max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
transport/tests/uploader_test.py
zkdev/cc-utils
15
12781351
import processing.uploaders as uploaders PREFIX_UPLOADERS = [ { 'context_url': 'registry.local:5000/context-dir', 'prefix': 'registry.local:5000', 'mangle': True, 'expected_target_ref': 'registry.local:5000/registry-source_local:1.2.3', }, { 'context_url': 'registry.local/context-dir', 'prefix': 'registry.local', 'mangle': False, 'expected_target_ref': 'registry.local/registry-source.local:1.2.3', }, ] def test_prefix_uploader(job, oci_img): img1 = oci_img(name='image_name', version='1.2.3', ref='registry-source.local:1.2.3') job1 = job(oci_img=img1) results = [] for uploader in PREFIX_UPLOADERS: examinee = uploaders.PrefixUploader( context_url=uploader['context_url'], prefix=uploader['prefix'], mangle=uploader['mangle'], ) result = examinee.process(job1, target_as_source=False) assert result.upload_request.target_ref == uploader['expected_target_ref'] results.append(result) return results def test_tag_suffix_uploader(job, oci_img): for j in test_prefix_uploader(job, oci_img): examinee = uploaders.TagSuffixUploader( suffix='mod1', separator='-', ) result = examinee.process(j, target_as_source=True) assert result.upload_request.target_ref == j.upload_request.target_ref + '-mod1'
2.21875
2
tools/spaln/list_spaln_tables.py
ic4f/tools-iuc
142
12781352
#!/usr/bin/env python3 import argparse import shlex import sys from subprocess import run from typing import TextIO def find_common_ancestor_distance( taxon: str, other_taxon: str, taxonomy_db_path: str, only_canonical: bool ): canonical = "--only_canonical" if only_canonical else "" cmd_str = f"taxonomy_util -d {taxonomy_db_path} common_ancestor_distance {canonical} '{other_taxon}' '{taxon}'" cmd = shlex.split(cmd_str) proc = run(cmd, encoding="utf8", capture_output=True) return proc def find_distances(gnm2tab_file: TextIO, taxon: str, taxonomy_db_path: str): cmd = ["taxonomy_util", "-d", taxonomy_db_path, "get_id", taxon] proc = run(cmd, capture_output=True, encoding="utf8") if "not found in" in proc.stderr: exit("Error: " + proc.stderr.strip()) for line in gnm2tab_file: fields = line.split("\t") (species_code, settings, other_taxon) = map(lambda el: el.strip(), fields[:3]) proc = find_common_ancestor_distance(taxon, other_taxon, taxonomy_db_path, True) ancestor_info = proc.stdout.rstrip() if proc.stderr != "": print("Warning:", other_taxon, proc.stderr.rstrip(), file=sys.stderr) else: proc = find_common_ancestor_distance( taxon, other_taxon, taxonomy_db_path, False ) non_canonical_distance = proc.stdout.split("\t")[0] print( non_canonical_distance, ancestor_info, species_code, settings, other_taxon, sep="\t", ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Find distance to common ancestor") parser.add_argument( "--taxonomy_db", required=True, help="NCBI Taxonomy database (SQLite format)" ) parser.add_argument( "--gnm2tab_file", required=True, type=argparse.FileType(), help="gnm2tab file from spal", ) parser.add_argument("taxon") args = parser.parse_args() find_distances(args.gnm2tab_file, args.taxon, args.taxonomy_db)
2.5625
3
test/test.py
franzmueller/analytics-operator-local-adder
0
12781353
<reponame>franzmueller/analytics-operator-local-adder # Copyright 2020 InfAI (CC SES) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from senergy_local_analytics import Input import main class TestMainMethods(unittest.TestCase): def test_process(self): adder = main.Adder() input1 = Input("value1") input2 = Input("value2") input1.current_value = 1 input1.current_topic = "test1" input2.current_value = 3 input2.current_topic = "test2" output = adder.process([input1, input2]) self.assertTrue(output.send) self.assertEqual({'sum', 'message_id', 'timestamp'}, output.values.keys()) input1.current_value = 7 input1.current_topic = "test1" input2.current_value = 4 input2.current_topic = "test3" output = adder.process([input1, input2]) self.assertEqual(14, output.values["sum"])
2.625
3
cc2541/sensor.py
robotice-devices/cc2541-device
1
12781354
<gh_stars>1-10 from cc2541 import CC2541 def get_data(sensor): name = sensor.get('name') mac = sensor.get('mac') data = [] cc2541 = CC2541(mac) METRIC_STR = "%s.{0}.{0}" % name data.append((METRIC_STR.format(mac, "temperature"), cc2541.temperature)) data.append((METRIC_STR.format(mac, "humidity"), cc2541.humidity)) data.append((METRIC_STR.format(mac, "magnet"), cc2541.magnet)) data.append((METRIC_STR.format(mac, "barometer"), cc2541.barometer)) data.append((METRIC_STR.format(mac, "gyroscope"), cc2541.gyroscope)) data.append((METRIC_STR.format(mac, "accelerometer"), cc2541.accelerometer)) # ensure that connection is closed cc2541.close() return data
2.890625
3
tests/test_client.py
hmarment/rested
0
12781355
<reponame>hmarment/rested import pytest from rested import Integration, Rested @pytest.fixture(scope='module') def setup_integrations(): """Set up a test resource.""" print('Setting up a test integrations for multiple APIs') return [Integration(name='myapi1'), Integration(name='myapi2'), Integration(name='myapi3')] @pytest.fixture(scope='module') def setup_client(): """Set up a test client.""" print('Setting up a test client for external integrations') return Rested(integrations=[]) @pytest.fixture(scope='module') def setup_client_with_multiple_integrations(setup_integrations): """Set up a test client.""" print('Setting up a test client with multiple integrations') return Rested(integrations=setup_integrations) def test_client(setup_client): assert isinstance(setup_client, Rested) def test_client_integrations(setup_client): assert hasattr(setup_client, 'integrations') assert isinstance(setup_client.integrations, list) def test_client_add_integration(setup_client, setup_integration): setup_client.integrate(setup_integration) assert len(setup_client.integrations) == 1 assert hasattr(setup_client, setup_integration.name) def test_client_multiple_integrations(setup_client_with_multiple_integrations): assert len(setup_client_with_multiple_integrations.integrations) == 3 assert hasattr(setup_client_with_multiple_integrations, 'myapi1') \ and isinstance( setup_client_with_multiple_integrations.myapi1, Integration) \ and hasattr(setup_client_with_multiple_integrations, 'myapi2') \ and isinstance( setup_client_with_multiple_integrations.myapi2, Integration) \ and hasattr(setup_client_with_multiple_integrations, 'myapi3') \ and isinstance( setup_client_with_multiple_integrations.myapi3, Integration)
2.453125
2
pybot/utils/timer.py
spillai/pybot
78
12781356
<filename>pybot/utils/timer.py # Author: <NAME> <<EMAIL>> # License: MIT from __future__ import print_function import time from collections import OrderedDict from functools import wraps def print_green(prt): print("\033[92m {}\033[00m" .format(prt)) global g_timers g_timers = OrderedDict() def named_timer(name): global g_timers header = '\n' if len(g_timers) == 0 else '' if name not in g_timers: g_timers[name] = SimpleTimer(name, header=header) try: return g_timers[name] except KeyError as e: raise RuntimeError('Failed to retrieve timer {:}'.format(e)) def timeitmethod(func): @wraps(func) def wrapper(*args, **kwargs): try: name = ''.join([args[0].__class__.__name__, '::', func.__name__]) except: raise RuntimeError('timeitmethod requires first argument to be self') named_timer(name).start() r = func(*args, **kwargs) named_timer(name).stop() return r return wrapper def timeit(func): @wraps(func) def wrapper(*args, **kwargs): try: name = ''.join([func.__name__]) except: raise RuntimeError('timeitmethod requires first argument to be self') named_timer(name).start() r = func(*args, **kwargs) named_timer(name).stop() return r return wrapper class SimpleTimer: def __init__(self, name='', hz=0.5, header=''): self.name_ = name self.hz_ = hz self.header_ = header self.counter_ = 0 self.last_ = time.time() self.period_ = 0 self.calls_ = 0 self.last_print_ = time.time() self.last_fps_ = 0 def __enter__(self): self.start() return self def __exit__(self, *args): self.stop(force_print=True) return self def poll(self): self.counter_ += 1 now = time.time() dt = (now - self.last_) if (now-self.last_print_) > 1.0 / self.hz_: T = dt / self.counter_ fps = 1.0 / T self.calls_ += self.counter_ print_green('{:s}\t[{:5.1f} ms, {:5.1f} Hz, {:d} ]\t{:s}' .format(self.header_, T * 1e3, fps, int(self.calls_), self.name_)) self.last_ = now self.last_print_ = now self.counter_ = 0 def poll_piecemeal(self, force_print=False): self.counter_ += 1 now = time.time() dt = (now - self.last_) self.period_ += dt if (now-self.last_print_) > 1.0 / self.hz_ or force_print: T = self.period_ / self.counter_ fps = 1.0 / T self.calls_ += self.counter_ print_green('{:s}\t[{:5.1f} ms, {:5.1f} Hz, {:d} ]\t{:s}' .format(self.header_, T * 1e3, fps, int(self.calls_), self.name_)) self.last_ = now self.last_print_ = now self.last_fps_ = fps self.counter_ = 0 self.period_ = 0 def start(self): self.last_ = time.time() def stop(self, force_print=False): self.poll_piecemeal(force_print=force_print) @property def fps(self): return self.last_fps_
2.765625
3
pyboletox/Contracts/Cnab/Retorno/Cnab400/header.py
lucasbrahm/pyboletox
1
12781357
<gh_stars>1-10 from abc import ABCMeta, abstractmethod class Header(metaclass=ABCMeta): @abstractmethod def getOperacaoCodigo(self): pass @abstractmethod def getOperacao(self): pass @abstractmethod def getServicoCodigo(self): pass @abstractmethod def getServico(self): pass @abstractmethod def getAgencia(self): pass @abstractmethod def getAgenciaDv(self): pass @abstractmethod def getConta(self): pass @abstractmethod def getContaDv(self): pass @abstractmethod def getData(self, format='%d/%m/%Y'): pass @abstractmethod def getConvenio(self): pass @abstractmethod def getCodigoCliente(self): pass @abstractmethod def toDict(self): pass
3.140625
3
rcs_back/containers_app/migrations/0034_auto_20210826_2017.py
e-kondr01/rcs_back
0
12781358
<reponame>e-kondr01/rcs_back<filename>rcs_back/containers_app/migrations/0034_auto_20210826_2017.py<gh_stars>0 # Generated by Django 3.2.5 on 2021-08-26 17:17 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('containers_app', '0033_auto_20210826_2005'), ] operations = [ migrations.RemoveField( model_name='container', name='avg_fill_time', ), migrations.RemoveField( model_name='container', name='avg_takeout_wait_time', ), ]
1.414063
1
util.py
cmd410/VRoidBonesRenamer
12
12781359
<filename>util.py import bpy def unique_constraint(bone, t): for constraint in bone.constraints: if constraint.type == t: return constraint constraint = bone.constraints.new(type=t) return constraint def get_children(parent): l = [] for obj in bpy.context.scene.objects: if obj.name == parent.name: continue if obj.parent is None: continue if obj.parent.name == parent.name: l.append(obj) return l def bone_has_effect(bone): '''Check if bone has vertex groups attached to it''' armature = bpy.context.object children = get_children(armature) for obj in children: me = obj.data vg_id = None for i in obj.vertex_groups: if i.name == bone.name: vg_id = i.index break if vg_id is None: continue for vertex in me.vertices: if i.index in list([vg.group for vg in vertex.groups]): return True return False def get_pose_bone(bone_name): pose_bones = bpy.context.object.pose.bones bone = None if bone_name in pose_bones: bone = pose_bones[bone_name] elif '_' not in bone_name: for b in pose_bones: if b.name.endswith(f'_{bone_name}'): bone = b break else: name, side = bone_name.split('_') if side not in {'L', 'R'}: for b in pose_bones: if b.name.endswith(f'_{name}'): bone = b break for b in pose_bones: if b.name.endswith(f'_{side}_{name}'): bone = b break return bone
2.515625
3
6.whileloops/challenge3_rouillonh.py
rouillonh/ChallengePython
0
12781360
<reponame>rouillonh/ChallengePython<filename>6.whileloops/challenge3_rouillonh.py #Importamos la libreria time from time import time print("\tWelcome to the Prime Number App") #Creamos esta variable para el bucle sin fin band = True while band: print("\nEnter 1 to determine if a specific number is prime.") print("Enter 2 to determine all prime numbers within a set range.") choice = input("Enter your choice 1 or 2: ") #Ponemos las condicionales entre las opciones if choice == "1": num = int(input("\nEnter a number to determine if it is prime or not: ")) if num>=2: prime_status = True for i in range(2,num): if num%i==0 or num<2: prime_status = False if prime_status == True: print(num," is prime") elif prime_status == False: print(num," is not prime") elif num<2 and num>=0: print(num," is not prime") if choice == "2": n1 = int(input("\nEnter the lower bound of your range: ")) n2 = int(input("Enter the upper bound of your range: ")) primos = [] start_time = time() for i in range(n1,n2): prime_status = True if n1>=1: for j in range(2,i): if i ==j: break elif i%j==0: prime_status=False else: continue if prime_status == True: primos.append(i) if i == 1: primos.remove(i) end_time = time() delta_time = end_time - start_time print("\nCalculations took a total of ",round(delta_time,5) ," seconds.") print("The following numbers between ",n1," and ",n2 ," are prime:") for i in primos: print(i) print("Press enter to continue") input() elif choice != "1" and choice != "2": print("\nThat is not a valid option.") c = input("Would you like to run the program again (y/n): ").lower() #Preguntamos si quiere continuar con el programa if c == 'y': continue elif c == 'n': print("\nThank you for using the program. Have a nice day.") break
4.125
4
Lib/site-packages/deriva/qt/common/table_widget.py
fochoao/cpython
0
12781361
from PyQt5.QtWidgets import QTableWidget class TableWidget(QTableWidget): def __init__(self, parent): super(QTableWidget, self).__init__(parent) def getCurrentTableRow(self): row = self.currentRow() if row == -1 and self.rowCount() > 0: row = 0 return row def getCurrentTableItemTextByName(self, column_name): row = self.getCurrentTableRow() return self.getTableItemTextByName(row, column_name) def getTableItemTextByName(self, row, column_name): item = self.getTableItemByName(row, column_name) return item.text() if item else "" def getTableItemByName(self, row, column_name): column = None header_count = self.columnCount() # noinspection PyTypeChecker for column in range(header_count): header_text = self.horizontalHeaderItem(column).text() if column_name == header_text: break if row is None or column is None: return None return self.item(row, column)
3.0625
3
setup.py
coisme/nanoleaf
8
12781362
<reponame>coisme/nanoleaf<filename>setup.py from setuptools import setup import subprocess gitVersion = subprocess.check_output("git tag -l --points-at HEAD".split()).decode('UTF-8').strip() setup( name='nanoleaf', packages=['nanoleaf'], version=gitVersion, description='Python interface for Nanoleaf Aurora.', long_description=open('README.md', 'r').read(), author='<NAME>', author_email='<EMAIL>', url='https://github.com/software-2/nanoleaf', download_url='https://github.com/software-2/nanoleaf/archive/' + gitVersion + '.tar.gz', keywords=['nanoleaf', 'aurora', 'lighting', 'openAPI'], classifiers=[ 'Topic :: Home Automation', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3' ], install_requires=['requests'] )
