSender from app.customer.models.account import TradeBalanceOrder import datetime import random def push_fake_charge_message(num): now_time = datetime.datetime.now() twelve_hours_ago = now_time - datetime.timedelta(hours=12) balance_orders = TradeBalanceOrder.objects.filter(status=1, filled_time__lte=now_time, filled_time__gte=twelve_hours_ago) count = balance_orders.count() if num > count: num = count print count indexes = random.sample(range(0, count), num) for i in indexes: order = balance_orders[i] MessageSender.send_charge_info_message(order.user.sid, order.user.nickname, order.money) if __name__ == '__main__': num = random.randint(1, 4) push_fake_charge_message(num)
1.992188
2
python/example_code/lookoutvision/csv_to_manifest.py
grjan7/aws-doc-sdk-examples
1
12782383
<filename>python/example_code/lookoutvision/csv_to_manifest.py # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to create an Amazon Lookout for Vision manifest file from a CSV file. The CSV file format is image location,anomaly classification (normal or anomaly) For example: s3://s3bucket/circuitboard/train/anomaly/train_11.jpg,anomaly s3://s3bucket/circuitboard/train/normal/train_1.jpg,normal If necessary, use the bucket argument to specify the Amazon S3 bucket folder for the images. More information: https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/ex-csv-manifest.html """ # snippet-start:[python.example_code.lookoutvision.Scenario_CSVtoManifest] from datetime import datetime, timezone import argparse import logging import csv import os import json logger = logging.getLogger(__name__) def check_errors(csv_file): """ Checks for duplicate images and incorrect classifications in a CSV file. If duplicate images or invalid anomaly assignments are found, an errors CSV file and deduplicated CSV file are created. Only the first occurrence of a duplicate is recorded. Other duplicates are recorded in the errors file. :param csv_file: The source CSV file :return: True if errors or duplicates are found, otherwise false. """ logger.info("Checking %s.", csv_file) errors_found = False errors_file = f"{os.path.splitext(csv_file)[0]}_errors.csv" deduplicated_file = f"{os.path.splitext(csv_file)[0]}_deduplicated.csv" with open(csv_file, 'r', encoding="UTF-8") as input_file,\ open(deduplicated_file, 'w', encoding="UTF-8") as dedup,\ open(errors_file, 'w', encoding="UTF-8") as errors: reader = csv.reader(input_file, delimiter=',') dedup_writer = csv.writer(dedup) error_writer = csv.writer(errors) line = 1 entries = set() for row in reader: # Skip empty lines. if not ''.join(row).strip(): continue # Record any incorrect classifications. if not row[1].lower() == "normal" and not row[1].lower() == "anomaly": error_writer.writerow( [line, row[0], row[1], "INVALID_CLASSIFICATION"]) errors_found = True # Write first image entry to dedup file and record duplicates. key = row[0] if key not in entries: dedup_writer.writerow(row) entries.add(key) else: error_writer.writerow([line, row[0], row[1], "DUPLICATE"]) errors_found = True line += 1 if errors_found: logger.info("Errors found check %s.", errors_file) else: os.remove(errors_file) os.remove(deduplicated_file) return errors_found def create_manifest_file(csv_file, manifest_file, s3_path): """ Read a CSV file and create an Amazon Lookout for Vision classification manifest file. :param csv_file: The source CSV file. :param manifest_file: The name of the manifest file to create. :param s3_path: The Amazon S3 path to the folder that contains the images. """ logger.info("Processing CSV file %s.", csv_file) image_count = 0 anomalous_count = 0 with open(csv_file, newline='', encoding="UTF-8") as csvfile,\ open(manifest_file, "w", encoding="UTF-8") as output_file: image_classifications = csv.reader( csvfile, delimiter=',', quotechar='|') # Process each row (image) in the CSV file. for row in image_classifications: # Skip empty lines. if not ''.join(row).strip(): continue source_ref = str(s3_path) + row[0] classification = 0 if row[1].lower() == 'anomaly': classification = 1 anomalous_count += 1 # Create the JSON line. json_line = {} json_line['source-ref'] = source_ref json_line['anomaly-label'] = str(classification) metadata = {} metadata['confidence'] = 1 metadata['job-name'] = "labeling-job/anomaly-classification" metadata['class-name'] = row[1] metadata['human-annotated'] = "yes" metadata['creation-date'] = datetime.now(timezone.utc).strftime('%Y-%m-%dT%H:%M:%S.%f') metadata['type'] = "groundtruth/image-classification" json_line['anomaly-label-metadata'] = metadata output_file.write(json.dumps(json_line)) output_file.write('\n') image_count += 1 logger.info("Finished creating manifest file %s.\n" "Images: %s\nAnomalous: %s", manifest_file, image_count, anomalous_count) return image_count, anomalous_count def add_arguments(parser): """ Add command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "csv_file", help="The CSV file that you want to process." ) parser.add_argument( "--s3_path", help="The Amazon S3 bucket and folder path for the images." " If not supplied, column 1 is assumed to include the Amazon S3 path.", required=False ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() s3_path = args.s3_path if s3_path is None: s3_path = "" csv_file = args.csv_file csv_file_no_extension = os.path.splitext(csv_file)[0] manifest_file = csv_file_no_extension + '.manifest' # Create manifest file if there are no duplicate images. if check_errors(csv_file): print(f"Issues found. Use {csv_file_no_extension}_errors.csv "\ "to view duplicates and errors.") print(f"{csv_file}_deduplicated.csv contains the first"\ "occurrence of a duplicate.\n" "Update as necessary with the correct information.") print(f"Re-run the script with {csv_file_no_extension}_deduplicated.csv") else: print('No duplicates found. Creating manifest file.') image_count, anomalous_count = create_manifest_file(csv_file, manifest_file, s3_path) print(f"Finished creating manifest file: {manifest_file} \n") normal_count = image_count-anomalous_count print(f"Images processed: {image_count}") print(f"Normal: {normal_count}") print(f"Anomalous: {anomalous_count}") except FileNotFoundError as err: logger.exception("File not found.:%s", err) print(f"File not found: {err}. Check your input CSV file.") if __name__ == "__main__": main() # snippet-end:[python.example_code.lookoutvision.Scenario_CSVtoManifest]
2.984375
3
tests/test_hashutils.py
thurask/bbarchivist
7
12782384
#!/usr/bin/env python3 """Test the hashutils module.""" import hashlib import os from shutil import copyfile, rmtree import pytest from bbarchivist import hashutils as bh try: import unittest.mock as mock except ImportError: import mock __author__ = "Thurask" __license__ = "WTFPL v2" __copyright__ = "2015-2019 Thurask" def setup_module(module): """ Create necessary files. """ if not os.path.exists("temp_hashutils"): os.mkdir("temp_hashutils") os.chdir("temp_hashutils") with open("tempfile.txt", "w") as targetfile: targetfile.write("Jackdaws love my big sphinx of quartz") os.mkdir("skipme") def teardown_module(module): """ Delete necessary files. """ os.chdir("..") rmtree("temp_hashutils", ignore_errors=True) class TestClassHashutils: """ Test hash utilities. """ def test_crc32(self): """ Test CRC32 checksum. """ assert bh.zlib_hash("tempfile.txt", "crc32") == "ed5d3f26" def test_adler32(self): """ Test Adler32 checksum. """ assert bh.zlib_hash("tempfile.txt", "adler32") == "02470dcd" def test_sha0(self): """ Test SHA-0 hash. """ if "sha" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "sha") == "d26b25f6170daf49e31e68bf57f6164815c368d8" def test_sha0_unavail(self, capsys): """ Test SHA-0 hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "sha") assert "SHA HASH FAILED" in capsys.readouterr()[0] def test_sha1(self): """ Test SHA-1 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha1()) == "71dc7ce8f27c11b792be3f169ecf985865e276d0" def test_sha224(self): """ Test SHA-224 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha224()) == "7bcd7b77f63633bf0f7db181106f08eb630a58c521b109be1cc4a404" def test_sha256(self): """ Test SHA-256 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha256()) == "f118871c45171d5fe4e9049980959e033eeeabcfa12046c243fda310580e8a0b" def test_sha384(self): """ Test SHA-384 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha384()) == "76620873c0d27873c137b082425c6e87e3d601c4b19241a1f2222f7f700a2fe8d3c648b26f62325a411cb020bff527be" def test_sha512(self): """ Test SHA-512 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.sha512()) == "b66a5e8aa9b9705748c2ee585b0e1a3a41288d2dafc3be2db12fa89d2f2a3e14f9dec11de4ba865bb51eaa6c2cfeb294139455e34da7d827a19504b0906c01c1" def test_md4(self): """ Test MD4 hash. """ if "md4" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "md4") == "df26ada1a895f94e1f1257fad984e809" def test_md4_unavail(self, capsys): """ Test MD4 hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "md4") assert "MD4 HASH FAILED" in capsys.readouterr()[0] def test_md5(self): """ Test MD5 hash. """ assert bh.hashlib_hash("tempfile.txt", hashlib.md5()) == "822e1187fde7c8d55aff8cc688701650" def test_ripemd160(self): """ Test RIPEMD160 hash. """ if "ripemd160" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "ripemd160") == "f3e191024c33768e2589e2efca53d55f4e4945ee" def test_ripemd160_unavail(self, capsys): """ Test RIPEMD160 hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "ripemd160") assert "RIPEMD160 HASH FAILED" in capsys.readouterr()[0] def test_sha3224(self): """ Test SHA3-224 hash. """ if "sha3_224" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_224()) == "93cc89107b9bd807dead1ae95ce8c4b0f9b8acb2a3eef704e2fad109" def test_sha3256(self): """ Test SHA3-256 hash. """ if "sha3_256" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_256()) == "a9797b62d8b3573c9134406f42e601219e086150e6c2f32c90c5cee0149b6877" def test_sha3384(self): """ Test SHA3-384 hash. """ if "sha3_384" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_384()) == "1ae83352968f601e16eff076f5967dd356edce4c4c5629e3939123b7507efbaafd1dabc1e459f8e47f7a05df718e5927" def test_sha3512(self): """ Test SHA3-512 hash. """ if "sha3_512" not in hashlib.algorithms_available: pass else: assert bh.hashlib_hash("tempfile.txt", hashlib.sha3_512()) == "2ca12b585486d0f775f9fd438a73525b37b1214bc36a8b0ae611d0f1261e8d32b47b923b406c46cc80cc178598d41d42abee3eae5b1c23164b817342e22580e2" def test_whirlpool(self): """ Test Whirlpool hash. """ if "whirlpool" not in hashlib.algorithms_available: pass else: assert bh.ssl_hash("tempfile.txt", "whirlpool") == "9835d12f3cb3ea3934635e4a7cc918e489379ed69d894ebc2c09bbf99fe72567bfd26c919ad666e170752abfc4b8c37b376f5102f9e5de59af2b65efc2e01293" def test_whirlpool_unavail(self, capsys): """ Test Whirlpool hash, if not available. """ with mock.patch("hashlib.new", mock.MagicMock(side_effect=ValueError)): bh.ssl_hash("tempfile.txt", "whirlpool") assert "WHIRLPOOL HASH FAILED" in capsys.readouterr()[0] def test_escreens(self): """ Test EScreens code generation. """ pin = "acdcacdc" app = "10.3.2.500" uptime = "69696969" assert bh.calculate_escreens(pin, app, uptime, duration=2) == "E4A25067" def test_verifier(self): """ Test batch hashing. """ confload = {} confload['adler32'] = True confload['crc32'] = True confload['md4'] = True if "md4" in hashlib.algorithms_available else False confload['md5'] = True confload['sha0'] = True if "sha" in hashlib.algorithms_available else False confload['sha1'] = True confload['sha224'] = True confload['sha256'] = True confload['sha384'] = True confload['sha512'] = True confload['ripemd160'] = True if "ripemd160" in hashlib.algorithms_available else False confload['whirlpool'] = True if "whirlpool" in hashlib.algorithms_available else False confload['sha3224'] = True if "sha3_224" in hashlib.algorithms_available else False confload['sha3256'] = True if "sha3_256" in hashlib.algorithms_available else False confload['sha3384'] = True if "sha3_384" in hashlib.algorithms_available else False confload['sha3512'] = True if "sha3_512" in hashlib.algorithms_available else False confload['blocksize'] = "16777216" print(confload) with mock.patch('bbarchivist.hashutils.verifier_config_loader', mock.MagicMock(return_value=confload)): bh.verifier(os.getcwd()) stocklines = [ b"ADLER32", b"02470DCD tempfile.txt", b"CRC32", b"ED5D3F26 tempfile.txt"] if confload["md4"]: stocklines.extend([ b"MD4", b"DF26ADA1A895F94E1F1257FAD984E809 tempfile.txt"]) stocklines.extend([ b"MD5", b"822E1187FDE7C8D55AFF8CC688701650 tempfile.txt"]) if confload["sha0"]: stocklines.extend([ b"SHA0", b"D26B25F6170DAF49E31E68BF57F6164815C368D8 tempfile.txt"]) stocklines.extend([ b"SHA1", b"71DC7CE8F27C11B792BE3F169ECF985865E276D0 tempfile.txt", b"SHA224", b"7BCD7B77F63633BF0F7DB181106F08EB630A58C521B109BE1CC4A404 tempfile.txt", b"SHA256", b"F118871C45171D5FE4E9049980959E033EEEABCFA12046C243FDA310580E8A0B tempfile.txt", b"SHA384", b"76620873C0D27873C137B082425C6E87E3D601C4B19241A1F2222F7F700A2FE8D3C648B26F62325A411CB020BFF527BE tempfile.txt", b"SHA512", b"B66A5E8AA9B9705748C2EE585B0E1A3A41288D2DAFC3BE2DB12FA89D2F2A3E14F9DEC11DE4BA865BB51EAA6C2CFEB294139455E34DA7D827A19504B0906C01C1 tempfile.txt"]) if confload["ripemd160"]: stocklines.extend([ b"RIPEMD160", b"F3E191024C33768E2589E2EFCA53D55F4E4945EE tempfile.txt"]) if confload["whirlpool"]: stocklines.extend([ b"WHIRLPOOL", b"9835D12F3CB3EA3934635E4A7CC918E489379ED69D894EBC2C09BBF99FE72567BFD26C919AD666E170752ABFC4B8C37B376F5102F9E5DE59AF2B65EFC2E01293 tempfile.txt"]) if confload["sha3224"]: stocklines.extend([ b"SHA3224", b"93CC89107B9BD807DEAD1AE95CE8C4B0F9B8ACB2A3EEF704E2FAD109 tempfile.txt"]) if confload["sha3256"]: stocklines.extend([ b"SHA3256", b"A9797B62D8B3573C9134406F42E601219E086150E6C2F32C90C5CEE0149B6877 tempfile.txt"]) if confload["sha3384"]: stocklines.extend([ b"SHA3384", b"1AE83352968F601E16EFF076F5967DD356EDCE4C4C5629E3939123B7507EFBAAFD1DABC1E459F8E47F7A05DF718E5927 tempfile.txt"]) if confload["sha3512"]: stocklines.extend([ b"SHA3512", b"2CA12B585486D0F775F9FD438A73525B37B1214BC36A8B0AE611D0F1261E8D32B47B923B406C46CC80CC178598D41D42ABEE3EAE5B1C23164B817342E22580E2 tempfile.txt"]) stocklines2 = [] for item in stocklines: item2 = item.strip() item2 = item2.replace(b'\r\n', b'') item2 = item2.replace(b'\n', b'') item2 = item2.replace(b'\r', b'') stocklines2.append(item2) filename = "tempfile.txt.cksum" with open(filename, "rb") as checksumfile: content = checksumfile.read().splitlines() content2 = [] for item in content: item2 = item.strip() item2 = item2.replace(b'\r\n', b'') item2 = item2.replace(b'\n', b'') item2 = item2.replace(b'\r', b'') content2.append(item2) for idx, value in enumerate(content2): assert stocklines2[idx] == value def test_verifier_multiple(self): """ Test batch hashing, but with multiple files. """ for i in range(17): copyfile("tempfile.txt", "tempfile{0}.txt".format(i)) self.test_verifier() def test_verifier_fail(self, capsys): """ Test batch hashing failure. """ with mock.patch("concurrent.futures.ThreadPoolExecutor.submit", mock.MagicMock(side_effect=Exception)): with pytest.raises(SystemExit): bh.verifier(os.getcwd()) assert "SOMETHING WENT WRONG" in capsys.readouterr()[0] class TestClassHashutilsConfig: """ Test reading/writing configs with ConfigParser. """ @classmethod def setup_class(cls): """ Create dictionaries for self. """ cls.hashdict = {} cls.hashdict['crc32'] = False cls.hashdict['adler32'] = False cls.hashdict['sha1'] = True cls.hashdict['sha224'] = False cls.hashdict['sha256'] = True cls.hashdict['sha384'] = False cls.hashdict['sha512'] = False cls.hashdict['sha3224'] = False cls.hashdict['sha3256'] = False cls.hashdict['sha3384'] = False cls.hashdict['sha3512'] = False cls.hashdict['md5'] = True cls.hashdict['md4'] = False cls.hashdict['ripemd160'] = False cls.hashdict['whirlpool'] = False cls.hashdict['sha0'] = False cls.hashdict['blocksize'] = 16777216 def test_hash_loader(self): """ Test reading hash settings. """ try: os.remove("bbarchivist.ini") except (OSError, IOError): pass with mock.patch('bbarchivist.iniconfig.config_homepath', mock.MagicMock(return_value=os.getcwd())): assert bh.verifier_config_loader() == self.hashdict def test_hash_writer(self): """ Test writing hash settings. """ hash2 = self.hashdict hash2['sha512'] = True try: os.remove("bbarchivist.ini") except (OSError, IOError): pass with mock.patch('bbarchivist.iniconfig.config_homepath', mock.MagicMock(return_value=os.getcwd())): with mock.patch('bbarchivist.hashutils.verifier_config_loader', mock.MagicMock(return_value=hash2)): bh.verifier_config_writer() assert bh.verifier_config_loader() == hash2
2.453125
2
scripts/random_plots.py
JLans/jl_spectra_2_structure
0
12782385
<filename>scripts/random_plots.py # -*- coding: utf-8 -*- """ Created on Tue Dec 17 19:33:16 2019 @author: lansf """ from __future__ import division import os import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from jl_spectra_2_structure import IR_GEN from jl_spectra_2_structure.plotting_tools import set_figure_settings set_figure_settings('paper') Downloads_folder = os.path.join(os.path.expanduser("~"),'Downloads') CNCOconv = IR_GEN(ADSORBATE='CO',INCLUDED_BINDING_TYPES=['1,2,3,4']\ ,TARGET='binding_type',NUM_TARGETS=4) y_convCNCO = CNCOconv._get_probabilities(300000,4) y_convGCN = CNCOconv._get_probabilities(300000,10) G = gridspec.GridSpec(1, 2) plt.figure(0,figsize=(3.5,2.2),dpi=300) ax1 = plt.subplot(G[0,0]) plt.hist(y_convCNCO[:,0],bins=10,edgecolor='black') plt.ylabel('Number of Samples') plt.xlabel('Binding-type fraction') plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax1.text(0.85,0.9,'(a)',transform=ax1.transAxes) ax2 = plt.subplot(G[0,1]) plt.hist(y_convGCN[:,0],bins=10,edgecolor='black') #plt.ylabel('Number of Samples') plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.xlabel('GCN group fraction') ax2.text(0.85,0.9,'(b)',transform=ax2.transAxes) plt.savefig(os.path.join(Downloads_folder,'Sample_Distribution_paper.png'), format='png') plt.close()
1.960938
2
src/dictionary.py
rzjfr/sayit
0
12782386
import os import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent class Dictionary: """audio related parts""" def __init__(self, word, files_path='~/.sayit'): self.word = word self.user_agent = UserAgent().random # Random user_agent for http calls self.files_path = os.path.expanduser(files_path) if not os.path.isdir(files_path): os.makedirs(files_path, exist_ok=True) def show(self): """ who the definition part of the word """ file_path = self._get_file(self.word) if not os.path.exists(file_path): raise Exception("File cannot be found for {}.".format(self.word)) with open(file_path, 'r') as html: soup = BeautifulSoup(html, 'html.parser') # Phonetics phonetics = soup.find('div', class_="phons_br") if phonetics: print(phonetics.get_text()) # Origin origin = soup.find('span', unbox="wordorigin") if origin: print(origin.get_text(" ")) # Definitions senses = soup.find('ol', class_='senses_multiple') if senses: self._print_definitions(senses) # Idioms idioms = soup.find_all('span', class_='idm-g') if idioms: self._print_idioms(idioms) def _get_file(self, word): """ download if not already downloaded """ word_audio = word + "__gb" # to save the file in audio sharded format word_path = "{}/oxford/uk/{}/{}/{}".format(self.files_path, word_audio[0], word_audio[0: 3], word_audio[0: 5]) file_path = "{}/{}.html".format(word_path, word) if not os.path.exists(file_path): os.makedirs(word_path, exist_ok=True) self._save_word(word, word_path) return file_path def _save_word(self, word, path): """ download and save the binary file to the given path """ uri = self._create_uri(word) headers = {'User-Agent': self.user_agent} request = requests.get(uri, headers=headers) if request.status_code != 200: raise Exception("{} cannot be found on the server.".format(word)) with open('{}/{}.html'.format(path, word), 'wb') as f: for chunk in request: f.write(chunk) return uri def _create_uri(self, word): """create oxford learner dictionary mp3 uri""" base = "https://www.oxfordlearnersdictionaries.com/definition/english/" return base + word def _print_definitions(self, html): """prints definitions""" for i, sense in enumerate(html): if str(sense) != " ": meaning = sense.find('span', class_='def') if meaning: meaning = meaning.text title = sense.find('span', class_='cf') label = sense.find('span', class_='dtxt') labels = sense.find('span', class_='labels') if label: meaning = "({}) {}".format(label.text, meaning) if labels: meaning = "{} {}".format(labels.text, meaning) if title: meaning = "{}: {}".format(title.text, meaning) print("{}. {}".format(i+1, meaning)) examples = [item.text for item in sense.find_all('li', class_="") if item] for example in examples: if example: print(" • {}".format(example)) def _print_idioms(self, html): """prints idioms""" print("\nIdioms:") for idiom in html: if idiom: print(" ⦾ {}".format(idiom.find('div').get_text(" ", strip=True))) label = idiom.find('span', class_='labels') description = idiom.find('span', class_='def').get_text(" ", strip=True) if label: description = "{} {}".format(label.text, description) print(" {}".format(description)) for example in idiom.find_all('span', class_='x'): print(" . {}".format(example.text))
2.90625
3
hackerrank/The Minion Game.py
safakhan413/leetcode
0
12782387
<reponame>safakhan413/leetcode<filename>hackerrank/The Minion Game.py from itertools import permutations from collections import Counter def minion_game(string): # finding all substrings of s # vowels= ['A', 'E', 'I', 'O', 'U'] # substrings = [] # for i in range(len(string)): # for j in range(i+1, len(string)+ 1): # substrings.append(string[i:j]) # # make a dictionary of alls trings # subs_count = Counter(substrings) # kev,stu = 0,0 # # for k,v in subs_count.items(): # if k[0] in vowels: # kev += v # else: # stu += v # if kev > stu: # print('kevin', kev) # elif stu > kev: # print('Stuart', stu) # else: # print('Draw') ####### More efficient solution ################### player1 = 0; player2 = 0; str_len = len(string) for i in range(str_len): if string[i] in "AEIOU": player1 += (str_len) - i else: player2 += (str_len) - i if player1 > player2: print("Kevin", player1) elif player1 < player2: print("Stuart", player2) elif player1 == player2: print("Draw") else: print("Draw") minion_game('BANANA') ''' Algorithm Output: name and score for the winner Score calculation criteria: find all substrings of string S S has to make words beginning with vowel K has to make words beginning with consonants 1. put them all in a dictionary and add 1 everytime you go through string again and find tahts ubstring 2. keep 2 varibles stuart and kevin. If cosnonants add to stuart, if vowel add to kevin 3. compare the two values and print teh winner with score '''
3.8125
4
dask/context.py
epervago/dask
2
12782388
""" Control global computation context """ from __future__ import absolute_import, division, print_function from collections import defaultdict _globals = defaultdict(lambda: None) _globals['callbacks'] = set() class set_options(object): """ Set global state within controled context This lets you specify various global settings in a tightly controlled ``with`` block. Valid keyword arguments currently include the following:: get - the scheduler to use pool - a thread or process pool cache - Cache to use for intermediate results func_loads/func_dumps - loads/dumps functions for serialization of data likely to contain functions. Defaults to cloudpickle.loads/cloudpickle.dumps optimizations - List of additional optimizations to run Examples -------- >>> with set_options(get=dask.get): # doctest: +SKIP ... x = np.array(x) # uses dask.get internally """ def __init__(self, **kwargs): self.old = _globals.copy() _globals.update(kwargs) def __enter__(self): return def __exit__(self, type, value, traceback): _globals.clear() _globals.update(self.old)
2.4375
2
open3dlab/open3dlab-scraper.py
piyushd26/scrapers
1
12782389
<gh_stars>1-10 from bs4 import BeautifulSoup as soup import requests import os import re import argparse from multiprocessing.pool import ThreadPool from tqdm.auto import tqdm from database import Project, User, Download, Database import sys BASE_DIR = os.path.dirname(os.path.realpath(__file__)) BASE_URL = "https://smutba.se" def scrape(project_id): db = Database() if db.get_project(project_id): # print("Project {} exists in the datatbase".format(project_id)) return True url = "https://smutba.se/project/{}/".format(project_id) page_html = requests.get(url) if page_html.status_code == 404: print("Project {} does not exist on the site".format(project_id)) return False page_soup = soup(page_html.content, "html5lib") project = Project(project_id) project.title = page_soup.find("h1", {"id": "file_title"}).text images_e = page_soup.find_all("img", {"class": "project-detail-image-main"}) for e in images_e: project.images.append(BASE_URL + e["src"]) project.description = page_soup.find("div", {"class": "panel__body"}).decode_contents() user_id = page_soup.find("h4", {"class": "panel__avatar-title"}).find("a").get("href", "").split("/")[-2] user = User(user_id) user.name = page_soup.find("span", {"class": "username"}).text user.add_user() project.user = user info = page_soup.find("div", {"class": "panel__footer"}).find_all("dd") project.posted = info[0].text project.views = info[1].text project.category = info[2].text project.licence = info[3].text trs = page_soup.find("tbody").find_all("tr") for i in range(0, len(trs), 2): tr = trs[i].find_all("td") if len(tr) < 4: break filename = tr[0].strong.text downloads = tr[1].text created = tr[2].text filesize = tr[3].text links = trs[i+1].find_all("a") download = Download(filename) download.downloads = downloads download.created = created download.filesize = filesize download.project_id = project.id for link in links: download.urls.append(BASE_URL + link.get("href", "")) download.add_download() success = project.add_project() if not success: print("Project {} was not successfully added to the database".format(project_id)) print("Project {} added to the database".format(project_id)) def download_file(data, retries=0): local_filename = data[0] url = data[1] if os.path.isfile(local_filename): return url try: response = requests.get(url, stream=True) with tqdm.wrapattr(open(local_filename, "wb"), "write", miniters=1, total=int(response.headers.get('content-length', 0)), desc=local_filename[-20:]) as fout: for chunk in response.iter_content(chunk_size=4096): fout.write(chunk) except requests.exceptions.HTTPError: if retries > 5: return print("retrying", url) retries += 1 download_file((local_filename, url), retries) return url def get_file_url(url): page_html = requests.get(url) if page_html.status_code == 404: print("File {} does not exist on the site".format(url)) return False page_soup = soup(page_html.content, "html5lib") file_url = page_soup.find("div", {"class": "project-description-div"}).find("a").get("href", "") return BASE_URL + file_url def format_name(title): title = re.sub('[?/|\\\}{:<>*"]', '', title) if len(title) > 190: title = title[:120] return title def download_all(): db = Database() download_list = db.get_not_downloaded_download() download_list_urls = [] for download in download_list: urls = db.get_url(download[0]) url = get_file_url(urls[0][1]) if not url: continue file_dir = os.path.join(BASE_DIR, "project", str(download[5]).zfill(5)) file_location = os.path.join(file_dir, format_name(download[1])) if not os.path.exists(file_dir): os.makedirs(file_dir) download_list_urls.append((file_location, url)) db.set_download_download(download[0]) with ThreadPool(processes=4) as tp: for imap_result in tp.imap_unordered(download_file, download_list_urls): pass project_list = db.get_not_downloaded_project() for project in project_list: images = db.get_image_urls(project[0]) for image in images: file_dir = os.path.join(BASE_DIR, "project", str(project[0]).zfill(5), "images") file_location = os.path.join(file_dir, os.path.basename(image[1])) if not os.path.exists(file_dir): os.makedirs(file_dir) download_file((file_location, image[1])) db.set_download_project(project[0]) def main(): parser = argparse.ArgumentParser(description="Archive assets from Smutbase and Open3DLab") parser.add_argument("--start", type=int, help="Starting project ID", default=1) parser.add_argument("--end", type=int, help="Ending project ID", default=32500) parser.add_argument("-o", "--output", type=str, help="Set download directory") args = parser.parse_args() global BASE_DIR BASE_DIR = os.path.dirname(os.path.realpath(__file__)) if args.output: BASE_DIR = os.path.abspath(args.output) if not os.path.exists(BASE_DIR): os.makedirs(BASE_DIR) for project_id in range(args.start, args.end+1): scrape(project_id) download_all() main()
