max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
setup.py
jowanpittevils/Databasemanager_Signalplotter
0
12781951
<gh_stars>0 import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="signalplotterV2", # Replace with your own username version="0.0.1", author="<NAME>; <NAME>", author_email="<EMAIL>", description="A package for exploring databases and plotting biomedical data", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/jowanpittevils/Databasemanager_Signalplotter", classifiers=[ "Operating System :: OS Independent", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: BSD 3-Clause", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", "Intended Audience :: Developers", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), install_requires=["matplotlib","PyQt5","numpy","datetime","pyqtgraph","PyQtChart"], python_requires=">=3.6", )
1.507813
2
SecureWitness/accounts/admin.py
vivianbuan/cs3240-s15-team20
0
12781952
from django.contrib import admin from accounts.models import UserGroup, UserProfile # Register your models here. class UserAdmin(admin.ModelAdmin): pass class GroupAdmin(admin.ModelAdmin): pass admin.site.register(UserProfile, UserAdmin) admin.site.register(UserGroup, GroupAdmin)
1.695313
2
A1/python_scripts/draw_scripts.py
ankurshaswat/COL819
0
12781953
<reponame>ankurshaswat/COL819 import os import seaborn as sns import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit CHORD_LOGS_PATH = '../chord/logs/' PASTRY_LOGS_PATH = '../pastry/logs/' def read(path): lis = [] with open(path, 'r') as file: lines = file.readlines() lis = [int(i.strip()) for i in lines] return lis def mean(lst): return sum(lst)/len(lst) def draw_all_graphs(initial_path, naming): num_keys_100 = read(initial_path + 'sim1_keys_before.txt') num_keys_500 = read(initial_path + 'sim2_keys_before.txt') num_keys_1000 = read(initial_path + 'sim3_keys_before.txt') path_lengths_100 = read(initial_path + 'sim1_before.txt') path_lengths_500 = read(initial_path + 'sim2_before.txt') path_lengths_1000 = read(initial_path + 'sim3_before.txt') avg_len_100 = mean(path_lengths_100) avg_len_500 = mean(path_lengths_500) avg_len_1000 = mean(path_lengths_1000) num_keys_100_af = read(initial_path + 'sim1_keys_after.txt') num_keys_500_af = read(initial_path + 'sim2_keys_after.txt') num_keys_1000_af = read(initial_path + 'sim3_keys_after.txt') path_lengths_100_af = read(initial_path + 'sim1_after.txt') path_lengths_500_af = read(initial_path + 'sim2_after.txt') path_lengths_1000_af = read(initial_path + 'sim3_after.txt') avg_len_100_af = mean(path_lengths_100_af) avg_len_500_af = mean(path_lengths_500_af) avg_len_1000_af = mean(path_lengths_1000_af) # * Number of nodes vs. Number of keys per node print(naming, 'Number of nodes vs. Number of keys per node') data = [[] for i in range(10)] labels = ['' for i in range(10)] data[0], labels[0] = num_keys_100, 100 data[4], labels[4] = num_keys_500, 500 data[9], labels[9] = num_keys_1000, 1000 plt.boxplot(data, labels=labels, showfliers=False, showmeans=True, meanline=True) plt.title('Number of keys per node vs. number of nodes (Before deletion of half nodes)') plt.xlabel('Number of nodes') plt.ylabel('Num of keys per node') plt.savefig( 'graphs/'+naming+'_num_keys_per_node_vs_num_nodes_before.svg', format='svg') plt.clf() data = [[] for i in range(10)] labels = ['' for i in range(10)] data[0], labels[0] = num_keys_100_af, 100 data[4], labels[4] = num_keys_500_af, 500 data[9], labels[9] = num_keys_1000_af, 1000 plt.boxplot(data, labels=labels, showfliers=False, showmeans=True, meanline=True) plt.title('Number of keys per node vs. number of nodes (After deletion of half nodes)') plt.xlabel('Number of nodes') plt.ylabel('Num of keys per node') plt.savefig( 'graphs/'+naming+'_num_keys_per_node_vs_num_nodes_after.svg', format='svg') plt.clf() # * PDF for num keys per node print(naming, 'PDF for num keys per node') plt.title('PDF of number of keys per node (Before deletion)') plt.xlabel('Number of keys per node') plt.ylabel('Probability') bins = np.arange(0, max(max(num_keys_100), max(num_keys_500), max(num_keys_1000)) + 1.5) - 0.5 sns.distplot(num_keys_100, hist=False, bins=bins, kde_kws={'bw': 1}, label='100 Nodes').set(xlim=(0)) sns.distplot(num_keys_500, hist=False, bins=bins, kde_kws={'bw': 1}, label='500 Nodes').set(xlim=(0)) sns.distplot(num_keys_1000, hist=False, bins=bins, kde_kws={'bw': 1}, label='1000 Nodes').set(xlim=(0)) plt.legend(title='Legend') plt.savefig('graphs/'+naming + '_pdf_num_keys_per_node_before.svg', format='svg') plt.clf() plt.title('PDF of number of keys per node (After deletion)') plt.xlabel('Number of keys per node') plt.ylabel('Probability') bins = np.arange(0, max(max(num_keys_100_af), max(num_keys_500_af), max(num_keys_1000_af)) + 1.5) - 0.5 sns.distplot(num_keys_100_af, hist=False, bins=bins, kde_kws={'bw': 1}, label='100 Nodes').set(xlim=(0)) sns.distplot(num_keys_500_af, hist=False, bins=bins, kde_kws={'bw': 1}, label='500 Nodes').set(xlim=(0)) sns.distplot(num_keys_1000_af, hist=False, bins=bins, kde_kws={'bw': 1}, label='1000 Nodes').set(xlim=(0)) plt.legend(title='Legend') plt.savefig('graphs/'+naming + '_pdf_num_keys_per_node_after.svg', format='svg') plt.clf() # * num keys per node vs. num keys print(naming, 'num keys per node vs. num keys') data = [] labels = [] for i in range(1, 11): labels.append(i) data.append(read(initial_path + 'keys_var'+str(i)+"_keys_before.txt")) plt.boxplot(data, labels=labels, showfliers=False, showmeans=True, meanline=True) plt.title('Variation of number of keys per node with increasing keys (1000 Nodes)') plt.xlabel('Number of keys (x10000)') plt.ylabel('Number of keys per node') plt.savefig('graphs/'+naming+'_num_keys_per_node_dist.svg', format='svg') plt.clf() # * Path length vs. number of nodes print(naming, 'Path length vs. number of nodes') data = [[] for i in range(10)] labels = ['' for i in range(10)] data[0], labels[0] = path_lengths_100, 100 data[4], labels[4] = path_lengths_500, 500 data[9], labels[9] = path_lengths_1000, 1000 plt.boxplot(data, labels=labels, showfliers=False, showmeans=True, meanline=True) plt.title('Path length vs. num nodes (Before deletion)') plt.xlabel('Number of Nodes') plt.ylabel('Path length') plt.savefig('graphs/'+naming + '_path_length_vs_num_nodes_before.svg', format='svg') plt.clf() data = [[] for i in range(10)] labels = ['' for i in range(10)] data[0], labels[0] = path_lengths_100_af, 100 data[4], labels[4] = path_lengths_500_af, 500 data[9], labels[9] = path_lengths_1000_af, 1000 plt.boxplot(data, labels=labels, showfliers=False, showmeans=True, meanline=True) plt.title('Path length vs. number of nodes (After deletion)') plt.xlabel('Number of nodes') plt.ylabel('Path length') plt.savefig('graphs/'+naming + '_path_length_vs_num_nodes_after.svg', format='svg') plt.clf() # * PDF for path length print(naming, 'PDF for path length') plt.title('PDF of path length (Before deletion)') plt.xlabel('Path length') plt.ylabel('Probability') bins = np.arange(0, max(max(path_lengths_100), max(path_lengths_500), max(path_lengths_1000)) + 1.5) - 0.5 sns.distplot(path_lengths_100, hist=False, bins=bins, kde_kws={'bw': 1}, label='100 Nodes').set(xlim=(0)) sns.distplot(path_lengths_500, hist=False, bins=bins, kde_kws={'bw': 1}, label='500 Nodes').set(xlim=(0)) sns.distplot(path_lengths_1000, hist=False, bins=bins, kde_kws={'bw': 1}, label='1000 Nodes').set(xlim=(0)) plt.legend(title='Legend') plt.savefig('graphs/'+naming+'_pdf_path_len_before.svg', format='svg') plt.clf() plt.title('PDF of path length (After deletion)') plt.xlabel('Path length') plt.ylabel('Probability') bins = np.arange(0, max(max(path_lengths_100_af), max(path_lengths_500_af), max(path_lengths_1000_af)) + 1.5) - 0.5 sns.distplot(path_lengths_100_af, hist=False, bins=bins, kde_kws={'bw': 1}, label='100 Nodes').set(xlim=(0)) sns.distplot(path_lengths_500_af, hist=False, bins=bins, kde_kws={'bw': 1}, label='500 Nodes').set(xlim=(0)) sns.distplot(path_lengths_1000_af, hist=False, bins=bins, kde_kws={'bw': 1}, label='1000 Nodes').set(xlim=(0)) plt.legend(title='Legend') plt.savefig('graphs/'+naming+'_pdf_path_len_after.svg', format='svg') plt.clf() # * Avg number of hops vs. nodes print(naming, 'Avg number of hops vs. nodes') x, y = [100, 500, 1000, 2000, 5000, 10000], [] # logs = np.log(x) for i in range(1, 7): lst = read(initial_path + 'nodes_var'+str(i)+"_before.txt") y.append(sum(lst) / len(lst)) popt, _ = curve_fit(func, x, y) # base = np.log(100)/y[0] # const = y[1]*base/np.log(500) plt.plot(x, y, marker='o', label=naming.title()) plt.plot(x, popt[0]*np.log(x), marker='o', label='O(log(N))') plt.title('Avg. number of hops vs number of nodes') plt.xlabel('Number of nodes') plt.xscale('log') plt.ylabel('Avg. number of hops') plt.legend() plt.savefig('graphs/'+naming+'_avg_hops_vs_node.svg', format='svg') plt.clf() # * Avg. number of hops comparison with deletion print(naming, 'Avg. number of hops comparison with deletion') x, y = [100, 500, 1000], [avg_len_100, avg_len_500, avg_len_1000] y2 = [avg_len_100_af, avg_len_500_af, avg_len_1000_af] plt.plot(x, y, 'bo-', label='Before deletion') plt.plot(x, y2, 'ro-', label='After deletion') plt.title('Avg. number of hops vs number of nodes') plt.xlabel('Number of nodes') plt.xscale('log') plt.ylabel('Avg. number of hops') plt.legend() plt.savefig('graphs/'+naming + '_avg_hops_vs_node_deletions.svg', format='svg') plt.clf() # * Path length histogram print(naming, 'Path length histograms') plt.title('Path length Distribution Histogram (100 Nodes)') plt.xlabel('Path length') plt.ylabel('Number of searches') bins = np.arange(0, max(max(path_lengths_100), max(path_lengths_100_af)) + 1.5) - 0.5 plt.hist([path_lengths_100, path_lengths_100_af], bins, label=['Before Deletion', 'After Deletion']) plt.legend(title='Legend') plt.savefig('graphs/'+naming+'_histogram_path_len_100.svg', format='svg') plt.clf() bins = np.arange(0, max(max(path_lengths_500), max(path_lengths_500_af)) + 1.5) - 0.5 plt.title('Path length Distribution Histogram (500 Nodes)') plt.xlabel('Path length') plt.ylabel('Number of searches') plt.hist([path_lengths_500, path_lengths_500_af], bins, label=['Before Deletion', 'After Deletion']) plt.legend(title='Legend') plt.savefig('graphs/'+naming+'_histogram_path_len_500.svg', format='svg') plt.clf() bins = np.arange(0, max(max(path_lengths_1000), max(path_lengths_1000_af)) + 1.5) - 0.5 plt.title('Path length Distribution Histogram (1000 Nodes)') plt.xlabel('Path length') plt.ylabel('Number of searches') plt.hist([path_lengths_1000, path_lengths_1000_af], bins, label=['Before Deletion', 'After Deletion']) plt.legend(title='Legend') plt.savefig('graphs/'+naming+'_histogram_path_len_1000.svg', format='svg') plt.clf() def func(x, a): return a*np.log(x) if __name__ == "__main__": draw_all_graphs(CHORD_LOGS_PATH, 'chord') draw_all_graphs(PASTRY_LOGS_PATH, 'pastry')
2.4375
2
hydrachain/examples/native/fungible/test_fungible_contract.py
bts/hydrachain
406
12781954
from ethereum import tester import hydrachain.native_contracts as nc from fungible_contract import Fungible, Transfer, Approval import ethereum.slogging as slogging log = slogging.get_logger('test.fungible') def test_fungible_instance(): state = tester.state() creator_address = tester.a0 creator_key = tester.k0 nc.registry.register(Fungible) # Create proxy EUR_address = nc.tester_create_native_contract_instance(state, creator_key, Fungible) fungible_as_creator = nc.tester_nac(state, creator_key, EUR_address) # Initalize fungible with a fixed quantity of fungibles. fungible_total = 1000000 fungible_as_creator.init(fungible_total) assert fungible_as_creator.balanceOf(creator_address) == fungible_total nc.registry.unregister(Fungible) def test_fungible_template(): """ Tests; Fungible initialization as Creator, Creator sends Fungibles to Alice, Alice sends Fungibles to Bob, Bob approves Creator to spend Fungibles on his behalf, Creator allocates these Fungibles from Bob to Alice, Testing of non-standardized functions of the Fungible contract. Events; Checking logs from Transfer and Approval Events """ # Register Contract Fungible nc.registry.register(Fungible) # Initialize Participants and Fungible contract state = tester.state() logs = [] creator_address = tester.a0 creator_key = tester.k0 alice_address = tester.a1 alice_key = tester.k1 bob_address = tester.a2 bob_key = tester.k2 # Create proxy nc.listen_logs(state, Transfer, callback=lambda e: logs.append(e)) nc.listen_logs(state, Approval, callback=lambda e: logs.append(e)) fungible_as_creator = nc.tester_nac(state, creator_key, Fungible.address) # Initalize fungible with a fixed quantity of fungibles. fungible_total = 1000000 fungible_as_creator.init(fungible_total) assert fungible_as_creator.balanceOf(creator_address) == fungible_total # Creator transfers Fungibles to Alice send_amount_alice = 700000 fungible_as_creator.transfer(alice_address, send_amount_alice) assert fungible_as_creator.balanceOf(creator_address) == fungible_total - send_amount_alice assert fungible_as_creator.balanceOf(alice_address) == send_amount_alice # Check logs data of Transfer Event assert len(logs) == 1 l = logs[0] assert l['event_type'] == 'Transfer' assert l['from'] == creator_address assert l['to'] == alice_address # Build transaction Log arguments and check sent amount assert l['value'] == send_amount_alice # Alice transfers Fungibles to Bob send_amount_bob = 400000 # Create proxy for Alice fungible_as_alice = nc.tester_nac(state, alice_key, Fungible.address) fungible_as_alice.transfer(bob_address, send_amount_bob) # Test balances of Creator, Alice and Bob creator_balance = fungible_total - send_amount_alice alice_balance = send_amount_alice - send_amount_bob bob_balance = send_amount_bob assert fungible_as_alice.balanceOf(creator_address) == creator_balance assert fungible_as_alice.balanceOf(alice_address) == alice_balance assert fungible_as_alice.balanceOf(bob_address) == bob_balance # Create proxy for Bob fungible_as_bob = nc.tester_nac(state, bob_key, Fungible.address) approved_amount_bob = 100000 assert fungible_as_bob.allowance(creator_address) == 0 # Bob approves Creator to spend Fungibles assert fungible_as_bob.allowance(creator_address) == 0 fungible_as_bob.approve(creator_address, approved_amount_bob) assert fungible_as_bob.allowance(creator_address) == approved_amount_bob # Test transferFrom function, i.e. direct debit. fungible_as_creator.transferFrom(bob_address, alice_address, approved_amount_bob) # Test balances alice_balance += approved_amount_bob bob_balance -= approved_amount_bob assert fungible_as_alice.balanceOf(creator_address) == creator_balance assert fungible_as_alice.balanceOf(alice_address) == alice_balance assert fungible_as_alice.balanceOf(bob_address) == bob_balance # Check logs data of Transfer Event assert len(logs) == 4 l = logs[-1] assert l['event_type'] == 'Transfer' assert l['from'] == bob_address assert l['to'] == alice_address # Build transaction Log arguments and check sent amount assert l['value'] == approved_amount_bob # Testing account information # Now we should have three Fungible accounts assert 3 == fungible_as_alice.num_accounts() r = fungible_as_creator.get_creator() assert r == creator_address r = fungible_as_creator.get_accounts() assert set(r) == set([creator_address, alice_address, bob_address]) print logs while logs and logs.pop(): pass nc.registry.unregister(Fungible)
2.1875
2
CrittersProto/generator/fileout_test.py
nickjbenson/Kami
1
12781955
# fileout_test.py fi =
0.929688
1
videoTOvideo_language.py
MuskanM1/Ingenious_hackathon_Enigma
2
12781956
<gh_stars>1-10 # Video to Audio """ import moviepy.editor as mp clip = mp.VideoFileClip("/content/drive/My Drive/Hackathon_2020_Enigma/Video.mp4") clip.audio.write_audiofile("/content/drive/My Drive/Hackathon_2020_Enigma/Video.wav") ''' # convert mp4 to mp3 audio = AudioSegment.from_file("/content/drive/My Drive/Hackathon_2020_Enigma/Video.mp4", format="mp4") audio.export("/content/drive/My Drive/Hackathon_2020_Enigma/audio.mp3", format="mp3") ------------------- import subprocess command = "ffmpeg -i /content/drive/My Drive/Hackathon_2020_Enigma/Video.mp4 -ab 160k -ac 2 -ar 44100 -vn /content/drive/My Drive/Hackathon_2020_Enigma/audio.wav" subprocess.call(command, shell=True) ''' # convert mp3 to wav sound = AudioSegment.from_mp3("/content/drive/My Drive/Hackathon_2020_Enigma/audio.mp3") sound.export("/content/drive/My Drive/Hackathon_2020_Enigma/audio.wav", format="wav") """# Audio to Text""" !pip install SpeechRecognition !pip install pydub import speech_recognition as sr from pydub import AudioSegment from pydub.silence import split_on_silence r = sr.Recognizer() with sr.AudioFile('/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio.wav') as source: audio = r.listen(source) try: #text = r.recognize_google(audio, language = 'en-UK') text = r.recognize_google(audio) print("Working...") print(text) except sr.UnknownValueError: print("Could not understand audio") except sr.RequestError as e: print("Could not request results. check your internet connection") except: print("Sorry...") from pydub.silence import split_on_silence import speech_recognition as sr from pydub import AudioSegment from pydub.utils import make_chunks ''' song = AudioSegment.from_wav('/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio.wav') fh = open("/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio_text.txt", "w+") chunks = split_on_silence(song, min_silence_len = 5000, silence_thresh = -16 ) i=0 # process each chunk for chunk in chunks: # Create 0.5 seconds silence chunk #chunk_silent = AudioSegment.silent(duration = 10) # add 0.5 sec silence to beginning and # end of audio chunk. This is done so that # it doesn't seem abruptly sliced. #audio_chunk = chunk_silent + chunk + chunk_silent audio_chunk = chunk # export audio chunk and save it in # the current directory. print("saving chunk{0}.wav".format(i)) # specify the bitrate to be 192 k audio_chunk.export("/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio_chunks/chunk{0}.wav".format(i), bitrate ='192k', format ="wav") # the name of the newly created chunk filename = '/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio_chunks/chunk'+str(i)+'.wav' print("Processing chunk "+str(i)) # get the name of the newly created chunk # in the AUDIO_FILE variable for later use. file = filename # create a speech recognition object r = sr.Recognizer() # recognize the chunk with sr.AudioFile(file) as source: # remove this if it is not working # correctly. #r.adjust_for_ambient_noise(source) audio_listened = r.listen(source) try: # try converting it to text rec = r.recognize_google(audio_listened) print(rec) # write the output to the file. fh.write(rec+". ") # catch any errors. except sr.UnknownValueError: print("Could not understand audio") except sr.RequestError as e: print("Could not request results. check your internet connection") i += 1 ''' #-- Audio -> small chunks -> text -> srt -> files import speech_recognition as sr from pydub import AudioSegment from pydub.utils import make_chunks myaudio = AudioSegment.from_file("/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio.wav" , "wav") chunk_length_ms = 5000 # pydub calculates in millisec chunks = make_chunks(myaudio, chunk_length_ms) # Make chunks of five sec #Export all of the individual chunks as wav files full_text = "" srt_text = "" t_sec = 0 t_min = 0 t_hour = 0 for i, chunk in enumerate(chunks): chunk_name = "/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio_chunks/chunk{0}.wav".format(i) #print ("exporting", chunk_name) chunk.export(chunk_name, format="wav") r = sr.Recognizer() with sr.AudioFile(chunk_name) as source: audio = r.listen(source) try: #text = r.recognize_google(audio, language = 'en-UK') text = r.recognize_google(audio) # print("---------Working...-------------\n") # print(text) full_text = full_text + text + ' ' #print(srt_text) except sr.UnknownValueError: print("----------Could not understand audio----------\n") except sr.RequestError as e: print("----------Could not request results. check your internet connection----------\n") except: print("----------Sorry...---------\n") t_sec = t_sec + 5 print(full_text) full_text_file = open("/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/audio_chunks/recognized.txt", "w") full_text_file.write(full_text) full_text_file.close() """# Punctuation""" !pip install punctuator !gdown https://drive.google.com/uc?id=0B7BsN5f2F1fZd1Q0aXlrUDhDbnM from punctuator import Punctuator p = Punctuator('/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/Model/Demo-Europarl-EN.pcl') punc_full_text = p.punctuate(full_text) print(punc_full_text) """# Translation""" !pip install googletrans from googletrans import Translator translator = Translator() translated_text = translator.translate(punc_full_text, dest='hi').text print(translated_text) """# Text to speech""" !pip install pyttsx3==2.7 !pip install talkey !pip install py-espeak-ng !pip install gTTS ''' import pyttsx3 engine = pyttsx3.init() # object creation """ RATE""" rate = engine.getProperty('rate') # getting details of current speaking rate print (rate) #printing current voice rate engine.setProperty('rate', 125) # setting up new voice rate """VOLUME""" volume = engine.getProperty('volume') #getting to know current volume level (min=0 and max=1) print (volume) #printing current volume level engine.setProperty('volume',1.0) # setting up volume level between 0 and 1 """VOICE""" voices = engine.getProperty('voices') #getting details of current voice #engine.setProperty('voice', voices[0].id) #changing index, changes voices. o for male engine.setProperty('voice', voices[1].id) #changing index, changes voices. 1 for female engine.say("Hello World!") engine.say('My current speaking rate is ' + str(rate)) engine.runAndWait() engine.stop() ''' from gtts import gTTS mytext = full_text # Language in which you want to convert language = 'en' # Passing the text and language to the engine, # here we have marked slow=False. Which tells # the module that the converted audio should # have a high speed myobj = gTTS(text=mytext, lang=language, slow=True) myobj.save("/content/drive/My Drive/Hackathon_2020_Enigma/Video-Text/welcome.wav") """# Audio Remove""" import subprocess command = 'for file in *.mp4; do ffmpeg -i "$file" -c copy -an "noaudio_$file"; done' subprocess.call(command) from google.colab import drive drive.mount('/content/drive')
3.015625
3
UpdateAllRepositories.py
alencodes/SVN_Repo_Update
0
12781957
import os import subprocess import time import logging from re import sub from optparse import OptionParser parser = OptionParser() parser.add_option("-p", "--path", dest="root_path", help="set root path to start search", metavar="PATH") (options, args) = parser.parse_args() root_path = options.root_path if options.root_path else '.' logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s', filename='SVNUpdate.log', filemode='a') startupinfo = None startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW def main(): if is_svn_installed(): update_all_repo() else: print('Please install SVN command line tools to use this application') def is_svn_installed(): cmd = 'svn --version' try: subprocess.Popen(cmd, startupinfo=startupinfo, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return True except Exception as e: return False def update_all_repo(): logging.info('Update started @ : {}'.format(time.asctime(time.localtime(time.time())))) count = 0 print('Collecting SVN repositories') for root, dirs, files in os.walk(root_path, topdown=False): for name in dirs: if name == '.svn': count += 1 svn_dir = os.path.join(root, name)[2:-5] print('Updating ' + svn_dir) cmd = 'svn up "' + svn_dir + '"' try: p = subprocess.Popen(cmd, startupinfo=startupinfo, stdout=subprocess.PIPE, stderr=subprocess.PIPE) pout, _ = p.communicate() pout = sub('[\n\r]', '', pout.decode('utf-8')) pout = sub('[:]', ' is ', pout) logging.info('{}'.format(pout)) p.wait() except Exception as e: print('Whoops !! Something went wrong, check log for more info') logging.error('{}'.format(e)) print('Total svn repositories updated : {}'.format(str(count))) logging.info('Total svn repositories updated : {}'.format(str(count))) logging.info('Update done @ : {}'.format(time.asctime(time.localtime(time.time())))) logging.shutdown() if __name__ == '__main__': main()
2.453125
2
tests/plugins/test_kubejobs.py
ufcg-lsd/asperathos-integration-tests
1
12781958
import requests import pytest import subprocess from datetime import datetime from helpers import wait_for_grafana_url_generation, create_job from helpers import stop_job, MANAGER_URL, VISUALIZER_URL, get_jobs, delete_job from helpers import restart_container, wait_for_job_complete from helpers.fixtures import job_payload, manager_container_id def test_create_job(job_payload): """ Tests if a Job is being created successfully Arguments: job_payload {dict} -- A pytest fixture providing the Job payload to be sent to Asperathos Returns: None """ response = requests.post(MANAGER_URL + '/submissions', json=job_payload) response_payload = response.json() assert response.ok assert response_payload stop_job(manager_url=MANAGER_URL, job_id=response_payload.get('job_id')) def test_visualize_grafana(): """ Tests if the Grafana URL is being generated successfully Arguments: None Returns: None """ job_id = create_job(MANAGER_URL, 1) grafana_url = wait_for_grafana_url_generation(VISUALIZER_URL, job_id) assert requests.get(grafana_url).ok stop_job(manager_url=MANAGER_URL, job_id=job_id) def test_controller_scales_up(): """ Tests if the Controlling is able to scale Arguments: None Returns: None """ INITIAL_REPLICAS = 1 job_id = create_job(MANAGER_URL, 2) wait_for_job_complete(MANAGER_URL, job_id, max_wait_time=180) detailed_report = requests.get(MANAGER_URL + '/submissions/{}/report'\ .format(job_id)) data = detailed_report.json() assertion = any(data[time]['replicas'] > INITIAL_REPLICAS for time in data) assert assertion stop_job(manager_url=MANAGER_URL, job_id=job_id) def test_controller_scales_down(): """ Tests if the Controlling is able to scale Arguments: None Returns: None """ INITIAL_REPLICAS = 10 job_id = create_job(MANAGER_URL, 3) wait_for_job_complete(MANAGER_URL, job_id, max_wait_time=180) detailed_report = requests.get(MANAGER_URL + '/submissions/{}/report'\ .format(job_id)) data = detailed_report.json() assertion = any(data[time]['replicas'] < INITIAL_REPLICAS for time in data) assert assertion stop_job(manager_url=MANAGER_URL, job_id=job_id) def test_monitor_report_matches_detailed(): """ Tests if the metrics in the simple report matches with the detailed one. Arguments: None Returns: None """ job_id = create_job(MANAGER_URL, 3) wait_for_job_complete(MANAGER_URL, job_id, max_wait_time=180) submission_url = MANAGER_URL + '/submissions/{}'.format(job_id) report_url = submission_url + "/report" monitor = requests.get(submission_url).json() detailed = requests.get(report_url).json() monitor_max_error,monitor_max_error_time = monitor['max_error'] monitor_min_error,monitor_min_error_time = monitor['min_error'] monitor_last_error,monitor_last_error_time = monitor['final_error'] detailed_report_max_error = detailed[monitor_max_error_time]['error'] assert detailed_report_max_error == monitor_max_error detailed_report_max_error = detailed[monitor_min_error_time]['error'] assert detailed_report_max_error == monitor_min_error date_format = "%Y-%m-%dT%H:%M:%SZ" last_date = datetime.strptime(monitor_last_error_time,date_format) dates = detailed.keys() assertion = all(datetime.strptime(date,date_format) <= last_date\ for date in dates) assert assertion @pytest.mark.last def test_persistence_works(manager_container_id): """ Tests if Job persistence is working properly when manager is restarted Arguments: None Returns: None """ # This test is here to ensure there will be more than 0 jobs registered jobs = get_jobs(MANAGER_URL) n_jobs = len(jobs) assert n_jobs > 0 restart_container(manager_container_id) assert n_jobs == len(get_jobs(MANAGER_URL)) delete_job(MANAGER_URL, list(jobs.keys())[0]) assert len(get_jobs(MANAGER_URL)) < n_jobs
2.1875
2
repos/system_upgrade/el7toel8/actors/addupgradebootentry/libraries/library.py
brammittendorff/leapp-repository
0
12781959
<reponame>brammittendorff/leapp-repository import os import re from leapp.exceptions import StopActorExecutionError from leapp.libraries.stdlib import api, run from leapp.models import BootContent def add_boot_entry(): debug = 'debug' if os.getenv('LEAPP_DEBUG', '0') == '1' else '' kernel_dst_path, initram_dst_path = get_boot_file_paths() run([ '/usr/sbin/grubby', '--add-kernel', '{0}'.format(kernel_dst_path), '--initrd', '{0}'.format(initram_dst_path), '--title', 'RHEL-Upgrade-Initramfs', '--copy-default', '--make-default', '--args', '{DEBUG} enforcing=0 rd.plymouth=0 plymouth.enable=0'.format(DEBUG=debug) ]) def get_boot_file_paths(): boot_content_msgs = api.consume(BootContent) boot_content = next(boot_content_msgs, None) if list(boot_content_msgs): api.current_logger().warning('Unexpectedly received more than one BootContent message.') if not boot_content: raise StopActorExecutionError('Could not create a GRUB boot entry for the upgrade initramfs', details={'details': 'Did not receive a message about the leapp-provided' 'kernel and initramfs'}) return boot_content.kernel_path, boot_content.initram_path def write_to_file(filename, content): with open(filename, 'w') as f: f.write(content) def fix_grub_config_error(conf_file): with open(conf_file, 'r') as f: config = f.read() # move misplaced '"' to the end pattern = r'GRUB_CMDLINE_LINUX=.+?(?=GRUB|\Z)' original_value = re.search(pattern, config, re.DOTALL).group() parsed_value = original_value.split('"') new_value = '{KEY}"{VALUE}"{END}'.format(KEY=parsed_value[0], VALUE=''.join(parsed_value[1:]).rstrip(), END=original_value[-1]) config = config.replace(original_value, new_value) write_to_file(conf_file, config)
2.140625
2
porcupine/plugins/rstrip.py
rscales02/porcupine
0
12781960
<filename>porcupine/plugins/rstrip.py """Remove trailing whitespace when enter is pressed.""" from porcupine import get_tab_manager, tabs, utils def after_enter(textwidget): """Strip trailing whitespace at the end of a line.""" lineno = int(textwidget.index('insert').split('.')[0]) - 1 line = textwidget.get('%d.0' % lineno, '%d.0 lineend' % lineno) if len(line) != len(line.rstrip()): textwidget.delete('%d.%d' % (lineno, len(line.rstrip())), '%d.0 lineend' % lineno) def on_new_tab(event): if isinstance(event.data_widget, tabs.FileTab): textwidget = event.data_widget.textwidget def bind_callback(event): textwidget.after_idle(after_enter, textwidget) textwidget.bind('<Return>', bind_callback, add=True) def setup(): utils.bind_with_data(get_tab_manager(), '<<NewTab>>', on_new_tab, add=True)
3.125
3
scripts/06_plot_orthogroups_venn.py
cmdoret/Acastellanii_genome_analysis
5
12781961
<gh_stars>1-10 import pandas as pd from matplotlib_venn import venn2, venn3 import matplotlib as mpl import matplotlib.pyplot as plt mpl.use("Agg") vdf = pd.read_csv(snakemake.input["pres_compact"], sep="\t").drop( "Orthogroup", axis=1 ) vdf = vdf.astype(bool) # vdf = vdf.rename(columns={'NEFF_v1_hgt_cds': 'v1'}) # Make Venn diagram. sets are A, B, AB, C, AC, BC, ABC fig, ax = plt.subplots(1, 2, figsize=(15, 12)) venn3( subsets=( len(vdf.query(" c3 and not neff and not amoeba")), # A len(vdf.query("not c3 and neff and not amoeba")), # B len(vdf.query(" c3 and neff and not amoeba")), # AB len(vdf.query("not c3 and not neff and amoeba")), # C len(vdf.query(" c3 and not neff and amoeba")), # AC len(vdf.query("not c3 and neff and amoeba")), # BC len(vdf.query(" c3 and neff and amoeba")), # ABC ), set_labels=("C3", "Neff", "Amoeba"), ax=ax[0], ) venn2( subsets=( len(vdf.query(" c3 and not neff")), len(vdf.query("not c3 and neff")), len(vdf.query(" c3 and neff")), ), set_labels=("C3", "Neff"), ax=ax[1], ) fig.savefig(snakemake.output["venn"])
2.40625
2
var_conv_dq.py
TeodorPoncu/variational-conv-dequantization
0
12781962
<reponame>TeodorPoncu/variational-conv-dequantization import torch from torch import nn from torch.nn import functional as F from typing import Tuple from torch.distributions import Normal class TestConvDequantize(nn.Module): """ Please refer to VariationalConvDequantize class down bellow for implementation details This is a dummy class with extended return types for testing purposes and sanity checks """ def __init__(self, in_channels: int, z_channels: int): super(TestConvDequantize, self).__init__() self.in_channels = in_channels self.z_channels = z_channels self.latent = nn.Sequential( nn.Conv2d(in_channels, z_channels, kernel_size=(3, 3), padding=(1, 1)), nn.LeakyReLU(), ) self.mlp = nn.Sequential( nn.Linear(z_channels, z_channels), nn.LeakyReLU(), nn.Linear(z_channels, 2) ) def dequantize(self, x: torch.Tensor): latents = self.latent(x) b, c, h, w = latents.shape latents = latents.permute(0, 2, 3, 1) latents = latents.reshape(b * h * w, self.z_channels) latents = self.mlp(latents) mu, var = torch.chunk(latents, chunks=2, dim=1) noise_original = torch.randn(size=(b * h * w, self.in_channels)) noise = (noise_original + mu) * var noise = noise.view(b, h, w, self.in_channels) noise = noise.permute(0, 3, 1, 2) return noise, noise_original, mu, var def forward(self, x: torch.Tensor): variational, noise, mu, var = self.dequantize(x) dequantize = x + variational return dequantize, variational, noise, mu, var class VariationalConvDequantize(nn.Module): """ Module that performs variational dequantization similarly to Flow++ (https://arxiv.org/abs/1902.00275) Used when dealing with spatially dependent quantized embeddings, i.e mu and var are obtained from a feature vector that is the result of a convolution operation with kernel_size > 1 The feature vector for z_{B x H x W} is obtained by performing a convolution around z_{B x H x W}, then a MLP extracts mu_{B x H x W}, respectively var_{B x H x W} """ def __init__(self, in_channels: int, z_channels: int): super(VariationalConvDequantize, self).__init__() self.in_channels = in_channels self.z_channels = z_channels # use a convolution as a non-linear for spatial awareness and cheap dimensionality reduction # can change kernel size to (1, 1) in order to obtain classic variational dequantization self.latent = nn.Sequential( nn.Conv2d(in_channels, z_channels, kernel_size=(3, 3), padding=(1, 1)), nn.LeakyReLU(), ) # use a mlp to get mean and variance self.mlp = nn.Sequential( nn.Linear(z_channels, z_channels), nn.LeakyReLU(), nn.Linear(z_channels, 2) ) self.gaussian = Normal(loc=0., scale=1., ) def dequantize(self, x: torch.Tensor) -> torch.Tensor: # reduce dimensionality latents = self.latent(x) # get latent sizes, only C dimension is different from input b, c, h, w = latents.shape # a linear takes input of form B x D # swap axes to perform computation for each spatial position # B, C, H, W -> B * H * W, C latents = latents.permute(0, 2, 3, 1) latents = latents.reshape(b * h * w, self.z_channels) # get mu and var latents = self.mlp(latents) mu, var = torch.chunk(latents, chunks=2, dim=1) # sample gaussian noise and add variational parameters noise_original = torch.randn(size=(b * h * w, self.in_channels)) noise = (noise_original + mu) * var # rehsape to original shape noise = noise.view(b, h, w, self.in_channels) # swap axis to preserve spatial ordering noise = noise.permute(0, 3, 1, 2) return noise def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # return variational noise variational = self.dequantize(x) # add gaussian noise dequantize = x + variational return dequantize, variational def run_tests(): module = TestConvDequantize(in_channels=512, z_channels=32) y = torch.randn(16, 512, 32, 32) dequantized, noise, noise_original, mu, var = module.forward(y) x = dequantized[0, :, 0, 0] n = noise[0, :, 0, 0] assert y.shape == noise.shape, "Failed noise generation, shape mismatch" assert torch.allclose((x - n), y[0, :, 0, 0]), "Failed operation check, original input is not equal to self + noise" assert torch.allclose(noise_original[0, :], n / var[0] - mu[0]) \ , "Failed operation order check, variational features do not match " \ "their original statistics at spatial positions " if __name__ == '__main__': run_tests()
