max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
edafos/soil/__init__.py
nickmachairas/edafos
0
12781551
<filename>edafos/soil/__init__.py from .physics import * from .profile import SoilProfile
1.179688
1
Packages/Patterns_Package/setup.py
saribalarakeshreddy/Python-3.9.0
0
12781552
<reponame>saribalarakeshreddy/Python-3.9.0 from setuptools import setup,find_packages classifiers = [ 'Development Status :: ', 'Intended Audience :: Education', 'Operating System :: windows 10', 'License :: MIT License', 'Programming Language :: Python :: 3.9.0' ] setup( name='Patterns_Package', version='0.0.1', description='patterns of Capital and Small Alphabets, Numbers,some other Symbols', Long_description=open('README.txt').read()+'\n\n'+open('CHANGELOG.txt').read(), url='https://github.com/saribalarakeshreddy/Python-3.9.0/tree/main/Packages', author='<NAME>', author_emial='<EMAIL>', license='MIT', classifiers=classifiers, keywords='patterns', install_requires=[''] )
1.171875
1
backend/auth/__init__.py
golani04/bug-tracker
0
12781553
from fastapi import APIRouter from backend.auth.login import router auth_routers = APIRouter() auth_routers.include_router(router, tags=["Auth"])
1.789063
2
office-plugin/windows-office/program/wizards/common/Properties.py
jerrykcode/kkFileView
6,660
12781554
# # This file is part of the LibreOffice project. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # # This file incorporates work covered by the following license notice: # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed # with this work for additional information regarding copyright # ownership. The ASF licenses this file to you under the Apache # License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 . # from com.sun.star.beans import PropertyValue ''' Simplifies handling Arrays of PropertyValue. To make a use of this class, instantiate it, and call the put(propName,propValue) method. caution: propName should always be a String. When finished, call the getProperties() method to get an array of the set properties. ''' class Properties(dict): @classmethod def getPropertyValue(self, props, propName): for i in props: if propName == i.Name: return i.Value raise AttributeError ("Property '" + propName + "' not found.") @classmethod def hasPropertyValue(self, props, propName): for i in props: if propName == i.Name: return True return False @classmethod def getProperties(self, _map): pv = [] for k,v in _map.items(): pv.append(self.createProperty(k, v)) return pv @classmethod def createProperty(self, name, value, handle=None): pv = PropertyValue() pv.Name = name pv.Value = value if handle is not None: pv.Handle = handle return pv def getProperties1(self): return self.getProperties(self)
2.5
2
fedml_core/trainer/model_trainer.py
arj119/FedML
0
12781555
<filename>fedml_core/trainer/model_trainer.py from abc import ABC, abstractmethod import torch import torch.nn as nn class ModelTrainer(ABC): """Abstract base class for federated learning trainer. 1. The goal of this abstract class is to be compatible to any deep learning frameworks such as PyTorch, TensorFlow, Keras, MXNET, etc. 2. This class can be used in both server and client side 3. This class is an operator which does not cache any states inside. """ def __init__(self, model, args=None): self.model = model self.id = 0 self.args = args def set_id(self, trainer_id): self.id = trainer_id @abstractmethod def get_model_params(self): pass @abstractmethod def set_model_params(self, model_parameters): pass @abstractmethod def train(self, train_data, device, args=None): pass @abstractmethod def test(self, test_data, device, args=None): return self.test_model(self.model, test_data, device, args) @abstractmethod def test_on_the_server(self, train_data_local_dict, test_data_local_dict, device, args=None) -> bool: pass def get_client_optimiser(self, model, optimiser_name, lr): if optimiser_name == "sgd": optimiser = torch.optim.SGD(model.parameters(), lr=lr) else: beta1, beta2 = 0.5, 0.999 optimiser = torch.optim.Adam(model.parameters(), lr=lr, eps=1e-08, weight_decay=1e-2, amsgrad=True, betas=(beta1, beta2) ) return optimiser def test_model(self, model, test_data, device, args): model.to(device) model.eval() metrics = { 'test_correct': 0, 'test_loss': 0, 'test_precision': 0, 'test_recall': 0, 'test_total': 0 } ''' stackoverflow_lr is the task of multi-label classification please refer to following links for detailed explainations on cross-entropy and corresponding implementation of tff research: https://towardsdatascience.com/cross-entropy-for-classification-d98e7f974451 https://github.com/google-research/federated/blob/49a43456aa5eaee3e1749855eed89c0087983541/optimization/stackoverflow_lr/federated_stackoverflow_lr.py#L131 ''' if args.dataset == "stackoverflow_lr": criterion = nn.BCELoss(reduction='sum').to(device) else: criterion = nn.CrossEntropyLoss().to(device) y_pred = [] y_true = [] with torch.no_grad(): for batch_idx, (x, target) in enumerate(test_data): x = x.to(device) target = target.to(device) pred = model(x) loss = criterion(pred, target) if args.dataset == "stackoverflow_lr": predicted = (pred > .5).int() correct = predicted.eq(target).sum(axis=-1).eq(target.size(1)).sum() true_positive = ((target * predicted) > .1).int().sum(axis=-1) precision = true_positive / (predicted.sum(axis=-1) + 1e-13) recall = true_positive / (target.sum(axis=-1) + 1e-13) metrics['test_precision'] += precision.sum().item() metrics['test_recall'] += recall.sum().item() else: _, predicted = torch.max(pred, 1) correct = predicted.eq(target).sum() output = predicted.data.cpu().numpy() y_pred.extend(output) # Save Prediction y_true.extend(target.data.cpu().numpy()) # Save Truth metrics['test_correct'] += correct.item() metrics['test_loss'] += loss.item() * target.size(0) if len(target.size()) == 1: # metrics['test_total'] += target.size(0) elif len(target.size()) == 2: # for tasks of next word prediction metrics['test_total'] += target.size(0) * target.size(1) return metrics, y_pred, y_true
3.03125
3
geartracker/admin.py
pigmonkey/django-geartracker
1
12781556
from django.contrib import admin from geartracker.models import * class ItemAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("make", "model", "size")} list_display = ('__unicode__', 'type', 'metric_weight', 'acquired') list_filter = ('archived', 'category', 'type', 'make') search_fields = ('make', 'model') filter_horizontal = ('related',) admin.site.register(Item, ItemAdmin) class CategoryAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("name",)} list_display = ('__unicode__', 'number_items') admin.site.register(Category, CategoryAdmin) class TypeAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("name",)} list_display = ('category', 'name', 'number_items') list_filter = ('category',) admin.site.register(Type, TypeAdmin) class ListItemRelationshipInline(admin.TabularInline): model = ListItem extra = 1 class ListAdmin(admin.ModelAdmin): prepopulated_fields = {"slug": ("name",)} inlines = (ListItemRelationshipInline,) list_display = ('name', 'total_metric_weight', 'start_date', 'end_date', 'public') list_filter = ('public',) admin.site.register(List, ListAdmin)
2.015625
2
viterbi/viterbi.py
cornell-brg/xloops-bmarks
3
12781557
<filename>viterbi/viterbi.py #! /usr/bin/python2.6 # Convolutional Encoder and Hard-Decision Viterbi Decoder # Code and example inspired by the tutorial at # http://home.netcom.com/~chip.f/viterbi/algrthms.html import itertools K = 3 RATE = 1.0/2 POLY = [7, 5] #*************************************************************** # CONVOLUTIONAL ENCODER FUNCTIONS #*************************************************************** def encoder(input): """ Convolution encoder""" # NOTE: EXPECTS input FORMAT SUCH THAT LEFTMOST BIT IS MOST RECENT enc_out = [] # push some extra 0s at into the input for flushing stream = [0]*(K-1) + input + [0]*(K-1) # shift in data right to left for i in reversed(range(len(input)+K-1)): symbol = generate_symbol(stream[i:i+K], POLY, K) # add to symbols enc_out.append(symbol) return enc_out def generate_symbol(registers, polynomials, K): """Convolutionally encode one bit of data, output the encoded symbol""" # NOTE: EXPECTS registers FORMAT SUCH THAT LEFTMOST BIT IS MOST RECENT xor = 0 symbol = '' # for each symbol bit for p in polynomials: xor = 0 # for each memory stage for k in range(K): # check polynomial to see if stage is connected # xor if there is a connection if (p >> k) & 1: xor ^= registers[k] # add digit to symbol symbol += str(xor) return symbol def hamming(x, y): """Return the hamming distance between symbols x and y""" dist = 0 for i in range(K-1): if x[i] != y[i]: dist += 1 return dist def build_output_table(): """Build an output table (find output given state and input bit)""" output = {} states = [''.join(x) for x in itertools.product('01', repeat=K-1)] for s in states: output[s] = [] stream = [int(x) for x in s] for input in [0, 1]: # NOTE: inputs arranged such that newest item is on left symbol = generate_symbol([input]+stream, POLY, K) output[s].append(symbol) return output def build_transition_table(): """Build a transition table (find next state given state and input bit)""" transition = {} states = [''.join(x) for x in itertools.product('01', repeat=K-1)] for s in states: transition[s] = [] for input in [0, 1]: # NOTE: states are arranged such that newest item is left next_state = str(input) + s[:1] transition[s].append(next_state) return transition #*************************************************************** # VITERBI #*************************************************************** def viterbi(code): """Viterbi decoder""" # generate forward paths, errors errors, paths = forward_path(code) # then decode message during traceback message = traceback(code, errors, paths) return message def forward_path(code): """Traverse the forward paths and accumulate errors""" # build the output table outputs = build_output_table() print "OUTPUT TABLE:" print outputs print # initialize data structures states = [''.join(x) for x in itertools.product('01', repeat=K-1)] error = dict([(x, 0) for x in states]) newerror = dict([(x, 0) for x in states]) traces = dict([(x, []) for x in states]) # TODO: initialization of error for states? # current implementation may not be accurate # for each input symbol received from the transmission stream for rx in code: # for all 2**(K-1) possible states for s in states: # generate the previous states connected to this state # (insert old bit on right, newer bit on left) ps0 = s[1:] + '0' # previous state 0 ps1 = s[1:] + '1' # previous state 1 input = int(s[0]) # calculate the distance between the received symbol, i, and the # two potential symbols that could be emitted entering this state # (when previous state was 0x or 1x) E0 = hamming(rx, outputs[ps0][input]) E1 = hamming(rx, outputs[ps1][input]) # save the path with the smallest error if E0 <= E1: newerror[s] = error[ps0] + E0 traces[s].append(ps0) else: newerror[s] = error[ps1] + E1 traces[s].append(ps1) error = newerror.copy() print rx, error print "\nERRORS:", error return traces, error def traceback(code, traces, error): """Traceback through path with smallest error and reconstruct message""" # build transition table (actually need a reverse lookup table for this) # TODO: generate reverse lookup table transition = build_transition_table() print "\nTRANSITION TABLE:" print transition print # initialize variables prev_state = '' best_error = 100 #TODO: init with max_value states = [''.join(x) for x in itertools.product('01', repeat=K-1)] # find the path tail with the lowest error for s in states: if error[s] < best_error: best_error = error[s] prev_state = s # traceback to generate the path path = [prev_state] output = [] for i in reversed(range(len(code))): prev_state = traces[prev_state][i] path.append(prev_state) path.reverse() # reconstruct the message message = [] for i in range(len(path) - 1): s, ns = path[i:i+2] message.append(transition[s].index(ns)) return message[:-(K-1)] #*************************************************************** # MAIN #*************************************************************** # CONVOLUTIONALLY ENCODE BITSTREAM # in: mem: SYM p=7: p=5: enc: # 0 00 0^0^0 0^x^0 00 # 1 00 1^0^0 1^x^0 11 # 0 10 0^1^0 0^x^0 10 # 1 01 1^0^1 1^x^1 00 # 1 10 1^1^0 1^x^0 01 # 1 11 1^1^1 1^x^1 10 # 0 11 0^1^1 0^x^1 01 # 0 01 0^0^1 0^x^1 11 # 1 00 1^0^0 1^x^0 11 # 0 10 0^1^0 0^x^0 10 # 1 01 1^0^1 1^x^1 00 # 0 10 0^1^0 0^x^0 10 # 0 01 0^0^1 0^x^1 11 # 0 00 0^0^0 0^x^0 00 # 1 00 1^0^0 1^x^0 11 # ---------FLUSH------------- # 0 10 0^1^0 0^x^0 10 # 0 01 0^0^1 0^x^1 11 # 00 (final mem state) # oldest data on left data = [0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1] # most recent data on left bitstream = data[::-1] symbols = encoder(bitstream) print "VERIFY ENCODED BITSTREAM:" # assert len(symbols) == len(sym_ref) sym_ref = ['00', '11', '10', '00', '01', '10', '01', '11', '11', '10', '00', '10', '11', '00', '11', '10', '11'] for i in range(len(sym_ref)): print symbols[i], sym_ref[i], symbols[i] == sym_ref[i] print # DECODE SYMBOL STREAM USING VITERBI # Viterbi Decoder Trellis Diagram (assuming 0 errors) # TRELLIS # next_states: 00 01 10 11 # prev_states: 00/01 10/11 00/01 10/11 # outputs: 00/11 10/01 11/00 01/10 # # time: out: branch errors (accumulated path errors): # 0 * # 1 00 *0/2 ( 0) 1/1 ( 1) 2/0 ( 0) 1/1 ( 1) # 2 11 2/0 ( 1) 1/1 ( 1) *0/2 ( 0) 1/1 ( 1) # 3 10 1/1 ( ) *0/2 ( 0) 1/1 ( ) 2/0 ( ) # 4 00 0/2 ( ) 1/1 ( ) *2/0 ( 0) 1/1 ( ) # 5 01 1/1 ( ) 0/2 ( ) 1/1 ( ) *2/0 ( 0) # 6 10 1/1 ( ) 2/0 ( ) 1/1 ( ) *0/2 ( 0) # 7 01 1/1 ( ) *0/2 ( 0) 1/1 ( ) 2/0 ( ) # 8 11 *2/0 ( 0) 1/1 ( ) 0/2 ( ) 1/1 ( ) # 9 11 2/0 ( ) 1/1 ( ) *0/2 ( 0) 1/1 ( ) # 10 10 1/1 ( ) *2/0 ( 0) 1/1 ( ) 0/2 ( ) # 11 00 0/2 ( ) 1/1 ( ) *2/0 ( ) 1/1 ( ) # 12 10 1/1 ( ) *2/0 ( 0) 1/1 ( ) 0/2 ( ) # 13 11 *2/0 ( 0) 1/1 ( ) 0/2 ( ) 1/1 ( ) # 14 00 *0/2 ( 0) 1/1 ( ) 2/0 ( ) 1/1 ( ) # 15 11 2/0 ( ) 1/1 ( ) *0/2 ( 0) 1/1 ( ) # 16 10 1/1 ( ) *2/0 ( 0) 1/1 ( ) 0/2 ( ) # 17 11 *2/0 ( 0) 1/1 ( ) 0/2 ( ) 1/1 ( ) # There are two errors in this data, at t=3 and xmit = ['00', '11', '11', '00', '01', '10', '01', '11', '11', '10', '00', '00', '11', '00', '11', '10', '11'] message = viterbi(xmit) print "VERIFY DECODED MESSAGE:" # assert len(message) == len(data) for i in range(len(data)): print message[i], data[i], message[i] == data[i]
3.109375
3
delphi_epidata/request.py
lee14257/delphi-epidata-py
0
12781558
from datetime import date from typing import Final, Generator, Sequence, cast, Iterable, Mapping, Optional, Union, List from json import loads from requests import Response, Session from tenacity import retry, stop_after_attempt from pandas import DataFrame from ._model import ( EpiRangeLike, AEpiDataCall, EpiDataFormatType, EpiDataResponse, EpiRange, EpidataFieldInfo, OnlySupportsClassicFormatException, add_endpoint_to_url, ) from ._endpoints import AEpiDataEndpoints from ._constants import HTTP_HEADERS, BASE_URL from ._covidcast import CovidcastDataSources, define_covidcast_fields @retry(reraise=True, stop=stop_after_attempt(2)) def _request_with_retry( url: str, params: Mapping[str, str], session: Optional[Session] = None, stream: bool = False ) -> Response: """Make request with a retry if an exception is thrown.""" def call_impl(s: Session) -> Response: res = s.get(url, params=params, headers=HTTP_HEADERS, stream=stream) if res.status_code == 414: return s.post(url, params=params, headers=HTTP_HEADERS, stream=stream) return res if session: return call_impl(session) with Session() as s: return call_impl(s) class EpiDataCall(AEpiDataCall): """ epidata call representation """ _session: Final[Optional[Session]] def __init__( self, base_url: str, session: Optional[Session], endpoint: str, params: Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]], meta: Optional[Sequence[EpidataFieldInfo]] = None, only_supports_classic: bool = False, ) -> None: super().__init__(base_url, endpoint, params, meta, only_supports_classic) self._session = session def with_base_url(self, base_url: str) -> "EpiDataCall": return EpiDataCall(base_url, self._session, self._endpoint, self._params) def with_session(self, session: Session) -> "EpiDataCall": return EpiDataCall(self._base_url, session, self._endpoint, self._params) def _call( self, format_type: Optional[EpiDataFormatType] = None, fields: Optional[Iterable[str]] = None, stream: bool = False, ) -> Response: url, params = self.request_arguments(format_type, fields) return _request_with_retry(url, params, self._session, stream) def classic( self, fields: Optional[Iterable[str]] = None, disable_date_parsing: Optional[bool] = False ) -> EpiDataResponse: """Request and parse epidata in CLASSIC message format.""" self._verify_parameters() try: response = self._call(None, fields) r = cast(EpiDataResponse, response.json()) epidata = r.get("epidata") if epidata and isinstance(epidata, list) and len(epidata) > 0 and isinstance(epidata[0], dict): r["epidata"] = [self._parse_row(row, disable_date_parsing=disable_date_parsing) for row in epidata] return r except Exception as e: # pylint: disable=broad-except return {"result": 0, "message": f"error: {e}", "epidata": []} def __call__( self, fields: Optional[Iterable[str]] = None, disable_date_parsing: Optional[bool] = False ) -> EpiDataResponse: """Request and parse epidata in CLASSIC message format.""" return self.classic(fields, disable_date_parsing=disable_date_parsing) def json( self, fields: Optional[Iterable[str]] = None, disable_date_parsing: Optional[bool] = False ) -> List[Mapping[str, Union[str, int, float, date, None]]]: """Request and parse epidata in JSON format""" if self.only_supports_classic: raise OnlySupportsClassicFormatException() self._verify_parameters() response = self._call(EpiDataFormatType.json, fields) response.raise_for_status() return [ self._parse_row(row, disable_date_parsing=disable_date_parsing) for row in cast(List[Mapping[str, Union[str, int, float, None]]], response.json()) ] def df(self, fields: Optional[Iterable[str]] = None, disable_date_parsing: Optional[bool] = False) -> DataFrame: """Request and parse epidata as a pandas data frame""" if self.only_supports_classic: raise OnlySupportsClassicFormatException() self._verify_parameters() r = self.json(fields, disable_date_parsing=disable_date_parsing) return self._as_df(r, fields, disable_date_parsing=disable_date_parsing) def csv(self, fields: Optional[Iterable[str]] = None) -> str: """Request and parse epidata in CSV format""" if self.only_supports_classic: raise OnlySupportsClassicFormatException() self._verify_parameters() response = self._call(EpiDataFormatType.csv, fields) response.raise_for_status() return response.text def iter( self, fields: Optional[Iterable[str]] = None, disable_date_parsing: Optional[bool] = False ) -> Generator[Mapping[str, Union[str, int, float, date, None]], None, Response]: """Request and streams epidata rows""" if self.only_supports_classic: raise OnlySupportsClassicFormatException() self._verify_parameters() response = self._call(EpiDataFormatType.jsonl, fields, stream=True) response.raise_for_status() for line in response.iter_lines(): yield self._parse_row(loads(line), disable_date_parsing=disable_date_parsing) return response def __iter__(self) -> Generator[Mapping[str, Union[str, int, float, date, None]], None, Response]: return self.iter() class EpiDataContext(AEpiDataEndpoints[EpiDataCall]): """ sync epidata call class """ _base_url: Final[str] _session: Final[Optional[Session]] def __init__(self, base_url: str = BASE_URL, session: Optional[Session] = None) -> None: super().__init__() self._base_url = base_url self._session = session def with_base_url(self, base_url: str) -> "EpiDataContext": return EpiDataContext(base_url, self._session) def with_session(self, session: Session) -> "EpiDataContext": return EpiDataContext(self._base_url, session) def _create_call( self, endpoint: str, params: Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]], meta: Optional[Sequence[EpidataFieldInfo]] = None, only_supports_classic: bool = False, ) -> EpiDataCall: return EpiDataCall(self._base_url, self._session, endpoint, params, meta, only_supports_classic) Epidata = EpiDataContext() def CovidcastEpidata(base_url: str = BASE_URL, session: Optional[Session] = None) -> CovidcastDataSources[EpiDataCall]: url = add_endpoint_to_url(base_url, "covidcast/meta") meta_data_res = _request_with_retry(url, {}, session, False) meta_data_res.raise_for_status() meta_data = meta_data_res.json() def create_call(params: Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]) -> EpiDataCall: return EpiDataCall(base_url, session, "covidcast", params, define_covidcast_fields()) return CovidcastDataSources.create(meta_data, create_call) __all__ = ["Epidata", "EpiDataCall", "EpiDataContext", "EpiRange", "CovidcastEpidata"]
2.65625
3
python-package/lets_plot/plot/sampling.py
OLarionova-HORIS/lets-plot
0
12781559
<reponame>OLarionova-HORIS/lets-plot # # Copyright (c) 2019. JetBrains s.r.o. # Use of this source code is governed by the MIT license that can be found in the LICENSE file. # from .core import FeatureSpec __all__ = ['sampling_random', 'sampling_random_stratified', 'sampling_pick', 'sampling_systematic', 'sampling_group_random', 'sampling_group_systematic', 'sampling_vertex_vw', 'sampling_vertex_dp'] def sampling_random(n, seed=None): return _sampling('random', n=n, seed=seed) def sampling_random_stratified(n, seed=None, min_subsample=None): return _sampling('random_stratified', n=n, seed=seed, min_subsample=min_subsample) def sampling_pick(n): return _sampling('pick', n=n) def sampling_systematic(n): return _sampling('systematic', n=n) def sampling_group_systematic(n): return _sampling('group_systematic', n=n) def sampling_group_random(n, seed=None): return _sampling('group_random', n=n, seed=seed) def sampling_vertex_vw(n): return _sampling('vertex_vw', n=n) def sampling_vertex_dp(n): return _sampling('vertex_dp', n=n) def _sampling(name, **kwargs): return FeatureSpec('sampling', name, **kwargs)
2.015625
2
models/user.py
wimp-project/backend
0
12781560
from dataclasses import dataclass from typing import List from sqlalchemy.orm import relationship from app import db from models import Feedback @dataclass class User(db.Model): __tablename__ = 'user' user_id: int = db.Column(db.Integer, primary_key=True) name: str = db.Column(db.String(), nullable=False) surname: str = db.Column(db.String(), nullable=False) email: str = db.Column(db.String(), nullable=False, unique=True) password: str = db.Column(db.String()) salt: str = db.Column(db.String()) position_lat: float = db.Column(db.Float) position_lon: float = db.Column(db.Float) visited_commercial_activities = relationship( "CommercialActivity", secondary="visit", ) feedbacks = relationship("Feedback") def __init__( self, name, surname, email, user_id=None, password=<PASSWORD>, salt=None, position_lat=None, position_lon=None ): self.name = name self.surname = surname self.email = email self.user_id = user_id self.password = password self.salt = salt self.position_lat = position_lat self.position_lon = position_lon def __repr__(self): return '<User id {}>'.format(self.id)
2.90625
3
boa3/neo3/contracts/nef.py
hal0x2328/neo3-boa
25
12781561
<reponame>hal0x2328/neo3-boa<filename>boa3/neo3/contracts/nef.py from __future__ import annotations import hashlib from typing import Tuple from boa3.neo3.core import Size as s, serialization, types, utils class Version(serialization.ISerializable): """ Represents the version number of an assembly """ def __init__(self, major: int = 0, minor: int = 0, build: int = 0, revision: int = 0): """ Args: major: non interchangeable assembly. minor: significant enhancements with backwards compatibility. build: recompilation of the same source with possible other compiler or on other platform. revision: fully interchangeable. Can be used for example for security fixes. """ if major < 0 or minor < 0 or build < 0 or revision < 0: raise ValueError("Negative version numbers are not allowed") if major > 255 or minor > 255 or build > 255 or revision > 255: raise ValueError("Version numbers cannot exceed 255") self.major = major self.minor = minor self.build = build self.revision = revision def __eq__(self, other): if not isinstance(other, type(self)): return False return (self.major == other.major and self.minor == other.minor and self.build == other.build and self.revision == other.revision) def __len__(self): return s.uint64 + s.uint64 + s.uint64 + s.uint64 def serialize(self, writer: serialization.BinaryWriter) -> None: version_str = "{0}.{1}.{2}.{3}".format(self.major, self.minor, self.build, self.revision) from boa3.neo.vm.type.String import String version_bytes = String(version_str).to_bytes() + bytes(s.uint64 * 4 - len(version_str)) writer.write_bytes(version_bytes) def deserialize(self, reader: serialization.BinaryReader) -> None: version_str = reader.read_bytes(s.uint64 * 4).decode('utf-8') import re version_str = re.sub(r'\x00+', '', version_str) major, minor, build, revision = version_str.split('.') self.major = int(major) self.minor = int(minor) self.build = int(build) self.revision = int(revision) @classmethod def _parse_component(self, c: str) -> Tuple[bool, int]: try: r = int(c) except ValueError: return False, -1 if r < 0: return False, -1 if r > 255: return False, -1 return True, r @classmethod def from_string(cls, input: str) -> Version: """ Parse an instance out of a string. Args: input: string representing a version number following the format `Major.Minor[.build[.revision]]`. Each version part must fit in the range >= 0 <= 255. Raises: ValueError: if the input cannot be successfully parsed. """ parts = input.split('.') if len(parts) < 2 or len(parts) > 4: raise ValueError(f"Cannot parse version from: {input}") success, major = Version._parse_component(parts[0]) if not success: raise ValueError(f"Cannot parse major field from: {parts[0]}") success, minor = Version._parse_component(parts[1]) if not success: raise ValueError(f"Cannot parse minor field from: {parts[1]}") if len(parts) > 2: success, build = Version._parse_component(parts[2]) if not success: raise ValueError(f"Cannot parse build field from: {parts[2]}") else: build = 0 if len(parts) > 3: success, revision = Version._parse_component(parts[3]) if not success: raise ValueError(f"Cannot parse revision field from: {parts[3]}") else: revision = 0 return cls(major, minor, build, revision) class NEF(serialization.ISerializable): def __init__(self, compiler_name: str = None, version: Version = None, script: bytes = None): self.magic = 0x3346454E if compiler_name is None: self.compiler = 'unknown' else: self.compiler = compiler_name[:32] self.version = version if version else Version() self.script = script if script else b'' self.checksum = self.compute_checksum() def __len__(self): return ( s.uint32 # magic + 32 # compiler + (s.uint64 * 4) # version + 2 # reserve + utils.get_var_size(bytes()) # TODO: method tokens + 2 # reserve + utils.get_var_size(self.script) + s.uint32) # checksum def __eq__(self, other): if not isinstance(other, type(self)): return False return (self.magic == other.magic and self.compiler == other.compiler and self.version == other.version and self.script == other.script and self.checksum == other.checksum) @property def compiler_with_version(self) -> bytes: result = '{0}-'.format(self.compiler).encode('utf-8') + self.version.to_array() return result[:64] + bytes(64 - len(result)) def serialize(self, writer: serialization.BinaryWriter) -> None: writer.write_uint32(self.magic) writer.write_bytes(self.compiler_with_version) writer.write_uint16(0) # 2 reserved bytes writer.write_var_bytes(bytes()) # TODO: method tokens writer.write_uint16(0) # 2 reserved bytes writer.write_var_bytes(self.script) writer.write_bytes(self.checksum) def deserialize(self, reader: serialization.BinaryReader) -> None: self.magic = reader.read_uint32() compiler_with_version = reader.read_bytes(64).decode('utf-8') self.compiler, version = compiler_with_version.rsplit('-', maxsplit=1) self.version = Version.deserialize_from_bytes(version[:32].encode('utf-8')) assert reader.read_uint16() == 0 # 2 reserved bytes reader.read_var_int(128) # TODO: method tokens assert reader.read_uint16() == 0 # 2 reserved bytes self.script = reader.read_var_bytes() self.checksum = reader.read_bytes(4) if self.checksum != self.compute_checksum(): raise ValueError("Deserialization error - invalid checksum") def script_to_array(self): from boa3.neo3.core.serialization import BinaryWriter with BinaryWriter() as bw: bw.write_var_bytes(self.script) return bw._stream.getvalue() def tokens_to_array(self): from boa3.neo3.core.serialization import BinaryWriter with BinaryWriter() as bw: bw.write_var_bytes(bytes()) return bw._stream.getvalue() def compute_checksum(self) -> bytes: data = (self.magic.to_bytes(4, 'little') + self.compiler_with_version + bytes(2) # reserved bytes + self.tokens_to_array() # TODO: method tokens + bytes(2) # reserved bytes + self.script_to_array()) return hashlib.sha256(hashlib.sha256(data).digest()).digest()[:s.uint32] def compute_script_hash(self) -> types.UInt160: hash = hashlib.new('ripemd160', hashlib.sha256(self.script).digest()).digest() return types.UInt160(data=hash)
2.390625
2
scplint/scp.py
richardzimmermann/scplint
2
12781562
import json import os from logging import getLogger from pathlib import Path from scplint.statement import Statement logger = getLogger() class SCP: def __init__(self, scp: dict, filename: str = 'my_scp', size_max: int = 5120, minimize: bool = False): logger.debug('initialize scp') self.scp = scp self.file = filename self.minimized = minimize self.statements = self._get_statements() logger.debug('get scp metrics') self.size = self._get_size(min=minimize) self.size_max = size_max self.percent = self._get_percent(self.size) self.actions = self._get_actions() self.notactions = self._get_notactions() def _get_statements(self) -> list: ''' ''' logger.debug('Get every Statement from the SCP') statements = [] for statement in self.scp.get('Statement', []): statements.append(Statement(statement)) return statements def _get_actions(self) -> list: ''' ''' logger.debug('Get every Action from the SCP') actions = [] for statement in self.statements: logger.info(statement.actions) actions += statement.actions logger.info(actions) logger.info(len(actions)) return actions def _get_notactions(self) -> list: ''' ''' logger.debug('Get every NotAction from the SCP') notactions = [] for statement in self.statements: notactions += statement.notactions return notactions def _get_size(self, min: bool = False) -> int: ''' checks the actual size of the json policy in bytes as aws does it if you create/update a scp Args: min (bool): True if policy should be minimized before calculating the size. Returns: scp_bytes (int): the size of the scp in bytes as int ''' logger.debug('Get the size in bytes of the SCP (minimized=%s)', min) if min: scp_bytes = len(self.minimize().encode('utf-8')) else: scp_bytes = len(json.dumps(self.scp, indent=4).encode('utf-8')) return scp_bytes def _get_percent(self, size: int, precision: int = 1) -> float: ''' check the actual size of the minimized json policy as percentage against the maximum policy size of aws Args: size (int): the size of the policy in bytes precision (int): the precision of the percentage value Returns: percent (float): the size of the scp as percentage value ''' logger.debug('Get the size in percent of the SCP') percent = round(100 / 5120 * size, precision) return percent def minimize(self) -> str: ''' convert the json scp into a minifed str (remove blanks, tabs and linebreaks) Returns: scp_minified (str): a minified version of the json policy ''' logger.debug('Format the json policy into a minized text') scp_minified = json.dumps(self.scp).replace(" ", "") return scp_minified
2.6875
3
comdirect_api/comdirect_client.py
maxpautsch/comdirect-api-simple
1
12781563