1.28125
1
OmniMarkupLib/Renderers/MediaWikiRenderer.py
henumohe/OmniMarkupPreviewer
476
12781363
<filename>OmniMarkupLib/Renderers/MediaWikiRenderer.py<gh_stars>100-1000 from .base_renderer import * import os.path __file__ = os.path.normpath(os.path.abspath(__file__)) __path__ = os.path.dirname(__file__) @renderer class MediaWikiRenderer(CommandlineRenderer): def __init__(self): super(MediaWikiRenderer, self).__init__( executable='ruby', args=['-rubygems', os.path.join(__path__, 'bin/mw2html.rb')]) @classmethod def is_enabled(cls, filename, syntax): if syntax == 'text.html.mediawiki': return True return filename.endswith('.mediawiki') or filename.endswith('.wiki')
2.34375
2
Python/Battery_Full_Charged_Notifier/battery_full_charged_notifier.pyw
iamakkkhil/Rotten-Scripts
1,127
12781364
import psutil #Library to get System details import time import pyttsx3 # Library for text to speech Offline from win10toast import ToastNotifier # also need to install win32api (This is for Notifications) import threading # To make notification and speech work at same time toaster = ToastNotifier() x=pyttsx3.init() x.setProperty('rate',130) x.setProperty('volume',8) count = 0 def show_notification(show_text): toaster.show_toast(show_text, icon_path='battery.ico', duration=10) # loop the toaster over some period of time while toaster.notification_active(): time.sleep(0.1) def monitor(): while (True): time.sleep(10) battery = psutil.sensors_battery() plugged = battery.power_plugged percent = int(battery.percent) if percent == 100: if plugged == True: processThread = threading.Thread(target=show_notification, args=("Laptop Fully Charged",)) # <- note extra ',' processThread.start() x.say("Laptop is Fully Charged Please plug out the cable") x.runAndWait() elif percent == 90: if plugged == True: if count == 0: processThread = threading.Thread(target=show_notification, args=("Your Battery at 90% Please plug out the cable",)) # <- note extra ',' processThread.start() x.say("Your battery at 90% ") x.runAndWait() count = count + 1 if __name__ == "__main__": monitor()
3.296875
3
akanda/router/drivers/ping.py
fzylogic/akanda-appliance
0
12781365
# Copyright 2014 DreamHost, LLC # # Author: DreamHost, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import netaddr from akanda.router.drivers import base from akanda.router import utils LOG = logging.getLogger(__name__) class PingManager(base.Manager): """ A class which provide a facade to the system ping utility. Supports both IPv4 and IPv6. """ exe_map = { 4: '/bin/ping', 6: '/bin/ping6' } def __init__(self, root_helper='sudo'): """ Initializes PingManager class. :type root_helper: str :param root_helper: System utility to escalate privileges. """ super(PingManager, self).__init__(root_helper) def do(self, ip): """ Sends a single ICMP packet to <ip> using the systems ping utility. :type ip: str :param ip: The IP address to send ICMP packets to. :rtype: bool. If <ip> responds to the ICMP packet, returns True else, returns False """ version = netaddr.IPAddress(ip).version args = ['-c', '1', ip] try: utils.execute([self.exe_map.get(version)] + args) return True except RuntimeError: return False
2.203125
2
quantumflow/transform.py
BastianZim/quantumflow-dev
51
12781366
# Copyright 2019-, <NAME> and the QuantumFlow contributors # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """ QuantumFlow: Translate, transform, and compile circuits. """ # Note: Beta Prototype from typing import Callable, Generator, Set, Tuple from .circuits import Circuit from .dagcircuit import DAGCircuit from .info import almost_identity from .ops import Gate, Operation from .stdgates import CZ, ZZ, H, XPow, YPow, ZPow from .translate import ( circuit_translate, translate_ccnot_to_cnot, translate_cnot_to_cz, translate_cphase_to_zz, translate_cswap_to_ccnot, translate_hadamard_to_zxz, translate_invt_to_tz, translate_invv_to_tx, translate_t_to_tz, translate_tx_to_zxzxz, translate_v_to_tx, translate_zz_to_cnot, ) # FIXME: transpile instead of compile? def compile_circuit(circ: Circuit) -> Circuit: """Compile a circuit to standard gate set (CZ, X^0.5, ZPow), simplifying circuit where possible. """ # FIXME: Should be automagic translations # Convert multi-qubit gates to CZ gates trans = [ translate_cswap_to_ccnot, translate_ccnot_to_cnot, translate_cphase_to_zz, translate_cnot_to_cz, translate_t_to_tz, translate_invt_to_tz, translate_zz_to_cnot, translate_v_to_tx, translate_invv_to_tx, ] circ = circuit_translate(circ, trans) dagc = DAGCircuit(circ) remove_identites(dagc) merge_hadamards(dagc) convert_HZH(dagc) # Standardize 1-qubit gates circ = Circuit(dagc) circ = circuit_translate(circ, [translate_hadamard_to_zxz]) circ = circuit_translate(circ, [translate_tx_to_zxzxz], recurse=False) # Gather and merge ZPow gates dagc = DAGCircuit(circ) retrogress_tz(dagc) merge_tz(dagc) remove_identites(dagc) circ = Circuit(dagc) return circ def find_pattern( dagc: DAGCircuit, gateset1: Set, gateset2: Set, ) -> Generator[Tuple[Operation, Operation], None, None]: """Find where a gate from gateset1 is followed by a gate from gateset2 in a DAGCircuit""" for elem2 in dagc: if type(elem2) not in gateset2: continue for q2 in elem2.qubits: elem1 = dagc.prev_element(elem2, q2) if type(elem1) not in gateset1: continue yield (elem1, elem2) def remove_element(dagc: DAGCircuit, elem: Operation) -> None: """Remove a node from a DAGCircuit""" for qubit in elem.qubits: prv = dagc.prev_element(elem, qubit) nxt = dagc.next_element(elem, qubit) dagc.graph.add_edge(prv, nxt, key=qubit) dagc.graph.remove_node(elem) def remove_identites(dagc: DAGCircuit) -> None: """Remove identities from a DAGCircuit""" for elem in dagc: if isinstance(elem, Gate) and almost_identity(elem): remove_element(dagc, elem) def merge_hadamards(dagc: DAGCircuit) -> None: """Merge and remove neighboring Hadamard gates""" for elem1, elem2 in find_pattern(dagc, {H}, {H}): remove_element(dagc, elem1) remove_element(dagc, elem2) def merge_tx(dagc: DAGCircuit) -> None: """Merge neighboring ZPow gates""" _merge_turns(dagc, XPow) def merge_ty(dagc: DAGCircuit) -> None: """Merge neighboring ZPow gates""" _merge_turns(dagc, YPow) def merge_tz(dagc: DAGCircuit) -> None: """Merge neighboring ZPow gates""" _merge_turns(dagc, ZPow) def _merge_turns(dagc: DAGCircuit, gate_class: Callable) -> None: for gate0, gate1 in find_pattern(dagc, {gate_class}, {gate_class}): t = gate0.param("t") + gate1.param("t") (qubit,) = gate0.qubits gate = gate_class(t, qubit) prv = dagc.prev_element(gate0) nxt = dagc.next_element(gate1) dagc.graph.add_edge(prv, gate, key=qubit) dagc.graph.add_edge(gate, nxt, key=qubit) dagc.graph.remove_node(gate0) dagc.graph.remove_node(gate1) def retrogress_tz(dagc: DAGCircuit) -> None: """Commute ZPow gates as far backward in the circuit as possible""" G = dagc.graph again = True while again: again = False for elem1, elem2 in find_pattern(dagc, {ZZ, CZ}, {ZPow}): (q,) = elem2.qubits elem0 = dagc.prev_element(elem1, q) elem3 = dagc.next_element(elem2, q) G.remove_edge(elem0, elem1, q) G.remove_edge(elem1, elem2, q) G.remove_edge(elem2, elem3, q) G.add_edge(elem0, elem2, key=q) G.add_edge(elem2, elem1, key=q) G.add_edge(elem1, elem3, key=q) again = True # TODO: Rename? merge_hzh # TODO: larger pattern, simplifying sequences of 1-qubit Clifford gates def convert_HZH(dagc: DAGCircuit) -> None: """Convert a sequence of H-ZPow-H gates to a XPow gate""" for elem2, elem3 in find_pattern(dagc, {ZPow}, {H}): elem1 = dagc.prev_element(elem2) if not isinstance(elem1, H): continue prv = dagc.prev_element(elem1) nxt = dagc.next_element(elem3) t = elem2.param("t") (q0,) = elem2.qubits gate = XPow(t, q0) dagc.graph.remove_node(elem1) dagc.graph.remove_node(elem2) dagc.graph.remove_node(elem3) dagc.graph.add_edge(prv, gate, key=q0) dagc.graph.add_edge(gate, nxt, key=q0) # fin
1.984375
2
Diversity/accounts/admin.py
IAmAngelLiu/shellhack2021
0
12781367
<filename>Diversity/accounts/admin.py from django.contrib import admin # Register your models here. from .models import Employee from .models import Data from .models import Points admin.site.register(Employee) admin.site.register(Data) admin.site.register(Points)
1.507813
2
setup.py
damcio/-Bio-Projekt-semestralny
0
12781368
<filename>setup.py<gh_stars>0 #!/usr/bin/env python from setuptools import setup setup(name='bio', version='0.1', description='Bioinformatics project', author='<NAME>', setup_requires=['pytest-runner'], tests_require=['pytest'] )
0.910156
1
A1014280203/7/7.py
saurabh896/python-1
3,976
12781369
import os code_lines = list() notation_lines = list() blank_lines = list() def process_file(filename): global code_lines global notation_lines global blank_lines with open(filename, 'r') as file: for line in file.readlines(): _line = line.strip() if not _line: blank_lines.append(_line) elif _line.startswith('#'): notation_lines.append(_line) else: code_lines.append(_line) def show_result(): global code_lines global notation_lines global blank_lines print('-'*20) print('code:', len(code_lines)) for line in code_lines: print(line) print('-' * 20) print('notation:', len(notation_lines)) for line in notation_lines: print(line) print('-' * 20) print('blank:', len(blank_lines)) code_lines.clear() notation_lines.clear() blank_lines.clear() def process_files(path='../6'): files = os.listdir(path) for file in files: if file.endswith('.py'): print('='*30) print('current file:', os.path.join(path, file)) process_file(os.path.join(path, file)) show_result() process_files()
3.078125
3
SampleProject/POMObjectDemo/Pages/loginPage.py
MelissaQA/selenium-py-example
0
12781370
from ..Locators.locators import Locators class LoginPage(): def __init__(self, driver): self.driver = driver self.username_textbox_id = Locators.username_textbox_id self.password_textbox_id = Locators.password_textbox_id self.login_button_id = Locators.login_button_id self.invalidUserName_message_xpath = '//*[@id="spanMessage"]' #Actions that can be done on page objects def enter_username(self, username): self.driver.find_element_by_id(self.username_textbox_id).clear() self.driver.find_element_by_id(self.username_textbox_id).send_keys(username) def enter_password(self, password): self.driver.find_element_by_id(self.password_textbox_id).clear() self.driver.find_element_by_id(self.password_textbox_id).send_keys(password) def click_login(self): self.driver.find_element_by_id(self.login_button_id).click() def check_invalid_username_message(self): msg = self.driver.find_element_by_xpath(self.invalidUserName_message_xpath).text return msg
3.015625
3
main.py
mftnakrsu/Comparison-of-OCR
10
12781371
from ocr import OCR ocr=OCR(image_folder="test/") if __name__ == "__main__": ocr.keras_ocr_works() ocr.easyocr_model_works() ocr.pytesseract_model_works()
1.65625
2
pygraff/generator.py
cryptolake/Graff
1
12781372
<reponame>cryptolake/Graff<filename>pygraff/generator.py from bs4 import BeautifulSoup from pathlib import Path def gen_prevs(paths, title_tag, preview_tag, max_char, posts_dir): """generate post preview from each blog file :returns: list of post previews """ posts = [] for page in paths: linkp = str(page) posts.append([Path(page).read_text(), linkp[linkp.find(posts_dir):]]) previews = [] for post in posts: soup = BeautifulSoup(post[0], 'html.parser') prev = soup.p title = soup.title link = soup.new_tag("a", href=post[1]) # replace title tag with new tag title.name = title_tag # replace p tag with the new tag prev.name = preview_tag link.extend(title) # summarization of p max_char = int(max_char) char_len = len(prev.string) if char_len > max_char: prev.string = prev.string[0:max_char] prev.string = prev.string+"..." previews.append([link, prev]) return previews def writer(previews, blog_file, blog_class): """Write the previews to the selecte file """ soup = BeautifulSoup(blog_file, 'html.parser') _class_ = soup.find(class_=blog_class) _class_.clear() for preview in previews: li = soup.new_tag('li') li.extend(preview) _class_.append(li) return soup.prettify() def new(title, web_dir, posts_dir, post_template): """ generate new blog page and put title there """ temp_path = Path(web_dir+post_template) template = temp_path.read_text() soup = BeautifulSoup(template, 'html.parser') name = soup.title name.clear() name.extend(title) new_file = "/"+title+".html" new_path = web_dir+posts_dir+new_file Path(new_path).touch() Path(new_path).write_text(str(soup)) return new_path
2.875
3
src/inbox/pipelines.py
Eforcers/inbox-cleaner
1
12781373
<gh_stars>1-10 # -*- coding: utf-8 -*- from datetime import datetime import logging import constants from inbox.helpers import IMAPHelper from inbox.models import MoveMessageProcess from livecount import counter import pipeline from pipeline.common import List from models import MoveProcess, MoveUserProcess from tasks import get_messages class MoveProcessPipeline(pipeline.Pipeline): def run(self, move_process_id): logging.info("start process for move_process %s", move_process_id) process = MoveProcess.get_by_id(move_process_id) emails = process.emails user_processes = [] for email in emails: user_process = MoveUserProcess( user_email=email, move_process_key=process.key, status=constants.STARTED ) user_process_key = user_process.put() user_process_id = user_process_key.id() user_processes.append((yield MoveUserProcessPipeline( user_process_id=user_process_id, tag=process.tag))) yield List(*user_processes) def finalized(self): move_process_id = self.kwargs.get('move_process_id') logging.info('Finishing process [%s]', move_process_id) process = MoveProcess.get_by_id(move_process_id) process.status = constants.FINISHED process.execution_finish = datetime.now() process.put() class MoveUserProcessPipeline(pipeline.Pipeline): def run(self, user_process_id=None, tag=None): user_process = MoveUserProcess.get_by_id(user_process_id) try: messages = get_messages(user_process, tag) message_processes = [] counter.reset_counter( '%s_%s_ok_counter' % ( user_process.user_email, user_process.key.id())) counter.reset_counter( '%s_%s_error_counter' % ( user_process.user_email, user_process.key.id())) for batch in messages: message_processes.append( (yield MoveBatchMessagesProcessPipeline( batch=batch, user_process_id=user_process_id))) yield List(*message_processes) except Exception as e: if self.current_attempt >= self.max_attempts: logging.exception('Failed definitely retrieving for [%s] ' 'messages', user_process.user_email) user_process.status = constants.FAILED user_process.error_description = e.message user_process.put() else: logging.exception('Failed retrieving messagesfor [%s], ' 'try again...', user_process.user_email) raise e def finalized(self): user_process_id = self.kwargs.get('user_process_id') logging.info('Finishing user process [%s]', user_process_id) user_process = MoveUserProcess.get_by_id(user_process_id) if not self.was_aborted: user_process.status = constants.FINISHED user_process.error_description = None user_process.put() class MoveBatchMessagesProcessPipeline(pipeline.Pipeline): def run(self, batch=None, user_process_id=None): user_process = MoveUserProcess.get_by_id(user_process_id) move_process = user_process.move_process_key.get() failed_messages = [] #Create connection imap = IMAPHelper() imap.oauth1_2lo_login(user_email=user_process.user_email) for msg_id in batch: message_process = MoveMessageProcess( email=user_process.user_email, message_id=msg_id, user_process_key=user_process.key, status=constants.STARTED) message_process_key = message_process.put() try: move_message(user_process=user_process, message_process_id=message_process_key.id(), label=move_process.tag, imap=imap) except Exception as e: logging.exception( 'Failed while moving message [%s] for user [%s], ' 'try again...', msg_id, user_process.user_email) failed_messages.append( (yield MoveMessageProcessPipeline( message_process_id=message_process_key.id(), move_process_id=move_process.key.id())) ) imap.close() class MoveMessageProcessPipeline(pipeline.Pipeline): def run(self, message_process_id=None, user_process_id=None, move_process_id=None): move_process = MoveProcess.get_by_id(move_process_id) user_process = MoveUserProcess.get_by_id(user_process_id) try: move_message(user_process=user_process, message_process_id=message_process_id, label=move_process.tag) except Exception as e: if self.current_attempt >= self.max_attempts: logging.exception( 'Failed definitely moving the message id [%s] for user [%s] messages', message_process_id, user_process.user_email) message_process = MoveMessageProcess.get_by_id( message_process_id) message_process.status = constants.FAILED message_process.error_description = e.message message_process.put() counter.load_and_increment_counter( '%s_%s_error_counter' % ( user_process.user_email, user_process.key.id())) else: logging.exception( 'Failed retrieving a messagee id [%s] for [%s], ' 'try again...', message_process_id, user_process.user_email) raise e