2.515625
3
gauss.py
pituca292/calculo-numerico-algoritmos
0
12781963
#!/usr/bin/env # -*- coding: utf-8 -*- # Módulo de Gauss: # Métodos de calculo da solução de um sistema linear por eliminação de gauss # Método para calculo do erro da solução de gauss em relação a solução real import numpy as np import construtor import solve # Calcula o vetor solução pelo método de Gauss. # Entradas: matriz, vetor de termos independentes, número de pontos # Retorno: vetor solução def v_sol(m, v, n): # Verifica e escalona a matriz for j in range(n): if m[j][j] == 0: k = j while True: if 0 == m[k][j]: k += 1 if k == n: print("Matriz inválida") break else: temp = m[k].copy() m[k] = m[j].copy() m[j] = temp.copy() break for i in range(j + 1, n): mult = - m[i][j] / m[j][j] for k in range(j, n): m[i][k] += mult * m[j][k] v[i] += mult * v[j] # Resolve a matriz escalonada x = [None] * n for i in range(n-1, -1, -1): x[i] = v[i] for j in range(i + 1, n): x[i] -= m[i][j] * x[j] x[i] = x[i] / m[i][i] return x # Calcula o vetor solução, para a matriz de uma equação, pelo método de Gauss. # Entradas: q(x), r(x), malha de pontos, passo, número de pontos, y(a), y(b) # Retorno: vetor solução def v_sol_mh(q, r, x, h, n, a_, b_): # Calcula a matriz e o vetor de termos independentes m_h = construtor.matriz(q, x, h, n) v_h = construtor.vetor(r, x, h, n, a_, b_) # Calcula e retorna o vetor solução return v_sol(m_h, v_h, n - 1) # Calcula o vetor solução, para a matriz de uma equação e diversos valores de n, pelo método de Gauss. # Compara os valores solução do método de Gauss com a solução real. # Plota o gráfico do erro máximo para cada valor de n. # Entradas: y(x), q(x), r(x), extremo inicial (a), extremo final (b), y(a), y(b) # Retorno: vetor com o erro máximo para cada valor de n. def erro_n(y, q, r, a, b, a_, b_, n, n_step): # Erro entre valores obtidos pelo método de Gauss e a solução conhecida e = [] # Erro máximo da cada iteração e_max = [] for ni in range(5, n, n_step): # Calcula o passo adequado ao intervalo h = (b - a) / ni # Cria a malha de pontos x = [] for i in range(1, ni): x.append(a + i * h) # Calcula o vetor solução real v_sol = solve.v_sol(y, x) # Calcula o vetor solução pelo método de Gauss v_gauss = v_sol_mh(q, r, x, h, ni, a_, b_) # Compara as soluções dif = [abs(i) for i in (np.array(v_sol) - np.array(v_gauss)).tolist()] e.append(dif) e_max.append(np.max(dif)) return e_max # ----------------teste---------------- if __name__ == "__main__": b = [[1, 2, 3], [4, 5, 8], [7, 8, 5]] c = [10, 11, 12] print(v_sol(b, c, 3))
3.5625
4
backend/course/views.py
ducluongtran9121/Web-Application-Project
1
12781964
<reponame>ducluongtran9121/Web-Application-Project from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.parsers import FormParser, MultiPartParser, JSONParser from rest_framework.views import APIView from rest_framework import mixins from rest_framework import viewsets from rest_framework.decorators import action from django.shortcuts import get_object_or_404 from .serializers import * from .models import * from resource.models import File from resource.serializers import FileSerializer from account.serializers import MemberSerializer from django.core.validators import validate_email from django.core.exceptions import ValidationError import json # Create your views here. class CourseApiStructure(APIView): def get(self, request): return Response({ "courses/": { "get": "return course list of member", "post": "create course for member" }, "courses/pk/": { "get": "returns the details of course", "put": "update course", "delete": "delete course", }, "courses/pk/listMember/": "list course member", "courses/pk/addMemberWithEmail/": "add(PUT) a member to course using email", "courses/pk/removeMemberWithEmail/": "remove(PUT) a member to course using email", "courses/course_pk/lesson/": { "get": "return lesson list", "post": "create lesson" }, "courses/course_pk/lesson/pk/": { "get": "returns the details of lesson", "put": "update lesson", "delete": "delete lesson", }, "courses/course_pk/lesson/lesson_pk/files/": { "get": "return file list", "post": "create file" }, "courses/course_pk/lesson/lesson_pk/files/pk/": { "get": "returns the details of file", "put": "update file", "delete": "delete file", }} ) class CourseViewSet(viewsets.ViewSet, viewsets.GenericViewSet): serializer_class = CourseSerializer queryset = Course.objects.all() permission_classes = (IsAuthenticated,) def list(self, request): member_pk = request.user.id queryset = Course.objects.filter(course_member=member_pk) serializer = CourseSerializer(queryset, many=True) return Response(serializer.data) def retrieve(self, request, pk=None): member_pk = request.user.id queryset = Course.objects.filter(pk=pk, course_member=member_pk) if queryset.exists(): serializer = CourseSerializer(queryset[0]) return Response(serializer.data) return Response({'errors': 'Objects not found'}, status=404) def create(self, request, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Member.objects.filter(pk=member_pk) if queryset.exists(): serializer = CourseSerializer(data=request.data) serializer.is_valid(raise_exception=True) instance = serializer.save() instance.created_by = queryset[0] instance.course_lecturer.add(queryset[0]) instance.save() return Response(serializer.data, status=201) return Response({'errors': 'Bad request'}, status=400) def update(self, request, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Course.objects.filter(pk=pk, course_member=member_pk) if queryset.exists(): instance = queryset[0] serializer = CourseSerializer(instance=instance, data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data) return Response({'errors': 'Bad request'}, status=400) def destroy(self, request, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Course.objects.filter(pk=pk, course_member=member_pk) if queryset.exists(): instance = queryset[0] instance.detele() return Response(status=204) return Response({'errors': 'Bad request'}, status=400) @action(detail=True, methods=['get']) def listMember(self, request, pk=None): member_pk = request.user.id queryset = Course.objects.filter(pk=pk, course_member=member_pk) if queryset.exists(): serializer = MemberSerializer(queryset[0].course_member, many=True) return Response(serializer.data) class AddMemberWithEmail(APIView): serializer_class = EmailSerializer #queryset = Member.objects.filter(is_superuser=False) permission_classes = (IsAuthenticated,) def put(self, request, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id courseQueryset = Course.objects.filter(pk=pk, course_member=member_pk) if courseQueryset.exists(): serializer = EmailSerializer(data=request.data) serializer.is_valid(raise_exception=True) memberQuery = Member.objects.filter( email=serializer.data['email']) if not memberQuery.exists(): return Response({'errors': 'Bad request'}, status=400) if memberQuery[0].is_superuser == True: return Response({'errors': 'You don\'t have permission to add this user'}, status=403) instance = courseQueryset[0] instance.course_member.add(memberQuery[0]) if memberQuery[0].is_lecturer == True: instance.course_lecturer.add(memberQuery[0]) return Response(serializer.data, status=200) return Response({'errors': 'Bad request'}, status=400) class RemoveMemberWithEmail(APIView): serializer_class = EmailSerializer #queryset = Member.objects.filter(is_superuser=False) permission_classes = (IsAuthenticated,) def put(self, request, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id courseQueryset = Course.objects.filter(pk=pk, course_member=member_pk) if courseQueryset.exists(): serializer = EmailSerializer(data=request.data) serializer.is_valid(raise_exception=True) memberQuery = courseQueryset.filter( course_member__email=serializer.data['email']) if not memberQuery.exists(): return Response({'errors': 'Member not found'}, status=400) instance = courseQueryset[0] member = Member.objects.get(email=serializer.data['email']) instance.course_member.remove(member) if member.is_lecturer == True: instance.course_lecturer.remove(member) return Response(serializer.data, status=200) return Response({'errors': 'Bad request'}, status=400) class LessonViewSet(viewsets.ViewSet, viewsets.GenericViewSet): serializer_class = LessonSerializer queryset = Lesson.objects.all() permission_classes = (IsAuthenticated,) def list(self, request, course_pk=None): member_pk = request.user.id queryset = Lesson.objects.filter( course__course_member=member_pk, course=course_pk) serializer = LessonSerializer(queryset, many=True) return Response(serializer.data) def retrieve(self, request, course_pk=None, pk=None): member_pk = request.user.id queryset = Lesson.objects.filter( pk=pk, course=course_pk, course__course_member=member_pk) if queryset.exists(): serializer = LessonSerializer(queryset[0]) return Response(serializer.data) return Response({'errors': 'Objects not found'}, status=404) def create(self, request, course_pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Course.objects.filter(pk=course_pk, course_member=member_pk) if queryset.exists(): serializer = LessonSerializer(data=request.data) serializer.is_valid(raise_exception=True) instance = serializer.save() instance.course = queryset[0] instance.save() return Response(serializer.data, status=201) return Response({'errors': 'Bad request'}, status=400) def update(self, request, course_pk=None, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Lesson.objects.filter( pk=pk, course=course_pk, course__course_member=member_pk) if queryset.exists(): instance = queryset[0] serializer = LessonSerializer(instance=instance, data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data) return Response({'errors': 'Bad request'}, status=400) def destroy(self, request, course_pk=None, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Lesson.objects.filter( pk=pk, course=course_pk, course__course_member=member_pk) if queryset.exists(): instance = queryset[0] instance.delete() return Response(status=204) return Response({'errors': 'Bad request'}, status=400) class LessonFileViewSet(viewsets.ViewSet, viewsets.GenericViewSet): serializer_class = FileSerializer queryset = File.objects.all() parser_classes = (FormParser, MultiPartParser, JSONParser,) permission_classes = (IsAuthenticated,) def list(self, request, course_pk=None, lesson_pk=None): member_pk = request.user.id queryset = File.objects.filter( lesson=lesson_pk, lesson__course=course_pk, lesson__course__course_member=member_pk) serializer = FileSerializer(queryset, many=True) return Response(serializer.data) def retrieve(self, request, pk=None, course_pk=None, lesson_pk=None): member_pk = request.user.id queryset = File.objects.filter( pk=pk, lesson=lesson_pk, lesson__course=course_pk, lesson__course__course_member=member_pk) if queryset.exists(): serializer = FileSerializer(queryset[0]) return Response(serializer.data) return Response({'errors': 'Objects not found'}, status=404) def create(self, request, course_pk=None, lesson_pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = Lesson.objects.filter( pk=lesson_pk, course=course_pk, course__course_member=member_pk) if queryset.exists(): serializer = FileSerializer(data=request.data) serializer.is_valid(raise_exception=True) instance = serializer.save() instance.lesson = queryset[0] instance.save() return Response(serializer.data, status=201) return Response(serializers.errors, status=400) def update(self, request, lesson_pk=None, course_pk=None, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = File.objects.filter( pk=pk, lesson=lesson_pk, lesson__course=course_pk, lesson__course__course_member=member_pk) if queryset.exists(): instance = queryset[0] serializer = FileSerializer(instance=instance, data=request.data) serializer.is_valid(raise_exception=True) instance.file_upload.delete() serializer.save() return Response(serializer.data) return Response({'errors': 'Bad request'}, status=400) def destroy(self, request, lesson_pk=None, course_pk=None, pk=None): if not request.user.is_lecturer: return Response({'error': 'You are not a lecturer'}, status=403) member_pk = request.user.id queryset = File.objects.filter( pk=pk, lesson=lesson_pk, lesson__course=course_pk, lesson__course__course_member=member_pk) if queryset.exists(): instance = queryset[0] instance.delete() return Response(status=204) return Response({'errors': 'Bad request'}, status=400)
2.09375
2
pydefect/input_maker/defect.py
KazMorita/pydefect
20
12781965
# -*- coding: utf-8 -*- # Copyright (c) 2020. Distributed under the terms of the MIT License. import re from dataclasses import dataclass from typing import List, Optional from monty.json import MSONable @dataclass(frozen=True) class Defect(MSONable): name: str charges: tuple @property def str_list(self): return ["_".join([self.name, str(charge)]) for charge in self.charges] @property def charge_list(self): return [charge for charge in self.charges] class SimpleDefect(Defect): def __init__(self, in_atom, out_atom, charge_list): if in_atom is None: in_atom = "Va" super().__init__("_".join([in_atom, out_atom]), tuple(charge_list)) @property def in_atom(self): result = self.name.split("_")[0] if result == "Va": return return result @property def out_atom(self): return self.name.split("_")[1] def screen_simple_defect(defect: SimpleDefect, keywords: List[str] ) -> Optional[SimpleDefect]: charges = [] for charge in defect.charges: full_name = "_".join([defect.name, str(charge)]) if any([re.search(keyword, full_name) for keyword in keywords]): charges.append(charge) if charges: return SimpleDefect(defect.in_atom, defect.out_atom, tuple(charges)) else: return
2.890625
3
pages/managers.py
GrAndSE/django-pages
0
12781966
'''Managers for pages classes, can be used to easies access for models ''' from django.db import models class ActiveQuerySet(models.query.QuerySet): '''QuerySet has additional methods to siplify access to active items ''' def active(self): '''Get only active items ''' return self.filter(is_active=True) def inactive(self): '''Get only inactive items ''' return self.filter(is_active=False) def make_active(self): '''Mark items as active ''' return self.update(is_active=True) def mark_inactive(self): '''Mark items as inactive ''' return self.update(is_active=False) class ActiveManager(models.Manager): '''Manager that creates ActiveQuerySet ''' def get_query_set(self): '''Create an ActiveQuerySet ''' return ActiveQuerySet(self.model, using=self._db) def active(self): '''Get only active items ''' return self.get_query_set().active() def inactive(self): '''Get only inactive items ''' return self.get_query_set().inactive() class LayoutManager(ActiveManager): '''Manager for Layout model. Contains method to sipmlify access to default record ''' def get_default(self): '''Get default ''' return self.get(is_default=True)
2.59375
3
Products/PloneGetPaid/browser/upgrade.py
collective/Products.PloneGetPaid
2
12781967
<filename>Products/PloneGetPaid/browser/upgrade.py<gh_stars>1-10 from Products.Five.browser import BrowserView from Products.PloneGetPaid import generations class AdminUpgrade( BrowserView ): log = None def __call__( self ): if self.request.form.has_key('upgrade'): self.log = self._upgrade() return super( AdminUpgrade, self ).__call__() def _upgrade( self ): """ upgrade the application """ return generations.upgrade(self.context) def softwareVersion( self ): return generations.getAppSoftwareVersion() def databaseVersion( self ): return generations.getAppVersion( self.context ) def listUpgrades( self ): return generations.getUpgrades( self.context )
2.3125
2
dictionary.py
rgoshen/Python-Dictionary
1
12781968
""" This program allows the user to enter in a word, proper noun or acronym to search in data file and returns definition(s). Created by: <NAME> Date: 10-25-2020 I followed a tutorial from a course named "The Python Mega Course: Build 10 Real World Applications" on stackskills. """ import json from difflib import get_close_matches data = json.load(open("data.json")) def look_up(word): """ This function looks up a word, proper noun, or acronym in data file returns definition(s). """ word = word.lower() if word in data: return data[word] elif word.title() in data: # ensures proper nouns can be found in data. return data[word.title()] elif word.upper() in data: # ensures acronyms can be found in data. return data[word.upper()] elif len(get_close_matches(word, data.keys())) > 0: user_choice = input(f"Did you mean {get_close_matches(word, data.keys())[0]} instead? Enter 'Y' for yes of 'N' for no: ") user_choice = user_choice.upper() if user_choice == "Y": return data[get_close_matches(word, data.keys())[0]] elif user_choice == "N": return f"{word} cannot be found!" else: return "I am sorry. I did not understand your entry." else: return f"{word} cannot be found!" word = input('Enter in word: ') output = look_up(word) if type(output) == list: for item in output: print(item) else: print(output)
4.1875
4
bpy_utilities/material_loader/shaders/source1_shaders/refract.py
tltneon/SourceIO
199
12781969
<reponame>tltneon/SourceIO<filename>bpy_utilities/material_loader/shaders/source1_shaders/refract.py import numpy as np from typing import Iterable from ...shader_base import Nodes from ..source1_shader_base import Source1ShaderBase class Refract(Source1ShaderBase): SHADER: str = 'refract' @property def bumpmap(self): texture_path = self._vavle_material.get_param('$normalmap', None) if texture_path is not None: image = self.load_texture_or_default(texture_path, (0.5, 0.5, 1.0, 1.0)) image = self.convert_normalmap(image) image.colorspace_settings.is_data = True image.colorspace_settings.name = 'Non-Color' return image return None @property def basetexture(self): texture_path = self._vavle_material.get_param('$basetexture', None) if texture_path is not None: return self.load_texture_or_default(texture_path, (0.3, 0, 0.3, 1.0)) return None @property def color2(self): color_value, value_type = self._vavle_material.get_vector('$color2', [1, 1, 1]) divider = 255 if value_type is int else 1 color_value = list(map(lambda a: a / divider, color_value)) if len(color_value) == 1: color_value = [color_value[0], color_value[0], color_value[0]] elif len(color_value) > 3: color_value = color_value[:3] return color_value @property def bluramount(self): value = self._vavle_material.get_float('$bluramount', 0) return value @property def color(self): color_value, value_type = self._vavle_material.get_vector('$color', [1, 1, 1]) divider = 255 if value_type is int else 1 color_value = list(map(lambda a: a / divider, color_value)) if len(color_value) == 1: color_value = [color_value[0], color_value[0], color_value[0]] elif len(color_value) > 3: color_value = color_value[:3] return color_value @property def refracttint(self): color_value, value_type = self._vavle_material.get_vector('$refracttint', [1, 1, 1]) divider = 255 if value_type is int else 1 color_value = list(map(lambda a: a / divider, color_value)) if len(color_value) == 1: color_value = [color_value[0], color_value[0], color_value[0]] return color_value def create_nodes(self, material_name): if super().create_nodes(material_name) in ['UNKNOWN', 'LOADED']: return self.bpy_material.blend_method = 'OPAQUE' self.bpy_material.shadow_method = 'NONE' self.bpy_material.use_screen_refraction = True self.bpy_material.use_backface_culling = True material_output = self.create_node(Nodes.ShaderNodeOutputMaterial) shader = self.create_node(Nodes.ShaderNodeBsdfPrincipled, self.SHADER) self.connect_nodes(shader.outputs['BSDF'], material_output.inputs['Surface']) basetexture = self.basetexture if basetexture: self.create_and_connect_texture_node(basetexture, shader.inputs['Base Color'], name='$basetexture') bumpmap = self.bumpmap if bumpmap: normalmap_node = self.create_node(Nodes.ShaderNodeNormalMap) self.create_and_connect_texture_node(bumpmap, normalmap_node.inputs['Color'], name='$bumpmap') self.connect_nodes(normalmap_node.outputs['Normal'], shader.inputs['Normal']) shader.inputs['Transmission'].default_value = 1.0 shader.inputs['Roughness'].default_value = self.bluramount
2.34375
2
tests/features/steps/simple_class_test.py
Lreus/python-behave
0
12781970
<gh_stars>0 from sample.classes.simple_class import SimpleClass from sample.classes.subclasses.simple_subclass import SimpleSubClass from urllib.error import URLError, HTTPError from http.client import HTTPResponse from requests import Response from behave import * def class_mapping(): """ :return: :rtype: dict """ return { 'SimpleClass': SimpleClass, 'SimpleSubClass': SimpleSubClass, } @Given('I have a simple class') def i_have_a_simple_class(context): context.simpleClass = SimpleClass() @When('I say hello') def i_say_hello(context): context.response = context.simpleClass.hello() @Then('the class should wave') def class_should_wave(context): assert context.response == 'wave' @Given('I have a simple subclass') def i_have_a_simple_subclass(context): context.Class = {'subclass': SimpleSubClass()} @Then('the subclass shall inherit from "{class_name}"') def the_subclass_shall_inherit_from(context, class_name): try: mapped_class = class_mapping()[class_name] except KeyError: print('available class to test are', [k for k in class_mapping()]) raise AssertionError assert issubclass( type(context.Class['subclass']), mapped_class ) @Given('I call the url "{url}"') def i_call_the_url(context, url): context.response = SimpleClass.go_to_url(url, "GET") @Then('the response status code should be {code:d}') def status_code_is(context, code): assert isinstance(context.response, (HTTPResponse, HTTPError)), \ "Failed asserting %r is a HTTPResponse or an HTTPError" % context.response.__class__ assert context.response.code == code, \ "Failed asserting {} equals {} ".format(code, context.response.code) @Given('i call the {url} with method {method}') def i_call_the_url_with_method(context, url, method): context.response = SimpleClass.go_to_request(url, method) @Then('the request response status code should be {code:d}') def response_status_code_is(context, code): assert isinstance(context.response, Response), \ "Failed asserting {repr} is a {response_class}".format( response_class='requests.models.Response', repr=repr(context.response), ) assert context.response.status_code == code, \ "Failed asserting {} equals {} ".format(code, context.response.status_code)
3
3
elements-of-programming-interviews/5-arrays/5.7-buy-and-sell-stock-twice/buy_and_sell_stock_twice.py
washimimizuku/python-data-structures-and-algorithms
0
12781971
''' Write a program that computes the maximum profit that can be made by buying and selling a share at most twice. The second buy must be made on another date after the first sale. ''' def buy_and_sell_stock_twice(prices): # Time: O(n) | Space: O(n) min_price_so_far = float('inf') # Infinite value max_total_profit = 0.0 first_buy_sell_profits = [0] * len(prices) # Forward phase. For each day, we record maximum # profit if we sell on that day. for i, price in enumerate(prices): min_price_so_far = min(min_price_so_far, price) max_total_profit = max(max_total_profit, price - min_price_so_far) first_buy_sell_profits[i] = max_total_profit # Backward phase. For each day, find the maximum # profit if we nake the second buy on that day. max_price_so_far = float('-inf') for i, price in reversed(list(enumerate(prices[1:], 1))): max_price_so_far = max(max_price_so_far, price) max_total_profit = max( max_total_profit, max_price_so_far - price + first_buy_sell_profits[i - 1]) return max_total_profit assert(buy_and_sell_stock_twice([12, 11, 13, 9, 12, 8, 14, 13, 15]) == 10) assert(buy_and_sell_stock_twice( [310, 315, 275, 295, 260, 270, 290, 230, 255, 250]) == 55)
3.890625
4
MalwareViz.py
MalwareViz/MalwareViz
8
12781972
#!/usr/bin/env python # coding: utf8 """ Download a webpage -> parse Name, IP, URL, Dropped Files. Create Graphviz gv file -> convert to svg -> post to web. ------------ ------------ | URL | ----> | IP | / ------------ ------------ / ------------ ----------- |malware.exe |-| VirusTotal | ------------ ----------- \ \ ---------------- |droppedFiles.exe | ---------------- Samples: https://malwr.com/analysis/OGNjMDBhMDg0YjAzNGQzYTkyZGZlZDhlNDc2NmMyNzY/ https://malwr.com/analysis/YzZiNmMzZGQ0NGNlNDM1ZWJlMmMxZGEyOTY1NWRkODU/ """ ''' MIT License. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' __author__ = '<NAME>' __license__ = 'MIT ' __version__ = '0.1' __email__ = '<EMAIL>' import re, subprocess, tempfile, sys, os, urllib, urllib2, webbrowser #3rd Party try: import requests, simplejson from BeautifulSoup import BeautifulSoup except: print "Check 3rd party libraries are installed. \n\tpip install requests\n\tsudo pip install simplejson\n\tpip install graphviz\n\tsudo pip install BeautifulSoup\n" varURL = raw_input("What malwr.com url would you like to visualize?: \nhttps://malwr.com/analysis/OGNjMDBhMDg0YjAzNGQzYTkyZGZlZDhlNDc2NmMyNzY/\n") VT_KEY = raw_input("Enter free VirusTotal API key: [ENTER = skip]\n") dot_file = raw_input('Enter path of dot.exe (www.graphviz.org)\n [ENTER = Default] "C:\\Program Files (x86)\\Graphviz2.38\\bin\\dot.exe"\n [linux = /usr/bin/dot] if "cannot find the file" error try: sudo pip install graphviz\n>>>') \ or r"C:\Program Files (x86)\Graphviz2.36\bin\dot.exe" #dot_file = r"C:\Program Files (x86)\Graphviz2.36\bin\dot.exe" def checkURL(): #Make sure it's malwr.com if varURL: if varURL[:27] == 'https://malwr.com/analysis/': return varURL else: error = 'URL "%s" does not look like this https://malwr.com/analysis/<hash>. Please try again.' % varURL return error sys.exit('') #Configure proxies if you go through a proxy server to the Internet. #proxies = {"http": "http://<IP of proxy>:80","https": "http://<IP of proxy>:80",} proxies = {"": "","": "",} try: print "Getting data from malwr.com..." r = requests.get(varURL, verify=False, proxies=proxies) except Exception,e: print 'Check URL: "%s". \nCheck proxy settings: %s"' % (varURL, proxies) sys.exit('') results = [] try: soup = BeautifulSoup(r.text) for tag in soup.findAll(True,{'id':True}) : results.append(tag['id']) except Exception,e: x = str(e)+str(varURL) print ('Failed at BeautifulSoup'+x) sys.exit('') try: file_data = soup.find("section", {"id": "file"}) hosts = soup.find("section", {"id": "hosts"}) domains = soup.find("section", {"id": "domains"}) VirusTotalAlert = soup.find("section", {"id": "static_antivirus"}) dropped = soup.find("", {"id": "dropped"}) Tags = soup.find("", {"class": "alert alert-info"}) except Exception,e: x = str(e)+str(varURL) print ('Failed at sections'+x) #tag try: tag_file_data = file_data.findAll('td') tag_hosts = hosts.findAll('td') tag_domains = domains.findAll('td') tag_VT = VirusTotalAlert('td') tag_dropped_details = dropped.findAll('td') tag_dropped = dropped.findAll('b') Tags = Tags.findAll('a') except: print ('Failed at td ') def __Tags(): listTags = [] for i in Tags[0:1]: listTags.append(str(i)[21:-4]) if len(listTags) == 0: listTags = 0 #listTags = ['unknown'] return listTags def __File_Name(): list_File = [] for i in range(len(tag_file_data))[0:1]: list_File.append(str(tag_file_data[i].text)) return list_File def __Details(): list_Details = [] for i in range(len(tag_file_data))[1:6]: list_Details.append(str(tag_file_data[i].text)) del list_Details[1] return list_Details #Example: ['size', 'md5', 'sha1', 'sha256'] def __VTquery(): AVNameFinal='' positives = '' APT = 'False' Zeus = 'False' Adware = 'False' AutoIt = 'False' try: url = "https://www.virustotal.com/vtapi/v2/file/report" parameters = {"resource": __Details()[1], "apikey": VT_KEY} data = urllib.urlencode(parameters) req = urllib2.Request(url, data) response = urllib2.urlopen(req) json = response.read() response_dict = simplejson.loads(json) positives = response_dict.get("positives", {}) listVirusNames = [] for i in response_dict.get("scans", {}): listVirusNames.append(i) listAV_Names = [] for i in listVirusNames: listAV_Names.append(response_dict.get("scans", {}).get(i, {}).get("result")) AVNameFinal=[] Taglist0 = ['Havex', 'havex'] Taglist = ['zeus', 'Zeus', 'zbot','Zbot', 'Kryptik',\ 'FAREIT', 'Tepfer', 'ZPACK'\ ,'FakeAV'] Taglist2 = ['Adware'] Taglist3 = ['Autoit', 'AutoIt'] for i in listAV_Names: if i != None: for m in Taglist0: if m in i: APT = "True" for n in Taglist: if n in i: Zeus = "True" for o in Taglist2: if o in i: Adware = 'True' for p in Taglist3: if p in i: AutoIt = 'True' if i == 'Trj/CI.A': #Non descriptive enough word AVNameFinal.append([len(i) + 5,i]) #Add 5 so it won't be shortest. else: AVNameFinal.append([len(i),i]) except: pass if APT == "True": MinName = "APT" elif Zeus == "True": MinName = "Zeus" elif AutoIt == "True": MinName = "AutoIt" elif Adware == "True": MinName = "Adware" elif AVNameFinal: MinName = str(min(AVNameFinal)[1]) else: MinName = 0 return positives, MinName def __VT(): #Return Number of AV alerts. list_VT = [] for i in range(len(tag_VT)): list_VT.append(str(tag_VT[i].text)) list_VT = zip(list_VT[::2],list_VT[1::2]) list_VT_count = [] for i in list_VT: if i[1] != "Clean": list_VT_count.append(i) return len(list_VT_count) #Example: 5 def __Hosts(): list_Hosts = [] for i in tag_hosts: if str(i)[4:-5] not in list_Hosts: list_Hosts.append(str(i)[4:-5]) gv_Hosts_nodes = ['subgraph cluster1 {label="Internet Traffic" color="red" fontname=Helvetica;'] for i in list_Hosts: #To have IP addresses link to Robtex instead of VirusTotal. #gv_Hosts_nodes.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, fillcolor="lightblue" style="filled, rounded", fontcolor="darkblue", URL="https://www.robtex.com/ip/'+str(i)+'.html#map"];') gv_Hosts_nodes.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, fillcolor="lightblue" style="filled, rounded", fontcolor="darkblue", URL="https://www.virustotal.com/en/ip-address/'+str(i)+'/information/"];') gv_Hosts_edges = [] for i in list_Hosts: gv_Hosts_edges.append('point1->"'+str(i)+'";') if gv_Hosts_edges: global last_point last_point = gv_Hosts_edges[8:-1] return gv_Hosts_nodes, gv_Hosts_edges def __Domains(): list_Domains = [] for i in tag_domains: list_Domains.append(str(i)[4:-5]) if list_Domains: global last_point last_point = list_Domains[-1] gv_list_DomainsNodes = [] for i in list_Domains: is_valid = re.match("^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$", i) if is_valid: gv_list_DomainsNodes.append('"'+i+'" [fontsize = "10", fontname=Helvetica, fillcolor="lightblue" style="filled, rounded", fontcolor="darkblue", URL="https://www.virustotal.com/en/ip-address/'+str(i)+'/information/"];') else: gv_list_DomainsNodes.append('"'+i+'" [fontsize = "10", fontname=Helvetica, fillcolor="lightblue" style="filled, rounded", fontcolor="darkblue", URL="https://www.virustotal.com/en/domain/'+str(i)+'/information/"];') gv_list_DomainsNodes.append('}') gv_list_DomainsEdges = [] list_Domains = zip(list_Domains[::2],list_Domains[1::2]) for i in list_Domains: gv_list_DomainsEdges.append('point1->"'+i[0]+'"->"'+i[1]+'";') return gv_list_DomainsNodes, gv_list_DomainsEdges def __VTquery2(MD5hash): positives = '' try: url = "https://www.virustotal.com/vtapi/v2/file/report" parameters = {"resource": MD5hash, "apikey": VT_KEY} data = urllib.urlencode(parameters) req = urllib2.Request(url, data) response = urllib2.urlopen(req) json = response.read() response_dict = simplejson.loads(json) #global positives positives = response_dict.get("positives", {}) except: print ("VirusTotal API key not used. No VT scan on dropped files. __VTquery2.") if isinstance(positives, int): if positives >= 1: positives = 'True' #VT = 1+ elif positives == 0: positives = 'False' #VT = 0 elif not positives: positives = 'empty' #VT = never seen it. else: positives = 'False' #If in doubt it's 0. return positives #if positives == 0: #if positives == 0: No VT hits. #if positives == {}: File not found. def __Dropped(): list_Dropped = [] for i in tag_dropped: if str(i)[3:-4] not in list_Dropped: list_Dropped.append(str(i)[3:-4]) list_matchMD5 = re.findall(r"<td>([a-fA-F\d]{32})\n</td>", str(tag_dropped_details)) gv_exe_dll_zip_sys = [] gv_dropped_NotExeFiles = [] #list_Executables = [".exe", ".EXE", ".bin", ".dll", ".zip", ".sys", ".jar", ".scr", ".pif", ".rar", ".ocx", ".msi", ".apk", ".cpl", ".vbs", ".pip"] for i, n in zip(list_Dropped, list_matchMD5): if ".exe" in i[-4:]: VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".EXE": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".bin": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".dll": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".zip": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".sys": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".jar": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".scr": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".pif": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".rar": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".ocx": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".msi": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".apk": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".cpl": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".vbs": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-4:] == ".pip": VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif i[-5:] == '.html': pass elif i[-4:-3] != '.': VT_results = __VTquery2(n) if VT_results == 'True': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Helvetica, color="red", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') elif VT_results == 'empty': gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=times, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_exe_dll_zip_sys.append('"'+str(i)+'" [fontsize = "10", fontname=Courier, color="black", penwidth=1, fillcolor="orange", style="filled", fontcolor="crimson", shape=box, URL="https://www.virustotal.com/latest-scan/'+n+'"];') else: gv_dropped_NotExeFiles.append(str(i)) gv_dropped_last_node = '' if gv_dropped_NotExeFiles: gv_dropped_last_node = 'NotExeFiles [label = "%s", shape=record, fontsize = "10", fontname=Helvetica, fillcolor="orange" style="filled", fontcolor="crimson", URL="http://en.wikipedia.org/wiki/List_of_filename_extensions"];' % ("|".join(gv_dropped_NotExeFiles)) #Create nodes inside subgraph cluster2. #Create edges outside subgraph cluster2 gv_create_subgraph = [] gv_Dropped_edges = [] if gv_exe_dll_zip_sys: gv_create_subgraph.append('subgraph cluster2 {label="Created Files" color="darkorange" fontname=Helvetica;') for i in gv_exe_dll_zip_sys: gv_create_subgraph.append(str(i)) gv_Dropped_edges.append('point2->'+str(i)+'') gv_create_subgraph.append(gv_dropped_last_node) gv_create_subgraph.append('}\n') # if no EXE files, but others. if gv_dropped_NotExeFiles: if not gv_exe_dll_zip_sys: global subgraph2a subgraph2a = 'subgraph cluster2 {label="Created Files" color="darkorange" fontname=Helvetica;'+gv_dropped_last_node+'}' if gv_dropped_NotExeFiles: gv_Dropped_edges.append('point2->NotExeFiles;') return gv_create_subgraph, gv_Dropped_edges def __Build_gv(): gv_head = 'digraph "MalwareViz_%s Malware Visualizer" {rankdir = "LR"; ranksep=".08 equally";' % fileMD5 #<title> gv_node = 'node [fontsize = "10", fontname=Helvetica];' #, shape=box, style=rounded gv_Start_color = "limegreen" if VTvalue != 0: gv_Start_color = "crimson" if HostDomaincount > 1: gv_Start_color = "crimson" gv_Start = 'Start [label = "%s", shape="doublecircle", width=1.5, height=1.5, fillcolor="", color="%s", fontcolor="black", URL="%s"];' % (__File_Name()[0], gv_Start_color, varURL) # style="bold", VT_color = "limegreen" if VTvalue != 0: VT_color = "red" gv_VT = 'VirusTotal [label = "VirusTotal Alerts=%s", shape=box, style="filled, rounded", fillcolor="%s" fontcolor="black", URL="https://www.virustotal.com/latest-scan/%s"];' % (VTvalue, VT_color, fileMD5) #gv_rank = 'rank = same {Start, VirusTotal};' gv_edges = 'Start->VirusTotal [dir="none", penwidth=7];' #gv_Lang = 'SUBLANG_NEUTRAL' #Build File f=open(static_dir+gvfilename, 'w') gv_total = gv_head, gv_node, gv_Start, gv_VT, gv_edges for i in gv_total: print >> f, i #Add empty points if hosts, domains, dropped is > 0 #print >> f, 'node [label="", width=.1618, height=.1618, shape="none"];' points_count = [] if len(tag_hosts) or len(tag_domains) > 0: points_count.append('point1 [label="", width=.01, height=.01, shape=circle, style="filled", fillcolor=black];') #points_count.append('point2 [label="", width=.01, height=.01, shape=circle, style="filled"];') #Creates space points_count.append('VirusTotal->point1 [dir="none"];') #points_count.append('rank = same {VirusTotal, point1, point2};') if "[<b>Sorry!</b>]" not in str(tag_dropped): points_count.append('point2 [label="", width=.01, height=.01, shape=circle, style="filled", fillcolor=black];') points_count.append('VirusTotal->point2 [dir="none"];') for i in points_count: print >> f, i #turn node shapes back on #print >> f, 'node [fontsize = "10", fontname=Helvetica, shape=box, style=rounded];' #subgraph1 Hosts, Domains for i in __Hosts()[0]: print >> f, i for i in __Domains()[0]: print >> f, i #edges for i in __Hosts()[1]: print >> f, i for i in __Domains()[1]: print >> f, i #subgraph2 Created_Files for i in __Dropped()[0]: print >> f, i try: if subgraph2a: print >> f, subgraph2a except: pass for i in __Dropped()[1]: print >> f, i #Close bracket print >> f, "}" f.close() return def __addHyperLink(svgFile): with open(svgFile, 'rb') as editWidth: widthFile = editWidth.read() match = re.sub('<a xlink:href="', '<a xlink:show="new" xlink:href="', widthFile, count=0) #Count is num of occurance. 0=all with open(svgFile, 'wb') as editWidth: widthFile = editWidth.write(match) def __dot(gv_file): svgFile = tempdir+fileMD5+'.svg' if os.path.isfile(r"C:\Program Files (x86)\Graphviz2.36\bin\dot.exe"): subprocess.call([dot_file, "-Tsvg", "-o", "%s" % svgFile, gv_file]) elif os.path.isfile("/usr/bin/dot"): subprocess.call(["/usr/bin/dot", "-Tsvg", "-o", "%s" % svgFile, gv_file]) else: print "Cannot find dot.exe, install http://www.graphviz.org/" sys.exit('') __addHyperLink(svgFile) webbrowser.open(svgFile, new=2) r = 0 #Clean if __name__ == '__main__': print "running...\n" checkURL() fileMD5 = __Details()[1] tempdir = tempfile.gettempdir() + os.sep static_dir = tempdir gvfilename = fileMD5+'.gv' fullPathgvfile = tempdir+gvfilename VTvalue = __VTquery()[0] or __VT() or 0 #If VirusTotal from malwr or VirusTotal has a hire number use that. if __Tags(): VTminName = __Tags()[0] #malwr.com Tag Name or Shortest Name in VT. elif __VTquery()[1]: VTminName = __VTquery()[1] else: VTminName = 'unknown' HostDomaincount = len(tag_hosts) + (len(tag_domains)/2) #If VirusTotal is 0 but there are over 1 C2 then make red. __Build_gv() __dot(fullPathgvfile) print "Malware Name: " + VTminName
