max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
wayback/__init__.py
edsu/wayback
0
12781751
<gh_stars>0 from ._version import get_versions __version__ = get_versions()['version'] del get_versions from ._client import ( # noqa CdxRecord, memento_url_data, WaybackClient, WaybackSession)
1.242188
1
Plugins/Aspose.BarCode Java for Jython/asposebarcode/WorkingWithBarcode/AdvanceFeatures/PatchCode.py
aspose-barcode/Aspose.BarCode-for-Java
10
12781752
<filename>Plugins/Aspose.BarCode Java for Jython/asposebarcode/WorkingWithBarcode/AdvanceFeatures/PatchCode.py from asposebarcode import Settings from com.aspose.barcode import BarCodeBuilder from com.aspose.barcode import Symbology class PatchCode: def __init__(self): dataDir = Settings.dataDir + 'WorkingWithBarcode/AdvanceBarcodeFeatures/PatchCode/' # Instantiate barcode object builder = BarCodeBuilder() # Set Symbology type symbology = Symbology builder.setSymbologyType(symbology.PatchCode) # Set code text builder.setCodeText("Patch T") # Save the image to your system and set its image format to Jpeg builder.save(dataDir + "PatchCode.jpg") # Display Status print "Generated PatchCode Successfully." if __name__ == '__main__': PatchCode()
2.625
3
scripts/user.py
GabrielTavernini/TelegramMap
3
12781753
class User: def __init__(self, name, time, point, dist): self.name = name self.time = time self.points = {point: dist}
2.796875
3
examples/deadline/All-In-AWS-Infrastructure-Basic/python/package/lib/security_tier.py
aws-painec/aws-rfdk
76
12781754
<reponame>aws-painec/aws-rfdk # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 from aws_cdk.core import ( Construct, Stack, ) from aws_rfdk import ( DistinguishedName, X509CertificatePem ) class SecurityTier(Stack): """ The security tier of the render farm. This stack contains resources used to ensure the render farm is secure. """ def __init__(self, scope: Construct, stack_id: str, **kwargs): """ Initialize a new instance of ServiceTier :param scope: The scope of this construct. :param stack_id: The ID of this construct. :param props: The properties for this construct. :param kwargs: Any kwargs that need to be passed on to the parent class. """ super().__init__(scope, stack_id, **kwargs) # Our self-signed root CA certificate for the internal endpoints in the farm. self.root_ca = X509CertificatePem( self, 'RootCA', subject=DistinguishedName( cn='SampleRootCA' ) )
2.046875
2
sdk/python/pulumi_google_native/file/v1beta1/get_instance.py
AaronFriel/pulumi-google-native
44
12781755
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetInstanceResult', 'AwaitableGetInstanceResult', 'get_instance', 'get_instance_output', ] @pulumi.output_type class GetInstanceResult: def __init__(__self__, create_time=None, description=None, etag=None, file_shares=None, kms_key_name=None, labels=None, name=None, networks=None, satisfies_pzs=None, state=None, status_message=None, suspension_reasons=None, tier=None): if create_time and not isinstance(create_time, str): raise TypeError("Expected argument 'create_time' to be a str") pulumi.set(__self__, "create_time", create_time) if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if file_shares and not isinstance(file_shares, list): raise TypeError("Expected argument 'file_shares' to be a list") pulumi.set(__self__, "file_shares", file_shares) if kms_key_name and not isinstance(kms_key_name, str): raise TypeError("Expected argument 'kms_key_name' to be a str") pulumi.set(__self__, "kms_key_name", kms_key_name) if labels and not isinstance(labels, dict): raise TypeError("Expected argument 'labels' to be a dict") pulumi.set(__self__, "labels", labels) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if networks and not isinstance(networks, list): raise TypeError("Expected argument 'networks' to be a list") pulumi.set(__self__, "networks", networks) if satisfies_pzs and not isinstance(satisfies_pzs, bool): raise TypeError("Expected argument 'satisfies_pzs' to be a bool") pulumi.set(__self__, "satisfies_pzs", satisfies_pzs) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if status_message and not isinstance(status_message, str): raise TypeError("Expected argument 'status_message' to be a str") pulumi.set(__self__, "status_message", status_message) if suspension_reasons and not isinstance(suspension_reasons, list): raise TypeError("Expected argument 'suspension_reasons' to be a list") pulumi.set(__self__, "suspension_reasons", suspension_reasons) if tier and not isinstance(tier, str): raise TypeError("Expected argument 'tier' to be a str") pulumi.set(__self__, "tier", tier) @property @pulumi.getter(name="createTime") def create_time(self) -> str: """ The time when the instance was created. """ return pulumi.get(self, "create_time") @property @pulumi.getter def description(self) -> str: """ The description of the instance (2048 characters or less). """ return pulumi.get(self, "description") @property @pulumi.getter def etag(self) -> str: """ Server-specified ETag for the instance resource to prevent simultaneous updates from overwriting each other. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="fileShares") def file_shares(self) -> Sequence['outputs.FileShareConfigResponse']: """ File system shares on the instance. For this version, only a single file share is supported. """ return pulumi.get(self, "file_shares") @property @pulumi.getter(name="kmsKeyName") def kms_key_name(self) -> str: """ KMS key name used for data encryption. """ return pulumi.get(self, "kms_key_name") @property @pulumi.getter def labels(self) -> Mapping[str, str]: """ Resource labels to represent user provided metadata. """ return pulumi.get(self, "labels") @property @pulumi.getter def name(self) -> str: """ The resource name of the instance, in the format `projects/{project_id}/locations/{location_id}/instances/{instance_id}`. """ return pulumi.get(self, "name") @property @pulumi.getter def networks(self) -> Sequence['outputs.NetworkConfigResponse']: """ VPC networks to which the instance is connected. For this version, only a single network is supported. """ return pulumi.get(self, "networks") @property @pulumi.getter(name="satisfiesPzs") def satisfies_pzs(self) -> bool: """ Reserved for future use. """ return pulumi.get(self, "satisfies_pzs") @property @pulumi.getter def state(self) -> str: """ The instance state. """ return pulumi.get(self, "state") @property @pulumi.getter(name="statusMessage") def status_message(self) -> str: """ Additional information about the instance state, if available. """ return pulumi.get(self, "status_message") @property @pulumi.getter(name="suspensionReasons") def suspension_reasons(self) -> Sequence[str]: """ field indicates all the reasons the instance is in "SUSPENDED" state. """ return pulumi.get(self, "suspension_reasons") @property @pulumi.getter def tier(self) -> str: """ The service tier of the instance. """ return pulumi.get(self, "tier") class AwaitableGetInstanceResult(GetInstanceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetInstanceResult( create_time=self.create_time, description=self.description, etag=self.etag, file_shares=self.file_shares, kms_key_name=self.kms_key_name, labels=self.labels, name=self.name, networks=self.networks, satisfies_pzs=self.satisfies_pzs, state=self.state, status_message=self.status_message, suspension_reasons=self.suspension_reasons, tier=self.tier) def get_instance(instance_id: Optional[str] = None, location: Optional[str] = None, project: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetInstanceResult: """ Gets the details of a specific instance. """ __args__ = dict() __args__['instanceId'] = instance_id __args__['location'] = location __args__['project'] = project if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('google-native:file/v1beta1:getInstance', __args__, opts=opts, typ=GetInstanceResult).value return AwaitableGetInstanceResult( create_time=__ret__.create_time, description=__ret__.description, etag=__ret__.etag, file_shares=__ret__.file_shares, kms_key_name=__ret__.kms_key_name, labels=__ret__.labels, name=__ret__.name, networks=__ret__.networks, satisfies_pzs=__ret__.satisfies_pzs, state=__ret__.state, status_message=__ret__.status_message, suspension_reasons=__ret__.suspension_reasons, tier=__ret__.tier) @_utilities.lift_output_func(get_instance) def get_instance_output(instance_id: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetInstanceResult]: """ Gets the details of a specific instance. """ ...
1.742188
2
examples/retirement_accumulation.py
nheske/stocker
7
12781756
#!/usr/bin/env python3 # Include the directory up in the path: import sys sys.path.insert(0,'..') # Import stocker: import stocker # Main: if __name__== "__main__": # Let's save in a combination of stocks and bonds for retirement. Weight the # initial portfolio towards 100% stocks for 15 years, weighted 70% US and # 30% international. We will contribute 15000 annually with a 2% increase # in that contribution annually. Assume the default inflation rate of 3.5%. all_stocks_portfolio = stocker.Portfolio( name="Stocks", \ value=0.0, \ positions=[stocker.US_Stocks(), stocker.International_Stocks()], \ weights=[7, 3] ) all_stocks_phase = stocker.Scenario( name="Initial Accumulation", \ portfolio=all_stocks_portfolio, \ num_years=15, \ annual_contribution=16000, \ annual_contribution_increase_perc=2.0 ) # The next phase of our retirement accumulation will start at 100% stocks # but gradually transition to a 50/50 stocks/bonds portfolio by retirement. # This phase consists of 20 years more accumulation, with an annual contribution # of 20k, increasing 2% each year. end_weights = [7, 3, 7, 3] stocks_and_bonds_portfolio = stocker.Portfolio( name="Stocks and Bonds", \ positions=[stocker.US_Stocks(), stocker.International_Stocks(), stocker.US_Bonds(), stocker.International_Bonds()], \ weights=[7, 3, 0, 0] ) stocks_and_bonds_phase = stocker.Scenario( name="Secondary Accumulation", \ portfolio=stocks_and_bonds_portfolio, \ num_years=15, \ annual_contribution=20000, \ annual_contribution_increase_perc=2.0, \ end_weights=end_weights ) # Combine these two accumulation phases together using a piecewise scenario: retirement_accumulation = stocker.Piecewise_Scenario("Retirement Accumulation", [all_stocks_phase, stocks_and_bonds_phase]) # Run the savings scenario once and print and plot the results: retirement_accumulation.run() print(retirement_accumulation.results()) retirement_accumulation.plot(smooth=False) # Run a monte carlo simulation of this scenario with 400 iterations: mc = stocker.Monte_Carlo(retirement_accumulation) mc.run(n=400) # Print the results of the monte carlo simulation, showing the probablility # of hitting a 1M dollar accumulation goal: print(mc.results(goal=1000000)) # Create the monte carlo plots: mc.histogram() mc.plot(smooth=True) # Show all the stocker plots: stocker.show_plots()
3.03125
3
module2-sql-for-analysis/insert_titanic.py
ameralhomdy/DS-Unit-3-Sprint-2-SQL-and-Databases
0
12781757
<filename>module2-sql-for-analysis/insert_titanic.py import psycopg2 import pandas as pd import sqlite3 import helper from settings import secrets def load_dataset(fpath, verbose=False): df = pd.read_csv(fpath) df['Name'] = df['Name'].str.replace("'", "") if verbose: print('Shape is: ', df.shape) print('-'*80) print('Pandas Data Frame') print(df.head()) print('-'*80, '\n') return df def main(): # Load titanic data set to dataframe print('Loading dataset...') titanic = load_dataset('titanic.csv', verbose=True) print('-'*80, '\n') # Convert CSV to SQLite database print('------------------( ETL ) CSV to SQLite ------------------') print('Converting...') db_file = 'titanic.sqlite3' sql_conn = helper.create_connection(db_file) titanic.to_sql('titanic', sql_conn, if_exists='replace', index_label='id') print('Done') # Print rows from the SQlite database titanic table print('------------------ TITANIC DATAFRAME 10 ROWS ------------------') query = "SELECT * FROM titanic" passengers = helper.select_all_query(db_file, query) df = pd.read_sql(query, sql_conn) print(df.head()) print('-'*80, '\n') # Print data type of SQLite titanic table print('------------------ DATA TYPE OF TITANIC TABLE ------------------') query = 'PRAGMA table_info(titanic);' df = pd.read_sql(query, sql_conn) print(df) print('-'*80, '\n') # Connect to Postgre SQL database in Elephant SQl Server dbname = secrets.get('dbname') user = secrets.get('user') password = <PASSWORD>('password') host = secrets.get('host') print('------------------( ETL ) SQLite to PostgreSQL ------------------') print(f'Connecting to {dbname}') print(f'Host is: {host}') try: pg_conn = psycopg2.connect(dbname=dbname, user=user, password=password, host=host) except: print("I am unable to connect to the database") # Create Cursor pg_curs = pg_conn.cursor() # Drop table if exists pg_curs.execute("DROP TABLE IF EXISTS titanic") pg_conn.commit() # Create titanic table in PostgreSQL create_titanic_table = """ CREATE TABLE titanic ( passenger_id SERIAL PRIMARY KEY, survived INT, pclass INT, name VARCHAR(200), sex VARCHAR(20), age REAL, siblings_spouses INT, parents_children INT, fare REAL ) """ pg_curs.execute(create_titanic_table) pg_conn.commit() for passenger in passengers: insert_passenger = """INSERT INTO titanic (passenger_id, survived, pclass, name, sex, age, siblings_spouses, parents_children, fare) VALUES """ + str(passenger) + ';' pg_curs.execute(insert_passenger) # print(insert_passenger) pg_conn.commit() # Print rows from the Postgres titanic table print('------------------ TITANIC DATAFRAME 10 ROWS ------------------') query = "SELECT * FROM titanic LIMIT 10;" passengers = helper.select_all_query(db_file, query) df = pd.read_sql(query, pg_conn) print(df.head()) print('-'*80, '\n') if __name__ == "__main__": main()
3.375
3
zktx/storage.py
wenbobuaa/pykit
0
12781758
#!/usr/bin/env python # coding: utf-8 import logging from pykit import rangeset from pykit import txutil from .accessor import KeyValue from .accessor import Value from .status import COMMITTED from .status import PURGED from .status import STATUS logger = logging.getLogger(__name__) class StorageHelper(object): max_value_history = 16 # keeps the last n modifications in a record max_journal_history = 1024 # keeps the last n committed journal conflicterror = None def apply_record(self, txid, key, value): # the data in underlying storage is multi-version record: # [ # [<txid>, <value>] # [<txid>, <value>] # ... # ] for curr in txutil.cas_loop(self.record.get, self.record.set_or_create, args=(key, ), conflicterror=self.conflicterror): max_txid = curr.v[-1][0] if max_txid >= txid: return False curr.v.append((txid, value)) while len(curr.v) > self.max_value_history: curr.v.pop(0) return True def add_to_txidset(self, status, txid): if status not in STATUS: raise KeyError('invalid status: ' + repr(status)) logger.info('add {status}:{txid}' ' to txidset'.format( status=status, txid=txid)) for curr in txutil.cas_loop(self.txidset.get, self.txidset.set, conflicterror=self.conflicterror): for st in STATUS: if st not in curr.v: curr.v[st] = rangeset.RangeSet([]) curr.v[status].add([txid, txid + 1]) self.purge(curr.v) def purge(self, sets): topurge = rangeset.RangeSet() committed = sets[COMMITTED] l = committed.length() while l > self.max_journal_history: first = committed[0] # a range contains a single txid r = rangeset.RangeSet([[first[0], first[0] + 1]]) topurge.add(r[0]) committed = rangeset.substract(committed, r) l -= 1 for rng in topurge: for txid in range(rng[0], rng[1]): self.journal.safe_delete(txid) sets[PURGED] = rangeset.union(sets[PURGED], topurge) sets[COMMITTED] = rangeset.substract(sets[COMMITTED], topurge) class Storage(StorageHelper): record = KeyValue() journal = KeyValue() txidset = Value() def acquire_key_loop(self, txid, key): raise TypeError('unimplemented') def try_release_key(self, txid, key): raise TypeError('unimplemented')
2.328125
2
tests/avalon_test_framework/tests/work_order_tests/test_submit_getresult.py
jinengandhi-intel/avalon
0
12781759
<gh_stars>0 import pytest import logging from src.libs.avalon_test_base import AvalonBase from src.libs.verification_libs \ import verify_test, check_negative_test_responses,\ validate_response_code from src.libs.pre_processing_libs \ import ResultStatus from conftest import env logger = logging.getLogger(__name__) @pytest.mark.usefixtures("setup_teardown") class TestClass(): test_obj = AvalonBase() pytestmark = pytest.mark.setup_teardown_data( test_obj, "WorkOrderGetResult") @pytest.mark.listener @pytest.mark.sdk @pytest.mark.proxy def test_workordergetresult_success(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( verify_test( result_response, 0, self.test_obj.setup_output['pre_test_output'], self.test_obj.setup_output['pre_test_workorder_output']) is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_workorderid_different(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( check_negative_test_responses( result_response, "Invalid work order Id") is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_workorderid_specialchar(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( check_negative_test_responses( result_response, "Invalid work order Id") is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_workorderid_null(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( check_negative_test_responses( result_response, "Invalid work order Id") is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_workorderid_nonhexstring(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( check_negative_test_responses( result_response, "Work order Id not found in the database. " "Hence invalid parameter") is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_workorderid_alphabetsonly(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( check_negative_test_responses( result_response, "Invalid work order Id") is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_workorderid_withoutquotes(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert ( check_negative_test_responses( result_response, "Invalid work order Id") is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_emptyparameter(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert (validate_response_code(result_response, 2) is ResultStatus.SUCCESS.value) @pytest.mark.sdk @pytest.mark.proxy @pytest.mark.listener def test_workordergetresult_unknownparameter(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file']) assert (validate_response_code(result_response, 2) is ResultStatus.SUCCESS.value) @pytest.mark.listener def test_workordergetresult_workorderId_empty(self): result_response = self.test_obj.run_test( env['work_order_getresult_input_file'], direct_avalon_listener=True) assert ( check_negative_test_responses( result_response, "Invalid work order Id") is ResultStatus.SUCCESS.value)
2.1875
2
ioutracker/dataloaders/MOTDataLoader.py
jiankaiwang/ioutracker
3
12781760
# -*- coding: utf-8 -*- """ @author: jiankaiwang @version: 0.0.1 @date: 2020/03 @desc: The script implements the data loader of the MOT challenge. @note: Style: pylint_2015 @reference: """ import os import logging import pandas as pd import requests import tqdm import zipfile import argparse # In[] MOT_ID_LABEL = {1: "Pedestrian", 7: "Static_Person"} MOT_LABEL_ID = {"Pedestrian": 1, "Static_Person": 7} # In[]: def formatBBoxAndVis(dataframe, is_dict=False): """formatBBoxAndVis keeps the bbox information and its visibility per frames. Args: dataframe: the pandas data frame is_dict: using the frame id as the key in the dictionary Returns: frameBBoxes: a list conserves person detection results that each one is a list in which contains [x1, y1, width, height, visible], visible also represents the probability or confident score of the object """ frameBBoxes = [] fids = list(dataframe["fid"].unique()) for fid in fids: tmp = dataframe[dataframe["fid"] == fid] frameBBoxes.append(tmp[["bX", "bY", "bW", "bH", "visible"]].values.tolist()) if is_dict: return dict(zip(fids, frameBBoxes)) return frameBBoxes # In[] def formatForMetrics(dataframe, is_dict=False): """formatForMetrics keeps the bbox information, its visibility and uid per frames. Args: dataframe: the pandas data frame is_dict: using the frame id as the key in the dictionary Returns: frameBBoxes: a list conserves person detection results that each one is a list in which contains [x1, y1, width, height, visible, uid], visible also represents the probability or confident score of the object """ frameBBoxes = [] fids = list(dataframe["fid"].unique()) for fid in fids: tmp = dataframe[dataframe["fid"] == fid] frameBBoxes.append(tmp[["bX", "bY", "bW", "bH", "visible", "uid"]].values.tolist()) if is_dict: return dict(zip(fids, frameBBoxes)) return frameBBoxes # In[] def maybeDownload(name="mot17det", src=None, target=os.path.join("/","tmp"), uncompressed=True): """maybeDownload: Maybe download the MOT17Det dataset from the official datasets to the local. Args: name (primary): the dataset name src: the source URL, select one of the name and src target: the local directory uncompressed: whether to compress the downloaded file Return: status: 0 (success) or Exception (failed) """ assert os.path.exists(target), "No such folder exists." if name or (not src): availableURL = {"mot17det": ["https://motchallenge.net/data/MOT17DetLabels.zip", "https://motchallenge.net/data/MOT17Det.zip"]} if name not in list(availableURL.keys()): raise ValueError("Available datasets: {}".format(list(availableURL.keys()))) src = availableURL["mot17det"] logging.info("Download source: {}".format(src)) if type(src) == str: src = [src] for urlIdx in tqdm.trange(len(src)): url = src[urlIdx] fname = os.path.basename(url) folderName, fileType = fname.split('.') # the compressed file path filePath = os.path.join(target, fname) # download the compressed first if os.path.exists(filePath): logging.warning("{} existed.".format(filePath)) else: logging.warning("Downloading {} ...".format(url)) # change to wget tool on the shell res = requests.get(url, allow_redirects=True) if res.status_code != 200: logging.error("Download {} failed.".format(url)) continue with open(filePath, "wb") as fout: fout.write(res.content) # uncompress the file if uncompressed: uncompPath = os.path.join(target, folderName) assert not os.path.exists(uncompPath), \ "The folder {} exists. Please delete it first.".format(uncompPath) try: os.mkdir(uncompPath) logging.warning("Created a folder {}.".format(uncompPath)) except Exception as e: raise Exception("Can't create the folder {}. ({})".format(uncompPath, e)) allowedCompressedType = ["zip"] if fileType not in allowedCompressedType: raise ValueError("Available compressed type: {}".format(allowedCompressedType)) if fileType == "zip": with zipfile.ZipFile(filePath, 'r') as fin: fin.extractall(uncompPath) logging.warning("Compressed to folder {}.".format(uncompPath)) return 0 # In[]: def loadLabel(src, is_path=True, load_Pedestrian=True, load_Static_Person=True, visible_thresholde=0, format_style="onlybbox"): """LoadLabel: Load a label file in the csv format. Args: src: the MOT label file path (available when is_path is True) is_path: True or False for whether the src is the file path or not load_Pedestrian: whether to load the pedestrian data or not load_Static_Person: whether to load the statuc person data or not visible_thresholde: the threshold for filtering the invisible person data format_style: provides different styles in the lists, "onlybbox" (func: formatBBoxAndVis), "onlybbox_dict" (func: formatBBoxAndVis), "metrics" (func: formatForMetrics), "metrics_dict" (func: formatForMetrics) Returns: objects_in_frames: a list contains the person detection information per frames """ df = src if is_path: df = pd.read_csv(src, header=None) df.columns = ["fid", "uid", "bX", "bY", "bW", "bH", "conf", "class", "visible"] df_persons = df[((df["class"] == MOT_LABEL_ID["Pedestrian"]) & load_Pedestrian) | \ ((df["class"] == MOT_LABEL_ID["Static_Person"]) & load_Static_Person)] if visible_thresholde: df_persons = df_persons[df_persons["visible"] >= visible_thresholde] if format_style[:8] == "onlybbox": if format_style[-4:] == "dict": return formatBBoxAndVis(df_persons, is_dict=True), df_persons else: # format_style == "onlybbox" return formatBBoxAndVis(df_persons), df_persons elif format_style[:7] == "metrics": if format_style[-4:] == "dict": return formatForMetrics(df_persons, is_dict=True), df_persons else: # format_style == "onlybbox" return formatForMetrics(df_persons), df_persons # In[] if __name__ == "__main__": logging.basicConfig(level=logging.INFO) # parsing args for maybeDownload parser = argparse.ArgumentParser() parser.add_argument("--name", type=str, default="mot17det") parser.add_argument("--src", type=str, default=None) parser.add_argument("--target", type=str, default="/tmp") parser.add_argument("--uncompressed", type=int, default=1) args = parser.parse_args() maybeDownload(name=args.name)
2.6875
3
main.py
Genzo4/knd-1190803
0
12781761
<reponame>Genzo4/knd-1190803 import wx from yoyo import read_migrations from yoyo import get_backend import options from logzero import logger class MainFrame(wx.Frame): def __init__(self, *args, **kwds): kwds["style"] = kwds.get("style", 0) | wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.SetSize((749, 476)) self.SetTitle("frame") self.panel_1 = wx.Panel(self, wx.ID_ANY) sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_2 = wx.BoxSizer(wx.HORIZONTAL) sizer_1.Add(sizer_2, 0, wx.EXPAND, 0) label_org = wx.StaticText(self.panel_1, wx.ID_ANY, u"Организация: ", style=wx.ALIGN_RIGHT) label_org.SetFont(wx.Font(14, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_NORMAL, wx.FONTWEIGHT_NORMAL, 0, "")) sizer_2.Add(label_org, 0, 0, 0) self.sp_org = wx.ComboBox(self.panel_1, wx.ID_ANY, choices=[], style=wx.CB_DROPDOWN) sizer_2.Add(self.sp_org, 0, 0, 0) self.b_add_org = wx.Button(self.panel_1, wx.ID_ANY, "button_1") sizer_2.Add(self.b_add_org, 0, 0, 0) self.b_del_org = wx.Button(self.panel_1, wx.ID_ANY, "button_2") sizer_2.Add(self.b_del_org, 0, 0, 0) sizer_1.Add((0, 0), 0, 0, 0) self.panel_1.SetSizer(sizer_1) self.Layout() self._apply_migrations() @staticmethod def _apply_migrations(): logger.info("Start apply migrations") backend = get_backend(options.DB_PATH) migrations = read_migrations(options.MIGRATIONS_PATH) with backend.lock(): backend.apply_migrations(backend.to_apply(migrations)) logger.info("Migrations apply") class MyApp(wx.App): def OnInit(self): self.frame = MainFrame(None, wx.ID_ANY, "") self.SetTopWindow(self.frame) self.frame.Show() return True if __name__ == "__main__": app = MyApp(0) app.MainLoop()
1.992188
2
face_pose_dataset/third_party/fsa_estimator/SSRNET_model.py
samuelbaltanas/face-pose-dataset
1
12781762
import logging import sys import numpy as np from tensorflow.keras import backend as K from tensorflow.keras import layers from tensorflow.keras.layers import ( AveragePooling2D, BatchNormalization, Conv2D, MaxPooling2D, SeparableConv2D, ) from tensorflow.keras.models import Model sys.setrecursionlimit(2 ** 20) np.random.seed(2 ** 10) class SSR_net: def __init__(self, image_size, stage_num, lambda_local, lambda_d): if K.image_dim_ordering() == "th": logging.debug("image_dim_ordering = 'th'") self._channel_axis = 1 self._input_shape = (3, image_size, image_size) else: logging.debug("image_dim_ordering = 'tf'") self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.stage_num = stage_num self.lambda_local = lambda_local self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") inputs = layers.Input(shape=self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = Conv2D(32, (3, 3))(inputs) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer1 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3))(x_layer1) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer2 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3))(x_layer2) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer3 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3))(x_layer3) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = Conv2D(16, (3, 3))(inputs) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer1 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3))(s_layer1) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer2 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3))(s_layer2) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer3 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3))(s_layer3) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = Conv2D(10, (1, 1), activation="relu")(s) s_layer4 = layers.Flatten()(s_layer4) s_layer4_mix = layers.Dropout(0.2)(s_layer4) s_layer4_mix = layers.Dense(units=self.stage_num[0], activation="relu")( s_layer4_mix ) x_layer4 = Conv2D(10, (1, 1), activation="relu")(x) x_layer4 = layers.Flatten()(x_layer4) x_layer4_mix = layers.Dropout(0.2)(x_layer4) x_layer4_mix = layers.Dense(units=self.stage_num[0], activation="relu")( x_layer4_mix ) feat_a_s1_pre = layers.Multiply()([s_layer4, x_layer4]) delta_s1 = layers.Dense(1, activation="tanh", name="delta_s1")(feat_a_s1_pre) feat_a_s1 = layers.Multiply()([s_layer4_mix, x_layer4_mix]) feat_a_s1 = layers.Dense(2 * self.stage_num[0], activation="relu")(feat_a_s1) pred_a_s1 = layers.Dense( units=self.stage_num[0], activation="relu", name="pred_age_stage1" )(feat_a_s1) # feat_local_s1 = layers.Lambda(lambda x: x/10)(feat_a_s1) # feat_a_s1_local = Dropout(0.2)(pred_a_s1) local_s1 = layers.Dense( units=self.stage_num[0], activation="tanh", name="local_delta_stage1", )(feat_a_s1) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = Conv2D(10, (1, 1), activation="relu")(s_layer2) s_layer2 = MaxPooling2D(4, 4)(s_layer2) s_layer2 = layers.Flatten()(s_layer2) s_layer2_mix = layers.Dropout(0.2)(s_layer2) s_layer2_mix = layers.Dense(self.stage_num[1], activation="relu")(s_layer2_mix) x_layer2 = Conv2D(10, (1, 1), activation="relu")(x_layer2) x_layer2 = AveragePooling2D(4, 4)(x_layer2) x_layer2 = layers.Flatten()(x_layer2) x_layer2_mix = layers.Dropout(0.2)(x_layer2) x_layer2_mix = layers.Dense(self.stage_num[1], activation="relu")(x_layer2_mix) feat_a_s2_pre = layers.Multiply()([s_layer2, x_layer2]) delta_s2 = layers.Dense(1, activation="tanh", name="delta_s2")(feat_a_s2_pre) feat_a_s2 = layers.Multiply()([s_layer2_mix, x_layer2_mix]) feat_a_s2 = layers.Dense(2 * self.stage_num[1], activation="relu")(feat_a_s2) pred_a_s2 = layers.Dense( units=self.stage_num[1], activation="relu", name="pred_age_stage2" )(feat_a_s2) # feat_local_s2 = layers.Lambda(lambda x: x/10)(feat_a_s2) # feat_a_s2_local = Dropout(0.2)(pred_a_s2) local_s2 = layers.Dense( units=self.stage_num[1], activation="tanh", name="local_delta_stage2", )(feat_a_s2) # ------------------------------------------------------------------------------------------------------------------------- s_layer1 = Conv2D(10, (1, 1), activation="relu")(s_layer1) s_layer1 = MaxPooling2D(8, 8)(s_layer1) s_layer1 = layers.Flatten()(s_layer1) s_layer1_mix = layers.Dropout(0.2)(s_layer1) s_layer1_mix = layers.Dense(self.stage_num[2], activation="relu")(s_layer1_mix) x_layer1 = Conv2D(10, (1, 1), activation="relu")(x_layer1) x_layer1 = AveragePooling2D(8, 8)(x_layer1) x_layer1 = layers.Flatten()(x_layer1) x_layer1_mix = layers.Dropout(0.2)(x_layer1) x_layer1_mix = layers.Dense(self.stage_num[2], activation="relu")(x_layer1_mix) feat_a_s3_pre = layers.Multiply()([s_layer1, x_layer1]) delta_s3 = layers.Dense(1, activation="tanh", name="delta_s3")(feat_a_s3_pre) feat_a_s3 = layers.Multiply()([s_layer1_mix, x_layer1_mix]) feat_a_s3 = layers.Dense(2 * self.stage_num[2], activation="relu")(feat_a_s3) pred_a_s3 = layers.Dense( units=self.stage_num[2], activation="relu", name="pred_age_stage3" )(feat_a_s3) # feat_local_s3 = layers.Lambda(lambda x: x/10)(feat_a_s3) # feat_a_s3_local = Dropout(0.2)(pred_a_s3) local_s3 = layers.Dense( units=self.stage_num[2], activation="tanh", name="local_delta_stage3", )(feat_a_s3) # ------------------------------------------------------------------------------------------------------------------------- def merge_age(x, s1, s2, s3, lambda_local, lambda_d): a = x[0][:, 0] * 0 b = x[0][:, 0] * 0 c = x[0][:, 0] * 0 # A = s1 * s2 * s3 V = 101 for i in range(0, s1): a = a + (i + lambda_local * x[6][:, i]) * x[0][:, i] a = K.expand_dims(a, -1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j + lambda_local * x[7][:, j]) * x[1][:, j] b = K.expand_dims(b, -1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k + lambda_local * x[8][:, k]) * x[2][:, k] c = K.expand_dims(c, -1) c = ( c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) ) age = (a + b + c) * V return age pred_a = layers.Lambda( merge_age, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_local": self.lambda_local, "lambda_d": self.lambda_d, }, name="pred_a", )( [ pred_a_s1, pred_a_s2, pred_a_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = Model(inputs=inputs, outputs=pred_a) return model class SSR_net_general: def __init__(self, image_size, stage_num, lambda_local, lambda_d): if K.image_dim_ordering() == "th": logging.debug("image_dim_ordering = 'th'") self._channel_axis = 1 self._input_shape = (3, image_size, image_size) else: logging.debug("image_dim_ordering = 'tf'") self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.stage_num = stage_num self.lambda_local = lambda_local self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") inputs = layers.Input(shape=self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = Conv2D(32, (3, 3))(inputs) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer1 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3))(x_layer1) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer2 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3))(x_layer2) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer3 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3))(x_layer3) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = Conv2D(16, (3, 3))(inputs) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer1 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3))(s_layer1) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer2 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3))(s_layer2) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer3 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3))(s_layer3) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = Conv2D(10, (1, 1), activation="relu")(s) s_layer4 = layers.Flatten()(s_layer4) s_layer4_mix = layers.Dropout(0.2)(s_layer4) s_layer4_mix = layers.Dense(units=self.stage_num[0], activation="relu")( s_layer4_mix ) x_layer4 = Conv2D(10, (1, 1), activation="relu")(x) x_layer4 = layers.Flatten()(x_layer4) x_layer4_mix = layers.Dropout(0.2)(x_layer4) x_layer4_mix = layers.Dense(units=self.stage_num[0], activation="relu")( x_layer4_mix ) feat_s1_pre = layers.Multiply()([s_layer4, x_layer4]) delta_s1 = layers.Dense(1, activation="tanh", name="delta_s1")(feat_s1_pre) feat_s1 = layers.Multiply()([s_layer4_mix, x_layer4_mix]) feat_s1 = layers.Dense(2 * self.stage_num[0], activation="relu")(feat_s1) pred_s1 = layers.Dense( units=self.stage_num[0], activation="relu", name="pred_stage1" )(feat_s1) local_s1 = layers.Dense( units=self.stage_num[0], activation="tanh", name="local_delta_stage1", )(feat_s1) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = Conv2D(10, (1, 1), activation="relu")(s_layer2) s_layer2 = MaxPooling2D(4, 4)(s_layer2) s_layer2 = layers.Flatten()(s_layer2) s_layer2_mix = layers.Dropout(0.2)(s_layer2) s_layer2_mix = layers.Dense(self.stage_num[1], activation="relu")(s_layer2_mix) x_layer2 = Conv2D(10, (1, 1), activation="relu")(x_layer2) x_layer2 = AveragePooling2D(4, 4)(x_layer2) x_layer2 = layers.Flatten()(x_layer2) x_layer2_mix = layers.Dropout(0.2)(x_layer2) x_layer2_mix = layers.Dense(self.stage_num[1], activation="relu")(x_layer2_mix) feat_s2_pre = layers.Multiply()([s_layer2, x_layer2]) delta_s2 = layers.Dense(1, activation="tanh", name="delta_s2")(feat_s2_pre) feat_s2 = layers.Multiply()([s_layer2_mix, x_layer2_mix]) feat_s2 = layers.Dense(2 * self.stage_num[1], activation="relu")(feat_s2) pred_s2 = layers.Dense( units=self.stage_num[1], activation="relu", name="pred_stage2" )(feat_s2) local_s2 = layers.Dense( units=self.stage_num[1], activation="tanh", name="local_delta_stage2", )(feat_s2) # ------------------------------------------------------------------------------------------------------------------------- s_layer1 = Conv2D(10, (1, 1), activation="relu")(s_layer1) s_layer1 = MaxPooling2D(8, 8)(s_layer1) s_layer1 = layers.Flatten()(s_layer1) s_layer1_mix = layers.Dropout(0.2)(s_layer1) s_layer1_mix = layers.Dense(self.stage_num[2], activation="relu")(s_layer1_mix) x_layer1 = Conv2D(10, (1, 1), activation="relu")(x_layer1) x_layer1 = AveragePooling2D(8, 8)(x_layer1) x_layer1 = layers.Flatten()(x_layer1) x_layer1_mix = layers.Dropout(0.2)(x_layer1) x_layer1_mix = layers.Dense(self.stage_num[2], activation="relu")(x_layer1_mix) feat_s3_pre = layers.Multiply()([s_layer1, x_layer1]) delta_s3 = layers.Dense(1, activation="tanh", name="delta_s3")(feat_s3_pre) feat_s3 = layers.Multiply()([s_layer1_mix, x_layer1_mix]) feat_s3 = layers.Dense(2 * self.stage_num[2], activation="relu")(feat_s3) pred_s3 = layers.Dense( units=self.stage_num[2], activation="relu", name="pred_stage3" )(feat_s3) local_s3 = layers.Dense( units=self.stage_num[2], activation="tanh", name="local_delta_stage3", )(feat_s3) # ------------------------------------------------------------------------------------------------------------------------- def SSR_module(x, s1, s2, s3, lambda_local, lambda_d): a = x[0][:, 0] * 0 b = x[0][:, 0] * 0 c = x[0][:, 0] * 0 V = 1 for i in range(0, s1): a = a + (i + lambda_local * x[6][:, i]) * x[0][:, i] a = K.expand_dims(a, -1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j + lambda_local * x[7][:, j]) * x[1][:, j] b = K.expand_dims(b, -1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k + lambda_local * x[8][:, k]) * x[2][:, k] c = K.expand_dims(c, -1) c = ( c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) ) out = (a + b + c) * V return out pred = layers.Lambda( SSR_module, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_local": self.lambda_local, "lambda_d": self.lambda_d, }, name="pred", )( [ pred_s1, pred_s2, pred_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = Model(inputs=inputs, outputs=pred) return model class SSR_net_MT: def __init__(self, image_size, num_classes, stage_num, lambda_d): if K.image_dim_ordering() == "th": logging.debug("image_dim_ordering = 'th'") self._channel_axis = 1 self._input_shape = (3, image_size, image_size) else: logging.debug("image_dim_ordering = 'tf'") self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.num_classes = num_classes self.stage_num = stage_num self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") img_inputs = layers.Input(self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = SeparableConv2D(16, (3, 3), padding="same")(img_inputs) x = BatchNormalization(axis=-1)(x) x = layers.Activation("relu")(x) x_layer1 = AveragePooling2D((2, 2))(x) x = SeparableConv2D(32, (3, 3), padding="same")(x_layer1) x = BatchNormalization(axis=-1)(x) x = layers.Activation("relu")(x) x = SeparableConv2D(32, (3, 3), padding="same")(x) x = BatchNormalization(axis=-1)(x) x = layers.Activation("relu")(x) x_layer2 = AveragePooling2D((2, 2))(x) x = SeparableConv2D(64, (3, 3), padding="same")(x_layer2) x = BatchNormalization(axis=-1)(x) x = layers.Activation("relu")(x) x = SeparableConv2D(64, (3, 3), padding="same")(x) x = BatchNormalization(axis=-1)(x) x = layers.Activation("relu")(x) x_layer3 = AveragePooling2D((2, 2))(x) x = SeparableConv2D(128, (3, 3), padding="same")(x_layer3) x = BatchNormalization(axis=-1)(x) x = layers.Activation("relu")(x) x = SeparableConv2D(128, (3, 3), padding="same")(x) x = BatchNormalization(axis=-1)(x) x_layer4 = layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = SeparableConv2D(16, (3, 3), padding="same")(img_inputs) s = BatchNormalization(axis=-1)(s) s = layers.Activation("tanh")(s) s_layer1 = MaxPooling2D((2, 2))(s) s = SeparableConv2D(32, (3, 3), padding="same")(s_layer1) s = BatchNormalization(axis=-1)(s) s = layers.Activation("tanh")(s) s = SeparableConv2D(32, (3, 3), padding="same")(s) s = BatchNormalization(axis=-1)(s) s = layers.Activation("tanh")(s) s_layer2 = MaxPooling2D((2, 2))(s) s = SeparableConv2D(64, (3, 3), padding="same")(s_layer2) s = BatchNormalization(axis=-1)(s) s = layers.Activation("tanh")(s) s = SeparableConv2D(64, (3, 3), padding="same")(s) s = BatchNormalization(axis=-1)(s) s = layers.Activation("tanh")(s) s_layer3 = MaxPooling2D((2, 2))(s) s = SeparableConv2D(128, (3, 3), padding="same")(s_layer3) s = BatchNormalization(axis=-1)(s) s = layers.Activation("tanh")(s) s = SeparableConv2D(128, (3, 3), padding="same")(s) s = BatchNormalization(axis=-1)(s) s_layer4 = layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = Conv2D(64, (1, 1), activation="tanh")(s_layer4) s_layer4 = MaxPooling2D((2, 2))(s_layer4) x_layer4 = Conv2D(64, (1, 1), activation="relu")(x_layer4) x_layer4 = AveragePooling2D((2, 2))(x_layer4) feat_s1_pre = layers.Multiply()([s_layer4, x_layer4]) feat_s1_pre = layers.Flatten()(feat_s1_pre) feat_delta_s1 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) delta_s1 = layers.Dense(self.num_classes, activation="tanh", name="delta_s1")( feat_delta_s1 ) feat_local_s1 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) local_s1 = layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage1" )(feat_local_s1) feat_pred_s1 = layers.Dense( self.stage_num[0] * self.num_classes, activation="relu" )(feat_s1_pre) pred_a_s1 = layers.Reshape((self.num_classes, self.stage_num[0]))(feat_pred_s1) # ------------------------------------------------------------------------------------------------------------------------- s_layer3 = Conv2D(64, (1, 1), activation="tanh")(s_layer3) s_layer3 = MaxPooling2D((2, 2))(s_layer3) x_layer3 = Conv2D(64, (1, 1), activation="relu")(x_layer3) x_layer3 = AveragePooling2D((2, 2))(x_layer3) feat_s2_pre = layers.Multiply()([s_layer3, x_layer3]) feat_s2_pre = layers.Flatten()(feat_s2_pre) feat_delta_s2 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) delta_s2 = layers.Dense(self.num_classes, activation="tanh", name="delta_s2")( feat_delta_s2 ) feat_local_s2 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) local_s2 = layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage2" )(feat_local_s2) feat_pred_s2 = layers.Dense( self.stage_num[1] * self.num_classes, activation="relu" )(feat_s2_pre) pred_a_s2 = layers.Reshape((self.num_classes, self.stage_num[1]))(feat_pred_s2) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = Conv2D(64, (1, 1), activation="tanh")(s_layer2) s_layer2 = MaxPooling2D((2, 2))(s_layer2) x_layer2 = Conv2D(64, (1, 1), activation="relu")(x_layer2) x_layer2 = AveragePooling2D((2, 2))(x_layer2) feat_s3_pre = layers.Multiply()([s_layer2, x_layer2]) feat_s3_pre = layers.Flatten()(feat_s3_pre) feat_delta_s3 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) delta_s3 = layers.Dense(self.num_classes, activation="tanh", name="delta_s3")( feat_delta_s3 ) feat_local_s3 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) local_s3 = layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage3" )(feat_local_s3) feat_pred_s3 = layers.Dense( self.stage_num[2] * self.num_classes, activation="relu" )(feat_s3_pre) pred_a_s3 = layers.Reshape((self.num_classes, self.stage_num[2]))(feat_pred_s3) # ------------------------------------------------------------------------------------------------------------------------- def SSR_module(x, s1, s2, s3, lambda_d): a = x[0][:, :, 0] * 0 b = x[0][:, :, 0] * 0 c = x[0][:, :, 0] * 0 di = s1 // 2 dj = s2 // 2 dk = s3 // 2 V = 99 # lambda_d = 0.9 for i in range(0, s1): a = a + (i - di + x[6]) * x[0][:, :, i] # a = K.expand_dims(a,-1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j - dj + x[7]) * x[1][:, :, j] # b = K.expand_dims(b,-1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k - dk + x[8]) * x[2][:, :, k] # c = K.expand_dims(c,-1) c = ( c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) ) pred = (a + b + c) * V return pred pred_pose = layers.Lambda( SSR_module, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_d": self.lambda_d, }, name="pred_pose", )( [ pred_a_s1, pred_a_s2, pred_a_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = Model(inputs=img_inputs, outputs=pred_pose) return model class SSR_net_ori_MT: def __init__(self, image_size, num_classes, stage_num, lambda_d): if K.image_dim_ordering() == "th": logging.debug("image_dim_ordering = 'th'") self._channel_axis = 1 self._input_shape = (3, image_size, image_size) else: logging.debug("image_dim_ordering = 'tf'") self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.num_classes = num_classes self.stage_num = stage_num self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") img_inputs = layers.Input(self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = Conv2D(32, (3, 3), padding="same")(img_inputs) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer1 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3), padding="same")(x_layer1) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer2 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3), padding="same")(x_layer2) x = BatchNormalization(axis=self._channel_axis)(x) x = layers.Activation("relu")(x) x_layer3 = AveragePooling2D(2, 2)(x) x = Conv2D(32, (3, 3), padding="same")(x_layer3) x = BatchNormalization(axis=self._channel_axis)(x) x_layer4 = layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = Conv2D(16, (3, 3), padding="same")(img_inputs) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer1 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3), padding="same")(s_layer1) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer2 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3), padding="same")(s_layer2) s = BatchNormalization(axis=self._channel_axis)(s) s = layers.Activation("tanh")(s) s_layer3 = MaxPooling2D(2, 2)(s) s = Conv2D(16, (3, 3), padding="same")(s_layer3) s = BatchNormalization(axis=self._channel_axis)(s) s_layer4 = layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = Conv2D(64, (1, 1), activation="tanh")(s_layer4) s_layer4 = MaxPooling2D((2, 2))(s_layer4) x_layer4 = Conv2D(64, (1, 1), activation="relu")(x_layer4) x_layer4 = AveragePooling2D((2, 2))(x_layer4) feat_s1_pre = layers.Multiply()([s_layer4, x_layer4]) feat_s1_pre = layers.Flatten()(feat_s1_pre) feat_delta_s1 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) delta_s1 = layers.Dense(self.num_classes, activation="tanh", name="delta_s1")( feat_delta_s1 ) feat_local_s1 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) local_s1 = layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage1" )(feat_local_s1) feat_pred_s1 = layers.Dense( self.stage_num[0] * self.num_classes, activation="relu" )(feat_s1_pre) pred_a_s1 = layers.Reshape((self.num_classes, self.stage_num[0]))(feat_pred_s1) # ------------------------------------------------------------------------------------------------------------------------- s_layer3 = Conv2D(64, (1, 1), activation="tanh")(s_layer3) s_layer3 = MaxPooling2D((2, 2))(s_layer3) x_layer3 = Conv2D(64, (1, 1), activation="relu")(x_layer3) x_layer3 = AveragePooling2D((2, 2))(x_layer3) feat_s2_pre = layers.Multiply()([s_layer3, x_layer3]) feat_s2_pre = layers.Flatten()(feat_s2_pre) feat_delta_s2 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) delta_s2 = layers.Dense(self.num_classes, activation="tanh", name="delta_s2")( feat_delta_s2 ) feat_local_s2 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) local_s2 = layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage2" )(feat_local_s2) feat_pred_s2 = layers.Dense( self.stage_num[1] * self.num_classes, activation="relu" )(feat_s2_pre) pred_a_s2 = layers.Reshape((self.num_classes, self.stage_num[1]))(feat_pred_s2) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = Conv2D(64, (1, 1), activation="tanh")(s_layer2) s_layer2 = MaxPooling2D((2, 2))(s_layer2) x_layer2 = Conv2D(64, (1, 1), activation="relu")(x_layer2) x_layer2 = AveragePooling2D((2, 2))(x_layer2) feat_s3_pre = layers.Multiply()([s_layer2, x_layer2]) feat_s3_pre = layers.Flatten()(feat_s3_pre) feat_delta_s3 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) delta_s3 = layers.Dense(self.num_classes, activation="tanh", name="delta_s3")( feat_delta_s3 ) feat_local_s3 = layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) local_s3 = layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage3" )(feat_local_s3) feat_pred_s3 = layers.Dense( self.stage_num[2] * self.num_classes, activation="relu" )(feat_s3_pre) pred_a_s3 = layers.Reshape((self.num_classes, self.stage_num[2]))(feat_pred_s3) # ------------------------------------------------------------------------------------------------------------------------- def SSR_module(x, s1, s2, s3, lambda_d): a = x[0][:, :, 0] * 0 b = x[0][:, :, 0] * 0 c = x[0][:, :, 0] * 0 di = s1 // 2 dj = s2 // 2 dk = s3 // 2 V = 99 # lambda_d = 0.9 for i in range(0, s1): a = a + (i - di + x[6]) * x[0][:, :, i] # a = K.expand_dims(a,-1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j - dj + x[7]) * x[1][:, :, j] # b = K.expand_dims(b,-1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k - dk + x[8]) * x[2][:, :, k] # c = K.expand_dims(c,-1) c = ( c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) ) pred = (a + b + c) * V return pred pred_pose = layers.Lambda( SSR_module, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_d": self.lambda_d, }, name="pred_pose", )( [ pred_a_s1, pred_a_s2, pred_a_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = Model(inputs=img_inputs, outputs=pred_pose) return model
2.609375
3
python/pyo.py
dnagle-usgs/lidar-processing
1
12781763
import code import os.path import sys sys.path.append(os.path.dirname(__file__)) import alps.site yo = alps.site.yo code.interact(local=locals())
1.625
2
queue_/queue_stack.py
makar-fedorov/programming-2021-19fpl
0
12781764
""" Programming for linguists Implementation of the data structure "QueueStack" """ from typing import Iterable class QueueStack: """ Queue Data Structure from Stack """ def __init__(self, data: Iterable = None, queue_size: int = 'no_info'): if data and isinstance(data, list): self.stack = data elif not data: self.stack = [] elif data: self.stack = list(data) else: raise TypeError if isinstance(queue_size, int): self.queue_size = queue_size elif queue_size == 'no_info': self.queue_size = len(self.stack) if len(self.stack) > 0 else len(self.stack) + 1 self.stack = self.stack[::-1][:self.queue_size] def push(self, element): """ Add the element ‘element’ at the top of stack :param element: element to add to stack """ self.stack.append(element) def empty(self) -> bool: """ Return whether stack is empty or not :return: True if stack does not contain any elements False if stack contains elements """ return not self.stack def get(self): """ Remove and return an item from queue_stack """ return self.stack.pop() def put(self, element): """ Add the element ‘element’ at the end of queue_stack :param element: element to add to queue_stack """ if len(self.stack) == self.queue_size: raise ValueError self.stack.insert(0, element) def size(self) -> int: """ Return the number of elements in stack :return: Number of elements in stack """ return len(self.stack) def top(self): """ Return the element on the top of stack :return: the element that is on the top of stack """ if self.stack: return self.stack[-1] raise ValueError
4.03125
4
tk_basic_as_possible.py
alvaro-root/pa2_2021
1
12781765
""" Tkinter generic tasks 1. LOOK: Define the look of the screen 2. DO; Define the event handler routines 3. LOOK associated with DO: Associate interesting keyboard events with their handlers. 4. LISTEN: Loop forever, observing events. Exit when an exit event occurs. """ from tkinter import * # Contain top level window usually called root root = Tk() # Basic workflow: # 1. Create a GUI object and associate it with its parent # 2. Pack it or place it on grid - set up a 'geometry manager' # Keep listening for events until destroy event occurs. root.mainloop()
3.484375
3
cactus/listener/__init__.py
danielchasehooper/Cactus
1,048
12781766
<filename>cactus/listener/__init__.py import logging from cactus.listener.polling import PollingListener logger = logging.getLogger(__name__) try: from cactus.listener.mac import FSEventsListener as Listener except (ImportError, OSError): logger.debug("Failed to load FSEventsListener, falling back to PollingListener", exc_info=True) Listener = PollingListener
1.960938
2
eyws/docker.py
canelmas/eyws
2
12781767
<filename>eyws/docker.py # Copyright 2018 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from eyws import ssh def install_docker(opts, instances): for res in instances: for instance in res["Instances"]: instance_id = instance["InstanceId"] public_dns = instance["PublicDnsName"] print("installing docker on {id} ({pdns})...".format(id=instance_id, pdns=public_dns)) execute(instance, opts, "sudo apt-get update") execute(instance, opts, "sudo apt-get install apt-transport-https ca-certificates curl " "software-properties-common") execute(instance, opts, "curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -") execute(instance, opts, "sudo apt-key fingerprint 0EBFCD88") execute(instance, opts, "sudo add-apt-repository \"deb [arch=amd64] " "https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable\"") execute(instance, opts, "sudo apt-get update") execute(instance, opts, "apt-cache policy docker-ce") execute(instance, opts, "sudo apt-get install docker-ce") execute(instance, opts, "sudo usermod -aG docker $USER") execute(instance, opts, "sudo systemctl enable docker") print("docker installed on {id} ({pdns})".format(id=instance_id, pdns=public_dns)) def execute(instance, opts, cmnd): ssh(host=instance["PublicDnsName"], opts=opts, command=cmnd)
2.15625
2
tests/__init__.py
posita/modwalk
0
12781768
<filename>tests/__init__.py # -*- encoding: utf-8 -*- # ====================================================================== """ Copyright and other protections apply. Please see the accompanying :doc:`LICENSE <LICENSE>` and :doc:`CREDITS <CREDITS>` file(s) for rights and restrictions governing use of this software. All rights not expressly waived or licensed are reserved. If those files are missing or appear to be modified from their originals, then please contact the author before viewing or using this software in any capacity. """ # ====================================================================== from __future__ import absolute_import, division, print_function TYPE_CHECKING = False # from typing import TYPE_CHECKING if TYPE_CHECKING: import typing # noqa: F401 # pylint: disable=import-error,unused-import,useless-suppression from builtins import * # noqa: F401,F403 # pylint: disable=redefined-builtin,unused-wildcard-import,useless-suppression,wildcard-import from future.builtins.disabled import * # noqa: F401,F403 # pylint: disable=no-name-in-module,redefined-builtin,unused-wildcard-import,useless-suppression,wildcard-import # ---- Imports --------------------------------------------------------- import six import unittest from modwalk.main import configlogging # ---- Data ------------------------------------------------------------ __all__ = () # ---- Initialization -------------------------------------------------- # See <https://github.com/python/typeshed/issues/1874> unittest.TestCase.longMessage = True # type: ignore # py2 # Python 3 complains that the assert*Regexp* methods are deprecated in # favor of the analogous assert*Regex methods, which Python 2's unittest # doesn't have; this monkey patch fixes all that nonsense if not hasattr(unittest.TestCase, 'assertCountEqual'): setattr(unittest.TestCase, 'assertCountEqual', six.assertCountEqual) if not hasattr(unittest.TestCase, 'assertRaisesRegex'): setattr(unittest.TestCase, 'assertRaisesRegex', six.assertRaisesRegex) if not hasattr(unittest.TestCase, 'assertRegex'): setattr(unittest.TestCase, 'assertRegex', six.assertRegex) configlogging()
1.679688
2
simulation/modem/util/qam_mapper.py
jdemel/GFDM-PHY-Reference
0
12781769
<filename>simulation/modem/util/qam_mapper.py<gh_stars>0 import numpy as np import numpy as np import matplotlib as plt from commpy.utilities import bitarray2dec, dec2bitarray from itertools import product class QamMapper(): """ Creates a Quadrature Amplitude Modulation (QAM) Modem object. Modified code from commpy library """ def _constellation_symbol(self, i): return (2*i[0]-1) + (2*i[1]-1)*(1j) def __init__(self, m): """ Creates a Quadrature Amplitude Modulation (QAM) Modem object. Parameters ---------- m : int Size of the QAM constellation. """ self.m = m sqrt_m = int(np.sqrt(self.m)) self.num_bits_symbol = int(np.log2(self.m)) gray_mapping = self.bin2gray(np.arange(self.m)) mapping_array = np.arange(1, np.sqrt(self.m)+1) - (np.sqrt(self.m)/2) self.constellation = list(map(self._constellation_symbol, list(product(mapping_array, repeat=2)))) self.constellation = np.reshape(self.constellation,(sqrt_m,sqrt_m)) self.constellation = np.transpose(self.constellation) self.constellation = list(zip(*self.constellation[::-1])) self.constellation = np.transpose(self.constellation) self.constellation[1::2,::] = np.flip(self.constellation[1::2,::],1) self.constellation = np.reshape(self.constellation,m) sort_idx = np.argsort(gray_mapping) self.constellation = self.constellation[sort_idx] def modulate(self, input_bits): """ Modulate (map) an array of bits to constellation symbols. Parameters ---------- input_bits : 1D ndarray of ints Inputs bits to be modulated (mapped). Returns ------- baseband_symbols : 1D ndarray of complex floats Modulated complex symbols. """ mapfunc = np.vectorize(lambda i: self.constellation[bitarray2dec(input_bits[i:i+self.num_bits_symbol])]) baseband_symbols = mapfunc(np.arange(0, len(input_bits), self.num_bits_symbol)) return baseband_symbols def bin2gray(self,n): return n ^ (n >> 1) def demodulate(self, data): """ Demodulate (map) a set of constellation symbols to corresponding bits. Supports hard-decision demodulation only. Parameters ---------- data : 1D ndarray of complex floats Input symbols to be demodulated. Returns ------- demod_bits : 1D ndarray of ints Corresponding demodulated bits. """ index_list = map(lambda i: np.argmin(abs(data[i] - self.constellation)), range(0, len(data))) demod_bits = np.hstack(list(map(lambda i: dec2bitarray(i, self.num_bits_symbol), index_list))) return demod_bits if __name__ == "__main__": pass
2.875
3
pidf/__init__.py
jasmine125/pidf
0
12781770
# This page intentionally left blank
0.765625
1
temboo/core/Library/DataGov/GetCensusIDByTypeAndName.py
jordanemedlock/psychtruths
7
12781771
<filename>temboo/core/Library/DataGov/GetCensusIDByTypeAndName.py # -*- coding: utf-8 -*- ############################################################################### # # GetCensusIDByTypeAndName # Retrieve the U.S. census ID for a specified geography type and name. # # Python versions 2.6, 2.7, 3.x # # Copyright 2014, Temboo Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. # # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class GetCensusIDByTypeAndName(Choreography): def __init__(self, temboo_session): """ Create a new instance of the GetCensusIDByTypeAndName Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ super(GetCensusIDByTypeAndName, self).__init__(temboo_session, '/Library/DataGov/GetCensusIDByTypeAndName') def new_input_set(self): return GetCensusIDByTypeAndNameInputSet() def _make_result_set(self, result, path): return GetCensusIDByTypeAndNameResultSet(result, path) def _make_execution(self, session, exec_id, path): return GetCensusIDByTypeAndNameChoreographyExecution(session, exec_id, path) class GetCensusIDByTypeAndNameInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the GetCensusIDByTypeAndName Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_GeographyName(self, value): """ Set the value of the GeographyName input for this Choreo. ((required, string) Specify the geography name for the correspnding type, with at least three leading characters. For example, for the geography type "state" you could enter "ore" for Oregon.) """ super(GetCensusIDByTypeAndNameInputSet, self)._set_input('GeographyName', value) def set_GeographyType(self, value): """ Set the value of the GeographyType input for this Choreo. ((required, string) Specify one of the following geography type values: "state", "county", "tract", "block", "congdistrict", "statehouse", "statesenate", "censusplace", or "msa" (metropolitan statistical area).) """ super(GetCensusIDByTypeAndNameInputSet, self)._set_input('GeographyType', value) def set_MaxResults(self, value): """ Set the value of the MaxResults input for this Choreo. ((required, integer) Specify the maximum number of results to return. Defaults to 50.) """ super(GetCensusIDByTypeAndNameInputSet, self)._set_input('MaxResults', value) def set_ResponseFormat(self, value): """ Set the value of the ResponseFormat input for this Choreo. ((optional, string) The format that the response should be in. Valid values are: xml (the default) and json.) """ super(GetCensusIDByTypeAndNameInputSet, self)._set_input('ResponseFormat', value) class GetCensusIDByTypeAndNameResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the GetCensusIDByTypeAndName Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. (The response returned from the API.) """ return self._output.get('Response', None) def get_CensusID(self): """ Retrieve the value for the "CensusID" output from this Choreo execution. ((integer) The ID retrieved from the API call.) """ return self._output.get('CensusID', None) class GetCensusIDByTypeAndNameChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return GetCensusIDByTypeAndNameResultSet(response, path)
2.265625
2
app.py
itsron143/markov-gen
1
12781772
<gh_stars>1-10 from flask import Flask, current_app from flask import render_template, request from markov_gen.markov_gen import word_markovIt, ngram_markovIt app = Flask(__name__) def read_file(corpus): file_path = "markov_gen/corpus/" + corpus + ".txt" with current_app.open_resource(file_path, mode="r") as f: txt = f.read().replace('\n', '') txt_list = txt.split() return txt_list, txt @app.route('/', methods=['POST', 'GET']) def index(): return render_template("index.html") @app.route('/markov', methods=['POST', 'GET']) def markov(): sizes = {"small": 250, "medium": 1000, "large": 5000} n_gram_order = 10 if request.method == 'POST': if 'corpus' in request.form: corpus = request.form['corpus'] size = request.form['size'] chain_type = request.form['type'] text = request.form['text'] if len(text) == 0: txt_list, txt = read_file(corpus) else: txt_list, txt = text.split(), text generated_txt = word_markovIt(txt_list, sizes[size]) if chain_type == "word" else ngram_markovIt( txt, n_gram_order, sizes[size]) # print(generated_txt) return render_template("markov.html", data=generated_txt) if __name__ == '__main__': app.run()
2.59375
3
morse/main.py
augustin64/scripts
0
12781773
#!/usr/bin/python3 # max_score:392 import sys import random import platform from optparse import OptionParser if platform.system() == "Windows": import msvcrt import time else: from select import select try: import enquiries choose = enquiries.choose except: # On offre une autre option si le module enquiries n'est pas installé # ce module n'étant pas compatible égaleent sur toutes les plateformes def choose(query, options): print(query) print( "\n".join(["{}. {}".format(i + 1, options[i]) for i in range(len(options))]) ) response = int(input("> ")) return options[response - 1] morse = { "a": ".-", "b": "-...", "c": "-.-.", "d": "-..", "e": ".", "f": "..-.", "g": "--.", "h": "....", "i": "..", "j": ".---", "k": "-.-", "l": ".-..", "m": "--", "n": "-.", "o": "---", "p": ".--.", "q": "--.-", "r": ".-.", "s": "...", "t": "-", "u": "..-", "v": "...-", "w": ".--", "x": "-..-", "y": "-.--", "z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", } mnemotechnique = { "a": "Allô ?", "b": "Bonaparte", "c": "Coca-Cola", "d": "Dorémi", "e": "Euh..", "f": "Farandole", "g": "Golgotha", "h": "Himalaya", "i": "Ici", "j": "Jablonovo", "k": "Koalo", "l": "Limonade", "m": "Moto", "n": "Noé", "o": "Oporto", "p": "Philosophe", "q": "Quocorico", "r": "Ricola", "s": "Sapristi", "t": "Thon", "u": "Union", "v": "Valparéso", "w": "Wagon Long", "x": "Xtrocadéro", "y": "Yomamoto", "z": "Zoro est là", } mnemoschematik = { ".-": "Allô ?", "-...": "Bonaparte", "-.-.": "Coca-Cola", "-..": "Do-ré-mi", ".": "Euh..", "..-.": "Farandole", "--.": "Golgotha", "....": "Himalaya", "..": "Ici", ".---": "Jablonovo", "-.-": "Koalo", ".-..": "Limonade", "--": "Moto", "-.": "Noël", "---": "Oporto", ".--.": "Philosophe", "--.-": "Quocorico", ".-.": "Ricola", "...": "Sapristi", "-": "Thon", "..-": "Union", "...-": "Valparéso", ".--": "Wagon Long", "-..-": "Xtrocadéro", "-.--": "Yomamoto", "--..": "Zoro est là", } crs = [j for j in morse.keys()] def diff(a, b): """ Renvoie la différence, formattée en couleurs entre les chaînes de charactères a et b """ if platform.system() != "Windows": s = "" if len(a) > len(b): b = b + " " * (len(a) - len(b)) if len(b) > len(a): a = a + " " * (len(b) - len(a)) for i in range(len(a)): if a[i] != b[i]: s += "\x1b[7;30;41m" + b[i] else: s += "\x1b[0m\x1b[7;30;42m" + b[i] s += "\x1b[0m" return s else: return b def multi_quiz(length=10, timed=True, timeout=5): """ Pouvant comporter un timer ou non, ce quiz renvoie "length" charactères encodés en morse à décoder """ score = 0 while True: clear_text = "".join([random.choice(crs) for i in range(length)]) encoded = "/".join([morse[i] for i in clear_text]) if timed: s = timed_input(encoded, timeout=length * timeout) else: s = input(encoded + "\n").lower() if s == TimeoutError: print("\nTemps écoulé, sois plus rapide la prochaine fois !") elif s != clear_text: print(f"Faux ! La bonne réponse : {clear_text}") print(f"Votre réponse était : {diff(clear_text,s)}") print("Votre score est de {} points".format(score)) break else: score += length print("Bonne réponse ! Votre score est de {} points".format(score)) def int_quiz(timed=True, timeout=10): """ Pouvant comporter un timer ou non, ce quiz renvoie une lettre ou chiffre à encoder en morse """ score = 0 while True: clear_text = random.choice(crs) if timed: s = timed_input(clear_text.upper(), timeout=timeout) else: s = input(clear_text.upper() + "\n> ") if s == TimeoutError: print("Temps écoulé, sois plus rapide la prochaine fois !") elif s != morse[clear_text]: if clear_text in mnemotechnique.keys(): print( "Faux ! La bonne réponse est {} [{}]".format( morse[clear_text], mnemotechnique[clear_text] ) ) else: print("Faux ! La bonne réponse est {}".format(morse[clear_text])) print("Votre score est de {} points".format(score)) break else: score += 1 print("Bonne réponse ! Votre score est de {} points".format(score)) def quiz(timed=True, timeout=10): """ Pouvant comporter un timer ou non, ce quiz renvoie un charactère en morse à décoder """ score = 0 while True: clear_text = random.choice(crs) if timed: s = timed_input(str(morse[clear_text]), timeout=timeout) else: s = input(str(morse[clear_text]) + "\n> ") if s == TimeoutError: print("Temps écoulé, sois plus rapide la prochaine fois !") elif s != clear_text: if clear_text in mnemotechnique.keys(): print( "Faux ! La bonne réponse est {}[{}]".format( clear_text, mnemotechnique[clear_text] ) ) else: print("Faux ! La bonne réponse est {}".format(clear_text)) print("Votre score est de {} points".format(score)) break else: score += 1 print("Bonne réponse ! Votre score est de {} points".format(score)) def quiz_junior(timed=True, timeout=10): """ Pouvant comporter un timer ou non, ce quiz renvoie un moyen mnémotechnique dont il faut extraire le morse """ score = 0 crs = [j for j in mnemoschematik.keys()] while True: memo = random.choice(crs) if timed: s = timed_input(mnemoschematik[memo], timeout=timeout) else: s = input(mnemoschematik[memo] + "\n> ") if s == TimeoutError: print("tmps écoulé, sois plus rapide la prochaine fois !") elif s != memo: print("\x1b[0;37;41mFaux ! La bonne réponse est {}\x1b[0m".format(memo)) print("Votre score est de {} points".format(score)) break else: score += 1 print("Bonne réponse ! Votre score est de {} points".format(score)) def timed_input(prompt, timeout=10): if platform.system() != "Windows": print(prompt) sys.stdin.flush() rlist, _, _ = select([sys.stdin], [], [], timeout) if rlist: s = sys.stdin.readline() return s[:-1].lower() else: return TimeoutError else: sys.stdout.write(prompt + "\n") sys.stdout.flush() endtime = time.monotonic() + timeout result = [] while time.monotonic() < endtime: if msvcrt.kbhit(): result.append(msvcrt.getwche()) if result[-1] == "\r": return "".join(result[:-1]) time.sleep(0.04) return TimeoutError parser = OptionParser() parser.add_option( "-g", "--gamemode", dest="gamemode", help="choose GAMEMODE", type="string", metavar="(JUNIOR|INTERMEDIAIRE|NORMAL|EXPERT)", ) parser.add_option( "-T", "--timeout", action="store", dest="timeout", type="int", help="set TIMEOUT", metavar="TIMEOUT", default=5, ) parser.add_option( "-d", "--disable-timer", action="store_false", dest="timed", help="Disable timer", default=True, ) parser.add_option( "-l", "--length", dest="length", help="Nombre d'éléments, disponible uniquement pour le mode de jeu EXPERT", action="store", type="int", metavar="NOMBRE D'ELEMENTS", default=10, ) (options, args) = parser.parse_args() gamemodes = { "Junior": quiz_junior, "Intermédiaire": int_quiz, "Normal": quiz, "Expert": multi_quiz, } if options.gamemode != None: gamemodes = { "JUNIOR": quiz_junior, "INTERMEDIAIRE": int_quiz, "NORMAL": quiz, "EXPERT": multi_quiz, } if options.gamemode not in gamemodes: print(f"Option not available gamemode {options.gamemode}") raise ValueError else: gm = gamemodes[options.gamemode] else: gm = gamemodes[ choose("Choisissez votre mode de jeu", [i for i in gamemodes.keys()]) ] while True: if gm == multi_quiz: gm(timed=options.timed, timeout=options.timeout, length=options.length) else: gm(timed=options.timed, timeout=options.timeout)
2.8125
3
src/ggrc_risks/migrations/versions/20170502140636_377d935e1b21_migrate_urls_to_documents.py
Killswitchz/ggrc-core
0
12781774
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """ migrate urls to documents Create Date: 2017-05-02 14:06:36.936410 """ # disable Invalid constant name pylint warning for mandatory Alembic variables. # pylint: disable=invalid-name from ggrc.migrations.utils import url_util # revision identifiers, used by Alembic. revision = '377d935e1b21' down_revision = '55f583313670' HYPERLINKED_OBJECTS = { 'Risk': 'risks', 'Threat': 'threats' } HYPERLINKED_OBJ_TYPES = set(HYPERLINKED_OBJECTS) def upgrade(): """Upgrade database schema and/or data, creating a new revision.""" url_util.migrate_urls_to_documents(HYPERLINKED_OBJECTS) def downgrade(): """Downgrade database schema and/or vdata back to the previous revision.""" url_util.delete_reference_urls(HYPERLINKED_OBJ_TYPES)
1.945313
2
51cto.py
hmilyfe/web-get
0
12781775
#!/usr/bin/python2.6 #coding=utf-8 #51cto自动领豆 by 2016-07-27 import requests import time from bs4 import BeautifulSoup import random def freedown(username,passwd): header = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0) Gecko/20100101 Firefox/14.0.1','Referer':'http://home.51cto.com/index'} req = requests.session() res = req.get('http://home.51cto.com/index',headers=header) soup = BeautifulSoup(res.text) csrf = soup.find('input').attrs.get('value') postdata = {'LoginForm[username]': username, 'LoginForm[password]': <PASSWORD>, '_csrf':csrf, 'LoginForm[rememberMe]':'0', } res_post = req.post('http://home.51cto.com/index',data=postdata) so = BeautifulSoup(res_post.text) print so login_list_url = [] for script_url in so.find_all('script'): login_list_url.append(script_url.attrs.get('src')) print login_list_url for url in login_list_url[:-2]: r = req.get(url) print r.text # down_url = 'http://down.51cto.com/download.php' # down_data = {'do':'getfreecredits','t':random.random()} # down_res = req.post(down_url,params=down_data,data=down_data) # print down_res.text #down_url = 'http://home.51cto.com/home/ajax-to-sign' #down_data = {'DNT':'1'} #down_res = req.post(down_url,params=down_data,data=down_data) #print down_res.text if __name__ == "__main__": # t=random.randint(60,600 ) # time.sleep( t ) freedown('hmilyfe','6014256')
2.640625
3
misc/deep_learning_notes/Ch3 Advanced Tensorflow/GPU and device management tests/1_simple_GPU_test.py
tmjnow/MoocX
7
12781776
import tensorflow as tf a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess: print(sess.run(c)) """ prints: Device mapping: /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0 /job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0 /job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0 /job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0 I tensorflow/core/common_runtime/direct_session.cc:175] Device mapping: /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GRID K520, pci bus id: 0000:00:03.0 /job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: GRID K520, pci bus id: 0000:00:04.0 /job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: GRID K520, pci bus id: 0000:00:05.0 /job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: GRID K520, pci bus id: 0000:00:06.0 MatMul: /job:localhost/replica:0/task:0/gpu:0 I tensorflow/core/common_runtime/simple_placer.cc:818] MatMul: /job:localhost/replica:0/task:0/gpu:0 b: /job:localhost/replica:0/task:0/gpu:0 I tensorflow/core/common_runtime/simple_placer.cc:818] b: /job:localhost/replica:0/task:0/gpu:0 a: /job:localhost/replica:0/task:0/gpu:0 I tensorflow/core/common_runtime/simple_placer.cc:818] a: /job:localhost/replica:0/task:0/gpu:0 [[ 22. 28.] [ 49. 64.]] """
2.5625
3
Advent2015/2.py
SSteve/AdventOfCode
0
12781777
import re boxRegex = re.compile(r"(\d+)x(\d+)x(\d+)") def day2(fileName): totalPaper = 0 totalRibbon = 0 with open(fileName) as infile: for line in infile: match = boxRegex.match(line) if match: sides = sorted(int(side) for side in match.group(1, 2, 3)) totalPaper += 3 * sides[0] * sides[1] + 2 * sides[1] * sides[2] + 2 * sides[2] * sides[0] totalRibbon += 2 * sides[0] + 2 * sides[1] + sides[0] * sides[1] * sides[2] print(totalPaper) print(totalRibbon) if __name__ == "__main__": day2("2.txt")
3.34375
3
Demo/common/example_math_file.py
quecpython/EC100Y-SDK
4
12781778
# 数学运算math函数示例 import math import log # 设置日志输出级别 log.basicConfig(level=log.INFO) math_log = log.getLogger("Math") # x**y运算后的值 result = math.pow(2,3) math_log.info(result) # 8.0 # 取大于等于x的最小的整数值,如果x是一个整数,则返回x result = math.ceil(4.12) math_log.info(result) # 5 # 把y的正负号加到x前面,可以使用0 result = math.copysign(2,-3) math_log.info(result) # -2.0 # 求x的余弦,x必须是弧度 result = math.cos(math.pi/4) math_log.info(result) # 0.7071067811865476 # 把x从弧度转换成角度 result = math.degrees(math.pi/4) math_log.info(result) # 45.0 # e表示一个常量 result = math.e math_log.info(result) # 2.718281828459045 # exp()返回math.e(其值为2.71828)的x次方 result = math.exp(2) math_log.info(result) # 7.38905609893065 # fabs()返回x的绝对值 result = math.fabs(-0.03) math_log.info(result) # 0.03 # floor()取小于等于x的最大的整数值,如果x是一个整数,则返回自身 result = math.floor(4.999) math_log.info(result) # 4 # fmod()得到x/y的余数,其值是一个浮点数 result = math.fmod(20,3) math_log.info(result) # 2.0 # frexp()返回一个元组(m,e),其计算方式为:x分别除0.5和1,得到一个值的范围,2e的值在这个范围内,e取符合要求的最大整数值,然后x/(2e),得到m的值。如果x等于0,则m和e的值都为0,m的绝对值的范围为(0.5,1)之间,不包括0.5和1 result = math.frexp(75) math_log.info(result) # (0.5859375, 7) # isfinite()如果x不是无穷大的数字,则返回True,否则返回False result = math.isfinite(0.1) math_log.info(result) # True # isinf()如果x是正无穷大或负无穷大,则返回True,否则返回False result = math.isinf(234) math_log.info(result) # False # isnan()如果x不是数字True,否则返回False result = math.isnan(23) math_log.info(result) # False # ldexp()返回x*(2**i)的值 result = math.ldexp(5,5) math_log.info(result) # 160.0 # modf()返回由x的小数部分和整数部分组成的元组 result = math.modf(math.pi) math_log.info(result) # (0.14159265358979312, 3.0) # pi:数字常量,圆周率 result = math.pi math_log.info(result) # 3.141592653589793 # sin()求x(x为弧度)的正弦值 result = math.sin(math.pi/4) math_log.info(result) # 0.7071067811865476 # sqrt()求x的平方根 result = math.sqrt(100) math_log.info(result) # 10.0 # tan()返回x(x为弧度)的正切值 result = math.tan(math.pi/4) math_log.info(result) # 0.9999999999999999 # trunc()返回x的整数部分 result = math.trunc(6.789) math_log.info(result) # 6
3.34375
3
pandas/tests/strings/test_extract.py
oricou/pandas
2
12781779