2.0625
2
daily_messages/daily_messages.py
rohinigopalqxf2/qxf2-lambdas
3
12781374
<gh_stars>1-10 """ Get messages for employees from daily-messages.qxf2.com And post to Skype Sender """ import boto3 import requests BASE_URL = 'http://daily-messages.qxf2.com' QUEUE_URL = 'https://sqs.ap-south-1.amazonaws.com/285993504765/skype-sender' def clean_message(message): "Clean up the message received" message = message.replace("'", '-') message = message.replace('"', '-') return message def get_message(endpoint): "Get a message for employees" response = requests.get(url=BASE_URL+endpoint) return clean_message(response.json()['msg']) def write_message(daily_message, channel): "Send a message to Skype Sender" sqs = boto3.client('sqs') message = str({'msg':f'{daily_message}', 'channel':channel}) sqs.send_message(QueueUrl=QUEUE_URL, MessageBody=(message)) def lambda_handler(event, context): "Lambda entry point" #This lambda expects an event of type {'endpoint':'/blah','channel':'blah'} message = get_message(event.get('endpoint')) write_message(message, event.get('channel','test'))
2.859375
3
chef_admin/apps.py
pradeepdhankhar/chef24x7
0
12781375
<gh_stars>0 from django.apps import AppConfig class ChefAdminConfig(AppConfig): name = 'chef_admin'
1.054688
1
setup.py
hanshoi/kapsi-git-manager
0
12781376
import os from setuptools import setup def read(fname): """ Read README.md as long description if found. Otherwise just return short description. """ try: return open(os.path.join(os.path.dirname(__file__), fname)).read() except IOError: return "Simple git management application to be used in Kapsi hosting." setup( name="kapsi_git_manager", version="0.1.0", author="<NAME>", author_email="<EMAIL>", description=("Simple git management application to be used in Kapsi hosting."), license="MIT", keywords="git management kapsi", url="http://packages.python.org/kapsi_git_manager", packages=['kapsi_git_manager', ], package_data={'kapsi_git_manager': ['license.txt', 'templates/*.html']}, include_package_data=True, long_description=read('README.md'), classifiers=[ "Development Status :: 3 - Alpha", "Topic :: Utilities", "License :: OSI Approved :: MIT License", ], install_requires=[ 'Flask', 'flup<=1.0.2', 'Flask-HTTPAuth', 'GitPython', 'passlib' ], )
1.789063
2
LocalGP.py
nick-terry/Splitting-GP
1
12781377
# -*- coding: utf-8 -*- """ Created on Fri Feb 7 10:57:53 2020 @author: pnter """ import torch import gpytorch # from gpytorch.utils.memoize import add_to_cache, is_in_cache from gpytorch.lazy.root_lazy_tensor import RootLazyTensor import copy from UtilityFunctions import updateInverseCovarWoodbury from math import inf ''' Implements the Local Gaussian Process Regression Model as described by Nguyen-tuong et al. Note that the kernel used in the original paper Local Gaussian Process Regression for Real Time Online Model Learning uses the RBF kernel Parameters: likelihoodFn: The function which, when called, instantiates a new likelihood of the type which should be used for all child models kernel: The kernel function used to construct the covariances matrices w_gen: The threshold distance for generation of a new child model ''' class LocalGPModel: def __init__(self, likelihoodFn, kernel, inheritKernel=True, **kwargs): #Initialize a list to contain local child models self.children = [] self.w_gen = kwargs['w_gen'] if 'w_gen' in kwargs else .5 self.covar_module = kernel self.mean_module = kwargs['mean'] if 'mean' in kwargs else gpytorch.means.ConstantMean self.likelihood = likelihoodFn self.inheritKernel = inheritKernel #Number of training iterations used each time child model is updated #This should be roughly proportional to the number of observations. #By default, we will use 30. As number of data goes up, this may increase self.training_iter = 30 #Default output dimension is 1 (scalar) self.outputDim = 1 if 'outputDim' not in kwargs else kwargs['outputDim'] #If numInducingInputs is given, use variational GP models for child models if 'numInducingPoints' in kwargs: self.numInducingPoints = kwargs['numInducingPoints'] assert(type(self.numInducingPoints)==int) assert(self.numInducingPoints>0) self.objectiveFunctionClass = gpytorch.mlls.VariationalELBO else: self.numInducingPoints = None #If maxChildren in kwargs, set self.maxChildren. Else, set to inf if 'maxChildren' in kwargs: self.maxChildren = kwargs['maxChildren'] else: self.maxChildren = inf #If M=# of closest models for prediction is given, set parameter if 'M' in kwargs: self.M = kwargs['M'] else: self.M = None ''' Update the LocalGPModel with a pair {x,y}. ''' def update(self, x, y): #If no child model have been created yet, instantiate a new child with {x,y} and record the output dimension if len(self.children)==0: self.createChild(x,y) self.outputDim = int(y.shape[-1]) #If child models exist, find the the child whose center is closest to x else: closestChildIndex,minDist = self.getClosestChild(x) #Get the mask of any points for which the closest model is not similar enough genNewModelIndices = (minDist < self.w_gen) if minDist.dim()>0 else (minDist < self.w_gen).unsqueeze(0) x_gen = x[genNewModelIndices,:] y_gen = y[genNewModelIndices] #Now generate a new model, if needed. if x_gen.shape[0] > 0: self.createChild(x_gen[0,:].unsqueeze(0), y_gen[0].unsqueeze(0)) #We then recursively call update() without the point which generated #the model and return, in case some points would be assigned the newly generated model if x.shape[0] > 1: x_minus = torch.cat([x[0:genNewModelIndices[0]], x[genNewModelIndices[0]:]]) y_minus = torch.cat([y[0:genNewModelIndices[0]], y[genNewModelIndices[0]:]]) self.update(x_minus,y_minus) return #Get points where we are not generating a new model x_assign = x[genNewModelIndices.bitwise_not()] y_assign = y[genNewModelIndices.bitwise_not()] closestIndex_assign = closestChildIndex[genNewModelIndices.bitwise_not()]\ if closestChildIndex.dim()>0 else closestChildIndex.unsqueeze(0)[genNewModelIndices.bitwise_not()] #loop over children and assign them the new data points for childIndex in range(len(self.children)): #Get the data which are closest to the current child x_child = x_assign[closestIndex_assign==childIndex].squeeze(0) y_child = y_assign[closestIndex_assign==childIndex].squeeze(0) #If new data is a singleton, unsqueeze the 0th dim if x_child.dim() == 1: x_child,y_child = x_child.unsqueeze(0),y_child.unsqueeze(0) #Only proceed if there are some data in the batch assigned to the child if x_child.shape[0] > 0: closestChildModel = self.children[childIndex] #Create new model(s) which additionally incorporates the pair {x,y}. This will return more than one model #if a split occurs. newChildModel = closestChildModel.update(x_child,y_child) #Replace the existing model with the new model which incorporates new data self.children[closestIndex_assign] = newChildModel ''' Instantiate a new child model using the training pair {x,y} Note that the likelihood used to instantiate the child model is distinct from each other child model, as opposed to the kernel which is shared between the children. ''' def createChild(self,x,y): #Create new child model, then train if self.numInducingPoints is None: newChildModel = LocalGPChild(x,y,self,self.inheritKernel) else: newChildModel = ApproximateGPChild(x,y,self,self.inheritKernel) #Set other children to not be last updated. self.setChildLastUpdated(newChildModel) #Add to the list of child models self.children.append(newChildModel) def setChildLastUpdated(self,child): for _child in self.children: _child.lastUpdated = False child.lastUpdated = True ''' Return a pytorch tensor of the centers of all child models. ''' def getCenters(self): #Get the center of each child model centersList = list(map(lambda x:x.center.reshape((x.center.shape[0])),self.children)) #Return the centers after stacking in new dimension return torch.stack(centersList,dim=0) ''' Returns the index of the closest child model to the point x, as well as the distance between the model's center and x. ''' def getClosestChild(self,x): #Compute distances between new input x and existing inputs distances = self.getDistanceToCenters(x) #Get the single minimum distance from the tensor (max covar) minResults = torch.max(distances,1) if distances.dim()>1 else torch.max(distances,0) return minResults[1],minResults[0] ''' Compute the distances from the point x to each center ''' def getDistanceToCenters(self,x,returnPowers=False): centers = self.getCenters() x,centers = x.double(),centers.double() distances = self.covar_module(x,centers).evaluate() powers = torch.zeros(distances.shape) #Switch to double precision for this calculation ''' vec = ((x-centers.repeat(x.shape[0],1))/self.covar_module.lengthscale).double().repeat(x.shape[0],1) powers = .5*torch.sum(vec**2,dim=1) distances = torch.exp(-powers) ''' if returnPowers: return distances.squeeze(0),powers else: return distances.squeeze(0) ''' Make a prediction at the point(s) x. This method is a wrapper which handles the messy case of multidimensional inputs. The actual prediction is done in the predictAtPoint helper method. If no M is given, use default ''' def predict(self,x,individualPredictions=False,getVar=False): return self.predict_Helper(x,self.M,individualPredictions,getVar) ''' Make a prediction at the point(s) x. This method is a wrapper which handles the messy case of multidimensional inputs. The actual prediction is done in the predictAtPoint helper method ''' def predict_Helper(self,x,M,individualPredictions,getVar): if M is None: M = len(self.children) else: M = min(M,len(self.children)) #Update all of the covar modules to the most recent if self.inheritKernel: for child in self.children: child.covar_module = self.covar_module #If not inheriting kernel, then average the lengthscale params of child kernels else: lengthscales = [child.covar_module.lengthscale for child in self.children] self.covar_module.lengthscale = torch.mean(torch.stack(lengthscales),dim=0) mean_predictions = [] var_predictions = [] #Get the predictions of each child at each point for child in self.children: prediction = child.predict(x) mean_predictions.append(prediction.mean) var_predictions.append(prediction.variance) #Concatenate into pytorch tensors mean_predictions = torch.stack(mean_predictions).transpose(0,1) var_predictions = torch.stack(var_predictions).transpose(0,1) #Squeeze out any extra dims that may have accumulated if mean_predictions.dim()>2: mean_predictions = mean_predictions.squeeze() var_predictions = var_predictions.squeeze() #if the predictions are done at a single point, we need to unsqueeze in dim 0 if mean_predictions.dim()<2: mean_predictions = mean_predictions.unsqueeze(-1) var_predictions = var_predictions.unsqueeze(-1) #Transpose to agree with minIndices dims #Note: This only needs to be done for the incremental experiments where we track memory usage. #Leave this commented out otherwise ''' mean_predictions = mean_predictions.transpose(0,1) var_predictions = var_predictions.transpose(0,1) ''' #We don't need this weighting procedure if there is only one child if mean_predictions.shape[-1]>1: #Get the covar matrix distances = self.getDistanceToCenters(x) #Get the M closest child models. Need to squeeze out extra dims of 1. sortResults = torch.sort(distances.squeeze(-1).squeeze(-1),descending=True) #Get the minDists for weighting predictions #minDists = sortResults[0][:,:M].squeeze(-1) if sortResults[0].dim()>1 else sortResults[0].unsqueeze(0) minDists = sortResults[0][:,:M] if sortResults[0].dim()>1 else sortResults[0].unsqueeze(0) #Get the min indices for selecting the correct predictions. If dim==1, then there is only one child, so no need to take up to M predictions minIndices = sortResults[1][:,:M] if sortResults[1].dim()>1 else sortResults[1].unsqueeze(0) #Get the associate predictions gatherDim = 1 if mean_predictions.dim()>1 else 0 mean_predictions = mean_predictions.gather(gatherDim,minIndices) var_predictions = var_predictions.gather(gatherDim,minIndices) #Compute weights for the predictions. Switch to double precision for this somewhat unstable computation minDists = minDists.double() #If we have M=1, we need to unsqueeze for the summation if minDists.dim() == 1: minDists = minDists.unsqueeze(-1) #Sum the m smallest distances for each prediction point to normalize denominator = torch.sum(minDists,dim=1).unsqueeze(-1).repeat((1,minDists.shape[1])) weights = minDists/denominator #Compute weighted predictions. #IMPORTANT: the weighted variance predictions are highly negatively biased since we do not account for the covariance between models weighted_mean_predictions = torch.sum(weights * mean_predictions,dim=1) weighted_var_predictions = torch.sum(weights**2 * var_predictions,dim=1) else: weighted_mean_predictions = mean_predictions weighted_var_predictions = var_predictions if getVar: return weighted_mean_predictions,weighted_var_predictions elif individualPredictions: return