import requests import pickle from comdirect_api.auth.auth_service import AuthService from comdirect_api.service.account_service import AccountService from comdirect_api.service.depot_service import DepotService from comdirect_api.service.document_service import DocumentService from comdirect_api.service.report_service import ReportService from comdirect_api.service.order_service import OrderService from comdirect_api.service.instrument_service import InstrumentService class ComdirectClient: def __init__(self, client_id, client_secret, import_session=False): self.api_url = 'https://api.comdirect.de/api' self.oauth_url = 'https://api.comdirect.de' if not import_session: self.session = requests.Session() self.session.headers.update({ 'Accept': 'application/json', 'Content-Type': 'application/json', }) self.auth_service = AuthService(client_id, client_secret, self.session, self.api_url, self.oauth_url) else: if import_session == True: import_session = 'session.pkl' with open(import_session, 'rb') as input: self.session = pickle.load(input) self.auth_service = pickle.load(input) self.account_service = AccountService(self.session, self.api_url) self.depot_service = DepotService(self.session, self.api_url) self.document_service = DocumentService(self.session, self.api_url) self.report_service = ReportService(self.session, self.api_url) self.order_service = OrderService(self.session, self.api_url) self.instrument_service = InstrumentService(self.session, self.api_url) def session_export(self, filename = 'session.pkl'): with open(filename, 'wb') as output: pickle.dump(self.session, output, pickle.HIGHEST_PROTOCOL) pickle.dump(self.auth_service, output, pickle.HIGHEST_PROTOCOL) def fetch_tan(self, zugangsnummer, pin, tan_type=None): return self.auth_service.fetch_tan(zugangsnummer, pin, tan_type) def activate_session(self, tan=None): self.auth_service.activate_session(tan) def refresh_token(self): self.auth_service.refresh_token() def revoke_token(self): self.auth_service.revoke() def get_all_balances(self, without_account=False): """ 4.1.1. Fetch balances from all accounts. :param without_account: Don't include account object in response :return: Response object """ return self.account_service.get_all_balances(without_account) def get_balance(self, account_uuid): """ 4.1.2. Fetch balance for a specific account. :param account_uuid: Account-ID :return: Response object """ return self.account_service.get_balance(account_uuid) def get_account_transactions(self, account_uuid, with_account=False, transaction_state='BOTH', paging_count=20, paging_first=0, min_booking_date=None, max_booking_date=None): """ 4.1.3. Fetch transactions for a specific account. Not setting a min_booking_date currently limits the result to the last 180 days. :param account_uuid: Account-ID :param with_account: Include account information in the response. Defaults to False :param transaction_state: 'BOOKED' or 'NOTBOOKED'. Defaults to 'BOTH' :param paging_count: Number of transactions :param paging_first: Index of first returned transaction. Only possible for booked transactions (transaction_state='BOOKED'). :param max_booking_date: max booking date in format YYYY-MM-DD :param min_booking_date: min booking date in format YYYY-MM-DD :return: Response object """ return self.account_service.get_account_transactions(account_uuid, with_account, transaction_state, paging_count, paging_first, min_booking_date, max_booking_date) def get_all_depots(self): """ 5.1.2. Fetch information for all depots. :return: Response object """ return self.depot_service.get_all_depots() def get_depot_positions(self, depot_id, with_depot=True, with_positions=True, with_instrument=False): """ 5.1.2. Fetch information for a specific depot. :param depot_id: Depot-ID :param with_depot: Include depot information in response. Defaults to True. :param with_positions: Include positions in response. Defaults to True. :param with_instrument: Include instrument information for positions, ignored if with_positions is False. Defaults to False. :return: Response object """ return self.depot_service.get_depot_positions(depot_id, with_depot, with_positions, with_instrument) def get_position(self, depot_id, position_id, with_instrument=False): """ 5.1.3. Fetch a specific position. :param depot_id: Depot-ID :param position_id: Position-ID :param with_instrument: Include instrument information. Defaults to False. :return: Response object """ return self.depot_service.get_position(depot_id, position_id, with_instrument) def get_depot_transactions(self, depot_id, with_instrument=False, **kwargs): """ 5.1.4. Fetch depot transactions, filter parameters can be applied via kwargs :param depot_id: Depot-ID :param with_instrument: Include instrument information. Defaults to False. :key wkn: filter by WKN :key isin: filter by ISIN :key instrument_id: filter by instrumentId :key max_booking_date: filter by booking date, Format "JJJJ-MM-TT" :key transaction_direction: filter by transactionDirection: {"IN", "OUT"} :key transaction_type: filter by transactionType: {"BUY", "SELL", "TRANSFER_IN", "TRANSFER_OUT"} :key booking_status: filter by bookingStatus: {"BOOKED", "NOTBOOKED", "BOTH"} :key min_transaction_value: filter by min-transactionValue :key max_transaction_value: filter by max-transactionValue :return: Response object """ return self.depot_service.get_depot_transactions(depot_id, with_instrument, **kwargs) def get_instrument(self, instrument_id, order_dimensions=False, fund_distribution=False, derivative_data=False, static_data = True): """ 6.1.1 Abruf Instrument order_dimensions: es wird das OrderDimension-Objekt befüllt fund_distribution: es wird das FundDistribution-Objekt befüllt, wenn es sich bei dem Wertpapier um einen Fonds handelt derivative_data: es wird das DerivativeData-Objekt befüllt, wenn es sich bei dem Wertpapier um ein Derivat handelt static_data: gibt das StaticData -Objekt nicht zurück :return: Response object """ return self.instrument_service.get_instrument(instrument_id, order_dimensions=False, fund_distribution=False, derivative_data=False, static_data = True) def get_order_dimensions(self, **kwargs): """ 7.1.1 Abruf Order Dimensionen :key instrument_id: fiters instrumentId :key wkn: fiters WKN :key isin: fiters ISIN :key mneomic: fiters mneomic :key venue_id: fiters venueId: Mit Hilfe der venueId, welche als UUID eingegeben werden muss, kann auf einen Handelsplatz gefiltert werden :key side: Entspricht der Geschäftsart. Filtermöglichkeiten sind BUY oder SELL :key order_type: fiters orderType: Enspricht dem Ordertypen (bspw. LIMIT, MARKET oder ONE_CANCELS_OTHER) :key type: filters type: Mittels EXCHANGE oder OFF kann unterschieden werden, ob nach einem Börsenplatz (EXCHANGE) oder einem LiveTrading Handelsplatz (OFF) gefiltert werden soll :return: Response object """ return self.order_service.get_dimensions(**kwargs) def get_all_orders(self, depot_id, with_instrument=False, with_executions=True, **kwargs): """ 7.1.2 Abruf Orders (Orderbuch) :param depot_id: Depot-ID :param with_instrument: Include instrument information. Defaults to False. :param with_executions: Include execution information. Defaults to True. :key order_status: filter by orderStatus: {"OPEN ", "EXECUTED", "SETTLED"...} :key venue_id: filter by venueId :key side: filter by side: {"BUY", "SELL"} :key order_type: filter by orderType :return: Response object """ return self.order_service.get_all_orders(depot_id, with_instrument, with_executions, **kwargs) def get_order(self, order_id): """ 7.1.3 Abruf Order (Einzelorder) :param depot_id: Depot-ID :return: Response object """ return self.order_service.get_order(order_id) def set_order_change_validation(self, order_id, changed_order): """ 7.1.5 Anlage Validation Orderanlage :param order_id: Order-ID :param changed_order: Altered order from get_order :return: [challenge_id, challenge] (if challenge not neccessary: None) """ return self.order_service.set_change_validation(order_id, changed_order) def set_order_change(self, order_id, changed_order, challenge_id, tan=None): """ 7.1.11Änderung der Orde :param order_id: Order-ID :param changed_order: same altered order as for set_change_validation :param challenge_id: first return value from set_change_validation :param tan: tan if neccessary :return: Response object """ return self.order_service.set_change(order_id, changed_order, challenge_id, tan) def get_documents(self, first_index=0, count=1000): """ 9.1.1. Fetch all documents in the PostBox :param first_index: Index of the first document, starting with 0. Defaults to 0 :param count: Number of documents to be fetched. Max 1000. Defaults to 1000. :return: Response object """ return self.document_service.get_documents(first_index, count) def get_document(self, document_id): """ 9.1.2. Fetch a specific document. The document will be marked as read when fetched. :param document_id: Document-ID :return: Document and the content type of the document """ return self.document_service.get_document(document_id) def get_report(self, product_type=None): """ 10.1.1. Fetch a report for all products :param product_type: Filter by one or more of ACCOUNT, CARD, DEPOT, LOAN, SAVINGS (list or comma-separated string) Defaults to None (all product types without filter) :return: Response object """ return self.report_service.get_report(product_type) def get(self, endpoint, base_url='https://api.comdirect.de/api', **kwargs): """ Sends a generic GET-request to a given endpoint with given parameters :param endpoint: endpoint without leading slash, e.g. 'banking/clients/clientId/v2/accounts/balances' :param base_url: base url. Defaults to 'https://api.comdirect.de/api' :param kwargs: query parameters :return: Response object """ url = '{0}/{1}'.format(base_url, endpoint) return self.session.get(url, params=kwargs).json()
2.171875
2
indicnlp/transliterate/unicode_transliterate.py
shubham303/indic_nlp_library
432
12781564
<reponame>shubham303/indic_nlp_library # # Copyright (c) 2013-present, <NAME> # All rights reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # #Program for text written in one Indic script to another based on Unicode mappings. # # @author <NAME> # import sys, string, itertools, re, os from collections import defaultdict from indicnlp import common from indicnlp import langinfo from indicnlp.script import indic_scripts as isc from indicnlp.transliterate.sinhala_transliterator import SinhalaDevanagariTransliterator as sdt import pandas as pd OFFSET_TO_ITRANS={} ITRANS_TO_OFFSET=defaultdict(list) DUPLICATE_ITRANS_REPRESENTATIONS={} def init(): """ To be called by library loader, do not call it in your program """ ### Load the ITRANS-script offset map. The map was initially generated using the snippet below (uses the old itrans transliterator) ### The map is modified as needed to accomodate extensions and corrections to the mappings # # base=0x900 # l=[] # for i in range(0,0x80): # c=chr(base+i) # itrans=ItransTransliterator.to_itrans(c,'hi') # l.append((hex(i),c,itrans)) # print(l) # # pd.DataFrame(l,columns=['offset_hex','devnag_char','itrans']).to_csv('offset_itrans_map.csv',index=False,encoding='utf-8') itrans_map_fname=os.path.join(common.get_resources_path(),'transliterate','offset_itrans_map.csv') #itrans_map_fname=r'D:\src\python_sandbox\src\offset_itrans_map.csv' itrans_df=pd.read_csv(itrans_map_fname,encoding='utf-8') global OFFSET_TO_ITRANS, ITRANS_TO_OFFSET, DUPLICATE_ITRANS_REPRESENTATIONS for r in itrans_df.iterrows(): itrans=r[1]['itrans'] o=int(r[1]['offset_hex'],base=16) OFFSET_TO_ITRANS[o]=itrans if langinfo.is_consonant_offset(o): ### for consonants, strip the schwa - add halant offset ITRANS_TO_OFFSET[itrans[:-1]].extend([o,0x4d]) else: ### the append assumes that the maatra always comes after independent vowel in the df ITRANS_TO_OFFSET[itrans].append(o) DUPLICATE_ITRANS_REPRESENTATIONS = { 'A': 'aa', 'I': 'ii', 'U': 'uu', 'RRi': 'R^i', 'RRI': 'R^I', 'LLi': 'L^i', 'LLI': 'L^I', 'L': 'ld', 'w': 'v', 'x': 'kSh', 'gj': 'j~n', 'dny': 'j~n', '.n': '.m', 'M': '.m', 'OM': 'AUM' } class UnicodeIndicTransliterator(object): """ Base class for rule-based transliteration among Indian languages. Script pair specific transliterators should derive from this class and override the transliterate() method. They can call the super class 'transliterate()' method to avail of the common transliteration """ @staticmethod def _correct_tamil_mapping(offset): # handle missing unaspirated and voiced plosives in Tamil script # replace by unvoiced, unaspirated plosives # for first 4 consonant rows of varnamala # exception: ja has a mapping in Tamil if offset>=0x15 and offset<=0x28 and \ offset!=0x1c and \ not ( (offset-0x15)%5==0 or (offset-0x15)%5==4 ) : subst_char=(offset-0x15)//5 offset=0x15+5*subst_char # for 5th consonant row of varnamala if offset in [ 0x2b, 0x2c, 0x2d]: offset=0x2a # 'sh' becomes 'Sh' if offset==0x36: offset=0x37 return offset @staticmethod def transliterate(text,lang1_code,lang2_code): """ convert the source language script (lang1) to target language script (lang2) text: text to transliterate lang1_code: language 1 code lang1_code: language 2 code """ if lang1_code in langinfo.SCRIPT_RANGES and lang2_code in langinfo.SCRIPT_RANGES: # if Sinhala is source, do a mapping to Devanagari first if lang1_code=='si': text=sdt.sinhala_to_devanagari(text) lang1_code='hi' # if Sinhala is target, make Devanagiri the intermediate target org_lang2_code='' if lang2_code=='si': lang2_code='hi' org_lang2_code='si' trans_lit_text=[] for c in text: newc=c offset=ord(c)-langinfo.SCRIPT_RANGES[lang1_code][0] if offset >=langinfo.COORDINATED_RANGE_START_INCLUSIVE and offset <= langinfo.COORDINATED_RANGE_END_INCLUSIVE and c!='\u0964' and c!='\u0965': if lang2_code=='ta': # tamil exceptions offset=UnicodeIndicTransliterator._correct_tamil_mapping(offset) newc=chr(langinfo.SCRIPT_RANGES[lang2_code][0]+offset) trans_lit_text.append(newc) # if Sinhala is source, do a mapping to Devanagari first if org_lang2_code=='si': return sdt.devanagari_to_sinhala(''.join(trans_lit_text)) return ''.join(trans_lit_text) else: return text class ItransTransliterator(object): """ Transliterator between Indian scripts and ITRANS """ @staticmethod def to_itrans(text,lang_code): if lang_code in langinfo.SCRIPT_RANGES: if lang_code=='ml': # Change from chillus characters to corresponding consonant+halant text=text.replace('\u0d7a','\u0d23\u0d4d') text=text.replace('\u0d7b','\u0d28\u0d4d') text=text.replace('\u0d7c','\u0d30\u0d4d') text=text.replace('\u0d7d','\u0d32\u0d4d') text=text.replace('\u0d7e','\u0d33\u0d4d') text=text.replace('\u0d7f','\u0d15\u0d4d') offsets = [ isc.get_offset(c,lang_code) for c in text ] ### naive lookup # itrans_l = [ OFFSET_TO_ITRANS.get(o, '-' ) for o in offsets ] itrans_l=[] for o in offsets: itrans=OFFSET_TO_ITRANS.get(o, chr(langinfo.SCRIPT_RANGES[lang_code][0]+o) ) if langinfo.is_halanta_offset(o): itrans='' if len(itrans_l)>0: itrans_l.pop() elif langinfo.is_vowel_sign_offset(o) and len(itrans_l)>0: itrans_l.pop() itrans_l.extend(itrans) return ''.join(itrans_l) else: return text @staticmethod def from_itrans(text,lang): """ TODO: Document this method properly TODO: A little hack is used to handle schwa: needs to be documented TODO: check for robustness """ MAXCODE=4 ### TODO: Needs to be fixed ## handle_duplicate_itrans_representations for k, v in DUPLICATE_ITRANS_REPRESENTATIONS.items(): if k in text: text=text.replace(k,v) start=0 match=None solution=[] i=start+1 while i<=len(text): itrans=text[start:i] # print('===') # print('i: {}'.format(i)) # if i<len(text): # print('c: {}'.format(text[i-1])) # print('start: {}'.format(start)) # print('itrans: {}'.format(itrans)) if itrans in ITRANS_TO_OFFSET: offs=ITRANS_TO_OFFSET[itrans] ## single element list - no problem ## except when it is 'a' ## 2 element list of 2 kinds: ### 1. alternate char for independent/dependent vowel ### 2. consonant + halant if len(offs)==2 and \ langinfo.is_vowel_offset(offs[0]): ### 1. alternate char for independent/dependent vowel ## if previous is a consonant, then use the dependent vowel if len(solution)>0 and langinfo.is_halanta(solution[-1],lang): offs=[offs[1]] ## dependent vowel else: offs=[offs[0]] ## independent vowel c=''.join([ langinfo.offset_to_char(x,lang) for x in offs ]) match=(i,c) elif len(itrans)==1: ## unknown character match=(i,itrans) elif i<len(text) and (i-start)<MAXCODE+1: ## continue matching till MAXCODE length substring i=i+1 continue else: solution.extend(match[1]) # start=i-1 start=match[0] i=start match=None # print('match done') # print('match: {}'.format(match)) i=i+1 ### flush matches if match is not None: solution.extend(match[1]) #### post-processing ## delete unecessary halants # print(''.join(solution)) temp_out=list(''.join(solution)) rem_indices=[] for i in range(len(temp_out)-1): if langinfo.is_halanta(temp_out[i],lang) and \ (langinfo.is_vowel_sign(temp_out[i+1],lang) \ or langinfo.is_nukta(temp_out[i+1],lang) \ or temp_out[i+1]==langinfo.offset_to_char(0x7f,lang)): rem_indices.append(i) # if temp_out[i]==langinfo.offset_to_char(0x7f,lang): # rem_indices.append(i) for i in reversed(rem_indices): temp_out.pop(i) out=''.join(temp_out) ## delete schwa placeholder out=out.replace(langinfo.offset_to_char(0x7f,lang),'') return out if __name__ == '__main__': if len(sys.argv)<4: print("Usage: python unicode_transliterate.py <command> <infile> <outfile> <src_language> <tgt_language>") sys.exit(1) if sys.argv[1]=='transliterate': src_language=sys.argv[4] tgt_language=sys.argv[5] with open(sys.argv[2],'r', encoding='utf-8') as ifile: with open(sys.argv[3],'w', encoding='utf-8') as ofile: for line in ifile.readlines(): transliterated_line=UnicodeIndicTransliterator.transliterate(line,src_language,tgt_language) ofile.write(transliterated_line) elif sys.argv[1]=='romanize': language=sys.argv[4] ### temp fix to replace anusvara with corresponding nasal #r1_nasal=re.compile(ur'\u0902([\u0915-\u0918])') #r2_nasal=re.compile(ur'\u0902([\u091a-\u091d])') #r3_nasal=re.compile(ur'\u0902([\u091f-\u0922])') #r4_nasal=re.compile(ur'\u0902([\u0924-\u0927])') #r5_nasal=re.compile(ur'\u0902([\u092a-\u092d])') with open(sys.argv[2],'r', encoding='utf-8') as ifile: with open(sys.argv[3],'w', encoding='utf-8') as ofile: for line in ifile.readlines(): ### temp fix to replace anusvara with corresponding nasal #line=r1_nasal.sub(u'\u0919\u094D\\1',line) #line=r2_nasal.sub(u'\u091e\u094D\\1',line) #line=r3_nasal.sub(u'\u0923\u094D\\1',line) #line=r4_nasal.sub(u'\u0928\u094D\\1',line) #line=r5_nasal.sub(u'\u092e\u094D\\1',line) transliterated_line=ItransTransliterator.to_itrans(line,language) ## temp fix to replace 'ph' to 'F' to match with Urdu transliteration scheme transliterated_line=transliterated_line.replace('ph','f') ofile.write(transliterated_line) elif sys.argv[1]=='indicize': language=sys.argv[4] with open(sys.argv[2],'r', encoding='utf-8') as ifile: with open(sys.argv[3],'w', encoding='utf-8') as ofile: for line in ifile.readlines(): transliterated_line=ItransTransliterator.from_itrans(line,language) ofile.write(transliterated_line)
2.375
2
utilities.py
RyanLinXiang/flower-classifier
0
12781565
<reponame>RyanLinXiang/flower-classifier #!/usr/bin/env python3 # -*- coding: utf-8 -*- # PROGRAMMER: <NAME> # DATE CREATED: 4th Feb 2020 # REVISED DATE: 05th Feb 2020 # PURPOSE: This file included all the helper functions necessary to save and load the model, as well as process the images from PIL import Image import numpy as np from torch import save, load, from_numpy import torchvision.models as models def save_model(model, save_dir, class_to_idx, arch, structure): """ Saves the trained and validated model Parameters: model : the trained and validated model save_dir : the path where the classifier model file should be saved class_to_idx : the path to the file where category indices are saved to trace back the indiced predicted by the model arch : the architecture of the pre-trained model chosen structure : the structure of the classifier used to initiate the model Returns: None """ classifier = {'arch': arch, 'class_to_idx': class_to_idx, 'state_dict': model.classifier.state_dict(), 'structure': structure} save(classifier, save_dir+"/"+"classifier.pth") def load_model(classifier_path): """ Load the pre-trained model from the specified file with the updated classifier (features are frozen) Parameters: classifier_path : the path to the saved classifier model Returns: classifier model """ classifier = load(classifier_path) model = getattr(models, classifier['arch']) model = model(pretrained=True) model.classifier = classifier['structure'] model.class_to_idx = classifier['class_to_idx'] model.classifier.load_state_dict(classifier['state_dict']) return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array Parameters: image : the path to the image file Returns: numpy array with the image file processed and ready as input for the model ''' img = Image.open(image) # the shortest dimension of the image gets width of 256 while the other dimension is resized with respect to the ratio if img.size[0] < img.size[1]: ratio = 256/img.size[0] img = img.resize((256,int(img.size[1]*ratio))) else: ratio = 256/img.size[1] img = img.resize((int(img.size[0]*ratio),256)) # crop a square of 224px from the center of the image in order to get the image ready for the model top = (img.size[1] - 224)/2 bottom = (img.size[1] + 224)/2 left = (img.size[0] - 224)/2 right = (img.size[0] + 224)/2 img = img.crop((left, top, right, bottom)) img = np.array(img)/255 # normalization of the image in order to get the image ready for the model mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) img = np.transpose((img - mean) / std) return from_numpy(img)
2.859375
3
openneurodata/analyse_ophys.py
seankmartin/NeuralOpenData
0
12781566
<gh_stars>0 def summarise_single_session(allen_dataset): ## Summary in print print( f"-----------Working on image plane {allen_dataset.ophys_experiment_id}" f"session {allen_dataset.ophys_session_id}------------" ) print(f"\tThis experiment has metadata {allen_dataset.metadata}") cell_specimen_table = allen_dataset.cell_specimen_table print( f"\tThere are {len(cell_specimen_table)} cells" f"in this session with IDS {cell_specimen_table['cell_specimen_id']}" ) methods = allen_dataset.list_data_attributes_and_methods() print(f"The available information is {methods}") ## Plotting other information
2.65625
3
teamscale_precommit_client/client_configuration_utils.py
cqse/teamscale-cli
5
12781567
<gh_stars>1-10 from teamscale_client.teamscale_client_config import TeamscaleClientConfig def get_teamscale_client_configuration(config_file): """Gets a Teamscale client configuration from the provided config file or a config file in the user's home dir or both combined. This allows users to separate their credentials (e.g. in their home dir) from the project specific configurations (e.g. in the repository roots). """ local_teamscale_config = None teamscale_config_in_home_dir = None try: local_teamscale_config = TeamscaleClientConfig.from_config_file(config_file) except RuntimeError: # Error handling below, as either of the configs (or both combined) might be ok. pass try: teamscale_config_in_home_dir = TeamscaleClientConfig.from_config_file_in_home_dir() except RuntimeError: # Error handling below, as either of the configs (or both combined) might be ok. pass if local_teamscale_config: if not teamscale_config_in_home_dir: _require_sufficient_configuration(local_teamscale_config) return local_teamscale_config else: # Use config from home dir and overwrite with values from the local config. # This allows users to combine two different config files as stated above. teamscale_config_in_home_dir.overwrite_with(local_teamscale_config) _require_sufficient_configuration(teamscale_config_in_home_dir) return teamscale_config_in_home_dir else: if not teamscale_config_in_home_dir: raise RuntimeError('No valid configuration found.') else: _require_sufficient_configuration(teamscale_config_in_home_dir) return teamscale_config_in_home_dir def _require_sufficient_configuration(configuration): """Ensures the provided configuration is sufficient for precommit analysis.""" if not configuration.is_sufficient(require_project_id=True): raise RuntimeError('Not all necessary parameters specified in configuration file %s' % configuration.config_file)
2.40625
2
class.py
NageshJ2014/TestRepor
0
12781568
lottery_player = {"name" : "Rolf", "numbers" : (20,40,30,85)} #print(lottery_player) class Lottery_player: def __init__(self,name="Rolf",numbers=(20,40,30,85)): self.name = name self.numbers = numbers def total(self): return sum(self.numbers) Player = Lottery_player("Nagesh",(12,24,36,48,60)) print(Player.name , Player.numbers) print(Player.total())
3.375
3
SVD-example/mnist_training.py
tum-pbs/racecar
4
12781569
import tensorflow as tf import numpy as np import os import time import argparse import imageio parser = argparse.ArgumentParser() parser.add_argument("--training", type=int, default=1, help="training or testing") parser.add_argument("--testdir", type=str, default=None, help="specify log file dir") parser.add_argument("--testnum", type=int, default=-1, help="specify file name") parser.add_argument("--modelnum", type=int, default=-1, help="specify model name") parser.add_argument("--basePath", type=str, default="", help="specify base path") parser.add_argument("--batchsize", type=int, default=64, help="set batch size") parser.add_argument("--epochnum", type=int, default=100, help="set training epochs") parser.add_argument("--learningrate", type=float, default=0.0001, help="set learning rate") parser.add_argument("--maxsave", type=int, default=5, help="set saving number") parser.add_argument("--rrfactor", type=float, default=0.0, help="set factor for rr term") parser.add_argument("--orthofactor", type=float, default=0.0, help="set factor for orthogonal term") parser.add_argument("--runfile", type=str, default="run.py", help="specify run file for copy") args = parser.parse_args() if (not args.training): if args.testnum < 0 or args.modelnum < 0: print("specify --testnum and --modelnum for testing!") exit() if args.testdir: folderpre = args.testdir else: folderpre = "default" BATCH_SIZE = 2 if not args.training: BATCH_SIZE = 1 CLASS_NUM = 10 EPOCHS = args.epochnum learningratevalue = args.learningrate maxToKeep = args.maxsave epsilon = 1e-6 imagewidth = 28 imageheight = 28 def makedir(): count = 0 currentdir = os.getcwd()+"/" while os.path.exists(args.basePath+folderpre+"/test_%04d/"%count): count += 1 targetdir = args.basePath+folderpre+"/test_%04d/"%count os.makedirs(targetdir) return targetdir test_path = makedir() testf = open(test_path + "testaccuracy.txt",'a+') trainf = open(test_path + "trainloss.txt",'a+') timef = open(test_path + "elapsedtime.txt",'a+') os.system("cp %s %s/%s"%(args.runfile,test_path,args.runfile)) os.system("cp %s %s/%s"%(__file__,test_path,__file__)) # training data num1, num2 = 0,1 x_train0 = np.reshape(imageio.imread("MNIST/%d.png"%num1),[1,imagewidth*imageheight]) x_train1 = np.reshape(imageio.imread("MNIST/%d.png"%num2),[1,imagewidth*imageheight]) y_train0 = np.zeros([1,10]) y_train1 = np.zeros([1,10]) y_train0[0,num1]=1 y_train1[0,num2]=1 x_train = np.concatenate((x_train0,x_train1),axis=0) y_train = np.concatenate((y_train0,y_train1),axis=0) # testing data x_test0 = np.reshape(imageio.imread("MNIST/%d_test.png"%num1),[1,imagewidth*imageheight]) x_test1 = np.reshape(imageio.imread("MNIST/%d_test.png"%num2),[1,imagewidth*imageheight]) x_test = np.concatenate((x_test0,x_test1),axis=0) y_test = y_train TOTALWEIGHT = 0 def weight_variable(name, shape): var = tf.get_variable(name,shape,initializer = tf.glorot_uniform_initializer()) global TOTALWEIGHT if len(shape) == 4: print("Convolutional layer: {}".format(shape)) TOTALWEIGHT += shape[0]*shape[1]*shape[2]*shape[3] if len(shape) == 2: print("fully connected layer: {}".format(shape)) TOTALWEIGHT += shape[0]*shape[1] return var def bias_variable(name, shape): global TOTALWEIGHT TOTALWEIGHT += shape[0] return tf.get_variable(name,shape,initializer = tf.zeros_initializer()) def conv2d(x, W, padding = 'SAME',strides=[1,1,1,1]): return tf.nn.conv2d(x, W, strides=strides, padding=padding) def batch_norm(input, reuse=False, is_training=args.training): return tf.contrib.layers.batch_norm(input, decay=0.9, center=True, scale=True, epsilon=1e-3, is_training=is_training, updates_collections=None, scope=tf.get_variable_scope(), reuse = reuse) def l2_reg_ortho(weight): reg = tf.constant(0.) Wshape = weight.get_shape() if np.size(weight.get_shape().as_list()) == 2: cols = int(Wshape[1]) else: cols = int(Wshape[1]*Wshape[2]*Wshape[3]) rows = int(Wshape[0]) w1 = tf.reshape(weight,[-1,cols]) wt = tf.transpose(w1) m = tf.matmul(wt,w1) ident = tf.eye(cols,num_columns=cols) w_tmp = (m - ident) height = w_tmp.get_shape().as_list()[0] u = tf.nn.l2_normalize(tf.random_normal([height,1]),dim=0,epsilon=1e-12) v = tf.nn.l2_normalize(tf.matmul(tf.transpose(w_tmp), u), dim=0,epsilon=1e-12) u = tf.nn.l2_normalize(tf.matmul(w_tmp, v), dim=0,epsilon=1e-12) sigma = tf.norm(tf.reshape(tf.keras.backend.dot(tf.transpose(u), tf.matmul(w_tmp, v)),[-1])) reg+=sigma**2 return reg x = tf.placeholder(tf.float32, [None,imagewidth*imageheight]) y = tf.placeholder(tf.float32, [None,CLASS_NUM]) lr = tf.placeholder(tf.float32) # forward pass W_conv1 = weight_variable("W_conv1",[imagewidth*imageheight,CLASS_NUM]) b_conv1 = bias_variable("b_conv1",[CLASS_NUM]) fcout = tf.matmul(x, W_conv1) + b_conv1 # backward pass back_input = tf.matmul((fcout-b_conv1),tf.transpose(W_conv1)) prediction = tf.reshape(tf.nn.softmax(fcout),[-1,CLASS_NUM]) # calculate the loss cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) loss = cross_entropy if args.orthofactor != 0: loss = loss + args.orthofactor*l2_reg_ortho(W_conv1) if args.rrfactor != 0: loss = loss + args.rrfactor * tf.reduce_mean(tf.nn.l2_loss(back_input - x)) correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) train_step = tf.train.AdamOptimizer(lr).minimize(loss) # init session sess = tf.Session() saver = tf.train.Saver(max_to_keep=maxToKeep) sess.run(tf.global_variables_initializer()) if args.testnum >= 0 and args.modelnum >=0: loadpath = args.basePath+folderpre+"/test_%04d/model_%04d.ckpt"%(args.testnum,args.modelnum) saver.restore(sess,loadpath) print("Model restored from %s."%(loadpath)) Epochnum = int(np.shape(x_train)[0]/BATCH_SIZE) def saveModel(test_path, save_no): saver.save(sess, test_path+'model_%04d.ckpt'%save_no) msg = 'saved Model %04d.'%save_no return msg currenttime = time.time() testindex = 0 if args.training: for i in range(EPOCHS * Epochnum): cross_e,_, trainloss = sess.run([cross_entropy , train_step,loss],feed_dict={x: x_train, y: y_train, lr:learningratevalue}) if i % (Epochnum*100) == 0: epochindex = int(i/(Epochnum*100)) testaccuracy,outputdata= sess.run([accuracy,back_input],feed_dict={x: x_test, y: y_test}) costtime = time.time()-currenttime print("EPOCHS: %d, train loss:%f, testing accuracy:%f, time consuming:%f"%(epochindex,trainloss,testaccuracy,costtime)) print("cross_e:%f"%cross_e) testf.write(str(epochindex)+'\t'+str(testaccuracy)+'\r\n') trainf.write(str(epochindex)+'\t'+str(trainloss)+'\r\n') timef.write(str(epochindex)+'\t'+str(costtime)+'\r\n') if (epochindex+1)%2 == 0: print(saveModel(test_path,epochindex)) # output test image outputdata = np.reshape(outputdata,[2,28,28]) resultpath = test_path +"backwardtest_img/" while not os.path.exists(resultpath): os.mkdir(resultpath) for ind in range(2): imageio.imwrite(resultpath + 'test%d_%04d.png'%(ind,testindex),outputdata[ind].astype(np.uint8)) testindex += 1 currenttime = time.time()
2.390625
2
anonramblings/ramblings/migrations/0010_post_comment_count.py
emre/anonramblings
2
12781570
<reponame>emre/anonramblings # Generated by Django 3.0.6 on 2020-05-17 12:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ramblings', '0009_post_reply_to'), ] operations = [ migrations.AddField( model_name='post', name='comment_count', field=models.IntegerField(default=0), ), ]
1.5
2
examples/golf_putting/model_simple.py
mcguenther/ipme
22
12781571
import pandas as pd import io import pymc3 as pm import arviz as az from arviz_json import get_dag, arviz_to_json #Binomial Logistic Regression Model #Reference: https://docs.pymc.io/notebooks/putting_workflow.html#Logit-model #data golf_data = """distance tries successes 2 1443 1346 3 694 577 4 455 337 5 353 208 6 272 149 7 256 136 8 240 111 9 217 69 10 200 67 11 237 75 12 202 52 13 192 46 14 174 54 15 167 28 16 201 27 17 195 31 18 191 33 19 147 20 20 152 24""" data = pd.read_csv(io.StringIO(golf_data), sep=" ") #model-inference coords = {"distance": data.distance} fileName='golf_simple_PyMC3' samples=2000 chains=2 tune=1000 simple_model=pm.Model(coords=coords) with simple_model: #to store the n-parameter of Binomial dist #in the constant group of ArviZ InferenceData #You should always call it n for imd to retrieve it n = pm.Data('n', data.tries) a = pm.Normal('a') b = pm.Normal('b') p_goes_in = pm.Deterministic('p_goes_in', pm.math.invlogit(a * data.distance + b), dims='distance') successes = pm.Binomial('successes', n=n, p=p_goes_in, observed=data.successes, dims='distance') #inference # Get posterior trace, prior trace, posterior predictive samples, and the DAG trace = pm.sample(draws=samples, chains=chains, tune=tune) prior= pm.sample_prior_predictive(samples=samples) posterior_predictive = pm.sample_posterior_predictive(trace,samples=samples) ## STEP 1 # will also capture all the sampler statistics data_s = az.from_pymc3(trace=trace, prior=prior, posterior_predictive=posterior_predictive) ## STEP 2 #dag dag = get_dag(simple_model) # insert dag into sampler stat attributes data_s.sample_stats.attrs["graph"] = str(dag) ## STEP 3 # save data arviz_to_json(data_s, fileName+'.npz')
2.9375
3
testdatageneration.py
odeliss/wapetex
0
12781572
from datagenerationpipeline import dataGenerationPipeline imageDirectory = "\\\\192.168.1.37\\Multimedia\\datasets\\test\\watches_categories\\1" fileType=".jpg" pipeline=dataGenerationPipeline(imageDirectory, fileType) print("[INFO]: There should be 200 images in directory 1") pipeline.rotate() #assert there are 1000 flipped images in directory rotated pipeline.flip(horizontaly = True) #assert there are 200 flipped images in directory horFlip pipeline.flip(verticaly = True) #assert there are 200 flipped images in directory verFlip pipeline.flip(horizontaly = True, verticaly = True) #assert there are 200 flipped images in directory horverFlip pipeline.skew()
3.0625
3
backend/uclapi/dashboard/management/commands/clear_dashboard_data.py
nayanadasgupta/uclapi
0
12781573
from django.core.management.base import BaseCommand from dashboard.models import User, App, APICall, Webhook, WebhookTriggerHistory class Command(BaseCommand): help = 'Cleans Dashboard of everything' def handle(self, *args, **options): string = input("THIS WILL WIPE THESE MODELS ARE YOU SURE? " "TYPE DELETE TO CONFIRM!: ") if string == "DELETE": User.objects.all().delete() App.objects.all().delete() APICall.objects.all().delete() Webhook.objects.all().delete() WebhookTriggerHistory.objects.all().delete()
2.078125
2
imcsdk/mometa/memory/MemoryPersistentMemoryDimms.py
ecoen66/imcsdk
31
12781574
"""This module contains the general information for MemoryPersistentMemoryDimms ManagedObject.""" from ...imcmo import ManagedObject from ...imccoremeta import MoPropertyMeta, MoMeta from ...imcmeta import VersionMeta class MemoryPersistentMemoryDimmsConsts: SOCKET_ID_1 = "1" SOCKET_ID_2 = "2" SOCKET_ID_3 = "3" SOCKET_ID_4 = "4" SOCKET_ID_ALL = "ALL" class MemoryPersistentMemoryDimms(ManagedObject): """This is MemoryPersistentMemoryDimms class.""" consts = MemoryPersistentMemoryDimmsConsts() naming_props = set(['socketId']) mo_meta = { "classic": MoMeta("MemoryPersistentMemoryDimms", "memoryPersistentMemoryDimms", "pmemory-dimms-[socket_id]", VersionMeta.Version404b, "InputOutput", 0x3f, [], ["admin", "read-only", "user"], ['memoryPersistentMemoryLogicalConfiguration'], [], [None]), "modular": MoMeta("MemoryPersistentMemoryDimms", "memoryPersistentMemoryDimms", "pmemory-dimms-[socket_id]", VersionMeta.Version404b, "InputOutput", 0x3f, [], ["admin", "read-only", "user"], ['memoryPersistentMemoryLogicalConfiguration'], [], [None]) } prop_meta = { "classic": { "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x4, 0, 255, None, [], []), "socket_id": MoPropertyMeta("socket_id", "socketId", "string", VersionMeta.Version404b, MoPropertyMeta.NAMING, 0x8, 0, 510, None, ["1", "2", "3", "4", "ALL"], []), "socket_local_dimm_numbers": MoPropertyMeta("socket_local_dimm_numbers", "socketLocalDimmNumbers", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x10, 0, 510, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x20, None, None, None, ["", "created", "deleted", "modified", "removed"], []), "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version404b, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), }, "modular": { "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x4, 0, 255, None, [], []), "socket_id": MoPropertyMeta("socket_id", "socketId", "string", VersionMeta.Version404b, MoPropertyMeta.NAMING, 0x8, 0, 510, None, ["1", "2", "3", "4", "ALL"], []), "socket_local_dimm_numbers": MoPropertyMeta("socket_local_dimm_numbers", "socketLocalDimmNumbers", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x10, 0, 510, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version404b, MoPropertyMeta.READ_WRITE, 0x20, None, None, None, ["", "created", "deleted", "modified", "removed"], []), "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version404b, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), }, } prop_map = { "classic": { "dn": "dn", "rn": "rn", "socketId": "socket_id", "socketLocalDimmNumbers": "socket_local_dimm_numbers", "status": "status", "childAction": "child_action", }, "modular": { "dn": "dn", "rn": "rn", "socketId": "socket_id", "socketLocalDimmNumbers": "socket_local_dimm_numbers", "status": "status", "childAction": "child_action", }, } def __init__(self, parent_mo_or_dn, socket_id, **kwargs): self._dirty_mask = 0 self.socket_id = socket_id self.socket_local_dimm_numbers = None self.status = None self.child_action = None ManagedObject.__init__(self, "MemoryPersistentMemoryDimms", parent_mo_or_dn, **kwargs)
