max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/ParseIngredientsBase.py
GregCKrause/hello-openai
0
12782151
# Standard library import argparse import os # Third party import openai # Consts PROMPT = """ Given a cooking ingredient and quantity, return only the ingredient name 2 cups flour Flour Cinnamon ~1 tablespoon Cinnamon About one tsp salt Salt 1.5-2 cups grated raw zucchini Raw zucchini 1c walnuts (optional) Walnuts %s """ def parse(ingredient_description): try: openai.api_key = os.environ["OPENAI_API_KEY"] response = openai.Completion.create( engine="davinci", prompt=PROMPT % (ingredient_description), temperature=0, max_tokens=64, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["\n"] ) return response.choices[0].text except: return ingredient_description if __name__ == "__main__": parser = argparse.ArgumentParser(description="Parse ingredients using OpenAI") parser.add_argument("-i", "--ingredient", help="Ingredient description to parse") args = parser.parse_args() print(parse(args.ingredient))
2.984375
3
reviews/views.py
YaroslavChyhryn/EshopReviewAPI
0
12782152
from .serializers import ReviewSerializer, ShopSerializer, UserReviewSerializer from rest_framework import viewsets from rest_framework.pagination import LimitOffsetPagination from .models import ReviewModel, ShopModel from rest_framework.generics import ListAPIView from rest_framework import filters from django.db.models import Count, Avg from rest_framework import permissions from .permissions import IsOwnerOrReadOnly from django.contrib.auth import get_user_model UserModel = get_user_model() class ReviewViewSet(viewsets.ModelViewSet): """ ViewSet for Reviews """ queryset = ReviewModel.objects.all() serializer_class = ReviewSerializer pagination_class = LimitOffsetPagination permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly] def perform_create(self, serializer): serializer.save(user=self.request.user) class ShopView(ListAPIView): queryset = ShopModel.objects.annotate(review_count=Count('reviews'), avg_rating=Avg('reviews__rating')) serializer_class = ShopSerializer filter_backends = [filters.OrderingFilter, filters.SearchFilter] ordering_fields = ['review_count', 'avg_rating'] ordering = ['avg_rating'] search_fields = ['domain'] class UserReviewView(ListAPIView): queryset = UserModel.objects.all() serializer_class = UserReviewSerializer
2.015625
2
graalpython/com.oracle.graal.python.test/src/tests/cpyext/test_object.py
cmueh/graalpython
0
12782153
# Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. # # The Universal Permissive License (UPL), Version 1.0 # # Subject to the condition set forth below, permission is hereby granted to any # person obtaining a copy of this software, associated documentation and/or # data (collectively the "Software"), free of charge and under any and all # copyright rights in the Software, and any and all patent rights owned or # freely licensable by each licensor hereunder covering either (i) the # unmodified Software as contributed to or provided by such licensor, or (ii) # the Larger Works (as defined below), to deal in both # # (a) the Software, and # # (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if # one is included with the Software each a "Larger Work" to which the Software # is contributed by such licensors), # # without restriction, including without limitation the rights to copy, create # derivative works of, display, perform, and distribute the Software and make, # use, sell, offer for sale, import, export, have made, and have sold the # Software and the Larger Work(s), and to sublicense the foregoing rights on # either these or other terms. # # This license is subject to the following condition: # # The above copyright notice and either this complete permission notice or at a # minimum a reference to the UPL must be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys from . import CPyExtType, CPyExtTestCase, CPyExtFunction __dir__ = __file__.rpartition("/")[0] class AttroClass(object): def __getattribute__(self, key): if key == "foo": return "foo" else: return object.__getattribute__(self, key) class TestObject(object): def test_add(self): TestAdd = CPyExtType("TestAdd", """ PyObject* test_add(PyObject* a, PyObject* b) { return PyTuple_Pack(2, a, b); } """, nb_add="test_add" ) tester = TestAdd() assert tester + 12 == (tester, 12) def test_pow(self): TestPow = CPyExtType("TestPow", """ PyObject* test_pow(PyObject* a, PyObject* b, PyObject* c) { return PyTuple_Pack(3, a, b, c); } """, nb_power="test_pow" ) tester = TestPow() assert tester ** 12 == (tester, 12, None), tester ** 12 assert 12 ** tester == (12, tester, None), 12 ** tester assert pow(tester, 48, 2) == (tester, 48, 2), pow(tester, 48, 2) assert pow(48, tester, 2) == (48, tester, 2), pow(48, tester, 2) def test_int(self): TestInt = CPyExtType("TestInt", """ PyObject* test_int(PyObject* self) { return PyLong_FromLong(42); } """, nb_int="test_int" ) tester = TestInt() assert int(tester) == 42 def test_index(self): TestIndex = CPyExtType("TestIndex", """ PyObject* test_index(PyObject* self) { return PyLong_FromLong(1); } """, nb_index="test_index" ) tester = TestIndex() assert [0, 1][tester] == 1 def test_getattro(self): return # TODO: not working yet # XXX: Cludge to get type into C sys.modules["test_getattro_AttroClass"] = AttroClass try: TestInt = CPyExtType("TestGetattro", """ """, ready_code=""" PyObject* AttroClass = PyDict_GetItemString(PyImport_GetModuleDict(), "test_getattro_AttroClass"); TestGetattroType.tp_getattro = ((PyTypeObject*)AttroClass)->tp_getattro; """ ) finally: del sys.modules["test_getattro_AttroClass"] tester = TestInt() assert tester.foo == "foo" def test_dict(self): TestDict = CPyExtType("TestDict", """static PyObject* custom_dict = NULL; static PyObject* get_dict(PyObject* self, PyObject* kwargs) { Py_INCREF(custom_dict); return custom_dict; } """, ready_code=""" custom_dict = PyDict_New(); PyDict_SetItemString(custom_dict, "hello", PyUnicode_FromString("first custom property")); TestDictType.tp_dict = custom_dict; """, post_ready_code=""" PyDict_SetItemString(TestDictType.tp_dict, "world", PyUnicode_FromString("second custom property")); """, tp_methods='{"get_dict", get_dict, METH_NOARGS, ""}' ) tester = TestDict() assert tester.hello == "first custom property" assert tester.world == "second custom property" assert "hello" in tester.get_dict().keys() and "world" in tester.get_dict().keys(), "was: %s" % tester.get_dict().keys() tester.get_dict()["extra"] = "blah" assert tester.extra == "blah" def test_repr(self): TestRepr = CPyExtType("TestRepr", '') tester = TestRepr() try: repr(tester) except Exception: assert False assert True class TestObjectFunctions(CPyExtTestCase): def compile_module(self, name): type(self).mro()[1].__dict__["test_%s" % name].create_module(name) super().compile_module(name) test_PyCallable_Check = CPyExtFunction( lambda args: callable(args[0]), lambda: ( (len,), (sum,), (int,), ("hello",), (3,), (None,), ), arguments=["PyObject* callable"], resultspec="i", argspec="O", )
1.234375
1
code/python/modules/loggerOld.py
jnromero/steep
0
12782154
<gh_stars>0 from __future__ import print_function,division,absolute_import import os from twisted.python import log import time import sys import pickle #start the logger class TwistedLogger: def __init__(self,config): self.fileCount=1 self.entries=0 self.fullLogFile=config['fullLogFile'] self.currentLogFile=config['logFolder']+"/log!!!NUMBERHERE!!!.pickle" # log.startLogging(open(self.fullLogFile,'ab'))#,setStdout=False) log.startLogging(sys.stdout,setStdout=True) log.addObserver(self.writeToFile) def addLine(self,thisType,thisLine): toAdd=(time.time(),thisType,thisLine) self.entries+=1 file = open(self.fullLogFile,'ab') #protocol for python 3 compatibility pickle.dump(toAdd,file,protocol=2) file.close() thisFile=self.currentLogFile.replace("!!!NUMBERHERE!!!",str(self.fileCount)) file = open(thisFile,'ab') #protocol for python 3 compatibility pickle.dump(toAdd,file,protocol=2) file.close() if self.entries>500: self.entries=0 self.fileCount+=1 def writeToFile(self,this): if 'log_namespace' not in this: self.addLine("regular",str(this)) elif this['isError']==1: if 'log_text' in this: for k in this['log_text'].split("\n"): self.addLine("stdErr",k) else: self.addLine("stdErr",str(this['log_io'])) elif this['log_namespace']=='stdout': self.addLine("stdOut",str(this['log_io'])) elif this['log_namespace']=='twisted.python.log': if this['log_io'].find("\"GET")>-1: thisLine="" else: self.addLine("stdTwisted",str(this['log_io'])) self.addLine("stdTwisted",str(this)) else: if "log_text" in this: self.addLine("stdOther",str(this['log_text'])) elif "log_format" in this: self.addLine("stdOther",str(this['log_format'])) else: self.addLine("stdOther",str(this['message']))
2.421875
2
leetcode/0-250/260-1071. Greatest Common Divisor of Strings.py
palash24/algorithms-and-data-structures
23
12782155
# 1071. Greatest Common Divisor of Strings class Solution: def gcdOfStrings(self, str1: str, str2: str) -> str: if len(str1) == len(str2): return str1 if str1 == str2 else '' else: if len(str1) < len(str2): str1, str2, = str2, str1 if str1[:len(str2)] == str2: return self.gcdOfStrings(str1[len(str2):], str2) else: return '' print(Solution().gcdOfStrings(str1 = "ABCABC", str2 = "ABC")) print(Solution().gcdOfStrings(str1 = "ABABAB", str2 = "ABAB"))
3.515625
4
netbox/dcim/exceptions.py
BrnoPCmaniak/netbox
6
12782156
<reponame>BrnoPCmaniak/netbox class LoopDetected(Exception): """ A loop has been detected while tracing a cable path. """ pass
1.648438
2
venv/lib/python3.8/site-packages/poetry/core/masonry/utils/include.py
GiulianaPola/select_repeats
2
12782157
/home/runner/.cache/pip/pool/14/6a/45/959613aab7d0674a9eb24e47bacc8b7eaa8cef7583b8cdb8b75e967ae6
0.804688
1
ftp_client/ftp_client.py
nathanwiens/sdk-samples
44
12782158
<reponame>nathanwiens/sdk-samples """ This app will create a file and then upload it to an FTP server. The file will be deleted when the app is stopped. """ from csclient import EventingCSClient from ftplib import FTP cp = EventingCSClient('ftp_client') TEMP_FILE = 'my_file.txt' cp.log('ftp_client send_ftp_file()...') # Create a temporary file to upload to an FTP server try: f = open(TEMP_FILE, 'w') f.write('This is a test!!') f.write('This is another test!!') f.close() except OSError as msg: cp.log('Failed to open file: {}. error: {}'.format(TEMP_FILE, msg)) try: # Connect to an FTP test server ftp = FTP('speedtest.tele2.net') # Login to the server reply = ftp.login('anonymous', 'anonymous') cp.log('FTP login reply: {}'.format(reply)) # Change to the proper directory for upload ftp.cwd('/upload/') # Open the file and upload it to the server fh = open(TEMP_FILE, 'rb') reply = ftp.storlines('STOR a.txt', fh) cp.log('FTP STOR reply: {}'.format(reply)) except Exception as e: cp.log('Exception occurred! exception: {}'.format(e)) raise finally: if fh: fh.close()
2.8125
3
tests/test_base58check.py
joeblackwaslike/base58check
1
12782159
<filename>tests/test_base58check.py<gh_stars>1-10 import unittest import base58check TEST_DATA = [ (b'1BoatSLRHtKNngkdXEeobR76b53LETtpyT', b'\x00v\x80\xad\xec\x8e\xab\xca\xba\xc6v\xbe\x9e\x83\x85J\xde\x0b\xd2,\xdb\x0b\xb9`\xde'), (b'3QJmV3qfvL9SuYo34YihAf3sRCW3qSinyC', b'\x05\xf8\x15\xb06\xd9\xbb\xbc\xe5\xe9\xf2\xa0\n\xbd\x1b\xf3\xdc\x91\xe9U\x10\xcd\x001\x07'), (b'mkwV3DZkgYwKaXkphBtcXAjsYQEqZ8aB3x', b'o;|F\xa5\xa6\x00\xb2\x98k\xd8\x04\x13|\xf9\x1d\xbbZE\xa2|\xa8\x00l+'), (b'n1tpDjEJw32qGwkdQKPfACpcTtCa6hDVBw', b'o\xdf\x84\xed0\x95\xc6_\xddu\xf4j\xd8|3\xe0\xb1\xf4\x14\xff\xe6\xf8\t\x8f\xaa'), (b'LeF6vC9k1qfFDEj6UGjM5e4fwHtiKsakTd', b'0\xd0\xa2\x07\xd1\x82\xa7\xe0]\x7fD\xb6\\5\xf9\xe1\xd1v\xeb\xde\xa7\xba\x08\x90\\'), (b'muE4dcYXagWA7WT8ZnCriiy65FELikhdUy', b'o\x96_\xfa\xccH\xe6\x87\xe0\xd3NJ\x8a\x86\x83*\x8dl\xfc\xf0{\xf1#\xb76') ] CUSTOM_CHARSET = b'rpshnaf39wBUDNEGHJKLM4PQRST7VWXYZ2bcdeCg65jkm8oFqi1tuvAxyz' CUSTOM_CHARSET_DATA = [ (b'rDTXLQ7ZKZVKz33zJbHjgVShjsBnqMBhmN', b'\x00\x88\xa5\xa5|\x82\x9f@\xf2^\xa83\x85\xbb\xdel=\x8bL\xa0\x82\xedC\x86A') ] class Base58Tests(unittest.TestCase): def test_base(self): """Assert that BASE is equal to 58""" self.assertEqual(58, len(base58check.DEFAULT_CHARSET)) def test_encoding_text_raises_typeerror(self): """Assert encoding text (nonbinary) raises TypeError""" with self.assertRaises(TypeError): base58check.b58encode('test text') def test_encoding(self): """Assert correct encoding and return type""" for encoded, raw in TEST_DATA: result = base58check.b58encode(raw) self.assertEqual(result, encoded) self.assertIsInstance(result, bytes) def test_decoding(self): """Assert correct decoding and return type from bytes""" for encoded, raw in TEST_DATA: result = base58check.b58decode(encoded) self.assertEqual(result, raw) self.assertIsInstance(result, bytes) def test_decoding_from_unicode(self): """Assert correct decoding and return type from text""" for encoded, raw in TEST_DATA: result = base58check.b58decode(encoded.decode()) self.assertEqual(result, raw) self.assertIsInstance(result, bytes) def test_custom_charset_encoding(self): """Assert correct encoding and return type for custom character set""" for encoded, raw in CUSTOM_CHARSET_DATA: result = base58check.b58encode(raw, charset=CUSTOM_CHARSET) self.assertEqual(result, encoded) self.assertIsInstance(result, bytes) def test_custom_charset_decoding(self): """Assert correct decoding and return type for custom character set""" for encoded, raw in CUSTOM_CHARSET_DATA: result = base58check.b58decode(encoded, charset=CUSTOM_CHARSET) self.assertEqual(result, raw) self.assertIsInstance(result, bytes) if __name__ == '__main__': unittest.main()
2
2
mining_rewards/mining_rewards.py
terra-project/research
43
12782160
<gh_stars>10-100 import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse import math # common hack to import from sibling directory utils # alternatives involve making all directories packages, creating setup files etc import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.gbm import gbm, gbm_cyclical """ ---------------------------------------------------------- | "You can't eliminate risk, you can only move it around." | ---------------------------------------------------------- --------------------------------------------------------------------------------- Usage: | To run simulation using smooth control rule: | python mining_rewards.py smooth | | To run simulation using null control rule and fiat ratio of 50%: | python mining_rewards.py null --fiat_ratio 0.5 | | For detailed usage instructions: | python mining_rewards.py -h | --------------------------------------------------------------------------------- Our core objective in designing Terra's stability mechanism is to contain volatility in Luna price changes while permitting natural growth over time. Pricing Luna Luna has variable supply, so pricing one unit of Luna today is not as simple as discounting future rewards. 1 Luna may represent 1% of total rewards today and 0.5% tomorrow. We need to account for future fluctuations in supply in order to determine what share of each future rewards 1 Luna can claim today. We can formulate the price of 1 Luna today using DCF as follows: SUM for all t from now to infinity: Total Rewards(t)/Luna Supply(t)/(1+r)^t for an appropriate discount rate r. The main benefit of this formulation is that it captures the idea that "the market prices in future dilution", in the sense that given a projection of Luna Supply in the future it can soundly price 1 Luna today. Luna Price Volatility Volatility in Luna price comes from volatility in future unit rewards, i.e. Total Rewards(t)/Luna Supply(t). Unit rewards are by default highly cyclical: when the economy is growing rewards increase and supply tends to decrease up to initial issuance; when the economy is shrinking rewards decrease and supply increases as a result of the Terra contraction mechanism. Hence one way to contain Luna price volatility is to contain volatility in unit rewards. Targeting stable MRL growth Our objective is to contain volatility in unit mining rewards, meaning Total Rewards(t)/Luna Supply(t), which we call MRL for short. We also want to allow for growth, albeit gradual and stable. We have two levers at our disposal to achieve this: transaction fees f(t), and the proportion of seigniorage that is allocated towards Luna buybacks i.e. the buyback weight w(t). More precisely: - Miining Rewards during period t are f(t)*TV(t), where TV is Transaction Volume - Luna Buybacks during period t are w(t)*S(t), where S is Seigniorage (may be 0) In what follows we implement this basic idea: adjust the two levers to achieve low-volatility growth in unit mining rewards. Control Rules The control rule is the logic that adjusts f and w in response to economic conditions. It is the core building block of the algorithm. We have implemented three control rules: - null: no control at all -- f and w remain fixed at their genesis values - debt: control based on the amount of "Luna debt" accumulated -- the higher Luna Supply above its genesis value the higher f and w - smooth: control that targets smooth MRL growth -- details to be found in the README -------------------------------------------------------------------------------------------------------------------- Inputs (timeseries) TV: Transaction Volume (in Terra) -------------------------------------------------------------------------------------------------------------------- Outputs (timeseries) f: Terra transaction fee (%) w: buyback weight (%) -------------------------------------------------------------------------------------------------------------------- Core Parameters MRL_GROWTH_FACTOR: growth factor applied to MRL moving average SB_TARGET: Seigniorage Burden Target (%) MU_BOOM, MU_BUST: drift parameters for TV GBM SIGMA: volatility parameter for TV GBM V: Terra Velocity GENESIS_LPE: Luna P/E ratio at genesis -------------------------------------------------------------------------------------------------------------------- State (at time t) t: week (0 to 519 ie 10 years) TV: Transaction Volume (in Terra) M: Terra Money Supply S: Seigniorage >= 0 generated during this period LMC: Luna Market Capitalization (in Terra) LS: Luna Supply LP: Luna Price LPE: Luna P/E ratio f: Terra transaction fee (%) w: buyback weight (%) MR: Mining Rewards from transaction fees, ie f*TV MRL: Mining Rewards per Luna, ie MR/LS -------------------------------------------------------------------------------------------------------------------- """ V = 52 # annual Terra velocity NUM_YEARS = 10 TOTAL_DAYS = NUM_YEARS*364 PERIOD = 7 # in days PERIODS_PER_YEAR = int(364/PERIOD) NUM_PERIODS = int(TOTAL_DAYS/PERIOD) # TODO insert random injections of Luna supply!! GENESIS_LUNA_SUPPLY = 100 GENESIS_TV = 1 GENESIS_LPE = 20 # fee parameters F_GENESIS = 0.1/100 F_MIN = 0.05/100 F_MAX = 1/100 F_MAX_STEP = 0.025/100 # buyback weight parameters FIAT_RATIO = 0 W_MIN_CAP = 5/100 W_MIN = 5/100 W_MAX = 1 W_GENESIS = 5/100 W_MAX_STEP = 2.5/100 MRL_GROWTH_FACTOR = 1.075 MRL_INC = 10**(-6) SB_TARGET = 0.67 def plot_results(df): # plot TV ax = df.loc[:, ['TV','TV_MA52']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('transaction volume ($)') ax.legend(['transaction volume','transaction volume (annual avg)']) # plot ΔΜ ax = df.loc[:, ['ΔM', 'ΔM_MA']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('ΔΜ ($)') # plot f and w ax = df.loc[:, ['f', 'w']].plot(secondary_y=['w']) ax.set_xlabel('time (weeks)') ax.set_ylabel('transaction fees (%)') ax.right_ax.set_ylabel('Luna burn rate (%)') ax.set_ylim(0, F_MAX) ax.right_ax.set_ylim(0, 1) y_ticks = ax.get_yticks() ax.set_yticklabels(['{:,.2%}'.format(y) for y in y_ticks]) y_ticks_right = ax.right_ax.get_yticks() ax.right_ax.set_yticklabels(['{:,.2%}'.format(y) for y in y_ticks_right]) lines = ax.get_lines() + ax.right_ax.get_lines() ax.legend(lines, ['fees','Luna burn rate']) # plot MR and MRL #ax = df.loc[:, ['MR_MA', 'MRL_MA']].plot(secondary_y=['MRL_MA']) ax = df.loc[:, ['MR_MA13', 'MR_MA52']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('Mining Rewards ($)') #ax.right_ax.set_ylabel('Mining Rewards per Luna ($)') # plot MRL ax = df.loc[:, ['MRL_MA13', 'MRL_MA52']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('unit mining rewards ($)') ax.legend(['unit mining rewards (annual avg)']) # plot LP ax = df.loc[:, ['LP', 'LP_MA13']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('Luna Price ($)') # plot LS ax = df.loc[:, ['LS']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('Luna Supply') # plot LPE ax = df.loc[:, ['LPE']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('Luna PE Ratio') # plot M and LMC ax = df.loc[:, ['M', 'LMC']].plot(secondary_y=['LMC']) ax.set_xlabel('time (weeks)') ax.set_ylabel('Terra Money Supply ($)') ax.right_ax.set_ylabel('Luna Market Cap ($)') # plot fiat ax = df.loc[:, ['fiat']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('fiat') # plot FRR ax = df.loc[:, ['FRR']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('Fiat Reserve Ratio') # plot LRR ax = df.loc[:, ['LRR', 'LRR_MA']].plot() ax.set_xlabel('time (weeks)') ax.set_ylabel('Luna Reserve Ratio') # plot SB ax = df.loc[:, ['SB']].plot(kind='area') ax.set_xlabel('time (weeks)') ax.set_ylabel('Seigniorage Burden') ax.set_ylim(0, 1) plt.show() def tv_gbm_jump(): early_stage = gbm(1, mu=0.1, sigma=0.1, num_periods=52, increments_per_period=1) # first year: high growth, high vol growth_stage = gbm_cyclical(early_stage[-1], mu_boom=0.5, mu_bust=-0.2, sigma=0.4, cycle_lengths=[2,3,4], increments_per_period=52) assert len(early_stage) + len(growth_stage) == 520 return np.append(early_stage, growth_stage) """ Stochastic P/E multiple for Luna at time t, LPE(t) Basic idea is to increase multiple during growth, decrease during recession We model LPE(t) as (1 + X(t))*LPE(t-1), where X(t) is N(μ, σ): μ is (MA1/MA2 - 1)/100, where MA1, MA2 are 1 and 2 year MAs for TV σ is 0.5% if MA1 >= MA2, otherwise it is 1% Note that the updates are weekly, so eg 1% weekly vol is 7.2% annual vol LPE is basically a random walk whose next value depends on the trend in TV We make it more volatile when TV is in a downtrend """ # TODO may want to punish drops more by increasing negative mu's by 50-100% # TODO explain why we are using TV rather than MR here # TODO make LPE more responsive, 1 and 2 year MAs are too slow def lpe(df, t): prev_lpe = df.at[t-1,'LPE'] tv_ma1 = df['TV'].rolling(13, min_periods=1).mean().at[t] tv_ma2 = df['TV'].rolling(2*13, min_periods=1).mean().at[t] tv_delta = tv_ma1/tv_ma2 - 1 mu = tv_delta/50 if tv_ma1 < tv_ma2: mu *= 1.5 sigma = 0.005 if tv_ma1 >= tv_ma2 else 0.01 x = np.random.normal(mu, sigma) return (1 + x)*prev_lpe # Transaction Volume to Terra Money Supply def tv_to_m(tv): annual_tv = tv*PERIODS_PER_YEAR return annual_tv/V # Earnings to Luna Market Cap def earnings_to_lmc(df, t): earnings_ma = (df['f']*df['TV']).rolling(13, min_periods=1).mean().at[t] annualized_earnings = earnings_ma*PERIODS_PER_YEAR lpe = df.at[t,'LPE'] return annualized_earnings*lpe def set_genesis_state(df): tv = df.at[0,'TV'] df.at[0,'M'] = tv_to_m(tv) df.at[0,'fiat'] = df.at[0,'M']*FIAT_RATIO # adhere to FIAT_RATIO at genesis df.at[0,'S'] = 0 df.at[0,'f'] = F_GENESIS df.at[0,'w'] = W_GENESIS df.at[0,'MR'] = df.at[0,'f']*df.at[0,'TV'] # seigniorage not defined at genesis df.at[0,'LPE'] = GENESIS_LPE df.at[0,'LMC'] = earnings_to_lmc(df, 0) df.at[0,'LS'] = GENESIS_LUNA_SUPPLY df.at[0,'MRL'] = df.at[0,'MR']/df.at[0,'LS'] # f and w are forward-computed for the following state df.at[1,'f'] = F_GENESIS df.at[1,'w'] = W_GENESIS """ Evaluate the state of the system at time period t. This is where all of the work happens. Assumes t >= 1 Assumes states up to and including period t-1 have been already evaluated. Assumes TV has already been set (independent variable). Assumes f and w have already been set upon evaluation of state t-1. This is because f and w are forward computed at all t for t+1. """ def evaluate_state(df, t, control_rule): tv = df.at[t,'TV'] df.at[t,'M'] = tv_to_m(tv) delta_m = df.at[t,'M'] - df.at[t-1,'M'] df.at[t,'S'] = max(delta_m, 0) df.at[t,'MR'] = df.at[t,'f']*df.at[t,'TV'] df.at[t,'LPE'] = lpe(df, t) df.at[t,'LMC'] = earnings_to_lmc(df, t) lp_prev = df.at[t-1,'LMC']/df.at[t-1,'LS'] # previous Luna price # start with fiat delta_fiat = delta_m*FIAT_RATIO df.at[t,'fiat'] = df.at[t-1,'fiat'] + delta_fiat delta_m = delta_m - delta_fiat if delta_m >= 0: # expansion num_luna_burned = df.at[t,'w']*delta_m/lp_prev df.at[t,'LS'] = df.at[t-1,'LS'] - num_luna_burned else: # contraction num_luna_issued = -delta_m/lp_prev df.at[t,'LS'] = df.at[t-1,'LS'] + num_luna_issued df.at[t,'MRL'] = df.at[t,'MR']/df.at[t,'LS'] if t < NUM_PERIODS-1: next_f, next_w = control_rule(df, t) df.at[t+1,'f'] = next_f df.at[t+1,'w'] = next_w """ Clamp the value of x between lower and upper """ def clamp(x, lower, upper): return max(lower, min(x, upper)) def null_control(df, t): return (df.at[t,'f'], df.at[t,'w']) def debt_control(df, t): if df.at[t,'LS'] <= GENESIS_LUNA_SUPPLY: return (F_MIN, 0) debt_ratio = 1 - GENESIS_LUNA_SUPPLY/df.at[t,'LS'] next_f = debt_ratio*F_MAX next_w = debt_ratio next_f = clamp(next_f, F_MIN, F_MAX) next_w = clamp(next_w, 0, 1) # effectively no bounds return (next_f, next_w) def smooth_control(df, t): f, w = df.at[t,'f'], df.at[t,'w'] # fee update MRL_short = (df['f']*df['TV']/df['LS']).rolling(4, min_periods=1).mean().at[t] MRL_long = (df['f']*df['TV']/df['LS']).rolling(52, min_periods=1).mean().at[t] next_f = f*MRL_long*MRL_GROWTH_FACTOR/MRL_short # buyback weight update buybacks_rolling_sum = (df['w']*df['S']).rolling(4, min_periods=1).sum().at[t] fees_rolling_sum = (df['f']*df['TV']).rolling(4, min_periods=1).sum().at[t] seigniorage_burden = buybacks_rolling_sum/(buybacks_rolling_sum + fees_rolling_sum) if seigniorage_burden > 0: next_w = w*SB_TARGET/seigniorage_burden else: next_w = W_MAX # no buybacks, so set next_w to max # apply constraints next_f = clamp(next_f, f - F_MAX_STEP, f + F_MAX_STEP) next_f = clamp(next_f, F_MIN, F_MAX) next_w = clamp(next_w, w - W_MAX_STEP, w + W_MAX_STEP) next_w = clamp(next_w, W_MIN, W_MAX) return (next_f, next_w) """ Simulates mining rewards. Args: mu_boom: mu_bust: sigma: GBM parameters for transaction volume (cyclical) control_rule: 'null', 'debt' or 'smooth' seed: random seed for simulation Returns: Dataframe with one row per state of the simulation """ def simulate_mr(mu_boom, mu_bust, sigma, control_rule='smooth', seed=0): np.random.seed(seed) control_rule = globals()[control_rule + '_control'] t = range(0, NUM_PERIODS) tv = gbm_cyclical(GENESIS_TV, mu_boom, mu_bust, sigma, cycle_lengths=[2,3,5], increments_per_period=52) df = pd.DataFrame(data = {'t': t, 'TV': tv}) df['M'] = np.NaN # Terra Money Supply df['fiat'] = np.NaN df['S'] = np.NaN # seigniorage df['f'] = np.NaN # TX fee df['w'] = np.NaN # buyback weight df['MR'] = np.NaN # Mining Rewards df['LPE'] = np.NaN # Luna PE ratio df['LMC'] = np.NaN # Luna Market Cap df['LS'] = np.NaN # Luna Supply df['MRL'] = np.NaN # Mining Rewards per Luna df.set_index('t', inplace=True) set_genesis_state(df) # t=0 for t in range(1, NUM_PERIODS): evaluate_state(df, t, control_rule) # compute some extra columns df['ΔM'] = df['M'] - df['M'].shift(1) # changes in M df['FRR'] = df['fiat']/df['M'] # Fiat Reserve Ratio df['LRR'] = df['LMC']/df['M'] # Luna Reserve Ratio df['LP'] = df['LMC']/df['LS'] # Luna Price buybacks_rolling_sum = (df['w']*df['S']).rolling(52, min_periods=1).sum() fees_rolling_sum = (df['f']*df['TV']).rolling(52, min_periods=1).sum() df['SB'] = buybacks_rolling_sum/(buybacks_rolling_sum + fees_rolling_sum) df['TV_MA52'] = df['TV'].rolling(52, min_periods=1).mean() df['MR_MA13'] = df['MR'].rolling(13, min_periods=1).mean() df['MR_MA52'] = df['MR'].rolling(52, min_periods=1).mean() df['MRL_MA4'] = df['MRL'].rolling(4, min_periods=1).mean() df['MRL_MA13'] = df['MRL'].rolling(13, min_periods=1).mean() df['MRL_MA52'] = df['MRL'].rolling(52, min_periods=1).mean() df['ΔM_MA'] = df['ΔM'].rolling(13, min_periods=1).mean() df['LRR_MA'] = df['LRR'].rolling(13, min_periods=1).mean() df['LP_MA13'] = df['LP'].rolling(13, min_periods=1).mean() df['f_MA'] = df['f'].rolling(13, min_periods=1).mean() df['w_MA'] = df['w'].rolling(13, min_periods=1).mean() return df if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('control_rule', type=str, choices=['null', 'debt', 'smooth'], help='mining rewards control rule') parser.add_argument('-f', '--fiat_ratio', type=float, default=0, dest='fiat_ratio', help='fiat ratio between 0 and 1') args = parser.parse_args() if args.fiat_ratio < 0 or args.fiat_ratio > 1: parser.error("fiat ratio needs to be between 0 and 1") FIAT_RATIO = args.fiat_ratio W_MAX = 1 - FIAT_RATIO W_MIN = min(W_MAX, W_MIN_CAP) W_GENESIS = W_MIN df = simulate_mr(mu_boom=0.5, mu_bust=-0.2, sigma=0.4, control_rule=args.control_rule) print(df) plot_results(df)
1.890625
2
scripts/load_data.py
nilsleiffischer/covid19
4
12782161
<filename>scripts/load_data.py import pandas as pd def load_jhu_data(): data = pd.read_csv( 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv', index_col=1) data.index = data.index + (" (" + data['Province/State'] + ")").fillna("") del data["Province/State"] del data["Lat"] del data["Long"] data = data.transpose() data.index = pd.to_datetime(data.index) return data
2.875
3
lib/packer.py
mitodl/concourse-packer-resource
0
12782162