weighted_mean_predictions,mean_predictions,weights,minDists else: return weighted_mean_predictions ''' Make a prediction at the point x by finding the M closest child models and computing a weighted average of their predictions. By default M is the number of child models. If M < number of child models, use all of them. THIS METHOD IS NOW DEPRECATED. DO NOT RELY ON THIS. ''' def predictAtPoint(self,x,M=None,individualPredictions=False): if M is None: M = len(self.children) else: M = min(M,len(self.children)) #Compute distances between new input x and existing inputs distances,powers = self.getDistanceToCenters(x,True) #Get the M closest child models. Need to squeeze out extra dims of 1. sortResults = torch.sort(distances.squeeze(-1).squeeze(-1),descending=True) minDists = sortResults[0][:M].squeeze(-1) if sortResults[0].dim()>0 else sortResults[0].unsqueeze(0) minIndices = sortResults[1][:M] if sortResults[1].dim()>0 else sortResults[1].unsqueeze(0) closestChildren = [self.children[i] for i in minIndices] ''' Get a posterior distribution for each child model. Note each will be multivariate normal. Then compute weighted average of the means of the posterior distributions. ''' posteriorMeans = [] for child in closestChildren: posterior = child.predict(x) posteriorMeans.append(posterior.mean) ''' TODO: It would be better to instead compute the weighted average of the posterior distributions so we have access to variance as well. ''' posteriorMeans = torch.stack(posteriorMeans) #We need to be careful with this computation. If the covariances are very small, we may end up with a nan value here. nonZeroDists = minDists[minDists>0.0] #Address the case where we are predicting very far away from all models. Take unweighted mean of all predictions if nonZeroDists.shape[-1]==0: weights = 1.0/(powers+1.0) weights = weights/torch.sum(weights) else: minDists = minDists weights = minDists/torch.sum(minDists) weightedAverageMean = torch.dot(weights,posteriorMeans.squeeze(-1).double()).float() if individualPredictions: return weightedAverageMean,posteriorMeans,weights,minDists else: return weightedAverageMean class LocalGPChild(gpytorch.models.ExactGP): def __init__(self, train_x, train_y, parent, inheritKernel=True, **kwargs): #Track if the child was created by splitting self.isSplittingChild = True if 'split' in kwargs and kwargs['split'] else False #Handle prior likelihood if 'priorLik' in kwargs and kwargs['priorLik'] is not None: priorLik = kwargs['priorLik'] else: #If no prior is provided, use the default of the parent priorLik = parent.likelihood() #In this case, we reset the isSplittingChild flag to false in order for the new likelihood to be trained self.isSplittingChild = False super(LocalGPChild, self).__init__(train_x, train_y, priorLik) #Set to double mode self.double() self.likelihood.double() self.parent = parent if 'priorMean' in kwargs and kwargs['priorMean'] is not None: #If given, take a prior for the mean. Used for splitting models. self.mean_module = copy.deepcopy(kwargs['priorMean']) else: self.mean_module = parent.mean_module() ''' If inheritKernel is set to True, then the same Kernel function (including the same hyperparameters) will be used in all of the child models. Otherwise, a separate instance of the same kernel function is used for each child model. ''' if inheritKernel: self.covar_module = parent.covar_module else: self.covar_module = parent.covar_module.__class__(ard_num_dims=train_x.shape[1] if train_x.dim()>1 else 1) self.lastUpdated = True ''' Compute the center as the mean of the training data ''' self.center = torch.mean(train_x,dim=0) if self.center.dim()==0: self.center = self.center.unsqueeze(0) self.train_x = train_x self.train_y = train_y self.trained = False self.initTraining() def forward(self,x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return gpytorch.distributions.MultivariateNormal(mean_x, covar_x) def update(self,x,y): #Sync covar if self.parent.inheritKernel: self.covar_module = self.parent.covar_module #Update train_x, train_y self.train_x = torch.cat([self.train_x, x]) self.train_y = torch.cat([self.train_y, y]) #Update the data which can be used for optimizing self.train_inputs = (self.train_x,) self.train_targets = self.train_y #Flag the child as not having been trained. self.trained = False #Update center self.center = torch.mean(self.train_x,dim=0) if self.center.dim()==0: self.center = self.center.unsqueeze(0) return self ''' Perform a rank-one update of the child model's inverse covariance matrix cache. ''' def updateInvCovarCache(self,update=False): lazy_covar = self.prediction_strategy.lik_train_train_covar if is_in_cache(lazy_covar,"root_inv_decomposition"): if update: #Get the old cached inverse covar matrix K_0inv = lazy_covar.root_inv_decomposition() #Get the new covar matrix by calling the covar module on the training data K = self.covar_module(self.train_x) #Compute the update Kinv = updateInverseCovarWoodbury(K_0inv, K) #Store updated inverse covar matrix in cache add_to_cache(lazy_covar, "root_inv_decomposition", RootLazyTensor(torch.sqrt(Kinv))) else: #This is a bit dirty, but here we will simply delete the root/root_inv from cache. This forces #GPyTorch to recompute them. lazy_covar._memoize_cache = {} self.prediction_strategy._memoize_cache = {} ''' Setup optimizer and perform initial training ''' def initTraining(self): #Switch to training mode self.train() self.likelihood.train() #We only train on instantiation if the child model is not a result of a split if not self.isSplittingChild: #Setup optimizer self.optimizer = torch.optim.Adam(self.parameters(), lr=0.1) mll = gpytorch.mlls.ExactMarginalLogLikelihood(self.likelihood, self) mll.double() #Perform training iterations training_iter = self.parent.training_iter for i in range(training_iter): self.optimizer.zero_grad() output = self(self.train_x) loss = -mll(output, self.train_y) loss.backward() self.optimizer.step() self.trained = True ''' Retrain model after new data is obtained ''' def retrain(self): #Switch to training mode self.train() self.likelihood.train() mll = gpytorch.mlls.ExactMarginalLogLikelihood(self.likelihood, self) #Perform training iterations training_iter = self.parent.training_iter for i in range(training_iter): self.optimizer.zero_grad() output = self(self.train_x) loss = -mll(output, self.train_y) loss.backward() self.optimizer.step() self.trained = True ''' Evaluate the child model to get the predictive posterior distribution ''' def predict(self,x): if not self.trained: self.retrain() #Switch to eval/prediction mode self.eval() self.likelihood.eval() with torch.no_grad(), gpytorch.settings.fast_pred_var(): prediction = self.likelihood(self(x)) return prediction
2.546875
3
core/controls/run.py
intercellar/FLOOR-E
0
12781378
<filename>core/controls/run.py #!/usr/bin/python -B from __future__ import division import threading import Tkinter as tk import urllib import json from time import sleep, time from os import system, listdir import tkMessageBox import Robot import os import Adafruit_PCA9685 #import RPi.GPIO as GPIO #GPIO.setmode(GPIO.BCM) #light_pin = 21 #GPIO.setup(light_pin, GPIO.OUT) #GPIO.output(light_pin, GPIO.LOW) os.system("xset r off") display = {'lid': -1, 'pcb': -1, 'acc': -1 } FS = 2 WAIT = .1 LEFT_TRIM = 0 RIGHT_TRIM = 0 #ROBOT VARIABLES robot = Robot.Robot(left_trim=LEFT_TRIM, right_trim=RIGHT_TRIM) key = {"key":"w","first":0,"last":1} light = 0 bright = 50 speed = 160 heights = [] h = 0 #servo stuff pwm = Adafruit_PCA9685.PCA9685() #150 600 servo_minh = 550 servo_maxh = 750 servo_minv = 250 servo_maxv = 500 servo_minp = 25 servo_maxp = 350 servo_midh = int((servo_minh+servo_maxh)/2) servo_midv = int((servo_minv+servo_maxv)/2) servo_midp = int((servo_minp+servo_maxp)/2) pwm.set_pwm_freq(60) shori = 4 svert = 7 spcb = 2 print("start") #pwm.set_pwm(shori, 0, servo_midh) #pwm.set_pwm(svert, 0, servo_midv) #pwm.set_pwm(spcb, 0, servo_maxp) #sleep(1) #pwm.set_pwm(svert, 0, servo_min) servo0 = servo_midv servo1 = servo_midh servo2 = servo_maxp class MainApp(tk.Tk): def __init__(self, display): tk.Tk.__init__(self) tk.Tk.wm_title(self, 'Intercellar') self.attributes('-fullscreen', True) self.display = display self.container = tk.Frame(self) self.container.pack(side='top', fill='both', expand=True) self.container.grid_rowconfigure(0, weight=1) self.container.grid_columnconfigure(0, weight=1) self.menubar = tk.Menu(self) self.menubar.add_command(label='Quit', command=quit) self.menubar.add_command(label='Main', command=lambda: self.show_frame(Main)) self.menubar.add_command(label='Testing', command=lambda: self.show_frame(Testing)) tk.Tk.config(self, menu=self.menubar) self.frames = {} for F in [Main, Testing]: frame = F(self.container, self) self.frames[F] = frame frame.grid(row=0, column=0, sticky='nsew') self.show_frame(Testing) def show_frame(self, cont): frame = self.frames[cont] frame.tkraise() class Main(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) self.info_widget = Info_Widget(self) self.info_widget.pack(side=tk.RIGHT) self.info_widget.add_number('LID', '--', 0, 0, top='LIDAR', bottom='in') self.info_widget.add_number('PCB', '--', 1, 0, top='PCB', bottom='in') self.info_widget.add_number('ACC', '--', 2, 0, top='ACC', bottom='') self.info_widget.add_number('RES', '--', 3, 0, top='RES', bottom='in') self.info_widget2 = Info_Widget(self) self.info_widget2.pack(side=tk.LEFT) self.info_widget2.add_number('LIGHT', '--', 0, 0, top='LIGHT', bottom='') self.info_widget2.add_number('LM', '--', 1, 0, top='LM', bottom='/255') self.info_widget2.add_number('RM', '--', 2, 0, top='RM', bottom='/255') self.info_widget2.add_number('ECE', '--', 3, 0, top='ECE', bottom='') def refresh(self, display): global h self.info_widget.info['LID'].change_text(display['lid']) self.info_widget.info['PCB'].change_text(display['pcb']) self.info_widget.info['ACC'].change_text(display['acc']) try: lid = float(display['lid']) pcb = float(display['pcb']) acc = float(display['acc']) except: lid = 0 pcb = 0 acc = 1 res = round((lid - pcb) * acc, 2) res = min(45, res) res = max(0, res) h = res self.info_widget.info['RES'].change_text(str(res)) class Testing(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent) self.BD1 = Button_Display(self, opt=1) self.BD1.pack(side=tk.LEFT) self.info_widget = Info_Widget(self) self.info_widget.add_big('RES', '--', 0, 0, top='HEIGHT', bottom='in') """ self.info_widget.add_number('PCB', 'PCB: -- in', 1, 0) self.info_widget.add_number('LID', 'LID: -- in', 2, 0) self.info_widget.add_number('ANG', 'ANG: -- ' + u'\u00B0', 3, 0) """ self.info_widget.pack(side=tk.LEFT, padx=60, pady=10) self.BD2 = Button_Display(self, opt=2) self.BD2.pack(side=tk.RIGHT) def refresh(self, display): global h try: lid = float(display['lid']) pcb = float(display['pcb']) acc = float(display['acc']) except: lid = 0 pcb = 0 acc = 1 res = round((lid - pcb) * acc, 2) res = min(45, res) res = max(0, res) h = res self.info_widget.info['RES'].change_text(str(res)) class Button_Display(tk.Frame): def __init__(self, parent, opt=1): tk.Frame.__init__(self, parent) pady=10 height=3 width=20 if opt == 1: self.B1 = tk.Button(self, text='SPEED', font='Consolas 14 bold', pady=pady, height=height, width=10, disabledforeground='black', bg='#4286f4', state=tk.DISABLED) self.B2 = tk.Button(self, text='LOW', pady=pady, height=height, width=width, command=set_speed_low) self.B3 = tk.Button(self, text='MED', pady=pady, height=height, width=width, command=set_speed_med) self.B4 = tk.Button(self, text='HIGH', pady=pady, height=height, width=width, command=set_speed_high) for self.B in [self.B1, self.B2, self.B3, self.B4]: self.B.pack(side=tk.TOP, pady=pady) if opt == 2: self.B1 = tk.Button(self, text='LIGHT', font='Consolas 14 bold', pady=pady, height=height, width=10, disabledforeground='black', bg='#4286f4', state=tk.DISABLED) self.B2 = tk.Button(self, text='LOW', pady=pady, height=height, width=width, command=set_light_low) self.B3 = tk.Button(self, text='MED', pady=pady, height=height, width=width, command=set_light_med) self.B4 = tk.Button(self, text='HIGH', pady=pady, height=height, width=width, command=set_light_high) for self.B in [self.B1, self.B2, self.B3, self.B4]: self.B.pack(side=tk.TOP, pady=pady) class Info_Widget(tk.Frame): def __init__(self, parent): tk.Frame.__init__(self, parent) self.info = {} def add_big(self, id_str, text, row, column, top=False, bottom=False): PADX = 5 PADY = 10 self.info[id_str] = Number_Display(self, text, top=top, bottom=bottom) self.info[id_str].grid(padx=PADX, pady=PADY, row=row, column=column) def add_number(self, id_str, text, row, column, top=False, bottom=False): PADX = 5 PADY = 1 self.info[id_str] = Number_Display2(self, text, top=top, bottom=bottom) self.info[id_str].grid(padx=PADX, pady=PADY, row=row, column=column) def change_text(self, text): self.itemconfig(self.text, text=text) class Number_Display2(tk.Canvas): def __init__(self, parent, text, top=False, bottom=False): tk.Canvas.__init__(self, parent, height=100, width=100) #self.rect = self.create_rectangle(0, 0, 100, 30, fill='#C0C0C0', width=0) self.rect = self.create_rectangle(0, 0, 100, 30, fill='#C0C0C0', width=0) self.text = self.create_text(50, 15, text=text, fill='black', font='Consolas 9 bold') """ if top: self.top = self.create_text(50, 15, text=top, fill='black', font='Consolas 9 bold') if bottom: self.bot = self.create_text(50, 85, text=bottom, fill='black', font='Consolas 9 bold') """ def change_text(self, text): self.itemconfig(self.text, text=text) class Number_Display(tk.Canvas): def __init__(self, parent, text, top=False, bottom=False): tk.Canvas.