2.09375
2
test_cvfill.py
xbcReal/ssd_fcn_multitask_text_detection_pytorch1.0
2
12781973
<filename>test_cvfill.py import cv2 import numpy as np image = np.ones((720,1280, 3), np.uint8) * 255 triangle = np.array([[1131,122,1161,125,1165,107,1119,123]]) triangle = np.reshape(triangle,(-1,4,2)) print(np.shape(triangle)) cv2.circle(image, (triangle[0][0][0], triangle[0][0][1]), 5, (0, 255, 0), 5) cv2.circle(image, (triangle[0][1][0], triangle[0][1][1]), 5, (0, 0, 0), 5) cv2.circle(image, (triangle[0][2][0], triangle[0][2][1]), 5, (255, 0, 0), 5) cv2.circle(image, (triangle[0][3][0], triangle[0][3][1]), 5, (0, 0, 255), 5) # triangle=np.int32(triangle) # # print(np.shape(triangle)) # # print(triangle) # img=cv2.fillPoly(img, triangle, (255, 255, 255)) # cv2.imshow('img',image) cv2.waitKey() cv2.imwrite('black.jpg',image)
2.984375
3
text_classification/UCAS_NLP_TC/data_11_baidu_cws_api_fill.py
q759729997/qyt_clue
1
12781974
""" 百度词法分析API,补全未识别出的: pip install baidu-aip """ import time import os import sys import codecs import json import traceback from tqdm import tqdm from aip import AipNlp sys.path.insert(0, './') # 定义搜索路径的优先顺序,序号从0开始,表示最大优先级 from data import baidu_config # noqa """ 你的 APPID AK SK """ APP_ID = baidu_config.APP_ID # '你的 App ID' API_KEY = baidu_config.API_KEY # '你的 Api Key' SECRET_KEY = baidu_config.SECRET_KEY # '你的 Secret Key' client = AipNlp(APP_ID, API_KEY, SECRET_KEY) # text = "百度是一家高科技公司" """ 调用词法分析 """ # print(client.lexer(text)) import myClue # noqa print('myClue module path :{}'.format(myClue.__file__)) # 输出测试模块文件位置 from myClue.core import logger # noqa from myClue.tools.file import read_file_texts # noqa from myClue.tools.file import init_file_path # noqa def get_baidu_cws(text): for i in range(20): try: text = text.encode('gbk', errors='ignore').decode('gbk', errors='ignore') # 去掉GBK不识别的字符串,该接口接收GBK格式 cws_result = client.lexer(text) if 'items' in cws_result: return cws_result['items'] else: continue except Exception as e: time.sleep(0.5) print('text:{}, i:{}, exception:{}'.format(text, i, e)) traceback.print_exc() return [] if __name__ == "__main__": train_file_config = { 'dev': './data/UCAS_NLP_TC/data_baidu_cws/dev_cws.json', 'test': './data/UCAS_NLP_TC/data_baidu_cws/test_cws.json', 'train': './data/UCAS_NLP_TC/data_baidu_cws/train_cws.json', } for file_label, file_name in train_file_config.items(): logger.info('开始处理:{}'.format(file_label)) texts = read_file_texts(file_name) with codecs.open(file_name, mode='w', encoding='utf8') as fw: for text in tqdm(texts): row_json = json.loads(text) if len(row_json['cws_items']) == 0: news_content = row_json['news_content'] if len(news_content) > 10000: cws_items = get_baidu_cws(news_content[:10000]) time.sleep(0.3) cws_items.extend(get_baidu_cws(news_content[10000:])) else: cws_items = get_baidu_cws(news_content) time.sleep(0.3) row_json['cws_items'] = cws_items fw.write('{}\n'.format(json.dumps(row_json, ensure_ascii=False))) time.sleep(0.3) else: fw.write('{}\n'.format(text))
2.359375
2
example/change_date.py
MadSkittles/Switch-Fightstick
0
12781975
from NXController import Controller ctr = Controller() for i in range(30): ctr.A() if i == 0: ctr.RIGHT() ctr.RIGHT() else: ctr.LEFT() ctr.LEFT() ctr.LEFT() ctr.UP() ctr.RIGHT(0.4) ctr.A() ctr.close()
2.609375
3
auth.py
computerbox124/Hey-Hajiyevs
0
12781976
from support import * import chat def main(): #Creating Login Page global val, w, root,top,username,name root = tk.Tk() username = tk.StringVar() name = tk.StringVar() #root.attributes('-fullscreen',True) top = Toplevel1 (root) init(root, top) root.mainloop() def authentication(): #Logining and receiving token global username_info,name_info,token,username,name username_info=username.get() name_info=name.get() print("Username:",username_info) print("Name:",name_info) try: response = requests.post( 'http://127.0.0.1:5000/send', json={'name': name_info, 'username': username_info, 'text': '', 'status': 'login'} ) except: messagebox.showinfo("Error!","No connection with server!") return data = response.json() if data['status'] == 'Ok': chat.main(name_info,username_info) else: messagebox.showinfo("Error!","That username was used! Input your username again!") return #messagebox.showinfo("Wrong", "You entered wrong credentials!") #print(r1.text) class Toplevel1: def __init__(self, top=None): #This class contains information about our Window _bgcolor = '#d9d9d9' # X11 color: 'gray85' _fgcolor = '#000000' # X11 color: 'black' _compcolor = '#d9d9d9' # X11 color: 'gray85' _ana1color = '#d9d9d9' # X11 color: 'gray85' _ana2color = '#ececec' # Closest X11 color: 'gray92' top.geometry("{}x{}".format(size_x, size_y)) top.minsize(1, 1) top.maxsize(size_x,size_y) top.resizable(1, 1) top.title("Login") #Background image self.img = tk.PhotoImage(file="images/bg.png") self.my_canvas = tk.Canvas(top) self.my_canvas.place(relx=0.0, rely=0.0,height=size_y,width=size_x) self.my_canvas.create_image(0,0,image=self.img,anchor="nw") #Entries self.my_canvas.create_text(255,130,text="Username",font="-family {DejaVu Sans} -size 20") self.Entry1 = tk.Entry(top,textvariable=username) self.Entry1.place(relx=0.300, rely=0.420, height=23, relwidth=0.40) self.Entry1.configure(background="white") self.Entry1.configure(font="FixedFont") self.my_canvas.create_text(255,220,text="<NAME>",font="-family {DejaVu Sans} -size 20") self.Entry2 = tk.Entry(top,textvariable=name) self.Entry2.place(relx=0.300, rely=0.650, height=23, relwidth=0.40) self.Entry2.configure(background="white") self.Entry2.configure(font="FixedFont") #Login Button self.butn1 = tk.Button(text='Login',command=authentication) self.butn1.place(relx=0.440, rely=0.800,height=30,width=70)
2.96875
3
app/database.py
yaoelvon/flask-sqlalchemy-custom-query-demo
0
12781977
# -*- coding: utf-8 -*- # @date 2016/06/03 # @author <EMAIL> # @desc custom methods of the query class in Flask-SQLAlchemy # @record # from flask import request from flask_sqlalchemy import ( BaseQuery, Model, _BoundDeclarativeMeta, SQLAlchemy as BaseSQLAlchemy, _QueryProperty) from sqlalchemy.ext.declarative import declarative_base from flask_sqlalchemy._compat import iteritems, itervalues, xrange, \ string_types class MyBaseQuery(BaseQuery): # do stuff here def all(self): tenant_ctx = None if not request else request.environ.get('tenant_ctx') if tenant_ctx is None or hasattr(tenant_ctx, 'db_filters')is False: self = self else: for k, v in tenant_ctx.db_filters.items(): self = self.filter_by(**{k: v}) return list(self) def first(self): """改写basequery的first方法. 增加过滤条件 """ tenant_ctx = None if not request else request.environ.get('tenant_ctx') if tenant_ctx is None or hasattr(tenant_ctx, 'db_filters')is False: self = self else: for k, v in tenant_ctx.db_filters.items(): self = self.filter_by(**{k: v}) if self._statement is not None: ret = list(self)[0:1] else: ret = list(self[0:1]) if len(ret) > 0: return ret[0] else: return None class MyModel(Model): # in this case we're just using a custom BaseQuery class, # but you can add other stuff as well query_class = MyBaseQuery def _my_declarative_constructor(self, tenant=None, **kwargs): """A simple constructor that allows initialization from kwargs. Sets attributes on the constructed instance using the names and values in ``kwargs``. Only keys that are present as attributes of the instance's class are allowed. These could be, for example, any mapped columns or relationships. """ if tenant is not None: setattr(self, "company_id", tenant.db_filters.get('company_id')) cls_ = type(self) for k in kwargs: if not hasattr(cls_, k): raise TypeError( "%r is an invalid keyword argument for %s" % (k, cls_.__name__)) setattr(self, k, kwargs[k]) class MySQLAlchemy(BaseSQLAlchemy): def make_declarative_base(self, metadata=None): # in this case we're just using a custom Model class, # but you can change the DelcarativeMeta or other stuff as well base = declarative_base(cls=MyModel, name='Model', metadata=metadata, metaclass=_BoundDeclarativeMeta, constructor=_my_declarative_constructor) base.query = _QueryProperty(self) return base # Fixed Flask-Fixtures's Bug: https://github.com/croach/Flask-Fixtures/issues/22 db = MySQLAlchemy()
2.765625
3
datasets/sofc_materials_articles/sofc_materials_articles.py
NihalHarish/datasets
9
12781978
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" from __future__ import absolute_import, division, print_function import glob import os import pandas as pd import datasets _CITATION = """\ @misc{friedrich2020sofcexp, title={The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, year={2020}, eprint={2006.03039}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ The SOFC-Exp corpus consists of 45 open-access scholarly articles annotated by domain experts. A corpus and an inter-annotator agreement study demonstrate the complexity of the suggested named entity recognition and slot filling tasks as well as high annotation quality is presented in the accompanying paper. """ _HOMEPAGE = "https://arxiv.org/abs/2006.03039" _LICENSE = "" _URL = "https://github.com/boschresearch/sofc-exp_textmining_resources/archive/master.zip" class SOFCMaterialsArticles(datasets.GeneratorBasedBuilder): """""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "text": datasets.Value("string"), "sentence_offsets": datasets.features.Sequence( {"begin_char_offset": datasets.Value("int64"), "end_char_offset": datasets.Value("int64")} ), "sentences": datasets.features.Sequence(datasets.Value("string")), "sentence_labels": datasets.features.Sequence(datasets.Value("int64")), "token_offsets": datasets.features.Sequence( { "offsets": datasets.features.Sequence( {"begin_char_offset": datasets.Value("int64"), "end_char_offset": datasets.Value("int64")} ) } ), "tokens": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), "entity_labels": datasets.features.Sequence( datasets.features.Sequence( datasets.features.ClassLabel( names=[ "B-DEVICE", "B-EXPERIMENT", "B-MATERIAL", "B-VALUE", "I-DEVICE", "I-EXPERIMENT", "I-MATERIAL", "I-VALUE", "O", ] ) ) ), "slot_labels": datasets.features.Sequence( datasets.features.Sequence( datasets.features.ClassLabel( names=[ "B-anode_material", "B-cathode_material", "B-conductivity", "B-current_density", "B-degradation_rate", "B-device", "B-electrolyte_material", "B-experiment_evoking_word", "B-fuel_used", "B-interlayer_material", "B-interconnect_material", "B-open_circuit_voltage", "B-power_density", "B-resistance", "B-support_material", "B-thickness", "B-time_of_operation", "B-voltage", "B-working_temperature", "I-anode_material", "I-cathode_material", "I-conductivity", "I-current_density", "I-degradation_rate", "I-device", "I-electrolyte_material", "I-experiment_evoking_word", "I-fuel_used", "I-interlayer_material", "I-interconnect_material", "I-open_circuit_voltage", "I-power_density", "I-resistance", "I-support_material", "I-thickness", "I-time_of_operation", "I-voltage", "I-working_temperature", "O", ] ) ) ), "links": datasets.Sequence( { "relation_label": datasets.features.ClassLabel( names=["coreference", "experiment_variation", "same_experiment", "thickness"] ), "start_span_id": datasets.Value("int64"), "end_span_id": datasets.Value("int64"), } ), "slots": datasets.features.Sequence( { "frame_participant_label": datasets.features.ClassLabel( names=[ "anode_material", "cathode_material", "current_density", "degradation_rate", "device", "electrolyte_material", "fuel_used", "interlayer_material", "open_circuit_voltage", "power_density", "resistance", "support_material", "time_of_operation", "voltage", "working_temperature", ] ), "slot_id": datasets.Value("int64"), } ), "spans": datasets.features.Sequence( { "span_id": datasets.Value("int64"), "entity_label": datasets.features.ClassLabel(names=["", "DEVICE", "MATERIAL", "VALUE"]), "sentence_id": datasets.Value("int64"), "experiment_mention_type": datasets.features.ClassLabel( names=["", "current_exp", "future_work", "general_info", "previous_work"] ), "begin_char_offset": datasets.Value("int64"), "end_char_offset": datasets.Value("int64"), } ), "experiments": datasets.features.Sequence( { "experiment_id": datasets.Value("int64"), "span_id": datasets.Value("int64"), "slots": datasets.features.Sequence( { "frame_participant_label": datasets.features.ClassLabel( names=[ "anode_material", "cathode_material", "current_density", "degradation_rate", "conductivity", "device", "electrolyte_material", "fuel_used", "interlayer_material", "open_circuit_voltage", "power_density", "resistance", "support_material", "time_of_operation", "voltage", "working_temperature", ] ), "slot_id": datasets.Value("int64"), } ), } ), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URL data_dir = dl_manager.download_and_extract(my_urls) data_dir = os.path.join(data_dir, "sofc-exp_textmining_resources-master/sofc-exp-corpus") metadata = pd.read_csv(os.path.join(data_dir, "SOFC-Exp-Metadata.csv"), sep="\t") text_base_path = os.path.join(data_dir, "texts") text_files_available = [ os.path.split(i.rstrip(".txt"))[-1] for i in glob.glob(os.path.join(text_base_path, "*.txt")) ] metadata = metadata[metadata["name"].map(lambda x: x in text_files_available)] names = {} splits = ["train", "test", "dev"] for split in splits: names[split] = metadata[metadata["set"] == split]["name"].tolist() return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "names": names["train"], "data_dir": data_dir, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"names": names["test"], "data_dir": data_dir, "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "names": names["dev"], "data_dir": data_dir, "split": "validation", }, ), ] def _generate_examples(self, names, data_dir, split): """ Yields examples. """ # The dataset consists of the original article text as well as annotations textfile_base_path = os.path.join(data_dir, "texts") annotations_base_path = os.path.join(data_dir, "annotations") # The annotations are mostly references to offsets in the source text # with corresponding labels, so we'll refer to them as `meta` sentence_meta_base_path = os.path.join(annotations_base_path, "sentences") tokens_meta_base_path = os.path.join(annotations_base_path, "tokens") ets_meta_base_path = os.path.join(annotations_base_path, "entity_types_and_slots") frame_meta_base_path = os.path.join(annotations_base_path, "frames") # Define the headers for the sentence and token and entity metadata sentence_meta_header = ["sentence_id", "label", "begin_char_offset", "end_char_offset"] tokens_meta_header = ["sentence_id", "token_id", "begin_char_offset", "end_char_offset"] ets_meta_header = [ "sentence_id", "token_id", "begin_char_offset", "end_char_offset", "entity_label", "slot_label", ] # Start the processing loop # For each text file, we'll load all of the # associated annotation files for id_, name in enumerate(sorted(names)): # Load the main source text textfile_path = os.path.join(textfile_base_path, name + ".txt") text = open(textfile_path, encoding="utf-8").read() # Load the sentence offsets file sentence_meta_path = os.path.join(sentence_meta_base_path, name + ".csv") sentence_meta = pd.read_csv(sentence_meta_path, sep="\t", names=sentence_meta_header) # Load the tokens offsets file tokens_meta_path = os.path.join(tokens_meta_base_path, name + ".csv") tokens_meta = pd.read_csv(tokens_meta_path, sep="\t", names=tokens_meta_header) # Load the entity offsets file ets_meta_path = os.path.join(ets_meta_base_path, name + ".csv") ets_meta = pd.read_csv(ets_meta_path, sep="\t", names=ets_meta_header) # Create a list of lists indexed as [sentence][token] for the entity and slot labels entity_labels = ets_meta.groupby("sentence_id").apply(lambda x: x["entity_label"].tolist()).to_list() slot_labels = ets_meta.groupby("sentence_id").apply(lambda x: x["slot_label"].tolist()).to_list() # Create a list of lists for the token offsets indexed as [sentence][token] # Each element will contain a dict with beginning and ending character offsets token_offsets = ( tokens_meta.groupby("sentence_id")[["begin_char_offset", "end_char_offset"]] .apply(lambda x: x.to_dict(orient="records")) .tolist() ) # Load the frames metadata. The frames file contains the data for all of the annotations # in a condensed format that varies throughout the file. More information on this format # can be found: https://framenet.icsi.berkeley.edu/fndrupal/ frames_meta_path = os.path.join(frame_meta_base_path, name + ".csv") frames_meta = open(frames_meta_path, encoding="utf-8").readlines() # Parse the sentence offsets, producing a list of dicts with the # starting and ending position of each sentence in the original text sentence_offsets = ( sentence_meta[["begin_char_offset", "end_char_offset"]].apply(lambda x: x.to_dict(), axis=1).tolist() ) # The sentence labels are a binary label that describes whether the sentence contains # any annotations sentence_labels = sentence_meta["label"].tolist() # Materialiaze a list of strings of the actual sentences sentences = [text[ost["begin_char_offset"] : ost["end_char_offset"]] for ost in sentence_offsets] # Materialize a list of lists of the tokens in each sentence. # Annotation labels are aligned with these tokens, so be careful with # alignment if using your own tokenization scheme with the sentences above tokens = [ [s[tto["begin_char_offset"] : tto["end_char_offset"]] for tto in to] for s, to in zip(sentences, token_offsets) ] # The frames file first contains spans annotations (in one format), # then contains experiments annotations (in another format), # then links annotations (in yet another format). # Here we find the beginning of the experiments and links sections of the file # Additionally, each experiment annotation in the experiment annotations begins with a # line starting with the word EXPERIMENT (in one format) # followed by the annotations for that experiment (in yet _another_ format) # Here we get the start positions for each experiment _within_ the experiments # section of the frames data experiment_starts = [i for i, line in enumerate(frames_meta) if line.startswith("EXPERIMENT")] experiment_start = min(experiment_starts) link_start = min([i for i, line in enumerate(frames_meta) if line.startswith("LINK")]) # Pick out the spans section of the data for parsing spans_raw = frames_meta[:experiment_start] # Iterate through the spans data spans = [] for span in spans_raw: # Split out the elements in each tab-delimited line _, span_id, entity_label_or_exp, sentence_id, begin_char_offset, end_char_offset = span.split("\t") # The entity label for experiment spans have a sub-label, # called the experiment mention type, # which is sub-delimited by a ':' # The code below standardizes the fields produced by # each line to a common schema, some fields of which may # be empty depending on the data available in the line if entity_label_or_exp.startswith("EXPERIMENT"): exp, experiment_mention_type = entity_label_or_exp.split(":") entity_label = "" else: entity_label = entity_label_or_exp exp = "" experiment_mention_type = "" s = { "span_id": span_id, "entity_label": entity_label, "sentence_id": sentence_id, "experiment_mention_type": experiment_mention_type, "begin_char_offset": int(begin_char_offset), "end_char_offset": int(end_char_offset), } spans.append(s) # Pull out the links annotations for from the frames data links_raw = [f.rstrip("\n") for f in frames_meta[link_start:]] # Iterate through the links data, which is in a simple tab-delimited format links = [] for link in links_raw: _, relation_label, start_span_id, end_span_id = link.split("\t") link_out = { "relation_label": relation_label, "start_span_id": int(start_span_id), "end_span_id": int(end_span_id), } links.append(link_out) # Iterate through the experiments data and parse each experiment experiments = [] # Zip the experiment start offsets to get start/end position tuples # for each experiment in the experiments data for start, end in zip(experiment_starts[:-1], experiment_starts[1:]): current_experiment = frames_meta[start:end] # The first line of each experiment annotation contains the # experiment id and the span id _, experiment_id, span_id = current_experiment[0].rstrip("\n").split("\t") exp = {"experiment_id": int(experiment_id), "span_id": int(span_id)} # The remaining lines in the experiment annotations contain # slot level information for each experiment. slots = [] for e in current_experiment[1:]: e = e.rstrip("\n") _, frame_participant_label, slot_id = e.split("\t") to_add = {"frame_participant_label": frame_participant_label, "slot_id": int(slot_id)} slots.append(to_add) exp["slots"] = slots experiments.append(exp) # Yield the final parsed example output # NOTE: the `token_offsets` is converted to a list of # dicts to accommodate processing to the arrow files # in the `features` schema defined above yield id_, { "text": text, "sentence_offsets": sentence_offsets, "sentences": sentences, "sentence_labels": sentence_labels, "token_offsets": [{"offsets": to} for to in token_offsets], "tokens": tokens, "entity_labels": entity_labels, "slot_labels": slot_labels, "links": links, "slots": slots, "spans": spans, "experiments": experiments, }
1.601563
2
scheduler/migrations/0001_initial.py
FelixTheC/beak_emailer_list
0
12781979
<reponame>FelixTheC/beak_emailer_list<gh_stars>0 # Generated by Django 3.1.1 on 2021-04-15 20:05 from django.db import migrations, models import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ScheduleCommander', fields=[ ('id', models.UUIDField(default=uuid.uuid4, primary_key=True, serialize=False)), ('earliest_execution_date', models.DateTimeField()), ('module', models.CharField(max_length=255)), ('func', models.CharField(max_length=255)), ('args', models.CharField(max_length=255)), ('kwargs', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='ScheduleResult', fields=[ ('id', models.UUIDField(default=uuid.uuid4, primary_key=True, serialize=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('result', models.JSONField()), ], ), ]
1.796875
2
python_modules/libraries/dagster-papertrail/dagster_papertrail/loggers.py
rpatil524/dagster
4,606
12781980
<gh_stars>1000+ import logging import socket from dagster import Field, IntSource, StringSource, logger class ContextFilter(logging.Filter): hostname = socket.gethostname() def filter(self, record): record.hostname = ContextFilter.hostname return True @logger( { "log_level": Field(StringSource, is_required=False, default_value="INFO"), "name": Field(StringSource, is_required=False, default_value="dagster_papertrail"), "papertrail_address": Field(StringSource, description="Papertrail URL", is_required=True), "papertrail_port": Field(IntSource, description="Papertrail port", is_required=True), }, description="A JSON-formatted console logger", ) def papertrail_logger(init_context): """Use this logger to configure your Dagster pipeline to log to Papertrail. You'll need an active Papertrail account with URL and port. Example: .. code-block:: python @job(logger_defs={ "console": colored_console_logger, "papertrail": papertrail_logger, }) def simple_job(): ... simple_job.execute_in_process( run_config={ "loggers": { "console": { "config": { "log_level": "INFO", } }, "papertrail": { "config": { "log_level": "INFO", "name": "hello_pipeline", "papertrail_address": "127.0.0.1", "papertrail_port": 12345, } }, } } ) """ level, name, papertrail_address, papertrail_port = ( init_context.logger_config.get(k) for k in ("log_level", "name", "papertrail_address", "papertrail_port") ) klass = logging.getLoggerClass() logger_ = klass(name, level=level) log_format = "%(asctime)s %(hostname)s " + name + ": %(message)s" formatter = logging.Formatter(log_format, datefmt="%b %d %H:%M:%S") handler = logging.handlers.SysLogHandler(address=(papertrail_address, papertrail_port)) handler.addFilter(ContextFilter()) handler.setFormatter(formatter) logger_.addHandler(handler) return logger_
2.5
2
riskGame/classes/agent/real_time_aStar.py
AmrHendy/RiskGame
4
12781981
from sys import maxsize from riskGame.classes.evaluations.sigmoidEval import SigmoidEval from riskGame.classes.agent.passive_agent import Passive class RTAStar: def __init__(self, evaluation_heuristic=SigmoidEval()): self.__hash_table = {} self.__evaluate = evaluation_heuristic self.__passive_agent = Passive() self.__memo = {} def dfs(self, curr_state, distance_from_root, limit): if limit == 0 or curr_state.get_winner(): # end of limit return SigmoidEval().score(curr_state) + distance_from_root if curr_state.__hash__() in self.__memo: return self.__memo[curr_state.__hash__()] my_turn_state = self.__passive_agent.play(curr_state) child_states = my_turn_state.expand() child_states = child_states[: min(5 * limit, len(child_states))] min_cost = maxsize for child in child_states: if child.get_winner(): return distance_from_root child_cost = self.dfs(child, distance_from_root + 1, limit - 1) min_cost = min(min_cost, child_cost) self.__memo[curr_state.__hash__()] = min_cost return min_cost def play(self, state): # Plan phase limit = 3 print("At the RTA*\n") child_states = state.expand() min_cost = maxsize second_min_cost = -1 next_state = None for child in child_states: if child in self.__hash_table: child_cost = self.__hash_table[child] else: child_cost = self.dfs(child, 1, limit - 1) if child_cost < min_cost: second_min_cost = min_cost min_cost = child_cost next_state = child # Execute phase self.__hash_table[state] = second_min_cost if second_min_cost != maxsize else min_cost print('RTA* choose the best state to be: ') next_state.print_state() return next_state
2.71875
3
labml_db/serializer/pickle.py
labmlai/db
4
12781982
<reponame>labmlai/db<filename>labml_db/serializer/pickle.py import pickle from typing import Optional from . import Serializer from ..types import ModelDict class PickleSerializer(Serializer): file_extension = 'pkl' is_bytes = True def to_string(self, data: ModelDict) -> bytes: return pickle.dumps(data) def from_string(self, data: Optional[bytes]) -> Optional[ModelDict]: if data is None: return None return pickle.loads(data)
2.65625
3
bead/tech/persistence.py
krisztianfekete/lib
1
12781983
<gh_stars>1-10 ''' Functions to persist python structures or load them. ''' import io import json # json is used for serializing objects for persistence as it is # - in the standard library from >=2.6 (including 3.*) # - 2.7 version decodes strings as unicode, unlike e.g. the csv module # - the interface is also becoming the standard one for serialization, # e.g. the competing plistlib's interface was deprecated in 3.4 in # favor of a new json-like one ReadError = json.JSONDecodeError JSON_SAVE_OPTIONS = dict( indent=4, sort_keys=True, ensure_ascii=True, ) def load(istream): return json.load(istream) def loads(string): return json.loads(string) def dumps(content): return json.dumps(content, **JSON_SAVE_OPTIONS) def dump(content, ostream): json.dump(content, ostream, **JSON_SAVE_OPTIONS) def zip_load(zipfile, path): with zipfile.open(path) as f: return load(io.TextIOWrapper(f, encoding='utf-8')) def zip_dump(content, zipfile, path): with zipfile.open(path, 'w') as f: return dump(content, io.TextIOWrapper(f, encoding='utf-8')) def file_load(path): with open(path) as f: return load(f) def file_dump(content, path): with open(path, 'w') as f: dump(content, f)
3.5625
4
sacrerouge/datasets/duc_tac/tac2009/__init__.py
danieldeutsch/decomposed-rouge
81
12781984
from sacrerouge.datasets.duc_tac.tac2009.subcommand import TAC2009Subcommand
1.039063
1
quotes/luckyitem.py
sumaneko/discordpy-startup
0
12781985