2.625
3
tests/test_sedas_api.py
oskarfkrauss/sedas_pyapi
3
12782390
""" Copyright 2019 Satellite Applications Catapult Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from urllib.error import HTTPError from sedas_pyapi.sedas_api import SeDASAPI class TestSeDASAPI(unittest.TestCase): def test_login_bad_creds(self): sedas = SeDASAPI("bogus", "<PASSWORD> real password") self.assertRaises( HTTPError, sedas.login ) def test_blank_username(self): sedas = SeDASAPI("", "is not a real password") self.assertRaises( ValueError, sedas.login ) def test_blank_password(self): sedas = SeDASAPI("is not a real username", "") self.assertRaises( ValueError, sedas.login )
2.265625
2
Exercicios/ex081.py
mauroalbuquerque/Python-CursoEmVideo
0
12782391
<reponame>mauroalbuquerque/Python-CursoEmVideo<filename>Exercicios/ex081.py<gh_stars>0 num = list() while True: while True: valor = input('Digite um valor: ') if valor.isnumeric(): valor = int(valor) break else: print('Valor Incorreto. Por favor, tente novamente!') num.append(valor) while True: resposta = input('Deseja continuar [S/N]: ').strip().lower()[0] if resposta != 's' and resposta != 'n': print('Dados Incorretos. Por favor, tente novamente!') else: break if resposta == 'n': break print(num) print(f'Foram inseridos {len(num)}') num.sort(reverse=True) print(f'A lista em ordem decrescente -> {num}') if 5 in num: print('O valor 5 se encontra na lista') else: print('O valor 5 não se encontra na lista')
3.609375
4
balancesheet/mongoData/equities.py
tylertjburns/ledgerkeeper
0
12782392
<filename>balancesheet/mongoData/equities.py import mongoengine from balancesheet.mongoData.valueSnapshot import ValueSnapshot class Equity(mongoengine.Document): # Top Level Elements name = mongoengine.StringField(required=True) description = mongoengine.StringField(required=True) account_id = mongoengine.StringField(required=True) equityClass = mongoengine.StringField(required=True) equityType = mongoengine.StringField(required=True) interestRate = mongoengine.FloatField(default=0.0) equityTimeHorizon = mongoengine.StringField(required=True) equityStatus = mongoengine.StringField(required=True) equityContingency = mongoengine.StringField(required=True) # Embedded Documents snapshots = mongoengine.EmbeddedDocumentListField(ValueSnapshot) # Meta meta = { 'db_alias': 'core', 'collection': 'equities' }
2.109375
2
rest_framework_idempotency_key/utils.py
hardcoretech/djangorestframework-idempotency-key
5
12782393
def raise_if(expression, error): if expression: raise error
1.664063
2
teamcat_service/doraemon/business/project/project_service.py
zhangyin2088/Teamcat
6
12782394
#coding=utf-8 ''' Created on 2015-10-23 @author: Devuser ''' from doraemon.project.models import Project,ProjectMember,Product,ProjectModule,Version from gatesidelib.common.simplelogger import SimpleLogger from django.contrib.admin.models import DELETION,CHANGE,ADDITION from business.project.version_service import VersionService from business.auth_user.user_service import UserService import random class ProjectService(object): ''' classdocs ''' @staticmethod def get_latest_projects_include_me(request): result = list() latest_projects = ProjectService.get_latest_projects(request) my_projects = ProjectService.get_projects_include_me(request) my_project_ids = [project.id for project in my_projects] for project in latest_projects: if project and project.id in my_project_ids: result.append(project) return result[0:6] @staticmethod def get_latest_projects(request): result=list() latest_project_ids=VersionService.get_latests_project_ids(request) for project_id in latest_project_ids: temp_project=Project.objects.get(project_id) result.append(temp_project) return result @staticmethod def get_projects_include_me(request,product_id='all'): if product_id==None: product_id="0" if UserService.is_admin(request.user.id): return Project.objects.all() member_list= ProjectMember.objects.all().filter(PMMember=request.user.id) project_ids=[member.PMProjectID for member in member_list] if product_id.upper()=="ALL": result=Project.objects.all().filter(id__in=project_ids) else: result=Project.objects.all().filter(id__in=project_ids).filter(Product=int(product_id)) return result @staticmethod def get_products_include_me(request): my_projects=ProjectService.get_projects_include_me(request) prodcut_ids=list() for project in my_projects: if project.Product not in prodcut_ids: prodcut_ids.append(project.Product) return Product.objects.all().filter(id__in=prodcut_ids) @staticmethod def get_project_modules(project_id): return ProjectModule.objects.project_modules(int(project_id)) @staticmethod def create_project(request): try: project=Project() project=ProjectService.init_project(request.data, project) project.PBCreator=request.user.id project.save() if str(request.user.id)!=str(project.PBLead): ProjectService.add_member(request.user.id,project.id,5) ProjectService.add_member(project.PBLead,project.id,4) else: ProjectService.add_member(request.user.id,project.id,4) ProjectService.create_version(project,request.user) ProjectService.log_create_activity(request.user, project) except Exception as ex: SimpleLogger.error(ex) @staticmethod def create_version(project,user): version=Version() version.VProjectID=project.id version.VVersion='1.0.0' version.CFTCommitor=user.id version.save() VersionService.log_create_activity(user, version) @staticmethod def edit_project(request,projectid): temp_project=Project.objects.get(projectid) project=ProjectService.init_project(request.POST, temp_project) project.save() ProjectService.log_change_activity(request.user, project) @staticmethod def delete_project(request,projectid): print(projectid) project=Project.objects.get(projectid) project.IsActive=0 project.save() ProjectService.log_delete_activity(request.user, project) @staticmethod def init_project(validate_data,project): tmp_project=project tmp_project.PBTitle=validate_data.get('PBTitle') tmp_project.PBDescription=validate_data.get('PBDescription') tmp_project.PBKey=validate_data.get('PBKey') tmp_project.PBPlatform=validate_data.get('PBPlatform') tmp_project.PBVisiableLevel=validate_data.get('PBVisiableLevel') tmp_project.PBLead=validate_data.get('PBLead') tmp_project.Product=0 tmp_project.PBHttpUrl=validate_data.get('PBHttpUrl') tmp_project.PBAvatar="/static/global/images/project-icon/scenery-"+str(random.randint(1, 24))+".png" return tmp_project @staticmethod def add_member(user,projectid,Role): project_member=ProjectMember() project_member.PMProjectID=projectid project_member.PMMember=user project_member.PMRoleID=Role project_member.PMRoleType=1 project_member.save() @staticmethod def log_create_activity(user,project): Project.objects.log_action(user.id,project.id,project.PBTitle,ADDITION,"创建了项目",project.id) @staticmethod def log_delete_activity(user,project): Project.objects.log_action(user.id,project.id,project.PBTitle,DELETION,"删除了项目",project.id) @staticmethod def log_change_activity(user,project): Project.objects.log_action(user.id,project.id,project.PBTitle,CHANGE,"修改了项目",project.id)
2.09375
2
render.py
tranquada/ga-capstone
4
12782395
from jinja2 import Environment, PackageLoader, select_autoescape from IPython.display import HTML # MODULE INTRODUCTION """This module contains dislay functions to render the different data layers using Jinja2 templates and IPython rendering methods for Jupyter Notebook.""" # GLOBAL VARIABLE DECLARATIONS ENV = Environment( loader=PackageLoader('ga-capstone', 'templates'), autoescape=select_autoescape(['html', 'xml']) ) def div(format, data): # HTML formatting utility function """Wraps 'data' inside a div of class 'format' for HTML printing.""" d = '<div class="{}">{}</div>' # Basic div template return d.format(format, data) def char(i, char, map_char, state): """Formats character information for html display. state can be [blank/bold/plain/tag].""" top = div(map_char, char) # Create div for top part with characetr bottom = div(state, i) # Create div for botm part with index filling = top + bottom # Stick th two together to fill the charbox return div('charbox', filling) def line(raw, char_map, states, pad=True): """Formats line information for html display. 'raw' should come from data.raw, and 'char_map' should come from styler(data.map). pad=True will add black squares to fill the row up to 80 characters.""" filling = '' for i, (c, m, s) in zip(raw, char_map, states): filling += char(i, c, m, s) if pad: # Check line length and initialize pad_length if creating a pad pad_length = 80 - len(raw) for x in range(pad_length): filling += char(len(raw) + x, '', 'e', 'blank') return div('stringbox', filling) def show(content, style): """Takes a string representing HTML content and packages it for display in IPython/Jupyter Notebook""" window = div('window', content) return div('viewer', window)
3.3125
3
mailslurp_client/models/webhook_projection.py
mailslurp/mailslurp-client-python
6
12782396
<reponame>mailslurp/mailslurp-client-python<gh_stars>1-10 # coding: utf-8 """ MailSlurp API MailSlurp is an API for sending and receiving emails from dynamically allocated email addresses. It's designed for developers and QA teams to test applications, process inbound emails, send templated notifications, attachments, and more. ## Resources - [Homepage](https://www.mailslurp.com) - Get an [API KEY](https://app.mailslurp.com/sign-up/) - Generated [SDK Clients](https://www.mailslurp.com/docs/) - [Examples](https://github.com/mailslurp/examples) repository # noqa: E501 The version of the OpenAPI document: 6.5.2 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from mailslurp_client.configuration import Configuration class WebhookProjection(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'created_at': 'datetime', 'event_name': 'str', 'id': 'str', 'inbox_id': 'str', 'name': 'str', 'updated_at': 'datetime', 'url': 'str' } attribute_map = { 'created_at': 'createdAt', 'event_name': 'eventName', 'id': 'id', 'inbox_id': 'inboxId', 'name': 'name', 'updated_at': 'updatedAt', 'url': 'url' } def __init__(self, created_at=None, event_name=None, id=None, inbox_id=None, name=None, updated_at=None, url=None, local_vars_configuration=None): # noqa: E501 """WebhookProjection - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._created_at = None self._event_name = None self._id = None self._inbox_id = None self._name = None self._updated_at = None self._url = None self.discriminator = None self.created_at = created_at if event_name is not None: self.event_name = event_name self.id = id self.inbox_id = inbox_id if name is not None: self.name = name self.updated_at = updated_at self.url = url @property def created_at(self): """Gets the created_at of this WebhookProjection. # noqa: E501 :return: The created_at of this WebhookProjection. # noqa: E501 :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """Sets the created_at of this WebhookProjection. :param created_at: The created_at of this WebhookProjection. # noqa: E501 :type: datetime """ if self.local_vars_configuration.client_side_validation and created_at is None: # noqa: E501 raise ValueError("Invalid value for `created_at`, must not be `None`") # noqa: E501 self._created_at = created_at @property def event_name(self): """Gets the event_name of this WebhookProjection. # noqa: E501 :return: The event_name of this WebhookProjection. # noqa: E501 :rtype: str """ return self._event_name @event_name.setter def event_name(self, event_name): """Sets the event_name of this WebhookProjection. :param event_name: The event_name of this WebhookProjection. # noqa: E501 :type: str """ allowed_values = ["EMAIL_RECEIVED", "NEW_EMAIL", "NEW_CONTACT", "NEW_ATTACHMENT", "EMAIL_OPENED", "EMAIL_READ"] # noqa: E501 if self.local_vars_configuration.client_side_validation and event_name not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `event_name` ({0}), must be one of {1}" # noqa: E501 .format(event_name, allowed_values) ) self._event_name = event_name @property def id(self): """Gets the id of this WebhookProjection. # noqa: E501 :return: The id of this WebhookProjection. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this WebhookProjection. :param id: The id of this WebhookProjection. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and id is None: # noqa: E501 raise ValueError("Invalid value for `id`, must not be `None`") # noqa: E501 self._id = id @property def inbox_id(self): """Gets the inbox_id of this WebhookProjection. # noqa: E501 :return: The inbox_id of this WebhookProjection. # noqa: E501 :rtype: str """ return self._inbox_id @inbox_id.setter def inbox_id(self, inbox_id): """Sets the inbox_id of this WebhookProjection. :param inbox_id: The inbox_id of this WebhookProjection. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and inbox_id is None: # noqa: E501 raise ValueError("Invalid value for `inbox_id`, must not be `None`") # noqa: E501 self._inbox_id = inbox_id @property def name(self): """Gets the name of this WebhookProjection. # noqa: E501 :return: The name of this WebhookProjection. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this WebhookProjection. :param name: The name of this WebhookProjection. # noqa: E501 :type: str """ self._name = name @property def updated_at(self): """Gets the updated_at of this WebhookProjection. # noqa: E501 :return: The updated_at of this WebhookProjection. # noqa: E501 :rtype: datetime """ return self._updated_at @updated_at.setter def updated_at(self, updated_at): """Sets the updated_at of this WebhookProjection. :param updated_at: The updated_at of this WebhookProjection. # noqa: E501 :type: datetime """ if self.local_vars_configuration.client_side_validation and updated_at is None: # noqa: E501 raise ValueError("Invalid value for `updated_at`, must not be `None`") # noqa: E501 self._updated_at = updated_at @property def url(self): """Gets the url of this WebhookProjection. # noqa: E501 :return: The url of this WebhookProjection. # noqa: E501 :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this WebhookProjection. :param url: The url of this WebhookProjection. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and url is None: # noqa: E501 raise ValueError("Invalid value for `url`, must not be `None`") # noqa: E501 self._url = url def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, WebhookProjection): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, WebhookProjection): return True return self.to_dict() != other.to_dict()
2.28125
2
modules/server/physim.py
bullseyestudio/guns-game
0
12782397
<gh_stars>0 """ Physics simulation module for Guns!, the tank game. Even more docstringy stuff goes here. Todo: I have no idea what physics sim functions we need yet, but we should have the module. Todo: This will probably end up breaking into bits. """ pass
1.46875
1
winners/nontargeted-attack/teaflow/cleverhans/attacks.py
geekpwn/caad2018
50
12782398
from abc import ABCMeta import numpy as np from six.moves import xrange import warnings import collections import cleverhans.utils as utils from cleverhans.model import Model, CallableModelWrapper class Attack(object): """ Abstract base class for all attack classes. """ __metaclass__ = ABCMeta def __init__(self, model, back='tf', sess=None): """ :param model: An instance of the Model class. :param back: The backend to use. Either 'tf' (default) or 'th'. :param sess: The tf session to run graphs in (use None for Theano) """ if not(back == 'tf' or back == 'th'): raise ValueError("Backend argument must either be 'tf' or 'th'.") if back == 'th' and sess is not None: raise Exception("A session should not be provided when using th.") if not isinstance(model, Model): if hasattr(model, '__call__'): pass else: raise ValueError("The model argument should be an instance of" " the Model class.") if back == 'th': warnings.warn("CleverHans support for Theano is deprecated and " "will be dropped on 2017-11-08.") # Prepare attributes self.model = model self.back = back self.sess = sess # We are going to keep track of old graphs and cache them. self.graphs = {} # When calling generate_np, arguments in the following set should be # fed into the graph, as they are not structural items that require # generating a new graph. # This dict should map names of arguments to the types they should # have. # (Usually, the target class will be a feedable keyword argument.) self.feedable_kwargs = {} # When calling generate_np, arguments in the following set should NOT # be fed into the graph, as they ARE structural items that require # generating a new graph. # This list should contain the names of the structural arguments. self.structural_kwargs = [] def generate(self, x, **kwargs): """ Generate the attack's symbolic graph for adversarial examples. This method should be overriden in any child class that implements an attack that is expressable symbolically. Otherwise, it will wrap the numerical implementation as a symbolic operator. :param x: The model's symbolic inputs. :param **kwargs: optional parameters used by child classes. :return: A symbolic representation of the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') error = "Sub-classes must implement generate." raise NotImplementedError(error) def construct_graph(self, fixed, feedable, x_val, hash_key): # try our very best to create a TF placeholder for each of the # feedable keyword arguments, and check the types are one of # the allowed types import tensorflow as tf new_kwargs = dict(x for x in fixed.items()) for name, value in feedable.items(): given_type = self.feedable_kwargs[name] if isinstance(value, np.ndarray): new_shape = [None] + list(value.shape[1:]) new_kwargs[name] = tf.placeholder(given_type, new_shape) elif isinstance(value, utils.known_number_types): new_kwargs[name] = tf.placeholder(given_type, shape=[]) else: raise ValueError("Could not identify type of argument " + name + ": " + str(value)) # x is a special placeholder we always want to have x_shape = [None] + list(x_val.shape)[1:] x = tf.placeholder(tf.float32, shape=x_shape) # now we generate the graph that we want x_adv = self.generate(x, **new_kwargs) self.graphs[hash_key] = (x, new_kwargs, x_adv) if len(self.graphs) >= 10: warnings.warn("Calling generate_np() with multiple different " "structural paramaters is inefficient and should" " be avoided. Calling generate() is preferred.") def generate_np(self, x_val, **kwargs): """ Generate adversarial examples and return them as a Numpy array. Sub-classes *should not* implement this method unless they must perform special handling of arguments. :param x_val: A Numpy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A Numpy array holding the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') import tensorflow as tf if self.sess is None: raise ValueError("Cannot use `generate_np` when no `sess` was" " provided") # the set of arguments that are structural properties of the attack # if these arguments are different, we must construct a new graph fixed = dict((k, v) for k, v in kwargs.items() if k in self.structural_kwargs) # the set of arguments that are passed as placeholders to the graph # on each call, and can change without constructing a new graph feedable = dict((k, v) for k, v in kwargs.items() if k in self.feedable_kwargs) if len(fixed) + len(feedable) < len(kwargs): warnings.warn("Supplied extra keyword arguments that are not " "used in the graph computation. They have been " "ignored.") if not all(isinstance(value, collections.Hashable) for value in fixed.values()): # we have received a fixed value that isn't hashable # this means we can't cache this graph for later use, # and it will have to be discarded later hash_key = None else: # create a unique key for this set of fixed paramaters hash_key = tuple(sorted(fixed.items())) if hash_key not in self.graphs: self.construct_graph(fixed, feedable, x_val, hash_key) x, new_kwargs, x_adv = self.graphs[hash_key] feed_dict = {x: x_val} for name in feedable: feed_dict[new_kwargs[name]] = feedable[name] return self.sess.run(x_adv, feed_dict) def parse_params(self, params=None): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. :param params: a dictionary of attack-specific parameters :return: True when parsing was successful """ return True class MultipleModelAttack(object): """ Abstract base class for all attack classes. """ __metaclass__ = ABCMeta def __init__(self, models, back='tf', sess=None): """ :param models: An instance of the Model class. :param back: The backend to use. Either 'tf' (default) or 'th'. :param sess: The tf session to run graphs in (use None for Theano) """ if not(back == 'tf' or back == 'th'): raise ValueError("Backend argument must either be 'tf' or 'th'.") if back == 'th' and sess is not None: raise Exception("A session should not be provided when using th.") for model in models: if not isinstance(model, Model): if hasattr(model, '__call__'): warnings.warn("CleverHans support for supplying a callable" " instead of an instance of the Model class is" " deprecated and will be dropped on 2018-01-11.") else: raise ValueError("The model argument should be an instance of" " the Model class.") if back == 'th': warnings.warn("CleverHans support for Theano is deprecated and " "will be dropped on 2017-11-08.") # Prepare attributes self.model1 = models[0] self.model2 = models[1] self.model3 = models[2] self.back = back self.sess = sess # We are going to keep track of old graphs and cache them. self.graphs = {} # When calling generate_np, arguments in the following set should be # fed into the graph, as they are not structural items that require # generating a new graph. # This dict should map names of arguments to the types they should # have. # (Usually, the target class will be a feedable keyword argument.) self.feedable_kwargs = {} # When calling generate_np, arguments in the following set should NOT # be fed into the graph, as they ARE structural items that require # generating a new graph. # This list should contain the names of the structural arguments. self.structural_kwargs = [] def generate(self, x, **kwargs): """ Generate the attack's symbolic graph for adversarial examples. This method should be overriden in any child class that implements an attack that is expressable symbolically. Otherwise, it will wrap the numerical implementation as a symbolic operator. :param x: The model's symbolic inputs. :param **kwargs: optional parameters used by child classes. :return: A symbolic representation of the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') error = "Sub-classes must implement generate." raise NotImplementedError(error) def construct_graph(self, fixed, feedable, x_val, hash_key): # try our very best to create a TF placeholder for each of the # feedable keyword arguments, and check the types are one of # the allowed types import tensorflow as tf new_kwargs = dict(x for x in fixed.items()) for name, value in feedable.items(): given_type = self.feedable_kwargs[name] if isinstance(value, np.ndarray): new_shape = [None] + list(value.shape[1:]) new_kwargs[name] = tf.placeholder(given_type, new_shape) elif isinstance(value, utils.known_number_types): new_kwargs[name] = tf.placeholder(given_type, shape=[]) else: raise ValueError("Could not identify type of argument " + name + ": " + str(value)) # x is a special placeholder we always want to have x_shape = [None] + list(x_val.shape)[1:] x = tf.placeholder(tf.float32, shape=x_shape) # now we generate the graph that we want x_adv = self.generate(x, **new_kwargs) self.graphs[hash_key] = (x, new_kwargs, x_adv) if len(self.graphs) >= 10: warnings.warn("Calling generate_np() with multiple different " "structural paramaters is inefficient and should" " be avoided. Calling generate() is preferred.") def generate_np(self, x_val, **kwargs): """ Generate adversarial examples and return them as a Numpy array. Sub-classes *should not* implement this method unless they must perform special handling of arguments. :param x_val: A Numpy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A Numpy array holding the adversarial examples. """ if self.back == 'th': raise NotImplementedError('Theano version not implemented.') import tensorflow as tf if self.sess is None: raise ValueError("Cannot use `generate_np` when no `sess` was" " provided") # the set of arguments that are structural properties of the attack # if these arguments are different, we must construct a new graph fixed = dict((k, v) for k, v in kwargs.items() if k in self.structural_kwargs) # the set of arguments that are passed as placeholders to the graph # on each call, and can change without constructing a new graph feedable = dict((k, v) for k, v in kwargs.items() if k in self.feedable_kwargs) if len(fixed) + len(feedable) < len(kwargs): warnings.warn("Supplied extra keyword arguments that are not " "used in the graph computation. They have been " "ignored.") if not all(isinstance(value, collections.Hashable) for value in fixed.values()): # we have received a fixed value that isn't hashable # this means we can't cache this graph for later use, # and it will have to be discarded later hash_key = None else: # create a unique key for this set of fixed paramaters hash_key = tuple(sorted(fixed.items())) if hash_key not in self.graphs: self.construct_graph(fixed, feedable, x_val, hash_key) x, new_kwargs, x_adv = self.graphs[hash_key] feed_dict = {x: x_val} for name in feedable: feed_dict[new_kwargs[name]] = feedable[name] return self.sess.run(x_adv, feed_dict) def parse_params(self, params=None): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. :param params: a dictionary of attack-specific parameters :return: True when parsing was successful """ return True class FastGradientMethod(Attack): """ This attack was originally implemented by Goodfellow et al. (2015) with the infinity norm (and is known as the "Fast Gradient Sign Method"). This implementation extends the attack to other norms, and is therefore called the Fast Gradient Method. Paper link: https://arxiv.org/abs/1412.6572 """ def __init__(self, model, back='tf', sess=None): """ Create a FastGradientMethod instance. """ super(FastGradientMethod, self).__init__(model, back, sess) self.feedable_kwargs = {'eps': np.float32, 'y': np.float32, 'clip_min': np.float32, 'clip_max': np.float32} self.structural_kwargs = ['ord'] if not isinstance(self.model, Model): self.model = CallableModelWrapper(self.model, 'probs') def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param y: (optional) A tensor with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) if self.back == 'tf': from .attacks_tf import fgm else: from .attacks_th import fgm return fgm(x, self.model.get_probs(x), y=self.y, eps=self.eps, ord=self.ord, clip_min=self.clip_min, clip_max=self.clip_max) def parse_params(self, eps=0.3, ord=np.inf, y=None, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param y: (optional) A tensor with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.ord = ord self.y = y self.clip_min = clip_min self.clip_max = clip_max # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, int(1), int(2)]: raise ValueError("Norm order must be either np.inf, 1, or 2.") if self.back == 'th' and self.ord != np.inf: raise NotImplementedError("The only FastGradientMethod norm " "implemented for Theano is np.inf.") return True class MultiModelIterativeMethod(MultipleModelAttack): """ The Basic Iterative Method (Kurakin et al. 2016). The original paper used hard labels for this attack; no label smoothing. """ def __init__(self, models, back='tf', sess=None): """ Create a BasicIterativeMethod instance. """ super(MultiModelIterativeMethod, self).__init__(models, back, sess) self.feedable_kwargs = {'eps': np.float32, 'eps_iter': np.float32, 'y': np.float32, 'clip_min': np.float32, 'clip_max': np.float32} self.structural_kwargs = ['ord', 'nb_iter'] if not isinstance(self.model1, Model): self.model1 = CallableModelWrapper(self.model1, 'probs') if not isinstance(self.model2, Model): self.model2 = CallableModelWrapper(self.model2, 'probs') if not isinstance(self.model3, Model): self.model3 = CallableModelWrapper(self.model3, 'probs') def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (required) A tensor with the model labels. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf # Parse and save attack-specific parameters assert self.parse_params(**kwargs) # Initialize loop variables eta = 0 # Fix labels to the first model predictions for loss computation # model_preds1 = self.model1.get_probs(x) # model_preds2 = self.model2.get_probs(x) model_preds3 = self.model3.get_probs(x) model_preds = model_preds3 preds_max = tf.reduce_max(model_preds, 1, keep_dims=True) y = tf.to_float(tf.equal(model_preds, preds_max)) fgsm_params = {'eps': self.eps_iter, 'y': y, 'ord': self.ord} for i in range(self.nb_iter): FGSM1 = FastGradientMethod(self.model1, back=self.back, sess=self.sess) FGSM2 = FastGradientMethod(self.model2, back=self.back, sess=self.sess) FGSM3 = FastGradientMethod(self.model3, back=self.back, sess=self.sess) # Compute this step's perturbation eta1 = FGSM1.generate(x + eta, **fgsm_params) - x eta2 = FGSM2.generate(x + eta, **fgsm_params) - x eta3 = FGSM3.generate(x + eta, **fgsm_params) - x eta = eta1 * 0.333 + eta2 * 0.333 + eta3 * 0.333 # Clipping perturbation eta to self.ord norm ball if self.ord == np.inf: eta = tf.clip_by_value(eta, -self.eps, self.eps) elif self.ord in [1, 2]: reduc_ind = list(xrange(1, len(eta.get_shape()))) if self.ord == 1: norm = tf.reduce_sum(tf.abs(eta), reduction_indices=reduc_ind, keep_dims=True) elif self.ord == 2: norm = tf.sqrt(tf.reduce_sum(tf.square(eta), reduction_indices=reduc_ind, keep_dims=True)) eta = eta * self.eps / norm # Define adversarial example (and clip if necessary) adv_x = x + eta if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return adv_x def parse_params(self, eps=0.3, eps_iter=0.05, nb_iter=10, y=None, ord=np.inf, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (required) A tensor with the model labels. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.eps_iter = eps_iter self.nb_iter = nb_iter self.y = y self.ord = ord self.clip_min = clip_min self.clip_max = clip_max # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") if self.back == 'th': error_string = "BasicIterativeMethod is not implemented in Theano" raise NotImplementedError(error_string) return True