__init__(self, parent, height=152, width=152) #self.rect = self.create_rectangle(0, 0, 150, 150, fill='#C0C0C0', width=0) self.rect = self.create_rectangle(1, 1, 150, 150, outline='black', activeoutline='black', width=1) self.text = self.create_text(75, 75, text=text, fill='black', font='Consolas 14 bold') if top: self.top = self.create_text(75, 25, text=top, fill='black', font='Consolas 9 bold') if bottom: self.bot = self.create_text(75, 125, text=bottom, fill='black', font='Consolas 9 bold') def change_text(self, text): self.itemconfig(self.text, text=text) last = (time(), None) def key_input(event): key_press = event.char kp = key_press.lower() st = 0 print(key_press.lower()) global key global speed global bright now = time() #print('pressed: {}, {}'.format(key_press.lower(), now-last[0])) if(kp=='w' or kp=='a' or kp=='s' or kp=='d'): if(kp == key["key"]): key["last"] = now else: key["key"] = kp key["first"] = now key["last"] = now if key_press.lower() == 's': #print("pressed") robot.forward(speed) sleep(st) if key_press.lower() == 'w': #print("pressed") robot.backward(speed) sleep(st) if key_press.lower() == 'd': robot.right(speed) sleep(st) if key_press.lower() == 'a': robot.left(speed) sleep(st) global h #non-movement controls if key_press.lower() == 'p': party_bot() if key_press.lower() == 'e': heights.append(h) if key_press.lower() == 'q': print("Heights: ", heights) robot.set_light1(0) #GPIO.output(light_pin, GPIO.LOW) quit() if key_press.lower() == 'r': global light if(light): light = 0 robot.set_light1(0) #GPIO.output(light_pin, GPIO.LOW) else: light = 1 print("light") #250 robot.set_light1(bright) #GPIO.output(light_pin, GPIO.HIGH) #key = key_press.lower() #servo controls global servo0 global servo1 global servo2 global s global up global svert global shori global spcb delta = 5 delta2 = 1 if kp=='t' or kp=='g' or kp=='h' or kp=='f': if kp == key['key']: key['last'] = now else: key['key'] = kp key['first'] = now key['last'] = now if key_press.lower() == 't': if(servo0 < servo_maxv): servo0 = min(servo_maxv, servo0+delta) pwm.set_pwm(svert, 0, servo0) s = svert up = True press_servo() #while(now-key['first'] <= .49 and servo0 < servo_max): # servo0 = min(servo_max, servo0+delta2) # pwm.set_pwm(0,0,servo0) if key_press.lower() == 'g': if(servo0 > servo_minv): servo0 = max(servo_minv, servo0-delta) pwm.set_pwm(svert, 0, servo0) s = svert up = False press_servo() #while(now-key['first'] <=.49 and servo0 > servo_min): # servo0 = max(servo_min, servo0-delta2) # pwm.set_pwm(0, 0, servo0) if key_press.lower() == 'f': if(servo1 < servo_maxh): servo1 = min(servo_maxh, servo1+delta) pwm.set_pwm(shori, 0, servo1) s = shori up = True press_servo() #while(now-key['first'] <= .49 and servo1 < servo_max): # servo1 = min(servo_max, servo1+delta2) # pwm.set_pwm(1, 0, servo1) if key_press.lower() == 'h': if(servo1 > servo_minh): servo1 = max(servo_minh, servo1-delta) pwm.set_pwm(shori, 0, servo1) s = shori up = False press_servo() #while(now-key['first'] <=.49 and servo1 > servo_min): # servo1 = max(servo_min, servo1-delta2) # pwm.set_pwm(1, 0, servo1) if key_press.lower() == 'v': servo2 = pwm.set_pwm(spcb, 0, servo_minp) if key_press.lower() == 'b': servo2 = pwm.set_pwm(spcb, 0, servo_maxp) #print(servo0) def stop_bot(event): global key #key = None #print("depressed") key_release = event.char kp = key_release.lower() now = time() #print('released: {}, {}'.format(key_release.lower(), now-last[0])) if key_release.lower() == 'a' or key_release.lower() == 'w' or key_release.lower() == 's' or key_release.lower() == 'd': if(now-key["first"] <= .49): #if False: print("stopbot++++++++++++++++++++++++++++++++++++++++++++++") print(key["first"]) key["key"] = "-1" robot.stop() if kp=='t' or kp=='g' or kp=='f' or kp=='h': if(now-key['first'] <= .49): print("stop serv") key["key"] = "-1" key["first"] = 0 def fformat(item): return str(item) def check_for_stop(): global key #print("cfs") now = time() if(now-key["first"] > .49):#.485 if(now-key["last"] > .1): #print("cfs") #print(key["first"]) key["key"] = "-1" robot.stop() sleep(.05) t = threading.Thread(target=check_for_stop) t.daemon = True t.start() def press_servo(): global key global servo0 global servo1 global s global up global shori #global svert #if(s == shori): # servoX = servo1 #else: # servoX = servo0 #print("press_servo") now = time() servoX = servo1 if s == shori else servo0 servo_min = servo_minh if s==shori else servo_minv servo_max = servo_maxh if s==shori else servo_maxv if(now-key['first']<=.49 and servoX > servo_min and servoX < servo_max): #if(up): # servoX = min(servo_max, servoX+1) #else: delta = 2 servoX = min(servo_max,servoX+delta) if up else max(servo_min, servoX-delta) pwm.set_pwm(s, 0, servoX) if(s == shori): servo1 = servoX else: servo0 = servoX sleep(.05) t = threading.Thread(target=press_servo) t.daemon = True t.start() def party_bot(): robot.right(250) now = time() while(now - time() < 5): robot.set_light1(250) sleep(.5) robot.set_light1(0) sleep(.5) robot.stop() robot.set_light(0) def set_speed_low(): global speed global app app.frames[Testing].BD1.B2.config(relief=tk.SUNKEN) app.frames[Testing].BD1.B3.config(relief=tk.RAISED) app.frames[Testing].BD1.B4.config(relief=tk.RAISED) speed = 140 def set_speed_med(): global speed app.frames[Testing].BD1.B2.config(relief=tk.RAISED) app.frames[Testing].BD1.B3.config(relief=tk.SUNKEN) app.frames[Testing].BD1.B4.config(relief=tk.RAISED) speed = 190 def set_speed_high(): global speed app.frames[Testing].BD1.B2.config(relief=tk.RAISED) app.frames[Testing].BD1.B3.config(relief=tk.RAISED) app.frames[Testing].BD1.B4.config(relief=tk.SUNKEN) speed = 254 def set_light_low(): global bright app.frames[Testing].BD2.B2.config(relief=tk.SUNKEN) app.frames[Testing].BD2.B3.config(relief=tk.RAISED) app.frames[Testing].BD2.B4.config(relief=tk.RAISED) bright = 10 def set_light_med(): global bright app.frames[Testing].BD2.B2.config(relief=tk.RAISED) app.frames[Testing].BD2.B3.config(relief=tk.SUNKEN) app.frames[Testing].BD2.B4.config(relief=tk.RAISED) bright = 60 def set_light_high(): global bright app.frames[Testing].BD2.B2.config(relief=tk.RAISED) app.frames[Testing].BD2.B3.config(relief=tk.RAISED) app.frames[Testing].BD2.B4.config(relief=tk.SUNKEN) bright = 250 def build_display(): try: dataLink = 'http://core.local/getinfo' data = urllib.urlopen(dataLink) data = data.read().decode('utf-8') data = json.loads(data) #print(data) except: print('problem') exit() display = data return display def update(): global display display = build_display() app.frames[Testing].refresh(display) t = threading.Timer(FS, update) t.daemon = True t.start() app = None if __name__ == '__main__': check_for_stop() app = MainApp(display) app.bind('<KeyPress>', key_input) app.bind('<KeyRelease>', stop_bot) update() app.mainloop()
2.40625
2
smartteddy.basket.computer/web/smartteddydashboard/smartteddydashboard/settings.py
smart-teddy-project-hhs/SmartTeddy
2
12781379
from pathlib import Path import environ env = environ.Env( # set casting, default value DEBUG=(bool, False) ) environ.Env.read_env() # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env('DEBUG') ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'speechrecognition.apps.SpeechrecognitionConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'flags', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'smartteddydashboard.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': [ # TODO Use a more restrictive permission, because allow any can be insecure. 'rest_framework.permissions.AllowAny', # 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_PARSER_CLASSES': [ 'rest_framework.parsers.JSONParser', ] } WSGI_APPLICATION = 'smartteddydashboard.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' # Feature toggles that are pre-defined # Django-flags https://cfpb.github.io/django-flags/ FLAGS = { 'FLAG_WITH_EMPTY_CONDITIONS': [], 'FLAG_WITH_ANY_CONDITIONS': [], 'FLAG_WITH_REQUIRED_CONDITIONS': [], }
1.796875
2
undergen/lib/audio.py
DigiDuncan/undergen
0
12781380
from typing import TYPE_CHECKING import requests if TYPE_CHECKING: from undergen.lib.data import Character url = "https://api.15.ai/app/getAudioFile5" cdn_url = "https://cdn.15.ai/audio/" headers = {'authority': 'api.15.ai', 'access-control-allow-origin': '*', 'accept': 'application/json, text/plain, */*', 'dnt': '1', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36', 'content-type': 'application/json;charset=UTF-8', 'sec-gpc': '1', 'origin': 'https://15.ai', 'sec-fetch-site': 'same-site', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://15.ai/', 'accept-language': 'en-US,en;q=0.9'} def get_sound(character: "Character", text: str): character_name = character.sound_name emotion = "Normal" print(f"Getting audio for {character_name} '{text}'...") response = requests.post(url, json = { "character": character_name, "emotion": emotion, "text": text }, headers = headers) if response.status_code != 200: raise RuntimeError(f"15.ai responded with code {response.status_code}.") data_json = response.json() wav_name = data_json["wavNames"][0] second_response = requests.get(cdn_url + wav_name) if second_response.status_code != 200: raise RuntimeError(f"15.ai CDN responded with code {second_response.status_code}.") print("Audio success!") return second_response.content
2.765625
3
setup.py
ben-hoover/django-tz-detect
0
12781381
<reponame>ben-hoover/django-tz-detect #!/usr/bin/env python import os import re import sys import codecs import subprocess from setuptools import setup, find_packages def read(*parts): file_path = os.path.join(os.path.dirname(__file__), *parts) return codecs.open(file_path, encoding='utf-8').read() setup( name='django-tz-detect', version=read('VERSION'), license='MIT License', install_requires=[ 'django>=1.4.2', 'pytz', 'six', ], requires=[ 'Django (>=1.4.2)', ], description='Automatic user timezone detection for django', long_description=read('README.rst'), author='<NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', url='http://github.com/adamcharnock/django-tz-detect', download_url='https://github.com/adamcharnock/django-tz-detect/zipball/master', packages=find_packages(exclude=('example*', '*.tests*')), include_package_data=True, tests_require=[ 'django-setuptest', 'coveralls', ], test_suite='setuptest.setuptest.SetupTestSuite', zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
1.8125
2
backend/apps/projects/efficiency/serializers.py
wuchaofan1654/tester
0
12781382
from django.contrib.auth import get_user_model from rest_framework import serializers from apps.basics.op_drf.serializers import CustomModelSerializer from apps.projects.efficiency.models import Efficiency from apps.projects.efficiency.models import Module UserProfile = get_user_model() class EfficiencySerializer(CustomModelSerializer): """ 简单菜单序列化器 """ class Meta: model = Efficiency # fields = '__all__' exclude = ('description', 'creator', 'modifier') class ModuleSerializer(CustomModelSerializer): """ 模块管理 简单序列化器 """ parentId = serializers.IntegerField(source="parentId.id", default=0) class Meta: model = Module exclude = ('description', 'creator', 'modifier') class ModuleCreateUpdateSerializer(CustomModelSerializer): """ 模块管理 创建/更新时的列化器 """ def validate(self, attrs: dict): return super().validate(attrs) class Meta: model = Module fields = '__all__' class ModuleTreeSerializer(serializers.ModelSerializer): """ 模块树形架构序列化器:递归序列化所有深度的子模块 """ label = serializers.CharField(source='name', default='') parentId = serializers.IntegerField(source="parentId.id", default=0) class Meta: model = Module fields = ('id', 'label', 'parentId', 'status')
2.21875
2
users/models.py
hrbhat/twissandra
308
12781383
# Nope, we're using Cassandra :)
0.777344
1
config.py
IntershopCommunicationsAG/ish-monitoring-postgresqldb-exporter
1
12781384
""" This file stores all the possible configurations for the Flask app. Changing configurations like the secret key or the database url should be stored as environment variables and imported using the 'os' library in Python. """ import os class BaseConfig: SQLALCHEMY_TRACK_MODIFICATIONS = False SSL = os.getenv('POSTGRESQL_SSL', True) if isinstance(SSL, str): SSL = SSL.lower() in ['true', '1', 'yes', "t"] DATABASE = os.getenv('POSTGRESQL_DATABASE', 'postgres') HOST = os.getenv('POSTGRESQL_HOST', 'localhost') PORT = os.getenv('POSTGRESQL_PORT', 5432 ) USERNAME = os.getenv('POSTGRESQL_USERNAME', 'root') PASSWORD = os.getenv('POSTGRESQL_PASSWORD', '<PASSWORD>') COLLECT_METRICS_INTERVAL_SEC = int( os.getenv('COLLECT_METRICS_INTERVAL_SEC', 120)) DEBUG = False TESTING = False class TestingConfig(BaseConfig): DEBUG = True TESTING = True class DevelopmentConfig(BaseConfig): DEBUG = True class ProductionConfig(BaseConfig): DEBUG = False
2.453125
2
envs/traffic_counter.py
iron88sk/Project
0
12781385
import os, sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) import configparser import env from envs.seoul_env import SeoulEnv, SeoulController import numpy as np import matplotlib ilds_map ={'1_l', '1_r', '2_l', '2_r', '3_u', '3_d'} class SeoulConuterEnv(SeoulEnv): def __init__(self, config, port=0, output_path='', is_record=False, record_stat=False, sumo_config=None): self.sumo_config = sumo_config self.ilds_map = ilds_map self.counts_map = dict() self.vehicles_in_lane = dict() for edge in set(self.ilds_map.values()): self.vehicles_in_lane[edge] = list() super().__init__(config, output_path, is_record, record_stat, port=port) def _init_sim_config(self, seed=None): return self.sumo_config def step(self, action): self.count() super().step(action) def count(self): for ilds in self.ilds_map.keys(): vid = self.sim.lanearea.getLastStepVehicleIDs(ild) class TrafficCounter: def __init__(self, config, base_dir, sumo_config): self.config = config self.base_dir = base_dir self.sumo_config = sumo_config if not os.path.exists(self.base_dir): os.mkdir(self.base_dir) self.env = SeoulCounterEnv(self.config['ENV_CONFIG'], 2,self.base_dir, is_record=True, record_stat=True, sumo_config=self.sumo_config) self.ob = env.reset() self.controller = SeoulController(self.env.node_names, self.env.nodes) def exploreGreedy(self): while True: it += 1 next_ob, _, done, reward = self.env.step(self.controller.forward(self.ob)) if done: break self.ob = next_ob self.env.terminate() def run(self): self.exploreGreedy() if __name__ == '__main__': config = configparser.ConfigParser() config.read('./config/config_greedy_seoul.ini') base_dir = './output_result/' counter = TrafficCounter(config, base_dir) counter.run()
2.28125
2
src/awkward/_v2/operations/structure/ak_is_none.py
BioGeek/awkward-1.0
0
12781386
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE from __future__ import absolute_import import awkward as ak np = ak.nplike.NumpyMetadata.instance() def is_none(array, axis=0, highlevel=True, behavior=None): raise NotImplementedError # """ # Args: # array: Data to check for missing values (None). # axis (int): The dimension at which this operation is applied. The # outermost dimension is `0`, followed by `1`, etc., and negative # values count backward from the innermost: `-1` is the innermost # dimension, `-2` is the next level up, etc. # highlevel (bool): If True, return an #ak.Array; otherwise, return # a low-level #ak.layout.Content subclass. # behavior (None or dict): Custom #ak.behavior for the output array, if # high-level. # Returns an array whose value is True where an element of `array` is None; # False otherwise (at a given `axis` depth). # """ # def getfunction(layout, depth, posaxis): # posaxis = layout.axis_wrap_if_negative(posaxis) # if posaxis == depth - 1: # nplike = ak.nplike.of(layout) # if isinstance(layout, ak._v2._util.optiontypes): # return lambda: ak._v2.contents.NumpyArray( # nplike.asarray(layout.bytemask()).view(np.bool_) # ) # elif isinstance( # layout, # ( # ak._v2._util.unknowntypes, # ak._v2._util.listtypes, # ak._v2._util.recordtypes, # ak._v2.contents.NumpyArray, # ), # ): # return lambda: ak._v2.contents.NumpyArray( # nplike.zeros(len(layout), dtype=np.bool_) # ) # else: # return posaxis # else: # return posaxis # layout = ak._v2.operations.convert.to_layout(array) # out = ak._v2._util.recursively_apply( # layout, getfunction, pass_depth=True, pass_user=True, user=axis # ) # return ak._v2._util.maybe_wrap_like(out, array, behavior, highlevel)
2.140625
2
ci/release.py
steve-louis/mist-ce
778
12781387