from mylib.mymodule import get_quotes from mymodule.ryonage_bot import RyonageBot def get_lucky(bot, m): pre = "" suf = "" name = m.author.name if m.author.nick is None else m.author.nick #元気状態なら if bot.dying_hp < bot.get_hp(): pre = f"{name}さんのラッキーアイテムは・・・・・・『" quotes = [ [100 , "アナルバイブ"], [100 , "湯呑"], [100 , "ビニール傘"], [100 , "ギロチン台"], [100 , "ローター"], [100 , "ペンタブ"], [100 , "プロテイン"], [100 , "疑似精子"], [100 , "マヨネーズ"], [100 , "鶏むね肉"], [100 , "ゆで卵"], [100 , "銀のスプーン"], [100 , "生首"], [100 , "包丁"], [100 , "チェーンソー"], [100 , "Steamの積みゲー"], [100 , "プラスチックのコップ"], [100 , "バナナ"], [100 , "ゴールデンキウイ"], [100 , "爪楊枝"], [100 , "アナルパール"], [100 , "エロフィギュア"], [100 , "javascript"], [100 , "Unity"], [100 , "RPGツクール"], [100 , "アクションゲームツクール"], [100 , "カピバラ"], [100 , "手袋"], [100 , "掃除機"], [100 , "ホウキ"], [100 , "ツヴァイヘンダー"], [100 , "日本刀"], [100 , "ハルバード"], [100 , "メッサー(グロスメッサー)"], [100 , "プレートアーマー"], [100 , "クロスボウ"], [100 , "ロングボウ"], [100 , "牛刀"], [100 , "肩ロース肉"], [100 , "エロ漫画"], [100 , "アナルもののAV"], [100 , "手鏡"], [100 , "イラスト参考書"], [100 , "猫のぬいぐるみ"], [100 , "耳掛け型イヤホン"], [100 , "ブックスタンド"], [100 , "レモン"], [100 , "トマト"], [100 , "スピーカー"], [100 , "ミネラルウォーター"], [100 , "アジャスタブルダンベル"], [100 , "ゲーミングマウス"], [100 , "液タブ"], [100 , "コピー用紙"], [100 , "プリン"], [100 , "ハイカカオチョコレート"], [100 , "アーモンド"], [100 , "彫刻刀"], [100 , "ハサミ"], [100 , "手首"], [100 , "足首"], [100 , "スカート"], [100 , "コスプレグッズ"], [100 , "ラブドール"], [100 , "カチューシャ"], [100 , "ヘアピン"], [100 , "お寿司"], [100 , "冷凍マグロ"], [100 , "しいたけ"], [100 , "折りたたみ椅子"], [100 , "シャーペン"], [100 , "ボールペン"], [100 , "ピンセット"], [100 , "浣腸用のシリンジ"], [100 , "サバイバルナイフ"], [100 , "遮光カーテン"], [100 , "大福"], [100 , "練乳"], [100 , "キッチンカー"], [100 , "脚立"], [100 , "歯ブラシ"], [100 , "デンタルフロス"], [100 , "デッサン人形"], [100 , "30cm定規"], [100 , "接着剤"], [100 , "USBメモリ"], [100 , "電卓"], [100 , "カレンダー"], [100 , "コーヒー"], [100 , "おっぱい"], [100 , "おまんこ"], [100 , "Suica"], [100 , "C++"], [100 , "薙刀"], [100 , "段ボール箱"], [100 , "ティッシュ"], [100 , "片手鍋"], [100 , "乳首に刺す名札"], [100 , "片手斧"], [100 , "ショートソード"], [100 , "アーミングソード"], [100 , "ロングソード"], [100 , "アルテマウェポン"], [100 , "ロトの剣"], [100 , "チェインメイル"], [100 , "三色ボールペン"], [100 , "焼き鳥の缶詰"], [100 , "乾パン"], [100 , "駆逐艦"], [100 , "石"], [100 , "コンクリートブロック"], [100 , "レンガ"], [100 , "豆腐"], [100 , "スライム"], [100 , "ローション"], [100 , "うさみみバンド"], [100 , "バニースーツ"], [100 , "バイアグラ"], [100 , "媚薬"], [100 , "ぷっちょのケース"], [100 , "たけのこの里"], [100 , "きのこの山"], [100 , "チョコモナカジャンボ"], [100 , "バトルドーム"], [100 , "砥石"], [100 , "リオレウス"], [100 , "超大型巨人"], [100 , "ミギー"], [100 , "バキSAGA"], [100 , "雀牌"], [100 , "足の爪"], [100 , "ジャポニカ学習帳"], [100 , "DXライブラリ"], [100 , "Godot"], [100 , "ドラえもん(のぶ代ボイス)"], [100 , "ポニーテール"], [100 , "ボンデージ"], [100 , "新しいPC"], [100 , "5円玉"], [100 , "1万円札"], [100 , "サングラス"], [100 , "ブルーライトカットメガネ"], [100 , "チョコパフェ"], [100 , "堅揚げポテト"], [100 , "お団子"], [100 , "A4ファイル"], [100 , "野太刀"], [100 , "エアコン"], [100 , "バランスボール"], [100 , "算数ドリル"], [100 , "殺虫スプレー"], [100 , "ベープマット"], [100 , "虫取り網"], [100 , "ロープ"], [100 , "Tシャツ"], [100 , "エッチな下着"], [100 , "魚雷"], [100 , "かつおぶし"], [100 , "パンツ"], [100 , "心霊写真"], [100 , "ハンガー"], [100 , "爪切り"], [100 , "お米"], [100 , "唐揚げ"], [100 , "漂白剤"], [100 , "湯たんぽ"], [100 , "シャンプーのボトル"], [100 , "After Effects"], [100 , "Photoshop"], [100 , "クリップスタジオ"], [100 , "触手"], [100 , "消臭スプレー"], [100 , "消毒用エタノール"], [100 , "自転車"], [100 , "ビー玉"], [100 , "ハイパーヨーヨー"], [100 , "ミニ四駆"], [100 , "緑茶"], [100 , "紅茶"], [100 , "野菜ジュース"], [100 , "トマト"], [100 , "懐中時計"], [100 , "懐中電灯"], [100 , "防災リュック"], [100 , "ハンドガン"], [100 , "トミーガン"], [100 , "ロケットランチャー"], [100 , "四次元ポケット"], [100 , "1.5Lのペットボトル"], [100 , "方位磁針"], [100 , "羅針盤"], [100 , "漢字ドリル"], [100 , "ファミコン"], [100 , "カセットテープ"], [100 , "呪いのビデオ"], [100 , "ニプレス"], [100 , "猫のヒゲ"], [100 , "ゲームボーイ"], [100 , "ガントレット"], [100 , "サバトン"], [100 , "アーメット"], [100 , "バルビュート"], [100 , "アナルフック"], [100 , "ベーコン"], [100 , "パンの耳"], [100 , "高級食パン"], [100 , "甘酒"], [100 , "ガチャポンのカプセル"], [100 , "木刀"], [100 , "お土産の剣型キーホルダー"], [100 , "幸運を呼ぶツボ"], [100 , "硯"], [100 , "筆"], [100 , "電極"], [100 , "スタンガン"], [100 , "キャットナインテイル"], [100 , "レイピア"], [100 , "こんにゃく"], [100 , "黒マテリア"], [100 , "コメドプッシャー(ニキビ潰し)"], [100 , "毛抜き"], [100 , "山芋"], [100 , "海老の天ぷら"], [100 , "食塩"], [100 , "ブランデー"], [100 , "ビール"], [100 , "バファリン"], [100 , "モンエナ"], [100 , "オロナミンC"], [100 , "アクエリアス"], [100 , "ポカリスエット"], [100 , "パトランプ"], [100 , "へぇボタン"], [100 , "チャージマン研DVDBOX"], [100 , "蹄鉄"], [100 , "バスターソード"], [100 , "バスタードソード"], [100 , "蛇口"], [100 , "ネジ"], [100 , "六角ボルト"], [100 , "餃子"], [100 , "肉まん"], [100 , "ピザマン"], [100 , "伊達メガネ"], [100 , "バンダナ"], [100 , "ラブレター"], [100 , "紐水着"], [100 , "スクール水着"], [100 , "アナル型オナホール(非貫通タイプ)"], [100 , "妖精さん"], [100 , "猫耳美少女"], [100 , "マスカラ"], [100 , "ランニングシューズ"], [100 , "懸垂スタンド"], [100 , "バスタオル"], [100 , "塩麹"], [100 , "ケチャップ"], [100 , "クリピアス"], [100 , "乳首ピアス"], [100 , "手錠"], [100 , "足枷"], [100 , "珪藻土コースター"], [100 , "ワカメ"], [100 , "昆布"], [100 , "だしパック"], [100 , "ウニ"], [100 , "ピッケル"], [100 , "ツルハシ"], [100 , "ギター"], [100 , "リュート"], [100 , "レオタード"], [100 , "ドラム缶"], [100 , "フライパン"], [100 , "三角コーナー"], [100 , "マニキュア"], [100 , "洗濯バサミ"], [100 , "ピカチュウ"], [100 , "スーパーマリオ"], [100 , "ドラえもん(CV:大山のぶ代)"], [100 , "ハローキティ"], [100 , "ラップの芯"], [100 , "トイレットペーパー"], [100 , "かまぼこの板"], [100 , "ストロー"], [100 , "針金"], [100 , "豚骨ラーメン"], [100 , "レバー"], [100 , "変身ステッキ"], [100 , "メイス"], [100 , "お馬さんのおちんちん"], [100 , "栗おこわ"], [100 , "アナルプラグ"], [100 , "セミの抜け殻"], [100 , "マイクロファイバーの雑巾"], [100 , "サランラップ"], [100 , "お箸"], [100 , "スタンド使い"], [100 , "紙粘土"], [100 , "つけまつげ"], [100 , "おろし金"], [100 , "グランドピアノ"], [100 , "リコーダー"], [100 , "月の石"], [100 , "万華鏡"], [100 , "畳"], [100 , "虫眼鏡"], [100 , "利尿剤"], [100 , "大胸筋矯正サポーター"], [100 , "おちんぽミルク"], [100 , "ベニヤ板"], [100 , "スレッジハンマー"], [100 , "五寸釘"], [100 , "そうめん"], [100 , "カツオのたたき"], [100 , "藁人形"], [100 , "セーター"], [100 , "金塊"], [100 , "梅干し"], [100 , "チェダーチーズ"], [100 , "チャーシュー"], [100 , "上履き"], [100 , "ブルマ"], [100 , "バファリン"], [100 , "単2電池"], [100 , "鎖鎌"], [100 , "ひまわりの種"], [100 , "母乳"], [100 , "おしっこ"], [100 , "リュックサック"] ] #わ・た・しの確率を2%にするためあとから追加 num = len(quotes) * 0.02 * 100 quotes.append([num , "わ・た・し♥"]) suf = "』っ!ですっ!" else: #瀕死の時 quotes = [ [100 , "知りま、せん・・・そんなの・・・"], [100 , f"私、を・・・虐める{name}さんに・・・ラッキーアイテムなん、て・・・無いです・・・"], [100 , "私が欲しい、ですよ・・・そんなの・・・"] ] return pre + get_quotes(quotes) + suf
2.1875
2
camael/regression_models.py
CastaChick/Camael
2
12781986
<gh_stars>1-10 import numpy as np from numpy import linalg as LA class LinearRegression: """ 線形回帰を行うモデル Parameters ---------- intercept: boolean(default=True) 切片要素を入れるかどうか Examples --------- >>> from load_data import load_boston >>> (X_train, y_train), (X_test, y_test) = load_boston() >>> reg = LinearRegression() >>> reg.fit(X_train, y_train) >>> reg.b array([ 4.02936706e+01, -1.19997513e-01, 5.70003304e-02, 3.98379660e-03, 4.12698187e+00, -2.05002963e+01, 3.38024903e+00, 7.56807584e-03, -1.71189793e+00, 3.34747537e-01, -1.17797225e-02, -9.02318039e-01, 8.71912756e-03, -5.55842510e-01]) >>> reg.score(X_test, y_test) 23.19559925642053 """ def __init__(self, intercept=True): self.intercept = intercept def fit(self, X, y): """ 学習データにフィットさせる Parameters ---------- X: array, shape=(samples, colunms) 説明変数の行列 y: vector, len=(samples) 目的変数のベクトル Attributes ---------- b: vector 係数のベクトル _error: float 最適な係数の誤差 """ if self.intercept: self.b = self._solve(np.hstack((np.ones((X.shape[0], 1)), X)), y) else: self.b = self._solve(X, y) self._error = self._culc_error(y, self.predict(X)) def predict(self, X): """ fitメソッドで算出した係数ベクトルを用いて予測を行う Parameters ---------- X: array, shape=(samples, columns) 予測したいデータの説明変数 Returns ------- y: vector, len=(samples) 予測された目的変数 """ if self.intercept: y = np.hstack((np.ones((X.shape[0], 1)), X)).dot(self.b) else: y = X.dot(self.b) return y def _solve(self, X, y): return LA.inv(X.T.dot(X)).dot(X.T.dot(y)) def _culc_error(self, y, y_pred): return LA.norm(y - y_pred)**2 / y.shape[0] def score(self, X, y): """ モデルの平均二乗誤差を求める Parameters ---------- X: array, shape=(samples, columns) 説明変数の行列 y: vector, len=(samples) 目的変数のベクトル Returns ------- error: float 誤差 """ return self._culc_error(y, self.predict(X)) class KNNRegression: """ K近傍法(k-nearest neighbor)による回帰を行う Parameters ---------- k: int (default=5) 考慮する最近傍データの数 weights: str (default="same") 重み付けの有無(デフォルトは重み付け無し) 距離に応じた重みを考慮するときは"distance"を指定 practice: int (default=2) 距離計算方法 * 1: マンハッタン距離 * 2: ユークリッド距離 * <3: 任意の次元のミンコフスキー距離 Examples -------- >>> from load_data import load_boston >>> (X_train, y_train), (X_test, y_test) = load_boston() >>> reg = KNNRegression() >>> reg.fit(X_train, y_train) >>> reg.score(X_test, y_test) 36.969313725490196 """ def __init__(self, k=5, weight="same", practice=2): if type(k) is not int: raise TypeError( "k should be int.") if weight not in ["same", "distance"]: raise ValueError( "weight not recognized: should be 'same' or 'distance'.") if type(practice) is not int: raise TypeError( "practice should be int.") self.k = k self.weight = weight self.practice = practice def fit(self, X, y): """ 学習データをインプットする Parameters ---------- X: array, shape=(samples, columns) 説明変数の行列 y: vector, len=(samples) 目的変数のベクトル """ self.X = X self.y = y def _culc_distance(self, sample): """ あるsampleについてトレーニングデータとの距離を求める Parameters ---------- sample: vector サンプルの特徴量を並べたベクトル Returns ------- distance: vector 各トレーニングデータとの距離 """ distance = np.abs(self.X - sample)**self.practice return np.sum(distance, axis=1) def predict(self, samples): """ 複数のsampleについて予測を行う Parameters ---------- samples: array, shape=(samples, columns) 予測したいサンプルの行列 Returns ------- y: vector, len=(samples) 予測されたカテゴリ """ y = np.zeros(samples.shape[0]) for i, sample in enumerate(samples): y[i] = self._predict_one(sample) return y def _predict_one(self, sample): """ 1つのサンプルがどのカテゴリに入っているかを確認する Parameters ---------- sample: vector サンプルの特徴量を並べたベクトル Returns ------- result: int 予測されたカテゴリ番号 """ dis = self._culc_distance(sample) index = np.arange(self.X.shape[0]) index = index[np.argsort(dis, axis=0)] result = 0 if self.weight == "same": for i in range(self.k): result += self.y[index[i]] result /= self.k elif self.weight == "distance": distance = 0 for i in range(self.k): result += self.y[index[i]] * dis[index[i]] distance += dis[index[i]] result /= distance return result def score(self, X, y): """ モデルの平均二乗誤差を求める Parameters ---------- X: array, shape=(samples, columns) 説明変数の行列 y: vector, len=(samples) 目的変数のベクトル Returns ------- error: float 誤差 """ return self._culc_error(y, self.predict(X)) def _culc_error(self, y, y_pred): return LA.norm(y - y_pred)**2 / y.shape[0]
3.015625
3
downloadbot_common/messaging/consuming/handlers.py
dnguyen0304/downloadbot.common
0
12781987
# -*- coding: utf-8 -*- import abc class Handler(metaclass=abc.ABCMeta): @abc.abstractmethod def handle(self, message): """ Parameters ---------- message : downloadbot_common.messaging.messages.Message Returns ------- None Raises ------ downloadbot_common.messaging.consuming.exceptions.HandleError If there was an error handling the message. """ raise NotImplementedError
2.875
3
angr/knowledge_plugins/patches.py
Kyle-Kyle/angr
6,132
12781988
from typing import Optional, List, Dict from cle.address_translator import AddressTranslator from sortedcontainers import SortedDict from .plugin import KnowledgeBasePlugin # TODO: Serializable class Patch: def __init__(self, addr, new_bytes, comment: Optional[str]=None): self.addr = addr self.new_bytes = new_bytes self.comment = comment def __len__(self): return len(self.new_bytes) class PatchManager(KnowledgeBasePlugin): """ A placeholder-style implementation for a binary patch manager. This class should be significantly changed in the future when all data about loaded binary objects are loaded into angr knowledge base from CLE. As of now, it only stores byte-level replacements. Other angr components may choose to use or not use information provided by this manager. In other words, it is not transparent. Patches should not overlap, but it's user's responsibility to check for and avoid overlapping patches. """ def __init__(self, kb): super().__init__() self._patches: Dict[int,Patch] = SortedDict() self._kb = kb def add_patch(self, addr, new_bytes, comment: Optional[str]=None): self._patches[addr] = Patch(addr, new_bytes, comment=comment) def add_patch_obj(self, patch: Patch): self._patches[patch.addr] = patch def remove_patch(self, addr): if addr in self._patches: del self._patches[addr] def patch_addrs(self): return self._patches.keys() def get_patch(self, addr): """ Get patch at the given address. :param int addr: The address of the patch. :return: The patch if there is one starting at the address, or None if there isn't any. :rtype: Patch or None """ return self._patches.get(addr, None) def get_all_patches(self, addr, size): """ Retrieve all patches that cover a region specified by [addr, addr+size). :param int addr: The address of the beginning of the region. :param int size: Size of the region. :return: A list of patches. :rtype: list """ patches = [ ] for patch_addr in self._patches.irange(maximum=addr+size-1, reverse=True): p = self._patches[patch_addr] if self.overlap(p.addr, p.addr + len(p), addr, addr+size): patches.append(p) else: break return patches[::-1] def keys(self): return self._patches.keys() def items(self): return self._patches.items() def values(self): return self._patches.values() def copy(self): o = PatchManager(self._kb) o._patches = self._patches.copy() @staticmethod def overlap(a0, a1, b0, b1): return a0 <= b0 < a1 or a0 <= b1 < a1 or b0 <= a0 < b1 def apply_patches_to_binary(self, binary_bytes: Optional[bytes]=None, patches: Optional[List[Patch]]=None) -> bytes: if patches is None: patches = sorted(list(self._patches.values()), key=lambda x: x.addr) if binary_bytes is None: with open(self._kb._project.loader.main_object.binary, "rb") as f: binary_bytes = f.read() for patch in patches: # convert addr to file offset at = AddressTranslator.from_mva(patch.addr, self._kb._project.loader.main_object) file_offset = at.to_raw() if file_offset < len(binary_bytes) and file_offset + len(patch.new_bytes) < len(binary_bytes): binary_bytes = binary_bytes[:file_offset] + \ patch.new_bytes + \ binary_bytes[file_offset + len(patch.new_bytes):] return binary_bytes KnowledgeBasePlugin.register_default('patches', PatchManager)
2.390625
2
gtm_manager/manager.py
trakken/gtm_manager
7
12781989
"""manager.py""" import logging from googleapiclient import errors import gtm_manager.account class GTMManager(gtm_manager.base.GTMBase): """Authenticates a users base gtm access. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.accounts_service = self.service.accounts() # pylint: disable=E1101 def list_accounts(self): """Loads from the API and lists all GTM Accounts that a user has access to. Returns: A list of :class:`gtm_manager.account.GTMAccount` that the user has access to. """ try: request = self.accounts_service.list() response = request.execute() return [ gtm_manager.account.GTMAccount(account=x, service=self.service) for x in response.get("account") or [] ] except errors.HttpError as error: logging.error(error) return []
2.859375
3
busca-jogos/busca/classes/patio.py
IvanBrasilico/AI-NanoDegree
0
12781990
<reponame>IvanBrasilico/AI-NanoDegree<gh_stars>0 from collections import OrderedDict from typing import Any, List, Optional, Set, Tuple, Union from busca.classes import ALTURAS, COLUNAS from busca.utils.logconf import logger colunas_dict = {k: ind for ind, k in enumerate(COLUNAS)} alturas_dict = {k: ind for ind, k in enumerate(ALTURAS)} class Container(): def __init__(self, numero, time_to_leave=5): # type: (str, int) -> None self._numero = numero self._time_to_leave = time_to_leave @property def time_to_leave(self): # type: () -> int return self._time_to_leave @time_to_leave.setter def time_to_leave(self, time_to_leave): # type: (int) -> None self._time_to_leave = time_to_leave def __str__(self): # type: () -> str return self._numero def __repr__(self): # type: () -> str return self._numero class Pilha(): """Define uma pilha de largura [A-E] e altura [0-7]""" LEFT = 2 UP = 3 RIGHT = 4 def __init__(self, nome, max_altura=len(ALTURAS), max_largura=len(COLUNAS)): # type: (str, int, int) -> None self._pilha: dict = OrderedDict() self._nome = nome self._altura = max_altura self._largura = max_largura for coluna in COLUNAS: self._pilha[coluna] = OrderedDict() for altura in ALTURAS: self._pilha[coluna][altura] = None def position_totuple(self, position: str ) -> Tuple[Optional[str], Optional[str]]: coluna = None altura = None try: coluna = position[0] altura = position[1] except (IndexError, TypeError) as err: logger.debug( f'position {position} invalid passed to position_totuple') logger.debug(str(err)) pass return coluna, altura def get_containerinposition(self, position): # type: (str) -> Optional[Container] coluna, altura = self.position_totuple(position) if coluna is not None: _coluna = self._pilha.get(coluna) if _coluna: return _coluna.get(altura) return None def side_locked_position(self, position): # type: (str) -> Set[int] coluna, altura = self.position_totuple(position) if coluna and altura: return self.side_locked(coluna, altura) return set() def side_locked(self, pcoluna, paltura): # type: (str, str) -> Set[int] ind_col = colunas_dict[pcoluna] ind_alt = alturas_dict[paltura] sides_locked = set() if ind_col + 1 < len(COLUNAS): coluna = COLUNAS[ind_col + 1] altura = ALTURAS[ind_alt] if self._pilha[coluna][altura] is not None: sides_locked.add(Pilha.RIGHT) if ind_col > 0: coluna = COLUNAS[ind_col - 1] altura = ALTURAS[ind_alt] if self._pilha[coluna][altura] is not None: sides_locked.add(Pilha.LEFT) return sides_locked def up_locked_position(self, position: str) -> bool: coluna, altura = self.position_totuple(position) if coluna and altura: return self.up_locked(coluna, altura) return True def up_locked(self, pcoluna, paltura): # type: (str, str) -> bool ind_alt = alturas_dict[paltura] if ind_alt == len(ALTURAS) - 1: return True altura = ALTURAS[ind_alt + 1] if self._pilha[pcoluna][altura] is not None: return True return False def time_mean(self): # type: () -> float soma = 0 qtde = 0 for coluna in self._pilha.values(): for container in coluna.values(): if container: soma += container.time_to_leave qtde += 1 if qtde == 0: return 0 return soma / qtde def sides_locked(self, coluna, altura): # type: (str, str) -> Set[int] """Retorna posicoes livres se tem carga na posicao, senao True :param posicao: String 'coluna'+'altura'. Caso nao passada, retorna primeira livre """ sides_free = set({Pilha.LEFT, Pilha.UP, Pilha.RIGHT}) if coluna and altura: if self.up_locked(coluna, altura): sides_free.remove(Pilha.UP) sides_locked = self.side_locked(coluna, altura) if sides_locked: sides_free.remove(sides_locked) return sides_free def is_locked(self, coluna, altura): # type: (str, str) -> bool if self.up_locked(coluna, altura) or \ self.sides_locked(coluna, altura) == {Pilha.LEFT, Pilha.RIGHT}: return True return False def is_position_locked(self, position): coluna, altura = self.position_totuple(position) return self.is_locked(coluna, altura) def is_acessible(self, coluna, altura): # type: (str, str) -> bool """Testa se é uma posição válida para armazenagem""" ind_alt = alturas_dict[altura] if ind_alt == len(ALTURAS) - 1: return False up = ALTURAS[ind_alt + 1] if ind_alt == 0: down = None else: down = ALTURAS[ind_alt - 1] col_right = colunas_dict[coluna] + 1 col_left = colunas_dict[coluna] - 1 # print(up, down, col_left, col_right) if (col_left > 0): left = COLUNAS[col_left] if self._pilha[left].get(up) is not None: logger.debug('Lado esquerdo ocupado!!!') return False if (col_right < len(COLUNAS)): right = COLUNAS[col_right] if self._pilha[right].get(up) is not None: logger.debug('Lado direito ocupado!!!') return False if self._pilha[coluna].get(up) is not None: logger.debug('Em cima ocupado!!!') return False if down and self._pilha[coluna].get(down) is None: logger.debug('Embaixo vazio!!!') return False return True def first_free_position(self): # type: () -> Tuple[str, str] for coluna in COLUNAS: for altura in ALTURAS: if self._pilha[coluna][altura] is None: return coluna, altura return False, False def is_position_free(self, position: str = None, ): # type: (...) -> Tuple[Union[bool, str], Union[bool, str]] """Retorna posicao se livre, senao None :param posicao: String 'coluna'+'altura'. Caso nao passada, retorna primeira livre """ if position: coluna, altura = self.position_totuple(position) if self._pilha[coluna][altura] is None and \ self.is_acessible(coluna, altura): return coluna, altura return False, False else: return self.first_free_position() def _atualiza_posicao(self, coluna, altura, container): # type: (str, str, Optional[Container]) -> None self._pilha[coluna][altura] = container def remove(self, position, container): # type: (Optional[str], Container) -> bool coluna, altura = self.position_totuple(position) if not coluna or self.is_locked(coluna, altura): return False # print(coluna, altura) if coluna: stacked_container = self._pilha[coluna][altura] # print(stacked_container) if stacked_container == container: self._atualiza_posicao(coluna, altura, None) return True return False def stack(self, container, # type: Container position=None, # type: Union[None, Tuple[str, str], str] ): # type: (...) -> Union[bool, str] coluna, altura = self.is_position_free(position) if coluna: self._atualiza_posicao(coluna, altura, container) return coluna + altura return False def has_space(self): # type: () -> bool for coluna in COLUNAS: for altura in ALTURAS: if self._pilha[coluna][altura] is None: return True return False class Patio(): def __init__(self, nome=''): # type: (str) -> None self._nome = nome self._pilhas: dict = OrderedDict() self._containers: dict = OrderedDict() self._history: dict = OrderedDict() def add_pilha(self, nome_pilha=None): # type: (str) -> None self._pilhas[nome_pilha] = Pilha(nome_pilha) def stack(self, container, nome_pilha=None, position=None): # type: (Container, str, Optional[str]) -> Union[bool, str] pilha = self._pilhas.get(nome_pilha) if pilha: position = pilha.stack(container, position) if position: self._containers[container._numero] = \ (nome_pilha, position, container) return position return False def unstack(self, container, nome_pilha=None, position=None): # type: (Container, str, Optional[str]) -> bool pilha = self._pilhas.get(nome_pilha) if pilha is not None: success = pilha.remove(position, container) if success: self._history[container._numero] = \ self._containers.pop(container._numero) return True return False def add_container(self, container, nome_pilha=None, posicao=None): # type: (Container, Optional[str], Optional[Any]) -> str """Adiciona container na pilha, ou no pátio. Adiciona pilha se pilha cheia. :param container: Objeto Container :param nome_pilha: Nome da pilha a utilizar. Se não passado, procura em todas :param posicao: String 'B5' 'coluna_altura' :return: None se pilha/pátio cheio, senão posição """ # print(len(self._pilhas), len(self._containers), nome_pilha) if nome_pilha is None: for pilha in self._pilhas.values(): posicao = self.add_container(container, pilha._nome, posicao) if posicao: break # if len(self._containers) >= 30: # print(posicao, nome_pilha) if not posicao: # pilhas cheias, criar nova nome_pilha = '{0:04d}'.format(len(self._pilhas) + 1) # print('Add pilha %s ' % nome_pilha) self.add_pilha(nome_pilha) posicao = self.stack(container, nome_pilha, posicao) else: posicao = self.stack(container, nome_pilha, posicao) return posicao def get_container_tuple(self, numero: str ) -> \ Tuple[Optional[str], Optional[str], Optional[Container]]: nome_pilha, position, container = \ self._containers.get(numero, (None, None, None)) return nome_pilha, position, container def get_container_numero(self, numero): # type: (str) -> Optional[Container] nome_pilha, position, container = self.get_container_tuple(numero) if nome_pilha: return container return None def remove_container(self, container: Container) -> bool: if container is None or not (isinstance(container, Container)): return False nome_pilha, position, container = \ self.get_container_tuple(container._numero) if position is None: return False return self.remove_position(container, nome_pilha, position) def remove_position(self, container: Container, nome_pilha: str, position: str): return self.unstack(container, nome_pilha, position) def pilhas_com_espaco(self): # type: () -> List[Pilha] result = [] for pilha in self._pilhas.values(): if pilha.has_space(): result.append(pilha) return result
2.734375
3
python/sherpa/__init__.py
MattRickS/sherpa
1
12781991
<gh_stars>1-10 from sherpa.exceptions import FormatError, ParseError, PathResolverError from sherpa.resolver import PathResolver
1.195313
1
fuzzing/kernel/syzkaller-configs/generate_config.py
DBGilles/retrowrite
478
12781992
<reponame>DBGilles/retrowrite<gh_stars>100-1000 #!/usr/bin/python3 import argparse import json import os def main(): parser = argparse.ArgumentParser( description='Generate a configuration file for syzkaller') parser.add_argument('--workdir', help='workdir for syzkaller', required=True) parser.add_argument('--kernel', help='path to the kernel directory', required=True) parser.add_argument('--initramfs', help='path to the initramfs', required=True) parser.add_argument('--image', help='path to the disk image', required=True) parser.add_argument('--sshkey', help='path to the VM\'s SSH key', required=True) parser.add_argument('--syzkaller', help='path to syzkaller', required=True) parser.add_argument('--vms', help='number of VMs', type=int, default=8) parser.add_argument('--cpus', help='CPUs per VM', type=int, default=2) parser.add_argument('--mem', help='memory per VM', type=int, default=2048) parser.add_argument('config', help='path to the original config') args = parser.parse_args() with open(args.config) as f: config = json.load(f) config['reproduce'] = False config['vm']['count'] = args.vms config['vm']['kernel'] = os.path.join(args.kernel, 'arch', 'x86', 'boot', 'bzImage') config['vm']['initrd'] = args.initramfs config['vm']['cpu'] = args.cpus config['vm']['mem'] = args.mem config['workdir'] = args.workdir config['kernel_obj'] = args.kernel config['image'] = args.image config['sshkey'] = args.sshkey config['syzkaller'] = args.syzkaller print(json.dumps(config, indent=4)) if __name__ == '__main__': main()
2.265625
2
mpnetcdf4/dc.py
GeoscienceAustralia/dea-netcdf-benchmark
1
12781993
""" Datacube interop functions are here """ import numpy as np from itertools import chain from types import SimpleNamespace from datacube.storage.storage import measurement_paths from datacube.utils import uri_to_local_path from datacube.api import GridWorkflow def flatmap(f, items): return chain.from_iterable(map(f, items)) def first_val(x): return next(iter(x.values())) def list_native_cell(product, cell_index, dc, **query): index = dc.index p = index.products.get_by_name(product) if p.grid_spec is None: raise ValueError('Supplied product does not have a grid spec') gw = GridWorkflow(index, grid_spec=p.grid_spec) tile = gw.list_cells(cell_index=cell_index, product=product, **query)[cell_index] return list(flatmap(lambda x: x, tile.sources.values)) def group_by_storage(dss, bands=None): """ returns [StorageResource] StorageResource .uri - string, URI of the resource .local_path - PosixPath, path on a filesystem, could be None if not a file resource .bands - Dictionary of bands (copied from Dataset) .time - np.ndarray<datetime64[ns]> Timestamps to be read from this resource .datasets - List<datacube.Dataset> referencing this resource """ su_all = {} if bands is None: def check_band(band): return True else: bands = set(bands) def check_band(band): return band in bands def local_path(uri): try: return uri_to_local_path(uri) except ValueError: return None def update(su, ds, band=None): if band is None: bb = {k: ds.measurements[k] for k in ds.measurements if check_band(k)} else: bb = {band: ds.measurements[band]} if su not in su_all: su_all[su] = SimpleNamespace(bands=bb, uri=su, local_path=local_path(su), datasets=[ds]) else: su_all[su].datasets.append(ds) for ds in dss: pp = measurement_paths(ds) paths = set(pp.values()) if len(paths) == 1: # All bands in one file update(paths.pop(), ds) elif len(paths) == len(pp): # Each band in it's own file for band, file in pp.items(): if check_band(band): update(file, ds, band) else: raise ValueError('Not supporting multiple multi-band files') for s in su_all.values(): s.time = np.array([ds.center_time for ds in s.datasets], dtype='datetime64[ns]') return sorted(su_all.values(), key=lambda s: s.time[0]) def compute_time_slice(requested_time, file_time): """ Given requested time stamps and available timestamps (both assumed to be sorted in ascending order), computes roi such that requested_time in file_time[roi] Returns (roi, contigous, complete) Where: roi: slice object contigous: True|False if False not all file stamps in the range are needed complete: True|False, if False some requested timestamps were not found """ assert requested_time.dtype == file_time.dtype ii = np.where((file_time >= requested_time.min()) * (file_time <= requested_time.max()))[0] if len(ii) == 0: raise ValueError("No overlap") roi = slice(ii[0], ii[-1]+1) file_time = set(file_time[roi]) requested_time = set(requested_time) contigous = (file_time == requested_time) complete = requested_time.issubset(file_time) return roi, contigous, complete
2.28125
2
src/calculate_ranks.py
BorgwardtLab/graphkernels-review
3
12781994
<reponame>BorgwardtLab/graphkernels-review #!/usr/bin/env python3 # # calculate_ranks.py: calculates the ranks of individual graph kernels # on the benchmark data sets. import pandas as pd import sys from collections import Counter if __name__ == '__main__': df = pd.read_csv(sys.argv[1], header=0, index_col=0) df = df.rank(axis=0, ascending=False, method='average') mean = df.mean(axis=1) std = df.std(axis=1) df['mean'] = mean df['std'] = std df = df[['mean', 'std']] pd.options.display.float_format = '{:,.2f}'.format print(df.transpose())
2.75
3
trainer/train_elmpronet.py
fortoon21/detecthangul
0
12781995
import os import time import torch import torch.optim import torch.nn.functional as F import torch.nn.init as init from torch.autograd import Variable from loss.ssd_loss import SSDLoss from metrics.voc_eval import voc_eval from modellibs.s3fd.box_coder import S3FDBoxCoder from utils.average_meter import AverageMeter class Trainer(object): def __init__(self, opt, train_dataloader, valid_dataloader, model): self.opt = opt self.current_lr = opt.lr self.start_epoch = opt.start_epochs self.train_dataloader = train_dataloader self.valid_dataloader = valid_dataloader self.max_iter_train = len(self.train_dataloader) self.max_iter_valid = len(self.valid_dataloader) self.model = model self.criterion_first = torch.nn.CrossEntropyLoss().cuda() self.criterion_middle = torch.nn.CrossEntropyLoss().cuda() self.criterion_last = torch.nn.CrossEntropyLoss().cuda() self.criterion_config = torch.nn.CrossEntropyLoss().cuda() self.optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) self.best_loss = float('inf') if opt.resume: self.optimizer.load_state_dict(torch.load(opt.resume_path)['optimizer']) def train_model(self, max_epoch, learning_rate, layers=None): self.max_epoch = max_epoch for epoch in range(self.start_epoch, self.max_epoch): self.adjust_learning_rate(self.optimizer, epoch) self.train_epoch(epoch) self.valid_epoch(epoch) print('') print('optimization done') save_dir = 'experiments/%s_%s_%s' % (self.opt.dataset, self.opt.task, self.opt.model) file_name = '%s_%s_%s_best_loss_%f' % (self.opt.dataset, self.opt.task, self.opt.model, self.best_loss) os.rename(self.opt.expr_dir, os.path.join(save_dir,file_name)) def train_epoch(self, epoch): """ training """ self.model.train() self.optimizer.zero_grad() train_loss = 0 for batch_idx, (inputs, label_first,label_middle, label_last, label_config) in enumerate(self.train_dataloader): # label_first = labels[0] # label_middle = labels[1] # label_last = labels[2] # label_config = labels[3] inputs = inputs.to(self.opt.device) label_first = label_first.to(self.opt.device) label_middle = label_middle.to(self.opt.device) label_last = label_last.to(self.opt.device) label_config = label_config.to(self.opt.device) output_first, output_middle, output_last, output_config = self.model(inputs) loss_first = self.criterion_first(output_first, label_first) loss_middle = self.criterion_middle(output_middle, label_middle) loss_last = self.criterion_last(output_last, label_last) loss_config = self.criterion_config(output_config, label_config) loss = loss_first + loss_middle + loss_last + loss_config loss.backward() if ((batch_idx + 1) % self.opt.accum_grad == 0) or ((batch_idx+1) == self.max_iter_train): self.optimizer.step() self.model.zero_grad() self.optimizer.zero_grad() train_loss += loss.item() if batch_idx % self.opt.print_freq == 0: print('Epoch[%d/%d] Iter[%d/%d] Learning Rate: %.6f Total Loss: %.4f, First Loss: %.4f, Middle Loss: %.4f, Last Loss: %.4f, Config Loss: %.4f' % (epoch, self.max_epoch, batch_idx, self.max_iter_train, self.current_lr, loss.item(), loss_first.item(), loss_middle.item(), loss_last.item(), loss_config.item())) def valid_epoch(self, epoch): correct_f = 0 correct_m = 0 correct_l = 0 correct_c = 0 """ validate """ self.model.eval() test_loss = 0 for batch_idx, (inputs, label_first,label_middle, label_last, label_config) in enumerate(self.valid_dataloader): with torch.no_grad(): inputs = inputs.to(self.opt.device) label_first = label_first.to(self.opt.device) label_middle = label_middle.to(self.opt.device) label_last = label_last.to(self.opt.device) label_config = label_config.to(self.opt.device) output_first, output_middle, output_last, output_config = self.model(inputs) loss_first = self.criterion_first(output_first, label_first) loss_middle = self.criterion_middle(output_middle, label_middle) loss_last = self.criterion_last(output_last, label_last) loss_config = self.criterion_config(output_config, label_config) loss = loss_first + loss_middle + loss_last + loss_config pred_f = output_first.data.max(1, keepdim=True)[1].cpu() pred_m = output_middle.data.max(1, keepdim=True)[1].cpu() pred_l = output_last.data.max(1, keepdim=True)[1].cpu() pred_c = output_config.data.max(1, keepdim=True)[1].cpu() correct_f += pred_f.eq(label_first.cpu().view_as(pred_f)).sum() correct_m += pred_m.eq(label_middle.cpu().view_as(pred_m)).sum() correct_l += pred_l.eq(label_last.cpu().view_as(pred_l)).sum() correct_c += pred_c.eq(label_config.cpu().view_as(pred_c)).sum() test_loss += loss.item() if batch_idx % self.opt.print_freq_eval == 0: print('Validation[%d/%d] Total Loss: %.4f, First Loss: %.4f, Middle Loss: %.4f, Last Loss: %.4f, Conf Loss: %.4f' % (batch_idx, len(self.valid_dataloader), loss.item(), loss_first.item(), loss_middle.item(), loss_last.item(), loss_config.item())) num_test_data = len(self.valid_dataloader.dataset) accuracy_f = 100. * correct_f / num_test_data accuracy_m = 100. * correct_m / num_test_data accuracy_l = 100. * correct_l / num_test_data accuracy_c = 100. * correct_c / num_test_data test_loss /= len(self.valid_dataloader) if test_loss < self.best_loss: print('Saving..') state = { 'model': self.model.module.state_dict(), 'optimizer': self.optimizer.state_dict(), 'best_loss': test_loss, 'epoch': epoch, } torch.save(state, os.path.join(self.opt.expr_dir, 'model_best.pth')) self.best_loss = test_loss print('[*] Model %s,\tCurrent Loss: %f\tBest Loss: %f' % (self.opt.model, test_loss, self.best_loss)) print('Val Accuracy_F: {}/{} ({:.0f}%) | Val Accuracy_M: {}/{} ({:.0f}%) | Val Accuracy_L: {}/{} ({:.0f}%) | Val Accuracy_C: {}/{} ({:.0f}%)\n'.format( correct_f, num_test_data, accuracy_f, correct_m, num_test_data, accuracy_m, correct_l, num_test_data, accuracy_l, correct_c, num_test_data, accuracy_c)) def adjust_learning_rate(self, optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" self.current_lr = self.opt.lr * (0.1 ** (epoch // 50)) for param_group in optimizer.param_groups: param_group['lr'] = self.current_lr def make_dir(self, dir_path): if not os.path.exists(os.path.join(self.opt.expr_dir, dir_path)): os.mkdir(os.path.join(self.opt.expr_dir, dir_path))
2.078125
2
python/testData/types/AwaitOnImportedCoroutine/mycoroutines.py
jnthn/intellij-community
2
12781996
<reponame>jnthn/intellij-community<gh_stars>1-10 from typing import Any async def mycoroutine() -> Any: pass
1.132813
1
recupero/migrations/0002_auto_20191103_1159.py
cluster311/ggg
6
12781997
# Generated by Django 2.2.4 on 2019-11-03 14:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('recupero', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='prestacion', name='nomenclador', ), migrations.AddField( model_name='tipoprestacion', name='arancel', field=models.DecimalField(decimal_places=2, default=0.0, max_digits=11), ), migrations.AddField( model_name='tipoprestacion', name='codigo', field=models.CharField(blank=True, help_text='Código del servicio (de nomenclador si corresponde)', max_length=30, null=True), ), migrations.AddField( model_name='tipoprestacion', name='descripcion', field=models.TextField(blank=True, null=True), ), migrations.AddField( model_name='tipoprestacion', name='observaciones', field=models.TextField(blank=True, null=True), ), migrations.AlterField( model_name='tipoprestacion', name='tipo', field=models.PositiveIntegerField(choices=[(0, 'Desconocido'), (100, 'Consulta'), (200, 'Práctica'), (300, 'Internación'), (400, 'Laboratorio')], default=100), ), ]
1.742188
2
opensearch/results.py
akuanti/opensearch
0
12781998