# stdlib import subprocess from typing import List # local from lib.io import read_value_from_file from lib.log import log, log_pretty # ============================================================================= # # private utility functions # # ============================================================================= # ============================================================================= # _parse_packer_machine_readable_output_line # ============================================================================= def _parse_packer_machine_readable_output_line(output_line: str) -> dict: # machine readable format # from https://www.packer.io/docs/commands/index.html parsed_line = None if output_line: message_item: dict = { "timestamp": None, "target": None, "type": None, "data": [], } # split each line on commas line_tokens: list = output_line.split(",") for i, line_token in enumerate(line_tokens): # assign payload fields based on token number if i == 0: message_item["timestamp"] = line_token elif i == 1: message_item["target"] = line_token elif i == 2: message_item["type"] = line_token elif i > 2: # strip trailing newline from data message_item["data"].append(line_token.rstrip("\n")) parsed_line = message_item return parsed_line # ============================================================================= # _format_packer_machine_readable_output_line # ============================================================================= def _format_packer_machine_readable_output_line( timestamp: str, target: str, output_type: str, data: str, subtype=None ) -> str: # most messages won't have a target which means it's global if not target: target = "global" # consistent padding for the 'version' types if output_type.startswith("version"): output_type = f"{output_type:16}" # replace the packer comma data = data.replace("%!(PACKER_COMMA)", ",") if subtype: return f"{timestamp} | {target} | {output_type} | {subtype:8} | {data}" return f"{timestamp} | {target} | {output_type} | {data}" # ============================================================================= # _print_parsed_packer_machine_readable_output_line # ============================================================================= def _print_parsed_packer_machine_readable_output_line(parsed_line: dict) -> None: if parsed_line: if len(parsed_line["data"]) > 0: subtype = None # check for subtype if parsed_line["data"][0] in ["say", "error", "message"]: # pop found subtype from the parsed line subtype = parsed_line["data"].pop(0) for item in parsed_line["data"]: # split on \\n item_lines = item.split("\\n") for item_line in item_lines: log( _format_packer_machine_readable_output_line( parsed_line["timestamp"], parsed_line["target"], parsed_line["type"], item_line, subtype=subtype, ) ) # ============================================================================= # _parse_packer_parsed_output_for_build_manifest # ============================================================================= def _parse_packer_parsed_output_for_build_manifest(parsed_output: List[dict]) -> dict: manifest = {"artifacts": {}} # create collection of targets targets = {} for parsed_item in parsed_output: if parsed_item["target"]: target_name = parsed_item["target"] if target_name not in targets: targets[target_name] = [] del parsed_item["target"] targets[target_name].append(parsed_item) # iterate on targets for target_key, target_value in targets.items(): # split into artifacts target_artifacts = {} for target_item in target_value: if target_item["type"] == "artifact": # first index of data will be the artifact number artifact_number = target_item["data"][0] # second index of data will be the artifact key artifact_key = target_item["data"][1] # skip adding the 'end' key if artifact_key == "end": continue # third index of data will be the artifact value, if present if len(target_item["data"]) > 2: artifact_value = target_item["data"][2] else: artifact_value = None # create the target artifact dict, if missing if artifact_number not in target_artifacts: target_artifacts[artifact_number] = {} # assign the artifact key and value target_artifacts[artifact_number][artifact_key] = artifact_value manifest["artifacts"][target_key] = target_artifacts return manifest # ============================================================================= # # private exe functions # # ============================================================================= # ============================================================================= # _packer # ============================================================================= def _packer(*args: str, working_dir=None) -> List[dict]: # runs packer bin with forced machine readable output process_args = ["packer", "-machine-readable", *args] parsed_lines = [] # use Popen so we can read lines as they come with subprocess.Popen( process_args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, # redirect stderr to stdout bufsize=1, universal_newlines=True, stdin=None, cwd=working_dir, ) as pipe: for line in pipe.stdout or "": if "fmt" in args: # determine log level log_level = "warning" if "fmt" in args else "info" # directly log the output log(f"global | ui | {log_level} | {line.rstrip()}") else: # parse the machine readable output as it arrives parsed_line = _parse_packer_machine_readable_output_line(line) parsed_lines.append(parsed_line) _print_parsed_packer_machine_readable_output_line(parsed_line) if pipe.returncode != 0: # args are masked to prevent credentials leaking raise subprocess.CalledProcessError(pipe.returncode, ["packer"]) return parsed_lines # ============================================================================= # # public packer functions # # ============================================================================= # ============================================================================= # version # ============================================================================= def version() -> None: # execute version command _packer("version") # ============================================================================= # init # ============================================================================= def init(working_dir_path: str, template_file_path: str) -> None: # execute init command _packer("init", template_file_path, working_dir=working_dir_path) # ============================================================================= # format # ============================================================================= def format_packer_cmd(working_dir_path: str, template_file_path: str) -> None: # execute format command _packer("fmt", "-check", "-diff", template_file_path, working_dir=working_dir_path) # ============================================================================= # validate # ============================================================================= def validate( working_dir_path: str, template_file_path: str, var_file_paths: List[str] = None, template_vars: dict = None, vars_from_files: dict = None, only: List[str] = None, excepts: List[str] = None, syntax_only: bool = False, debug: bool = False, ) -> None: packer_command_args = [] # add any specified var file paths if var_file_paths: for var_file_path in var_file_paths: packer_command_args.append(f"-var-file={var_file_path}") # add any specified vars if template_vars: for var_name, var_value in template_vars.items(): packer_command_args.append(f"-var={var_name}={var_value}") # add any vars from files if vars_from_files: for var_name, file_path in vars_from_files.items(): var_value = read_value_from_file(file_path, working_dir=working_dir_path) packer_command_args.append(f"-var={var_name}={var_value}") # only build specified sources if only: packer_command_args.append(f"-only={','.join(only)}") # build all sources except those specified elif excepts: packer_command_args.append(f"-except={','.join(excepts)}") # optionally check only syntax if syntax_only: packer_command_args.append("-syntax-only") # dump args on debug if debug: log("validate args:") log_pretty(packer_command_args) # execute validate command _packer( "validate", *packer_command_args, template_file_path, working_dir=working_dir_path, ) # ============================================================================= # build # ============================================================================= def build( working_dir_path: str, template_file_path: str, var_file_paths: List[str] = None, template_vars: dict = None, vars_from_files: dict = None, only: List[str] = None, excepts: List[str] = None, debug: bool = False, force: bool = False, ) -> dict: packer_command_args = [] # add any specified var file paths if var_file_paths: for var_file_path in var_file_paths: packer_command_args.append(f"-var-file={var_file_path}") # add any specified vars if template_vars: for var_name, var_value in template_vars.items(): packer_command_args.append(f"-var={var_name}={var_value}") # add any vars from files if vars_from_files: for var_name, file_path in vars_from_files.items(): var_value = read_value_from_file(file_path, working_dir=working_dir_path) packer_command_args.append(f"-var={var_name}={var_value}") # only build specified sources if only: packer_command_args.append(f"-only={','.join(only)}") # build all sources except those specified elif excepts: packer_command_args.append(f"-except={','.join(excepts)}") # add force if requested if force: packer_command_args.append("-force") # dump args on debug if debug: log("build args:") log_pretty(packer_command_args) # execute build command packer_command_result = _packer( "build", *packer_command_args, template_file_path, working_dir=working_dir_path ) # get build manifest from output packer_build_manifest = _parse_packer_parsed_output_for_build_manifest( packer_command_result ) # return the manifest return packer_build_manifest
2.40625
2
libra_client/lbrtypes/account_config/constants/account_limits.py
violas-core/violas-client
0
12782163
<filename>libra_client/lbrtypes/account_config/constants/account_limits.py from libra_client.move_core_types.language_storage import ModuleId, CORE_CODE_ADDRESS ACCOUNT_LIMITS_MODULE_NAME = "AccountLimits" ACCOUNT_LIMITS_MODULE = ModuleId(CORE_CODE_ADDRESS, ACCOUNT_LIMITS_MODULE_NAME) ACCOUNT_LIMITS_WINDOW_STRUCT_NAME = "Window" def account_limits_module_name(): return ACCOUNT_LIMITS_MODULE def account_limits_window_struct_name(): return ACCOUNT_LIMITS_WINDOW_STRUCT_NAME
1.445313
1
app/api/test_api.py
totoro0104/fastapi-example
2
12782164
from typing import Optional from fastapi import APIRouter, Depends import httpx from app.models.models import User from app.schema import User_Pydantic router = APIRouter() @router.get("/") async def homepage(): # httpx代替requests进行异步请求 async with httpx.AsyncClient() as client: res = await client.get('https://www.baidu.com') return {"data": res.status_code} @router.get("/test/items/{item_id}") async def read_item(item_id: int, q: Optional[str] = None): return {"item_id": item_id, "q": q} @router.get('/test/users') async def get_users(): # 创建用户 # user = User() # user.name = 'test2' # user.phone = '123' # user.set_password('<PASSWORD>') # await user.save() # return 1 # QuerySet不进行数据库查询 users = User.all() # User_Pydantic为序列化的模型,users为处理的QuerySet对象 data = await User_Pydantic.from_queryset(users) return data
2.578125
3
backpack/extensions/firstorder/fisher/__init__.py
maryamhgf/backpack
0
12782165
<gh_stars>0 from torch.nn import ( Conv1d, Conv2d, Linear, BatchNorm1d, BatchNorm2d ) from backpack.extensions.backprop_extension import BackpropExtension from . import ( conv1d, conv2d, linear, batchnorm1d, batchnorm2d ) class Fisher(BackpropExtension): def __init__(self, silent=False): self.silent = silent super().__init__( savefield="fisher", fail_mode="WARNING", module_exts={ Linear: linear.FisherLinear(self.silent), Conv1d: conv1d.FisherConv1d(self.silent), Conv2d: conv2d.FisherConv2d(self.silent), BatchNorm1d: batchnorm1d.FisherBatchNorm1d(self.silent), BatchNorm2d: batchnorm2d.FisherBatchNorm2d(self.silent), }, )
2.21875
2
lib/surface/kms/keys/versions/get_certificate_chain.py
google-cloud-sdk-unofficial/google-cloud-sdk
2
12782166
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Get a PEM-format certificate chain for a given version.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.cloudkms import base as cloudkms_base from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.kms import exceptions as kms_exceptions from googlecloudsdk.command_lib.kms import flags from googlecloudsdk.core import log from googlecloudsdk.core.util import files DETAILED_HELP = { 'EXAMPLES': """\ The following command saves the Cavium certificate chain for CryptoKey ``frodo'' Version 2 to ``/tmp/my/cavium.pem'': $ {command} 2 --key=frodo --keyring=fellowship --location=us-east1 --certificate-chain-type=cavium --output-file=/tmp/my/cavium.pem """, } def _GetCertificateChainPem(chains, chain_type): """Returns the specified certificate chain(s) from a CertChains object. Args: chains: a KeyOperationAttestation.CertChains object. chain_type: a string specifying the chain(s) to retrieve. Returns: A string containing the PEM-encoded certificate chain(s). Raises: exceptions.InvalidArgumentException if chain_type is not a valid chain type. """ if chain_type == 'cavium': return ''.join(chains.caviumCerts) elif chain_type == 'google-card': return ''.join(chains.googleCardCerts) elif chain_type == 'google-partition': return ''.join(chains.googlePartitionCerts) elif chain_type == 'all': return ''.join(chains.caviumCerts + chains.googlePartitionCerts + chains.googleCardCerts) raise exceptions.InvalidArgumentException( '{} is not a valid chain type.'.format(chain_type)) @base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA, base.ReleaseTrack.GA) class GetCertificateChain(base.DescribeCommand): r"""Get a certificate chain for a given version. Returns the PEM-format certificate chain for the specified key version. The optional flag `output-file` indicates the path to store the PEM. If not specified, the PEM will be printed to stdout. """ detailed_help = DETAILED_HELP @staticmethod def Args(parser): flags.AddKeyVersionResourceArgument( parser, 'from which to get the certificate chain') flags.AddCertificateChainFlag(parser) flags.AddOutputFileFlag(parser, 'to store PEM') def Run(self, args): client = cloudkms_base.GetClientInstance() messages = cloudkms_base.GetMessagesModule() version_ref = flags.ParseCryptoKeyVersionName(args) if not version_ref.Name(): raise exceptions.InvalidArgumentException( 'version', 'version id must be non-empty.') versions = client.projects_locations_keyRings_cryptoKeys_cryptoKeyVersions version = versions.Get( messages .CloudkmsProjectsLocationsKeyRingsCryptoKeysCryptoKeyVersionsGetRequest( name=version_ref.RelativeName())) if (version.protectionLevel != messages.CryptoKeyVersion.ProtectionLevelValueValuesEnum.HSM): raise kms_exceptions.ArgumentError( 'Certificate chains are only available for HSM key versions.') if (version.state == messages.CryptoKeyVersion.StateValueValuesEnum.PENDING_GENERATION): raise kms_exceptions.ArgumentError( 'Certificate chains are unavailable until the version is generated.') try: log.WriteToFileOrStdout( args.output_file if args.output_file else '-', _GetCertificateChainPem(version.attestation.certChains, args.certificate_chain_type), overwrite=True, binary=False) except files.Error as e: raise exceptions.BadFileException(e)
1.796875
2
ReconnaissanceFaciale/RecoFaciale.py
BasileAmeeuw/DroneDelivreur
0
12782167
#import libraries import face_recognition import numpy as np from PIL import Image, ImageDraw import matplotlib.image as mpimg from IPython.display import display import cv2 import os, re import pyrebase import time cv2.VideoCapture(0).isOpened() from dronekit import connect, VehicleMode, LocationGlobalRelative import firebase_admin from firebase_admin import credentials from google.cloud import firestore ''' A rajouter, tes librairies ''' #Config de firestore et storage: firebaseConfig = { "apiKey": "<KEY>", "authDomain": "delivreapp-5221e.firebaseapp.com", "projectId": "delivreapp-5221e", "databaseURL": "https://del-ivre-default-rtdb.europe-west1.firebasedatabase.app", "storageBucket": "delivreapp-5221e.appspot.com", "messagingSenderId": "661920641786", "appId": "1:661920641786:web:dca2c085b5ff60f1b18f43", "measurementId": "G-CLR5PFH3G4" }; nDrone=5 #numéro du drone associé firebase=pyrebase.initialize_app(firebaseConfig) storage=firebase.storage() try: firebase_admin.get_app() #print('firebase intialized.') except ValueError as e: #print('firebase not initialized. But now initialize.') cred = credentials.Certificate("serviceAccountKey.json") firebase_admin.initialize_app(cred) os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="serviceAccountKey.json" db = firestore.Client() ###récupération Coord GPS print("Initialisation terminée, début de la boucle") while True: nbImg=[]; go=True while True: try: doc=db.collection('Users').where("Drone","==",nDrone).get()[0] break except: continue nom=doc.get("Nom") prenom=doc.get("Prenom") coord=doc.get("GPS") image=nom+"#"+prenom+".jpg" print(nom,end=' ') print(prenom,end="\n") print(doc.get("Commande"),end="\n") print(coord) #téléchargement image storage.child(image).download(image) img1 = Image.open(image) img1.save("img1.jpg","JPEG") try: time.sleep(0.001) img1 = Image.open(image) img1.save("img1.jpg","JPEG") time.sleep(0.001) img2=img1.rotate(90) img2.show() time.sleep(0.001) img2.save("img2.jpg","JPEG") img3=img2.rotate(90) time.sleep(0.001) img3.save("img3.jpg","JPEG") img4=img3.rotate(90) time.sleep(0.001) img4.save("img4.jpg","JPEG") #os.remove(image) print("image enregistrée") except: print("probleme dans le téléchargement de l'image") ###variables d'initiation reconnaissance faciale known_face_encodings = [] known_face_names = [] face_locations = [] face_encodings = [] process_this_frame = True #Image enregistrée dans la base de donnée for i in range(1,5): try: new_image=face_recognition.load_image_file("img"+ str(nbImg) + ".jpg") new_face_encoding = face_recognition.face_encodings(new_image)[0] known_face_encodings.append(new_face_encoding) known_face_names.append(prenom + " " + nom) nbImg=i print("photo" , str(i) , " dans reconaissance faciale") except: os.remove("img"+ str(i) + ".jpg") print(i) print("photo ", str(i) , "non prise en compte") Reco=True #algo reconnaissance faciale print("lancement algorithme de reconnaissance faciale") while Reco: # Grab a single frame of video ret, frame = cv2.VideoCapture(0).read() # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # If a match was found in known_face_encodings, just use the first one. if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] if name==prenom+" "+nom: print(name, end=' ') print("a bien été reconnu, on procède donc a l'attérissage.") Reco=False process_this_frame = not process_this_frame #suppression image du PC print("image supprimé de la mémoire du rpi") for i in range(len(nbImg)): os.remove("img"+ str(nbImg[i]) + ".jpg") try: id=str(int(doc.get("Id"))) db.collection('Users').document(id).delete() print("la commande a été supprimée") storage.delete_blob(image) storage.delete() except: print("la commande était déja supprimée")
2.140625
2
.openapi-generator/update_type_with_interface.py
AntoineDao/honeybee-schema-dotnet
0
12782168
import re, os, json root = os.path.dirname(os.path.dirname(__file__)) source_folder = os.path.join(root, 'src', 'HoneybeeSchema', 'Model') #NamedReferenceable class_files = [x for x in os.listdir(source_folder) if (x.endswith("Abridged.cs") and not x.endswith("SetAbridged.cs") and not x.endswith("PropertiesAbridged.cs") and not x.endswith("ScheduleRuleAbridged.cs") ) ] abridged_file = os.path.join(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'NamedReferenceable.cs') with open(abridged_file, "wt", encoding='utf-8') as abridgeFile: data = [] data.append('namespace HoneybeeSchema\n') data.append('{\n') for f in class_files: type_name = f data.append('public partial class %s: INamed {}\n' % f.replace('.cs','')) data.append('public partial class ConstructionSetAbridged: INamed{}\n') data.append('}') abridgeFile.writelines(data) abridgeFile.close() #EnergyWindowMaterial class_files = [x for x in os.listdir(source_folder) if (x.startswith("EnergyWindowMaterial")) ] abridged_file = os.path.join(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'EnergyWindowMaterial.cs') with open(abridged_file, "wt", encoding='utf-8') as abridgeFile: data = [] data.append('namespace HoneybeeSchema\n') data.append('{\n') for f in class_files: type_name = f data.append('public partial class %s: IEnergyWindowMaterial {}\n' % f.replace('.cs','')) data.append('}') abridgeFile.writelines(data) abridgeFile.close() #EnergyMaterial class_files = [x for x in os.listdir(source_folder) if (x.startswith("EnergyMaterial")) ] abridged_file = os.path.join(root, 'src', 'HoneybeeSchema', 'BaseClasses', 'EnergyMaterial.cs') with open(abridged_file, "wt", encoding='utf-8') as abridgeFile: data = [] data.append('namespace HoneybeeSchema\n') data.append('{\n') for f in class_files: type_name = f data.append('public partial class %s: IEnergyMaterial {}\n' % f.replace('.cs','')) data.append('}') abridgeFile.writelines(data) abridgeFile.close()
2.171875
2
concentric/users/migrations/0005_user_name.py
guidotheelen/concentric
0
12782169
<filename>concentric/users/migrations/0005_user_name.py # Generated by Django 3.0.10 on 2020-11-27 23:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20201127_2250'), ] operations = [ migrations.AddField( model_name='user', name='name', field=models.CharField(blank=True, max_length=20, verbose_name='Name'), ), ]
1.460938
1
datasets/tr_cpi_parser.py
davidpaulkim/Stock-Market-Price-Prediction
8
12782170
<reponame>davidpaulkim/Stock-Market-Price-Prediction<gh_stars>1-10 # src= "https://tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Statistics/Inflation+Data/Consumer+Prices" cpi_values = """02-2021 15.61 0.91 01-2021 14.97 1.68 12-2020 14.60 1.25 11-2020 14.03 2.30 10-2020 11.89 2.13 09-2020 11.75 0.97 08-2020 11.77 0.86 07-2020 11.76 0.58 06-2020 12.62 1.13 05-2020 11.39 1.36 04-2020 10.94 0.85 03-2020 11.86 0.57 02-2020 12.37 0.35 01-2020 12.15 1.35 12-2019 11.84 0.74 11-2019 10.56 0.38 10-2019 8.55 2 09-2019 9.26 0.99 08-2019 15.01 0.86 07-2019 16.65 1.36 06-2019 15.72 0.03 05-2019 18.71 0.95 04-2019 19.50 1.69 03-2019 19.71 1.03 02-2019 19.67 0.16 01-2019 20.35 1.06 12-2018 20.30 -0.40 11-2018 21.62 -1.44 10-2018 25.24 2.67 09-2018 24.52 6.30 08-2018 17.90 2.30 07-2018 15.85 0.55 06-2018 15.39 2.61 05-2018 12.15 1.62 04-2018 10.85 1.87 03-2018 10.23 0.99 02-2018 10.26 0.73 01-2018 10.35 1.02 12-2017 11.92 0.69 11-2017 12.98 1.49 10-2017 11.90 2.08 09-2017 11.20 0.65 08-2017 10.68 0.52 07-2017 9.79 0.15 06-2017 10.90 -0.27 05-2017 11.72 0.45 04-2017 11.87 1.31 03-2017 11.29 1.02 02-2017 10.13 0.81 01-2017 9.22 2.46 12-2016 8.53 1.64 11-2016 7.00 0.52 10-2016 7.16 1.44 09-2016 7.28 0.18 08-2016 8.05 -0.29 07-2016 8.79 1.16 06-2016 7.64 0.47 05-2016 6.58 0.58 04-2016 6.57 0.78 03-2016 7.46 -0.04 02-2016 8.78 -0.02 01-2016 9.58 1.82 12-2015 8.81 0.21 11-2015 8.10 0.67 10-2015 7.58 1.55 09-2015 7.95 0.89 08-2015 7.14 0.40 07-2015 6.81 0.09 06-2015 7.20 -0.51 05-2015 8.09 0.56 04-2015 7.91 1.63 03-2015 7.61 1.19 02-2015 7.55 0.71 01-2015 7.24 1.10 12-2014 8.17 -0.44 11-2014 9.15 0.18 10-2014 8.96 1.90 09-2014 8.86 0.14 08-2014 9.54 0.09 07-2014 9.32 0.45 06-2014 9.16 0.31 05-2014 9.66 0.4 04-2014 9.38 1.34 03-2014 8.39 1.13 02-2014 7.89 0.43 01-2014 7.75 1.98 12-2013 7.4 0.46 11-2013 7.32 0.01 10-2013 7.71 1.8 09-2013 7.88 0.77 08-2013 8.17 -0.1 07-2013 8.88 0.31 06-2013 8.3 0.76 05-2013 6.51 0.15 04-2013 6.13 0.42 03-2013 7.29 0.66 02-2013 7.03 0.3 01-2013 7.31 1.65 12-2012 6.16 0.38 11-2012 6.37 0.38 10-2012 7.8 1.96 09-2012 9.19 1.03 08-2012 8.88 0.56 07-2012 9.07 -0.23 06-2012 8.87 -0.9 05-2012 8.28 -0.21 04-2012 11.14 1.52 03-2012 10.43 0.41 02-2012 10.43 0.56 01-2012 10.61 0.56 12-2011 10.45 0.58 11-2011 9.48 1.73 10-2011 7.66 3.27 09-2011 6.15 0.75 08-2011 6.65 0.73 07-2011 6.31 -0.41 06-2011 6.24 -1.43 05-2011 7.17 2.42 04-2011 4.26 0.87 03-2011 3.99 0.42 02-2011 4.16 0.73 01-2011 4.9 0.41 12-2010 6.4 -0.3 11-2010 7.29 0.03 10-2010 8.62 1.83 09-2010 9.24 1.23 08-2010 8.33 0.4 07-2010 7.58 -0.48 06-2010 8.37 -0.56 05-2010 9.1 -0.36 04-2010 10.19 0.6 03-2010 9.56 0.58 02-2010 10.13 1.45 01-2010 8.19 1.85 12-2009 6.53 0.53 11-2009 5.53 1.27 10-2009 5.08 2.41 09-2009 5.27 0.39 08-2009 5.33 -0.3 07-2009 5.39 0.25 06-2009 5.73 0.11 05-2009 5.24 0.64 04-2009 6.13 0.02 03-2009 7.89 1.1 02-2009 7.73 -0.34 01-2009 9.5 0.29 12-2008 10.06 -0.41 11-2008 10.76 0.83 10-2008 11.99 2.6 09-2008 11.13 0.45 08-2008 11.77 -0.24 07-2008 12.06 0.58 06-2008 10.61 -0.36 05-2008 10.74 1.49 04-2008 9.66 1.68 03-2008 9.15 0.96 02-2008 9.1 1.29 01-2008 8.17 0.8 12-2007 8.39 0.22 11-2007 8.4 1.95 10-2007 7.7 1.81 09-2007 7.12 1.03 08-2007 7.39 0.02 07-2007 6.9 -0.73 06-2007 8.6 -0.24 05-2007 9.23 0.5 04-2007 10.72 1.21 03-2007 10.86 0.92 02-2007 10.16 0.43 01-2007 9.93 1 12-2006 9.65 0.23 11-2006 9.86 1.29 10-2006 9.98 1.27 09-2006 10.55 1.29 08-2006 10.26 -0.44 07-2006 11.69 0.85 06-2006 10.12 0.34 05-2006 9.86 1.88 04-2006 8.83 1.34 03-2006 8.16 0.27 02-2006 8.15 0.22 01-2006 7.93 0.75 12-2005 7.72 0.42 11-2005 7.61 1.4 10-2005 7.52 1.79 09-2005 7.99 1.02 08-2005 7.91 0.85 07-2005 7.82 -0.57 06-2005 8.95 0.1 05-2005 8.7 0.92 04-2005 8.18 0.71 03-2005 7.94 0.26 02-2005 8.69 0.02 01-2005 9.24 0.55 12-2004 9.32 0.45 11-2004 9.79 1.54 10-2004 9.86 2.22 09-2004 9 0.94 08-2004 10.04 0.58 07-2004 9.57 0.22 06-2004 8.93 -0.13 05-2004 8.88 0.38 04-2004 10.18 0.59 03-2004 11.83 0.89 02-2004 14.28 0.55 01-2004 16.22 0.74 12-2003 18.36 0.88 11-2003 19.25 1.61 10-2003 20.78 1.42 09-2003 23 1.9 08-2003 24.91 0.15 07-2003 27.44 -0.37 06-2003 29.76 -0.17 05-2003 30.74 1.58 04-2003 29.45 2.09 03-2003 29.41 3.1 02-2003 27.01 2.26 01-2003 26.38 2.59 12-2002 29.75 1.64 11-2002 31.77 2.91 10-2002 33.45 3.29 09-2002 37.05 3.48 08-2002 40.24 2.18 07-2002 41.28 1.44 06-2002 42.6 0.58 05-2002 46.22 0.58 04-2002 52.72 2.06 03-2002 65.11 1.19 02-2002 73.08 1.75 01-2002 73.16 5.32 12-2001 68.53 3.22 11-2001 67.29 4.23 10-2001 66.47 6.07 09-2001 61.8 5.89 08-2001 57.5 2.94 07-2001 56.33 2.39 06-2001 56.1 3.13 05-2001 52.39 5.05 04-2001 48.27 10.33 03-2001 37.51 6.07 02-2001 33.42 1.8 01-2001 35.92 2.51""" import pandas as pd df_vals = [s.split(" ") for s in cpi_values.replace('\t', ' ').split("\n")] df = pd.DataFrame(df_vals, columns=["date", "CPI (Year to Year % Changes)", "CPI (Month to Month % Changes)"]) df.to_csv("tr_cpi_values.csv")
2.5
2
dailyplot.py
nerrull/hackatown2018
38
12782171
<filename>dailyplot.py #!/usr/bin/python # -*- coding: utf-8 -*- # The MIT License (MIT) # This code is part of the Solar3Dcity package # Copyright (c) 2015 # <NAME> # Delft University of Technology # <EMAIL> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from solpy import irradiation import datetime settings = [] place = (52.01, 4.36) tzoffset = datetime.timedelta(hours=2) settings.append({'Name' : 'Surface A', 'Tilt' : 40.0, 'Azimuth' : 180.0, }) settings.append({'Name' : 'Surface B', 'Tilt' : 40.0, 'Azimuth' : 90.0, }) #-- Which days #-- month, day format epochs = [[3, 27], [6, 21]] #-- Sampling interval interval = 5 #-- Results res = {} #-- Clouds: left for future work, at this moment the computations are clear-sky ccddatabase = None #-- Iterate the days for epoch in epochs: month = epoch[0] day = epoch[1] d = datetime.date(2015, month, day) #-- Tweaking to get the proper key values for dates if month < 10: m_s = '0' + str(month) else: m_s = str(month) if day < 10: d_s = '0' + str(day) else: d_s = str(day) #-- These are UTC times. The program is not smart enough to use sunrise and sunset times, but this works too for hour in range(3, 20): for minute in range(0, 60, interval): #-- Datetime t = datetime.time(hour, minute) dt = datetime.datetime.combine(d, t) #-- Get the historic cloud cover for that day # if ccddatabase: # cloud_cover = ccddatabase[str(m_s)+str(d_s)] # else: # cloud_cover = 0.0 for setting in settings: if setting['Name'] not in res: res[setting['Name']] = {} e = str(m_s)+str(d_s) if e not in res[setting['Name']]: res[setting['Name']][e] = [] #-- Global synthetic irradiation from Solpy global_irradiation_rec = irradiation.blave(dt, place, 0, 180) #-- Adjust it for the tilt. The value is now in W/m^2 irrValue = irradiation.irradiation(global_irradiation_rec, place, None, setting['Tilt'], setting['Azimuth'], 'p9') horr_irrValue = irradiation.irradiation(global_irradiation_rec, place, None, 0, 180, 'p9') #-- Workaround to keep the data aligned d_ = datetime.date(2013, 1, 1) t_ = datetime.time(hour, minute) dt_ = datetime.datetime.combine(d_, t_) res[setting['Name']][e].append([dt_, irrValue, horr_irrValue]) import scipy import os #-- Fix LaTeX for macOS 10.12 os.environ['PATH'] = os.environ['PATH'] + ':/Library/TeX/texbin' import matplotlib as mpl mpl.use('TkAgg') import matplotlib.pyplot as plt plt.rc('text', usetex=True) plt.rc('font', family='serif') import seaborn as sns #-- Plotting properties sns.set(style="white", font='serif', rc={'axes.facecolor': '#FFFFFF', 'grid.linestyle': '', 'axes.grid' : False, 'font.family': ['serif'], 'legend.frameon': True}) colors = sns.color_palette() # fig = plt.figure(1) fig, ax1 = plt.subplots(figsize=(8, 4)) timestamp = [] total_ir = [] total_ir_h = [] for v in res['Surface A']['0327']: timestamp.append(v[0] + tzoffset) total_ir.append(v[1]) total_ir_h.append(v[2]) A_1 = plt.plot(timestamp, total_ir, color=colors[0], linestyle='--', marker='o', markevery=slice(60, 170, 15)) timestamp = [] total_ir = [] total_ir_h = [] for v in res['Surface B']['0327']: timestamp.append(v[0] + tzoffset) total_ir.append(v[1]) total_ir_h.append(v[2]) B_1 = plt.plot(timestamp, total_ir, color=colors[1], linestyle='--', marker='v', markevery=slice(60, 170, 15)) # H_1 = plt.plot(timestamp, total_ir_h, color=colors[2], linestyle='--') timestamp = [] total_ir = [] total_ir_h = [] for v in res['Surface A']['0621']: timestamp.append(v[0] + tzoffset) total_ir.append(v[1]) total_ir_h.append(v[2]) A_2 = plt.plot(timestamp, total_ir, color=colors[0], linestyle='-', marker='o', markevery=slice(30, 185, 15)) timestamp = [] total_ir = [] total_ir_h = [] for v in res['Surface B']['0621']: timestamp.append(v[0] + tzoffset) total_ir.append(v[1]) total_ir_h.append(v[2]) B_2 = plt.plot(timestamp, total_ir, color=colors[1], linestyle='-', marker='v', markevery=slice(30, 185, 15)) # H_2 = plt.plot(timestamp, total_ir_h, color=colors[2], linestyle='-') ddd = scipy.zeros(len(total_ir_h)) #plt.fill_between(timestamp, total_ir_h, where=total_ir_h>=ddd, interpolate=True, color='k') import matplotlib.dates as md xfmt = md.DateFormatter('%H:%M') ax1.xaxis.set_major_formatter(xfmt) sns.despine(left=False, bottom=False) # ax1.tick_params(axis='x', which='major', bottom='on') # ax1.set_xlim([734869.16, 734869.84]) ax1.set_ylim([0, 1050]) # plt.title('Clear-sky global solar irradiance for Delft, the Netherlands', size=15) plt.xlabel('Local time', size=14) #plt.ylabel(u'Total solar irradiation (W/m²)', size=14) plt.ylabel(r'Global solar irradiance (W/m$^{2}$)', size=14) plt.legend(['A on 27 Mar', 'B on 27 Mar', 'A on 21 Jun', 'B on 21 Jun'], loc='upper center', bbox_to_anchor=(0.5, 1.15), fancybox=1, shadow=0, ncol=4, numpoints=1, prop={'size':12}) plt.savefig('dailyplot.png', bbox_inches='tight', dpi=300) plt.savefig('dailyplot.pdf', bbox_inches='tight') # plt.show()
1.695313
2
controller.py
woxiang-H/auto-beaver
0
12782172