1.78125
2
tensorflow/python/tools/module_util.py
KosingZhu/tensorflow
190,993
12781575
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for modules.""" import os import six if six.PY2: import imp # pylint: disable=g-import-not-at-top else: import importlib # pylint: disable=g-import-not-at-top def get_parent_dir(module): return os.path.abspath(os.path.join(os.path.dirname(module.__file__), "..")) def get_parent_dir_for_name(module_name): """Get parent directory for module with the given name. Args: module_name: Module name for e.g. tensorflow_estimator.python.estimator.api._v1.estimator. Returns: Path to the parent directory if module is found and None otherwise. Given example above, it should return: /pathtoestimator/tensorflow_estimator/python/estimator/api/_v1. """ name_split = module_name.split(".") if not name_split: return None if six.PY2: try: spec = imp.find_module(name_split[0]) except ImportError: return None if not spec: return None base_path = spec[1] else: try: spec = importlib.util.find_spec(name_split[0]) except ValueError: return None if not spec or not spec.origin: return None base_path = os.path.dirname(spec.origin) return os.path.join(base_path, *name_split[1:-1])
1.960938
2
main_num_learners.py
crm416/online_boosting
56
12781576
<reponame>crm416/online_boosting<filename>main_num_learners.py import argparse from random import seed from yaml import dump from utils.experiment import testNumLearners from utils.utils import * if __name__ == "__main__": seed(0) parser = argparse.ArgumentParser( description='Test error for a combination of ensembler and weak learner.') parser.add_argument('dataset', help='dataset filename') parser.add_argument('ensembler', help='chosen ensembler') parser.add_argument('weak_learner', help='chosen weak learner') parser.add_argument( 'start', help='initial number of weak learners', type=int) parser.add_argument('end', help='final number of weak learners', type=int) parser.add_argument( 'inc', help='increment for number of weak learners', type=int) parser.add_argument('--record', action='store_const', const=True, default=False, help='export the results in YAML format') parser.add_argument( 'trials', help='number of trials (each with different shuffling of the data); defaults to 1', type=int, default=1, nargs='?') args = parser.parse_args() ensembler = get_ensembler(args.ensembler) weak_learner = get_weak_learner(args.weak_learner) data = load_data("data/" + args.dataset) accuracy = testNumLearners( ensembler, weak_learner, data, args.start, args.end, args.inc, trials=args.trials) print accuracy if args.record: results = { 'accuracy': accuracy, 'booster': args.ensembler, 'weak_learner': args.weak_learner, 'trials': args.trials, 'seed': 0 } filename = args.ensembler + "_" + \ args.weak_learner + "_" + \ str(args.start) + "_" + str(args.end) + \ "_" + str(args.inc) + ".yml" f = open(filename, 'w+') f.write(dump(results))
2.421875
2
python/packages/nisar/workflows/rdr2geo_runconfig.py
isce3-testing/isce3-circleci-poc
0
12781577
<gh_stars>0 import journal from nisar.workflows.runconfig import RunConfig class Rdr2geoRunConfig(RunConfig): def __init__(self, args): # all insar submodules share a commmon `insar` schema super().__init__(args, 'insar') if self.args.run_config_path is not None: self.load_geocode_yaml_to_dict() self.geocode_common_arg_load() self.yaml_check() def yaml_check(self): error_channel = journal.error('Rdr2GeoRunConfig.yaml_check') layers = ['x', 'y', 'z', 'incidence', 'heading', 'local_incidence', 'local_psi', 'simulated_amplitude', 'layover_shadow'] # get rdr2geo config dict from processing dict for brevity rdr2geo_cfg = self.cfg['processing']['rdr2geo'] # list comprehend rasters to be written from layers dict write_any_layer = any([rdr2geo_cfg[f'write_{layer}'] for layer in layers]) if not write_any_layer: err_str = "All topo layers disabled" error_channel.log(err_str) raise ValueError(err_str)
2.015625
2
eelbrain/_wxgui/history.py
christianbrodbeck/Eelbrain
32
12781578
'''History for wx GUIs''' # Author: <NAME> <<EMAIL>> from logging import getLogger import os from typing import Optional, Tuple import wx from .help import show_help_txt from .frame import EelbrainFrame from .utils import Icon from . import ID TEST_MODE = False class CallBackManager: def __init__(self, keys): self._callbacks = {k: [] for k in keys} def register_key(self, key): if key in self._callbacks: raise KeyError("Key already registered") self._callbacks[key] = [] def callback(self, key, *args): for cb in self._callbacks[key]: cb(*args) def subscribe(self, key, func): self._callbacks[key].append(func) def remove(self, key, func): try: self._callbacks[key].remove(func) except ValueError: getLogger(__name__).debug("Trying to remove %r which is not in callbacks[%r]", func, key) class Action: def do(self, doc): raise NotImplementedError def undo(self, doc): raise NotImplementedError class History: """The history as a list of action objects Public interface ---------------- can_redo() : bool Whether the history can redo an action. can_undo() : bool Whether the history can redo an action. do(action) perform a action is_saved() : bool Whether the current state is saved redo() Redo the latest undone action. ... """ def __init__(self, doc): self.doc = doc self._history = [] self.callbacks = CallBackManager(('saved_change',)) # point to last executed action (always < 0) self._last_action_idx = -1 # point to action after which we saved self._saved_idx = -2 + doc.saved def can_redo(self): return self._last_action_idx < -1 def can_undo(self): return len(self._history) + self._last_action_idx >= 0 def do(self, action): logger = getLogger(__name__) logger.debug("Do action: %s", action.desc) was_saved = self.is_saved() action.do(self.doc) if self._last_action_idx < -1: # discard alternate future self._history = self._history[:self._last_action_idx + 1] self._last_action_idx = -1 if self._saved_idx >= len(self._history): self._saved_idx = -2 self._history.append(action) self._process_saved_change(was_saved) def _process_saved_change(self, was_saved): """Process a state change in whether all changes are saved Parameters ---------- was_saved : bool Whether all changes were saved before the current change happened. """ is_saved = self.is_saved() if is_saved != was_saved: self.doc.saved = is_saved self.callbacks.callback('saved_change') def is_saved(self): """Determine whether the document is saved Returns ------- is_saved : bool Whether the document is saved (i.e., contains no unsaved changes). """ current_index = len(self._history) + self._last_action_idx return self._saved_idx == current_index def redo(self): was_saved = self.is_saved() if self._last_action_idx == -1: raise RuntimeError("We are at the tip of the history") action = self._history[self._last_action_idx + 1] logger = getLogger(__name__) logger.debug("Redo action: %s", action.desc) action.do(self.doc) self._last_action_idx += 1 self._process_saved_change(was_saved) def register_save(self): "Notify the history that the document is saved at the current state" was_saved = self.is_saved() self._saved_idx = len(self._history) + self._last_action_idx self._process_saved_change(was_saved) def undo(self): was_saved = self.is_saved() if -self._last_action_idx > len(self._history): raise RuntimeError("We are at the beginning of the history") action = self._history[self._last_action_idx] logger = getLogger(__name__) logger.debug("Undo action: %s", action.desc) action.undo(self.doc) self._last_action_idx -= 1 self._process_saved_change(was_saved) class FileDocument: """Represent a file""" def __init__(self, path): self.saved = False # managed by the history self.path = path self.callbacks = CallBackManager(('path_change',)) def set_path(self, path): self.path = path self.callbacks.callback('path_change') class FileModel: """Manages a document as well as its history""" def __init__(self, doc: FileDocument): self.doc = doc self.history = History(doc) def load(self, path): raise NotImplementedError def save(self): self.doc.save() self.history.register_save() def save_as(self, path): self.doc.set_path(path) self.save() class FileFrame(EelbrainFrame): owns_file = True _doc_name = 'document' _name = 'Default' # internal, for config _title = 'Title' # external, for frame title _wildcard = "Tab Separated Text (*.txt)|*.txt|Pickle (*.pickle)|*.pickle" def __init__( self, parent: wx.Frame, pos: Optional[Tuple[int, int]], size: Optional[Tuple[int, int]], model: FileModel, ): """View object of the epoch selection GUI Parameters ---------- parent : wx.Frame Parent window. others : See TerminalInterface constructor. """ config = wx.Config("Eelbrain Testing" if TEST_MODE else "Eelbrain") config.SetPath(self._name) if pos is None: pos = (config.ReadInt("pos_horizontal", -1), config.ReadInt("pos_vertical", -1)) if size is None: size = (config.ReadInt("size_width", 800), config.ReadInt("size_height", 600)) super(FileFrame, self).__init__(parent, -1, self._title, pos, size) self.config = config self.model = model self.doc = model.doc self.history = model.history # Bind Events --- self.doc.callbacks.subscribe('path_change', self.UpdateTitle) self.history.callbacks.subscribe('saved_change', self.UpdateTitle) self.Bind(wx.EVT_CLOSE, self.OnClose) def InitToolbar(self, can_open=True): tb = self.CreateToolBar(wx.TB_HORIZONTAL) tb.SetToolBitmapSize(size=(32, 32)) tb.AddTool(wx.ID_SAVE, "Save", Icon("tango/actions/document-save"), shortHelp="Save") self.Bind(wx.EVT_TOOL, self.OnSave, id=wx.ID_SAVE) tb.AddTool(wx.ID_SAVEAS, "Save As", Icon("tango/actions/document-save-as"), shortHelp="Save As") self.Bind(wx.EVT_TOOL, self.OnSaveAs, id=wx.ID_SAVEAS) if can_open: tb.AddTool(wx.ID_OPEN, "Load", Icon("tango/actions/document-open"), shortHelp="Open Rejections") self.Bind(wx.EVT_TOOL, self.OnOpen, id=wx.ID_OPEN) tb.AddTool(ID.UNDO, "Undo", Icon("tango/actions/edit-undo"), shortHelp="Undo") tb.AddTool(ID.REDO, "Redo", Icon("tango/actions/edit-redo"), shortHelp="Redo") return tb def InitToolbarTail(self, tb): tb.AddTool(wx.ID_HELP, 'Help', Icon("tango/apps/help-browser")) self.Bind(wx.EVT_TOOL, self.OnHelp, id=wx.ID_HELP) def CanRedo(self): return self.history.can_redo() def CanSave(self): return bool(self.doc.path) and not self.doc.saved def CanUndo(self): return self.history.can_undo() def OnClear(self, event): self.model.clear() def OnClose(self, event): """Ask to save unsaved changes. Return True if confirmed so that child windows can unsubscribe from document model changes. """ if self.owns_file and event.CanVeto() and not self.history.is_saved(): self.Raise() msg = ("The current document has unsaved changes. Would you like " "to save them?") cap = "%s: Save Unsaved Changes?" % self._title style = wx.YES | wx.NO | wx.CANCEL | wx.YES_DEFAULT cmd = wx.MessageBox(msg, cap, style) if cmd == wx.YES: if self.OnSave(event) != wx.ID_OK: event.Veto() return elif cmd == wx.CANCEL: event.Veto() return elif cmd != wx.NO: raise RuntimeError("Unknown answer: %r" % cmd) logger = getLogger(__name__) logger.debug("%s.OnClose()", self.__class__.__name__) # remove callbacks self.doc.callbacks.remove('path_change', self.UpdateTitle) self.history.callbacks.remove('saved_change', self.UpdateTitle) # save configuration pos_h, pos_v = self.GetPosition() w, h = self.GetSize() self.config.WriteInt("pos_horizontal", pos_h) self.config.WriteInt("pos_vertical", pos_v) self.config.WriteInt("size_width", w) self.config.WriteInt("size_height", h) self.config.Flush() event.Skip() return True def OnHelp(self, event): show_help_txt(self.__doc__, self, self._title) def OnOpen(self, event): msg = ("Load the %s from a file." % self._doc_name) if self.doc.path: default_dir, default_name = os.path.split(self.doc.path) else: default_dir = '' default_name = '' dlg = wx.FileDialog(self, msg, default_dir, default_name, self._wildcard, wx.FD_OPEN) rcode = dlg.ShowModal() dlg.Destroy() if rcode != wx.ID_OK: return rcode path = dlg.GetPath() try: self.model.load(path) except Exception as ex: msg = str(ex) title = "Error Loading %s" % self._doc_name.capitalize() wx.MessageBox(msg, title, wx.ICON_ERROR) raise def OnRedo(self, event): self.history.redo() def OnSave(self, event): if self.doc.path: self.model.save() return wx.ID_OK else: return self.OnSaveAs(event) def OnSaveAs(self, event): msg = ("Save the %s to a file." % self._doc_name) if self.doc.path: default_dir, default_name = os.path.split(self.doc.path) else: default_dir = '' default_name = '' dlg = wx.FileDialog(self, msg, default_dir, default_name, self._wildcard, wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) rcode = dlg.ShowModal() if rcode == wx.ID_OK: path = dlg.GetPath() self.model.save_as(path) dlg.Destroy() return rcode def OnUndo(self, event): self.history.undo() def OnUpdateUIClear(self, event): event.Enable(True) def OnUpdateUIOpen(self, event): event.Enable(True) def OnUpdateUIRedo(self, event): event.Enable(self.CanRedo()) def OnUpdateUISave(self, event): event.Enable(self.CanSave()) def OnUpdateUISaveAs(self, event): event.Enable(True) def OnUpdateUIUndo(self, event): event.Enable(self.CanUndo()) def UpdateTitle(self): is_modified = not self.doc.saved self.OSXSetModified(is_modified) title = self._title if self.doc.path: title += ': ' + os.path.basename(self.doc.path) if is_modified: title = '* ' + title self.SetTitle(title) class FileFrameChild(FileFrame): owns_file = False
2.4375
2
stevesie/remote_resource.py
Stevesie/stevesie-py
1
12781579
import os import re import json from typing import Sequence, GenericMeta from datetime import datetime, date import dateutil.parser import inflection from stevesie import resources from stevesie.utils import api DATETIME_FORMAT = '%Y-%m-%dT%H:%M:%S.%fZ' class RemoteResource(object): _is_hydrated = False def set_hydrated(self): self._is_hydrated = True def hydrate(self, obj, fetch_remote=True, limit=None): hydrate_args = {} for field_name in self._fields: field_type = self._field_types[field_name] api_field_name = inflection.camelize(field_name, uppercase_first_letter=False) field_value = obj.get(api_field_name, obj.get(field_name)) if field_value is not None: if field_type == datetime: field_value = dateutil.parser.parse(field_value) elif issubclass(field_type, RemoteResource): field_value = field_type().hydrate(field_value, fetch_remote=fetch_remote) elif issubclass(field_type, Sequence) \ and issubclass(field_type.__class__, GenericMeta): # TODO - serious debt, can't otherwise figure out the type of a typing.Sequence sequence_class_string = str(field_type) match = re.search(r'\[(.*)\]', sequence_class_string) module_parts = match.group(1).split('.') if len(module_parts) == 1: # referring to self using string type hack class_name_match = re.search(r'\(\'(.*)\'\)', module_parts[0]) class_name = class_name_match.group(1) module_name = inflection.underscore(class_name) else: module_name = module_parts[2] class_name = module_parts[3] mod = getattr(resources, module_name) cls = getattr(mod, class_name) field_value = [cls().hydrate(item, fetch_remote=fetch_remote) \ for item in field_value] hydrate_args[field_name] = field_value hydrated = self._replace(**hydrate_args) hydrated.set_hydrated() return hydrated def fetch(self): api_json = api.get(self.resource_url) obj = self.parse_api_response(api_json) return self.hydrate(obj) def destroy(self): api.delete(self.resource_url) def to_json(self, obj=None): if obj is None: obj = self def inner_json(inner_obj): if isinstance(inner_obj, list): return [self.to_json(o) for o in inner_obj] if isinstance(inner_obj, RemoteResource): return self.to_json(inner_obj) return inner_obj if hasattr(obj, 'collection_type') and obj.collection_type is not None: # little hack for implicit remote resource collection return [inner_json(value) for value in obj.items()] return {key: inner_json(value) for key, value in obj._asdict().items()} def save_to_file(self, local_filename): def serialize(obj): if isinstance(obj, (datetime, date)): return obj.strftime(DATETIME_FORMAT) raise TypeError('Cannot serialize %s' % type(obj)) with open(os.path.expanduser(local_filename), 'w') as file: json.dump(self.to_json(), file, default=serialize) def load_from_file(self, local_filename): with open(os.path.expanduser(local_filename)) as file: obj = json.load(file) return self.hydrate(obj) def parse_api_response(self, api_json): return api_json['item'] @property def resource_params(self): return {} @property def is_hydrated(self): return self._is_hydrated @property def resource_path(self): pass @property def resource_url(self): return api.BASE_URL_PATH + self.resource_path
2.328125
2
farms2face/payments/apps.py
dev1farms2face/f2f
0
12781580
<filename>farms2face/payments/apps.py from __future__ import unicode_literals from django.apps import AppConfig class PaymentsConfig(AppConfig): name = 'payments' def ready(self): import payments.signals # noqa
1.273438
1
evaluation_data_purify.py
gucheol/deep-text-recognition-benchmark
0
12781581
import os import glob import shutil from PIL import Image # for file_path in glob.glob('./data/evaluation/card_evaluation/*.png'): # file_name = os.path.basename(file_path) # if file_name.find(',') >= 0 or file_name.find('@') >=0 or file_name.find('*') > 0 or file_name.find(':') > 0 \ # or file_name.find('r') > 0 or file_name.find('성별') > 0 or file_name.find('KOR') > 0 or file_name.find('~') > 0: # # shutil.move(file_path, os.path.join('result', 'no_way_out', file_name)) # # print(file_path, os.path.join('result', 'no_way_out', file_name)) # continue # shutil.copy(file_path, os.path.join('./data/evaluation/valid_card_data', file_name)) src = './data/evaluation/valid_card_data/' # target = './data/evaluation/deleted/' # for file_path in glob.glob('./result/tagging_error/*.png'): # file_name = os.path.basename(file_path) # src_file_path = os.path.join(src, file_name) # print(src_file_path, os.path.join(target, file_name)) # shutil.move(src_file_path, os.path.join(target, file_name)) for file_path in glob.glob(src + '*.png'): base_name = os.path.basename(file_path) if file_path.find('_(F-4)_') > 0: target_file_path = file_path.replace('_(F-4)_', '_재외동포(F-4)_') shutil.move(file_path, target_file_path) # print(file_path, target_file_path) # continue # if base_name.find('e') > 0 : # print(file_path)
2.703125
3
clean_aws/compare_format.py
SamuelDiai/Dash-Website
0
12781582
import time import pandas as pd from dash_website.utils.aws_loader import load_excel, load_parquet, load_feather if __name__ == "__main__": time_excel = 0 for idx_load_excel in range(10): start_excel = time.time() load_excel("xwas/univariate_results/linear_correlations.xlsx") time_excel += time.time() - start_excel print("Load excel", time_excel) time_parquet = 0 for idx_load_excel in range(10): start_parquet = time.time() load_parquet("xwas/univariate_results/linear_correlations.parquet") time_parquet += time.time() - start_parquet print("Load parquet", time_parquet) time_feather = 0 for idx_load_feather in range(10): start_feather = time.time() corr = load_feather("xwas/univariate_results/linear_correlations.feather").set_index("index") corr.columns = pd.MultiIndex.from_tuples( list(map(eval, corr.columns.tolist())), names=["dimension", "category", "variable"] ) time_feather += time.time() - start_feather print("Load feather", time_feather)
2.46875
2
back/to_do/models.py
valuko/ChiefOnboarding
0
12781583
from django.contrib.auth import get_user_model from django.contrib.postgres.fields import JSONField from django.db import models from organization.models import BaseTemplate from misc.models import Content class ToDo(BaseTemplate): content = models.ManyToManyField(Content) due_on_day = models.IntegerField(default=0) form = JSONField(models.CharField(max_length=100000, default='[]')) # Chat bot specific actions send_back = models.BooleanField(default=False) channel = models.CharField(max_length=10000, null=True, blank=True) def get_slack_form(self): slack_form_items = [] for i in self.form: options = [] if i['type'] == 'select': for j in i['options']: options.append({ "text": { "type": "plain_text", "text": j['name'], "emoji": True, # "action_id": j['id'] }, "value": j['name'] }) slack_form_items.append({ "type": "input", "block_id": i['id'], "element": { "type": "static_select", "placeholder": { "type": "plain_text", "text": "Select an item", "emoji": True }, "options": options, "action_id": i['id'] }, "label": { "type": "plain_text", "text": i['text'], "emoji": True } }) if i['type'] == 'input': slack_form_items.append({ "type": "input", "block_id": i['id'], "element": { "type": "plain_text_input", "action_id": i['id'] }, "label": { "type": "plain_text", "text": i['text'], "emoji": True } }) if i['type'] == 'text': slack_form_items.append({ "type": "input", "block_id": i['id'], "element": { "type": "plain_text_input", "multiline": True, "action_id": i['id'] }, "label": { "type": "plain_text", "text": i['text'], "emoji": True } }) return slack_form_items def valid_for_slack(self): valid = True for i in self.form: if i['type'] == 'check' or i['type'] == 'upload': valid = False break return valid
2.03125
2
WebSpider/proxy.py
bianQ/similarweb
0
12781584
<gh_stars>0 """ Author : Alan Date : 2021/7/24 9:39 Email : <EMAIL> """ import requests from retry import retry from settings import GET_IP_URL, WHITE_URL, USER, PWD def get_my_ip(): try: # resp = requests.get('http://myip.top', timeout=2) resp = requests.get('http://ipinfo.io', timeout=2) return resp.json().get('ip') except Exception as e: print(e) def Merge(dict1, dict2): res = {**dict1, **dict2} return res class Proxy: def __init__(self): self.sessoin = requests.session() self.headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", "User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 10_3_3 like Mac OS X) AppleWebKit/603.3.8 (KHTML, like Gecko) Mobile/14G60 MicroMessenger/6.5.19 NetType/4G Language/zh_TW", } self.mainUrl = 'https://api.myip.la/en?json' # if not WHITE_URL or not GET_IP_URL: # raise ValueError("缺少代理配置") # # 设置白名单 # my_ip = get_my_ip() # if my_ip: # self.set_white(my_ip) @retry(exceptions=Exception, delay=1) def get_proxy(self) -> dict: ip = {} # data = self.sessoin.get(GET_IP_URL).json() # return data['data'][0] entry = 'http://{}:{}@proxy.ipidea.io:2334'.format(USER, PWD) proxy = { 'http': entry, 'https': entry, } try: res = requests.get(self.mainUrl, headers=self.headers, proxies=proxy, timeout=10) print(res.status_code, res.text) ipstr = str(res.json()["ip"]) except Exception as e: ipstr = '' print("访问失败", e) pass if ipstr: ip['ip'] = ipstr # print(type(ip), ip) port = {'port': '2334'} # print(type(port), port) data = Merge(ip, port) # data = dict([ip.items()] + [port.items()]) else: data = {} return data def set_white(self, ip): url = WHITE_URL + ip res = self.sessoin.get(url) print(res.text) proxy_server = Proxy()
2.65625
3
countries/auth.py
sinaesmaili216/blog
0
12781585
import functools from flask import Blueprint from flask import flash from flask import g from flask import redirect from flask import render_template from flask import request from flask import session from flask import url_for from werkzeug.security import check_password_hash from werkzeug.security import generate_password_hash from countries.db import get_db bp = Blueprint("auth", __name__, url_prefix="/auth") def login_required(view): """View decorator that redirects anonymous users to the login page.""" @functools.wraps(view) def wrapped_view(**kwargs): if g.user is None: return redirect(url_for("auth.login")) return view(**kwargs) return wrapped_view #@bp.before_app_request @bp.route("/hello") def hello(): return "hello"
2.328125
2
daily_coding_problem/934.py
mhetrerajat/ds-challenge
0
12781586
def naive(string: str) -> str: map = {} for char in string: count = map.get(char, 0) if count >= 1: return char else: map[char] = 1 return None def get_recurring_char(string: str) -> str: """assuming string only contains lowercase letters""" checker = 0 for char in string: bin_idx = ord(char) - ord("a") # will return a non-zero binary number # if faces the duplicate character if (checker & (1 << bin_idx)) > 0: return char checker = checker | (1 << bin_idx) return None if __name__ == "__main__": testcases = [("acbbac", "b"), ("abcdef", None)] for (testcase, expected) in testcases: assert get_recurring_char(testcase) == expected
3.703125
4
tests/format-keys/examples/test.py
looking-for-a-job/format-keys.py
0
12781587
<filename>tests/format-keys/examples/test.py #!/usr/bin/env python import format_keys string = "https://api.travis-ci.org/{fullname}.svg?branch={branch}" keys = format_keys.keys(string) print(keys)
1.828125
2
flyingcracker/weather/urls.py
grahamu/flyingcracker
0
12781588
from django.urls import re_path from . import views app_name = 'weather' urlpatterns = [ re_path(r'^$', views.weather, name='root'), re_path(r'^current/$', views.current, name='current'), re_path(r'^unitchange/$', views.unit_change, name='unit-change'), re_path(r'^generate/$', views.generate, name='generate'), re_path(r'^delete/$', views.delete, name='delete'), re_path(r'^data/$', views.output_data, name='data'), re_path(r'^chart/$', views.chart, name='chart'), ]
1.804688
2
cmus_scrobbler/cli.py
JosephVSN/cmus-scrobbler
0
12781589
#!/usr/bin/python """Console script for cmus_scrobbler.""" import cmus_scrobbler import argparse import sys def main(): """Console script for cmus_scrobbler.""" parser = argparse.ArgumentParser() parser.add_argument('status', nargs='*') parser.add_argument('-c', '--config', nargs=2, help="Called with the API KEY and API SECRET KEY as arguments, updates their values in the config.") args = parser.parse_args() return cmus_scrobbler.main(args) if __name__ == "__main__": sys.exit(main()) # pragma: no cover
2.484375
2
salmon/commands.py
elwoodpd/smoked-salmon
42
12781590
<reponame>elwoodpd/smoked-salmon import asyncio import importlib import os import html from urllib import parse import click import pyperclip import salmon.checks import salmon.converter import salmon.database import salmon.play import salmon.search import salmon.sources import salmon.tagger import salmon.uploader import salmon.web # noqa F401 from salmon import config from salmon.common import commandgroup from salmon.common import compress as recompress from salmon.common import str_to_int_if_int from salmon.tagger.audio_info import gather_audio_info from salmon.tagger.combine import combine_metadatas from salmon.tagger.metadata import clean_metadata, remove_various_artists from salmon.tagger.retagger import create_artist_str from salmon.tagger.sources import run_metadata from salmon.uploader.spectrals import ( check_spectrals, handle_spectrals_upload_and_deletion, post_upload_spectral_check, ) from salmon.uploader.upload import generate_source_links for name in os.listdir( os.path.join(os.path.dirname(os.path.dirname(__file__)), "plugins") ): if not name.startswith(".") and not name.startswith("_"): if name.endswith(".py"): name = name[:-3] try: importlib.import_module(f"plugins.{name}") except ImportError as e: click.secho( f"The plugin {name} could not be imported.", fg="red", bold=True ) raise e loop = asyncio.get_event_loop() @commandgroup.command() @click.argument( "path", type=click.Path(exists=True, file_okay=False, resolve_path=True), nargs=1 ) @click.option("--no-delete-specs", "-nd", is_flag=True) @click.option("--format-output", "-f", is_flag=True) def specs(path, no_delete_specs, format_output): """Generate and open spectrals for a folder""" audio_info = gather_audio_info(path) _, sids = check_spectrals(path, audio_info, check_lma=False) spath = os.path.join(path, "Spectrals") spectral_urls = handle_spectrals_upload_and_deletion( spath, sids, delete_spectrals=not no_delete_specs ) filenames = list(audio_info.keys()) if spectral_urls: output = [] for spec_id, urls in spectral_urls.items(): if format_output: output.append( f'[hide={filenames[spec_id]}][img={"][img=".join(urls)}][/hide]' ) else: output.append(f'{filenames[spec_id]}: {" ".join(urls)}') output = "\n".join(output) click.secho(output) if config.COPY_UPLOADED_URL_TO_CLIPBOARD: pyperclip.copy(output) if no_delete_specs: click.secho(f'Spectrals saved to {os.path.join(path, "Spectrals")}', fg="green") @commandgroup.command() @click.argument("urls", type=click.STRING, nargs=-1) def descgen(urls): """Generate a description from metadata sources""" if not urls: return click.secho("You must specify at least one URL", fg="red") tasks = [run_metadata(url, return_source_name=True) for url in urls] metadatas = loop.run_until_complete(asyncio.gather(*tasks)) metadata = clean_metadata(combine_metadatas(*((s, m) for m, s in metadatas))) remove_various_artists(metadata["tracks"]) description = "[b][size=4]Tracklist[/b]\n\n" multi_disc = len(metadata["tracks"]) > 1 for dnum, disc in metadata["tracks"].items(): for tnum, track in disc.items(): if multi_disc: description += ( f"[b]{str_to_int_if_int(str(dnum), zpad=True)}-" f"{str_to_int_if_int(str(tnum), zpad=True)}.[/b] " ) else: description += f"[b]{str_to_int_if_int(str(tnum), zpad=True)}.[/b] " description += f'{create_artist_str(track["artists"])} - {track["title"]}\n' if metadata["comment"]: description += f"\n{metadata['comment']}\n" if metadata["urls"]: description += "\n[b]More info:[/b] " + generate_source_links(metadata["urls"]) click.secho("\nDescription:\n", fg="yellow", bold=True) click.echo(description) if config.COPY_UPLOADED_URL_TO_CLIPBOARD: pyperclip.copy(description) @commandgroup.command() @click.argument( "path", type=click.Path(exists=True, file_okay=False, resolve_path=True) ) def compress(path): """Recompress a directory of FLACs to level 8""" for root, _, figles in os.walk(path): for f in sorted(figles): if os.path.splitext(f)[1].lower() == ".flac": filepath = os.path.join(root, f) click.secho(f"Recompressing {filepath[len(path) + 1:]}...") recompress(filepath) @commandgroup.command() @click.option( "--torrent-id", "-i", default=None, help="Torrent id or URL, tracker from URL will overule -t flag.", ) @click.option( "--tracker", "-t", help=f'Tracker choices: ({"/".join(salmon.trackers.tracker_list)})', ) @click.argument( "path", type=click.Path(exists=True, file_okay=False, resolve_path=True), nargs=1, default=".", ) def checkspecs(tracker, torrent_id, path): """Will check the spectrals of a given torrent based on local files.\n By default checks the folder the script is run from. Can add spectrals to a torrent description and report a torrent as lossy web. """ if not torrent_id: click.secho("No torrent id provided.", fg="red") torrent_id = click.prompt( click.style( """Input a torrent id or a URL containing one. Tracker in a URL will override -t flag.""", fg="magenta", bold=True, ), ) if "/torrents.php" in torrent_id: base_url = parse.urlparse(torrent_id).netloc if base_url in salmon.trackers.tracker_url_code_map.keys(): # this will overide -t tracker tracker = salmon.trackers.tracker_url_code_map[base_url] else: click.echo('Unrecognised tracker!') raise click.Abort torrent_id = int( parse.parse_qs(parse.urlparse(torrent_id).query)['torrentid'][0] ) elif torrent_id.strip().isdigit(): torrent_id = int(torrent_id) else: click.echo('Not a valid torrent!') raise click.Abort tracker = salmon.trackers.validate_tracker(None, 'tracker', tracker) gazelle_site = salmon.trackers.get_class(tracker)() req = loop.run_until_complete(gazelle_site.request("torrent", id=torrent_id)) path = os.path.join(path, html.unescape(req['torrent']['filePath'])) source_url = None source = req['torrent']['media'] click.echo(f"Generating spectrals for {source} sourced: {path}") track_data = gather_audio_info(path) post_upload_spectral_check( gazelle_site, path, torrent_id, None, track_data, source, source_url )
2.015625
2
19-CS-Data-Structures/01_queue/queue.py
shalevy1/data-science-journal
71
12781591
<gh_stars>10-100 class Queue: def __init__(self): self.size = 0 # what data structure should we # use to store queue elements? self.storage = LinkedList() def enqueue(self, item): self.storage.add_to_tail(item) self.size += 1 def dequeue(self): item = self.storage.pop_head() # popping from head is easier than tail if item: self.size -= 1 return item def len(self): return self.size class Node: def __init__(self, value=None, next_node=None): self.value = value self.next_node = next_node # the above is all you need, but here are # some nice accessors: def get_value(self): return self.value def get_next(self): return self.next_node # a nice mutator: def set_next(self, new_next): self.next_node = new_next def __repr__(self): return f"{self.value}" class LinkedList: def __init__(self): self.head = None self.tail = None # methods to add to list def add_to_tail(self, value): new_node = Node(value) if not self.head: # so we can first add to head/tail self.head = new_node self.tail = new_node else: self.tail.set_next(new_node) self.tail = new_node def add_to_head(self, value): new_node = Node(value) if not self.head: # so we can first add to head/tail self.head = new_node self.tail = new_node else: temp_node = self.head self.head = new_node self.head.set_next(temp_node) # method to find in list def contains(self, value): if not self.head: # if no head, list is empty, cannot contain our v return False current = self.head while current: if current.get_value() == value: return True current = current.get_next() return False # method to remove from list def pop_head(self): if not self.head: return None else: temp_node = self.head self.head = self.head.get_next() return temp_node.value
4.0625
4
tests/qos/conftest.py
dmytroxshevchuk/sonic-mgmt
132
12781592