from opensearch import osfeedparser import logging logger = logging.getLogger(__name__) class Results(object): def __init__(self, query, agent=None): self.agent = agent self._fetch(query) self._iter = 0 def __iter__(self): self._iter = 0 return self def __len__(self): return self.totalResults def next(self): # just keep going like the energizer bunny while True: # return any item we haven't returned if self._iter < len(self.items): self._iter += 1 return self.items[self._iter-1] # if there appears to be more to fetch if \ self.totalResults != 0 \ and self.totalResults > self.startIndex + self.itemsPerPage - 1: # get the next query next_query = self._get_next_query() # if we got one executed it and go back to the beginning if next_query: self._fetch(next_query) # very important to reset this counter # or else the return will fail self._iter = 0 else: # deal with malformed templates # stop if there isn't anything raise StopIteration else: raise StopIteration def _fetch(self, query): url = query.url() logger.debug("fetching %s" % url) feed = osfeedparser.opensearch_parse(url, agent=self.agent) self.feed = feed # general channel stuff channel = feed['feed'] self.title = _pick(channel,'title') self.link = _pick(channel,'link') self.description = _pick(channel,'description') self.language = _pick(channel,'language') self.copyright = _pick(channel,'copyright') # get back opensearch specific values self.totalResults = _pick(channel,'opensearch_totalresults',0) self.startIndex = _pick(channel,'opensearch_startindex',1) self.itemsPerPage = _pick(channel,'opensearch_itemsperpage',0) # alias items from the feed to our results object self.items = feed['items'] # set default values if necessary if self.startIndex == 0: self.startIndex = 1 if self.itemsPerPage == 0 and len(self.items) > 0: self.itemsPerPage = len(self.items) # store away query for calculating next results # if necessary self.last_query = query def _get_next_query(self): # update our query to get the next set of records query = self.last_query # use start page if the query supports it if query.has_macro('startPage'): # if the query already defined the startPage # we just need to increment it if hasattr(query, 'startPage'): query.startPage += 1 # to issue the first query startPage might not have # been specified, so set it to 2 else: query.startPage = 2 return query # otherwise the query should support startIndex elif query.has_macro('startIndex'): # if startIndex was used before we just add the # items per page to it to get the next set if hasattr(query, 'startIndex'): query.startIndex += self.itemsPerPage # to issue the first query the startIndex may have # been left blank in that case we assume it to be # the item just after the last one on this page else: query.startIndex = self.itemsPerPage + 1 return query # doesn't look like there is another stage to this query return None # helper for pulling values out of a dictionary if they're there # and returning a default value if they're not def _pick(d,key,default=None): # get the value out value = d.get(key) # if it wasn't there return the default if value == None: return default # if they want an int try to convert to an int # and return default if it fails if type(default) == int: try: return int(d[key]) except: return default # otherwise we're good to return the value return value
2.671875
3
app/pkgs/query.py
minhtuan221/architecture-collection
3
12781999
<reponame>minhtuan221/architecture-collection<filename>app/pkgs/query.py from .type_check import type_check @type_check def get_start_stop_pos(page: int, size: int): page = max(1, page) size = max(1, size) offset = (page - 1) * size limit = size return offset, limit
1.90625
2
tests/test_inventory.py
mavroskardia/oworld
0
12782000
# # Tests for Overworld character inventory # import sys sys.path.append('../components') from items import NewInventory as Inventory from items import NewItem as Item from items import Material class Test_Inventory: def setup_class(cls): cls.inv = Inventory() def test_construction(self): assert self.inv is not None def test_properties(self): assert type(self.inv.items) is tuple assert len(self.inv.items) == 0 def test_inventory_add_items(self): item = Item() item.add_material(Material()) self.inv.add_item(item)
2.78125
3
tests/test_utils.py
gramaziokohler/total_station_robot_localization
0
12782001
from __future__ import absolute_import from __future__ import division from __future__ import print_function from compas_mobile_robot_reloc.utils import _ensure_rhino from pytest import raises def test__ensure_rhino(): with raises(ImportError): _ensure_rhino()
1.4375
1
scripts/07_lemma/main.py
sdspieg/naeval
36
12782002
from os.path import ( expanduser, join as join_path ) from IPython.display import HTML from tqdm.notebook import tqdm as log_progress from naeval.const import ( NEWS, WIKI, FICTION, SOCIAL, POETRY, DATASET, JL, GZ ) from naeval.io import ( format_jl, parse_jl, load_gz_lines, dump_gz_lines, ) from naeval.record import ( as_jsons, from_jsons ) from naeval.dataset import sample from naeval.readme import patch_readme from naeval.lemma.datasets import load_dataset from naeval.lemma.markup import ( Markup, show_markup ) CORUS_DATA_DIR = expanduser('~/proj/corus-data/gramru') CORUS_FILES = { NEWS: [ 'dev/GramEval2020-RuEval2017-Lenta-news-dev.conllu', 'train/MorphoRuEval2017-Lenta-train.conllu', ], WIKI: [ 'dev/GramEval2020-GSD-wiki-dev.conllu', 'train/GramEval2020-GSD-train.conllu' ], FICTION: [ 'dev/GramEval2020-SynTagRus-dev.conllu', 'train/GramEval2020-SynTagRus-train-v2.conllu', 'train/MorphoRuEval2017-JZ-gold.conllu' ], SOCIAL: [ 'dev/GramEval2020-RuEval2017-social-dev.conllu', 'train/GramEval2020-Taiga-social-train.conllu', 'train/MorphoRuEval2017-VK-gold.conllu' ], POETRY: [ 'dev/GramEval2020-Taiga-poetry-dev.conllu', 'train/GramEval2020-Taiga-poetry-train.conllu' ], } DATASETS = [NEWS, WIKI, FICTION, SOCIAL, POETRY] DATA_DIR = expanduser('~/proj/naeval/data/lemma') LEMMA = 'lemma' README = expanduser('~/proj/naeval/README.md')
1.59375
2
devel/grobid/process/parse_tei.py
arrismo/tripods-testing
2
12782003
<reponame>arrismo/tripods-testing<filename>devel/grobid/process/parse_tei.py<gh_stars>1-10 import sys import re from xml.etree import ElementTree as ET total_matches = 0 pattern = re.compile(r"[A-Z]{2,6}\s{,1}-{,1}[0-9]{2,6}") def traverse_node(root, pattern): """ Find matches at current node, then move on to child nodes """ if root.text is not None: matches = pattern.findall(root.text) if matches: print("Full text:") print(root.text) print("Matches:") counter = 1 for match in matches: print("%d. %s" % (counter, match)) counter += 1 global total_matches total_matches += 1 print() for child in root: traverse_node(child, pattern) def main(argv): target = "../data/out/Alma.tei.xml" if len(argv) > 1: target = argv[1] # read xml file as a tree tree = ET.parse(target, ET.XMLParser(encoding="utf-8")) root = tree.getroot() # traverse all nodes recursively and collect pattern matches global pattern # indicate that we're using pattern as defined at the top of this file traverse_node(root, pattern) global total_matches print("\nTotal matches: %d." % total_matches) if __name__ == "__main__": main(sys.argv)
3.03125
3
pymain.py
Almasumgazi/download-manager
0
12782004
import requests from bs4 import BeautifulSoup import re import webbrowser import time from qbittorrent import Client movie = input("Enter What You Want To Download : ") movie_name = movie if(len(movie.split()) > 1): movie = movie.split() movie = '%20'.join(movie) else: movie = movie url = f'https://thepiratebay10.org/search/{movie}/1/99/100,200,300,400,600' r = requests.get(url) htmlcontent = r.content soup = BeautifulSoup(htmlcontent, 'html.parser') anchors = soup.find_all("a") all_links = [] all_names = [] all_search_links = [] for link in anchors: if(link.get('href') != '#'): linkName = link.get('title') linkText = link.get('href') all_links.append(linkText) if(linkName != None): all_names.append(linkName) all_links = set(all_links) all_links = list(all_links) subsName = "Details for" nameFinder = [i for i in all_names if subsName in i] namelist = [] for name in nameFinder: if(name.startswith(subsName)): names = name[len(subsName)+1:] namelist.append(names) for index, s in enumerate(namelist): print(str(index+1)+". "+s) number_for_download = int(input("Enter number you want to download : "))-1 movie_title = namelist[number_for_download] print("you're downloading : "+movie_title) movie_title = movie_title.split() movie_title = '%20'.join(movie_title) url_selected = f'https://thepiratebay10.org/search/{movie_title}/1/99/100,200,300,400,600' req = requests.get(url_selected) htmlcontents = req.content soup_selected = BeautifulSoup(htmlcontents, 'html.parser') anchors_selected = soup_selected.find_all("a") all_links_selected = [] for link_selected in anchors_selected: if(link_selected.get('href') != '#'): linkText_selected = link_selected.get('href') all_links_selected.append(linkText_selected) all_links_selected = set(all_links_selected) all_links_selected = list(all_links_selected) subs2 = "magnet" magnet_links2 = [i for i in all_links_selected if subs2 in i] qb = Client("http://127.0.0.1:3500/") qb.login("admin", "adminadmin") magnet_url = magnet_links2[0] qb.download_from_link(magnet_url)
3.09375
3
skcosmo/linear_model/__init__.py
andreanelli/scikit-cosmo
16
12782005
<reponame>andreanelli/scikit-cosmo<gh_stars>10-100 from ._base import OrthogonalRegression from ._ridge import RidgeRegression2FoldCV __all__ = ["OrthogonalRegression", "RidgeRegression2FoldCV"]
1.15625
1
drl/envs/wrappers/stateful/abstract.py
lucaslingle/pytorch_drl
0
12782006
""" Abstract wrapper definitions. """ from typing import Mapping, Any import abc import torch as tc from drl.envs.wrappers.stateless import Wrapper class TrainableWrapper(Wrapper, metaclass=abc.ABCMeta): """ Wrapper with trainable parameters. """ @abc.abstractmethod def learn( self, minibatch: Mapping[str, tc.Tensor], **kwargs: Mapping[str, Any]) -> None: """ Args: minibatch (Mapping[str, torch.Tensor]): Minibatch of experience. **kwargs (Mapping[str, Any]): Keyword args. Returns: None. """ # todo(lucaslingle): # make this return a possibly-empty dictionary of tensorboard metrics. raise NotImplementedError
2.9375
3
src/pds_doi_service/core/outputs/web_client.py
NASA-PDS/doi-service
0
12782007
# # Copyright 2020–21, by the California Institute of Technology. ALL RIGHTS # RESERVED. United States Government Sponsorship acknowledged. Any commercial # use must be negotiated with the Office of Technology Transfer at the # California Institute of Technology. # """ ============= web_client.py ============= Contains the abstract base class for interfacing with a DOI submission service endpoint. """ import pprint from typing import Optional import requests from pds_doi_service.core.entities.exceptions import WebRequestException from pds_doi_service.core.outputs.doi_record import CONTENT_TYPE_XML from pds_doi_service.core.outputs.web_parser import DOIWebParser from pds_doi_service.core.util.config_parser import DOIConfigUtil from requests.auth import HTTPBasicAuth WEB_METHOD_GET = "GET" WEB_METHOD_POST = "POST" WEB_METHOD_PUT = "PUT" WEB_METHOD_DELETE = "DELETE" VALID_WEB_METHODS = [WEB_METHOD_GET, WEB_METHOD_POST, WEB_METHOD_PUT, WEB_METHOD_DELETE] """Constants for HTTP method types""" class DOIWebClient: """Abstract base class for clients of an HTTP DOI service endpoint""" _config_util = DOIConfigUtil() _service_name: Optional[str] _service_name = None _web_parser: Optional[DOIWebParser] _web_parser = None _content_type_map: dict[str, str] = {} def _submit_content(self, payload, url, username, password, method=WEB_METHOD_POST, content_type=CONTENT_TYPE_XML): """ Submits a payload to a DOI service endpoint via the POST action. The action taken by the service is determined by the contents of the payload. Parameters ---------- payload : str Payload to submit to the DOI service. url : str The URL of the DOI service endpoint. username : str The user name to authenticate to the DOI service as. password : str The password to authenticate to the DOI service with. method : str, optional The HTTP method type to use with the request. Should be one of GET, POST, PUT or DELETE. Defaults to POST. content_type : str, optional The content type to specify the format of the payload, as well as the format of the response from the endpoint. Defaults to xml. Returns ------- response_text : str Body of the response text from the endpoint. """ if method not in VALID_WEB_METHODS: raise ValueError(f"Invalid method requested, must be one of {','.join(VALID_WEB_METHODS)}") if content_type not in self._content_type_map: raise ValueError( f"Invalid content type requested, must be one of {','.join(list(self._content_type_map.keys()))}" ) auth = HTTPBasicAuth(username, password) headers = {"Accept": self._content_type_map[content_type], "Content-Type": self._content_type_map[content_type]} response = requests.request(method, url, auth=auth, data=payload, headers=headers) try: response.raise_for_status() except requests.exceptions.HTTPError as http_err: # Detail text is not always present, which can cause json parsing # issues details = f"Details: {pprint.pformat(response.text)}" if response.text else "" raise WebRequestException( f"DOI submission request to {self._service_name} service failed, reason: {str(http_err)}\n{details}" ) return response.text def submit_content( self, payload, url=None, username=None, password=<PASSWORD>, method=WEB_METHOD_POST, content_type=CONTENT_TYPE_XML ): """ Submits the provided payload to a DOI service endpoint via the POST action. Inheritors of DOIWebClient should pull any required endpoint specific parameters (URL, username, password, etc...) from the configuration util bundled with the class. Inheritors should also take the extra step of parsing and returning any Doi objects from the response text (if request was successful). Parameters ---------- payload : str Payload to submit to the DOI service. Should only correspond to a single DOI record. url : str, optional The URL to submit the request to. If not submitted, it is pulled from the INI config for the appropriate service provider. username : str, optional The username to authenticate the request as. If not submitted, it is pulled from the INI config for the appropriate service provider. password : str, optional The password to authenticate the request with. If not submitted, it is pulled from the INI config for the appropriate service provider. method : str, optional The HTTP method type to use with the request. Should be one of GET, POST, PUT or DELETE. Defaults to POST. content_type : str, optional The content type to specify the format of the payload, as well as the format of the response from the endpoint. Defaults to xml. Returns ------- doi : Doi Doi object parsed from the response text. response_text : str Body of the response text. """ raise NotImplementedError( f"Subclasses of {self.__class__.__name__} must provide an implementation for submit_content()" ) def query_doi(self, query, url=None, username=None, password=<PASSWORD>, content_type=CONTENT_TYPE_XML): """ Queries the DOI endpoint for the status of a DOI submission. The query utilizes the GET HTTP method of the URL endpoint. Inheritors of DOIWebClient should pull any required endpoint specific parameters (URL, username, password, etc...) from the configuration util bundled with the class for optional arguments not provided by the user. Parameters ---------- query : dict Key/value pairs to append as parameters to the URL for the GET endpoint. url : str, optional The URL to submit the request to. If not submitted, it is pulled from the INI config for the appropriate service provider. username : str, optional The username to authenticate the request as. If not submitted, it is pulled from the INI config for the appropriate service provider. password : str, optional The password to authenticate the request with. If not submitted, it is pulled from the INI config for the appropriate service provider. content_type : str, optional The content type to specify the the format of the response from the endpoint. Defaults to xml. Returns ------- response_text : str Body of the response text from the endpoint. """ raise NotImplementedError( f"Subclasses of {self.__class__.__name__} must provide an implementation for query_doi()" ) def endpoint_for_doi(self, doi, action): """ Returns the proper HTTP verb and URL that form a request endpoint for the provided DOI object. Parameters ---------- doi : Doi The DOI object to determine the endpoint for. action : str Name of the action to be performed on the provided Doi object. Returns ------- method : str The HTTP verb to use for the request. url: str The URL to use for the request. """ raise NotImplementedError( f"Subclasses of {self.__class__.__name__} must provide an implementation for endpoint_for_doi()" )
2.390625
2
lectures/solutions/tile_rectify.py
ritamonteiroo/scikit
453
12782008
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from skimage import transform from skimage.transform import estimate_transform source = np.array([(129, 72), (302, 76), (90, 185), (326, 193)]) target = np.array([[0, 0], [400, 0], [0, 400], [400, 400]]) tf = estimate_transform('projective', source, target) H = tf.params # in older versions of skimage, this should be # H = tf._matrix print(H) # H = np.array([[ 3.04026872e+00, 1.04929628e+00, -4.67743998e+02], # [ -1.44134582e-01, 6.23382067e+00, -4.30241727e+02], # [ 2.63620673e-05, 4.17694527e-03, 1.00000000e+00]]) def rectify(xy): x = xy[:, 0] y = xy[:, 1] # You must fill in your code here. # # Handy functions are: # # - np.dot (matrix multiplication) # - np.ones_like (make an array of ones the same shape as another array) # - np.column_stack # - A.T -- type .T after a matrix to transpose it # - x.reshape -- reshapes the array x # We need to provide the backward mapping HH = np.linalg.inv(H) homogeneous_coordinates = np.column_stack([x, y, np.ones_like(x)]) xyz = np.dot(HH, homogeneous_coordinates.T) # We want one coordinate per row xyz = xyz.T # Turn z into a column vector z = xyz[:, 2] z = z.reshape([len(z), 1]) xyz = xyz / z return xyz[:, :2] image = plt.imread('../../images/chapel_floor.png') out = transform.warp(image, rectify, output_shape=(400, 400)) f, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 4)) ax0.imshow(image) ax1.imshow(out) plt.show()
2.671875
3
test/test_combine_overlap_stats.py
MelbourneGenomics/iq
0
12782009
import StringIO import unittest import iq.combine_overlap_stats class TestCombineOverlapStats(unittest.TestCase): def test_simple(self): exons = ['A1CF\t1\t2\t50.00\tALT1,ALT2', 'A2M\t3\t4\t75.00\t'] cds = ['A2M\t5\t6\t83.33\tALT3'] target = StringIO.StringIO() log = StringIO.StringIO() iq.combine_overlap_stats.combine(exons, cds, target, log) lines = target.getvalue().split('\n') assert len(lines) == 4 assert lines[1] == 'A1CF\t0\t1\t0\t2\t0\t50.00\tALT1,ALT2' # no cds data assert lines[2] == 'A2M\t5\t3\t6\t4\t83.33\t75.00\tALT3' # data for both assert lines[3] == '' def test_case(self): exons = ['a1CF\t1\t2\t50.00\tALT1,ALT2', 'A2m\t3\t4\t75.00\t'] cds = ['A2M\t5\t6\t83.33\tALT3'] target = StringIO.StringIO() log = StringIO.StringIO() iq.combine_overlap_stats.combine(exons, cds, target, log) lines = target.getvalue().split('\n') assert len(lines) == 4 assert lines[1] == 'a1CF\t0\t1\t0\t2\t0\t50.00\tALT1,ALT2' # no cds data assert lines[2] == 'A2m\t5\t3\t6\t4\t83.33\t75.00\tALT3' # data for both assert lines[3] == '' if __name__ == '__main__': unittest.main()
2.46875
2
src/webapp/dummy_data.py
janLo/meet-and-eat-registration-system
0
12782010
<reponame>janLo/meet-and-eat-registration-system<filename>src/webapp/dummy_data.py from math import sqrt from random import random import database as db from database.model import Team, Members, Location def make_dummy_data(num_teams, confirmed=True): for idx in range(num_teams): team = Team(name="Team %d" % idx, confirmed=confirmed) db.session.add(team) for member_idx in range(3): member = Members(name="Member%d from team%d" % (member_idx, idx), team=team) db.session.add(member) lat_rand = (0.5 - random()) * 0.1 lon_rand = (0.5 - random()) * 0.1 pseudo_dist = sqrt(lat_rand ** 2 + lon_rand ** 2) lat = 51.0322627 + lat_rand lon = 13.7071665 + lon_rand location = Location(street="Teststreet %d" % idx, zip_no="01217", extra="", lat=lat, lon=lon, center_distance=pseudo_dist, team=team) db.session.add(location) db.session.commit()
2.921875
3
operators/self_patch.py
zhou3968322/dl-lab
0
12782011
<gh_stars>0 # -*- coding:utf-8 -*- # email:<EMAIL> # create: 2020/12/17 import torch import torch.nn as nn class Selfpatch(object): def buildAutoencoder(self, target_img, target_img_2, target_img_3, patch_size=1, stride=1): nDim = 3 assert target_img.dim() == nDim, 'target image must be of dimension 3.' C = target_img.size(0) self.Tensor = torch.cuda.FloatTensor if torch.cuda.is_available else torch.Tensor patches_features = self._extract_patches(target_img, patch_size, stride) patches_features_f = self._extract_patches(target_img_3, patch_size, stride) patches_on = self._extract_patches(target_img_2, 1, stride) return patches_features_f, patches_features, patches_on def build(self, target_img, patch_size=5, stride=1): nDim = 3 assert target_img.dim() == nDim, 'target image must be of dimension 3.' C = target_img.size(0) self.Tensor = torch.cuda.FloatTensor if torch.cuda.is_available else torch.Tensor patches_features = self._extract_patches(target_img, patch_size, stride) return patches_features def _build(self, patch_size, stride, C, target_patches, npatches, normalize, interpolate, type): # for each patch, divide by its L2 norm. if type == 1: enc_patches = target_patches.clone() for i in range(npatches): enc_patches[i] = enc_patches[i]*(1/(enc_patches[i].norm(2)+1e-8)) conv_enc = nn.Conv2d(npatches, npatches, kernel_size=1, stride=stride, bias=False, groups=npatches) conv_enc.weight.data = enc_patches return conv_enc # normalize is not needed, it doesn't change the result! if normalize: raise NotImplementedError if interpolate: raise NotImplementedError else: conv_dec = nn.ConvTranspose2d(npatches, C, kernel_size=patch_size, stride=stride, bias=False) conv_dec.weight.data = target_patches return conv_dec def _extract_patches(self, img, patch_size, stride): n_dim = 3 assert img.dim() == n_dim, 'image must be of dimension 3.' kH, kW = patch_size, patch_size dH, dW = stride, stride input_windows = img.unfold(1, kH, dH).unfold(2, kW, dW) i_1, i_2, i_3, i_4, i_5 = input_windows.size(0), input_windows.size(1), input_windows.size(2), input_windows.size(3), input_windows.size(4) input_windows = input_windows.permute(1,2,0,3,4).contiguous().view(i_2*i_3, i_1, i_4, i_5) patches_all = input_windows return patches_all
2.1875
2
mmseg/datasets/pipelines/transforms_new.py
shinianzhihou/ChangeDetection
95
12782012
<reponame>shinianzhihou/ChangeDetection import albumentations as A from albumentations import DualTransform from albumentations.pytorch import ToTensorV2 from numpy import random from ..builder import PIPELINES PIPELINES.register_module(module=ToTensorV2)
1.132813
1
every_election/apps/elections/migrations/0048_seed_status.py
DemocracyClub/EveryElection
8
12782013
<reponame>DemocracyClub/EveryElection<filename>every_election/apps/elections/migrations/0048_seed_status.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations def load_init_data(apps, schema_editor): ModerationStatus = apps.get_model("elections", "ModerationStatus") recs = [ ModerationStatus( short_label="Suggested", long_label="Suggested by an anonymous user" ), ModerationStatus(short_label="Rejected", long_label="Rejected by a moderator"), ModerationStatus(short_label="Approved", long_label="Approved by a moderator"), ModerationStatus( short_label="Deleted", long_label="Deleted (because it was added in error)" ), ] ModerationStatus.objects.bulk_create(recs) def delete_init_data(apps, schema_editor): ModerationStatus = apps.get_model("elections", "ModerationStatus") ModerationStatus.objects.all().delete() class Migration(migrations.Migration): dependencies = [("elections", "0047_auto_20181005_1320")] operations = [migrations.RunPython(load_init_data, delete_init_data)]
1.953125
2
src/day006.py
zhangxinyong12/my-python-demo
0
12782014
# # # def func(): # n = 0 # while True: # n += 1 # yield n # yield = return + 暂停 # # # # g = func() # # print(g) # # print(g.__next__()) # # print(next(g)) # # # def fid(length): # a, b = 0, 1 # n = 0 # while n < length: # yield b # a, b = b, a + b # n += 1 # return '结束' # # # g = fid(8) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # print(next(g)) # def gen(): # i = 0 # while i < 5: # temp = yield i # print('temp=', temp) # i += 1 # return '没有更多' # # # g = gen() # g.send(None) # n1 = g.send('abc') # print(n1) # n2 = g.send('erdf') # print(n2) # 进程 > 线程 > 协程 # # def task1(n): # for i in range(n): # print('正在搬第{}块砖'.format(i)) # yield # # # def task2(n): # for i in range(n): # print('这么着听第{}首有音乐'.format(i)) # yield # # # g1 = task1(10) # g2 = task2(5) # # while True: # try: # next(g1) # next(g2) # except: # break # 可迭代的对象 # 生成器 # 元组 # 列表 # 集合 # 字典 # 字符串 from collections.abc import Iterable list1 = [1, 2, 3, 4] print('list1', isinstance(list1, Iterable)) str1 = '1111' print('str1', isinstance(str1, Iterable)) g = (x for x in range(10)) print('g', isinstance(g, Iterable)) # 迭代器 '''' 迭代器 ''' list1 = iter(list1) print(next(list1)) # p 142
3.859375
4
nvrtc/enums.py
uchytilc/PyCu
0
12782015
<reponame>uchytilc/PyCu from ctypes import c_int enum = c_int nvrtcResult = enum NVRTC_SUCCESS = nvrtcResult(0) NVRTC_ERROR_OUT_OF_MEMORY = nvrtcResult(1) NVRTC_ERROR_PROGRAM_CREATION_FAILURE = nvrtcResult(2) NVRTC_ERROR_INVALID_INPUT = nvrtcResult(3) NVRTC_ERROR_INVALID_PROGRAM = nvrtcResult(4) NVRTC_ERROR_INVALID_OPTION = nvrtcResult(5) NVRTC_ERROR_COMPILATION = nvrtcResult(6) NVRTC_ERROR_BUILTIN_OPERATION_FAILURE = nvrtcResult(7) NVRTC_ERROR_NO_NAME_EXPRESSIONS_AFTER_COMPILATION = nvrtcResult(8) NVRTC_ERROR_NO_LOWERED_NAMES_BEFORE_COMPILATION = nvrtcResult(9) NVRTC_ERROR_NAME_EXPRESSION_NOT_VALID = nvrtcResult(10) NVRTC_ERROR_INTERNAL_ERROR = nvrtcResult(11)
1.929688
2
pyga/termination_condition/stagnation.py
Eyjafjallajokull/pyga
0
12782016
<gh_stars>0 from .termination_condition import TerminationCondition class Stagnation(TerminationCondition): """ Implements TerminationCondition to terminate evolution when there is no increase of best fitness value. :param max_fitness_age: int number of generations after which to terminate :param use_average: bool when False - measuring best fitness, when False - measuring average population fitness """ def __init__(self, max_fitness_age, use_average=False): self.use_average = use_average self.max_fitness_age = max_fitness_age self.best_fitness = None self.best_fitness_age = None def should_terminate(self, population): """ Executed by EvolutionEngine to determine when to end process. Returns True if evolution process should be terminated. Returns True when populations best fitness did't change for subsequent max_fitness_age generations. Note: this method has internal counter of generations, each function call increases counter by one. :param population: Population :return: boolean """ current_best_fitness = population.get_best().fitness if self.best_fitness is None or self.best_fitness != current_best_fitness: self.best_fitness = current_best_fitness self.best_fitness_age = 1 else: self.best_fitness_age += 1 return self.max_fitness_age <= self.best_fitness_age
3.484375
3
therminator/sensors/pi.py
jparker/therminator_client
0
12782017
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- import logging import re import time def read(file='/sys/class/thermal/thermal_zone0/temp'): """Return the internal temperature. Keyword arguments: file -- path to kernal interface file for internal temperature The default value for file, /sys/class/thermal/thermal_zone0/temp, is a safe bet for a device as simple as a Raspberry Pi. On a device with multiple internal temperature zones, you can consult the type file in the same directory to identify the correct zone. """ logger = logging.getLogger(__name__) logger.debug('Started reading sensor') t1 = time.time() with open(file) as f: temp = float(f.read()) / 1000 t2 = time.time() logger.info('int_temp={:.1f}C'.format(temp)) logger.debug('Finished reading sensor ({:.1f}s)'.format(t2-t1)) return temp if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-F', '--fahrenheit', action='store_const', const=lambda x: '{:.1f}°F'.format(x * 9/5 + 32), default=lambda x: '{:.1f}°C'.format(x), dest='convert', help='Convert results to °F (default: °C)') parser.add_argument('-f', '--file', default='/sys/class/thermal/thermal_zone0/temp', help='Path to kernel interface to CPU temperature' \ ' (default: /sys/class/thermal/thermal_zone0/temp)') args = parser.parse_args() temp = read(args.file) print('temp={}'.format(args.convert(temp)))
3.25
3
helper/main_class.py
AVM-Martin/CTF-EncryptionAlgorithm
0
12782018
class Cryptography(): def __init__(self, key): self.key = key def encrypt(self, text): return text def decrypt(self, text): return text def get_key(self): return self.key
3.125
3
tests/test_twoChoice.py
SebastianAllmeier/rmf_tool
1
12782019
""" Test that computes the refined mean field approximation for the two-choice model (with order 1 and 2 and a few parameter) Compare the computed value with a value already stored in a pickle file """ import pickle import numpy as np from approximately_equal import approximately_equal import os PWD=os.getcwd() if PWD[-5:] == 'tests': CACHE_DIR = 'output_tests' else: CACHE_DIR = 'tests/output_tests' import sys sys.path.append('../') sys.path.append('.') import src.rmf_tool as rmf def dChoiceModel(K, rho, d): ddpp = rmf.DDPP() # The vector 'e(i)' is a vector where the $i$th coordinate is equal to $1$ (the other being equal to $0$) def e(i): l = np.zeros(K) l[i] = 1 return l # We then add the transitions : for i in range(K): if i >= 1: ddpp.add_transition(e(i),eval('lambda x: {}*(x[{}]**{} - x[{}]**{} )'.format(rho, i-1, d, i, d))) if i < K-1: ddpp.add_transition(-e(i),eval('lambda x: (x[{}] - x[{}])'.format(i,i+1) )) ddpp.add_transition(e(0), lambda x : eval('{}*(1-x[0]**{})'.format(rho,d))) ddpp.add_transition(-e(K-1), lambda x : x[K-1]) ddpp.set_initial_state(e(0)) return ddpp def generate_data(): """ Generate all data and store them in a pickle file (to be used one times when the test is initialized) """ data = dict([]) for rho in [0.6, 0.7, 0.8, 0.9]: for d in [2, 3]: for K in [5, 9, 15, 20]: for order in ([1, 2] if K <= 5 else [1]): ddpp = dChoiceModel(K, rho, d) data[(K, rho, d, order)] = ddpp.meanFieldExpansionSteadyState(order=order) with open('{}/d_choice.pickle'.format(CACHE_DIR), 'wb') as f: # Pickle the 'data' dictionary using the highest protocol available. pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) def test_two_choice(): """ Compare the new data with previously computed data. """ with open('{}/d_choice.pickle'.format(CACHE_DIR), 'rb') as f: # The protocol version used is detected automatically, so we do not # have to specify it. data = pickle.load(f) for key in data: (K,rho,d,order) = key print(key) ddpp = dChoiceModel(K, rho, d) new_data = ddpp.meanFieldExpansionSteadyState(order=order) test_data = data[key] assert approximately_equal(new_data, test_data) <= 1e-8 #generate_data() #test_two_choice()
2.84375
3
LanguageConstructs/DataModel/Inheritance/main.py
ha-khan/PythonPractice
0
12782020
# id() # hash() # __mro__ # __basis__ # __name__ # __class__ class Orchestrator: # class attribute; global to instance_counter = 0 def __init__(self, type: str) -> None: # need to use Orchestrator class instance attribute selector # to access class variables, in this scope cls = self.__class__ cls.instance_counter += 1 # instance attribute self.type = type pass def check_state(self): print("checking state ...") print("state check ok.") if not True: raise Exception @classmethod def get_instance_count(cls) -> int: return cls.instance_counter class VMOrchestrator(Orchestrator): """ sub class from base orchestrator to orchestrate resources """ def __init__(self) -> None: """ constructor """ print("init VMOrchestrator") # user super() to access direct parent class object # call its __init__, after this class's __init__ is finished executing # method resolution order (__mro__) super().__init__("VM") def check_state(self): print("checking VM state ...") # return super().check_state() def request_vm(self): try: self.check_state except: print("unable to request vm") def __del__(self): """ destructor """ print("releasing vm") @staticmethod def invoke(*args, **kwargs): for arg in args: print("invoke({})".format(arg)) def main(): # Calls constructor; creates an instance object where we reference it with the label r r = VMOrchestrator() # pointer to object's class object # creates an instance object; not assigned to any label # since no reference will have destructor called r.__class__() # access class method by traversing up method resolution chain of VMOrchestrator class object print(VMOrchestrator.__mro__[1].__dict__['instance_counter']) VMOrchestrator.invoke(1, 2, 3, 4) r.invoke() # Calls direct base class's check_state method r.request_vm() assert VMOrchestrator.__name__ == 'VMOrchestrator' print(VMOrchestrator.get_instance_count()) print(isinstance(r, VMOrchestrator)) print(issubclass(VMOrchestrator, Orchestrator)) # Calls destructor del r if __name__ == '__main__': main()
3.046875
3
selenium_util.py
dertilo/selenium-scraping
0
12782021
import os from selenium import webdriver from selenium.webdriver.common.keys import Keys def build_chrome_driver(download_dir: str, headless=True,window_size=(1920,1080)): os.makedirs(download_dir, exist_ok=True) options = webdriver.ChromeOptions() if headless: options.add_argument("headless") w,h = window_size options.add_argument(f"--window-size={w},{h}") # driver.execute_script("document.body.style.zoom='80 %'") prefs = { "download.default_directory": download_dir, "plugins.always_open_pdf_externally": True, # don't open pdfs in browser but instead download them } options.add_experimental_option("prefs", prefs) driver = webdriver.Chrome( r"/usr/bin/chromedriver", chrome_options=options ) # provide the chromedriver execution path in case of error driver.implicitly_wait(10) # seconds return driver def enter_keyboard_input(wd, xpath: str, value: str, clear_it=False,press_enter=False): # wait = WebDriverWait(wd, 10) # wait.until(EC.presence_of_element_located((By.xpath(value), "content"))) e = wd.find_element_by_xpath(xpath) if clear_it: e.clear() e.send_keys(value) if press_enter: e.send_keys(Keys.ENTER) def click_it(wd, xpath): element = wd.find_element_by_xpath(xpath) element.click()
2.875
3
src/training/models/MainTrainCNN.py
rogov-dvp/medical-imaging-matching
1
12782022