import sys import os from settings import beaver_broker_ip, beaver_broker_port, autotestdir, beaver_datanode_file, gflagsfile, config_path, log_dir, index_forsearch, pb_forsearch import psutil import time import numpy as np import requests #MEM_MAX = psutil.virtual_memory().total MEM_MAX = 0.8*32*1024*1024*1024 # memory size of tikv node, not current PC #------------------knob controller------------------ # disable_auto_compactions def set_disable_auto_compactions(ip, port, val): cmd="./tikv-ctl --host "+ip+":"+port+" modify-tikv-config -m kvdb -n default.disable_auto_compactions -v "+str(val) res=os.popen(cmd).read() # will return "success" return(res) knob_set=\ { "--max_concurrency_tasks_per_search": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [4, 6, 8], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--max_per_search_ram": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [198], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--max_per_sub_search_ram": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [99], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--block_ids_per_batch": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [16, 18, 20], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--lease_timeout": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": [4, 8, 16, 32, 64], # if type==enum, list all valid values "type": "enum", # int / enum "default": 0 # default value }, "--enable_query_cache": { "changebyyml": True, "set_func": None, "minval": 0, # if type==int, indicate min possible value "maxval": 0, # if type==int, indicate max possible value "enumval": ['false', 'true'], # if type==enum, list all valid values "type": "bool", # int / enum "default": 0 # default value }, } #------------------metric controller------------------ def read_write_throughput(ip, port): return(0) # DEPRECATED FUNCTION: throughput is instant and could be read from go-ycsb. No need to read in this function def read_write_latency(ip, port): return(0) # DEPRECATED FUNCTION: latency is instant and could be read from go-ycsb. No need to read in this function def read_get_throughput(ip, port): return(0) # DEPRECATED FUNCTION: throughput is instant and could be read from go-ycsb. No need to read in this function def read_get_latency(ip, port): return(0) # DEPRECATED FUNCTION: latency is instant and could be read from go-ycsb. No need to read in this function def read_scan_throughput(ip, port): return(0) # DEPRECATED FUNCTION: throughput is instant and could be read from go-ycsb. No need to read in this function def read_scan_latency(ip, port): return(0) # DEPRECATED FUNCTION: latency is instant and could be read from go-ycsb. No need to read in this function def read_store_size(ip, port): return(0) def read_compaction_cpu(ip, port): cmd="ps -aux|grep beaver_datanode|grep -v 'grep'|grep -v '/bin/sh'|awk -F' *' '{print $3}'" res=os.popen(cmd).read() if len(res) == 0: return 0 else: return(res) def read_compaction_mem(ip, port): cmd="ps -aux|grep beaver_datanode|grep -v 'grep'|grep -v '/bin/sh'|awk -F' *' '{print $4}'" res=os.popen(cmd).read() if len(res) == 0: return 0 else: return(res) def read_search_latency(ip, port): url = "http://"+ip+":"+port+"/_search?index="+index_forsearch+"&sid=test&rpc_timeout=60" data = pb_forsearch testnum = 20 num = 100 restime = [] # costime = [] for i in range(num + testnum): start_api = beaverrequest(url, data) if i >= testnum: # restime.append(start_api[1]) restime.append(start_api[0]["timecost"]) sortedRestime = sorted(restime) newrestime = sortedRestime[:-10] return sum(newrestime) / len(newrestime) def beaverrequest(url, data): r = requests.post(url, data=data) return [r.json(), r.elapsed.total_seconds(), r.status_code] metric_set=\ {"write_throughput": { "read_func": read_write_throughput, "lessisbetter": 0, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "write_latency": { "read_func": read_write_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "get_throughput": { "read_func": read_get_throughput, "lessisbetter": 0, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "get_latency": { "read_func": read_get_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "scan_throughput": { "read_func": read_scan_throughput, "lessisbetter": 0, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "scan_latency": { "read_func": read_scan_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "store_size": { "read_func": read_store_size, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #instant }, "compaction_cpu": { "read_func": read_compaction_cpu, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "compaction_mem": { "read_func": read_compaction_mem, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, "search_latency": { "read_func": read_search_latency, "lessisbetter": 1, # whether less value of this metric is better(1: yes) "calc": "ins", #incremental }, } #------------------workload controller------------------ def run_workload(wl_type): return(None) def load_workload(wl_type): return(None) #------------------common functions------------------ def set_tikvyml(knob_sessname, knob_val): ymldir=os.path.join(autotestdir,"conf","beaver_test.gflags_new") tmpdir=os.path.join(autotestdir,"conf","beaver_test.gflags") if not os.path.exists(os.path.dirname(tmpdir)): os.makedirs(os.path.dirname(tmpdir)) os.popen("cp "+gflagsfile+" "+tmpdir).read() with open(tmpdir, 'r') as read_file, open(ymldir, 'w') as write_file: dic={} for line in read_file: value = line.strip().split("=") if len(value) > 1: dic[value[0]] = value[1] if(knob_set[knob_sessname]['type']=='enum'): idx=knob_val knob_val=knob_set[knob_sessname]['enumval'][idx] if(knob_set[knob_sessname]['type']=='bool'): if(knob_val==0): knob_val='false' else: knob_val='true' if(knob_sessname=='--max_shard_size'): knob_val=str(knob_val)+"g" if(knob_sessname=='--max_per_search_ram' or knob_sessname=='--max_per_sub_search_ram'): knob_val=str(knob_val)+"m" if(knob_sessname in dic): dic[knob_sessname] = knob_val else: return('failed') print("set_beaver_datanode_gflags:: ",knob_sessname, knob_val) for kkk in dic: write_file.write(kkk+"="+str(dic[kkk])+'\n') # os.popen("rm "+tmpdir+" && "+"mv "+ymldir+" "+tmpdir) os.remove(tmpdir) os.rename(ymldir, tmpdir) time.sleep(0.5) return('success') # if(knob_name=='block-size'): # knob_val=str(knob_val)+"KB" # if(knob_name=='write-buffer-size' or knob_name=='max-bytes-for-level-base' or knob_name=='target-file-size-base'): # knob_val=str(knob_val)+"MB" # if(knob_name in tmpcontent[knob_sess[0]][knob_sess[1]]): # TODO: only support 2 level of knob_sess currently # tmpcontent[knob_sess[0]][knob_sess[1]][knob_name]=knob_val # else: # return('failed') # print("set_tikvyml:: ",knob_sessname, knob_sess, knob_name, knob_val) # ymlf=open(ymldir, 'w') # yaml.dump(tmpcontent, ymlf, Dumper=yaml.RoundTripDumper) # os.popen("rm "+tmpdir+" && "+"mv "+ymldir+" "+tmpdir) # time.sleep(0.5) # return('success') def set_knob(knob_name, knob_val): changebyyml=knob_set[knob_name]["changebyyml"] if(changebyyml): res=set_tikvyml(knob_name, knob_val) else: func=knob_set[knob_name]["set_func"] res=func(beaver_broker_ip, beaver_broker_port, knob_val) return res def read_knob(knob_name, knob_cache): res=knob_cache[knob_name] return res def read_metric(metric_name, rres=None): if(rres!=None): rl=rres.split('\n') rl.reverse() if(metric_name=="write_latency"): i=0 while((not rl[i].startswith('UPDATE ')) and (not rl[i].startswith('INSERT '))): i+=1 dat=rl[i][rl[i].find("Avg(us):") + 9:].split(",")[0] dat=int(dat) return(dat) elif(metric_name=="get_latency"): i=0 while(not rl[i].startswith('READ ')): i+=1 dat=rl[i][rl[i].find("Avg(us):") + 9:].split(",")[0] dat=int(dat) return(dat) elif(metric_name=="scan_latency"): i=0 while(not rl[i].startswith('SCAN ')): i+=1 dat=rl[i][rl[i].find("Avg(us):") + 9:].split(",")[0] dat=int(dat) return(dat) elif(metric_name=="write_throughput"): i=0 while((not rl[i].startswith('UPDATE ')) and (not rl[i].startswith('INSERT '))): i+=1 dat=rl[i][rl[i].find("OPS:") + 5:].split(",")[0] dat=float(dat) return(dat) elif(metric_name=="get_throughput"): i=0 while(not rl[i].startswith('READ ')): i+=1 dat=rl[i][rl[i].find("OPS:") + 5:].split(",")[0] dat=float(dat) return(dat) elif(metric_name=="scan_throughput"): i=0 while(not rl[i].startswith('SCAN ')): i+=1 dat=rl[i][rl[i].find("OPS:") + 5:].split(",")[0] dat=float(dat) return(dat) func=metric_set[metric_name]["read_func"] res=func(beaver_broker_ip, beaver_broker_port) return res def init_knobs(): # if there are knobs whose range is related to PC memory size, initialize them here pass def calc_metric(metric_after, metric_before, metric_list): num_metrics = len(metric_list) new_metric = np.zeros([1, num_metrics]) for i, x in enumerate(metric_list): if(metric_set[x]["calc"]=="inc"): new_metric[0][i]=metric_after[0][i]-metric_before[0][i] elif(metric_set[x]["calc"]=="ins"): new_metric[0][i]=metric_after[0][i] return(new_metric) # def restart_db(): # #cmd="cd /home/tidb/tidb-ansible/ && ansible-playbook unsafe_cleanup_data.yml" # dircmd="cd "+ autotestdir + " && " # clrcmd="ansible-playbook unsafe_cleanup_data.yml" # depcmd="ansible-playbook deploy.yml" # runcmd="ansible-playbook start.yml" # ntpcmd="ansible-playbook -i hosts.ini deploy_ntp.yml -u tidb -b" #need sleep 10s after ntpcmd # print("-------------------------------------------------------") # clrres = os.popen(dircmd+clrcmd).read() # if("Congrats! All goes well" in clrres): # print("unsafe_cleanup_data finished, res == "+clrres.split('\n')[-2]) # else: # print(clrres) # print("unsafe_cleanup_data failed") # exit() # print("-------------------------------------------------------") # ntpres = os.popen(dircmd + ntpcmd).read() # time.sleep(10) # if ("Congrats! All goes well" in ntpres): # print("set ntp finished, res == " + ntpres.split('\n')[-2]) # else: # print(ntpres) # print("set ntp failed") # exit() # print("-------------------------------------------------------") # depres = os.popen(dircmd + depcmd).read() # if ("Congrats! All goes well" in depres): # print("deploy finished, res == "+depres.split('\n')[-2]) # else: # print(depres) # print("deploy failed") # exit() # print("-------------------------------------------------------") # runres = os.popen(dircmd + runcmd).read() # if ("Congrats! All goes well" in runres): # print("start finished, res == "+runres.split('\n')[-2]) # else: # print(runres) # print("start failed") # exit() # print("-------------------------------------------------------") def restart_beaver_datanode(): dircmd="cd "+ autotestdir + " && " stopcmd="ps -ef|grep beaver_datanode|grep -v 'grep'|awk -F' *' '{print $2}'|xargs kill" querycmd="ps -ef|grep beaver_datanode|grep -v 'grep'|awk -F' *' '{print $2}'" beaver_conf=os.path.join(autotestdir,"conf","beaver_datanode.gflags") test_conf=os.path.join(autotestdir,"conf","beaver_test.gflags") startcmd=beaver_datanode_file+" --flagfile="+beaver_conf+" --config_path="+config_path+" --log_dir="+log_dir+" > /dev/null 2>&1" print("-----------------------------stop beaver datanode--------------------------") stopres = os.popen(stopcmd).read() if len(os.popen(querycmd).read()) != 0: for i in range(5): time.sleep(2) psres = os.popen(querycmd).read() if len(psres) == 0 : print("Beaver has been closed successfully!") break else: print("Waiting beaver to close, pid is %s" % psres) if i == 4: print("Beaver close failed!") exit() else: print("Beaver closed successfully!") print("-----------------------------replace config file--------------------------") if os.path.exists(beaver_conf): os.remove(beaver_conf) replaceres = os.popen("cp "+test_conf+" "+beaver_conf).read() if len(replaceres) == 0: print("replace config file finished!") else: print(replaceres) print("replace config file failed!") exit() print("-----------------------------start beaver datanode--------------------------") startres = os.popen(startcmd) beaver_url = "http://"+beaver_broker_ip+":"+beaver_broker_port+"/_search?index="+index_forsearch+"&sid=test&rpc_timeout=60" for i in range(20): time.sleep(10) curlres = requests.post(beaver_url, data=pb_forsearch).json() if "result" in curlres and curlres['result'] == False: print("Waiting beaver datanode to be available...") else: print("Beaver datanode is available!") break if i == 19: print(curlres) print("Beaver start failed!") exit() print("---------------------------------------------------------------------------")
1.96875
2
process.py
JamesMilnerUK/facebook-pop-viz
2
12782173
<reponame>JamesMilnerUK/facebook-pop-viz from osgeo import gdal, ogr from os import remove, getcwd from os.path import isfile, join, basename import sys import numpy as np import traceback from shutil import copyfile # this allows GDAL to throw Python Exceptions gdal.UseExceptions() def single_band( input_file, output_file ): ds = gdal.Open(input_file) band = ds.GetRasterBand(1) block_sizes = band.GetBlockSize() x_block_size = block_sizes[0] y_block_size = block_sizes[1] xsize = band.XSize ysize = band.YSize format = "GTiff" driver = gdal.GetDriverByName( format ) dst_ds = driver.Create(output_file, xsize, ysize, 1, gdal.GDT_Byte ) dst_ds.SetGeoTransform(ds.GetGeoTransform()) dst_ds.SetProjection(ds.GetProjection()) band = dst_ds.GetRasterBand(1) array = band.ReadAsArray(0,0,xsize,ysize).astype(np.float32) band.WriteArray(array) dst_ds = None return output_file def downsample_output (input_file, downsample): ds_in = gdal.Open(input_file) drv = gdal.GetDriverByName( "GTiff" ) output_file = input_tif.replace(".tif", "") + "_downsample.tif" band = ds_in.GetRasterBand(1) high_res = band.ReadAsArray(0,0,ds_in.RasterXSize, ds_in.RasterYSize).astype(np.float32) random_prefix = ds_in.RasterCount # Check for a temporary file random_prefix = 0 while isfile(str(random_prefix) + "_temp.tif") == True: random_prefix += 1 temp_file = str(random_prefix) + "_temp.tif" print "Making temporary file " + temp_file + "..." ds_out = drv.Create(temp_file, ds_in.RasterXSize, ds_in.RasterYSize, 1, gdal.GDT_Byte ) ds_out.SetGeoTransform( ds_in.GetGeoTransform()) ds_out.SetProjection ( ds_in.GetProjectionRef() ) ds_out.GetRasterBand(1).WriteArray ( high_res ) geoTransform = ds_in.GetGeoTransform() drv = gdal.GetDriverByName( "GTiff" ) resampled = drv.Create( output_file , ds_in.RasterXSize/downsample, ds_in.RasterYSize/downsample, 1, gdal.GDT_Byte ) transform = ( geoTransform[0], geoTransform[1]*downsample, geoTransform[2], geoTransform[3],geoTransform[4], geoTransform[5]*downsample ) resampled.SetGeoTransform( transform ) resampled.SetProjection ( ds_in.GetProjectionRef() ) # We can set some meta data for use in the client transform = resampled.GetGeoTransform() width = resampled.RasterXSize height = resampled.RasterYSize minx = transform[0] maxx = transform[0] + width * transform[1] + height * transform[2] miny = transform[3] + width * transform[4] + height * transform[5] maxy = transform[3] resampled.SetMetadata({ "minX": str(minx), "maxX": str(maxx), "minY": str(miny), "maxY": str(maxy) }) print "Extent: " print "Min X", str(minx) print "Min Y", str(miny) print "Max X", str(maxx) print "Max Y", str(maxy) gdal.RegenerateOverviews ( ds_out.GetRasterBand(1), [ resampled.GetRasterBand(1) ], 'mode' ) resampled.GetRasterBand(1).SetNoDataValue ( 0 ) resampled = None ds_out = None ds_in = None print "Removing temporary file " + temp_file + "..." try: remove(temp_file) except OSError: pass return output_file if __name__ == '__main__': try: if len(sys.argv) == 1: print "Input file not specified" else: input_tif = str(sys.argv[1]) print "Resampling", input_tif try: oneband = input_tif.replace(".tif", "") + "_oneband.tif" single_band(input_tif, oneband) except MemoryError: print "Raster was too large to to put into memory during extract to single band" if len(sys.argv) != 3: downsample = 5 else: downsample = int(sys.argv[2]) try: output_file = downsample_output(input_tif, downsample) copyfile(output_file, join(getcwd(), "data", basename(output_file))) print "...Done!" except MemoryError: print "Raster was too large to put into memory during resampling" except: error = sys.exc_info()[0] print "There was an error: ", error, "\n" print traceback.format_exc()
2.421875
2
bionumpy/string_matcher.py
knutdrand/bionumpy
0
12782174
<filename>bionumpy/string_matcher.py<gh_stars>0 from bionumpy.rollable import RollableFunction from bionumpy.sequences import as_sequence_array import itertools import numpy as np import bionumpy as bnp import re from bionumpy.sequences import Sequence class StringMatcher(RollableFunction): def __init__(self, matching_sequence, encoding): self._encoding = encoding self._matching_sequence_array = as_sequence_array(matching_sequence, encoding=encoding) @property def window_size(self): return len(self._matching_sequence_array) def __call__(self, sequence): return np.all(sequence == self._matching_sequence_array, axis=-1) class FixedLenRegexMatcher(RollableFunction): def __init__(self, matching_regex, encoding): self._sub_matchers = construct_fixed_len_regex_matchers(matching_regex, encoding) @property def window_size(self): return self._sub_matchers[0].window_size def __call__(self, sequence): union_of_sub_matches = self._sub_matchers[0](sequence) for matcher in self._sub_matchers: union_of_sub_matches = np.logical_or(union_of_sub_matches, matcher(sequence)) return union_of_sub_matches return np.all(sequence == self._matching_sequence_array, axis=-1) class MaskedStringMatcher(RollableFunction): def __init__(self, matching_sequence_array, mask): #assert isinstance(matching_sequence_array, Sequence), type(matching_sequence_array) assert isinstance(mask, np.ndarray) assert matching_sequence_array.shape == mask.shape self._matching_sequence_array = matching_sequence_array self._mask = mask @property def window_size(self): return len(self._matching_sequence_array) def __call__(self, sequence): direct_match = ( sequence == self._matching_sequence_array ) masked_or_match = np.logical_or(direct_match, self._mask) return np.all(masked_or_match, axis=-1) def construct_fixed_len_regex_matchers(matching_regex : str, encoding): r = re.compile('\[[^\]]+\]') hit = r.search(matching_regex) if hit is None: return [construct_wildcard_matcher(matching_regex, encoding)] else: start, end = hit.span() pre, post = matching_regex[0: start], matching_regex[end:] return list(itertools.chain.from_iterable( [construct_fixed_len_regex_matchers(pre+symbol+post, encoding) for symbol in matching_regex[start+1 : end-1]])) def construct_wildcard_matcher(matching_regex : str, encoding): mask = np.array( [symbol=='.' for symbol in matching_regex] ) assert encoding == bnp.encodings.ACTGEncoding, "NotImplemented: Support for other encodings awaits a generic way to replace '.'with an arbitrary symbol supported by the encoding" base_seq = as_sequence_array( matching_regex.replace('.', 'A'), encoding=encoding ) return MaskedStringMatcher(base_seq, mask)
2.515625
3
tests/fractalmusic/deepcopy/test_fm_deepcopy.py
alexgorji/musurgia
0
12782175
import os from musicscore.musictree.treescoretimewise import TreeScoreTimewise from musurgia.unittest import TestCase from musurgia.fractaltree.fractalmusic import FractalMusic path = str(os.path.abspath(__file__).split('.')[0]) class Test(TestCase): def setUp(self) -> None: self.score = TreeScoreTimewise() fm = FractalMusic(tempo=60, quarter_duration=10, reading_direction='vertical') fm.add_layer() fm.add_layer() self.fm = fm.get_children()[1] self.deep_copied = self.fm.__deepcopy__() def test(self, exp=None, act=None): if not exp: exp = self.fm if not act: act = self.deep_copied self.assertEqual(exp.value, act.value) self.assertEqual(exp.proportions, act.proportions) self.assertEqual(exp.value, act.value) self.assertEqual(exp.proportions, act.proportions) self.assertEqual(exp.tree_permutation_order, act.tree_permutation_order) self.assertEqual(exp.fractal_order, act.fractal_order) self.assertEqual(exp.reading_direction, act.reading_direction) self.assertEqual(exp._name, act._name) self.assertEqual(exp.tree_directions, act.tree_directions) self.assertEqual(exp.tempo, act.tempo) self.assertEqual(exp.midi_value, act.midi_value) def test_1(self): self.assertIsNone(self.deep_copied.up) def test_2(self): self.assertNotEqual(self.deep_copied.name, self.fm.name) def test_3(self): for leaf in self.fm.traverse_leaves(): leaf.chord.add_words(leaf.fractal_order) copied = self.fm.__deepcopy__() copied.get_simple_format().to_stream_voice().add_to_score(self.score) xml_path = path + '_test_3.xml' self.score.write(xml_path) expected_path = path + '_test_3_expected.xml' expected_score = TreeScoreTimewise() self.fm.get_simple_format().to_stream_voice().add_to_score(expected_score) expected_score.write(expected_path) self.assertCompareFiles(xml_path, expected_path) def test_deep_copied_child_midi_values(self): fm = FractalMusic(proportions=[1, 2, 3, 4], tree_permutation_order=[3, 1, 4, 2], quarter_duration=20, tempo=70) fm.midi_generator.midi_range = [36, 60] fm.add_layer() selected_node = fm.get_children()[0] copied_node = selected_node.__deepcopy__() copied_node.add_layer() actual = [node.midi_value for node in copied_node.get_children()] selected_node.add_layer() expected = [node.midi_value for node in selected_node.get_children()] self.assertEqual(expected, actual)
2.46875
2
chisch/utils/jsonutils.py
zhaowenxiang/chisch
0
12782176
<filename>chisch/utils/jsonutils.py #! -*- coding: utf-8 -*- import simplejson from django.db import models from dss.Serializer import serializer from django.db.models.query import QuerySet def to_json(obj, **kwargs): exclude_attr = kwargs['exclude_attr'] if kwargs and 'exclude_attr' in kwargs else [] include_attr = kwargs['include_attr'] if kwargs and 'include_attr' in kwargs else [] return serializer( obj, datetime_format='string', output_type='json', exclude_attr=exclude_attr, include_attr=include_attr)
2.265625
2
dashboard/processors.py
JayaramanSudhakar/yorek-ssis-dashboard
0
12782177
from dashboard import app from distutils.util import strtobool @app.context_processor def utility_processor(): def tile_color(kpi_value): result = 'green' #if (kpi_value == 0) : # result = 'primary' if (kpi_value > 0) : result = 'red' return result return dict(tile_color = tile_color) @app.context_processor def utility_processor(): def tile_color_inv(kpi_value): result = 'green' #if (kpi_value == 0) : # result = 'primary' if (kpi_value < 0) : result = 'red' return result return dict(tile_color_inv = tile_color_inv) @app.context_processor def utility_processor(): def package_status_class(status): result = { 0 : 'default', 1 : 'default', 2 : 'info', 3 : 'danger', 4 : 'danger', 5 : 'default', 6 : 'danger', 7 : 'success', 8 : 'warning', 9 : 'default' } return result[status] return dict(package_status_class = package_status_class) @app.context_processor def utility_processor(): def executable_status_class(status): result = { 0 : 'success', 1 : 'danger', 2 : 'default', 3 : 'danger' } return result[status] return dict(executable_status_class = executable_status_class) @app.context_processor def utility_processor(): def boolean_to_check(value): result = "" if (value == 1): result = "check-" return result return dict(boolean_to_check = boolean_to_check)
2.234375
2
tests/trees_tests/splay_tree_test.py
warmachine028/datastax
5
12782178
<filename>tests/trees_tests/splay_tree_test.py from __future__ import annotations import random import unittest from datastax.errors import ( NodeNotFoundWarning, DeletionFromEmptyTreeWarning, DuplicateNodeWarning ) from datastax.trees import SplayTree from tests.trees_tests.common_helper_functions import ( inorder_items, level_wise_items, check_bst_property ) class TestSplayTree(unittest.TestCase): def setUp(self) -> None: self.s_tree = SplayTree() self.test_cases = 100 self.max_sample_size = 10 def test_array_representation(self): testcases = [ [*range(10)], [None, 10], [10, None, None], ['root', None, None, 'child'] ] results = [ [*range(9, -1, -1)], [], [10], ['child', 'root'] ] for testcase, result in zip(testcases, results): tree = SplayTree(testcase) self.assertEqual(result, tree.array_repr) def test_construction(self): numbers = range(1, 1000) for _ in range(self.test_cases): sample_size = random.randint(1, self.max_sample_size) sample = random.sample(numbers, sample_size) tree = SplayTree(sample) self.assertEqual(sorted(sample), inorder_items(tree)) # Check deletion after insertion to_delete = sample[random.randint(0, len(sample)) - 1] tree.delete(to_delete) check_bst_property(tree.root) # Test insertion after deletion tree.insert(to_delete) check_bst_property(tree.root) self.assertEqual(to_delete, tree.root.data) def test_delete(self): # Test deletion from empty Tree with self.assertWarns(DeletionFromEmptyTreeWarning): tree = SplayTree() tree.delete() self.assertEqual([], level_wise_items(tree)) sample = random.sample(range(100), self.max_sample_size) tree = SplayTree(sample) # Attempting deletion of invalid item from empty tree with self.assertWarns(NodeNotFoundWarning): tree.delete(404) # The largest node is slayed self.assertEqual(max(sample), tree.root.data) temp = list(sample) for item in sample: tree.delete(item) temp.remove(item) self.assertEqual(sorted(temp), inorder_items(tree)) # checking Emptiness self.assertTrue([] == tree.array_repr == level_wise_items(tree)) # Attempting deletion from empty tree with self.assertWarns(DeletionFromEmptyTreeWarning): tree.delete(404) # Attempt insertion after deletion insertion_order = random.sample(range(10), self.max_sample_size) for i, item in enumerate(insertion_order): tree.insert(item) self.assertEqual(item, tree.root.data) self.assertEqual(sorted(insertion_order[:i + 1]), inorder_items(tree)) if not i: self.assertEqual(item, tree.root.data) def test_insertion(self): numbers = range(1, 10000) for _ in range(self.test_cases): tree = self.s_tree sample_size = random.randint(1, self.max_sample_size) sample = random.sample(numbers, sample_size) for item in sample: tree.insert(item) # Check deletion after insertion to_delete = random.choice(sample) tree.delete(to_delete) temp = list(sample) temp.remove(to_delete) self.assertEqual(sorted(temp), inorder_items(tree)) # Again perform insertion tree.insert(to_delete) self.assertEqual(sorted(sample), inorder_items(tree)) self.assertTrue(check_bst_property(tree.root)) # Resetting the tree tree._root = None def test_insertion_duplicate(self): # Test duplicate node insertion: must splay last accessed node numbers = range(1, 1000) sample_size = random.randint(1, self.max_sample_size) sample = random.sample(numbers, sample_size) duplicate = random.choice(sample) tree = SplayTree(sample) with self.assertWarns(DuplicateNodeWarning): tree.insert(duplicate) self.assertEqual(sorted(sample), inorder_items(tree)) self.assertEqual(duplicate, tree.root.data) def test_search_empty_tree(self): with self.assertWarns(NodeNotFoundWarning): self.s_tree.search(404) # Filling the tree sample = random.sample(range(1, 100), 5) for item in sample: self.s_tree.insert(item) # Emptying the tree for item in sample: self.s_tree.delete(item) # Then performing search with self.assertWarns(NodeNotFoundWarning): self.s_tree.search(404) def test_search_invalid_item(self): # Filling the tree sample = random.sample(range(1, 100), 5) for item in sample: self.s_tree.insert(item) with self.assertWarns(NodeNotFoundWarning): self.s_tree.search(404) self.assertEqual(max(sample), self.s_tree.root.data) self.s_tree.search(-1) self.assertEqual(min(sample), self.s_tree.root.data) def test_deletion_empty_tree(self): with self.assertWarns(DeletionFromEmptyTreeWarning): self.s_tree.delete(404) # Filling the tree sample = random.sample(range(1, 100), 5) for item in sample: self.s_tree.insert(item) # Emptying the tree for item in sample: self.s_tree.delete(item) with self.assertWarns(NodeNotFoundWarning): self.s_tree.search(404) # perform insertion after that item = random.choice(sample) self.s_tree.insert(item) self.assertEqual(item, self.s_tree.root.data) def test_deletion_of_root(self): for _ in range(self.test_cases): # Filling the tree sample = random.sample(range(1, 100), 5) for item in sample: self.s_tree.insert(item) # Emptying the tree for _ in sample: self.s_tree.delete(self.s_tree.root.data) # Tree must be empty self.assertEqual(None, self.s_tree.root) self.assertEqual([], level_wise_items(self.s_tree)) # perform insertion after that item = random.choice(sample) self.s_tree.insert(item) self.assertEqual(item, self.s_tree.root.data) self.s_tree._root = None def test_delete_invalid_item(self): for _ in range(self.test_cases): # Filling the tree sample = random.sample(range(1, 100), 5) for item in sample: self.s_tree.insert(item) with self.assertWarns(NodeNotFoundWarning): self.s_tree.delete(404) self.assertEqual(max(sample), self.s_tree.root.data) self.s_tree.delete(-1) self.assertEqual(min(sample), self.s_tree.root.data) self.assertEqual(sorted(sample), inorder_items(self.s_tree)) self.assertTrue(check_bst_property(self.s_tree.root)) # resetting the tree self.s_tree._root = None def test_search(self): sample = random.sample(range(10), 10) item = random.choice(sample) tree = SplayTree(sample) self.assertEqual(item, tree.search(item).data) with self.assertWarns(NodeNotFoundWarning): self.assertNotEqual(11, tree.search(11).data) self.assertTrue(bool(tree.search(random.choice(sample)))) self.assertEqual(sorted(sample), inorder_items(tree)) self.assertTrue(check_bst_property(tree.root)) if __name__ == '__main__': unittest.main()
2.625
3
mlight/session.py
GitHK/mlight
0
12782179
<filename>mlight/session.py from collections import deque import motor.motor_asyncio class DBSession: def __init__(self, mongo_uri, database_name): self.mongo_uri = mongo_uri self.database_name = database_name self.client = motor.motor_asyncio.AsyncIOMotorClient(mongo_uri) self.registered_models = deque() @property def database(self): """ Returns the motor database object. """ return self.client[self.database_name] def register_model(self, model): """ Register models to session and also create indexes. """ if model not in self.registered_models: self.registered_models.append(model) async def create_indexes(self): """ Creates indexes on the registered collections. Note: If you removed an index it must be deleted from the database manually! """ for collection in self.registered_models: await collection.create_indexes() def clear_all(self): """ Removes all the documents ready to be flushed. """ for collection in self.registered_models: collection.clear_all() async def flush_all(self, check_integrity=True): """ Stores the current modified items to the database. :param check_integrity: if False skips the mapping check on each document. """ for obj in self.registered_models: await obj.flush_all(check_integrity)
2.5
2
tests/shops/rsonline.py
MrLeeh/shopy
0
12782180
<reponame>MrLeeh/shopy """ Copyright 2015 by <NAME> """ from shopy.shop import Shop with open('../shops/rsonline.json', 'r') as f: shop = Shop.from_json(f) iterator = shop.find("Batterien AAA 1.5V") for item in iterator: print(item, item.images)
2.765625
3
src/utils/formatting.py
AdityaSidharta/ML_server_framework
1
12782181