<gh_stars>100-1000 from .args.qos_sai_args import add_qos_sai_args from .args.buffer_args import add_dynamic_buffer_calculation_args # QoS pytest arguments def pytest_addoption(parser): ''' Adds option to QoS pytest Args: parser: pytest parser object Returns: None ''' add_qos_sai_args(parser) add_dynamic_buffer_calculation_args(parser)
1.757813
2
tool_read_file_to_db/read_file_to_db.py
xuerenlv/PaperWork
1
12781593
<reponame>xuerenlv/PaperWork<filename>tool_read_file_to_db/read_file_to_db.py # -*- coding: utf-8 -*- ''' Created on Oct 16, 2015 @author: nlp ''' import os from store_model import Single_weibo_store import sys import traceback reload(sys) sys.setdefaultencoding('utf8') if __name__ == '__main__': filelist = os.listdir('./china_hongkong_conflict_files') count = 0 for file_name in filelist: for line in open('./china_hongkong_conflict_files/' + file_name, 'r').readlines(): count+=1 line_change = line.split(']') uid = '' nickname = '' is_auth = '' weibo_url = '' content = '' praise_num = '' retweet_num = '' comment_num = '' creat_time = '' for one in line_change: if 'uid:' in one: uid = one[one.find(':') + 1:] if 'nickname:' in one: nickname = one[one.find(':') + 1:] if 'is_auth:' in one: is_auth = one[one.find(':') + 1:] if 'weibo_url:' in one: weibo_url = one[one.find(':') + 1:] if 'content:' in one: content = one[one.find(':') + 1:] if 'praise_num:' in one: praise_num = one[one.find(':') + 1:] if 'retweet_num:' in one: retweet_num = one[one.find(':') + 1:] if 'comment_num:' in one: comment_num = one[one.find(':') + 1:] if 'creat_time:' in one: creat_time = one[one.find(':') + 1:] print uid,nickname,is_auth print weibo_url print content print praise_num,retweet_num,comment_num print creat_time try: single_weibo = Single_weibo_store(uid, nickname, is_auth , weibo_url , content, praise_num , retweet_num, comment_num , creat_time) single_weibo.save() except: print traceback.format_exc() print count pass
2.234375
2
models/toy_models.py
MichaelArbel/GeneralizedEBM
40
12781594
<filename>models/toy_models.py from torch import nn import numpy as np import torch.nn.functional as F import torch from torch.nn.utils import spectral_norm as sn_official spectral_norm = sn_official import samplers import os class Generator(nn.Module): def __init__(self, dim=3, device ='cuda'): super(Generator, self).__init__() W = torch.eye(dim).float().to(device) U = torch.zeros([dim,dim]).float().to(device) U = torch.from_numpy( np.array([[1.,0,0],[0,1.,0],[0,0,1.]]) ).float().to(device) self.W = nn.Linear(dim,dim, bias=False) self.U = nn.Linear(dim,dim, bias=False) self.W.weight.data = W self.U.weight.data = U self.W.weight.requires_grad = False #self.U = U def forward(self, latent): # latent is a gaussian in 3D # normalize to get a uniform on the sphere Z = latent/torch.norm(latent, dim=1).unsqueeze(-1) U = self.W(Z) +self.U(Z**4) R = torch.sum(U**2, dim=1).unsqueeze(-1) return R*Z class Discriminator(nn.Module): def __init__(self,dim, device='cuda', sn = True): super(Discriminator, self).__init__() W_1 =torch.randn([dim, dim]).float().to(device) W_2 =torch.randn([dim, dim]).float().to(device) W_3 =torch.randn([dim, dim]).float().to(device) W_4 =torch.randn([dim, dim]).float().to(device) U = torch.ones([dim]).float().to(device)/np.sqrt(dim) self.W_1 = nn.Linear(dim,dim, bias=False) #self.W_2 = nn.Linear(dim,dim, bias=False) #self.W_3 = nn.Linear(dim,dim, bias=False) #self.W_4 = nn.Linear(dim,dim, bias=False) self.U = nn.Linear(dim,1, bias=False) self.W_1.weight.data = W_1 #self.W_2.weight.data = W_2 #self.W_3.weight.data = W_3 #self.W_4.weight.data = W_4 self.U.weight.data = U self.leak = 0.1 self.sn = sn if self.sn: self.main = nn.Sequential( spectral_norm(self.W_1), nn.LeakyReLU(self.leak), #spectral_norm(self.W_2), #nn.LeakyReLU(self.leak), #spectral_norm(self.W_3), #nn.LeakyReLU(self.leak), #spectral_norm(self.W_4), #nn.LeakyReLU(self.leak), spectral_norm(self.U) ) else: self.main = nn.Sequential( self.W_1, nn.LeakyReLU(self.leak), #self.W_2, #nn.LeakyReLU(self.leak), #self.W_3, #nn.LeakyReLU(self.leak), #self.W_4, #nn.LeakyReLU(self.leak), self.U ) def forward(self, data): return self.main(data) class BaseDataset(torch.utils.data.Dataset): def __init__(self, N_samples, dtype, device, b_size, root): self.total_size = N_samples self.cur_index = b_size self.b_size = b_size self.device = device self.N_samples = N_samples self.dtype=dtype D=3 self.base = Generator(dim=D).to(self.device) self.base.W.weight.data = torch.eye(3).float().to(self.device) self.base.U.weight.data = torch.from_numpy( np.array([[1.,0,0],[0,1.,0],[0,0,1.]]) ).float().to(self.device) self.energy = Discriminator(dim=D, sn=False).to(device) W_1 = np.array([[0.1,-1.,-1.],[-1.,0.1,-1.],[-1.,-1.,0.1]]) W_2 = np.array([[-0.1,-1.,1.],[-1.,-0.1,1.],[1.,-1.,-0.1]]) W_3 = np.array([[-0.1,-1.,1.],[-1.,-0.1,1.],[1.,-1.,-0.1]]) W_4 = np.array([[0.1,-1.,-1.],[-1.,0.1,-1.],[-1.,-1.,0.1]]) U = np.array([1.,1.,1.])/np.sqrt(3) _,S_1,_ = np.linalg.svd(W_1) _,S_2,_ = np.linalg.svd(W_2) _,S_3,_ = np.linalg.svd(W_3) _,S_4,_ = np.linalg.svd(W_4) W_1 = W_1/S_1[0] W_2 = W_2/S_2[0] W_3 = W_3/S_3[0] W_4 = W_4/S_4[0] self.energy.W_1.weight.data = torch.from_numpy(W_1).float().to(self.device) #self.energy.W_2.weight.data = torch.from_numpy(W_2).float().to(self.device) #self.energy.W_3.weight.data = torch.from_numpy(W_3).float().to(self.device) #self.energy.W_4.weight.data = torch.from_numpy(W_4).float().to(self.device) self.energy.U.weight.data = torch.from_numpy( U ).float().to(self.device) self.source = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros([D] ).to(self.device), torch.eye(D).to(self.device)) self.latent_potential = samplers.Latent_potential(self.base,self.energy, self.source, 1.) self.latent_sampler = samplers.MALA(self.latent_potential, T=1000, gamma=1e-3) file_name = 'toy_data' data_path = os.path.join(root, file_name) if not os.path.exists(data_path+'.npz'): data, latents, noise = self.make_data() np.savez(data_path, data=data.cpu().numpy(), latents=latents.cpu().numpy(), noise=noise.cpu().numpy()) else: dataset = np.load(data_path+'.npz') self.data = torch.from_numpy(dataset['data']) self.latents = torch.from_numpy(dataset['latents']) self.noise = torch.from_numpy(dataset['noise']) self.counter = 0 def make_data(self): self.noise =torch.cat([ self.source.sample([self.b_size]).cpu() for b in range(int( self.N_samples/self.b_size)+1)], dim=0) self.latents = self.sample_latents(self.noise , T = 100) self.data = self.sample_data(self.latents) return self.data, self.latents, self.noise def __len__(self): return self.total_size def sample_latents(self,priors, T, with_acceptance = False): #return priors posteriors = [] avg_acceptences = [] for b, prior in enumerate(priors.split(self.b_size, dim=0)): prior = prior.clone().to(self.device) posterior,avg_acceptence = self.latent_sampler.sample(prior,sample_chain=False,T=T) posteriors.append(posterior) avg_acceptences.append(avg_acceptence) posteriors = torch.cat(posteriors, axis=0) avg_acceptences = np.mean(np.array(avg_acceptences), axis=0) if with_acceptance: return posteriors, avg_acceptences else: return posteriors def sample_data(self, latents, to_cpu = True, as_list=False): self.base.eval() self.energy.eval() images = [] for latent in latents.split(self.b_size, dim=0): with torch.no_grad(): img = self.base(latent.to(self.device)) if to_cpu: img = img.cpu() images.append(img) if as_list: return images else: return torch.cat(images, dim=0) def __getitem__(self,index): self.counter +=1 if np.mod(self.counter, 100.*self.N_samples ) ==0: print('sampling data') self.latents = self.sample_latents(self.latents , T = 10) self.data = self.sample_data(self.latents) return self.data[index],self.data[index]
2.203125
2
direct_posterior_comparison.py
cunningham-lab/cyclic-gps
0
12781595
<reponame>cunningham-lab/cyclic-gps import numpy as np import torch from torch.nn import Parameter from cyclic_gps.models import LEGFamily import matplotlib.pyplot as plt DTYPE = torch.double RANK = 5 PATH_TO_NPY = "../numpy_arrays/" with open(PATH_TO_NPY + "sample3_ts.npy", "rb") as f: sample3_ts = np.load(f) with open(PATH_TO_NPY + "sample3_vals.npy", "rb") as f: sample3_vals = np.load(f) with open(PATH_TO_NPY + "N.npy", "rb") as f: N = np.load(f) with open(PATH_TO_NPY + "R.npy", "rb") as f: R = np.load(f) with open(PATH_TO_NPY + "B.npy", "rb") as f: B = np.load(f) with open(PATH_TO_NPY + "Lambda.npy", "rb") as f: L = np.load(f) sample3_ts = torch.from_numpy(sample3_ts) sample3_vals = torch.from_numpy(sample3_vals) N = torch.from_numpy(N) R = torch.from_numpy(R) B = torch.from_numpy(B) L = torch.from_numpy(L) print(sample3_ts.shape) print(sample3_vals.shape) print(N.shape) leg_model = LEGFamily(rank=RANK, obs_dim=sample3_vals.shape[1], data_type=DTYPE) leg_model.N = Parameter(N) leg_model.R = Parameter(R) leg_model.B = Parameter(B) leg_model.Lambda = Parameter(L) leg_model.calc_G() # print(leg_model.N) # print(leg_model.R) # print(leg_model.B) # print(leg_model.Lambda) sample3_ts_chopped = sample3_ts[:200] sample3_vals_chopped = sample3_vals[:200] test_ll = leg_model.log_likelihood(sample3_ts, sample3_vals) print("test log_likelihood with jackson's params: {}".format(test_ll)) forecast_times = sample3_ts[200:300] # plt.scatter(sample3_ts,sample3_vals[:,0],color='C1',alpha=.2) # plt.scatter(sample3_ts_chopped,sample3_vals_chopped[:,0],color='C0') # plt.show() #print("N check before preds: {}".format(leg_model.N)) pred_means, pred_variances = leg_model.make_predictions(sample3_ts_chopped, sample3_vals_chopped, forecast_times) #print("N check after preds: {}".format(leg_model.N)) pred_means = pred_means.detach().numpy() pred_variances = pred_variances.detach().numpy() plt.scatter(sample3_ts_chopped, sample3_vals_chopped[:, 0], label='observed data') plt.scatter(sample3_ts[200:300], sample3_vals[200:300][:, 0],label='censored data') plt.plot(forecast_times, pred_means[:,0], 'C1', label='forecasting') plt.fill_between(forecast_times, pred_means[:,0]+2*np.sqrt(pred_variances[:,0,0]), pred_means[:,0]-2*np.sqrt(pred_variances[:,0,0]), color='black',alpha=.5,label='Uncertainty') plt.legend() #bbox_to_anchor=[1,1],fontsize=20 plt.show()
2.40625
2
0350_Intersection_of_Two_Arrays_II.py
21PIRLO21/LeetCode2020
0
12781596
from collections import Counter # sort class Solution_1: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: nums1.sort() nums2.sort() res = [] len1 = len(nums1) len2 = len(nums2) idx1 = 0 idx2 = 0 while idx1 < len1 and idx2 < len2: if nums1[idx1] < nums2[idx2]: idx1 += 1 elif nums1[idx1] > nums2[idx2]: idx2 += 1 else: res.append(nums1[idx1]) idx1 += 1 idx2 += 1 return res # hash class Solution_2: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: Hash = {} for i in range(len(nums1)): if nums1[i] not in Hash: # Hash 的可以是一个 list object Hash[nums1[i]] = [i] else: Hash[nums1[i]].append(i) res = [] for j in range(len(nums2)): if nums2[j] in Hash: res.append(nums2[j]) Hash[nums2[j]].pop() if Hash[nums2[j]] == []: del Hash[nums2[j]] return res # the fastest class Solution_3: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: from collections import Counter res = [] for k, v in (Counter(nums1) & Counter(nums2)).items(): for _ in range(v): res.append(k) return res
3.359375
3
tests/test_validate_quantile_csv_file.py
Serena-Wang/zoltpy
0
12781597
import json from unittest import TestCase from unittest.mock import patch from zoltpy.covid19 import validate_config_dict, validate_quantile_csv_file class CdcIOTestCase(TestCase): """ """ def test_validate_quantile_csv_file_calls_validate_config_dict(self): validation_config = {'target_groups': [{"outcome_variable": "inc flu hosp", "targets": [], "locations": [], "quantiles": []}]} with patch('zoltpy.covid19.validate_config_dict') as validate_config_mock: validate_quantile_csv_file('tests/quantile-predictions.csv', validation_config) validate_config_mock.assert_called_once_with(validation_config) validation_config = {'target_groups': [ {"outcome_variable": "inc flu hosp", "targets": [], "locations": [], "quantiles": ['not a number']}]} error_messages = validate_quantile_csv_file('tests/quantile-predictions.csv', validation_config) self.assertEqual(1, len(error_messages)) self.assertIn("invalid validation_config", error_messages[0]) def test_validate_config_dict(self): # case: not a dict with self.assertRaisesRegex(RuntimeError, "validation_config was not a dict"): validate_config_dict(None) # case: dict but no 'target_groups' key with self.assertRaisesRegex(RuntimeError, "validation_config did not contain 'target_groups' key"): validate_config_dict({}) # case: has 'target_groups', but not a list with self.assertRaisesRegex(RuntimeError, "'target_groups' was not a list"): validate_config_dict({'target_groups': None}) # case: dict with one 'target_groups', but not all keys present in it with self.assertRaisesRegex(RuntimeError, "one or more target group keys was missing"): validate_config_dict({'target_groups': [{}]}) # case: dict with one 'target_groups' with all keys present, but targets, locations, and quantiles not lists bad_target_groups = [{"outcome_variable": "inc flu hosp", "targets": 'not a list', "locations": [], "quantiles": []}, {"outcome_variable": "inc flu hosp", "targets": [], "locations": 'not a list', "quantiles": []}, {"outcome_variable": "inc flu hosp", "targets": [], "locations": [], "quantiles": 'not a list'}] for bad_target_group in bad_target_groups: with self.assertRaisesRegex(RuntimeError, "one of these fields was not a list"): validate_config_dict({'target_groups': [bad_target_group]}) # case: dict with one 'target_groups', but its name is not a string with self.assertRaisesRegex(RuntimeError, "'outcome_variable' field was not a string"): validate_config_dict({'target_groups': [{"outcome_variable": None, "targets": [], "locations": [], "quantiles": []}]}) # case: dict with one 'target_groups' with all keys present, but targets or locations contain non-strings bad_target_groups = [{"outcome_variable": "inc flu hosp", "targets": [-1], "locations": [], "quantiles": []}, {"outcome_variable": "inc flu hosp", "targets": [], "locations": [-1], "quantiles": []}] for bad_target_group in bad_target_groups: with self.assertRaisesRegex(RuntimeError, "one of these fields contained non-strings"): validate_config_dict({'target_groups': [bad_target_group]}) # case: dict with one 'target_groups' with all keys present, but quantiles contains non-numbers with self.assertRaisesRegex(RuntimeError, "'quantiles' field contained non-numbers"): validate_config_dict({'target_groups': [ {"outcome_variable": "inc flu hosp", "targets": [], "locations": [], "quantiles": ['not a number']}]}) # case: blue sky try: validate_config_dict({'target_groups': [{"outcome_variable": "inc flu hosp", "targets": [], "locations": [], "quantiles": []}]}) except Exception as ex: self.fail(f"unexpected exception: {ex}") # case: load from file with open('tests/covid-validation-config.json', 'r') as fp: validation_config = json.load(fp) try: validate_config_dict(validation_config) except Exception as ex: self.fail(f"unexpected exception: {ex}")
2.546875
3
fsm/states/gui.py
nczeak/switchgrass_cv_application
0
12781598
<gh_stars>0 class WelcomeState: """ The welcome state for the application. """
1.195313
1
tests/test_cell.py
kafonek/gridthings
2
12781599
import pytest from gridthings import Cell # Cells represent individual data points in a grid # They implement a variety of mathematical dunder methods # so that they can be compared, sorted, and manipulated def test_cell_when_equal(): c1 = Cell(y=0, x=0, value="foo") c2 = Cell(y=0, x=1, value="foo") # using ==, cell values are equal but actual # cell objects are not considered equal assert c1.value == c2.value assert c1 != c2 # When > and < operators are used, it's # a pure comparison on values # so c1 == c2 is False, but c1 >= c2 is True assert c1 >= c2 assert c2 >= c1 assert c1 <= c2 assert c2 <= c1 def test_cell_when_unequal(): c1 = Cell(y=0, x=0, value=1) c2 = Cell(y=0, x=1, value=2) assert c1 != c2 assert c1 < c2 assert c1 <= c2 assert c2 > c1 assert c2 >= c1 def test_cell_against_non_cells(): cell = Cell(y=0, x=0, value=2) # __eq__ assert cell == 2 assert 2 == cell # __ne__ assert cell != 0 assert 0 != cell # __gte__ / __lte__ assert 3 >= cell assert cell <= 3 assert 1 <= cell assert cell >= 1 # __gt__ / __lt__ assert 3 > cell assert cell < 3 assert 1 < cell assert cell > 1 # __add__ assert cell + 2 == 4 assert 2 + cell == 4 # __sub__ assert 2 - cell == 0 assert cell - 2 == 0 # __mul__ assert 3 * cell == 6 assert cell * 3 == 6 # __truediv__ assert cell / 2 == 1 # __pow__ assert cell ** 3 == 8 def test_cell_when_mismatched_datatype(): c1 = Cell(y=0, x=0, value="foo") c2 = Cell(y=0, x=0, value=1) assert c1 != c2 with pytest.raises(TypeError): # < not supported between instances of 'str' and 'int' assert c1 < c2 def test_cell_str_concat(): c1 = Cell(y=0, x=0, value="foo") c2 = Cell(y=0, x=1, value="bar") assert c1 + c2 == "foobar" assert c2 + c1 == "barfoo" assert c1 + "baz" == "foobaz" assert "baz" + c2 == "bazbar" def test_cell_int_math(): c1 = Cell(y=0, x=0, value=2) c2 = Cell(y=0, x=0, value=4) c3 = Cell(y=0, x=0, value=6) assert c1 + c2 == 6 assert c2 + c1 == 6 assert c1 + 2 == 4 assert 2 + c1 == 4 assert c1 + c2 + c3 == 12 assert c2 - c1 == 2 assert 4 - c1 == 2 assert c3 - c2 - c1 == 0 assert c1 * c2 == 8 assert 2 * c2 == 8 assert c1 * c2 * c3 == 48 assert c1 / c2 == 0.5 assert 4 / c1 == 2 assert c1 ** 3 == 8 assert c2 ** c1 == 16 assert 2 ** c1 == 4 def test_subclass_cell(): class MyCell(Cell): extra_arg: bool = True cell = MyCell(y=0, x=0, value=1) assert cell.dict() == {"y": 0, "x": 0, "value": 1, "extra_arg": True} cell2 = MyCell(y=0, x=0, value=1, extra_arg=False) assert cell2.dict() == {"y": 0, "x": 0, "value": 1, "extra_arg": False}
3.5
4
conf/twitterbot_config.py
xabrickx/chirping-snoos
0
12781600
import os import logging #[PATHS] # Paths will be based on the location of this file which is ./conf by default. Adjust accordingly! FILEPATH = os.path.abspath(os.path.dirname(__file__)) ENV_PATH = FILEPATH + "/env" #[LOGGING] LOG_PATH = FILEPATH + "/../logs/" LOG_FILE = "twitterbot.log" LOG_LEVEL = logging.DEBUG #[PRAW] USER_AGENT = "" #Your Unique USER AGENT for Reddit SUBREDDIT = "" # The Subreddit you want to target REDDIT_NEWPOST_LIMIT = 100 #How many new posts to check REDDIT_SHORTPATH = "redd.it/" # For creating the shortlink to reddit #[DB] TWEETDATA_PATH = FILEPATH + "/../db/" TWEETDATA_FILENAME = "chirping-snoos.db" subtweet_kwargs = {"tweetdata_path" : TWEETDATA_PATH, "tweetdb_filename" : TWEETDATA_FILENAME} #[TWITTER] TWEET_UPVOTE_THRESHOLD = 10 #Minimum upvotes to be considered for tweeting TWEET_COMMENT_THRESHOLD = 20 #minimum comments to be considered for tweeting TWEET_ABSOLUTE_LIMIT = 270 #Max characters for a tweet TWEET_PREFIX="" #This text will appear before the title from reddit TWEET_SUFFIX="" #This text will appear after the title and link from reddit TWEET_PART_SEPARATOR = " " #This is used to separate the prefix, title, link and suffix if desired INTERTWEET_DELAY_SEC = 0.7 # Delay between tweets. Recommended 0.5 or more to avoid flooding twitter TWITTER_TIMESTAMP_FORMAT = "%a %b %d %H:%M:%S %z %Y" #Import Twitters timestamnp into arrow #If the title is too long, it will be shortened to fit. #Longtitle_Hint is shown at the end of the shortened text to symbolize shortening TWEET_LONGTITLE_HINT = "..."
2.421875
2
special_cases.py
GBTAmmoniaSurvey/LineFitting
0
12781601
#======================================================================================================================= # an example file on how to build special test/training cubes using nh3_testcube.py #======================================================================================================================= import numpy as np import pyspeckit.spectrum.models.ammonia_constants as nh3con from pyspeckit.spectrum.units import SpectroscopicAxis as spaxis from astropy.utils.console import ProgressBar import sys import nh3_testcubes as testcubes def generate_cubes(nCubes=100, nBorder=1, noise_rms=0.1, output_dir='random_cubes', random_seed=None, linenames=['oneone', 'twotwo'], remove_low_sep=True, noise_class=True): xarrList = [] lineIDList = [] for linename in linenames: # generate spectral axis for each ammonia lines xarr = spaxis((np.linspace(-500, 499, 1000) * 5.72e-6 + nh3con.freq_dict[linename] / 1e9), unit='GHz', refX=nh3con.freq_dict[linename] / 1e9, velocity_convention='radio', refX_unit='GHz') xarrList.append(xarr) # specify the ID fore each line to appear in saved fits files if linename is 'oneone': lineIDList.append('11') elif linename is 'twotwo': lineIDList.append('22') else: # use line names at it is for lines above (3,3) lineIDList.append(linename) # generate random parameters for nCubes nComps, Temp, Width, Voff, logN = testcubes.generate_parameters(nCubes, random_seed) gradX, gradY = testcubes.generate_gradients(nCubes, random_seed) if noise_class: # Creates a balanced training set with 1comp, noise, and 2comp classes nComps = np.concatenate((np.zeros(nCubes / 3).astype(int), np.ones(nCubes / 3).astype(int), np.ones(nCubes / 3 + nCubes%3).astype(int) + 1)) if remove_low_sep: Voff = remove_low_vsep(Voff, Width) cubes = [] for xarr, lineID in zip(xarrList, lineIDList): # generate cubes for each line specified cubeList = [] print('----------- generating {0} lines ------------'.format(lineID)) for i in ProgressBar(range(nCubes)): cube_i = testcubes.make_and_write(nCubes, nComps[i], i, nBorder, xarr, Temp[i], Width[i], Voff[i], logN[i], gradX[i], gradY[i] , noise_rms, lineID, output_dir) cubeList.append(cube_i) cubes.append(cubeList) return cubes def remove_low_vsep(Voff, Width): Voff = Voff.swapaxes(0, 1) Voff1, Voff2 = Voff[0], Voff[1] Width = Width.swapaxes(0, 1) Width1, Width2 = Width[0], Width[1] # Find where centroids are too close too_close = np.where(np.abs(Voff1 - Voff2) < np.max(np.column_stack((Width1, Width2)), axis=1)) # Move the centroids farther apart by the length of largest line width min_Voff = np.min(np.column_stack((Voff2[too_close], Voff1[too_close])), axis=1) max_Voff = np.max(np.column_stack((Voff2[too_close], Voff1[too_close])), axis=1) Voff1[too_close] = min_Voff - np.max(np.column_stack((Width1[too_close], Width2[too_close])), axis=1) / 2. Voff2[too_close] = max_Voff + np.max(np.column_stack((Width1[too_close], Width2[too_close])), axis=1) / 2. Voff = np.array([Voff1, Voff2]).swapaxes(0, 1) return Voff if __name__ == '__main__': print(sys.argv) if len(sys.argv) > 1: generate_cubes(nCubes=int(sys.argv[1])) else: generate_cubes()
2.03125
2
tests/test_bed_adapter_consumer_kafka_timer.py
ba-tno/python-test-bed-adapter
1
12781602
<reponame>ba-tno/python-test-bed-adapter import unittest import sys import threading import time import logging import json sys.path.append("..") import datetime from test_bed_adapter.options.test_bed_options import TestBedOptions from test_bed_adapter import TestBedAdapter logging.basicConfig(level=logging.INFO) class TestConsumerWithAdapter(unittest.TestCase): def test_consumer_from_adapter(self, **keywords): self.was_any_message_obtained = False self.wait_seconds = 5 #If no options are provided we grab them from file if (not "test_bed_options" in keywords.keys()): options_file = open("config_files_for_testing/test_bed_options_for_tests_consumer.json", encoding="utf8") options = json.loads(options_file.read()) options_file.close() test_bed_options = TestBedOptions(options) test_bed_options.client_id = test_bed_options.client_id + "---" + str(datetime.datetime.now()) test_bed_adapter = TestBedAdapter(test_bed_options) else: test_bed_options = keywords["test_bed_options"] #We add the message handler test_bed_adapter.on_message += self.handle_message e = threading.Event() t = threading.Thread(target=self.run_consumer_in_thread, args=(e, test_bed_adapter)) t.start() # wait 30 seconds for the thread to finish its work t.join(self.wait_seconds) if t.is_alive(): print "thread is not done, setting event to kill thread." e.set() else: print "thread has already finished." # If we have a parameter with a boolean "expect_messages" we check that we obtained messages according to it. if ("expect_messages" in keywords.keys()): self.assertTrue(keywords["expect_messages"] == self.was_any_message_obtained) else: self.assertTrue(self.was_any_message_obtained) test_bed_adapter.stop() pass def handle_message(self,message): logging.info("\n\n-------\n\n") self.was_any_message_obtained=True logging.info(message) def run_consumer_in_thread(self, e, test_bed_adapter): data = set() test_bed_adapter.initialize() test_bed_adapter.consumer_managers["standard_cap"].listen_messages() # test_bed_adapter.consumers["simulation-entity-item"].listen_messages() for i in range(self.wait_seconds): data.add(i) if not e.isSet(): time.sleep(1) else: break if __name__ == '__main__': unittest.main()
2.375
2
scripts/automation/trex_control_plane/stf/trex_stf_lib/trex_daemon_server.py
timgates42/trex-core
956
12781603
#!/usr/bin/python import outer_packages import daemon from trex_server import do_main_program, trex_parser import CCustomLogger import logging import time import sys import os, errno import grp import signal from daemon import runner from extended_daemon_runner import ExtendedDaemonRunner import lockfile import errno class TRexServerApp(object): def __init__(self): TRexServerApp.create_working_dirs() self.stdin_path = '/dev/null' self.stdout_path = '/dev/tty' # All standard prints will come up from this source. self.stderr_path = "/var/log/trex/trex_daemon_server.log" # All log messages will come up from this source self.pidfile_path = '/var/run/trex/trex_daemon_server.pid' self.pidfile_timeout = 5 # timeout in seconds def run(self): do_main_program() @staticmethod def create_working_dirs(): if not os.path.exists('/var/log/trex'): os.mkdir('/var/log/trex') if not os.path.exists('/var/run/trex'): os.mkdir('/var/run/trex') def main (): trex_app = TRexServerApp() # setup the logger default_log_path = '/var/log/trex/trex_daemon_server.log' try: CCustomLogger.setup_daemon_logger('TRexServer', default_log_path) logger = logging.getLogger('TRexServer') logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s %(name)-10s %(module)-20s %(levelname)-8s %(message)s") handler = logging.FileHandler("/var/log/trex/trex_daemon_server.log") logger.addHandler(handler) except EnvironmentError, e: if e.errno == errno.EACCES: # catching permission denied error print "Launching user must have sudo privileges in order to run TRex daemon.\nTerminating daemon process." exit(-1) daemon_runner = ExtendedDaemonRunner(trex_app, trex_parser) #This ensures that the logger file handle does not get closed during daemonization daemon_runner.daemon_context.files_preserve=[handler.stream] try: if not set(['start', 'stop']).isdisjoint(set(sys.argv)): print "Logs are saved at: {log_path}".format( log_path = default_log_path ) daemon_runner.do_action() except lockfile.LockTimeout as inst: logger.error(inst) print inst print """ Please try again once the timeout has been reached. If this error continues, consider killing the process manually and restart the daemon.""" if __name__ == "__main__": main()
2.03125
2
arangodb/tests/test_arangodb.py
OuesFa/integrations-core
0
12781604
# (C) Datadog, Inc. 2022-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import logging import os import mock import pytest from requests import HTTPError from datadog_checks.arangodb import ArangodbCheck from datadog_checks.dev.http import MockResponse from datadog_checks.dev.utils import get_metadata_metrics from .common import METRICS @pytest.mark.integration def test_invalid_endpoint(aggregator, instance_invalid_endpoint, dd_run_check): check = ArangodbCheck('arangodb', {}, [instance_invalid_endpoint]) with pytest.raises(Exception): dd_run_check(check) aggregator.assert_service_check('arangodb.openmetrics.health', ArangodbCheck.CRITICAL, count=1) @pytest.mark.integration @pytest.mark.parametrize( 'tag_condition, base_tags', [ pytest.param( 'valid_id_mode', ['endpoint:http://localhost:8529/_admin/metrics/v2', 'server_mode:default', 'server_id:1'], id="valid id and valid mode", ), pytest.param( 'invalid_mode_valid_id', ['endpoint:http://localhost:8529/_admin/metrics/v2', 'server_id:1'], id="invalid mode but valid id", ), pytest.param( 'valid_mode_invalid_id', ['endpoint:http://localhost:8529/_admin/metrics/v2', 'server_mode:default'], id="valid mode but invalid id", ), pytest.param( 'invalid_mode_invalid_id', ['endpoint:http://localhost:8529/_admin/metrics/v2'], id="invalid mode and invalid id", ), ], ) def test_check(instance, dd_run_check, aggregator, tag_condition, base_tags): check = ArangodbCheck('arangodb', {}, [instance]) def mock_requests_get(url, *args, **kwargs): fixture = url.rsplit('/', 1)[-1] return MockResponse(file_path=os.path.join(os.path.dirname(__file__), 'fixtures', tag_condition, fixture)) with mock.patch('requests.get', side_effect=mock_requests_get, autospec=True): dd_run_check(check) aggregator.assert_service_check( 'arangodb.openmetrics.health', ArangodbCheck.OK, count=1, tags=['endpoint:http://localhost:8529/_admin/metrics/v2'], ) aggregator.assert_metrics_using_metadata(get_metadata_metrics()) for metric in METRICS: aggregator.assert_metric(metric) for tag in base_tags: aggregator.assert_metric_has_tag(metric, tag) aggregator.assert_all_metrics_covered() @pytest.mark.parametrize( 'side_effect, log_message', [ pytest.param( HTTPError, "Unable to get server foo, skipping `server_foo` tag.", id="HTTPError getting server tag" ), pytest.param( Exception, "Unable to query `http://localhost:8529/test_endpoint/foo` to collect `server_foo` tag, received error:", id="Exception getting server tag", ), ], ) def test_get_server_tag(instance, caplog, side_effect, log_message): caplog.clear() check = ArangodbCheck('arangodb', {}, [instance]) with mock.patch("datadog_checks.base.utils.http.RequestsWrapper.get", side_effect=side_effect): caplog.set_level(logging.DEBUG) check.get_server_tag('foo', '/test_endpoint/foo') assert log_message in caplog.text @pytest.mark.parametrize( 'server_tags, args', [ pytest.param([None, None], [], id="No server tags returned"), pytest.param( ['server_mode:foo', 'server_id:bar'], ['server_mode:foo', 'server_id:bar'], id="Server tags returned" ), ], ) def test_refresh_scrapers(instance, server_tags, args): check = ArangodbCheck('arangodb', {}, [instance]) with mock.patch("datadog_checks.arangodb.check.ArangodbCheck.get_server_tag") as mock_get_server_tag: mock_get_server_tag.side_effect = server_tags check.set_dynamic_tags = mock.MagicMock() check.refresh_scrapers() check.set_dynamic_tags.assert_called_once_with(*args)
1.96875
2
test/db_test/operate_remote_dbs/context_prepare.py
AnonymousAuthor2013/KnowAlpha
2
12781605
from programmingalpha.DataSet.DBLoader import MongoStackExchange import programmingalpha from programmingalpha.Utility.TextPreprocessing import PreprocessPostContent import json import logging import argparse import tqdm import multiprocessing logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) def init(questionsData_G,answersData_G,indexData_G,copy=True): global preprocessor preprocessor=PreprocessPostContent() global questionsData,answersData,indexData if copy: questionsData=questionsData_G.copy() answersData=answersData_G.copy() indexData=indexData_G.copy() else: questionsData=questionsData_G answersData=answersData_G indexData=indexData_G logger.info("process {} init".format(multiprocessing.current_process())) def fetchQuestionData(q_ids_set): questionsData={} needed_answerIds=set() query={ "$or":[ {"AcceptedAnswerId":{"$exists":True,"$ne":''},"FavoriteCount":{"$gte":3}}, {"AnswerCount":{"$gte":args.answerNum}}, ] } for question in tqdm.tqdm(docDB.questions.find(query).batch_size(args.batch_size),desc="loading questions"): Id=question["Id"] if Id not in q_ids_set: continue del question["_id"] questionsData[Id]={"Title":question["Title"],"Body":question["Body"],"AcceptedAnswerId":question["AcceptedAnswerId"]} needed_answerIds.add(question["AcceptedAnswerId"]) logger.info("loaded: questions({})".format(len(questionsData))) return questionsData, needed_answerIds def fetchAnswerData(ansIdxGlobal,questionsDataGlobal): answersData={} for ans in tqdm.tqdm(docDB.answers.find().batch_size(args.batch_size),desc="loading answers"): Id=ans["Id"] if Id not in ansIdxGlobal or ans["ParentId"] not in questionsDataGlobal: continue answersData[Id]={"Body":ans["Body"],"Score":ans["Score"]} logger.info("loaded: answers({})".format(len(answersData))) return answersData def fetchIndexData(questionDataGlobal): indexData={} for indexer in tqdm.tqdm(docDB.stackdb["QAIndexer"].find().batch_size(args.batch_size),desc="loading indexers"): Id=indexer["Id"] if Id not in questionDataGlobal: continue del indexer["_id"] indexData[Id]=indexer logger.info("loaded: indexer({})".format(len(indexData))) return indexData #generate Core def _getBestAnswers(q_id,K): answers=[] if "AcceptedAnswerId" in questionsData[q_id]: ans_id=questionsData[q_id]["AcceptedAnswerId"] if ans_id in answersData: answer=answersData[ans_id] K-=1 ans_idx=indexData[q_id]["Answers"] scored=[] for id in ans_idx: if id in answersData: scored.append((id,answersData[id]["Score"])) if scored: scored.sort(key=lambda x:x[1],reverse=True) for i in range(min(K-1,len(scored))): id=scored[i][0] answers.append(answersData[id]) if K<args.answerNum: answers=[answer]+answers return answers def _getPreprocess(txt): txt_processed=preprocessor.getPlainTxt(txt) if len(" ".join(txt_processed).split())<20: return None return txt_processed def _genCore(distances): #try: q_id=distances["id"] #get question if q_id not in questionsData: return None question=questionsData[q_id] title=question["Title"] body=question["Body"] question =_getPreprocess(body) if not question: return None question=[title]+question #get answer answer=_getBestAnswers(q_id, K=args.answerNum) if not answer: return None answer=_getPreprocess(answer[0]["Body"]) if not answer: return None #get context relative_q_ids=[] dists=distances["distances"] for id in dists: if id not in questionsData: continue if len(relative_q_ids)>=10: break if dists[id]==1: relative_q_ids.append(id) elif dists[id]==0: relative_q_ids.insert(0,id) else: pass if len(relative_q_ids)==0: return None context=[] for q_id in relative_q_ids: ans=_getBestAnswers(q_id,args.answerNum) if not ans: continue context.extend(ans) if len(context)==0: #logger.info("due to none context") return None context.sort(key=lambda ans:ans["Score"],reverse=True) contexts=[] for txt in context: txt=_getPreprocess(txt["Body"]) if not txt: continue contexts.extend(txt) if len(contexts)==0: #logger.info("due to none context") return None record={"question":question,"context":contexts,"answer":answer} return record #except : # logger.warning("except triggered for distance data: {}".format(distances)) # return None def generateContextAnswerCorpusParallel(distanceData,questionsDataGlobal,answersDataGlobal,indexDataGlobal): cache=[] batch_size=args.batch_size batches=[distanceData[i:i+batch_size] for i in range(0,len(distanceData),batch_size)] workers=multiprocessing.Pool(args.workers,initializer=init, initargs=(questionsDataGlobal,answersDataGlobal,indexDataGlobal) ) with open(programmingalpha.DataPath+"Corpus/"+args.db.lower()+"-context.json","w") as f: for batch_links in tqdm.tqdm(batches,desc="processing documents"): for record in workers.map(_genCore,batch_links): if record is not None: cache.append(json.dumps(record)+"\n") f.writelines(cache) cache.clear() workers.close() workers.join() def generateContextAnswerCorpus(distanceData,questionsDataGlobal,answersDataGlobal,indexDataGlobal): cache=[] init(questionsDataGlobal,answersDataGlobal,indexDataGlobal,copy=False) with open(programmingalpha.DataPath+"Corpus/"+args.db.lower()+"-context.json","w") as f: for link in tqdm.tqdm(distanceData,desc="processing documents"): record =_genCore(link) if record is not None: cache.append(json.dumps(record)+"\n") if len(cache)>args.batch_size: f.writelines(cache) cache.clear() if len(cache)>0: f.writelines(cache) cache.clear() def main(): logger.info("loading distance data") distance_file=programmingalpha.DataPath+"linkData/"+dbName.lower()+'-2graph.json' distance_data=[] q_ids_set=set() with open(distance_file,"r") as f: for line in f: path=json.loads(line) q_ids_set.add(path["id"]) q_ids_set.update(path["distances"]) distance_data.append(path) logger.info("loaded {} links data".format(len(distance_data))) questionsDataGlobal, ansIdxGlobal=fetchQuestionData(q_ids_set) answersDataGlobal=fetchAnswerData(ansIdxGlobal,questionsDataGlobal.keys()) indexerDataGlobal=fetchIndexData(questionsDataGlobal.keys()) distance_dataNew=[] for distance in distance_data: id=distance["id"] if len(distance["distances"])==0: continue if id not in questionsDataGlobal: continue new_distance={"id":int(id),"distances":{}} for k,v in distance["distances"].items(): k=int(k) v=int(v) new_distance["distances"][k]=v distance_dataNew.append(new_distance) logger.info("finally loaded {} links data".format(len(distance_dataNew))) generateContextAnswerCorpusParallel(distance_dataNew,questionsDataGlobal,answersDataGlobal,indexerDataGlobal) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--db', type=str, default="crossvalidated") parser.add_argument('--lose_rate', type=float, default=0.5) parser.add_argument("--answerNum",type=int,default=5) parser.add_argument('--workers', type=int, default=32) args = parser.parse_args() docDB=MongoStackExchange(host='10.1.1.9',port=50000) dbName=args.db docDB.useDB(dbName) logger.info("processing db data: {}".format(dbName)) main()