2.734375
3
medicare_appeals/tests/appeals_tests.py
18F/medicare-appeals-prototyping
1
12782399
import pytest from medicare_appeals.appeals import models from medicare_appeals.tests import factories @pytest.fixture(scope='function') def build_an_appeal(): """ Build a single appeal """ appeal = factories.AppealFactory() @pytest.fixture(scope='function') def build_two_appeals(): """ Build two appeals with the description 'test{n}' """ appeal1 = factories.AppealFactory(description='test0') appeal2 = factories.AppealFactory(description='test1') @pytest.mark.django_db def test_appeal(build_an_appeal): """ An appeal should be created """ assert models.Appeal.objects.count() == 1 @pytest.mark.django_db def test_two_appeals(build_two_appeals): """ Two appeals should be created with description 'test{n}' """ appeals = models.Appeal.objects.all() assert appeals.count() == 2 for idx, appeal in enumerate(appeals): assert appeal.description == 'test{0}'.format(idx)
2.40625
2
nbaspa/data/tasks/io.py
ak-gupta/nbaspa
1
12782400
<gh_stars>1-10 """Simple tasks for loading data from the ``BaseRequest`` API.""" from datetime import datetime, timedelta from pathlib import Path from typing import Dict, List, Optional, Set, Tuple, Union import fsspec import numpy as np import pandas as pd from prefect import Task from ..factory import NBADataFactory import nbaspa.data.endpoints as endpoints from ..endpoints.parameters import ParameterValues, SEASONS, Season class GenericLoader(Task): """Load the data from a given endpoint. Parameters ---------- loader : str The name of a class in the ``nba_survival.data.endpoints`` subpackage. **kwargs Keyword arguments for ``prefect.Task``. Attributes ---------- _loader : BaseRequest The object that will load the data. """ def __init__(self, loader: str, **kwargs): """Init method.""" self._loader = getattr(endpoints, loader) super().__init__(**kwargs) def run( # type: ignore self, output_dir: str, filesystem: Optional[str] = "file", dataset_type: Optional[str] = None, **kwargs, ) -> Union[pd.DataFrame, Dict[str, pd.DataFrame]]: """Retrieve the data. Parameters ---------- output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. **kwargs Keyword arguments for initializating the ``_loader``. Returns ------- Dict A dictionary with one key per dataset in the output. """ loader = self._loader(output_dir=output_dir, filesystem=filesystem, **kwargs) loader.load() if dataset_type is None: return {key: loader.get_data(key) for key in loader.datasets} else: return loader.get_data(dataset_type=dataset_type) class FactoryGetter(Task): """Retrieve a dataset from ``NBADataFactory``.""" def run( # type: ignore self, factory: NBADataFactory, dataset_type: str = "default" ) -> pd.DataFrame: """Retrieve a dataset from ``NBADataFactory``. Parameters ---------- factory : NBADataFactory The loaded factory class. dataset_type : str, optional (default "default") The dataset type. Returns ------- pd.DataFrame The concatenated data. """ return factory.get_data(dataset_type=dataset_type) class PlayByPlayLoader(Task): """Load the play-by-data for a given day.""" def run( # type: ignore self, header: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", ) -> pd.DataFrame: """Load the play-by-play data for a given day. Parameters ---------- header : pd.DataFrame The output of ``Scoreboard.get_data("GameHeader")``. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- pd.DataFrame The output dataset. """ calls: List[Tuple[str, Dict]] = [] games = np.unique(header["GAME_ID"]) for game in games: calls.append(("PlayByPlay", {"GameID": game})) # Create the factory and load the data factory = NBADataFactory( calls=calls, output_dir=output_dir, filesystem=filesystem ) factory.load() data = factory.get_data() data["PLAYER1_ID"] = data["PLAYER1_ID"].astype(float) data["PLAYER2_ID"] = data["PLAYER2_ID"].astype(float) return data class WinProbabilityLoader(Task): """Load the NBA win probability for each game in a day.""" def run( # type: ignore self, header: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", ) -> pd.DataFrame: """Load the NBA win probability for each game in a day. Parameters ---------- header : pd.DataFrame The output of ``Scoreboard.get_data("GameHeader")``. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` implementation to use. Returns ------- pd.DataFrame The output dataset. """ calls: List[Tuple[str, Dict]] = [] games = np.unique(header["GAME_ID"]) for game in games: calls.append(("WinProbability", {"GameID": game})) # Create the factory and load the data factory = NBADataFactory( calls=calls, output_dir=output_dir, filesystem=filesystem ) factory.load() return factory.get_data("WinProbPBP") class GameLogLoader(Task): """Get team game logs.""" teams: Set = ParameterValues().TeamID def run( # type: ignore self, season: str, output_dir: str, filesystem: Optional[str] = "file", ) -> pd.DataFrame: """Get team game logs. Parameters ---------- season : str The season string. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- pd.DataFrame The output dataset. """ calls: List[Tuple[str, Dict]] = [] for team in self.teams: if not str(team).startswith("16"): continue calls.append(("TeamGameLog", {"TeamID": team, "Season": season})) factory = NBADataFactory( calls=calls, output_dir=output_dir, filesystem=filesystem ) factory.load() return factory.get_data() class LineupLoader(Task): """Get team lineup stats. For lineup and overall team statistics we need to get rolling data over the season. """ def run( # type: ignore self, season: str, GameDate: str, linescore: pd.DataFrame, ) -> NBADataFactory: """Get team lineup stats. Parameters ---------- season : str The season string. GameDate : str The game date. linescore : pd.DataFrame The output of ``Scoreboard.get_data("LineScore")``. We will use this to only pull the rolling data we need. Returns ------- NBADataFactory Loaded data factory """ GameDate = datetime.strptime(GameDate, "%m/%d/%Y") if (GameDate - SEASONS[season]["START"]).days < 14: self.logger.info("Pulling previous season data") current = Season(year=int(season[0:4])) season = str(current - 1) GameDate = GameDate + timedelta(days=-1) calls: List[Tuple[str, Dict]] = [] teams = np.unique(linescore["TEAM_ID"]) for team in teams: params = { "TeamID": team, "Season": season, "MeasureType": "Advanced", "DateFrom": SEASONS[season]["START"].strftime("%m/%d/%Y"), "DateTo": GameDate.strftime("%m/%d/%Y"), } calls.append(("TeamLineups", params)) factory = NBADataFactory(calls=calls) factory.get() return factory class RotationLoader(Task): """Load the team rotations for all games in a given day.""" def run( # type: ignore self, header: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", ) -> Dict[str, pd.DataFrame]: """Load the team rotations for all games in a given day. Parameters ---------- header : pd.DataFrame The output of ``Scoreboard.get_data("GameHeader")``. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- Dict A dictionary with two keys: ``HomeTeam`` and ``AwayTeam``. """ calls: List[Tuple[str, Dict]] = [] games = np.unique(header["GAME_ID"]) for game in games: calls.append(("GameRotation", {"GameID": game})) # Create the factory and load the data factory = NBADataFactory( calls=calls, output_dir=output_dir, filesystem=filesystem ) factory.load() return { "HomeTeam": factory.get_data(dataset_type="HomeTeam"), "AwayTeam": factory.get_data(dataset_type="AwayTeam"), } class ShotChartLoader(Task): """Load the shotcharts for all games in a given day.""" def run( # type: ignore self, header: pd.DataFrame, season: str, output_dir: str, filesystem: Optional[str] = "file", ) -> Dict[str, pd.DataFrame]: """Load the shotcharts for all games in a given day. Parameters ---------- header : pd.DataFrame The output of ``Scoreboard.get_data("GameHeader")``. season : str The season string. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- pd.DataFrame The shotcharts """ calls: List[Tuple[str, Dict]] = [] games = np.unique(header["GAME_ID"]) for game in games: calls.append(("ShotChart", {"GameID": game, "Season": season})) # Create the factory and load the data factory = NBADataFactory( calls=calls, output_dir=output_dir, filesystem=filesystem ) factory.load() return factory.get_data() class BoxScoreLoader(Task): """Load all boxscores for games in in a given day.""" def run( # type: ignore self, header: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", ) -> pd.DataFrame: """Load all boxscores for games in a given day. Parameters ---------- header : pd.DataFrame The output of ``Scoreboard.get_data("GameHeader")``. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- pd.DataFrame The output dataset. """ calls: List[Tuple[str, Dict]] = [] games = np.unique(header["GAME_ID"]) for game in games: calls.append(("BoxScoreTraditional", {"GameID": game})) # Create the factory and load the data factory = NBADataFactory( calls=calls, output_dir=output_dir, filesystem=filesystem ) factory.load() return factory.get_data("PlayerStats") class ShotZoneLoader(Task): """Load the shot zone data for each player in each game.""" def run( # type: ignore self, season: str, GameDate: str, boxscore: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", ) -> pd.DataFrame: """Load the shot zone data for each player in each game. Parameters ---------- season : str The season string. GameDate : str The game date. boxscore : pd.DataFrame The output from ``BoxScoreTraditional.get_data("PlayerStats")``. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- pd.DataFrame The output dataset. """ GameDate = datetime.strptime(GameDate, "%m/%d/%Y") if (GameDate - SEASONS[season]["START"]).days < 14: self.logger.info("Pulling previous season data") current = Season(year=int(season[0:4])) season = str(current - 1) GameDate = GameDate + timedelta(days=-1) # For each player, get the gamelog calls: List[Tuple[str, Dict]] = [] for _, row in boxscore.iterrows(): if pd.isnull(row["FGA"]) or row["FGA"] == 0: continue calls.append( ( "PlayerGameLog", {"PlayerID": row["PLAYER_ID"], "Season": season}, ) ) # Create the factory and load the data logfactory = NBADataFactory( calls=calls, output_dir=Path(Path(output_dir).parent, season), filesystem=filesystem, ) logfactory.load() playerlogs = logfactory.get_data() playerlogs["GAME_DATE"] = pd.to_datetime(playerlogs["GAME_DATE"]) games = np.unique( playerlogs[ (playerlogs["GAME_DATE"] >= SEASONS[season]["START"]) & (playerlogs["GAME_DATE"] <= SEASONS[season]["END"]) & (playerlogs["GAME_DATE"] <= GameDate) ]["Game_ID"].values ) shotcalls: List[Tuple[str, Dict]] = [ ("ShotChart", {"GameID": game, "Season": season}) for game in games ] # Then get all of their shots from the season shotfactory = NBADataFactory( calls=shotcalls, output_dir=Path(Path(output_dir).parent, season), filesystem=filesystem, ) shotfactory.load() playershots = shotfactory.get_data() # Aggregate to get FG_PCT for each SHOT_ZONE_BASIC agg = playershots.groupby(["PLAYER_ID", "SHOT_ZONE_BASIC"]).sum()[ ["SHOT_ATTEMPTED_FLAG", "SHOT_MADE_FLAG"] ] agg.reset_index(inplace=True) agg.rename( columns={ "SHOT_ATTEMPTED_FLAG": "FGA", "SHOT_MADE_FLAG": "FGM", "SHOT_ZONE_BASIC": "GROUP_VALUE", }, inplace=True, ) agg["FG_PCT"] = agg["FGM"] / agg["FGA"] return agg class GeneralShootingLoader(Task): """Load previous season general shooting data for each player in each game.""" def run( # type: ignore self, season: str, boxscore: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", ) -> pd.DataFrame: """Load the general shooting data for each player in each game. Parameters ---------- season : str The season string. boxscore : pd.DataFrame The output from ``BoxScoreTraditional.get_data("PlayerStats")``. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. Returns ------- pd.DataFrame The output dataset. """ current = Season(year=int(season[0:4])) season = str(current - 1) calls: List[Tuple[str, Dict]] = [] for _, row in boxscore.iterrows(): if pd.isnull(row["FGA"]) or row["FGA"] == 0: continue calls.append( ( "PlayerDashboardGeneral", {"PlayerID": row["PLAYER_ID"], "Season": season}, ) ) # Create the factory and load the data factory = NBADataFactory( calls=calls, output_dir=Path(Path(output_dir).parent, season), filesystem=filesystem, ) factory.load() return factory.get_data("OverallPlayerDashboard") class SaveData(Task): """Save the game data.""" def run( # type: ignore self, data: pd.DataFrame, output_dir: str, filesystem: Optional[str] = "file", mode: Optional[str] = "model", ): """Save the game data. Saves the data to ``output_dir/data_{GameID}.csv`` Parameters ---------- data : pd.DataFrame The clean data. output_dir : str The directory containing the data. filesystem : str, optional (default "file") The name of the ``fsspec`` filesystem to use. mode : str, optional (default "model") The type of clean data to save. If ``model``, save to the directory ``model-data``. If ``rating``, save to ``rating-data``. Returns ------- None """ # Define subdirectory if mode == "model": subdir = "model-data" elif mode == "rating": subdir = "rating-data" else: raise ValueError("Please supply a valid value for ``mode``") # Get the filesystem fs = fsspec.filesystem(filesystem) fs.mkdirs(Path(output_dir, subdir), exist_ok=True) grouped = data.groupby("GAME_ID") for name, group in grouped: if not name.startswith("002"): self.logger.warning(f"{name} is not a regular season game. Skipping...") continue fpath = Path(output_dir, subdir, f"data_{name}.csv") self.logger.info(f"Writing data for game {name} to {str(fpath)}") with fs.open(fpath, "wb") as buf: group.to_csv(buf, sep="|", mode="wb")
2.828125
3
kamrecsys/utils/kammath.py
tkamishima/kamrecsys
7
12782401
<filename>kamrecsys/utils/kammath.py<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- """ Summary of Mathematical Functions """ from __future__ import ( print_function, division, absolute_import, unicode_literals) from six.moves import xrange # ============================================================================= # Imports # ============================================================================= import logging from scipy.special import expit import numpy as np # ============================================================================= # Metadata variables # ============================================================================= # ============================================================================= # Public symbols # ============================================================================= __all__ = [] # ============================================================================= # Constants # ============================================================================= # ============================================================================= # Variables # ============================================================================= # ============================================================================= # Functions # ============================================================================= def safe_sigmoid(x): """ safe_sigmoid function To restrict the range of sigmoid function within [1e-15, 1 - 1e-15], domain of inputs is clipped into [-SIGMOID_DOM,+SIGMOID_DOM], where SIGMOID_DOM = :math:`log( (1 - 10^{-15}) / 10^{-15})` = 34.538776394910684 Parameters ---------- x : array_like, shape=(n_data), dtype=float arguments of function Returns ------- sig : array, shape=(n_data), dtype=float 1.0 / (1.0 + exp(- x)) """ # import numpy as np # from scipy.special import expit x = np.clip(x, -34.538776394910684, 34.538776394910684) return expit(x) # ============================================================================= # Classes # ============================================================================= # ============================================================================= # Module initialization # ============================================================================= # init logging system logger = logging.getLogger('kamrecsys') if not logger.handlers: logger.addHandler(logging.NullHandler()) # ============================================================================= # Test routine # ============================================================================= def _test(): """ test function for this module """ # perform doctest import sys import doctest doctest.testmod() sys.exit(0) # Check if this is call as command script if __name__ == '__main__': _test()
2.234375
2
theanompi/easgd_server.py
uoguelph-mlrg/Theano-MPI
65
12782402
from __future__ import absolute_import from theanompi.lib.base import MPI_GPU_Process from mpi4py import MPI server_alpha = 0.5 class EASGD_Server(MPI_GPU_Process): ''' An implementation of the server process in the Elastic Averaging SGD rule https://arxiv.org/abs/1412.6651 implementation idea from platoon: https://github.com/mila-udem/platoon/tree/master/platoon/channel ''' def __init__(self, device): MPI_GPU_Process.__init__(self, device) # setup ctx, comm self.worker_gpucomm = {} # gpucomm to be setup through worker registration self.worker_id = {} self.first_worker_id = None self.valid = {} self.uidx = {} self.adj_lr = {} self.last = None self.last_uidx = 0 self.start_time = None self.uepoch = 0 self.last_uepoch = 0 def process_request(self, model, worker_id, worker_rank, message): reply = None import time # Connection related request if message in ['sync_register']: if self.first_worker_id == None: self.first_worker_id = worker_id print('[Server] recording worker is %s' % worker_id) reply = 'first' # rank -> id -> gpucomm self.worker_id[str(worker_rank)] = int(worker_id) print('[Server] registered worker %d' % worker_id) return reply try: valid = self.valid['%s' % worker_id] amount = self.uidx['%s' % worker_id] adj_lr = self.adj_lr['%s' % worker_id] except KeyError: self.valid['%s' % worker_id] = False self.adj_lr['%s' % worker_id] = False self.uidx['%s' % worker_id] = 0 # when a new worker joins self.adj_lr = self.adj_lr.fromkeys(self.adj_lr, True) # Training related requests if message == 'next': if self.start_time is None: self.start_time = time.time() # stop when finish all epochs if sum(self.uidx.values()) >= self.validFreq*model.n_epochs: print("[Server] Total training time %.2fh" % \ ((time.time() - self.start_time)/3600.0)) reply = 'stop' elif self.valid['%s' % worker_id]: self.valid['%s' % worker_id] = False reply = 'val' elif self.adj_lr['%s' % worker_id]: self.adj_lr['%s' % worker_id] = False reply = 'adjust_hyperp' else: reply = 'train' elif 'done' in message: self.uidx['%s' % worker_id] += message['done'] #print '[Server] uidx %d' % sum(self.uidx.values()) elif message == 'uepoch': reply = [self.uepoch, len(self.worker_gpucomm)] if message in ['next', 'uepoch'] or 'done' in message: now_uidx = sum(self.uidx.values()) self.uepoch = int(now_uidx/self.validFreq) if self.last_uepoch != self.uepoch: #print "[Server] now global epoch %d" % self.uepoch self.last_uepoch = self.uepoch # when a epoch is finished self.adj_lr = self.adj_lr.fromkeys(self.adj_lr, True) #self.valid = self.valid.fromkeys(self.valid, True) # only the first worker validates self.valid["%s" % self.first_worker_id] = True if self.last == None: self.last = float(time.time()) if now_uidx - self.last_uidx >= 40: now = float(time.time()) print('[Server] %d time per 40 batches: %.2f s' % \ (self.uepoch, (now - self.last))) self.last_uidx = now_uidx self.last = now return reply def action_after(self, model, worker_id, worker_rank, message): if message == 'disconnect': self.worker_gpucomm.pop(str(worker_id)) print('[Server] disconnected with worker %d' % worker_id) elif message == 'stop': print('[Server] stopped by %d' % worker_id) import sys sys.exit(0) if message == 'sync_register': gpucomm = self.get_intranode_pair_comm(pair=(0,worker_rank)) self.worker_gpucomm[str(worker_id)]= gpucomm elif message == 'exchange': self.exchanger.gpucomm = self.worker_gpucomm[str(worker_id)] # self.exchanger.dest = worker_rank self.exchanger.exchange() elif message == 'copy_to_local': self.exchanger.gpucomm = self.worker_gpucomm[str(worker_id)] # self.exchanger.dest = worker_rank self.exchanger.copy_to_local() def build(self, model): from theanompi.lib.helper_funcs import check_model # check model has necessary attributes check_model(model) # choose the type of exchanger from theanompi.lib.exchanger import EASGD_Exchanger self.exchanger = EASGD_Exchanger(alpha=server_alpha, param_list=model.params, etype='server') self.validFreq = model.data.n_batch_train def run(self, model): if self.comm == None: print('Server communicator not initialized') return print('server started') while True: # Wait for next request from client request = self.comm.recv(source=MPI.ANY_SOURCE, tag=199) # Do some process work and formulate a reply reply = self.process_request(model, request['id'], request['rank'],request['message']) # Send reply back to client self.comm.send(reply, dest=request['rank'], tag=200) # Do some action work after reply self.action_after(model, request['id'], request['rank'], request['message']) if __name__ == '__main__': import sys device = sys.argv[1] modelfile = sys.argv[2] modelclass = sys.argv[3] try: cpulist = sys.argv[4] except: pass else: # optional binding cores using hwloc from theanompi.lib.hwloc_utils import bind_to_socket_mem,detect_socket_num bind_to_socket_mem(cpulist, label='train') detect_socket_num(debug=True, label='train') server = EASGD_Server(device) config={} config['verbose'] = False #(server.rank==0) config['rank'] = 0 config['size'] = 1 config['no_paraload'] = True import importlib mod = importlib.import_module(modelfile) modcls = getattr(mod, modelclass) model = modcls(config) server.build(model) server.run(model)
2.25
2
ponnobot/management/commands/daraz_crawl.py
ahmedshahriar/bd-ponno
3
12782403
<reponame>ahmedshahriar/bd-ponno from django.core.management.base import BaseCommand from scrapy.crawler import CrawlerProcess from scrapy.utils.project import get_project_settings from ponnobot.spiders.daraz_spider import DarazSpider class Command(BaseCommand): help = "Release the Mke Crawler" def handle(self, *args, **options): process = CrawlerProcess(get_project_settings()) process.crawl(DarazSpider) process.start()
1.8125
2
tests/test_plugin.py
fopina/tgbotplug
1
12782404