<reponame>AdityaSidharta/ML_server_framework import pandas as pd def df_na_value(df, schema): column_names = schema.get_col_names() for column_name in column_names: if column_name in df.columns: column_na_value = schema.get_col_na_value(column_name) df[column_name] = df[column_name].fillna(column_na_value) return df def df_format(df, schema): """converting all columns within a dataframe to have a certain type, as defined in int_cols, float_cols, str_cols, and date_cols""" int_cols = schema.get_int_cols() float_cols = schema.get_float_cols() str_cols = schema.get_str_cols() date_cols = schema.get_date_cols() time_cols = schema.get_time_cols() for column_name in int_cols: if column_name in df.columns: df[column_name] = df[column_name].astype(int) for column_name in float_cols: if column_name in df.columns: df[column_name] = df[column_name].astype(float) for column_name in str_cols: if column_name in df.columns: df[column_name] = df[column_name].astype(str) for column_name in date_cols: if column_name in df.columns: date_format = schema.get_col_format(column_name) df[column_name] = pd.to_datetime(df[column_name], format=date_format) for column_name in time_cols: if column_name in df.columns: time_format = schema.get_col_format(column_name) df[column_name] = pd.to_datetime(df[column_name], format=time_format) return df
2.96875
3
tools/SolBinding/Config/BaseConfig.py
wzhengsen/engine-x
0
12782182
<gh_stars>0 #!/usr/bin/env python3 # Copyright (c) 2021 - wzhengsen # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os from typing import Dict from Util.EnvChecker import EnvChecker from Util.Functions import ExceptImport try: import lupa except: lupa = ExceptImport("lupa") class NotFoundFileException(Exception): def __str__(self) -> str: return "未找到某些关键文件或环境变量。" class BaseConfig(object): class AnonymousType(): # 不允许匿名枚举。 Ban = 0 # 允许所有的匿名枚举。 All = 1 # 仅允许类中的匿名枚举。 Class = 2 # 仅允许全局的匿名枚举。 Global = 3 def __init__(self): ndkRoot = EnvChecker.Check_NDK_RootEnv() defaultInclude = EnvChecker.DefaultIncludePath() gccToolChain = EnvChecker.Find_GCC_ToolChain() llvmToolChain = EnvChecker.Find_LLVM_ToolChain() egx = os.environ.get("ENGINEX_ROOT") if not ndkRoot or not defaultInclude or not gccToolChain or not llvmToolChain or not egx: raise NotFoundFileException() lua = lupa.LuaRuntime(unpack_returned_tuples=True) lua.execute('package.path = package.path .. ";{}/?.lua"'.format(os.path.join(egx, "templates/lua-template-default/Resources/src").replace("\\", '/'))) self.LuaConfig = lua.require("OOP.Config") # Tag用于生成的注册函数中,作为和其它生成文件的区分。 self.Tag = None # TargetNamespace用于将所有CppNamespace简化成一个lua表名便于访问。 self.TargetNamespace = None # 指定一组c++命名空间,所有c++类将在符合的命名空间中查找,且可以和相同的类名区分开来。 # 比如:"cocos2d::Label" <-> "cocos2d::ui::Label" self.CppNameSpace = [] # 允许生成匿名枚举(属于全局或仅属于命名空间的匿名枚举可能在被include时多次生成,谨慎开启)。 self.AllowAnonymous = BaseConfig.AnonymousType.Class # 允许生成结构体类型(结构体普遍被转换为一个table,没有必要为每个结构体转换为用户类)。 self.AllowStruct = False # 宏判断,用于某些情况下的条件编译。 self.MacroJudgement = None # 使用大驼峰命名法(在最后阶段生效,不会影响命名空间)。 self.UpperCamelCase = True # 是否自动生成属性。 # 当一个方法能够接受一个参数,且前缀符合SetPrefix时,生成set属性; # 当一个方法能够返回一个非void值,且接受0个参数,前缀也还符合GetPrefix时,生成get属性。 self.AutoProperties = True # 对于那些没有明确指示有new函数的类型,指定一个基类名, # 凡是继承此基类的,如果没有new函数,但有构造函数,也会为其生成构造代码。 # 使用类型全名,包含命名空间名。 self.ConstructBase = "" self.AndroidHeaders = [] self.AndroidFlags = [ "-target", "armv7-none-linux-androideabi", "-D_LIBCPP_DISABLE_VISIBILITY_ANNOTATIONS", "-DANDROID", "-D__ANDROID_API__=14", "-gcc-toolchain", gccToolChain, "--sysroot={}/platforms/android-14/arch-arm".format(ndkRoot), "-idirafter", "{}/sources/android/support/include".format(ndkRoot), "-idirafter", "{}/sysroot/usr/include".format(llvmToolChain), "-idirafter", "{}/sysroot/usr/include/arm-linux-androideabi".format(llvmToolChain), "-I{}/sources/cxx-stl/llvm-libc++/include".format(ndkRoot) ] dl = os.listdir("{}/lib64/clang".format(llvmToolChain)) if dl: self.AndroidFlags.append("-idirafter") self.AndroidFlags.append("{}/lib64/clang/{}/include".format(llvmToolChain, dl[0])) self.ClangHeaders = [] self.ClangFlags = ["-nostdinc", "-x", "c++", "-std=c++11", "-fsigned-char", "-U__SSE__"] self.Win32ClangFlags = [] # 额外参数,用于用户扩展。 self.ExtraArgs = [] # clang 参数。 self.ClangArgs = [ *self.AndroidHeaders, *self.ClangHeaders, *self.AndroidFlags, *self.ClangFlags, *defaultInclude ] # 欲解析的头文件。 self.Headers = [] # 头文件的查找路径。 self.SearchPaths = [] # 欲生成代码的类(也适用于结构体和枚举类型),可以使用正则表达式。 # 会使用"^$"括起来再进行正则匹配,如:"^Menu*$"。 self.Classes = [] # 欲跳过的类方法(也适用于成员变量)。 # 格式: # self.Skip = { # "SkipName" : ["method1","method2"], # "Skip.*" : ["method.*"] # } # 类名和方法名均可使用正则表达式。 self.Skip = {} # 欲重命名的方法(也适用于成员变量)。 # 格式: # self.RenameMembers = { # "renameClass.*" : {"renameMethod" : "newMethod"}, # } # 类名可以使用正则表达式。 self.RenameMembers = {} # 欲重命名的类。 # 格式: # self.RenameClasses = { # "renameClass" : "newClass", # "rename.*" : "newClass1" # } # 类名可使用正则表达式。 self.RenameClasses = {} # 欲将单例方法变更为单例属性的对应关系。 # 格式: # self.InstanceMethods = { # ".*Test.*" : ("getInstance","destroyInstance"), # ".*NoDestroyTest.*" : ("getInstance",None) # } # 类名和方法名均可使用正则表达式。 # 只有静态方法才生效。 # 变换后,可直接使用单例属性访问单例(原单例方法仍然可以使用),如: # local inst = MyTest.getInstance(); # local inst = MyTest.Instance; # MyTest.Instance = nil;--相当于调用MyTest.destroyInstance(); self.InstanceMethods: Dict[str, tuple] = {} # 当一个类在作为父类时,希望被跳过的类型列表。 self.ParentsClassesSkip = [] # 生成get属性的前缀。 self.GetPrefix = [] # 生成set属性的前缀。 self.SetPrefix = []
1.726563
2
code/arc081_a_01.py
KoyanagiHitoshi/AtCoder
3
12782183
<reponame>KoyanagiHitoshi/AtCoder<filename>code/arc081_a_01.py<gh_stars>1-10 from collections import Counter N=int(input()) A=Counter(list(map(int,input().split()))) x=[0,0] for a in A: if A[a]>1:x.append(a) if A[a]>3:x.append(a) x.sort() print(x[-1]*x[-2])
3.21875
3
python/data_structures/stack.py
educauchy/algorithms
0
12782184
from typing import List, Optional, Any class StackOverflow(Exception): pass class StackUnderflow(Exception): pass class Stack(): def __init__(self, capacity: int = 10): """ :param capacity: Maximum capacity of stack :var top: Index of the current top element :var container: Container for elements """ self.capacity: int = capacity self.top: Optional[Any] = None self.container: List[Any] = [] def is_empty(self) -> bool: return self.top is None def push(self, item: Any) -> None: if self.top is not None and self.top + 1 == self.capacity: raise StackOverflow('Too much elements for the stack') else: self.container.append(item) if self.top is None: self.top = 0 else: self.top += 1 def pop(self) -> Any: if self.top is None: raise StackUnderflow('No elements in the stack') else: self.top -= 1 if self.top < 0: self.top = None return self.container.pop() def top(self) -> Any: return self.container[self.top] def __str__(self): return 'Stack(capacity={}, [{}])'.format(self.capacity, ', '.join(str(el) for el in self.container)) def __repr__(self): return 'Stack(capacity={}, [{}])'.format(self.capacity, ', '.join(str(el) for el in self.container)) if __name__ == '__main__': st = Stack(10) st.push(1) print(st) st.push(3) print(st) st.push(5) print(st) st.push(7) print(st) st.pop() print(st.is_empty()) print(st)
3.796875
4
test/test_matcher/test_marketorder.py
Miksus/ecosys
2
12782185
<gh_stars>1-10 import pytest import sys sys.path.append('..') from ecosys.trading_platform.matcher.stockmarket import StockMatcher def test_last_price_only_market_orders(): market = StockMatcher() market.place_ask(quantity=50, order_type="market", party="Market Asker") market.place_bid(quantity=100, order_type="market", party="Market Bidder") bid_quantity = market.order_book["market"]["bid"]["quantity"].sum() ask_quantity = market.order_book["market"]["ask"]["quantity"].sum() market.clear() assert (market.last_price is None) and (100 == bid_quantity) and (50 == ask_quantity) def test_oversupply(): market = StockMatcher() market.place_bid(price=4.0, quantity=100, party="Bidder") market.place_ask(quantity=200, order_type="market", party="Market Asker") market.clear() bid_quantity = market.order_book["limit"]["bid"]["quantity"].sum() ask_quantity = market.order_book["market"]["ask"]["quantity"].sum() assert (4.0 == market.last_price) and (0 == bid_quantity) and (100 == ask_quantity) def test_undersupply(): market = StockMatcher() market.place_bid(price=4.0, quantity=200, party="Bidder") market.place_ask(quantity=100, order_type="market", party="Market Asker") market.clear() bid_quantity = market.order_book["limit"]["bid"]["quantity"].sum() ask_quantity = market.order_book["market"]["ask"]["quantity"].sum() assert (4.0 == market.last_price) and (100 == bid_quantity) and (0 == ask_quantity) def test_overdemand(): market = StockMatcher() market.place_bid(quantity=200, order_type="market", party="Market Bidder") market.place_ask(price=4.0, quantity=100, party="Asker") market.clear() bid_quantity = market.order_book["market"]["bid"]["quantity"].sum() ask_quantity = market.order_book["limit"]["ask"]["quantity"].sum() assert (4.0 == market.last_price) and (100 == bid_quantity) and (0 == ask_quantity) def test_underdemand(): market = StockMatcher() market.place_bid(quantity=50, order_type="market", party="Market Bidder") market.place_ask(price=4.0, quantity=100, party="Asker") market.clear() bid_quantity = market.order_book["market"]["bid"]["quantity"].sum() ask_quantity = market.order_book["limit"]["ask"]["quantity"].sum() assert (4.0 == market.last_price) and (0 == bid_quantity) and (50 == ask_quantity) def test_market_to_market(): "Opposite market orders should trade with last price" market = StockMatcher() market.place_bid(quantity=1, price=5.0, order_type="limit", party="Bidder") market.place_ask(quantity=1, price=5.0, order_type="limit", party="Asker") market.clear() market.place_bid(quantity=200, order_type="market", party="Market Bidder") market.place_ask(quantity=200, order_type="market", party="Market Asker") market.clear() bid_quantity = market.order_book["market"]["bid"]["quantity"].sum() ask_quantity = market.order_book["market"]["ask"]["quantity"].sum() assert (5.0 == market.last_price) and (0 == bid_quantity) and (0 == ask_quantity) def test_market_priority(): "Market orders should be filled first" market = StockMatcher() market.place_ask(quantity=500, price=5.0, order_type="limit", party="Asker") market.place_bid(quantity=100, price=4.0, order_type="limit", party="Bidder") market.place_bid(quantity=500, order_type="market", party="Market Bidder") market.place_bid(quantity=100, price=4.0, order_type="limit", party="Bidder") market.clear() bid_quantity_market = market.order_book["market"]["bid"]["quantity"].sum() bid_quantity_limit = market.order_book["limit"]["bid"]["quantity"].sum() assert (5.0 == market.last_price) and (0 == bid_quantity_market) and (200 == bid_quantity_limit)
2.484375
2
setup.py
aymericvie/EvoNetworks
0
12782186
<reponame>aymericvie/EvoNetworks import os os.system("pip install numpy") os.system("pip install matplotlib") os.system("pip install networkx") os.system("pip install tqdm")
1.46875
1
platform/hwconf_data/zgm13/upgrade/sdk_2_7_3_Patch/upgradeUtility.py
lenloe1/v2.7
0
12782187
<filename>platform/hwconf_data/zgm13/upgrade/sdk_2_7_3_Patch/upgradeUtility.py # SDK 2.7.3 Patch upgrade utilities # Remove property with propertyId # Note this function returns an xmldevice which should be passed back up to the # upgradeDispatch level. Example: # newXmlDevice = removePropertyLine(xmlDevice, "CMU.HAL_CLK_HFCLK_SOURCE.ENUM", verbose) # return newXmlDevice def removePropertyLine(xmldevice, propertyId, verbose=False): xmlmode = xmldevice.getModes()[0] properties = xmlmode.getProperty() removeList = [] for i in range(0,len(properties)): p = properties[i] if propertyId == p.getPropertyId(): if verbose: print ("Removing %s" % (propertyId)) removeList.append(i) # reverse sort indicies in removeList so they can be removed from last to first for index in sorted(removeList, reverse=True): xmlmode.removeProperty(index) return xmldevice # Add a new property line def addNewProperty(xmldevice, fullPropertyId, value, verbose): xmlmode = xmldevice.getModes()[0] if verbose: print ("Adding %s" % fullPropertyId) newval = xmldevice.createPropertyValue(fullPropertyId.split('.')[0], fullPropertyId, value) xmlmode.addProperty(newval) return xmldevice # Checks if there are any instances of a certain object in the hwconf file # that have a certain value def propertyIDInHwconfHasValue(xmldevice, propertyId, value): xmlmode = xmldevice.getModes()[0] properties = xmlmode.getProperty() for i in range(0,len(properties)): p = properties[i] propId = p.getPropertyId() if propId == propertyId: if p.getValue() == value: return True
2.390625
2
examples/search_index.py
leafcoder/aliyun-tablestore-python-sdk
68
12782188
<filename>examples/search_index.py # -*- coding: utf8 -*- from example_config import * from tablestore import * import time import json table_name = 'SearchIndexExampleTable' index_name = 'search_index' nested_index_name = 'nested_search_index' client = None def term_query_with_multiple_version_response(table_name, index_name): query = TermQuery('k', 'key000') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) print ("***** 1.0.0 ~ 5.1.0 version: tuple *****") items = search_response.v1_response() print(items) print("***** 1.0.0 ~ 5.1.0 version: iter *****") for item in search_response: print(item) print ("***** 5.2.0 version *****") print(search_response.rows) def match_all_query(table_name, index_name): # simple queries: match all query and scan to get all data with next token query = MatchAllQuery() all_rows = [] next_token = None while True: search_response = client.search(table_name, index_name, SearchQuery(query, next_token=next_token, limit=100, get_total_count=True), columns_to_get=ColumnsToGet(['k', 't', 'g', 'ka', 'la'], ColumnReturnType.SPECIFIED)) all_rows.extend(search_response.rows) if not next_token: # data all returned break for row in all_rows: print(row) print ('Total rows: %d' % len(all_rows)) def _print_rows(rows, total_count): for row in rows: print(row) print ('Rows return: %d' % len(rows)) print ('Total count: %d' % total_count) def match_query(table_name, index_name): query = MatchQuery('t', 'this is 0') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL) ) _print_rows(search_response.rows, search_response.total_count) def match_phrase_query(table_name, index_name): query = MatchPhraseQuery('t', 'this is') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def term_query(table_name, index_name): query = TermQuery('k', 'key000') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def range_query(table_name, index_name): query = RangeQuery('k', 'key100', 'key500', include_lower=False, include_upper=False) search_response = client.search(table_name, index_name, SearchQuery(query, offset=100, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def prefix_query(table_name, index_name): query = PrefixQuery('k', 'key00') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def wildcard_query(table_name, index_name): query = WildcardQuery('k', 'key00*') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def terms_query(table_name, index_name): query = TermsQuery('k', ['key000', 'key100', 'key888', 'key999', 'key908', 'key1000']) search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def bool_query(table_name, index_name): # k > 'key100' and (l > 110 and l < 200) and not (k = 'key121') # and should_queries(k > 'key120' or l < 300, minimum_should_match=2) bool_query = BoolQuery( must_queries=[ RangeQuery('k', range_from='key100', include_lower=False), BoolQuery( must_queries=[ RangeQuery('l', range_from=110, include_lower=False), RangeQuery('l', range_to=200, include_upper=False) ], ) ], must_not_queries=[ TermQuery('k', 'key121') ], should_queries=[ RangeQuery('k', range_from='key120', include_lower=False), RangeQuery('l', range_to=300, include_upper=130) ], minimum_should_match=2 ) search_response = client.search(table_name, index_name, SearchQuery(bool_query, sort=Sort(sorters=[FieldSort('l', SortOrder.ASC)]), limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def geo_distance_query(table_name, index_name): query = GeoDistanceQuery('g', '32.5,116.5', 300000) sort = Sort(sorters=[ GeoDistanceSort('g', ['32.5,116.5', '32.0,116.0'], sort_order=SortOrder.DESC) ]) search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True, sort=sort), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def geo_bounding_box_query(table_name, index_name): query = GeoBoundingBoxQuery('g', '30.9,112.0', '30.2,119.0') search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def geo_polygon_query(table_name, index_name): query = GeoPolygonQuery('g', ['30.9,112.0', '30.5,115.0', '30.3, 117.0', '30.2,119.0']) search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def nested_query(table_name, index_name): nested_query = RangeQuery('n.nl', range_from=110, range_to=200, include_lower=True, include_upper=True) query = NestedQuery('n', nested_query) sort = Sort( sorters = [FieldSort('n.nl', sort_order=SortOrder.ASC, nested_filter=NestedFilter('n', RangeQuery('n.nl', range_from=150, range_to=200)))] ) search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True, sort=sort), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def function_score_query(table_name, index_name): query = FunctionScoreQuery( RangeQuery('l', range_from=100, range_to=300), FieldValueFactor('l') ) search_response = client.search(table_name, index_name, SearchQuery(query, limit=100, get_total_count=True), ColumnsToGet(return_type=ColumnReturnType.ALL)) _print_rows(search_response.rows, search_response.total_count) def prepare_data(rows_count): print ('Begin prepare data: %d' % rows_count) for i in range(rows_count): pk = [('PK1', i), ('PK2', 'pk_' + str(i % 10))] lj = i / 100 li = i % 100 cols = [('k', 'key%03d' % i), ('t', 'this is ' + str(i)), ('g', '%f,%f' % (30.0 + 0.05 * lj, 114.0 + 0.05 * li)), ('ka', '["a", "b", "%d"]' % i), ('la', '[-1, %d]' % i), ('l', i), ('b', i % 2 == 0), ('d', 0.1), ('n', json.dumps([{'nk':'key%03d' % i, 'nl':i, 'nt':'this is in nested ' + str(i)}]))] client.put_row(table_name, Row(pk, cols)) print ('End prepare data.') print ('Wait for data sync to search index.') time.sleep(10) def prepare_table(): table_meta = TableMeta(table_name, [('PK1', 'INTEGER'), ('PK2', 'STRING')]) table_options = TableOptions() reserved_throughput = ReservedThroughput(CapacityUnit(0, 0)) client.create_table(table_meta, table_options, reserved_throughput) def prepare_index(index_name, with_nested=False): field_a = FieldSchema('k', FieldType.KEYWORD, index=True, enable_sort_and_agg=True, store=True) field_b = FieldSchema('t', FieldType.TEXT, index=True, store=True, analyzer=AnalyzerType.SINGLEWORD) field_c = FieldSchema('g', FieldType.GEOPOINT, index=True, store=True) field_d = FieldSchema('ka', FieldType.KEYWORD, index=True, is_array=True, store=True) field_e = FieldSchema('la', FieldType.LONG, index=True, is_array=True, store=True) field_f = FieldSchema('l', FieldType.LONG, index=True, store=True) field_g = FieldSchema('b', FieldType.BOOLEAN, index=True, store=True) field_h = FieldSchema('d', FieldType.DOUBLE, index=True, store=True) if with_nested: field_n = FieldSchema('n', FieldType.NESTED, sub_field_schemas=[ FieldSchema('nk', FieldType.KEYWORD, index=True, store=True), FieldSchema('nl', FieldType.LONG, index=True, store=True), FieldSchema('nt', FieldType.TEXT, index=True, store=True), ]) fields = [field_a, field_b, field_c, field_d, field_e, field_f, field_g, field_h] if with_nested: fields.append(field_n) index_setting = IndexSetting(routing_fields=['PK1']) index_sort = Sort(sorters=[PrimaryKeySort(SortOrder.ASC)]) if not with_nested else None index_meta = SearchIndexMeta(fields, index_setting=index_setting, index_sort=index_sort) # default with index sort client.create_search_index(table_name, index_name, index_meta) def list_search_index(): for table, index_name in client.list_search_index(table_name): print ('%s, %s' % (table, index_name)) def describe_search_index(): index_meta, sync_stat = client.describe_search_index(table_name, index_name) print ('sync stat: %s, %d' % (str(sync_stat.sync_phase), sync_stat.current_sync_timestamp)) print ('index name: %s' % index_name) print ('index fields:') for field in index_meta.fields: print (' field name: %s' % field.field_name) print (' field type: %s' % str(field.field_type)) print (' field indexed: %s' % str(field.index)) print (' field stored: %s' % str(field.store)) print (' field is array: %s' % str(field.is_array)) print (' field allow sort and aggregate: %s' % str(field.enable_sort_and_agg)) print ('index routing keys: %s' % str(index_meta.index_setting.routing_fields)) print ('index sort: %s' % (index_meta.index_sort.sorters)) def delete_table(): try: client.delete_table(table_name) except: pass def delete_search_index(index_name): try: client.delete_search_index(table_name, index_name) except: pass if __name__ == '__main__': client = OTSClient(OTS_ENDPOINT, OTS_ID, OTS_SECRET, OTS_INSTANCE) delete_search_index(index_name) delete_search_index(nested_index_name) delete_table() prepare_table() prepare_index(index_name, with_nested=False) prepare_index(nested_index_name, with_nested=True) prepare_data(1000) list_search_index() describe_search_index() # perform queries term_query_with_multiple_version_response(table_name, index_name) match_all_query(table_name, index_name) match_query(table_name, index_name) match_phrase_query(table_name, index_name) term_query(table_name, index_name) range_query(table_name, index_name) prefix_query(table_name, index_name) terms_query(table_name, index_name) bool_query(table_name, index_name) wildcard_query(table_name, index_name) geo_distance_query(table_name, index_name) geo_bounding_box_query(table_name, index_name) geo_polygon_query(table_name, index_name) nested_query(table_name, nested_index_name) function_score_query(table_name, nested_index_name) delete_search_index(index_name) delete_search_index(nested_index_name) delete_table()
2.65625
3
pagination/page.py
pmaigutyak/mp-pagination
0
12782189
import functools import collections from django.template.loader import render_to_string from pagination.settings import MARGIN_PAGES_DISPLAYED, PAGE_RANGE_DISPLAYED class PageRepresentation(int): def __new__(cls, x, querystring): obj = int.__new__(cls, x) obj.querystring = querystring return obj def add_page_querystring(func): @functools.wraps(func) def wrapper(self, *args, **kwargs): result = func(self, *args, **kwargs) if isinstance(result, int): querystring = self._other_page_querystring(result) return PageRepresentation(result, querystring) elif isinstance(result, collections.Iterable): new_result = [] for number in result: if isinstance(number, int): querystring = self._other_page_querystring(number) new_result.append(PageRepresentation(number, querystring)) else: new_result.append(number) return new_result return result return wrapper class Page(object): template = 'pagination.html' def __init__(self, object_list, number, paginator): self.object_list = object_list self.paginator = paginator if paginator.request: self.base_queryset = self.paginator.request.GET.copy() self.number = PageRepresentation(number, self._other_page_querystring(number)) def __repr__(self): return '<Page %s of %s>' % (self.number, self.paginator.num_pages) def has_next(self): return self.number < self.paginator.num_pages def has_previous(self): return self.number > 1 def has_other_pages(self): return self.has_previous() or self.has_next() @add_page_querystring def next_page_number(self): return self.number + 1 @add_page_querystring def previous_page_number(self): return self.number - 1 def start_index(self): """ Returns the 1-based index of the first object on this page, relative to total objects in the paginator. """ # Special case, return zero if no items. if self.paginator.count == 0: return 0 return (self.paginator.per_page * (self.number - 1)) + 1 def end_index(self): """ Returns the 1-based index of the last object on this page, relative to total objects found (hits). """ # Special case for the last page because there can be orphans. if self.number == self.paginator.num_pages: return self.paginator.count return self.number * self.paginator.per_page @add_page_querystring def pages(self): if self.paginator.num_pages <= PAGE_RANGE_DISPLAYED: return range(1, self.paginator.num_pages + 1) result = [] left_side = PAGE_RANGE_DISPLAYED / 2 right_side = PAGE_RANGE_DISPLAYED - left_side if self.number > self.paginator.num_pages - PAGE_RANGE_DISPLAYED / 2: right_side = self.paginator.num_pages - self.number left_side = PAGE_RANGE_DISPLAYED - right_side elif self.number < PAGE_RANGE_DISPLAYED / 2: left_side = self.number right_side = PAGE_RANGE_DISPLAYED - left_side for page in range(1, self.paginator.num_pages + 1): if page <= MARGIN_PAGES_DISPLAYED: result.append(page) continue if page > self.paginator.num_pages - MARGIN_PAGES_DISPLAYED: result.append(page) continue if (page >= self.number - left_side) and (page <= self.number + right_side): result.append(page) continue if result[-1]: result.append(None) return result def _other_page_querystring(self, page_number): """ Returns a query string for the given page, preserving any GET parameters present. """ if self.paginator.request: self.base_queryset['page'] = page_number return self.base_queryset.urlencode() # raise Warning("You must supply Paginator() with the request object for a proper querystring.") return 'page=%s' % page_number def render(self): return render_to_string(self.template, { 'current_page': self, 'page_obj': self, # Issue 9 https://github.com/jamespacileo/django-pure-pagination/issues/9 # Use same naming conventions as Django })
2.28125
2
molecule/common/tests/test_containerd.py
incubateur-pe/containerd
1
12782190
<reponame>incubateur-pe/containerd<gh_stars>1-10 """Role testing files using testinfra.""" def test_containerd_installed(host): containerd = host.file("/usr/bin/containerd") assert containerd.exists assert containerd.user == "root" assert containerd.group == "root" assert containerd.mode == 0o755 def test_containerd_service(host): containerd = host.service("containerd") assert containerd.is_running assert containerd.is_enabled def test_containerd_config(host): config = host.file("/etc/containerd/config.toml") assert config.exists assert config.contains("http://10.0.4.40:5005") assert config.contains("insecure_skip_verify")
1.75
2
day16/part1.py
tatoonz/advent-of-code-2021
0
12782191
import sys input = bin(int(sys.stdin.readline().strip(), base=16))[2:] # filling missing leading 0 input = input.zfill(-(-len(input)//4)*4) def decode(msg): if msg == '' or int(msg) == 0: return 0 version = int(msg[0:3], 2) type_id = int(msg[3:6], 2) if type_id == 4: last_group = False cursor = 6 while not last_group: if msg[cursor] == '0': last_group = True cursor += 5 return version + decode(msg[cursor:]) length_type_id = msg[6] if length_type_id == '0': total_sub_packets_len = int(msg[7:22], 2) return version + decode(msg[22:22+total_sub_packets_len]) + decode(msg[22+total_sub_packets_len:]) return version + decode(msg[18:]) # result # sample1: 16 # smaple2: 12 # sample3: 23 # sample4: 31 # puzzle: 971 print(decode(input))
2.765625
3
Server/Python/src/dbs/dao/MySQL/BlockParent/Insert.py
vkuznet/DBS
8
12782192
#!/usr/bin/env python """ DAO Object for BlockParents table """ from dbs.dao.Oracle.BlockParent.Insert import Insert as OraBlockParentInsert class Insert(OraBlockParentInsert): pass
1.78125
2
arm_prosthesis/external_communication/models/dto/save_gesture_dto.py
paulrozhkin/arm_prosthesis_raspberry
2
12782193
from arm_prosthesis.external_communication.models.dto.entity_dto import EntityDto from arm_prosthesis.external_communication.models.dto.gesture_dto import GestureDto from gestures_pb2 import SaveGesture class SaveGestureDto(EntityDto): def __init__(self): self._time_sync = 0 self._gesture_dto = None @property def time_sync(self) -> int: return self._time_sync @property def gesture_dto(self) -> GestureDto: return self._gesture_dto def serialize(self) -> bytes: raise NotImplementedError def deserialize(self, byte_array: bytes): save_gesture_protobuf = SaveGesture() save_gesture_protobuf.ParseFromString(byte_array) self._time_sync = save_gesture_protobuf.time_sync self._gesture_dto = GestureDto() self._gesture_dto.create_from_protobuf_gesture(save_gesture_protobuf.gesture)
2.265625
2
soke-scripts/process/load.py
Wilfongjt/soke
0
12782194
from process.process import Process class Load(Process): def __init__(self, settings=None): Process.__init__(self, settings=settings) # import_file_name is full local file name or url to source #self.import_file_list=import_file_list #self.dataframe=None #self.dictionary={} #self.list={} #print('Load') ''' def get_dictionary(self): return self.dictionary def get_dataframe(self): return self.dataframe def get_list(self): return self.list '''
2.640625
3
es_dumpvec.py
eugene-yang/DESIRES18-QBD-Experiments
0
12782195
<filename>es_dumpvec.py<gh_stars>0 import argparse from pathlib import Path import pandas as pd import numpy as np import scipy.sparse as sp import json, warnings, socket, pickle, sys, re from elasticsearch import Elasticsearch from elasticsearch.helpers import scan from helpers import pbar parser = argparse.ArgumentParser(description='Dump Elasticsearch index as a document-term ' 'sparse matrix that can be used in `sklearn_exp.py`') parser.add_argument('server', type=str, help='Path to the Elasticsearch server, including ' 'hostname/IP and port') parser.add_argument('index', type=str, help='Name of the Elasticsearch index to be dumped.') parser.add_argument('output_name', type=str, help='Output file name (.pkl)') parser.add_argument('--ingested_text', type=str, default="./raw_text.csv", help='The ingested .csv file created by `helper.py ingest`') args = parser.parse_args() if __name__ == '__main__': es = Elasticsearch([ args.server ]) print("Loading text cache...") raw_text_index = pd.read_csv( args.ingested_text ).index finalfn = Path( args.output_name + ".pkl" ) if finalfn.exists(): raise FileExistsError("%s already exists."%finalfn) print("Start dumping from Elasticsearch") doc_terms = [] vocab = set() for i in pbar(raw_text_index.shape[0])(raw_text_index): d = es.termvectors(index=args.index, doc_type='document', id=i, fields='raw') vocab |= set( d['term_vectors']['raw']['terms'].keys() ) doc_terms.append({ v: d['term_vectors']['raw']['terms'][v]['term_freq'] for v in d['term_vectors']['raw']['terms'] }) vocab = sorted(list(vocab)) print("Vectorizing...") n_samples = raw_text_index.shape[0] n_features = len( vocab ) inv_vocab = { v:i for i,v in enumerate(vocab) } row = [] col = [] data = [] for i, doc in pbar(n_samples)(enumerate( doc_terms )): for term in doc: row.append(i) col.append( inv_vocab[term] ) data.append( doc[term] ) print("Transforming...") X = sp.csr_matrix(( data, (row,col) ), shape=(n_samples, n_features)) print("Saving...") pickle.dump({ "vec": X }, finalfn.open("wb") )