2.21875
2
Code/UI/splash_ui.py
jphdotam/Cophy
0
12781606
from Code.UI.splash_layout import Ui_MainWindow from Code.UI.label import LabelUI #from ui.export_ui import ExportUI #from ui.questionnaire_ui import QuestionnaireUI from PyQt5 import QtCore import sys, traceback if QtCore.QT_VERSION >= 0x50501: def excepthook(type_, value, traceback_): traceback.print_exception(type_, value, traceback_) QtCore.qFatal('') sys.excepthook = excepthook class MainWindowUI(Ui_MainWindow): def __init__(self, mainwindow): super(MainWindowUI, self).__init__() self.mainwindow = mainwindow self.setupUi(mainwindow) self.pushButton_ReportCases.clicked.connect(self.run_reportcases_ui) #self.pushButton_ExportData.clicked.connect(self.run_exportcases_ui) #self.pushButton_HumanLabelling.clicked.connect(self.run_questionnaire_ui) def run_reportcases_ui(self): print("Running Labeller") report_window = LabelUI(self.mainwindow) # def run_exportcases_ui(self): # print("Running Exporter") # export_window = ExportUI(self.mainwindow) # # def run_questionnaire_ui(self): # print("Running Questionnaire") # questionnaire_window = QuestionnaireUI(self.mainwindow)
2.25
2
nodebox/gui/mac/AskString.py
nodebox/nodebox-pyobjc
47
12781607
<gh_stars>10-100 __all__ = ["AskString"] import objc from Foundation import * from AppKit import * # class defined in AskString.xib class AskStringWindowController(NSWindowController): questionLabel = objc.IBOutlet() textField = objc.IBOutlet() def __new__(cls, question, resultCallback, default="", parentWindow=None): self = cls.alloc().initWithWindowNibName_("AskString") self.question = question self.resultCallback = resultCallback self.default = default self.parentWindow = parentWindow if self.parentWindow is None: self.window().setFrameUsingName_("AskStringPanel") self.setWindowFrameAutosaveName_("AskStringPanel") self.showWindow_(self) else: NSApp().beginSheet_modalForWindow_modalDelegate_didEndSelector_contextInfo_( self.window(), self.parentWindow, None, None, 0) self.retain() return self def windowWillClose_(self, notification): self.autorelease() def awakeFromNib(self): self.questionLabel.setStringValue_(self.question) self.textField.setStringValue_(self.default) def done(self): if self.parentWindow is None: self.close() else: sheet = self.window() NSApp().endSheet_(sheet) sheet.orderOut_(self) def ok_(self, sender): value = self.textField.stringValue() self.done() self.resultCallback(value) def cancel_(self, sender): self.done() self.resultCallback(None) def AskString(question, resultCallback, default="", parentWindow=None): AskStringWindowController(question, resultCallback, default, parentWindow)
2.140625
2
REPORT.py
AlexXG0152/HR_report_fill
0
12781608
<reponame>AlexXG0152/HR_report_fill import pandas as pd import os import time from mailmerge import MailMerge from datetime import date, datetime from dateutil.relativedelta import relativedelta from docx import Document from docx.shared import Cm from docx.enum.text import WD_ALIGN_PARAGRAPH ''' The idea for writing this is after reading the AUTOMATE THE BORING STUFF book. I am an HR manager and my job partly consists of preparing a wide variety of reports for management, government and statistics. I've already become a pro in Excel in VBA, but I really like programming and the Python language. So I decided to automate a bit of the boring job of reporting my department's performance to senior management. Previously, you had to do this: Due to the fact that I do not have direct access to the database, at first I had to generate a ready-made report (xls file (the time of formation by the program is 1 minute) and then work with it (but I have an idea and understanding of how to write the required SQL query , to unload this information from the database), open data on people, make pivot tables, remove unnecessary things, copy to Word (do not ask why))) and then print and sign. On average, if not distracted, it took about 20 minutes. Now life has become much easier and better))). I got new knowledge, skills and abilities. And I get the finished report in 0.5 seconds, taking into account the time to save the original xls file - 1 minute and 0.5 seconds. P.S. I'm understand that junior's level and this file not all in PEP rules. But i'm write his file with maximum readability to whom who will want repeat this in their work and of course automete the boring stuff :) ''' start = time.time() path = "D:\\REPORTS\\REPORT1\\" sex = ["ж", "м"] category = [1, 2, 3, 4, 5] def df(name): df = pd.read_excel("D:\\REPORTS\\REPORT1\\REPORT1.xls", index_col=0, sheet_name=name) # xls file and sheet with all emploees data average_age = 0 taday_date = 0 month = 0 fired_reason = 0 hired_from = 0 if name == "sheet1": # all employees df['year'] = pd.DatetimeIndex(df['d_rogden']).year df['age'] = 2020 - df['year'] average_age = round(df['age'].mean()) taday_date = datetime.today() month = str(taday_date.month - 1) if name == "sheet2": # hired in report period df = df[(df["p_priem"] != 9) & (df["p_priem"] != 17)] hired_from = df["namepriem"].value_counts().to_dict() if 'towards organs' in hired_from.keys(): hired_from['towards government'] = hired_from.pop('towards organs') hired_from = {k: v for k, v in sorted(hired_from.items(), key=lambda item: item[1], reverse=True)} if name == "sheet3": #fired in report period df = df[(df["_priem"] != 17) & (df["nameyvol"] != "transfer to №1")] fired_reason = df["nameyvol"].value_counts().to_dict() count_employee_category = df["kkat"].value_counts().to_dict() person_category_dict = {k: v for k, v in sorted(count_employee_category.items(), key=lambda item: item[0])} sex_all = df["pol"].value_counts().to_dict() sex_women = {k: v for k, v in sorted(sex_all.items(), key=lambda item: item[0])} # add zero to key : value pairs if some category or sex doesn't hired/fired in report period for i in sex: if i not in sex_women.keys(): sex_women.update({i: 0}) for i in category: if i not in person_category_dict.keys(): person_category_dict.update({i: 0}) return [person_category_dict, sex_women, average_age, month, df, hired_from, fired_reason] person_category_dict, sex_women, average_age, month, _, _, _ = df("sheet1") hired_category_dict, hired_sex, _, _, _, hired_from, _ = df("sheet2") fired_category_dict, fired_sex, _, _, _, _, fired_reason = df("sheet3") template_1 = "D:\\REPORTS\\REPORT1\\blank.docx" # here i'm count last day in report period today = date.today() last_day = date(today.year, today.month, 1) - relativedelta(days=1) date = last_day.strftime('%d.%m.%Y') # filling template docx document = MailMerge(template_1) document.merge( all_emp=str(sum(person_category_dict.values())), all_itr=str(person_category_dict[3] + person_category_dict[4] + person_category_dict[5]), all_ruk=str(person_category_dict[3]), all_spec=str(person_category_dict[5]), all_drsl=str(person_category_dict[4]), all_rab=str(person_category_dict[1] + person_category_dict[2]), all_women=str(sex_women["ж"]), date=str(date), average_age=str(average_age), month=str(month), all_hired=str(sum(hired_category_dict.values())), hired_ruk=str(hired_category_dict[3]), hired_spec=str(hired_category_dict[5]), hired_drsl=str(hired_category_dict[4]), hired_rab1=str(hired_category_dict[1] + hired_category_dict[2]), hired_women=str(hired_sex["ж"]), hired_men=str(hired_sex["м"]), all_fired=str(sum(fired_category_dict.values())), fired_ruk=str(fired_category_dict[3]), fired_spec=str(fired_category_dict[5]), fired_drsl=str(fired_category_dict[4]), fired_rab=str(fired_category_dict[1] + fired_category_dict[2]), fired_women=str(fired_sex["ж"]), fired_men=str(fired_sex["м"]) ) filename = "Report (working with stuff) for " + month + " month 2020.docx" document.write(path + filename) # save file to folder print(filename) # here we create 2 tables, one below the other. # The first table contains the names of the fields, the second table contains summary data by type of hired and fired reasons. def table(name): # customizing first table word_document = Document(path + filename) table0 = word_document.add_table(0, 0) table0.style = word_document.styles["Table Grid"] first_column_width = 15 second_column_with = 2.5 table0.add_column(Cm(first_column_width)) table0.add_column(Cm(second_column_with)) table0.add_row() header_cells = table0.rows[-1].cells if name == hired_from: header_cells[0].text = "Hired type" else: header_cells[0].text = "Fired reason" header_cells[1].text = "employee" table0.rows[0].cells[0].paragraphs[0].runs[0].font.bold = True table0.rows[0].cells[1].paragraphs[0].runs[0].font.bold = True table0.rows[0].cells[0].paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER table0.rows[0].cells[1].paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER # customizing second table table1 = word_document.add_table(0, 0) # we add rows iteratively table1.style = word_document.styles["Table Grid"] first_column_width = 15 second_column_with = 2.5 table1.add_column(Cm(first_column_width)) table1.add_column(Cm(second_column_with)) for index, stat_item in enumerate(name.items()): table1.add_row() stat_name, stat_result = stat_item row = table1.rows[index] row.cells[0].text = str(stat_name) row.cells[1].text = str(stat_result) row.cells[1].paragraphs[0].alignment = WD_ALIGN_PARAGRAPH.CENTER word_document.add_paragraph() word_document.save(path + filename) table(hired_from) table(fired_reason) end = time.time() print(end - start) input("\nPress any key to exit...") os.startfile(path)
2.8125
3
wallsup.py
tonikarppi/wallsup
0
12781609
<reponame>tonikarppi/wallsup<gh_stars>0 #!/usr/bin/env python3 """ This is a simple script for the Gnome desktop environment that randomly picks an image file from a directory tree and sets it as the wallpaper. """ import os import random import subprocess as sp from getpass import getuser from os.path import join from pathlib import Path from urllib.request import pathname2url # Change this to the top-level directory containing your wallpapers. WALLPAPERS_PATH = f"/home/{getuser()}/.wallpapers" def get_files_recursively(root_path): for current_path, dir_names, file_names in os.walk(root_path): for file_name in file_names: yield join(current_path, file_name) def file_has_extension(file_path, *extensions): path = Path(file_path) return path.suffix.lower() in extensions def set_wallpaper(wallpaper_path): url = f"file://{pathname2url(wallpaper_path)}" sp.run( [ "/usr/bin/gsettings", "set", "org.gnome.desktop.background", "picture-uri", url, ] ) sp.run( [ "/usr/bin/gsettings", "set", "org.gnome.desktop.screensaver", "picture-uri", url, ] ) def main(): files = get_files_recursively(WALLPAPERS_PATH) wallpaper_files = [ file for file in files if file_has_extension(file, ".jpg", ".png") ] if len(wallpaper_files) == 0: return random_wallpaper = random.choice(wallpaper_files) set_wallpaper(random_wallpaper) print(f"Wallpaper was set to: {random_wallpaper}") if __name__ == "__main__": main()
2.96875
3
streaming-mqtt/python-tests/tests.py
JacopoCastello/bahir
337
12781610
<gh_stars>100-1000 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import time import random if sys.version_info[:2] <= (2, 6): try: import unittest2 as unittest except ImportError: sys.stderr.write('Please install unittest2 to test with Python 2.6 or earlier') sys.exit(1) else: import unittest from pyspark.context import SparkConf, SparkContext, RDD from pyspark.streaming.context import StreamingContext from pyspark.streaming.tests import PySparkStreamingTestCase from mqtt import MQTTUtils class MQTTStreamTests(PySparkStreamingTestCase): timeout = 20 # seconds duration = 1 def setUp(self): super(MQTTStreamTests, self).setUp() MQTTTestUtilsClz = self.ssc._jvm.java.lang.Thread.currentThread().getContextClassLoader() \ .loadClass("org.apache.spark.streaming.mqtt.MQTTTestUtils") self._MQTTTestUtils = MQTTTestUtilsClz.newInstance() self._MQTTTestUtils.setup() def tearDown(self): if self._MQTTTestUtils is not None: self._MQTTTestUtils.teardown() self._MQTTTestUtils = None super(MQTTStreamTests, self).tearDown() def _randomTopic(self): return "topic-%d" % random.randint(0, 10000) def _startContext(self, topic): # Start the StreamingContext and also collect the result stream = MQTTUtils.createStream(self.ssc, "tcp://" + self._MQTTTestUtils.brokerUri(), topic) result = [] def getOutput(_, rdd): for data in rdd.collect(): result.append(data) stream.foreachRDD(getOutput) self.ssc.start() return result def test_mqtt_stream(self): """Test the Python MQTT stream API.""" sendData = "MQTT demo for spark streaming" topic = self._randomTopic() result = self._startContext(topic) def retry(): self._MQTTTestUtils.publishData(topic, sendData) # Because "publishData" sends duplicate messages, here we should use > 0 self.assertTrue(len(result) > 0) self.assertEqual(sendData, result[0]) # Retry it because we don't know when the receiver will start. self._retry_or_timeout(retry) def _start_context_with_paired_stream(self, topics): stream = MQTTUtils.createPairedStream(self.ssc, "tcp://" + self._MQTTTestUtils.brokerUri(), topics) # Keep a set because records can potentially be repeated. result = set() def getOutput(_, rdd): for data in rdd.collect(): result.add(data) stream.foreachRDD(getOutput) self.ssc.start() return result def test_mqtt_pair_stream(self): """Test the Python MQTT stream API with multiple topics.""" data_records = ["random string 1", "random string 2", "random string 3"] topics = [self._randomTopic(), self._randomTopic(), self._randomTopic()] topics_and_records = zip(topics, data_records) result = self._start_context_with_paired_stream(topics) def retry(): for topic, data_record in topics_and_records: self._MQTTTestUtils.publishData(topic, data_record) # Sort the received records as they might be out of order. self.assertEqual(topics_and_records, sorted(result, key=lambda x: x[1])) # Retry it because we don't know when the receiver will start. self._retry_or_timeout(retry) def _retry_or_timeout(self, test_func): start_time = time.time() while True: try: test_func() break except: if time.time() - start_time > self.timeout: raise time.sleep(0.01) if __name__ == "__main__": unittest.main()
1.921875
2
Minion/Collectors/Linux_CPU.py
onderogluserdar/boardInstrumentFramework
16
12781611
<gh_stars>10-100 ############################################################################## # Copyright (c) 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # File Abstract: # This attempts to get CPU utilization information on a Linux System # ############################################################################## from time import sleep import sys import os procInfoDir="/sys/devices/system/cpu" desiredFreqStats=["cpuinfo_min_freq","scaling_driver","energy_performance_preference","cpuinfo_max_freq","cpuinfo_cur_freq","scaling_cur_freq","scaling_governor","scaling_available_governors"] def GetBaseDir(): global procInfoDir return procInfoDir def ReadFromFile_Legacy(Filename): try: file = open(Filename,'rt') if None == file: return "N/A" except Exception: return "N/A" return file.read().strip() def ReadFromFile(Filename): file = open(Filename,'rt') if None == file: return "File [" + Filename + "] does not exist" lines = [line.rstrip('\n') for line in open(Filename)] return lines #Linux 3.10.0-229.el7.x86_64 (csx-61) 09/07/2015 _x86_64_ (16 CPU) #10:26:21 AM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle #10:26:21 AM all 1.98 0.00 0.24 0.02 0.00 0.01 0.00 0.00 0.00 97.74 #10:26:21 AM 0 0.35 0.00 0.22 0.22 0.00 0.01 0.00 0.00 0.00 99.19 #10:26:21 AM 1 0.77 0.01 0.10 0.00 0.00 0.00 0.00 0.00 0.00 99.12 #10:26:21 AM 2 0.46 0.01 0.08 0.01 0.00 0.00 0.00 0.00 0.00 99.44 #10:26:21 AM 3 0.74 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.00 99.16 #10:26:21 AM 4 0.49 0.01 0.08 0.01 0.00 0.00 0.00 0.00 0.00 99.41 #10:26:21 AM 5 0.94 0.01 0.10 0.01 0.00 0.00 0.00 0.00 0.00 98.94 #10:26:21 AM 6 0.49 0.01 0.09 0.01 0.00 0.00 0.00 0.00 0.00 99.40 #10:26:21 AM 7 1.31 0.01 0.11 0.01 0.00 0.00 0.00 0.00 0.00 98.56 #10:26:21 AM 8 0.31 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 99.64 #10:26:21 AM 9 0.38 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 99.56 #10:26:21 AM 10 0.29 0.01 0.12 0.00 0.00 0.00 0.00 0.00 0.00 99.58 #10:26:21 AM 11 0.32 0.01 0.13 0.00 0.00 0.00 0.00 0.00 0.00 99.53 #10:26:21 AM 12 0.26 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 99.58 #10:26:21 AM 13 24.13 0.00 2.45 0.01 0.00 0.11 0.00 0.00 0.00 73.31 #10:26:21 AM 14 0.21 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 99.73 #10:26:21 AM 15 0.31 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 99.64 def TokenizeRow(row): columnsRaw = row.split() retList = columnsRaw[2:len(columnsRaw)] return retList def CreatePerfFileFromMPStatFile(inputFile,outputFile): rawData = ReadFromFile(inputFile) columnHeaders = [] startFound = False writeData = "" for row in rawData: if not startFound: if row.find("usr") > 0: print(row) startFound = True columnHeaders = TokenizeRow(row) else: columns = TokenizeRow(row) cpuID = "CPU." + columns[0] for loop in range(1,len(columns)): writeData += cpuID + "." + columnHeaders[loop] + columns[loop] + os.linesep pass file = open(outputFile,"wt") file.write(writeData) file.close() return "HelenKeller" # don't want to send anything #Worker class to get cpu load info class CPULoad(object): def __init__(self, period = 1): self._period = period #how long to wait when getting 2nd reading def calcCPU_Time(self): cpu_infoMap = {} with open('/proc/stat','r') as fpStats: lines = [line.split(' ') for content in fpStats.readlines() for line in content.split('\n') if line.startswith('cpu')] for cpu_line_list in lines: if '' in cpu_line_list: cpu_line_list.remove('') cpu_line_list = [cpu_line_list[0]]+[float(i) for i in cpu_line_list[1:]] #pylint: disable=unused-variable cpu_id,user,nice,system,idle,iowait,irq,softrig,steal,guest,guest_nice = cpu_line_list Idle=idle+iowait NonIdle=user+nice+system+irq+softrig+steal Total=Idle+NonIdle cpu_infoMap.update({cpu_id:{'total':Total,'idle':Idle}}) return cpu_infoMap def getcpuload(self): # Remebmer that Percentage=((Total-PrevTotal)-(Idle-PrevIdle))/(Total-PrevTotal) # read 1 start = self.calcCPU_Time() #snooze a bit sleep(self._period) #read 2 stop = self.calcCPU_Time() cpu_load_List = {} for cpu in start: Total = stop[cpu]['total'] PrevTotal = start[cpu]['total'] Idle = stop[cpu]['idle'] PrevIdle = start[cpu]['idle'] CPU_Percentage=((Total-PrevTotal)-(Idle-PrevIdle))/(Total-PrevTotal)*100 cpu_load_List.update({cpu: CPU_Percentage}) return cpu_load_List def ReadProcStats(): dataMap = {} #collect here the information with open('/proc/stat','r') as f_stat: lines = [line.split(' ') for content in f_stat.readlines() for line in content.split('\n') if line.startswith('cpu')] #compute for every cpu for cpu_line in lines: if '' in cpu_line: cpu_line.remove('')#remove empty elements cpu_id,user,nice,system,idle,iowait,irq,softriq,steal,guest,guest_nice = cpu_line if cpu_id == 'cpu': cpu_id = 'total' dataMap['cpu.'+cpu_id+'.user'] = user dataMap['cpu.'+cpu_id+'.nice'] = nice dataMap['cpu.'+cpu_id+'.system'] = system dataMap['cpu.'+cpu_id+'.idle'] = idle dataMap['cpu.'+cpu_id+'.iowait'] = iowait dataMap['cpu.'+cpu_id+'.irq'] = irq dataMap['cpu.'+cpu_id+'.softirq'] = softriq dataMap['cpu.'+cpu_id+'.steal'] = steal dataMap['cpu.'+cpu_id+'.guest'] = guest dataMap['cpu.'+cpu_id+'.guest_nice'] = guest_nice return dataMap # uses the fact that /proc/stat has the desired information. pass target file to put # the desired data, the period to sample stats over and precision level if desired def CreateCPUUtilFileFromProcStats(targetFile,interval=.1,precision=2): interval=float(interval) precision=float(precision) x = CPULoad(interval) # use this cool script I found online strPrecision = '.' + str(int(precision)) + 'f' data = x.getcpuload() writeData = "CPU_COUNT=" + str(len(data) -1 ) + os.linesep # also has overall CPU in there for proc in data: writeData+= proc +"="+str(format(data[proc],strPrecision)) + os.linesep file = open(targetFile,"wt") file.write(writeData) file.close() return "HelenKeller" # don't want to send anything # create a comma separated list with all cores and nothign else # returnTuple will return the raw cpu load data too def CreateUtilizationList(interval=.1,precision=2,returnTuple=False): interval=float(interval) precision=float(precision) cpuInfo = CPULoad(interval) # use this cool script I found online strPrecision = '.' + str(int(precision)) + 'f' data = cpuInfo.getcpuload() coreCount = len(data) -1 first = True # data is stored in has, with key being cpu# for index in range(0,coreCount): key = "cpu" + str(index) cpuVal = str(format(data[key],strPrecision)) if True == first: writeData = cpuVal first = False else: writeData+= "," + cpuVal if True == returnTuple: return (writeData,data) return writeData def getFrequencyInfo(prefix=""): retMap={} coreCount=0 for cpuDir in os.listdir(GetBaseDir()): if not 'cpu' in cpuDir: continue if cpuDir in ['cpufreq','cpuidle']: #don't want these directories continue coreCount+=1 nextDir = GetBaseDir() + "/" + cpuDir + "/cpufreq" #pylint: disable=unused-variable for statRoot, statDirs, statFiles in os.walk(nextDir): for file in statFiles: if file in desiredFreqStats: readFile = GetBaseDir() + "/" + cpuDir + "/cpufreq/" + file key = "{0}.{1}".format(cpuDir,file) retMap[prefix+key] = ReadFromFile_Legacy(readFile) freqList=None # create a comma separated list for graphing if "cpu0.cpuinfo_cur_freq" in retMap: freqKey = "cpuinfo_cur_freq" else: freqKey = "scaling_cur_freq" for coreNum in range(0,coreCount): key = "cpu{0}.{1}".format(coreNum,freqKey) if None == freqList: #1st one freqList=retMap[prefix+key] else: freqList += ","+retMap[prefix+key] retMap[prefix+"cpu_frequency_list"] = freqList return retMap def GetSystemAverageCPU(interval=.1,precision=2): interval=float(interval) precision=float(precision) cpuInfo = CPULoad(interval) # use this cool script I found online strPrecision = '.' + str(int(precision)) + 'f' data = cpuInfo.getcpuload() coreCount = len(data) -1 total = 0.0 for index in range(0,coreCount): key = "cpu" + str(index) cpuVal = data[key] total += cpuVal total = total/coreCount return str(format(total,strPrecision)) ## Dynamic Collector interface, gets all raw stats def CollectStatsFunction(frameworkInterface): dataMap = ReadProcStats() for collectorID in dataMap: if not frameworkInterface.DoesCollectorExist(collectorID): frameworkInterface.AddCollector(collectorID) frameworkInterface.SetCollectorValue(collectorID,dataMap[collectorID]) #if __name__=='__main__': # CreateCPUUtilFileFromProcStats("foo.txt",.1,4)
2.1875
2
heyyz/core.py
CarlHey/heyyz
0
12781612
<gh_stars>0 import heyy from .dbf_utils import ( dbf2objs, try_dbf2objs, str2objs, read_fields, compare_fields, split_multiline, ) pt = heyy.pt dbf2objs = dbf2objs try_dbf2objs = try_dbf2objs str2objs = str2objs read_fields = read_fields compare_fields = compare_fields split_multiline = split_multiline
1.289063
1
desktop/core/ext-py/cx_Oracle-6.4.1/samples/tutorial/query_one.py
yetsun/hue
5,079
12781613
#------------------------------------------------------------------------------ # query_one.py (Section 3.2) #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # Copyright 2017, 2018, Oracle and/or its affiliates. All rights reserved. #------------------------------------------------------------------------------ from __future__ import print_function import cx_Oracle import db_config con = cx_Oracle.connect(db_config.user, db_config.pw, db_config.dsn) cur = con.cursor() cur.execute("select * from dept order by deptno") row = cur.fetchone() print(row) row = cur.fetchone() print(row)
2.390625
2
bach/tests/unit/bach/test_series.py
objectiv/objectiv-analytics
23
12781614
""" Copyright 2021 Objectiv B.V. """ from typing import List import pytest from bach import get_series_type_from_dtype from bach.expression import Expression from bach.partitioning import GroupBy from tests.unit.bach.util import get_fake_df, FakeEngine def test_equals(dialect): def get_df(index_names: List[str], data_names: List[str]): return get_fake_df(dialect=dialect, index_names=index_names, data_names=data_names) left = get_df(['a'], ['b', 'c']) right = get_df(['a'], ['b', 'c']) result = left['b'].equals(left['b']) # assert result is a boolean (for e.g. '==') this is not the case assert result is True assert left['b'].equals(left['b']) assert left['b'].equals(right['b']) assert not left['b'].equals(left['c']) assert not left['b'].equals(right['c']) left = get_df(['a', 'x'], ['b', 'c']) right = get_df(['a'], ['b', 'c']) assert left['b'].equals(left['b']) assert not left['b'].equals(right['b']) assert not left['b'].equals(left['c']) assert not left['b'].equals(right['c']) # different order in the index left = get_df(['a', 'b'], ['c']) right = get_df(['b', 'a'], ['c']) assert not left['c'].equals(right['c']) engine = left.engine engine_other = FakeEngine(dialect=engine.dialect, url='sql://some_other_string') int_type = get_series_type_from_dtype('int64') float_type = get_series_type_from_dtype('float64') expr_test = Expression.construct('test') expr_other = Expression.construct('test::text') sleft = int_type(engine=engine, base_node=None, index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') sright = int_type(engine=engine, base_node=None, index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert sleft.equals(sright) # different expression sright = int_type(engine=engine, base_node=None, index={}, name='test', expression=expr_other, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert not sleft.equals(sright) # different name sright = int_type(engine=engine, base_node=None, index={}, name='test_2', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert not sleft.equals(sright) # different base_node sright = int_type(engine=engine, base_node='test', index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert not sleft.equals(sright) # different engine sright = int_type(engine=engine_other, base_node=None, index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert not sleft.equals(sright) # different type sright = float_type(engine=engine, base_node=None, index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='float64') assert not sleft.equals(sright) # different group_by sright = int_type(engine=engine, base_node=None, index={}, name='test', expression=expr_test, group_by=GroupBy(group_by_columns=[]), sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert not sleft.equals(sright) # different sorting sright = int_type(engine=engine, base_node=None, index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=True, index_sorting=[], instance_dtype='int64') assert not sleft.equals(sright) sright = sright.copy_override(sorted_ascending=None) assert sleft.equals(sright) index_series = sleft sleft = int_type(engine=engine, base_node=None, index={'a': index_series}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') sright = int_type(engine=engine, base_node=None, index={'a': index_series}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype='int64') assert sleft.equals(sright) sright = sright.copy_override(index_sorting=[True]) assert not sleft.equals(sright) @pytest.mark.skip_postgres def test_equals_instance_dtype(dialect): def get_df(index_names: List[str], data_names: List[str]): return get_fake_df(dialect=dialect, index_names=index_names, data_names=data_names) left = get_df(['a'], ['b', 'c']) engine = left.engine expr_test = Expression.construct('test') dict_type = get_series_type_from_dtype('dict') # Currently we only have bigquery types that actual use the instance_dtype. So skip postgres here. sleft = dict_type(engine=engine, base_node=None, index={}, name='test', expression=expr_test, group_by=None, sorted_ascending=None, index_sorting=[], instance_dtype={'a': 'int64', 'b': ['bool']}) sright = sleft.copy_override() assert sleft.equals(sright) sright = sleft.copy_override(instance_dtype={'a': 'float64', 'b': ['bool']}) assert not sleft.equals(sright)
2.546875
3
mpikat/meerkat/apsuse/apsuse_config.py
ewanbarr/mpikat
2
12781615
""" Copyright (c) 2018 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import json from mpikat.core.ip_manager import ip_range_from_stream log = logging.getLogger('mpikat.apsuse_config_manager') DEFAULT_DATA_RATE_PER_WORKER = 20e9 # bits / s DUMMY_FBF_CONFIG = { "coherent-beam-multicast-groups":"spead://172.16.17.32+15:7147", "coherent-beam-multicast-groups-data-rate": 7e9, "incoherent-beam-multicast-group": "spead://192.168.127.12:7147", "incoherent-beam-multicast-group-data-rate": 150e6, } HOST_TO_LEAF_MAP = { "apscn00.mpifr-be.mkat.karoo.kat.ac.za": 1, "apscn01.mpifr-be.mkat.karoo.kat.ac.za": 1, "apscn02.mpifr-be.mkat.karoo.kat.ac.za": 1, "apscn03.mpifr-be.mkat.karoo.kat.ac.za": 1, "apscn04.mpifr-be.mkat.karoo.kat.ac.za": 0, "apscn05.mpifr-be.mkat.karoo.kat.ac.za": 0, "apscn06.mpifr-be.mkat.karoo.kat.ac.za": 0, "apscn07.mpifr-be.mkat.karoo.kat.ac.za": 0, } class ApsConfigurationError(Exception): pass class ApsWorkerBandwidthExceeded(Exception): pass class ApsWorkerTotalBandwidthExceeded(Exception): pass class ApsWorkerConfig(object): def __init__(self, total_bandwidth=DEFAULT_DATA_RATE_PER_WORKER): log.debug("Created new apsuse worker config") self._total_bandwidth = total_bandwidth self._available_bandwidth = self._total_bandwidth self._incoherent_groups = [] self._coherent_groups = [] self._incoherent_beams = [] self._coherent_beams = [] self._even = True def set_even(self, even_odd): self._even = even_odd def can_use_host(self, hostname): HOST_TO_LEAF_MAP[hostname] = int(self._even) def add_incoherent_group(self, group, bandwidth): if bandwidth > self._total_bandwidth: log.debug("Adding group would exceed worker bandwidth") raise ApsWorkerTotalBandwidthExceeded if self._available_bandwidth < bandwidth: log.debug("Adding group would exceed worker bandwidth") raise ApsWorkerBandwidthExceeded else: log.debug("Adding group {} to worker".format(group)) self._incoherent_groups.append(group) self._available_bandwidth -= bandwidth def add_coherent_group(self, group, bandwidth): if self._available_bandwidth < bandwidth: log.debug("Adding group would exceed worker bandwidth") raise ApsWorkerBandwidthExceeded else: self._coherent_groups.append((group)) log.debug("Adding group {} to worker".format(group)) self._available_bandwidth -= bandwidth def data_rate(self): return self._total_bandwidth - self._available_bandwidth def coherent_groups(self): return self._coherent_groups def incoherent_groups(self): return self._incoherent_groups def coherent_beams(self): return self._coherent_beams def incoherent_beams(self): return self._incoherent_beams class ApsConfigGenerator(object): def __init__(self, fbfuse_config, bandwidth_per_worker=DEFAULT_DATA_RATE_PER_WORKER): self._fbfuse_config = fbfuse_config self._bandwidth_per_worker = bandwidth_per_worker self._incoherent_range = ip_range_from_stream( self._fbfuse_config['incoherent-beam-multicast-group']) self._incoherent_mcast_group_rate = ( self._fbfuse_config['incoherent-beam-multicast-group-data-rate']) self._incoherent_groups = list(self._incoherent_range) self._coherent_range = ip_range_from_stream( self._fbfuse_config['coherent-beam-multicast-groups']) self._coherent_mcast_group_rate = ( self._fbfuse_config['coherent-beam-multicast-groups-data-rate']) self._coherent_groups = list(self._coherent_range) def allocate_groups(self, servers): configs = {} final_configs = {} for server in servers: configs[server] = ApsWorkerConfig(self._bandwidth_per_worker) while configs and (self._incoherent_groups or self._coherent_groups): for server in configs.keys(): if self._incoherent_groups: group = self._incoherent_groups.pop(0) try: configs[server].add_incoherent_group( group, self._incoherent_mcast_group_rate) except (ApsWorkerTotalBandwidthExceeded, ApsWorkerBandwidthExceeded): log.error("Incoherent beam mutlicast group ({} Gb/s) size exceeds data rate for one node ({} Gb/s)".format( self._incoherent_mcast_group_rate/1e9, configs[server]._total_bandwidth/1e9)) log.error("Incoherent beam data will not be captured") else: continue if self._coherent_groups: group = self._coherent_groups.pop(0) try: configs[server].add_coherent_group(group, self._coherent_mcast_group_rate) except ApsWorkerTotalBandwidthExceeded: log.error("Coherent beam mutlicast group ({} Gb/s) size exceeds data rate for one node ({} Gb/s)".format( self._coherent_mcast_group_rate/1e9, configs[server]._total_bandwidth/1e9)) log.error("Coherent beam data will not be captured") except ApsWorkerBandwidthExceeded: self._coherent_groups.insert(0, group) final_configs[server] = self._finalise_worker(configs[server], server) del configs[server] else: continue print(self._incoherent_groups, self._coherent_groups) for server, config in configs.items(): final_configs[server] = self._finalise_worker(config, server) return final_configs def _finalise_worker(self, worker, server): valid = False for incoherent_group in worker.incoherent_groups(): valid = True worker._incoherent_beams.append("ifbf00000") for coherent_group in worker.coherent_groups(): valid = True spead_formatted = "spead://{}:{}".format(str(coherent_group), self._coherent_range.port) mapping = json.loads(self._fbfuse_config['coherent-beam-multicast-group-mapping']) beam_idxs = mapping.get(spead_formatted, range(12)) worker._coherent_beams.extend(beam_idxs) log.debug(("Worker {} config: coherent-groups: {}," " coherent-beams: {}, incoherent-groups: {}," " incoherent-beams: {},").format( str(server), map(str, worker.coherent_groups()), map(str, worker.coherent_beams()), map(str, worker.incoherent_groups()), map(str, worker.incoherent_beams()))) if valid: return worker else: return None def remaining_incoherent_groups(self): return self._incoherent_groups def remaining_coherent_groups(self): return self._coherent_groups