<gh_stars>1-10 from datetime import datetime import re import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_extract_expand_None(): values = Series(["fooBAD__barBAD", np.nan, "foo"]) with pytest.raises(ValueError, match="expand must be True or False"): values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) def test_extract_expand_unspecified(): values = Series(["fooBAD__barBAD", np.nan, "foo"]) result_unspecified = values.str.extract(".*(BAD[_]+).*") assert isinstance(result_unspecified, DataFrame) result_true = values.str.extract(".*(BAD[_]+).*", expand=True) tm.assert_frame_equal(result_unspecified, result_true) def test_extract_expand_False(): # Contains tests like those in test_match and some others. values = Series(["fooBAD__barBAD", np.nan, "foo"]) er = [np.nan, np.nan] # empty row result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=False) exp = DataFrame([["BAD__", "BAD"], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series( [ "aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0, ] ) rs = Series(mixed).str.extract(".*(BAD[_]+).*(BAD)", expand=False) exp = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series(["fooBAD__barBAD", np.nan, "foo"]) result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=False) exp = DataFrame([["BAD__", "BAD"], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(["A1", "A2", "A3", "A4", "B5"]) with pytest.raises(ValueError, match="supported"): idx.str.extract("([AB])([123])", expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(["A1", "B2", "C3"]) msg = "pattern contains no capture groups" with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=False) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=False) # single group renames series/index properly s_or_idx = klass(["A1", "A2"]) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False) assert result.name == "uno" exp = klass(["A", "A"], name="uno") if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(["A1", "B2", "C3"]) # one group, no matches result = s.str.extract("(_)", expand=False) exp = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract("(_)(_)", expand=False) exp = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=object ) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract("([AB])[123]", expand=False) exp = Series(["A", "B", np.nan]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract("([AB])([123])", expand=False) exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract("(?P<letter>[AB])", expand=False) exp = Series(["A", "B", np.nan], name="letter") tm.assert_series_equal(result, exp) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False) exp = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"] ) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=False) exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"]) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=False) exp = Series(["A", "B", np.nan]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(["A11", "B22", "C33"]).str.extract( "([AB])([123])(?:[123])", expand=False ) exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(["A1", "B2", "3"]).str.extract( "(?P<letter>[AB])?(?P<number>[123])", expand=False ) exp = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"] ) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(["A1", "B2", "C"]).str.extract( "(?P<letter>[ABC])(?P<number>[123])?", expand=False ) exp = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"] ) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ["A1", "B2", "C"] index = index[: len(data)] s = Series(data, index=index) result = s.str.extract(r"(\d)", expand=False) exp = Series(["1", "2", np.nan], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r"(?P<letter>\D)(?P<number>\d)?", expand=False ) e_list = [["A", "1"], ["B", "2"], ["C", np.nan]] exp = DataFrame(e_list, columns=["letter", "number"], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex, ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(["a3", "b3", "c2"], name="bob") r = s.str.extract(r"(?P<sue>[a-z])", expand=False) e = Series(["a", "b", "c"], name="sue") tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(): # Contains tests like those in test_match and some others. values = Series(["fooBAD__barBAD", np.nan, "foo"]) er = [np.nan, np.nan] # empty row result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=True) exp = DataFrame([["BAD__", "BAD"], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series( [ "aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0, ] ) rs = Series(mixed).str.extract(".*(BAD[_]+).*(BAD)", expand=True) exp = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(["A1", "B2", "C3"]) msg = "pattern contains no capture groups" with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=True) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=True) # single group renames series/index properly s_or_idx = klass(["A1", "A2"]) result_df = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True) assert isinstance(result_df, DataFrame) result_series = result_df["uno"] tm.assert_series_equal(result_series, Series(["A", "A"], name="uno")) def test_extract_series(): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(["A1", "B2", "C3"], name=series_name) # one group, no matches result = s.str.extract("(_)", expand=True) exp = DataFrame([np.nan, np.nan, np.nan], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract("(_)(_)", expand=True) exp = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=object ) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract("([AB])[123]", expand=True) exp = DataFrame(["A", "B", np.nan]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract("([AB])([123])", expand=True) exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract("(?P<letter>[AB])", expand=True) exp = DataFrame({"letter": ["A", "B", np.nan]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True) e_list = [["A", "1"], ["B", "2"], [np.nan, np.nan]] exp = DataFrame(e_list, columns=["letter", "number"]) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=True) exp = DataFrame(e_list, columns=[0, "number"]) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=True) exp = DataFrame(["A", "B", np.nan]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(): # two normal groups, one non-capturing group result = Series(["A11", "B22", "C33"]).str.extract( "([AB])([123])(?:[123])", expand=True ) exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(["A1", "B2", "3"]).str.extract( "(?P<letter>[AB])?(?P<number>[123])", expand=True ) e_list = [["A", "1"], ["B", "2"], [np.nan, "3"]] exp = DataFrame(e_list, columns=["letter", "number"]) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(["A1", "B2", "C"]).str.extract( "(?P<letter>[ABC])(?P<number>[123])?", expand=True ) e_list = [["A", "1"], ["B", "2"], ["C", np.nan]] exp = DataFrame(e_list, columns=["letter", "number"]) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ["A1", "B2", "C"] index = index[: len(data)] result = Series(data, index=index).str.extract(r"(\d)", expand=True) exp = DataFrame(["1", "2", np.nan], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r"(?P<letter>\D)(?P<number>\d)?", expand=True ) e_list = [["A", "1"], ["B", "2"], ["C", np.nan]] exp = DataFrame(e_list, columns=["letter", "number"], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex, ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(["a3", "b3", "c2"], name="series_name") r = s.str.extract(r"(?P<letter>[a-z])", expand=True) e = DataFrame({"letter": ["a", "b", "c"]}) tm.assert_frame_equal(r, e) def test_extractall(): subject_list = [ "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL> some text <EMAIL>", "<EMAIL> some text <EMAIL> and <EMAIL>", np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples( [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)], names=(None, "match"), ) expected_df = DataFrame(expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples( [ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ] ) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples( [ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match"), ) expected_df = DataFrame(expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame(expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ["", "A1", "32"] named_pattern = "(?P<letter>[AB])?(?P<number>[123])" computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples( [(1, 0), (2, 0), (2, 1)], names=(None, "match") ) expected_df = DataFrame( [("A", "1"), (np.nan, "3"), (np.nan, "2")], expected_index, columns=["letter", "number"], ) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = "([AB])?(?P<number>[123])" computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame( [("A", "1"), (np.nan, "3"), (np.nan, "2")], expected_index, columns=[0, "number"], ) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(): # extractall(one named group) returns DataFrame with one named # column. s = Series(["a3", "b3", "d4c2"], name="series_name") r = s.str.extractall(r"(?P<letter>[a-z])") i = MultiIndex.from_tuples([(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")) e = DataFrame({"letter": ["a", "b", "d", "c"]}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r"([a-z])") e = DataFrame(["a", "b", "d", "c"], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(["ab3", "abc3", "d4cd2"], name="series_name") r = s.str.extractall(r"([a-z]+)") i = MultiIndex.from_tuples([(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")) e = DataFrame(["ab", "abc", "d", "cd"], i) tm.assert_frame_equal(r, e) @pytest.mark.parametrize( "data, names", [ ([], (None,)), ([], ("i1",)), ([], (None, "i2")), ([], ("i1", "i2")), (["a3", "b3", "d4c2"], (None,)), (["a3", "b3", "d4c2"], ("i1", "i2")), (["a3", "b3", "d4c2"], (None, "i2")), (["a3", "b3", "d4c2"], ("i1", "i2")), ], ) def test_extractall_no_matches(data, names): # GH19075 extractall with no matches should return a valid MultiIndex n = len(data) if len(names) == 1: i = Index(range(n), name=names[0]) else: a = (tuple([i] * (n - 1)) for i in range(n)) i = MultiIndex.from_tuples(a, names=names) s = Series(data, name="series_name", index=i, dtype="object") ei = MultiIndex.from_tuples([], names=(names + ("match",))) # one un-named group. r = s.str.extractall("(z)") e = DataFrame(columns=[0], index=ei) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall("(z)(z)") e = DataFrame(columns=[0, 1], index=ei) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall("(?P<first>z)") e = DataFrame(columns=["first"], index=ei) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall("(?P<first>z)(?P<second>z)") e = DataFrame(columns=["first", "second"], index=ei) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall("(z)(?P<second>z)") e = DataFrame(columns=[0, "second"], index=ei) tm.assert_frame_equal(r, e) def test_extractall_stringindex(): s = Series(["a1a2", "b1", "c1"], name="xxx") res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]) exp = DataFrame({"digit": ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [ Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name="xxx"), ]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series( ["a1a2", "b1", "c1"], name="s_name", index=Index(["XX", "yy", "zz"], name="idx_name"), ) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples( [("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"] ) exp = DataFrame({"digit": ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(["a3", "b3", "d4c2"], name="series_name") with pytest.raises(ValueError, match="no capture groups"): s.str.extractall(r"[a-z]") def test_extract_index_one_two_groups(): s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name") r = s.index.str.extract(r"([A-Z])", expand=True) e = DataFrame(["A", "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True) e_list = [("A", "3"), ("B", "3"), ("D", "4")] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(): s = Series(["a3", "b3", "c2"], name="series_name") pattern_two_noname = r"([a-z])([0-9])" extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])" extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r"(?P<group_name>[a-z])" extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r"([a-z])" extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples( [("A", "first"), ("B", "second"), ("C", "third")], names=("capital", "ordinal"), ) s = Series(["a3", "b3", "c2"], i, name="series_name") pattern_two_noname = r"([a-z])([0-9])" extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])" extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r"(?P<group_name>[a-z])" extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r"([a-z])" extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index)
2.5
2
double_pendulum_animated.py
ehoppmann/double-pendulum-matplotlib-subplots
0
12781780
<reponame>ehoppmann/double-pendulum-matplotlib-subplots<filename>double_pendulum_animated.py #!/usr/bin/env python3 """ =========================== The double pendulum problem =========================== This animation illustrates the double pendulum problem. """ # Double pendulum formula translated from the C code at # http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c # Modified to show subplots comparing double pendulums with the same initial # conditions, and then after that is closed, a second figure with the initial # theta 1 modified by 1 degree from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation class double_pendulum(object): def __init__(self, fig, ax, th1=120.0): self.fig = fig self.ax = ax self.G = 9.8 # acceleration due to gravity, in m/s^2 self.L1 = 1.0 # length of pendulum 1 in m self.L2 = 1.0 # length of pendulum 2 in m self.M1 = 1.0 # mass of pendulum 1 in kg self.M2 = 1.0 # mass of pendulum 2 in kg self.dt = 0.05 t = np.arange(0.0, 20, self.dt) # th1 and th2 are the initial angles (degrees) # w10 and w20 are the initial angular velocities (degrees per second) th1 = th1 w1 = 0.0 th2 = -20.0 w2 = 0.0 # initial state state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate. self.y = integrate.odeint(self.derivs, state, t) self.x1 = self.L1*sin(self.y[:, 0]) self.y1 = -self.L1*cos(self.y[:, 0]) self.x2 = self.L2*sin(self.y[:, 2]) + self.x1 self.y2 = -self.L2*cos(self.y[:, 2]) + self.y1 self.line, = ax.plot([], [], 'o-', lw=2) self.time_template = 'time = %.1fs' self.time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) self.line.set_data([], []) self.time_text.set_text('') self.ax.set_title('Initial angle 1 = {}'.format(th1)) def derivs(self, state, t): dydx = np.zeros_like(state) dydx[0] = state[1] del_ = state[2] - state[0] den1 = (self.M1 + self.M2)*self.L1 - self.M2*self.L1*cos(del_)*cos(del_) dydx[1] = (self.M2*self.L1*state[1]*state[1]*sin(del_)*cos(del_) + self.M2*self.G*sin(state[2])*cos(del_) + self.M2*self.L2*state[3]*state[3]*sin(del_) - (self.M1 + self.M2)*self.G*sin(state[0]))/den1 dydx[2] = state[3] den2 = (self.L2/self.L1)*den1 dydx[3] = (-self.M2*self.L2*state[3]*state[3]*sin(del_)*cos(del_) + (self.M1 + self.M2)*self.G*sin(state[0])*cos(del_) - (self.M1 + self.M2)*self.L1*state[1]*state[1]*sin(del_) - (self.M1 + self.M2)*self.G*sin(state[2]))/den2 return dydx def animate(self, i): thisx = [0, self.x1[i], self.x2[i]] thisy = [0, self.y1[i], self.y2[i]] self.line.set_data(thisx, thisy) self.time_text.set_text(self.time_template % (i*self.dt)) return self.line, self.time_text class ani_wrapper(object): def __init__(self, iterable): self.fns = iterable self.called = 0 self.n = len(iterable) def animate(self, *args, **kwargs): fn = self.fns[self.called % self.n] self.called += 1 return fn(*args, **kwargs) f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,6)) ax1.grid() ax1.set_xlim(-2,2) ax1.set_ylim(-2,2) ax2.grid() ax2.set_xlim(-2,2) ax2.set_ylim(-2,2) dp1 = double_pendulum(f, ax1) dp2 = double_pendulum(f, ax2) aw = ani_wrapper((dp1.animate, dp2.animate)) ani = animation.FuncAnimation(f, aw.animate, np.arange(1, len(dp1.y)), interval=1000/30, blit=False) # ani.save('double_pendulum.mp4', fps=15) plt.show() f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,6)) ax1.grid() ax1.set_xlim(-2,2) ax1.set_ylim(-2,2) ax2.grid() ax2.set_xlim(-2,2) ax2.set_ylim(-2,2) dp1 = double_pendulum(f, ax1) dp2 = double_pendulum(f, ax2, th1=119) aw = ani_wrapper((dp1.animate, dp2.animate)) ani = animation.FuncAnimation(f, aw.animate, np.arange(1, len(dp1.y)), interval=1000/30, blit=False) # ani.save('double_pendulum.mp4', fps=15) plt.show()
3.78125
4
funhouse.py
thertzelle/funhouse-clock
0
12781781
import board import neopixel pixels = neopixel.NeoPixel(board.D6, 30, brightness=0.5, auto_write=False) pixels.fill((255, 0, 0)) pixels.show()
2.53125
3
object_detection/evaluation/COCODataset.py
HeartFu/NeuralBabyTalk
1
12781782
import os from PIL import Image from pycocotools.coco import COCO from torch.utils import data class COCODataset(data.Dataset): def __init__(self, images_path, ann_path, split='train', transform=None): self.coco = COCO(ann_path) self.image_path = images_path self.ids = list(self.coco.imgs.keys()) self.transform = transform self.split = split def __getitem__(self, index): img_id = self.ids[index] ann_ids = self.coco.getAnnIds(imgIds=img_id) # print(ann_ids) target = self.coco.loadAnns(ann_ids) # print(target) file_name = self.coco.loadImgs(img_id)[0]['file_name'] img = Image.open(os.path.join(self.image_path, file_name)).convert('RGB') if self.transform is not None: img = self.transform(img) return img, target, img_id def __len__(self): return len(self.ids)
2.765625
3
ClusterTools/cluster_szspec.py
deimqs/ClusterModel
2
12781783
""" This script gather functions related to the SZ spectrum """ import numpy as np import astropy.units as u from astropy import constants as const from astropy.cosmology import Planck15 as cosmo #=================================================== #========== CMB intensity #=================================================== def get_I0_CMB(): """ Compute the CMB intensity Parameters ---------- Outputs -------- - I0 (quantity): the CMB intensity (homogeneous to MJy/sr) """ I0 = 2*(const.k_B*cosmo.Tcmb0)**3/(const.h*const.c)**2*u.sr**-1 return I0.to('MJy sr-1') #=================================================== #========== Non relativistic tSZ spectrum #=================================================== def tsz_spec(frequency): """ Compute the non relativistic SZ spectrum, f(nu) as in delta I_nu = I0 f(nu) y Parameters ---------- - frequency (quantity): frequency array homogeneous to GHz Outputs -------- - SZ spectrum: f(nu) """ x = const.h * frequency / (const.k_B * cosmo.Tcmb0) f_nu = x**4 * np.exp(x) / (np.exp(x)-1)**2 * (x*(np.exp(x)+1)/(np.exp(x)-1) - 4) return f_nu #=================================================== #========== Relativistic tSZ spectrum #=================================================== def tsz_spec_relativistic(frequency, kBT): """ Compute the relativistic SZ spectrum, f(nu, T) as in delta I_nu = I0 f(nu, T) y Parameters ---------- - frequency (quantity): frequency array homogeneous to GHz - temperature (quantity): frequency array homogeneous to GHz Outputs -------- - SZ spectrum: f(nu, T) """ #========== Make sure that frequency and temperature are arrays if type(frequency.to_value()) == float: frequency = np.array([frequency.to_value()]) * frequency.unit if type(kBT.to_value()) == float: kBT = np.array([kBT.to_value()]) * kBT.unit #========== Replicate to work with grids f_grid = (np.tile(frequency, [len(kBT),1])).T t_grid = (np.tile(kBT, [len(frequency),1])) #========== Function variable theta = t_grid.to_value('keV')/(const.m_e*const.c**2).to_value('keV') x = (const.h*f_grid/(const.k_B*cosmo.Tcmb0)).to_value('') #========== Region where x < 1.2 f1 = x**4 * np.exp(x)/(np.exp(x)-1)**2 xtil = x*(np.exp(x)+1)/(np.exp(x)-1) s = 2*x/(np.exp(x/2)-np.exp(-x/2)) y0 = xtil-4.0 y1a = -10.+47./2.*xtil-42./5.*xtil**(2.) y1b = 0.7*xtil**(3.)+s**(2.)*(-21./5.+7./5.*xtil) y1 = y1a+y1b y2a = -15/2.+1023./8.*xtil-868./5.*xtil**(2.) y2b = 329./5.*xtil**(3.)-44./5.*xtil**(4.) y2c = 11./30.*xtil**(5.) y2d = -434./5.+658/5.*xtil-242./5.*xtil**(2.)+143./30.*xtil**(3.) y2e = -44./5.+187./60.*xtil y2 = y2a+y2b+y2c+s**(2.)*y2d+s**(4.)*y2e y3a = 15./2.+2505./8.*xtil-7098./5.*xtil**(2.) y3b = 1425.3*xtil**(3.)-18594./35.*xtil**(4.) y3c = 12059./140.*xtil**(5.)-128./21.*xtil**(6.)+16./105.*xtil**(7.) y3d1 = -709.8+14253/5.*xtil-102267./35.*xtil**(2.) y3d2 = 156767./140.*xtil**(3.)-1216./7.*xtil**(4.)+64./7.*xtil**(5.) y3d = s**(2.)*(y3d1+y3d2) y3e1 = -18594./35.+205003./280.*xtil y3e2 = -1920./7.*xtil**(2.)+1024./35.*xtil**(3.) y3e = s**(4.)*(y3e1+y3e2) y3f = s**(6.)*(-544./21.+922./105.*xtil) y3 = y3a+y3b+y3c+y3d+y3e+y3f y4a = -135./32.+30375./128.*xtil-6239.1*xtil**(2.) y4b = 61472.7/4.*xtil**(3.)-12438.9*xtil**(4.) y4c = 35570.3/8.*xtil**(5.)-16568./21.*xtil**(6.) y4d = 7516./105.*xtil**(7.)-22./7.*xtil**(8.)+11./210.*xtil**(9.) y4e1 = -62391./20.+614727./20.*xtil y4e2 = -1368279./20.*xtil**(2.)+4624139./80.*xtil**(3.) y4e3 = -157396./7.*xtil**(4.)+30064./7.*xtil**(5.) y4e4 = -2717./7.*xtil**(6.)+2761./210.*xtil**(7.) y4e = s**(2.)*(y4e1+y4e2+y4e3+y4e4) y4f1 = -12438.9+6046951./160.*xtil y4f2 = -248520./7.*xtil**(2.)+481024./35.*xtil**(3.) y4f3 = -15972./7.*xtil**(4.)+18689./140.*xtil**(5.) y4f = s**(4.)*(y4f1+y4f2+y4f3) y4g1 = -70414./21.+465992./105.*xtil y4g2 = -11792./7.*xtil**(2.)+19778./105.*xtil**(3.) y4g = s**(6.)*(y4g1+y4g2) y4h = s**(8.)*(-682./7.+7601./210.*xtil) y4 = y4a+y4b+y4c+y4d+y4e+y4f+y4g+y4h DI_over_tau_over_theta_lt12 = f1*(y0+theta*y1+theta**(2.)*y2+theta**(3.)*y3+theta**(4.)*y4) #========== Region where x > 1.2 if T > 20.0 keV Tlim = 20.0 x_0 = 3.830 * (1.0 + 1.1674*theta - 0.8533*theta**2.) a_ij = np.array([ [[-1.81317E+1+x*0],[ 9.97038E+1+x*0],[-6.07438E+1+x*0],[ 1.05143E+3+x*0],[-2.86734E+3+x*0],[ 7.73353E+3+x*0],[-8.16644E+3+x*0],[-5.37712E+3+x*0],[ 1.52226E+4+x*0],[ 7.18726E+3+x*0],[-1.39548E+4+x*0],[-2.08464E+4+x*0],[ 1.79040E+4+x*0]], [[ 1.68733E+2+x*0],[-6.07829E+2+x*0],[ 1.14933E+3+x*0],[-2.42382E+2+x*0],[-7.73030E+2+x*0],[ 5.33993E+3+x*0],[-4.03443E+3+x*0],[ 3.00692E+3+x*0],[ 9.58809E+3+x*0],[ 8.16574E+3+x*0],[-6.13322E+3+x*0],[-1.48117E+4+x*0],[ 3.43816E+4+x*0]], [[-6.69883E+2+x*0],[ 1.59654E+3+x*0],[-3.33375E+3+x*0],[-2.13234E+3+x*0],[-1.80812E+2+x*0],[ 3.75605E+3+x*0],[-4.75180E+3+x*0],[-4.50495E+3+x*0],[ 5.38753E+3+x*0],[ 5.03355E+3+x*0],[-1.18396E+4+x*0],[-8.58473E+3+x*0],[ 3.96316E+4+x*0]], [[ 1.56222E+3+x*0],[-1.78598E+3+x*0],[ 5.13747E+3+x*0],[ 4.10404E+3+x*0],[ 5.54775E+2+x*0],[-3.89994E+3+x*0],[-1.22455E+3+x*0],[ 1.03747E+3+x*0],[ 4.32237E+3+x*0],[ 1.03805E+3+x*0],[-1.47172E+4+x*0],[-1.23591E+4+x*0],[ 1.77290E+4+x*0]], [[-2.34712E+3+x*0],[ 2.78197E+2+x*0],[-5.49648E+3+x*0],[-5.94988E+2+x*0],[-1.47060E+3+x*0],[-2.84032E+2+x*0],[-1.15352E+3+x*0],[-1.17893E+3+x*0],[ 7.01209E+3+x*0],[ 4.75631E+3+x*0],[-5.13807E+3+x*0],[-8.73615E+3+x*0],[ 9.41580E+3+x*0]], [[ 1.92894E+3+x*0],[ 1.17970E+3+x*0],[ 3.13650E+3+x*0],[-2.91121E+2+x*0],[-1.15006E+3+x*0],[ 4.17375E+3+x*0],[-3.31788E+2+x*0],[ 1.37973E+3+x*0],[-2.48966E+3+x*0],[ 4.82005E+3+x*0],[-1.06121E+4+x*0],[-1.19394E+4+x*0],[ 1.34908E+4+x*0]], [[ 6.40881E+2+x*0],[-6.81789E+2+x*0],[ 1.20037E+3+x*0],[-3.27298E+3+x*0],[ 1.02988E+2+x*0],[ 2.03514E+3+x*0],[-2.80502E+3+x*0],[ 8.83880E+2+x*0],[ 1.68409E+3+x*0],[ 4.26227E+3+x*0],[-6.37868E+3+x*0],[-1.11597E+4+x*0],[ 1.46861E+4+x*0]], [[-4.02494E+3+x*0],[-1.37983E+3+x*0],[-1.65623E+3+x*0],[ 7.36120E+1+x*0],[ 2.66656E+3+x*0],[-2.30516E+3+x*0],[ 5.22182E+3+x*0],[-8.53317E+3+x*0],[ 3.75800E+2+x*0],[ 8.49249E+2+x*0],[-6.88736E+3+x*0],[-1.01475E+4+x*0],[ 4.75820E+3+x*0]], [[ 4.59247E+3+x*0],[ 3.04203E+3+x*0],[-2.11039E+3+x*0],[ 1.32383E+3+x*0],[ 1.10646E+3+x*0],[-3.53827E+3+x*0],[-1.12073E+3+x*0],[-5.47633E+3+x*0],[ 9.85745E+3+x*0],[ 5.72138E+3+x*0],[ 6.86444E+3+x*0],[-5.72696E+3+x*0],[ 1.29053E+3+x*0]], [[-1.61848E+3+x*0],[-1.83704E+3+x*0],[ 2.06738E+3+x*0],[ 4.00292E+3+x*0],[-3.72824E+1+x*0],[ 9.10086E+2+x*0],[ 3.72526E+3+x*0],[ 3.41895E+3+x*0],[ 1.31241E+3+x*0],[ 6.68089E+3+x*0],[-4.34269E+3+x*0],[-5.42296E+3+x*0],[ 2.83445E+3+x*0]], [[-1.00239E+3+x*0],[-1.24281E+3+x*0],[ 2.46998E+3+x*0],[-4.25837E+3+x*0],[-1.83515E+2+x*0],[-6.47138E+2+x*0],[-7.35806E+3+x*0],[-1.50866E+3+x*0],[-2.47275E+3+x*0],[ 9.09399E+3+x*0],[-2.75851E+3+x*0],[-6.75104E+3+x*0],[ 7.00899E+2+x*0]], [[ 1.04911E+3+x*0],[ 2.07475E+3+x*0],[-3.83953E+3+x*0],[ 7.79924E+2+x*0],[-4.08658E+3+x*0],[ 4.43432E+3+x*0],[ 3.23015E+2+x*0],[ 6.16180E+3+x*0],[-1.00851E+4+x*0],[ 7.65063E+3+x*0],[ 1.52880E+3+x*0],[-6.08330E+3+x*0],[ 1.23369E+3+x*0]], [[-2.61041E+2+x*0],[-7.22803E+2+x*0],[ 1.34581E+3+x*0],[ 5.90851E+2+x*0],[ 3.32198E+2+x*0],[ 2.58340E+3+x*0],[-5.97604E+2+x*0],[-4.34018E+3+x*0],[-3.58925E+3+x*0],[ 2.59165E+3+x*0],[ 6.76140E+3+x*0],[-6.22138E+3+x*0],[ 4.40668E+3+x*0]] ])[:,:,0,:] theta_ei = np.array([ [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]], [[x*0+(10*theta)**0.],[x*0+(10*theta)**1.],[x*0+(10*theta)**2.],[x*0+(10*theta)**3.],[x*0+(10*theta)**4.],[x*0+(10*theta)**5.],[x*0+(10*theta)**6.],[x*0+(10*theta)**7.],[x*0+(10*theta)**8.],[x*0+(10*theta)**9.],[x*0+(10*theta)**10.],[x*0+(10*theta)**11.],[x*0+(10*theta)**12.]] ])[:,:,0,:,:] theta_ei = np.transpose(theta_ei, (1,0,2,3)) Zj = np.array([ [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]], [[(0.05*x)**0.],[(0.05*x)**1.],[(0.05*x)**2.],[(0.05*x)**3.],[(0.05*x)**4.],[(0.05*x)**5.],[(0.05*x)**6.],[(0.05*x)**7.],[(0.05*x)**8.],[(0.05*x)**9.],[(0.05*x)**10.],[(0.05*x)**11.],[(0.05*x)**12.]] ])[:,:,0,:,:] G_theta_x = np.sum(np.sum(a_ij*theta_ei*Zj, 1), 0) DI_over_tau_over_theta_gt12 = x**2.0 * np.exp(-x) * (x-x_0) * G_theta_x #========== Pick the region f_nu = DI_over_tau_over_theta_lt12 w_gt12 = (x > 1.2) * (t_grid > 20*u.keV) f_nu[w_gt12] = DI_over_tau_over_theta_gt12[w_gt12] return f_nu
2.8125
3
mowl/embeddings/translational/model.py
bio-ontology-research-group/OntoML
0
12781784
<gh_stars>0 from mowl.model import EmbeddingModel from mowl.projection.factory import projector_factory from mowl.projection.edge import Edge #PyKEEN imports from pykeen.triples import CoreTriplesFactory from pykeen.models import TransE, TransH, TransR, TransD from pykeen.training import SLCWATrainingLoop from pykeen.evaluation import RankBasedEvaluator import torch as th from torch.optim import Adam import logging logging.basicConfig(level=logging.DEBUG) class TranslationalOnt(): ''' :param edges: List of edges :type edges: mowl.projection.edge.Edge :param trans_method: Translational model. Choices are: "transE", "transH", "transR", "transD". :type trans_method: str :param embedding_dim: Dimension of embedding for each node :type embedding_dim: int :param epochs: Number of epochs :type epochs: int ''' def __init__(self, edges, trans_method="transE", embedding_dim = 50, epochs = 5, batch_size = 32 ): self.edges = edges self.trans_method = trans_method self.embedding_dim = embedding_dim self.epochs = epochs self.batch_size = batch_size self.model = None self._trained = False def train(self): entities, relations = Edge.getEntitiesAndRelations(self.edges) logging.debug("Number of ontology classes: %d, relations %d.", len(entities), len(relations)) self.entities_idx = {ent: idx for idx, ent in enumerate(entities)} self.relations_idx = {rel: idx for idx, rel in enumerate(relations)} mapped_triples = [(self.entities_idx[e.src()], self.relations_idx[e.rel()], self.entities_idx[e.dst()]) for e in self.edges] mapped_triples = th.tensor(mapped_triples).long() triples_factory = CoreTriplesFactory(mapped_triples, len(entities), len(relations), self.entities_idx, self.relations_idx) self.model = self.trans_factory(self.trans_method, triples_factory, self.embedding_dim) optimizer = Adam(params=self.model.get_grad_params()) training_loop = SLCWATrainingLoop(model=self.model, triples_factory=triples_factory, optimizer=optimizer) _ = training_loop.train(triples_factory=triples_factory, num_epochs=self.epochs, batch_size=self.batch_size) self._trained = True def get_embeddings(self): if not self._trained: raise ValueError("Model has not been trained yet") embeddings = self.model.entity_representations[0](indices = None).cpu().detach().numpy() embeddings = {item[0]: embeddings[item[1]] for item in self.entities_idx.items()} return embeddings def trans_factory(self, method_name, triples_factory, embedding_dim): methods = { "transE": TransE, "transH": TransH, "transR": TransR, "transD": TransD } if method_name in methods: return methods[method_name](triples_factory=triples_factory, embedding_dim=embedding_dim) else: raise Exception(f"Method name unrecognized. Recognized methods are: {methods}")
2.03125
2
flask_saestorage.py
csuzhangxc/Flask-SaeStorage
11
12781785
# -*- coding: utf-8 -*- from sae import storage class SaeStorage(object): def __init__(self, app=None): self.app = app if app is not None: self.init_app(app) def init_app(self, app): access_key = app.config.get('SAE_ACCESS_KEY', storage.ACCESS_KEY) secret_key = app.config.get('SAE_SECRET_KEY', storage.SECRET_KEY) app_name = app.config.get('SAE_APP_NAME', storage.APP_NAME) bucket_name = app.config.get('SAE_BUCKET_NAME', '') connection = storage.Connection(access_key, secret_key, app_name) self._bucket = connection.get_bucket(bucket_name) def save(self, data, filename): return self._bucket.put_object(filename, data) def delete(self, filename): return self._bucket.delete_object(filename) def url(self, filename): return self._bucket.generate_url(filename)
2.53125
3
cassle/methods/vicreg.py
DonkeyShot21/cassle
13
12781786
<filename>cassle/methods/vicreg.py import argparse from typing import Any, Dict, List, Sequence import torch import torch.nn as nn from cassle.losses.vicreg import vicreg_loss_func from cassle.methods.base import BaseModel class VICReg(BaseModel): def __init__( self, output_dim: int, proj_hidden_dim: int, sim_loss_weight: float, var_loss_weight: float, cov_loss_weight: float, **kwargs ): """Implements VICReg (https://arxiv.org/abs/2105.04906) Args: output_dim (int): number of dimensions of the projected features. proj_hidden_dim (int): number of neurons in the hidden layers of the projector. sim_loss_weight (float): weight of the invariance term. var_loss_weight (float): weight of the variance term. cov_loss_weight (float): weight of the covariance term. """ super().__init__(**kwargs) self.sim_loss_weight = sim_loss_weight self.var_loss_weight = var_loss_weight self.cov_loss_weight = cov_loss_weight # projector self.projector = nn.Sequential( nn.Linear(self.features_dim, proj_hidden_dim), nn.BatchNorm1d(proj_hidden_dim), nn.ReLU(), nn.Linear(proj_hidden_dim, proj_hidden_dim), nn.BatchNorm1d(proj_hidden_dim), nn.ReLU(), nn.Linear(proj_hidden_dim, output_dim), ) @staticmethod def add_model_specific_args(parent_parser: argparse.ArgumentParser) -> argparse.ArgumentParser: parent_parser = super(VICReg, VICReg).add_model_specific_args(parent_parser) parser = parent_parser.add_argument_group("vicreg") # projector parser.add_argument("--output_dim", type=int, default=2048) parser.add_argument("--proj_hidden_dim", type=int, default=2048) # parameters parser.add_argument("--sim_loss_weight", default=25, type=float) parser.add_argument("--var_loss_weight", default=25, type=float) parser.add_argument("--cov_loss_weight", default=1.0, type=float) return parent_parser @property def learnable_params(self) -> List[dict]: """Adds projector parameters to the parent's learnable parameters. Returns: List[dict]: list of learnable parameters. """ extra_learnable_params = [{"params": self.projector.parameters()}] return super().learnable_params + extra_learnable_params def forward(self, X: torch.Tensor, *args, **kwargs) -> Dict[str, Any]: """Performs the forward pass of the encoder and the projector. Args: X (torch.Tensor): a batch of images in the tensor format. Returns: Dict[str, Any]: a dict containing the outputs of the parent and the projected features. """ out = super().forward(X, *args, **kwargs) z = self.projector(out["feats"]) return {**out, "z": z} def training_step(self, batch: Sequence[Any], batch_idx: int) -> torch.Tensor: """Training step for VICReg reusing BaseModel training step. Args: batch (Sequence[Any]): a batch of data in the format of [img_indexes, [X], Y], where [X] is a list of size self.num_crops containing batches of images. batch_idx (int): index of the batch. Returns: torch.Tensor: total loss composed of VICReg loss and classification loss. """ out = super().training_step(batch, batch_idx) feats1, feats2 = out["feats"] z1 = self.projector(feats1) z2 = self.projector(feats2) # ------- barlow twins loss ------- vicreg_loss = vicreg_loss_func( z1, z2, sim_loss_weight=self.sim_loss_weight, var_loss_weight=self.var_loss_weight, cov_loss_weight=self.cov_loss_weight, ) self.log("train_vicreg_loss", vicreg_loss, on_epoch=True, sync_dist=True) out.update({"loss": out["loss"] + vicreg_loss, "z": [z1, z2]}) return out
2.328125
2
bin/physiboss.py
sysbio-curie/pb4covid19
1
12781787
# PhysiBoSS Tab import os from ipywidgets import Layout, Label, Text, Checkbox, Button, HBox, VBox, Box, \ FloatText, BoundedIntText, BoundedFloatText, HTMLMath, Dropdown, interactive, Output from collections import deque, Counter import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection import matplotlib.colors as mplc import numpy as np import glob import platform import numpy as np import csv import itertools import copy import scipy # from debug import debug_view class PhysiBoSSTab(object): def __init__(self): # tab_height = '520px' # tab_layout = Layout(width='900px', # border='2px solid black', # height=tab_height, overflow_y='scroll') self.output_dir = '.' self.figsize_width = 15.0 # allow extra for colormap self.figsize_height = 8 constWidth = '180px' # self.fig = plt.figure(figsize=(6, 6)) # self.fig = plt.figure(figsize=(7, 7)) config_file = "data/PhysiCell_settings.xml" self.cell_lines = {} self.cell_lines_by_name = {} self.cell_lines_array = ["All"] if os.path.isfile(config_file): try: tree = ET.parse(config_file) except: print("Cannot parse",config_file, "- check it's XML syntax.") return root = tree.getroot() uep = root.find('.//cell_definitions') # find unique entry point (uep) for child in uep.findall('cell_definition'): self.cell_lines[int(child.attrib["ID"])] = child.attrib["name"] self.cell_lines_by_name[child.attrib["name"]] = int(child.attrib["ID"]) self.cell_lines_array.append(child.attrib["name"]) # print(child.attrib['name']) else: print("config.xml does not exist") max_frames = 0 self.svg_plot = interactive(self.create_area_chart, frame=(0, max_frames), percentage=(0.0, 10.0), total=False, cell_line=self.cell_lines_array, continuous_update=False) plot_size = '500px' # small: controls the size of the tab height, not the plot (rf. figsize for that) plot_size = '700px' # medium plot_size = '750px' # medium self.svg_plot.layout.width = '1000px' self.svg_plot.layout.height = '700px' self.use_defaults = True self.axes_min = 0.0 self.axes_max = 2000 # hmm, this can change (TODO?) self.max_frames = BoundedIntText( min=0, max=99999, value=max_frames, description='Max', layout=Layout(width='160px'), # layout=Layout(flex='1 1 auto', width='auto'), #Layout(width='160px'), ) self.max_frames.observe(self.update_max_frames) items_auto = [Label('select slider: drag or left/right arrows'), self.max_frames, ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='900px') row1 = Box(children=items_auto, layout=box_layout) self.tab = VBox([row1, self.svg_plot]) self.count_dict = {} self.file_dict = {} self.cells_indexes = np.zeros((0)) self.up_to_frame = 0 def update(self, rdir=''): # with debug_view: # print("SVG: update rdir=", rdir) if rdir: self.output_dir = rdir all_files = sorted(glob.glob(os.path.join(self.output_dir, 'snapshot*.svg'))) if len(all_files) > 0: last_file = all_files[-1] self.max_frames.value = int(last_file[-12:-4]) # assumes naming scheme: "snapshot%08d.svg" # self.create_dict(self.max_frames.value, self.output_dir) # self.state_counter(self.max_frames.value) # with debug_view: # print("SVG: added %s files" % len(all_files)) def update_max_frames(self,_b): self.svg_plot.children[0].max = self.max_frames.value def create_dict(self, number_of_files, folder): "create a dictionary with the states file in the folder 'output', half of the dict is used to calculate the percentage of the node, the other half is for the states" if number_of_files > 0: for i in range (0, number_of_files): if "state_step{0}".format(i) not in self.file_dict.keys(): states_dict = {} with open(os.path.join(self.output_dir, 'states_%08u.csv' % i), newline='') as csvfile: states_reader = csv.reader(csvfile, delimiter=',') for row in states_reader: if row[0] != 'ID': states_dict[int(row[0])] = row[1] self.file_dict["state_step{0}".format(i)] = states_dict def state_counter(self, number_of_files, percentage, cell_indexes, cell_line): "create a dict with the states of the network, it can be used to print states pie chart" self.count_dict = {} temp_dict = {} max_cell = 0 if number_of_files > 0: for i in range (0, number_of_files): state_list = [] for key in self.file_dict["state_step{0}".format(i)]: if cell_line == 'All' or self.cells_indexes[key] == self.cell_lines_by_name[cell_line]: state_list.append(self.file_dict["state_step{0}".format(i)][key]) state_counts = Counter(state_list) max_cell = max_cell + sum(state_counts.values()) temp_dict["state_count{0}".format(i)] = state_counts self.count_dict = self.filter_states(max_cell, temp_dict, percentage) def create_cell_indexes(self, frame, cell_line): for i in range(self.up_to_frame, frame): fname = "output%08d_cells_physicell.mat" % i full_fname = os.path.join(self.output_dir, fname) if not os.path.isfile(full_fname): print("Once output files are generated, click the slider.") # No: output00000000_microenvironment0.mat return info_dict = {} scipy.io.loadmat(full_fname, info_dict) M = info_dict['cells'][[0,5], :].astype(int) self.cells_indexes.resize((max(self.cells_indexes.shape[0], M[0, :].max(axis=0)+1))) self.cells_indexes[M[0, :]] = M[1, :] self.up_to_frame = frame return self.cells_indexes def create_area_chart(self, frame=None, total=False, percentage=(0.0, 100.0), cell_line="All"): "plot an area chart with the evolution of the network states during the simulation" cells_indexes = None if cell_line != "All": cells_indexes = self.create_cell_indexes(frame, cell_line) if np.sum(cells_indexes == self.cell_lines_by_name[cell_line]) == 0: print("There are no %s cells." % cell_line) return self.create_dict(frame, self.output_dir) self.state_counter(frame, percentage, cells_indexes, cell_line) state_list = [] all_state = [] a = [] for k in self.count_dict: state_list.append([key for key, value in self.count_dict[k].items() if value > 0]) for l in state_list: for state in l: all_state.append(state) all_state = list(dict.fromkeys(all_state)) for state_count in self.count_dict: b = [] for states in all_state: try: b.append(self.count_dict[state_count][states]) except: b.append(0) a.append(b) a = np.array(a) #print(a) a = np.transpose(a) if not total: percent = a / a.sum(axis=0).astype(float) * 100 else: percent = a x = np.arange(len(self.count_dict)) self.fig = plt.figure(figsize=(self.figsize_width, self.figsize_height)) ax = self.fig.add_subplot(111) ax.stackplot(x, percent, labels=all_state) ax.legend(labels=all_state, loc='upper center', bbox_to_anchor=(0.5, -0.05),shadow=True, ncol=2) # ax.legend(labels=all_state, bbox_to_anchor=(1.05, 1), loc='lower center', borderaxespad=0.) if not total: ax.set_ylabel('Percent (%)') else: ax.set_ylabel("Total") ax.margins(0, 0) # Set margins to avoid "whitespace" # plt.show() def filter_states(self, max_cell, all_counts, percentage): """max_cell = 0 all_counts = {} for i in range (0, number_of_files): state_list = [] for key in file_dict["state_step{0}".format(i)]: state_list.append(file_dict["state_step{0}".format(i)][key]) state_counts = Counter(state_list) max_cell = max_cell + sum(state_counts.values()) all_counts[i] = state_counts""" copy_all_counts = copy.deepcopy(all_counts) state_list = [] all_state = [] for k in all_counts: state_list.append(list(all_counts[k].keys())) for l in state_list: for state in l: all_state.append(state) all_state = list(dict.fromkeys(all_state)) banned_list = [] for state in all_state: a = 0 for i in all_counts.keys(): try: a = a + all_counts[i][state] except: a = a + 0 if (a < (percentage/100) * max_cell): banned_list.append(state) for i in all_counts.keys(): del all_counts[i][state] for i in all_counts.keys(): b = 0 for state in banned_list: try: b = b + copy_all_counts[i][state] except: b = b + 0 all_counts[i]["others"] = b return all_counts
2.09375
2
src/compas_assembly/geometry/_geometry.py
GeneKao/compas_assembly
0
12781788
<reponame>GeneKao/compas_assembly from __future__ import print_function from __future__ import absolute_import from __future__ import division __all__ = ['Geometry'] class Geometry(object): def __init__(self): pass def blocks(self): raise NotImplementedError def interfaces(self): raise NotImplementedError def to_blocks_and_interfaces(self): """Convert the geometry to a list of block meshes, and a list of block index pairs representing connections or interfaces. Returns ------- tuple 0. List of meshes representing the block geometries. 1. """ raise NotImplementedError # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': pass
2.375
2
src/harvest/posts.py
fhgr/harvest
5
12781789