2.8125
3
pulumi/infra/fargate_service.py
ebcarty/grapl
0
12782196
import json from typing import List, Mapping, Optional, Sequence, Tuple, Union, cast import pulumi_aws as aws import pulumi_docker as docker from infra.cache import Cache from infra.config import ( DEPLOYMENT_NAME, REAL_DEPLOYMENT, SERVICE_LOG_RETENTION_DAYS, configured_version_for, ) from infra.ec2 import Ec2Port from infra.emitter import EventEmitter from infra.metric_forwarder import MetricForwarder from infra.network import Network from infra.policies import ECR_TOKEN_POLICY, attach_policy from infra.repository import Repository, registry_credentials from infra.service_queue import ServiceQueue import pulumi class GraplDockerBuild(docker.DockerBuild): def __init__( self, dockerfile: str, target: str, context: Optional[str] = None, args: Optional[Mapping[str, pulumi.Input[str]]] = None, env: Optional[Mapping[str, str]] = None, ): super().__init__( context=context, dockerfile=dockerfile, env={**(env or {}), "DOCKER_BUILDKIT": 1}, args={**(args or {}), "RUST_BUILD": "debug"}, target=target, # Quiet the Docker builds at `pulumi up` time # ...except it doesn't work with `buildx` yet # https://github.com/docker/buildx/issues/401 # extra_options=("--quiet",), ) class FargateTaskRole(aws.iam.Role): def __init__( self, name: str, opts: Optional[pulumi.ResourceOptions] = None ) -> None: super().__init__( f"{name}-task-role", description=f"Fargate task role for {name}", assume_role_policy=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "sts:AssumeRole", "Principal": {"Service": "ecs-tasks.amazonaws.com"}, } ], } ), opts=opts, ) class FargateExecutionRole(aws.iam.Role): def __init__( self, name: str, opts: Optional[pulumi.ResourceOptions] = None ) -> None: super().__init__( f"{name}-execution-role", description=f"Fargate execution role for {name}", assume_role_policy=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "sts:AssumeRole", "Principal": {"Service": "ecs-tasks.amazonaws.com"}, } ], } ), opts=opts, ) class _AWSFargateService(pulumi.ComponentResource): def __init__( self, name: str, cluster: aws.ecs.Cluster, queue: ServiceQueue, input_emitter: EventEmitter, output_emitter: EventEmitter, network: Network, image: pulumi.Output[str], env: Mapping[str, Union[str, pulumi.Output[str]]], forwarder: MetricForwarder, entrypoint: Optional[List[str]] = None, command: Optional[List[str]] = None, opts: Optional[pulumi.ResourceOptions] = None, ) -> None: """ :param command: supply an override to the CMD defined in the Dockerfile. """ super().__init__("grapl:AWSFargateService", name, None, opts) self.task_role = FargateTaskRole(name, opts=pulumi.ResourceOptions(parent=self)) ######################################################################## # TODO: CDK code has us consuming from all queues, but that's # likely excessive. The default service probably just needs to # consume from the main queue; similarly for the retry service # and retry queue # # We should probably bundle this concept up into a single # policy (one for the "default" case and one for the "retry" # case), and then put this into the ServiceQueue object. Then, # anything that needs to behave as a "default service" can # just attach the appropriate policy; similarly for things # that behave like "retry services". # # That would likely allow us to unify the Fargate- and # Lambda-based services, too. queue.grant_main_queue_consumption_to(self.task_role) queue.grant_retry_queue_consumption_to(self.task_role) queue.grant_dead_letter_queue_consumption_to(self.task_role) ######################################################################## ######################################################################## # TODO: As above, we don't need everything to be able to send # to all our queues. # # If we take the approach advocated above with a single policy # laying out the behavior we want, then these attachments can # go away, since they will have been subsumed into the ones # above. queue.grant_main_queue_send_to(self.task_role) queue.grant_retry_queue_send_to(self.task_role) queue.grant_dead_letter_queue_send_to(self.task_role) ######################################################################## input_emitter.grant_read_to(self.task_role) output_emitter.grant_write_to(self.task_role) self.execution_role = FargateExecutionRole( name, opts=pulumi.ResourceOptions(parent=self) ) # Incorporating the stack name into this log group name; # otherwise we'll end up dumping logs from different stacks # together. # # TODO: Consider a helper function for generating log group # names that adheres to this convention for all our services # (though this will be less of an issue once we migrate to # Kafka) self.log_group = aws.cloudwatch.LogGroup( f"{name}-log-group", name=f"/grapl/{DEPLOYMENT_NAME}/{name}", retention_in_days=SERVICE_LOG_RETENTION_DAYS, opts=pulumi.ResourceOptions(parent=self), ) aws.iam.RolePolicy( f"{name}-write-log-events", role=self.execution_role.name, policy=self.log_group.arn.apply( lambda arn: json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["logs:CreateLogStream", "logs:PutLogEvents"], "Resource": f"{arn}:*", } ], } ) ), opts=pulumi.ResourceOptions(parent=self.execution_role), ) # This is only needed if we're actually pulling from ECR, # which we don't do in production (because we're pulling from # Cloudsmith). The only time we use ECR is when we build a # Docker container locally, and that'll only happen for # individual developer sandbox deployments. # TODO: This feels hacky; consider other ways to model this. if not REAL_DEPLOYMENT: attach_policy(ECR_TOKEN_POLICY, self.execution_role) forwarder.subscribe_to_log_group(name, self.log_group) self.task = aws.ecs.TaskDefinition( # type: ignore[call-overload] f"{name}-task", family=f"{DEPLOYMENT_NAME}-{name}-task", container_definitions=pulumi.Output.all( queue_url=queue.main_queue_url, retry_url=queue.retry_queue_url, dead_letter_url=queue.dead_letter_queue_url, log_group=self.log_group.name, bucket=output_emitter.bucket.bucket, image=image, env=env, ).apply( lambda inputs: json.dumps( [ { # NOTE: it seems that *all* our containers # are named this. Perhaps due to CDK's # QueueProcessingFargateService abstraction? "name": "QueueProcessingContainer", "image": inputs["image"], "environment": _environment_from_map( { "QUEUE_URL": inputs["queue_url"], "SOURCE_QUEUE_URL": inputs["queue_url"], "DEST_BUCKET_NAME": inputs["bucket"], "DEPLOYMENT_NAME": DEPLOYMENT_NAME, "DEAD_LETTER_QUEUE_URL": inputs["dead_letter_url"], "RETRY_QUEUE_URL": inputs["retry_url"], **inputs["env"], } ), "logConfiguration": { "logDriver": "awslogs", "options": { "awslogs-stream-prefix": "logs", "awslogs-region": aws.get_region().name, "awslogs-group": inputs["log_group"], }, }, **({"entryPoint": entrypoint} if entrypoint else {}), **({"command": command} if command else {}), }, ] ) ), requires_compatibilities=["FARGATE"], cpu=256, memory=512, network_mode="awsvpc", # only option for Fargate task_role_arn=self.task_role.arn, execution_role_arn=self.execution_role.arn, opts=pulumi.ResourceOptions( parent=self, ), ) self.security_group = aws.ec2.SecurityGroup( f"{name}-security-group", vpc_id=network.vpc.id, opts=pulumi.ResourceOptions(parent=self), ) self.service = aws.ecs.Service( f"{name}-service", cluster=cluster.arn, network_configuration=aws.ecs.ServiceNetworkConfigurationArgs( assign_public_ip=False, subnets=[net.id for net in network.private_subnets], security_groups=[self.security_group.id], ), launch_type="FARGATE", desired_count=1, # TODO: Set this to 1 or 0 depending on default vs. retry deployment_minimum_healthy_percent=50, task_definition=self.task.arn, opts=pulumi.ResourceOptions( parent=self, ), ) self.register_outputs({}) class FargateService(pulumi.ComponentResource): def __init__( self, name: str, input_emitter: EventEmitter, output_emitter: EventEmitter, network: Network, image: docker.DockerBuild, env: Mapping[str, Union[str, pulumi.Output[str]]], forwarder: MetricForwarder, entrypoint: Optional[List[str]] = None, command: Optional[List[str]] = None, retry_image: Optional[docker.DockerBuild] = None, retry_entrypoint: Optional[List[str]] = None, retry_command: Optional[List[str]] = None, opts: Optional[pulumi.ResourceOptions] = None, ) -> None: super().__init__("grapl:FargateService", name, None, opts) self.queue = ServiceQueue(name, opts=pulumi.ResourceOptions(parent=self)) self.queue.subscribe_to_emitter(input_emitter) self.ecs_cluster = aws.ecs.Cluster( f"{name}-cluster", opts=pulumi.ResourceOptions(parent=self), ) # We're not calling this image, e.g., "foo-default" to account # for the (common) case that the corresponding retry service # uses the same image. (repository, image_name) = self._repository_and_image(name, image) self.default_service = _AWSFargateService( f"{name}-default", cluster=self.ecs_cluster, queue=self.queue, input_emitter=input_emitter, output_emitter=output_emitter, network=network, image=image_name, entrypoint=entrypoint, command=command, env=env, forwarder=forwarder, opts=pulumi.ResourceOptions(parent=self), ) if repository: repository.grant_access_to(self.default_service.execution_role) # If a separate retry image was provided, create a separate # repository for it; otherwise, reuse the existing repository # and image. retry_name = f"{name}-retry" (retry_repository, retry_image_name) = ( self._repository_and_image(retry_name, retry_image) if retry_image else (repository, image_name) ) self.retry_service = _AWSFargateService( retry_name, cluster=self.ecs_cluster, queue=self.queue, input_emitter=input_emitter, output_emitter=output_emitter, network=network, image=retry_image_name, entrypoint=retry_entrypoint or entrypoint, command=retry_command or command, env=env, forwarder=forwarder, opts=pulumi.ResourceOptions(parent=self), ) if retry_repository: retry_repository.grant_access_to(self.retry_service.execution_role) self.services = (self.default_service, self.retry_service) self._setup_default_ports() self.register_outputs({}) def _setup_default_ports(self) -> None: """ Can be overridden by subclasses. Most services are fine having an outbound 443. Has a cognate in service.py. """ for svc in self.services: Ec2Port("tcp", 443).allow_outbound_any_ip(svc.security_group) def allow_egress_to_cache(self, cache: Cache) -> None: """ Allow both the default and retry services to connect to the `cache`. """ for svc in self.services: cache.allow_egress_to_cache_for(svc._name, svc.security_group) def _repository_and_image( self, name: str, build: docker.DockerBuild ) -> Tuple[Optional[Repository], pulumi.Output[str]]: version = configured_version_for(name) if version: image_name = f"docker.cloudsmith.io/grapl/raw/{name}:{version}" pulumi.info(f"Version found for {name}: {version} ({image_name})") # It's a bit of a bummer to need this cast :/ return (None, cast(pulumi.Output[str], image_name)) else: # create ECR, build image, push to ECR, return output pulumi.info( f"Version NOT found for {name}; performing local container image build" ) repository = Repository(name, opts=pulumi.ResourceOptions(parent=self)) image = docker.Image( name, image_name=repository.registry_qualified_name, build=build, registry=registry_credentials(), opts=pulumi.ResourceOptions(parent=self), ) # The built image name will have a checksum appended to it, # thus eliminating the need to use tags. return (repository, image.image_name) def _environment_from_map(env: Mapping[str, str]) -> Sequence[Mapping[str, str]]: """ Generate a list of environment variable dictionaries for an ECS task container definition from a standard dictionary. """ return [{"name": k, "value": v} for (k, v) in env.items()]
1.789063
2
src/python/WMCore/WMBS/MySQL/Fileset/ListFilesetByTask.py
khurtado/WMCore
21
12782197
<gh_stars>10-100 #!/usr/bin/env python """ _ListFilesetByTask_ MySQL implementation of Fileset.ListFilesetByTask """ __all__ = [] from WMCore.Database.DBFormatter import DBFormatter class ListFilesetByTask(DBFormatter): sql = """SELECT id, name, open, last_update FROM wmbs_fileset WHERE id IN (SELECT fileset FROM wmbs_subscription WHERE workflow IN (SELECT id FROM wmbs_workflow WHERE task = :task))""" def formatDict(self, result): """ _formatDict_ Cast the id attribute to an int because the DBFormatter turns everything into strings. """ tempResults = DBFormatter.formatDict(self, result) formattedResults = [] for tempResult in tempResults: tempResult["id"] = int(tempResult["id"]) formattedResults.append(tempResult) return formattedResults def execute(self, task = None, conn = None, transaction = False): result = self.dbi.processData(self.sql, {"task": task}, conn = conn, transaction = transaction) return self.formatDict(result)
2.515625
3
Interpolation/TridiagonalSol.py
ssklykov/collection_numCalc
0
12782198
# -*- coding: utf-8 -*- """ Solution of a system of linear equations with tridiagonal matrix Developed in the Spyder IDE @author: ssklykov """ def Solution(a, b, c, d): for i in range(1, len(d)): # Range always not included the last value # Below the literal implementation from the book a[i] /= b[i-1] # This is the substitution of a[i] values by alpha[i] = a[i]/b[i-1] b[i] -= a[i]*c[i-1] # -//- by b[i] - alpha[i]*c[i-1] d[i] -= a[i]*d[i-1] # this is "y" values - solution to the actual system Ly = d, there L composed from a,b,c d[len(d)-1] /= b[len(b)-1] # backward substitution for i in range(len(d)-2, -1): d[i] = (d[i] - c[i]*d[i+1])/b[i] return d # solution to the input system Gx = d
3.734375
4
dungeonMaster.py
p0l0satik/pyprak
0
12782199
d = {} nvis = set() s = input() while " " in s: k, v = s.split() if k == v: continue nvis.add(k) nvis.add(v) d.setdefault(v, []) d.setdefault(k, []) if v not in d[k]: d[k].append(v) if k not in d[v]: d[v].append(k) s = input() now = [s,] out = input() while len(now) and len(s): proc = now.pop() if proc == out: print("YES") break if proc in nvis: nvis.remove(proc) for t in d[proc]: if t in nvis: now.append(t) else: print("NO")
3.28125
3
colvar/compilers.py
kzinovjev/colvar
0
12782200
X_INDEX_INCREMENTS = {"x": 0, "y": 1, "z": 2} def compile_constant(schema): return {"type": "x", "params": {"value": schema["value"]}} def compile_cartesian(schema): return {"type": "x", "params": { "index": schema["atom"] * 3 + X_INDEX_INCREMENTS[schema["type"]] }} def compile_weight(weight): if isinstance(weight, dict): return compile_schema(weight) return {"type": "constant", "params": {"value": weight}} def compile_weights(weights): return list(map(compile_weight, weights)) def compile_center_cartesian(x, atoms, weights): return { "type": "linear", "params": { "colvars": [compile_cartesian({"type": x, "atom": atom}) for atom in atoms], "weights": compile_weights(weights), "normalize": True } } def compile_atom(atom): return [compile_cartesian({"type": _type, "atom": atom}) for _type in ("x", "y", "z")] def compile_center(center): if isinstance(center, list): return compile_schema(center) weights = center.get("weights", [1 for _ in center["atoms"]]) return [compile_center_cartesian(_type, center["atoms"], weights) for _type in ("x", "y", "z")] def compile_geometric(schema): if "centers" in schema: centers = list(map(compile_center, schema["centers"])) else: centers = list(map(compile_atom, schema["atoms"])) return {"type": schema["type"], "params": {"centers": centers}} def compile_sigmoid(schema): return {"type": "sigmoid", "params": {"colvar": compile_schema(schema["colvar"]), "L": schema.get("L", 1), "k": schema.get("k", 1), "x0": schema.get("x0", 0)} } def compile_linear(schema): return { "type": "linear", "params": {"colvars": compile_schema(schema["colvars"]), "weights": compile_weights(schema["weights"]), "normalize": schema.get("normalize", False)} } COMPILERS = {"constant": compile_constant, "x": compile_cartesian, "y": compile_cartesian, "z": compile_cartesian, "distance": compile_geometric, "angle": compile_geometric, "dihedral": compile_geometric, "point_plane": compile_geometric, "sigmoid": compile_sigmoid, "linear": compile_linear} def compile_schema(schema): if isinstance(schema, list): return list(map(compile_schema, schema)) if "params" in schema: return schema return COMPILERS.get(schema["type"], lambda _: _)(schema)
2.4375
2
Solutions/Correlation does not imply causation.py
GuardsmanPanda/ProjectLovelace
0
12782201
<filename>Solutions/Correlation does not imply causation.py def mean(a): return sum(a)/len(a) def std(a): m = mean(a) return (sum((x - m)**2 for x in a)/len(a))**0.5 def correlation_coefficient(x, y): xm, ym = mean(x), mean(y) return sum((x[i]-xm)*(y[i]-ym) for i in range(len(x)))/std(x)/std(y)/len(x) print(correlation_coefficient([ 5427, 5688, 6198, 6462, 6635, 7336, 7248, 7491, 8161, 8578, 9000], [18.079, 18.594, 19.753, 20.734, 20.831, 23.029, 23.597, 23.584, 22.525, 27.731, 29.449]))
2.859375
3
testing/micro-bench/server/app.py
jgrunert/Microservice-Fault-Injection
5
12782202
import random import string from flask import Flask, jsonify app = Flask(__name__) @app.route('/') def root(): return jsonify(result=''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(2 ** 10))) if __name__ == '__main__': app.run(debug=False, host='0.0.0.0')
2.625
3
01-DesenvolvimentoDeSistemas/02-LinguagensDeProgramacao/01-Python/01-ListaDeExercicios/02-Aluno/Edno/035.py
moacirsouza/nadas
1
12782203
# (01-Gabarito/035.py)) Desenvolva um programa que leia o comprimento de três retas e diga ao # usuário se elas podem ou não formar um triângulo. hipotenusa = float(input('Digite o valor do que será a hipotenusa\t: ')) cateto_a = float(input('Digite o valor do que será o cateto adjacente\t: ')) cateto_o = float(input('Digite o valor do que será o cateto oposto\t: ')) if pow(hipotenusa,2) == (pow(cateto_a,2)+pow(cateto_o,2)): print('Dá pra ser triângulo.') else: print('Não dá pra ser triângulo.') # Viajei. Não sabia que era assim que se calculava pra saber se dava pra fazer um triângulo.
4.21875
4
desafio042.py
RickChaves29/Desafios-Python
0
12782204
print('<>'*20) print('Analizador de trangulo') print('<>'*20) r1 = float(input('Primeiro valor: ')) r2 = float(input('Segundo valor: ')) r3 = float(input('Terceiro valor: ')) if r1 < r2 + r3 and r2 < r1 + r3 and r3 < r1 + r2: print('Os valores podem forma um triangulo') if r1 == r2 == r3: print('Tipo: EQUILÁTERO') elif r1 != r2 != r3 != r1: print('Tipo: ESCALENO') else: print('Tipo: ISÓSCELES') else: print('O valores não forma um triangulo')
4.09375
4
fairseq/modules/multibranch.py
ishine/lite-transformer
543
12782205
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from . import MultiheadAttention class MultiBranch(nn.Module): def __init__(self, branches, embed_dim_list): super().__init__() self.branches = nn.ModuleList(branches) self.embed_dim_list = embed_dim_list def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None): tgt_len, bsz, embed_size = query.size() assert sum(self.embed_dim_list) == embed_size out = [] attn = None start = 0 for idx, embed_dim in enumerate(self.embed_dim_list): branch = self.branches[idx] branch_type = type(branch) q = query[...,start:start+embed_dim] if key is not None: assert value is not None k, v = key[..., start:start+embed_dim], value[..., start:start+embed_dim] start += embed_dim if branch_type == MultiheadAttention: x, attn = branch(q, k, v, key_padding_mask, incremental_state, need_weights, static_kv, attn_mask) else: mask = key_padding_mask if mask is not None: q = q.masked_fill(mask.transpose(0, 1).unsqueeze(2), 0) x = branch(q.contiguous(), incremental_state=incremental_state) out.append(x) out = torch.cat(out, dim=-1) return out, attn
2.28125
2
ComputerVision/AruCO_Board.py
mateusribs/DissertacaoMestrado
0
12782206
<reponame>mateusribs/DissertacaoMestrado<filename>ComputerVision/AruCO_Board.py import numpy as np import cv2 as cv dictionar = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50) board = cv.aruco.GridBoard_create(2, 2, 0.05, 0.005, dictionar) img = board.draw((680,500), 10, 1) cv.imwrite('aruco_board.png', img) # Display the image to us cv.imshow('Gridboard', img) # Exit on any key cv.waitKey(0) cv.destroyAllWindows()
2.796875
3
src/infrastructure/translators/holiday_translator.py
gabrielleandro0801/holidays-importer
0
12782207
<reponame>gabrielleandro0801/holidays-importer from datetime import datetime from typing import Any from src.domain.holiday import Holiday DATE: dict = { 'FROM': '%Y-%m-%d', 'TO': '%Y/%m/%d' } def format_date(date: str) -> str: formatted_date: datetime = datetime.strptime(date, DATE["FROM"]) return formatted_date.strftime(DATE["TO"]) class HolidayTranslator: def __init__(self): pass def translate(self, holiday: dict) -> Holiday or None: category: str or None = holiday["type"].upper() return Holiday( date=format_date(holiday["date"]), name=holiday["name"], category=category ) def clean(self, holiday: Holiday) -> Holiday: if holiday is not None: return holiday def create_holiday_translator() -> Any: return lambda: HolidayTranslator()
3.40625
3
setup.py
alekbuza/python-sgetopt
1
12782208
<filename>setup.py #!/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2021 <NAME> <<EMAIL>> # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from os import path from setuptools import setup here = path.abspath(path.dirname(__file__)) with open(path.join(here, "README.md"), encoding="utf-8") as f: project_long_description = f.read() with open(path.join(here, "LICENSE"), encoding="utf-8") as f: project_license = f.read() setup( name="sgetopt", version="0.0.1", packages=["sgetopt"], python_requires=">=3.6", url="https://github.com/alekbuza/python-sgetopt", license=project_license, author="<NAME>", author_email="<EMAIL>", classifiers=[ "Operating System :: POSIX", "Programming Language :: Python :: 3.6", "Topic :: Software Development :: Libraries", ], description="Simplified implementation of getopt (Unix C-style) " "command-line arguments parser as Python decorator", long_description=project_long_description, long_description_content_type="text/markdown", )
1.351563
1
tests/repository/test_memory.py
kobibleu/easyrepo
0
12782209
<filename>tests/repository/test_memory.py from typing import Optional import pytest from pydantic import BaseModel from easyrepo.model.paging import PageRequest from easyrepo.repository.memory import MemoryRepository class TestModel(BaseModel): id: Optional[int] name: str class DictRepo(MemoryRepository[dict]): pass class ModelRepo(MemoryRepository[TestModel]): pass @pytest.fixture def dict_repo(): repo = DictRepo() repo._data = { 1: {"id": 1, "name": "entity1"}, 2: {"id": 2, "name": "entity2"}, 3: {"id": 3, "name": "entity3"} } yield repo @pytest.fixture def model_repo(): repo = ModelRepo() yield repo def test_count(dict_repo): assert dict_repo.count() == 3 def test_delete_all(dict_repo): dict_repo.delete_all() assert dict_repo.count() == 0 def test_delete_all_by_id(dict_repo): dict_repo.delete_all_by_id([1, 2]) assert dict_repo.count() == 1 def test_delete_by_id(dict_repo): dict_repo.delete_by_id(1) assert dict_repo.count() == 2 def test_exists_by_id(dict_repo): assert dict_repo.exists_by_id(1) assert not dict_repo.exists_by_id(4) def test_find_all(dict_repo): assert len(dict_repo.find_all()) == 3 def test_find_page(dict_repo): res = dict_repo.find_page(PageRequest.of_size(2)) assert len(res.content) == 2 assert res.total_elements == 3 def test_find_all_by_id(dict_repo): assert len(dict_repo.find_all_by_id([1, 2])) == 2 def test_find_by_id(dict_repo): assert dict_repo.find_by_id(1)["name"] == "entity1" assert dict_repo.find_by_id(4) is None def test_save_dict_type(dict_repo): res = dict_repo.save({"name": "entity4"}) assert res["id"] == 4 res["name"] = "entity4bis" res = dict_repo.save(res) assert res["name"] == "entity4bis" def test_save_pydantic_model_type(model_repo): res = model_repo.save(TestModel(name="entity1")) assert res.id == 1 res.name = "entity1bis" res = model_repo.save(res) assert res.name == "entity1bis" def test_save_unexpected_type(dict_repo): with pytest.raises(ValueError): dict_repo.save(1) def test_save_dict_type_list(dict_repo): res = dict_repo.save_all([ {"id": 3, "name": "entity3bis"}, {"name": "entity4"}, {"name": "entity5"} ]) assert len(res) == 3 assert len(dict_repo.find_all()) == 5 def test_save_pydantic_model_type_list(model_repo): res = model_repo.save_all([ TestModel(name="entity1"), TestModel(name="entity2"), TestModel(name="entity3") ]) assert len(res) == 3 assert len(model_repo.find_all()) == 3
2.234375
2
pie4t/assist.py
beardad1975/pie4t
1
12782210
<reponame>beardad1975/pie4t from time import time import arcade import pymunk from pymunk.vec2d import Vec2d from . import common class DotMark: def __init__(self, x=0, y=0): self.enabled = False self.x = x self.y = y self.timestamp = time() def lazy_setup(self): self.shape_list = arcade.ShapeElementList() s = arcade.create_ellipse(0, 0 , 20, 20, (255,255,255,120)) self.shape_list.append(s) vs = arcade.create_rectangle(0,0, 3, 20, arcade.color.BLACK ) hs = arcade.create_rectangle(0,0, 20, 3, arcade.color.BLACK ) self.shape_list.append(vs) self.shape_list.append(hs) def update_pos(self, x, y): self.x = x self.y = y self.timestamp = time() self.enabled = True def draw(self): if self.enabled: if time() - self.timestamp < common.ASSIST_MARK_PERIOD: self.shape_list.center_x = self.x self.shape_list.center_y = self.y self.shape_list.angle = 0 # no rotation self.shape_list.draw() else: # expired self.enabled = False class SegmentAddAssist: def __init__(self): self._enabled = False self.first_clicked = False self.first_x = 0 self.first_y = 0 self.second_x = 0 self.second_y = 0 self.dirty = False def enable(self): self._enabled = True self.first_clicked = False self.first_x = 0 self.first_y = 0 self.second_x = 0 self.second_y = 0 self.dirty = False cur = common.stage.get_system_mouse_cursor('crosshair') common.stage.set_mouse_cursor(cur) common.stage.模擬暫停 = True def disable(self): self._enabled = False common.stage.set_mouse_cursor(None) common.stage.模擬暫停 = False if self.dirty: common.stage.save_terrain() @property def enabled(self): return self._enabled # def lazy_setup(self): # #self.shape_list = arcade.ShapeElementList() # pass def click(self, x, y): if not self.first_clicked: # first click self.first_x = x self.first_y = y self.first_clicked = True else: # second click self.second_x = x self.second_y = y self.first_clicked = False if not (self.first_x == self.second_x and self.first_y == self.second_y): common.stage.新增線段((self.first_x,self.first_y), (self.second_x, self.second_y), common.SEG_THICKNESS) self.dirty = True def draw(self): if self._enabled and self.first_clicked: fx = self.first_x fy = self.first_y mx = common.stage.mouse_x my = common.stage.mouse_y arcade.draw_line(fx, fy, mx, my,arcade.color.GREEN ,common.SEG_THICKNESS) class SegmentRemoveAssist: def __init__(self): self._enabled = False self.dirty = False self.hover_segment = None self.seg_filter = pymunk.ShapeFilter(mask=common.CATE_SEGMENT) def enable(self): self._enabled = True self.dirty = False self.hover_segment = None cur = common.stage.get_system_mouse_cursor('help') common.stage.set_mouse_cursor(cur) common.stage.模擬暫停 = True def disable(self): self._enabled = False common.stage.set_mouse_cursor(None) common.stage.模擬暫停 = False if self.dirty: common.stage.save_terrain() @property def enabled(self): return self._enabled # def lazy_setup(self): # #self.shape_list = arcade.ShapeElementList() # pass def draw(self): if self._enabled: if self.hover_segment: a = self.hover_segment.a b = self.hover_segment.b thickness = self.hover_segment.thickness arcade.draw_line(a[0], a[1], b[0], b[1], arcade.color.RED, thickness) def click(self, x, y): if self._enabled: if self.hover_segment: common.stage.移除(self.hover_segment) self.hover_segment = None self.dirty = True def update_hover(self,x, y): if self._enabled: query = common.stage.space.point_query_nearest((x,y), 3, self.seg_filter) if query: self.hover_segment = query.shape.obj else: self.hover_segment = None class ArrowAssist: def __init__(self): #self.mode_turn_on = False # turn on by user self.enabled = False # drawing #self.vector = 0 self.start_x = 0 self.start_y = 0 # self.mouse_x = 0 # self.mouse_y = 0 def start(self, pos=None): #if self.mode_turn_on : if pos is None : self.start_x = common.stage.mouse_x self.start_y = common.stage.mouse_y else: pos = Vec2d(pos) self.start_x = pos.x self.start_y = pos.y self.enabled = True # def update_mouse_pos(self, x, y): # if self.mode_turn_on and self.enabled: # self.mouse_x = x # self.mouse_y = y def launch(self): if self.enabled: self.enabled = False # def lazy_setup(self): # pass def draw(self): if self.enabled : sx = self.start_x sy = self.start_y mx = common.stage.mouse_x my = common.stage.mouse_y length = self.vector.length #print("length: ",self.vector.length ) if length > 40: line_v = self.vector line_v.length -= 30 # line arcade.draw_line(sx, sy, sx + line_v.x, sy + line_v.y, arcade.color.RED ,common.SEG_THICKNESS*3) # triangle #if length if length < 500: degree_delta = 15 - length / 50 else: degree_delta = 5 left_v = self.vector left_v.length -= 30 left_v.angle_degrees += degree_delta right_v = self.vector right_v.length -= 30 right_v.angle_degrees -= degree_delta arcade.draw_triangle_filled(mx, my, sx + left_v.x, sy + left_v.y, sx + right_v.x, sy + right_v.y, arcade.color.RED ) @property def vector(self): sx = self.start_x sy = self.start_y mx = common.stage.mouse_x my = common.stage.mouse_y return Vec2d(mx - sx, my - sy) @property def start_pos(self): return Vec2d(self.start_x, self.start_y) class CoordinateAssist: def __init__(self): self._enabled = False self.shape_element = None self.text_list = [] self.coor_start = 0 self.win_width = common.stage.win_width self.win_height = common.stage.win_height self.font = ('C:/Windows/Fonts/msjh.ttc','arial') upper_bound = max(self.win_width, self.win_height) upper_bound = (upper_bound + 99) // 100 * 100 self.coor_end = upper_bound self.coor_step = 50 self.label_step = 100 def enable(self): self._enabled = True def disable(self): self._enabled = False @property def enabled(self): return self._enabled def lazy_setup(self): self.shape_element = arcade.ShapeElementList() i = 0 for y in range(self.coor_start, self.coor_end + self.coor_step, self.coor_step): l = arcade.create_line(0, y, self.win_width ,y , arcade.color.ANTIQUE_BRONZE , 1) self.shape_element.append(l) r = arcade.create_rectangle(0, y, 8, 3, arcade.color.WHITE_SMOKE) self.shape_element.append(r) # Draw the x labels. i = 0 for x in range(self.coor_start, self.coor_end + self.coor_step, self.coor_step): l = arcade.create_line(x, 0, x ,self.win_height , arcade.color.ANTIQUE_BRONZE , 1) self.shape_element.append(l) r = arcade.create_rectangle(x, 0, 3, 8, arcade.color.WHITE_SMOKE) self.shape_element.append(r) # --------------------------- for y in range(self.coor_start, self.coor_end + self.label_step, self.label_step): t = arcade.Text(f"{y}", 5, y+3, arcade.color.WHITE_SMOKE, 12, anchor_x="left", anchor_y="center", font_name=self.font) self.text_list.append(t) i += 1 i = 1 for x in range(self.coor_start + self.label_step, self.coor_end + self.label_step, self.label_step): t = arcade.Text( f"{x}" , x, 5, arcade.color.WHITE_SMOKE, 12, anchor_x="center", anchor_y="bottom", font_name=self.font) self.text_list.append(t) i += 1 t = arcade.Text("Y", 25, common.stage.win_height-25, arcade.color.WHITE_SMOKE, 18, anchor_x="center", anchor_y="center", font_name=self.font) self.text_list.append(t) t = arcade.Text("X", common.stage.win_width-25, 25, arcade.color.WHITE_SMOKE, 18, anchor_x="center", anchor_y="center", font_name=self.font) self.text_list.append(t) def draw(self): if self._enabled: self.shape_element.center_x = 0 self.shape_element.center_y = 0 self.shape_element.angle = 0 self.shape_element.draw() for t in self.text_list: t.draw() # i = 0 # for y in range(self.coor_start, self.coor_end + self.label_step, self.label_step): # arcade.draw_text(f"{y}", 5, y+3, arcade.color.WHITE_SMOKE, 12, anchor_x="left", # anchor_y="center", font_name=self.font) # i += 1 # i = 1 # for x in range(self.coor_start + self.label_step, self.coor_end + self.label_step, self.label_step): # arcade.draw_text( f"{x}" , x, 5, arcade.color.WHITE_SMOKE, 12, anchor_x="center", # anchor_y="bottom", font_name=self.font) # i += 1 # arcade.draw_text("Y", 25, common.stage.win_height-25, arcade.color.WHITE_SMOKE, 18, # anchor_x="center", anchor_y="center", font_name=self.font) # arcade.draw_text("X", common.stage.win_width-25, 25, arcade.color.WHITE_SMOKE, 18, # anchor_x="center", anchor_y="center", font_name=self.font)