1.476563
1
interpolation.py
DahlitzFlorian/how-to-work-with-config-files-in-python-article-snippets
0
12781616
<reponame>DahlitzFlorian/how-to-work-with-config-files-in-python-article-snippets<filename>interpolation.py<gh_stars>0 # interpolation.py from configparser import ConfigParser from configparser import ExtendedInterpolation config = ConfigParser(interpolation=ExtendedInterpolation()) config.read("interpolation_config.ini") print(config.get("destinations", "app_dir"))
2.40625
2
koronawirus_backend/elastic.py
merito/dokadzwirusem_backend
0
12781617
<reponame>merito/dokadzwirusem_backend from datetime import datetime from elasticsearch import Elasticsearch as ES class NotDefined: pass class Point: def __init__(self, name, operator, address, opening_hours, lat, lon, point_type, phone, prepare_instruction, owned_by, waiting_time, doc_id=None, last_modified_timestamp=None): self.waiting_time = waiting_time self.owned_by = owned_by self.prepare_instruction = prepare_instruction self.phone = phone self.opening_hours = opening_hours self.address = address self.operator = operator self.name = name self.lat = str(lat) self.lon = str(lon) self.point_type = point_type self.doc_id = doc_id self.last_modified_timestamp = datetime.utcnow().strftime("%s") if last_modified_timestamp is None \ else last_modified_timestamp @classmethod def new_point(cls, name, operator, address, opening_hours, lat, lon, point_type, phone, prepare_instruction, waiting_time, user_sub): return cls(name=name, operator=operator, address=address, opening_hours=opening_hours, lat=lat, lon=lon, point_type=point_type, phone=phone, prepare_instruction=prepare_instruction, waiting_time=waiting_time, owned_by=user_sub) @classmethod def from_dict(cls, body): source = body['_source'] return cls(name=source['name'], operator=source['operator'], address=source['address'], lat=source['location']['lat'], lon=source['location']['lon'], point_type=source['type'], opening_hours=source['opening_hours'], phone=source['phone'], prepare_instruction=source['prepare_instruction'], owned_by=source['owned_by'], last_modified_timestamp=source['last_modified_timestamp'], waiting_time=source['waiting_time'], doc_id=body['_id']) def to_dict(self, with_id=False): body = { "name": self.name, "operator": self.operator, "address": self.address, "location": { "lat": self.lat, "lon": self.lon }, "type": self.point_type, "opening_hours": self.opening_hours, "phone": self.phone, "prepare_instruction": self.prepare_instruction, "last_modified_timestamp": self.last_modified_timestamp, "waiting_time": self.waiting_time } if with_id is True: body["id"] = self.doc_id return body def to_index(self, with_id=False): body = self.to_dict(with_id=with_id) body['owned_by'] = self.owned_by return body def modify(self, name, operator, address, lat, lon, point_type, opening_hours, phone, prepare_instruction, owned_by, waiting_time): params = locals() params.pop('self') changed = dict() for param in params.keys(): if type(params[param]) is not NotDefined: if getattr(self, param) != params[param]: changed[param] = {'old_value': getattr(self, param), 'new_value': params[param]} setattr(self, param, params[param]) self.last_modified_timestamp = datetime.utcnow().strftime("%s") return changed def add_to_or_create_list(location, name, query): try: location[name] except KeyError: location[name] = [] location[name].append(query) class Elasticsearch: def __init__(self, connection_string, index='hospitals'): self.es = ES([connection_string]) self.index = index def search_points(self, phrase, point_type=None, top_right=None, bottom_left=None, water=None, fire=None): body = { "query": { "bool": { "must": [{ "multi_match": { "query": phrase, "fields": [ "name^3", "operator", "address" ] } }] } } } if point_type is not None: add_to_or_create_list(location=body['query']['bool'], name='filter', query={"term": {"type": {"value": point_type}}}) if top_right is not None and bottom_left is not None: add_to_or_create_list(location=body['query']['bool'], name='filter', query={ "geo_bounding_box": { "location": { "top_left": { "lat": str(top_right['lat']), "lon": str(bottom_left['lon']) }, "bottom_right": { "lat": str(bottom_left['lat']), "lon": str(top_right['lon']) } } } } ) response = self.es.search(index=self.index, body=body) read_points = list(map(Point.from_dict, response['hits']['hits'])) out_points = [point.to_dict(with_id=True) for point in read_points] return {'points': out_points} def get_nearest(self, location): body_transport = {'query': {'bool': {'must': [{'term': {'type': 'transport'}}, {'geo_distance': {'distance': '1000km', 'location': {'lat': float(location['lat']), 'lon': float(location['lon'])}}}]}}, 'size': 1, 'sort': [{'_geo_distance': {'location': {'lat': float(location['lat']), 'lon': float(location['lon'])}, 'order': 'asc', 'unit': 'km'}}]} response_transport = self.es.search(index=self.index, body=body_transport) nearest_transport = Point.from_dict(response_transport['hits']['hits'][0]) body_hospital = {'query': {'bool': {'must': [{'term': {'type': 'hospital'}}, {'geo_distance': {'distance': '1000km', 'location': {'lat': float(location['lat']), 'lon': float( location['lon'])}}}]}}, 'size': 1, 'sort': [{'_geo_distance': {'location': {'lat': float(location['lat']), 'lon': float(location['lon'])}, 'order': 'asc', 'unit': 'km'}}]} response_hospital = self.es.search(index=self.index, body=body_hospital) nearest_hospital = Point.from_dict(response_hospital['hits']['hits'][0]) return {'hospital': nearest_hospital.to_dict(with_id=True), 'transport': nearest_transport.to_dict(with_id=True)} def get_points(self, top_right, bottom_left): body = '''{ "query": { "bool" : { "must" : { "match_all" : {} }, "filter" : { "geo_bounding_box" : { "validation_method": "COERCE", "location" : { "top_left" : { "lat" : ''' + str(top_right['lat']) + ''', "lon" : ''' + str(bottom_left['lon']) + ''' }, "bottom_right" : { "lat" : ''' + str(bottom_left['lat']) + ''', "lon" : ''' + str(top_right['lon']) + ''' } } } } } }, "size": 9000 }''' response = self.es.search(index=self.index, body=body) read_points = list(map(Point.from_dict, response['hits']['hits'])) out_points = [point.to_dict(with_id=True) for point in read_points] return {'points': out_points} def get_point(self, point_id): response = self.es.get(index=self.index, id=point_id) point = Point.from_dict(body=response) return point.to_dict(with_id=True) def delete_point(self, point_id): res = self.es.delete(index=self.index, id=point_id) if res['result'] == 'deleted': return raise Exception("Can't delete point") def get_my_points(self, sub): body = { "query": { "bool": { "filter": { "term": { "owned_by": sub } } } } } response = self.es.search(index=self.index, body=body) read_points = list(map(Point.from_dict, response['hits']['hits'])) out_points = [point.to_dict(with_id=True) for point in read_points] return {'points': out_points} def get_full_point(self, point_id): response = self.es.get(index=self.index, id=point_id) point = Point.from_dict(body=response) return point.to_index(with_id=True) def get_logs(self, point_id=None, size=25, offset=0): body = {"sort": [{"timestamp": {"order": "desc"}}], "from": offset, "size": size} if point_id is not None: body['query'] = {'term': {'doc_id.keyword': {'value': point_id}}} response = self.es.search(index=self.index + '_*', body=body) return {"logs": response['hits']['hits'], "total": response['hits']['total']['value']} def modify_point(self, point_id, user_sub, name, operator, address, lat, lon, point_type, opening_hours, phone, prepare_instruction, waiting_time, owned_by): body = self.es.get(index=self.index, id=point_id) point = Point.from_dict(body=body) changes = point.modify(name=name, operator=operator, address=address, lat=lat, lon=lon, point_type=point_type, opening_hours=opening_hours, phone=phone, prepare_instruction=prepare_instruction, waiting_time=waiting_time, owned_by=owned_by) res = self.es.index(index=self.index, id=point_id, body=point.to_index()) if res['result'] == 'updated': self.save_log(user_sub=user_sub, doc_id=point_id, name=point.name, changed=changes) return self.get_full_point(point_id=point_id) return res def add_point(self, name, operator, address, opening_hours, lat, lon, point_type, phone, prepare_instruction, waiting_time, user_sub): point = Point.new_point(name=name, operator=operator, address=address, opening_hours=opening_hours, lat=lat, lon=lon, point_type=point_type, phone=phone, prepare_instruction=prepare_instruction, waiting_time=waiting_time, user_sub=user_sub) res = self.es.index(index=self.index, body=point.to_index()) if res['result'] == 'created': return self.get_point(point_id=res['_id']) return res def save_log(self, user_sub, doc_id, name, changed): document = {"modified_by": user_sub, "doc_id": doc_id, "changes": changed, "timestamp": datetime.utcnow().strftime("%Y/%m/%d %H:%M:%S"), "name": name} self.es.index(index=''.join((self.index, datetime.today().strftime('_%m_%Y'))), body=document)
2.484375
2
src/experiments/train_common.py
prakashchhipa/Depth-Contrast-Self-Supervised-Method
0
12781618
<filename>src/experiments/train_common.py from distutils.log import error import errno import numpy as np import json import argparse import time from tqdm import tqdm import cv2 import logging import sys, os import torch import torchvision import torch.nn as nn from torch import optim from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from torchvision.transforms import transforms from sklearn.metrics import f1_score from sampler import BalancedBatchSampler from models import Resnext_Model, Densenet_Model from dataloader import MBV_Dataset sys.path.append(os.path.dirname(__file__)) from train_util import Train_Util sys.path.append(os.path.dirname(__file__)) from utils import * from mbv_config import MBV_Config import mbv_config import argparse def train(): parser = argparse.ArgumentParser(description='PyTorch MBV Training') parser.add_argument('--lr', default=0.00001, type=float, help='learning rate') parser.add_argument('--wd', default=5e-3, type=float, help='weight decay') parser.add_argument('--architecture', default="resnext", type=str, help='architecture - resnext | densenet') parser.add_argument('--machine', default=7, type=int, help='define gpu no.') parser.add_argument('--patience', default=10, type=int, help='patience for learning rate change') parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--input_size', default=225, type=int, help='input image') parser.add_argument('--epochs', default=100, type=int, help='epochs') parser.add_argument('--description', default="fine_tune", type=str, help='experiment name | description') parser.add_argument('--data_path', default="fine_tune", type=str, help=' path for data of specifc fold - Fold 0|1|2|3|4 ') args = parser.parse_args() batch_size = args.batch_size image_size = args.input_size LR = args.lr patience = args.patience weight_decay = args.wd fold_root = args.data_path device = torch.device(f"cuda:{args.machine}") epochs = args.epochs experiment_description = args.description architecture = args.architecture raw_train_transform = transforms.Compose([ transforms.RandomCrop((image_size,image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485], std=[0.229]) ]) ref_train_transform = transforms.Compose([ transforms.RandomCrop((image_size,image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485], std=[0.229]) ]) val_transform = transforms.Compose([ transforms.Resize((image_size*4,image_size*4)), transforms.ToTensor(), transforms.Normalize(mean=[0.485], std=[0.229]) ]) train_raw_image_file = fold_root + 'X_raw_train.npy' train_ref_image_file = fold_root + 'X_ref_train.npy' train_label_file = fold_root + 'Y_train.npy' val_raw_image_file = fold_root + 'X_raw_val.npy' val_ref_image_file = fold_root + 'X_ref_val.npy' val_label_file = fold_root + 'Y_val.npy' train_dataset = MBV_Dataset(raw_train_file_path = train_raw_image_file , reflectance_train_file_path=train_ref_image_file, label_file_path=train_label_file, transform= [raw_train_transform, ref_train_transform]) train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle=True, sampler=None) #, sampler = BalancedBatchSampler(train_dataset) val_dataset = MBV_Dataset(raw_train_file_path = val_raw_image_file , reflectance_train_file_path=val_ref_image_file, label_file_path=val_label_file, transform= [val_transform]) val_loader = DataLoader(val_dataset, batch_size = batch_size, shuffle=False, sampler=None) if architecture == "resnext": downstream_task_model = Resnext_Model( pretrained=True) elif architecture == "densenet": downstream_task_model = Densenet_Model(pretrained=True) else: raise error ("invalid architecture name") downstream_task_model = downstream_task_model.to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(downstream_task_model.parameters(), lr=LR, weight_decay= weight_decay) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.1 ,patience=patience, min_lr= 5e-3) writer = SummaryWriter(log_dir=mbv_config.tensorboard_path+experiment_description) train_util = Train_Util(experiment_description = experiment_description,image_type=mbv_config.image_both, epochs = epochs, model=downstream_task_model, device=device, train_loader=train_loader, val_loader=val_loader, optimizer=optimizer, criterion=criterion, batch_size=batch_size,scheduler=scheduler, writer=writer) train_util.train_and_evaluate() if __name__ == "__main__": train()
1.960938
2
therma.py
tomacorp/thermapythia
3
12781619
#!/Users/toma/python278i/bin/python # -*- coding: utf-8 -*- # import MainWindow import os import platform import sys from PyQt4.QtGui import (QApplication, QIcon) __version__ = "1.0.0" def main(): app = QApplication(sys.argv) app.setOrganizationName("tomacorp") app.setOrganizationDomain("tomacorp.com") app.setWindowIcon(QIcon(":/icon.png")) w = MainWindow.Window() w.show() sys.exit(app.exec_()) if __name__ == "__main__": main()
2.375
2
python/scripts/waterfall_viewer/pyPeekTCP_1pol.py
eschnett/kotekan
19
12781620
<filename>python/scripts/waterfall_viewer/pyPeekTCP_1pol.py # === Start Python 2/3 compatibility from __future__ import absolute_import, division, print_function, unicode_literals from future.builtins import * # noqa pylint: disable=W0401, W0614 from future.builtins.disabled import * # noqa pylint: disable=W0401, W0614 # === End Python 2/3 compatibility from future import standard_library standard_library.install_aliases() import time import threading import socket import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import matplotlib.dates as md import datetime import struct np.seterr(divide="ignore", invalid="ignore") # struct IntensityHeader { # int packet_length; // - packet length # int header_length; // - header length # int samples_per_packet; // - number of samples in packet (or dimensions, n_freq x n_time x n_stream?) # int sample_type; // - data type of samples in packet # double raw_cadence; // - raw sample cadence # int num_freqs; // - freq list / map # int samples_summed; // - samples summed for each datum # uint handshake_idx; // - frame idx at handshake # double handshake_utc; // - UTC time at handshake # char stokes_type; // - description of stream (e.g. V / H pol, Stokes-I / Q / U / V) # // -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 # // YX XY YY XX LR RL LL RR I Q U V # }; header_fmt = "=iiiidiiiId" stokes_lookup = ["YX", "XY", "YY", "XX", "LR", "RL", "LL", "RR", "I", "Q", "U", "V"] TCP_IP = "0.0.0.0" TCP_PORT = 23401 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind((TCP_IP, TCP_PORT)) sock.listen(1) def updatefig(*args): global waterfall, times, medsub, colorscale, p, ax global spec_baseline global pkt_elems tmin = md.date2num(datetime.datetime.fromtimestamp(np.amin(times))) tmax = md.date2num(datetime.datetime.fromtimestamp(np.amax(times))) if medsub: p[0].set_data( waterfall[:, :, 0] - np.nanmedian(waterfall[:, :, 0], axis=0)[np.newaxis, :] ) else: p[0].set_data(waterfall[:, :, 0] - spec_baseline[np.newaxis, :]) p[0].set_extent([freqlist[0, 0], freqlist[-1, -1], tmin, tmax]) p[0].set_clim(vmin=colorscale[0], vmax=colorscale[1]) d = np.nanmean(waterfall[:, :, 0] - spec_baseline[np.newaxis, :], axis=1) p[1].set_data(d, times) ax[0, 1].set_xlim([np.nanmin(d), np.nanmax(d)]) ax[0, 1].set_ylim([np.amin(times), np.amax(times)]) d = np.nanmean(waterfall[:, :, 0], axis=0) p[2].set_data( freqlist.reshape(plot_freqs, -1).mean(axis=1), d - spec_baseline[np.newaxis, :] ) ax[1, 0].set_ylim(colorscale) return (p,) def receive(connection, length): chunks = [] bytes_recd = 0 while bytes_recd < length: chunk = connection.recv(min(length - bytes_recd, 2048)) if chunk == b"": raise RuntimeError("socket connection broken") chunks.append(chunk) bytes_recd = bytes_recd + len(chunk) return b"".join(chunks) connection, client_address = sock.accept() packed_header = receive(connection, 48) print(len(packed_header), packed_header) tcp_header = struct.unpack(header_fmt, packed_header) pkt_length = tcp_header[0] # packet_length pkt_header = tcp_header[1] # header_length pkt_samples = tcp_header[2] # samples_per_packet pkt_dtype = tcp_header[3] # sample_type (?in bytes?) pkt_raw_cad = tcp_header[4] # raw_cadence pkt_freqs = tcp_header[5] # num_freqs pkt_elems = tcp_header[6] # num_elems pkt_int_len = tcp_header[7] # samples_summed pkt_idx0 = tcp_header[8] # handshake_idx pkt_utc0 = tcp_header[9] # handshake_utc print(tcp_header) sec_per_pkt_frame = pkt_raw_cad * pkt_int_len info_header = receive(connection, pkt_freqs * 4 * 2 + pkt_elems * 1) freqlist = np.fromstring(info_header[: pkt_freqs * 4 * 2], dtype=np.float32).reshape( -1, 2 ) # .mean(axis=1) freqlist = freqlist / 1e6 elemlist = np.fromstring(info_header[pkt_freqs * 4 * 2 :], dtype=np.int8) print(freqlist, elemlist) plot_freqs = 256 plot_times = 256 total_integration = 64 * 8 if pkt_int_len > total_integration: print("Pre-integrated to longer than desired time!") print("{} vs {}".format(pkt_int_len, total_integration)) print("Resetting integration length to {}".format(pkt_int_len)) total_integration = pkt_int_len local_integration = total_integration // pkt_int_len waterfall = np.zeros((plot_times, plot_freqs, pkt_elems), dtype=np.float32) + np.nan times = np.zeros(plot_times) spec_baseline = np.ones(plot_freqs) def data_listener(): global connection, sock global waterfall global times, total_integration, pkt_idx0 last_idx = pkt_idx0 data_pkt_frame_idx = 0 data_pkt_samples_summed = 1 idx = 0 while True: try: d = np.zeros([pkt_freqs, pkt_elems]) n = np.zeros([pkt_freqs, pkt_elems]) t = np.zeros(plot_times) for _ in np.arange(local_integration * pkt_elems): data = receive(connection, pkt_length + pkt_header) if len(data) != pkt_length + pkt_header: print("Lost Connection!") connection.close() return ( data_pkt_frame_idx, data_pkt_elem_idx, data_pkt_samples_summed, ) = struct.unpack("III", data[:pkt_header]) d[:, data_pkt_elem_idx] += ( np.fromstring(data[pkt_header:], dtype=np.uint32) * 1.0 ) n[:, data_pkt_elem_idx] += data_pkt_samples_summed * 1.0 roll_idx = (data_pkt_frame_idx - last_idx) // local_integration times = np.roll(times, roll_idx) times[0] = sec_per_pkt_frame * (data_pkt_frame_idx - pkt_idx0) + pkt_utc0 waterfall = np.roll(waterfall, roll_idx, axis=0) waterfall[0, :, :] = 10 * np.log10( (d / n).reshape(-1, pkt_freqs // plot_freqs, pkt_elems).mean(axis=1) ) if np.mean(n) != total_integration: print(np.mean(n), np.std(n)) last_idx = data_pkt_frame_idx # except socket.error, exc: except: connection, client_address = sock.accept() packed_header = receive(connection, 48) info_header = receive(connection, pkt_freqs * 4 * 2 + pkt_elems * 1) print("Reconnected!") thread = threading.Thread(target=data_listener) thread.daemon = True thread.start() time.sleep(1) f, ax = plt.subplots( 2, 2, gridspec_kw={"height_ratios": [4, 1], "width_ratios": [4, 1]} ) f.subplots_adjust(right=0.8, top=0.95, wspace=0.0, hspace=0.0) ax[-1, -1].axis("off") plt.ioff() p = [] tmin = md.date2num( datetime.datetime.fromtimestamp( pkt_utc0 - plot_times * local_integration * sec_per_pkt_frame ) ) tmax = md.date2num(datetime.datetime.fromtimestamp(pkt_utc0)) times = pkt_utc0 - np.arange(plot_times) * local_integration * sec_per_pkt_frame date_format = md.DateFormatter("%H:%M:%S") medsub = False med_range = [-1, 1] full_range = [40, 60] colorscale = med_range if medsub else full_range oc = colorscale p.append( ax[0][0].imshow( waterfall[:, :, 0], aspect="auto", animated=True, origin="upper", interpolation="nearest", cmap="gray", vmin=colorscale[0], vmax=colorscale[1], extent=[freqlist[0, 0], freqlist[-1, -1], tmin, tmax], ) ) ax[0][0].set_yticklabels([]) ax[0][0].yaxis_date() ax[0][0].set_title(stokes_lookup[elemlist[0] + 8]) ax[0][0].set_ylabel("Local Time") ax[0][0].yaxis_date() ax[0][0].xaxis.set_visible(False) ax[0][0].yaxis.set_major_formatter(date_format) ax[0][1].yaxis.set_visible(False) d = np.nanmean(waterfall[:, :, 0], axis=1) ax[0][1].set_xlim(np.amin(d), np.amax(d)) ax[0][1].set_ylim([tmin, tmax]) (im,) = ax[0][1].plot(d, times, ".") ax[0][1].set_xlabel("Power (dB, arb)") p.append(im) ax[1][0].set_xlim(freqlist[0, 0], freqlist[-1, -1]) ax[1][0].set_ylim(colorscale) (im,) = ax[1][0].plot( freqlist.reshape(plot_freqs, -1).mean(axis=1), np.nanmean(waterfall[:, :, 0], axis=0), ".", ) p.append(im) ax[1][0].set_xlabel("Frequency (MHz)") ax[1][0].set_ylabel("Power (dB, arb)") cbar_ax = f.add_axes([0.85, 0.15, 0.05, 0.8]) c = f.colorbar(p[0], cax=cbar_ax) c.set_label("Power (dB, arbitrary)") ani = animation.FuncAnimation(f, updatefig, frames=100, interval=100) f.show() # UI from matplotlib.widgets import Button import pickle def save(event): global check, waterfall, times, freqlist freqs = freqlist.reshape(plot_freqs, -1).mean(axis=1) data = 10 ** (waterfall / 10) fn = time.strftime("MP_%Y%m%d-%H%M%S.pkl") pickle.dump({"freqs": freqs, "times": times, "data": data}, open(fn, "wb")) print("Data Saved to {}".format(fn)) rax = plt.axes([0.82, 0.03, 0.13, 0.04]) save_btn = Button(rax, "Save Data") save_btn.on_clicked(save) def set_spec_baseline(event): global spec_baseline, waterfall, colorscale, oc spec_baseline = np.nanmean(waterfall[:, :, 0], axis=0) colorscale = [-1, 1] print("Set a new spectral baseline") rax = plt.axes([0.7, 0.07, 0.13, 0.04]) sb_btn = Button(rax, "Renorm Spec") sb_btn.on_clicked(set_spec_baseline) def reset_spec_baseline(event): global spec_baseline, plot_freqs, colorscale, oc spec_baseline = np.ones(plot_freqs) colorscale = oc print("Removed spectral baseline") rax = plt.axes([0.82, 0.07, 0.13, 0.04]) rsb_btn = Button(rax, "Un-Renorm") rsb_btn.on_clicked(reset_spec_baseline)
1.6875
2
brands/tests/test_views.py
netvigator/auctions
0
12781621
<filename>brands/tests/test_views.py # import inspect import logging from django.urls import reverse from psycopg2.errors import UniqueViolation from core.tests.base import BaseUserWebTestCase from core.utils import getExceptionMessageFromResponse from ..models import Brand from ..views import BrandCreateView from .base import BrandModelWebTestBase # Create your tests here. class BrandViewsTests( BaseUserWebTestCase ): """Brand views tests.""" def test_no_brands_yet(self): # """ If no brands exist, an appropriate message is displayed. """ # response = self.client.get(reverse('brands:index')) self.assertEqual(response.status_code, 200) self.assertQuerysetEqual(response.context['brand_list'], []) self.assertContains(response, "No brands are available.") # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) def test_got_brands(self): # """ If brands exist, an appropriate message is displayed. """ logging.disable(logging.CRITICAL) # sBrand = "Proctor & Gamble" oBrand = Brand( cTitle= sBrand, iUser = self.user1 ) oBrand.save() sBrand = "Cadillac" oBrand = Brand( cTitle= sBrand, iUser = self.user1 ) oBrand.save() sLeverID = str( oBrand.id ) response = self.client.get(reverse('brands:index')) #response = self.client.get('/brands/') #pprint( 'printing response:') #pprint( response ) self.assertEqual(response.status_code, 200) self.assertQuerysetEqual(response.context['brand_list'], ['<Brand: Cadillac>', '<Brand: Proctor & Gamble>'] ) self.assertContains(response, "Cadillac") # response = self.client.get( reverse( 'brands:detail', kwargs={ 'pk': sLeverID } ) ) self.assertEqual(response.status_code, 200) self.assertContains(response, "Cadillac") self.client.logout() self.client.login(username='username2', password='<PASSWORD>') # print( 'logged out of user1, logged into user 2') response = self.client.get( reverse( 'brands:edit', kwargs={ 'pk': sLeverID } ) ) self.assertEqual(response.status_code, 403) # forbidden self.assertEqual( getExceptionMessageFromResponse( response ), "Permission Denied -- that's not your record!" ) self.client.logout() self.client.login(username='username3', password='<PASSWORD>') # print( 'logged out of user2, logged into user 3') response = self.client.get( reverse( 'brands:detail', kwargs={ 'pk': sLeverID } ) ) self.assertEqual(response.status_code, 200) self.assertContains(response, "Cadillac") """ Not logged in, cannot see form, direct to login page. """ self.client.logout() # print( 'logged out of user3, did not log back in ') response = self.client.get(reverse('brands:index')) self.assertEqual(response.status_code, 302) self.assertRedirects(response, '/accounts/login/?next=/brands/') #pprint( 'printing response:') #pprint( response ) # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) # logging.disable(logging.NOTSET) class BrandViewsHitButtons( BrandModelWebTestBase ): """ Test Save and Cancel """ def test_get(self): """ Test GET requests """ request = self.factory.get(reverse('brands:add')) request.user = self.user1 # response = BrandCreateView.as_view()(request) self.assertEqual(response.status_code, 200) #print( 'response.context_data has form and view, view keys:' ) #for k in response.context_data['view'].__dict__: #print( k ) #self.assertEqual(response.context_data['iUser'], self.user1) self.assertEqual(response.context_data['view'].__dict__['request'], request) # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) # @patch('brands.models.Brand.save', MagicMock(name="save")) def test_add_post(self): """ Test post requests """ data = dict( cTitle = "Proctor & Gamble", iUser = self.user1 ) # Create the request response = self.client.post( reverse('brands:add'), data ) # import pdb; pdb.set_trace() self.assertEqual( response.status_code, 200 ) #oBrand = Brand.objects.get( cTitle = "Great Widget" ) #self.assertEqual( oBrand, self.brands ) #request = self.factory.get(reverse('brands:add')) #request.user = self.user1 #response = self.client.post( request, data ) #print( 'response.status_code:', response.status_code ) # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) def test_add_hit_cancel(self): # """ Hit cancel when adding """ data = dict( cTitle = "Proctor & Gamble", iUser = self.user1, Cancel = True ) # Create the request response = self.client.post( reverse('brands:add'), data ) #print( 'response.status_code:', response.status_code ) #print( 'response.__dict__:' ) #pprint( response.__dict__ ) self.assertEqual( response.status_code, 200 ) # self.assertRedirects( response, reverse( 'brands:index' ) ) # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) def test_search_create_view(self): # request = self.factory.get(reverse('brands:add')) request.user = self.user1 self.object = self.oBrand #request.POST._mutable = True #request.POST['cancel'] = True # response = BrandCreateView.as_view()(request) # # print( 'type( request.POST ):', type( request.POST ) ) # self.assertEqual(response.status_code, 200 ) #print( 'response.template_name:' ) #print( response.template_name ) ['brands/add.html'] # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) # @patch('brands.models.Brand.save', MagicMock(name="save")) def test_edit_post(self): """ Test post requests """ # except UniqueViolation: # huh? hitting an error # see # https://stackoverflow.com/questions/34695323/django-db-utils-integrityerror-duplicate-key-value-violates-unique-constraint/59401538#59401538 # iOneMore = Brand.objects.last().id + 1 # oBrand = Brand( id = iOneMore, cTitle = "Proctor & Gamble", iUser = self.user1 ) oBrand.save() # data = dict( cTitle = "Colgate-Palmolive", iUser = self.user1 ) # Create the request response = self.client.post( reverse('brands:edit', kwargs={'pk': oBrand.id} ), data ) # import pdb; pdb.set_trace() self.assertEqual( response.status_code, 200 ) # #oEditedBrand = Brand.objects.get( id = oBrand.id ) # #print( oEditedBrand ) # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function ) def test_edit_hit_cancel(self): # """ Hit cancel when adding """ # except UniqueViolation: # huh? hitting an error # see # https://stackoverflow.com/questions/34695323/django-db-utils-integrityerror-duplicate-key-value-violates-unique-constraint/59401538#59401538 # iOneMore = Brand.objects.last().id + 1 # oBrand = Brand( id = iOneMore, cTitle = "Proctor & Gamble", iUser = self.user1 ) # oBrand.save() # data = dict( cTitle = "Colgate-Palmolive", iUser = self.user1, Cancel = True ) # Create the request response = self.client.post( reverse('brands:edit', kwargs={'pk': oBrand.id} ), data ) #print( 'response.status_code:', response.status_code ) #print( 'response.__dict__:' ) #pprint( response.__dict__ ) self.assertEqual( response.status_code, 200 ) # self.assertRedirects( response, reverse( 'brands:index' ) ) # # print( 'ran %s' % inspect.getframeinfo( inspect.currentframe() ).function )
2.359375
2
LeetCode/Trees and Graphs/117. Populating Next Right Pointers in Each Node II/solution.py
Ceruleanacg/Crack-Interview
17
12781622
<reponame>Ceruleanacg/Crack-Interview class TreeLinkNode: def __init__(self, x): self.val = x self.left = None self.right = None self.next = None class Solution: # @param root, a tree link node # @return nothing def connect(self, root): if not root: return level_nodes = [root] while level_nodes: nodes = [] for node in level_nodes: if node.left: nodes.append(node.left) if node.right: nodes.append(node.right) for index in range(len(nodes) - 1): nodes[index].next = nodes[index + 1] if nodes: nodes[-1].next = None level_nodes = nodes
3.484375
3
001 - Delete-Clusters.py
georgeeks/mslearn-dp100
0
12781623
<reponame>georgeeks/mslearn-dp100<gh_stars>0 # tutorial/99-Delete-clusters.py from azureml.core import Workspace from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException import os #path = os.path.join(os.getcwd(), 'DP100\.azureml') ws = Workspace.from_config() # This automatically looks for a directory .azureml cpu_cluster_name = "cpu-cluster" cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name) # Delete Cluster cpu_cluster.delete() # Get status of Cluster status = cpu_cluster.get_status() print(status)
2.515625
3
wfpr_modules/github.com/icgc-argo-workflows/data-processing-utility-tools/payload-gen-rna-alignment@0.1.3/main.py
icgc-argo-workflows/rna-seq-alignment
0
12781624