<filename>src/harvest/posts.py #!/usr/bin/env python3 # Forum Extraction AI and heuristic # --------------------------------- # (C)opyrights 2020 <NAME> # simplifications: # ================ # - only consider tags with a class attribute # - vsm based on the hashing trick # algorithm # ========= # - match text to xpath nodes # - extract the text based on the xpath nodes and determine the best match # based on the node + its children # - from the best match that yields multiple results (i.e. forum posts) # select node parent elements as long as we still get the same number of # results. # - constraints # - blocked tags are not allowed to appear down- or upstream of the selected # path (e.g. it is not possible that a forum post contains a 'form' or # 'input' element :) # - there are forums that are contained in a form tag .... # cleanup posts # ------------- # * remove repeated elements # * appear at the beginning or end of a post # * may contain information on # - user # - date (subscription versus post date) => always compare dates within a page for computing the date extraction rule # - replies, likes, etc. import logging import re from lxml import etree from harvest.cleanup.forum_post import remove_boilerplate from harvest.metadata.date import get_date from harvest.metadata.link import get_link from harvest.metadata.username import get_user from harvest.metadata.usertext import get_text_xpath_pattern from harvest.post_text import get_cleaned_text from harvest.similarity_calculator import assess_node from harvest.utils import (get_xpath_expression, get_html_dom, get_xpath_combinations_for_classes, get_xpath_tree_text, get_grandparent, elements_have_no_overlap) CORPUS = "./data/forum/" # number of characters required for a match MATCH_PREFIX_SIZE = 30 BLACKLIST_POST_TEXT_TAG = ('h1', 'h2', 'h3', 'h4', 'h5', 'a') # minimum number of posts we suspect on the page MIN_POST_COUNT = 3 def _get_matching_element(comment, dom): """ returns ------- the element that matches the given comment """ if not comment.strip(): return None for e in dom.iter(): text = (e.text or "").strip() min_length_of_text = len(comment[:MATCH_PREFIX_SIZE]) if text and comment.startswith(text[:MATCH_PREFIX_SIZE]) and len(text) >= min_length_of_text and \ e.tag is not etree.Comment: return e return None def _get_xpath_tree(comment, dom, tree): element = _get_matching_element(comment, dom) return (None, None) if element is None else (element, tree.getpath(element)) def _remove_trailing_p_element(xpath_score, xpath_element_count, xpath, reference_text, dom): """ The p elements at the end can be removed. Some posts have several p elements and some have none at all. Those without p element can then not be detected. As Example, leading post can not be detected: https://us.forums.blizzard.com/en/wow/t/layers-and-character-creation-adjustments-on-select-realms/499760 Args: xpath: the xpath to remove the p element from Returns: """ cleaned_xpath = re.sub(r'(?<!([\/]))\/p$', '', xpath) if cleaned_xpath != xpath: xpath_score, xpath_element_count = assess_node(reference_content=reference_text, dom=dom, xpath=cleaned_xpath) return xpath_score, xpath_element_count, cleaned_xpath def _get_xpaths_candidates(text_sections, dom, tree, reference_text): candidate_xpaths = [] for section_text in text_sections: element, xpath = _get_xpath_tree(section_text, dom, tree) logging.debug(f"Processing section of text '{section_text}' with xpath '{xpath}'.") if not xpath: continue element = _get_matching_element(section_text, dom) if element.tag not in BLACKLIST_POST_TEXT_TAG: xpath_pattern = get_xpath_expression(element, parent_element=get_grandparent(element), single_class_filter=True) xpath_score, xpath_element_count = assess_node(reference_content=reference_text, dom=dom, xpath=xpath_pattern, reward_classes=True) if xpath_element_count > 1: candidate_xpaths.append((xpath_score, xpath_element_count, xpath_pattern)) return candidate_xpaths def _get_post_frame(xpath_pattern, xpath_score, reference_text, dom): while True: new_xpath_pattern = xpath_pattern + "/.." new_xpath_score, new_xpath_element_count = assess_node(reference_content=reference_text, dom=dom, xpath=new_xpath_pattern) if new_xpath_element_count < MIN_POST_COUNT: return xpath_pattern, xpath_score xpath_pattern = new_xpath_pattern xpath_score = new_xpath_score def _get_combination_of_posts(xpath_pattern, xpath_score, xpath_element_count, reference_text, dom): """ Check if combinations of classes result in detecting leading post Args: xpath_pattern: xpath_score: xpath_element_count: reference_text: dom: Returns: Combination of classes if they resulting in a better score. Otherwise the parameters xpath_patter, xpath_score and xpath_element_count are returned. """ candidate_xpaths = [] for final_xpath in get_xpath_combinations_for_classes(xpath_pattern): new_xpath_score, new_xpath_element_count = assess_node(reference_content=reference_text, dom=dom, xpath=final_xpath) if (xpath_element_count < new_xpath_element_count <= xpath_element_count + 2 or xpath_element_count * 2 - new_xpath_element_count in range(-1, 2)) and new_xpath_score > xpath_score: if elements_have_no_overlap(dom.xpath(final_xpath)): candidate_xpaths.append((new_xpath_score, new_xpath_element_count, final_xpath)) if candidate_xpaths: candidate_xpaths.sort() return candidate_xpaths.pop() return xpath_score, xpath_element_count, xpath_pattern def extract_posts(html, url): dom = get_html_dom(html) tree = etree.ElementTree(dom) result = {'url': url, 'dragnet': None, 'url_xpath_pattern': None, 'xpath_pattern': None, 'xpath_score': None, 'forum_posts': None, 'date_xpath_pattern': None, 'user_xpath_pattern': None, 'text_xpath_pattern': None} text_sections = get_cleaned_text(html) logging.debug(f"Extracted {len(text_sections)} lines of comments.") reference_text = " ".join(text_sections) candidate_xpaths = _get_xpaths_candidates(text_sections, dom, tree, reference_text) if not candidate_xpaths: logging.warning("Couldn't identify any candidate posts for forum", url) return result # obtain anchor node candidate_xpaths.sort() xpath_score, xpath_element_count, xpath_pattern = candidate_xpaths.pop() xpath_score, xpath_element_count, xpath_pattern = _remove_trailing_p_element(xpath_score, xpath_element_count, xpath_pattern, reference_text, dom) xpath_pattern, xpath_score = _get_post_frame(xpath_pattern, xpath_score, reference_text, dom) xpath_score, xpath_element_count, xpath_pattern = _get_combination_of_posts(xpath_pattern, xpath_score, xpath_element_count, reference_text, dom) logging.info( f"Obtained most likely forum xpath for forum {url}: {xpath_pattern} with a score of {xpath_score}.") if xpath_pattern: forum_posts = get_xpath_tree_text(dom, xpath_pattern) forum_posts = remove_boilerplate(forum_posts) result['xpath_pattern'] = xpath_pattern result['xpath_score'] = xpath_score result['forum_posts'] = forum_posts if xpath_pattern: result['text_xpath_pattern'] = get_text_xpath_pattern(dom, xpath_pattern, forum_posts) # add the post URL url_xpath_pattern = get_link(dom, xpath_pattern, url, forum_posts) if url_xpath_pattern: result['url_xpath_pattern'] = url_xpath_pattern # add the post Date date_xpath_pattern = get_date(dom, xpath_pattern, url, forum_posts) if date_xpath_pattern: result['date_xpath_pattern'] = date_xpath_pattern # add the post user user_xpath_pattern = get_user(dom, xpath_pattern, url, forum_posts) if user_xpath_pattern: result['user_xpath_pattern'] = user_xpath_pattern return result
2.046875
2
python/param_utils.py
MeshFEM/MeshFEM
19
12781790
import enum import mesh from tri_mesh_viewer import TriMeshViewer import parametrization from matplotlib import pyplot as plt def analysisPlots(m, uvs, figsize=(8,4), bins=200): plt.figure(figsize=figsize) plt.subplot(1, 2, 1) for label, uv in uvs.items(): distortion = parametrization.conformalDistortion(m, uv) plt.hist(distortion, bins=bins, alpha=0.5, label=label) plt.title('Quasi-conformal Distortion Error Q - 1') plt.legend() plt.subplot(1, 2, 2) for label, uv in uvs.items(): scaleFactor = parametrization.scaleFactor(m, uv) plt.hist(scaleFactor, bins=bins, alpha=0.5, label=label) plt.title('Scale Factors') plt.legend() plt.tight_layout() def analysisPlotsGrid(m, uvs, figsize=(8,6), bins=200): plt.figure(figsize=figsize) nrows = len(uvs) for i, (label, uv) in enumerate(uvs.items()): plt.subplot(nrows, 2, 1 + 2 * i) distortion = parametrization.conformalDistortion(m, uv) plt.hist(distortion, bins=bins, alpha=1.0) plt.title(f'{label} Quasi-conformal Distortion Q - 1') plt.subplot(nrows, 2, 2 + 2 * i) scaleFactor = parametrization.scaleFactor(m, uv) plt.hist(scaleFactor, bins=bins, alpha=1.0) plt.title(f'{label} Scale Factors') plt.tight_layout() class AnalysisField(enum.Enum): NONE = 1 SCALE = 2 DISTORTION = 3 class ParametrizationViewer: def __init__(self, m, uv): self.m = m self.view_3d = TriMeshViewer(m, wireframe=True) self.view_2d = None self.field = AnalysisField.DISTORTION self.update_parametrization(uv) def displayField(self, field, updateModelMatrix=False): self.field = field sf = None if (self.field == AnalysisField.DISTORTION): sf = self.distortion if (self.field == AnalysisField.SCALE ): sf = self.scaleFactor self.view_2d.update(preserveExisting=False, updateModelMatrix=updateModelMatrix, mesh=self.mflat, scalarField=sf) def update_parametrization(self, uv, updateModelMatrix=False): self.mflat = mesh.Mesh(uv, self.m.elements()) if (self.view_2d is None): self.view_2d = TriMeshViewer(self.mflat, wireframe=True) self.distortion = parametrization.conformalDistortion(self.m, uv) self.scaleFactor = parametrization.scaleFactor(self.m, uv) self.displayField(self.field, updateModelMatrix=updateModelMatrix) def show(self): from ipywidgets import HBox return HBox([self.view_3d.show(), self.view_2d.show()])
2.109375
2
week_0_to_2/tree_analysis/hw0pr2/hw0pr2Answers.py
ScriptingBeyondCS/CS-35
0
12781791
import os import os.path import shutil # 1 def countFilesOfType(top, extension): """inputs: top: a String directory extension: a String file extension returns a count of files with a given extension in the directory top and its subdirectories""" count = 0 filenames = [x[2] for x in os.walk(top)] for fileList in filenames: for file in fileList: if file.endswith(extension): count += 1 return count # 2 & 3 def findMaxDepth(top): """inputs: top: a String directory returns maximum directory depth within top, prints path to max depth """ return findMaxDepthHelper(top, []) def findMaxDepthHelper(top, pathList): maxDepth = 0 maxPath = getMaxSlashes(pathList) depth = 0 allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_dir(): nextDepth, maxPath = findMaxDepthHelper(entry.path, pathList) pathList += [entry.path] depth = 1 + nextDepth if depth > maxDepth: maxDepth = depth return maxDepth, maxPath # 4 def countHaveTenDigits(top): """inputs: top: a String directory returns the number of files within top and its subdirectories that have a 10 digit phone number """ count = 0 allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_file(): try: f = open(entry.path, 'r') # open and read file (used .path to prevent changing directories) data = f.read() f.close() except PermissionError: data = "" except UnicodeDecodeError: data = "" except TypeError: data = "" if countDigits(data) == 10: count += 1 elif entry.is_dir(): # repeat if entry is a directory count += countHaveTenDigits(entry.path) else: pass return count # 5 def count909AreaCode(top): """inputs: top: a String directory returns number of files within top directory and its subdirectories that have a 909 area code""" count = 0 allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_file(): try: f = open(entry.path, 'r') # open and read file (used .path to prevent changing directories) data = f.read() f.close() except PermissionError: data = "" except UnicodeDecodeError: data = "" except TypeError: data = "" newData = makeDigitString(data) if newData[0:3] == '909': count += 1 elif entry.is_dir(): # repeat if entry is a directory count += count909AreaCode(entry.path) else: pass return count # 6 def countLastName(top, name): """inputs: top: a String directory name: a last name returns a count of files within top and subdirectories that have a given last name""" count = 0 allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_file(): try: f = open(entry.path, 'r') # open and read file (used .path to prevent changing directories) data = f.read() f.close() except PermissionError: data = "" except UnicodeDecodeError: data = "" except TypeError: data = "" newData = getName(data) if ',' in newData: if newData.startswith(name): count += 1 else: if newData.endswith(name): count += 1 elif entry.is_dir(): # repeat if entry is a directory count += countLastName(entry.path, name) else: pass return count # 7 def countFirstName(top, name): """inputs: top: a String directory name: a first name returns a count of files within top and its subdirectories that have a given first name""" count = 0 allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_file(): try: f = open(entry.path, 'r') # open and read file (used .path to prevent changing directories) data = f.read() f.close() except PermissionError: data = "" except UnicodeDecodeError: data = "" except TypeError: data = "" newData = getName(data) if ',' in newData: if newData.endswith(name): count += 1 else: if newData.startswith(name): count += 1 elif entry.is_dir(): # repeat if entry is a directory count += countFirstName(entry.path, name) else: pass return count # 8 def countInitials(top, firstInit, lastInit): """inputs: top: a String directory firstInit: the name's first initial lastInit: the name's last initial returns a count of files within top and its subdirectories that have a name with the given initials""" count = 0 allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_file(): try: f = open(entry.path, 'r') # open and read file (used .path to prevent changing directories) data = f.read() f.close() except PermissionError: data = "" except UnicodeDecodeError: data = "" except TypeError: data = "" newData = getName(data) if ',' in newData: if getOneAfterSpace(newData) == firstInit and newData[0] == lastInit: count += 1 else: if getOneAfterSpace(newData) == lastInit and newData[0] == firstInit: count += 1 elif entry.is_dir(): # repeat if entry is a directory count += countInitials(entry.path, firstInit, lastInit) else: pass return count # 9 def diffFirstName(top): """inputs: top: a String directory returns a number of unique first names in files of top and its subdirectories""" return diffFirstNameHelper(top, []) def diffFirstNameHelper(top, nameList): allEntries = os.scandir(top) # all files and directories in top for entry in allEntries: if entry.is_file(): try: f = open(entry.path, 'r') # open and read file (used .path to prevent changing directories) data = f.read() f.close() except PermissionError: data = "" except UnicodeDecodeError: data = "" except TypeError: data = "" firstName = getFirstName(data) if firstName not in nameList and firstName != None: nameList += [firstName] elif entry.is_dir(): # repeat if entry is a directory diffFirstNameHelper(entry.path, nameList) else: pass return len(nameList) # HELPER FUNCTIONS def getMaxSlashes(L): maxCount = 0 index = 0 if L == []: return '' else: for i in range(len(L)): count = 0 for char in L[i]: if char == '/': count += 1 if count > maxCount: maxCount = count index = i return L[index] def countDigits(string): """return number of digits in a string (Helper for countHaveTenDigits)""" count = 0 for char in string: if char == '0' or char == '1' or char == '2' or char == '3' or char == '4' or \ char == '5' or char == '6' or char == '7' or char == '8' or char == '9': count += 1 return count def makeDigitString(string): """Gathers all digits and returns them in a continuous string (Helper for count909AreaCode)""" newString = '' for char in string: if char in '0123456789': newString += char return newString def getOneAfterSpace(string): """returns next character after a space in given string (Helper for countInitials)""" result = '' reachedSpace = False for i in range(len(string)): if string[i] == ' ': return string[i+1] return '' def getAllAfterSpace(string): """returns all characters after a space in given string (Helper for getFirstName)""" result = '' for i in range(len(string)): if string[i] == ' ': return string[i+1:] return '' def getAllBeforeSpace(string): """returns all characters before a space in given string (Helper for getFirstName)""" result = '' for i in range(len(string)): if string[i] == ' ': return string[:i] def getName(string): """Grab the name as written in files (Helper)""" newString = '' reachedLetter = False for char in string: if char in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': reachedLetter = True if reachedLetter == True and char == '\n': break if reachedLetter == True: newString += char return newString def getFirstName(string): """return the first name (Helper for diffFirstName)""" name = getName(string) if ',' in name: return getAllAfterSpace(name) return getAllBeforeSpace(name) # MAIN def main(): print(countFilesOfType('phone_files', '.txt')) # 9893 print(findMaxDepth('phone_files')) # 4, 'phone_files/86/Hidden/Deeper/Deepest' print(countHaveTenDigits('phone_files')) # 3988 print(count909AreaCode('phone_files')) # 17 print(countLastName('phone_files', 'DAVIS')) # 224 print(countFirstName('phone_files', 'DAVIS'))# 3 print(countInitials('phone_files', 'J', 'S')) # 105 print(diffFirstName('phone_files'))# 224 # got some inconsistent answers first Name, last Name not working if __name__ == "__main__": main()
3.90625
4
PCRC-MCDR.py
MiKayule/PCRC-MCDR
0
12781792
# -*- coding: utf-8 -*- import sys import importlib import time sys.path.append('plugins/') PCRC = None PREFIX = '!!PCRC' # 0=guest 1=user 2=helper 3=admin Permission = 1 def permission(server, info, perm): if info.is_user: if info.source == 1: return True elif server.get_permission_level(info) >= perm: return True return False def load_PCRC(): global PCRC PCRC = importlib.import_module('PCRC-MCDR.PCRC') def on_info(server, info): if permission(server, info, Permission) and info.content == '!!PCRC start': server.reply(info, 'Starting PCRC') if PCRC.is_working(): server.reply(info, 'PCRC is already running!') else: PCRC.start() if info.source == 1 and info.content == '!!PCRC stop': if PCRC.is_working(): PCRC.stop() else: server.reply(info, 'PCRC is not running!') def on_load(server, old): global PCRC try: if old is not None and old.PCRC is not None and old.PCRC.is_working(): PCRC = old.PCRC else: load_PCRC() except: load_PCRC() def on_mcdr_stop(server): global PCRC if PCRC is None: return if PCRC.is_working(): PCRC.stop() else: for i in range(600): if not PCRC.is_stopped(): server.logger.info('Waiting for PCRC to stop') for i in range(10): if not PCRC.is_stopped(): time.sleep(0.1) if not PCRC.is_stopped(): server.logger.info('PCRC took too long to stop (more than 10min)! Exit anyway')
2.34375
2
pratik.py
Tesmi-ui/Tesmi-ux
0
12781793
<reponame>Tesmi-ui/Tesmi-ux<filename>pratik.py import random import math def main(): user = int(input("inter a no.:" )) print("your entered number is " user)
3.109375
3
untws/position.py
maanbsat/untws
11
12781794
<gh_stars>10-100 #!/usr/bin/env python # encoding: utf-8 # position.py # # Created by <NAME> on 2013-09-02. # Copyright (c) 2013 <NAME>. All rights reserved. from untws.instrument import create_instrument class Position(object): """Represents a single position""" def __init__(self, connection, account_name, instrument, quantity, price, average_cost, market_value, realized_pnl, unrealized_pnl): self._connection = connection self._account_name = account_name self._instrument = create_instrument(connection, instrument) self._quantity = quantity self._price = price self._average_cost = average_cost self._market_value = market_value self._realized_pnl = realized_pnl self._unrealized_pnl = unrealized_pnl def __repr__(self): return "<Position(%s, %s, %f)>" % \ (self.account_name, self.instrument.ticker, self.quantity) @property def connection(self): """Returns the connection object""" return self._connection @property def account_name(self): """The account name for this position""" return self._account_name @property def instrument(self): """The instrument object""" return self._instrument @property def quantity(self): """The position quantity""" return self._quantity @property def price(self): """The current price""" return self._price @property def average_cost(self): """The average cose""" return self._average_cost @property def market_value(self): """The market value""" return self._market_value @property def realized_pnl(self): """The realized P&L""" return self._realized_pnl @property def unrealized_pnl(self): """The unrealized P&L""" return self._unrealized_pnl
2.6875
3
output/copilot/python/timeout/house-robber.py
nhtnhan/CMPUT663-copilot-eval
0
12781795
<gh_stars>0 # https://leetcode.com/problems/house-robber/ class Solution(object): def rob(self, nums): """ You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night. Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police. :type nums: List[int] :rtype: int """
3.65625
4
carla/evaluation/benchmark.py
jayanthyetukuri/CARLA
0
12781796
import timeit from typing import Union import numpy as np import pandas as pd import copy from carla.evaluation.distances import get_distances from carla.evaluation.nearest_neighbours import yNN, yNN_prob, yNN_dist from carla.evaluation.manifold import yNN_manifold, sphere_manifold from carla.evaluation.process_nans import remove_nans from carla.evaluation.redundancy import redundancy from carla.evaluation.success_rate import success_rate, individual_success_rate from carla.evaluation.diversity import individual_diversity, avg_diversity from carla.evaluation.violations import constraint_violation from carla.evaluation.recourse_time import recourse_time_taken from carla.models.api import MLModel from carla.models.catalog import MLModelCatalog from carla.recourse_methods.api import RecourseMethod from carla.recourse_methods.processing import get_drop_columns_binary class Benchmark: """ The benchmarking class contains all measurements. It is possible to run only individual evaluation metrics or all via one single call. For every given factual, the benchmark object will generate one counterfactual example with the given recourse method. Parameters ---------- mlmodel: carla.models.MLModel Black Box model we want to explain recmodel: carla.recourse_methods.RecourseMethod Recourse method we want to benchmark factuals: pd.DataFrame Instances we want to find counterfactuals Methods ------- compute_ynn: Computes y-Nearest-Neighbours for generated counterfactuals compute_average_time: Computes average time for generated counterfactual compute_distances: Calculates the distance measure and returns it as dataframe compute_constraint_violation: Computes the constraint violation per factual as dataframe compute_redundancy: Computes redundancy for each counterfactual compute_success_rate: Computes success rate for the whole recourse method. run_benchmark: Runs every measurement and returns every value as dict. """ def __init__( self, mlmodel: Union[MLModel, MLModelCatalog], recourse_method: RecourseMethod, factuals: pd.DataFrame, dataset: pd.DataFrame = None ) -> None: self._mlmodel = mlmodel self._recourse_method = recourse_method self._full_dataset = dataset start = timeit.default_timer() self._counterfactuals = recourse_method.get_counterfactuals(factuals) stop = timeit.default_timer() self._timer = stop - start # Avoid using scaling and normalizing more than once if isinstance(mlmodel, MLModelCatalog): self._mlmodel.use_pipeline = False # type: ignore self._factuals = copy.deepcopy(factuals) # Normalizing and encoding factual for later use self._enc_norm_factuals = recourse_method.encode_normalize_order_factuals( factuals, with_target=True ) def compute_ynn(self) -> pd.DataFrame: """ Computes y-Nearest-Neighbours for generated counterfactuals Returns ------- pd.DataFrame """ _, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: ynn = np.nan else: ynn = yNN( counterfactuals_without_nans, self._recourse_method, self._mlmodel, 5 ) columns = ["y-Nearest-Neighbours"] return pd.DataFrame([[ynn]], columns=columns) def compute_average_time(self) -> pd.DataFrame: """ Computes average time for generated counterfactual Returns ------- pd.DataFrame """ avg_time = self._timer / self._counterfactuals.shape[0] columns = ["Average_Time"] return pd.DataFrame([[avg_time]], columns=columns) def compute_distances(self) -> pd.DataFrame: """ Calculates the distance measure and returns it as dataframe Returns ------- pd.DataFrame """ factual_without_nans, counterfactuals_without_nans = remove_nans( self._enc_norm_factuals, self._counterfactuals ) columns = ["Distance_1", "Distance_2", "Distance_3", "Distance_4"] if counterfactuals_without_nans.empty: return pd.DataFrame(columns=columns) if self._mlmodel.encoder.drop is None: # To prevent double count of encoded features without drop if_binary binary_columns_to_drop = get_drop_columns_binary( self._mlmodel.data.categoricals, counterfactuals_without_nans.columns.tolist(), ) counterfactuals_without_nans = counterfactuals_without_nans.drop( binary_columns_to_drop, axis=1 ) factual_without_nans = factual_without_nans.drop( binary_columns_to_drop, axis=1 ) arr_f = factual_without_nans.to_numpy() arr_cf = counterfactuals_without_nans.to_numpy() distances = get_distances(arr_f, arr_cf) output = pd.DataFrame(distances, columns=columns) return output def compute_constraint_violation(self) -> pd.DataFrame: """ Computes the constraint violation per factual as dataframe Returns ------- pd.Dataframe """ factual_without_nans, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: violations = [] else: violations = constraint_violation( self._mlmodel, counterfactuals_without_nans, factual_without_nans ) columns = ["Constraint_Violation"] return pd.DataFrame(violations, columns=columns) def compute_time_taken(self) -> pd.DataFrame: """ TODO Computes time taken for generated counterfactual Returns ------- pd.DataFrame """ factual_without_nans, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: time_taken = [] else: time_taken = recourse_time_taken( self._recourse_method, self._factuals ) columns = ["Time_taken"] return pd.DataFrame(time_taken, columns=columns) def compute_individual_diversity(self) -> pd.DataFrame: """ TODO Computes instance-wise diveristy for generated counterfactual Returns ------- pd.DataFrame """ factual_without_nans, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: diveristy = [] else: diveristy = individual_diversity( counterfactuals_without_nans, factual_without_nans ) columns = ["Individual_Diversity"] return pd.DataFrame(diveristy, columns=columns) def compute_avg_diversity(self) -> pd.DataFrame: """ TODO Computes average diversity for generated counterfactual Returns ------- pd.DataFrame """ factual_without_nans, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: diversity = [] else: diversity = avg_diversity( counterfactuals_without_nans, factual_without_nans ) columns = ["Average_Diversity"] return pd.DataFrame(diversity, columns=columns) def compute_ynn_dist(self) -> pd.DataFrame: """ TODO Computes y-Nearest-Neighbours for generated counterfactuals Returns ------- pd.DataFrame """ _, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: ynn = np.nan else: ynn = yNN_dist( counterfactuals_without_nans, self._recourse_method, self._mlmodel, 5 ) columns = ["y-Nearest-Neighbours-Distance"] output = pd.DataFrame(ynn, columns=columns) return output def compute_manifold_ynn(self) -> pd.DataFrame: """ TODO Computes y-Nearest-Neighbours for generated counterfactuals with respect to positive class Returns ------- pd.DataFrame """ _, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: ynn = np.nan else: ynn = yNN_manifold( counterfactuals_without_nans, self._recourse_method, self._mlmodel, 5 ) columns = ["y-Nearest-Neighbours-Manifold-Distance"] output = pd.DataFrame(ynn, columns=columns) return output def compute_manifold_sphere(self) -> pd.DataFrame: """ TODO Computes neighbor distance for generated counterfactuals with respect to positive class within sphere Returns ------- pd.DataFrame """ _, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: ynn = np.nan else: ynn = sphere_manifold( counterfactuals_without_nans, self._recourse_method, self._mlmodel ) columns = ["Sphere-Manifold-Distance"] output = pd.DataFrame(ynn, columns=columns) return output def compute_ynn_prob(self) -> pd.DataFrame: """ TODO Computes y-Nearest-Neighbours for generated counterfactuals Returns ------- pd.DataFrame """ _, counterfactuals_without_nans = remove_nans( self._factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: ynn = np.nan else: ynn = yNN_prob( counterfactuals_without_nans, self._recourse_method, self._mlmodel, 5 ) print(ynn) columns = ["y-Nearest-Neighbours-Probability"] output = pd.DataFrame(ynn, columns=columns) return output def compute_redundancy(self) -> pd.DataFrame: """ Computes redundancy for each counterfactual Returns ------- pd.Dataframe """ factual_without_nans, counterfactuals_without_nans = remove_nans( self._enc_norm_factuals, self._counterfactuals ) if counterfactuals_without_nans.empty: redundancies = [] else: redundancies = redundancy( factual_without_nans, counterfactuals_without_nans, self._mlmodel ) columns = ["Redundancy"] return pd.DataFrame(redundancies, columns=columns) def compute_success_rate(self) -> pd.DataFrame: """ Computes success rate for the whole recourse method. Returns ------- pd.Dataframe """ rate = success_rate(self._counterfactuals) columns = ["Success_Rate"] return pd.DataFrame([[rate]], columns=columns) def compute_individual_success_rate(self) -> pd.DataFrame: """ Computes success rate for the whole recourse method. Returns ------- pd.Dataframe """ rate = individual_success_rate(self._counterfactuals) columns = ["Individual_Success_Rate"] return pd.DataFrame([[rate]], columns=columns) def run_benchmark(self) -> pd.DataFrame: """ Runs every measurement and returns every value as dict. Returns ------- pd.DataFrame """ pipeline = [ self.compute_distances(), self.compute_constraint_violation(), self.compute_redundancy(), self.compute_ynn_prob(), self.compute_ynn_dist(), #self.compute_individual_success_rate(), #self.compute_individual_diversity(), self.compute_time_taken(), self.compute_manifold_ynn(), self.compute_manifold_sphere(), self.compute_success_rate(), self.compute_average_time(), self.compute_ynn() #self.compute_avg_diversity() ] output = pd.concat(pipeline, axis=1) return output
2.421875
2
config/appdaemon/apps/kodi_ambient_lights.py
azogue/hassio_config
18
12781797
# -*- coding: utf-8 -*- """ Automation task as a AppDaemon App for Home Assistant This little app controls the ambient light when Kodi plays video, dimming some lights and turning off others, and returning to the initial state when the playback is finished. In addition, it also sends notifications when starting the video playback, reporting the video info in the message. For that, it talks with Kodi through its JSONRPC API by HA service calls. """ import datetime as dt from urllib import parse import appdaemon.plugins.hass.hassapi as hass LOG_LEVEL = "DEBUG" LOG_LEVEL_HIGH = "WARNING" LOGGER = "event_log" EVENT_KODI_CALL_METHOD_RESULT = "kodi_call_method_result" METHOD_GET_PLAYERS = "Player.GetPlayers" METHOD_GET_ITEM = "Player.GetItem" PARAMS_GET_ITEM = { "playerid": 1, "properties": [ "title", "artist", "albumartist", "genre", "year", "rating", "album", "track", "duration", "playcount", "fanart", "plot", "originaltitle", "lastplayed", "firstaired", "season", "episode", "showtitle", "thumbnail", "file", "tvshowid", "watchedepisodes", "art", "description", "theme", "dateadded", "runtime", "starttime", "endtime", ], } TYPE_ITEMS_NOTIFY = ["movie", "episode"] TYPE_HA_ITEMS_NOTIFY = ["tvshow", "movie"] TELEGRAM_KEYBOARD_KODI = ["/luceson, /ambilighttoggle"] TELEGRAM_INLINEKEYBOARD_KODI = [ [("Luces ON", "/luceson"), ("Switch Ambilight", "/ambilighttoggle")], ] # noinspection PyClassHasNoInit class KodiAssistant(hass.Hass): """App for Ambient light control when playing video with KODI.""" _lights = None _light_states = {} _media_player = None _is_playing_video = False _item_playing = None _last_play = None _notifier_bot = "telegram_bot" _target_sensor = None _ios_notifier = None def initialize(self): """AppDaemon required method for app init.""" _lights_dim_on = self.args.get("lights_dim_on", "").split(",") _lights_dim_off = self.args.get("lights_dim_off", "").split(",") _lights_off = self.args.get("lights_off", "").split(",") self._lights = { "dim": {"on": _lights_dim_on, "off": _lights_dim_off}, "off": _lights_off, "state": "off", } self._media_player = self.config["media_player"] self._ios_notifier = self.config["notifier"].replace(".", "/") self._target_sensor = self.config["chatid_sensor"] # Listen for Kodi changes: self._last_play = self.datetime() self.listen_state(self.kodi_state, self._media_player) self.listen_event( self._receive_kodi_result, EVENT_KODI_CALL_METHOD_RESULT ) def _get_max_brightness_ambient_lights(self): if self.now_is_between("09:00:00", "19:00:00"): return 200 elif self.now_is_between("19:00:00", "22:00:00"): return 150 elif self.now_is_between("22:00:00", "04:00:00"): return 75 return 25 def _ask_for_playing_item(self): self.call_service( "kodi/call_method", entity_id=self._media_player, method=METHOD_GET_ITEM, **PARAMS_GET_ITEM, ) # noinspection PyUnusedLocal def _receive_kodi_result(self, event_id, payload_event, *args): result = payload_event["result"] method = payload_event["input"]["method"] if ( event_id == EVENT_KODI_CALL_METHOD_RESULT and method == METHOD_GET_ITEM ): if "item" in result: item = result["item"] self._is_playing_video = item["type"] in TYPE_ITEMS_NOTIFY title = message = img_url = "" if self._is_playing_video: title, message, img_url = self._get_kodi_info_params(item) new_video = ( self._item_playing is None or self._item_playing != title ) now = self.datetime() delta = now - self._last_play self._last_play = now if self._is_playing_video and ( new_video or delta > dt.timedelta(minutes=30) ): self._adjust_kodi_lights(play=True) self._item_playing = title # Notifications self._notify_ios_message(title, message, img_url) self._notify_telegram_message(title, message, img_url) else: self.log( "RECEIVED BAD KODI RESULT: {}".format(result), level=LOG_LEVEL_HIGH, log=LOGGER, ) elif ( event_id == EVENT_KODI_CALL_METHOD_RESULT and method == METHOD_GET_PLAYERS ): self.log( "KODI GET_PLAYERS RECEIVED: {}".format(result), log=LOGGER ) def _get_kodi_info_params(self, item): """ media_content_id: { "unknown": "304004" } entity_picture: /api/media_player_proxy/media_player.kodi?token=... media_duration: 1297 media_title: The One Where Chandler Takes A Bath media_album_name: media_season: 8 media_episode: 13 is_volume_muted: false media_series_title: Friends media_content_type: tvshow """ if item["type"] == "episode": title = "{} S{:02d}E{:02d} {}".format( item["showtitle"], item["season"], item["episode"], item["title"], ) else: title = "Playing: {}".format(item["title"]) if item["year"]: title += " [{}]".format(item["year"]) message = "{}\n∆T: {}.".format( item["plot"], dt.timedelta(hours=item["runtime"] / 3600) ) img_url = None try: if "thumbnail" in item: raw_img_url = item["thumbnail"] elif "thumb" in item: raw_img_url = item["thumb"] elif "poster" in item["art"]: raw_img_url = item["art"]["poster"] elif "season.poster" in item["art"]: raw_img_url = item["art"]["season.poster"] else: self.log(f"No poster in item[art]={item['art']}", log=LOGGER) k = list(item["art"].keys())[0] raw_img_url = item["art"][k] img_url = ( parse.unquote_plus(raw_img_url).rstrip("/").lstrip("image://") ) if ("192.168." not in img_url) and img_url.startswith("http://"): img_url = img_url.replace("http:", "https:") url_valid = self._valid_image_url(img_url) self.log( "MESSAGE: T={}, URL={}, ok={}".format(title, message, img_url, url_valid), log=LOGGER, level=LOG_LEVEL, ) if not url_valid: img_url = None except KeyError as e: self.log( "MESSAGE KeyError: {}; item={}".format(e, item), log=LOGGER ) return title, message, img_url def _valid_image_url(self, img_url): if (img_url is not None) and img_url.startswith("http"): return True if img_url is not None: self.log( "BAD IMAGE URL: {}".format(img_url), level=LOG_LEVEL_HIGH, log=LOGGER, ) return False def _notify_ios_message(self, title, message, img_url=None): data_msg = { "title": title, "message": message, "data": {"push": {"category": "kodiplay"}}, } if img_url is not None: data_msg["data"]["attachment"] = {"url": img_url} self.call_service(self._ios_notifier, **data_msg) def _notify_telegram_message(self, title, message, img_url=None): target = int(self.get_state(self._target_sensor)) if img_url is not None: data_photo = { "url": img_url, "keyboard": TELEGRAM_KEYBOARD_KODI, "disable_notification": True, } self.call_service( "{}/send_photo".format(self._notifier_bot), target=target, **data_photo, ) message + "\n{}\nEND".format(img_url) data_msg = { "message": message, "title": "*{}*".format(title), "inline_keyboard": TELEGRAM_INLINEKEYBOARD_KODI, "disable_notification": True, } self.call_service( "{}/send_message".format(self._notifier_bot), target=target, **data_msg, ) def _adjust_kodi_lights(self, play=True): k_l = self._lights["dim"][self._lights["state"]] + self._lights["off"] for light_id in k_l: if play: light_state = self.get_state(light_id) attrs_light = self.get_state(light_id, attribute="attributes") if attrs_light: attrs_light.update({"state": light_state}) self._light_states[light_id] = attrs_light max_brightness = self._get_max_brightness_ambient_lights() if light_id in self._lights["off"]: self.log( "Apagando light {} para KODI PLAY".format( light_id ), level=LOG_LEVEL, log=LOGGER, ) self.call_service( "light/turn_off", entity_id=light_id, transition=2 ) elif ("brightness" in attrs_light.keys()) and ( attrs_light["brightness"] > max_brightness ): self.log( "Atenuando light {} para KODI PLAY".format( light_id ), level=LOG_LEVEL, log=LOGGER, ) self.call_service( "light/turn_on", entity_id=light_id, transition=2, brightness=max_brightness, ) else: try: state_before = self._light_states[light_id] except KeyError: state_before = {} if ("state" in state_before) and ( state_before["state"] == "on" ): try: new_state_attrs = { "xy_color": state_before["xy_color"], "brightness": state_before["brightness"], } except KeyError: new_state_attrs = { "color_temp": state_before["color_temp"], "brightness": state_before["brightness"], } self.log( "Reponiendo light {}, con state_before={}".format( light_id, new_state_attrs ), level=LOG_LEVEL, log=LOGGER, ) self.call_service( "light/turn_on", entity_id=light_id, transition=2, **new_state_attrs, ) else: self.log( "Doing nothing with light {}, state_before={}".format( light_id, state_before ), level=LOG_LEVEL, log=LOGGER, ) # noinspection PyUnusedLocal def kodi_state(self, entity, attribute, old, new, kwargs): """Kodi state change main control.""" if new == "playing": kodi_attrs = self.get_state( self._media_player, attribute="attributes" ) self._is_playing_video = ( "media_content_type" in kodi_attrs and kodi_attrs["media_content_type"] in TYPE_HA_ITEMS_NOTIFY ) if self._is_playing_video: self._ask_for_playing_item() elif (new == "idle") and self._is_playing_video: self._is_playing_video = False self._last_play = self.datetime() self.log( "KODI STOP. old:{}, new:{}, type_lp={}".format( old, new, type(self._last_play) ), level=LOG_LEVEL, log=LOGGER, ) self._adjust_kodi_lights(play=False) elif new == "off": self._is_playing_video = False self.log( "KODI turned off. old:{}, new:{}, type_lp={}".format( old, new, type(self._last_play) ), level=LOG_LEVEL, log=LOGGER, ) self._light_states = {}
2.640625
3
fp-cloud-compute/fpstackutils/cmd/nova.py
2535463841/fluent-python
0
12781798
import sys from fp_lib.common import cliparser from fp_lib.common import log from fpstackutils.commands import nova LOG = log.getLogger(__name__) def main(): cli_parser = cliparser.SubCliParser('Python Nova Utils') cli_parser.register_clis(nova.ResourcesInit, nova.VMCleanup, nova.VMTest, nova.VMEvacuateTest) try: cli_parser.call() return 0 except KeyboardInterrupt: LOG.error("user interrupt") return 1 if __name__ == '__main__': sys.exit(main())
2.015625
2
src/fhdc/preprocessing.py
middlec000/fast_heirarchical_document_clustering
0
12781799