2.46875
2
api/rules.py
poldracklab/bids-core
1
12782211
import fnmatch from . import jobs from . import config log = config.log # # { # At least one match from this array must succeed, or array must be empty # "any": [ # ["file.type", "dicom" ] # Match the file's type # ["file.name", "*.dcm" ] # Match a shell glob for the file name # ["file.measurements", "diffusion" ] # Match any of the file's measurements # ["container.measurement", "diffusion" ] # Match the container's primary measurment # ["container.has-type", "bvec" ] # Match the container having any file (including this one) with this type # ] # # All matches from array must succeed, or array must be empty # "all": [ # ] # # Algorithm to run if both sets of rules match # "alg": "dcm2nii" # } # MATCH_TYPES = [ 'file.type', 'file.name', 'file.measurements', 'container.measurement', 'container.has-type' ] # TODO: replace with default rules, which get persisted, maintained, upgraded, and reasoned intelligently HARDCODED_RULES = [ { 'alg': 'dicom_mr_classifier', 'all': [ ['file.type', 'dicom'] ] }, { 'alg': 'dcm_convert', 'all': [ ['file.type', 'dicom'] ] }, { 'alg': 'qa-report-fmri', 'all': [ ['file.type', 'nifti'] ] } ] def _log_file_key_error(file_, container, error): log.warning('file ' + file_.get('name', '?') + ' in container ' + str(container.get('_id', '?')) + ' ' + error) def eval_match(match_type, match_param, file_, container): """ Given a match entry, return if the match succeeded. """ # Match the file's type if match_type == 'file.type': try: return file_['type'] == match_param except KeyError: _log_file_key_error(file_, container, 'has no type key') return False # Match a shell glob for the file name elif match_type == 'file.name': return fnmatch.fnmatch(file_['name'], match_param) # Match any of the file's measurements elif match_type == 'file.measurements': try: return match_param in file_['measurements'] except KeyError: _log_file_key_error(file_, container, 'has no measurements key') return False # Match the container's primary measurment elif match_type == 'container.measurement': return container['measurement'] == match_param # Match the container having any file (including this one) with this type elif match_type == 'container.has-type': for c_file in container['files']: if match_param in c_file['measurements']: return True return False raise Exception('Unimplemented match type ' + match_type) def eval_rule(rule, file_, container): """ Decide if a rule should spawn a job. """ # Are there matches in the 'any' set? must_match = len(rule.get('any', [])) > 0 has_match = False for match in rule.get('any', []): if eval_match(match[0], match[1], file_, container): has_match = True break # If there were matches in the 'any' array and none of them succeeded if must_match and not has_match: return False # Are there matches in the 'all' set? for match in rule.get('all', []): if not eval_match(match[0], match[1], file_, container): return False return True def create_jobs(db, container, container_type, file_): """ Check all rules that apply to this file, and enqueue the jobs that should be run. Returns the algorithm names that were queued. """ job_list = [] # Get configured rules for this project rules = get_rules_for_container(db, container) # Add hardcoded rules that cannot be removed or changed for hardcoded_rule in HARDCODED_RULES: rules.append(hardcoded_rule) for rule in rules: if eval_rule(rule, file_, container): alg_name = rule['alg'] input = jobs.create_fileinput_from_reference(container, container_type, file_) jobs.queue_job(db, alg_name, input) job_list.append(alg_name) return job_list # TODO: consider moving to a module that has a variety of hierarchy-management helper functions def get_rules_for_container(db, container): """ Recursively walk the hierarchy until the project object is found. """ if 'session' in container: session = db.sessions.find_one({'_id': container['session']}) return get_rules_for_container(db, session) elif 'project' in container: project = db.projects.find_one({'_id': container['project']}) return get_rules_for_container(db, project) else: # Assume container is a project, or a collection (which currently cannot have a rules property) return container.get('rules', [])
2.1875
2
experiments/webcam_pose2csv.py
Nao-Y1996/situation_recognition
0
12782212
<filename>experiments/webcam_pose2csv.py import argparse import logging import time import os import csv import datetime import numpy as np from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path, model_wh import sys # sys.path.remove('/opt/ros/melodic/lib/python2.7/dist-packages') import cv2 logger = logging.getLogger('TfPoseEstimator-WebCam') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter( '[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) def str2bool(v): return v.lower() in ("yes", "true", "t", "1") if __name__ == '__main__': parser = argparse.ArgumentParser( description='tf-pose-estimation realtime webcam') parser.add_argument('--camera', type=int, default=0) parser.add_argument('--resize', type=str, default='0x0', help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ') parser.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser.add_argument('--show-process', type=bool, default=False, help='for debug purpose, if enabled, speed for inference is dropped.') parser.add_argument('--tensorrt', type=str, default="False", help='for tensorrt process.') args = parser.parse_args() logger.debug('initialization %s : %s' % (args.model, get_graph_path(args.model))) w, h = model_wh(args.resize) if w > 0 and h > 0: e = TfPoseEstimator(get_graph_path(args.model), target_size=( w, h), trt_bool=str2bool(args.tensorrt)) else: e = TfPoseEstimator(get_graph_path(args.model), target_size=( 432, 368), trt_bool=str2bool(args.tensorrt)) logger.debug('cam read+') cam = cv2.VideoCapture(args.camera) ret_val, image = cam.read() logger.info('cam image=%dx%d' % (image.shape[1], image.shape[0])) # pose情報のcsv保存用の設定 dir_here = os.path.dirname(os.path.abspath(__file__)) # base_dir = '/home/kubotalab-hsr/Desktop/webcamera_pose_data' base_dir = dir_here + '/data/' dt_now = datetime.datetime.now() new_dir_path = str(dt_now)[0:16].replace(' ', '-').replace(':', '-') save_dir = base_dir + new_dir_path os.makedirs(save_dir+'/images/') pose_par_second_path = save_dir + '/index_per_second.csv' f = open(pose_par_second_path, 'w') f.close pose_path = save_dir + '/pose.csv' f = open(pose_path, 'w') f.close # 動画ファイル保存用の設定 camera_w = int(cam.get(cv2.CAP_PROP_FRAME_WIDTH)) camera_h = int(cam.get(cv2.CAP_PROP_FRAME_HEIGHT)) # print(camera_h, camera_w) # fourcc = cv2.VideoWriter_fourcc(*'XVID') # video = cv2.VideoWriter(base_dir + '/output.mov', fourcc, 30, (camera_w,camera_h)) elasped_time = 0 frame_num = 0 # 何フレーム目か index_pose_par_second = [] # 1秒ごとにその時何フレーム目かを保存する配列 while True: processing_start = time.time() ret_val, image = cam.read() # 骨格推定を実行 humans = e.inference(image, resize_to_default=( w > 0 and h > 0), upsample_size=args.resize_out_ratio) all_pose_data = [] # 人間がいるとき if len(humans) != 0: image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # poseを取得 for human in humans: pose_data = [] for part_index in range(18): try: part = human.body_parts[part_index] pose_data.extend( # [int(part.x*camera_w), int(part.y*camera_h), round(part.score, 4)]) [round(part.x, 4), round(part.y,4), round(part.score, 4)]) except: pose_data.extend([0.0, 0.0, 0.0]) all_pose_data.extend(pose_data) # 毎フレームposeを記録する with open(pose_path, 'a') as csvfile: writer = csv.writer(csvfile) writer.writerow(all_pose_data) # 人間がいないとき else: all_pose_data = np.zeros(18*3) with open(pose_path, 'a') as csvfile: writer = csv.writer(csvfile) writer.writerow(all_pose_data) # 1秒ごとに何フレーム目か記録 if elasped_time > 1.0: with open(pose_par_second_path, 'a') as csvfile: writer = csv.writer(csvfile) writer.writerow([frame_num]) elasped_time = 0 cv2.imwrite(save_dir + '/images/' + str(frame_num) + '.png', image) # cv2.putText(image,"frame: : %f" % frame,(5, 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 255, 0), 2) # フレームの表示 cv2.imshow('tf-pose-estimation result', image) # image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # cv2.putText(image,"FPS: %f" % (1.0 / processing_time),(10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 255, 0), 2) # cv2.imshow('tf-pose-estimation result', image) # cv2.imwrite(save_dir + '/images/' + str(count) + '.png',image) processing_time = time.time() - processing_start elasped_time += processing_time # fps = 1.0 / processing_time frame_num += 1 if cv2.waitKey(1) == 27: break cam.release() cv2.destroyAllWindows()
2.4375
2
access-benty-fields.py
aibhleog/arXiv-order
0
12782213
''' Script used to pull voting information from benty-fields.com. Must be logged in to access the benty-fields. NOTES: 1) benty-fields mostly organizes paper suggestions based upon voting history and chosen preferences (machine learning involved), so these voting totals can be considered as a control sample (in a way?). 2) Additionally, can only see the total votes for the "most popular"; the total votes per paper is not information available through the search. --> (so smaller sample than VoxCharta votes) 3) "last year" not an option THOUGHT: how new is benty-fields? ''' from selenium import webdriver from selenium.webdriver.common.keys import Keys from datetime import datetime import threading, time, getpass, sys, subprocess import pandas as pd import numpy as np from datetime import datetime as dt from datetime import timedelta __author__ = '<NAME>' __email__ = '<EMAIL>' # amount of time to wait timeit = 2 # seconds # ------------------------ # # -- creating dataframe -- # # ------------------------ # df_dtypes = {'id':str,'total_votes':int} # will be creating them inside the outermost for loop # ------------------------ # logmein = True # option to log into benty-fields account # opening browser & going to benty-fields if logmein == True: # pulling information to access arXiv account username = '<EMAIL>' password = '<PASSWORD>!' #username = input('\nBenty-Fields username: ') assert len(username) > 0, "Need to provide a username" #password = input('Benty-Fields password: ') assert len(password) > 0, "Need to provide account password" driver = webdriver.Firefox() driver.get("https://www.benty-fields.com/login") assert "Login" in driver.title # finding log in cells usern = driver.find_element_by_id("email") passw = driver.find_element_by_id("password") usern.clear() passw.clear() # adding log in info usern.send_keys(username) passw.send_keys(password) # locating "Log In" button buttons = driver.find_element_by_class_name("modal-footer") login = buttons.find_element_by_xpath("//button[@type='submit' and contains(.,'Login')]") login.click() else: driver = webdriver.Firefox() driver.get("https://www.benty-fields.com/most_popular") # going to Most Popular page driver.get("https://www.benty-fields.com/most_popular") frequencies = ['last week','last month','last 6 months'] freq_days = [7,30,180] for freq in frequencies: # running through frequencies print(f'''\n--------------------------------------- Looking at Most Popular: {freq} ---------------------------------------\n''') df = pd.DataFrame({'id':[],'total_votes':[]}) # dataframe for the frequency idx = frequencies.index(freq) if freq != 'last week': # have to change frequency period = driver.find_element_by_xpath("//button[@data-toggle='dropdown']") period.click() # this works # THIS WORKS!!! Can I tell you how long this took me to figure out....... loc = f"//ul[@class='dropdown-menu inner']/li[contains(.,'{freq}')]" last_month = driver.find_element_by_xpath(loc) last_month.click() # this works time.sleep(5) # let it load # ... just realized I could have just used the URL # most_popular/1?period=180 # where period == number of days # -- most popular votes -- # # ------------------------ # i = 0 for page in range(1,50): # start with page 1, go to page 50 # going page by page for at least 20 pages items = driver.find_elements_by_class_name("paper") # running through the posts to pull out arXiv ID for item in items: print(f"{i}) ",end=' ') arxiv_id = item.get_attribute('id') # "paper####.#####v#" arxiv_id = arxiv_id.lstrip('paper') arxiv_id = arxiv_id.rsplit('v')[0] print(arxiv_id,end='\t') # total votes votes = item.find_element_by_tag_name("h3").text votes = votes.rsplit('Votes ')[1].rsplit(')')[0] # pulling out just vote count votes = int(votes) # just because print(f"{votes} votes") # adding value to dataframe filler_df = pd.DataFrame({'id':[arxiv_id],'total_votes':[votes]}) df = df.append(filler_df,ignore_index=True) i += 1 # going to the next page using the link (instead of clicking the buttons) next_page = f"https://www.benty-fields.com/most_popular/{page+1}?period={freq_days[idx]}" driver.get(next_page) # saving dataframe freq_dash = freq.replace(' ','-') df_dtypes = {'id':str,'total_votes':int} sub_df = pd.read_csv(f'votes_benty-fields/benty-fields_voting-{freq_dash}.txt',sep='\t',dtype=df_dtypes) # reading in to add df = df.astype(df_dtypes) # to make sure column dtypes don't change # appending on data final_df = sub_df.append(df,ignore_index=True) # checking for duplicates ids = set(final_df.id.values) # creates 'set' of unique values if len(ids) != len(final_df): # SO checking for duplicates added in to table print(f'\nLength of sub_df: \t\t\t\t\t{len(sub_df)}') print(f'Length of df: \t\t\t\t\t\t{len(df)}') print(f'Length of combined df: \t\t\t\t\t{len(final_df)}') final_df.drop_duplicates(inplace=True,subset='id',keep='last') # want most up-to-date #'s print(f'Length of final_df after dropping id duplicates: \t{len(final_df)}') else: print(f'\nNo duplicates, check passed.') final_df.to_csv(f'votes_benty-fields/benty-fields_voting-{freq_dash}.txt',sep='\t',index=False) print(f"\nData saved to 'benty-fields_voting-{freq_dash}.txt'",end='\n\n') # Wait until before closing browser (so we can see the "pycon" search) time.sleep(timeit) driver.close()
3.09375
3
src/traingame/__version__.py
timolesterhuis/traingame
0
12782214
<filename>src/traingame/__version__.py __title__ = "traingame" __description__ = "Train your own AI and race it!" __url__ = "" __version__ = "0.4.0" __author__ = "<NAME>" __author_email__ = "<EMAIL>"
1.3125
1
Conditional/Lista 1/Thiago/11.py
Vitor-ORB/algorithms-and-programming-1-ufms
7
12782215
<reponame>Vitor-ORB/algorithms-and-programming-1-ufms # Recebe o horário em h m s divididos apenas por espaço. def entrada(): h, m, s = map(int, input( "Insira o horário separado apenas por espaço: ").split()) return h, m, s # Calcula a diferença entre os horários de começo e fim. def calculo(h1, m1, s1, h2, m2, s2): s = s2 - s1 m = m2 - m1 h = h2 - h1 return h, m, s h1, m1, s1 = entrada() h2, m2, s2 = entrada() if s1 > s2: s2 = s2 + 60 m2 = m2 - 1 if m1 > m2: m2 = m2 + 60 h2 = h2 - 1 if h1 > h2: h2 = h2 + 24 hFinal, mFinal, sFinal = calculo(h1, m1, s1, h2, m2, s2) print(f"O jogo durou: {hFinal} {mFinal} {sFinal}")
3.953125
4
exercise_report_slack/util/slack_api_util.py
yamap55/exercise_report_slack
0
12782216
<filename>exercise_report_slack/util/slack_api_util.py """Slack APIを操作する関数群""" from time import sleep from typing import Any, Callable, Dict, List, Optional from exercise_report_slack.settings import client from slack_sdk.web.slack_response import SlackResponse def get_channel_id(name: str) -> str: """ 指定されたチャンネルのチャンネルIDを取得 Parameters ---------- name : str チャンネル名 Returns ------- str チャンネルID Raises ------- ValueError 存在しないチャンネル名の場合 """ # https://api.slack.com/methods/conversations.list try: option = {} next_cursor = "DUMMY" # whileを1度は回すためダミー値を設定 while next_cursor: response = client.conversations_list(**option).data target_channnels = [ channel["id"] for channel in response["channels"] if channel["name"] == name ] if target_channnels: return target_channnels[0] # チャンネルが多い場合は1度で全てを取得できない # 尚、メッセージ取得系と異なり「has_more」属性は持っていない next_cursor = response["response_metadata"]["next_cursor"] option["cursor"] = next_cursor sleep(1) # need to wait 1 sec before next call due to rate limits raise ValueError("not exists channel name.") except StopIteration: raise ValueError("not exists channel name.") def get_user_name(user_id: str) -> str: """ 指定されたユーザIDのユーザ名を取得 Parameters ---------- user_id : str ユーザID Returns ------- str ユーザ名 Raises ------- SlackApiError 存在しないユーザIDの場合 """ # https://api.slack.com/methods/users.info return client.users_info(user=user_id)["user"]["real_name"] def post_message( channel_id: str, text: str, thread_ts: Optional[str] = None, mention_users: List[str] = [] ) -> Dict[str, Any]: """ 指定されたチャンネルにメッセージをポスト Parameters ---------- channel_id : str チャンネルID text : str ポストする内容 thread_ts : Optional[str], optional リプライとしたい場合に指定するタイムスタンプ, by default None mention_users : List[str], optional メンションを指定するユーザID テキストの先頭に空白区切りで付与します 2人以上が指定されている場合はメンション後に改行を追加します, by default [] Returns ------- Dict[str, Any] ポストしたメッセージのデータ """ # https://api.slack.com/methods/chat.postMessage mentions = [f"<@{u}>" for u in mention_users] mentions_postfix = "\n" if len(mentions) > 1 else "" send_message = " ".join(mentions) + mentions_postfix + text res = client.chat_postMessage(channel=channel_id, text=send_message, thread_ts=thread_ts) return res.data def __get_all_message_by_iterating( func: Callable[..., SlackResponse], option: Dict[str, Any] ) -> List[Dict[str, Any]]: """繰り返し処理ですべてのメッセージを取得""" response = func(**option).data messages_all = response["messages"] while response["has_more"]: sleep(1) # need to wait 1 sec before next call due to rate limits response = func(**option, cursor=response["response_metadata"]["next_cursor"]).data messages = response["messages"] messages_all = messages_all + messages return messages_all def get_channel_message(channel_id: str, oldest: float, latest: float) -> List[Dict[str, Any]]: """ 指定されたチャンネルのメッセージを取得 Parameters ---------- channel_id : str チャンネルID oldest : float 取得を行う最初の時間 latest : float 取得を行う最後の時間 Returns ------- List[Dict[str, Any]] 指定されたチャンネルのメッセージ """ # https://api.slack.com/methods/conversations.history option = {"channel": channel_id, "oldest": oldest, "latest": latest} return __get_all_message_by_iterating(client.conversations_history, option) def get_replies(channel_id: str, message: Dict[str, Any]) -> List[Dict[str, Any]]: """ 指定されたメッセージのリプライを取得 Parameters ---------- channel_id : str チャンネルID message : Dict[str, Any] リプライを取得する対象のメッセージ Returns ------- List[Dict[str, Any]] リプライメッセージ リプライがついていない場合は空のリスト """ # https://api.slack.com/methods/conversations.replies if "thread_ts" not in message: return [] option = {"channel": channel_id, "ts": message["thread_ts"]} return __get_all_message_by_iterating(client.conversations_replies, option)
2.921875
3
src/models/board.py
hadizakialqattan/sudoku
6
12782217
import pygame # local import from base.base import GUIBase from solver.solver import Solver class Board(GUIBase): """Screen Board :param board: Sudoku board represent as two dimensional array :type board: list :param size: screen dimensions (pixels) (width, height) :type size: tuple :param screen: pygame screen :type screen: pygame.Surface """ def __init__(self, size: tuple, board: list, screen: pygame.Surface): super().__init__((size[1], size[1], size[0] - size[1]), screen) self.__board = board self.__solver = Solver(self) # create squares list self.__squares = [ [ Square( self.__board[c][r], (r, c), (self.size[0], self.size[2]), self.screen, True if self.__board[c][r] == 0 else False, ) for r in range(9) ] for c in range(9) ] self.__selected = None self.__wrong = None @property def wrong(self): """wrong property (getter)""" return self.__wrong @property def squares(self) -> list: """squares property (getter)""" return self.__squares def update_squares(self): """squares property (updatter)""" # iterate over all squares for r in range(9): for c in range(9): # update values self.__squares[r][c].value = self.__board[r][c] self.__squares[r][c].pencil = 0 @property def board(self) -> list: """board property (getter)""" return self.__board @board.setter def board(self, board: list): """board property (setter) & update squares :param board: Sudoku board represent as two dimensional array :type board: list """ # set new board self.__board = board # reinit squares self.__squares = [ [ Square( self.__board[c][r], (r, c), (self.size[0], self.size[2]), self.screen, True if self.__board[c][r] == 0 else False, ) for r in range(9) ] for c in range(9) ] @property def selected(self) -> tuple: """selected property (getter)""" return self.__selected @selected.setter def selected(self, pos: tuple): """selected property (setter) & refresh squares :param pos: selected square position (row, column) :type pos: tuple """ if not self.__wrong: # clear previous selection if self.__selected != None: self.__squares[self.__selected[0]][self.__selected[1]].selected = False if pos: # select new square self.__selected = pos self.__squares[self.__selected[0]][self.__selected[1]].selected = True else: # set selected to None if pos out of board self.__selected = None @property def get_pencil(self) -> int: """selected square pencil (getter)""" # get selected square r, c = self.__selected return self.__squares[r][c].pencil def set_pencil(self, value: int): """set pencil value :param value: pencil value :type value: int """ # get selected square r, c = self.__selected if self.__squares[r][c].value == 0: self.__squares[r][c].pencil = value @property def get_value(self) -> int: """selected square value (getter)""" # get selected square r, c = self.__selected return self.__squares[r][c].value def set_value(self) -> str: """set square value :returns: board state ('s' -> success, 'w' -> wrong, 'c' -> unsolvable board) :rtype: str """ # get selected square r, c = self.__selected if self.get_value == 0: # chock for non-0 pencil value pencil = self.get_pencil if pencil != 0: # check the number match Sudoku rules w = self.__solver.exists(self.__board, pencil, (r, c)) if w: # change squares state to wrong (red color) self.__squares[r][c].wrong = True self.__squares[w[0]][w[1]].wrong = True self.__squares[r][c].value = pencil self.__board[r][c] = pencil self.__wrong = w return "w" else: # change set square value and return true self.__squares[r][c].value = pencil self.__board[r][c] = pencil # copy board # init copy as two dimensional array with 9 rows copy = [[] for r in range(9)] # iterate over all rows for r in range(9): # iterate over all columns for c in range(9): # append the num copy[r].append(self.__board[r][c]) # check if the board unsolvable if not self.__solver.solve(copy): return "c" return "s" @property def clear(self): """clear selected square value""" # get selected square r, c = self.__selected # clear square value and pencil self.__squares[r][c].value = 0 self.__squares[r][c].pencil = 0 self.__board[r][c] = 0 # change wrong state if self.__wrong: self.__squares[r][c].wrong = False self.__squares[self.__wrong[0]][self.__wrong[1]].wrong = False self.__wrong = None @property def isfinished(self): """return true if there's no more empty squares else false :returns: true if there's no more empty squares else false :rtype: bool """ return not self.__solver.nextpos(self.board) def set_sq_value(self, value: int, pos: tuple): """change square value by position :param value: new square value :type value: int :param pos: square position :type pos: tuple """ self.__squares[pos[0]][pos[1]].value = value def draw(self): """Draw the board on the screen""" # Draw squares # iterate over all rows for r in range(9): # iterate over all columns for c in range(9): # draw square value self.__squares[c][r].draw() # Draw grid # set space between squares space = self.size[0] // 9 # drow 10 lines HvV for r in range(10): # set line weight (bold at the end of 3*3 area) w = 4 if r % 3 == 0 and r != 0 else 1 # draw horizontal line (screen, (color), (start_pos), (end_pos), width) pygame.draw.line( self.screen, (72, 234, 54), (self.size[2], r * space), (self.size[0] + self.size[2], r * space), w, ) # draw vertical line (screen, (color), (start_pos), (end_pos), width) pygame.draw.line( self.screen, (72, 234, 54), (r * space + self.size[2], 0), (r * space + self.size[2], self.size[1]), w, ) class Square(GUIBase): """Board squeares :param value: square display number :type value: int :param pos: square position (row, column) :type pos: tuple :param width: screen width and left gap (width, gap) :type width: tuple :param screen: pygame screen :type screen: pygame.Surface :param changeable: changeabllity :type changeable: bool """ def __init__( self, value: int, pos: tuple, widthpos: tuple, screen: pygame.Surface, changeable: bool, ): super().__init__(0, screen) self.__value = value self.__pos = pos self.__widthpos = widthpos self.__pencil = 0 self.__selected = False self.__changeable = changeable self.__wrong = False @property def changeable(self): """changeable property (getter)""" return self.__changeable @property def selected(self) -> tuple: """selected property (getter)""" return self.__selected @selected.setter def selected(self, v: bool): """selected property (setter) :param v: selected value :type v: bool """ self.__selected = v @property def value(self) -> int: """value property (getter)""" return self.__value @value.setter def value(self, value: int): """value property (setter) :param value: square value :type value: int """ if self.__changeable: self.__value = value @property def pencil(self) -> int: """pencil property (getter)""" return self.__pencil @pencil.setter def pencil(self, value: int): """pencil property (setter) :param value: pencil square value :type value: int """ if self.__changeable: self.__pencil = value @property def wrong(self): """wrong property (getter)""" return self.__wrong @wrong.setter def wrong(self, w: bool): """wrong property (setter) :param w: wrong value :type w: bool """ self.__wrong = w def draw(self): """Draw square value""" # set space between squares space = self.__widthpos[0] // 9 # set actuall square position on the screen r, c = self.__pos[0] * space + self.__widthpos[1], self.__pos[1] * space # fill unchangeable square background if not self.__changeable: sqsize = self.__widthpos[0] // 9 # draw rectangle (frame) pygame.draw.rect(self.screen, (10, 30, 0), ((r, c), (sqsize, sqsize))) # check for none 0's squares if self.__value != 0: font = pygame.font.Font("../assets/Rubik-font/Rubik-Regular.ttf", 38) # set color rgb = (72, 234, 54) if not self.__wrong else (234, 72, 54) # create suface object v = font.render(str(self.__value), 1, rgb) # draw in on the screen self.screen.blit( v, ( int(r + ((space / 2) - (v.get_width() / 2))), int(c + ((space / 2) - (v.get_height() / 2))), ), ) elif self.__pencil != 0: font = pygame.font.Font("../assets/Rubik-font/Rubik-Regular.ttf", 30) # create suface object v = font.render(str(self.__pencil), 1, (2, 164, 0)) # draw in on the screen self.screen.blit( v, ( int(r + ((space / 2) - (v.get_width() / 2)) - 20), int(c + ((space / 2) - (v.get_height() / 2)) - 15), ), ) # draw bold outline around selected square if self.__selected: # draw rectangle (frame) pygame.draw.rect(self.screen, (52, 214, 34), ((r, c), (space, space)), 3)
3.453125
3
web-app/src/models/quizgame/QuizGameQuizGameQuestionScore.py
philipp-mos/iubh-quiz-app
0
12782218
from ... import db class QuizGameQuizGameQuestionScore(db.Model): __tablename__ = 'quiz_game_quiz_game_question_scores' id = db.Column( db.Integer, primary_key=True ) quizgame_id = db.Column( db.Integer(), db.ForeignKey( 'quiz_games.id', ondelete='CASCADE' ) ) quizgamequestionscore_id = db.Column( db.Integer(), db.ForeignKey( 'quiz_game_question_scores.id', ondelete='CASCADE' ) )
2.40625
2
train_model.py
Yunodo/Seq2Seq
1
12782219
<gh_stars>1-10 import os import numpy as np import trax import jax import jax.numpy as np from prepare_data import text_data_generator from model import biLSTMwithAttn from training_loop import create_training_loop %load_ext tensorboard vocab_file = 'en_8k.subword' # one of: 'subword', 'sentencepiece', 'char' BATCH_SIZE = 64 n_training_steps = 30000 input_vocab_size = 8000 target_vocab_size = 8000 d_model = 512 # depth of inner layers of LSTM def txt_reader(filepath): # Reads a csv file and returns Python tuple generator df = pd.read_csv(filepath) while True: try: for row in df.itertuples(index = False): yield(row[0], row[1]) # (input, target) except StopIteration: df = pd.read_csv(filepath) train_data, eval_data = txt_reader('train.csv'), txt_reader('test.csv') data_generator = text_data_generator(vocab_file, BATCH_SIZE) train_stream, eval_stream = data_generator(train_data), data_generator(eval_data) """ Parameters for the model are automatically initialized with Trax training loop. If there're some pretrained weights, use: model.init_from_file(os.path.join(output_dir,'model.pkl.gz'),weights_only=True) """ Net = biLSTMwithAttn(input_vocab_size = input_vocab_size, target_vocab_size = 8000, d_model = d_model, mode = 'train') output_dir = "/content/drive/My Drive/paraphrase'" # weights, logs etc. stored loop = create_training_loop(Net, train_stream, eval_stream, output_dir) %tensorboard --logdir output_dir # displaying TensorBoard training results loop.run(n_training_steps) """ How to resume checkpoint if training broke down: loop.load_checkpoint(directory=output_dir, filename="model.pkl.gz") """