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright (C) 2021, Ontario Institute for Cancer Research This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Authors: <NAME> """ import os import sys import json import argparse import hashlib import uuid import subprocess import copy from datetime import date import re import tarfile workflow_full_name = { 'rna-seq-alignment': 'RNA Seq Alignment' } analysis_tools = { 'star': 'STAR', 'hisat2': 'HiSAT2' } data_type_mapping = { #file_type: [dataCategory, dataType, [data_subtypes], [star analysis_tools], [hisat2 analysis_tools]] 'genome_aln': ['Sequencing Reads', 'Aligned Reads', ['Genome Alignment'], ['STAR'], ['HiSAT2']], 'transcriptome_aln': ['Sequencing Reads', 'Aligned Reads', ['Transcriptome Alignment'], ['STAR'], ['HiSAT2']], 'chimeric_aln': ['Sequencing Reads', 'Aligned Reads', ['Chimeric Alignment'], ['STAR'], ['HiSAT2']], 'splice_junctions': ['Transcriptome Profiling', 'Splice Junctions', [None], ['STAR'], ['HiSAT2']], 'fastqc': ['Quality Control Metrics', 'Sequencing QC', ['Read Group Metrics'], ['FastQC'], ['FastQC']], 'collectrnaseqmetrics': ['Quality Control Metrics', 'Aligned Reads QC', ['Alignment Metrics'], ['Picard:CollectRnaSeqMetrics'], ['Picard:CollectRnaSeqMetrics']], 'duplicates_metrics': ['Quality Control Metrics', 'Aligned Reads QC', ['Duplicates Metrics'], ['biobambam2:bammarkduplicates2'], ['biobambam2:bammarkduplicates2']], 'supplement': ['Supplement', 'Running Logs', [None], ['STAR'], ['HiSAT2']] } def calculate_size(file_path): return os.stat(file_path).st_size def calculate_md5(file_path): md5 = hashlib.md5() with open(file_path, 'rb') as f: for chunk in iter(lambda: f.read(1024 * 1024), b''): md5.update(chunk) return md5.hexdigest() def insert_filename_friendly_rg_id(metadata): filename_friendly_rg_ids = set() # let's loop it two times, first for the rg id actually doesn't need to convert for rg in metadata['read_groups']: submitter_read_group_id = rg['submitter_read_group_id'] filename_friendly_rg_id = "".join([ c if re.match(r"[a-zA-Z0-9\.\-_]", c) else "_" for c in submitter_read_group_id ]) if filename_friendly_rg_id == submitter_read_group_id: # no change, safe to use rg['filename_friendly_rg_id'] = filename_friendly_rg_id filename_friendly_rg_ids.add(filename_friendly_rg_id) for rg in metadata['read_groups']: submitter_read_group_id = rg['submitter_read_group_id'] filename_friendly_rg_id = "".join([ c if re.match(r"[a-zA-Z0-9\.\-_]", c) else "_" for c in submitter_read_group_id ]) if filename_friendly_rg_id == submitter_read_group_id: # no change, already covered continue if filename_friendly_rg_id in filename_friendly_rg_ids: # the converted new friendly ID conflicts with existing one for i in range(len(metadata['read_groups'])): if not '%s_%s' % (filename_friendly_rg_id, i+1) in filename_friendly_rg_ids: filename_friendly_rg_id += '_%s' % str(i+1) break rg['filename_friendly_rg_id'] = filename_friendly_rg_id filename_friendly_rg_ids.add(filename_friendly_rg_id) def get_rg_id_from_ubam_qc(tar, metadata): tar_basename = os.path.basename(tar) # TEST-PR.DO250122.SA610149.D0RE2_1_.6cae87bf9f05cdfaa4a26f2da625f3b2.lane.bam.fastqc.tgz md5sum_from_filename = tar_basename.split('.')[-5] if not re.match(r'^[a-f0-9]{32}$', md5sum_from_filename): sys.exit('Error: ubam naming not expected %s' % tar_basename) for rg in metadata.get("read_groups"): rg_id_in_bam = rg.get("read_group_id_in_bam") if rg.get("read_group_id_in_bam") else rg.get("submitter_read_group_id") seq_file_name = rg.get("file_r1") bam_name = seq_file_name if seq_file_name.endswith('.bam') else '' md5sum_from_metadata = hashlib.md5(("%s %s" % (bam_name, rg_id_in_bam)).encode('utf-8')).hexdigest() if md5sum_from_metadata == md5sum_from_filename: return rg.get("filename_friendly_rg_id"), rg.get("submitter_read_group_id") # up to this point no match found, then something wrong sys.exit('Error: unable to match ubam qc metric tar "%s" to read group id' % tar_basename) def get_dupmetrics(file_to_upload): library = [] with tarfile.open(file_to_upload, 'r') as tar: for member in tar.getmembers(): if member.name.endswith('.duplicates_metrics.txt'): f = tar.extractfile(member) cols_name = [] for r in f: row = r.decode('utf-8') if row.startswith('LIBRARY'): cols_name = row.strip().split('\t') continue if cols_name: if not row.strip(): break metric = {} cols = row.strip().split('\t') for n, c in zip(cols_name, cols): if n == "LIBRARY": metric.update({n: c}) elif '.' in c or 'e' in c: metric.update({n: float(c)}) else: metric.update({n: int(c)}) library.append(metric) return library def get_files_info(file_to_upload, date_str, seq_experiment_analysis_dict, aligner=None): file_info = { 'fileSize': calculate_size(file_to_upload), 'fileMd5sum': calculate_md5(file_to_upload), 'fileAccess': 'controlled', 'info': {} } experimental_strategy = seq_experiment_analysis_dict['experiment']['experimental_strategy'].lower() fname_sample_part = seq_experiment_analysis_dict['samples'][0]['sampleId'] aligner_or_rgid = aligner.lower() if aligner else None submitter_rg_id = None if re.match(r'^genome.merged.+?(cram|cram\.crai|bam|bam\.bai)$', file_to_upload): file_type = 'genome_aln' elif re.match(r'^transcriptome.merged.+?(cram|cram\.crai|bam|bam\.bai)$', file_to_upload): file_type = 'transcriptome_aln' elif re.match(r'^chimeric.merged.+?(cram|cram\.crai|bam|bam\.bai)$', file_to_upload): file_type = 'chimeric_aln' elif re.match(r'.+?\.fastqc\.tgz$', file_to_upload): file_type = 'fastqc' aligner_or_rgid, submitter_rg_id = get_rg_id_from_ubam_qc(file_to_upload, seq_experiment_analysis_dict) elif re.match(r'.+?\.collectrnaseqmetrics\.tgz$', file_to_upload): file_type = 'collectrnaseqmetrics' elif re.match(r'.+?\.duplicates_metrics\.tgz$', file_to_upload): file_type = 'duplicates_metrics' elif re.match(r'.+?_SJ\.out\.tab$', file_to_upload): file_type = 'splice_junctions' elif re.match(r'.+?splicesites\.txt$', file_to_upload): file_type = 'splice_junctions' elif re.match(r'.+?supplement\.tgz$', file_to_upload) or re.match(r'.+?supplement\.tar.gz$', file_to_upload): file_type = 'supplement' else: sys.exit('Error: unknown file type "%s"' % file_to_upload) if file_type in ['fastqc', 'collectrnaseqmetrics', 'duplicates_metrics', 'aln_metrics', 'supplement']: file_ext = 'tgz' elif file_type in ['genome_aln', 'transcriptome_aln', 'chimeric_aln']: if file_to_upload.endswith('.bam'): file_ext = 'bam' elif file_to_upload.endswith('.bam.bai'): file_ext = 'bam.bai' elif file_to_upload.endswith('.cram'): file_ext = 'cram' elif file_to_upload.endswith('.cram.crai'): file_ext = 'cram.crai' else: sys.exit('Error: unknown aligned seq extention: %s' % file_to_upload) elif file_type in ['splice_junctions']: file_ext = 'txt' else: sys.exit('Error: unknown file type "%s"' % file_type) # file naming patterns: # pattern: <argo_study_id>.<argo_donor_id>.<argo_sample_id>.[rna-seq].<date>.<aligner|rg_id>.<file_type>.<file_ext> # example: TEST-PR.DO250183.SA610229.rna-seq.20200319.star.genome_aln.cram new_fname = '.'.join([ seq_experiment_analysis_dict['studyId'], seq_experiment_analysis_dict['samples'][0]['donor']['donorId'], fname_sample_part, experimental_strategy, date_str, aligner_or_rgid, file_type, file_ext ]) file_info['fileName'] = new_fname file_info['fileType'] = new_fname.split('.')[-1].upper() file_info['info'] = { 'data_category': data_type_mapping[file_type][0], 'data_subtypes': data_type_mapping[file_type][2] } if not aligner: file_info['info']['analysis_tools'] = ["FastQC"] elif aligner.lower() == 'star': file_info['info']['analysis_tools'] = data_type_mapping[file_type][3] elif aligner.lower() == 'hisat2': file_info['info']['analysis_tools'] = data_type_mapping[file_type][4] if new_fname.endswith('.bai') or new_fname.endswith('.crai'): file_info['dataType'] = 'Aligned Reads Index' else: file_info['dataType'] = data_type_mapping[file_type][1] # extract info into payload extra_info = {} if new_fname.endswith('.tgz'): tar = tarfile.open(file_to_upload) for member in tar.getmembers(): if member.name.endswith('qc_metrics.json') or member.name.endswith('.extra_info.json'): f = tar.extractfile(member) extra_info = json.load(f) else: if not file_info['info'].get('files_in_tgz'): file_info['info']['files_in_tgz'] = [] file_info['info']['files_in_tgz'].append(os.path.basename(member.name)) # retrieve duplicates metrics from the file if file_info['info']['data_subtypes'][0] == 'Duplicates Metrics': extra_info['metrics'] = { 'libraries': get_dupmetrics(file_to_upload) } if file_info['info']['data_subtypes'][0] == 'Read Group Metrics': extra_info['metrics'].update({'read_group_id': submitter_rg_id}) if extra_info: extra_info.pop('tool', None) file_info['info'].update(extra_info) new_dir = 'out' try: os.mkdir(new_dir) except FileExistsError: pass dst = os.path.join(os.getcwd(), new_dir, new_fname) os.symlink(os.path.abspath(file_to_upload), dst) return file_info def get_sample_info(sample_list): samples = copy.deepcopy(sample_list) for sample in samples: for item in ['info', 'sampleId', 'specimenId', 'donorId', 'studyId']: sample.pop(item, None) sample['specimen'].pop(item, None) sample['donor'].pop(item, None) return samples def main(): """ Python implementation of tool: payload-gen-rna-alignment """ parser = argparse.ArgumentParser(description='Tool: payload-gen-rna-alignment') parser.add_argument("-f", "--files_to_upload", dest="files_to_upload", type=str, required=True, nargs="+", help="Files to upload") parser.add_argument("-a", "--seq_experiment_analysis", dest="seq_experiment_analysis", required=True, help="Input analysis for sequencing experiment", type=str) parser.add_argument("-t", "--analysis_type", dest="analysis_type", required=True, help="Specify analysis_type") parser.add_argument("-l", "--aligner", dest="aligner", default=None, help="Provide RNA-Seq aligner if files_to_upload are generated from alignment results. Default=None") parser.add_argument("-g", "--genome_annotation", dest="genome_annotation", default="GENCODE v38", help="RNA-Seq alignment genome annotation") parser.add_argument("-b", "--genome_build", dest="genome_build", default="GRCh38_hla_decoy_ebv", help="RNA-Seq alignment genome build") parser.add_argument("-w", "--wf_name", dest="wf_name", required=True, help="Workflow name") parser.add_argument("-v", "--wf_version", dest="wf_version", required=True, help="Workflow version") parser.add_argument("-r", "--wf_run", dest="wf_run", required=True, help="Workflow run ID") parser.add_argument("-s", "--wf_session", dest="wf_session", required=True, help="Workflow session ID") args = parser.parse_args() with open(args.seq_experiment_analysis, 'r') as f: seq_experiment_analysis_dict = json.load(f) payload = { 'analysisType': { 'name': args.analysis_type }, 'studyId': seq_experiment_analysis_dict.get('studyId'), 'workflow': { 'workflow_name': workflow_full_name.get(args.wf_name, args.wf_name), 'workflow_version': args.wf_version, 'genome_build': args.genome_build, 'genome_annotation': args.genome_annotation, 'run_id': args.wf_run, 'session_id': args.wf_session, 'inputs': [ { 'analysis_type': 'sequencing_experiment', 'input_analysis_id': seq_experiment_analysis_dict.get('analysisId') } ] }, 'files': [], 'samples': get_sample_info(seq_experiment_analysis_dict.get('samples')), 'experiment': seq_experiment_analysis_dict.get('experiment') } if "sequencing_alignment" in args.analysis_type: payload['read_group_count'] = seq_experiment_analysis_dict.get('read_group_count') payload['read_groups'] = copy.deepcopy(seq_experiment_analysis_dict.get('read_groups')) # pass `info` dict from seq_experiment payload to new payload if 'info' in seq_experiment_analysis_dict and isinstance(seq_experiment_analysis_dict['info'], dict): payload['info'] = seq_experiment_analysis_dict['info'] if 'library_strategy' in payload['experiment']: experimental_strategy = payload['experiment'].pop('library_strategy') payload['experiment']['experimental_strategy'] = experimental_strategy insert_filename_friendly_rg_id(seq_experiment_analysis_dict) # get file of the payload date_str = date.today().strftime("%Y%m%d") for f in args.files_to_upload: file_info = get_files_info(f, date_str, seq_experiment_analysis_dict, args.aligner) payload['files'].append(file_info) with open("%s.%s.payload.json" % (str(uuid.uuid4()), args.analysis_type), 'w') as f: f.write(json.dumps(payload, indent=2)) if __name__ == "__main__": main()
2.03125
2
tinier_tim/rebin_psf.py
jiwoncpark/tinier-tim
0
12781625
# -*- coding: utf-8 -*- """Rebinning the PSF This script rebins the given PSF and stores the rebinned PSFs in the specified directory. """ import os import argparse import rebinning_utils def parse_args(): """Parse command-line arguments """ parser = argparse.ArgumentParser() parser.add_argument('psf_file_path', help='path to the fits file of the PSF to be rebinned') parser.add_argument('--factor', default=4, dest='factor', type=int, help='size of rebinning kernel in number of pixels') parser.add_argument('--save_dir', default='rebinned_dir', dest='rebinned_dir', type=str, help='directory in which the rebinned (non-drizzled) PSFs will be stored. If it does not exist, it will be created.') args = parser.parse_args() return args def main(): args = parse_args() input_psf = rebinning_utils.load_psf_map(args.psf_file_path) if not os.path.exists(args.rebinned_dir): os.makedirs(args.rebinned_dir) _ = rebinning_utils.rebin_psf(input_psf, factor=args.factor, save_dir=args.rebinned_dir) if __name__ == '__main__': main()
3.21875
3
gen_syscalls.py
HexRabbit/syscall-table
3
12781626
<filename>gen_syscalls.py import re, json, ctags from ctags import CTags, TagEntry prefix = './linux/' # file generated by ctags --fields=afmikKlnsStz --c-kinds=+pc -R tags = CTags(prefix+'tags') entry = TagEntry() syscall_tbl = open(prefix+'arch/x86/entry/syscalls/syscall_64.tbl', 'r') syscall_out = open('www/syscall.json', 'w+') syscall_func = [] def parse_line(entry): file_name = entry['file'] line_num = int(entry['lineNumber']) syscall_str = entry['pattern'][2:-2] if syscall_str[-1] != ')': with open(prefix+file_name, 'r') as f: # enumerate(x) uses x.next(), so it doesn't need the entire file in memory. start = False for i, line in enumerate(f): if i == line_num: start = True if start: line = line.strip() syscall_str += line if line[-1] == ')': break match = re.search('SYSCALL_DEFINE\d\((.*)\)', syscall_str) symbols = map(str.strip, match.group(1).split(',')[1:]) params = [] for i in range(len(symbols)/2): params.append({ 'type': symbols[i*2] + ' ' + symbols[i*2+1], 'def': None }) return params + [{}]*(6-len(params)) for line in syscall_tbl.readlines(): line = line.strip() if line: if line.startswith('#'): continue else: syscall = re.search('(\d*)\s*(\w*)\s*(\w*)\s*(\w*)(/.*)?', line) symbols = syscall.groups() func_id = int(symbols[0]) func_type = symbols[1] func_name = symbols[2] func_fullname = symbols[3][10:] if symbols[3] else 'not implemented' if func_type != 'x32': if tags.find(entry, 'SYSCALL_DEFINE', ctags.TAG_PARTIALMATCH): while True: # '[,\)]' is essential to filter mmap2 or the like if re.search('SYSCALL_DEFINE\d\('+func_fullname+'[,\)]', entry['pattern']): parsed = parse_line(entry) syscall_info = [ func_id, func_name, '{0:#04x}'.format(func_id) ] syscall_info += parsed syscall_info += [entry['file'], entry['lineNumber']] syscall_func.append(syscall_info) break elif not tags.findNext(entry): # print(func_name) syscall_func.append([ func_id, func_name, '{0:#04x}'.format(func_id), {}, {}, {}, {}, {}, {}, '', 0 ]) break syscall_out.write( json.dumps( { 'aaData': syscall_func }, sort_keys=True, indent=2 )) syscall_tbl.close() syscall_out.close()
2.6875
3
Python2.7-UnpackAndUploadToCOS/index.py
tencentyun/scf-demo-repo
46
12781627
# -*- coding: utf-8 -*- #####----------------------------------------------------------------##### ##### ##### ##### 使用教程/readme: ##### ##### https://cloud.tencent.com/document/product/583/47076 ##### ##### ##### #####----------------------------------------------------------------##### import os import sys import os.path import zipfile import patool import logging from qcloud_cos_v5 import CosConfig from qcloud_cos_v5 import CosS3Client from qcloud_cos_v5 import CosServiceError reload(sys) sys.setdefaultencoding('utf8') os.environ['PATH'] = os.getenv("PATH")+":"+os.getcwd() logging.basicConfig(level=logging.INFO, stream=sys.stdout) region = os.getenv('targetRegion') bucket_upload = os.getenv('targetBucket') unpack_suffix=os.getenv('suffix') target_dir=os.getenv('targetPrefix') logger = logging.getLogger() def run_extract(archive, outdir): """Extract files from archive(s).""" try: patool.extract_archive(archive, verbosity=False, interactive="--non-interactive", outdir=outdir) except PatoolError as msg: logger.Error("error extracting %s: %s" % (archive, msg)) class PatoolError(Exception): pass def _fullpath(x): x = os.path.expandvars(x) x = os.path.expanduser(x) x = os.path.normpath(x) x = os.path.abspath(x) return x class Archive(object): ''' :param backend: ``auto``, ``patool`` or ``zipfile`` :param filename: path to archive file ''' def __init__(self, filename, backend='auto'): self.filename = _fullpath(filename) self.backend = backend def extractall_patool(self, directory): logger.debug('starting backend patool') try: run_extract(self.filename, directory) except PatoolError as msg: logger.info("error extracting %s: %s", self.filename, msg) def extractall_zipfile(self, directory): logger.debug('starting backend zipfile') zipfile.ZipFile(self.filename).extractall(directory) def extractall(self, directory, auto_create_dir=False): ''' :param directory: directory to extract to :param auto_create_dir: auto create directory ''' logger.debug('extracting %s into %s (backend=%s)', self.filename, directory, self.backend) is_zipfile = zipfile.is_zipfile(self.filename) directory = _fullpath(directory) if not os.path.exists(self.filename): raise ValueError( 'archive file does not exist:' + str(self.filename)) if not os.path.exists(directory): if auto_create_dir: os.makedirs(directory) else: raise ValueError('directory does not exist:' + str(directory)) if self.backend == 'auto': if is_zipfile: self.extractall_zipfile(directory) else: self.extractall_patool(directory) if self.backend == 'zipfile': if not is_zipfile: raise ValueError('file is not zip file:' + str(self.filename)) self.extractall_zipfile(directory) if self.backend == 'patool': self.extractall_patool(directory) def delete_local_file(src): logger.info("delete files and folders") if os.path.isfile(src): try: os.remove(src) except: pass elif os.path.isdir(src): for item in os.listdir(src): itemsrc = os.path.join(src, item) delete_local_file(itemsrc) try: os.rmdir(src) except: pass def upload_local_file(client, src, archivename): logger.info("start to upload") for filename in os.listdir(src): path = src + '/{}'.format(os.path.basename(filename)) logger.info("path is [%s]", path) if os.path.isfile(path): logger.info("filename is [%s]", filename) response = client.put_object_from_local_file( Bucket=bucket_upload, LocalFilePath=path, Key='{}/{}'.format(archivename, filename)) delete_local_file(str(path)) elif os.path.isdir(path): logger.info("dirname is [%s]", filename) dirpath = archivename + '/{}'.format(filename) upload_local_file(client, path, dirpath) else: logger.info("upload fail") def main_handler(event, context): logger.info("start unpack template function") secret_id = os.getenv('TENCENTCLOUD_SECRETID') secret_key = os.getenv('TENCENTCLOUD_SECRETKEY') token = os.getenv('TENCENTCLOUD_SESSIONTOKEN') config = CosConfig(Secret_id=secret_id, Secret_key=secret_key, Region=region, Token=token) client = CosS3Client(config) for record in event['Records']: try: appid = record['cos']['cosBucket']['appid'] bucket = record['cos']['cosBucket']['name'] + '-' + appid filename = os.path.basename(record['cos']['cosObject']['url']) download_path = '/tmp/{}'.format(filename.encode('gb18030')) key = record['cos']['cosObject']['key'] key = key.replace('/' + appid + '/' + record['cos']['cosBucket']['name'] + '/', '', 1) # 创建本地解压路径 isExists = os.path.exists('/tmp/unpack') if not isExists: os.mkdir('/tmp/unpack') unpack_path = '/tmp/unpack' # 提取文件名 shotname (filepath, tempfilename) = os.path.split(filename); (shotname, extension) = os.path.splitext(tempfilename); if extension[1:] not in unpack_suffix.split(','): logger.info("object suffix is [%s], expected: [%s]", extension, unpack_suffix) return "object suffix is [%s], expected: [%s]" % (extension, unpack_suffix) logger.info("object name is [%s]", shotname) # download rar from cos logger.info("get from [%s] to download object [%s]", bucket, filename) try: response = client.get_object(Bucket=bucket, Key=key, ) response['Body'].get_stream_to_file(download_path) logger.info("download object [%s] Success", filename) except CosServiceError as e: print(e.get_error_code()) print(e.get_error_msg()) print(e.get_resource_location()) logger.info("download object [%s] failed", filename) return "download object fail" # start to extract archive file and upload to bucket_upload logger.info("start to extract archive file") Archive(download_path).extractall(unpack_path, auto_create_dir=True) logger.info("extract success") upload_local_file(client, '/tmp/unpack', target_dir) # clean files delete_local_file(str(download_path)) delete_local_file(str(unpack_path)) return "extract and upload success" except Exception as e: print(e) raise e return "extract and upload fail"
1.976563
2
pyiron/base/job/wrappercmd.py
SanderBorgmans/pyiron
0
12781628
import sys import getopt from pyiron.base.job.wrapper import job_wrapper_function def command_line(argv): """ Parse the command line arguments. Args: argv: Command line arguments """ debug = False project_path = None job_id = None try: opts, args = getopt.getopt(argv, "dj:p:h", ["debug", "project_path=", "job_id=", "help"]) except getopt.GetoptError: print('cms.py --p <project_path> -j <job_id> <debug>') sys.exit() else: for opt, arg in opts: if opt in ("-h", "--help"): print('cms.py --p <project_path> -j <job_id> <debug>') sys.exit() elif opt in ("-d", "--debug"): debug = True elif opt in ("-j", "--job_id"): job_id = arg elif opt in ("-p", "--project_path"): project_path = arg job_wrapper_function(working_directory=project_path, job_id=job_id, debug=debug) sys.exit() if __name__ == "__main__": command_line(sys.argv[1:])
2.34375
2
tabcmd/parsers/edit_site_parser.py
WillAyd/tabcmd
0
12781629
<gh_stars>0 from .global_options import * class EditSiteParser: """ Parser for the command editsite """ @staticmethod def edit_site_parser(manager, command): """Method to parse edit site arguments passed by the user""" edit_site_parser = manager.include(command) edit_site_parser.add_argument('sitename', help='name of site to update') edit_site_parser.add_argument('--site-name', default=None, dest='target', help='new name of site') edit_site_parser.add_argument('--site-id', default=None, help='id of site') edit_site_parser.add_argument('--url', default=None, help='url of site') edit_site_parser.add_argument( '--user-quota', type=int, default=None, help='Max number of user that can be added to site') edit_site_parser.add_argument( '--status', default=None, help='Set to ACTIVE to activate a site, or to SUSPENDED to suspend a site.') edit_site_parser.add_argument( '--extract-encryption-mode', default=None, help='The extract encryption mode for the site can be enforced, enabled or disabled') edit_site_parser.add_argument( '--run-now-enabled', default=None, help='Allow or deny users from running extract refreshes, flows, or schedules manually.') edit_site_parser.add_argument( '--storage-quota', type=int, default=None, help='in MB amount of workbooks, extracts data sources stored on site') group = edit_site_parser.add_mutually_exclusive_group() group.add_argument('--site-mode', default=None, help='Does not allow site admins to add or remove users') group.add_argument('--no-site-mode', default=None, help='Allows site admins to add or remove users')
2.84375
3
worker/crawler.py
gcvalderrama/Palantir
0
12781630
""" This script extract news information from the local web """ import glob import os import os.path from bs4 import BeautifulSoup from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions class Crawler: def extract_web_news(self, folder, url, tag): """ Extract information from the elcomercio feed url (XML format) and download them to a filepath :param folder: Folder where the news files will be saved :param url: feed url like http://elcomercio.pe/feed/lima/policiales.xml :param tag: news type like 'policiales' :return: void """ browser = webdriver.Firefox() browser.get(url) list_linker_href = browser.find_elements_by_xpath('//xhtml:a[@href]') driver = webdriver.Firefox() wait = WebDriverWait(driver, 10) for l in list_linker_href: news_url = l.get_attribute('href') driver.get(news_url) print(news_url) wait.until(expected_conditions.element_to_be_clickable((By.CLASS_NAME, 'fecha'))) fecha = driver.find_element_by_class_name("fecha").get_attribute("datetime") file_name = tag + '--' + news_url.split('/')[-1] try: news_element = driver.find_element_by_id('main-txt-nota') except NoSuchElementException: print('main-txt-nota not found on ' + file_name) continue news_content = news_element.get_attribute('innerHTML').encode('utf-8') content = fecha + "\n" + news_content.decode('utf-8') with open(folder + "/" + file_name + ".html", 'w') as file: file.write(content) browser.close() driver.close() def clean_raw_news(self, origin, destination, skip_validation): """ Read raw news from origin and after cleaning, it will write them into destination folder :param origin: Folder that contains all the raw news :param destination: Destination folder to write clear news content :param skip_validation: True or False - check file existence :return: nothing - void """ news = glob.glob(origin + "/*.html") for news_file in news: print(news_file) file_name = destination + '/' + news_file.split('/')[1].split('.')[0] + '.txt' if skip_validation or not os.path.isfile(file_name): with open(news_file, 'r') as read_file: news_raw = read_file.read() # create a new bs4 object from the html data loaded soup = BeautifulSoup(news_raw, 'lxml') # remove all javascript and stylesheet code for script in soup(["script", "style"]): script.extract() # get text text = soup.get_text() # break into lines and remove leading and trailing space on each lines = (line.strip() for line in text.splitlines()) # break multi-headlines into a line each chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) # drop blank lines text = '\n'.join(chunk for chunk in chunks if chunk) with open(file_name, 'w') as write_file: write_file.write(text)
3.328125
3
python/tabuada.py
sswellington/bootcamp
1
12781631
<reponame>sswellington/bootcamp #!/bin/python3 valor=6 for n in range(1,11,1): print(str(valor) + " x " + str(n) + " = " + str((valor*n)))
3.609375
4
pilea/cli.py
hfjn/pilea
0
12781632
<reponame>hfjn/pilea from pathlib import Path import time import click from click import ClickException, Context, pass_context from livereload import Server from pilea.build_controller import BuildController from pilea.state import State, pass_state from shutil import copytree import os EXECUTION_PATH = Path(os.getcwd()) INPUT_FOLDER = Path(__file__).parent / "input" @click.group(help="pilea - a tiny static site generator.") def pilea(): pass @pilea.command() @click.argument("folder") def new(folder): """Creates basic folder structure to work with pilea. \b USAGE: \b pilea new FOLDER : Creates new project at FOLDER """ folder = EXECUTION_PATH / folder if folder.exists(): raise ClickException(f"{folder} already exists.") folder.mkdir() copytree(INPUT_FOLDER, folder / "input") click.echo(f"Created folder at {folder}") @pilea.command() @click.option("--watch", is_flag=True) @pass_state def build(state: State, watch: bool): """ Compiles the input files. Has to be run from within the project folder. Resulting files will be in site/ USAGE: pilea build : Will compile the static site to site/ """ build_controller = BuildController(state) build_controller.build_all() @pilea.command() @pass_state @pass_context def serve(ctx: Context, state: State): """ Starts a simple development server with live-reload functionality. USAGE: pilea serve : Will serve the static site at localhost:5050 """ build_controller = BuildController(state) build_controller.build_all() server = Server() server.watch(f"{str(state.input_folder)}/**/*.html", build_controller.build_all) server.watch(f"{str(state.input_folder)}/**/**/*.md", build_controller.build_all) server.watch(f"{str(state.input_folder)}/**/*.css", build_controller.build_css) server.serve(root=state.output_folder)
2.796875
3
p_050_059/problem58.py
ericgreveson/projecteuler
0
12781633
<reponame>ericgreveson/projecteuler from factor_tools import is_prime def main(): """ Entry point """ num_prime = 3 num_on_diagonals = 1 + 4 size = 3 while num_prime / num_on_diagonals > 0.1: size += 2 bottom_right = size * size other_diags = [bottom_right - i * (size - 1) for i in range(1, 4)] num_prime += sum([1 for i in other_diags if is_prime(i)]) num_on_diagonals += 4 print(f"Side length with <10% prime along diag: {size}") if __name__ == "__main__": main()
3.421875
3
hsms/meta/make_sized_bytes.py
Quexington/hsms
2
12781634
from typing import Any, BinaryIO from .bin_methods import bin_methods from .hexbytes import hexbytes def make_sized_bytes(size): """ Create a streamable type that subclasses "hexbytes" but requires instances to be a certain, fixed size. """ name = "bytes%d" % size def __new__(self, v): v = bytes(v) if not isinstance(v, bytes) or len(v) != size: raise ValueError("bad %s initializer %s" % (name, v)) return hexbytes.__new__(self, v) @classmethod def parse(cls, f: BinaryIO) -> Any: b = f.read(size) assert len(b) == size return cls(b) def stream(self, f): f.write(self) def __str__(self): return self.hex() def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, str(self)) namespace = dict( __new__=__new__, parse=parse, stream=stream, __str__=__str__, __repr__=__repr__ ) cls = type(name, (hexbytes, bin_methods), namespace) return cls
3.109375
3
niwidgets/__init__.py
lrq3000/niwidgets
0
12781635
<gh_stars>0 """ Widgets to visualise neuroimaging data. For volume images, try import NiftiWidget. For surface images, try SurfaceWidget. """ # import example data from .exampledata import exampleatlas, examplezmap, examplet1 # noqa # import widget classes. from .niwidget_volume import NiftiWidget # noqa from .niwidget_surface import SurfaceWidget # noqa
1.539063
2
server/setupdb.py
xhuang98/Dtect
1
12781636
from flask_sqlalchemy import SQLAlchemy from api import app, db from data.models import Authentication, UserLogin from data.parser import authlogs from predictions import update_predictions # create tables with app.app_context(): db.create_all() with app.app_context(): entry = UserLogin( username="admin", password="<PASSWORD>" ) db.session.add(entry) db.session.commit() # insert authentication logs with app.app_context(): for log in authlogs: entry = Authentication( time=log[0], source_user=log[1], destination_user=log[2], source_computer=log[3], destination_computer=log[4], authentication_type=log[5], logon_type=log[6], auth_orientation=log[7], auth_result=log[8] ) db.session.add(entry) db.session.commit() update_predictions(db, app.app_context())
2.40625
2
running_modes/reinforcement_learning/core_reinforcement_learning.py
lilleswing/Reinvent-1
183
12781637
<gh_stars>100-1000 import time import numpy as np import torch from reinvent_chemistry.utils import get_indices_of_unique_smiles from reinvent_models.lib_invent.enums.generative_model_regime import GenerativeModelRegimeEnum from reinvent_models.model_factory.configurations.model_configuration import ModelConfiguration from reinvent_models.model_factory.enums.model_type_enum import ModelTypeEnum from reinvent_models.model_factory.generative_model import GenerativeModel from reinvent_models.model_factory.generative_model_base import GenerativeModelBase from reinvent_scoring import FinalSummary from reinvent_scoring.scoring.diversity_filters.reinvent_core.base_diversity_filter import BaseDiversityFilter from reinvent_scoring.scoring.function.base_scoring_function import BaseScoringFunction from running_modes.configurations import ReinforcementLearningConfiguration from running_modes.constructors.base_running_mode import BaseRunningMode from running_modes.reinforcement_learning.inception import Inception from running_modes.reinforcement_learning.logging.base_reinforcement_logger import BaseReinforcementLogger from running_modes.reinforcement_learning.margin_guard import MarginGuard from running_modes.utils.general import to_tensor class CoreReinforcementRunner(BaseRunningMode): def __init__(self, critic: GenerativeModelBase, actor: GenerativeModelBase, configuration: ReinforcementLearningConfiguration, scoring_function: BaseScoringFunction, diversity_filter: BaseDiversityFilter, inception: Inception, logger: BaseReinforcementLogger): self._prior = critic self._agent = actor self._scoring_function = scoring_function self._diversity_filter = diversity_filter self.config = configuration self._logger = logger self._inception = inception self._margin_guard = MarginGuard(self) self._optimizer = torch.optim.Adam(self._agent.get_network_parameters(), lr=self.config.learning_rate) def run(self): self._logger.log_message("starting an RL run") start_time = time.time() self._disable_prior_gradients() for step in range(self.config.n_steps): seqs, smiles, agent_likelihood = self._sample_unique_sequences(self._agent, self.config.batch_size) # switch signs agent_likelihood = -agent_likelihood prior_likelihood = -self._prior.likelihood(seqs) score_summary: FinalSummary = self._scoring_function.get_final_score_for_step(smiles, step) score = self._diversity_filter.update_score(score_summary, step) augmented_likelihood = prior_likelihood + self.config.sigma * to_tensor(score) loss = torch.pow((augmented_likelihood - agent_likelihood), 2) loss, agent_likelihood = self._inception_filter(self._agent, loss, agent_likelihood, prior_likelihood, self.config.sigma, smiles, score) loss = loss.mean() self._optimizer.zero_grad() loss.backward() self._optimizer.step() self._stats_and_chekpoint(score, start_time, step, smiles, score_summary, agent_likelihood, prior_likelihood, augmented_likelihood) self._logger.save_final_state(self._agent, self._diversity_filter) self._logger.log_out_input_configuration() self._logger.log_out_inception(self._inception) def _disable_prior_gradients(self): # There might be a more elegant way of disabling gradients for param in self._prior.get_network_parameters(): param.requires_grad = False def _stats_and_chekpoint(self, score, start_time, step, smiles, score_summary: FinalSummary, agent_likelihood, prior_likelihood, augmented_likelihood): self._margin_guard.adjust_margin(step) mean_score = np.mean(score) self._margin_guard.store_run_stats(agent_likelihood, prior_likelihood, augmented_likelihood, score) self._logger.timestep_report(start_time, self.config.n_steps, step, smiles, mean_score, score_summary, score, agent_likelihood, prior_likelihood, augmented_likelihood, self._diversity_filter) self._logger.save_checkpoint(step, self._diversity_filter, self._agent) def _sample_unique_sequences(self, agent, batch_size): seqs, smiles, agent_likelihood = agent.sample(batch_size) unique_idxs = get_indices_of_unique_smiles(smiles) seqs_unique = seqs[unique_idxs] smiles_np = np.array(smiles) smiles_unique = smiles_np[unique_idxs] agent_likelihood_unique = agent_likelihood[unique_idxs] return seqs_unique, smiles_unique, agent_likelihood_unique def _inception_filter(self, agent, loss, agent_likelihood, prior_likelihood, sigma, smiles, score): exp_smiles, exp_scores, exp_prior_likelihood = self._inception.sample() if len(exp_smiles) > 0: exp_agent_likelihood = -agent.likelihood_smiles(exp_smiles) exp_augmented_likelihood = exp_prior_likelihood + sigma * exp_scores exp_loss = torch.pow((to_tensor(exp_augmented_likelihood) - exp_agent_likelihood), 2) loss = torch.cat((loss, exp_loss), 0) agent_likelihood = torch.cat((agent_likelihood, exp_agent_likelihood), 0) self._inception.add(smiles, score, prior_likelihood) return loss, agent_likelihood def reset(self, reset_countdown=0): model_type_enum = ModelTypeEnum() model_regime = GenerativeModelRegimeEnum() actor_config = ModelConfiguration(model_type_enum.DEFAULT, model_regime.TRAINING, self.config.agent) self._agent = GenerativeModel(actor_config) self._optimizer = torch.optim.Adam(self._agent.get_network_parameters(), lr=self.config.learning_rate) self._logger.log_message("Resetting Agent") self._logger.log_message(f"Adjusting sigma to: {self.config.sigma}") return reset_countdown