import time import numpy as np from sklearn.model_selection import train_test_split from keras.optimizers import Adam from keras.utils import plot_model from CNNTripletModel import build_network, build_model from BatchBuilder import get_batch_random_demo input_shape = (28, 28, 1) evaluate_every = 5 n_val = 5 batch_size = 20 data = np.load("/Users/niklastecklenburg/Desktop/Test/Data/images.npy") labels = np.load("/Users/niklastecklenburg/Desktop/Test/Data/labels.npy") data_train, data_test, labels_train, labels_test = train_test_split( data, labels, test_size=0.2, random_state=42 ) network = build_network(input_shape, embeddingsize=10) network_train = build_model(input_shape, network) optimizer = Adam(lr=0.00006) network_train.compile(loss=None, optimizer=optimizer) network_train.summary() plot_model( network_train, show_shapes=True, show_layer_names=True, to_file="02 model.png" ) print(network_train.metrics_names) network_train.load_weights("mnist-160k_weights.h5") t_start = time.time() n_iteration = 0 for i in range(30): # triplets = get_batch_hard(200,16,16,network) triplets = get_batch_random_demo(data_train, labels_train, batch_size) loss = network_train.train_on_batch(triplets, None) print(loss) # n_iteration += 1 # if i % evaluate_every == 0: # print("\n ------------- \n") # print("[{3}] Time for {0} iterations: {1:.1f} mins, Train Loss: {2}".format(i, (time.time()-t_start)/60.0,loss,n_iteration)) # probs,yprob = compute_probs(network,test_images[:n_val,:,:,:],y_test_origin[:n_val])
2.625
3
main.py
Dixneuf19/dank-face-bot
0
12782023
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- """Simple Bot to reply to Telegram messages. This program is dedicated to the public domain under the CC0 license. This Bot uses the Updater class to handle the bot. First, a few handler functions are defined. Then, those functions are passed to the Dispatcher and registered at their respective places. Then, the bot is started and runs until we press Ctrl-C on the command line. Usage: Basic Echobot example, repeats messages. Press Ctrl-C on the command line or send a signal to the process to stop the bot. """ import os import time from random import randint import requests from dotenv import load_dotenv from loguru import logger from path import Path from requests.exceptions import HTTPError from telegram import ForceReply, Update from telegram.ext import ( CallbackContext, CommandHandler, Filters, MessageHandler, Updater, ) load_dotenv() TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN") INSULT_JMK_ADDRESS = f'{os.getenv("INSULT_JMK_HOST", default="localhost")}:{os.getenv("INSULT_JMK_PORT", default="80")}' FUZZY_OCTO_DISCO_ADDRESS = f'{os.getenv("FUZZY_OCTO_DISCO_HOST", default="http://localhost")}:{os.getenv("FUZZY_OCTO_DISCO_PORT", default="80")}' FIND_FACES_PIC_FOLDER = os.getenv("DOWNLOAD_FOLDER", default="/tmp/pics") DEFAULT_TIMEOUT = int(os.getenv("DEFAULT_TIMEOUT", default="20")) HONK_FILE_ID = os.getenv( "HONK_FILE_ID", "CQACAgQAAxkBAAICGmHI3e4vqCQLZctOeQsR7iStMr0VAAL9CQACZUZJUr9MlakXmVAzIwQ", ) # Define a few command handlers. These usually take the two arguments bot and # update. Error handlers also receive the raised TelegramError object in error. def start(update: Update, context: CallbackContext): """Send a message when the command /start is issued.""" logger.info("Received /start command from %s" % update.message.from_user.username) update.message.reply_text("Hi!") def help(update: Update, context: CallbackContext): """Send a message when the command /help is issued.""" logger.info("Received /help command from %s" % update.message.from_user.username) update.message.reply_text("DANK FACE BOT") def echo(update: Update, context: CallbackContext): """Echo the user message.""" update.message.reply_text(update.message.text) # def insult_jmk(update: Update, context: CallbackContext, args=[], groups=("",)): # """insult jmk""" # logger.info( # f"Received an insult request from '{update.message.from_user.name}' in chat '{update.message.chat.title}'" # ) # name = groups[0] # if len(args) > 0: # name = args[0] # logger.info("Received /insult command from %s" % update.message.from_user.username) # insult = insult_jmk_client.get_insult(INSULT_JMK_ADDRESS, name) # logger.info("Replied '%s' to '%s'" % (insult, update.message.text)) # update.message.reply_text(insult) def bonne_annee(update: Update, context: CallbackContext): from_user = update.message.from_user.first_name update.message.reply_text( "🎉🎉🎉\nBonne année %s !\n🥂🥂🥂\nDoot doot spam !\n🎊🎊🎊" % from_user ) def honk(update: Update, context: CallbackContext): logger.info( f"Received an honk request from '{update.message.from_user.name}' in chat '{update.message.chat.title}'" ) update.message.reply_audio( audio=HONK_FILE_ID, caption="HONK! HONK! HONK!", ) def dank_face(update: Update, context: CallbackContext): """Send you back your image.""" logger.info( f"Received a image from '{update.message.from_user.name}' in chat '{update.message.chat.title}'" ) try: newPhoto = update.message.photo[-1].get_file() fileName = newPhoto.file_id + ".jpg" filePath = Path(FIND_FACES_PIC_FOLDER) / Path(fileName) newPhoto.download(filePath.abspath()) logger.info("Picture saved at %s" % filePath) try: res = requests.get( f"{FUZZY_OCTO_DISCO_ADDRESS}/faces", params={"pic_path": filePath} ) res.raise_for_status() result = res.json() if result["status"] == "SUCCESS": logger.info("Found %d faces" % result["nbFaces"]) for i in range(int(result["nbFaces"])): try: # TODO: send as an album https://python-telegram-bot.readthedocs.io/en/stable/telegram.bot.html?highlight=album#telegram.Bot.send_media_group update.message.reply_photo( photo=open(result["paths"][i], "rb"), timeout=DEFAULT_TIMEOUT, ) except Exception as error: logger.warning("Failed to send face %d : %s" % (i, error)) pass finally: try: # Remove the file Path(result["paths"][i]).remove_p() except Exception as error: logger.debug("Failed to remove face %d : %s" % (i, error)) pass elif result["status"] in ("NO_FACE_FOUND", "FAILED_ALL_FACES"): dog_number = randint(1, 43) update.message.reply_photo( photo=open(f"./amazon_dogs/{dog_number}.-TTD-c.jpg", "rb"), caption="Sorry, didn't find any faces 😢", timeout=DEFAULT_TIMEOUT, ) else: logger.warning( f"Received {result['status']} from fuzzy-octo-disco: {result['message']}" ) except HTTPError as e: logger.error(e) raise e finally: filePath.remove_p() except Exception as error: logger.error("Error in dank_face: %s" % error) if "Not enough rights to send photos to the chat" in str(error): update.message.reply("Give me right to send photos or kick me!") else: raise error def error_handler(update: object, context: CallbackContext): """Log Errors caused by Updates.""" logger.info("Entered in error function") logger.warning(f"Update {update} caused error {context.error}") def main(): """Start the bot.""" # Create the EventHandler and pass it your bot's token. updater = Updater(TELEGRAM_TOKEN) # Get the dispatcher to register handlers dp = updater.dispatcher # on different commands - answer in Telegram dp.add_handler(CommandHandler("start", start)) dp.add_handler(CommandHandler("help", help)) # dp.add_handler(CommandHandler("insult", insult_jmk, pass_args=True)) dp.add_handler(CommandHandler("honk", honk)) dp.add_handler(MessageHandler(Filters.photo, dank_face)) # dp.add_handler(RegexHandler("(?i)(jmk|jean michel|gaston|jeanmich|jean-mich)", insult_jmk, pass_groups=True)) # on noncommand i.e message - echo the message on Telegram # dp.add_handler(MessageHandler(Filters.text, bonne_annee)) # log all errors dp.add_error_handler(error_handler) # Start the Bot updater.start_polling() # Run the bot until you press Ctrl-C or the process receives SIGINT, # SIGTERM or SIGABRT. This should be used most of the time, since # start_polling() is non-blocking and will stop the bot gracefully. logger.info("Dank Face Bot is launched !") updater.idle() logger.info("Dank Face Bot stopped") if __name__ == "__main__": main()
3.15625
3
students/K33421/Golub_Anna/LR_3/library/library_project/library_app/views.py
aytakr/ITMO_ICT_WebDevelopment_2021-2022
7
12782024
from django.db.models import Sum from .serializers import * from rest_framework.generics import * class BookListAPIView(ListAPIView): serializer_class = BookSerializer queryset = Book.objects.all() class BookCreateAPIView(CreateAPIView): serializer_class = BookSerializer queryset = Book.objects.all() class BookRetrieveUpdateDestroyAPIView(RetrieveUpdateDestroyAPIView): serializer_class = BookSerializer queryset = Book.objects.all() class BookRetrieveAPIView(RetrieveAPIView): serializer_class = BookRetrieveSerializer queryset = Book.objects.all() class ReaderListAPIView(ListAPIView): serializer_class = ReaderSerializer queryset = Reader.objects.all() class ReaderCreateAPIView(CreateAPIView): serializer_class = ReaderSerializer queryset = Reader.objects.all() class ReaderRetrieveUpdateDestroyAPIView(RetrieveUpdateDestroyAPIView): serializer_class = ReaderSerializer queryset = Reader.objects.all() class ReaderRetrieveAPIView(RetrieveAPIView): serializer_class = ReaderRetrieveSerializer queryset = Reader.objects.all()
2.046875
2
src/utils.py
OsciiArt/Freesound-Audio-Tagging-2019
22
12782025
import numpy as np from torch.optim.lr_scheduler import _LRScheduler from torch.utils.data.dataset import Dataset from math import cos, pi import librosa from scipy.io import wavfile import random class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def cycle(iterable): """ convert dataloader to iterator :param iterable: :return: """ while True: for x in iterable: yield x class CosineLR(_LRScheduler): """cosine annealing. """ def __init__(self, optimizer, step_size_min=1e-5, t0=100, tmult=2, curr_epoch=-1, last_epoch=-1): self.step_size_min = step_size_min self.t0 = t0 self.tmult = tmult self.epochs_since_restart = curr_epoch super(CosineLR, self).__init__(optimizer, last_epoch) def get_lr(self): self.epochs_since_restart += 1 if self.epochs_since_restart > self.t0: self.t0 *= self.tmult self.epochs_since_restart = 0 lrs = [self.step_size_min + ( 0.5 * (base_lr - self.step_size_min) * (1 + cos(self.epochs_since_restart * pi / self.t0))) for base_lr in self.base_lrs] return lrs class MelDataset(Dataset): def __init__(self, X, y, crop=-1, mixup=False, freqmask=False, gain=False, crop_mode='original',crop_rate=0.25 ): self.X= X self.y= y self.crop = crop self.mixup = mixup self.freqmask = freqmask self.gain = gain self.crop_mode = crop_mode self.crop_rate = crop_rate def do_additional_crop(self, img): len_img = img.shape[1] img_new = np.zeros([img.shape[0], self.crop], np.float32) rate = np.random.random() * (1 - self.crop_rate) + self.crop_rate if np.random.random() < 0.5: rate = 1 if img.shape[1] <= self.crop: len_crop = int(img.shape[1] * rate) if img.shape[1] - len_crop == 0: shift_crop = 0 else: shift_crop = np.random.randint(0, img.shape[1] - len_crop) img = img[:, shift_crop:shift_crop + len_crop] if self.crop - len_crop == 0: shift = 0 else: shift = np.random.randint(0, self.crop - len_crop) img_new[:, shift:shift + len_crop] = img else: shift = np.random.randint(0, img.shape[1] - self.crop) img_new = img[:, shift:shift + self.crop] len_crop = int(self.crop * rate) if self.crop - len_crop == 0: shift_crop = 0 else: shift_crop = np.random.randint(0, self.crop - len_crop) img_new[:shift_crop] = 0 img_new[shift_crop + len_crop:] = 0 return img_new def do_random_crop(self, img): img_new = np.zeros([img.shape[0], self.crop], np.float32) if img.shape[1] < self.crop: shift = np.random.randint(0, self.crop - img.shape[1]) img_new[:, shift:shift + img.shape[1]] = img elif img.shape[1] == self.crop: img_new = img else: shift = np.random.randint(0, img.shape[1] - self.crop) img_new = img[:, shift:shift + self.crop] return img_new def do_crop(self, img): if self.crop_mode == 'random': return self.do_random_crop(img) elif self.crop_mode == 'additional': return self.do_additional_crop(img) elif self.crop_mode == 'original': return img def do_mixup(self, img, label, alpha=1.): idx = np.random.randint(0, len(self.X)) img2 = np.load("{}.npy".format(self.X[idx][:-4])) img2 = self.do_crop(img2) label2 = self.y[idx].astype(np.float32) rate = np.random.beta(alpha, alpha) img = img * rate + img2 * (1 - rate) label = label * rate + label2 * (1 - rate) return img, label def do_freqmask(self, img, max=32): coord = np.random.randint(0, img.shape[0]) width = np.random.randint(8, max) cut = np.array([coord - width, coord + width]) cut = np.clip(cut, 0, img.shape[0]) img[cut[0]:cut[1]] = 0 return img def do_gain(self, img, max=0.1): rate = 1 - max + np.random.random() * max * 2 return img * rate def __getitem__(self, index): img = np.load("{}.npy".format(self.X[index][:-4])) img = self.do_crop(img) label = self.y[index].astype(np.float32) if self.mixup and np.random.random() < 0.5: img, label = self.do_mixup(img, label) if self.gain and np.random.random() < 0.5: img = self.do_gain(img) if self.freqmask and np.random.random() < 0.5: img = self.do_freqmask(img) img = librosa.power_to_db(img) img = (img - img.mean()) / (img.std() + 1e-7) img = img.reshape([1, img.shape[0], img.shape[1]]) return img, label def __len__(self): return len(self.X) def compute_gain(sound, fs, min_db=-80.0, mode='RMSE'): if fs == 16000: n_fft = 2048 elif fs == 44100: n_fft = 4096 else: raise Exception('Invalid fs {}'.format(fs)) stride = n_fft // 2 gain = [] for i in range(0, len(sound) - n_fft + 1, stride): if mode == 'RMSE': g = np.mean(sound[i: i + n_fft] ** 2) elif mode == 'A_weighting': spec = np.fft.rfft(np.hanning(n_fft + 1)[:-1] * sound[i: i + n_fft]) power_spec = np.abs(spec) ** 2 a_weighted_spec = power_spec * np.power(10, a_weight(fs, n_fft) / 10) g = np.sum(a_weighted_spec) else: raise Exception('Invalid mode {}'.format(mode)) gain.append(g) gain = np.array(gain) gain = np.maximum(gain, np.power(10, min_db / 10)) gain_db = 10 * np.log10(gain) return gain_db def mix(sound1, sound2, r, fs): gain1 = np.max(compute_gain(sound1, fs)) # Decibel gain2 = np.max(compute_gain(sound2, fs)) t = 1.0 / (1 + np.power(10, (gain1 - gain2) / 20.) * (1 - r) / r) sound = ((sound1 * t + sound2 * (1 - t)) / np.sqrt(t ** 2 + (1 - t) ** 2)) sound = sound.astype(np.float32) return sound class WaveDataset(Dataset): def __init__(self, X, y, crop=-1, crop_mode='original', padding=0, mixup=False, scaling=-1, gain=-1, fs=44100, ): self.X = X self.y = y self.crop = crop self.crop_mode = crop_mode self.padding = padding self.mixup = mixup self.scaling = scaling self.gain = gain self.fs = fs def preprocess(self, sound): for f in self.preprocess_funcs: sound = f(sound) return sound def do_padding(self, snd): snd_new = np.pad(snd, self.padding, 'constant') return snd_new def do_crop(self, snd): if self.crop_mode=='random': shift = np.random.randint(0, snd.shape[0] - self.crop) snd_new = snd[shift:shift + self.crop] else: snd_new = snd return snd_new def do_gain(self, snd): snd_new = snd * np.power(10, random.uniform(-self.gain, self.gain) / 20.0) return snd_new def do_scaling(self, snd, interpolate='Nearest'): scale = np.power(self.scaling, random.uniform(-1, 1)) output_size = int(len(snd) * scale) ref = np.arange(output_size) / scale if interpolate == 'Linear': ref1 = ref.astype(np.int32) ref2 = np.minimum(ref1+1, len(snd)-1) r = ref - ref1 snd_new = snd[ref1] * (1-r) + snd[ref2] * r elif interpolate == 'Nearest': snd_new = snd[ref.astype(np.int32)] else: raise Exception('Invalid interpolation mode {}'.format(interpolate)) return snd_new def do_mixup(self, snd, label, alpha=1): idx2 = np.random.randint(0, len(self.X)) _, snd2 = wavfile.read("{}".format(self.X[idx2])) label2 = self.y[idx2].astype(np.float32) if self.scaling!=-1: snd2 = self.do_scaling(snd2) snd2 = self.do_padding(snd2) snd2 = self.do_crop(snd2) rate = np.random.beta(alpha, alpha) snd_new = mix(snd, snd, rate, self.fs) label_new = label * rate + label2 * (1 - rate) return snd_new, label_new def __getitem__(self, index): _, snd = wavfile.read("{}".format(self.X[index])) label = self.y[index].astype(np.float32) if self.scaling!=-1: snd = self.do_scaling(snd) snd = self.do_padding(snd) snd = self.do_crop(snd) if self.mixup: snd, label = self.do_mixup(snd, label) if self.gain!=-1: snd = self.do_gain(snd) snd = snd.reshape([1, 1, -1]).astype(np.float32) / 32768.0 return snd, label def __len__(self): return len(self.X) def _one_sample_positive_class_precisions(scores, truth): """Calculate precisions for each true class for a single sample. Args: scores: np.array of (num_classes,) giving the individual classifier scores. truth: np.array of (num_classes,) bools indicating which classes are true. Returns: pos_class_indices: np.array of indices of the true classes for this sample. pos_class_precisions: np.array of precisions corresponding to each of those classes. """ num_classes = scores.shape[0] pos_class_indices = np.flatnonzero(truth > 0) # Only calculate precisions if there are some true classes. if not len(pos_class_indices): return pos_class_indices, np.zeros(0) # Retrieval list of classes for this sample. retrieved_classes = np.argsort(scores)[::-1] # class_rankings[top_scoring_class_index] == 0 etc. class_rankings = np.zeros(num_classes, dtype=np.int) class_rankings[retrieved_classes] = range(num_classes) # Which of these is a true label? retrieved_class_true = np.zeros(num_classes, dtype=np.bool) retrieved_class_true[class_rankings[pos_class_indices]] = True # Num hits for every truncated retrieval list. retrieved_cumulative_hits = np.cumsum(retrieved_class_true) # Precision of retrieval list truncated at each hit, in order of pos_labels. precision_at_hits = ( retrieved_cumulative_hits[class_rankings[pos_class_indices]] / (1 + class_rankings[pos_class_indices].astype(np.float))) return pos_class_indices, precision_at_hits # All-in-one calculation of per-class lwlrap. def calculate_per_class_lwlrap(truth, scores): """Calculate label-weighted label-ranking average precision. Arguments: truth: np.array of (num_samples, num_classes) giving boolean ground-truth of presence of that class in that sample. scores: np.array of (num_samples, num_classes) giving the classifier-under- test's real-valued score for each class for each sample. Returns: per_class_lwlrap: np.array of (num_classes,) giving the lwlrap for each class. weight_per_class: np.array of (num_classes,) giving the prior of each class within the truth labels. Then the overall unbalanced lwlrap is simply np.sum(per_class_lwlrap * weight_per_class) """ assert truth.shape == scores.shape num_samples, num_classes = scores.shape # Space to store a distinct precision value for each class on each sample. # Only the classes that are true for each sample will be filled in. precisions_for_samples_by_classes = np.zeros((num_samples, num_classes)) for sample_num in range(num_samples): pos_class_indices, precision_at_hits = ( _one_sample_positive_class_precisions(scores[sample_num, :], truth[sample_num, :])) precisions_for_samples_by_classes[sample_num, pos_class_indices] = ( precision_at_hits) labels_per_class = np.sum(truth > 0, axis=0) weight_per_class = labels_per_class / float(np.sum(labels_per_class)) # Form average of each column, i.e. all the precisions assigned to labels in # a particular class. per_class_lwlrap = (np.sum(precisions_for_samples_by_classes, axis=0) / np.maximum(1, labels_per_class)) # overall_lwlrap = simple average of all the actual per-class, per-sample precisions # = np.sum(precisions_for_samples_by_classes) / np.sum(precisions_for_samples_by_classes > 0) # also = weighted mean of per-class lwlraps, weighted by class label prior across samples # = np.sum(per_class_lwlrap * weight_per_class) return per_class_lwlrap, weight_per_class
2.484375
2
python/fleetx/dataset/ctr_data_generator.py
hutuxian/FleetX
170
12782026
<filename>python/fleetx/dataset/ctr_data_generator.py #!/usr/bin/python # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # There are 13 integer features and 26 categorical features import os import paddle import paddle.fluid as fluid import paddle.distributed.fleet as fleet continous_features = range(1, 14) categorial_features = range(14, 40) continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50] def get_dataloader(inputs, train_files_path, sparse_feature_dim, batch_size, shuffle=True): file_list = [ str(train_files_path) + "/%s" % x for x in os.listdir(train_files_path) ] loader = fluid.io.DataLoader.from_generator( feed_list=inputs, capacity=64, use_double_buffer=True, iterable=True) train_generator = CriteoDataset(sparse_feature_dim) reader = train_generator.train(file_list, fleet.worker_num(), fleet.worker_index()) if shuffle: reader = paddle.batch( paddle.reader.shuffle( reader, buf_size=batch_size * 100), batch_size=batch_size) else: reader = paddle.batch(reader, batch_size=batch_size) places = fluid.CPUPlace() loader.set_sample_list_generator(reader, places) return loader class CriteoDataset(object): def __init__(self, sparse_feature_dim): self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.cont_max_ = [ 20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.cont_diff_ = [ 20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.hash_dim_ = sparse_feature_dim # here, training data are lines with line_index < train_idx_ self.train_idx_ = 41256555 self.continuous_range_ = range(1, 14) self.categorical_range_ = range(14, 40) def _reader_creator(self, file_list, is_train, trainer_num, trainer_id): def reader(): for file in file_list: with open(file, 'r') as f: line_idx = 0 for line in f: line_idx += 1 features = line.rstrip('\n').split('\t') dense_feature = [] sparse_feature = [] for idx in self.continuous_range_: if features[idx] == '': dense_feature.append(0.0) else: dense_feature.append( (float(features[idx]) - self.cont_min_[idx - 1]) / self.cont_diff_[idx - 1]) for idx in self.categorical_range_: sparse_feature.append([ hash(str(idx) + features[idx]) % self.hash_dim_ ]) label = [int(features[0])] yield [dense_feature] + sparse_feature + [label] return reader def train(self, file_list, trainer_num, trainer_id): return self._reader_creator(file_list, True, trainer_num, trainer_id) def test(self, file_list): return self._reader_creator(file_list, False, 1, 0)
2.46875
2
tests/helper_test_reload_data.py
rndr/aioimport
0
12782027
data: object = object()
1.1875
1
torchio/transforms/__init__.py
soumickmj/torchio
0
12782028
from .transform import Transform, TypeTransformInput from .spatial_transform import SpatialTransform from .intensity_transform import IntensityTransform from .interpolation import Interpolation, get_sitk_interpolator # Generic from .lambda_transform import Lambda # Augmentation from .augmentation.composition import OneOf from .augmentation.composition import Compose, compose_from_history from .augmentation.spatial import RandomFlip from .augmentation.spatial import RandomAffine from .augmentation.spatial import RandomDownsample from .augmentation.spatial import RandomElasticDeformation from .augmentation.intensity import RandomSwap from .augmentation.intensity import RandomBlur from .augmentation.intensity import RandomNoise from .augmentation.intensity import RandomSpike from .augmentation.intensity import RandomGamma from .augmentation.intensity import RandomMotion from .augmentation.intensity import RandomGhosting from .augmentation.intensity import RandomBiasField from .augmentation.intensity import RandomLabelsToImage # Preprocessing from .preprocessing import Pad from .preprocessing import Crop from .preprocessing import Resample from .preprocessing import ToCanonical from .preprocessing import ZNormalization from .preprocessing import HistogramStandardization from .preprocessing import RescaleIntensity, Rescale from .preprocessing import CropOrPad, CenterCropOrPad from .preprocessing.intensity.histogram_standardization import train as train_histogram __all__ = [ 'Transform', 'TypeTransformInput', 'SpatialTransform', 'IntensityTransform', 'Interpolation', 'get_sitk_interpolator', 'Lambda', 'OneOf', 'Compose', 'compose_from_history', 'RandomFlip', 'RandomAffine', 'RandomDownsample', 'RandomElasticDeformation', 'RandomSwap', 'RandomBlur', 'RandomNoise', 'RandomSpike', 'RandomGamma', 'RandomMotion', 'RandomGhosting', 'RandomBiasField', 'RandomLabelsToImage', 'Pad', 'Crop', 'Resample', 'ToCanonical', 'ZNormalization', 'HistogramStandardization', 'Rescale', 'RescaleIntensity', 'CenterCropOrPad', 'CropOrPad', 'train_histogram', ]
1.53125
2
scripts/gen_noise.py
williamalu/ofdm_mimo_usrp
2
12782029
import numpy as np import matplotlib.pyplot as plt def make_pulses(data, T, pulse): widen = np.zeros(len(data) * T, dtype=np.complex64) for idx, val in enumerate(widen): if idx % T == 0: widen[idx] = data[ idx//T ] return np.array(np.convolve(widen, pulse, 'full'), dtype=np.complex64) def raised_cosine(size, T): W = 1/T pulse = np.zeros(size, dtype=np.complex64) alpha = 0.5 for idx, t in enumerate(range(-size//T, size//T)): val = np.sinc(2*W*t) * ( np.cos( 2*np.pi*alpha*W*t )/( 1 - 16 * (alpha**2) * (W**2) * (t**2)) ) pulse[idx] = t plt.plot(pulse) plt.show() exit() return pulse if __name__ == "__main__": data_path = '../data/' # Gen noise np.random.seed(45) noise_size = 10000 noise1 = np.array(np.random.choice([0.5, -0.5], size=noise_size)) noise2 = np.array(np.random.choice([0.5, -0.5], size=noise_size)) # Make noise into pulses T = 10 pulse = np.ones(10) noise1 = make_pulses(noise1, T, pulse) noise2 = make_pulses(noise2, T, pulse) # Save noise for cross correlation later noise1.tofile(data_path + "noise_1.bin") noise2.tofile(data_path + "noise_2.bin") # Make filler so we can send everything at once zeros_gap = np.zeros(10000) zeros = np.zeros(len(noise1)) # Data for channel 1 channel1 = np.concatenate( [noise1, zeros_gap, zeros] ) channel2 = np.concatenate( [zeros, zeros_gap, noise2] ) channel1 = np.array( channel1, dtype=np.complex64 ) channel2 = np.array( channel2, dtype=np.complex64 ) # Save out data channel1.tofile(data_path + "noise_1_transmit.bin") channel2.tofile(data_path + "noise_2_transmit.bin") # Plot for verification plt.plot(channel1) plt.plot(channel2) plt.show()
2.8125
3
src/geocat/f2py/triple_to_grid_wrapper.py
NCAR/geocat-f2py
4
12782030
<reponame>NCAR/geocat-f2py import warnings import numpy as np import xarray as xr from dask.array.core import map_blocks from .errors import ChunkError, CoordinateError, DimensionError from .fortran import grid2triple as grid2triple_fort from .fortran import triple2grid1 from .missing_values import fort2py_msg, py2fort_msg # Dask Wrappers or Internal Wrappers _<funcname>() # These Wrapper are executed within dask processes, and should do anything that # can benefit from parallel excution. def _grid_to_triple(x, y, z, msg_py): # Transpose z before Fortran function call z = np.transpose(z, axes=(1, 0)) # Handle Python2Fortran missing value conversion z, msg_py, msg_fort = py2fort_msg(z, msg_py=msg_py) # Fortran call # num_elem is the total number of elements from beginning of each column in the array, # which are non missing-value out, num_elem = grid2triple_fort(x, y, z, msg_fort) # Transpose output to correct dimension order before returning it to outer wrapper # As well as get rid of indices corresponding to missing values out = np.asarray(out) out = np.transpose(out, axes=(1, 0)) out = out[:, :num_elem] # Handle Fortran2Python missing value conversion back fort2py_msg(z, msg_fort=msg_fort, msg_py=msg_py) fort2py_msg(out, msg_fort=msg_fort, msg_py=msg_py) return out def _triple_to_grid(data, x_in, y_in, x_out, y_out, shape, method=None, distmx=None, domain=None, msg_py=None): # Handle Python2Fortran missing value conversion data, msg_py, msg_fort = py2fort_msg(data, msg_py=msg_py) # Fortran function call grid = triple2grid1(x_in, y_in, data, x_out, y_out, zmsg=msg_fort, domain=domain, method=method, distmx=distmx) # Reshape output to correct the dimensionality before returning it to the outer wrapper grid = np.asarray(grid) grid = grid.reshape(shape) # Handle Fortran2Python missing value conversion back fort2py_msg(data, msg_fort=msg_fort, msg_py=msg_py) fort2py_msg(grid, msg_fort=msg_fort, msg_py=msg_py) print(grid) return grid # TODO: Revisit for implementing this function after deprecating geocat.ncomp def _triple_to_grid_2d(x_in, y_in, data, x_out, y_out, msg_py): # ''' signature: grid = _triple2grid(x_in, y_in,data,x_out,y_out,msg_py) pass # Outer Wrappers <funcname>() # These Wrappers are excecuted in the __main__ python process, and should be # used for any tasks which would not benefit from parallel execution. def grid_to_triple(data, x_in=None, y_in=None, msg_py=None): """Converts a two-dimensional grid with one-dimensional coordinate variables to an array where each grid value is associated with its coordinates. Parameters ---------- data : :class:`xarray.DataArray` or :class:`numpy.ndarray`: Two-dimensional array of size ny x mx containing the data values. Missing values may be present in `data`, but they are ignored. x_in : :class:`xarray.DataArray` or :class:`numpy.ndarray`: Coordinates associated with the right dimension of the variable `data`. If `data` is of type :class:`xarray.DataArray` and `x_in` is unspecified, then it comes as the associated coordinate of `data` (if `x_in` is explicitly given, then it will be used for calculations). If `data` is of type :class:`numpy.ndarray`, then it must be explicitly given as input and it must have the same dimension (call it `mx`) as the right dimension of `data`. y_in : :class:`xarray.DataArray` or :class:`numpy.ndarray`: Coordinates associated with the left dimension of the variable `data`. If `data` is of type :class:`xarray.DataArray` and `y_in` is unspecified, then it comes as the associated coordinate of `data` (if `y_in` is explicitly given, then it will be used for calculations). If `data` is of type :class:`numpy.ndarray`, then it must be explicitly given as input and it must have the same dimension (call it `ny`) as the left dimension of `data`. msg_py : :obj:`numpy.number`: A numpy scalar value that represent a missing value in `data`. This argument allows a user to use a missing value scheme other than NaN or masked arrays, similar to what NCL allows. Returns ------- out : :class:`xarray.DataArray`: The maximum size of the returned array will be 3 x ld, where ld <= ny x mx. If no missing values are encountered in `data`, then ld = ny x mx. If missing values are encountered in `data`, they are not returned and hence ld will be equal to ny x mx minus the number of missing values found in `data`. The return array will be double if any of the input arrays are double, and float otherwise. Examples -------- Example 1: Using grid_to_triple with :class:`xarray.DataArray` input .. code-block:: python import numpy as np import xarray as xr import geocat.comp # Open a netCDF data file using xarray default engine and load the data stream ds = xr.open_dataset("./NETCDF_FILE.nc") # [INPUT] Grid & data info on the source curvilinear data = ds.DIST_236_CBL[:] x_in = ds.gridlat_236[:] y_in = ds.gridlon_236[:] output = geocat.comp.grid_to_triple(data, x_in, y_in) """ # TODO: Will need to be revisited after sanity_check work is finished # ''' Start of boilerplate if not isinstance(data, xr.DataArray): if (x_in is None) | (y_in is None): raise CoordinateError( "ERROR grid_to_triple: Argument `x_in` and `y_in` must be provided explicitly " "unless `data` is an xarray.DataArray.") data = xr.DataArray(data) data = xr.DataArray( data.data, coords={ data.dims[-1]: x_in, data.dims[-2]: y_in, }, dims=data.dims, ) if (x_in is None): x_in = data.coords[data.dims[-1]] if (y_in is None): y_in = data.coords[data.dims[-2]] # Basic sanity checks if data.ndim != 2: raise DimensionError( "ERROR grid_to_triple: `z` must have two dimensions !\n") if x_in.ndim != 1: raise DimensionError( "ERROR grid_to_triple: `x_in` must have one dimension !\n") elif x_in.shape[0] != data.shape[1]: raise DimensionError( "ERROR grid_to_triple: `x_in` must have the same size (call it `mx`) as the " "right dimension of z. !\n") if y_in.ndim != 1: raise DimensionError( "ERROR grid_to_triple: `y_in` must have one dimension !\n") elif y_in.shape[0] != data.shape[0]: raise DimensionError( "ERROR grid_to_triple: `y_in` must have the same size (call it `ny`) as the left dimension of z. !\n" ) # ''' end of boilerplate out = _grid_to_triple(x_in.data, y_in.data, data.data, msg_py) out = xr.DataArray(out, attrs=data.attrs) return out def triple_to_grid(data, x_in, y_in, x_out, y_out, method=1, domain=float(1.0), distmx=None, missing_value=np.nan, meta=False): """Places unstructured (randomly-spaced) data onto the nearest locations of a rectilinear grid. Parameters ---------- data : :class:`xarray.DataArray`: or :class:`numpy.ndarray`: A multi-dimensional array, whose rightmost dimension is the same length as `x_in` and `y_in`, containing the values associated with the "x" and "y" coordinates. Missing values may be present but will be ignored. x_in : :class:`xarray.DataArray`: or :class:`numpy.ndarray`: One-dimensional arrays of the same length containing the coordinates associated with the data values. For geophysical variables, "x" correspond to longitude. y_in : :class:`xarray.DataArray`: or :class:`numpy.ndarray`: One-dimensional arrays of the same length containing the coordinates associated with the data values. For geophysical variables, "y" correspond to latitude. x_out : :class:`xarray.DataArray`: or :class:`numpy.ndarray`: A one-dimensional array of length M containing the "x" coordinates associated with the returned two-grid. For geophysical variables, these are longitudes. The coordinates' values must be monotonically increasing. y_out : :class:`xarray.DataArray`: or :class:`numpy.ndarray`: A one-dimensional array of length N containing the "y" coordinates associated with the returned grid. For geophysical ~variables, these are latitudes. The coordinates' values must be monotonically increasing. Optional Parameters ------------------- method : An integer value that can be 0 or 1. The default value is 1. A value of 1 means to use the great circle distance formula for distance calculations. Warning: `method` = 0, together with `domain` = 1.0, could result in many of the target grid points to be set to the missing value if the number of grid points is large (ie: a high resolution grid) and the number of observations relatively small. domain : A float value that should be set to a value >= 0. The default value is 1.0. If present, the larger this factor, the wider the spatial domain allowed to influence grid boundary points. Typically, `domain` is 1.0 or 2.0. If `domain` <= 0.0, then values located outside the grid domain specified by `x_out` and `y_out` arguments will not be used. distmx : Setting `distmx` allows the user to specify a search radius (km) beyond which observations are not considered for nearest neighbor. Only applicable when `method` = 1. The default `distmx`=1e20 (km) means that every grid point will have a nearest neighbor. It is suggested that users specify a reasonable value for `distmx`. missing_value : :obj:`numpy.number`: A numpy scalar value that represent a missing value in `data`. The default value is `np.nan`. If specified explicitly, this argument allows the user to use a missing value scheme other than NaN or masked arrays. meta : :obj:`bool`: If set to True and the input array is an Xarray, the metadata from the input array will be copied to the output array; default is False. Warning: This option is not yet supported for this function. Returns ------- grid : :class:`xarray.DataArray`: The returned array will be K x N x M, where K represents the leftmost dimensions of `data`, N represent the size of `y_out`, and M represent the size of `x_out` coordinate vectors. It will be of type double if any of the input is double, and float otherwise. Description ----------- This function puts unstructured data (randomly-spaced) onto the nearest locations of a rectilinear grid. A default value of `domain` option is now set to 1.0 instead of 0.0. This function does not perform interpolation; rather, each individual data point is assigned to the nearest grid point. It is possible that upon return, grid will contain grid points set to missing value if no `x_in(n)`, `y_in(n)` are nearby. Examples -------- Example 1: Using triple_to_grid with :class:`xarray.DataArray` input .. code-block:: python import numpy as np import xarray as xr import geocat.comp # Open a netCDF data file using xarray default engine and load the data stream ds = xr.open_dataset("./ruc.nc") # [INPUT] Grid & data info on the source curvilinear data = ds.DIST_236_CBL[:] x_in = ds.gridlat_236[:] y_in = ds.gridlon_236[:] x_out = ds.gridlat_236[:] y_out = ds.gridlon_236[:] # [OUTPUT] Grid on destination points grid (or read the 1D lat and lon from # an other .nc file. newlat1D_points=np.linspace(lat2D_curv.min(), lat2D_curv.max(), 100) newlon1D_points=np.linspace(lon2D_curv.min(), lon2D_curv.max(), 100) output = geocat.comp.triple_to_grid(data, x_out, y_out, x_in, y_in) """ # TODO: May need to be revisited after sanity_check work is finished if (x_in is None) | (y_in is None): raise CoordinateError( "ERROR triple_to_grid: Arguments x_in and y_in must always be explicitly provided" ) # ''' Start of boilerplate # If a Numpy input is given, convert it to Xarray and chunk it just with its dims if not isinstance(data, xr.DataArray): data = xr.DataArray(data) data_chunk = dict([ (k, v) for (k, v) in zip(list(data.dims), list(data.shape)) ]) data = xr.DataArray( data.data, # coords={ # data.dims[-1]: x_in, # data.dims[-2]: y_in, # }, dims=data.dims, # Comment ).chunk(data_chunk) else: # If an unchunked Xarray input is given, chunk it just with its dims if (data.chunks is None): data_chunk = dict([ (k, v) for (k, v) in zip(list(data.dims), list(data.shape)) ]) data = data.chunk(data_chunk) # Ensure the rightmost dimension of input is not chunked elif list(data.chunks)[-1:] != [x_in.shape]: raise ChunkError( "ERROR triple_to_grid: Data must be unchunked along the rightmost two dimensions" ) # x_in = data.coords[data.dims[-1]] # y_in = data.coords[data.dims[-2]] # Basic sanity checks if x_in.shape[0] != y_in.shape[0] or x_in.shape[0] != data.shape[data.ndim - 1]: raise DimensionError( "ERROR triple_to_grid: The length of `x_in` and `y_in` must be the same " "as the rightmost dimension of `data` !") if x_in.ndim > 1 or y_in.ndim > 1: raise DimensionError( "ERROR triple_to_grid: `x_in` and `y_in` arguments must be one-dimensional arrays !