<gh_stars>100-1000 #!/usr/bin/env python import os import sys import hashlib import argparse import magic import requests def main(): args = parse_args() request = Client(args.owner, args.repo, args.token) update_release( request, args.tag, msg=args.msg, files=args.files, prerelease=args.prerelease, draft=args.draft, remove_undefined_files=args.remove_undefined_files, ) def parse_args(): argparser = argparse.ArgumentParser( description=("Create/Update Github release based on git tag. When " "creating a release that doesn't exist, it'll be marked " "as stable (not prerelease) and public (not draft), " "unless otherwise specified. When updating a release, " "only fields specified by corresponding options will be " "modified.")) argparser.add_argument('owner', help="The github repo's owner") argparser.add_argument('repo', help="The github repo's name") argparser.add_argument('tag', help="Tag name for which to make release") argparser.add_argument( '-m', '--msg', default=None, help=("Message for the release. Either the message as a string, or " "the filename of a text file preceded by '@'. Use an empty " "string '' to set an empty message.")) argparser.add_argument( '-f', '--files', nargs='+', metavar='FILE', help="Files to upload as release assets.") argparser.add_argument( '--remove-undefined-files', action='store_true', help=("If specified, remove any preexisting files from the release " "that aren't currently specified with the `--files` option.")) argparser.add_argument( '--prerelease', dest='prerelease', default=None, action='store_true', help="Mark release as prerelease.") argparser.add_argument( '--no-prerelease', dest='prerelease', default=None, action='store_false', help="Mark release as regular release, no prerelease.") argparser.add_argument( '--draft', dest='draft', default=None, action='store_true', help="Mark release as draft.") argparser.add_argument( '--no-draft', dest='draft', default=None, action='store_false', help="Publish release, unmark as draft.") argparser.add_argument( '--token', default=os.getenv('GITHUB_API_TOKEN'), help=("Github API token to use. Can also be specified as env var " "GITHUB_API_TOKEN.")) args = argparser.parse_args() if args.msg and args.msg.startswith('@'): with open(args.msg[1:], 'r') as fobj: args.msg = fobj.read() return args class Client(object): def __init__(self, owner, repo, token): self.owner = owner self.repo = repo self.token = token def __call__(self, url, method='GET', parse_json_resp=True, api='https://api.github.com', **kwargs): url = '%s/repos/%s/%s%s' % (api, self.owner, self.repo, url) headers = kwargs.pop('headers', {}) headers.update({'Authorization': 'token %s' % self.token}) print("Will make %s request to %s: %s" % (method, url, kwargs)) resp = requests.request(method, url, headers=headers, **kwargs) if not resp.ok: print(resp.status_code) print(resp.text) raise Exception(resp.status_code) if parse_json_resp: try: return resp.json() except Exception: print("Error decoding json response") print(resp.text) raise else: return resp def print_release(release): print('-' * 60) for name, key in [('id', 'id'), ('name', 'name'), ('tag', 'tag_name'), ('ref', 'target_commitish'), ('draft', 'draft'), ('prerelease', 'prerelease')]: print('%s: %s' % (name, release[key])) print('assets:') for asset in release['assets']: print(' - %s' % asset['name']) if release['body']: print('msg: |') for line in release['body'].splitlines(): print(' %s' % line) print('-' * 60) def update_release(request, tag, msg=None, files=None, draft=None, prerelease=None, remove_undefined_files=False): # Check that the repo exists. resp = request('') # Find git tag corresponding to release. resp = request('/tags') for item in resp: if item['name'] == tag: sha = item['commit']['sha'] print("Tag %s points to %s" % (tag, sha)) break else: print("Tag %s doesn't exist" % tag) sys.exit(1) # Create or update github release. data = { 'tag_name': tag, 'target_commitish': sha, 'name': tag, 'body': msg, 'draft': draft, 'prerelease': prerelease, } for key, val in list(data.items()): if val is None: data.pop(key) for release in request('/releases'): if release['tag_name'] == tag: print("Found preexisting release.") print_release(release) for key in list(data.keys()): if data[key] == release[key]: data.pop(key) if data: print("Release already exists, updating.") release = request('/releases/%s' % release['id'], 'PATCH', json=data) print_release(release) else: print("No need to modify release's metadata.") break else: print("Creating a new release.") release = request('/releases', 'POST', json=data) print_release(release) # Add or update assets. assets = list(release['assets']) for path in files or []: name = os.path.basename(path) uploaded = False for i, asset in enumerate(list(assets)): if asset['name'] != name: continue assets.pop(i) print("Found already uploaded file '%s'" % path) md5 = hashlib.md5() resp = request('/releases/assets/%s' % asset['id'], headers={'Accept': 'application/octet-stream'}, parse_json_resp=False, stream=True) for chunk in resp.iter_content(chunk_size=1024): if chunk: md5.update(chunk) md5sum_remote = md5.hexdigest() md5 = hashlib.md5() with open(path, 'rb') as fobj: while True: chunk = fobj.read(1024) if not chunk: break md5.update(chunk) md5sum_local = md5.hexdigest() if md5sum_local == md5sum_remote: print("Preexisting file matches local file") uploaded = True break print("Deleting preexisting different asset.") request('/releases/assets/%s' % asset['id'], 'DELETE', parse_json_resp=False) if not uploaded: with open(path, 'rb') as fobj: ctype = magic.Magic(mime=True).from_file(path) request('/releases/%s/assets' % release['id'], 'POST', api='https://uploads.github.com', headers={'Content-Type': ctype}, params={'name': name}, data=fobj) if remove_undefined_files: for asset in assets: print("Deleting preexisting undefined asset %s." % asset['name']) request('/releases/assets/%s' % asset['id'], 'DELETE', parse_json_resp=False) if __name__ == "__main__": main()
2.90625
3
build/lib/jet_django/__init__.py
lukejamison/jet-dasboard
193
12781388
VERSION = '0.0.1' default_app_config = 'jet_django.apps.JetDjangoConfig'
1.046875
1
pages.py
mjwalker19/oTree-Retainage-Game
0
12781389
from otree.api import Currency as c, currency_range from ._builtin import Page, WaitPage from .models import Constants import random class SellerBidding(Page): form_model = 'player' form_fields = ['seller_bid', 'seller_exit'] def is_displayed(self): return self.player.role() == 'seller' def seller_bid_max(self): return self.session.vars['values'][1] def seller_bid_min(self): return self.session.vars['costs'][0] def error_message(self, values): if values["seller_exit"] is not True and values["seller_bid"] is None: return 'Please enter a bid or exit the round.' def vars_for_template(self): return self.player.vars_for_template() class BuyerTrade(Page): form_model = 'group' form_fields = ['buyer_accept'] def is_displayed(self): if self.player.role() == 'buyer' and not self.group.no_bid: return True else: return False def before_next_page(self): print('@@@ stage 2 before next page ') self.player.show_bid = True print('@@@ buyer show price') self.player.show_trade = True print('@@@ buyer show trade') self.player.show_IP = True print('@@@ buyer show IP') self.group.set_buyer_transfer_default() print('@@@ transfer default set') def vars_for_template(self): return self.player.vars_for_template() class SellerQuality(Page): form_model = 'group' form_fields = ['seller_quality'] def is_displayed(self): if self.group.buyer_accept and self.player.is_winner: return True else: return False def before_next_page(self): print('@@@ stage 3 before next page ') self.player.show_trade = True print('@@@ winning seller show trade') self.player.show_IP = True print('@@@ winning seller show IP') self.player.show_quality = True print('@@@ winning seller show quality') def vars_for_template(self): return self.player.vars_for_template() class BuyerTransfer(Page): form_model = 'group' form_fields = ['buyer_transfer'] def is_displayed(self): if self.session.vars['treatment'] > 0 and self.group.buyer_accept: return self.player.role() == 'buyer' else: return False def buyer_transfer_max(self): return self.group.retention_money def before_next_page(self): print('@@@ stage 4 before next page ') self.player.show_quality = True print('@@@ buyer show quality') self.player.show_DP = True print('@@@ buyer show DP') def vars_for_template(self): context = self.player.vars_for_template() context.update({'quality': self.group.get_seller_quality_display(), 'value': self.session.vars['values'][Constants.qualities.index(self.group.seller_quality)], 'cost': self.session.vars['costs'][Constants.qualities.index(self.group.seller_quality)]}) return context class ResultsControl(Page): timeout_seconds = 25 def is_displayed(self): if self.session.vars['treatment'] == 0: return True else: return False def vars_for_template(self): context = self.player.vars_for_template() if self.group.buyer_accept: context.update({'quality': self.group.get_seller_quality_display()}) return context class ResultsTreatments(Page): timeout_seconds = 25 def is_displayed(self): if self.session.vars['treatment'] > 0: return True else: return False def vars_for_template(self): context = self.player.vars_for_template() if self.group.buyer_accept: context.update({'quality': self.group.get_seller_quality_display()}) return context class WaitBids(WaitPage): template_name = '_game_trust_burden/WaitOther.html' wait_for_all_groups = True def after_all_players_arrive(self): print('@@@ wait bids') for player in self.subsession.get_players(): player.check_exit() print('@@@ exit bid set') for group in self.subsession.get_groups(): group.set_winner() print('@@@ winner set') group.set_retention_money() print('@@@ retention money set') for player in self.subsession.get_players(): print('@@@ for player in after_all_players_arrive') player.show_bid = True print('@@@ all show auction outcome') def vars_for_template(self): context = self.player.vars_for_template() return context class WaitTrade(WaitPage): template_name = '_game_trust_burden/WaitTrade.html' wait_for_all_groups = True def is_displayed(self): if self.player.is_winner: return True elif self.player.role() == 'buyer' and self.group.no_bid is not True: return True else: return False def vars_for_template(self): context = self.player.vars_for_template() return context class WaitQuality(WaitPage): template_name = '_game_trust_burden/WaitOther.html' wait_for_all_groups = True def is_displayed(self): if self.session.vars['treatment'] > 0: if self.player.is_winner and self.group.buyer_accept: return True elif self.player.role() == 'buyer' and self.group.buyer_accept: return True else: return False else: return False def vars_for_template(self): context = self.player.vars_for_template() return context class WaitPayment(WaitPage): template_name = '_game_trust_burden/WaitOther.html' wait_for_all_groups = True def is_displayed(self): if self.session.vars['treatment'] > 2: if self.player.role() == 'seller' and self.player.is_winner is not False and self.player.seller_exit is not True: return True elif self.player.role() == 'buyer' and self.group.buyer_accept: return True else: return False else: return False def vars_for_template(self): context = self.player.vars_for_template() return context class WaitResult(WaitPage): template_name = '_game_trust_burden/WaitResult.html' wait_for_all_groups = True def after_all_players_arrive(self): for group in self.subsession.get_groups(): print('@@@ for group in after_all_players_arrive') group.set_payoffs() print('@@@ profit for round set') group.set_buyer_transfer_pct() print('@@@ transfer pct set') for player in self.subsession.get_players(): print('@@@ for player in after_all_players_arrive') player.show_trade = True print('@@@ all show bid') player.show_IP = True print('@@@ all show IP') player.show_quality = True print('@@@ all show quality') player.show_DP = True print('@@@ all show DP') player.show_response = True print('@@@ all show response') player.show_payoff = True print('@@@ all show payoffs') player.cumulative_payoff_set() print('@@@ cumulative payoff set') def vars_for_template(self): context = self.player.vars_for_template() return context page_sequence = [ SellerBidding, WaitBids, BuyerTrade, WaitTrade, SellerQuality, WaitQuality, BuyerTransfer, WaitPayment, WaitResult, ResultsControl, ResultsTreatments, ]
2.578125
3
src/spaceone/inventory/model/collection_state_model.py
whdalsrnt/inventory
9
12781390
from mongoengine import * from spaceone.core.model.mongo_model import MongoModel class CollectionState(MongoModel): collector_id = StringField(max_length=40) job_task_id = StringField(max_length=40) secret_id = StringField(max_length=40) resource_id = StringField(max_length=40) resource_type = StringField(max_length=255) disconnected_count = IntField(default=0) domain_id = StringField(max_length=40) updated_at = DateTimeField(auto_now=True) meta = { 'updatable_fields': [ 'job_task_id', 'disconnected_count', 'updated_at' ], 'indexes': [ 'collector_id', 'job_task_id', 'secret_id', 'resource_id', 'resource_type', 'disconnected_count', 'domain_id' ] }
2.078125
2
setup.py
MartinThoma/vin_decoder
11
12781391
<filename>setup.py # core modules import os import io try: from setuptools import setup except ImportError: from distutils.core import setup def read(file_name): """Read a text file and return the content as a string.""" with io.open(os.path.join(os.path.dirname(__file__), file_name), encoding='utf-8') as f: return f.read() config = { 'name': 'vin_decoder', 'version': '0.1.1', 'author': '<NAME>', 'author_email': '<EMAIL>', 'maintainer': '<NAME>', 'maintainer_email': '<EMAIL>', 'packages': ['vin_decoder'], 'scripts': ['bin/vin_decoder'], 'package_data': {'vin_decoder': ['templates/*', 'misc/*']}, 'platforms': ['Linux', 'MacOS X', 'Windows'], 'url': 'https://github.com/MartinThoma/vin_decoder', 'license': 'MIT', 'description': 'VIN decoder (Vehicle identification number)', 'long_description': read('README.md'), 'long_description_content_type': 'text/markdown', 'install_requires': [ "argparse", "nose" ], 'keywords': ['VIN', 'WMI', 'OBD'], 'download_url': 'https://github.com/MartinThoma/vin_c', 'classifiers': ['Development Status :: 7 - Inactive', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Software Development', 'Topic :: Utilities'], 'zip_safe': False, 'test_suite': 'nose.collector' } setup(**config)
2.203125
2
abiflows/fireworks/integration_tests/itest_phonon.py
gmatteo/abiflows
4
12781392