from tgbot import plugintest from sample_plugin import TestPlugin class TestPluginTest(plugintest.PluginTestCase): def setUp(self): self.plugin = TestPlugin() self.bot = self.fake_bot( '', plugins=[self.plugin], ) def test_print_commands(self): from cStringIO import StringIO out = StringIO() self.bot.print_commands(out=out) self.assertEqual(out.getvalue(), '''\ echo - right back at ya echo2 - right back at ya save - save a note read - read a note savegroup - save a group note readgroup - read a group note ''') def test_reply(self): self.receive_message('/echo test') self.assertReplied('test') self.receive_message('/echo sound 1 2 3') self.assertReplied('sound 1 2 3') def test_need_reply_user(self): self.receive_message('test') self.assertNoReplies() self.receive_message('/echo') self.assertReplied('echo what?') self.receive_message('test') self.assertReplied('test') self.receive_message('sound') self.assertNoReplies() def test_need_reply_by_message_id(self): self.receive_message('/echo') self.assertReplied('echo what?') self.clear_queues() # wrong reply id, should be ignored self.receive_message('test', reply_to_message=3) self.assertNoReplies() # correct reply id self.receive_message('test', reply_to_message=2) self.assertReplied('test') def test_need_reply_group(self): chat = { 'id': 1, 'title': 'test group', 'type': 'group', } self.receive_message('/echo', chat=chat) self.assertReplied('echo what?') # non-selective need_reply, should accept from any user self.receive_message( 'test', chat=chat, sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', } ) self.assertReplied('test') def test_need_reply_selective_group(self): chat = { 'id': 1, 'title': 'test group', 'type': 'group', } self.receive_message('/echo2', chat=chat) self.assertReplied('echo what?') # selective need_reply, should ignore other user self.receive_message( 'test', chat=chat, sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', } ) self.assertNoReplies() self.receive_message( 'test', chat=chat, ) self.assertReplied('test') def test_plugin_data_single(self): self.receive_message('/save test 123') self.assertReplied('saved') self.receive_message('/read', sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', }) self.assertReplied('no note saved') self.receive_message('/read') self.assertReplied('your note: test 123') self.receive_message('/save test 321') self.assertReplied('saved') self.receive_message('/read') self.assertReplied('your note: test 321') def test_plugin_data_group(self): chat = { 'id': 99, 'title': 'test group', } self.receive_message('/savegroup test 123', chat=chat) self.assertReplied('saved') self.receive_message('/readgroup') self.assertReplied('no note saved') self.receive_message('/readgroup', chat=chat) self.assertReplied('this group note: test 123') self.receive_message('/readgroup', chat=chat, sender={ 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', }) self.assertReplied('this group note: test 123') def test_prefix_cmd(self): self.receive_message('/prefixcmd1') self.assertReplied('1') self.receive_message('/prefixcmd12@test_bot') self.assertReplied('12') self.receive_message('/prefixcmd@test_bot 123') self.assertReplied('123') def test_list_keys(self): sender2 = { 'id': 2, 'first_name': 'Jane', 'last_name': 'Doe', } chat1 = { 'id': 3, 'title': 'test chat', } self.receive_message('/save note1') # 1 1 self.receive_message('/save note2', sender=sender2) # 2 2 self.receive_message('/save note3', chat=chat1) # 3 1 self.receive_message('/save note4', sender=sender2, chat=chat1) # 3 2 self.assertEqual( list(self.plugin.iter_data_keys()), ['1', '2', '3'], ) self.assertEqual( list(self.plugin.iter_data_key_keys()), [], ) self.assertEqual( list(self.plugin.iter_data_key_keys('1')), ['1'], ) self.assertEqual( list(self.plugin.iter_data_key_keys('2')), ['2'], ) self.assertEqual( list(self.plugin.iter_data_key_keys('3')), ['1', '2'], ) self.plugin.save_data(3, key2=2) self.assertEqual( list(self.plugin.iter_data_key_keys('3')), ['1'], )
2.4375
2
lib/encoder_configuration_unittest.py
Jesseyx/compare-codecs
50
12782405
<reponame>Jesseyx/compare-codecs #!/usr/bin/python # Copyright 2015 Google. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for encoder_configuration.""" import os import unittest import encoder_configuration class TestConfiguration(unittest.TestCase): def test_defaults(self): # These tests verify reading from the current environment. # They should work no matter what the variables are set to, # as long as required variables are set. self.assertEquals(os.environ['CODEC_WORKDIR'], encoder_configuration.conf.workdir()) self.assertEquals(os.environ['WORKDIR'], encoder_configuration.conf.sysdir()) self.assertEquals(os.environ['CODEC_TOOLPATH'], encoder_configuration.conf.tooldir()) self.assertEquals(os.getenv('CODEC_SCOREPATH', ''), ':'.join(encoder_configuration.conf.scorepath())) def test_scorepath_variants(self): # This test works by modifying the environment and then creating # a new configuration object. It does not use the global configuration # object. if 'CODEC_SCOREPATH' in os.environ: del os.environ['CODEC_SCOREPATH'] os.environ['CODEC_WORKDIR'] = 'strange_string' my_conf = encoder_configuration.Configuration() self.assertEquals(0, len(my_conf.scorepath())) os.environ['CODEC_SCOREPATH'] = 'a:b' my_conf = encoder_configuration.Configuration() self.assertEquals(['a', 'b'], my_conf.scorepath()) def test_override(self): encoder_configuration.conf.override_workdir_for_test('new_value') self.assertEquals('new_value', encoder_configuration.conf.workdir()) if __name__ == '__main__': unittest.main()
2.359375
2
src/mainControllerClass.py
SeferMirza/CommandWithEyesOpenCV
0
12782406
import cv2 import numpy as np import sys, getopt import time import dlib import math i=False class Controller(): def __init__(self): self.detector = dlib.get_frontal_face_detector() self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") self.frame = None self.ret = None self.faces = None self.cap = cv2.VideoCapture(0) #open phone camera API self.address = None#"https://192.168.43.1:8080/video" self.threshold = 35 self.grayFrame = None self.cutEyes = None self.img = cv2.imread("anime.jpg") self.cutEyesGray = None self.contours = None self.capThreshold = None self.left_eye = None self.maskEyes = None self.landmarks = None self.min_x = None self.max_x = None self.min_y = None self.max_y = None self.otps = None self.args = None self.cameraIs = False self.thresholdIs = False self.rgbIs = False self.eyeLinesIs = False self.fx = 1 self.fy = 1 self.check = True self.calibrationIsOkey = False self.testImage = None self.background = None self.eyeCenter = None self.maxArray = np.array([[0,0]]) self.maxMean = None self.minArray = np.array([[0,0]]) self.minMean = None self.key = None self.time = 0 self.optIfBlock = 2 self.startTimeIfBlock = True self.CalibFinishBlock = False self.finalScreen = False self.screenSizeX=1920 self.screenSizeY=1080 def getOtps(self): try: self.otps, self.args = getopt.getopt(sys.argv[1:],"h:c:t:r:a:e:",["help","cameradress","threshold","rgb","eyeline","halfcut","quartercut","calib"]) except getopt.GetoptError as err: print(err) sys.exit() #self.otps = [] def nothing(self,x): pass def main(self): self.getOtps() for otp, arg in self.otps: if otp == '-a': self.address = str(arg) self.cap.open(self.address) elif otp == '--threshold': self.thresholdIs = True for ot , ar in self.otps: if ot == '-t': self.threshold = int(ar) elif (otp == '-r' and arg == 'True'): self.rgbIs = True elif otp == '-e' and arg == 'True': self.eyeLinesIs = True elif otp == '-c' and arg == 'True': self.cameraIs = True elif otp == '--halfcut': self.fx = 0.5 self.fy = 0.5 elif otp == '--quartercut': self.fx = 0.25 self.fy = 0.25 elif otp == '--calib': self.calibrationIsOkey = True #TODO #print(self.otps, self.args) #self.optimizationEyesLooking() array1 = [[0,0]] openImage = False o = False while True: #first open cam try: self.readSelf() self.frame = cv2.resize(self.frame,None,fx=self.fx,fy=self.fy) #TODO #self.frame = cv2.rotate(self.frame,cv2.ROTATE_90_COUNTERCLOCKWISE) self.grayFrame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) except: print("error") self.faces = self.detector(self.grayFrame) self.lanmarkingLeftEyes() if self.eyeLinesIs == True: self.eyeLines() if self.cameraIs == True and self.ret: cv2.imshow("Frame", self.frame) #second isteğe göre açılan seçenekler (thershold vb) göz seçim ayarları için if self.thresholdIs == True: cv2.imshow("2",self.capThreshold) if self.cutEyesGray is not None: cv2.imshow("3", self.cutEyesGray) self.key = cv2.waitKey(1) #third kalibrasyyon #key 'o' if self.key == 79 or self.key == 111: o = True self.cameraIs = False self.thresholdIs = False cv2.destroyAllWindows() #key 'space' if self.key == 32: cv2.destroyAllWindows() o = False openImage = True if self.calibrationIsOkey == True and o == True: self.optimizationEyesLooking() if openImage == True: self.lookingPointDrawCircle() #four final if self.finalScreen: self.final_screen() if self.key == 27: break self.cap.release() cv2.destroyAllWindows() def showImage(self): self.testImage = cv2.imread('anime.jpg') imageH, imageW, imageChannels= self.testImage.shape cv2.circle(self.testImage, ( (self.eyeCenter[0] * imageW) / self.rightMean[0], (self.eyeCenter[1] * imageH) / self.bottomMean[1])) def lookingPointDrawCircle(self): self.thresholdIs = False cv2.imshow("",self.img) def readSelf(self): self.ret, self.frame=self.cap.read() def lanmarkingLeftEyes(self): for face in self.faces: #x = face.left() #y = face.top() #x1 = face.right() #y1 = face.bottom() self.landmarks = self.predictor(self.grayFrame, face) self.left_eye = np.array([(self.landmarks.part(36).x, self.landmarks.part(36).y), (self.landmarks.part(37).x, self.landmarks.part(37).y), (self.landmarks.part(38).x, self.landmarks.part(38).y), (self.landmarks.part(39).x, self.landmarks.part(39).y), (self.landmarks.part(40).x, self.landmarks.part(40).y), (self.landmarks.part(41).x, self.landmarks.part(41).y)], np.int32) h, w, _ = self.frame.shape mask = np.zeros((h, w), np.uint8) cv2.polylines(mask, [self.left_eye], True, 255, 2) cv2.fillPoly(mask, [self.left_eye], 255) self.maskEyes = cv2.bitwise_and(self.grayFrame, self.grayFrame, mask=mask) self.maskEyes = np.where(self.maskEyes==0, 255,self.maskEyes) self.min_x = np.min(self.left_eye[:,0]) self.max_x = np.max(self.left_eye[:,0]) self.min_y = np.min(self.left_eye[:,1]) self.max_y = np.max(self.left_eye[:,1]) self.cutEyes = self.maskEyes[self.min_y : self.max_y, self.min_x : self.max_x] self.cutEyes = cv2.resize(self.cutEyes, None, fx=5, fy=5) self.capThreshold = cv2.GaussianBlur(self.cutEyes, (5,5), 0) _, self.capThreshold = cv2.threshold(self.capThreshold, self.threshold, 255, cv2.THRESH_BINARY_INV) self.contours, _ = cv2.findContours(self.capThreshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for cnt in self.contours: (x, y, w, h) = cv2.boundingRect(cnt) cv2.rectangle(self.capThreshold, (x, y), (x + w, y + h), (255, 0, 0), 1) #middle point x = x + int(w/2) y = y + int(h/2) cv2.circle(self.cutEyes, (x+int(w/2),y+int(h/2)) ,5, (255,0,0),-1) self.eyeCenter = [x+int(w/2),y+int(h/2)] break if self.rgbIs == True: cv2.imshow("c", self.cutEyes) def final_screen(self): x,y=self.pC() cv2.namedWindow("dd", cv2.WND_PROP_FULLSCREEN) cv2.moveWindow("dd", screen.x - 1, screen.y - 1) cv2.setWindowProperty("dd", cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN) if (x-int(x))<0.5: x=math.floor(x) else: x = x + 1 x = math.floor(x) if (y-int(y))<0.5: y=math.floor(y) else: y = y + 1 y = math.floor(y) cv2.circle(self.img, (int(x),int(y)), 5, (0,0,0), -1) #print("x:",x," y:",y, " eyecenter:",self.eyeCenter) cv2.imshow("dd",self.img) def pC(self): #print(self.minMean) return (self.screenSizeX*(self.eyeCenter[0]-self.minMean[0]))/(self.maxMean[0]-self.minMean[0]),(self.screenSizeY*(self.eyeCenter[1]-self.minMean[1]))/(self.maxMean[1]-self.minMean[1]) def eyeLines(self): horizontalLineLeft = (self.landmarks.part(36).x, self.landmarks.part(36).y) horizontalLineRight = (self.landmarks.part(39).x, self.landmarks.part(39).y) verticalLineTop = (self.landmarks.part(38).x, self.landmarks.part(38).y) verticalLineBottom = (self.landmarks.part(40).x, self.landmarks.part(40).y) cv2.line(self.frame, horizontalLineLeft, horizontalLineRight,(0,255,0),1) cv2.line(self.frame, verticalLineTop, verticalLineBottom,(0,255,0),1) def getCutEyeShape(self,x,y,x1,y1): return self.frame[y:y1, x:x1] def optimizationEyesLooking(self): background = np.zeros((screen.height,screen.width),np.uint8) cv2.namedWindow("aa", cv2.WND_PROP_FULLSCREEN) cv2.moveWindow("aa", screen.x - 1, screen.y - 1) cv2.setWindowProperty("aa", cv2.WND_PROP_FULLSCREEN,cv2.WINDOW_FULLSCREEN) if self.optIfBlock==1: self.startTime(time.perf_counter()) if time.perf_counter()-self.time < 3: if self.eyeCenter != None: self.minArray = np.append(self.minArray, [self.eyeCenter],axis=0) cv2.circle(background, (10,10), 5, (255,255,255), -1) (text_width, text_height) = cv2.getTextSize("Follow point", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(background, "Follow point", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) elif time.perf_counter()-self.time < 6 and time.perf_counter()-self.time > 3: if self.eyeCenter != None: self.maxArray = np.append(self.maxArray, [self.eyeCenter],axis=0) cv2.circle(background, (screen.width-10,screen.height-10), 5, (255,255,255), -1) (text_width, text_height) = cv2.getTextSize("Follow point", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(background, "Follow point", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) elif time.perf_counter()-self.time == 6: cv2.destroyAllWindows() else: self.CalibFinishBlock = True self.calibrationIsOkey = True self.check = True self.optIfBlock=3 elif self.optIfBlock==2: (text_width, text_height) = cv2.getTextSize("Kalibrasyonu ayarlamak için 's' tuşuna basın", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(background, "Kalibrasyonu ayarlamak için 's' tuşuna basın", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) elif self.optIfBlock==3: self.optFinish(background) #key 's' if self.key == 83 or self.key == 115: self.optIfBlock = 1 #key 'i' if self.key == 73 or self.key == 105: self.minArray = self.minArray[1:] self.maxArray = self.maxArray[1:] #self.minMean = self.minArray.mean(0) self.minMean = self.minArray.min(0) #self.maxMean = self.maxArray.mean(0) self.maxMean = self.maxArray.max(0) self.calibrationIsOkey=False self.finalScreen=True cv2.destroyWindow("aa") else: cv2.imshow("aa",background) def optFinish(self, stage): (text_width, text_height) = cv2.getTextSize("Go to do image 'i'", cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)[0] cv2.putText(stage, "Go to do image 'i'", ((screen.width//2)-(text_width//2),(screen.height//2)-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 1 , cv2.LINE_AA) cv2.imshow("aa",stage) def startTime(self, time): if self.startTimeIfBlock: self.time = time self.startTimeIfBlock = False def getCameraShape(self): for i in range(3): print(self.frame.shape[i]) return self.frame[1], self.frame[0] if __name__ == "__main__": import screeninfo screen = screeninfo.get_monitors()[0] ct = Controller() ct.main()
2.578125
3
spatiam_persist.py
Spatiam/Spatiam_ION_DMI
0
12782407
<gh_stars>0 import sys import time import requests import subprocess from subprocess import PIPE import datetime MGR_API_URL = "https://www.spatiam.com/ion-dtn-mgr/api/" CONFIG_FILENAME = "spatiam_config.txt" AUTH_TOKEN = sys.argv[1] NETWORK_ID = sys.argv[4] NODE_UUID = sys.argv[5] NODE_LISTENING_IP = sys.argv[6] node_update = datetime.datetime.fromisoformat(sys.argv[2] + ' ' + sys.argv[3]) print("SPATIAM PERSISTENCE SCRIPT") print("The provided node will restart if any network updates are detected") print("\nChecking for updates ...") # --------------------------------------------------------------- # ion_alive: Checks bplist return code to check if ION is running # --------------------------------------------------------------- def ion_alive(): command = "bplist" proc = subprocess.Popen([command], shell=True, stdout=subprocess.PIPE) proc.communicate() return proc.returncode == 0 # --------------------------------------------------------------- # ionrestart: Starts ION, stops it first if it is already running # --------------------------------------------------------------- def ionrestart(): print("Restarting ION ...") failed_restart = 1 while True: if failed_restart >= 3: print("ION failed to respond, exiting program") quit() if ion_alive(): ionstop_command = 'ionstop' subprocess.Popen([ionstop_command], shell=True, stdout=PIPE, stderr=PIPE).wait() time.sleep(2) ionstart_command = 'ionstart -I ' + CONFIG_FILENAME subprocess.Popen([ionstart_command], shell=True, stdout=PIPE, stderr=PIPE).wait() time.sleep(5) if not ion_alive(): failed_restart += 1 else: print("ION Successfully restarted") break # ---------------------------------------------------------- # download_config: Download configuration file of given node # ---------------------------------------------------------- def download_config(): try: r = requests.get(MGR_API_URL + 'dynamic-config', params={'node': NODE_UUID, 'listeningip': NODE_LISTENING_IP, 'length':315360000}) if r.status_code == 200: config = r.text # Update only if config file has changed (network could be reporting 'cosmetic' change) if not config == open(CONFIG_FILENAME).read(): try: print("Network update detected (" + str(datetime.datetime.now())+")") config_file = open(CONFIG_FILENAME, "w") config_file.write(config) config_file.close() print("Node configuration downloaded (" +CONFIG_FILENAME +")") ionrestart() print("\nChecking for updates...") return True except Exception as e: print(e) return False else: return True else: return False except: return False # ----------------------------------------------------------------- # latest_network_update: Returns timestamp of latest network update # ----------------------------------------------------------------- def latest_network_update(): try: r = requests.get(MGR_API_URL + 'api/network/'+NETWORK_ID+'/last_change', headers = {'Authorization': 'Token ' + AUTH_TOKEN}) if r.status_code == 200: return datetime.datetime.fromisoformat(r.text) else: return None except: return None while True: latest_update = latest_network_update() # Network has had an update if latest_update is not None and latest_update > node_update: if download_config(): node_update = latest_update # In case ION stops working elif not ion_alive(): print("ION failure detected (" + str(datetime.datetime.now()) + ")") ionrestart() time.sleep(10)
2.625
3
textstat_core/sentence.py
textstat/textstat-core
1
12782408
<filename>textstat_core/sentence.py<gh_stars>1-10 from .word_collection import WordCollection class Sentence(WordCollection): @property def length(self): return len(self.words)
2.453125
2
src/diem/testnet.py
Embodimentgeniuslm3/client-sdk-python
32
12782409
# Copyright (c) The Diem Core Contributors # SPDX-License-Identifier: Apache-2.0 """Provides utilities for working with Diem Testnet. ```python from diem import testnet from diem.testing import LocalAccount # create client connects to testnet client = testnet.create_client() # create faucet for minting coins for your testing account faucet = testnet.Faucet(client) # create a local account and mint some coins for it account: LocalAccount = faucet.gen_account() ``` """ import requests import typing from . import diem_types, jsonrpc, utils, chain_ids, bcs, identifier, stdlib from .testing import LocalAccount, DD_ADDRESS JSON_RPC_URL: str = "https://testnet.diem.com/v1" FAUCET_URL: str = "https://testnet.diem.com/mint" CHAIN_ID: diem_types.ChainId = chain_ids.TESTNET DESIGNATED_DEALER_ADDRESS: diem_types.AccountAddress = utils.account_address(DD_ADDRESS) TEST_CURRENCY_CODE: str = "XUS" HRP: str = identifier.TDM def create_client() -> jsonrpc.Client: """create a jsonrpc.Client connects to Testnet public full node cluster""" return jsonrpc.Client(JSON_RPC_URL) def gen_vasp_account(client: jsonrpc.Client, base_url: str) -> LocalAccount: raise Exception("deprecated: use `gen_account` instead") def gen_account( client: jsonrpc.Client, dd_account: bool = False, base_url: typing.Optional[str] = None ) -> LocalAccount: """generates a Testnet onchain account""" account = Faucet(client).gen_account(dd_account=dd_account) if base_url: payload = stdlib.encode_rotate_dual_attestation_info_script_function( new_url=base_url.encode("utf-8"), new_key=account.compliance_public_key_bytes ) apply_txn(client, account, payload) return account def gen_child_vasp( client: jsonrpc.Client, parent_vasp: LocalAccount, initial_balance: int = 10_000_000_000, currency: str = TEST_CURRENCY_CODE, ) -> LocalAccount: child, payload = parent_vasp.new_child_vasp(initial_balance, currency) apply_txn(client, parent_vasp, payload) return child def apply_txn( client: jsonrpc.Client, vasp: LocalAccount, payload: diem_types.TransactionPayload ) -> jsonrpc.Transaction: seq = client.get_account_sequence(vasp.account_address) txn = vasp.create_signed_txn(seq, payload) client.submit(txn) return client.wait_for_transaction(txn) class Faucet: """Faucet service is a proxy server to mint coins for your test account on Testnet See https://github.com/diem/diem/blob/master/json-rpc/docs/service_testnet_faucet.md for more details """ def __init__( self, client: jsonrpc.Client, url: typing.Union[str, None] = None, retry: typing.Union[jsonrpc.Retry, None] = None, ) -> None: self._client: jsonrpc.Client = client self._url: str = url or FAUCET_URL self._retry: jsonrpc.Retry = retry or jsonrpc.Retry(5, 0.2, Exception) self._session: requests.Session = requests.Session() def gen_account(self, currency_code: str = TEST_CURRENCY_CODE, dd_account: bool = False) -> LocalAccount: account = LocalAccount.generate() self.mint(account.auth_key.hex(), 100_000_000_000, currency_code, dd_account) return account def mint( self, authkey: str, amount: int, currency_code: str, dd_account: bool = False, vasp_domain: typing.Optional[str] = None, is_remove_domain: bool = False, ) -> None: self._retry.execute( lambda: self._mint_without_retry(authkey, amount, currency_code, dd_account, vasp_domain, is_remove_domain) ) def _mint_without_retry( self, authkey: str, amount: int, currency_code: str, dd_account: bool = False, vasp_domain: typing.Optional[str] = None, is_remove_domain: bool = False, ) -> None: response = self._session.post( self._url, params={ "amount": amount, "auth_key": authkey, "currency_code": currency_code, "return_txns": "true", "is_designated_dealer": "true" if dd_account else "false", "vasp_domain": vasp_domain, "is_remove_domain": "true" if is_remove_domain else "false", }, ) response.raise_for_status() de = bcs.BcsDeserializer(bytes.fromhex(response.text)) length = de.deserialize_len() for i in range(length): txn = de.deserialize_any(diem_types.SignedTransaction) try: self._client.wait_for_transaction(txn) except jsonrpc.TransactionExecutionFailed as e: if e.txn.vm_status.explanation.reason == "EDOMAIN_ALREADY_EXISTS": continue raise e
2.390625
2
lambda/src/compiler/pkg/state_machine_resources.py
jack-e-tabaska/BayerCLAW
0
12782410
<filename>lambda/src/compiler/pkg/state_machine_resources.py from collections import deque import json import logging from typing import Generator, List, Dict, Tuple from uuid import uuid4 import boto3 from . import batch_resources as b from . import chooser_resources as c from . import enhanced_parallel_resources as ep from . import native_step_resources as ns from . import scatter_gather_resources as sg from . import subpipe_resources as sp from .util import CoreStack, Step, Resource, State, make_logical_name, lambda_logging_block from .validation import validate_batch_step, validate_native_step, validate_parallel_step, validate_scatter_step, \ validate_subpipe_step, validate_chooser_step def make_launcher_step(core_stack: CoreStack, wf_params: dict) -> dict: launch_step_name = "Launch" ret = { launch_step_name: { "Type": "Task", "Resource": core_stack.output("LauncherLambdaArn"), "Parameters": { "repo_template": wf_params["repository"], "input_obj.$": "$", **lambda_logging_block(launch_step_name), }, "ResultPath": "$", "OutputPath": "$", "_stet": True, }, } return ret def make_step_list(steps: List[Dict]) -> List[Step]: ret = deque() next_step = "" for step in reversed(steps): name, spec = next(iter(step.items())) n = spec.get("Next") or spec.get("next") e = spec.get("End") or spec.get("end") if n is None and e is None: step = Step(name, spec, next_step) elif n is not None: step = Step(name, spec, n) else: step = Step(name, spec, "") ret.appendleft(step) next_step = name return list(ret) def process_step(core_stack: CoreStack, step: Step, wf_params: dict, depth: int) -> Generator[Resource, None, List[State]]: if "scatter" in step.spec: normalized_step = validate_scatter_step(step) states_to_add = yield from sg.handle_scatter_gather(core_stack, normalized_step, wf_params, depth) elif "image" in step.spec: normalized_step = validate_batch_step(step) states_to_add = yield from b.handle_batch(core_stack, normalized_step, wf_params) elif "subpipe" in step.spec: normalized_step = validate_subpipe_step(step) states_to_add = sp.handle_subpipe(core_stack, normalized_step) elif "Type" in step.spec: normalized_step = validate_native_step(step) states_to_add = yield from ns.handle_native_step(core_stack, normalized_step, wf_params, depth) elif "choices" in step.spec: normalized_step = validate_chooser_step(step) states_to_add = c.handle_chooser_step(core_stack, normalized_step) elif "branches" in step.spec: normalized_step = validate_parallel_step(step) states_to_add = yield from ep.handle_parallel_step(core_stack, normalized_step, wf_params, depth) else: raise RuntimeError(f"step '{step.name}' is not a recognized step type") return states_to_add def make_branch(core_stack: CoreStack, raw_steps: list, wf_params: dict, include_launcher: bool = False, depth: int = 0) -> Generator[Resource, None, dict]: logger = logging.getLogger(__name__) if include_launcher: launcher_step = make_launcher_step(core_stack, wf_params) raw_steps.insert(0, launcher_step) steps = make_step_list(raw_steps) states = {} for step in steps: states_to_add = yield from process_step(core_stack, step, wf_params, depth) states.update(states_to_add) ret = { "StartAt": steps[0].name, "States": states, } return ret def write_state_machine_to_fh(sfn_def: dict, fh) -> dict: json.dump(sfn_def, fh, indent=4) ret = { "Bucket": "FILE", "Key": "FILE", "Version": "FILE", } return ret def write_state_machine_to_s3(sfn_def: dict, core_stack: CoreStack) -> dict: def_json = json.dumps(sfn_def, indent=4) bucket = core_stack.output("ResourceBucketName") base_filename = uuid4().hex key = f"stepfunctions/{base_filename}.json" s3 = boto3.client("s3") response = s3.put_object( Bucket=bucket, Key=key, Body=def_json.encode("utf-8") ) ret = { "Bucket": bucket, "Key": key, } if "VersionId" in response: ret["Version"] = response["VersionId"] return ret def handle_state_machine(core_stack: CoreStack, raw_steps: List[Dict], wf_params: dict, dst_fh=None) -> Generator[Resource, None, str]: state_machine_def = yield from make_branch(core_stack, raw_steps, wf_params, include_launcher=True) if dst_fh is None: state_machine_location = write_state_machine_to_s3(state_machine_def, core_stack) else: state_machine_location = write_state_machine_to_fh(state_machine_def, dst_fh) state_machine_name = make_logical_name("main.state.machine") ret = { "Type": "AWS::StepFunctions::StateMachine", "Properties": { "StateMachineName": { "Ref": "AWS::StackName", }, "RoleArn": core_stack.output("StatesExecutionRoleArn"), "DefinitionS3Location": state_machine_location, "DefinitionSubstitutions": None, }, } yield Resource(state_machine_name, ret) return state_machine_name def add_definition_substitutions(sfn_resource: Resource, other_resources: dict) -> None: defn_subs = {k: {"Ref": k} for k in other_resources.keys() if k != sfn_resource.name} defn_subs["WorkflowName"] = {"Ref": "AWS::StackName"} defn_subs["AWSRegion"] = {"Ref": "AWS::Region"} defn_subs["AWSAccountId"] = {"Ref": "AWS::AccountId"} sfn_resource.spec["Properties"]["DefinitionSubstitutions"] = defn_subs
1.859375
2
tests/conftest.py
sameraslan/rymscraper
41
12782411
<reponame>sameraslan/rymscraper from rymscraper import RymNetwork import pytest # @pytest.fixture @pytest.fixture(scope="session", autouse=True) def network(): network = RymNetwork(headless=True) yield network network.browser.close() network.browser.quit()
1.851563
2
test/transfer_action_test.py
mvdbeek/pulsar
0
12782412
<reponame>mvdbeek/pulsar<gh_stars>0 import os from .test_utils import files_server from pulsar.client.action_mapper import RemoteTransferAction def test_write_to_file(): with files_server() as (server, directory): from_path = os.path.join(directory, "remote_get") open(from_path, "wb").write(b"123456") to_path = os.path.join(directory, "local_get") url = server.application_url + "?path=%s" % from_path RemoteTransferAction(to_path, url=url).write_to_path(to_path) assert open(to_path, "rb").read() == b"123456" def test_write_from_file(): with files_server() as (server, directory): from_path = os.path.join(directory, "local_post") open(from_path, "wb").write(b"123456") to_path = os.path.join(directory, "remote_post") url = server.application_url + "?path=%s" % to_path RemoteTransferAction(to_path, url=url).write_from_path(from_path) posted_contents = open(to_path, "rb").read() assert posted_contents == b"123456", posted_contents