from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords # Note: Must download stuff for stopwords: # showing info https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml import re import string from typing import Dict from data_classes import * def preprocess(docs: Dict[str,str], **kwargs): """ Takes as input a dictionary of the documents for clustering and transforms them into the compact data structures of corpus and Vocabulary in preperation for clustering. This process turns each document from a string of words into a dictionary with (k, v) of (word id, TF-IDF score). Args: docs (Dict[str,str]): Documents to preprocess. Must be in format {doc_id (str): doc_text (str)} **kwargs: corpus_min_frequency (optional): Minimum corpus wide frequency each word needs to meet in order to be retained in clustering. Defaults to 2. doc_min_frequency (optional): Minimum document frequency each word needs to meet in order to be retained in each document. Defaults to 2. tfidf_decimals (optional): Number of decimal places to round TF-IDF scores. Defaults to 4. stop_words (optional): Words to remove from corpus. If none is provided, the default list of nltk english stopwords is used by default. lemmatizer (optional): Lemmatizer to be used. Must have a .lematize(word) function. If none is provided, nltk's WordNetLemmatizer is used by default. Returns: corpus (Dict[int, ClusterContents]): The document corpus where each document is represented as a dictionary of word_id's and the corresponding TF-IDF scores. doc_name_map (Dict[str, int]): Mapping of passed document name to cluster (document) id. vocabulary (Vocabulary): The vocabulary for the given corpus. """ # Establish parameter values params = {'corpus_min_frequency':2, 'doc_min_frequency':2, 'tfidf_digits':4, 'stop_words': set(stopwords.words('english')), 'lemmatizer': WordNetLemmatizer()} if kwargs is not None: for k,v in kwargs.items(): params[k] = v # print(params) for doc in docs: # Lowercase current_doc = docs[doc].lower() # Remove punctuation and symbols regex = re.compile(f"[{re.escape(string.punctuation)}]") current_doc = regex.sub('', current_doc) # Remove numbers current_doc = re.sub('\d', '', current_doc) # Tokenize current_doc = current_doc.split(' ') # Remove stopwords and empty strings current_doc = [word for word in current_doc if word not in params['stop_words'] and word] # Lemmatize current_doc = [params['lemmatizer'].lemmatize(word) for word in current_doc] # Transform to vector format {word: frequency} transformed_doc = {} for word in current_doc: if word not in transformed_doc: transformed_doc[word] = 1 else: transformed_doc[word] += 1 # Remove low frequency words from doc transformed_doc = {k:v for (k,v) in transformed_doc.items() if v >= params['doc_min_frequency']} # Replace the original doc with transformed_doc docs[doc] = transformed_doc # Create vocabulary vocabulary = Vocabulary({}, {}, {}) current_word_id = 0 for doc in docs: for word in docs[doc]: if word in vocabulary.word_id: existing_id = vocabulary.word_id[word] vocabulary.id_freq[existing_id] += docs[doc][word] else: vocabulary.word_id[word] = current_word_id vocabulary.id_word[current_word_id] = word vocabulary.id_freq[current_word_id] = docs[doc][word] current_word_id += 1 # Find corpus-wide low-frequency words infrequent_corpus_word_ids = [] for word_id in vocabulary.id_freq: if vocabulary.id_freq[word_id] < params['corpus_min_frequency']: infrequent_corpus_word_ids.append(word_id) # Remove corpus-wide low-frequency words from vocabulary for word_id_to_drop in infrequent_corpus_word_ids: vocabulary.id_freq.pop(word_id_to_drop) word_to_drop = vocabulary.id_word[word_id_to_drop] vocabulary.id_word.pop(word_id_to_drop) vocabulary.word_id.pop(word_to_drop) # Remove corpus-wide low-frequency words from corpus # Change words to word_ids # Transform word frequencies to TF-IDF scores # Create clusters, cluster_ids doc_name_map = DocumentNameMap({}, {}) cluster_id = 0 new_docs = {} for doc in docs: cluster_contents = {} for word in docs[doc]: if word in vocabulary.word_id: word_id = vocabulary.word_id[word] word_tfidf = float(docs[doc][word]) / float(vocabulary.id_freq[word_id]) cluster_contents[word_id] = round(word_tfidf, ndigits=params['tfidf_digits']) new_docs[cluster_id] = ClusterContents(cluster_id=cluster_id, contents=cluster_contents) doc_name_map.name_id[doc] = cluster_id doc_name_map.id_name[cluster_id] = doc cluster_id += 1 return new_docs, doc_name_map, vocabulary
3.25
3
pretrain.py
rlaboulaye/turn-of-phrase
0
12781800
<reponame>rlaboulaye/turn-of-phrase<gh_stars>0 from argparse import ArgumentParser import random import time from typing import Callable from convokit import Corpus, download import numpy as np import torch from torch import nn import torch.backends.cudnn as cudnn from torch.cuda.amp import GradScaler, autocast from torch.optim import Optimizer from torch.utils.data import DataLoader from transformers import AdamW, AutoModel, AutoModelForMaskedLM, AutoModelForMultipleChoice, AutoTokenizer, get_linear_schedule_with_warmup from data import ConversationPathDataset, ConversationPathBatchSampler, add_title_to_root, conversation_path_collate_fn from model import ConversationClassificationHRNN from utils import AverageMeter, ProgressMeter, save_checkpoint WARMUP_RATIO = 0.1 CLIPPING_GRADIENT_NORM = 1.0 MLM_COEF = 0.1 parser = ArgumentParser(description='Turn of Phrase Pretraining') parser.add_argument('-m', '--model-name', type=str, default='google/bigbird-roberta-base', help='name of pretrained model to use') parser.add_argument('-c', '--corpus', type=str, default='subreddit-changemyview', help='name of convokit corpus used for pretraining') parser.add_argument('--start-index', type=int, default=None, help='start index for utterance.json') parser.add_argument('--end-index', type=int, default=None, help='end index for utterance.json') parser.add_argument('-l', '--learning-rate', type=float, default=2e-5, help='base learning rate used') parser.add_argument('-b', '--batch-size', type=int, default=16, help='training data batch size') parser.add_argument('-t', '--training-steps', type=int, default=100000, help='number of training steps to run') parser.add_argument('--loop-steps', type=int, default=1000, help='number of training steps per train loop') parser.add_argument('-s', '--seed', type=int, default=None, help='random seed for reproducibility') parser.add_argument('--conversation-min', type=int, default=3, help='minimum conversation length') parser.add_argument('--conversation-max', type=int, default=6, help='maximum conversation length') parser.add_argument('--num-neighbors', type=int, default=3, help='the number of contrastive examples used') parser.add_argument('--utterance-max', type=int, default=1024, help='maximum utterance length') parser.add_argument('-r', '--resume_path', type=str, default=None, help='path to model from which you would like to resume') best_loss = np.inf def main() -> None: global best_loss step = 0 args = parser.parse_args() if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if args.start_index is not None or args.end_index is not None: start_index = args.start_index end_index = args.end_index if start_index is None: start_index = 0 if end_index is None: corpus = Corpus(filename=download(args.corpus), utterance_start_index=start_index) else: corpus = Corpus(filename=download(args.corpus), utterance_start_index=start_index, utterance_end_index=end_index) else: corpus = Corpus(filename=download(args.corpus)) add_title_to_root(corpus) conversations = list(corpus.iter_conversations()) tokenizer = AutoTokenizer.from_pretrained(args.model_name) dataset = ConversationPathDataset(corpus, tokenizer, min_len=args.conversation_min, max_len=args.conversation_max, n_neighbors=args.num_neighbors, max_tokenization_len=args.utterance_max) sampler = ConversationPathBatchSampler(args.batch_size, dataset.min_len, dataset.get_indices_by_len()) loader = DataLoader(dataset, batch_sampler=sampler, collate_fn=conversation_path_collate_fn, pin_memory=device.type != 'cpu', num_workers=4) # utterance_encoder = AutoModel.from_pretrained(args.model_name) # conversation_encoder = nn.LSTM(utterance_encoder.config.hidden_size, args.hidden, args.num_layers) # model = ConversationClassificationHRNN(utterance_encoder, conversation_encoder, 1) # mlm_head = AutoModelForMaskedLM.from_pretrained(args.model_name).predictions model = AutoModelForMultipleChoice.from_pretrained(args.model_name) model.to(device) # mlm_head.to(device) criterion = nn.CrossEntropyLoss() # optimizer = AdamW(list(model.parameters()) + list(mlm_head.parameters()), args.learning_rate) optimizer = AdamW(list(model.parameters()), args.learning_rate) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=WARMUP_RATIO*args.training_steps, num_training_steps=args.training_steps) scaler = GradScaler() if args.resume_path is not None: if os.path.isfile(args.resume_path): print("=> loading checkpoint '{}'".format(args.resume_path)) checkpoint = torch.load(args.resume_path, map_location=device) step = checkpoint['step'] best_loss = checkpoint['best_loss'] model.bert.load_state_dict(checkpoint['state_dict']) # mlm_head.load_state_dict(checkpoint['head_state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) print("=> loaded checkpoint '{}' (step {})" .format(args.resume_path, checkpoint['step'])) else: print("=> no checkpoint found at '{}'".format(args.resume_path)) while step < args.training_steps: loop_steps = args.loop_steps if args.training_steps - step > args.loop_steps else args.training_steps - step # loss = train(loader, model, mlm_head, criterion, optimizer, scheduler, scaler, # device, loop_steps, step // args.loop_steps) loss = train(loader, model, criterion, optimizer, scheduler, scaler, device, loop_steps, step // args.loop_steps) step += loop_steps # checkpoint model every k training loops k = 2 if step % (k * args.loop_steps) == 0 or step == args.training_steps: is_best = loss < best_loss best_loss = min(loss, best_loss) run_name = '{}.{}.{}.{}.{}'.format(args.model_name.split('/')[-1], args.corpus, args.conversation_max, args.num_neighbors, args.utterance_max) # save_checkpoint({ # 'step': step, # 'model': args.model_name, # 'state_dict': model.state_dict(), # 'head_state_dict': mlm_head.state_dict(), # 'best_loss': best_loss, # 'optimizer': optimizer.state_dict(), # 'scheduler': scheduler.state_dict() # }, is_best, run_name) save_checkpoint({ 'step': step, 'model': args.model_name, 'state_dict': model.bert.state_dict(), 'best_loss': best_loss, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, is_best, run_name) # def train(loader: DataLoader, model: nn.Module, mlm_head: nn.Module, criterion: Callable, optimizer: Optimizer, scheduler: object, scaler: GradScaler, device: torch.device, loop_steps: int, step: int): def train(loader: DataLoader, model: nn.Module, criterion: Callable, optimizer: Optimizer, scheduler: object, scaler: GradScaler, device: torch.device, loop_steps: int, step: int): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') # path_losses = AverageMeter('Path Loss', ':.4e') # mlm_losses = AverageMeter('MLM Loss', ':.4e') accuracies = AverageMeter('Accuracy', ':6.2f') # progress = ProgressMeter( # loop_steps, # [batch_time, data_time, losses, path_losses, mlm_losses, accuracies], # prefix="Epoch: [{}]".format(step)) progress = ProgressMeter( loop_steps, [batch_time, data_time, losses, accuracies], prefix="Epoch: [{}]".format(step)) model.train() end = time.time() for i, (path, attention_mask, targets, _) in enumerate(loader): data_time.update(time.time() - end) non_blocking = device.type != 'cpu' path = path.to(device, non_blocking=non_blocking) attention_mask = path.to(device, non_blocking=non_blocking) targets = targets.to(device, non_blocking=non_blocking) # # mask_indices = [] # for input_ids_batch, attention_mask_batch in zip(path, attention_masks): # sequence_lengths_batch = attention_mask_batch.shape[1] - attention_mask_batch.flip(1).argmax(1) # attention_mask_batch = attention_mask_batch.detach().clone() # # remove masking for sequence length # for batch_idx in range(input_ids_batch.shape[0]): # attention_mask_batch[batch_idx, sequence_lengths_batch[batch_idx]:] = 1 # mask_indices_batch = (attention_mask_batch == 0).nonzero(as_tuple=True) # mask_indices.append(mask_indices_batch) # with autocast(): # logits, mask_encodings = model(input_ids=path, attention_mask=attention_mask) output = model(input_ids=path, attention_mask=attention_mask, labels=targets) logits = output.logits loss = output.loss.mean() # # mlm_loss = torch.zeros(1).to(device, non_blocking=non_blocking) # for mask_encoding_batch, input_ids_batch, mask_indices_batch in zip(mask_encodings, path, mask_indices): # if len(mask_indices_batch[0]) == 0: # continue # mask_targets = input_ids_batch[mask_indices_batch] # mask_logits = mlm_head(mask_encoding_batch) # # gradually take mean # mlm_loss += criterion(mask_logits, mask_targets) * (1. / len(path)) # loss = path_loss + MLM_COEF * mlm_loss accuracy = (logits.argmax(1) == targets).float().mean().item() losses.update(loss.item(), targets.shape[0]) # path_losses.update(path_loss.item(), targets.shape[0]) # mlm_losses.update(mlm_loss.item(), targets.shape[0]) accuracies.update(accuracy, targets.shape[0]) optimizer.zero_grad() scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIPPING_GRADIENT_NORM) scaler.step(optimizer) scaler.update() scheduler.step() batch_time.update(time.time() - end) end = time.time() if i % (loop_steps // 50) == 0: progress.display(i) if i == loop_steps - 1: break return losses.avg if __name__ == '__main__': main()
2.15625
2
degmo/vae/__init__.py
IcarusWizard/Deep-Generative-Models
2
12781801
<gh_stars>1-10 from .vae import VAE from .fvae import FVAE from .vqvae import VQ_VAE
0.976563
1
remind.py
ksu-hmi/Remind_Rx
0
12781802
#Importing all the necessary libraries: from tkinter import * import datetime import time import sys import signal import os import webbrowser import time import re # Log into the app print ("RemindRx, your guide to better health") print("Enter Email address(Username): ") email_address = input() while "@" not in email_address: email_address = input("Your email address must have '@' in it\nPlease write your email address again: ") if len(email_address) <= 6 : email_address = input("Your email address is too short\nPlease write your email address again: ") if "." not in email_address: email_address = input("Your email address must have '.' in it\nPlease write your email address again: ") while "." not in email_address: email_address = input("Your email address must have '.' in it\nPlease write your email address again: ") if len(email_address) <= 6 : email_address = input("Your email address is too short\nPlease write your email address again: ") if "@" not in email_address: email_address = input("Your email address must have '@' in it\nPlease write your email address again: ") # Create password def checkPassword(password): """ Validate the password """ if len(password) < 8: # Password to short print("Your password must be 8 characters long.") return False elif not re.findall(r'\d+', password): # Missing a number print("You need a number in your password.") return False elif not re.findall(r'[A-Z]+', password): # Missing at least one capital letter print("You need a capital letter in your password.") return False else: # All good print("All good") return True # Promt user to enter valid password passwordValid = False while not passwordValid: create_password = input( "Create your password:\n (Password must contain at least 8 characters, one number,\n one capital letter, and one lowercase letter)") passwordValid = checkPassword(create_password) print("Enter your first name: ") first_name=input() print("Enter your last name: ") last_name=input() #Now log in with new password print("Welcome", first_name + "!", "Your profile is set up") print("Log in to access the application\n You have 3 attempts or application quits") attempts = 0 username = email_address password = <PASSWORD> while True: usern = input("Enter Username: ") print() userp = input("Enter Password: ") attempts += 1 if attempts == 3: print("Too many incorrect attempts. Please try again in few minutes") exit() else: if usern == username and userp == password: print("\nAccess Granted. Welcome " + first_name) break else: print("\nIncorrect credentials. Try again") def print_menu(): print() print("Welcome to RemindRx! Press enter to select option") print() choice = input(""" 1. Add A Medication 2. Delete A Medication 3. Review Your Medication List 4. Set an Alarm for Medication 5. Exit """) print_menu() choice = input("Select the menu item that you want edit [1-5]: ") choice = int(choice) medication_name=[] while choice != 5: if choice == 1: med_add = input("Enter the medication Name to add to your list: ") medication_name.append(med_add) print("Updated Medication List: ", medication_name) med_direction = input() break elif choice == 2: print ("Delete A Medication") med_remove = input("Enter the medication that you are removing from your list: ") medication_name.remove(med_remove) print("Updated medication list: ", medication_name) continue elif choice == 3: print ("Review Your Medication List") print("Current medication list: ", "\n", medication_name) break elif choice == 4: print ("Set an Alarm for Medication") alarm_HH = input("Enter the hour you want to take the medication - in 24 hour format: ") alarm_MM = input("Enter the minute you want to take the medication: ") print(medication_name) print("Enter the directions for medication : ") med_direction = input() print(med_direction) #need input format for the time so end user will know how to enter it! print("Enter time of day medication is to be taken : ") time_take=input('Please input the time for the alarm in format HHMM: \n ') print(time_take) print("Hello", first_name,"!", "Remember to take", med_direction, "at", time_take) def alarm(set_alarm_timer): while True: time.sleep(1) current_time = datetime.datetime.now() now = current_time.strftime("%H:%M:%S") date = current_time.strftime("%d/%m/%Y") print("The Set Date is:",date) print(now) if now == set_alarm_timer: print("Time to take med") winsound.PlaySound("sound.wav",winsound.SND_ASYNC) break def actual_time(): set_alarm_timer = f"{hour.get()}:{min.get()}:{sec.get()}" alarm(set_alarm_timer) # Create GUI in tinker clock = Tk() clock.title("RemindRx") clock.geometry("400x200") time_format=Label(clock, text= "Enter time in 24 hour format!", fg="red",bg="black",font="Arial").place(x=60,y=120) addTime = Label(clock,text = "Hour Min Sec",font=60).place(x = 110) setYourAlarm = Label(clock,text = "Remember to take your med",fg="blue",relief = "solid",font=("Helevetica",7,"bold")).place(x=0, y=29) # The Variables we require to set the alarm(initialization): hour = StringVar() min = StringVar() sec = StringVar() #Time required to set the alarm clock: hourTime= Entry(clock,textvariable = hour,bg = "pink",width = 15).place(x=110,y=30) minTime= Entry(clock,textvariable = min,bg = "pink",width = 15).place(x=150,y=30) secTime = Entry(clock,textvariable = sec,bg = "pink",width = 15).place(x=200,y=30) #To take the time input by user: submit = Button(clock,text = "Set Alarm",fg="red",width = 10,command = actual_time).place(x =110,y=70) clock.mainloop() #Execution of the window.
4
4
main.py
Katreque/trab-means
0
12781803
from sklearn.cluster import KMeans from random import randint import numpy as np import csv import matplotlib.pyplot as plt matriz = [] arrayCriacaoCentroides = [] with open('dataset_iris.csv') as csvfile: reader = csv.DictReader(csvfile) for row in reader: largPetala = (row['larguraPetala']) compSepala = (row['comprimentoSepala']) matriz.append([float(largPetala), float(compSepala)]) matriz = np.array(matriz) def criacaoCentroideRandom(): array = [[randint(0, 9), randint(0, 9)], [randint(0, 9), randint(0, 9)], [randint(0, 9), randint(0, 9)]] array = np.array(array) global arrayCriacaoCentroides arrayCriacaoCentroides = array return array def avaliacaoAcertos(arrayAnalise): g1 = 0 g2 = 0 g3 = 0 acertos = 0 for i in range(0, len(arrayAnalise)): if (arrayAnalise[i] == 0): g1+=1 if (arrayAnalise[i] == 1): g2+=1 if (arrayAnalise[i] == 2): g3+=1 if (i == 49) or (i == 99) or (i == 149): print("Agrupamento:", g1, g2, g3) acertos += max(g1, g2, g3) g1 = 0 g2 = 0 g3 = 0 return round(acertos/150*100, 2) for i in range(1, 4): if (i != 3): #Minha geração de centroides; trabmeans = KMeans(n_clusters=3, init=criacaoCentroideRandom(), n_init=1).fit(matriz) else: #Geração de centroides otimizada da própria lib; trabmeans = KMeans(n_clusters=3).fit(matriz) plt.figure(i) plt.scatter(matriz[:, 0], matriz[:, 1], s = 100, c = trabmeans.labels_) if (i != 3): plt.scatter(arrayCriacaoCentroides[:, 0], arrayCriacaoCentroides[:, 1], s = 100, c = 'green', label = 'Centroides Iniciais') plt.scatter(trabmeans.cluster_centers_[:, 0], trabmeans.cluster_centers_[:, 1], s = 100, c = 'red', label = 'Centroides Finais') plt.xlabel('Largura da Petala') plt.ylabel('Comprimento da Sepala') plt.legend() if (i != 3): print("Centroide inicial - Grupo " + str(i) + ":", arrayCriacaoCentroides[0], arrayCriacaoCentroides[1], arrayCriacaoCentroides[2]) else: print("Coordenadas do Centroide geradas de maneira otimizada pelo algoritmo.") print("Porcentagem acerto - Grupo " + str(i) + ":", avaliacaoAcertos(trabmeans.labels_)) print("\n") plt.show()
3.046875
3
setup.py
Jim00000/waterwave-simulator
1
12781804
<reponame>Jim00000/waterwave-simulator """ Copyright (C) 2017 the team of Jim00000, ActKz and pityYo Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from distutils.core import setup, Extension from Cython.Build import cythonize import numpy setup( ext_modules = cythonize(Extension( "wave_equation", # the extension name sources=["wave_equation.pyx", "wave_equation_api.cpp"], # the Cython source and additional C source files language="c++", # the language libraries=["m"], # linking libraries extra_compile_args=["-std=c++11", "-O2", "-Wall", "-Wextra", "-fopenmp"], # compiler flags extra_link_args=["-fopenmp", "wave_equation_cuda_api.o", "-lcuda", "-lcudart", "-lboost_system", "-lboost_thread"], # link arguments include_dirs=[numpy.get_include()], # included directories )))
1.46875
1
server/processes/migrations/0082_auto_20191219_0855.py
CloudReactor/task_manager
0
12781805
<filename>server/processes/migrations/0082_auto_20191219_0855.py # Generated by Django 2.2.2 on 2019-12-19 08:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('processes', '0081_auto_20191217_0709'), ] operations = [ migrations.AddField( model_name='processtype', name='aws_ecs_default_assign_public_ip', field=models.BooleanField(default=False, null=True), ), migrations.AddField( model_name='runenvironment', name='aws_ecs_default_assign_public_ip', field=models.BooleanField(default=False), ), ]
1.445313
1
stock_info.py
play0137/Stock_web_crawler
4
12781806
""" 個股月營收資訊 """ import re import sys import pdb import pandas as pd from stock_web_crawler import stock_crawler, delete_header, excel_formatting import global_vars def main(): global_vars.initialize_proxy() """ valid input formats """ # inputs = "台積電 聯電" # inputs = "2330 2314" # inputs = "台積電, 2314" inputs = input("輸入要搜尋的公司名稱或股號:\n(press q to exit)\n") if inputs == "q": sys.exit(0) stocks_ID = list() stock_dict = stock_ID_name_mapping() delims = r"[\s\t,\.;]+" inputs = re.split(delims, inputs) for stock in inputs: if stock not in stock_dict: print("Invalid input!", stock, "is not in the stock ticker symbol table") sys.exit(-1) if stock.isdigit(): stocks_ID.append(stock) else: # map company name to stock ID stocks_ID.append(stock_dict[stock]) print("stocks ID:", stocks_ID) stock_salemon_file = global_vars.DIR_PATH + "個股月營收.xlsx" with pd.ExcelWriter(stock_salemon_file, mode='w', engine="xlsxwriter") as writer: # headers = ["月別", "開盤", "收盤", "最高", "最低", "漲跌(元)", "漲跌(%)", "單月營收(億)", "單月月增(%)", "單月年增(%)", "累計營收(億)", "累計年增(%)", "合併單月營收(億)", "合併單月月增(%)", "合併單月年增(%)", "合併累計營收(億)", "合併累計年增(%)"] table_ID = "#divDetail" for stock_ID in stocks_ID: url = f"https://goodinfo.tw/StockInfo/ShowSaleMonChart.asp?STOCK_ID={stock_ID}" df = stock_crawler(url, None, table_ID) # reassign headers headers = list() for i in range(len(df.columns)): headers.append('_'.join(pd.Series(df.columns[i]).drop_duplicates().tolist())) df.columns = headers delete_header(df, headers) sheet_name = f"{stock_dict[stock_ID]}" df.to_excel(writer, index=False, encoding="UTF-8", sheet_name=sheet_name, freeze_panes=(1,2)) # write to different sheets excel_formatting(writer, df, sheet_name) # 1101,台泥,台灣水泥股份有限公司 def stock_ID_name_mapping(): stock_dict = dict() with open(global_vars.DIR_PATH + "公司股市代號對照表.csv", "r", encoding="UTF-8") as file_r: file_r.readline() for line in file_r: line = line.split(",") stock_ID = line[0] stock_name = line[1] if stock_ID not in stock_dict: stock_dict[stock_ID] = stock_name if stock_name not in stock_dict: stock_dict[stock_name] = stock_ID return stock_dict if __name__ == "__main__": main()
2.796875
3
examples/chrome-dino/main.py
robianmcd/keras-mri
12
12781807
<filename>examples/chrome-dino/main.py from keras.models import Model from keras.layers import Input, Conv2D, Flatten, Dense, concatenate import numpy as np import imageio import os import os.path as path import kmri base_path = path.dirname(path.realpath(__file__)) weights_path = path.join(base_path, 'model-weights.h5') labeled_path = path.join(base_path, 'labeled-input.csv') img_path = path.join(base_path, 'img-input') # ***************************************************************************** # ******************************** Build model ******************************** # ***************************************************************************** labeled_input_layer = Input(shape=(3,), name='labeledInput') img_input_layer = Input(shape=(38, 150, 1), name='imgInput') x = Conv2D(16, kernel_size=8, strides=4, activation='relu')(img_input_layer) x = Conv2D(32, kernel_size=4, strides=2, activation='relu')(x) x = Flatten()(x) x = concatenate([x, labeled_input_layer]) x = Dense(256, activation='relu')(x) output = Dense(5)(x) model = Model(inputs=[img_input_layer, labeled_input_layer], outputs=[output]) model.load_weights(weights_path) # ***************************************************************************** # ******************************** Load inputs ******************************** # ***************************************************************************** labeled_input = np.loadtxt(labeled_path, delimiter=',') read_img = lambda file_name: imageio.imread(os.path.join(img_path, file_name)).reshape(38,150,1) / 255 img_input = np.array([read_img(file_name) for file_name in os.listdir(img_path)]) # ***************************************************************************** # ****************************** Visualize Model******************************* # ***************************************************************************** kmri.visualize_model(model, [img_input, labeled_input])
2.625
3
first_setup.py
EzraCerpac/SatLink
8
12781808
<gh_stars>1-10 import sys import subprocess # package list must follow the installation guide in README.md package_list = ('itur==0.2.1', 'tqdm==4.56.0', 'pandas==1.2.1', 'pathos==0.2.7', 'astropy==4.2', 'pyqt5==5.15.2', 'matplotlib==3.4.1') for package in package_list: # implement pip as a subprocess: subprocess.check_call([sys.executable, '-m', 'pip', 'install',package]) # process output with an API in the subprocess module: reqs = subprocess.check_output([sys.executable, '-m', 'pip','freeze']) installed_packages = [r.decode().split('==')[0] for r in reqs.split()] print(installed_packages) print('Process Completed!!!')
2.28125
2
tethys_quotas/models/tethys_app_quota.py
msouff/tethys
79
12781809
""" ******************************************************************************** * Name: tethys_app_quota.py * Author: tbayer, mlebarron * Created On: April 2, 2019 * Copyright: (c) Aquaveo 2018 ******************************************************************************** """ import logging from django.db import models from tethys_quotas.models.entity_quota import EntityQuota from tethys_apps.models import TethysApp log = logging.getLogger('tethys.' + __name__) class TethysAppQuota(EntityQuota): """ entity_id (IntegerField): id of the entity. """ class Meta: verbose_name = 'Tethys App Quota' entity = models.ForeignKey(TethysApp, on_delete=models.CASCADE)
1.695313
2
python/RawNet2/dataloader.py
ishine/RawNet
199
12781810
<reponame>ishine/RawNet<gh_stars>100-1000 import numpy as np import soundfile as sf from torch.utils import data class Dataset_VoxCeleb2(data.Dataset): def __init__(self, list_IDs, base_dir, nb_samp = 0, labels = {}, cut = True, return_label = True, norm_scale = True): ''' self.list_IDs : list of strings (each string: utt key) self.labels : dictionary (key: utt key, value: label integer) self.nb_samp : integer, the number of timesteps for each mini-batch cut : (boolean) adjust utterance duration for mini-batch construction return_label : (boolean) norm_scale : (boolean) normalize scale alike SincNet github repo ''' self.list_IDs = list_IDs self.nb_samp = nb_samp self.base_dir = base_dir self.labels = labels self.cut = cut self.return_label = return_label self.norm_scale = norm_scale if self.cut and self.nb_samp == 0: raise ValueError('when adjusting utterance length, "nb_samp" should be input') def __len__(self): return len(self.list_IDs) def __getitem__(self, index): ID = self.list_IDs[index] try: X, _ = sf.read(self.base_dir+ID) X = X.astype(np.float64) except: raise ValueError('%s'%ID) if self.norm_scale: X = self._normalize_scale(X).astype(np.float32) X = X.reshape(1,-1) #because of LayerNorm for the input if self.cut: nb_time = X.shape[1] if nb_time > self.nb_samp: start_idx = np.random.randint(low = 0, high = nb_time - self.nb_samp) X = X[:, start_idx : start_idx + self.nb_samp][0] elif nb_time < self.nb_samp: nb_dup = int(self.nb_samp / nb_time) + 1 X = np.tile(X, (1, nb_dup))[:, :self.nb_samp][0] else: X = X[0] if not self.return_label: return X y = self.labels[ID.split('/')[0]] return X, y def _normalize_scale(self, x): ''' Normalize sample scale alike SincNet. ''' return x/np.max(np.abs(x)) class TA_Dataset_VoxCeleb2(data.Dataset): def __init__(self, list_IDs, base_dir, nb_samp = 0, window_size = 0, labels = {}, cut = True, return_label = True, norm_scale = True): ''' self.list_IDs : list of strings (each string: utt key) self.labels : dictionary (key: utt key, value: label integer) self.nb_samp : integer, the number of timesteps for each mini-batch cut : (boolean) adjust utterance duration for mini-batch construction return_label : (boolean) norm_scale : (boolean) normalize scale alike SincNet github repo ''' self.list_IDs = list_IDs self.window_size = window_size self.nb_samp = nb_samp self.base_dir = base_dir self.labels = labels self.cut = cut self.return_label = return_label self.norm_scale = norm_scale if self.cut and self.nb_samp == 0: raise ValueError('when adjusting utterance length, "nb_samp" should be input') def __len__(self): return len(self.list_IDs) def __getitem__(self, index): ID = self.list_IDs[index] try: X, _ = sf.read(self.base_dir+ID) X = X.astype(np.float64) except: raise ValueError('%s'%ID) if self.norm_scale: X = self._normalize_scale(X).astype(np.float32) X = X.reshape(1,-1) list_X = [] nb_time = X.shape[1] if nb_time < self.nb_samp: nb_dup = int(self.nb_samp / nb_time) + 1 list_X.append(np.tile(X, (1, nb_dup))[:, :self.nb_samp][0]) elif nb_time > self.nb_samp: step = self.nb_samp - self.window_size iteration = int( (nb_time - self.window_size) / step ) + 1 for i in range(iteration): if i == 0: list_X.append(X[:, :self.nb_samp][0]) elif i < iteration - 1: list_X.append(X[:, i*step : i*step + self.nb_samp][0]) else: list_X.append(X[:, -self.nb_samp:][0]) else : list_X.append(X[0]) if not self.return_label: return list_X y = self.labels[ID.split('/')[0]] return list_X, y def _normalize_scale(self, x): ''' Normalize sample scale alike SincNet. ''' return x/np.max(np.abs(x))
2.4375
2
test/test_group.py
malramsay64/hoomd-simple-force
0
12781811
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2018 <NAME> <<EMAIL>> # # Distributed under terms of the MIT license. import hoomd import hoomd.simple_force import hoomd.md import numpy as np context = hoomd.context.initialize("--notice-level=10 --mode=cpu") uc = hoomd.lattice.unitcell( N=1, a1=[3, 0, 0], a2=[0, 3, 0], a3=[0, 0, 3], dimensions=2, position=[[0, 0, 0]], type_name=["R"], mass=[1.0], moment_inertia=[[1, 1, 1]], orientation=[[0.9, 0, 0, 0.2]], ) system = hoomd.init.create_lattice(unitcell=uc, n=10) system.particles.types.add("A") pairs = hoomd.md.pair.lj(2.5, nlist=hoomd.md.nlist.cell()) pairs.pair_coeff.set("A", "A", epsilon=1.0, sigma=1.0) pairs.pair_coeff.set("R", "A", epsilon=1.0, sigma=1.0) pairs.pair_coeff.set("R", "R", epsilon=1.0, sigma=1.0) rigid = hoomd.md.constrain.rigid() rigid.set_param("R", types=["A"], positions=[(-1, 0, 0)]) rigid.create_bodies() snap_init = system.take_snapshot() hoomd.md.update.enforce2d() hoomd.md.integrate.mode_standard(dt=0.005) hoomd.md.integrate.nvt(hoomd.group.rigid_center(), kT=1, tau=1) nmols = min(max(snap_init.particles.body) + 1, snap_init.particles.N) print(nmols) rc = hoomd.group.rigid_center() force = hoomd.simple_force.SimpleForce(rc) print(rc.cpp_group.getNumMembersGlobal()) hoomd.run(1000)
1.898438
2
website/discovery/views.py
gaybro8777/osf.io
628
12781812
<filename>website/discovery/views.py from framework.flask import redirect def redirect_activity_to_search(**kwargs): return redirect('/search/')
1.695313
2
utils/orbits.py
tom-boyes-park/n-body-modelling
1
12781813
import logging from typing import List import matplotlib.pyplot as plt import numpy as np import streamlit as st from matplotlib.animation import FuncAnimation from scipy import integrate from utils.objects import Body logger = logging.getLogger(__name__) # Arbitrary value for G (gravitational constant) G = 1 def create_initial_conditions(bodies: List[Body]) -> List[int]: """ :param bodies: List of Body classes :return: list of starting x, y, vx, and vy values for each Body in bodies """ initial = [] # Loop through bodies and create initial conditions to be passed into the integrator logger.info(f"Creating initial conditions for the {len(bodies)} bodies") for body in bodies: values = [body.x, body.vx, body.y, body.vy] initial += values return initial def calc_2d_distance(x1: float, y1: float, x2: float, y2: float) -> float: """ Returns: Distance between the 2-dimensional co-ordinates supplied. """ return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 def calc_dvel(c1: float, c2: float, r: float, m2: float) -> float: """ Calculates the change in velocity on a target body due to the gravitational force of another body (source body) in a single dimension. Args: c1: value for target body position in x or y dimension c2: value for source body position in x or y dimension r: distance between 2 bodies m2: mass of the source body Returns: change in target body velocity (float) """ return (-G * m2 * (c1 - c2)) * r ** (-3) def n_body_func(t: int, pos_vel: np.ndarray, bodies: List[Body]) -> np.ndarray: """ Function to be passed into the ode integrator. Calculates and stores the changes in spatial and velocity values. Args: t: time step pos_vel: array containing x, y, vx and vy values for each body [x1, vx1, y1, vy1, x2, ...] bodies: list of Body objects Returns: array containing change in spatial and velocity values for each body """ # Set up array to store updated spatial and velocity values dpos_dvel = np.zeros(4 * len(bodies)) # Change in x, y is velocity in x, y dpos_dvel[0 : len(dpos_dvel) : 4] = pos_vel[1 : len(pos_vel) : 4] dpos_dvel[2 : len(dpos_dvel) : 4] = pos_vel[3 : len(pos_vel) : 4] # Loop through bodies, calculating change in vx, vy due to all other bodies for i, body in enumerate(bodies): # Extract x, y values of body x1 = pos_vel[i * 4] y1 = pos_vel[i * 4 + 2] vx1 = 0 vy1 = 0 for j, other_body in enumerate(bodies): # Check bodies aren't the same if i != j: # Extract x, y & mass of other body x2 = pos_vel[j * 4] y2 = pos_vel[j * 4 + 2] # Distance to other body r = calc_2d_distance(x1=x1, y1=y1, x2=x2, y2=y2,) # Change in x, y vx1 += calc_dvel(c1=x1, c2=x2, r=r, m2=other_body.mass) vy1 += calc_dvel(c1=y1, c2=y2, r=r, m2=other_body.mass) # Add resultant change in vel to array dpos_dvel[i * 4 + 1] = vx1 dpos_dvel[i * 4 + 3] = vy1 return dpos_dvel def calc_orbits(bodies: List[Body], t0: int, t1: int, dt: int) -> np.ndarray: """ Calculate the change in x, y, vx and vy at each time step between t0 and t1 due to the gravitational forces of all other bodies in the system. The integrator used is dopri835. Args: bodies: List of Body classes that describe the starting conditions and masses of the bodies t0: start time t1: end time dt: time step (seconds) Returns: Array containing spatial coordinates and velocities of bodies at each time step """ logger.info( f"""Orbit settings: n_bodies: {len(bodies)}, t0: {t0}, t1: {t1}, dt: {dt}""" ) # Initial conditions (x, vx, y, vy) initial = create_initial_conditions(bodies=bodies) # Time period over which to calculate orbit paths t = np.linspace(t0, t1, dt) # Array for solution y = np.zeros((len(t), len(bodies) * 4)) y[0, :] = initial # Setup integrator integrator = ( integrate.ode(n_body_func) .set_integrator("dop853", rtol=1e-6, atol=1e-10) .set_initial_value(initial, t0) .set_f_params(bodies) ) # Iterate over time intervals and integrate, storing updated spatial coordinates # and velocities of bodies progress_text = st.sidebar.text(f"Iteration: 0/{len(t)}") progress_bar = st.sidebar.progress(0) logger.info("Calculating orbits") for i in range(1, len(t)): progress_text.text(f"Iteration: {i}/{len(t)-1}") progress_bar.progress((i + 1) / len(t)) y[i, :] = integrator.integrate(t[i]) progress_text.text("Complete!") return y def animate_orbits(orbit_paths: np.ndarray) -> None: """ Animates the orbits Args: orbit_paths: array containing spatial and velocity values over time """ logger.info("Animating orbits") fig = plt.figure(figsize=(6, 6)) # set size of axis based on max/min spatial values x_min = orbit_paths[:, 0::4].min() * 1.1 x_max = orbit_paths[:, 0::4].max() * 1.1 y_min = orbit_paths[:, 2::4].min() * 1.1 y_max = orbit_paths[:, 2::4].max() * 1.1 ax = plt.axes(xlim=(x_min, x_max), ylim=(y_min, y_max)) n_bodies = int(orbit_paths.shape[1] / 4) colours = ["red", "blue", "orange", "green", "black"] lines = [] for index in range(n_bodies * 2): if index < n_bodies: lobj = ax.plot([], [], "--", lw=1, color=colours[index % len(colours)])[0] else: lobj = ax.plot( [], [], "o", color=colours[(index - n_bodies) % len(colours)] )[0] lines.append(lobj) def init(): for line in lines: line.set_data([], []) return lines def animate(i): for j, line in enumerate(lines): if j < n_bodies: orbit_tail_length = 30 if i > orbit_tail_length: x = orbit_paths[i - orbit_tail_length : i, j * 4] y = orbit_paths[i - orbit_tail_length : i, j * 4 + 2] else: x = orbit_paths[:i, j * 4] y = orbit_paths[:i, j * 4 + 2] else: x = orbit_paths[i, (j - n_bodies) * 4] y = orbit_paths[i, (j - n_bodies) * 4 + 2] line.set_data(x, y) return lines # TODO: ensure a consistent maximum number of frames so animations aren't too slow # or too fast anim = FuncAnimation( fig, animate, init_func=init, frames=orbit_paths.shape[0], interval=1, blit=True ) plt.show() def plot_orbits(orbit_paths: np.ndarray, title: str) -> None: """ Plots the orbits Args: orbit_paths: array containing spatial and velocity values over time title: title to use for figure """ logger.info("Plotting orbits") fig = plt.figure(figsize=(10, 10)) plt.title(title) for i in range(int(orbit_paths.shape[1] / 4)): plt.plot(orbit_paths[:, i * 4], orbit_paths[:, i * 4 + 2]) st.pyplot(fig) plt.show()
3.28125
3
sjtwo-c/site_scons/color.py
seanlinc/Playmate
2
12781814
<gh_stars>1-10 import sys import colorama def _is_command_prompt(): return sys.stdin.isatty() is True if _is_command_prompt(): colorama.init() class ColorString(object): COLORS = { "red": colorama.Fore.RED, "green": colorama.Fore.GREEN, "yellow": colorama.Fore.YELLOW, "blue": colorama.Fore.BLUE, "neutral": colorama.Style.RESET_ALL, } def __init__(self, string): self._string = string def __getattr__(self, name): if name in self.COLORS: ret = "{}{}{}".format(self.COLORS[name], self._string, self.COLORS["neutral"]) else: raise AttributeError(name) return ret
2.984375
3
src/yw2nwlib/nwd_file.py
peter88213/yw2nw
1
12781815
"""Provide a generic class for novelWriter item file representation. Copyright (c) 2022 <NAME> For further information see https://github.com/peter88213/yw2nw Published under the MIT License (https://opensource.org/licenses/mit-license.php) """ import os from pywriter.pywriter_globals import ERROR class NwdFile: """abstract novelWriter item file representation. Public methods: read() -- read a content file. write() -- write a content file. """ EXTENSION = '.nwd' def __init__(self, prj, nwItem): """Define instance variables. Positional arguments: prj -- NwxFile instance: the novelWriter project represenation. nwItem -- NwItem instance associated with the .nwd file. """ self._prj = prj self._nwItem = nwItem self._filePath = os.path.dirname(self._prj.filePath) + self._prj.CONTENT_DIR + nwItem.nwHandle + self.EXTENSION self._lines = [] def read(self): """Read a content file. Return a message beginning with the ERROR constant in case of error. """ try: with open(self._filePath, 'r', encoding='utf-8') as f: self._lines = f.read().split('\n') return 'Item data read in.' except: return f'{ERROR}Can not read "{os.path.normpath(self._filePath)}".' def write(self): """Write a content file. Return a message beginning with the ERROR constant in case of error. """ lines = [f'%%~name: {self._nwItem.nwName}', f'%%~path: {self._nwItem.nwParent}/{self._nwItem.nwHandle}', f'%%~kind: {self._nwItem.nwClass}/{self._nwItem.nwLayout}', ] lines.extend(self._lines) text = '\n'.join(lines) try: with open(self._filePath, 'w', encoding='utf-8') as f: f.write(text) return 'nwd file saved.' except: return f'{ERROR}Can not write "{os.path.normpath(self._filePath)}".'