<gh_stars>1-10 import pytest import os import glob import unittest import tempfile import filecmp import numpy.testing.utils as nptu import abipy.data as abidata from abipy.abio.factories import phonons_from_gsinput, PhononsFromGsFactory from abipy.flowtk.tasks import TaskManager from fireworks.core.rocket_launcher import rapidfire from abiflows.fireworks.workflows.abinit_workflows import PhononFullFWWorkflow, PhononFWWorkflow from abiflows.fireworks.utils.fw_utils import get_fw_by_task_index, load_abitask from abiflows.core.testing import AbiflowsIntegrationTest, check_restart_task_type #ABINIT_VERSION = "8.6.1" # pytestmark = [pytest.mark.skipif(not has_abinit(ABINIT_VERSION), reason="Abinit version {} is not in PATH".format(ABINIT_VERSION)), # pytest.mark.skipif(not has_fireworks(), reason="fireworks package is missing"), # pytest.mark.skipif(not has_mongodb(), reason="no connection to mongodb")] # pytestmark = pytest.mark.usefixtures("cleandb") class ItestPhonon(AbiflowsIntegrationTest): def itest_phonon_wf(self, lp, fworker, tmpdir, input_scf_phonon_si_low, use_autoparal, db_data): """ Tests the complete running of PhononFullFWWorkflow and PhononFWWorkflow """ # test at gamma. ph_fac = PhononsFromGsFactory(qpoints=[[0,0,0]], ph_tol = {"tolvrs": 1.0e-7}, ddk_tol = {"tolwfr": 1.0e-16}, dde_tol = {"tolvrs": 1.0e-7}, wfq_tol = {"tolwfr": 1.0e-16}) # first run the phonon workflow with generation task wf_gen = PhononFWWorkflow(input_scf_phonon_si_low, ph_fac, autoparal=use_autoparal, initialization_info={"ngqpt": [1,1,1], "kppa": 100}) wf_gen.add_anaddb_ph_bs_fw(input_scf_phonon_si_low.structure, ph_ngqpt=[1,1,1], ndivsm=2, nqsmall=2) wf_gen.add_mongoengine_db_insertion(db_data) wf_gen.add_final_cleanup(["WFK"]) scf_id = wf_gen.scf_fw.fw_id ph_generation_fw_id = wf_gen.ph_generation_fw.fw_id old_new = wf_gen.add_to_db(lpad=lp) scf_id = old_new[scf_id] ph_generation_fw_id = old_new[ph_generation_fw_id] # run all the workflow rapidfire(lp, fworker, m_dir=str(tmpdir)) wf_gen = lp.get_wf_by_fw_id(scf_id) assert wf_gen.state == "COMPLETED" ph_task = load_abitask(get_fw_by_task_index(wf_gen, "phonon_0", index=-1)) # check the effect of the final cleanup assert len(glob.glob(os.path.join(ph_task.outdir.path, "*_WFK"))) == 0 assert len(glob.glob(os.path.join(ph_task.outdir.path, "*_DEN1"))) > 0 assert len(glob.glob(os.path.join(ph_task.tmpdir.path, "*"))) == 0 assert len(glob.glob(os.path.join(ph_task.indir.path, "*"))) == 0 # check the save in the DB from abiflows.database.mongoengine.abinit_results import PhononResult with db_data.switch_collection(PhononResult) as PhononResult: results = PhononResult.objects() assert len(results) == 1 r = results[0] assert r.abinit_input.structure.to_mgobj() == input_scf_phonon_si_low.structure assert r.abinit_output.structure.to_mgobj() == input_scf_phonon_si_low.structure assert r.abinit_input.ecut == input_scf_phonon_si_low['ecut'] assert r.abinit_input.kppa == 100 nptu.assert_array_equal(r.abinit_input.gs_input.to_mgobj()['ngkpt'], input_scf_phonon_si_low['ngkpt']) nptu.assert_array_equal(r.abinit_input.ngqpt, [1,1,1]) ana_task = load_abitask(get_fw_by_task_index(wf_gen, "anaddb", index=None)) with tempfile.NamedTemporaryFile(mode="wb") as db_file: db_file.write(r.abinit_output.phonon_bs.read()) db_file.seek(0) assert filecmp.cmp(ana_task.phbst_path, db_file.name) mrgddb_task = load_abitask(get_fw_by_task_index(wf_gen, "mrgddb", index=None)) # read/write in binary for py3k compatibility with mongoengine with tempfile.NamedTemporaryFile(mode="wb") as db_file: db_file.write(r.abinit_output.ddb.read()) db_file.seek(0) assert filecmp.cmp(mrgddb_task.merged_ddb_path, db_file.name) # then rerun a similar workflow, but completely generated at its creation wf_full = PhononFullFWWorkflow(input_scf_phonon_si_low, ph_fac, autoparal=use_autoparal) wf_full.add_anaddb_ph_bs_fw(input_scf_phonon_si_low.structure, ph_ngqpt=[1,1,1], ndivsm=2, nqsmall=2) wf_full.add_mongoengine_db_insertion(db_data) scf_id = wf_full.scf_fw.fw_id old_new = wf_full.add_to_db(lpad=lp) scf_id = old_new[scf_id] # run all the workflow rapidfire(lp, fworker, m_dir=str(tmpdir)) wf_full = lp.get_wf_by_fw_id(scf_id) assert wf_full.state == "COMPLETED" # the full workflow doesn't contain the generation FW and the cleanup tasks, but should have the same # amount of perturbations. if use_autoparal: diff = 1 else: diff = 2 assert len(wf_full.id_fw) + diff == len(wf_gen.id_fw) if self.check_numerical_values: gen_scf_task = load_abitask(get_fw_by_task_index(wf_gen, "scf", index=-1)) with gen_scf_task.open_gsr() as gen_gsr: gen_energy = gen_gsr.energy assert gen_energy == pytest.approx(-240.264972012, rel=0.01) gen_ana_task = load_abitask(get_fw_by_task_index(wf_gen, "anaddb", index=None)) with gen_ana_task.open_phbst() as gen_phbst: gen_phfreq = gen_phbst.phbands.phfreqs[0, 3] assert gen_phfreq == pytest.approx(0.06029885, rel=0.1) full_scf_task = load_abitask(get_fw_by_task_index(wf_gen, "scf", index=-1)) with full_scf_task.open_gsr() as full_gsr: full_energy = full_gsr.energy assert full_energy == pytest.approx(-240.264972012, rel=0.01) full_ana_task = load_abitask(get_fw_by_task_index(wf_gen, "anaddb", index=None)) with full_ana_task.open_phbst() as full_phbst: full_phfreqs = full_phbst.phbands.phfreqs[0, 3] assert full_phfreqs == pytest.approx(0.06029885, rel=0.1) assert gen_energy == pytest.approx(full_energy, rel=1e-6) assert gen_phfreq == pytest.approx(full_phfreqs, rel=1e-6) def itest_not_converged(self, lp, fworker, tmpdir, input_scf_phonon_si_low): """ Tests the missed convergence and restart for all the different kinds of tasks """ # set a point not belonging to the grid so to trigger the calculation of WFQ and gamma for the DDE and DDK ph_inp = phonons_from_gsinput(input_scf_phonon_si_low, qpoints=[[0, 0, 0], [0.11111, 0.22222, 0.33333]], ph_tol = {"tolvrs": 1.0e-7}, ddk_tol = {"tolwfr": 1.0e-16}, dde_tol = {"tolvrs": 1.0e-7}, wfq_tol = {"tolwfr": 1.0e-16}) ph_inp.set_vars(nstep=3) wf_full = PhononFullFWWorkflow(input_scf_phonon_si_low, ph_inp, autoparal=False) scf_id = wf_full.scf_fw.fw_id old_new = wf_full.add_to_db(lpad=lp) scf_id = old_new[scf_id] # run the scf rapidfire(lp, fworker, m_dir=str(tmpdir), nlaunches=1) # pause all the remaining workflow and reignite the task types one by one to check the restart lp.pause_wf(scf_id) # DDK check_restart_task_type(lp, fworker, tmpdir, scf_id, "ddk_0") # reignite and run the other DDK to get to the DDE wf = lp.get_wf_by_fw_id(scf_id) lp.resume_fw(get_fw_by_task_index(wf, "ddk_1", index=1).fw_id) lp.resume_fw(get_fw_by_task_index(wf, "ddk_2", index=1).fw_id) rapidfire(lp, fworker, m_dir=str(tmpdir)) # DDE check_restart_task_type(lp, fworker, tmpdir, scf_id, "dde_0") # NSCF check_restart_task_type(lp, fworker, tmpdir, scf_id, "nscf_wfq_0") # phonon check_restart_task_type(lp, fworker, tmpdir, scf_id, "phonon_0") # don't run the wf until the end to save time. Other tests covered that. wf = lp.get_wf_by_fw_id(scf_id) assert wf.state == "PAUSED" def itest_phonon_wfq_wf(self, lp, fworker, tmpdir, input_scf_phonon_si_low, db_data): """ Tests the PhononFullFWWorkflow and PhononFWWorkflow """ qpt = [[0.1111,0.2222,0.3333]] # test at gamma. ph_fac = PhononsFromGsFactory(qpoints=qpt, ph_tol = {"tolvrs": 1.0e-7}, wfq_tol = {"tolwfr": 1.0e-16}, with_ddk=False, with_dde=False) # first run the phonon workflow with generation task wf_gen = PhononFWWorkflow(input_scf_phonon_si_low, ph_fac, autoparal=False, initialization_info={"qpoints": qpt, "kppa": 100}) wf_gen.add_mongoengine_db_insertion(db_data) scf_id = wf_gen.scf_fw.fw_id old_new = wf_gen.add_to_db(lpad=lp) scf_id = old_new[scf_id] # run all the workflow rapidfire(lp, fworker, m_dir=str(tmpdir)) wf_gen = lp.get_wf_by_fw_id(scf_id) assert wf_gen.state == "COMPLETED" # then rerun a similar workflow, but completely generated at its creation wf_full = PhononFullFWWorkflow(input_scf_phonon_si_low, ph_fac, autoparal=False) scf_id = wf_full.scf_fw.fw_id old_new = wf_full.add_to_db(lpad=lp) scf_id = old_new[scf_id] # run all the workflow rapidfire(lp, fworker, m_dir=str(tmpdir)) wf_full = lp.get_wf_by_fw_id(scf_id) assert wf_full.state == "COMPLETED"
1.804688
2
src/playlist.py
jnsougata/Ditch-YouTube-API
14
12781393
<reponame>jnsougata/Ditch-YouTube-API<gh_stars>10-100 import re from .videobulk import _VideoBulk from .auxiliary import _src, _filter class Playlist: def __init__(self, playlist_id: str): """ :param str playlist_id: the _id of the playlist """ if 'youtube.com' in playlist_id: self.id = re.findall(r'=(.*)', playlist_id)[0] else: self.id = playlist_id @property def name(self): """ :return: the name of the playlist """ raw = _src(f'https://www.youtube.com/playlist?list={self.id}') name_data = re.findall(r"{\"title\":\"(.*?)\"", raw) return name_data[0] if name_data else None @property def url(self): """ :return: url of the playlist """ return f'https://www.youtube.com/playlist?list={self.id}' @property def video_count(self): """ :return: total number of videos in that playlist """ raw = _src(f'https://www.youtube.com/playlist?list={self.id}') video_count = re.findall(r"stats\":\[{\"runs\":\[{\"text\":\"(.*?)\"", raw) return video_count[0] if video_count else None def videos(self, limit: int): """ :param int limit: number of videos the user want from the playlist :return: list of < video objects > for each video in the playlist (consider limit) """ raw = _src(f'https://www.youtube.com/playlist?list={self.id}') videos = re.findall(r"videoId\":\"(.*?)\"", raw) pure = _filter(limit=limit, iterable=videos) return _VideoBulk(pure) @property def thumbnail(self): """ :return: url of the thumbnail of the playlist """ raw = _src(f'https://www.youtube.com/playlist?list={self.id}') thumbnails = re.findall(r"og:image\" content=\"(.*?)\?", raw) return thumbnails[0] if thumbnails else None @property def info(self): """ :return: a dict containing playlist info dict = { 'name': -> str, 'url': -> str, 'video_count': -> int, 'videos': -> bulk, 'thumbnail': -> str, } """ raw = _src(f'https://www.youtube.com/playlist?list={self.id}') name_data = re.findall(r"{\"title\":\"(.*?)\"", raw) video_count_data = re.findall(r"stats\":\[{\"runs\":\[{\"text\":\"(.*?)\"", raw) thumbnails = re.findall(r"og:image\" content=\"(.*?)\?", raw) return { 'name': name_data[0] if len(name_data) != 0 else None, 'video_count': video_count_data[0] if video_count_data else None, 'videos': _filter(re.findall(r"videoId\":\"(.*?)\"", raw)), 'thumbnail': thumbnails[0] if len(thumbnails) != 0 else None, 'url': f'https://www.youtube.com/playlist?list={self.id}' }
3.140625
3
OOSqrt.py
sidhu177/pythonprog
2
12781394
<reponame>sidhu177/pythonprog """ Created on Sun Jun 10 17:33:07 2018 Taken from Python 3 Object Oriented Programming by <NAME>, Apress """ import math class Point: def move(self, x,y): self.x = x self.y = y def reset(self): self.move(0,0) def calculate_distance(self,other_point): return math.sqrt((self.x-other_point.x)**2+(self.y - other_point.y)**2)
3.703125
4
pylib/tools/root_helpers.py
gnafit/gna
5
12781395
<filename>pylib/tools/root_helpers.py import ROOT as R class TFileContext(object): """A context for opening a ROOT file""" def __init__(self, filename, mode='read'): self.filename = filename self.mode = mode def __enter__(self): self.file = R.TFile(self.filename, self.mode) if self.file.IsZombie(): raise Exception('Unable to read ({}) ROOT file: {}'.format(self.mode, self.filename)) return self.file def __exit__(self, exc_type, exc_value, traceback): self.file.Close()
2.703125
3
src/quantum/azext_quantum/vendored_sdks/azure_quantum/aio/_quantum_client.py
haroonf/azure-cli-extensions
1
12781396
<reponame>haroonf/azure-cli-extensions # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, Awaitable, Optional, TYPE_CHECKING from azure.core import AsyncPipelineClient from azure.core.rest import AsyncHttpResponse, HttpRequest from msrest import Deserializer, Serializer from .. import models from ._configuration import QuantumClientConfiguration from .operations import JobsOperations, ProvidersOperations, QuotasOperations, StorageOperations if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential class QuantumClient: """Azure Quantum REST API client. :ivar jobs: JobsOperations operations :vartype jobs: azure.quantum._client.aio.operations.JobsOperations :ivar providers: ProvidersOperations operations :vartype providers: azure.quantum._client.aio.operations.ProvidersOperations :ivar storage: StorageOperations operations :vartype storage: azure.quantum._client.aio.operations.StorageOperations :ivar quotas: QuotasOperations operations :vartype quotas: azure.quantum._client.aio.operations.QuotasOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The Azure subscription ID. This is a GUID-formatted string (e.g. 00000000-0000-0000-0000-000000000000). :type subscription_id: str :param resource_group_name: Name of an Azure resource group. :type resource_group_name: str :param workspace_name: Name of the workspace. :type workspace_name: str :param base_url: Service URL. Default value is 'https://quantum.azure.com'. :type base_url: str """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, resource_group_name: str, workspace_name: str, base_url: str = "https://quantum.azure.com", **kwargs: Any ) -> None: self._config = QuantumClientConfiguration(credential=credential, subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, **kwargs) self._client = AsyncPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self._serialize.client_side_validation = False self.jobs = JobsOperations(self._client, self._config, self._serialize, self._deserialize) self.providers = ProvidersOperations(self._client, self._config, self._serialize, self._deserialize) self.storage = StorageOperations(self._client, self._config, self._serialize, self._deserialize) self.quotas = QuotasOperations(self._client, self._config, self._serialize, self._deserialize) def _send_request( self, request: HttpRequest, **kwargs: Any ) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client._send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "QuantumClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
1.375
1
app/view_models/articleclass.py
huzhipeng2388/Flask_Blog
1
12781397
class ArticleClassModel: def __init__(self,data): self.id = data.acid self.name = data.name
2.1875
2
algorithm/strings/too-simple/missing-list-elements.py
atb00ker/scripts-lab
2
12781398
<reponame>atb00ker/scripts-lab #!/bin/python3 # Twitter 2019 Internship Coding Interview Round def missingWords(s, t): sList = s.split() tList = t.split() nList = [] j = 0 tLen = len(tList) for index, item in enumerate(sList): if item == tList[j]: j += 1 if j == tLen: nList += sList[index+1:] break else: nList.append(item) return nList s = "I am using HackerRank to improve programming" t = "am HackerRank to improve" missingWords(s, t)
3.640625
4
data_analysis_byPro/Day09-01.py
yunjung-lee/class_python_data
0
12781399
<gh_stars>0 # SQLite 접속하기. import sqlite3 con = sqlite3.connect('c:/temp/userDB') # 데이터베이스 지정(또는 연결) cur = con.cursor() # 연결 통로 생성 (쿼리문을 날릴 통로) # 테이블 만들기 try : sql = "CREATE TABLE userTable(userID CHAR(10), userName CHAR(5), userAge INT)" cur.execute(sql) except : pass sql = "INSERT INTO userTable VALUES('GGG','에이', 21);" cur.execute(sql) sql = "INSERT INTO userTable VALUES('NNN','삐이', 23);" cur.execute(sql) sql = "INSERT INTO userTable VALUES('YYY','씨이', 35);" cur.execute(sql) con.commit() cur.close() con.close() # 데이터베이스 연결 종료 print('Ok!')