2.375
2
utils/sundry_utils.py
czh513/RLs-for-TF2.0-Gym-Unity
1
12782413
<filename>utils/sundry_utils.py class LinearAnnealing: def __init__(self, x, x_, end): ''' Params: x: start value x_: end value end: annealing time ''' assert end != 0, 'the time steps for annealing must larger than 0.' self.x = x self.x_ = x_ self.interval = (x_ - x) / end def __call__(self, current): return max(self.x + self.interval * current, self.x_)
2.984375
3
Post-process/correlation/correl.py
michgz/vibration-record
0
12782414
# Run with Python 2.7 ## from trace import Trace from trace import ReadIn import datetime import os import sys import zipfile import shutil import math import getopt import numpy def ODSDate(dt): return dt.strftime("<table:table-cell table:style-name=\"ce2\" office:value-type=\"date\" office:date-value=\"%Y-%m-%dT%H:%M:%S\" calcext:value-type=\"date\"><text:p>%d/%m/%Y %H:%M:%S</text:p></table:table-cell>") def bIncludeTraces(): return True def correl(infile1, infile2, intext1, intext2, output, diff = float('nan')): # The time delta by which ADXL is _before_ LSM6. # # This was determined manually. Next big challenge: do it automatically!! # runningPath = os.path.dirname(os.path.abspath(__file__)) adxl = [] ax1 = ReadIn([infile1]) for ay in ax1: az = ay.Calc() adxl.append([ay.dt,az[1],az[2]]) lsm6 = [] ax2 = ReadIn([infile2]) for ay in ax2: az = ay.Calc() lsm6.append([ay.dt,az[1],az[2]]) if (math.isnan(diff)): # Here were determine the time delta automatically. # # First, ensure that the two traces at least overlap in time. if (min([a[0] for a in adxl]) < max([a[0] for a in lsm6])) and (min([a[0] for a in lsm6]) < max([a[0] for a in adxl])): pass # we're ok else: sys.exit(6) # now okay # Now choose the top 25% min_len = min([len(adxl), len(lsm6)]) if (min_len <= 10): choose_len = min_len else: choose_len = min_len /4; def sortKey(e): return e[1] # or e[2] sorted_1 = sorted(adxl, key=sortKey, reverse=True)[0:choose_len] sorted_2 = sorted(lsm6, key=sortKey, reverse=True)[0:choose_len] #The following are in seconds epsilon = 20 step_big = 10 # best if it's about 1/2 epsilon step_small = 1 # usually 1 vals = range(-4000,4000,step_big) # First pass v3 = [] for v in vals: b3 = 0 for b1 in sorted_1: for b2 in sorted_2: if (abs(b1[0]+datetime.timedelta(seconds=v)-b2[0]).total_seconds() < epsilon): b3 += 1 break v3.append(b3) max_at = vals[v3.index(max(v3))] # Second pass vals = range(max_at - 2*step_big, max_at + 2*step_big, step_small) v3 = [] for v in vals: b3 = 0 for b1 in sorted_1: for b2 in sorted_2: if (abs(b1[0]+datetime.timedelta(seconds=v)-b2[0]).total_seconds() < epsilon): b3 += 1 break v3.append(b3) max_val = max(v3) # Now take the average of all values with the same maximum value max_at = [i for i, j in enumerate(v3) if j == max_val] time_diff = datetime.timedelta( seconds=vals[sum(max_at)/len(max_at)] ) else: time_diff = datetime.timedelta( seconds=diff ) print "Using time difference of " + str(time_diff.total_seconds()) + " seconds" # The furtherest two times can be and still count as the same # epsilon = datetime.timedelta(seconds=15) print len(adxl) print len(lsm6) adxl_idx = len(adxl)*[-1] lsm6_idx = len(lsm6)*[-1] a1_idx = 0 ## Find matching indices ## for a1 in adxl: targ_time = a1[0] + time_diff best_idx = 999999 # Just any value best_diff = datetime.timedelta.max a2_idx = 0 for a2 in lsm6: diff = targ_time - a2[0] if (abs(diff) < best_diff): best_diff = abs(diff) best_idx = a2_idx a2_idx += 1 if (best_diff < epsilon) and (lsm6_idx[best_idx] == -1): adxl_idx[a1_idx] = best_idx lsm6_idx[best_idx] = a1_idx a1_idx += 1 ## Choose some representative points ## bx2 = [] bx_idx = 0 for a1 in adxl: bx2.append(a1[1]) # or [2] bx_idx += 1 bx1 = numpy.argsort(numpy.array(bx2)) # sorted indices ## Select only those for which a match exists # bx0 = [] for b0 in bx1: if adxl_idx[b0]>=0: bx0.append(b0) ## Limit the number # num_bx = min(len(bx0) / 2, 100) # number of indices to use. bx1 = bx0[0:num_bx] if os.path.abspath(output): theName = output else: theName = os.path.join(runningPath, output) axis_labels = True if True: # Now output to a file i3 = 0 for i1 in range(0,len(adxl_idx)): if (adxl_idx[i1] >= 0): i3 += 1 noRows = i3 - 1 print "noRows = %d" % noRows with open( runningPath + "/content_local_obj1.xml", "w") as dest: with open( runningPath + "/6_2.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) dest.write( "<office:body>" ) dest.write( "<office:chart>" ) dest.write( "<chart:chart svg:width=\"25.17cm\" svg:height=\"14.295cm\" xlink:href=\"..\" xlink:type=\"simple\" chart:class=\"chart:scatter\" chart:style-name=\"ch1\">" ) dest.write( "<chart:plot-area chart:style-name=\"ch2\" table:cell-range-address=\"Data.C2:Data.C%d Data.G2:Data.G%d\" svg:x=\"0.538cm\" svg:y=\"0.284cm\" svg:width=\"24.124cm\" svg:height=\"13.514cm\">" % (noRows+2, noRows+2) ) dest.write( "<chartooo:coordinate-region svg:x=\"1.345cm\" svg:y=\"0.483cm\" svg:width=\"22.853cm\" svg:height=\"12.668cm\"/>" ) dest.write( "<chart:axis chart:dimension=\"x\" chart:name=\"primary-x\" chart:style-name=\"ch3\"" ) if (axis_labels): dest.write( ">" ) #dest.write( "<chart:title svg:x=\"11.511cm\" svg:y=\"13.735cm\" chart:style-name=\"ch4\">" ) dest.write( "<chart:title svg:x=\"11.511cm\" svg:y=\"13.735cm\">" ) dest.write( "<text:p>%s</text:p>" % intext1 ) dest.write( "</chart:title>" ) dest.write( "</chart:axis>" ) else: dest.write( "/>" ) dest.write( "<chart:axis chart:dimension=\"y\" chart:name=\"primary-y\" chart:style-name=\"ch3\"" ) if (axis_labels): dest.write( ">" ) #dest.write( "<chart:title svg:x=\"0cm\" svg:y=\"8.13cm\" chart:style-name=\"ch5\">" ) dest.write( "<chart:title svg:x=\"0cm\" svg:y=\"8.13cm\">" ) dest.write( "<text:p>%s</text:p>" % intext2 ) dest.write( "</chart:title>" ) else: dest.write( ">" ) dest.write( "<chart:grid chart:style-name=\"ch4\" chart:class=\"major\"/></chart:axis>" ) dest.write( "<chart:series chart:style-name=\"ch5\" chart:values-cell-range-address=\"Data.G2:Data.G%d\" chart:class=\"chart:scatter\">" % (noRows+2) ) dest.write( "<chart:domain table:cell-range-address=\"Data.C2:Data.C%d\"/><chart:data-point chart:repeated=\"%d\"/>" % (noRows+2, noRows) ) dest.write( "</chart:series>" ) dest.write( "<chart:wall chart:style-name=\"ch6\"/><chart:floor chart:style-name=\"ch7\"/></chart:plot-area><table:table table:name=\"local-table\"><table:table-header-columns><table:table-column/>" ) dest.write( "</table:table-header-columns>" ) dest.write( "<table:table-columns><table:table-column table:number-columns-repeated=\"2\"/></table:table-columns>" ) dest.write( "<table:table-header-rows>" ) dest.write( "<table:table-row>" ) dest.write( "<table:table-cell><text:p/></table:table-cell>" ) dest.write( "<table:table-cell office:value-type=\"string\"><text:p>Column C</text:p></table:table-cell><table:table-cell office:value-type=\"string\"><text:p>Column G</text:p></table:table-cell>" ) dest.write( "</table:table-row>" ) dest.write( "</table:table-header-rows>" ) dest.write( "<table:table-rows>" ) for i1 in range(0,len(adxl_idx)): if (adxl_idx[i1] >= 0): i3 += 1 dest.write( "<table:table-row>" ) dest.write( "<table:table-cell office:value-type=\"string\"><text:p>%d</text:p></table:table-cell>" % i3) f3 = adxl[i1][1] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\"><text:p>%0.3f</text:p>" % (f3, f3) ) if (i3 ==1 ): dest.write( "<draw:g><svg:desc>Data.C2:Data.C%d</svg:desc></draw:g>" % (noRows+2) ) dest.write( "</table:table-cell>" ) f3 = lsm6[adxl_idx[i1]][1] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\"><text:p>%0.3f</text:p>" % (f3, f3) ) if (i3 ==1 ): dest.write( "<draw:g><svg:desc>Data.G2:Data.G%d</svg:desc></draw:g>" % (noRows+2) ) dest.write( "</table:table-cell>" ) dest.write( "</table:table-row>" ) dest.write( "</table:table-rows></table:table></chart:chart></office:chart></office:body></office:document-content>" ) with open( runningPath + "/content_local_obj2.xml", "w") as dest: with open( runningPath + "/7_2.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) dest.write( "<office:body>" ) dest.write( "<office:chart>" ) dest.write( "<chart:chart svg:width=\"25.17cm\" svg:height=\"14.295cm\" xlink:href=\"..\" xlink:type=\"simple\" chart:class=\"chart:scatter\" chart:style-name=\"ch1\">" ) dest.write( "<chart:plot-area chart:style-name=\"ch2\" table:cell-range-address=\"Data.B2:Data.B%d Data.F2:Data.F%d\" svg:x=\"0.503cm\" svg:y=\"0.285cm\" svg:width=\"24.164cm\" svg:height=\"13.725cm\">" % (noRows+2, noRows+2) ) dest.write( "<chartooo:coordinate-region svg:x=\"1.124cm\" svg:y=\"0.482cm\" svg:width=\"23.076cm\" svg:height=\"12.512cm\"/>" ) dest.write( "<chart:axis chart:dimension=\"x\" chart:name=\"primary-x\" chart:style-name=\"ch3\"" ) if (axis_labels): dest.write( ">" ) #dest.write( "<chart:title svg:x=\"11.538cm\" svg:y=\"13.735cm\" chart:style-name=\"ch4\">" ) dest.write( "<chart:title svg:x=\"11.538cm\" svg:y=\"13.735cm\">" ) dest.write( "<text:p>%s</text:p>" % intext1 ) dest.write( "</chart:title>" ) dest.write( "</chart:axis>" ) else: dest.write( "/>" ) dest.write( "<chart:axis chart:dimension=\"y\" chart:name=\"primary-y\" chart:style-name=\"ch3\">" ) if (axis_labels): #dest.write( "<chart:title svg:x=\"0cm\" svg:y=\"8.051cm\" chart:style-name=\"ch5\">" ) dest.write( "<chart:title svg:x=\"0cm\" svg:y=\"8.051cm\">" ) dest.write( "<text:p>%s</text:p>" % intext2 ) dest.write( "</chart:title>" ) dest.write( "<chart:grid chart:style-name=\"ch4\" chart:class=\"major\"/></chart:axis>" ) dest.write( "<chart:series chart:style-name=\"ch5\" chart:values-cell-range-address=\"Data.F2:Data.F%d\" chart:class=\"chart:scatter\">" % (noRows+2) ) dest.write( "<chart:domain table:cell-range-address=\"Data.B2:Data.B%d\"/><chart:data-point chart:repeated=\"%d\"/>" % (noRows+2, noRows) ) dest.write( "</chart:series>" ) dest.write( "<chart:wall chart:style-name=\"ch6\"/><chart:floor chart:style-name=\"ch7\"/></chart:plot-area><table:table table:name=\"local-table\"><table:table-header-columns><table:table-column/>" ) dest.write( "</table:table-header-columns>" ) dest.write( "<table:table-columns><table:table-column table:number-columns-repeated=\"2\"/></table:table-columns>" ) dest.write( "<table:table-header-rows>" ) dest.write( "<table:table-row>" ) dest.write( "<table:table-cell><text:p/></table:table-cell>" ) dest.write( "<table:table-cell office:value-type=\"string\"><text:p>Column B</text:p></table:table-cell><table:table-cell office:value-type=\"string\"><text:p>Column F</text:p></table:table-cell>" ) dest.write( "</table:table-row>" ) dest.write( "</table:table-header-rows>" ) dest.write( "<table:table-rows>" ) i4 = 0 for i1 in range(0,len(adxl_idx)): if (adxl_idx[i1] >= 0): i4 += 1 dest.write( "<table:table-row>" ) dest.write( "<table:table-cell office:value-type=\"string\"><text:p>%d</text:p></table:table-cell>" % i4) f3 = adxl[i1][2] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\"><text:p>%0.3f</text:p>" % (f3, f3) ) if (i4 ==1 ): dest.write( "<draw:g><svg:desc>Data.B1:Data.B%d</svg:desc></draw:g>" % noRows ) dest.write( "</table:table-cell>" ) f3 = lsm6[adxl_idx[i1]][2] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\"><text:p>%0.3f</text:p>" % (f3, f3) ) if (i4 ==1 ): dest.write( "<draw:g><svg:desc>Data.F1:Data.F%d</svg:desc></draw:g>" % noRows ) dest.write( "</table:table-cell>" ) dest.write( "</table:table-row>" ) dest.write( "</table:table-rows></table:table></chart:chart></office:chart></office:body></office:document-content>" ) with open( runningPath + "/content_local_obj3.xml", "w") as dest: with open( runningPath + "/3_1.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) dest.write( intext1 ) with open( runningPath + "/3_2.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) with open( runningPath + "/content_local_obj4.xml", "w") as dest: with open( runningPath + "/4_1.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) dest.write( intext2 ) with open( runningPath + "/4_2.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) ###################################################### ### Write Header copperplate to the contents file ## with open( runningPath + "/content_local.xml", "w") as dest: with open( runningPath + "/../template_content/3.xml", "r") as source: while True: copy_buff = source.read(4096) if not copy_buff: break dest.write(copy_buff) dest.write( "<office:body>" ) dest.write( "<office:spreadsheet>" ) dest.write( "<table:calculation-settings table:automatic-find-labels=\"false\"/>" ) dest.write( "<table:table table:name=\"Raw\" table:style-name=\"ta1\">" ) dest.write( "<table:table-column table:style-name=\"co1\" table:default-cell-style-name=\"ce3\"/>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"3\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co1\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"2\" table:default-cell-style-name=\"Default\"/>" ) # Show the file names dest.write( "<table:table-row table:style-name=\"ro1\">" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % (intext1) ) dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % (intext2) ) dest.write( "<table:table-cell/><table:table-cell/>" ) dest.write( "</table:table-row>" ) if bIncludeTraces(): for bi in bx1: ## Find the corresponding point ci = adxl_idx[bi] dest.write( "<table:table-row table:style-name=\"ro1\">" ) dest.write( ODSDate(ax1[bi].dt) ) dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( ODSDate(ax2[ci].dt) ) dest.write( "<table:table-cell/><table:table-cell/></table:table-row>" ) for ii in range(0, 500): dest.write( "<table:table-row table:style-name=\"ro1\">" ) if (ii < len(ax1[bi].x)): f3 = ax1[bi].x[ii] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = ax1[bi].y[ii] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = ax1[bi].z[ii] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) else: dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell/>" ) if (ii < len(ax2[ci].x)): f3 = ax2[ci].x[ii] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = ax2[ci].y[ii] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = ax2[ci].z[ii] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) else: dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "</table:table-row>" ) full_len = len(bx1)*501 dest.write( "</table:table>" ) dest.write( "<table:table table:name=\"Data\" table:style-name=\"ta1\">" ) dest.write( "<table:shapes>" ) dest.write( "<draw:frame draw:z-index=\"0\" draw:style-name=\"gr1\" draw:text-style-name=\"P1\" svg:width=\"251.69mm\" svg:height=\"142.94mm\" svg:x=\"223.06mm\" svg:y=\"7.17mm\">" ) dest.write( "<draw:object draw:notify-on-update-of-ranges=\"Data.C2:Data.C%d Data.G2:Data.G%d\" xlink:href=\"./Object 1\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\">" % (noRows+2, noRows+2) ) dest.write( "<loext:p/>" ) dest.write( "</draw:object>" ) dest.write( "<draw:image xlink:href=\"./ObjectReplacements/Object 1\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\"/>" ) dest.write( "</draw:frame>" ) dest.write( "<draw:frame draw:z-index=\"1\" draw:style-name=\"gr1\" draw:text-style-name=\"P1\" svg:width=\"251.69mm\" svg:height=\"142.94mm\" svg:x=\"409.83mm\" svg:y=\"79.95mm\">" ) dest.write( "<draw:object draw:notify-on-update-of-ranges=\"Data.B2:Data.B%d Data.F2:Data.F%d\" xlink:href=\"./Object 2\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\">" % (noRows+2, noRows+2) ) dest.write( "<loext:p/>" ) dest.write( "</draw:object>" ) dest.write( "<draw:image xlink:href=\"./ObjectReplacements/Object 2\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\"/>" ) dest.write( "</draw:frame>" ) dest.write( "</table:shapes>" ) dest.write( "<table:table-column table:style-name=\"co1\" table:default-cell-style-name=\"ce3\"/>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"3\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co1\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"2\" table:default-cell-style-name=\"Default\"/>" ) # Show the file names dest.write( "<table:table-row table:style-name=\"ro1\">" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % (intext1) ) dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % (intext2) ) dest.write( "<table:table-cell/><table:table-cell/>" ) dest.write( "</table:table-row>" ) for i1 in range(0,len(adxl_idx)): if (adxl_idx[i1] >= 0): dest.write( "<table:table-row table:style-name=\"ro1\">" ) dest.write( ODSDate(adxl[i1][0]) ) f3 = adxl[i1][1] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = adxl[i1][2] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) dest.write("<table:table-cell/>") dest.write( ODSDate(lsm6[adxl_idx[i1]][0]) ) f3 = lsm6[adxl_idx[i1]][1] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = lsm6[adxl_idx[i1]][2] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) dest.write("<table:table-cell/>") #dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % ("Hello!") ) dest.write( "</table:table-row>" ) # Write empty row dest.write( "<table:table-row table:style-name=\"ro1\"><table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/></table:table-row>" ) dest.write( "<table:table-row table:style-name=\"ro1\">" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % ("Unmatched:") ) dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % ("Unmatched:") ) dest.write( "<table:table-cell/><table:table-cell/>" ) dest.write( "</table:table-row>" ) # Now write out the remaining values (that haven't been paired). i1 = 0 i2 = 0 while(True): while(i1 < len(adxl_idx)): if (adxl_idx[i1] != -1): i1 += 1 else: break while(i2 < len(lsm6_idx)): if (lsm6_idx[i2] != -1): i2 += 1 else: break if(i1 >= len(adxl_idx)) and (i2 >= len(lsm6_idx)): # Finished! break else: # Something still to do! dest.write( "<table:table-row table:style-name=\"ro1\">" ) if(i1 < len(adxl_idx)): dest.write( ODSDate(adxl[i1][0]) ) f3 = adxl[i1][1] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = adxl[i1][2] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) i1 += 1 else: dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell/>" ) if(i2 < len(lsm6_idx)): dest.write( ODSDate(lsm6[i2][0]) ) f3 = lsm6[i2][1] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) f3 = lsm6[i2][2] dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%0.3f\" calcext:value-type=\"float\"><text:p>%0.3f</text:p></table:table-cell>" % (f3, f3) ) i2 += 1 else: dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "</table:table-row>" ) dest.write( "</table:table>" ) ## Now write out the third table sheet dest.write( "<table:table table:name=\"Compare\" table:style-name=\"ta1\">" ) dest.write( "<table:shapes>" ) dest.write( "<draw:frame draw:z-index=\"0\" draw:style-name=\"gr1\" draw:text-style-name=\"P1\" svg:width=\"278.64mm\" svg:height=\"168.14mm\" svg:x=\"85.08mm\" svg:y=\"19.65mm\">" ) dest.write( "<draw:object draw:notify-on-update-of-ranges=\"Compare.D3:Compare.D502 Compare.E3:Compare.E502 Compare.D3:Compare.D502 Compare.F3:Compare.F502 Compare.D3:Compare.D502 Compare.G3:Compare.G502\" xlink:href=\"./Object 3\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\"><loext:p/>" ) dest.write( "</draw:object>" ) dest.write( "<draw:image xlink:href=\"./ObjectReplacements/Object 3\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\"/>" ) dest.write( "</draw:frame>" ) dest.write( "<draw:frame draw:z-index=\"1\" draw:style-name=\"gr1\" draw:text-style-name=\"P1\" svg:width=\"306.74mm\" svg:height=\"172.65mm\" svg:x=\"372.25mm\" svg:y=\"17.8mm\">" ) dest.write( "<draw:object draw:notify-on-update-of-ranges=\"Compare.I3:Compare.I502 Compare.J3:Compare.J502 Compare.I3:Compare.I502 Compare.K3:Compare.K502 Compare.I3:Compare.I502 Compare.L3:Compare.L502\" xlink:href=\"./Object 4\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\"><loext:p/>" ) dest.write( "</draw:object>" ) dest.write( "<draw:image xlink:href=\"./ObjectReplacements/Object 4\" xlink:type=\"simple\" xlink:show=\"embed\" xlink:actuate=\"onLoad\"/>" ) dest.write( "</draw:frame>" ) dest.write( "</table:shapes>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"4\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co1\" table:default-cell-style-name=\"ce3\"/>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"4\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co1\" table:default-cell-style-name=\"Default\"/>" ) dest.write( "<table:table-column table:style-name=\"co2\" table:number-columns-repeated=\"2\" table:default-cell-style-name=\"Default\"/>" ) # Show the file names dest.write( "<table:table-row table:style-name=\"ro1\"><table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % (intext1) ) dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"string\" calcext:value-type=\"string\"><text:p>%s</text:p></table:table-cell>" % (intext2) ) dest.write( "<table:table-cell/><table:table-cell/>" ) dest.write( "</table:table-row>" ) dest.write( "<table:table-row table:style-name=\"ro1\"><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"1\" calcext:value-type=\"float\"><text:p>1</text:p></table:table-cell>" ) dest.write( "<table:table-cell/>" ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([.$A$3:.$C$%d];[.$B$2];2)\" office:value-type=\"float\" office:value=\"502\" calcext:value-type=\"float\"><text:p>502</text:p></table:table-cell>" % (500) ) dest.write( "<table:table-cell table:style-name=\"ce2\" table:formula=\"of:=INDEX([$Raw.$A$1:.$C$%d];[.$D$2];1)\" " % (full_len + 1) ) dt_x = datetime.datetime.now() dest.write( dt_x.strftime("office:value-type=\"date\" office:date-value=\"%Y-%m-%dT%H:%M:%S\" calcext:value-type=\"date\"><text:p>%d/%m/%Y %H:%M:%S</text:p></table:table-cell>") ) #dest.write( "<table:table-cell/>" ) dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell table:style-name=\"ce2\" table:formula=\"of:=INDEX([$Raw.$E$1:.$G$%d];[.$D$2];1)\" " % (full_len + 1) ) dt_x = datetime.datetime.now() dest.write( dt_x.strftime("office:value-type=\"date\" office:date-value=\"%Y-%m-%dT%H:%M:%S\" calcext:value-type=\"date\"><text:p>%d/%m/%Y %H:%M:%S</text:p></table:table-cell>") ) dest.write( "<table:table-cell/>" ) dest.write( "<table:table-cell table:style-name=\"ce5\" table:formula=\"of:=24*60*60*([.J2]-[.E2])\" office:value-type=\"float\" office:value=\"0\" calcext:value-type=\"float\"><text:p>0.00</text:p></table:table-cell>" ) dest.write( "</table:table-row>" ) for yi in range(0,500): dest.write( "<table:table-row table:style-name=\"ro1\">" ) ## Limit the number. What if num_bx > 500?? That can't happpen at the moment because (above) it # is limited to 100, but maybe in future? # if yi <= num_bx: dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%d\" calcext:value-type=\"float\"><text:p>%d</text:p></table:table-cell>" % (yi+1, yi+1) ) dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%d\" calcext:value-type=\"float\"><text:p>%d</text:p></table:table-cell>" % (yi*501+2, yi*501+2) ) dest.write( "<table:table-cell/>" ) else: dest.write( "<table:table-cell/><table:table-cell/><table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%d\" calcext:value-type=\"float\"><text:p>%d</text:p></table:table-cell>" % (yi+1, yi+1) ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([$Raw.$A$1:.$C$%d];[.$D$2]+[.$D%d];1)\" office:value-type=\"float\" office:value=\"0.0000\" calcext:value-type=\"float\"><text:p>0.0000</text:p></table:table-cell>" % (full_len+1, yi+3) ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([$Raw.$A$1:.$C$%d];[.$D$2]+[.$D%d];2)\" office:value-type=\"float\" office:value=\"0.0000\" calcext:value-type=\"float\"><text:p>0.0000</text:p></table:table-cell>" % (full_len+1, yi+3) ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([$Raw.$A$1:.$C$%d];[.$D$2]+[.$D%d];3)\" office:value-type=\"float\" office:value=\"0.0000\" calcext:value-type=\"float\"><text:p>0.0000</text:p></table:table-cell>" % (full_len+1, yi+3) ) dest.write( "<table:table-cell/>" ) dest.write( "<table:table-cell office:value-type=\"float\" office:value=\"%d\" calcext:value-type=\"float\"><text:p>%d</text:p></table:table-cell>" % (yi+1, yi+1) ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([$Raw.$E$1:.$G$%d];[.$D$2]+[.$I%d];1)\" office:value-type=\"float\" office:value=\"0.0000\" calcext:value-type=\"float\"><text:p>0.0000</text:p></table:table-cell>" % (full_len+1, yi+3) ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([$Raw.$E$1:.$G$%d];[.$D$2]+[.$I%d];2)\" office:value-type=\"float\" office:value=\"0.0000\" calcext:value-type=\"float\"><text:p>0.0000</text:p></table:table-cell>" % (full_len+1, yi+3) ) dest.write( "<table:table-cell table:formula=\"of:=INDEX([$Raw.$E$1:.$G$%d];[.$D$2]+[.$I%d];3)\" office:value-type=\"float\" office:value=\"0.0000\" calcext:value-type=\"float\"><text:p>0.0000</text:p></table:table-cell>" % (full_len+1, yi+3) ) dest.write( "</table:table-row>" ) dest.write( "</table:table>" ) ## Finish the document dest.write( "</office:spreadsheet></office:body></office:document-content>" ) ##### Now write to the ZIP archive #### shutil.copy2( runningPath + "/6_2.ODS", theName) # 6_2 includes plots, 5_1 does not. with zipfile.ZipFile(theName, "a") as z: z.write( runningPath + "/content_local.xml", "content.xml", zipfile.ZIP_DEFLATED ) z.write( runningPath + "/content_local_obj1.xml", "Object 1/content.xml", zipfile.ZIP_DEFLATED ) z.write( runningPath + "/content_local_obj2.xml", "Object 2/content.xml", zipfile.ZIP_DEFLATED ) z.write( runningPath + "/content_local_obj3.xml", "Object 3/content.xml", zipfile.ZIP_DEFLATED ) z.write( runningPath + "/content_local_obj4.xml", "Object 4/content.xml", zipfile.ZIP_DEFLATED ) z.close() os.remove( runningPath + "/content_local.xml" ) os.remove( runningPath + "/content_local_obj1.xml" ) os.remove( runningPath + "/content_local_obj2.xml" ) os.remove( runningPath + "/content_local_obj3.xml" ) os.remove( runningPath + "/content_local_obj4.xml" ) ###################################################################### ## START MAIN PROGRAM ## ###################################################################### def usage(): print "-h help" print "-o output" print "-d time delta to use (if omitted, calculate automatically)" def main(): try: opts, args = getopt.gnu_getopt(sys.argv[1:], "ho:d:", ["help", "output=", "delta=", "diff="]) except getopt.GetoptError as err: # print help information and exit: print str(err) # will print something like "option -a not recognized" usage() sys.exit(2) Output = None Diff = float('nan') for o, a in opts: if o in ("-h", "--help"): usage() sys.exit() elif o in ("-o", "--output"): Output = a elif o in ("-d", "--delta", "--diff"): Diff = float(a) else: assert False, "unhandled option" if (Output == None): # Have no output. Fails. sys.exit(4) if (len(args) != 2): # Wrong number of args. Fails. sys.exit(4) thePath = args[0] if args[0].upper().endswith('.CSV'): input1 = os.path.abspath(args[0]) else: sys.exit(3) if args[1].upper().endswith('.CSV'): input2 = os.path.abspath(args[1]) else: sys.exit(3) # Determine the text to show as representation of each input. This is either the filename, # or the parent directory plus file name, depending on what the program determines. if (os.path.dirname(input1) == os.path.dirname(input2)): # If the directory is the same, don't bother showing it. input1_text = os.path.basename(input1) input2_text = os.path.basename(input2) else: if (args[0] == os.path.basename(input1)): # If the input doesn't contain the directory, don't bother showing it input1_text = args[0] else: # ... otherwise, show 1 level of the directory input1_text = os.path.join(os.path.basename(os.path.dirname(input1)),os.path.basename(input1)) if (args[1] == os.path.basename(input2)): # If the input doesn't contain the directory, don't bother showing it input2_text = args[1] else: # ... otherwise, show 1 level of the directory input2_text = os.path.join(os.path.basename(os.path.dirname(input2)),os.path.basename(input2)) if math.isnan(Diff): correl(input1, input2, input1_text, input2_text, output=Output) else: correl(input1, input2, input1_text, input2_text, output=Output, diff=Diff) if __name__=="__main__": main()
2.234375