1.796875
2
lbuild/api.py
fb39ca4/lbuild
0
12781638
<filename>lbuild/api.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (c) 2018, <NAME> # All Rights Reserved. # # The file is part of the lbuild project and is released under the # 2-clause BSD license. See the file `LICENSE.txt` for the full license # governing this code. import os import lbuild.environment from lbuild.buildlog import BuildLog from lbuild.parser import Parser from lbuild.config import ConfigNode from lbuild.utils import listify, listrify class Builder: def __init__(self, cwd=None, config=None, options=None): if cwd is None: cwd = os.getcwd() if config is None else os.path.dirname(config) self.cwd = cwd config = ConfigNode.from_file(config, fail_silent=True) file_config = ConfigNode.from_filesystem(cwd) if config: config.extend_last(file_config) else: config = file_config if file_config else ConfigNode() self.config = config self.config.add_commandline_options(listify(options)) self.parser = Parser(self.config) def _load_repositories(self, repos=None): self.parser.load_repositories(listrify(repos)) self.parser.merge_repository_options() def _load_modules(self): if not len(self.parser._undefined_repo_options()): self.parser.prepare_repositories() self.parser.merge_module_options() def _filter_modules(self, modules=None): self.parser.config.modules.extend(listify(modules)) selected_modules = self.parser.find_modules(self.parser.config.modules) return self.parser.resolve_dependencies(selected_modules) def load(self, repos=None): self._load_repositories(repos) self._load_modules() def validate(self, modules=None): build_modules = self._filter_modules(modules) self.parser.validate_modules(build_modules) def build(self, outpath, modules=None, simulate=False): build_modules = self._filter_modules(modules) buildlog = BuildLog(outpath) lbuild.environment.simulate = simulate self.parser.build_modules(build_modules, buildlog) return buildlog
1.929688
2
src/scheduler.py
positoro/radioRecorder
0
12781639
import pandas as pd import json import datetime import subprocess import localModule #---- def atting_program(row): ffmpeg_command_line = 'ffmpeg \ -loglevel error \ -fflags +discardcorrupt \ -i {0} \ -acodec copy \ -movflags faststart \ -vn \ -bsf:a aac_adtstoasc \ -t {1} \ -metadata date="{2}" \ -metadata genre="{3}" \ -metadata artist="{4}" \ -metadata title="{5}" \ {6}/{7}.m4a'.format( localModule.DICTIONARY_OF_STATION_URL[row.service_id], int((row.air_time + datetime.timedelta(seconds=localModule.MARGIN_SECOND*2)).total_seconds()), row.start_time.strftime('%Y'), 'Radio Program', row.service_name, row.title, localModule.FOLDER_OF_RECORD, row.title+'-'+row.start_time.strftime('%Y%m%d%H%M'), ) at_launch_time = row.start_time - datetime.timedelta(seconds=localModule.MARGIN_SECOND) command_line = "echo 'sleep {0}; {1}' | at -t {2}".format( at_launch_time.strftime('%S'), ffmpeg_command_line, at_launch_time.strftime('%Y%m%d%H%M'), ) res = subprocess.check_output(command_line, shell=True) #---- table = pd.read_csv(localModule.TABLE_FILE) table['start_time'] = pd.to_datetime(table['start_time']) table['end_time'] = pd.to_datetime(table['end_time']) table['air_time'] = pd.to_timedelta(table['air_time']) for row in table.itertuples(): atting_program(row)
2.4375
2
vpklib.py
victorvde/dota2_nohats
20
12781640
<filename>vpklib.py from binary import Struct, Magic, Format, BaseArray, String, Blob, FakeWriteStream from itertools import count class VPK(Struct): def fields(self): self.F("magic", Magic(b"\x34\x12\xaa\x55")) self.F("version", Format("I")) assert self["version"].data == 1 self.F("index_size", Format("I")) self.F("index", NulTerminatedArray(FileType)) def should_serialize(self, k, f): return k != "magic" def pack(self, s): if self["index_size"].data == 0: t = FakeWriteStream() self["index"].pack(t) self["index_size"].data = t.tell() Struct.pack(self, s) class NulTerminatedArray(BaseArray): def unpack(self, s): self.field = [] for i in count(): f = self.field_fun(i, self) try: f.unpack(s) except StopIteration: break else: self.field.append(f) def pack(self, s): BaseArray.pack(self, s) s.write(b"\x00") class FileType(Struct): def fields(self): t = self.F("type", String()) if t.data == "": raise StopIteration self.F("directory", NulTerminatedArray(Directory)) class Directory(Struct): def fields(self): p = self.F("path", String()) if p.data == "": raise StopIteration self.F("file", NulTerminatedArray(File)) class File(Struct): def fields(self): f = self.F("filename", String()) if f.data == "": raise StopIteration self.F("crc", Format("I")) ps = self.F("preloadsize", Format("H")) self.F("archive_index", Format("H")) self.F("archive_offset", Format("I")) self.F("archive_size", Format("I")) self.F("terminator", Magic(b"\xFF\xFF")) self.F("preload_data", Blob(ps.data)) def should_serialize(self, k, f): return k not in ["terminator", "preload_data"]
2.5
2
pixelssl/task_template/__init__.py
charlesCXK/PixelSSL
223
12781641
from . import func as func_template from . import data as data_template from . import model as model_template from . import criterion as criterion_template from . import proxy as proxy_template __all__ = [ 'func_template', 'data_template', 'model_template', 'criterion_template', 'proxy_template', ]
1.28125
1
PythonFiles/SUWSS/TDMS/tdmsReader.py
VijayS02/Random-Programming-Items
0
12781642
<gh_stars>0 """ import numpy as np from nptdms import TdmsFile from nptdms import tdms filenameS = "24July2018_Intact_1.tdms" tdms_file = TdmsFile(filenameS) root_object = tdms_file.object() for name, value in root_object.properties.items(): print("{0}: {1}".format(name, value)) print(root_object.properties) """ import scipy.io import plotly.plotly as plt import plotly.graph_objs as go import numpy as np mat = scipy.io.loadmat('24July2018_Intact_1.mat') data = [] x = mat.get('VoltageAI0')[0][0][1][0][0] time = [] for i in range(0,x): time.append(i) print(time) data.append(mat.get('VoltageAI0')[0][0][0]) data.append(mat.get('VoltageAI1')[0][0][0]) data.append(mat.get('VoltageAI2')[0][0][0]) data.append(mat.get('VoltageAI3')[0][0][0]) print(data[0]) random_x = np.linspace(0,1,100) random_y = np.random.randn(100) trace = go.Scatter( x =random_x,y=random_y) data1 = [trace] plt.iplot(data1,filename="basic line")
2.265625
2
CSGLTrader.py
TerrenceHung/CSGLTrader
0
12781643
<gh_stars>0 import pickle import time from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from tkinter import messagebox, Tk class TradeException(Exception): """ An exception to be raised when there is an error trying to make a trade. """ pass def search_item(driver, item, own_item): """(WebDriver, str, bool) -> None Searches for the item on the csgolounge search menu. If own_item is True, the item will be moved to the have section of the search window. """ if 'keys' in item: driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/input').send_keys( 'Any Key') elif 'Stattrak' in item: # click the stattrak button and search for the item driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/input').send_keys( item.lstrip('Stattrak ')) driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/a[2]').click() elif own_item and 'Knife' in item: driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/input').send_keys( 'Any Knife') elif own_item: # trying to trade an item that is not a key or a knife, click on Any Offers icon driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/input').send_keys( 'Any Offers') else: driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/input').send_keys(item) # wait for the search result to appear and click it # sometimes clicks the first item before the search results even appear, # need to wait for results to disappear first # waiting for the loading gif to appear doesn't work, sometimes it appears too quickly' # WebDriverWait(driver, 3).until(EC.presence_of_element_located( # (By.ID, 'loading'))) time.sleep(1) # now wait for an item to appear WebDriverWait(driver, 5).until(EC.presence_of_element_located( (By.XPATH, '/html/body/main/section[2]/div[2]/div[2]/div[2]/img'))).click() if own_item: # click the item that was added to the trade and move it to the have section driver.find_element_by_xpath( '/html/body/main/section[1]/div[1]/div/form[2]/div/div[2]/img').click() driver.find_element_by_xpath( '/html/body/main/section[1]/div[1]/div/form[2]/div/div[1]/div[2]').click() # disable stattrak filter if it was clicked and clear search box if 'Stattrak' in item: driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/a[2]').click() driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/input').clear() def open_new_tab(driver, webelement, main_window): """(WebDriver, WebElement, str) -> None Opens the web element in a new tab, and shifts focus to the new tab. """ actions = ActionChains(driver) actions.key_down(Keys.CONTROL) actions.key_down(Keys.SHIFT) actions.click(webelement) actions.key_up(Keys.CONTROL) actions.key_up(Keys.SHIFT) actions.perform() driver.switch_to_window(main_window) def close_tab(driver, main_window): """(WebDriver, str) -> None Closes the current tab. """ driver.find_element_by_tag_name('body').send_keys(Keys.CONTROL + 'w') driver.switch_to_window(main_window) def send_trade(driver, item_to_trade, item_to_get): """(WebDriver, str, str) -> bool Opens up a trade with a user and sends a trade with the specified items. """ success = True try: # open the Steam offer menu in a new tab open_new_tab(driver, driver.find_element_by_link_text('Steam offer'), driver.current_window_handle) # continue if the trade menu appears if 'Trade offer with' in driver.title: try: # send your item first # expand game selection drop down menu WebDriverWait(driver, 2).until(EC.presence_of_element_located( (By.ID, 'appselect_activeapp'))).click() # click on csgo, app id 730 driver.find_element_by_id('appselect_option_you_730_2').click() # expand advanced filter options # advanced filter button disappears really quickly after selecting game # just delay 1 second before checking for it time.sleep(1) WebDriverWait(driver, 10).until(EC.presence_of_element_located( (By.ID, 'filter_tag_show'))).click() # click on all the show more buttons show_more_buttons = [option for option in driver.find_elements_by_class_name( 'econ_tag_filter_collapsable_tags_showlink') if option.is_displayed()] for next_button in show_more_buttons: next_button.click() add_to_trade(driver, item_to_trade) # now get other person's item # go to their inventory driver.find_element_by_id('inventory_select_their_inventory').click() # same thing with the advanced filter button, delay 1 sec time.sleep(1) # expand advanced filter options WebDriverWait(driver, 10).until(EC.presence_of_element_located( (By.ID, 'filter_tag_show'))).click() # click on all the show more buttons show_more_buttons = [option for option in driver.find_elements_by_class_name( 'econ_tag_filter_collapsable_tags_showlink') if option.is_displayed()] for next_button in show_more_buttons: next_button.click() add_to_trade(driver, item_to_get) # items are now in trade, click ready and send trade driver.find_element_by_id('you_notready').click() # if the user did not have the item in their inventory, the warning popup will # appear no_item_warning = [warning for warning in driver.find_elements_by_class_name( 'ellipsis') if warning.text == 'Warning'] # if there is no warning, send the trade if not no_item_warning: driver.find_element_by_id('trade_confirmbtn_text').click() # wait for the trade confirmation box to appear WebDriverWait(driver, 3).until(EC.presence_of_element_located((By.CLASS_NAME, 'newmodal'))) except: # if anything at all went wrong in the trade then stop the current trade # bad design, but whatever, it's the easiest way to do it success = False else: success = False close_tab(driver, driver.current_window_handle) except NoSuchElementException: # for some reason there might be no Steam Offer button success = False close_tab(driver, driver.current_window_handle) return success def add_to_trade(driver, item): """(WebDriver, str) -> None Searches for the item in the steam trade menu and adds it to the trade. """ if 'keys' not in item: # get the web elements for the filters that are needed filters = {} for next_filter in driver.find_elements_by_class_name('econ_tag_filter_category_label'): if next_filter.is_displayed(): if next_filter.text == 'Type': filters['type'] = next_filter elif next_filter.text == 'Category': filters['category'] = next_filter elif next_filter.text == 'Exterior': filters['exterior'] = next_filter # click all the check boxes for the type except container and key so cases do not show up # in the search results # get the parent tag so we the boxes can be clicked type_options = filters['type'].find_element_by_xpath('..') filter_clicked = False for next_option in type_options.find_elements_by_class_name('econ_tag_filter_container'): if ('Container' not in next_option.find_element_by_class_name( 'econ_tag_filter_label').text and 'Key' not in next_option .find_element_by_class_name('econ_tag_filter_label').text): # click the box if it is not container or key next_option.find_element_by_xpath('./input').click() filter_clicked = True if not filter_clicked: raise TradeException # check off the exterior options exterior_options = filters['exterior'].find_element_by_xpath('..') filter_clicked = False # now have the field for all available exterior options, go through all the options # and check off the correct box # if looking for a vanilla knife, then check off the "Not Painted" box if item.find('(') == -1: for next_option in exterior_options.find_elements_by_class_name( 'econ_tag_filter_container'): if 'Not Painted' in next_option.find_element_by_class_name( 'econ_tag_filter_label').text: next_option.find_element_by_xpath('./input').click() filter_clicked = True else: for next_option in exterior_options.find_elements_by_class_name( 'econ_tag_filter_container'): # slicing item like that will give the item condition if item[item.find('(') + 1:-1] in next_option.find_element_by_class_name( 'econ_tag_filter_label').text: next_option.find_element_by_xpath('./input').click() filter_clicked = True if not filter_clicked: raise TradeException filter_clicked = False if 'Stattrak' in item: category_options = filters['category'].find_element_by_xpath('..') for next_option in category_options.find_elements_by_class_name( 'econ_tag_filter_container'): if 'StatTrak' in next_option.find_element_by_class_name( 'econ_tag_filter_label').text: next_option.find_element_by_xpath('./input').click() filter_clicked = True if not filter_clicked: raise TradeException # strip the Stattrak and condition from the item name, then search for it driver.find_element_by_id('filter_control').send_keys( item.lstrip('Stattrak ').split(' (')[0]) else: if 'Knife' not in item: category_options = filters['category'].find_element_by_xpath('..') for next_option in category_options.find_elements_by_class_name( 'econ_tag_filter_container'): if 'Normal' in next_option.find_element_by_class_name( 'econ_tag_filter_label').text: next_option.find_element_by_xpath('./input').click() filter_clicked = True if not filter_clicked: raise TradeException # strip the condition from the item name, then search for it driver.find_element_by_id('filter_control').send_keys(item.split(' (')[0]) # get the html component for the 4x4 item grid # check for all tags with class name "inventory_page" and only get the one that is visible item_grid = [grid for grid in driver.find_elements_by_class_name('inventory_page') if grid.is_displayed()] # inside this grid, add the first item, all check boxes should have filtered out anything # unneeded item_holders = [item for item in item_grid[0].find_elements_by_class_name('itemHolder') if item.is_displayed()] try: actions = ActionChains(driver) actions.double_click(item_holders[0].find_element_by_xpath('./div')) actions.perform() except IndexError: # user might have a trade active on csgl but not actually have the item in their # inventory pass else: # get element with name Type and then get the parent tag so boxes can be checked type_filter = [filter for filter in driver.find_elements_by_class_name( 'econ_tag_filter_category_label') if filter.is_displayed() and filter.text == 'Type'] type_filter = type_filter[0].find_element_by_xpath('..') filter_clicked = False for next_option in type_filter.find_elements_by_class_name('econ_tag_filter_container'): if 'Key' in next_option.find_element_by_class_name('econ_tag_filter_label').text: next_option.find_element_by_xpath('./input').click() filter_clicked = True if not filter_clicked: raise TradeException # find the number of keys to add to the trade num_of_keys = int(item.rstrip(' keys')) keys_added = 0 while keys_added < num_of_keys: # find all tags with class name "itemHolder", and if it is visible then it is a key # that can be added to the trade # will hold a max of 16 keys # this also grabs tags with class name "itemHolder trade_slot", need to filter these out visible_keys = [key for key in driver.find_elements_by_class_name('itemHolder') if key.is_displayed() and key.get_attribute("class") == 'itemHolder'] # add all the keys in visible_keys for next_key in visible_keys: if keys_added == num_of_keys: break else: actions = ActionChains(driver) actions.double_click(next_key.find_element_by_xpath('./div')) actions.perform() keys_added += 1 # added all the visible keys, so now get a new set of visible keys # click on the next page button driver.find_element_by_id('pagebtn_next').click() time.sleep(1) driver.find_element_by_id('filter_control').clear() if __name__ == '__main__': # create a root window for tkinter then hide it because it looks bad root = Tk() root.withdraw() # open up trade history try: with open('tradehistory', 'rb') as trades: trade_history = pickle.load(trades) except EOFError: # if tradehistory file is blank, then set to an empty dictionary trade_history = {} # structure of trade_history: # {item_to_get: {steam_id: [item_to_trade]}} # open up trades.txt and get the trade info with open('trades.txt') as user_trade: chromedriver_path = user_trade.readline().split('\n')[0] MAX_NUM_TRADES = int(user_trade.readline().split('\n')[0]) print('Number of trades to send: ', MAX_NUM_TRADES) item_to_get = user_trade.readline().split('\n')[0] print('What you are looking for: ', item_to_get) item_to_trade = user_trade.readline().split('\n')[0] print('What you are trading away: ', item_to_trade) # add item_to_get to trade_history if it is not in there already if item_to_get not in trade_history: trade_history[item_to_get] = {} # open up steam login menu on csgolounge driver = webdriver.Chrome(chromedriver_path) driver.maximize_window() driver.get('http://csgolounge.com/') try: assert 'CSGO Lounge' in driver.title except AssertionError: driver.quit() messagebox.showerror('Error', 'Please try again') # click login driver.find_element_by_xpath('/html/body/header/div[1]/a[2]').click() # wait for the pop up to appear then click Steam button WebDriverWait(driver, 5).until(EC.presence_of_element_located( (By.XPATH, '/html/body/div[4]/div/div[2]/form/div/div[6]/a'))).click() # only continue once the user has logged into csgolounge logged_in = False while not logged_in: if 'CSGO Lounge' in driver.title: logged_in = True # user is now logged into csgl, click search driver.find_element_by_xpath('/html/body/header/nav/a[6]/img').click() # add user's item to trade menu first search_item(driver, item_to_trade, True) # click all items button to reset item menu driver.find_element_by_xpath('/html/body/main/section[2]/div[1]/form/a[1]').click() time.sleep(1) # wait for an item to appear WebDriverWait(driver, 5).until(EC.presence_of_element_located( (By.XPATH, '/html/body/main/section[2]/div[2]/div[2]/div[2]/img'))) # now add the item the user is looking for search_item(driver, item_to_get, False) # search for the item driver.find_element_by_xpath('/html/body/main/section[1]/div[1]/a').click() # send the max amt of trade offers, then exit trades_sent = 0 while trades_sent < MAX_NUM_TRADES: # get a list of all 20 trades on the screen potential_trades = driver.find_elements_by_class_name('tradeheader') main_window = driver.current_window_handle # now have the list of trades, need to open up each trade and then check for user ids and # stuff for next_trade in potential_trades: open_new_tab(driver, next_trade.find_element_by_xpath('./a[2]/span/b'), main_window) # get their steam id from their csgl profile link # sometimes selenium throws a NoSuchElementException even though their profile link is # there so have this loop here to get the link even if an exception is thrown profile_found = False while not profile_found: try: # everything after the = sign in their csgl profile link is their steam id steam_id = driver.find_element_by_xpath( '/html/body/main/section[1]/div[1]/div[1]/div/a').get_attribute( 'href').split('=')[1] profile_found = True except NoSuchElementException: pass # check if this trade has been attempted with this person already # if not, then proceed with sending a trade if steam_id not in trade_history[item_to_get]: trade_history[item_to_get][steam_id] = [] if send_trade(driver, item_to_trade, item_to_get): trades_sent += 1 trade_history[item_to_get][steam_id].append(item_to_trade) elif item_to_trade not in trade_history[item_to_get][steam_id]: if send_trade(driver, item_to_trade, item_to_get): trades_sent += 1 trade_history[item_to_get][steam_id].append(item_to_trade) else: close_tab(driver, main_window) if trades_sent == MAX_NUM_TRADES: break # get all the page buttons, click the next one pages = driver.find_element_by_class_name('simplePagerNav') # find the one with class "currentPage", get the number, then click the button with the # next number next_page = int(pages.find_element_by_class_name('currentPage').text) + 1 try: driver.find_element_by_link_text(str(next_page)).click() except NoSuchElementException: # no more pages to go through trades_sent = MAX_NUM_TRADES # write to tradehistory file with open('tradehistory', 'wb') as trades: pickle.dump(trade_history, trades) driver.close()
2.84375
3
revscoring/revscoring/languages/tests/test_tamil.py
yafeunteun/wikipedia-spam-classifier
2
12781644
<filename>revscoring/revscoring/languages/tests/test_tamil.py<gh_stars>1-10 import pickle from nose.tools import eq_ from .. import tamil from .util import compare_extraction BAD = [ "பூல்", "பூலு", "கூதி", "தேவுடியாள்", "தேவடியாள்", "ஓத்த", "ஓத்தா", "சுன்னி", "சுண்ணி", "ஓல்", "ஓழ்", "ஓலு", "ஓழு", "ஓழி", "ஒம்மால", "சூத்து", "முண்ட", "முண்டை", "புண்ட", "புண்டை", "தாயோளி", "ஓல்மாரி", "ஓழ்மாரி", "புழுத்தி" ] INFORMAL = [ "பொட்டை" ] OTHER = [ """ இந்தோனேசிய ரூபாய் அல்லது ரூபியா (rupiah, Rp) இந்தோனேசியாவின் அலுவல்முறை நாணயம் ஆகும். இந்தோனேசிய வங்கியால் வெளியிடப்பட்டு கட்டுப்படுத்தப்படும் இதன் ஐ.எசு.ஓ 4217 நாணயக் குறியீடு (ஐடிஆர்) IDR ஆகும். "ரூபியா" என்ற பெயர் இந்துத்தானிய சொல்லான ரூப்யா (روپیہ),(रुपया), மற்றும் சமசுகிருத வேரிலிருந்து (रूप्य; வார்ப்பு வெள்ளி) வந்துள்ளது. பேச்சு வழக்கில் இந்தோனேசியர்கள் வெள்ளி என்பதற்கான இந்தோனேசியச் சொல்லான "பெராக்" என்பதையும் பயன்படுத்துகின்றனர். ஒவ்வொரு ரூபியாவும் 100 சென்களாக பிரிக்கப்பட்டுள்ளது; பணவீக்கத்தால் சென் நாணயங்களும் வங்கித்தாள்களும் புழக்கத்திலிருந்து மறைந்து விட்டன. ரியாயு தீவுகளும் நியூ கினியின் இந்தோனேசியப் பகுதியும் முன்பு தங்களுக்கேயான ரூபியாவை பயன்படுத்தி வந்தன; ஆனால் முறையே 1964, 1971ஆம் ஆண்டுகளில் இருந்து இங்கும் தேசிய ரூபியாவே செயலாக்கப்பட்டது. """ ] def test_badwords(): compare_extraction(tamil.badwords.revision.datasources.matches, BAD, OTHER) eq_(tamil.badwords, pickle.loads(pickle.dumps(tamil.badwords))) def test_informals(): compare_extraction(tamil.informals.revision.datasources.matches, INFORMAL, OTHER) eq_(tamil.informals, pickle.loads(pickle.dumps(tamil.informals)))
2.203125
2
test/graph_test.py
luisalves05/dsa-python
1
12781645
import sys sys.path.append('..') import unittest from graphs.Graph import Graph class TestGraph(unittest.TestCase): def setUp(self): self.G = Graph(5) self.G.add_edge(1, 2) self.G.add_edge(1, 3) self.G.add_edge(1, 4) self.G.add_edge(2, 4) self.G.add_edge(3, 4) def testing_len(self): self.assertEqual(self.G.len(), 5) def testing_nodes_adjacents(self): self.assertEqual(self.G[4], [1, 2, 3]) self.assertEqual(self.G[2], [1, 4]) self.assertEqual(self.G[0], []) def testing_degree(self): self.assertEqual(self.G.degree(4), 3) self.assertEqual(self.G.max_degree(), 3) if __name__ == "__main__": unittest.main()
3.109375
3
wherefore/KafkaMessageTracker.py
ess-dmsc/wherefore
0
12781646
from threading import Thread from typing import Union, Dict, Optional, Tuple from datetime import datetime, timedelta, timezone from enum import Enum, auto from kafka import KafkaConsumer, TopicPartition from queue import Queue, Empty, Full from wherefore.DataSource import DataSource from wherefore.Message import Message from copy import copy CHECK_FOR_MSG_INTERVAL = 500 UPDATE_STATUS_INTERVAL = timedelta(milliseconds=50) class PartitionOffset(Enum): NEVER = auto() BEGINNING = auto() END = auto() class HighLowOffset: def __init__(self, low, high, lag=-1): self.low = low self.lag = lag self.high = high def thread_function(consumer: KafkaConsumer, stop: Union[datetime, int], in_queue: Queue, out_queue: Queue, topic_partition): known_sources: Dict[bytes, DataSource] = {} start_time = datetime.now(tz=timezone.utc) update_timer = datetime.now(tz=timezone.utc) while True: messages_ctr = 0 for kafka_msg in consumer: new_msg = Message(kafka_msg) if type(stop) is int and new_msg.offset > stop: pass elif type(stop) is datetime and new_msg.timestamp is not None and new_msg.timestamp > stop: pass elif type(stop) is datetime and new_msg.timestamp is None and new_msg.kafka_timestamp > stop: pass else: if not new_msg.source_hash in known_sources: known_sources[new_msg.source_hash] = DataSource(new_msg.source_name, new_msg.message_type, start_time) known_sources[new_msg.source_hash].process_message(new_msg) messages_ctr += 1 if messages_ctr == CHECK_FOR_MSG_INTERVAL: break if not in_queue.empty(): new_msg = in_queue.get() if new_msg == "exit": break now = datetime.now(tz=timezone.utc) if now - update_timer > UPDATE_STATUS_INTERVAL: update_timer = now try: out_queue.put(copy(known_sources), block=False) low_offset = consumer.beginning_offsets([topic_partition, ])[topic_partition] high_offset = consumer.end_offsets([topic_partition, ])[topic_partition] out_queue.put(HighLowOffset(low_offset, high_offset)) except Full: pass # Do nothing consumer.close(True) class KafkaMessageTracker: def __init__(self, broker: str, topic: str, partition: int = -1, start: Tuple[Union[int, datetime, PartitionOffset], Optional[int]] = PartitionOffset.END, stop: Union[int, datetime, PartitionOffset] = PartitionOffset.NEVER): self.to_thread = Queue() self.from_thread = Queue(maxsize=100) consumer = KafkaConsumer(bootstrap_servers=broker, fetch_max_bytes=52428800 * 6, consumer_timeout_ms=100) existing_topics = consumer.topics() self.current_msg = None self.current_offset_limits = HighLowOffset(-1, -1) if topic not in existing_topics: raise RuntimeError(f"Topic \"{topic}\" does not exist.") existing_partitions = consumer.partitions_for_topic(topic) if partition == -1: partition = existing_partitions.pop() elif partition not in existing_partitions: raise RuntimeError(f"Partition {partition} for topic \"{topic}\" does not exist.") topic_partition = TopicPartition(topic, partition) consumer.assign([topic_partition, ]) first_offset = consumer.beginning_offsets([topic_partition])[topic_partition] last_offset = consumer.end_offsets([topic_partition])[topic_partition] origin_offset = None offset_to_offset = start[1] if start[0] == PartitionOffset.BEGINNING: origin_offset = first_offset # consumer.seek_to_beginning() # if type(start[1]) == int and start[1] > 0 and first_offset + start[1] <= last_offset: # consumer.seek(partition=topic_partition, offset=first_offset + start[1]) elif start[0] == PartitionOffset.END or start == PartitionOffset.NEVER: origin_offset = last_offset # consumer.seek_to_end() # if type(start[1]) == int and start[1] < 0 and last_offset + start[1] >= first_offset: # consumer.seek(partition=topic_partition, offset=first_offset + start[1]) elif type(start[0]) is int: if first_offset > start[0]: origin_offset = first_offset # consumer.seek_to_beginning() elif last_offset < start[0]: origin_offset = last_offset else: origin_offset = start[0] # consumer.seek_to_end() # else: # consumer.seek(partition=topic_partition, offset=start[0]) elif type(start[0]) is datetime: found_offsets = consumer.offsets_for_times({topic_partition: int(start[0].timestamp() * 1000)}) if found_offsets[topic_partition] is None: origin_offset = last_offset else: origin_offset = found_offsets[topic_partition].offset # if type(start[1]) == int: # used_offset += start[1] # consumer.seek(partition=topic_partition, offset=used_offset) else: raise RuntimeError("Unknown start offset configured.") if offset_to_offset is not None: origin_offset += offset_to_offset if origin_offset < first_offset: origin_offset = first_offset elif origin_offset > last_offset: origin_offset = last_offset consumer.seek(partition=topic_partition, offset=origin_offset) self.thread = Thread(target=thread_function, daemon=True, kwargs={"consumer": consumer, "stop": stop, "in_queue": self.to_thread, "out_queue": self.from_thread, "stop": stop, "topic_partition": topic_partition}) self.thread.start() def stop_thread(self): self.to_thread.put("exit") def __del__(self): self.stop_thread() def _get_messages(self): while not self.from_thread.empty(): try: current_msg = self.from_thread.get(block=False) if type(current_msg) is dict: self.current_msg = current_msg elif type(current_msg) is HighLowOffset: self.current_offset_limits = current_msg except Empty: return def get_latest_values(self): self._get_messages() return self.current_msg def get_current_edge_offsets(self) -> HighLowOffset: self._get_messages() return self.current_offset_limits
2.40625
2
tests/test_mgxs_openmc/test_mgxs_openmc.py
lsder/OpenMOC
97
12781647
#!/usr/bin/env python import os import sys sys.path.insert(0, os.pardir) sys.path.insert(0, os.path.join(os.pardir, 'openmoc')) from testing_harness import MultiSimTestHarness import openmoc try: import openmc.openmoc_compatible import openmc.mgxs except: print("OpenMC could not be imported, it's required for loading MGXS files") class LoadMGXSTestHarness(MultiSimTestHarness): """Load a variety of OpenMC MGXS libraries.""" def __init__(self): super(LoadMGXSTestHarness, self).__init__() self.azim_spacing = 0.12 self.max_iters = 10 self.keffs = [] self.mgxs_files = ['mgxs_isotropic', 'mgxs_transport_corrected', 'mgxs_consistent', 'mgxs_consistent_nuscatter', 'mgxs_materials', 'mgxs_angular_legendre'] # mgxs_angular_histogram currently not supported # mgxs_nuclide should be redone with the latest version of openmc # mgxs by distribcell, universe and mesh also not supported def _create_geometry(self): pass def _create_trackgenerator(self): pass def _generate_tracks(self): pass def _create_solver(self): pass def _run_openmoc(self): """Run an OpenMOC calculation with each library.""" for mgxs_file in self.mgxs_files: # Initialize OpenMC multi-group cross section library for a pin cell mgxs_lib = openmc.mgxs.Library.load_from_file(filename=mgxs_file, directory='.') # Create an OpenMOC Geometry from the OpenMOC Geometry openmoc_geometry = \ openmc.openmoc_compatible.get_openmoc_geometry(mgxs_lib.geometry) # Load cross section data openmoc_materials = \ openmoc.materialize.load_openmc_mgxs_lib(mgxs_lib, openmoc_geometry) # Initialize FSRs openmoc_geometry.initializeFlatSourceRegions() # Initialize an OpenMOC TrackGenerator track_generator = openmoc.TrackGenerator( openmoc_geometry, self.num_azim, self.azim_spacing) track_generator.generateTracks() # Initialize an OpenMOC Solver self.solver = openmoc.CPUSolver(track_generator) self.solver.setConvergenceThreshold(self.tolerance) self.solver.setNumThreads(self.num_threads) # Run eigenvalue calculation and store results self.solver.computeEigenvalue(max_iters=self.max_iters) self.keffs.append(self.solver.getKeff()) def _get_results(self, num_iters=True, keff=True, fluxes=True, num_fsrs=False, num_tracks=False, num_segments=False, hash_output=False): """Write a string with the results""" outstr = '' # Write out the mgxs file name eigenvalues from each simulation for file, keff in zip(self.mgxs_files, self.keffs): outstr += 'File: {0}\tkeff: {1:12.5E}\n'.format(file, keff) return outstr if __name__ == '__main__': harness = LoadMGXSTestHarness() harness.main()
1.71875
2
python/class/foo.py
trammell/test
0
12781648
#!/usr/bin/env python2.4 """ """ class Foo(object): bar = {} bar['x'] = "apple" bar['y'] = "banana" def __call__(self): print self.bar['x'] f = Foo() f()
3.6875
4
django/localConflict/breaking_news/views.py
martinez-zea/localconflict
1
12781649
<gh_stars>1-10 from breaking_news.models import * from django.shortcuts import render_to_response, get_object_or_404 from django.http import HttpResponseRedirect, HttpResponse from django.template import RequestContext def index(request): n_image = new.objects.filter(image__startswith='img_up').order_by('-when')[:3] n_text = new.objects.filter(image__startswith='').order_by('-when')[:12] return render_to_response('breaking_news/index.html', {'with_img' : n_image, 'without_img': n_text,} , context_instance=RequestContext(request)) def allNews(request): all_news = new.objects.all().order_by('-when') return render_to_response('breaking_news/all.html', {'all_news' : all_news}, context_instance=RequestContext(request)) def add(request): return HttpResponse("@ add") def saved(request): return HttpResponse("saved!") def search(request, death_id): n = get_object_or_404(new, pk=death_id) return render_to_response('breaking_news/detail.html', {'new':n}, context_instance=RequestContext(request))
2.125
2
cashweb/server/main/__init__.py
jbool24/CashWEB
0
12781650
# ./server/main/__init__.py
1.015625
1