\n" ) if x_out.ndim > 1 or y_out.ndim > 1: raise DimensionError( "ERROR triple_to_grid: `x_out` and `y_out` arguments must be one-dimensional array !\n" ) if not isinstance(method, int): raise TypeError( 'ERROR triple_to_grid: `method` arg must be an integer. Set it to either 1 or 0.' ) if (method != 0) and (method != 1): raise TypeError( 'ERROR triple_to_grid: `method` arg accepts either 0 or 1.') # `distmx` is only applicable when `method`==1 if method: if np.asarray(distmx).size != 1: raise ValueError( "ERROR triple_to_grid: Provide a scalar value for `distmx` !") else: if distmx is not None: raise ValueError( "ERROR triple_to_grid: `distmx` is only applicable when `method`==1 !" ) if np.asarray(domain).size != 1: raise ValueError( "ERROR triple_to_grid: Provide a scalar value for `domain` !") # `data` data structure elements and autochunking data_chunks = list(data.dims) data_chunks[:-1] = [ (k, 1) for (k, v) in zip(list(data.dims)[:-1], list(data.chunks)[:-1]) ] data_chunks[-1:] = [ (k, v[0]) for (k, v) in zip(list(data.dims)[-1:], list(data.chunks)[-1:]) ] data_chunks = dict(data_chunks) data = data.chunk(data_chunks) # grid datastructure elements grid_chunks = list(data.chunks) grid_chunks[-1] = (y_out.shape[0] * x_out.shape[0],) grid_chunks = tuple(grid_chunks) dask_grid_shape = tuple(a[0] for a in list(grid_chunks)) grid_coords = {k: v for (k, v) in data.coords.items()} grid_coords[data.dims[-1]] = x_out grid_coords[data.dims[-2]] = y_out # ''' end of boilerplate grid = map_blocks( _triple_to_grid, data.data, x_in, y_in, x_out, y_out, dask_grid_shape, method=method, distmx=distmx, domain=domain, msg_py=missing_value, chunks=grid_chunks, dtype=data.dtype, drop_axis=[data.ndim - 1], new_axis=[data.ndim - 1], ) # Reshape grid to its final shape grid_shape = (data.shape[:-1] + (y_out.shape[0],) + (x_out.shape[0],)) grid = grid.reshape(grid_shape) if meta: # grid = xr.DataArray(grid.compute(), attrs=data.attrs, dims=data.dims, coords=grid_coords) import warnings warnings.warn( "WARNING triple_to_grid: Retention of metadata is not yet supported; " "it will thus be ignored in the output!") # else: # grid = xr.DataArray(grid.compute(), coords=grid_coords) grid = xr.DataArray(grid.compute()) return grid # TODO: Revisit for implementing this function after deprecating geocat.ncomp def triple_to_grid_2d(x_in, y_in, data, x_out, y_out, msg_py): # ''' signature: grid = triple2grid2d(x,y,data,x_out,y_out,msg_py) pass # Transparent wrappers for geocat.ncomp backwards compatibility def grid2triple(x_in, y_in, data, msg_py): warnings.warn( "grid2triple function name and signature will be deprecated soon " "in a future version. Use `grid_to_triple` instead!", PendingDeprecationWarning) return grid_to_triple(data, x_in, y_in, msg_py) def triple2grid(x_in, y_in, data, x_out, y_out, **kwargs): warnings.warn( "triple2grid function name and signature will be deprecated soon " "in a future version. Use `triple_to_grid` instead!", PendingDeprecationWarning) return triple_to_grid(data, x_in, y_in, x_out, y_out, **kwargs)
2.265625
2
sge/utils.py
wookayin/subtask-graph-execution-light
3
12782031
<filename>sge/utils.py from enum import Enum import numpy as np class KEY(Enum): UP = 0, DOWN = 1, LEFT = 2, RIGHT = 3, PICKUP = 4, TRANSFORM = 5, USE_1 = 5, USE_2 = 6, USE_3 = 7, USE_4 = 8, USE_5 = 9, QUIT = 'q' WHITE = (255, 255, 255) LIGHT = (196, 196, 196) GREEN = (80, 160, 0) DARK = (128, 128, 128) DARK_RED = (139, 0, 0) BLACK = (0, 0, 0) MOVE_ACTS = {KEY.UP, KEY.DOWN, KEY.LEFT, KEY.RIGHT} EMPTY = -1 AGENT = 0 BLOCK = 1 WATER = 2 OBJ_BIAS = 3 TYPE_PICKUP = 0 TYPE_TRANSFORM = 1 def get_id_from_ind_multihot(indexed_tensor, mapping, max_dim): if type(mapping) == dict: mapping_ = np.zeros(max(mapping.keys())+1, dtype=np.long) for k, v in mapping.items(): mapping_[k] = v mapping = mapping_ if indexed_tensor.ndim == 2: nbatch = indexed_tensor.shape[0] out = np.zeros(nbatch, max_dim).astype(np.byte) np.add.at(out, mapping.ravel(), indexed_tensor.ravel()) else: out = np.zeros(max_dim).astype(np.byte) np.add.at(out, mapping.ravel(), indexed_tensor.ravel()) return out
2.359375
2
tethysapp/parleys_creek_management/controllers/results.py
CI-WATER/tethysapp-parleys_creek_management
0
12782032
from django.shortcuts import render from ..model import SessionMaker, ManagementScenario from ..model import (LITTLE_DELL_VOLUME, LITTLE_DELL_RELEASE, LITTLE_DELL_SPILL, MOUNTAIN_DELL_VOLUME, MOUNTAIN_DELL_RELEASE, MOUNTAIN_DELL_SPILL, DELL_CREEK_INFLOW, LAMBS_CREEK_INFLOW, RELIABILITY) def view(request, scenario_id, plot_name): """ Default action for results controller """ session = SessionMaker() scenario = session.query(ManagementScenario.name, ManagementScenario.results_link, ManagementScenario.reliability). \ filter(ManagementScenario.id == scenario_id). \ one() # Access Plot data data_source = ManagementScenario.get_results_dataset(scenario_id, plot_name) # Other data for template scenario_name = scenario.name results_link = scenario.results_link reliability = scenario.reliability # Plot vars plot_title = data_source['title'] plot_subtitle = data_source['subtitle'] y_axis_title = data_source['y_axis_title'] y_axis_units = data_source['y_axis_units'] series_data = data_source['series'] # Setup plot highcharts_object = { 'chart': { 'type': 'line', 'zoomType': 'x' }, 'title': { 'text': plot_title }, 'subtitle': { 'text': plot_subtitle }, 'legend': { 'enabled': False, 'layout': 'vertical', 'align': 'right', 'verticalAlign': 'middle', 'borderWidth': 0 }, 'xAxis': { 'title': { 'enabled': False }, 'type': 'datetime', 'maxZoom': 30 * 24 * 3600000, # 30 days in milliseconds }, 'yAxis': { 'title': { 'text': y_axis_title + ' (' + y_axis_units + ')' } }, 'tooltip': { 'pointFormat': '{point.y} ' + y_axis_units }, 'series': [{'color': '#0066ff', 'marker': {'enabled': False}, 'data': series_data} ] } timeseries = {'highcharts_object': highcharts_object, 'width': '100%', 'height': '500px'} # Template context type(scenario_id) context = {'scenario_id': str(scenario_id), 'plot_name': plot_name, 'scenario_name': scenario_name, 'results_link': results_link, 'reliability': round(reliability, 2), 'LITTLE_DELL_VOLUME': LITTLE_DELL_VOLUME, 'LITTLE_DELL_RELEASE': LITTLE_DELL_RELEASE, 'LITTLE_DELL_SPILL': LITTLE_DELL_SPILL, 'MOUNTAIN_DELL_VOLUME': MOUNTAIN_DELL_VOLUME, 'MOUNTAIN_DELL_RELEASE': MOUNTAIN_DELL_RELEASE, 'MOUNTAIN_DELL_SPILL': MOUNTAIN_DELL_SPILL, 'DELL_CREEK_INFLOW': DELL_CREEK_INFLOW, 'LAMBS_CREEK_INFLOW': LAMBS_CREEK_INFLOW, 'RELIABILITY': RELIABILITY, 'timeseries': timeseries} session.close() return render(request, 'parleys_creek_management/results/results_viewer.html', context)
1.960938
2
theory/Lesson6-Dictionaries/code/dictionary_final.py
dgrafov/redi-python-intro
8
12782033
<gh_stars>1-10 # Lesson6: Dictionaries # source: code/dictionary_modify.py grades = {} finish = 'no' while finish != 'yes': action = int(input('Please type "1" for reading the data and "2" for modifying:\n')) if action == 1: subject = input('Please enter the name of a subject:\n') if subject in grades: print('The grade is:', grades[subject]) else: print('No such subject') elif action == 2: subject = input('Please enter the name of a subject:\n') grade = int(input('Please enter the grade:\n')) grades[subject] = grade for key in grades: print(key, ':', grades[key]) else: print('Wrong input') finish = input('Do you want to quit the program? (type "yes" or "no"):\n').lower()
4.15625
4
solutions/problem_108.py
ksvr444/daily-coding-problem
1,921
12782034
def can_shift(target, string): return \ target and string and \ len(target) == len(string) and \ string in target * 2 assert can_shift("abcde", "cdeab") assert not can_shift("abc", "acb")
2.84375
3
foo_003_fews_new_food_insecurity/contents/src/__init__.py
bapludow/nrt-scripts
0
12782035
<filename>foo_003_fews_new_food_insecurity/contents/src/__init__.py from __future__ import unicode_literals import os import logging import sys import urllib import zipfile from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta import requests as req import fiona from collections import OrderedDict from shapely.geometry import mapping, Polygon, MultiPolygon import cartosql from src.update_layers import update_layers # Constants DATA_DIR = 'data' SOURCE_URL = 'http://shapefiles.fews.net.s3.amazonaws.com/HFIC/{region}/{target_file}' REGIONS = {'WA':'west-africa{date}.zip', 'CA':'central-asia{date}.zip', 'EA':'east-africa{date}.zip', 'LAC':'caribbean-central-america{date}.zip', 'SA':'southern-africa{date}.zip'} TIMESTEP = {'days': 30} DATE_FORMAT = '%Y%m' DATETIME_FORMAT = '%Y%m%dT00:00:00Z' CLEAR_TABLE_FIRST = False SIMPLIFICATION_TOLERANCE = .04 PRESERVE_TOPOLOGY = True # asserting table structure rather than reading from input CARTO_TABLE = 'foo_003_fews_net_food_insecurity' CARTO_SCHEMA = OrderedDict([ ('the_geom', 'geometry'), ('_uid', 'text'), ('start_date', 'timestamp'), ('end_date', 'timestamp'), ('ifc_type', 'text'), ('ifc', 'numeric') ]) TIME_FIELD = 'start_date' UID_FIELD = '_uid' LOG_LEVEL = logging.INFO MAXROWS = 10000 MAXAGE = datetime.today() - timedelta(days=365*3) # Generate UID def genUID(date, region, ifc_type, pos_in_shp): '''ifc_type can be: CS = "current status", ML1 = "most likely status in next four months" ML2 = "most likely status in following four months" ''' return str('{}_{}_{}_{}'.format(date,region,ifc_type,pos_in_shp)) def getDate(uid): '''first component of ID''' return uid.split('_')[0] def formatStartAndEndDates(date, plus=0): dt = datetime.strptime(date, DATE_FORMAT) + relativedelta(months=plus) return(dt.strftime(DATETIME_FORMAT)) def findShps(zfile): files = {} with zipfile.ZipFile(zfile) as z: for f in z.namelist(): if os.path.splitext(f)[1] == '.shp': if 'CS' in f: files['CS'] = f elif 'ML1' in f: files['ML1'] = f elif 'ML2' in f: files['ML2'] = f if len(files)!=3: logging.error('There should be 3 shapefiles: CS, ML1, ML2') return files def potentialNewDates(exclude_dates): '''Get new dates excluding existing''' new_dates = [] date = datetime.today() while date > MAXAGE: datestr = date.strftime(DATE_FORMAT) if datestr not in exclude_dates: logging.debug('Will fetch data for {}'.format(datestr)) new_dates.append(datestr) else: logging.debug('Data for {} already in table'.format(datestr)) date -= timedelta(**TIMESTEP) return new_dates def simpleGeom(geom): # Simplify complex polygons # https://gis.stackexchange.com/questions/83084/shapely-multipolygon-construction-will-not-accept-the-entire-set-of-polygons if geom['type'] == 'MultiPolygon': multi = [] for polycoords in geom['coordinates']: multi.append(Polygon(polycoords[0])) geo = MultiPolygon(multi) else: geo = Polygon(geom['coordinates'][0]) logging.debug('Length orig WKT: {}'.format(len(geo.wkt))) simple_geo = geo.simplify(SIMPLIFICATION_TOLERANCE, PRESERVE_TOPOLOGY) logging.debug('Length simple WKT: {}'.format(len(simple_geo.wkt))) geojson = mapping(simple_geo) return geojson def processNewData(exclude_dates): new_ids = [] # get non-existing dates new_dates = potentialNewDates(exclude_dates) for date in new_dates: # 1. Fetch data from source for region, filename in REGIONS.items(): _file = filename.format(date=date) url = SOURCE_URL.format(region=region,target_file=_file) tmpfile = os.path.join(DATA_DIR,_file) logging.info('Fetching data for {} in {}'.format(region,date)) try: urllib.request.urlretrieve(url, tmpfile) except Exception as e: logging.warning('Could not retrieve {}'.format(url)) logging.error(e) continue # 2. Parse fetched data and generate unique ids logging.info('Parsing data') shpfiles = findShps(tmpfile) for ifc_type, shpfile in shpfiles.items(): shpfile = '/{}'.format(shpfile) zfile = 'zip://{}'.format(tmpfile) rows = [] if ifc_type == 'CS': start_date = formatStartAndEndDates(date) end_date = formatStartAndEndDates(date) elif ifc_type == 'ML1': start_date = formatStartAndEndDates(date) end_date = formatStartAndEndDates(date,plus=4) elif ifc_type == 'ML2': start_date = formatStartAndEndDates(date,plus=4) end_date = formatStartAndEndDates(date,plus=8) with fiona.open(shpfile, 'r', vfs=zfile) as shp: logging.debug('Schema: {}'.format(shp.schema)) pos_in_shp = 0 for obs in shp: uid = genUID(date, region, ifc_type, pos_in_shp) ### Received an error due to attempting to load same UID twice. # If happens again, to reproduce, set CLEAR_TABLE_FIRST=True and run again. new_ids.append(uid) row = [] for field in CARTO_SCHEMA.keys(): if field == 'the_geom': row.append(simpleGeom(obs['geometry'])) elif field == UID_FIELD: row.append(uid) elif field == 'ifc_type': row.append(ifc_type) elif field == 'ifc': row.append(obs['properties'][ifc_type]) elif field == 'start_date': row.append(start_date) elif field == 'end_date': row.append(end_date) rows.append(row) pos_in_shp += 1 # 3. Insert new observations new_count = len(rows) if new_count: logging.info('Pushing {} new rows: {} for {} in {}'.format(new_count,ifc_type,region,date)) cartosql.insertRows(CARTO_TABLE, CARTO_SCHEMA.keys(), CARTO_SCHEMA.values(), rows) # 4. Delete local files os.remove(tmpfile) num_new = len(new_ids) return num_new ############################################################## # General logic for Carto # should be the same for most tabular datasets ############################################################## def createTableWithIndices(table, schema, idField, timeField): '''Get existing ids or create table''' cartosql.createTable(table, schema) cartosql.createIndex(table, idField, unique=True) if timeField != idField: cartosql.createIndex(table, timeField, unique=False) def getFieldAsList(table, field, orderBy=''): assert isinstance(field, str), 'Field must be a single string' r = cartosql.getFields(field, table, order='{}'.format(orderBy), f='csv') return(r.text.split('\r\n')[1:-1]) def deleteExcessRows(table, max_rows, time_field, max_age=''): '''Delete excess rows by age or count''' num_dropped = 0 if isinstance(max_age, datetime): max_age = max_age.isoformat() # 1. delete by age if max_age: r = cartosql.deleteRows(table, "{} < '{}'".format(time_field, max_age)) num_dropped = r.json()['total_rows'] # 2. get sorted ids (old->new) ids = getFieldAsList(CARTO_TABLE, 'cartodb_id', orderBy=''.format(TIME_FIELD)) # 3. delete excess if len(ids) > max_rows: r = cartosql.deleteRowsByIDs(table, ids[:-max_rows]) num_dropped += r.json()['total_rows'] if num_dropped: logging.info('Dropped {} old rows from {}'.format(num_dropped, table)) def main(): logging.basicConfig(stream=sys.stderr, level=LOG_LEVEL) logging.info('STARTING') if CLEAR_TABLE_FIRST: if cartosql.tableExists(CARTO_TABLE): logging.info("Clearing table") cartosql.dropTable(CARTO_TABLE) # 1. Check if table exists and create table existing_ids = [] if cartosql.tableExists(CARTO_TABLE): existing_ids = getFieldAsList(CARTO_TABLE, UID_FIELD) else: createTableWithIndices(CARTO_TABLE, CARTO_SCHEMA, UID_FIELD, TIME_FIELD) # 2. Iterively fetch, parse and post new data existing_dates = [getDate(_id) for _id in existing_ids] num_new = processNewData(existing_dates) existing_count = num_new + len(existing_dates) logging.info('Total rows: {}, New: {}, Max: {}'.format( existing_count, num_new, MAXROWS)) # 3. Remove old observations deleteExcessRows(CARTO_TABLE, MAXROWS, TIME_FIELD, MAXAGE) # 4. Update layer definitions update_layers() ### logging.info('SUCCESS')
2.0625
2
Diena_6_lists/lists_g1.py
ValdisG31/Python_RTU_08_20
1
12782036
<reponame>ValdisG31/Python_RTU_08_20 # # What is a list after all? # # * ordered # # * collection of arbitrary objects (anything goes in) # # * nested (onion principle, Matroyshka) # # * mutable - maināmas vērtības # # * dynamic - size can change my_list = [5, 6, "Valdis", True, 3.65, "alus"] # most common way of creating a list using [el1, el2] print(my_list) print(my_list[0]) my_list[1] = "Mr. 50" # lists are mutable (unlike strings) print(my_list[:3]) print(my_list[-2:]) # last two print(my_list[1:4], my_list[1:-1]) print(my_list[::2]) print(my_list[1::2]) print(my_list[-1]) # how to check for existance in list print(3.65 in my_list) print(66 in my_list) print("Valdis" in my_list) print("al" in my_list) # this is false # # # iterate over items needle = "al" # what we want to find in our list for item in my_list: print("Checking ", item) if type(item) == str and needle in item: print(f"Found {needle=} in {item=}") # python 3.8 and up print(f"Found {needle} in {item}") # for python 3.7 # # # # my_list.append() my_list.append("<NAME>") my_list.append("<NAME>") # IN PLACE methods, means we modify the list print(my_list) # example how to filter something find_list = [] # so we have an empty list in beginning needle = "al" for item in my_list: # if needle in item: will not work because we have non strings in list if type(item) == str and needle in item: print(f"Found {needle=} in {item=}") find_list.append(item) print(f"{needle=} found in {find_list=}") # # ps the above could be done simpler with list comprehension # # # out of place meaning find_list stays the same new_list = my_list + ["Kalējs", "Audējs"] # out of place addition, my_list is not modified print(len(new_list), len(my_list)) # print(f"{str(my_list)}") # how to convert all values to str str_list = [] for item in my_list: str_list.append(str(item)) # so if item is already string nothing will happen print(str_list) # # list comprehensions make it even short str_list_2 = [str(item) for item in my_list] print(str_list_2) print(str_list == str_list_2) # check if lists containe equal values print(str_list is str_list_2) # check if our variables reference the same list str_list_3 = str_list # so str_list_3 is a shortcut to same values as print(str_list == str_list_3, str_list is str_list_3) # # need needle of course beer_list = [item for item in str_list if needle in item] print(beer_list) beer_list = beer_list[1:] #get rid of Valdis in my beer list print(beer_list) beer_list += ["Užavas alus"] # we create a list on demand - list literal beer_list = beer_list + ["Užavas alus"] # similar to beer_list.append("Užavas alus") print(beer_list) # # new_list += ["Malējs"] # same as new_list = new_list + ["Malējs"] # # new_list print(beer_list[-1]) print(beer_list) last_beer = beer_list.pop() # also in place meaning i destroyed the last value print(f"We took out {last_beer}") print(beer_list) beer_list.append(last_beer) print(beer_list) print(beer_list.count("alus")) # only exact matches print(beer_list.index("alus"), beer_list.index("Užavas alus")) beer_list.extend(["Labietis", "Mālpils alus"]) # again in place print(beer_list) has_alus = len([el for el in beer_list if "ž" in el]) print(has_alus) has_alus = len([el for el in beer_list if "alus" in el]) print(has_alus) beer_list.insert(2, "Cēsu sula") # so it will insert BEFORE index 2 (meaning before 3rd element) beer_list.insert(5, "Cēsu sula") print(beer_list) while "Cēsu sula" in beer_list: print("found Cēsu sula") beer_list.remove("Cēsu sula") print(beer_list) # beer_list.remove("Cēsu sula") # again in place first match # print(beer_list) # beer_list.remove("alus") # print(beer_list) # beer_list.remove("alus") # print(beer_list) beer_list.reverse() # in place reversal print(beer_list) new_beer_list = beer_list[::-1] # so i save the reversed list but keep the original print(new_beer_list) # # so if we have comparable data types inside (so same types) new_beer_list.sort() # in place sort, modifies existing print(new_beer_list) sorted_by_len = sorted(new_beer_list, key=len) # out of place meaning returns new list print(sorted_by_len) sorted_by_len_rev = sorted(new_beer_list, key=len, reverse=True) # out of place meaning returns new list print(sorted_by_len_rev) print(max(beer_list), min(beer_list)) # by alphabet numbers = [1, 4, -5, 3.16, 10, 9000, 5] saved_sort_asc = sorted(numbers) # out of place does not modify numbers print(saved_sort_asc) # # sorted(numbers, reverse=True) # out of place does not modify numbers # # numbers # # numbers.sort() # in place meaning it modifies the numbers # # numbers # # numbers.remove(9000) # will remove in place first 9000 found in the list # # numbers # # min(numbers), max(numbers) # print(sum(numbers)) # # our own sum # total = 0 # for n in numbers: # total += n # print(total) sentence = "Quick brown fox jumped over a sleeping dog" words = sentence.split() # default split is by whitespace convert into a list of words print(words) words[2] = "bear" print(words) # # so str(words) will not work exactly so we need something else new_sentence = " ".join(words) # we will lose any double or triple whitespace print(new_sentence) funky_sentence = "*:*".join(words) # we will lose any double or triple whitespace print(funky_sentence) # # we can create a list of letters # food = "kartupelis" # letters = list(food) # list with all letters # print(letters) # letters[5] = "m" # new_word = "".join(letters) # we join by nothing so no spaces in the new word # print(new_word) # new_list = [] # for word in words: # new_list.append(word.capitalize()) # print(new_list) # # # list comprehension same as above # new_list_2 = [w.capitalize() for w in words] # print(new_list_2) # filtered_list = [w for w in words if w.startswith("b")] # print(filtered_list) # filtered_list = [w.upper() for w in words if w.startswith("b")] # print(filtered_list) # # filtered_list_2 = [w for w in words if w[0] == "b"] # # filtered_list_2 # # filtered_list_3 = [w.upper() for w in words if w[0] == "b"] # # filtered_list_3 # numbers = list(range(10)) # we cast to list our range object # print(numbers) # squares = [] # for n in numbers: # could also use range(10) # squares.append(n*n) # print(squares) # squares_2 = [n*n for n in range(10)] # list comprehension of the above # print(squares_2) # even_squares = [n*n for n in range(10) if n % 2 == 0] # print(even_squares) # print("Whew we need a beer now don't we ?") # # food # # char_codes = [ord(c) for c in food] # # char_codes # # char_codes_list = [[f"Char:{c}", ord(c)] for c in food] # # char_codes_list # # print(char_codes_list[0]) # # print(char_codes_list[0][0]) # # print(char_codes_list[-1]) # # print(char_codes_list[-1][-1])
4.5625
5
2_Bim/aula.py
eucgabriel/Faculdade-2--Semestre
1
12782037
<filename>2_Bim/aula.py class Animais: def __init__(self, nome=None, cobertura=None, raca=None): self.nome = nome self.cobertura = cobertura self.raca = raca def dar_nome(self, nome=None): self.nome = nome class Cachorros(Animais): def trocar(self, cobertura=None, raca=None): self.cobertura = "Crespo" self.raca = "Pitbull" animais = Animais() cachorros = Cachorros(cobertura="Lisa", raca="Pintcher") animais.dar_nome("Rex") print("Nome: ", animais.nome) print("Cachorro: ", cachorros.cobertura) print("Raça: ", cachorros.raca) cachorros.trocar() print("Cachorro: ", cachorros.cobertura) print("Raça: ", cachorros.raca)
2.875
3
classifier/vec/doc2vec_train.py
banboooo044/natural-language-sentiment-anaysis
0
12782038
<reponame>banboooo044/natural-language-sentiment-anaysis<filename>classifier/vec/doc2vec_train.py<gh_stars>0 # train Doc2vec and save model import pandas as pd import numpy as np from gensim.models.doc2vec import Doc2Vec from gensim.models.doc2vec import TaggedDocument # PV-DBOW def train_DBOW(df): print("train model ...") sentences = [ TaggedDocument(words=words.split(","), tags=[i]) for i, (words, _, _) in df.iterrows() ] model = Doc2Vec(documents=sentences, vector_size=300, alpha=0.025, min_alpha=0.000001, \ window=15, iter=20, min_count=1, dm=0, workers=4, seed=71) print('train start') model.train(sentences, total_examples=model.corpus_count, epochs=model.iter) return model # PV-DM def train_DM(df): print("train model ...") sentences = [ TaggedDocument(words=words.split(","), tags=[i]) for i, (words, _, _) in df.iterrows() ] model = Doc2Vec(documents=sentences, vector_size=300, alpha=0.05, min_alpha=0.000001, \ window=10, iter=20, min_count=1, dm=1, workers=4, seed=71) print('train start') model.train(sentences, total_examples=model.corpus_count, epochs=model.iter) return model def save_model(model, filename): print("save model ...") model.save(f"./{filename}.model") if __name__ == "__main__": PATH = "../data/courpus-wakati-juman.tsv" df = pd.read_table(PATH, index_col=0) df = df[~pd.isnull(df["text"])] model = train_DM(df) # モデルの保存 OUTPUT_FILENAME = "Doc2vec" save_model(model, OUTPUT_FILENAME)
2.640625
3
old_django_malliva/settingsManager/migrations/0001_initial.py
olubiyiontheweb/malliva
0
12782039
<gh_stars>0 # Generated by Django 3.2 on 2021-06-22 12:50 from django.db import migrations, models import django.db.models.deletion import settingsManager.models class Migration(migrations.Migration): initial = True dependencies = [ ('paymentGateways', '0001_initial'), ('customCodes', '0001_initial'), ] operations = [ migrations.CreateModel( name='SocialMediaPage', fields=[ ('id', models.BigAutoField(primary_key=True, serialize=False)), ('facebook_page', models.URLField()), ('twitter_page', models.URLField()), ('instagram_page', models.URLField()), ('github_page', models.URLField()), ('linkedin_page', models.URLField()), ('tiktok_page', models.URLField()), ], ), migrations.CreateModel( name='TemplateStyling', fields=[ ('id', models.BigAutoField(primary_key=True, serialize=False)), ('favicon', models.ImageField(blank=True, upload_to=settingsManager.models.image_directory_path)), ('logo', models.ImageField(blank=True, upload_to=settingsManager.models.image_directory_path)), ('wide_logo', models.ImageField(blank=True, upload_to=settingsManager.models.image_directory_path)), ('cover_photo', models.ImageField(blank=True, upload_to=settingsManager.models.image_directory_path)), ('small_cover_photo', models.ImageField(blank=True, help_text='cover photo for mobile', upload_to=settingsManager.models.image_directory_path)), ('theme_color', models.CharField(max_length=200)), ('landing_page_settings', models.CharField(max_length=200)), ('footer_background', models.CharField(max_length=200)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now_add=True)), ('custom_codes', models.OneToOneField(null=True, on_delete=django.db.models.deletion.SET_NULL, to='customCodes.customcode')), ], ), migrations.CreateModel( name='Configuration', fields=[ ('id', models.BigAutoField(primary_key=True, serialize=False)), ('slogan', models.CharField(max_length=200)), ('description', models.CharField(max_length=500)), ('language', models.CharField(default='en', max_length=200)), ('country', models.CharField(max_length=200)), ('currency', models.CharField(max_length=200)), ('malliva_terms_consent', models.BooleanField(default=False, help_text="track clients agreement of Malliva's latest terms of service")), ('transaction_agreement_in_use', models.BooleanField(default=False)), ('notify_admins_about_new_members', models.BooleanField(default=False)), ('notify_admins_about_new_transactions', models.BooleanField(default=False)), ('require_verification_to_post_listings', models.BooleanField(default=False)), ('private_marketplace', models.BooleanField(default=True)), ('automatic_newsletters', models.BooleanField(default=False)), ('invite_only_marketplace', models.BooleanField(default=False)), ('send_emails_from', models.EmailField(max_length=200)), ('preapprove_listing', models.BooleanField(default=False, help_text='listings are public by default in the marketplace')), ('show_date_in_listing_view', models.BooleanField(default=False)), ('transaction_flow', models.CharField(max_length=200)), ('show_location', models.BooleanField(default=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now_add=True)), ('active_payment_processor', models.ForeignKey(default='1', on_delete=django.db.models.deletion.SET_DEFAULT, to='paymentGateways.paymentgateway')), ('templatestyle', models.OneToOneField(default='1', null=True, on_delete=django.db.models.deletion.SET_DEFAULT, to='settingsManager.templatestyling')), ], options={ 'abstract': False, }, ), ]
1.65625
2
cpu_demo/parse_target_repo.py
nicktendo64/hash-fixpoints
1
12782040
#! /usr/bin/python3 # run this from the root of a git repository with the command-line arguments # described in the usage statement below import sys import subprocess import os AUTHOR = "<NAME> <<EMAIL>>" TIMEZONE = "-0700" DESIRED_COMMIT_MESSAGE = "added self-referential commit hash using magic" DESIRED_COMMIT_TIMESTAMP = "1591753853" # timestamp (formatted as seconds since UNIX epoch) # to get git to make a commit at the right time, run the following before # git commit: # # export GIT_COMMITTER_DATE='<timestamp>' # export GIT_AUTHOR_DATE='<timestamp>' # values for SHA-1 DIGEST_LEN = 20 HEXDIGEST_LEN = 40 PREFIX_LEN = 6 if len(sys.argv) != 4: print("usage: parse_target_repo.py (path to target file) (text to replace with hash) (output directory)") sys.exit(1) target_file = sys.argv[1] to_replace = bytes(sys.argv[2], encoding="utf-8") out_dir = sys.argv[3] dir_layers = [None] + \ [ bytes(l, encoding="utf-8") for l in target_file.split("/") ] print("reading relevant hashes from git...") hashes = [ subprocess.check_output(["git", "rev-parse", "HEAD"])[:-1] ] for i, layer in enumerate(dir_layers): curr_tree = subprocess.check_output(["git", "cat-file", "-p", hashes[-1]]) if i == 0: hash = curr_tree[5: 5 + HEXDIGEST_LEN] else: hash_end = curr_tree.find(b"\t%s\n" % layer) hash_start = hash_end - HEXDIGEST_LEN hash = curr_tree[hash_start:hash_end] hashes.append(hash) print("reading relevant objects from .git/objects...") hashes = hashes[::-1] # reverse order of hashes so the blob we are writing to is first in the output merkle_layer_prefixes = [] merkle_layer_suffixes = [] # Git stores the file tree in a Merkle Tree (the root of a tree where each # parent is the SHA-1 hash of its children's hashes in a certain format) digest_types = [False for _ in range(len(hashes) - 2)] + [True, False] # depending on the point, Git either feeds the bytes in direcly or # (for the commit) feeds in a hexadecimal string # True = hexdigest # False = digest def tree_unprettify(tree_pretty_printed): out = b"" for line in tree_pretty_printed.splitlines(): toks = line.split() out += toks[0] + b" " # mode out += toks[3] + b"\0" # filename (no spaces in any fname assumed) out += bytes.fromhex(toks[2].decode()) return out for i in range(len(hashes) - 1): hash = hashes[i].decode() git_obj_type = subprocess.check_output(["git", "cat-file", "-t", hash])[:-1] git_obj_size = subprocess.check_output(["git", "cat-file", "-s", hash])[:-1] git_obj_body = subprocess.check_output(["git", "cat-file", "-p", hash]) if i > 0: git_obj_body = tree_unprettify(git_obj_body) git_obj_contents = b"%s %s\0%s" % (git_obj_type, git_obj_size, git_obj_body) if i == 0: prefix_end = git_obj_contents.find(to_replace) suffix_begin = prefix_end + len(to_replace) else: if digest_types[i - 1]: prev_hash = bytes(prev_hash, encoding='utf-8') else: prev_hash = bytes.fromhex(prev_hash) prefix_end = git_obj_contents.find(prev_hash) suffix_begin = prefix_end + \ (HEXDIGEST_LEN if digest_types[i - 1] else DIGEST_LEN) merkle_layer_prefixes.append(git_obj_contents[:prefix_end]) merkle_layer_suffixes.append(git_obj_contents[suffix_begin:]) prev_hash = hash commit_suffix = bytes(""" parent {parent_commit} author {author_str} {timestamp} {timezone} committer {author_str} {timestamp} {timezone} {commit_message} """.format(parent_commit=hashes[-1].decode(), author_str=AUTHOR, timestamp=DESIRED_COMMIT_TIMESTAMP, timezone=TIMEZONE, commit_message=DESIRED_COMMIT_MESSAGE), encoding="utf-8") commit_prefix = bytes("commit {}\0tree ".format( len(commit_suffix) + 5 + HEXDIGEST_LEN), encoding="utf-8") # total size is suffix + tree hash + len("tree ") merkle_layer_prefixes.append(commit_prefix) merkle_layer_suffixes.append(commit_suffix) # ensure blob header is accurate with prefix length merkle_layer_prefixes[0] = merkle_layer_prefixes[0][ merkle_layer_prefixes[0].find(b"\0") + 1:] actual_size = len(merkle_layer_prefixes[0]) + len(merkle_layer_suffixes[0]) + PREFIX_LEN merkle_layer_prefixes[0] = (b"blob %d\0" % actual_size) + merkle_layer_prefixes[0] print("saving bytes to directory...") os.makedirs(out_dir + "/prefixes") os.makedirs(out_dir + "/suffixes") i = 0 for prefix, suffix, digest_type in zip(merkle_layer_prefixes, merkle_layer_suffixes, digest_types): with open("{}/prefixes/{}.txt".format(out_dir, i), "wb") as f: f.write(prefix) with open("{}/suffixes/{}.txt".format(out_dir, i), "wb") as f: f.write(suffix) i += 1 with open(out_dir + "/digest_bits.txt", "a") as f: f.write(" ".join(map(lambda b: str(int(b)), digest_types)))