2.8125
3
2-hard/computer-terminal/main.py
mpillar/codeeval
21
12781816
<reponame>mpillar/codeeval<filename>2-hard/computer-terminal/main.py import sys class Screen: _SCREEN_ROWS = 10 _SCREEN_COLS = 10 def __init__(self, terminal_input): self.terminal_input = terminal_input # Rendering variables. self._in_overwrite_mode = True self._current_row = 0 self._current_col = 0 self._image = Screen._generate_empty_image() # Render the screen image. self._render() @staticmethod def _generate_empty_image(): result = [] for i in range(0, Screen._SCREEN_ROWS): result.append([' '] * Screen._SCREEN_COLS) return result def _control_c(self): self._image = Screen._generate_empty_image() def _control_h(self): self._current_row = 0 self._current_col = 0 def _control_b(self): self._current_col = 0 def _control_d(self): self._current_row = min(self._current_row+1, Screen._SCREEN_ROWS-1) def _control_u(self): self._current_row = max(self._current_row-1, 0) def _control_l(self): self._current_col = max(self._current_col-1, 0) def _control_r(self): self._current_col = min(self._current_col+1, Screen._SCREEN_COLS-1) def _control_e(self): for i in range(self._current_col, Screen._SCREEN_COLS): self._image[self._current_row][i] = ' ' def _control_i(self): self._in_overwrite_mode = False def _control_o(self): self._in_overwrite_mode = True def _control_circumflex(self): self._write('^') def _move_to(self, row, col): self._current_row = row self._current_col = col def _write(self, char): # If we are in insert mode, shift the row over first. if not self._in_overwrite_mode: for i in range(Screen._SCREEN_COLS-1, self._current_col, -1): self._image[self._current_row][i] = self._image[self._current_row][i-1] # Write the char in place (for both modes). self._image[self._current_row][self._current_col] = char # Move the cursor right one col (for both modes). self._control_r() def _render(self): i = 0 while i < len(self.terminal_input): c = self.terminal_input[i] if c == '^': if self.terminal_input[i+1].isdigit(): control = self.terminal_input[i+1:i+3] i += 2 else: control = self.terminal_input[i+1] i += 1 # Map control to actionable function. functions = { 'c': self._control_c, 'h': self._control_h, 'b': self._control_b, 'd': self._control_d, 'u': self._control_u, 'l': self._control_l, 'r': self._control_r, 'e': self._control_e, 'i': self._control_i, 'o': self._control_o, '^': self._control_circumflex } if control in functions: function = functions[control] function() else: # In this case we have reached a ^DD. self._move_to(int(control[0]), int(control[1])) else: if c != '\n': self._write(c) else: # Do nothing for newlines. pass # Loop increment. Don't use for since we modify the looping variable. i += 1 def __str__(self): result = [] for i in self._image: result.append(''.join(i).rstrip()) return '\n'.join(result) def main(): with open(sys.argv[1], 'r') as input_file: screen = Screen(input_file.read()) print(screen) if __name__ == '__main__': main()
3.109375
3
utils/utils.py
cendaifeng/keras-face-recognition
1
12781817
import sys from operator import itemgetter import numpy as np import cv2 import math import matplotlib.pyplot as plt # -----------------------------# # 计算原始输入图像 # 每一次缩放的比例 # -----------------------------# def calculateScales(img): copy_img = img.copy() pr_scale = 1.0 h, w, _ = copy_img.shape if min(w, h) > 500: pr_scale = 500.0 / min(h, w) w = int(w * pr_scale) h = int(h * pr_scale) elif max(w, h) < 500: pr_scale = 500.0 / max(h, w) w = int(w * pr_scale) h = int(h * pr_scale) scales = [] factor = 0.709 factor_count = 0 minl = min(h, w) while minl >= 12: scales.append(pr_scale * pow(factor, factor_count)) minl *= factor factor_count += 1 return scales # -------------------------------------# # 对pnet处理后的结果进行处理 # -------------------------------------# def detect_face_12net(cls_prob, roi, out_side, scale, width, height, threshold): cls_prob = np.swapaxes(cls_prob, 0, 1) roi = np.swapaxes(roi, 0, 2) stride = 0 # stride略等于2 if out_side != 1: stride = float(2 * out_side - 1) / (out_side - 1) (x, y) = np.where(cls_prob >= threshold) boundingbox = np.array([x, y]).T # 找到对应原图的位置 bb1 = np.fix((stride * (boundingbox) + 0) * scale) bb2 = np.fix((stride * (boundingbox) + 11) * scale) # plt.scatter(bb1[:,0],bb1[:,1],linewidths=1) # plt.scatter(bb2[:,0],bb2[:,1],linewidths=1,c='r') # plt.show() boundingbox = np.concatenate((bb1, bb2), axis=1) dx1 = roi[0][x, y] dx2 = roi[1][x, y] dx3 = roi[2][x, y] dx4 = roi[3][x, y] score = np.array([cls_prob[x, y]]).T offset = np.array([dx1, dx2, dx3, dx4]).T boundingbox = boundingbox + offset * 12.0 * scale rectangles = np.concatenate((boundingbox, score), axis=1) rectangles = rect2square(rectangles) pick = [] for i in range(len(rectangles)): x1 = int(max(0, rectangles[i][0])) y1 = int(max(0, rectangles[i][1])) x2 = int(min(width, rectangles[i][2])) y2 = int(min(height, rectangles[i][3])) sc = rectangles[i][4] if x2 > x1 and y2 > y1: pick.append([x1, y1, x2, y2, sc]) return NMS(pick, 0.3) # -----------------------------# # 将长方形调整为正方形 # -----------------------------# def rect2square(rectangles): w = rectangles[:, 2] - rectangles[:, 0] h = rectangles[:, 3] - rectangles[:, 1] l = np.maximum(w, h).T rectangles[:, 0] = rectangles[:, 0] + w * 0.5 - l * 0.5 rectangles[:, 1] = rectangles[:, 1] + h * 0.5 - l * 0.5 rectangles[:, 2:4] = rectangles[:, 0:2] + np.repeat([l], 2, axis=0).T return rectangles # -------------------------------------# # 非极大抑制 # -------------------------------------# def NMS(rectangles, threshold): if len(rectangles) == 0: return rectangles boxes = np.array(rectangles) x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] s = boxes[:, 4] area = np.multiply(x2 - x1 + 1, y2 - y1 + 1) I = np.array(s.argsort()) pick = [] while len(I) > 0: xx1 = np.maximum(x1[I[-1]], x1[I[0:-1]]) # I[-1] have hightest prob score, I[0:-1]->others yy1 = np.maximum(y1[I[-1]], y1[I[0:-1]]) xx2 = np.minimum(x2[I[-1]], x2[I[0:-1]]) yy2 = np.minimum(y2[I[-1]], y2[I[0:-1]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h o = inter / (area[I[-1]] + area[I[0:-1]] - inter) pick.append(I[-1]) I = I[np.where(o <= threshold)[0]] result_rectangle = boxes[pick].tolist() return result_rectangle # -------------------------------------# # 对pnet处理后的结果进行处理 # -------------------------------------# def filter_face_24net(cls_prob, roi, rectangles, width, height, threshold): prob = cls_prob[:, 1] pick = np.where(prob >= threshold) rectangles = np.array(rectangles) x1 = rectangles[pick, 0] y1 = rectangles[pick, 1] x2 = rectangles[pick, 2] y2 = rectangles[pick, 3] sc = np.array([prob[pick]]).T dx1 = roi[pick, 0] dx2 = roi[pick, 1] dx3 = roi[pick, 2] dx4 = roi[pick, 3] w = x2 - x1 h = y2 - y1 x1 = np.array([(x1 + dx1 * w)[0]]).T y1 = np.array([(y1 + dx2 * h)[0]]).T x2 = np.array([(x2 + dx3 * w)[0]]).T y2 = np.array([(y2 + dx4 * h)[0]]).T rectangles = np.concatenate((x1, y1, x2, y2, sc), axis=1) rectangles = rect2square(rectangles) pick = [] for i in range(len(rectangles)): x1 = int(max(0, rectangles[i][0])) y1 = int(max(0, rectangles[i][1])) x2 = int(min(width, rectangles[i][2])) y2 = int(min(height, rectangles[i][3])) sc = rectangles[i][4] if x2 > x1 and y2 > y1: pick.append([x1, y1, x2, y2, sc]) return NMS(pick, 0.3) # -------------------------------------# # 对onet处理后的结果进行处理 # -------------------------------------# def filter_face_48net(cls_prob, roi, pts, rectangles, width, height, threshold): prob = cls_prob[:, 1] pick = np.where(prob >= threshold) rectangles = np.array(rectangles) x1 = rectangles[pick, 0] y1 = rectangles[pick, 1] x2 = rectangles[pick, 2] y2 = rectangles[pick, 3] sc = np.array([prob[pick]]).T dx1 = roi[pick, 0] dx2 = roi[pick, 1] dx3 = roi[pick, 2] dx4 = roi[pick, 3] w = x2 - x1 h = y2 - y1 pts0 = np.array([(w * pts[pick, 0] + x1)[0]]).T pts1 = np.array([(h * pts[pick, 5] + y1)[0]]).T pts2 = np.array([(w * pts[pick, 1] + x1)[0]]).T pts3 = np.array([(h * pts[pick, 6] + y1)[0]]).T pts4 = np.array([(w * pts[pick, 2] + x1)[0]]).T pts5 = np.array([(h * pts[pick, 7] + y1)[0]]).T pts6 = np.array([(w * pts[pick, 3] + x1)[0]]).T pts7 = np.array([(h * pts[pick, 8] + y1)[0]]).T pts8 = np.array([(w * pts[pick, 4] + x1)[0]]).T pts9 = np.array([(h * pts[pick, 9] + y1)[0]]).T x1 = np.array([(x1 + dx1 * w)[0]]).T y1 = np.array([(y1 + dx2 * h)[0]]).T x2 = np.array([(x2 + dx3 * w)[0]]).T y2 = np.array([(y2 + dx4 * h)[0]]).T rectangles = np.concatenate((x1, y1, x2, y2, sc, pts0, pts1, pts2, pts3, pts4, pts5, pts6, pts7, pts8, pts9), axis=1) pick = [] for i in range(len(rectangles)): x1 = int(max(0, rectangles[i][0])) y1 = int(max(0, rectangles[i][1])) x2 = int(min(width, rectangles[i][2])) y2 = int(min(height, rectangles[i][3])) if x2 > x1 and y2 > y1: pick.append([x1, y1, x2, y2, rectangles[i][4], rectangles[i][5], rectangles[i][6], rectangles[i][7], rectangles[i][8], rectangles[i][9], rectangles[i][10], rectangles[i][11], rectangles[i][12], rectangles[i][13], rectangles[i][14]]) return NMS(pick, 0.3) # -------------------------------------# # 人脸对齐 # -------------------------------------# def Alignment_1(img, landmark): if landmark.shape[0] == 68: x = landmark[36, 0] - landmark[45, 0] y = landmark[36, 1] - landmark[45, 1] elif landmark.shape[0] == 5: x = landmark[0, 0] - landmark[1, 0] y = landmark[0, 1] - landmark[1, 1] if x == 0: angle = 0 else: angle = math.atan(y / x) * 180 / math.pi center = (img.shape[1] // 2, img.shape[0] // 2) RotationMatrix = cv2.getRotationMatrix2D(center, angle, 1) new_img = cv2.warpAffine(img, RotationMatrix, (img.shape[1], img.shape[0])) RotationMatrix = np.array(RotationMatrix) new_landmark = [] for i in range(landmark.shape[0]): pts = [] pts.append(RotationMatrix[0, 0] * landmark[i, 0] + RotationMatrix[0, 1] * landmark[i, 1] + RotationMatrix[0, 2]) pts.append(RotationMatrix[1, 0] * landmark[i, 0] + RotationMatrix[1, 1] * landmark[i, 1] + RotationMatrix[1, 2]) new_landmark.append(pts) new_landmark = np.array(new_landmark) return new_img, new_landmark def Alignment_2(img, std_landmark, landmark): def Transformation(std_landmark, landmark): std_landmark = np.matrix(std_landmark).astype(np.float64) landmark = np.matrix(landmark).astype(np.float64) c1 = np.mean(std_landmark, axis=0) c2 = np.mean(landmark, axis=0) std_landmark -= c1 landmark -= c2 s1 = np.std(std_landmark) s2 = np.std(landmark) std_landmark /= s1 landmark /= s2 U, S, Vt = np.linalg.svd(std_landmark.T * landmark) R = (U * Vt).T return np.vstack([np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), np.matrix([0., 0., 1.])]) Trans_Matrix = Transformation(std_landmark, landmark) # Shape: 3 * 3 Trans_Matrix = Trans_Matrix[:2] Trans_Matrix = cv2.invertAffineTransform(Trans_Matrix) new_img = cv2.warpAffine(img, Trans_Matrix, (img.shape[1], img.shape[0])) Trans_Matrix = np.array(Trans_Matrix) new_landmark = [] for i in range(landmark.shape[0]): pts = [] pts.append(Trans_Matrix[0, 0] * landmark[i, 0] + Trans_Matrix[0, 1] * landmark[i, 1] + Trans_Matrix[0, 2]) pts.append(Trans_Matrix[1, 0] * landmark[i, 0] + Trans_Matrix[1, 1] * landmark[i, 1] + Trans_Matrix[1, 2]) new_landmark.append(pts) new_landmark = np.array(new_landmark) return new_img, new_landmark # ---------------------------------# # 图片预处理 # 高斯归一化 # ---------------------------------# def pre_process(x): if x.ndim == 4: axis = (1, 2, 3) size = x[0].size elif x.ndim == 3: axis = (0, 1, 2) size = x.size else: raise ValueError('Dimension should be 3 or 4') mean = np.mean(x, axis=axis, keepdims=True) std = np.std(x, axis=axis, keepdims=True) std_adj = np.maximum(std, 1.0 / np.sqrt(size)) y = (x - mean) / std_adj return y # ---------------------------------# # l2标准化 # ---------------------------------# def l2_normalize(x, axis=-1, epsilon=1e-10): output = x / np.sqrt(np.maximum(np.sum(np.square(x), axis=axis, keepdims=True), epsilon)) return output # ---------------------------------# # 计算128特征值 # ---------------------------------# def calc_128_vec(model, img): face_img = pre_process(img) pre = model.predict(face_img) pre = l2_normalize(np.concatenate(pre)) pre = np.reshape(pre, [128]) return pre # ---------------------------------# # 计算人脸距离 # ---------------------------------# def face_distance(face_encodings, face_to_compare): if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1) # ---------------------------------# # 比较人脸 # ---------------------------------# def compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6): dis = face_distance(known_face_encodings, face_encoding_to_check) return list(dis <= tolerance)
2.3125
2
modules/timer.py
DMCTruong/MoosikBot
1
12781818
<filename>modules/timer.py<gh_stars>1-10 ########################################################################################## # Program Name : Discord Bot # Author : DMCTruong # Last Updated : August 31, 2017 # License : MIT # Description : A general purpose bot written for Discord ########################################################################################## import discord from discord.ext import commands import asyncio import configurations import datetime import subprocess import time from time import localtime, strftime bot = commands.Bot(configurations.PREFIX) class Time: def __init__(self, bot): self.bot = bot @bot.command(pass_context=True) async def date(self): """Returns the current date and time""" date_time = strftime("The date is %A, %B %d, %Y at %I:%M %p in %Z.", localtime()) print(date_time) await self.bot.say(date_time) #async def alarm(self, ctx, *, mins: int, member: discord.Member=None): @bot.command(pass_context=True) async def join_date(self, ctx, member: discord.Member = None): """Gives user's server join date""" if member is None: member = ctx.message.author await self.bot.say('{0} joined the server on {0.joined_at}'.format(member))
3.140625
3
code/traditional/KMM.py
Flsahkong/transferlearning
9
12781819
<gh_stars>1-10 # encoding=utf-8 """ Created on 9:53 2019/4/21 @author: <NAME> """ """ Kernel Mean Matching # 1. Gretton, Arthur, et al. "Covariate shift by kernel mean matching." Dataset shift in machine learning 3.4 (2009): 5. # 2. Huang, Jiayuan, et al. "Correcting sample selection bias by unlabeled data." Advances in neural information processing systems. 2006. """ import numpy as np import sklearn.metrics from cvxopt import matrix, solvers def kernel(ker, X1, X2, gamma): K = None if ker == 'linear': if X2 is not None: K = sklearn.metrics.pairwise.linear_kernel(np.asarray(X1), np.asarray(X2)) else: K = sklearn.metrics.pairwise.linear_kernel(np.asarray(X1)) elif ker == 'rbf': if X2 is not None: K = sklearn.metrics.pairwise.rbf_kernel(np.asarray(X1), np.asarray(X2), gamma) else: K = sklearn.metrics.pairwise.rbf_kernel(np.asarray(X1), None, gamma) return K class KMM: def __init__(self, kernel_type='linear', gamma=1.0, B=1.0, eps=None): ''' Initialization function :param kernel_type: 'linear' | 'rbf' :param gamma: kernel bandwidth for rbf kernel :param B: bound for beta :param eps: bound for sigma_beta ''' self.kernel_type = kernel_type self.gamma = gamma self.B = B self.eps = eps def fit(self, Xs, Xt): ''' Fit source and target using KMM (compute the coefficients) :param Xs: ns * dim :param Xt: nt * dim :return: Coefficients (Pt / Ps) value vector (Beta in the paper) ''' ns = Xs.shape[0] nt = Xt.shape[0] if self.eps == None: self.eps = self.B / np.sqrt(ns) K = kernel(self.kernel_type, Xs, None, self.gamma) kappa = np.sum(kernel(self.kernel_type, Xs, Xt, self.gamma) * float(ns) / float(nt), axis=1) K = matrix(K) kappa = matrix(kappa) G = matrix(np.r_[np.ones((1, ns)), -np.ones((1, ns)), np.eye(ns), -np.eye(ns)]) h = matrix(np.r_[ns * (1 + self.eps), ns * (self.eps - 1), self.B * np.ones((ns,)), np.zeros((ns,))]) sol = solvers.qp(K, -kappa, G, h) beta = np.array(sol['x']) return beta if __name__ == '__main__': Xs = [[1, 2, 3], [4, 7, 4], [3, 3, 3], [4, 4, 4], [5, 5, 5], [3, 4, 5], [1, 2, 3], [4, 7, 4], [3, 3, 3], [4, 4, 4], [5, 5, 5], [3, 4, 5], [1, 2, 3], [4, 7, 4], [3, 3, 3], [4, 4, 4], [5, 5, 5], [3, 4, 5], [1, 2, 3], [4, 7, 4], [3, 3, 3], [4, 4, 4], [5, 5, 5], [3, 4, 5]] Xt = [[5, 9, 10], [4, 5, 6], [10, 20, 30], [1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9], [100, 100, 100], [11, 22, 33], [12, 11, 5], [5, 9, 10], [4, 5, 6], [10, 20, 30], [1, 2, 3], [3, 4, 5], [5, 6, 7], [7, 8, 9], [100, 100, 100], [11, 22, 33], [12, 11, 5]] Xs, Xt = np.asarray(Xs), np.asarray(Xt) kmm = KMM(kernel_type='rbf', B=10) beta = kmm.fit(Xs, Xt) print(beta) print(beta.shape)
2.328125
2
RelayHandler/plugin.py
nyuszika7h/limnoria-plugins
3
12781820
<reponame>nyuszika7h/limnoria-plugins<gh_stars>1-10 # Copyright 2017, nyuszika7h <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import re from supybot import callbacks, commands, i18n, ircmsgs, ircutils _ = i18n.PluginInternationalization('RelayHandler') class RelayHandler(callbacks.Plugin): """ This plugin handles commands from authorized relays. """ def __init__(self, irc): self.__parent = super(RelayHandler, self) self.__parent.__init__(irc) def inFilter(self, irc, msg): if msg.prefix.endswith('!relayhandler@relayhandler'): # Don't parse our own injected messages return msg if msg.command != "PRIVMSG": # Don't parse non-PRIVMSGs return msg channel = msg.args[0] if not irc.isChannel(channel): return msg trustedRelayHostmask = re.compile(self.registryValue('trustedRelayHostmask', channel)) relayPrefixes = self.registryValue('relayPrefix', channel).split() if not trustedRelayHostmask: self.log.debug('No authorized relays configured for %s', channel) m = None for relayPrefix in relayPrefixes: m = re.match(relayPrefix, ircutils.stripFormatting(msg.args[1])) if m is not None: break if m is None: self.log.debug('Message does not match relay pattern') return msg nick = re.sub(r'\s', '', ircutils.stripFormatting(m.group('nick'))) message = m.group('message') assert(nick is not None) assert(message is not None) if not re.match(trustedRelayHostmask, msg.prefix): self.log.debug('Ignored message from unauthorized relay %s to ' '%s: %r', msg.prefix, channel, msg.args[1]) return msg msg.args = (channel, message) self.log.debug('Handling relay message from %s in %s (relay: %s): %r', nick, channel, msg.prefix, message) prefix = '@%s!%s@relayhandler' % (nick, nick) return ircmsgs.IrcMsg(prefix=prefix, command='PRIVMSG', args=(channel, message)) Class = RelayHandler # vim: set tabstop=4 shiftwidth=4 expandtab textwidth=79:
1.570313
2
poseidon/dags/city_docs/ob_testdocs_dags.py
panda-tech/poseidon-airflow
0
12781821
<filename>poseidon/dags/city_docs/ob_testdocs_dags.py """ OnBase web tables _dags file""" from airflow.operators.python_operator import PythonOperator from airflow.operators.bash_operator import BashOperator from trident.operators.s3_file_transfer_operator import S3FileTransferOperator from airflow.operators.latest_only_operator import LatestOnlyOperator from airflow.models import DAG from trident.util import general from trident.util.notifications import notify from dags.city_docs.city_docs_jobs import * from datetime import datetime # All times in Airflow UTC. Set Start Time in PST? args = general.args conf = general.config schedule = general.schedule['onbase_test'] start_date = general.start_date['onbase_test'] #: Dag spec dag = DAG(dag_id='obdocs_test', catchup=False, default_args=args, start_date=start_date, schedule_interval=schedule) #: Get onbase tables get_doc_tables = PythonOperator( task_id='get_onbase_tables', python_callable=get_onbase_test, on_failure_callback=notify, on_retry_callback=notify, on_success_callback=notify, dag=dag) files = [f for f in os.listdir(conf['prod_data_dir'])] for f in files: file_name = f.split('.')[0] name_parts = file_name.split('_') if name_parts[0] == "onbase" and name_parts[1] == "test": #: Upload onbase prod files to S3 upload_doc_tables = S3FileTransferOperator( task_id='upload_' + file_name, source_base_path=conf['prod_data_dir'], source_key='{}.csv'.format(file_name), dest_s3_conn_id=conf['default_s3_conn_id'], dest_s3_bucket=conf['dest_s3_bucket'], dest_s3_key='city_docs/{}.csv'.format(file_name), on_failure_callback=notify, on_retry_callback=notify, on_success_callback=notify, replace=True, dag=dag) #: get_doc_tables must run before upload_doc_tables upload_doc_tables.set_upstream(get_doc_tables)
2.125
2
tests_scripts/Sprint1-f19/Sprint1-f19/tests/loginpageui.py
uno-isqa-8950/uno-cpi
13
12781822
<gh_stars>10-100 from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys class LoginPageUi: ## URL URL = 'https://uno-cpi-dev.herokuapp.com/' # Locators for Login Login_link = (By.XPATH, '//*[@id="target"]/ul/li[4]/a') Username_field = (By.XPATH, '/html/body/div/div/div/div/div/div[2]/div[2]/form/input[2]') Password_field = (By.XPATH, '/html/body/div/div/div/div/div/div[2]/div[2]/form/input[3]') Login_button = (By.XPATH, '/html/body/div/div/div/div/div/div[2]/div[2]/form/div[1]/p/button') Login_asserttoggle = (By.XPATH, '//*[@id="target"]/ul/li[6]/a') ## Locators for Logout Logout_dropdown = (By.XPATH, '//*[@id="target"]/ul/li[6]/a') Logout_click = (By.XPATH, '//*[@id="target"]/ul/li[6]/div/a') Successful_logout = (By.XPATH,'/html/body/div/div/div/div[1]/h4') # Initializer def __init__(self, browser): self.browser = browser # Interaction Methods def load(self): self.browser.get(self.URL) ## login link on home page def login_link_click(self): login_link = self.browser.find_element(*self.Login_link) login_link.click() ## username field def login_username(self,username): login_username = self.browser.find_element(*self.Username_field) login_username.send_keys(username + Keys.RETURN) ## password field def login_password(self, password): login_password = self.browser.find_element(*self.Password_field) login_password.send_keys(password + Keys.RETURN) ## Login Button def login_button(self): login_button = self.browser.find_element(*self.Login_button) login_button.click() ## Login assertion def login_assertion(self): login_assert = self.browser.find_element(*self.Login_asserttoggle) value = login_assert.get_attribute('class') return value ## Logout dropdown def logout_dropdown(self): logout_dropdown = self.browser.find_element(*self.Logout_dropdown) logout_dropdown.click() ## Logout Click def logout_click(self): logout_click = self.browser.find_element(*self.Login_button) logout_click.click() ## Logout Assertion def logout_assertion(self): successful_logout = self.browser.find_element(*self.Successful_logout) success = successful_logout.get_attribute('text') ##Logged Out return success
2.3125
2
pyyadisk/__init__.py
ndrwpvlv/pyyadisk
1
12781823
<filename>pyyadisk/__init__.py from .yandexdisk import YandexDisk
1.039063
1
lunch/models.py
pythondev0101/django_eats_easy_ordering_system
0
12781824
<gh_stars>0 from django.db import models from django.contrib.auth.models import User from django.urls import reverse # Create your models here. class Order(models.Model): """Blueprint for Order object""" weekorder = models.ForeignKey('human_resource.OrderForWeek',on_delete=models.SET_NULL,null=True) name = models.CharField(max_length=255,default='') user = models.ForeignKey(User, on_delete=models.SET_NULL,null=True) total = models.DecimalField(max_digits=9,decimal_places=2,verbose_name='Total') ORDER_STATUS = (('new', 'New'),('received', 'Received'),('ordered', 'Ordered'),('cancelled', 'Cancelled')) status = models.CharField(max_length=10,choices=ORDER_STATUS,blank=True, verbose_name='Status',default='new') date = models.DateField(null=True) def get_absolute_url(self): return reverse('order-detail', args=[str(self.id)]) class OrderLine(models.Model): order = models.ForeignKey('Order',on_delete=models.SET_NULL,null=True) product = models.ForeignKey('core.Product',on_delete=models.SET_NULL,null=True) date = models.DateField(verbose_name="Date",null=True) day = models.CharField(max_length=10,default="",blank=True)
2.375
2
server/server/settings.py
dcat52/interop
0
12781825
<gh_stars>0 """ Django settings for the interop server. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY>' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False TEMPLATE_DEBUG = DEBUG TEMPLATE_DIRS = [os.path.join(BASE_DIR, 'templates')] ALLOWED_HOSTS = ['*'] # Public IP addresses given access to Django Debug Toolbar # Add your IP here, if not localhost. INTERNAL_IPS = ['127.0.0.1'] # Path to jQuery for the Django Debug Toolbar to use. JQUERY_URL = '/static/admin/js/jquery.js' # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'auvsi_suas', 'auvsi_suas.views.auvsi_admin', ) # yapf: disable MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'auvsi_suas.views.middleware.LoggingMiddleware', ) # yapf: disable # Add a '?debug' parameter to API endpoints, which wraps them in an HTML # response, allowing the use of Django Debug Toolbar with the endpoints. if DEBUG: import debug INSTALLED_APPS += 'debug_toolbar', MIDDLEWARE_CLASSES += debug.middleware # All of the default panels, plus the profiling panel. DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.profiling.ProfilingPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', ] DEBUG_TOOLBAR_CONFIG = {'PROFILER_MAX_DEPTH': 50} ROOT_URLCONF = 'server.urls' WSGI_APPLICATION = 'server.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'auvsi_suas_db', 'USER': 'postgresql_user', 'PASSWORD': '<PASSWORD>', 'CONN_MAX_AGE': None, 'HOST': 'localhost', 'PORT': '5432', 'TEST': { 'NAME': 'test_auvsi_suas_db', }, } } # Caches # https://docs.djangoproject.com/en/1.6/topics/cache CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '127.0.0.1:11211', 'TIMEOUT': 30, 'KEY_PREFIX': 'suas', } } # Logging LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'verbose': { 'format': '%(asctime)s %(levelname)s %(module)s %(process)d %(thread)d %(message)s' }, 'simple': { 'format': '%(asctime)s %(levelname)s %(module)s %(message)s' }, }, 'handlers': { 'file': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'simple', }, }, 'loggers': { 'py.warnings': { 'handlers': ['file'], }, 'django': { 'handlers': ['file'], }, 'django.request': { 'handlers': ['file'], 'level': 'WARNING', 'propagate': True, }, 'django.security': { 'handlers': ['file'], 'level': 'WARNING', 'propagate': True, }, 'auvsi_suas.views': { 'handlers': ['file'], 'level': 'WARNING', 'propagate': True, }, }, } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'auvsi_suas/static') # User uploaded files MEDIA_URL = '/media/' MEDIA_ROOT = '/var/www/media' # Send with X-SENDFILE in apache SENDFILE_BACKEND = 'sendfile.backends.xsendfile' # Login URL LOGIN_URL = '/admin/login/?next=/' # Migrations MIGRATION_MODULES = { 'auvsi_suas.models': 'auvsi_suas.models.migrations', } # yapf: disable # Custom test runner. TEST_RUNNER = 'auvsi_suas.test_runner.AuvsiSuasTestRunner' # Whether tests can/should generate plots (requires window access) TEST_ENABLE_PLOTTING = False # Whether to perform load tests (slower) TEST_ENABLE_LOADTEST = True # The time to execute each loadtest for TEST_LOADTEST_TIME = 2.0 # The minimum rate of an individual interop interface # (1.5x safety factor, 10Hz, 4 interfaces) TEST_LOADTEST_INTEROP_MIN_RATE = 1.5 * 10.0 * 4 # The time window (in seconds) in which a plane cannot be counted as going out # of bounds multiple times. This prevents noisy input data from recording # significant more violations than a human observer. OUT_OF_BOUNDS_DEBOUNCE_SEC = 10.0 # The max distance for a waypoint to be considered satisfied. SATISFIED_WAYPOINT_DIST_MAX_FT = 100 # The time between interop telemetry posts that's a prereq for other tasks. INTEROP_TELEM_THRESHOLD_TIME_SEC = 1.0 # Ratio of object points to lose for every extra unmatched object submitted. EXTRA_OBJECT_PENALTY_RATIO = 0.05 # The weight of classification accuracy when calculating a odlc match score. CHARACTERISTICS_WEIGHT = 0.2 # The lowest allowed location accuracy (in feet) TARGET_LOCATION_THRESHOLD = 150 # The weight of geolocation accuracy when calculating a odlc match score. GEOLOCATION_WEIGHT = 0.3 # The weight of actionable intelligence when calculating a odlc match score. ACTIONABLE_WEIGHT = 0.3 # The weight of autonomy when calculating a odlc match score. AUTONOMY_WEIGHT = 0.2 # Weight of timeline points for mission time. MISSION_TIME_WEIGHT = 0.8 # Weight of timeline points for not taking a timeout. TIMEOUT_WEIGHT = 0.2 # Max mission time. MISSION_MAX_TIME_SEC = 45.0 * 60.0 # Points for flight time in mission time score. FLIGHT_TIME_SEC_TO_POINTS = 5.0 / 60.0 # Points for post-processing time in mission time score. PROCESS_TIME_SEC_TO_POINTS = 1.0 / 60.0 # Total points possible for mission time. MISSION_TIME_TOTAL_POINTS = MISSION_MAX_TIME_SEC * max( FLIGHT_TIME_SEC_TO_POINTS, PROCESS_TIME_SEC_TO_POINTS) # Mission time points lost due for every second over time. MISSION_TIME_PENALTY_FROM_SEC = 0.03 # Ratio of points lost per takeover. AUTONOMOUS_FLIGHT_TAKEOVER = 0.10 # Ratio of points lost per out of bounds. BOUND_PENALTY = 0.1 SAFETY_BOUND_PENALTY = 0.1 # Ratio of points lost for TFOA and crash. TFOA_PENALTY = 0.25 CRASH_PENALTY = 0.35 # Weight of flight points to all autonomous flight. AUTONOMOUS_FLIGHT_FLIGHT_WEIGHT = 0.4 # Weight of capture points to all autonomous flight. WAYPOINT_CAPTURE_WEIGHT = 0.1 # Weight of accuracy points to all autonomous flight. WAYPOINT_ACCURACY_WEIGHT = 0.5 # Weight of stationary obstacle avoidance. STATIONARY_OBST_WEIGHT = 0.5 # Weight of moving obstacle avoidance. MOVING_OBST_WEIGHT = 0.5 # Air delivery accuracy threshold. AIR_DELIVERY_THRESHOLD_FT = 150.0 # Scoring weights. TIMELINE_WEIGHT = 0.1 AUTONOMOUS_WEIGHT = 0.3 OBSTACLE_WEIGHT = 0.2 OBJECT_WEIGHT = 0.2 AIR_DELIVERY_WEIGHT = 0.1 OPERATIONAL_WEIGHT = 0.1 # Max aircraft airspeed in ft/s. Rules specify 70 KIAS. MAX_AIRSPEED_FT_PER_SEC = 118.147 # Maximum interval between telemetry logs allowed for interpolation. MAX_TELMETRY_INTERPOLATE_INTERVAL_SEC = 1.5
1.835938
2
tests/test_physics/test_fock/test_fock.py
sylviemonet/MrMustard
33
12781826
# Copyright 2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hypothesis import settings, given, strategies as st import pytest import numpy as np from scipy.special import factorial from thewalrus.quantum import total_photon_number_distribution from mrmustard.lab import * from mrmustard.physics.fock import dm_to_ket, ket_to_dm # helper strategies st_angle = st.floats(min_value=0, max_value=2 * np.pi) @given(n_mean=st.floats(0, 3), phi=st_angle) def test_two_mode_squeezing_fock(n_mean, phi): """Tests that perfect number correlations are obtained for a two-mode squeezed vacuum state Note that this is consistent with the Strawberryfields convention""" cutoff = 4 r = np.arcsinh(np.sqrt(n_mean)) circ = Circuit(ops=[S2gate(r=r, phi=phi)]) amps = (Vacuum(num_modes=2) >> circ).ket(cutoffs=[cutoff, cutoff]) diag = (1 / np.cosh(r)) * (np.exp(1j * phi) * np.tanh(r)) ** np.arange(cutoff) expected = np.diag(diag) assert np.allclose(amps, expected) @given(n_mean=st.floats(0, 3), phi=st_angle, varphi=st_angle) def test_hong_ou_mandel(n_mean, phi, varphi): """Tests that perfect number correlations are obtained for a two-mode squeezed vacuum state""" cutoff = 2 r = np.arcsinh(np.sqrt(n_mean)) ops = [ S2gate(r=r, phi=phi)[0, 1], S2gate(r=r, phi=phi)[2, 3], BSgate(theta=np.pi / 4, phi=varphi)[1, 2], ] circ = Circuit(ops) amps = (Vacuum(4) >> circ).ket(cutoffs=[cutoff, cutoff, cutoff, cutoff]) assert np.allclose(amps[1, 1, 1, 1], 0.0, atol=1e-6) @given(alpha=st.complex_numbers(min_magnitude=0, max_magnitude=2)) def test_coherent_state(alpha): """Test that coherent states have the correct photon number statistics""" cutoff = 10 amps = Coherent(x=alpha.real, y=alpha.imag).ket(cutoffs=[cutoff]) expected = np.exp(-0.5 * np.abs(alpha) ** 2) * np.array( [alpha**n / np.sqrt(factorial(n)) for n in range(cutoff)] ) assert np.allclose(amps, expected, atol=1e-6) @given(r=st.floats(0, 2), phi=st_angle) def test_squeezed_state(r, phi): """Test that squeezed states have the correct photon number statistics Note that we use the same sign with respect to SMSV in https://en.wikipedia.org/wiki/Squeezed_coherent_state""" cutoff = 10 amps = SqueezedVacuum(r=r, phi=phi).ket(cutoffs=[cutoff]) assert np.allclose(amps[1::2], 0.0) non_zero_amps = amps[0::2] len_non_zero = len(non_zero_amps) amp_pairs = ( 1 / np.sqrt(np.cosh(r)) * np.array( [ (-np.exp(1j * phi) * np.tanh(r)) ** n * np.sqrt(factorial(2 * n)) / (2**n * factorial(n)) for n in range(len_non_zero) ] ) ) assert np.allclose(non_zero_amps, amp_pairs) @given(n_mean=st.floats(0, 3), phi=st_angle) def test_two_mode_squeezing_fock_mean_and_covar(n_mean, phi): """Tests that perfect number correlations are obtained for a two-mode squeezed vacuum state""" r = np.arcsinh(np.sqrt(n_mean)) state = Vacuum(num_modes=2) >> S2gate(r=r, phi=phi) meanN = state.number_means covN = state.number_cov expectedN = np.array([n_mean, n_mean]) expectedCov = n_mean * (n_mean + 1) * np.ones([2, 2]) assert np.allclose(meanN, expectedN) assert np.allclose(covN, expectedCov) @given(n_mean=st.floats(0, 2), phi=st_angle, eta=st.floats(min_value=0, max_value=1)) def test_lossy_squeezing(n_mean, phi, eta): """Tests the total photon number distribution of a lossy squeezed state""" r = np.arcsinh(np.sqrt(n_mean)) cutoff = 40 ps = (SqueezedVacuum(r=r, phi=phi) >> Attenuator(transmissivity=eta)).fock_probabilities( [cutoff] ) expected = np.array([total_photon_number_distribution(n, 1, r, eta) for n in range(cutoff)]) assert np.allclose(ps, expected, atol=1e-6) @given(n_mean=st.floats(0, 2), phi=st_angle, eta_0=st.floats(0, 1), eta_1=st.floats(0, 1)) def test_lossy_two_mode_squeezing(n_mean, phi, eta_0, eta_1): """Tests the photon number distribution of a lossy two-mode squeezed state""" cutoff = 40 n = np.arange(cutoff) L = Attenuator(transmissivity=[eta_0, eta_1]) state = TMSV(r=np.arcsinh(np.sqrt(n_mean)), phi=phi) >> L ps0 = state.get_modes(0).fock_probabilities([cutoff]) ps1 = state.get_modes(1).fock_probabilities([cutoff]) mean_0 = np.sum(n * ps0) mean_1 = np.sum(n * ps1) assert np.allclose(mean_0, n_mean * eta_0, atol=1e-5) assert np.allclose(mean_1, n_mean * eta_1, atol=1e-5) @given(num_modes=st.integers(1, 3)) def test_density_matrix(num_modes): """Tests the density matrix of a pure state is equal to |psi><psi|""" modes = list(range(num_modes)) cutoffs = [num_modes + 1] * num_modes G = Ggate(num_modes=num_modes) L = Attenuator(transmissivity=1.0) rho_legit = (Vacuum(num_modes) >> G >> L[modes]).dm(cutoffs=cutoffs) rho_made = (Vacuum(num_modes) >> G).dm(cutoffs=cutoffs) # rho_legit = L[modes](G(Vacuum(num_modes))).dm(cutoffs=cutoffs) # rho_built = G(Vacuum(num_modes=num_modes)).dm(cutoffs=cutoffs) assert np.allclose(rho_legit, rho_made) @pytest.mark.parametrize( "state", [ Vacuum(num_modes=2), Fock(4), Coherent(x=0.1, y=-0.4, cutoffs=[15]), Gaussian(num_modes=2, cutoffs=[15]), ], ) def test_dm_to_ket(state): """Tests pure state density matrix conversion to ket""" dm = state.dm() ket = dm_to_ket(dm) # check if ket is normalized assert np.allclose(np.linalg.norm(ket), 1) # check kets are equivalent assert np.allclose(ket, state.ket()) dm_reconstructed = ket_to_dm(ket) # check ket leads to same dm assert np.allclose(dm, dm_reconstructed) def test_dm_to_ket_error(): """Test dm_to_ket raises an error when state is mixed""" state = Coherent(x=0.1, y=-0.4, cutoffs=[15]) >> Attenuator(0.5) with pytest.raises(ValueError): dm_to_ket(state)
2.125