2
tests/themes/kenney/demo_checkbox.py
Rahuum/glooey
86
12782415
<reponame>Rahuum/glooey<gh_stars>10-100 #!/usr/bin/env python3 import pyglet import glooey.themes.kenney as kenney import run_demos import itertools colors = 'blue', 'red', 'green', 'yellow', 'grey' icons = 'checkmark', 'cross' window = pyglet.window.Window() gui = kenney.Gui(window) @run_demos.on_space(gui) # def test_checkbox(): # Test the getters and setters for the base button class. button = kenney.Checkbox() gui.clear() gui.add(button) for color, icon in itertools.product(colors, icons): button.color = color button.icon = icon yield f"{color}, {icon}" # Test the pre-configured settings for the named button classes. # # Note that when one checkbox is switched for another (as in this test), # you have to move the mouse to trigger an on_mouse_enter() event before # you can click on the widget. This is necessary because the GUI doesn't # keep track of where the mouse is, and I decided that fixing this would # introduce more complexity than its worth. for subcls in kenney.Checkbox.__subclasses__(): gui.clear() gui.add(subcls()) yield subcls.__name__ pyglet.app.run()
2.375
2
ipscanner.py
molney239/ipscanner
1
12782416
<filename>ipscanner.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Python script and module for scanning IPv4 addresses range. Shows basic information about devices and addresses. Usage examples: From console: pip3 install -r requirements.txt python3 ipscanner.py 192.168.1.0-192.168.1.255,8.8.8.8 -p 2 -t 200 -v 1 This command starting script for scanning address in local network and 8.8.8.8 address. From python: import ipscanner ipscanner.scan_range([192.168.1.0, 8.8.8.8], verbosity=3, ping_timeout=200) ========== LICENSE ========== The MIT License Copyright (c) 2021 molney239 and contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ============================= """ # Libs import ipaddress import pythonping import getmac import requests import socket from termcolor import colored from platform import system __author__ = "molney239" __copyright__ = 'Copyright 2021, ipscanner' __license__ = 'The MIT License' __version__ = '1.0.0' __email__ = '<EMAIL>' # For correct colorized output in Windows. if system() == "Windows": from colorama import init init() class PingResult: def __init__(self, address: str, available: bool, ping_ms: int): self.address = address self.available = available self.ping_ms = ping_ms class ScanResult: def __init__(self, address: str, available: bool, mac: str, vendor_name: str, device_name: str, ping_ms: int): self.address = address self.available = available self.mac = mac self.vendor_name = vendor_name self.device_name = device_name self.ping_ms = ping_ms def parse_addresses(addresses: str): """ Parses string to IPv4 range. :param addresses: Addresses string. Example: 192.168.1.0.192.168.1.255,8.8.8.8 :return: Generator of strings with IPv4s. """ for i in addresses.split(','): if i.count('-') == 0: yield i elif i.count('-') == 1: for j in range(int(ipaddress.IPv4Address(i.split('-')[0])), int(ipaddress.IPv4Address(i.split('-')[1])) + 1): yield str(ipaddress.IPv4Address(j)) else: raise ValueError("Invalid addresses range: " + i) def print_result(result: ScanResult, colorized: bool = True) -> None: """ Printing result of scan to console. :param result: ScanResult object. :param colorized: Colorize output. Disable, if the output is not in the correct format. """ output = "" if colorized and system() == "Windows": output = "IPv4: {:29} | Available: {:17} | MAC: {:31} | Vendor name: {:30} | Device name: {:20} | Ping: {}" else: output = "IPv4: {:15} | Available: {:3} | MAC: {:17} | Vendor name: {:30} | Device name: {:20} | Ping: {}" if colorized: print(output.format( str(colored(result.address, 'blue')), str(colored("YES", 'green')) if result.available else str(colored("NO", 'red')), str(colored(str(result.mac), 'yellow')), str(result.vendor_name), str(result.device_name), str(result.ping_ms)) + "ms" ) else: print(output.format( str(result.address), ("YES" if result.available else "NO"), str(result.mac), str(result.vendor_name), str(result.device_name), str(result.ping_ms)) + "ms" ) def ping(address: str, packets_count: int = 1, ping_timeout: int = 2000) -> PingResult: """ Pings address. :param address: IP v4 address. :param packets_count: Packets count. :param ping_timeout: Timeout (milliseconds). :return: PingResult object. """ if packets_count < 1: raise ValueError("Invalid ping packets count: " + str(packets_count)) if ping_timeout < 0: raise ValueError("Invalid ping timeout: " + str(ping_timeout)) result = pythonping.ping(address, count=packets_count, timeout=ping_timeout / 1000.0, verbose=False) return PingResult(address, result.success(), result.rtt_avg_ms) def scan(address: str, packets_count: int = 1, ping_timeout: int = 2000) -> ScanResult: """ Scans IP v4 address. :param address: Address. :param packets_count: Ping packets count. :param ping_timeout: Ping timeout (milliseconds). :return: ScanResult object. """ ping_result = ping(address, packets_count=packets_count, ping_timeout=ping_timeout) mac = "None" vendor_name = "None" device_name = "None" if ping_result.available: mac = getmac.get_mac_address(ip=address) if mac is not None: url = "https://api.macvendors.com/" response = requests.get(url + mac) if response.status_code == 200: vendor_name = response.content.decode() device_name = socket.getfqdn(address) else: mac = "None" return ScanResult( address, ping_result.available, mac, vendor_name, device_name, ping_result.ping_ms ) def scan_range(addresses: iter, packets_count: int = 1, ping_timeout: int = 2000, verbosity: int = 0, colorized: bool = True) -> list: """ Scans IP v4 addresses. Verbosity codes: 0: None. 1: Only available addresses. 2: Only not available addresses. 3: All addresses. :param addresses: Iterable object with addresses (strings). :param packets_count: Ping packets count. :param ping_timeout: Ping timeout (milliseconds). :param verbosity: Verbosity. :param colorized: Colorized output. :return: List of dictionaries with results. """ results = [] for address in addresses: result = scan(address, packets_count=packets_count, ping_timeout=ping_timeout) results.append(result) if (verbosity == 1 and result.available) or (verbosity == 2 and not result.available) or (verbosity == 3): print_result(result, colorized=colorized) return results if __name__ == "__main__": import argparse # Parse console arguments. parser = argparse.ArgumentParser(description="Scans IPv4 addresses for availability.") parser.add_argument("addresses", metavar='addresses', type=str, help="Addresses for scan.") parser.add_argument("-v", metavar="--verbosity", type=int, default=3, help="Verbosity. " + "0: None. " + "1: Only available addresses. " + "2: Only not available addresses. " + "3: All addresses.") parser.add_argument("-p", metavar="--packets-count", type=int, default=1, help="Ping packets count.") parser.add_argument("-t", metavar="--ping-timeout", type=int, default=2000, help="Ping timeout (milliseconds).") parser.add_argument("--non-colorized", action="store_true", help="Not colorize output. (Use if the output is not in the correct format.)") args = parser.parse_args() scan_range(parse_addresses(args.addresses), packets_count=args.p, ping_timeout=args.t, verbosity=args.v, colorized=not args.non_colorized)
3.171875
3
bindings/python/src/cloudsmith_api/apis/webhooks_api.py
cloudsmith-io/cloudsmith-api
9
12782417
# coding: utf-8 """ Cloudsmith API The API to the Cloudsmith Service OpenAPI spec version: v1 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class WebhooksApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def webhooks_create(self, owner, repo, **kwargs): """ Create a specific webhook in a repository. Create a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_create(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param WebhooksCreate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_create_with_http_info(owner, repo, **kwargs) else: (data) = self.webhooks_create_with_http_info(owner, repo, **kwargs) return data def webhooks_create_with_http_info(self, owner, repo, **kwargs): """ Create a specific webhook in a repository. Create a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_create_with_http_info(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param WebhooksCreate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_create" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_create`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_create`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RepositoryWebhook', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_delete(self, owner, repo, identifier, **kwargs): """ Delete a specific webhook in a repository. Delete a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_delete(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_delete_with_http_info(owner, repo, identifier, **kwargs) else: (data) = self.webhooks_delete_with_http_info(owner, repo, identifier, **kwargs) return data def webhooks_delete_with_http_info(self, owner, repo, identifier, **kwargs): """ Delete a specific webhook in a repository. Delete a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_delete_with_http_info(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'identifier'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_delete" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_delete`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_delete`") # verify the required parameter 'identifier' is set if ('identifier' not in params) or (params['identifier'] is None): raise ValueError("Missing the required parameter `identifier` when calling `webhooks_delete`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] if 'identifier' in params: path_params['identifier'] = params['identifier'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/{identifier}/', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_list(self, owner, repo, **kwargs): """ Get a list of all webhooks in a repository. Get a list of all webhooks in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_list(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param int page: A page number within the paginated result set. :param int page_size: Number of results to return per page. :return: list[RepositoryWebhook] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_list_with_http_info(owner, repo, **kwargs) else: (data) = self.webhooks_list_with_http_info(owner, repo, **kwargs) return data def webhooks_list_with_http_info(self, owner, repo, **kwargs): """ Get a list of all webhooks in a repository. Get a list of all webhooks in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_list_with_http_info(owner, repo, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param int page: A page number within the paginated result set. :param int page_size: Number of results to return per page. :return: list[RepositoryWebhook] If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'page', 'page_size'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_list" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_list`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_list`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] query_params = [] if 'page' in params: query_params.append(('page', params['page'])) if 'page_size' in params: query_params.append(('page_size', params['page_size'])) header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[RepositoryWebhook]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_partial_update(self, owner, repo, identifier, **kwargs): """ Update a specific webhook in a repository. Update a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_partial_update(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :param WebhooksPartialUpdate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_partial_update_with_http_info(owner, repo, identifier, **kwargs) else: (data) = self.webhooks_partial_update_with_http_info(owner, repo, identifier, **kwargs) return data def webhooks_partial_update_with_http_info(self, owner, repo, identifier, **kwargs): """ Update a specific webhook in a repository. Update a specific webhook in a repository. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_partial_update_with_http_info(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :param WebhooksPartialUpdate data: :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'identifier', 'data'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_partial_update" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_partial_update`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_partial_update`") # verify the required parameter 'identifier' is set if ('identifier' not in params) or (params['identifier'] is None): raise ValueError("Missing the required parameter `identifier` when calling `webhooks_partial_update`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] if 'identifier' in params: path_params['identifier'] = params['identifier'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'data' in params: body_params = params['data'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/{identifier}/', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RepositoryWebhook', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def webhooks_read(self, owner, repo, identifier, **kwargs): """ Views for working with repository webhooks. Views for working with repository webhooks. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_read(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.webhooks_read_with_http_info(owner, repo, identifier, **kwargs) else: (data) = self.webhooks_read_with_http_info(owner, repo, identifier, **kwargs) return data def webhooks_read_with_http_info(self, owner, repo, identifier, **kwargs): """ Views for working with repository webhooks. Views for working with repository webhooks. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.webhooks_read_with_http_info(owner, repo, identifier, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str owner: (required) :param str repo: (required) :param str identifier: (required) :return: RepositoryWebhook If the method is called asynchronously, returns the request thread. """ all_params = ['owner', 'repo', 'identifier'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method webhooks_read" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'owner' is set if ('owner' not in params) or (params['owner'] is None): raise ValueError("Missing the required parameter `owner` when calling `webhooks_read`") # verify the required parameter 'repo' is set if ('repo' not in params) or (params['repo'] is None): raise ValueError("Missing the required parameter `repo` when calling `webhooks_read`") # verify the required parameter 'identifier' is set if ('identifier' not in params) or (params['identifier'] is None): raise ValueError("Missing the required parameter `identifier` when calling `webhooks_read`") collection_formats = {} path_params = {} if 'owner' in params: path_params['owner'] = params['owner'] if 'repo' in params: path_params['repo'] = params['repo'] if 'identifier' in params: path_params['identifier'] = params['identifier'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # Authentication setting auth_settings = ['apikey'] return self.api_client.call_api('/webhooks/{owner}/{repo}/{identifier}/', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RepositoryWebhook', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
1.796875
2
Unit 2/Lesson 3/y=mx+b.py
KevinBoxuGao/ICS3UI
0
12782418
<reponame>KevinBoxuGao/ICS3UI m = int(input("enter slope of line: ")) b = int(input("enter the y-intercept: ")) if b == 0: bOutput="" elif b < 0: bOutput = str(b) else: bOutput="+"+str(b) if m == 0: mOutput = "" bOutput = str(b) elif m == 1: mOutput = "x" elif m == -1: mOutput = "-x" else: mOutput = str(m)+"x" print("The equation of the line is y="+mOutput+bOutput)
3.890625
4
buildhelpers.py
nCov19-DataPoints/nCov19-DataPoints
42
12782419
<gh_stars>10-100 import urllib.request import csv from io import StringIO import json import datetime import pytz from collections import namedtuple CET = pytz.timezone('CET') Color = namedtuple("Color",['r','g','b','a']) colortable = [ {"t":0, "c":{"r":0,"g":255,"b":0,"a":0.1} }, {"t":0.1, "c":{"r":128,"g":255,"b":0,"a":0.1} }, {"t":0.25, "c":{"r":255,"g":255,"b":0,"a":0.1} }, {"t":0.5, "c":{"r":255,"g":213,"b":0,"a":0.2} }, {"t":1.0, "c":{"r":255,"g":191,"b":0,"a":0.3} }, {"t":2.5, "c":{"r":255,"g":128,"b":0,"a":0.3} }, {"t":5.0, "c":{"r":255,"g":0,"b":0,"a":0.3} }, {"t":10.0, "c":{"r":255,"g":0,"b":0,"a":0.4} }, {"t":25.0, "c":{"r":255,"g":0,"b":0,"a":0.5} }, {"t":50.0, "c":{"r":255,"g":0,"b":64,"a":0.5} }, {"t":75.0, "c":{"r":255,"g":0,"b":128,"a":0.5} }, {"t":100.0, "c":{"r":255,"g":0,"b":191,"a":0.5} } ] colortableoutdated = [ {"t": 0, "c": {"r": 102, "g": 153, "b": 102, "a": 0.1}}, {"t": 0.1, "c": {"r": 128, "g": 153, "b": 102, "a": 0.1}}, {"t": 0.25, "c": {"r": 153, "g": 153, "b": 102, "a": 0.1}}, {"t": 0.5, "c": {"r": 153, "g": 145, "b": 102, "a": 0.2}}, {"t": 1.0, "c": {"r": 153, "g": 140, "b": 102, "a": 0.3}}, {"t": 2.5, "c": {"r": 153, "g": 128, "b": 102, "a": 0.3}}, {"t": 5.0, "c": {"r": 153, "g": 102, "b": 102, "a": 0.3}}, {"t": 10.0, "c": {"r": 153, "g": 102, "b": 102, "a": 0.4}}, {"t": 25.0, "c": {"r": 153, "g": 102, "b": 102, "a": 0.5}}, {"t": 50.0, "c": {"r": 153, "g": 102, "b": 128, "a": 0.5}}, {"t": 75.0, "c": {"r": 153, "g": 102, "b": 141, "a": 0.5}}, {"t": 100.0, "c": {"r": 153, "g": 102, "b": 153, "a": 0.5}} ] def calculateColor(colortable,v): indexge = len(colortable) for i in range(0,len(colortable)): if v<=colortable[i]["t"]: indexge = i; break; tl = colortable[max(0,indexge-1)] th = colortable[min(indexge,len(colortable)-1)] l = tl["c"] h = th["c"] #fl = (v - tl["t"])/(th["t"] - tl["t"]) if th["t"]>tl["t"] else 1.0 fl = 1.0 fh = 1.0 - fl return Color( int(fl*l["r"]+fh*h["r"]), int(fl*l["g"]+fh*h["g"]), int(fl*l["b"]+fh*h["b"]), fl*l["a"]+fh*h["a"] ) class datapoint: def __init__(self, numcases, timestamp, sourceurl): self.numcases = numcases self.timestamp = timestamp self.sourceurl = sourceurl def __str__(self): return "datapoint(numcases="+str(self.numcases)+",timestamp="+self.timestamp.isoformat()+",sourceurl='"+self.sourceurl+"'" def processGEOJSON(country, geojsonfilename, geojsonprop_caseskey, geojsonprop_id, numcaseslookup, populationlookup, preprocessgeojson = None): totalCases = 0 mostrecentupdate = max(numcaseslookup[n].timestamp for n in numcaseslookup) with open("ncov19.csv","w") as f: f.write("Names,Cases\n") for n in numcaseslookup: f.write(n + "," + str(numcaseslookup[n].numcases) + "," + numcaseslookup[n].timestamp.isoformat() + "," + numcaseslookup[n].sourceurl+"\n") with open(geojsonfilename, "r", encoding="utf-8") as source: geojsondata = json.load(source) if preprocessgeojson: preprocessgeojson(geojsondata) unmatchedgeojsonnames = [] for f in geojsondata["features"]: p = f["properties"] if isinstance(geojsonprop_caseskey, str): name = p[geojsonprop_caseskey] try: v = numcaseslookup.pop(name) except: v = None else: try: name, v = geojsonprop_caseskey(f, numcaseslookup) except: name, v = "???", None if v==None: v = datapoint(numcases = 0, timestamp = mostrecentupdate, sourceurl = "") unmatchedgeojsonnames.append(name) p["NAME"] = name p["ID"] = p[geojsonprop_id] if isinstance(geojsonprop_id, str) else geojsonprop_id(f) p["CASES"] = v.numcases p["LASTUPDATE"] = v.timestamp.isoformat() p["POPULATION"] = populationlookup[name] if isinstance(populationlookup, dict) else populationlookup(f) p["CASESPER10000"] = p["CASES"] / p["POPULATION"] * 10000 p["SOURCEURL"] = v.sourceurl colors = colortable if v.timestamp + datetime.timedelta(hours=96) > datetime.datetime.now(datetime.timezone.utc) else colortableoutdated fillColor = calculateColor(colors,p["CASESPER10000"]) p["fill"] = True p["fillColor"] = "#{0:02x}{1:02x}{2:02x}".format(fillColor.r,fillColor.g,fillColor.b) p["fillOpacity"] = fillColor.a p["weight"] = 1 p["opacity"] = 0.3 totalCases = totalCases + p["CASES"] if len(numcaseslookup)>0: for key in numcaseslookup: print("Not found: '"+key+"' ('"+str(key.encode('unicode-escape'))+"') Datapoint: ",numcaseslookup[key]) print("GEOJSON contains the following unmatched names:") for n in unmatchedgeojsonnames: print("'"+n+"' ('"+str(n.encode('unicode-escape'))+"')") print(country+": assigned "+str(totalCases)+" cases to geojson features.") with open("ncov19map.geojson", "w") as dest: json.dump(geojsondata,dest) with open("ncov19map.js", "w") as dest: dest.write("GEOJSON_" + country + "=") json.dump(geojsondata,dest) dest.write(";") dest.write("\nGEOJSON_totalCases=GEOJSON_totalCases+"+str(totalCases)) dest.write("\nGEOJSON_lastoverallupdate=new Date(Math.max("+str((mostrecentupdate - datetime.datetime(1970,1,1, tzinfo=datetime.timezone.utc)).total_seconds()*1000)+",GEOJSON_lastoverallupdate.valueOf()));") now = datetime.datetime.utcnow() dest.write("\nGEOJSON_lastbuildrunutc=new Date(Math.max(Date.UTC("+str(now.year)+","+str(now.month-1)+","+str(now.day)+","+str(now.hour)+","+str(now.minute)+","+str(now.second)+"),GEOJSON_lastbuildrunutc));") dest.write("\nlegendColors=[") for i in range(0,len(colortable)): dest.write("\n {{ v:{0},c:\"#{1:02x}{2:02x}{3:02x}\",o:{4} }}".format(colortable[i]["t"],colortable[i]["c"]["r"],colortable[i]["c"]["g"],colortable[i]["c"]["b"],colortable[i]["c"]["a"])) if i!=len(colortable)-1: dest.write(",") dest.write("\n];") print("Completed exporting "+country)
2.578125
3
HW/HW7/CW7.2.py
kolyasalubov/Lv-639.pythonCore
0
12782420
<reponame>kolyasalubov/Lv-639.pythonCore<gh_stars>0 def reverse_list(l): return [list for list in reversed (l)] #'return a list with the reverse order of l'
3.109375
3
implementation/server/factories/books_author.py
Aincient/cleo
0
12782421
""" Books Author model factory. """ import random from factory import DjangoModelFactory, LazyAttribute from books.models import Author from .factory_faker import Faker __all__ = ( 'AuthorFactory', 'LimitedAuthorFactory', 'SingleAuthorFactory', ) class BaseAuthorFactory(DjangoModelFactory): """Base author factory.""" salutation = Faker('text', max_nb_chars=10) name = Faker('name') email = Faker('email') birth_date = Faker('date') biography = Faker('text') phone_number = Faker('phone_number') website = Faker('url') company = Faker('company') company_phone_number = Faker('phone_number') company_email = Faker('email') company_website = Faker('url') class Meta(object): """Meta class.""" model = Author abstract = True class AuthorFactory(BaseAuthorFactory): """Author factory.""" class LimitedAuthorFactory(BaseAuthorFactory): """Author factory, but limited to 20 authors.""" id = LazyAttribute( lambda __x: random.randint(1, 20) ) class Meta(object): """Meta class.""" django_get_or_create = ('id',) class SingleAuthorFactory(BaseAuthorFactory): """Author factory, limited to a single author.""" id = 999999 name = "<NAME>" email = "<EMAIL>" class Meta(object): """Meta class.""" django_get_or_create = ('id',)
2.859375
3
test_shorturl.py
lepture/flask-shorturl
28
12782422
<reponame>lepture/flask-shorturl from nose.tools import raises from flask import Flask from flask_shorturl import ShortUrl def test_shorturl(): app = Flask(__name__) su = ShortUrl(app) for a in range(0, 200000, 37): b = su.encode(a) c = su.enbase(b) d = su.debase(c) e = su.decode(d) assert a == e assert b == d assert c == su.encode_url(a) assert a == su.decode_url(c) def test_init_app(): app = Flask(__name__) su = ShortUrl() su.init_app(app) a = 21 b = su.encode(a) c = su.enbase(b) d = su.debase(c) e = su.decode(d) assert a == e assert b == d assert c == su.encode_url(a) assert a == su.decode_url(c) def test_flask_ctx(): app = Flask(__name__) DEFAULT_ALPHABET = 'mn6j2c4rv8bpygw95z7hsdaetxuk3fq' app.config.setdefault('SHORT_URL_ALPHABET', DEFAULT_ALPHABET) app.config.setdefault('SHORT_URL_MIN_LENGTH', 5) app.config.setdefault('SHORT_URL_BLOCK_SIZE', 24) su = ShortUrl() with app.test_request_context(): a = 21 b = su.encode(a) c = su.enbase(b) d = su.debase(c) e = su.decode(d) assert a == e assert b == d assert c == su.encode_url(a) assert a == su.decode_url(c) @raises(RuntimeError) def test_no_ctx(): su = ShortUrl() su.encode(21)
2.625
3
ExpenseTracker/expense/urls.py
lennyAiko/LifeExpenses
0
12782423
<filename>ExpenseTracker/expense/urls.py from django.contrib import admin from django.urls import path, include from .views import home, ExpenseList, createExpense, deleteExpense, setBudget urlpatterns = [ path("home/", home, name="home"), path("expenses/", ExpenseList, name="expense"), path("create_expense/", createExpense, name="create_expense"), path("delete_expense/<int:pk>", deleteExpense, name="remove_expense"), path("set_budget", setBudget, name="add_budget") ]
1.625
2
shhelper/paths.py
PowerSnail/PythonShellHelper
0
12782424
import typing as T from pathlib import Path import re class Globals: cwd = Path(".").absolute() def cd(p: str): Globals.cwd.joinpath(p).absolute() def pwd() -> Path: return Globals.cwd def ls(p: str = ".") -> T.List[Path]: path = Globals.cwd.joinpath(p) return [p for p in path.iterdir()] def batch_rename(regex, name_template): r = re.compile(regex) for p in ls(): match = r.match(p.name) if match is None: continue groups = match.groups() new_name = name_template.format(*groups) p.rename(p.parent.joinpath(new_name)) # TODO: name conflict
2.890625
3
OLD/Location.py
bhuvan21/TBGC
0
12782425
from input_functions import safe_input, numbered_choice from display_funcs import decorate class Location(): def __init__(self, name, short_desc, long_desc, contains=[], level=0, starting_location=False, input_func=safe_input, output_func=print): self.name = name self.short_desc = short_desc self.long_desc = long_desc self.contains = contains self.starting_location = starting_location self.level = level self.input_func = input_func self.output_func = output_func self.first_visit = None for l in self.contains: if type(l) == Location: l.contains.append(self) def enter(self): numbered_choice("What/Who/Where would you like to interact with?", [s.name for s in self.contains], self.contains, self.input_func, self.output_func).interact() def interact(self): self.output_func(self.name + " : " + self.short_desc) def get_fancy(self): return decorate(self)
3.65625
4
app/app/api/category_routes.py
Web-Dev-Collaborative/Anvil_2.0
12
12782426
from flask import Blueprint from flask_login import current_user from app.models import Category category_routes= Blueprint('category', __name__) @category_routes.route("") def get_categories(): user_categories = Category.query.filter_by(user_id=current_user.id) default_categories = Category.query.filter_by(user_id=None) return { "defaultCategories": [default_category.to_dict() for default_category in default_categories], "userCategories": [user_category.to_dict() for user_category in user_categories] }
2.515625
3
mobyle/web/security.py
mobyle2/mobyle2.web
0
12782427
import time from mobyle.common.connection import connection from mobyle.common import users def groupFinder(userid, request): #try to find user in database: user = connection.User.find_one({"email": userid}) if user is not None: groups = user['groups'] if user['admin']: groups.append('group:admin') return groups