2.59375
3
gen-template.py
claytantor/troposphere-iac
0
12782041
#!/usr/bin/env python # coding: utf-8 import logging import argparse import importlib from tropiac.utils import make_cloudformation_client, load_config, get_log_level LOG_FORMAT = ('%(levelname) -10s %(asctime)s %(funcName) ' '-35s %(lineno) -5d: %(message)s') LOGGER = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument('--name', type=str, required=True, help='the name of the stack to create.') parser.add_argument('--config', type=str, required=True, help='the name of the configuration section to use.') parser.add_argument('--log', type=str, default="INFO", required=False, help='which log level. DEBUG, INFO, WARNING, CRITICAL') args = parser.parse_args() # init LOGGER stack = importlib.import_module('tropiac.stacks.{0}'.format(args.name)) cfg = stack.get_config() template = stack.make_template(cfg[args.config]) print(template.to_json()) if __name__ == '__main__': main()
2.453125
2
PolTools/main_programs/tsrFinder.py
GeoffSCollins/PolTools
0
12782042
""" This program is the interface and driver for tsrFinder """ import os import sys import argparse import multiprocessing from collections import defaultdict from multiprocessing import Pool from PolTools.utils.constants import tsr_finder_location from PolTools.utils.tsr_finder_step_four_from_rocky import run_step_four from PolTools.utils.remove_files import remove_files def positive_int(num): try: val = int(num) if val <= 0: raise Exception("Go to the except") except: raise argparse.ArgumentTypeError(num + " must be positive") return val parser = argparse.ArgumentParser(prog='PolTools tsrFinder', description='Find transcription start regions\n' + "More information can be found at " + "https://geoffscollins.github.io/PolTools/tsrFinder.html") parser.add_argument('seq_file', metavar='seq_file', type=str, help='Bed formatted sequencing file to find the TSRs') parser.add_argument('window_size', metavar='window_size', type=positive_int, help='Base pair size of the sliding window') parser.add_argument('min_seq_depth', metavar='min_seq_depth', type=positive_int, help="Minimum number of 5' ends to be considered a TSR") parser.add_argument('min_avg_transcript_length', metavar='min_avg_transcript_length', type=positive_int, help="Minimum average transcript length to be considered a TSR") parser.add_argument('max_fragment_size', metavar='max_fragment_size', type=positive_int, help="Maximum fragment size for a read to be counted in tsrFinder") parser.add_argument('chrom_size_file', metavar='chrom_size_file', type=str, help="Chromosome sizes file") parser.add_argument('-t', '--threads', dest='threads', metavar='threads', type=positive_int, nargs='?', default=multiprocessing.cpu_count()) args = parser.parse_args(sys.argv[1:]) bed_file = args.seq_file window_size = args.window_size min_seq_depth = args.min_seq_depth min_avg_transcript_length = args.min_avg_transcript_length max_fragment_size = args.max_fragment_size chrom_size_file = args.chrom_size_file max_threads = args.threads # Make sure bed_file and chrom_size_file exist if not os.path.isfile(bed_file): sys.stderr.write(bed_file + " was not found. Exiting ...\n") sys.exit(1) if not os.path.isfile(chrom_size_file): sys.stderr.write(chrom_size_file + " was not found. Exiting ...\n") sys.exit(1) if not bed_file.endswith(".bed"): sys.stderr.write("The sequencing file must end in .bed. Exiting ...\n") sys.exit(1) chromosome_sizes = defaultdict(int) with open(chrom_size_file) as file: for line in file: chromosome, size = line.split() chromosome_sizes[chromosome] = int(size) # Step 1. Split the bed file into files by chromosome and strands fw_filename = bed_file.replace(".bed", "-FW.bed") rv_filename = bed_file.replace(".bed", "-RV.bed") parameters_string = "_".join([str(window_size), str(min_seq_depth), str(min_avg_transcript_length), str(max_fragment_size)]) output_filename = bed_file.replace(".bed", "_" + parameters_string + "-TSR.tab") chromosome_file_writers = defaultdict(lambda : {"+": None, "-": None}) chromosome_files = [] tsr_finder_step_files = [] output_files = [] with open(bed_file) as file: for line in file: chromosome, left, right, name, score, strand = line.split() if chromosome in chromosome_sizes: if chromosome not in chromosome_file_writers: fw_filename = bed_file.replace(".bed", "-" + chromosome + "-FW.bed") rv_filename = bed_file.replace(".bed", "-" + chromosome + "-RV.bed") chromosome_file_writers[chromosome]["+"] = open(fw_filename, 'w') chromosome_file_writers[chromosome]["-"] = open(rv_filename, 'w') chromosome_files.extend([fw_filename, rv_filename]) for i in range(2, 5): tsr_finder_step_files.append(fw_filename.replace(".bed", "-" + str(i) + "-output.txt")) tsr_finder_step_files.append(rv_filename.replace(".bed", "-" + str(i) + "-output.txt")) output_files.append(fw_filename.replace(".bed", "-4-output.txt")) output_files.append(rv_filename.replace(".bed", "-4-output.txt")) chromosome_file_writers[chromosome][strand].write(line) # Need to close all the writers for chromosome in chromosome_file_writers: chromosome_file_writers[chromosome]["+"].close() chromosome_file_writers[chromosome]["-"].close() # Step 2: Run tsrFinder on both files concurrently def run_tsrFinderGC(filename): os.system(tsr_finder_location + " " + filename + " " + " ".join([str(window_size), str(min_seq_depth), str(min_avg_transcript_length), str(max_fragment_size), chrom_size_file])) step_three_filename = filename.replace(".bed", "-3-output.txt") step_four_filename = filename.replace(".bed", "-4-output.txt") run_step_four(step_three_filename, window_size, chromosome_sizes, step_four_filename) with Pool(max_threads) as pool: pool.map(run_tsrFinderGC, (filename for filename in chromosome_files)) # # Step 3: Combine the output files and delete intermediate files os.system("cat " + " ".join(output_files) + " > " + output_filename) remove_files(tsr_finder_step_files) remove_files(chromosome_files)
2.6875
3
src/morphforge/simulation/neuron/objects/obj_cclamp.py
mikehulluk/morphforge
1
12782043
#!/usr/bin/python # -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Copyright (c) 2012 <NAME>. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------- from morphforge import units from morphforge.simulation.base import CurrentClamp from morphforge.simulation.neuron.objects.neuronobject import NEURONObject from morphforge.constants.standardtags import StandardTags from morphforge.simulation.neuron.simulationdatacontainers import MHocFileData #from morphforge.units import qty from morphforge.simulation.neuron.hocmodbuilders.hocmodutils import HocModUtils from morphforge.simulation.neuron.hocmodbuilders import HocBuilder from morphforge.simulation.neuron.objects.neuronrecordable import NEURONRecordable from morphforge.simulation.base.stimulation import CurrentClampStepChange from morphforge.simulation.neuron.core.neuronsimulationenvironment import NEURONEnvironment class CurrentClampCurrentRecord(NEURONRecordable): def __init__(self, cclamp, **kwargs): super(CurrentClampCurrentRecord, self).__init__(**kwargs) self.cclamp = cclamp def get_unit(self): return units.nA def get_std_tags(self): return [StandardTags.Current] def build_hoc(self, hocfile_obj): name_hoc = hocfile_obj[MHocFileData.CurrentClamps][self.cclamp]['stimname'] HocModUtils.create_record_from_object( hocfile_obj=hocfile_obj, vecname='RecVec%s' % self.name, objname=name_hoc, objvar='i', recordobj=self) def build_mod(self, modfile_set): pass def get_description(self): return 'Step CurrentClamp Injection: %s' % self.cclamp.name class NEURONCurrentClampStepChange(CurrentClampStepChange, NEURONObject): def __init__(self, **kwargs): super(NEURONCurrentClampStepChange, self).__init__(**kwargs) def build_hoc(self, hocfile_obj): HocBuilder.CurrentClamp(hocfile_obj=hocfile_obj, currentclamp=self) def build_mod(self, modfile_set): pass def get_recordable(self, what, name=None, **kwargs): recorders = { CurrentClamp.Recordables.Current: CurrentClampCurrentRecord } return recorders[what](cclamp=self, name=name, **kwargs) NEURONEnvironment.currentclamps.register_plugin(CurrentClampStepChange, NEURONCurrentClampStepChange)
1.195313
1
movierama/movierama/movies/views.py
abourazanis/movierama
0
12782044
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponseRedirect from django.urls import reverse from django.utils.decorators import method_decorator from django.views import View from django.views.generic import CreateView, ListView from django.views.generic.edit import FormMixin, FormView, ProcessFormView from movierama.movies.forms import MovieForm from movierama.movies.models import Movie class MovieCreateView(CreateView): form_class = MovieForm template_name = "movie_create.html" @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def get_success_url(self): return reverse("homepage") def form_valid(self, form): self.object = form.save(commit=False) self.object.user = self.request.user self.object.save() messages.add_message(self.request, messages.SUCCESS, 'Movie "{}" successfully added.'.format(self.object), fail_silently=True) return HttpResponseRedirect(self.get_success_url()) create_movie = MovieCreateView.as_view() class MovieListView(ListView): model = Movie template_name = "pages/home.html" context_object_name = "movies" def get_ordering(self): return self.request.GET.get('order_by', None) def get_queryset(self): queryset = self.model.objects.all() if self.request.user.is_authenticated: queryset = self.model.as_user(self.request.user.id).all() username = self.kwargs.get("username", None) if username: queryset = queryset.filter(user__username=username) ordering = self.get_ordering() if ordering: if ordering == "date": queryset = queryset.order_by("-date_created") if ordering == "likes": queryset = queryset.order_by_likes() if ordering == "hates": queryset = queryset.order_by_hates() return queryset movieslist = MovieListView.as_view() class VoteMovieView(View): @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def post(self, request, *args, **kwargs): try: movie = Movie.objects.get(id=kwargs.get('movie_id', None)) except ObjectDoesNotExist as e: return HttpResponseRedirect(reverse("homepage")) vote = request.POST.get('vote', None) if vote is not None: movie.vote(self.request.user, vote) return HttpResponseRedirect(reverse("homepage")) vote_movie = VoteMovieView.as_view() class UnVoteMovieView(View): @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def post(self, request, *args, **kwargs): try: movie = Movie.objects.get(id=kwargs.get('movie_id', None)) except ObjectDoesNotExist as e: return HttpResponseRedirect(reverse("homepage")) movie.remove_vote(self.request.user) return HttpResponseRedirect(reverse("homepage")) unvote_movie = UnVoteMovieView.as_view()
2.1875
2
homeworks/yan_romanovich/hw05/level05.py
tgrx/Z22
0
12782045
<gh_stars>0 def unique(collection): return len(collection) == len(set(collection))
2.453125
2
tests/test_q0202.py
mirzadm/ctci-5th-py
0
12782046
"""Unit tests for q0202.py.""" import unittest from src.utils.linkedlist import LinkedList from src.q0202 import kth_element_to_last class TestKthElementToLast(unittest.TestCase): """Tests for kth element to last.""" def test_kth_element_to_last(self): linked_list = LinkedList() self.assertEqual(kth_element_to_last(None, 1), None) self.assertEqual(kth_element_to_last(linked_list, 1), None) linked_list.insert_at_head(3) self.assertEqual(kth_element_to_last(linked_list, 0), None) self.assertEqual(kth_element_to_last(linked_list, 1), 3) self.assertEqual(kth_element_to_last(linked_list, 2), None) linked_list.insert_at_head(2) self.assertEqual(kth_element_to_last(linked_list, 0), None) self.assertEqual(kth_element_to_last(linked_list, 1), 3) self.assertEqual(kth_element_to_last(linked_list, 2), 2) self.assertEqual(kth_element_to_last(linked_list, 3), None) if __name__ == '__main__': unittest.main()
3.5625
4
rushapi/blueprints/url_shortener.py
Kyuunex/rush-api
0
12782047
""" This file provides endpoints for everything URL shortener related """ from flask import Blueprint, request, make_response, redirect, json import time import validators from rushapi.reusables.context import db_cursor from rushapi.reusables.context import db_connection from rushapi.reusables.rng import get_random_string from rushapi.reusables.user_validation import get_user_context url_shortener = Blueprint("url_shortener", __name__) @url_shortener.route('/create_redirect', methods=['POST']) @url_shortener.route('/create_redirect/<desired_id>', methods=['POST', 'PUT']) def create_redirect(desired_id=None): """ This endpoint handles the POST data submitted by the client. It will process this information and create a shortened a URL. :return: A newly created shortened URL. """ if desired_id: user_context = get_user_context() if not (user_context and user_context.premium): return json.dumps({ "error": "Creating a custom redirect requires a premium account. " "If you already have one, put your token in the headers.", }), 401 premium = 1 url_id = desired_id author_id = user_context.id else: premium = 0 url_id = get_random_string(7) author_id = None if request.method == 'POST': url = request.form['url'] delete_after = request.form['delete_after'] if len(delete_after) > 0: try: delete_after = int(delete_after) except ValueError: delete_after = 0 else: delete_after = int(time.time()) + 2.592e+6 if not len(url) < 250: return json.dumps({ "error": "URL length must be below 250 characters.", }), 403 if not validators.url(url): return json.dumps({ "error": "URL is not valid", }), 403 domain_blacklist = tuple(db_cursor.execute("SELECT domain FROM domain_blacklist")) for blacklisted_domain in domain_blacklist: if blacklisted_domain[0] in url: return json.dumps({ "error": "This domain is blacklisted.", }), 403 db_cursor.execute("INSERT INTO urls " "(id, author_id, url, creation_timestamp, premium, visits, delete_after, last_visit) " "VALUES (?, ?, ?, ?, ?, ?, ?, ?)", [url_id, author_id, url, int(time.time()), premium, 0, delete_after, int(time.time())]) db_connection.commit() return json.dumps({ "shortened_url": f"https://{request.host}/u/{url_id}" }), 200 @url_shortener.route('/u/<url_id>') def redirect_url(url_id): """ This endpoint looks up the unique identifier of the URL and redirects the user there. Along the way it takes note of the time visited and increase the visit count. :param url_id: URL's unique identifier :return: A redirect to that URL """ post_url_lookup = tuple(db_cursor.execute("SELECT url, visits, delete_after FROM urls WHERE id = ?", [url_id])) if not post_url_lookup: return make_response(redirect("https://www.youtube.com/watch?v=dQw4w9WgXcQ")) visits = int(post_url_lookup[0][1]) db_cursor.execute("UPDATE urls SET visits = ? AND last_visit = ? WHERE id = ?", [(visits+1), int(time.time()), url_id]) db_connection.commit() return make_response(redirect(post_url_lookup[0][0])) @url_shortener.route('/my_urls') def my_urls(): """ :return: This endpoint returns all the URLs the user has created. """ user_context = get_user_context() if not user_context: return json.dumps({ "error": "This endpoint requires an account. " "If you already have one, put your token in the headers.", }), 401 urls = db_cursor.execute("SELECT id, author_id, url, creation_timestamp, premium, visits, delete_after, last_visit " "FROM urls WHERE author_id = ?", [user_context.id]) buffer = [] for url in urls: buffer.append({ "id": url[0], "author_id": url[1], "url": url[2], "creation_timestamp": url[3], "premium": url[4], "visits": url[5], "delete_after": url[6], "last_visit": url[7], }) return json.dumps(buffer)
3.265625
3
profetorch/blocks/squasher.py
sachinruk/ProFeTorch1
19
12782048
<filename>profetorch/blocks/squasher.py<gh_stars>10-100 # AUTOGENERATED! DO NOT EDIT! File to edit: Squasher.ipynb (unless otherwise specified). __all__ = ['Squasher'] # Cell import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F torch.Tensor.ndim = property(lambda x: x.dim()) # Cell # export class Squasher(nn.Module): """ Squashes output to lie beween `high` and `low`. """ def __init__(self, low=None, high=None, mean=0, sd=1, alpha=0.01): super().__init__() if low is not None: low = (low - mean) / sd if high is not None: high = (high - mean) / sd self.L, self.H, self.alpha = low, high, alpha def forward(self, t): if self.L is not None: t[t < self.L] = self.alpha * (t[t < self.L] - self.L) + self.L if self.H is not None: t[t > self.H] = self.alpha * (t[t > self.H] - self.H) + self.H return t
2.546875
3
aux_routines/PerfStats.py
jshtok/StarNet
3
12782049
<reponame>jshtok/StarNet<gh_stars>1-10 import numpy as np import os import matplotlib #matplotlib.use('agg') import matplotlib.pyplot as plt from aux_routines.data_structures import get_GT_IoUs,get_GT_IoPs,get_GT_IoGs import copy def voc_ap(rec, prec, score, sc_part, use_07_metric=False): """ average precision calculations [precision integrated to recall] :param rec: recall :param prec: precision :param use_07_metric: 2007 metric is 11-recall-point based AP :return: average precision """ if use_07_metric: ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap += p / 11. else: # append sentinel values at both ends mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) mscore = np.concatenate(([0.], score, [0.])) # compute precision integration ladder for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # look for recall value changes i = np.where(mrec[1:] != mrec[:-1])[0] # sum (\delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) pr_graph = {'mrec': mrec[i + 1], 'mpre': mpre[i + 1], 'mscore': mscore[i + 1]} return ap, pr_graph from aux_routines.stats import img_dets_CSV_2_A,detName_2_imgName class PerfStats(): def __init__(self, Nclasses=1, Nslots=10000, is_valid=True, vet_score_thresh=0.55): self.valid = is_valid self.maxFpw = 0 # max FPW on some image in the query set self.nGT = 0 # number of GT objects so far self.d = 0 # current entry self.sc = np.zeros(Nslots) # scores self.tp = np.zeros(Nslots) # True Positives self.fp = np.zeros(Nslots) # False Positives self.fpw = np.zeros(Nslots) # False Positives - wrong class self.fpb = np.zeros(Nslots) # False Positives - background box #self.require_difficult = difficult # require that objects marked 'difficult' will be detected. Accept their detections anyway. self.vet_score_thresh = vet_score_thresh self.CM_thresh = np.linspace(0.1, 0.9, 9).tolist() self.CM = np.zeros([Nclasses, Nclasses,len(self.CM_thresh)],dtype=int) self.IoG=[] def add_base_stats(self,dets_folder, cat_ords, gt_entry, ovthresh,fg_measure=0): ''' :param dets_folder: :param cat_ords: :param gt_entry: :param ovthresh: :param fg_measure: 0 - IoU, 1 - IoP (intersection over prediction) :return: ''' # show_dets_gt_boxes(im, dets, classes, gt_boxes, gt_classes, scale=1.0, FS=22, LW=3.5, save_file_path='temp_det_gt.png'): # show_detsB_gt_boxes(im, dets_B, gt_boxes, gt_classes, scale = 1.0, save_file_path='temp_det_gt.png'): for detsName in os.listdir(dets_folder): if detsName.startswith('dets') and detsName.endswith('.txt'): q_dets, cat_names = img_dets_CSV_2_A(os.path.join(dets_folder, detsName), cat_ords) imgName = detName_2_imgName(detsName) # gt_entry = roidb_ni[imgName] # then run q = int(detsName.split('_')[2].split('.')[0]) gt_boxes_test = gt_entry['boxes'][q] gt_boxes_test = gt_boxes_test[np.where(np.max(gt_boxes_test, axis=1) > 0)] gt_classes_test = gt_entry['gt_classes'][q] gt_classes_test = np.asarray([gt_classes_test for _ in gt_boxes_test]) # gt_boxes_test = [] # gt_classes_test = [] # for gt_box, gt_class in zip( gt_entry['boxes'], gt_entry['gt_classes']): # if gt_class in cat_ords: # gt_boxes_test += [gt_box] # gt_classes_test += [gt_class] # gt_classes_test = np.asarray(gt_classes_test) # gt_boxes_test = np.asarray(gt_boxes_test) self.comp_epi_stats_m(q_dets, gt_boxes_test, gt_classes_test, cat_ords, ovthresh,fg_measure=fg_measure) # perf_str_gl = self.print_perf( prefix='stats_global: ') def assert_space(self): btch = 100000 if self.sc.shape[0] < self.d + btch: self.sc = np.concatenate((self.sc, np.zeros(btch, ))) self.tp = np.concatenate((self.tp, np.zeros(btch, ))) self.fp = np.concatenate((self.fp, np.zeros(btch, ))) self.fpw = np.concatenate((self.fpw, np.zeros(btch, ))) self.fpb = np.concatenate((self.fpb, np.zeros(btch, ))) def comp_epi_CM(self,scores_all,boxes_all,gt_boxes, gt_classes,epi_cats, ovthresh): all_cats = [0]+epi_cats Ndets = scores_all.shape[0] Nclasses = scores_all.shape[1] # for i_DetCat, DetCat in enumerate(epi_cats): # cat_dets = np.hstack((boxes_all,scores_all[:,i_DetCat+1])) N_gt = gt_boxes.shape[0] gt_IoU_map = np.zeros((Ndets, N_gt)) for i_det, box_det in enumerate(boxes_all): gt_IoU_map[i_det, :] = get_GT_IoUs(box_det, gt_boxes) true_class_indices = np.argmax(gt_IoU_map,axis=1) FG_idx = np.where(np.max(gt_IoU_map,axis=1) >= ovthresh) BG_idx = np.where(np.max(gt_IoU_map, axis=1) < ovthresh) true_class_indices_FG = true_class_indices[FG_idx] scores_FG = scores_all[FG_idx] scores_BG = scores_all[BG_idx] for i_thresh, thresh in enumerate(self.CM_thresh): FG_high_score_idx = np.where(np.max(scores_FG, axis=1) > thresh) BG_high_score_idx = np.where(np.max(scores_BG, axis=1) > thresh) true_class_indices_FG_high = true_class_indices_FG[FG_high_score_idx] scores_FG_high = scores_FG[FG_high_score_idx] scores_BG_high = scores_BG[BG_high_score_idx] hit_indices = np.argmax(scores_FG_high, axis=1) miss_indices = np.argmax(scores_BG_high, axis=1) # confusion matrix: for each detection roi: if its FG, the true class is its category; if its BG, the true class is 0 (background). # add 1 to row <true class>, column <argMax(scores)> for this detection for det_idx in miss_indices: self.CM[0, all_cats[det_idx],i_thresh ] += 1 #print('object at cat 0 detected as cat {0}'.format(all_cats[det_idx])) for true_cls_idx, det_idx in zip(true_class_indices_FG_high,hit_indices): self.CM[gt_classes[true_cls_idx], all_cats[det_idx],i_thresh] += 1 #print('object at cat {0} detected as cat {1}'.format(gt_classes[true_cls_idx],all_cats[det_idx])) def comp_epi_stats_m(self, q_dets, gt_boxes, gt_classes, epi_cats, ovthresh, err_score_thres=0,miss_count={},false_count={},true_count={},fg_measure=0): ''' :param q_dets: :param gt_boxes: :param gt_classes: :param epi_cats: :param ovthresh: :param err_score_thres: :param miss_count: :param false_count: :param true_count: :param fg_measure: 0 - IoU, 1 - IoP (intersection over prediction) :return: ''' # err_score_thres is the threshold for ploting the boxes as error case self.assert_space() error_case = False #flag for ploting the boxes as error case N_gt = gt_boxes.shape[0] if N_gt==0: # no Ground Truth. mark all as False Positive for cat_dets, DetCat in zip(q_dets, epi_cats): # for each class ------------------------------- Ndets = cat_dets.shape[0] if Ndets == 0: continue for i_det, det in enumerate(cat_dets): score = det[-1] if score > 0: self.set_score(score) self.mark_FP() # fp[d] = 1. self.mark_FPB() # fpb[d] = 1. self.d += 1 return error_case, miss_count, true_count, false_count nTP = 0 for cat_dets, DetCat in zip(q_dets,epi_cats): # for each class ------------------------------- # for i_DetCat, DetCat in enumerate(epi_cats): # for each class ------------------------------- # cat_dets = q_dets[i_DetCat] self.nGT += sum(gt_classes == DetCat) # number of instances of this object Ndets = cat_dets.shape[0] if Ndets == 0: continue if not DetCat in miss_count: miss_count[DetCat]=0 false_count[DetCat]=0 true_count[DetCat]=0 gt_FG_map, score_map, hit_map,det_portion_map = [np.zeros((Ndets, N_gt)) for _ in range(4)] for i_det, det in enumerate(cat_dets): if fg_measure==0: gt_FG_map[i_det, :] = get_GT_IoUs(det, gt_boxes) elif fg_measure==1: gt_FG_map[i_det, :] = get_GT_IoPs(det, gt_boxes) else: os.error('comp_epi_stats_m: fg_measure not recognized') score_map[i_det, :] = det[-1] for col, gt_c in enumerate(gt_classes): hit_map[:, col] = gt_c == DetCat score_FG_map = np.multiply(score_map, gt_FG_map >= ovthresh) score_BG_map = np.multiply(score_map, gt_FG_map < ovthresh) hit_score_FG_map = np.multiply(score_FG_map, hit_map) #det_portion_map[i_det, :] = get_GT_IoGs(det, gt_boxes) best_hit_scores = np.max(hit_score_FG_map, axis=0) miss_score_FG_map = np.multiply(score_FG_map, 1 - hit_map) good_dets = np.max(hit_score_FG_map, axis=1) miss_score_FG_map[np.where(good_dets > 0)] = 0 best_miss_scores = np.max(miss_score_FG_map, axis=0) score_BG_list = np.min(score_BG_map, axis=1) # TP for idx, score in enumerate(best_hit_scores): #dims = [1, Ngt] # for every GT box, take the best matching FG detection roi with the correct class, and set a True Positive with its score if score > 0: self.set_score(score) self.mark_TP() self.d += 1 true_count[DetCat] += 1 det = cat_dets[0] gt_box = gt_boxes[idx] self.set_IoG(get_GT_IoGs(det, gt_box)) # FPW for score in best_miss_scores: #dims = [1, Ngt]. # for every GT box, take the best matching FG detection roi (gt_IoU_map >= ovthresh) and set a False Positive with its score if score > 0: self.set_score(score) self.mark_FP() # fp[d] = 1. self.mark_FPW() # fpw[d] = 1. self.d += 1 false_count[DetCat] +=1 # FPB for score in score_BG_list: # dims = [Ndets, 1] # for every detection roi, that was decided to be on background (gt_IoU_map < ovthresh), set a False Positive with its score if score > 0: self.set_score(score) self.mark_FP() # fp[d] = 1. self.mark_FPB() # fpb[d] = 1. self.d += 1 false_count[DetCat] +=1 # flag for ploting the boxes as error case if np.any(best_miss_scores>err_score_thres): error_case = True # incorret class if np.any(score_BG_list>err_score_thres): error_case = True #high score outlier nTP += len(np.where(best_hit_scores>err_score_thres)[0]) miss_count[DetCat] += np.sum(hit_map)-len(np.where(best_hit_scores>err_score_thres)[0]) if nTP<N_gt: error_case = True # not all GT were detected # self.set_img_recAtK(d0, nGT_prev) return error_case, miss_count, true_count, false_count def set_score(self, sc): self.sc[self.d] = sc def set_IoG(self,val): self.IoG.append(val) def get_score(self): return self.sc[0:self.d] def mark_TP(self): self.tp[self.d] = 1 def get_TP(self): return self.tp[0:self.d] def mark_FP(self): self.fp[self.d] = 1 def get_FP(self): return self.fp[0:self.d] def mark_FPW(self): self.fpw[self.d] = 1 def get_FPW(self): return self.fpw[0:self.d] def mark_FPB(self): self.fpb[self.d] = 1 def get_FPB(self): return self.fpb[0:self.d] def compute_stats(self, start_idx=0, use_nGT=-1): if start_idx >= self.d: return [None for _ in range(6)] sorted_inds = np.argsort(-self.sc[start_idx:self.d]) # ascending tp_part = self.tp[sorted_inds] fp_part = self.fp[sorted_inds] sc_part = self.sc[sorted_inds] fp_wrong_part = self.fpw[sorted_inds] fp_bkgnd_part = self.fpb[sorted_inds] tp_acc = np.cumsum(tp_part) fp_acc = np.cumsum(fp_part) fp_wrong_acc = np.cumsum(fp_wrong_part) fp_bkgnd_acc = np.cumsum(fp_bkgnd_part) if use_nGT >= 0: nGT = use_nGT else: nGT = self.nGT rec_part = tp_acc / float(self.nGT) rec_class_agn_part = (tp_acc+fp_wrong_acc)/ float(self.nGT) prec_part = tp_acc / np.maximum(tp_acc + fp_acc, np.finfo(np.float64).eps) # avoid division by zero prec_w_part = tp_acc / np.maximum(rec_class_agn_part + fp_wrong_acc, np.finfo(np.float64).eps) # avoid division by zero score_part = sc_part use_07_metric = False ap, pr_graph = voc_ap(rec_part, prec_part,sc_part, use_07_metric) ap_w, pr_w_graph = voc_ap(rec_class_agn_part, prec_w_part, sc_part, use_07_metric) tot_tp = tp_acc[-1] tot_fp = fp_acc[-1] tot_fp_wrong = fp_wrong_acc[-1] tot_fp_bkgnd = fp_bkgnd_acc[-1] if nGT > 0: recall = rec_part[-1] # tot_tp / self.nGT # recall @ score thresh else: recall = 0 pr_data = [[ap,pr_graph],[ap_w,pr_w_graph]] return tot_tp, tot_fp, tot_fp_wrong, tot_fp_bkgnd, recall, pr_data def compute_stats_ext(self, stats, start_idx=0): sc = stats[0] tp = stats[1] fp = stats[2] fpw = stats[3] fpb = stats[4] nGT = stats[5] d = stats[6] if start_idx > d: return [[] for _ in range(6)] sorted_inds = np.argsort(-sc[start_idx:d]) tp_part = tp[sorted_inds] fp_part = fp[sorted_inds] sc_part = sc[sorted_inds] fp_wrong_part = fpw[sorted_inds] fp_bkgnd_part = fpb[sorted_inds] tp_acc = np.cumsum(tp_part) fp_acc = np.cumsum(fp_part) fp_wrong_acc = np.cumsum(fp_wrong_part) fp_bkgnd_acc = np.cumsum(fp_bkgnd_part) rec_part = tp_acc / float(nGT) prec_part = tp_acc / np.maximum(tp_acc + fp_acc, np.finfo(np.float64).eps) # avoid division by zero use_07_metric = False ap,pr_graph = voc_ap(rec_part, prec_part, sc_part,use_07_metric) tot_tp = tp_acc[-1] tot_fp = fp_acc[-1] tot_fp_wrong = fp_wrong_acc[-1] tot_fp_bkgnd = fp_bkgnd_acc[-1] if nGT > 0: recall = tot_tp / nGT else: recall = 0 return tot_tp, tot_fp, tot_fp_wrong, tot_fp_bkgnd, recall, ap,pr_graph def isvalid(self): return self.valid def merge_stats_ext(self, stats): # stats[0] = [sc, tp, fp, fpw, fpb] d = stats[2] sc = stats[0][0, :] tp = stats[0][1, :] fp = stats[0][2, :] fpw = stats[0][3, :] fpb = stats[0][4, :] # left = nd - stats[0].shape[1] # if left>0: # sc = np.concatenate((sc,np.zeros(left))) # tp = np.concatenate((tp, np.zeros(left))) # fp = np.concatenate((fp, np.zeros(left))) # fpw = np.concatenate((fpw, np.zeros(left))) # fpb = np.concatenate((fpb, np.zeros(left))) nGT = stats[1] if self.valid: # concat the provided object self.sc = np.concatenate((self.get_score(), sc)) self.tp = np.concatenate((self.get_TP(), tp)) self.fp = np.concatenate((self.get_FP(), fp)) self.fpw = np.concatenate((self.get_FPW(), fpw)) self.fpb = np.concatenate((self.get_FPB(), fpb)) self.nGT += nGT self.d += d + 1 else: # copy the provided object self.sc = sc self.tp = tp self.fp = fp self.fpw = fpw self.fpb = fpb self.nGT = nGT self.maxFpw = 0 self.d = d self.valid = True def merge_stats(self, perf_stats): if not perf_stats.isvalid: return if self.valid: # concat the provided object self.sc = np.concatenate((self.get_score(), perf_stats.get_score())) self.tp = np.concatenate((self.get_TP(), perf_stats.get_TP())) self.fp = np.concatenate((self.get_FP(), perf_stats.get_FP())) self.fpw = np.concatenate((self.get_FPW(), perf_stats.get_FPW())) self.fpb = np.concatenate((self.get_FPB(), perf_stats.get_FPB())) self.nGT += perf_stats.nGT self.maxFpw = max(self.maxFpw, perf_stats.maxFpw) self.d += perf_stats.d + 1 else: # copy the provided object self.sc = perf_stats.get_score() self.tp = perf_stats.get_TP() self.fp = perf_stats.get_FP() self.fpw = perf_stats.get_FPW() self.fpb = perf_stats.get_FPB() self.nGT = perf_stats.nGT self.maxFpw = perf_stats.maxFpw self.d = perf_stats.d self.valid = True def print_stats(self,graph_img_fname, title_prefix=''): if self.d <= 0: print('No statistics were gathered.') return if self.nGT == 0 and use_nGT == -1: logger.info('#Dets: {0}, #GT: {1}'.format(0, self.nGT)) return # statistics tot_tp, tot_fp, tot_fp_wrong, tot_fp_bkgnd, recall, pr_data = self.compute_stats() ap = pr_data[0][0] pr_graph =pr_data[0][1] ap_w = pr_data[0][0] pr_w_graph = pr_data[0][1] # RP curve ----------------------------------------------- fig = plt.figure(1) plt.cla() plt.plot(pr_graph['mrec'],pr_graph['mpre'],linewidth=2.0) plt.xlabel('Recall') plt.ylabel('Precision') for i in range(0,len(pr_graph['mscore']),4): plt.text(pr_graph['mrec'][i], pr_graph['mpre'][i], '{0:.2f}'.format(pr_graph['mscore'][i])) plt.title(title_prefix+'TP={0} FP_conf={1} FP_bkgnd={2} AP={3:.3f}'.format(tot_tp,tot_fp_wrong,tot_fp_bkgnd,ap)) plt.grid(True) fig.savefig(graph_img_fname+'PR_graph.jpg') # confusion matrix ----------------------------------------------- # fig = plt.figure(2) plt.cla() plt.imshow(self.CM[:,:,3]) f_path, f_name = os.path.split(graph_img_fname) fig.savefig(graph_img_fname+'_confusion_matrix.jpg') if False: #class agnostic fig = plt.figure(2) plt.cla() plt.plot(pr_graph['mrec'],pr_graph['mpre'],linewidth=2.0) plt.xlabel('Recall - class agn.') plt.ylabel('Precision - class agn.') for i in range(0,len(pr_w_graph['mscore']),4): plt.text(pr_w_graph['mrec'][i], pr_w_graph['mpre'][i], '{0:.2f}'.format(pr_w_graph['mscore'][i])) plt.title(title_prefix+' class agn. AP={0:.3f}'.format(ap_w)) plt.grid(True) f_path, f_name = os.path.split(graph_img_fname) fig.savefig(os.path.join(f_path,'class_agn_'+f_name)) def print_perf(self, prefix, start_idx=0, use_nGT=-1): # logger.info('== performance stats: ============================================================================================') if self.d <= 0: perf_str = 'No statistics were gathered.' return perf_str if self.nGT == 0 and use_nGT == -1: perf_str = '#Dets: {0}, #GT: {1}'.format(0, self.nGT) return perf_str tot_tp, tot_fp, tot_fp_wrong, tot_fp_bkgnd, recall, pr_data = self.compute_stats(start_idx=start_idx, use_nGT=use_nGT) ap = pr_data[0][0] pr_graph =pr_data[0][1] ap_w = pr_data[0][0] pr_w_graph = pr_data[0][1] perf_str = prefix + ' #Dets: {0}, #GT: {1} TP: {2} FP: {3} = {4} wrong + {5} bkgnd Recall: {6:.3f} AP: {7:.3f}' \ .format(self.d, self.nGT, np.int(tot_tp), np.int(tot_fp), np.int(tot_fp_wrong), np.int(tot_fp_bkgnd), recall, ap) temp = np.flip(np.abs(pr_graph['mpre']-0.80)) idx=len(temp)-np.argmin(temp)-1 score_th = pr_graph['mscore'][idx] perf_data = [recall,ap,score_th,self.IoG] return perf_str,perf_data def print_perf_ext(self, logger, prefix, stats, start_idx=0): logger.info('== performance stats: ============================================================================================') nGT = stats[5] d = stats[6] if d <= 0: logger.info('No statistics were gathered.') return if nGT == 0: logger.info('#Dets: {0}, #GT: {1}'.format(0, nGT)) return tot_tp, tot_fp, tot_fp_wrong, tot_fp_bkgnd, recall, pr_data = self.compute_stats_ext(stats, start_idx=start_idx) ap = pr_data[0][0] pr_graph =pr_data[0][1] ap_w = pr_data[0][0] pr_w_graph = pr_data[0][1] logger.info(prefix + ' #Dets: {0}, #GT: {1} TP: {2} FP: {3} = {4} wrong + {5} bkgnd Recall: {6:.3f} AP: {7:.3f}'.format(d, nGT, \ np.int(tot_tp), np.int(tot_fp),np.int(tot_fp_wrong), np.int(tot_fp_bkgnd), recall,ap)) return def save_stats(self, store_stats_fname): np.savez(store_stats_fname, stats=[self.sc, self.tp, self.fp, self.fpw, self.fpb, self.nGT, self.d, self.CM]) def get_stats(self): stat_array = np.expand_dims(self.sc[:self.d], axis=0) stat_array = np.concatenate((stat_array, np.expand_dims(self.tp[:self.d], axis=0)), axis=0) stat_array = np.concatenate((stat_array, np.expand_dims(self.fp[:self.d], axis=0)), axis=0) stat_array = np.concatenate((stat_array, np.expand_dims(self.fpw[:self.d], axis=0)), axis=0) stat_array = np.concatenate((stat_array, np.expand_dims(self.fpb[:self.d], axis=0)), axis=0) stat_array = stat_array.astype(np.float16) return [stat_array, self.nGT, self.d, self.CM] # [, , self.fp[:self.d], self.fpw[:self.d], self.fpb[:self.d], self.nGT, self.d, self.img_recAtK]
1.992188
2
table2ascii/alignment.py
sairamkiran9/table2ascii
24
12782050
from enum import Enum class Alignment(Enum): """ Enum for text alignment types within a table cell Example:: from table2ascii import Alignment output = table2ascii( ... alignments=[Alignment.LEFT, Alignment.RIGHT, Alignment.CENTER, Alignment.CENTER] ) """ LEFT = 0 CENTER = 1 RIGHT = 2
3.53125
4