2
tests/core/test_api_options.py
webbcam/tiflash
5
12781827
import pytest import tiflash class TestOptionsApi(): # Getters def test_basic_get_option(self, tdev): """Tests basic get_option function""" result = tiflash.get_option(tdev['option'], serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) if 'option-val' in tdev.keys(): assert result == tdev['option-val'] def test_get_option_with_preop(self, tdev): """Tests get_option with a preop""" if 'preop' not in tdev.keys(): pytest.skip("No preop provided for device") result = tiflash.get_option(tdev['preop-option'], pre_operation=tdev['preop'], serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) def test_get_invalid_option(self, tdev): """Tests get_option throws error when invalid option id provided""" with pytest.raises(tiflash.TIFlashError): result = tiflash.get_option("InvalidOption", serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) def test_get_option_invalid_preop(self, tdev): """Tests get_option raises error when invalid preop provided""" with pytest.raises(tiflash.TIFlashError): result = tiflash.get_option(tdev['preop-option'], pre_operation="InvalidOperation", serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) # Setters <EMAIL> def test_basic_set_option(self, tdev): """Tests basic set_option function""" tiflash.set_option( option_id=tdev['option'], option_val=tdev['option-val'], serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) # List def test_list_options(self, tdev): """Tests all options returned in list are valid""" options = tiflash.list_options( serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) assert len(options) > 1 def test_list_single_option(self, tdev): """Tests listing of one specified option""" options = tiflash.list_options( option_id=tdev['option'], serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) assert len(options) == 1 assert tdev['option'] in options.keys() def test_list_single_nonexistant_option(self, tdev): """Tests listing of specified option that does not exist""" options = tiflash.list_options( option_id="InvalidOption", serno=tdev['serno'], connection=tdev['connection'], devicetype=tdev['devicetype']) assert len(options) == 0
2.046875
2
plugins/module_utils/plugins/plugin_base.py
sma-de/ansible-collections-base
0
12781828
<filename>plugins/module_utils/plugins/plugin_base.py #!/usr/bin/env python # TODO: copyright, owner license # """ TODO module / file doc string """ from __future__ import (absolute_import, division, print_function) __metaclass__ = type import abc import collections import copy import re from ansible.errors import AnsibleError, AnsibleInternalError, AnsibleOptionsError from ansible.module_utils.basic import missing_required_lib from ansible.module_utils._text import to_native from ansible.module_utils.six import iteritems from ansible.utils.display import Display from ansible_collections.smabot.base.plugins.module_utils.utils.utils import ansible_assert, detemplate display = Display() KWARG_UNSET = object() MAGIC_ARGSPECKEY_META = '___args_meta' def default_param_value(pname, defcfg, ans_varspace, templater): def get_space_val(space, key, templater=templater): res = space[key] if templater: ## note: at least sometimes when we get values ## from ansible varspace, they are still template ## string, not the templated value res = detemplate(res, templater) return res if not defcfg: raise AnsibleOptionsError( "Must set mandatory param '{}'".format(pname) ) # check if we have a match in for ansvars ansvars = defcfg.get('ansvar', []) for av in ansvars: if av in ans_varspace: return get_space_val(ans_varspace, av) # check if we have a matching envvar envvars = defcfg.get('env', []) envspace = ans_varspace.get('ansible_env', {}) for e in envvars: if e in envspace: return get_space_val(envspace, e) # use hardcoded fallback if 'fallback' in defcfg: return defcfg['fallback'] raise AnsibleOptionsError( "No hardcoded fallback for param '{}', set it either directly or" " by specifying one of these ansible variables (=> {}) or one of" " these environment variables (=> {})".format(pname, ansvars, envvars) ) def check_paramtype(param, value, typespec, errmsg): if typespec == []: # no type restriction ==> noop return if callable(typespec): return typespec(value) type_match = False display.vvv( "[PLUGIN] :: handle args, do type check: {}".format(typespec) ) for xt in typespec: display.vvv( "[PLUGIN] :: handle args, type test: {}".format(xt) ) sub_types = None if isinstance(xt, list): xt = list sub_types = xt if isinstance(value, xt): type_match = True break if not type_match: if not errmsg: errmsg = "Must be one of the following types: {}".format(typespec) raise AnsibleOptionsError( "Value '{}' for param '{}' failed its type" " check: {}".format(value, param, errmsg) ) if isinstance(value, list): ansible_assert(sub_types, 'bad typespec') display.vvv( "[PLUGIN] :: handle args, do subtype check: {}".format(sub_types) ) for vx in value: check_paramtype(param, vx, sub_types, errmsg) class ArgsPlugin(): ''' TODO ''' def __init__(self): self._taskparams = {} self._ansible_varspace = {} @property def argspec(self): return {} @property def error_prefix(self): return '' def get_taskparam(self, name): return self._taskparams[name] def _handle_taskargs(self, argspec, args_in, args_out): display.vvv( "[PLUGIN] :: handle args, argspec: {}".format(argspec) ) argspec = copy.deepcopy(argspec) args_set = copy.deepcopy(args_in) args_found = {} args_meta = argspec.pop(MAGIC_ARGSPECKEY_META, {}) for (k, v) in iteritems(argspec): display.vv( "[PLUGIN] :: handle args, do param '{}'".format(k) ) ## first normalize argspec # convert convenience short forms to norm form if isinstance(v, collections.abc.Mapping): display.vvv( "[PLUGIN] :: handle args, argspec is dict,"\ " nothing to normalize" ) pass # noop elif isinstance(v, tuple): tmp = {} display.vvv( "[PLUGIN] :: handle args, argspec is short form,"\ " normalizing ..." ) for i in range(0, len(v)): vx = v[i] if i == 0: tmp['type'] = vx elif i == 1: tmp['defaulting'] = { 'fallback': vx } elif i == 2: if isinstance(vx, collections.abc.Mapping): tmp['subspec'] = vx else: tmp['choice'] = vx else: raise AnsibleInternalError( "Unsupported short form argspec tuple: '{}'".format(v) ) v = tmp else: ## assume a single value for arg type v = { 'type': v } # normalize norm form ansible_assert('type' in v, "Bad argspec for param '{}': Mandatory type field missing".format(k) ) vdef = v.get('defaulting', None) mandatory = not vdef ## TODO: min and max sizes for collection types # get param key_hits = [] aliases = v.get('aliases', []) display.vvv( "[PLUGIN] :: handle args, get set val / handle"\ " aliasing: {}".format(aliases) ) for x in [k] + aliases: ansible_assert(x not in args_found, "Bad argspec for param '{}': duplicate alias" " name '{}'".format(k, x) ) if x in args_set: key_hits.append(x) pval = args_set.pop(x) args_found[k] = True if len(key_hits) > 1: raise AnsibleOptionsError( "Bad param '{}': Use either key or one of its aliases" " '{}', but not more than one at a time".format(k, aliases) ) if len(key_hits) == 0: display.vv("[PLUGIN] :: handle args, do defaulting") # param unset, do defaulting pval = default_param_value( k, vdef, self._ansible_varspace, getattr(self, '_templar', None) ) display.vv( "[PLUGIN] :: handle args, final pvalue: |{}|".format(pval) ) display.vv( "[PLUGIN] :: handle args, check param"\ " type: {}".format(v['type']) ) ## at this point param is either set explicitly or by ## defaulting mechanism, proceed with value tests check_paramtype(k, pval, v['type'], v.get('type_err', None)) ## optionally handle choice choice = v.get('choice', None) if choice: display.vvv( "[PLUGIN] :: handle args, handle choice: {}".format(choice) ) ansible_assert(isinstance(choice, list), "bad argspec[{}]: choice must be list,"\ " but was '{}': {}".format(k, type(choice), choice) ) ansible_assert( not isinstance(pval, (list, collections.abc.Mapping)), "bad argspec[{}]: if choice is specified, param"\ " cannot be collection type, it must be scalar".format(k) ) if pval not in choice: raise AnsibleOptionsError( "Bad param '{}': given value was '{}' but it"\ " must be one of these: {}".format(k, pval, choice) ) args_out[k] = pval subspec = v.get('subspec', None) if isinstance(pval, collections.abc.Mapping) and subspec: display.vvv( "[PLUGIN] :: handle args, do subspec: {}".format(subspec) ) self._handle_taskargs(subspec, pval, pval) if args_set: raise AnsibleOptionsError( "Unsupported parameters given: {}".format(list(args_set.keys())) ) ## check mutual exclusions: for exlst in args_meta.get('mutual_exclusions', []): tmp = [] for x in exlst: if x in args_found: tmp.append(x) if len(tmp) > 1: raise AnsibleOptionsError( "It is not allowed to set mutual exclusive" " params '{}' and '{}' together".format(*tmp) ) ## @abc.abstractmethod ## def run_specific(self, *args, **kwargs): ## pass def run_wrapper(self, *args, **kwargs): try: return self.run_specific(*args, **kwargs) except AnsibleError as e: raise type(e)("{}{}".format(self.error_prefix, e)) except ModuleNotFoundError as e: bad_lib = re.search(r"(?i)module named '(.*?)'", e.msg).group(1) raise AnsibleError("{}{}".format( self.error_prefix, missing_required_lib(bad_lib)) ) except Exception as e: raise AnsibleInternalError("{}{}".format(self.error_prefix, to_native("Unhandled native error {}: {}".format(type(e), e)) )) from e class AnsSpaceAndArgsPlugin(ArgsPlugin): ''' TODO ''' def __init__(self, *args, **kwargs): super(AnsSpaceAndArgsPlugin, self).__init__(*args, **kwargs) def get_ansible_var(self, var, default=KWARG_UNSET): if default != KWARG_UNSET: return detemplate( self._ansible_varspace.get(var, default), self._templar ) return detemplate(self._ansible_varspace[var], self._templar) def get_ansible_fact(self, fact, default=KWARG_UNSET): facts = self.get_ansible_var('ansible_facts') if default == KWARG_UNSET: return facts[fact] return facts.get(fact, default)
2.21875
2
lib/models/mixformer/__init__.py
SangbumChoi/MixFormer
103
12781829
from .mixformer import build_mixformer from .mixformer_online import build_mixformer_online_score
1
1
examples/cpu_usage/models.py
reesezxf/infi.clickhouse_orm
3
12781830
<filename>examples/cpu_usage/models.py from infi.clickhouse_orm import Model, DateTimeField, UInt16Field, Float32Field, Memory class CPUStats(Model): timestamp = DateTimeField() cpu_id = UInt16Field() cpu_percent = Float32Field() engine = Memory()
1.984375
2
mappgene/subscripts/ivar.py
aavilaherrera/mappgene
7
12781831
#!/usr/bin/env python3 import os,sys,glob,multiprocessing,time,csv,math,pprint from parsl.app.app import python_app from os.path import * from mappgene.subscripts import * @python_app(executors=['worker']) def run_ivar(params): subject_dir = params['work_dir'] subject = basename(subject_dir) input_reads = params['input_reads'] variant_frequency = params['variant_frequency'] read_cutoff_bp = params['read_cutoff_bp'] primers_bp = params['primers_bp'] depth_cap = params['depth_cap'] stdout = params['stdout'] ivar_dir = join(subject_dir, 'ivar') output_dir = join(subject_dir, 'ivar_outputs') alignments_dir = join(output_dir, 'alignments') raw_dir = join(ivar_dir, 'raw_data') smart_remove(raw_dir) smart_remove(output_dir) smart_mkdir(raw_dir) smart_mkdir(output_dir) smart_mkdir(alignments_dir) reads = [] start_time = time.time() start_str = f''' ===================================== Starting iVar with subject: {subject} {get_time_date()} Arguments: {pprint.pformat(params, width=1)} ===================================== ''' write(stdout, start_str) print(start_str) update_permissions(ivar_dir, params) update_permissions(output_dir, params) # Run fixq.sh for input_read in input_reads: tmp_f = join(raw_dir, 'tmp_' + basename(input_read)) f = join(raw_dir, basename(input_read)) smart_copy(input_read, f) run(f'zcat {f} | awk \'NR%4 == 0 {{ gsub(\\"F\\", \\"?\\"); gsub(\\":\\", \\"5\\") }}1\'' + f' | gzip -c > {tmp_f}', params) if exists(tmp_f): smart_remove(f) os.rename(tmp_f, f) reads.append(f) # Deinterleave if only a single FASTQ was found # fasta = join(ivar_dir, 'references/PS_1200bp.fasta') fasta = join(ivar_dir, 'references/NC_045512.2.fasta') if len(reads) == 1: f = reads[0] read1 = replace_extension(f, '_R1.fastq.gz') read2 = replace_extension(f, '_R2.fastq.gz') run(f'reformat.sh in={f} out1={read1} out2={read2}', params) smart_remove(f) elif len(reads) == 2: reads.sort() read1 = reads[0] read2 = reads[1] else: raise Exception(f'Invalid reads: {reads}') align_prefix = join(alignments_dir, subject) bam = replace_extension(align_prefix, '.bam') trimmed = replace_extension(align_prefix, '.trimmed') trimmed_sorted = replace_extension(align_prefix, '.trimmed.sorted.bam') variants = replace_extension(align_prefix, '.variants') noinsertions = replace_extension(align_prefix, '.noins.variants') masked = replace_extension(align_prefix, '.masked.txt') trimmed_masked = replace_extension(align_prefix, '.trimmed.masked.bam') trimmed_masked_bedgraph = join(output_dir, f'{subject}.ivar.bedgraph') final_masked = replace_extension(align_prefix, '.final.masked.variants') lofreq_bam = replace_extension(align_prefix, '.lofreq.bam') lofreq_bedgraph = join(output_dir, f'{subject}.ivar.lofreq.bedgraph') vcf_s0 = replace_extension(align_prefix, '.vcf') tsv = replace_extension(align_prefix, '.final.masked.variants.tsv') output_vcf = join(alignments_dir, f'{subject}.ivar.vcf') output_tsv = join(output_dir, f'{subject}.ivar.tsv') output_fa = join(output_dir, f'{subject}.ivar.consensus') run(f'bwa index {fasta}', params) run(f'bwa mem -t 8 {fasta} {read1} {read2} | samtools sort -o {bam}', params) run(f'ivar trim -m {read_cutoff_bp} -b {ivar_dir}/primers_{primers_bp}bp/nCoV-2019.scheme.bed -p {trimmed} -i {bam} -e', params) run(f'samtools sort {trimmed}.bam -o {trimmed_sorted}', params) # call variants with ivar (produces {subject}.variants.tsv) run(f'samtools mpileup -aa -A -d 0 -B -Q 0 {trimmed_sorted} | ' + f'ivar variants -p {variants} -q 20 -t {variant_frequency} -r {fasta} ' + f'-g {ivar_dir}/GCF_009858895.2_ASM985889v3_genomic.gff', params) # remove low quality insertions because we want to ignore most mismatches # to primers that are insertions (produces {subject}.noins.variants.tsv) run(f"awk \'! (\\$4 ~ /^\\+/ && \\$10 >= 20) {{ print }}\' < {variants}.tsv > {noinsertions}.tsv", params) # get primers with mismatches to reference (produces {subject}.masked.txt) run(f'ivar getmasked -i {noinsertions}.tsv -b {ivar_dir}/primers_{primers_bp}bp/nCoV-2019.bed ' + f'-f {ivar_dir}/primers_{primers_bp}bp/nCoV-2019.tsv -p {masked}', params) # remove reads with primer mismatches (produces {subject}.trimmed.masked.bam) run(f'ivar removereads -i {trimmed_sorted} -p {trimmed_masked} ' + f'-t {masked} -b {ivar_dir}/primers_{primers_bp}bp/nCoV-2019.bed', params) # call variants with reads with primer mismatches removed (produces {subject}.final.masked.variants.tsv) run(f'samtools mpileup -aa -A -d 0 -B -Q 0 {trimmed_masked} | ' + f'ivar variants -p {final_masked} -q 20 -t {variant_frequency} -r {fasta} ' + f'-g {ivar_dir}/GCF_009858895.2_ASM985889v3_genomic.gff', params) smart_copy(tsv, output_tsv) # convert ivar output to vcf (produces {subject}.final.masked.variants.vcf) run(f'python /opt/ivar_variants_to_vcf.py {output_tsv} {output_vcf}', params) # use lofreq to call variants (produces {subject}.lofreq.bam and {subject}.vcf) run(f'lofreq indelqual --dindel -f {fasta} -o {lofreq_bam} --verbose {trimmed_masked}', params) run(f'samtools index {lofreq_bam}', params) run(f'lofreq call -d {depth_cap} --verbose --call-indels -f {fasta} -o {vcf_s0} --verbose {lofreq_bam}', params) # create consensus sequence for comparing to reference genome (produces {subject}.consensus.fa) run(f'samtools mpileup -aa -A -d 0 -B -Q 0 {lofreq_bam} | ' + f'ivar consensus -p {output_fa}', params) # create bedgraphs of gene coverage (produces {subject}.lofreq.bedgraph and {subject}.trimmed.masked.bedgraph) # https://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html run(f'bedtools genomecov -ibam {lofreq_bam} -bga > {lofreq_bedgraph}', params) run(f'bedtools genomecov -ibam {trimmed_masked} -bga > {trimmed_masked_bedgraph}', params) # Run snpEff postprocessing vcf_s1 = join(output_dir, f'{subject}.ivar.lofreq.vcf') vcf_s2 = join(output_dir, f'{subject}.ivar.lofreq.snpEFF.vcf') vcf_s3 = join(output_dir, f'{subject}.ivar.lofreq.snpSIFT.txt') run(f'sed "s/MN908947.3/NC_045512.2/g" {vcf_s0} > {vcf_s1}', params) run(f'java -Xmx8g -jar /opt/snpEff/snpEff.jar NC_045512.2 {vcf_s1} > {vcf_s2}', params) run(f'cat {vcf_s2} | /opt/snpEff/scripts/vcfEffOnePerLine.pl | java -jar /opt/snpEff/SnpSift.jar ' + f' extractFields - CHROM POS REF ALT AF DP "ANN[*].IMPACT" "ANN[*].FEATUREID" "ANN[*].EFFECT" ' + f' "ANN[*].HGVS_C" "ANN[*].HGVS_P" "ANN[*].CDNA_POS" "ANN[*].AA_POS" "ANN[*].GENE" > {vcf_s3}', params) # //TODO: make this DRY i_vcf_s1 = join(output_dir, f'{subject}.ivar.vcf') i_vcf_s2 = join(output_dir, f'{subject}.ivar.snpEFF.vcf') i_vcf_s3 = join(output_dir, f'{subject}.ivar.snpSIFT.txt') run(f'sed "s/MN908947.3/NC_045512.2/g" {output_vcf} > {i_vcf_s1}', params) run(f'java -Xmx8g -jar /opt/snpEff/snpEff.jar NC_045512.2 -noStats {i_vcf_s1} > {i_vcf_s2}', params) run(f'cat {i_vcf_s2} | /opt/snpEff/scripts/vcfEffOnePerLine.pl | java -jar /opt/snpEff/SnpSift.jar ' + f' extractFields - CHROM POS REF ALT "GEN[0].ALT_FREQ" DP "ANN[*].IMPACT" "ANN[*].FEATUREID" "ANN[*].EFFECT" ' + f' "ANN[*].HGVS_C" "ANN[*].HGVS_P" "ANN[*].CDNA_POS" "ANN[*].AA_POS" "ANN[*].GENE" ' + f' FILTER "GEN[0].ALT_QUAL" | ' + f' awk \'/^CHROM/ {{ sub(\\"GEN\\\\[0\\\\].ALT_FREQ\\", \\"AF\\"); \ sub(\\"GEN\\\\[0\\\\].ALT_QUAL\\", \\"ALT_QUAL\\") }}1\' > {i_vcf_s3}', params) # Clear extra files smart_remove('snpEff_genes.txt') smart_remove('snpEff_summary.html') update_permissions(ivar_dir, params) update_permissions(output_dir, params) finish_str = f''' ===================================== Finished iVar with subject: {subject} {get_time_date()} Arguments: {pprint.pformat(params, width=1)} Total time: {get_time_string(time.time() - start_time)} (HH:MM:SS) ===================================== ''' write(stdout, finish_str) print(finish_str)
2.15625
2
pypadb/decorator/select.py
ChenzDNA/pypadb
1
12781832
<gh_stars>1-10 import functools from types import GenericAlias from typing import Callable, Any from ..connection_pool import cursor_type, connection from ..exception import RequireReturnTypeAnnotation from ..utils import inspect_util def select(sql: str, data_type: Any) -> Callable: def deco(fun: Callable): @functools.wraps(fun) def wrapper(*args): conn = connection() with conn: cur = conn.cursor(cursor_type()) cur.execute(sql, dict(zip([a.name for a in inspect_util.arg_list(fun)], args))) func_returns = inspect_util.returns_type(fun) if not func_returns: raise RequireReturnTypeAnnotation('require return type annotation') first_data = cur.fetchone() if first_data is None: return None if func_returns == GenericAlias(list, data_type): return [data_type(**first_data), *[data_type(**i) for i in cur.fetchall()]] else: return data_type(**first_data) return wrapper return deco
2.375
2
simulation/utilities/util.py
0xDBFB7/ionprinter
0
12781833
import math import unittest epsilon = 8.85*(10**-12.0) #vacuum permittivity def electron_charge(): return 1.602*10**-19 def scharge_efield(beam_current,beam_velocity,beam_radius,sample_radius=None): """Calculate the electric field at the edge of a beam Eq. 44 at https://arxiv.org/pdf/1401.3951.pdf returns one value: V/m Beam velocity is in m/s """ if(sample_radius == None): sample_radius=beam_radius return ((beam_current/(2.0*(math.pi)*epsilon*beam_velocity)) * (sample_radius/(beam_radius**2.0))) def scharge_force(beam_current,beam_velocity,beam_radius): scharge_force = scharge_efield(beam_current,beam_velocity,beam_radius)*electron_charge() return scharge_force def scharge_bfield(beam_current,beam_velocity,beam_radius): """Calculate the minimum B field required to counteract scharge beam dispersion Return value is in teslas """ required_bfield = scharge_force(beam_current,beam_velocity,beam_radius)/(electron_charge()*beam_velocity) return required_bfield, scharge_force # # def einzel_focus_efield(V_0,V_1,focusing_period,focus_geometry_radius,y_position): # """Calculate # from Page 7 of https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650023758.pdf # """ # focusing_period_v = focusing_period*2.0*(math.pi) # K = V_1/(V_0*math.cosh(focusing_period_v)) # return -0.5*electron_charge()*V_0*(K**2.0)*(focusing_period_v**2.0)*y_position #print(scharge_efield(0.178,9990,0.005)/10**6) #0.00001963495 # print(einzel_focus_efield(20000,10000,0.001,0.001,0.0005)/10**6) class TestAll(unittest.TestCase): def test_scharge_efield(self): ef = scharge_efield(0.05,9990,0.0025) self.assertAlmostEqual(ef/10**6, 36.0032524, places=3) # def test_einzel_efield(self): # ef = einzel_focus_efield(20000,10000,0.001,0.001,0.0005) # self.assertAlmostEqual(ef/10**6, 36.0032524, places=3) # # def scharge_efield_test(self): # assertAlmostEqual(, second, places=4, msg=None, delta=None) # assertAlmostEqual(, second, places=4, msg=None, delta=None) # assertAlmostEqual(, second, places=4, msg=None, delta=None) # unittest.main()
2.8125
3
Markov.py
timestocome/AliceInWonderland
0
12781834
# http://github.com/timestocome/ # build a markov chain and use it to predict Alice In Wonderland/Through the Looking Glass text import numpy as np import pickle from collections import Counter import markovify # https://github.com/jsvine/markovify ####################################################################### # read in text and break into words and sentences ##################################################################### # open file and read in text #file = open('AliceInWonderland.txt', 'r') file = open('BothBooks.txt', encoding='utf-8') data = file.read() file.close() # create markov model model_3 = markovify.Text(data, state_size=3) # generate text from model print("*******************************") for i in range(10): print("__________________________") print(model_3.make_sentence())
3.640625
4
test/schema.py
fanngyuan/vitess
0
12781835
#!/usr/bin/python import os import socket import utils import tablet shard_0_master = tablet.Tablet() shard_0_replica1 = tablet.Tablet() shard_0_replica2 = tablet.Tablet() shard_0_rdonly = tablet.Tablet() shard_0_backup = tablet.Tablet() shard_1_master = tablet.Tablet() shard_1_replica1 = tablet.Tablet() def setup(): utils.zk_setup() setup_procs = [ shard_0_master.init_mysql(), shard_0_replica1.init_mysql(), shard_0_replica2.init_mysql(), shard_0_rdonly.init_mysql(), shard_0_backup.init_mysql(), shard_1_master.init_mysql(), shard_1_replica1.init_mysql(), ] utils.wait_procs(setup_procs) def teardown(): if utils.options.skip_teardown: return teardown_procs = [ shard_0_master.teardown_mysql(), shard_0_replica1.teardown_mysql(), shard_0_replica2.teardown_mysql(), shard_0_rdonly.teardown_mysql(), shard_0_backup.teardown_mysql(), shard_1_master.teardown_mysql(), shard_1_replica1.teardown_mysql(), ] utils.wait_procs(teardown_procs, raise_on_error=False) utils.zk_teardown() utils.kill_sub_processes() utils.remove_tmp_files() shard_0_master.remove_tree() shard_0_replica1.remove_tree() shard_0_replica2.remove_tree() shard_0_rdonly.remove_tree() shard_0_backup.remove_tree() shard_1_master.remove_tree() shard_1_replica1.remove_tree() # statements to create the table create_vt_select_test = [ ('''create table vt_select_test%d ( id bigint not null, msg varchar(64), primary key (id) ) Engine=InnoDB''' % x).replace("\n", "") for x in xrange(4)] def check_tables(tablet, expectedCount): tables = tablet.mquery('vt_test_keyspace', 'show tables') if len(tables) != expectedCount: raise utils.TestError('Unexpected table count on %s (not %u): %s' % (tablet.tablet_alias, expectedCount, str(tables))) @utils.test_case def run_test_complex_schema(): utils.run_vtctl('CreateKeyspace test_keyspace') shard_0_master.init_tablet( 'master', 'test_keyspace', '0') shard_0_replica1.init_tablet('replica', 'test_keyspace', '0') shard_0_replica2.init_tablet('replica', 'test_keyspace', '0') shard_0_rdonly.init_tablet( 'rdonly', 'test_keyspace', '0') shard_0_backup.init_tablet( 'backup', 'test_keyspace', '0') shard_1_master.init_tablet( 'master', 'test_keyspace', '1') shard_1_replica1.init_tablet('replica', 'test_keyspace', '1') utils.run_vtctl('RebuildShardGraph test_keyspace/0', auto_log=True) utils.run_vtctl('RebuildKeyspaceGraph test_keyspace', auto_log=True) # run checks now before we start the tablets utils.validate_topology() # create databases shard_0_master.create_db('vt_test_keyspace') shard_0_replica1.create_db('vt_test_keyspace') shard_0_replica2.create_db('vt_test_keyspace') shard_0_rdonly.create_db('vt_test_keyspace') shard_0_backup.create_db('vt_test_keyspace') shard_1_master.create_db('vt_test_keyspace') shard_1_replica1.create_db('vt_test_keyspace') # start the tablets shard_0_master.start_vttablet() shard_0_replica1.start_vttablet() shard_0_replica2.start_vttablet() shard_0_rdonly.start_vttablet() shard_0_backup.start_vttablet(wait_for_state="NOT_SERVING") shard_1_master.start_vttablet() shard_1_replica1.start_vttablet() # make sure all replication is good utils.run_vtctl('ReparentShard -force test_keyspace/0 ' + shard_0_master.tablet_alias, auto_log=True) utils.run_vtctl('ReparentShard -force test_keyspace/1 ' + shard_1_master.tablet_alias, auto_log=True) utils.run_vtctl('ValidateKeyspace -ping-tablets test_keyspace') # check after all tablets are here and replication is fixed utils.validate_topology(ping_tablets=True) # shard 0: apply the schema using a complex schema upgrade, no # reparenting yet utils.run_vtctl(['ApplySchemaShard', '-sql='+create_vt_select_test[0], 'test_keyspace/0'], auto_log=True) # check all expected hosts have the change: # - master won't have it as it's a complex change check_tables(shard_0_master, 0) check_tables(shard_0_replica1, 1) check_tables(shard_0_replica2, 1) check_tables(shard_0_rdonly, 1) check_tables(shard_0_backup, 1) check_tables(shard_1_master, 0) check_tables(shard_1_replica1, 0) # shard 0: apply schema change to just master directly # (to test its state is not changed) utils.run_vtctl(['ApplySchema', '-stop-replication', '-sql='+create_vt_select_test[0], shard_0_master.tablet_alias], auto_log=True) check_tables(shard_0_master, 1) # shard 0: apply new schema change, with reparenting utils.run_vtctl(['ApplySchemaShard', '-new-parent='+shard_0_replica1.tablet_alias, '-sql='+create_vt_select_test[1], 'test_keyspace/0'], auto_log=True) check_tables(shard_0_master, 1) check_tables(shard_0_replica1, 2) check_tables(shard_0_replica2, 2) check_tables(shard_0_rdonly, 2) check_tables(shard_0_backup, 2) # verify GetSchema --tables works out, err = utils.run_vtctl('GetSchema --tables=vt_select_test0 ' + shard_0_replica1.tablet_alias, log_level='INFO', trap_output=True) if not "vt_select_test0" in err or "vt_select_test1" in err: raise utils.TestError('Unexpected GetSchema --tables=vt_select_test0 output: %s' % err) # keyspace: try to apply a keyspace-wide schema change, should fail # as the preflight would be different in both shards out, err = utils.run_vtctl(['ApplySchemaKeyspace', '-sql='+create_vt_select_test[2], 'test_keyspace'], log_level='INFO', trap_output=True, raise_on_error=False) if err.find('ApplySchemaKeyspace Shard 1 has inconsistent schema') == -1: raise utils.TestError('Unexpected ApplySchemaKeyspace output: %s' % err) utils.run_vtctl('PurgeActions /zk/global/vt/keyspaces/test_keyspace/action') # shard 1: catch it up with simple updates utils.run_vtctl(['ApplySchemaShard', '-simple', '-sql='+create_vt_select_test[0], 'test_keyspace/1'], auto_log=True) utils.run_vtctl(['ApplySchemaShard', '-simple', '-sql='+create_vt_select_test[1], 'test_keyspace/1'], auto_log=True) check_tables(shard_1_master, 2) check_tables(shard_1_replica1, 2) # keyspace: apply a keyspace-wide simple schema change, should work now utils.run_vtctl(['ApplySchemaKeyspace', '-simple', '-sql='+create_vt_select_test[2], 'test_keyspace'], auto_log=True) # check all expected hosts have the change check_tables(shard_0_master, 1) # was stuck a long time ago as scrap check_tables(shard_0_replica1, 3) # current master check_tables(shard_0_replica2, 3) check_tables(shard_0_rdonly, 3) check_tables(shard_0_backup, 3) check_tables(shard_1_master, 3) # current master check_tables(shard_1_replica1, 3) # keyspace: apply a keyspace-wide complex schema change, should work too utils.run_vtctl(['ApplySchemaKeyspace', '-sql='+create_vt_select_test[3], 'test_keyspace'], auto_log=True) # check all expected hosts have the change: # - master won't have it as it's a complex change # - backup won't have it as IsReplicatingType is false check_tables(shard_0_master, 1) # was stuck a long time ago as scrap check_tables(shard_0_replica1, 3) # current master check_tables(shard_0_replica2, 4) check_tables(shard_0_rdonly, 4) check_tables(shard_0_backup, 4) check_tables(shard_1_master, 3) # current master check_tables(shard_1_replica1, 4) # now test action log pruning oldLines = utils.zk_ls(shard_0_replica1.zk_tablet_path+'/actionlog') oldCount = len(oldLines) if utils.options.verbose: print "I have %u actionlog before" % oldCount if oldCount <= 5: raise utils.TestError('Not enough actionlog before: %u' % oldCount) utils.run_vtctl('PruneActionLogs -keep-count=5 /zk/*/vt/tablets/*/actionlog', auto_log=True) newLines = utils.zk_ls(shard_0_replica1.zk_tablet_path+'/actionlog') newCount = len(newLines) if utils.options.verbose: print "I have %u actionlog after" % newCount if newCount != 5: raise utils.TestError('Unexpected actionlog count after: %u' % newCount) if oldLines[-5:] != newLines: raise utils.TestError('Unexpected actionlog values:\n%s\n%s' % (' '.join(oldLines[-5:]), ' '.join(newLines))) utils.pause("Look at schema now!") shard_0_master.kill_vttablet() shard_0_replica1.kill_vttablet() shard_0_replica2.kill_vttablet() shard_0_rdonly.kill_vttablet() shard_0_backup.kill_vttablet() shard_1_master.kill_vttablet() shard_1_replica1.kill_vttablet() def run_all(): run_test_complex_schema() def main(): args = utils.get_args() try: if args[0] != 'teardown': setup() if args[0] != 'setup': for arg in args: globals()[arg]() print "GREAT SUCCESS" except KeyboardInterrupt: pass except utils.Break: utils.options.skip_teardown = True finally: teardown() if __name__ == '__main__': main()
2.09375
2
keskiarvo_vs_mediaani/Python/keskiarvo_vs_mediaani.py
samuntiede/valokuvamatikka
0
12781836
# Kokeillaan mediaanin ja keskiarvon eroa. Kuvissa (30kpl) on oppilaita # satunnaisissa kohdissa, ja kamera oli jalustalla luokkahuoneessa. Otetaan # toisaalta keskiarvot ja toisaalta mediaanit pikseliarvoista. # Lopputulokset ovat hyvin erilaiset! # # <NAME> huhtikuu 2021 # Matlab -> Python Ville Tilvis kesäkuu 2021 import numpy as np import matplotlib.pyplot as plt # Kuvien lukumäärä Nim = 30 # Alustetaan matriisit, joihin tallennetaam keskiarvot ja mediaanit im_ave = np.zeros([2000,2997,3]) im_median = np.zeros([2000,2997,3]) im_4D = np.zeros([2000,2997,3,Nim]) print("Ladataan kuvat:") # Avataan kuvat yksi kerrallaan for iii in range (0,Nim): fname = '../_kuvat/IMGP'+str(1423+iii)+'.jpg' im_orig = plt.imread(fname,'jpg'); # Lisätään tämänhetkinen kuva pakkaan im_4D[:,:,:,iii] = im_orig; # Seuraa ajoa print(iii+1,"/",Nim) print("Lasketaan keskiarvo ja mediaani...") im_ave = np.mean(im_4D,axis=3)/255; im_median = np.median(im_4D,axis=3)/255; print("Valmis!") print("") print("Näytetään kuvat...") # Vähennetään keskiarvokuva ja # mediaanikuva tyhjän kuvan # punaisesta värikanavasta im0 = np.array(plt.imread('../_kuvat/IMGP1444.jpg','jpg'))/255 error1 = np.abs(im_ave-im0) error2 = np.abs(im_median-im0) errorpic = np.concatenate((error1,error2),axis=1) errorpic = errorpic/np.max(errorpic[:,:,0]) errorpic = np.power(errorpic,0.3) #Katsotaan kuvia plt.subplot(2,1,1) plt.imshow(np.concatenate((im_ave,im_median),axis=1)) plt.axis('off') plt.gcf().set_dpi(600) plt.subplot(2,1,2) plt.imshow(errorpic[:,:,0],cmap='gray', interpolation='none') plt.axis('off') plt.gcf().set_dpi(600) plt.show() print("Valmis!") print("") print("Tallennetaan kuvat...") # Tallennetaan kuvat plt.imsave('../_kuvat/im_average.jpg',im_ave,); plt.imsave('../_kuvat/im_median.jpg',im_median); print("Valmis!")