2.390625
2
opencamlib-read-only/src/get_revision.py
play113/swer
0
12782220
import commands # import subprocess import sys import os f = open("revision.h", "w") # change directory to src/ os.chdir(sys.argv[1]) # run svnversion to get the revision number rev_number = commands.getoutput("svnversion") print "get_revision.py: got revision: ",rev_number # commands is deprecated, should use subprocess instead? # rev_number = subprocess.Popen(["svnversion"], stdout=subprocess.PIPE).communicate()[0] # current_dir = commands.getoutput("pwd") # print "get_revision.py: writing revision.h to ", current_dir rev_string = '#define OCL_REV_STRING "OpenCAMLib Revision ' + rev_number + '"' f.write(rev_string) f.close()
2.546875
3
siswrapper/__init__.py
mario33881/siswrapper
1
12782221
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- from ._version import __version__ from .siswrapper import Siswrapper
1.132813
1
asset-metadata/src/main.py
Screenly/playground
0
12782222
""" Example headers { "X-Screenly-hostname": "srly-jmar75ko6xp651j", "X-Screenly-screen-name": "dizzy cherry", "X-Screenly-location-name": "Cape Town", "X-Screenly-hardware": "x86", "X-Screenly-version": "v2", "X-Screenly-lat": "-33.925278", "X-Screenly-lng": "18.423889", "X-Screenly-tags": "srly-jmar75ko6xp651j,custom-label" }""" from os import environ from flask import Flask, render_template, request app = Flask(__name__) @app.route("/") def render_metadata_headers(): return render_template( "metadata_headers.html", headers=request.headers, apiKey=environ.get("GOOGLE_MAPS_API_KEY"), ) if __name__ == "__main__": app.run(host="0.0.0.0")
2.546875
3
pages/themes/beginners/exceptions/Task_and_HW/get_user_data_exception_handling.py
ProgressBG-Python-Course/ProgressBG-VC2-Python
0
12782223
<reponame>ProgressBG-Python-Course/ProgressBG-VC2-Python<filename>pages/themes/beginners/exceptions/Task_and_HW/get_user_data_exception_handling.py<gh_stars>0 def get_string_from_user(msg): while True: try: user_name = input(msg) except: print("\n***Oops, something went wrong! Try again!\n") else: return user_name def get_number_from_user(msg): while True: try: number = int(input(msg)) except ValueError: print("***Enter a number, please!") except: print("\n***Oops, something went wrong! Try again!\n") else: return number user_data = {} user_data["name"] = get_string_from_user("Enter your name, please: ") user_data["height"] = get_number_from_user("I need to know your height in centimetres: ") user_data["weight"] = get_number_from_user("And your weight in kilograms: ") print(user_data)
3.21875
3
physicellToXYZ.py
hallba/PhysicellVMD
0
12782224
import numpy as np from scipy.io import loadmat # this is the SciPy module that loads mat-files import matplotlib.pyplot as plt from datetime import datetime, date, time import pandas as pd import math ''' #Contains "basic_agents" cells = loadmat("output00000064_cells.mat") #contains "multiscale_microenvironment" microenvironment = loadmat("output00000064_microenvironment0.mat") ''' def filenameFormat(n): result = "data/output{:08d}_cells_physicell.mat".format(n) return(result) def writeXYZ(firstFrame,lastFrame): with open("organoid.xyz",'w') as output: for frame in range(firstFrame,lastFrame+1): #Transposed so we can iterate allCells = loadmat(filenameFormat(frame))['cells'].transpose() #filter out absorbed organoids cellData = allCells[(allCells[:,4] > 0)] print(len(cellData),file=output) print("Physicell organoid simulation",file=output) for cell in cellData: ''' Modified xyz format- could be extended further x y z user2 user3 vx vy user user is radius- important for size rendering ''' x = cell[1] y = cell[2] z = cell[3] #convert from the volume radius = (3*cell[4]/(4*math.pi))**(1/3) #user #why are the volumes in frame 64 mostly 2494? Dead, single cell organoids? #suspect diffcells and stem cells are mixed up- 2494 organoids have 0 diffcells and 1 stemcell #what are 0 volume organoids? stemcells = cell[29] #user2 diffcells = cell[28] #user3 attached = cell[27] fusions = cell[31] #do not change the position of x,y,z and radius result = "CA {x} {y} {z} {user} {user3} {user2} {vx} {vy}".format(x=x,y=y,z=z,user2=stemcells,vx=diffcells,user3=attached,vy=fusions,user=radius) print(result,file=output) writeXYZ(0,65)
2.59375
3
webdriver_test_tools/testcase/ie.py
connordelacruz/webdriver-test-tools
5
12782225
<filename>webdriver_test_tools/testcase/ie.py<gh_stars>1-10 from .webdriver import * from selenium.webdriver.common.desired_capabilities import DesiredCapabilities class IETestCase(WebDriverTestCase): """Implementation of :class:`WebDriverTestCase <webdriver_test_tools.testcase.webdriver.WebDriverTestCase>` using Internet Explorer webdriver `Driver info <https://github.com/SeleniumHQ/selenium/wiki/InternetExplorerDriver>`__ .. note:: This driver is platform-specific, so it is disabled by default. It can be enabled in ``<test_package>/config/browser.py`` by setting the corresponding value in :attr:`BrowserConfig.ENABLED_BROWSERS <webdriver_test_tools.config.browser.BrowserConfig.ENABLED_BROWSERS>` to ``True``. """ DRIVER_NAME = 'Internet Explorer' SHORT_NAME = 'ie' CAPABILITIES = DesiredCapabilities.INTERNETEXPLORER.copy() # Set version CAPABILITIES['version'] = '11' def driver_init(self): return self.WebDriverConfig.get_ie_driver()
2.15625
2
news/tests.py
VanirLab/VOS
0
12782226
from django.core import mail from django.test import TestCase, TransactionTestCase from django.contrib.auth.models import User from news.models import News class NewsTest(TestCase): def test_feed(self): response = self.client.get('/feeds/news/') self.assertEqual(response.status_code, 200) def test_sitemap(self): response = self.client.get('/sitemap-news.xml') self.assertEqual(response.status_code, 200) def test_news_sitemap(self): response = self.client.get('/news-sitemap.xml') self.assertEqual(response.status_code, 200) def test_newsitem(self): response = self.client.get('/news/404', follow=True) self.assertEqual(response.status_code, 404) class NewsCrud(TransactionTestCase): def setUp(self): password = '<PASSWORD>' self.user = User.objects.create_superuser('admin', '<EMAIL>', password) self.client.post('/login/', { 'username': self.user.username, 'password': password }) def tearDown(self): News.objects.all().delete() self.user.delete() def create(self, title='Bash broken', content='Broken in [testing]', announce=False): data = { 'title': title, 'content': content, } if announce: data['send_announce'] = 'on' return self.client.post('/news/add/', data, follow=True) def testCreateItem(self): title = 'Bash broken' response = self.create(title) self.assertEqual(response.status_code, 200) news = News.objects.first() self.assertEqual(news.author, self.user) self.assertEqual(news.title, title) def testView(self): self.create() news = News.objects.first() response = self.client.get(news.get_absolute_url()) self.assertEqual(response.status_code, 200) def testRedirectId(self): self.create() news = News.objects.first() response = self.client.get('/news/{}'.format(news.id), follow=True) self.assertEqual(response.status_code, 200) def testSendAnnounce(self): title = 'New glibc' self.create(title, announce=True) self.assertEqual(len(mail.outbox), 1) self.assertIn(title, mail.outbox[0].subject) def testPreview(self): response = self.client.post('/news/preview/', {'data': '**body**'}, follow=True) self.assertEqual(response.status_code, 200) self.assertEqual('<p><strong>body</strong></p>', response.content.decode())
2.265625
2
utils.py
ktho22/tacotron2
0
12782227
<reponame>ktho22/tacotron2 import numpy as np from scipy.io.wavfile import read import torch import time import os from os.path import join, exists def get_mask_from_lengths(lengths): max_len = torch.max(lengths).item() ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len)) mask = (ids < lengths.unsqueeze(1)).bool() return mask def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x) def set_savepath(message): today = time.strftime('%y%m%d') savepath = join('result', '{}-{}'.format(today, message)) if not exists(savepath): os.makedirs(savepath) os.system('cp -r *.py dataset {}'.format(savepath)) elif message=='test': os.system("rm -rf {}/*".format(savepath)) else: input("Path already exists, wish to continue?") os.system("rm -rf {}/*".format(savepath)) os.system('cp -r *.py dataset {}'.format(savepath)) return savepath
2.21875
2
_pkg_Studios/pkgStudio_kuhq/mod_KuWrite.py
tianlunjiang/_NukeStudio_v2
6
12782228
<reponame>tianlunjiang/_NukeStudio_v2<filename>_pkg_Studios/pkgStudio_kuhq/mod_KuWrite.py def _version_(): ver=''' version 1.1 - add more render types - fix precomp render directory problem (`render/` to `elements/`) - add render dialog UI with threading - fixing naming error in render file, avoid `..._comp_comp_...` - automatically check latest version version 1.0 - auto set directory and type and versioning ''' return ver __VERSION__=1.1 #------------------------------------------------------------------------------ #-Import Modules #------------------------------------------------------------------------------ import nuke, nukescripts, os import slate import shutil import subprocess from kputl import joinPath #------------------------------------------------------------------------------ #-Global Variables #------------------------------------------------------------------------------ RENDER_TYPE = ['comp', 'precomp', 'lookdev', 'backplate', 'lgtSlap', 'delivery'] NO_PASSNAME = ['comp', 'lookdev', 'backplate', 'lgtSlap', 'delivery'] TYPE_CONFIG = { 'comp': {'DIR': slate.RENDER_DIR, 'CH': 'rgb', 'EXT': 'exr', 'CS': 0}, 'precomp': {'DIR': slate.ELEMENTS_DIR, 'CH': 'all', 'EXT': 'exr', 'CS': 0}, 'lookdev': {'DIR': slate.RENDER_DIR, 'CH': 'rgb', 'EXT': 'exr', 'CS': 0}, 'backplate': {'DIR': slate.ELEMENTS_DIR, 'CH': 'rgba', 'EXT': 'jpg', 'CS': 'Output - sRGB'}, 'lgtSlap': {'DIR': slate.RENDER_DIR, 'CH': 'rgb', 'EXT': 'exr', 'CS': 0}, 'delivery': {'DIR': slate.DELIVERY_DIR, 'CH': 'rgb', 'EXT': 'exr', 'CS': 'Output - sRGB'} } PADDING_VER, PADDING_FRAME = slate.SHOW_CONFIG['padding'] PADDING_FRAME = '%0{}d'.format(int(PADDING_FRAME)) VERSION_LABEL = { 'delivery': "<font color='Gold'>(version matching latest comp version)</>", 'new_version': "<font color='LimeGreen'>(new version)</>" } #------------------------------------------------------------------------------ #-Supporting Function #------------------------------------------------------------------------------ def image_group_path(verType, ver): '''create image group path, with scriptcopy @verType: verType of the file (str) @ver: file version (int) return: [out_exr, out_scriptcopy] full file path (list) ''' # Type without passname just_verType = verType.split('_')[0] versionName, versionDir, out_file, out_scriptcopy = None,None,None,None def _makeFile(versionName, subdir): '''sets out values @versionName: name of the version, format differs between delivery and non-delivery, ie. show_shot_type_pass_v### @subdir: sub-directory under version directory ''' # Version directory versionDir = joinPath(TYPE_CONFIG[just_verType]['DIR'], versionName) out_file = joinPath( versionDir, subdir, '{versionName}.{frame}.{ext}'.format(versionName=versionName,frame=PADDING_FRAME,ext=TYPE_CONFIG[just_verType]['EXT']) ) # Output file scriptcopy out_scriptcopy = joinPath(versionDir,'%s.scriptcopy.nk' % versionName) return out_file, out_scriptcopy # Set values if just_verType == 'delivery': # Delivery version versionName = '{show}_{shot}_comp_v{ver}.delivery'.format( show=slate.SHOW_CONFIG['kp_show'], shot=slate.SHOT_CONFIG['kp_shot'], ver=str(ver).zfill(int(PADDING_VER)) ) out_file, out_scriptcopy = _makeFile(versionName, TYPE_CONFIG[just_verType]['EXT']) else: # Non-Delivery version versionName = '{show}_{shot}_{verType}_v{ver}'.format( show=slate.SHOW_CONFIG['kp_show'], shot=slate.SHOT_CONFIG['kp_shot'], verType=verType, ver=str(ver).zfill(int(PADDING_VER)) ) out_file, out_scriptcopy = _makeFile(versionName, verType) print("\n==========\n- version:\n%s\n\n- file:\n%s\n\n- scriptcopy:\n%s\n==========" % (versionName, out_file, out_scriptcopy)) return out_file, out_scriptcopy def get_versions(verType): '''get the latest version of selected version type @verType: version type (str) return: verLatest (int) ''' just_verType = verType.split('_')[0] if just_verType == 'delivery': _dir2list = TYPE_CONFIG['comp']['DIR'] _type2look = '_comp_' else: _dir2list = TYPE_CONFIG[just_verType]['DIR'] _type2look = '_'+verType+'_' ls_ver = [int(v.split('_v')[1]) for v in os.listdir(_dir2list) if _type2look in v] ls_ver = [0] if len(ls_ver)==0 else ls_ver return ls_ver def get_type(node): ''' get the type of the node''' out_type = node['mu_type'].value() out_type = out_type+'_'+node['tx_passname'].value() if out_type not in NO_PASSNAME else out_type return out_type def set_versions(node, out_type): '''sets the list of version and labels @node: node (obj) @out_type: ouput type (str) ''' if out_type == 'delivery': verNew = max(get_versions(out_type)) node['mu_ver'].setEnabled(False) node['tx_versionLabel'].setValue(VERSION_LABEL['delivery']) else: verNew = max(get_versions(out_type))+1 node['mu_ver'].setEnabled(True) node['tx_versionLabel'].setValue(VERSION_LABEL['new_version']) ls_ver = [str(v) for v in range(1, verNew+1)] node['mu_ver'].setValues(ls_ver) # node['mu_ver'].setValue(max(ls_ver)) def set_file(node, out_type, ver): '''set output file and settings @node: node (obj) @out_type: output type (str) @ver: version to set (int) ''' out_file, out_scriptcopy = image_group_path(out_type, ver) node['file'].setValue(out_file) node['tx_scriptcopy'].setValue(out_scriptcopy) node['channels'].setValue(TYPE_CONFIG[out_type.split('_')[0]]['CH']) node['colorspace'].setValue(TYPE_CONFIG[out_type.split('_')[0]]['CS']) # print "==========\n\n%s\n\n%s-%s\n\n==========" % ( # file, nuke.Root()['first_frame'].value(), nuke.Root()['last_frame'].value() # ) def set_write(node): '''sets settings for given node @node: (node) Write node ''' out_type = get_type(node) set_versions(node, out_type) verLatest = max(get_versions(node['mu_type'].value()))+1 node['mu_ver'].setValue(verLatest) set_file(node, out_type, verLatest) #------------------------------------------------------------------------------ #-Main Function #------------------------------------------------------------------------------ def KuWrite(): '''Adding inputs for auto generate output path''' node = nuke.createNode('Write') node.setName('KuWrite') node.knob('file').setEnabled(False) k_pipeline = nuke.Text_Knob('kupipeline', 'kuWrite', 'kuWrite') # Ku Pipeline Identifier k_tab = nuke.Tab_Knob('tb_KuWrite', 'KuWrite') k_title = nuke.Text_Knob('tx_title', '', '<h1><br>KuWrite</h1>') k_show = nuke.Text_Knob('tx_show', '<h3>show</h3>', slate.SHOW_CONFIG['kp_show']) k_shot = nuke.Text_Knob('tx_shot', '<h3>shot</h3>', slate.SHOT_CONFIG['kp_shot']) k_type = nuke.Enumeration_Knob('mu_type', '<h3>type</h3>', RENDER_TYPE) k_elements = nuke.String_Knob('tx_passname', '_', 'NewPass') k_ver = nuke.Enumeration_Knob('mu_ver', '<h3>version</h3>', [' ']) k_latest = nuke.Text_Knob('tx_versionLabel', '', VERSION_LABEL['new_version']) k_div_title = nuke.Text_Knob('divider','') k_div = nuke.Text_Knob('divider',' ') k_set = nuke.PyScript_Knob('bt_set', '<b>&#11118; Check Versions</b>', 'mod_KuWrite.set_write(nuke.thisNode())') k_render = nuke.PyScript_Knob('bt_render', '<b>Render</b>', 'mod_KuWrite.render_node(nuke.thisNode())') k_scriptcopy = nuke.String_Knob('tx_scriptcopy', 'scriptcopy dir', '') k_elements.clearFlag(nuke.STARTLINE) k_elements.setVisible(False) k_set.setFlag(nuke.STARTLINE) k_latest.clearFlag(nuke.STARTLINE) k_render.clearFlag(nuke.STARTLINE) k_pipeline.setVisible(False) k_scriptcopy.setVisible(False) for k in [k_tab, k_pipeline, k_title, k_div_title, k_show, k_shot, k_type, k_elements, k_ver, k_latest, k_div, k_set, k_render, k_scriptcopy]: node.addKnob(k) mod = os.path.basename(__file__).split('.')[0] node['knobChanged'].setValue('%s.onChange()' % mod) set_write(node) #------------------------------------------------------------------------------ #-Knob Changed #------------------------------------------------------------------------------ def onChange(): '''knob change function to call''' n = nuke.thisNode() k = nuke.thisKnob() if k.name() in ['mu_type','tx_passname']: verType = get_type(n) set_versions(n, verType) if n['mu_type'].value() not in NO_PASSNAME: n['tx_passname'].setVisible(True) else: n['tx_passname'].setVisible(False) n['mu_ver'].setValue(max(n['mu_ver'].values())) set_file(n, verType, n['mu_ver'].value()) if k.name() in ['mu_ver']: verType = get_type(n) if n['mu_ver'].value() == max(n['mu_ver'].values()): n['tx_versionLabel'].setVisible(True) else: n['tx_versionLabel'].setVisible(False) set_file(n, verType, n['mu_ver'].value()) if k.name() == 'mu_type' and k.value() == 'delivery': n['tile_color'].setValue(12533759) else: n['tile_color'].setValue(0) #------------------------------------------------------------------------------ #-Rendering Node #------------------------------------------------------------------------------ def render_node(node): '''launch render''' out_path = node['file'].value() out_scriptcopy = node['tx_scriptcopy'].value() startFrame = int(nuke.Root()['first_frame'].value()) endFrame = int(nuke.Root()['last_frame'].value()) def _soloWrite(sel_node, all_enabled_write, mode='solo'): if mode == 'solo': for s in all_enabled_write: if s != sel_node.name(): print('node disabled---' + s ) nuke.toNode(s)['disable'].setValue(True) elif mode == 'reverse': for s in all_enabled_write: nuke.toNode(s)['disable'].setValue(False) print('node enabled---' + s ) askMessage = "Render Node: %s\nFile: %s\nFramerage: %s-%s\n" % ( node.name(), os.path.basename(node['file'].value()), startFrame, endFrame) c = nuke.ask(askMessage) if c: if not os.path.exists(os.path.dirname(out_path)): p = os.path.dirname(out_path) os.makedirs(p) print("out path created --- %s" % p) if not os.path.exists(os.path.dirname(out_scriptcopy)): s = os.path.dirname(out_scriptcopy) os.makedirs(s) print("out scriptcopy created --- %s" % s) all_enabled_write = [n.name() for n in nuke.allNodes('Write') if n['disable'].value() == False] _soloWrite(node, all_enabled_write, mode='solo') nuke.scriptSave() thisScript_path = nuke.scriptName() shutil.copy2(thisScript_path, out_scriptcopy) # nuke.render(node, startFrame, endFrame) exe = joinPath(nuke.EXE_PATH).replace('/', '\\') cmd_str = """start cmd /k "{exe}" -t -m 22 -xi {script} {start}-{end}""".format( exe=exe, node=node.name(), script=thisScript_path, start=startFrame, end=endFrame ) subprocess.Popen(cmd_str, shell=True) _soloWrite(node, all_enabled_write, mode='reverse') else: print("user cancelled") # KuWrite() # render_node(nuke.toNode('KuWrite1'))
1.484375
1
tests/functional/adapter/test_basic.py
dbt-labs/dbt-snowflake
51
12782229
<reponame>dbt-labs/dbt-snowflake<filename>tests/functional/adapter/test_basic.py import pytest from dbt.tests.adapter.basic.test_base import BaseSimpleMaterializations from dbt.tests.adapter.basic.test_singular_tests import BaseSingularTests from dbt.tests.adapter.basic.test_singular_tests_ephemeral import ( BaseSingularTestsEphemeral, ) from dbt.tests.adapter.basic.test_empty import BaseEmpty from dbt.tests.adapter.basic.test_ephemeral import BaseEphemeral from dbt.tests.adapter.basic.test_incremental import BaseIncremental from dbt.tests.adapter.basic.test_generic_tests import BaseGenericTests from dbt.tests.adapter.basic.test_snapshot_check_cols import BaseSnapshotCheckCols from dbt.tests.adapter.basic.test_snapshot_timestamp import BaseSnapshotTimestamp from dbt.tests.adapter.basic.test_adapter_methods import BaseAdapterMethod from dbt.tests.adapter.basic.test_docs_generate import BaseDocsGenerate from dbt.tests.adapter.basic.expected_catalog import base_expected_catalog, no_stats from tests.functional.adapter.expected_stats import snowflake_stats class TestSimpleMaterializationsSnowflake(BaseSimpleMaterializations): pass class TestSingularTestsSnowflake(BaseSingularTests): pass class TestSingularTestsEphemeralSnowflake(BaseSingularTestsEphemeral): pass class TestEmptySnowflake(BaseEmpty): pass class TestEphemeralSnowflake(BaseEphemeral): pass class TestIncrementalSnowflake(BaseIncremental): pass class TestGenericTestsSnowflake(BaseGenericTests): pass class TestSnapshotCheckColsSnowflake(BaseSnapshotCheckCols): pass class TestSnapshotTimestampSnowflake(BaseSnapshotTimestamp): pass class TestBaseAdapterMethodSnowflake(BaseAdapterMethod): @pytest.fixture(scope="class") def equal_tables(self): return ["MODEL", "EXPECTED"] class TestDocsGenerateSnowflake(BaseDocsGenerate): @pytest.fixture(scope="class") def get_role(self, project): return project.run_sql('select current_role()', fetch='one')[0] @pytest.fixture(scope="class") def expected_catalog(self, project, get_role): return base_expected_catalog( project, role=get_role, id_type="NUMBER", text_type="TEXT", time_type="TIMESTAMP_NTZ", view_type="VIEW", table_type="BASE TABLE", model_stats=no_stats(), seed_stats=snowflake_stats(), case=lambda x: x.upper(), case_columns=False, )
1.757813
2
sim/lib/inference.py
MPI-SWS/simulator
0
12782230
import time import bisect import numpy as np import pandas as pd import networkx as nx import scipy import scipy.optimize import scipy as sp import os import matplotlib.pyplot as plt import random from bayes_opt import BayesianOptimization from bayes_opt.util import UtilityFunction, Colours import asyncio import threading import json import tornado.ioloop import tornado.httpserver from tornado.web import RequestHandler import requests from lib.priorityqueue import PriorityQueue from lib.dynamics import DiseaseModel from lib.mobilitysim import MobilitySimulator from bayes_opt import BayesianOptimization from lib.parallel import * SIMPLIFIED_OPT = True def format_opt_to_sim(opt_params, n_betas): ''' Convert bayes_opt parameter format into our format ''' if SIMPLIFIED_OPT: return { 'betas' : [opt_params['beta'] for _ in range(n_betas)], 'alpha': opt_params['alpha'], 'mu': opt_params['mu'] } else: sim_params = { 'betas' : [None for _ in range(n_betas)], 'alpha': None, 'mu': None } for k, v, in opt_params.items(): if 'betas' in k: sim_params['betas'][int(k[5:])] = v else: sim_params[k] = v return sim_params def format_sim_to_opt(sim_params): ''' Convert our format into bayes opt format ''' if SIMPLIFIED_OPT: return { 'beta' : sim_params['betas'][0], 'alpha': sim_params['alpha'], 'mu': opt_params['mu'] } else: opt_params = {'betas' + str(i) : p for i, p in enumerate(sim_params['betas'])} opt_params.update({ 'alpha': sim_params['alpha'], 'mu': sim_params['mu'] }) return opt_params def convert_timings_to_daily(timings, time_horizon): ''' Converts batch of size N of timings of M individuals in a time horizon of `time_horizon` in hours into daily aggregate cases Argument: timings : np.array of shape (N, M) Argument: timings : np.array of shape (N, T / 24) ''' if len(timings.shape) == 1: timings = np.expand_dims(timings, axis=0) arr = np.array([ np.sum((timings >= t * 24) & (timings < (t + 1) * 24), axis=1) for t in range(0, int(time_horizon // 24))]).T return arr def convert_timings_to_cumulative_daily(timings, time_horizon): ''' Converts batch of size N of timings of M individuals in a time horizon of `time_horizon` in hours into daily cumulative aggregate cases Argument: timings : np.array of shape (N, M) Argument: timings : np.array of shape (N, T / 24) ''' if len(timings.shape) == 1: timings = np.expand_dims(timings, axis=0) cumulative = np.array([ np.sum((timings < (t + 1) * 24), axis=1) for t in range(0, int(time_horizon // 24))]).T return cumulative def loss_daily(predicted_confirmed_times, targets_daily, time_horizon, power=2.0): ''' Daily loss: total squared error between average predicted daily cases and true daily cases ''' # predicted_confirmed_daily = convert_timings_to_daily(predicted_confirmed_times, time_horizon) predicted_confirmed_daily = convert_timings_to_cumulative_daily(predicted_confirmed_times, time_horizon) ave_predicted_confirmed_daily = predicted_confirmed_daily.mean(axis=0) loss = np.power(np.abs(ave_predicted_confirmed_daily - targets_daily), power).mean() return loss def multimodal_loss_daily(preds, weights, targets, time_horizon, power=2.0): ''' Multimodal Daily loss: Same as loss_daily but considering several weighted metrics (e.g. positive, recovered, deceased) ''' loss = 0 for w, pred, target in zip(weights, preds, targets): # pred = convert_timings_to_daily(pred, time_horizon) pred = convert_timings_to_cumulative_daily(pred, time_horizon) ave_pred = pred.mean(axis=0) loss += w * np.power(np.abs(ave_pred - target), power).mean() return loss def make_loss_function(mob_settings, distributions, targets, time_horizon, param_bounds, initial_seeds, testing_params, random_repeats, num_site_types, cpu_count, measure_list, loss, num_people, site_loc, home_loc, c, extra_params=None): ''' Returns function executable by optimizer with desired loss ''' with open(f'logger_{c}.txt', 'w+') as logfile: logfile.write(f'Log run: seed = {c}\n\n') def f(opt_params): # convert bayes_opt parameter format into our format sim_params = format_opt_to_sim(opt_params, n_betas=num_site_types) # launch in parallel summary = launch_parallel_simulations( mob_settings=mob_settings, distributions=distributions, random_repeats=random_repeats, cpu_count=cpu_count, params=sim_params, initial_seeds=initial_seeds, testing_params=testing_params, measure_list=measure_list, max_time=time_horizon, num_people=num_people, site_loc=site_loc, home_loc=home_loc, verbose=False) if loss == 'loss_daily': return summary.state_started_at['posi'] elif loss == 'multimodal_loss_daily': return (summary.state_started_at['posi'], summary.state_started_at['resi'], summary.state_started_at['dead']) else: raise ValueError('Unknown loss function') if loss == 'loss_daily': def loss_function(**kwargv): predicted_confirmed_times = f(kwargv) l = loss_daily( predicted_confirmed_times=predicted_confirmed_times, targets_daily=targets, time_horizon=time_horizon, power=2.0) ave_pred = convert_timings_to_cumulative_daily( predicted_confirmed_times, time_horizon).mean(axis=0) loginfo = f'{-l} ' + str(kwargv) + '\n' with open(f'logger_{c}.txt', 'a') as logfile: logfile.write(loginfo) # bayes_opt maximizes return - l return loss_function elif loss == 'multimodal_loss_daily': # here `extra_params` are weights if extra_params: weights = extra_params['weights'] else: weights = np.ones(len(targets)) def loss_function(**kwargv): preds = f(kwargv) l = multimodal_loss_daily( preds=preds, weights=weights, targets=targets, time_horizon=time_horizon, power=2.0) # bayes_opt maximizes return - l return loss_function else: raise ValueError('Unknown loss function')
1.96875
2
example/todos/models.py
pawnhearts/django-reactive
21
12782231
<reponame>pawnhearts/django-reactive<gh_stars>10-100 from django.db import models from django_reactive.fields import ReactJSONSchemaField from .constants import TODO_SCHEMA, TODO_UI_SCHEMA, set_task_types class Todo(models.Model): """ A collection of task lists for a todo. """ name = models.CharField(max_length=255) task_lists = ReactJSONSchemaField( help_text="Task lists", schema=TODO_SCHEMA, ui_schema=TODO_UI_SCHEMA, on_render=set_task_types, extra_css=["css/extra.css"], extra_js=["js/extra.js"], ) class TaskType(models.Model): """ A task type used to dynamically populate a todo list schema field dropdown. """ name = models.CharField(max_length=255)
2.0625
2
caelus/post/__init__.py
sayerhs/cpl
0
12782232
# -*- coding: utf-8 -*- """ Provides log analysis and plotting utilities .. currentmodule: caelus.post .. autosummary:: :nosignatures: ~funcobj.functions.PostProcessing ~logs.SolverLog ~plots.CaelusPlot """ from .logs import SolverLog from .funcobj import PostProcessing
1.09375
1
modules/info.py
merlinfuchs/clancy
0
12782233
<filename>modules/info.py from dbots.cmd import * from dbots import rest class InfoModule(Module): @Module.command() async def avatar(self, ctx, user: CommandOptionType.USER): """ Get the avatar url for an user """ resolved = ctx.resolved.users.get(user) if resolved is None: try: resolved = await ctx.bot.http.get_user(user) except rest.HTTPNotFound: await ctx.respond("I'm unable to find this user :(", ephemeral=True) await ctx.respond(f"**{resolved.name}**s **Avatar**\n{resolved.avatar_url}", ephemeral=True) # @dc.Module.command() async def user(self, ctx, user: CommandOptionType.USER): """ Get information about a user """ resolved = ctx.resolved.users.get(user) if resolved is None: try: resolved = await ctx.bot.http.get_user(user) except rest.HTTPNotFound: await ctx.respond("I'm unable to find this user :(", ephemeral=True) await ctx.respond() # @dc.Module.command() async def role(self, ctx, role: CommandOptionType.ROLE): """ Get information about a role """ print(ctx.resolved) # @dc.Module.command() async def channel(self): """ Get information about a channel """ # @dc.Module.command() async def server(self): """ Get information about a server """
2.515625
3
ctf/nsec/2018/reverse/MarsAnalytica-20/solveMA.py
Sylhare/Flag
0
12782234
<filename>ctf/nsec/2018/reverse/MarsAnalytica-20/solveMA.py # https://blog.rpis.ec/2018/05/northsec-2018-marsanalytica.html import angr def constrain_stdin(st): for _ in range(19): k = st.posix.files[0].read_from(1) st.solver.add(k > 0x20) st.solver.add(k < 0x7f) st.posix.files[0].seek(0) st.posix.files[0].length = 19 p = angr.Project("./MarsAnalytica") s = p.factory.entry_state(add_options=angr.options.unicorn) constrain_stdin(s) sm = p.factory.simulation_manager(s) sm.step(until=lambda lpg: len(lpg.active) > 1) while len(sm.deadended) == 0: sm.drop(stash='active', filter_func=lambda s: s != sm.active[0]) print(sm.one_active.state.posix.dumps(0)) sm.step(until=lambda lpg: len(lpg.deadended) > 1 or len(lpg.active) > 1)
2.421875
2
test/downloadAckunMusic.py
1254517211/test-1
5
12782235