2.65625
3
scripts/extract-changeid-map.py
thewtex/gerrit-static-archive
1
12782428
import sys import os import json import json_lines output_file = 'output.jl' if not os.path.exists(output_file): print('Did not find expected output file!') sys.exit(1) change_id_to_change_number = {} with open(output_file, 'rb') as fp: for item in json_lines.reader(fp): if 'ChangeIdToChangeNumber' in item: change_id_to_change_number.update(item['ChangeIdToChangeNumber']) with open(os.path.join('mirror', 'ChangeIdToChangeNumber.json'), 'w') as fp: json.dump(change_id_to_change_number, fp)
2.640625
3
efls-console/console/argo_template/test_template.py
universe-hcy/Elastic-Federated-Learning-Solution
65
12782429
# -*- coding: utf8 -*- import kfp def flip_coin(): return kfp.dsl.ContainerOp( name='Flip a coin', image='python:alpine3.6', command=['python', '-c', """ import random res = "heads" if random.randint(0, 1) == 0 else "tails" with open('/output', 'w') as f: f.write(res) """], file_outputs={'output': '/output'} ) def end(): return kfp.dsl.ContainerOp(name='End', image="alpine:3.6", command=["sh", "-c", 'echo "Flip coin ends"']) def heads(): return kfp.dsl.ContainerOp(name='Heads', image="alpine:3.6", command=["sh", "-c", 'echo "it was heads"']) def tails(): return kfp.dsl.ContainerOp(name='Tails', image="alpine:3.6", command=["sh", "-c", 'echo "it was tails"']) @kfp.dsl.pipeline(name='Coin-flip', description='Flip a coin') def coin_flip_pipeline(): flip_op = flip_coin() result_op = None with kfp.dsl.Condition(flip_op.output == 'heads'): result_op = heads() with kfp.dsl.Condition(flip_op.output == 'tails'): result_op = tails() end_op = end() end_op.after(result_op) def main(): kfp.compiler.Compiler().compile(coin_flip_pipeline, __file__ + ".yaml") if __name__ == '__main__': main()
2.5625
3
cdc_config.py
dlf412/mysql-cdc-redis
4
12782430
#!/usr/bin/env python # encoding: utf-8 # redis for saving binlog file and position # please reverse the db + 1 for saving mysql changed data redis_url = "redis://127.0.0.1/0" cache_url = "redis://127.0.0.1/1" # mysql server id server_id = 1 # mysql connection setting mysql_settings = {'host': '192.168.1.34', 'port': 3306, 'user': 'mediawise', 'passwd': '<PASSWORD>'} # watch databases setting # it can be set None or a tuple. # Watch all databases if set None # value format: None or database tuple schemas = None # watch tables setting like databases setting if with primary_key # value format: None or table tuple #tables = ("task",) tables = None # please set the unique key if without primary_key # value format: # {} or {"table_name": fields tuple, ....} tables_without_primary_key = {"db_test.task_test": ("uuid", )} # Read on binlog stream is blocking, default is True # If set to False, the cdc problem will exit when reading binlog over blocking = True # watch event setting events = ["insert", "update", "delete"] # turn off dumping trigger if set to 0 cache_max_rows = 2000000 dump_command = "python dump2csv.py -c dump.conf" log_level = "INFO" binlog_max_latency = 60000
1.929688
2
Finance/Python/finance/lib/python2.7/site-packages/pandas_datareader/google/quotes.py
pallavbakshi/datascience
1
12782431
import pandas as pd from dateutil.parser import parse import numpy as np from pandas_datareader.base import _BaseReader import json import re class GoogleQuotesReader(_BaseReader): """Get current google quote""" @property def url(self): return 'http://www.google.com/finance/info' @property def params(self): if isinstance(self.symbols, pd.compat.string_types): sym_list = self.symbols else: sym_list = ','.join(self.symbols) params = {'q': sym_list} return params def _read_lines(self, out): buffer = out.read() m = re.search('// ', buffer) result = json.loads(buffer[m.start() + len('// '):]) return pd.DataFrame([[float(x['cp']), float(x['l'].replace(',', '')), np.datetime64(parse(x['lt']).isoformat())] for x in result], columns=['change_pct', 'last', 'time'], index=[x['t'] for x in result])
2.921875
3
paper/make_language_fig.py
csdms/bmi_wrap
0
12782432
import matplotlib.pyplot as plt import pandas as pd def main(): if 0: data = pd.read_html("https://csdms.colorado.edu/wiki/CSDMS_models_by_numbers")[ 2 ] languages = pd.DataFrame( {"Count": data["Count"].values}, index=data["Program language"] ) languages.to_csv("languages.csv") else: languages = pd.read_csv("languages.csv", index_col=0, header=0) other = languages[languages["Count"] < 10] languages.loc["Other", "Count"] += other["Count"].sum() languages = languages[languages["Count"] >= 10] languages.sort_index(inplace=True) # explode = [0.1, 0.1, 0.1, 0.1, 0.0, 0.0, 0.1] explode = [0.1] * len(languages) plt.pie( languages["Count"], autopct="%1.1f%%", labels=languages.index, explode=explode, shadow=True, ) plt.show() if __name__ == "__main__": main()
3.375
3
copyfile.py
UncleEngineer/pythonbackupfile
1
12782433
import os import shutil path = r'C:\Users\<NAME>\Desktop\Work' destination = 'F:\\HERE' allfile = os.listdir(path) for f in allfile: if f[-3:] == 'txt': #print(f) source = os.path.join(path,f) dest = os.path.join(destination,f) print(source) print(dest) shutil.copy2(source,dest) print('----')
3.09375
3
genesis_blockchain_tools/crypto/backend/rubenesque.py
potehinre/genesis-blockchain-tools
0
12782434
from rubenesque.codecs.sec import encode, decode from rubenesque.signatures import ecdsa import rubenesque.curves from hashlib import sha256 from ..formatters import encode_sig, decode_sig from ...convert import int_to_hex_str from .common import point_to_hex_str, split_str_to_halves from .errors import ( UnknownPointFormatError, UnknownSignatureFormatError, UnknownPublicKeyFormatError ) backend_name = 'rubenesque' class CurveByAttrName: @property def P256(self): return rubenesque.curves.find('secp256r1') curve = CurveByAttrName() def gen_private_key(curve=curve.P256, hashfunc=sha256): priv_key = curve.private_key() return int_to_hex_str(priv_key) def get_public_key(priv_key, curve=curve.P256, hashfunc=sha256, fmt='RAW'): if fmt in ['RAW', '04']: priv_key = int(priv_key, 16) pub_key_obj = curve.generator() * priv_key return point_to_hex_str(pub_key_obj, fmt=fmt) else: raise UnknownPublicKeyFormatError("fmt: '%s'" % fmt) def gen_keypair(curve=curve.P256, hashfunc=sha256, pub_key_fmt='RAW'): priv_key = gen_private_key(curve=curve, hashfunc=hashfunc) pub_key = get_public_key(priv_key, curve=curve, hashfunc=hashfunc, fmt=pub_key_fmt) return priv_key, pub_key def sign(priv_key, data, hashfunc=sha256, curve=curve.P256, sign_fmt='DER', sign_size=32): h = hashfunc(data.encode('utf-8')).digest() r, s = ecdsa.sign(curve, int(priv_key, 16), h) if sign_fmt in ['DER', 'RAW']: return encode_sig(r, s, fmt=sign_fmt, size=sign_size).hex() else: raise UnknownSignatureFormatError("fmt: '%s'" % sign_fmt) def verify(pub_key, data, signature, hashfunc=sha256, curve=curve.P256, sign_fmt='DER', sign_size=32, pub_key_fmt='RAW'): if pub_key_fmt == 'RAW': pub_key_encoded = pub_key elif pub_key_fmt == '04': pub_key_encoded = pub_key[2:] else: raise UnknownPublicKeyFormatError("fmt: '%s'" % pub_key_fmt) x, y = split_str_to_halves(pub_key_encoded) x, y = int(x, 16), int(y, 16) pub_key_point = curve(x, y) if sign_fmt in ['DER', 'RAW']: r, s = decode_sig(bytes.fromhex(signature), fmt=sign_fmt) else: raise UnknownSignatureFormatError("fmt: '%s'" % sign_fmt) data_bytes = data.encode() h = hashfunc(data_bytes).digest() return ecdsa.verify(pub_key_point, h, r, s)
2.59375
3
tests/event/beforeafter/modules/directcalls/__init__.py
da-h/miniflask
5
12782435
<gh_stars>1-10 # note that this function does not ask for any miniflask variables (state/event/mf) def dosomething(): print("event called") def before_dosomething(): print("before_-event called") def after_dosomething(): print("after_-event called") def main(event): event.dosomething() def register(mf): mf.register_event('dosomething', dosomething, unique=False) mf.register_event('before_dosomething', before_dosomething, unique=False) mf.register_event('after_dosomething', after_dosomething, unique=False) mf.register_event('main', main, unique=False)
2.40625
2
app/wakkerdam/__init__.py
mofferthond/flask-base
0
12782436
from app.wakkerdam.views import wakkerdam
1.101563
1
user/utils.py
superior-prog/JobLand
1
12782437
from datetime import date from io import BytesIO from django.core.mail import send_mail from django.http import HttpResponse from django.template import loader from django.template.loader import get_template from xhtml2pdf import pisa from .models import * def match_skill(job_list, skill_list, preferred_job_list): recommendation_list = [] for skill in skill_list: for job in job_list: split_text = skill.skill_title.lower().split(' ') for s in split_text: index = job.requirements.lower().find(s) index1 = job.job_title.lower().find(s) if (index >= 0 or index1 >= 0) and job not in recommendation_list: recommendation_list.append(job) for preferred_job in preferred_job_list: for job in job_list: split_text = preferred_job.details.lower().split(' ') for s in split_text: index = job.requirements.lower().find(s) index1 = job.job_title.lower().find(s) if (index >= 0 or index1 >= 0) and job not in recommendation_list: recommendation_list.append(job) return recommendation_list def rateAvg(rates, length): summation = 0 if length == 0: return 0 else: for r in rates: summation = summation + r.rate if (summation / length) % 1 > 0: return summation / length else: return summation // length def increaseViewCount(user_one, user_two): if user_one.is_company: applicant = ApplicantProfileModel.objects.get(user=user_two) if applicant.totalViewCount is None: applicant.totalViewCount = 0 applicant.totalViewCount = applicant.totalViewCount + 1 applicant.save() elif user_one.is_applicant: company = CompanyProfileModel.objects.get(user=user_two) if company.totalViewCount is None: company.totalViewCount = 0 company.totalViewCount = company.totalViewCount + 1 company.save() ProfileViewDetails.objects.create( viewedBy=user_one, viewed=user_two, ) return def extractFirstName(name): first_name = name.split(' ') return first_name[0] def calculate_age(born): today = date.today() return today.year - born.year - ((today.month, today.day) < (born.month, born.day)) def add_to_employee_keyword(user, keyword): if keyword is not None: EmployeeSearchKeywordModel.objects.create( searched_by=user, searched_for=keyword, ) return def add_to_job_keyword(user, keyword): if keyword is not None: JobSearchKeywordModel.objects.create( searched_by=user, searched_for=keyword, ) return def deactivate_user(user): user.is_active = False user.save() return def render_to_pdf(template_src, context={}): template = get_template(template_src) html = template.render(context) result = BytesIO() pdf = pisa.pisaDocument(BytesIO(html.encode("ISO-8859-1")), result) if not pdf.err: return HttpResponse(result.getvalue(), content_type='application/pdf') return None def send_registration_mail(user): subject = "Welcome to JobLand" from_email = '<EMAIL>' home_link = "http://127.0.0.1:8000" about_link = "http://127.0.0.1:8000" contact_link = "http://127.0.0.1:8000" context = { "user": user, "home_link": home_link, "about_link": about_link, "contact_link": contact_link, } msg_plain = loader.render_to_string('email/registration.txt', context) msg_html = loader.render_to_string('email/registration.html', context) send_mail(subject, msg_plain, from_email, [user.email], fail_silently=True, html_message=msg_html) return
2.28125
2
sc_sample_writer.py
MasterScott/scamper
23
12782438
#!/usr/bin/env python # Program: $Id: $ # Author: <NAME> <<EMAIL>> # Description: Example use of sc_warts_writer library. # import sys import time from sc_warts_writer import WartsWriter, WartsTrace if __name__ == "__main__": assert len(sys.argv) == 2 now = time.time() w = WartsWriter(sys.argv[1]) w.write_list(1, 1, 'sc_sample_writer demo') w.write_cycle(1, 1, 1, now) tr = WartsTrace() tr.add({'listid' : 1, 'srcport' : 1234, 'dstport' : 80, 'srcaddr' : '1.2.3.4', 'dstaddr' : '5.6.7.8', 'attempts' : 2, 'tracetyp' : 2, 'probehop' : 7, 'probesent' : 5, 'firsttl' : 4, 'timeval' : now + 1}) # hopflags (SCAMPER_TRACE_HOP_FLAG_REPLY_TTL) reply = {'addr' : '4.4.4.4', 'rtt' : 23456, 'ipid' : 1234, 'probesize' : 60, 'replysize' : 54, 'probettl' : 4, 'replyttl' : 60, 'tos' : 0, 'icmp' : 4, 'hopflags' : 0x10} tr.add_reply(reply) reply = {'addr' : '6.6.6.6', 'rtt' : 834567, 'ipid' : 1234, 'probesize' : 60, 'replysize' : 54, 'probettl' : 6, 'replyttl' : 58, 'tos' : 0, 'icmp' : 4, 'hopflags' : 0x10} tr.add_reply(reply) w.write_object(tr) # finish w.write_cycle_stop(1, now+10)
2.25
2
test/test_app/models.py
revpoint/prefs-n-perms
3
12782439
<reponame>revpoint/prefs-n-perms<filename>test/test_app/models.py from django.db import models class Site(models.Model): def __unicode__(self): return u'Site {0}'.format(self.id) class Customer(models.Model): site = models.ForeignKey('Site', related_name='customers') def __unicode__(self): return u'Customer {0} - Site {1}'.format(self.id, self.site.id) class CustomerUser(models.Model): customer = models.ForeignKey('Customer', related_name='users') def __unicode__(self): return u'User {0} - Customer {1}'.format(self.id, self.customer.id)
2.234375
2
portfolio_api/serializers/project.py
tjeerddie/portfolio-backend
0
12782440
from portfolio_admin.models import Project from rest_framework import serializers class ProjectSerializer(serializers.ModelSerializer): skills = serializers.StringRelatedField(many=True) class Meta: model = Project exclude = ['id', 'created_at', 'updated_at', 'portfolio', 'private']
1.789063
2
cmsplugin_embed/migrations/0001_initial.py
glomium/cmstemplate
0
12782441
<reponame>glomium/cmstemplate # -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-23 16:14 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('cms', '0016_auto_20160608_1535'), ] operations = [ migrations.CreateModel( name='Embed', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='cmsplugin_embed_embed', serialize=False, to='cms.CMSPlugin')), ('source', models.CharField(max_length=255, null=True, verbose_name='Source')), ('allow_fullscreen', models.BooleanField(default=False, verbose_name='Allow fullscreen')), ('ratio', models.CharField(choices=[('21by9', '21:9'), ('16by9', '16:9'), ('4by3', '4:3'), ('1by1', '1:1')], default='16by9', max_length=5, verbose_name='Ratio')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), ]
1.4375
1
tests/r/test_friendship.py
hajime9652/observations
199
12782442
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.friendship import friendship def test_friendship(): """Test module friendship.py by downloading friendship.csv and testing shape of extracted data has 0 rows and 7 columns """ test_path = tempfile.mkdtemp() x_train, metadata = friendship(test_path) try: assert x_train.shape == (0, 7) except: shutil.rmtree(test_path) raise()
2.53125
3
setup.py
xdssio/zappa_client
1
12782443
<reponame>xdssio/zappa_client from setuptools import setup setup(name='zappa_client', description='A tool to call Zappa serverless function directly without AWS APIGateway', long_description="Zappa is a tool wrap the deployment of serverless applications to AWS Lambda, " "you can invoke your function with AWS APIGatway using curl easily. " "For some use cases you would like to avoid opening your function to APIGateway " "and to call your function directly. " "there are many steps implemented by zappa which makes it difficult, " "this package is a wrapper to save you that pain.", version='0.0.1', url='https://github.com/xdssio/zappa_client', author='<NAME>', author_email='<EMAIL>', license='MIT License', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], install_requires=[ 'boto3>=1.7.21' ], )
1.476563
1
main_cpu.py
vietbt/ViTextnormASR
0
12782444
<reponame>vietbt/ViTextnormASR from utils.data import Data from network.trainer import train if __name__=="__main__": config = "configs/config.norm.cpu.json" mbert = "configs/config.mbert.json" vibert = "configs/config.vibert.json" velectra = "configs/config.velectra.json" # for fold_id in range(5): # config = f"configs/config.norm.fold_{fold_id}.json" # data = Data.from_config(config, velectra) # train(config, velectra, "nojoint", biaffine=False) train(config, velectra, "norm_to_punc", n_blocks=4, n_tokens=50, biaffine=False) train(config, velectra, "punc_to_norm", n_blocks=4, n_tokens=50) train(config, velectra, "norm_to_punc", n_tokens=50) train(config, velectra, "punc_to_norm", n_tokens=50) train(config, velectra, "norm_to_punc") train(config, velectra, "punc_to_norm")
2.234375
2
cerebstats/stat_scores/chi2GOFScore.py
HarshKhilawala/cerebstats
0
12782445
# ============================================================================ # ~/cerebstats/cerebstats/stat_scores/chi2GOFScore.py # # This py-file contains custum score functions initiated by # # from cerebstats import scoreScores # from cerebstats.scoreScores import ABCScore # ============================================================================ import numpy as np from scipy.stats import chisquare import sciunit # ==============================Chi2GOFScore================================== class Chi2GOFScore(sciunit.Score): """ Compute chi2-statistic for chi-squared goodness-of-fit Test of proportions. One may think of this as a **one-way contingency table.** +--------------+-------------------------------------------------------------+ | sample size | :math:`k` categories of a categorial variable of interest | + +--------------+--------------+----------------+--------------+ | :math:`n` | :math:`x_1` | :math:`x_2` | :math:`\\ldots` | :math:`x_k` | +==============+==============+==============+================+==============+ | observations | :math:`O_1` | :math:`O_2` | :math:`\\ldots` | :math:`O_k` | +--------------+--------------+--------------+----------------+--------------+ | probabilities| :math:`p_1` | :math:`p_2` | :math:`\\ldots` | :math:`p_k` | +--------------+--------------+--------------+----------------+--------------+ | expected | :math:`np_1` | :math:`np_2` | :math:`\\ldots` | :math:`np_k` | +--------------+--------------+--------------+----------------+--------------+ Notice that for probabilities of *k* categories :math:`\\sum_{\\forall i} p_i = 1`. The expected counts for each category can be derived from it (or already given) such that :math:`\\sum_{\\forall i} np_i = n`. .. table:: Title here ==================== ============================================================================== Definitions Interpretation ==================== ============================================================================== :math:`n` sample size; total number of experiments done :math:`k` number of categorical variables :math:`O_i` observed count (frequency) for :math:`i^{th}` variable :math:`p_i` probability for :math:`i^{th}` category such that :math:`\\sum_{\\forall i} p_i = 1` :math:`E_i` expected count for :math:`i^{th}` category such that :math:`E_i = n p_i` test-statistic :math:`\\chi^2 = \\sum_{\\forall i} \\frac{(O_i - E_i)^2}{E_i}` :math:`df` degrees of freedom, :math:`df = k-1` ==================== ============================================================================== *Note* the modification made when compared with a two-way :math:`\\chi^2` test is - the calculation of expected counts :math:`E_i = n p_i` - the degree of freedom :math:`df = k-1` This class uses `scipy.stats.chisquare <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html>`_. **Use Case:** :: x = Chi2GOFScoreForProportionChi2GOFTest.compute( observation, prediction ) score = Chi2GOFScoreForProportionChi2GOFTest(x) *Note*: As part of the `SciUnit <http://scidash.github.io/sciunit.html>`_ framework this custom :py:class:`.TScore` should have the following methods, * :py:meth:`.compute` (class method) * :py:meth:`.sort_key` (property) * :py:meth:`.__str__` """ #_allowed_types = (float,) _description = ( "ZScoreForSignTest gives the z-statistic applied to medians. " + "The experimental data (observation) is taken as the sample. " + "The sample statistic is 'median' or computed median form 'raw_data'. " + "The null-value is the 'some' specified value whic is taken to be the predicted value generated from running the model. " ) @classmethod def compute(cls, observation, prediction): """ +---------------------+-----------------------------------------------------------------------+ | Argument | Value type | +=====================+=======================================================================+ | first argument |dictionary; observation/experimental data must have keys "sample_size" | | |with a number as its value and "observed_freq" whose value is an array | +---------------------+-----------------------------------------------------------------------+ | second argument |dictionary; model prediction must have either "probabilities" or | | |"expected" whose value is an array (same length as "observed_freq") | +---------------------+-----------------------------------------------------------------------+ *Note:* * chi squared tests (for goodness-of-fit or contingency table) by nature are two-sided so there is not option for one-sidedness. """ name = "chi2_goodness_of_fit_test_for_proportions" if "probabilities" in prediction: probabilities = np.array( prediction["probabilities"] ) expected_counts = observation["sample_size"] * probabilities elif "expected" in prediction: expected_counts = np.array( prediction["expected"] ) probabilities = expected_counts / observation["sample_size"] # k_categories = expected_counts.size score, pvalue = chisquare( observation["observed_freq"], f_exp = expected_counts ) #return self.score # chi2_statistic return {"name": name, "sample_statistic": probabilities, "expected_values": expected_counts, "test_statistic": score, "df": k_categories-1, "p_value": pvalue} @property def sort_key(self): return self.score def __str__(self): return "ChiSqGOFScore is " + str(self.score) # ============================================================================
2.28125
2
admin/management/commands/migrate.py
adelsonllima/djangoplus
21
12782446
<reponame>adelsonllima/djangoplus # -*- coding: utf-8 -*- from django.core.management.commands import migrate from djangoplus.admin.management import sync_permissions class Command(migrate.Command): def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument('--ignore_sync_permissions', action='store_true', dest='ignore_sync_permissions') def handle(self, *args, **options): super(Command, self).handle(*args, **options) if not options.get('ignore_sync_permissions'): sync_permissions()
1.929688
2
w2b/fft.py
adamd1008/wav2bmp
1
12782447
<filename>w2b/fft.py<gh_stars>1-10 # MIT License # # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np from numpy.fft import rfft, irfft from . import util ################################################################################ def get_fft_stats(n, size, overlapDec): """Calculate the stats needed to iteratively compute the FFT over a set of wave samples with a given length, size and overlap. """ if n < size: raise ValueError("`n' cannot be less than size") if (overlapDec >= 1.0) or (overlapDec < 0.0): raise ValueError("Overlap must be LT 1.0, GE 0.0") elif overlapDec != 0.0: overlapLog2 = np.log2(1.0 / (1.0 - overlapDec)) if int(overlapLog2) != overlapLog2: raise ValueError("Overlap must be 1 / (2^n)") if size < 2: raise ValueError("Size must be GE 2") sizeLog2 = np.log2(size) if int(sizeLog2) != sizeLog2: raise ValueError("Size must be 2^n") sizeOverlap = size * overlapDec if int(sizeOverlap) != sizeOverlap: raise ValueError("Size is not wholly divisible by overlap") # So, start the spectrogram with size * overlapDec's worth of samples not # in the FFT (4 zeros 50%, 6 zeroes 75%, 7 zeroes 87.5%, etc.) overlap = int(size * overlapDec) step = size - overlap if int(step) != step: raise ValueError("`overlapDec' must produce whole step") nDivStep = int(n / step) nModStep = int(n % step) sizeDivStep = int(size / step) # Left iterations is going to be one less than the number of times that # step goes into size leftPadIters = sizeDivStep - 1 start = -(leftPadIters * step) # Right iterations is a little harder; we need to check how many samples are # left over when dividing all samples by step (not size, right?) iters = nDivStep + leftPadIters if nModStep > 0: iters += 1 # Debug prints #print("n =", n) #print("size =", size) #print("overlapDec =", overlapDec) #print("overlap =", overlap) #print("step =", step) #print("leftPadIters =", leftPadIters) #print("start =", start) #print("iters =", iters) #print() #iterString = "" #iterStringFirst = True #count = 0 #for i in range(start, n, step): # if iterStringFirst: # iterStringFirst = False # else: # iterString += ", " # iterString += str(i) + " to " + str(i + size) # count += 1 #print(str(count) + " iters: ", iterString) #print() return start, step, iters ################################################################################ def wav2bmp(fs, wav, size=1024, overlapDec=0.0, window=np.hanning): """Transform wave samples into a spectrogram image. Warning: using a window in the bmp2wav flow (when recomputing the complex FFT result for resynthesis with the mask image) will result in a very badly scaled result! See tests/test_bmp2wav.py. """ if wav.ndim != 1: raise ValueError("Expected 1-dim array") l = wav.shape[0] fftLen = int(size / 2) + 1 if callable(window): wnd = window(size) elif type(window) == np.ndarray: if window.ndim != 1: raise ValueError("Expected `window' to be a 1-dim array") elif window.shape[0] != size: raise ValueError("Expected `window' to be `size/2+1'") else: wnd = window elif window == None: wnd = None else: raise ValueError("Expected `window' to be a function or NumPy array") start, step, iters = get_fft_stats(l, size, overlapDec) c = 0 ab = np.zeros((fftLen, iters), dtype="float32") an = np.zeros((fftLen, iters), dtype="float32") x = np.zeros((fftLen, iters), dtype=complex) buf = np.ndarray(size, dtype="float32") for i in range(start, l, step): # Do stuff if i < 0: bufStart = size - (size + i) bufEnd = size wavEnd = i + size #print("[<] i =", i, "\tbuf: 0 to", bufStart, "to", bufEnd, \ # "\twav: 0 to", wavEnd, "|", wavEnd) buf[0:bufStart] = 0.0 buf[bufStart:bufEnd] = wav[0:wavEnd] elif (i + size) >= l: bufEnd = l - i wavStart = i #print("[>] i =", i, "\tbuf: 0 to", bufEnd, "to", size, \ # "\twav:", wavStart, "to", l, "|", (l - wavStart)) buf[0:bufEnd] = wav[wavStart:l] buf[bufEnd:size] = 0.0 else: wavStart = i wavEnd = wavStart + size #print("[=] i =", i, "\tbuf: 0 to", size, \ # "\t\twav:", wavStart, "to", wavEnd, \ # "|", (wavEnd - wavStart)) buf[:] = wav[wavStart:wavEnd] if type(wnd) != type(None): buf *= wnd X = rfft(buf) absNorm = np.abs(X) / size ab[:, c] = absNorm an[:, c] = util.angle(X) x[:, c] = X c += 1 assert c == iters return ab, an, x ################################################################################ def bmp2wav(fs, l, x, mask, size, overlapDec): """Apply a filter mask to a spectrogram image and transform it back to wave samples. This function cheats by first performing wav2bmp again and applying the filter mask onto the resultant complex FFT data, before then converting that image into wave samples. This removes the need to convert the amplitude and angle BMPs back into complex numbers for the filter mask scaling. """ assert x.ndim == 2 assert x.ndim == mask.ndim assert x.shape == mask.shape assert x.dtype == complex assert mask.dtype == "float32" start, step, iters = get_fft_stats(l, size, overlapDec) fftI = 0 wavI = start out = np.zeros(l, dtype="float32") mult = size / step while wavI < l: buf = irfft(x[:, fftI] * mask[:, fftI]) if wavI < 0: bufStart = size - (size + wavI) bufEnd = size wavEnd = wavI + size #print("[<] wavI =", wavI, "\tout: 0 to", wavEnd, \ # "\tbuf:", bufStart, "to", bufEnd, "|", wavEnd) out[0:wavEnd] += buf[bufStart:bufEnd] / mult elif (wavI + size) >= l: bufEnd = l - wavI wavStart = wavI #print("[>] wavI =", wavI, "\tout:", wavStart, "to", l, \ # "\tbuf: 0 to", bufEnd, "|", (l - wavStart)) out[wavStart:l] += buf[0:bufEnd] / mult else: wavStart = wavI wavEnd = wavStart + size #print("[=] wavI =", wavI, "\tout:", wavStart, "to", wavEnd, \ # "\t\tbuf: 0 to", buf.shape[0], "|", (wavEnd - wavStart)) out[wavStart:wavEnd] += buf[:] / mult fftI += 1 wavI += step assert fftI == iters return out