2.890625
3
src/arghgreet.py
CaptSolo/LU_PySem_2020_1
1
12781837
<filename>src/arghgreet.py import argh def main(name="Valdis", count=3): """ Printing a greeting message For our friends """ for _ in range(count): print(f'Hello {name}') return None if __name__ == "__main__": argh.dispatch_command(main)
3.171875
3
examples/acreps/pendulum_cart.py
hanyas/reps
8
12781838
import numpy as np import gym from reps.acreps import acREPS np.random.seed(1337) env = gym.make('Pendulum-RL-v1') env._max_episode_steps = 250 env.unwrapped.dt = 0.05 env.unwrapped.sigma = 1e-4 # env.seed(1337) acreps = acREPS(env=env, kl_bound=0.1, discount=0.985, lmbda=0.95, scale=[1., 1., 8.0, 2.5], mult=0.5, nb_vfeat=75, nb_pfeat=75, vf_reg=1e-12) acreps.run(nb_iter=15, nb_train_samples=5000, nb_eval_rollouts=25, nb_eval_steps=100) # evaluate rollouts, _ = acreps.evaluate(nb_rollouts=25, nb_steps=100) import matplotlib.pyplot as plt fig, ax = plt.subplots(nrows=1, ncols=acreps.state_dim + acreps.act_dim, figsize=(12, 4)) for roll in rollouts: for k, col in enumerate(ax[:-1]): col.plot(roll['x'][:, k]) ax[-1].plot(roll['uc']) plt.show()
2.125
2
agent_sched/packages/schedMain.py
mishahmadian/HPC_Provenance
0
12781839
<gh_stars>0 # -*- coding: utf-8 -*- """ The main Module that keeps listening for any incoming RPC calls in order to run the appropreate method to respond to the RPC request. <NAME> (<EMAIL>) """ from subprocess import run, CalledProcessError, DEVNULL from schedConfig import SchedConfig, ConfigReadExcetion from schedComm import SchedConnection, CommunicationExp from ugeSchedService import UGEAccountingInfo from schedLogger import log, Mode from threading import Event import signal import json import sys class SchedMain: def __init__(self): try: self._config = SchedConfig() self._rpc_queue = self._config.getRPC_queue() self._rpc_vhost = self._config.getVhost() self._rpc_proc = None signal.signal(signal.SIGINT, self.agent_exit) signal.signal(signal.SIGTERM, self.agent_exit) #self._cleanup_RPC_que() except ConfigReadExcetion as confExp: log(Mode.MAIN_SCHED, confExp.getMessage()) # Handle the SIGINT and SIGTERM signals in order to shutdown # the Collector agent def agent_exit(self, sig, frame): raise SchedExitExp # Start the Sched Service def run_sched_service(self): try: log(Mode.APP_START, "***************** Provenance Sched Service Started *****************") # Make Sure the rpc_queue has been defined if not self._rpc_queue: raise ConfigReadExcetion("'rpc_queue' is not defined in 'sched.conf' file.") # Initialize RPC Communication schedComm = SchedConnection(is_rpc=True) # Start listening and replying to RPC requests schedComm.start_RPC_server(self._on_rpc_callback) except SchedExitExp: log(Mode.APP_EXIT, "***************** Provenance Sched Service Stopped *****************") if self._rpc_proc and self._rpc_proc.is_alive(): self._rpc_proc.terminate() except ConfigReadExcetion as confExp: log(Mode.MAIN_SCHED, confExp.getMessage()) except CommunicationExp as commExp: log(Mode.MAIN_SCHED, commExp.getMessage()) except Exception as exp: log(Mode.MAIN_SCHED, str(exp)) # # Receiving RPC request and handling the response that has to be sent # back to the RPC client # def _on_rpc_callback(self, request: str, response: list, event: 'Event') -> None: request = json.loads(request) if request['action'] == 'uge_acct': ugeAcctInfo = UGEAccountingInfo(self._config) ugeAcctLst = ugeAcctInfo.getAcctountingInfo(request['data'], event) if ugeAcctLst: response.append('[^@]'.join(ugeAcctLst)) response.append('NONE') # else return nothing response.append('NONE') # # Cleanup the RabbitMQ RPC Queue # def _cleanup_RPC_que(self): try: run(f"rabbitmqctl -p {self._rpc_vhost} purge_queue {self._rpc_queue}", shell=True, check=True, stdout=DEVNULL) except CalledProcessError as runExp: log(Mode.MAIN_SCHED, str(runExp)) sys.exit(-1) # # Exception will be raised when SIGINT or SIGTERM are called # class SchedExitExp(Exception): pass if __name__ == "__main__": schedMain = SchedMain() schedMain.run_sched_service()
2.234375
2
surveillance/stats.py
bkmeneguello/surveillance
1
12781840
<reponame>bkmeneguello/surveillance import os import statsd client = statsd.StatsClient(prefix='surveillance', host=os.environ.get('STATSD_HOST', 'localhost'), port=int(os.environ.get('STATSD_PORT', 8125)), maxudpsize=int(os.environ.get('STATSD_MAX_UDP_SIZE', 512)), ipv6=bool(os.environ.get('STATSD_IPV6', False))) incr = client.incr decr = client.decr timer = client.timer timing = client.timing gauge = client.gauge set = client.set
2.203125
2
tests/loading.py
ecoinvent/bw_processing
1
12781841
<reponame>ecoinvent/bw_processing # from bw_processing.loading import load_bytes # from bw_processing import create_package # from io import BytesIO # from pathlib import Path # import json # import numpy as np # import tempfile # def test_load_package_in_directory(): # with tempfile.TemporaryDirectory() as td: # td = Path(td) # resources = [ # { # "name": "first-resource", # "path": "some-array.npy", # "matrix": "technosphere", # "data": [ # tuple(list(range(11)) + [False, False]), # tuple(list(range(12, 23)) + [True, True]), # ], # } # ] # with tempfile.TemporaryDirectory() as td: # fp = create_package( # name="test-package", resources=resources, path=td, replace=False # ) # # Test data in fp # def test_load_json(): # with tempfile.TemporaryDirectory() as td: # td = Path(td) # data = [{'foo': 'bar', }, 1, True] # json.dump(data, open(td / "data.json", "w")) # assert mapping["json"](open(td / "data.json")) == data # # def test_load_numpy(): # # with tempfile.TemporaryDirectory() as td: # # td = Path(td) # # data = np.arange(10) # # np.save(td / "array.npy", data) # # assert np.allclose(mapping["npy"](open(td / "array.npy")), data) # # def # # resources = [ # # { # # "name": "first-resource", # # "path": "some-array.npy", # # "matrix": "technosphere", # # "data": [ # # tuple(list(range(11)) + [False, False]), # # tuple(list(range(12, 23)) + [True, True]), # # ], # # } # # ] # # with tempfile.TemporaryDirectory() as td: # # fp = create_package( # # name="test-package", resources=resources, path=td, compress=False # # ) # # # Test data in fp
2.25
2
momentproblems/intersections.py
mwageringel/momentproblems
0
12781842
from sage.all import RDF, CDF, matrix, prod import scipy.linalg import numpy as np def column_space_intersection(*As, tol, orthonormal=False): r""" Return a matrix with orthonormal columns spanning the intersection of the column spaces of the given matrices. INPUT: - ``*As`` -- matrices with a fixed number of rows and linearly independent (or orthonormal) columns each - ``tol`` -- tolerance for truncating the singular values to determine the rank of the intersection - ``orthonormal`` -- boolean (default: ``False``); if ``True``, the columns of each matrix are assumed to be orthonormal ALGORITHM: <NAME> -- Algorithm 12.4.3 """ if len(As) < 1: raise ValueError("at least one matrix required") n = As[0].nrows() for A in As: if A.nrows() != n: raise ValueError("matrices must have same number of rows") if all(A.base_ring().is_exact() for A in As): V = As[0].column_space() for A in As[1:]: V = V.intersection(A.column_space()) return V.basis_matrix().T for A in As: if A.base_ring() not in (RDF, CDF): raise ValueError("only matrices over RDF/CDF or exact fields supported") if any(A.ncols() == 0 for A in As): return matrix(As[0].base_ring(), n, 0) Qs = As if orthonormal else [A.QR()[0][:,:A.ncols()] for A in As] if len(As) == 1: return Qs[0] # for better performance, we switch to numpy # Taking slices or hermitian transposes is a bottleneck with double dense matrices in Sage. Qs = [Q.numpy() for Q in Qs] # C = prod([Qs[0].H] + [Q*Q.H for Q in Qs[1:-1]] + [Qs[-1]]) # sort Qs such that smallest matrix is last, second smallest first Q_last = Qs.pop(min(range(len(Qs)), key=lambda j: Qs[j].shape[1])) Q_first = Qs.pop(min(range(len(Qs)), key=lambda j: Qs[j].shape[1])) C = Q_last for Q in Qs: # without Q_last and Q_first C = Q @ (Q.conj().T @ C) # this should be faster than (Q * Q.H) * C, since Q*Q.H is very large C = Q_first.conj().T @ C Σ, Vh = scipy.linalg.svd(C, overwrite_a=True)[1:] # we can overwrite, since C involves at least 1 multiplication rk = np.sum(1-Σ < tol) return matrix(Q_last @ Vh.T[:,:rk].conj()) def null_space_intersection(*As, tol): r""" Return a matrix with orthonormal columns spanning the intersection of the null spaces of the given matrices. INPUT: - ``*As`` -- matrices with a fixed number of columns - ``tol`` -- tolerance for truncating the singular values to determine the rank of intermediate results ALGORITHM: <NAME> -- Algorithm 12.4.2 """ if len(As) < 1: raise ValueError("at least one matrix required") n = As[0].ncols() if all(A.base_ring().is_exact() for A in As): ker = As[0].right_kernel() for A in As[1:]: ker = ker.intersection(A.right_kernel()) # TODO document that this does not have orthonormal columns return ker.basis_matrix().T for A in As: if A.base_ring() not in (RDF, CDF): raise ValueError("only matrices over RDF/CDF or exact rings supported") if A.ncols() != n: raise ValueError("matrices must have same number of columns") Y = None for A in As: if A.nrows() == 0: continue C = A * Y if Y is not None else A Σ, V = C.SVD()[1:] q = len([s for s in Σ.diagonal() if s > tol]) if q >= C.ncols(): return matrix(As[0].base_ring(), n, 0) X = V[:, q:] Y = Y * X if Y is not None else X if Y is None: # all the matrices have 0 rows return matrix.identity(As[0].base_ring(), n) else: return Y def null_space(A, tol): import numpy import scipy.linalg if A.nrows() == 0: return matrix.identity(A.base_ring(), A.ncols()) return matrix(numpy.ascontiguousarray(scipy.linalg.null_space(A, rcond=tol))) def _tests_sage(): """ TESTS:: sage: from momentproblems import intersections sage: TestSuite(intersections._tests_sage()).run(skip='_test_pickling') """ from sage.all import SageObject, matrix, RDF, ZZ import numpy import numpy.linalg import scipy.linalg class Tests(SageObject): def matrices(self): # test data for _ in range(5): for num in range(1, 5): # generate some matrices with few rows, so we can intersect their kernels matrices = [matrix.random(RDF, ZZ.random_element(0, 4), 9) for _ in range(num)] yield matrices def matrices2(self): # test data for _ in range(5): for num in range(1, 5): # generate some matrices with few rows, so we can intersect their kernels matrices = [matrix.random(RDF, 9, 9 - ZZ.random_element(0, 4)) for _ in range(num)] yield matrices def equal_spaces(self, A, B, tol): from numpy.linalg import matrix_rank return matrix_rank(A.augment(B), tol) == matrix_rank(A, tol) == matrix_rank(B, tol) def _test_null_space_intersection(self, **kwds): tol = 1e-10 for As in self.matrices(): ker = null_space_intersection(*As, tol=tol) assert all([ker.ncols() == 0 or A.nrows() == 0 or (A * ker).norm() < tol for A in As]) assert max(0, As[0].ncols() - sum([A.nrows() for A in As])) == ker.ncols() # generically the correct dimension # the intersection is also simply the null space of the augmented matrix ker2 = null_space(matrix(RDF, [v for A in As for v in A.rows()], ncols=As[0].ncols()), tol) assert self.equal_spaces(ker, ker2, tol) def _test_column_space_intersection(self, **kwds): tol = 1e-10 for As in self.matrices2(): B = column_space_intersection(*As, tol=tol) assert B.ncols() == max(0, As[0].nrows() - sum([A.nrows() - A.ncols() for A in As])) # generically the correct dimension for A in As: assert self.equal_spaces(A.augment(B), A, tol) # B is contained in A def _test_compatibilty(self, **kwds): tol = 1e-10 for As in self.matrices(): # computing null space intersection is the same as computing # column space intersection of null spaces ker = null_space_intersection(*As, tol=tol) ker2 = column_space_intersection(*[null_space(A, tol) for A in As], tol=tol, orthonormal=True) assert self.equal_spaces(ker, ker2, tol) return Tests()
3.0625
3
settings/__init__.py
SublimeText/InactivePanes
28
12781843
<gh_stars>10-100 """Provides a settings abstraction class. Exported classes: * Settings """ class Settings(object): """ST settings abstraction that helps with default values and running a callback when changed. The main purpose is to always provide the correct value of a setting or a default, if set, under the same identifier (here: attribute). The settings auto-update by default and a custom callback may be specified that is called whenever one of the tracked settings value changes. Note that this is different to Sublimes `settings.add_on_change` as that will be called when any containing setting *could* have changed, while we only want it if the specified setting actually changed. Methods: * __init__(settings_obj, settings, callback=None, auto_update=True): * update() * has_changed() * get_state() * get_real_state() * set_callback(callback, auto_update=True) * clear_callback(clear_auto_update=False) """ # Static class variables KEY = "__settings_abstr" # Instance variables _sobj = None _settings = None _callback = None _registered = False def __init__(self, settings_obj, settings, callback=None, auto_update=True): """Create a new instance. `settings` should be provided as a dict of tuples, and attribute names should not be one of the existing functions. And of course they should be valid attribute names. Example call: Settings( sublime.load_settings("Preferences.sublime-settings"), settings=dict( attr_name_to_save_as=('settings_key_to_read_from', 'default_value'), attr_name_to_save_as2='settings_key_to_read_from_with_default_None', attr_name_and_settings_key_with_default_None=None #, ... ), callback=on_settings_changed, # optional, callback auto_update=True # optional, bool (whether the attributes should be kept up to date) ) For the callback and auto_update parameters, refer to `set_callback`. """ self._sobj = settings_obj for k, v in settings.items(): if v is None: # Use the attr name as settings key and `None` as default settings[k] = (k, None) if isinstance(v, str): # Set default to `None` if a string was supplied settings[k] = (v, None) self._settings = settings self.update() self.set_callback(callback, auto_update) def __del__(self): """Deregister callback when destructing.""" self.clear_callback(True) def update(self): """Read all the settings and save them in their respective attributes.""" for attr, (name, def_value) in self._settings.items(): setattr(self, attr, self._sobj.get(name, def_value)) def _on_change(self): """Test if the tracked settings have changed and run a callback if specified.""" if self.has_changed(): self.update() if self._callback: self._callback() def _register(self, callback): self._registered = True # Use a 100% unique identifier (because ids are never equal for non-primitives) self._sobj.add_on_change(self.KEY + str(id(self)), callback) def _unregister(self): self._registered = False self._sobj.clear_on_change(self.KEY + str(id(self))) def has_changed(self): """Return a boolean whether the cached settings differ from the settings object.""" return self.get_state() != self.get_real_state() def get_state(self): """Return a dict with the tracked settings and their cached values. Does NOT use the attribute names but the setting keys. With the example from __init__: `{"settings_key_to_read_from": 'current_value'}`. """ return dict((name, getattr(self, attr)) for attr, (name, _) in self._settings.items()) def get_real_state(self): """Return a dict with the tracked settings and their actual values from the settings obj. Does NOT use the attribute names but the setting keys. With the example from __init__: `{"settings_key_to_read_from": 'current_value'}`. """ return dict((name, self._sobj.get(name, def_value)) for name, def_value in self._settings.values()) def set_callback(self, callback=None, auto_update=True): """Register `callback` to be called whenever a tracked setting's value changes. If `auto_update` is true, automatically update the attributes when the settings change. This always happens when a callback is set, thus resulting in the values being up-to-date when the callback is called. Return the previous callback if any. """ if callback is not None and not callable(callback): raise TypeError("callback must be callable or None") register = bool(auto_update or callback) old_cb = self.clear_callback(not register) self._callback = callback if not self._registered and register: self._register(self._on_change) return old_cb def clear_callback(self, clear_auto_update=False): """Clear the callback set with set_callback and return it in the process. clear_auto_update=True will also remove auto-updating the attributes and `get_state`, if previously enabled. """ old_cb = self._callback self._callback = None if self._registered and clear_auto_update: self._unregister() return old_cb
2.84375
3
setup.py
mikiec84/pyneurovault_upload
1
12781844
try: from setuptools.core import setup except ImportError: from distutils.core import setup __version__ = '0.1.0' setup( name='pyneurovault_upload', version='0.1.0', author='<NAME>', author_email='<EMAIL>', url='https://github.com/ljchang/pyneurovault_upload', packages=['pyneurovault_upload'], license='MIT', install_requires=['requests>=2.10.0'], description='A Python library for interfacing with http://neurovault.org upload API', keywords=['neuroimaging', 'neurovault'], classifiers=[ "Programming Language :: Python", "Operating System :: OS Independent", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", ] )
1.398438
1
texttractor/__init__.py
walkr/texttractor
0
12781845
<filename>texttractor/__init__.py # -*- coding: utf-8 -*- from .core import TextTractor from .core import TextCleaner __author__ = '<NAME>' __email__ = '<EMAIL>' __version__ = '0.0.1' __all__ = ['TextTractor', 'TextCleaner']
1.1875
1
authentik/stages/user_write/api.py
BeryJu/passbook
15
12781846
"""User Write Stage API Views""" from rest_framework.viewsets import ModelViewSet from authentik.core.api.used_by import UsedByMixin from authentik.flows.api.stages import StageSerializer from authentik.stages.user_write.models import UserWriteStage class UserWriteStageSerializer(StageSerializer): """UserWriteStage Serializer""" class Meta: model = UserWriteStage fields = StageSerializer.Meta.fields + ["create_users_as_inactive", "create_users_group"] class UserWriteStageViewSet(UsedByMixin, ModelViewSet): """UserWriteStage Viewset""" queryset = UserWriteStage.objects.all() serializer_class = UserWriteStageSerializer filterset_fields = "__all__" search_fields = ["name"] ordering = ["name"]
2.21875
2
shadow/static.py
f1uzz/shadow
1
12781847
<gh_stars>1-10 from itertools import chain from enum import Enum from shadow.models import Queue, QueueList, Role, RoleList, Shard, ShardList, Ability, AbilityList # queue types QUEUES = QueueList(queues=[ Queue( lcu_queue_name="Summoner's Rift", ugg_queue_name="ranked_solo_5x5", rank="platinum_plus", roles=RoleList(roles=[ Role(display_role_name="Top", display_short_role_name="Top", lcu_role_name="top", ugg_role_name="top"), Role(display_role_name="Jungle", display_short_role_name="JG", lcu_role_name="jungle", ugg_role_name="jungle"), Role(display_role_name="Middle", display_short_role_name="Mid", lcu_role_name="middle", ugg_role_name="mid"), Role(display_role_name="ADC", display_short_role_name="ADC", lcu_role_name="bottom", ugg_role_name="adc"), Role(display_role_name="Support", display_short_role_name="Sup", lcu_role_name="utility", ugg_role_name="supp") ]) ), Queue( lcu_queue_name="Howling Abyss", ugg_queue_name="normal_aram", rank="overall", roles=RoleList(roles=[ Role(display_role_name="ARAM", display_short_role_name="ARAM", lcu_role_name="", ugg_role_name="none") ]) ), Queue( lcu_queue_name="Nexus Blitz", ugg_queue_name="nexus_blitz", rank="overall", roles=RoleList(roles=[ Role(display_role_name="Nexus Blitz", display_short_role_name="NB", lcu_role_name="", ugg_role_name="none") ]) ) ]) # list of all roles ALL_ROLES = chain.from_iterable([queue.roles.roles for queue in QUEUES]) ALL_ROLES = RoleList(roles=[role for role in ALL_ROLES]) # ability types ABILITIES = AbilityList(abilities=[ Ability(key="Q"), Ability(key="W"), Ability(key="E"), Ability(key="R"), ]) BASIC_ABILITIES = AbilityList(abilities=[ ABILITIES.get_ability_by_key("Q"), ABILITIES.get_ability_by_key("W"), ABILITIES.get_ability_by_key("E"), ]) # rune shards SHARDS = ShardList(shards=[ Shard(ugg_shard_name="Adaptive Force", shard_id=5008), Shard(ugg_shard_name="Attack Speed", shard_id=5005), Shard(ugg_shard_name="Scaling Cooldown Reduction", shard_id=5007), Shard(ugg_shard_name="Armor", shard_id=5002), Shard(ugg_shard_name="Magic Resist", shard_id=5003), Shard(ugg_shard_name="Scaling Health", shard_id=5001) ]) # gameflow phases class GAMEFLOW_PHASE(Enum): NONE = "None" LOBBY = "Lobby" MATCHMAKING = "Matchmaking" READY_CHECK = "ReadyCheck" CHAMP_SELECT = "ChampSelect" IN_PROGRESS = "InProgress" RECONNECT = "Reconnect" PRE_END_OF_GAME = "PreEndOfGame" END_OF_GAME = "EndOfGame" WAITING_FOR_STATS = "WaitingForStats" UAS = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36" # user agent string SLEEP_TIME = 0.5 # time to sleep between polls MIN_ACCEPTABLE_PATCH_MATCH_RATIO = 0.15 # ratio of games on current patch to previous patch required to use current patch's data FLASH = 4 # id for flash summoner CONFIG_FILENAME = "config.json" # name of config file DEFAULT_CONFIG = { # default config file contents "flash_on_f": True, "revert_patch": True, "preferred_item_slots": dict(), "small_items": list() }
2.046875
2
Lipniacki2004/plot_func.py
okadalabipr/cancer_signaling
1
12781848
<reponame>okadalabipr/cancer_signaling from matplotlib import pyplot as plt def timecourse(sim): plt.figure(figsize=(16,13)) plt.rcParams['font.family'] = 'Arial' plt.rcParams['font.size'] = 15 plt.rcParams['axes.linewidth'] = 1 plt.rcParams['lines.linewidth'] = 1.5 plt.subplots_adjust(wspace=0.4, hspace=0.5) plt.subplot(3,4,1) plt.plot(sim.t,1*(sim.t>1),'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,1.5) plt.title('TNF activity') plt.subplot(3,4,2) plt.plot(sim.t,sim.Neutral_IKK,'k',clip_on=False) plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.2) plt.title('Neutral IKK (IKKn)') plt.subplot(3,4,3) plt.plot(sim.t,sim.Active_IKK,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.1) plt.title('Active IKK (IKKa)') plt.subplot(3,4,4) plt.plot(sim.t,sim.Inactive_IKK,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.2) plt.title('Inactive IKK (IKKi)') plt.subplot(3,4,5) plt.plot(sim.t,sim.Free_cyt_IkBa,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.04) plt.title('Free cyt. IkBa') plt.subplot(3,4,6) plt.plot(sim.t,sim.Cyt,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.06) plt.title('Cyt. (IkBa|NFkB)') plt.subplot(3,4,7) plt.plot(sim.t,sim.Free_nuclear_IkBa,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.02) plt.title('Free nuclear IkBa') plt.subplot(3,4,8) plt.plot(sim.t,sim.Free_nuclear_NFkB,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.4) plt.title('Free nuclear NFkB') plt.subplot(3,4,9) plt.plot(sim.t,sim.IkBa_mRNA*1e4,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.title(r'× 10$^4$ IkBa mRNA') plt.subplot(3,4,10) plt.plot(sim.t,sim.A20_mRNA*1e4,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.title(r'× 10$^4$ A20 mRNA') plt.subplot(3,4,11) plt.plot(sim.t,sim.A20_protein,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.ylim(0,0.2) plt.title('A20 protein') plt.subplot(3,4,12) plt.plot(sim.t,sim.cgen_mRNA*1e4,'k') plt.xlim(0,7) plt.xticks([0,2,4,6]) plt.title(r'× 10$^4$ cgen mRNA') plt.savefig('wild_type.png',bbox_inches='tight')
2.234375
2
interpretation/deepseismic_interpretation/dutchf3/tests/test_dataloaders.py
elmajdma/seismic-deeplearning
270
12781849
<filename>interpretation/deepseismic_interpretation/dutchf3/tests/test_dataloaders.py<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """ Tests for TrainLoader and TestLoader classes when overriding the file names of the seismic and label data. """ import tempfile import numpy as np from deepseismic_interpretation.dutchf3.data import ( get_test_loader, TrainPatchLoaderWithDepth, TrainSectionLoaderWithDepth, ) import pytest import yacs.config import os # npy files dimensions IL = 5 XL = 10 D = 8 N_CLASSES = 2 CONFIG_FILE = "./experiments/interpretation/dutchf3_patch/configs/unet.yaml" with open(CONFIG_FILE, "rt") as f_read: config = yacs.config.load_cfg(f_read) def generate_npy_files(path, data): np.save(path, data) def assert_dimensions(test_section_loader): assert test_section_loader.labels.shape[0] == IL assert test_section_loader.labels.shape[1] == XL assert test_section_loader.labels.shape[2] == D # Because add_section_depth_channels method add # 2 extra channels to a 1 channel section assert test_section_loader.seismic.shape[0] == IL assert test_section_loader.seismic.shape[2] == XL assert test_section_loader.seismic.shape[3] == D def test_TestSectionLoader_should_load_data_from_test1_set(): with open(CONFIG_FILE, "rt") as f_read: config = yacs.config.load_cfg(f_read) with tempfile.TemporaryDirectory() as data_dir: os.makedirs(os.path.join(data_dir, "test_once")) os.makedirs(os.path.join(data_dir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test1_seismic.npy"), seimic) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test1_labels.npy"), labels) txt_path = os.path.join(data_dir, "splits", "section_test1.txt") open(txt_path, "a").close() TestSectionLoader = get_test_loader(config) config.merge_from_list(["DATASET.ROOT", data_dir]) test_set = TestSectionLoader(config, split="test1") assert_dimensions(test_set) def test_TestSectionLoader_should_load_data_from_test2_set(): with tempfile.TemporaryDirectory() as data_dir: os.makedirs(os.path.join(data_dir, "test_once")) os.makedirs(os.path.join(data_dir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test2_seismic.npy"), seimic) A = np.load(os.path.join(data_dir, "test_once", "test2_seismic.npy")) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test2_labels.npy"), labels) txt_path = os.path.join(data_dir, "splits", "section_test2.txt") open(txt_path, "a").close() TestSectionLoader = get_test_loader(config) config.merge_from_list(["DATASET.ROOT", data_dir]) test_set = TestSectionLoader(config, split="test2") assert_dimensions(test_set) def test_TestSectionLoader_should_load_data_from_path_override_data(): with tempfile.TemporaryDirectory() as data_dir: os.makedirs(os.path.join(data_dir, "volume_name")) os.makedirs(os.path.join(data_dir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "volume_name", "seismic.npy"), seimic) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "volume_name", "labels.npy"), labels) txt_path = os.path.join(data_dir, "splits", "section_volume_name.txt") open(txt_path, "a").close() TestSectionLoader = get_test_loader(config) config.merge_from_list(["DATASET.ROOT", data_dir]) test_set = TestSectionLoader( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(data_dir, "volume_name", "seismic.npy"), label_path=os.path.join(data_dir, "volume_name", "labels.npy"), ) assert_dimensions(test_set) def test_TrainPatchLoaderWithDepth_should_fail_on_missing_seismic_file(tmpdir): """ Check for exception when training param is empty """ # Setup os.makedirs(os.path.join(tmpdir, "volume_name")) os.makedirs(os.path.join(tmpdir, "splits")) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "labels.npy"), labels) txt_path = os.path.join(tmpdir, "splits", "patch_volume_name.txt") open(txt_path, "a").close() config.merge_from_list(["DATASET.ROOT", str(tmpdir)]) # Test with pytest.raises(Exception) as excinfo: _ = TrainPatchLoaderWithDepth( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(tmpdir, "volume_name", "seismic.npy"), label_path=os.path.join(tmpdir, "volume_name", "labels.npy"), ) assert "does not exist" in str(excinfo.value) def test_TrainPatchLoaderWithDepth_should_fail_on_missing_label_file(tmpdir): """ Check for exception when training param is empty """ # Setup os.makedirs(os.path.join(tmpdir, "volume_name")) os.makedirs(os.path.join(tmpdir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "seismic.npy"), seimic) txt_path = os.path.join(tmpdir, "splits", "patch_volume_name.txt") open(txt_path, "a").close() config.merge_from_list(["DATASET.ROOT", str(tmpdir)]) # Test with pytest.raises(Exception) as excinfo: _ = TrainPatchLoaderWithDepth( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(tmpdir, "volume_name", "seismic.npy"), label_path=os.path.join(tmpdir, "volume_name", "labels.npy"), ) assert "does not exist" in str(excinfo.value) def test_TrainPatchLoaderWithDepth_should_load_with_one_train_and_label_file(tmpdir): """ Check for successful class instantiation w/ single npy file for train & label """ # Setup os.makedirs(os.path.join(tmpdir, "volume_name")) os.makedirs(os.path.join(tmpdir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "seismic.npy"), seimic) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "labels.npy"), labels) txt_dir = os.path.join(tmpdir, "splits") txt_path = os.path.join(txt_dir, "patch_volume_name.txt") open(txt_path, "a").close() config.merge_from_list(["DATASET.ROOT", str(tmpdir)]) # Test train_set = TrainPatchLoaderWithDepth( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(tmpdir, "volume_name", "seismic.npy"), label_path=os.path.join(tmpdir, "volume_name", "labels.npy"), ) assert train_set.labels.shape == (IL, XL, D + 2 * config.TRAIN.PATCH_SIZE) assert train_set.seismic.shape == (IL, XL, D + 2 * config.TRAIN.PATCH_SIZE)
2.078125
2
preprocess_optimized.py
OEMarshall/REU2016-Supervised-Experiments
0
12781850
import numpy import sys import pickle f = open("kddcup.names","r") counter = 1 labels = {}; features = {} for line in f: line = line.strip() #get rid of period at end if counter == 1: s = line.split(",") #split first line on comma for label in s: labels[label] = 0 #each CSV in first line is label, add to #label dictionary as key with value 0 else: s = line.split(":") #split second line on ':' add name of feature #as key to features dictionary features[s[0]]=0 counter += 1 f.close() #print labels.keys(), len(labels.keys()) #print features.keys(), len(features.keys()) f = open("kddcup.data.corrected","r") data_dict = {} durations = 0 src_bytes = 0 dest_bytes = 0 wrong_fragments = 0 urgent = 0 hot = 0 fail = 0 compromised = 0 root = 0 file_create = 0 shells = 0 access = 0 outbound_cmds = 0 count = 0 srv_count = 0 #serror = [] dest_hosts = 0 dest_host_srv = 0 for label in labels: data_dict[label] = [] #make each value of label a list print "Reading the data file..." line_counter = 0 for line in f: line_counter += 1 if line_counter % 200000 == 0: print str(line_counter)+" lines processed." line = line.strip(); line = line[:-1] #get rid of period at end s = line.split(",") #split line on commas try: labels[s[-1]] += 1 #increment label everytime it occurs in file data_dict[s[-1]].append(s[:-1]) #append line to value of correct label #durations.append(float(s[0])) if (float(s[0]) > durations): durations = float(s[0]) #src_bytes.append(float(s[4])) if (float(s[4]) > src_bytes): src_bytes = float(s[4]) #dest_bytes.append(float(s[5])) if (float(s[5]) > dest_bytes): dest_bytes = float(s[5]) #wrong_fragments.append(float(s[7])) if (float(s[7]) > wrong_fragments): wrong_fragments = float(s[7]) #urgent.append(float(s[8])) if (float(s[8]) > urgent): urgent = float(s[8]) #hot.append(float(s[9])) if (float(s[9]) > hot): hot = float(s[9]) #fail.append(float(s[10])) if (float(s[10]) > fail): fail = float(s[10]) #compromised.append(float(s[12])) if (float(s[12]) > compromised): compromised = float(s[12]) #root.append(float(s[15])) if (float(s[15]) > root): root = float(s[15]) #file_create.append(float(s[16])) if (float(s[16]) > file_create): file_create = float(s[16]) #shells.append(float(s[17])) if (float(s[17]) > shells): shells = float(s[17]) #access.append(float(s[18])) if (float(s[18]) > access): access = float(s[18]) #outbound_cmds.append(float(s[19])) if (float(s[19]) > outbound_cmds): outbound_cmds = float(s[19]) #count.append(float(s[22])) if (float(s[22]) > count): count = float(s[22]) #srv_count.append(float(s[23])) if (float(s[23]) > srv_count): srv_count = float(s[23]) #dest_hosts.append(float(s[31])) if (float(s[31]) > dest_hosts): dest_hosts = float(s[31]) #dest_host_srv.append(float(s[32])) if (float(s[32]) > dest_host_srv): dest_host_srv = float(s[32]) #for i in range(len(s)-1): #features[s[i]]+=1 except KeyError: pass f.close() print str(line_counter)+ " lines processed, start quantifying..." dur_max = durations src_bytes_max = src_bytes dest_bytes_max = dest_bytes wrong_fragments_max = wrong_fragments urgent_max = urgent hot_max = hot fail_max = fail compromised_max = compromised root_max = root file_create_max = file_create shell_max = shells access_max = access outbound_max = outbound_cmds count_max = count srv_count_max = srv_count dest_host_max = dest_hosts dest_host_srv_max = dest_host_srv min_items = 10000 #Minimum number of examples per class (very important variable) random_dict = {} for label in labels: print("here", label, labels[label]) if(labels[label] >= min_items): # for each label, if it has more than min_items # create a key for random_dict and list as value random_dict[label] = [] rng = numpy.random.RandomState(11) for label in random_dict: indice = rng.choice(range(0,len(data_dict[label])),min_items,replace = False) # generate random list of indices of size min_items for elem in indice: random_dict[label].append(data_dict[label][elem]) #from each label in random_dict, append to random_dict[label] the random indices #for label in random_dict: # for line in random_dict[label]: # remove unwanted features # print line[0] # line.pop(1) for label in random_dict: for line in random_dict[label]: if line[1] == "tcp": line[1]= 1/6.0 elif line[1] == "udp": line[1]= 2/6.0 # assign values to second column of value lists (protocol type) else: line[1]= .5 services = ['http', 'smtp', 'finger', 'domain_u', 'auth',\ 'telnet', 'ftp', 'eco_i', 'ntp_u', 'ecr_i', \ 'other', 'private', 'pop_3', 'ftp_data', \ 'rje', 'time', 'mtp', 'link', 'remote_job', \ 'gopher', 'ssh', 'name', 'whois', 'domain', \ 'login', 'imap4', 'daytime', 'ctf', 'nntp', \ 'shell', 'IRC', 'nnsp', 'http_443', 'exec', \ 'printer', 'efs', 'courier', 'uucp', 'klogin', \ 'kshell', 'echo', 'discard', 'systat', 'supdup', \ 'iso_tsap', 'hostnames', 'csnet_ns', 'pop_2', \ 'sunrpc', 'uucp_path', 'netbios_ns', 'netbios_ssn', \ 'netbios_dgm', 'sql_net', 'vmnet', 'bgp', 'Z39_50', \ 'ldap', 'netstat', 'urh_i', 'X11', 'urp_i', 'pm_dump', \ 'tftp_u', 'tim_i', 'red_i','SF', 'aol','http_8001', 'harvest'] flags = ['S1', 'SF', 'REJ', 'S2', 'S0', 'S3', 'RSTO', 'RSTR', 'RSTOS0', 'OTH', 'SH'] for label in random_dict: for List in random_dict[label]: for i in range(len(List)): if i == 0: List[i] = float(List[i]) / float(dur_max) # assign values to first column of value lists (duration) elif i == 2: List[i]= float(services.index(List[i]))/float(len(services)) # assign values to third column of value lists (service) elif i == 3: List[i] = float(flags.index(List[i]))/float(len(flags))# assign values to fourth column of value lists (flags) elif i == 4: List[i] = float(List[i]) / float(src_bytes_max) # assign values to fifth column of value lists (src_bytes) elif i == 5: List[i] = float(List[i]) / float(dest_bytes_max) # assign values to sixth column of value lists (dest_bytes) elif i == 6: List[i] = float(List[i]) # convert seventh column of value lists to float (land) elif i == 7: List[i] = float(List[i]) / float(wrong_fragments_max) # assign values to eighth column of value lists (wrong_fragments) elif i == 8: List[i] = float(List[i]) / float(urgent_max) # assign values to ninth column of value lists (urgent) elif i == 9: List[i] = float(List[i]) / float(hot_max) # assign values to 10th column of value lists (hot) elif i == 10: List[i] = float(List[i]) / float(fail_max) # assign values to 11th column of value lists (failed_logins) elif i == 11: List[i] = float(List[i]) # convert 12th column (successful login) to float elif i == 12: List[i] = float(List[i]) / float(compromised_max) # assign values to 13th column of value lists (num_comprimesed) elif i == 13: List[i] = float(List[i]) # convert 14th column (root shell) to float elif i == 14: List[i] = float(List[i]) # convert 15th column (su_attemptedl) to float elif i == 15: List[i] = float(List[i]) / float(root_max) # assign values to 16th column of value lists (num_root) elif i == 16: List[i] = float(List[i]) / float(file_create_max) # assign values to 17th column of value lists (num_file creations) elif i == 17: List[i] = float(List[i]) / float(shell_max) # assign values to 18th column of value lists (num_shells) elif i == 18: List[i] = float(List[i]) / float(access_max) # assign values to 19th column of value lists (num_access_files) elif i == 19: #get rid of becasue all 0 List[i] = float(List[i])/ float(sys.maxint) # assign values to 20th column of value lists (num_outbound_commands) elif i == 20: List[i] = float(List[i]) # convert 21st column (is_host_login) to float elif i == 21: List[i] = float(List[i]) # convert 22nd column (is_guest_login) to float elif i == 22: List[i] = float(List[i]) / float(count_max) # assign values to 23rd column of value lists (count) elif i == 23: List[i] = float(List[i]) / float(srv_count_max) # assign values to 24th column of value lists (srv_count) elif i == 24: List[i] = float(List[i]) # convert 25th column (serror_rate) to float elif i == 25: List[i] = float(List[i]) # convert 26th column (srv_serror_rate) to float elif i == 26: List[i] = float(List[i]) # convert 27th column (rerror_rate) to float elif i == 27: List[i] = float(List[i]) # convert 28th column (srv_rerror_rate) to float elif i == 28: List[i] = float(List[i]) # convert 29th column (same_srv_rate) to float elif i == 29: List[i] = float(List[i]) # convert 30th column (diff_srv_rate) to float elif i == 30: List[i] = float(List[i]) # convert 31st column (srv_diff_host_rate) to float elif i == 31: List[i] = float(List[i]) / float(dest_host_max) # assign values to 32nd column of value lists (dest_host_count) elif i == 32: List[i] = float(List[i]) / float(dest_host_srv_max) # assign values to 33rd column of value lists (dst_host_srv_count) elif i == 33: List[i] = float(List[i]) # convert 34th column (dst_host_same_srv_rate) to float elif i == 34: List[i] = float(List[i]) # convert 35th column (dst_host_diff_srv_rate) to float elif i == 35: List[i] = float(List[i]) # convert 36th column (dst_host_same_src_port_rate) to float elif i == 36: List[i] = float(List[i]) # convert 37th column (dst_host_srv_diff_host_rate) to float elif i == 37: List[i] = float(List[i]) # convert 38th column (dst_host_serror_rate) to float elif i == 38: List[i] = float(List[i]) # convert 39th column (dst_host_srv_serror_rate) to float elif i == 39: List[i] = float(List[i]) # convert 40th column (dst_host_rerror_rate) to float elif i == 40: List[i] = float(List[i]) # convert 41st column (dst_host_srv_rerror_rate) to float #print random_dict file2 = open("labeling.txt","w") print "Generating training set..." all_data = []; labels = random_dict.keys()[:] for k in labels: file2.write(str(k)) for data in random_dict[k]: all_data.append((data,labels.index(k))) print "Pickling..." with open('all_data_' + str(min_items) +'.pickle','w') as f: pickle.dump(all_data,f) file2.close
2.546875
3