#!/bin/env python # coding=utf8 from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5 import base64 import requests import json import urllib import time import random import datetime import hashlib # 获得响应头信息中的Content-Type域 def urlOpenGetHeaders(url): req = urllib.request.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36') page = urllib.request.urlopen(req) html = page.getheader('Content-Type') return html # 获得url的源码 def urlOpen(url): req = urllib.request.Request(url) req.add_header('User-Agent', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36') if False: proxies = ['192.168.127.12:8123', '172.16.31.10:8123', '192.168.3.11:8118'] proxy = random.choice(proxies) proxy_support = urllib.request.ProxyHandler({'http':proxy}) opener = urllib.request.build_opener(proxy_support) opener.addheaders = [('User-Agent','Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36')] urllib.request.install_opener(opener) page = urllib.request.urlopen(url) else: page = urllib.request.urlopen(req) html = page.read() return html # 根据名字、后缀和url下载到本地文件夹 def download(title,post,url): filename = title + "." +post with open(filename, 'wb') as f: music = urlOpen(url) f.write(music) def getPostStr(pKey, song_id): rsaKey = RSA.importKey(pKey) cipher = Cipher_pkcs1_v1_5.new(rsaKey) encry = cipher.encrypt(song_id) return base64.b64encode(encry) # 获取歌曲的实际的url def getSongRealUrl(songidVal,timeVal,md5Val): url = 'http://www.aekun.com/api/getMusicbyid/' r = requests.post(url, { 'songid': songidVal, 't':timeVal, 'sign':md5Val }) return r.content # 将需要的数据写入本地文件 def writeStrToFile(writeStr): print(writeStr) with open("downurl.txt","a",encoding="UTF-8") as f: f.write(writeStr) f.write("\n") # 获取最新的推荐歌曲编号 def getMaxSongs(): url = "http://www.aekun.com/new/" html = urlOpen(url).decode('utf-8') a = html.find('<tr musicid=') + 13 b = html.find('"',a) result = int(html[a:b]) return result # 获取目前已经获得的最大曲目编号 def getNowSongId(songIdInt): f = open("downurl.txt","r",encoding="UTF-8") lines = f.readlines() #读取全部内容 for line in lines: if line.find('|')!=-1: line = line.split("|") line = int(line[0]) if line > songIdInt: songIdInt = line return songIdInt # 下载歌曲的主程序部分 def downloadMusicMain(): # 获取pKey f = open('public.pem') pKey = f.read() f.close() songIdInt = 3509719 songIdInt = getNowSongId(songIdInt) songIdInt = songIdInt + 1 maxSong = getMaxSongs() print("start from:%s,end with:%s"%(songIdInt,maxSong)) # 3505251 |10 |2015084685 |▌▌Chillout ▌▌Losing Ground Michael FK & Groundfold -----3505251.mp3 while(False): if songIdInt > maxSong: break time.sleep(10) try: urlOpen("http://www.aekun.com/song/" + str(songIdInt)) except ConnectionResetError: print("Error occur") songId = str(songIdInt).encode('utf-8') print(songId) songidVal = getPostStr(pKey, songId) songidVal = songidVal.decode('utf-8') t = time.time() t = int(round(t * 1000)) timeVal = getPostStr(pKey,str(t).encode('utf-8')) timeVal = timeVal.decode('utf-8') m2 = hashlib.md5() src = str(songIdInt) + "|" + str(t) m2.update(src.encode("utf8")) t = m2.hexdigest() md5Val = getPostStr(pKey,str(t).encode('utf-8')) md5Val = md5Val.decode('utf-8') try: print(songidVal) print(timeVal) print(md5Val) ret = getSongRealUrl(songidVal,timeVal,md5Val) except (ConnectionError , ConnectionResetError): print("ConnectionError") time.sleep(3) continue ret = ret.decode('utf-8') #ret = '{"state":"success","message":"ok","action":null,"data":{"url":"http://us.aekun.com/upload/75AAB77BC2D16123F9F2E8B6C68FCB8E.mp3","song_name":"就算遇到挫折、受到嘲笑,也要勇敢的向前跑!","coll":0,"singername":"小哥","singerpic":"https://m4.aekun.com/user_l_5973822_20170513135220.png"}}' print(ret) ret = json.loads(ret) print(ret) status = ret['state'] if status != 'success': print(status) break downUrl = ret['data'] if isinstance(downUrl,str): if downUrl.strip() == '': html = urlOpen("http://www.aekun.com/song/" + str(songIdInt)).decode('utf-8') songIdInt = songIdInt + 1 continue elif isinstance(downUrl,dict): pass else: continue downUrl = ret['data']['url'] if downUrl is None: continue if downUrl.strip() == "": continue post = downUrl[-3:] post = post.lower() if post != 'mp3' and post != 'm4a': tmp = urlOpenGetHeaders(downUrl) if tmp.find('mp3') != -1: post = 'mp3' songName = ret['data']['song_name'] writeStr = "%-10s|%-50s|%-5s|%s"%(songIdInt,songName,post,downUrl) writeStrToFile(writeStr) songIdInt = songIdInt + 1 now = datetime.datetime.now() now = now.strftime('%Y-%m-%d %H:%M:%S') writeStrToFile(str(now) + '\t\t\t' + str(maxSong)) if __name__ == '__main__': downloadMusicMain()
2.609375
3
fiber/__init__.py
ehmadzubair/django-fiber
0
12782236
__version__ = '1.9.dev0'
1.070313
1
translations/migrations/0034_auto_20200423_1115.py
aniruddha-adhikary/translateforsg-backend
2
12782237
<filename>translations/migrations/0034_auto_20200423_1115.py # Generated by Django 3.0.5 on 2020-04-23 03:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('translations', '0033_populate_ordering_categories'), ] operations = [ migrations.AddField( model_name='language', name='speech_code', field=models.CharField(blank=True, db_index=True, help_text='Speech will not be generated if blank', max_length=10), ), migrations.AddField( model_name='language', name='translation_code', field=models.CharField(blank=True, db_index=True, help_text='Translation will not be generated if blank', max_length=10), ), ]
1.5625
2
VSR/DataLoader/Dataset.py
Kadantte/VideoSuperResolution
1,447
12782238
<reponame>Kadantte/VideoSuperResolution # Copyright (c) 2017-2020 <NAME>. # Author: <NAME> # Email: <EMAIL> # Update: 2020 - 2 - 7 import re from concurrent import futures from pathlib import Path import copy import yaml from .VirtualFile import ImageFile, RawFile from ..Util import Config, to_list try: from yaml import FullLoader as _Loader except ImportError: from yaml import Loader as _Loader IMAGE_SUF = ('PNG', 'JPG', 'JPEG', 'BMP', 'TIFF', 'TIF', 'GIF') VIDEO_SUF = { 'NV12': 'NV12', 'YUV': 'YV12', 'YV12': 'YV12', 'NV21': 'NV21', 'YV21': 'YV21', 'RGB': 'RGB' } def _supported_image(x: Path): return x.suffix[1:].upper() in IMAGE_SUF def _supported_video(x: Path): return x.suffix[1:].upper() in VIDEO_SUF def _supported_suffix(x: Path): return _supported_image(x) or _supported_video(x) class Dataset(object): """ Make a `dataset` object """ def __init__(self, *folders): self.dirs = list(map(Path, folders)) self.recursive = True self.glob_patterns = ('*',) self.inc_patterns = None self.exc_patterns = None self.as_video = False self.compiled = None def use_like_video_(self): self.as_video = True def use_like_video(self): d = copy.copy(self) d.compiled = None d.use_like_video_() return d def include_(self, *pattern: str): self.glob_patterns = list(pattern) self.inc_patterns = None def include(self, *pattern: str): d = copy.copy(self) d.compiled = None d.include_(*pattern) return d def include_reg_(self, *reg: str): self.inc_patterns = [re.compile(r) for r in reg] self.glob_patterns = ('*',) def include_reg(self, *reg: str): d = copy.copy(self) d.compiled = None d.include_reg_(*reg) return d def exclude_(self, *reg: str): self.exc_patterns = [re.compile(r) for r in reg] def exclude(self, *reg: str): d = copy.copy(self) d.compiled = None d.exclude_(*reg) return d def compile(self): if self.compiled: return self.compiled files = [] def _exc(x: Path): if self.exc_patterns: for reg in self.exc_patterns: if reg.search(str(x.absolute().as_posix())): return False return True def _inc(x: Path): if self.inc_patterns: for reg in self.inc_patterns: if reg.search(str(x.absolute().as_posix())): return True return False for folder in self.dirs: if not Path(folder).exists(): continue nodes = [] if folder.is_file(): # if points to a file rather than a directory nodes.append(folder) fn_glob = Path.rglob if self.recursive else Path.glob for pat in self.glob_patterns: nodes += list(fn_glob(folder, pat)) if self.inc_patterns: nodes = filter(_inc, nodes) files += list(filter(_exc, filter(_supported_suffix, nodes))) image_nodes = list(filter(_supported_image, files)) if not self.as_video: self.compiled = Container(sorted(image_nodes), self.as_video) return self.compiled video_nodes = list(filter(_supported_video, files)) video_nodes += list(map(lambda x: x.parent, image_nodes)) video_nodes = list(set(video_nodes)) # remove duplicated nodes self.compiled = Container(sorted(video_nodes), self.as_video) return self.compiled class Container(object): """Frames container """ def __init__(self, urls, is_video: bool): assert isinstance(urls, (list, tuple)) pool = futures.ThreadPoolExecutor(4) fs = [] self.nodes = [] def _parse_image_node(url: Path): if url.is_dir(): for i in filter(_supported_image, url.glob('*')): self.nodes.append(ImageFile(i, rewind=True)) elif _supported_image(url): self.nodes.append(ImageFile(url, rewind=True)) def _parse_video_node(url: Path): if _supported_video(url): size = re.findall("\\d+x\\d+", url.stem) if size: size = [int(x) for x in size[0].split('x')] self.nodes.append( RawFile(url, VIDEO_SUF[url.suffix[1:].upper()], size, rewind=True)) elif url.is_dir(): self.nodes.append(ImageFile(url)) for j in urls: if is_video: fs.append(pool.submit(_parse_video_node, j)) else: fs.append(pool.submit(_parse_image_node, j)) futures.as_completed(fs) pool.shutdown() self.nodes = sorted(self.nodes, key=lambda x: x.path) def __getitem__(self, item): return self.nodes[item] def __len__(self): return len(self.nodes) @property def capacity(self): if not self.nodes: return 0 pos = 0 max_sz = 0 total_frames = 0 for i, n in enumerate(self.nodes): total_frames += n.frames if n.size() > max_sz: max_sz = n.size() pos = i shape = self.nodes[pos].shape max_bpp = 3 return shape[0] * shape[1] * max_bpp * total_frames def load_datasets(describe_file, key=''): """load dataset described in YAML file""" def _extend_pattern(url): _url = root / Path(url) url_p = _url while True: try: if url_p.exists(): break except OSError: url_p = url_p.parent continue if url_p == url_p.parent: break url_p = url_p.parent # retrieve glob pattern url_r = str(_url.relative_to(url_p)) if url_r == '.' and url_p.is_dir(): return str(Path(url) / '**/*') return url def _get_dataset(desc, use_as_video=None, name=None): dataset = Config(name=name) for i in desc: if i not in ('train', 'val', 'test'): continue if isinstance(desc[i], dict): hr = to_list(desc[i].get('hr')) lr = to_list(desc[i].get('lr')) else: hr = to_list(desc[i]) lr = [] if use_as_video: hr_pattern = [ x if x not in all_path and x + '[video]' not in all_path else all_path[x + '[video]'] for x in hr] lr_pattern = [ x if x not in all_path and x + '[video]' not in all_path else all_path[x + '[video]'] for x in lr] else: hr_pattern = [x if x not in all_path else all_path[x] for x in hr] lr_pattern = [x if x not in all_path else all_path[x] for x in lr] hr_data = Dataset(root).include(*(_extend_pattern(x) for x in hr_pattern)) lr_data = Dataset(root).include( *(_extend_pattern(x) for x in lr_pattern)) if lr_pattern else None hr_data.recursive = False if lr_data is not None: lr_data.recursive = False if use_as_video: hr_data.use_like_video_() if lr_data is not None: lr_data.use_like_video_() setattr(dataset, i, Config(hr=hr_data, lr=lr_data)) return dataset datasets = Config() with open(describe_file, 'r') as fd: config = yaml.load(fd, Loader=_Loader) root = Path(config["Root"]) if not root.is_absolute(): # make `root` relative to the file root = Path(describe_file).resolve().parent / root root = root.resolve() all_path = config["Path"] if key.upper() in config["Dataset"]: return _get_dataset(config["Dataset"][key.upper()], name=key) elif key.upper() + '[video]' in config["Dataset"]: return _get_dataset(config["Dataset"][key.upper() + '[video]'], True, name=key) elif key.upper() in all_path: return _get_dataset(Config(test=all_path[key.upper()]), name=key) elif key.upper() + '[video]' in all_path: return _get_dataset(Config(test=all_path[key.upper() + '[video]']), True, name=key) for name, value in config["Dataset"].items(): if '[video]' in name: name = name.replace('[video]', '') datasets[name] = _get_dataset(value, True, name=name) else: datasets[name] = _get_dataset(value, name=name) for name in all_path: if '[video]' in name: _name = name.replace('[video]', '') datasets[_name] = _get_dataset(Config(test=all_path[name]), True, name=_name) else: datasets[name] = _get_dataset(Config(test=all_path[name]), name=name) return datasets
2.203125
2
2015/Day6.py
trajkan/AdventOfCode
0
12782239
<filename>2015/Day6.py """ Day 6: Probably a fire hazard """ import json import re with open('input_d6.txt') as f: data = f.readlines() lights_grid = [] for x in range(1000): for y in range(1000): lights_grid.append([x, y, 0]) xy_regex = re.compile(r'([0-9,]*) through ([0-9,]*)') # action = '' for instructions in data: if 'on' in instructions: action = 'on' elif 'off' in instructions: action = 'off' elif 'toggle' in instructions: action = 'toggle' first_xy = xy_regex.search(instructions).group(1) second_xy = xy_regex.search(instructions).group(2) x1 = int(first_xy.split(',')[0]) y1 = int(first_xy.split(',')[1]) x2 = int(second_xy.split(',')[0]) y2 = int(second_xy.split(',')[1]) delta_x = x2 - x1 delta_y = y2 - y1 for x in range(x1,x1+delta_x+1): for y in range(y1, y1+delta_y+1): pos = x*1000 + y if action == 'on': lights_grid[pos] = [x, y, 1] elif action == 'off': lights_grid[pos] = [x, y, 0] elif action == 'toggle': if lights_grid[pos][2] == 0: lights_grid[pos] = [x, y, 1] elif lights_grid[pos][2] == 1: lights_grid[pos] =[x, y, 0] on = 0 for light in lights_grid: on += light[2] print('number of light on: ', on) """ part 2 """ lights_grid = [] for x in range(1000): for y in range(1000): lights_grid.append([x, y, 0]) xy_regex = re.compile(r'([0-9,]*) through ([0-9,]*)') # action = '' for instructions in data: if 'on' in instructions: action = 'on' elif 'off' in instructions: action = 'off' elif 'toggle' in instructions: action = 'toggle' first_xy = xy_regex.search(instructions).group(1) second_xy = xy_regex.search(instructions).group(2) x1 = int(first_xy.split(',')[0]) y1 = int(first_xy.split(',')[1]) x2 = int(second_xy.split(',')[0]) y2 = int(second_xy.split(',')[1]) delta_x = x2 - x1 delta_y = y2 - y1 for x in range(x1,x1+delta_x+1): for y in range(y1, y1+delta_y+1): pos = x*1000 + y if action == 'on': brightness = lights_grid[pos][2] lights_grid[pos] = [x, y, brightness + 1] elif action == 'off': brightness = lights_grid[pos][2] if brightness > 0: lights_grid[pos] = [x, y, brightness-1] elif action == 'toggle': brightness = lights_grid[pos][2] lights_grid[pos] = [x, y, brightness+2] brightness_total = 0 for light in lights_grid: brightness_total += light[2] print('Total brightness:', brightness_total)
3.140625
3
python/beginner/sum-earnings_ljsauer.py
saumyasingh048/hacktoberithms
16
12782240
<filename>python/beginner/sum-earnings_ljsauer.py """ Challenge: Write a function that accepts a comma-separated string input of earning/spending activity and returns the sum of earning as a single int value. Requirements: If input is empty or invalid, return 0; if spending (negative values) is greater than earning during the cumulative addition of values, the count should start over from the remaining values in input. """ def sum_earnings(): values = input("Enter a string of whole numbers separated by commas (e.g. 1,-3,0,-4): ").split(',') earnings = 0 for i in values: try: earnings = max(0, earnings + int(i)) except ValueError: earnings = 0 break print(earnings) return
3.984375
4
src/single_byte_cipher.py
kaltsimon/crypto-challenges
0
12782241
<filename>src/single_byte_cipher.py """Decrypt a message that was XOR'd against a single character.""" from encode_decode import decode_hex from fixed_xor import xor import requests from operator import itemgetter def xor_with_char(bytes, char): """XOR a sequence of bytes with a single character.""" return xor(bytes, char * len(bytes)) def analyze_text(text): """Analyze the given text for the frequencies of its characters.""" # Initialize Dictionary frequencies = {} count = 0 for c in text: c = c.lower() if c in frequencies: frequencies[c] += 1 else: frequencies[c] = 1 count += 1 return {char: val / count for char, val in frequencies.items()} def extract_wiki_text(wikipedia_title, language='en'): """Get the text of the given wikipedia article.""" base_url = ('https://' + language + '.wikipedia.org/w/api.php?action=query' + '&prop=extracts&format=json&explaintext=' + '&exsectionformat=plain&titles=') text = '' r = requests.get(base_url + wikipedia_title) if r.status_code == 200: pages = r.json()['query']['pages'] for (id, page) in pages.items(): text += page['extract'] return text def analyze_wiki_text(wikipedia_title, language='en'): """Analyze the text of the given Wikipedia article.""" return analyze_text(extract_wiki_text(wikipedia_title, language)) def decrypt(bytes_, guess=0): """Decrypt a sequence of bytes.""" wiki = analyze_wiki_text('Pineapple') dec = bytes_.decode('utf-8') freqs = analyze_text(dec) item2 = itemgetter(1) wiki = sorted(wiki.items(), key=item2, reverse=True) freqs = sorted(freqs.items(), key=item2, reverse=True) diffs = [] for i in range(min(len(wiki), len(freqs))): diffs.append(abs(ord(wiki[i][0]) - ord(freqs[i][0]))) return xor_with_char(bytes_, bytes([diffs[guess]])) def decrypt_hex(hex_string): """Decrypt the hex encoded string.""" return decrypt(decode_hex(hex_string)) if __name__ == '__main__': print(decrypt_hex('1b37373331363f78151b7f2b783431333d78' + '397828372d363c78373e783a393b3736'))
3.640625
4
itscsapp/research/apps.py
danyRivC/itscsapp
0
12782242
from django.apps import AppConfig class ResearchConfig(AppConfig): name = "itscsapp.research" verbose_name = "Research"
1.148438
1
modules/losses.py
michael-iuzzolino/CascadedDistillation
0
12782243
<gh_stars>0 """Custom losses.""" import torch import torch.nn as nn def categorical_cross_entropy(pred_logits, y_true_softmax): """Categorical cross entropy.""" log_softmax_pred = nn.LogSoftmax(dim=1)(pred_logits) soft_targets = y_true_softmax.detach().clone() # Stop gradient cce_loss = -(soft_targets * log_softmax_pred).sum(dim=1).mean() return cce_loss class DistillationLossHandler(object): def __init__(self, alpha, temp): self._alpha = alpha self._temp = temp self._kl = nn.KLDivLoss() def __call__(self, outputs, labels, teacher_outputs, temp_pred=None): kl_loss = self._kl( nn.functional.log_softmax(outputs / self._temp, dim=1), nn.functional.softmax(teacher_outputs / self._temp, dim=1) ) * (self._alpha * self._temp * self._temp) target_loss = nn.functional.cross_entropy(outputs, labels) * (1. - self._alpha) loss = kl_loss + target_loss return loss class TD_Loss(object): def __init__(self, n_timesteps, tau_handler, flags): self.n_timesteps = n_timesteps self.tau_handler = tau_handler self.flags = flags def __call__(self, criterion, predicted_logits, y, targets): loss = 0 timestep_losses = torch.zeros(self.n_timesteps) timestep_accs = torch.zeros(self.n_timesteps) for t in range(len(predicted_logits)): logit_i = predicted_logits[t] # First term sum_term = torch.zeros_like(logit_i) t_timesteps = list(range(t+1, self.n_timesteps)) for i, n in enumerate(t_timesteps, 1): logit_k = predicted_logits[n].detach().clone() softmax_i = nn.functional.softmax(logit_k, dim=1) sum_term = sum_term + self.flags.lambda_val**(i - 1) * softmax_i # Final terms term_1 = (1 - self.flags.lambda_val) * sum_term term_2 = self.flags.lambda_val**(self.n_timesteps - t - 1) * y softmax_j = term_1 + term_2 # Temp scale logit_i = logit_i / self.flags.distillation_temperature softmax_j = softmax_j / self.flags.distillation_temperature # Compute loss loss_i = criterion(pred_logits=logit_i, y_true_softmax=softmax_j) # Tau weighted if self.flags.tau_weighted_loss and t < self.n_timesteps - 1: tau_i = self.tau_handler(t-1, epoch_i) loss_i = tau_i * loss_i # Aggregate loss if self.flags.tdl_mode == "EWS": loss = loss + loss_i else: # Ignore first timestep loss (all 0's output) if t > 0: loss = loss + loss_i # Log loss item timestep_losses[t] = loss_i.item() # Predictions softmax_i = nn.functional.softmax(logit_i, dim=1) y_pred = torch.argmax(softmax_i, dim=1) # Updates running accuracy statistics n_correct = torch.eq(targets, y_pred).sum() acc_i = n_correct / float(targets.shape[0]) timestep_accs[t] = acc_i # Normalize loss if self.flags.normalize_loss: loss = loss / float(self.n_timesteps) return loss, timestep_losses, timestep_accs def compute_distillation_loss(target, teacher, alpha, temperature): teacher_term = teacher * (alpha * temperature * temperature) target_term = (1 - alpha) * target loss = teacher_term + target_term return loss class Distillation_TD_Loss(object): def __init__(self, n_timesteps, tau_handler, flags): self.n_timesteps = n_timesteps self.tau_handler = tau_handler self.flags = flags def __call__(self, criterion, predicted_logits, teacher_y, y, targets): loss = 0 timestep_losses = torch.zeros(self.n_timesteps) timestep_accs = torch.zeros(self.n_timesteps) for t in range(len(predicted_logits)): logit_i = predicted_logits[t] # First term sum_term = torch.zeros_like(logit_i) t_timesteps = list(range(t+1, self.n_timesteps)) for i, n in enumerate(t_timesteps, 1): logit_k = predicted_logits[n].detach().clone() softmax_i = nn.functional.softmax(logit_k, dim=1) sum_term = sum_term + self.flags.lambda_val**(i - 1) * softmax_i # Final terms target_term_1 = (1 - self.flags.lambda_val) * sum_term target_term_2 = self.flags.lambda_val**(self.n_timesteps - t - 1) * y target_softmax_j = target_term_1 + target_term_2 teacher_term_1 = (1 - self.flags.lambda_val) * sum_term teacher_term_2 = self.flags.lambda_val**(self.n_timesteps - t - 1) * teacher_y teacher_softmax_j = teacher_term_1 + teacher_term_2 # Temp scale logit_i = logit_i / self.flags.distillation_temperature teacher_softmax_j = teacher_softmax_j / self.flags.distillation_temperature # Compute target and teacher losses target_loss_i = criterion(pred_logits=logit_i, y_true_softmax=target_softmax_j) teacher_loss_i = criterion(pred_logits=logit_i, y_true_softmax=teacher_softmax_j) # Compute distillation loss loss_i = compute_distillation_loss( target_loss_i, teacher_loss_i, alpha=self.flags.distillation_alpha, temperature=self.flags.distillation_temperature ) # Tau weighted if self.flags.tau_weighted_loss and t < self.n_timesteps - 1: tau_i = self.tau_handler(t-1, epoch_i) loss_i = tau_i * loss_i # Aggregate loss if self.flags.tdl_mode == "EWS": loss = loss + loss_i else: # Ignore first timestep loss (all 0's output) if t > 0: loss = loss + loss_i # Log loss item timestep_losses[t] = loss_i.item() # Predictions softmax_i = nn.functional.softmax(logit_i, dim=1) y_pred = torch.argmax(softmax_i, dim=1) # Updates running accuracy statistics n_correct = torch.eq(targets, y_pred).sum() acc_i = n_correct / float(targets.shape[0]) timestep_accs[t] = acc_i # Normalize loss if self.flags.normalize_loss: loss = loss / float(self.n_timesteps) return loss, timestep_losses, timestep_accs
2.328125
2
tests/continuous_integration/test_05_network.py
simonvh/ANANSE
0
12782244
import os import numpy as np import pytest from ananse.network import Network from .test_02_utils import write_file @pytest.fixture def binding_fname(): return "tests/example_data/binding2.tsv" @pytest.fixture def network(): genome = "tests/data/genome.fa" if not os.path.exists(genome): write_file(genome, [">chr1", "N"]) return Network(genome=genome, gene_bed="ananse/db/hg38.genes.bed") def test_unique_enhancer(network, binding_fname): regions = network.unique_enhancers(binding_fname) regions = regions.as_df() assert regions.shape[0] == 6 assert sorted(list(regions["Chromosome"].unique())) == ["chr1", "chr10", "chr17"] assert sorted(list(regions["Start"].unique())) == [7677184, 7687827] def test_distance_weight(network): dw = network.distance_weight( include_promoter=True, promoter_region=20, full_weight_region=50, maximum_distance=100, alpha=5, ) assert list(dw.columns) == ["weight", "dist"] dw = dw.set_index("dist") assert dw.loc[0, "weight"] == 1 assert dw.loc[25, "weight"] == 1 assert dw.loc[50, "weight"] == 1 assert dw.loc[51, "weight"] < 1 assert np.isclose(dw.loc[100, "weight"], 0, atol=1e-4) assert dw.shape[0] == 101 dw = network.distance_weight( include_promoter=False, promoter_region=20, full_weight_region=50, maximum_distance=100, alpha=5, ) assert list(dw.columns) == ["weight", "dist"] dw = dw.set_index("dist") assert dw.loc[0, "weight"] == 0 assert dw.loc[20, "weight"] == 0 assert dw.loc[21, "weight"] == 1 assert dw.shape[0] == 101
2.125
2
setup.py
zhouxiexuan/pDeep3
10
12782245
import setuptools from configparser import ConfigParser from pkg_resources import parse_version from sys import platform assert parse_version(setuptools.__version__) >= parse_version('36.2') config = ConfigParser(delimiters=['=']) config.read('settings.ini') cfg = config['DEFAULT'] license_options = { 'apache2': ( 'Apache Software License 2.0', 'OSI Approved :: Apache Software License' ), 'MIT': ( 'MIT License', 'OSI Approved :: MIT License' ) } status_options = { '1': 'Planning', '2': 'Pre-Alpha', '3': 'Alpha', '4': 'Beta', '5': 'Production/Stable', '6': 'Mature', '7': 'Inactive' } maximum_python3_available = 8 with open("requirements.txt") as requirements_file: requirements = [] for line in requirements_file: line = line.strip() requirements.append(line) setuptools.setup( name=cfg["lib_name"], license=license_options[cfg["license"]][0], classifiers=[ f'Development Status :: {cfg["status"]} - {status_options[cfg["status"]]}', f'Intended Audience :: {cfg["audience"]}', f'License :: {license_options[cfg["license"]][1]}', f'Natural Language :: {cfg["language"]}', ] + [ f'Programming Language :: Python :: 3.{i}' for i in range( int(cfg["min_python"].split(".")[1]), maximum_python3_available + 1 ) ], version=cfg["version"], description=cfg["description"], keywords=cfg["keywords"], author=cfg["author"], author_email=cfg["author_email"], url=cfg["url"], packages=setuptools.find_packages(), # TODO: Modifying this should allow to remove the MAINFEST.in include_package_data=True, install_requires=requirements, python_requires=f'>={cfg["min_python"]},<{cfg["max_python"]}', zip_safe=False, )
2.25
2
utils/aes_test.py
aidan-lane/MastersProject
0
12782246
<filename>utils/aes_test.py """Unittest for aes.py """ import unittest import random import string from os.path import exists import string from utils import aes class TestAes(unittest.TestCase): def test_key_gen(self): """ Test AES private key generation """ # Test default (32 bytes) key = aes.gen_rand_bytes(aes.KEY_SIZE) self.assertTrue(len(key), aes.KEY_SIZE) # Test user-specified amount new_len = 64 key = aes.gen_rand_bytes(new_len) self.assertTrue(len(key), new_len) def test_string(self): key = aes.gen_rand_bytes(aes.KEY_SIZE) iv = aes.gen_rand_bytes(aes.IV_SIZE) for _ in range(10): s = "".join(random.choices(string.ascii_lowercase, k=10)) encrypted = aes.encrypt_string(s, key, iv) decrypted = aes.decrypt_string(encrypted, key, iv) # Ensure encrypted is a hex string self.assertTrue(all(c in string.hexdigits for c in encrypted)) self.assertEqual(decrypted, s) def test_encrypt_file(self): filename = "sample.txt" file = open(filename, "w") file.write("test") file.close() out_path = aes.encrypt_file(aes.gen_rand_bytes(aes.KEY_SIZE), filename) self.assertTrue(exists(out_path)) self.assertRegex(out_path, ".*\.enc$") def test_aes(self): """Test encryption and decryption of a file using AES """ filename = "sample.txt" dec_filename = "decrypted.txt" msg = "test_aes1234" key = aes.gen_rand_bytes(aes.KEY_SIZE) file = open(filename, "w") file.write(msg) file.close() out_path = aes.encrypt_file(key, filename) aes.decrypt_file(key, out_path, dec_filename) dfile = open(dec_filename, "r") dec_msg = dfile.readline() dfile.close() self.assertEqual(dec_msg, msg) if __name__ == "__main__": unittest.main()
2.9375
3
awx/sso/urls.py
gitEdouble/awx
17
12782247
<gh_stars>10-100 # Copyright (c) 2015 Ansible, Inc. # All Rights Reserved. from django.conf.urls import url from awx.sso.views import ( sso_complete, sso_error, sso_inactive, saml_metadata, ) app_name = 'sso' urlpatterns = [ url(r'^complete/$', sso_complete, name='sso_complete'), url(r'^error/$', sso_error, name='sso_error'), url(r'^inactive/$', sso_inactive, name='sso_inactive'), url(r'^metadata/saml/$', saml_metadata, name='saml_metadata'), ]
1.507813
2
ShopperMiles/products/migrations/0001_initial.py
juansahe/shoppy
0
12782248
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-06-28 20:54 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('providers', '0001_initial'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='Nombre')), ('img', models.ImageField(upload_to='uploads/category/', verbose_name='Imagen')), ], options={ 'ordering': ['name'], 'verbose_name': 'Categoria', 'verbose_name_plural': 'Categorias', }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='Nombre del producto ')), ('description', models.TextField(blank=True, null=True, verbose_name='Descripci\xf3n del producto ')), ('img', models.ImageField(upload_to='uploads/products/', verbose_name='Imagen del producto ')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products.Category', verbose_name='Categoria')), ('provider', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='providers.Provider', verbose_name='Marca o Retail')), ], options={ 'ordering': ['name'], 'verbose_name': 'Producto', 'verbose_name_plural': 'Productos', }, ), ]
1.648438
2
104_manejoCadenas/funcionSorted.py
josuerojasq/netacad_python
0
12782249
#La función "sorted()" toma un argumento (una lista) y devuelve una nueva lista, # con los elementos ordenados del argumento. # Demostración de la función sorted() firstGreek = ['omega', 'alfa', 'pi', 'gama'] firstGreek2 = sorted(firstGreek) print(firstGreek) print(firstGreek2) print() lista1 = ['T', 'e', 'x', 't', 'o', ' ', 'd', 'e', ' ', 'e', 'j', 'e', 'm', 'p', 'l', 'o', ',', ' ', 'f', 'i', 'n'] lista2 = sorted(lista1) print(lista1) print(lista2)
4.15625
4
src/scrawl/moves/text.py
astromancer/graphical
0
12782250
import matplotlib.pyplot as plt from matplotlib.text import Text class DragHandler(object): # NOTE: DOES NOT HANDLE TEXT WITH ARBITRARY TRANSFORMS!!!! """ A simple class to handle Drag n Drop. This is a simple example, which works for Text objects only """ def __init__(self, figure=None): """ Create a new drag handler and connect it to the figure's event system. If the figure handler is not given, the current figure is used instead """ if figure is None: figure = plt.gcf() # simple attibute to store the dragged text object self.dragged = None # Connect events and callbacks figure.canvas.mpl_connect("pick_event", self.on_pick_event) figure.canvas.mpl_connect("button_release_event", self.on_release_event) def on_pick_event(self, event): " Store which text object was picked and were the pick event occurs." if isinstance(event.artist, Text): self.dragged = event.artist self.pick_pos = (event.mouseevent.xdata, event.mouseevent.ydata) return True def on_release_event(self, event): " Update text position and redraw" if self.dragged is not None: old_pos = self.dragged.get_position() new_pos = (old_pos[0] + event.xdata - self.pick_pos[0], old_pos[1] + event.ydata - self.pick_pos[1]) self.dragged.set_position(new_pos) self.dragged = None plt.draw() return True
3.84375
4