1.882813
2
ege_date.py
rlowrance/re-local-linear
0
12782448
<reponame>rlowrance/re-local-linear '''create files contains estimated generalization errors for model sys.argv: year month day The sale_date of the models. Uses data up to the day before the sale date Files created: year-month-day-MODEL-SCOPE-T[-MODELPARAMS].foldResult where: MODEL is one of the models {ols, lasso, ridge, rf, xt} SCOPE is one of {global,zDDDDD} (global or zip-code specific) T is the number of days in the training period MODELPARAMS depends on the model and may be empty ''' import collections import cPickle as pickle import datetime import numpy as np import pandas as pd import pdb from pprint import pprint from sklearn import cross_validation from sklearn import linear_model from sklearn import ensemble import sys import warnings from Bunch import Bunch from directory import directory from Logger import Logger def usage(): print 'usage: python ege-date.py yyyy-mm-dd' sys.exit(1) def make_control(argv): 'Return control Bunch''' script_name = argv[0] base_name = script_name.split('.')[0] random_seed = 123 now = datetime.datetime.now() log_file_name = base_name + '.' + now.isoformat('T') + '.log' if len(argv) < 2: print 'missing date argument' usage() if len(argv) > 2: print 'extra args' usage() year, month, day = argv[1].split('-') sale_date = datetime.date(int(year), int(month), int(day)) # prior work found that the assessment was not useful # just the census and tax roll features # predictors with transformation to log domain predictors = { # the columns in the x_arrays are in this order 'fraction.owner.occupied': None, 'FIREPLACE.NUMBER': 'log1p', 'BEDROOMS': 'log1p', 'BASEMENT.SQUARE.FEET': 'log1p', 'LAND.SQUARE.FOOTAGE': 'log', 'zip5.has.industry': None, 'census.tract.has.industry': None, 'census.tract.has.park': None, 'STORIES.NUMBER': 'log1p', 'census.tract.has.school': None, 'TOTAL.BATHS.CALCULATED': 'log1p', 'median.household.income': 'log', # not log feature in earlier version 'LIVING.SQUARE.FEET': 'log', 'has.pool': None, 'zip5.has.retail': None, 'census.tract.has.retail': None, 'is.new.construction': None, 'avg.commute': None, 'zip5.has.park': None, 'PARKING.SPACES': 'log1p', 'zip5.has.school': None, 'TOTAL.ROOMS': 'log1p', 'age': None, 'age2': None, 'effective.age': None, 'effective.age2': None} debug = False b = Bunch( path_in=directory('working') + 'transactions-subset2.pickle', path_log=directory('log') + log_file_name, path_out=directory('working') + base_name + '-%s' % sale_date + '.pickle', arg_date=sale_date, random_seed=random_seed, sale_date=sale_date, models={'rf': Rf(), 'ols': Ols()} if not debug else {'rf': Rf()}, scopes=['global', 'zip'], training_days=(7, 366) if debug else range(7, 366, 7), n_folds=10, predictors=predictors, price_column='SALE.AMOUNT', debug=debug) return b def x(mode, df, control): '''return 2D np.array, with df x values possibly transformed to log RETURNS array: np.array 2D ''' def transform(v, mode, transformation): if mode is None: return v if mode == 'linear': return v if mode == 'log': if transformation is None: return v if transformation == 'log': return np.log(v) if transformation == 'log1p': return np.log1p(v) raise RuntimeError('bad transformation: ' + str(transformation)) raise RuntimeError('bad mode:' + str(mode)) array = np.empty(shape=(df.shape[0], len(control.predictors)), dtype=np.float64).T # build up in transposed form index = 0 for predictor_name, transformation in control.predictors.iteritems(): v = transform(df[predictor_name].values, mode, transformation) array[index] = v index += 1 return array.T def y(mode, df, control): '''return np.array 1D with transformed price column from df''' df2 = df.copy(deep=True) if mode == 'log': df2[control.price_column] = \ pd.Series(np.log(df[control.price_column]), index=df.index) array = np.array(df2[control.price_column].as_matrix(), np.float64) return array def demode(v, mode): 'convert log domain to normal' if v is None: return None result = np.exp(v) if mode == 'log' else v return result def errors(model_result): 'return median_absolute_error and median_relative_absolute_error' pprint(model_result) actuals = model_result['actuals'] estimates = model_result['estimates'] abs_error = np.abs(actuals - estimates) median_abs_error = np.median(abs_error) rel_abs_error = abs_error / actuals median_rel_abs_error = np.median(rel_abs_error) return median_abs_error, median_rel_abs_error class ReportOls(object): 'report generation with y_mode and x_mode in key' # NOTE: perhaps reusable for any model with y and x modes def __init__(self): self.format_global_fold = '%10s %2d %3s %6s %3s %3s f%d %6.0f %3.2f' self.format_zip_fold = '%10s %2d %3s %6d %3s %3s f%d %6.0f %3.2f' self.format_global = '%10s %2d %3s %6s %3s %3s median %6.0f %3.2f' self.format_zip = '%10s %2d %3s %6d %3s %3s median %6.0f %3.2f' def global_fold_line(self, key, result): fold_number, sale_date, training_days, model_name, scope = key assert(scope == 'global') for result_key, result_value in result.iteritems(): y_mode = result_key[1][:3] x_mode = result_key[3][:3] median_abs_error, median_rel_abs_error = errors(result_value) line = self.format_global_fold % (sale_date, training_days, model_name, scope, y_mode, x_mode, fold_number, median_abs_error, median_rel_abs_error) return line def zip_fold_line(self, key, result): fold_number, sale_date, training_days, model_name, scope = key assert(isinstance(scope, tuple)) assert(scope[0] == 'zip') zip_code = scope[1] for result_key, result_value in result.iteritems(): y_mode = result_key[1][:3] x_mode = result_key[3][:3] median_abs_error, median_rel_abs_error = errors(result_value) line = self.format_zip_fold % (sale_date, training_days, model_name, zip_code, y_mode, x_mode, fold_number, median_abs_error, median_rel_abs_error) return line def summarize_global(self, sale_date, training_days, model_name, all_results, control): scope = 'global' for y_mode in ('log', 'linear'): y_mode_print = y_mode[:3] for x_mode in ('log', 'linear'): x_mode_print = x_mode[:3] median_errors = np.zeros(control.n_folds, dtype=np.float64) median_rel_errors = np.zeros(control.n_folds, dtype=np.float64) for fold_number in xrange(control.n_folds): # determine errors in the fold key = (fold_number, sale_date, training_days, model_name, scope) if key not in all_results: print 'key', key print 'not in result' continue result = all_results[key] model_result = result[('y_mode', y_mode, 'x_mode', x_mode)] median_abs_error, median_rel_abs_error = errors(model_result) fold_line = self.format_global_fold % (sale_date, training_days, model_name, scope, y_mode_print, x_mode_print, fold_number, median_abs_error, median_rel_abs_error) print fold_line median_errors[fold_number] = median_abs_error median_rel_errors[fold_number] = median_rel_abs_error all_folds_line = self.format_global % (sale_date, training_days, model_name, scope, y_mode_print, x_mode_print, np.median(median_errors), np.median(median_rel_errors)) print all_folds_line def summarize_zip(self, sale_date, training_days, model_name, all_results, control): def list_median(lst): assert(len(lst) > 0) return np.median(np.array(lst, dtype=np.float64)) def report_zip_code(zip_code, keys): for y_mode in ('log', 'linear'): y_mode_print = y_mode[:3] for x_mode in ('log', 'linear'): x_mode_print = x_mode[:3] mode_key = ('y_mode', y_mode, 'x_mode', x_mode) median_abs_errors = [] median_rel_abs_errors = [] for key in keys: model_result = all_results[key][mode_key] median_abs_error, median_rel_abs_error = errors(model_result) fold_line = self.format_zip_fold % (sale_date, training_days, model_name, zip_code, y_mode_print, x_mode_print, key[0], # fold number median_abs_error, median_rel_abs_error) print fold_line median_abs_errors.append(median_abs_error) median_rel_abs_errors.append(median_rel_abs_error) all_folds_line = self.format_zip % (sale_date, training_days, model_name, zip_code, y_mode_print, x_mode_print, list_median(median_abs_errors), list_median(median_rel_abs_errors)) print all_folds_line # determine all zip codes in the specified lines zip_codes = collections.defaultdict(set) for key in all_results.keys(): key_fold_number, key_sale_date, key_training_days, key_model_name, key_scope = key if key_scope == 'global': # examine only zip code scopes continue if key_sale_date == sale_date and key_training_days == training_days and key_model_name == model_name: key_zip_code = key_scope[1] zip_codes[key_zip_code].add(key) # process each zip code for zip_code, keys in zip_codes.iteritems(): report_zip_code(zip_code, keys) def summarize(self, sale_date, training_days, model_name, all_results, control): self.summarize_global(sale_date, training_days, model_name, all_results, control) self.summarize_zip(sale_date, training_days, model_name, all_results, control) class Ols(object): 'Ordinary least squares via sklearn' def __init__(self): self.Model_Constructor = linear_model.LinearRegression def reporter(self): return ReportOls def run(self, train, test, control): '''fit on training data and test ARGS train : dataframe test : dataframe control: Bunch RETURN dict of values dict key = (x_mode, y_mode) values = dict with keys 'actuals', 'estimates', 'fitted', x_names ''' # implement variants verbose = False def variant(x_mode, y_mode): train_x = x(x_mode, train, control) test_x = x(x_mode, test, control) train_y = y(y_mode, train, control) model = self.Model_Constructor(fit_intercept=True, normalize=True, copy_X=True) fitted_model = model.fit(train_x, train_y) # if the model cannot be fitted, LinearRegressor returns # the mean of the train_y values estimates = fitted_model.predict(test_x) value = { 'coef': fitted_model.coef_, 'intercept_': fitted_model.intercept_, 'estimates': demode(estimates, y_mode), 'actuals': y('linear', test, control) } # check results if verbose: print 'x_mode, y_mode: ', x_mode, y_mode print 'actuals: ', value['actuals'] print 'estimates: ', value['estimates'] return value all_variants = {} for x_mode in ('log', 'linear'): for y_mode in ('log', 'linear'): variant_value = variant(x_mode, y_mode) key = ('y_mode', y_mode, 'x_mode', x_mode) all_variants[key] = variant_value return all_variants class ReportRf(object): 'report generation w no variants (for now' def __init__(self): 'sale_date days model global fold error abs_error' self.format_global_fold = '%10s %2d %3s %6s f%d %6.0f %3.2f' self.format_zip_fold = '%10s %2d %3s %6d f%d %6.0f %3.2f' self.format_global = '%10s %2d %3s %6s median %6.0f %3.2f' self.format_zip = '%10s %2d %3s %6d median %6.0f %3.2f' def global_fold_line(self, key, result): fold_number, sale_date, training_days, model_name, scope = key assert(scope == 'global') median_abs_error, median_rel_abs_error = errors(result) line = self.format_global_fold % (sale_date, training_days, model_name, scope, fold_number, median_abs_error, median_rel_abs_error) return line def zip_fold_line(self, key, result): fold_number, sale_date, training_days, model_name, scope = key assert(isinstance(scope, tuple)) assert(scope[0] == 'zip') zip_code = scope[1] median_abs_error, median_rel_abs_error = errors(result) line = self.format_global_fold % (sale_date, training_days, model_name, zip_code, fold_number, median_abs_error, median_rel_abs_error) return line def summarize_global(self, sale_date, training_days, model_name, all_results, control): scope = 'global' median_errors = np.zeros(control.n_folds, dtype=np.float64) median_rel_errors = np.zeros(control.n_folds, dtype=np.float64) for fold_number in xrange(control.n_folds): key = (fold_number, sale_date, training_days, model_name, scope) if key not in all_results: # can happen when a model could not be fit print 'model_result missing key', key continue model_result = all_results[key] if len(model_result['actuals']) == 0: continue median_abs_error, median_rel_abs_error = errors(model_result) fold_line = self.format_global_fold % (sale_date, training_days, model_name, scope, fold_number, median_abs_error, median_rel_abs_error) print fold_line median_errors[fold_number] = median_abs_error median_rel_errors[fold_number] = median_rel_abs_error all_folds_line = self.format_global % (sale_date, training_days, model_name, scope, np.median(median_errors), np.median(median_rel_errors)) print all_folds_line def summarize_zip(self, sale_date, training_days, model_name, all_results, control): def list_median(lst): assert(len(lst) > 0) return np.median(np.array(lst, dtype=np.float64)) def report_zip_code(zip_code, keys): median_abs_errors = [] median_rel_abs_errors = [] for key in keys: model_result = all_results[key] median_abs_error, median_rel_abs_error = errors(model_result) fold_line = self.format_zip_fold % (sale_date, training_days, model_name, zip_code, key[0], # fold number median_abs_error, median_rel_abs_error) print fold_line median_abs_errors.append(median_abs_error) median_rel_abs_errors.append(median_rel_abs_error) all_folds_line = self.format_zip % (sale_date, training_days, model_name, zip_code, list_median(median_abs_errors), list_median(median_rel_abs_errors)) print all_folds_line # determine all zip codes in the specified lines zip_codes = collections.defaultdict(set) for key in all_results.keys(): key_fold_number, key_sale_date, key_training_days, key_model_name, key_scope = key if key_scope == 'global': # examine only zip code scopes continue if key_sale_date == sale_date and key_training_days == training_days and key_model_name == model_name: key_zip_code = key_scope[1] zip_codes[key_zip_code].add(key) # process each zip code for zip_code, keys in zip_codes.iteritems(): report_zip_code(zip_code, keys) def summarize(self, sale_date, training_days, model_name, all_results, control): self.summarize_global(sale_date, training_days, model_name, all_results, control) self.summarize_zip(sale_date, training_days, model_name, all_results, control) class Rf(object): 'Random forests via sklearn' def __init__(self): self.Model_Constructor = ensemble.RandomForestRegressor def reporter(self): return ReportRf def run(self, train, test, control): '''fit on train, test on test, return dict of variants The variants are defined by the number of trees in the forest RETURN dict with key = variant_description ''' verbose = False def variant(n_trees): train_x = x(None, train, control) # no transformation test_x = x(None, test, control) train_y = y(None, train, control) model = self.Model_Constructor(n_estimators=n_trees, random_state=control.random_seed) fitted_model = model.fit(train_x, train_y) estimates = fitted_model.predict(test_x) # return selected fitted results result = { 'feature_importances': fitted_model.feature_importances_, 'estimates': estimates, 'actuals': y('None', test, control)} if verbose: for k, v in result.iteritems(): print k, v return result all_variants = {} for n_trees in (10, 100, 300, 1000): variant_value = variant(n_trees) key = ('n_trees', n_trees) all_variants[key] = variant_value return all_variants def within(sale_date, training_days, df): 'return indices of samples up to training_days before the sale_date' assert(training_days > 0) # one training day means use samples on the sale date only first_ok_sale_date = sale_date - datetime.timedelta(training_days - 1) date_column = 'sale.python_date' after = df[date_column] >= first_ok_sale_date before = df[date_column] <= sale_date ok_indices = np.logical_and(after, before) return ok_indices def on_sale_date(sale_date, df): '''return indices of sample on the sale date''' date_column = 'sale.python_date' result = df[date_column] == sale_date return result def add_age(df, sale_date): 'Return new df with extra columns for age and effective age' column_names = df.columns.tolist() if 'age' in column_names: print column_names print 'age in column_names' pdb.set_trace() assert('age' not in column_names) assert('age2' not in column_names) assert('effective.age' not in column_names) assert('effective.age2' not in column_names) sale_year = df['sale.year'] def age(column_name): 'age from sale_date to specified column' age_in_years = sale_year - df[column_name].values return pd.Series(age_in_years, index=df.index) result = df.copy(deep=True) result['age'] = age('YEAR.BUILT') result['effective.age'] = age('EFFECTIVE.YEAR.BUILT') result['age2'] = result['age'] * result['age'] result['effective.age2'] = result['effective.age'] * result['effective.age'] return result def unique_zip_codes(df): 'yield each unique zip code in the dataframe' unique_zip_codes = df['zip5'].unique() for i in xrange(len(unique_zip_codes)): yield unique_zip_codes[i] def zip_codes(df, a_zip_code): 'return new dataframe containing just the specified zip code' df_copy = df.copy(deep=True) result = df_copy[df_copy['zip5'] == a_zip_code] return result def make_train_model(df, sale_date, training_days): 'return df of transactions no more than training_days before the sale_date' just_before_sale_date = within(sale_date, training_days, df) train_model = add_age(df[just_before_sale_date], sale_date) return train_model def make_test_model(df, sale_date): 'return df of transactions on the sale_date' selected_indices = on_sale_date(sale_date, df) test_model = add_age(df[selected_indices], sale_date) return test_model def determine_most_popular_zip_code(df, control): 'return the zip_code that occurs most ofen in the dataframe' zip_code_counter = collections.Counter() for _, zip_code in df.zip5.iteritems(): zip_code_counter[zip_code] += 1 most_common_zip_code, count = zip_code_counter.most_common(1)[0] print 'most common zip_code', most_common_zip_code, 'occurs', count # assert: the most common zip code is in each fold fold_number = -1 folds_for_zip_code = collections.defaultdict(set) kf = cross_validation.KFold(n=(len(df)), n_folds=control.n_folds, shuffle=True, random_state=control.random_seed) for train_indices, test_indices in kf: fold_number += 1 train = df.iloc[train_indices].copy(deep=True) test = df.iloc[test_indices].copy(deep=True) if most_common_zip_code not in test.zip5.values: print most_common_zip_code, 'not in', fold_number for zip_code in unique_zip_codes(test): assert(zip_code in test.zip5.values) if zip_code not in train.zip5.values: print 'fold %d zip_code %d in test and not train' % ( fold_number, zip_code) folds_for_zip_code[zip_code].add(fold_number) assert(len(folds_for_zip_code[most_common_zip_code]) == 10) # print zip_code not in each test set count_in_10 = 0 count_not_in_10 = 0 for zip_code, set_folds in folds_for_zip_code.iteritems(): if len(set_folds) != 10: print 'zip_code %d in only %d folds' % (zip_code, len(set_folds)) count_not_in_10 += 1 else: count_in_10 += 1 print 'all other zip codes are in 10 folds' print 'in 10: %d not in 10: %d' % (count_in_10, count_not_in_10) print 'NOTE: all this analysis is before training samples are selected' return most_common_zip_code def read_training_data(control): 'return dataframe' def squeeze(result, verbose=False): 'replace float64 with float32' def is_np_array_float64(x): return isinstance(x, np.ndarray) and x.dtype == np.float64 def is_np_scalar_float64(x): return isinstance(x, np.float64) if verbose: pprint(result) assert(isinstance(result, dict)) new_result = {} for k, v in result.iteritems(): if isinstance(k, str): # rf result if is_np_array_float64(v): # e.g., actual, estimate, other info in a vector new_result[k] = np.array(v, dtype=np.float32) else: print k, v raise RuntimeError('unexpected') elif isinstance(k, tuple): # ols result new_ols_result = {} for ols_key, ols_value in v.iteritems(): if is_np_array_float64(ols_value): new_ols_result[ols_key] = np.array(ols_value, dtype=np.float32) elif is_np_scalar_float64(ols_value): new_ols_result[ols_key] = np.float32(ols_value) else: print ols_key, ols_value raise RuntimeError('unexpected') new_result[k] = new_ols_result else: # unexpected print k, v raise RuntimeError('unexpected') if verbose: pprint(new_result) return new_result def fit_and_test_models(df, control): '''Return all_results dict and list of feature names all_results has results for each fold, sale date, training period model, scope ''' verbose = False all_results = {} fold_number = -1 on_sale_date = df['sale.python_date'] == control.sale_date num_test_samples = sum(on_sale_date) print 'sale_date %s has %d samples' % (control.sale_date, num_test_samples) assert num_test_samples >= control.n_folds, 'unable to form folds' skf = cross_validation.StratifiedKFold(on_sale_date, control.n_folds) for train_indices, test_indices in skf: fold_number += 1 # don't create views (just to be careful) train = df.iloc[train_indices].copy(deep=True) test = df.iloc[test_indices].copy(deep=True) for training_days in control.training_days: train_model = make_train_model(train, control.sale_date, training_days) if len(train_model) == 0: print 'no training data fold %d sale_date %s training_days %d' % ( fold_number, control.sale_date, training_days) sys.exit(1) test_model = make_test_model(test, control.sale_date) if len(test_model) == 0: print 'no testing data fold %d sale_date %s training_days %d' % ( fold_number, control.sale_date, training_days) continue for model_name, model in control.models.iteritems(): print fold_number, control.sale_date, training_days, model_name def make_key(scope): return (fold_number, control.sale_date, training_days, model_name, scope) # determine global results (for all areas) if len(test_model) == 0 or len(train_model) == 0: print 'skipping global zero length', len(test_model), len(train_model) else: global_result = model.run(train=train_model, test=test_model, control=control) key = make_key(scope='global') all_results[key] = squeeze(global_result) report = model.reporter()() # instantiate report class if verbose: print report.global_fold_line(key, global_result) # determine results for each zip code in test data for zip_code in unique_zip_codes(test_model): train_model_zip = zip_codes(train_model, zip_code) test_model_zip = zip_codes(test_model, zip_code) if len(train_model_zip) == 0 or len(test_model_zip) == 0: print 'skipping zip zero length', zip_code, len(test_model_zip), len(train_model_zip) else: zip_code_result = model.run(train=train_model_zip, test=test_model_zip, control=control) key = make_key(scope=('zip', zip_code)) all_results[key] = squeeze(zip_code_result) if verbose: print report.zip_fold_line(key, zip_code_result) print 'num test samples across all folds:', num_test_samples return all_results def print_results(all_results, control): for training_days in control.training_days: for model_name, model in control.models.iteritems(): report = model.reporter()() # how to print is in the model result report.summarize(control.sale_date, training_days, model_name, all_results, control) def main(argv): warnings.filterwarnings('error') # convert warnings to errors control = make_control(argv) sys.stdout = Logger(logfile_path=control.path_log) # print also write to log file print control # read input f = open(control.path_in, 'rb') df_loaded = pickle.load(f) f.close() df_loaded_copy = df_loaded.copy(deep=True) # used for debugging if False: most_popular_zip_code = determine_most_popular_zip_code(df_loaded.copy(), control) print most_popular_zip_code all_results = fit_and_test_models(df_loaded, control) assert(df_loaded.equals(df_loaded_copy)) if False: print_results(all_results, control) # write result print 'writing results to', control.path_out result = {'control': control, # control.predictors orders the x values 'all_results': all_results} f = open(control.path_out, 'wb') pickle.dump(result, f) print 'ok' if __name__ == "__main__": if False: # quite pyflakes warnings pdb.set_trace() pprint(None) np.all() pd.Series() main(sys.argv)
2.15625
2
plugins/share_post/__init__.py
mohnjahoney/website_source
13
12782449
from .share_post import * # noqa
1.046875
1
generators/generate_interactions_personalize_offers.py
ajayfenix/retail-demo-store
0
12782450
""" A simple script for generating sample data for learning to give personalised offers. """ import json import pandas as pd import numpy as np import gzip import random import logging GENERATE_INBALANCED_DATA = False NUM_INTERACTIONS_PER_USER = 3 FIRST_TIMESTAMP = 1591803782 # 2020-06-10, 18:43:02 LAST_TIMESTAMP = 1599579782 # 2020-09-08, 18:43:02 RANDOM_SEED = 1 IN_PRODUCTS_FILENAME = "src/products/src/products-service/data/products.yaml" IN_USERS_FILENAME = "src/users/src/users-service/data/users.json.gz" IN_OFFERS_FILENAME = "src/offers/src/offers-service/data/offers.json" # Where to put the generated data so that it is picked up by stage.sh GENERATED_DATA_ROOT = "src/aws-lambda/personalize-pre-create-resources/data" def generate_data(interactions_filename, users_df, offers_df): """Script for writing to a file simulated user-offer interactions""" random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) num_users = users_df.shape[0] num_interactions = NUM_INTERACTIONS_PER_USER * num_users if GENERATE_INBALANCED_DATA: # We may wish to assume probability is proportional to ID to show off how we can add # business logic around Personalize offer_probs = offers_df.id.values.astype(float) else: # Or we can work around inbalance at the data munging stage offer_probs = np.ones(len(offers_df.id.values), dtype=float) # Normalise so that we have probabilities offer_probs = offer_probs / offer_probs.sum() # generate timestamps time_between_events = (LAST_TIMESTAMP - FIRST_TIMESTAMP) / num_interactions timestamps = np.arange(FIRST_TIMESTAMP, LAST_TIMESTAMP, time_between_events).astype(int) # pre-shuffle them as we will be using them as a randomising key when we sort by timestamp np.random.shuffle(timestamps) # generate all users Ids sample_user_ids = np.tile(users_df['id'].values.astype(int), NUM_INTERACTIONS_PER_USER) # only one event type event_type = ['OfferConverted'] * num_interactions # we sort it to ensure there is a correlation between user ID and offer ID. # This correlation is what the personalisation will learn. sampled_offers = sorted(np.random.choice(offers_df.id.values, num_interactions, p=offer_probs)) interactions_df = pd.DataFrame({'ITEM_ID': sampled_offers, 'USER_ID': sample_user_ids, 'EVENT_TYPE': event_type, 'TIMESTAMP': timestamps}) # by sorting by timestamp, other elements get shuffled interactions_df = interactions_df.sort_values('TIMESTAMP') with open(interactions_filename, 'w') as outfile: interactions_df.to_csv(outfile, index=False) globals().update(locals()) # This can be used for inspecting in console after script ran or if run with ipython. print('Generation script finished - created offers dataset') if __name__ == '__main__': # User info is stored in the repository - it was automatically generated with gzip.open(IN_USERS_FILENAME, 'r') as f: users = json.load(f) users_df = pd.DataFrame(users) # Offers info is stored in repository with open(IN_OFFERS_FILENAME, 'r') as f: offers = json.load(f) offers_df = pd.DataFrame(offers) logging.basicConfig(level=logging.INFO) generate_data(GENERATED_DATA_ROOT + '/offer_interactions.csv', users_df, offers_df)
3.21875
3