3.71875
4
Parser-hybrid/nparser/neural/recur_cells/rnn_cell.py
sb-b/BOUN-PARSE
12
12781400
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from nparser.neural.recur_cells.base_cell import BaseCell from nparser.neural.linalg import linear #*************************************************************** class RNNCell(BaseCell): """ """ #============================================================= def __call__(self, inputs, state, scope=None): """ """ with tf.variable_scope(scope or type(self).__name__): inputs_list = [inputs, state] hidden_act = linear(inputs_list, self.output_size, add_bias=True, moving_params=self.moving_params) hidden = self.recur_func(hidden_act) return hidden, hidden #============================================================= @property def state_size(self): return self.output_size
2.453125
2
tests/suite/test_healthcheck_uri.py
snebel29/kubernetes-ingress
3,803
12781401
<reponame>snebel29/kubernetes-ingress import pytest import requests from suite.resources_utils import ensure_connection @pytest.mark.ingresses @pytest.mark.parametrize('ingress_controller, expected_responses', [ pytest.param({"extra_args": ["-health-status=true", "-health-status-uri=/something-va(l)id/blabla"]}, {"/something-va(l)id/blabla": 200, "/nginx-health": 404}, id="custom-health-status-uri"), pytest.param({"extra_args": ["-health-status=true"]}, {"/something-va(l)id/blabla": 404, "/nginx-health": 200}, id="default-health-status-uri"), pytest.param({"extra_args": ["-health-status=false"]}, {"/something-va(l)id/blabla": 404, "/nginx-health": 404}, id="disable-health-status") ], indirect=["ingress_controller"]) class TestHealthStatusURI: def test_response_code(self, ingress_controller_endpoint, ingress_controller, expected_responses): for uri in expected_responses: req_url = f"http://{ingress_controller_endpoint.public_ip}:{ingress_controller_endpoint.port}{uri}" ensure_connection(req_url, expected_responses[uri]) resp = requests.get(req_url) assert resp.status_code == expected_responses[uri],\ f"Expected {expected_responses[uri]} code for {uri} but got {resp.status_code}"
2.171875
2
src/s3.py
ytyaru/Python.Dynamic.Create.Type.20191229160958
0
12781402
#!/usr/bin/env python3 # coding: utf8 class MyClass: pass class MyClass1: cls_attr = 1
1.859375
2
cocoa_folder/dealornodeal/neural/rl_trainer.py
s-akanksha/DialoGraph_ICLR21
12
12781403
<filename>cocoa_folder/dealornodeal/neural/rl_trainer.py import argparse import random import json import numpy as np import copy from collections import defaultdict import torch import torch.nn as nn from torch.autograd import Variable from cocoa.neural.rl_trainer import Statistics from core.controller import Controller from neural.trainer import Trainer from utterance import UtteranceBuilder class RLTrainer(Trainer): def __init__(self, agents, scenarios, train_loss, optim, training_agent=0, reward_func='margin'): self.agents = agents self.scenarios = scenarios self.training_agent = training_agent self.model = agents[training_agent].env.model self.train_loss = train_loss self.optim = optim self.cuda = False self.best_valid_reward = None self.all_rewards = [[], []] self.reward_func = reward_func def update(self, batch_iter, reward, model, discount=0.95): model.train() model.generator.train() nll = [] # batch_iter gives a dialogue dec_state = None for batch in batch_iter: if not model.stateful: dec_state = None enc_state = dec_state.hidden if dec_state is not None else None outputs, _, dec_state = self._run_batch(batch, None, enc_state) # (seq_len, batch_size, rnn_size) loss, _ = self.train_loss.compute_loss(batch.targets, outputs) # (seq_len, batch_size) nll.append(loss) # Don't backprop fully. if dec_state is not None: dec_state.detach() nll = torch.cat(nll) # (total_seq_len, batch_size) rewards = [Variable(torch.zeros(1, 1).fill_(reward))] for i in xrange(1, nll.size(0)): rewards.append(rewards[-1] * discount) rewards = rewards[::-1] rewards = torch.cat(rewards) loss = nll.squeeze().dot(rewards.squeeze()) model.zero_grad() loss.backward() nn.utils.clip_grad_norm(model.parameters(), 1.) self.optim.step() def _get_scenario(self, scenario_id=None, split='train'): scenarios = self.scenarios[split] if scenario_id is None: scenario = random.choice(scenarios) else: scenario = scenarios[scenario_id % len(scenarios)] return scenario def _get_controller(self, scenario, split='train'): # Randomize if random.random() < 0.5: scenario = copy.deepcopy(scenario) scenario.kbs = (scenario.kbs[1], scenario.kbs[0]) sessions = [self.agents[0].new_session(0, scenario.kbs[0]), self.agents[1].new_session(1, scenario.kbs[1])] return Controller(scenario, sessions) def validate(self, args): split = 'dev' self.model.eval() total_stats = Statistics() print '='*20, 'VALIDATION', '='*20 for scenario in self.scenarios[split][:200]: controller = self._get_controller(scenario, split=split) example = controller.simulate(args.max_turns, verbose=args.verbose) session = controller.sessions[self.training_agent] reward = self.get_reward(example, session) stats = Statistics(reward=reward) total_stats.update(stats) print '='*20, 'END VALIDATION', '='*20 self.model.train() return total_stats def save_best_checkpoint(self, checkpoint, opt, valid_stats): if self.best_valid_reward is None or valid_stats.mean_reward() > self.best_valid_reward: self.best_valid_reward = valid_stats.mean_reward() path = '{root}/{model}_best.pt'.format( root=opt.model_path, model=opt.model_filename) print 'Save best checkpoint {path}'.format(path=path) torch.save(checkpoint, path) def checkpoint_path(self, episode, opt, stats): path = '{root}/{model}_reward{reward:.2f}_e{episode:d}.pt'.format( root=opt.model_path, model=opt.model_filename, reward=stats.mean_reward(), episode=episode) return path def learn(self, args): for i in xrange(args.num_dialogues): # Rollout scenario = self._get_scenario(scenario_id=i) controller = self._get_controller(scenario, split='train') example = controller.simulate(args.max_turns, verbose=args.verbose) for session_id, session in enumerate(controller.sessions): # Only train one agent if session_id != self.training_agent: continue # Compute reward reward = self.get_reward(example, session) # Standardize the reward all_rewards = self.all_rewards[session_id] all_rewards.append(reward) print 'step:', i print 'reward:', reward reward = (reward - np.mean(all_rewards)) / max(1e-4, np.std(all_rewards)) print 'scaled reward:', reward print 'mean reward:', np.mean(all_rewards) batch_iter = session.iter_batches() T = batch_iter.next() self.update(batch_iter, reward, self.model, discount=args.discount_factor) if i > 0 and i % 100 == 0: valid_stats = self.validate(args) self.drop_checkpoint(args, i, valid_stats, model_opt=self.agents[self.training_agent].env.model_args) def _is_agreed(self, example): if not example.outcome['valid_deal']: return False return True def _margin_reward(self, example): # No agreement if not self._is_agreed(example): print 'No agreement' return {0: -1, 1: -1} return example.outcome['reward'] def _length_reward(self, example): # No agreement if not self._is_agreed(example): print 'No agreement' return {0: -1, 1: -1} # Encourage long dialogue length = len(example.events) / 10. rewards = {0: length, 1: length} return rewards def _fair_reward(self, example): # No agreement if not self._is_agreed(example): print 'No agreement' return {0: -1, 1: -1} rewards = example.outcome['reward'].values() diff = abs(rewards[0] - rewards[1]) * -0.1 return {0: diff, 1: diff} def get_reward(self, example, session): if self.reward_func == 'margin': rewards = self._margin_reward(example) elif self.reward_func == 'fair': rewards = self._fair_reward(example) elif self.reward_func == 'length': rewards = self._length_reward(example) reward = rewards[session.agent] return reward
2.25
2
kino-webhook/handler.py
DongjunLee/kino-bot
109
12781404
import arrow import json import requests def kanban_webhook(event, context): input_body = json.loads(event['body']) print(event['body']) action = input_body["action"] action_type = action["type"] if action_type == "createCard": list_name, card_name = get_create_card(action["data"]) elif action_type == "updateCard": list_name, card_name = get_update_card(action["data"]) kanban_list = ["DOING", "BREAK", "DONE"] if list_name in kanban_list: payload = make_payload(action=list_name, msg=card_name) r = send_to_kino({"text": payload}) response = { "statusCode": r.status_code } response = { "statusCode": 400 } return response def get_create_card(action_data): list_name = action_data["list"]["name"].upper() card_name = action_data["card"]["name"] return list_name, card_name def get_update_card(action_data): list_name = action_data["listAfter"]["name"].upper() card_name = action_data["card"]["name"] return list_name, card_name def make_payload(action=None, msg=None, time=None): if time is None: now = arrow.now() time = now.format(" MMMM d, YYYY") + " at " + now.format("HH:mmA") payload = { "action": "KANBAN_" + action, "msg": msg, "time": time } return json.dumps(payload) def send_to_kino(data): return requests.post("https://hooks.slack.com/services/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", data=json.dumps(data))
2.53125
3
usp-introducao-python/numerosimparesnaturais.py
kbcvcbk/cesar-school
2
12781405
<reponame>kbcvcbk/cesar-school n=int(input("Digite o valor de n: ")) cont=1 while n!=0: if cont%2!=0: print(cont) cont=cont+1 n=n-1 else: cont=cont+1
3.5625
4
pytip/__main__.py
pybites/pybites-tips
9
12781406
<reponame>pybites/pybites-tips import argparse from pytip.tips import PyBitesTips def main(): parser = argparse.ArgumentParser(description='Search term') parser.add_argument("-s", "--search", type=str, help='Search PyBites Python tips') parser.add_argument("-p", "--pager", action='store_true', help='Go through the resulting tips one by one') args = parser.parse_args() pb_tips = PyBitesTips(use_pager=args.pager) if args.search: tips = pb_tips.filter_tips(args.search) pb_tips.show_tips(tips) else: pb_tips() if __name__ == '__main__': main()
2.890625
3
app/github_client/services/__init__.py
TennaGraph/TennaGraph
7
12781407
<gh_stars>1-10 from .git_hub_eip import GitHubEIP from .git_hub_db import GitHubDB
1.039063
1
apps/home/migrations/0009_auto_20220206_1717.py
Aimene-BAHRI/ecole_de_formation
1
12781408
# Generated by Django 3.2.6 on 2022-02-06 17:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0008_auto_20220202_1858'), ] operations = [ migrations.RemoveField( model_name='student', name='activities', ), migrations.AddField( model_name='student', name='activities', field=models.ManyToManyField(blank=True, null=True, related_name='fils', to='home.Activity'), ), ]
1.59375
2
test/test_dca.py
petbox-dev/dca
36
12781409
<filename>test/test_dca.py """ Decline Curve Models Unit Testing Copyright © 2020 <NAME> Author ------ <NAME> <NAME> Notes ----- Created on August 5, 2019 """ import sys import warnings from datetime import timedelta import pytest # type: ignore import hypothesis from hypothesis import assume, given, settings, note, strategies as st from typing import Any, Type, TypeVar, Union from math import isnan import numpy as np from petbox import dca # local import from .data import rate as q_data, time as t_data # noqa def signif(x: np.ndarray, p: int) -> np.ndarray: x = np.asarray(x) x_positive = np.where(np.isfinite(x) & (x != 0), np.abs(x), 10**(p - 1)) mags = 10 ** (p - 1 - np.floor(np.log10(x_positive))) return np.round(x * mags) / mags def is_float_array_like(arr: Any, like: np.ndarray) -> bool: return ( isinstance(arr, np.ndarray) and arr.dtype == np.dtype(np.float64) and arr.shape == like.shape ) def is_monotonic_nonincreasing(arr: np.ndarray) -> bool: # a = np.diff(signif(arr, 6)) a = np.diff(arr, 6) return np.all(a <= 0.0) def is_monotonic_increasing(arr: np.ndarray) -> bool: # a = np.diff(signif(arr, 6)) a = np.diff(arr, 6) return np.all(a > 0.0) def is_monotonic_nondecreasing(arr: np.ndarray) -> bool: # a = np.diff(signif(arr, 6)) a = np.diff(arr, 6) return np.all(a >= 0.0) T = TypeVar('T', bound=dca.DeclineCurve) def model_floats(model_cls: Type[T], param: str) -> st.SearchStrategy[float]: p = model_cls.get_param_desc(param) return st.floats(p.lower_bound, p.upper_bound, # type: ignore exclude_min=p.exclude_lower_bound, exclude_max=p.exclude_upper_bound) def check_model(model: dca.DeclineCurve, qi: float) -> bool: t = dca.get_time() with warnings.catch_warnings(record=True) as w: if isinstance(model, dca.Duong): t0 = 1e-3 assert np.isclose(model.rate(np.array(1.0)), qi, atol=1e-10) assert np.isclose(model.cum(np.array(1.0)), qi / model.a, atol=1e-10) else: t0 = 0.0 assert np.isclose(model.rate(np.array(0.0)), qi, atol=1e-10) assert np.isclose(model.cum(np.array(0.0)), 0.0, atol=1e-10) rate = model.rate(t) assert is_float_array_like(rate, t) # assert is_monotonic_nonincreasing(rate) assert np.all(np.isfinite(rate)) cum = model.cum(t) assert is_float_array_like(cum, t) # if not isinstance(model, dca.PLE): # exclude PLE as it is numerically integrated # assert is_monotonic_nondecreasing(cum) assert np.all(np.isfinite(cum)) mvolume = model.monthly_vol(t) mavg_rate = np.gradient(mvolume, t) # assert is_float_array_like(mvolume, t) # assert is_monotonic_nonincreasing(mavg_rate) assert np.all(np.isfinite(mvolume)) assert np.all(np.isfinite(mavg_rate)) ivolume = model.interval_vol(t) iavg_rate = np.gradient(ivolume, t) # assert is_float_array_like(ivolume, t) # assert is_monotonic_nonincreasing(iavg_rate) assert np.all(np.isfinite(ivolume)) assert np.all(np.isfinite(iavg_rate)) evolume = model.monthly_vol_equiv(t) mavg_rate = np.gradient(evolume, t) # assert is_float_array_like(evolume, t) # assert is_monotonic_nonincreasing(mavg_rate) assert np.all(np.isfinite(evolume)) assert np.all(np.isfinite(mavg_rate)) D = model.D(t) assert is_float_array_like(D, t) # assert is_monotonic_nonincreasing(D) assert np.all(np.isfinite(D)) D2 = model._Dfn2(t) assert is_float_array_like(D2, t) # assert is_monotonic_nonincreasing(D2) assert np.all(np.isfinite(D2)) beta = model.beta(t) assert is_float_array_like(beta, t) # TODO: what are the invariants for beta? D_inferred = beta / t # assert is_monotonic_nonincreasing(D_inferred) assert np.all(np.isfinite(beta)) b = model.b(t) assert is_float_array_like(b, t) assert np.all(np.isfinite(b)) return True def check_yield_model(model: Union[dca.SecondaryPhase, dca.WaterPhase], phase: str, qi: float) -> bool: t = dca.get_time() with warnings.catch_warnings(record=True) as w: t0 = 0.0 assert np.isclose(model.cum(np.array(0.0)), 0.0, atol=1e-10) if phase == 'secondary' and isinstance(model, dca.SecondaryPhase): gor = model.gor(t) assert is_float_array_like(gor, t) assert np.all(np.isfinite(gor)) cgr = model.cgr(t) assert is_float_array_like(cgr, t) assert np.all(np.isfinite(cgr)) with pytest.raises(ValueError) as e: wor = model.wor(t) # type: ignore assert is_float_array_like(wor, t) assert np.all(np.isfinite(wor)) elif phase == 'water' and isinstance(model, dca.WaterPhase): with pytest.raises(ValueError) as e: gor = model.gor(t) # type: ignore assert is_float_array_like(gor, t) assert np.all(np.isfinite(gor)) cgr = model.cgr(t) # type: ignore assert is_float_array_like(cgr, t) assert np.all(np.isfinite(cgr)) wor = model.wor(t) assert is_float_array_like(wor, t) assert np.all(np.isfinite(wor)) rate = model.rate(t) assert is_float_array_like(rate, t) # assert is_monotonic_nonincreasing(rate) assert np.all(np.isfinite(rate)) cum = model.cum(t) assert is_float_array_like(cum, t) # if not isinstance(model, dca.PLE): # exclude PLE as it is numerically integrated # assert is_monotonic_nondecreasing(cum) assert np.all(np.isfinite(cum)) mvolume = model.monthly_vol(t) mavg_rate = np.gradient(mvolume, t) # assert is_float_array_like(mvolume, t) # assert is_monotonic_nonincreasing(mavg_rate) assert np.all(np.isfinite(mvolume)) assert np.all(np.isfinite(mavg_rate)) ivolume = model.interval_vol(t, t0=t0) iavg_rate = np.gradient(ivolume, t) # assert is_float_array_like(ivolume, t) # assert is_monotonic_nonincreasing(iavg_rate) assert np.all(np.isfinite(ivolume)) assert np.all(np.isfinite(iavg_rate)) evolume = model.monthly_vol_equiv(t) mavg_rate = np.gradient(evolume, t) # assert is_float_array_like(evolume, t) # assert is_monotonic_nonincreasing(mavg_rate) assert np.all(np.isfinite(evolume)) assert np.all(np.isfinite(mavg_rate)) D = model.D(t) assert is_float_array_like(D, t) # assert is_monotonic_nonincreasing(D) # assert np.all(np.isfinite(D)) D2 = model._Dfn2(t) assert is_float_array_like(D2, t) # assert is_monotonic_nonincreasing(D2) # assert np.all(np.isfinite(D2)) beta = model.beta(t) assert is_float_array_like(beta, t) # TODO: what are the invariants for beta? # D_inferred = beta / t # assert is_monotonic_nonincreasing(D_inferred) # assert np.all(np.isfinite(beta)) b = model.b(t) assert is_float_array_like(b, t) assert np.all(np.isfinite(b)) # der = model._derfn(np.array([0.0])) # NN = model._NNfn(np.array([0.0])) return True def check_transient_model(model: dca.THM) -> bool: t = dca.get_time() with warnings.catch_warnings(record=True) as w: t_D = model.transient_D(t) assert is_float_array_like(t_D, t) # assert is_monotonic_nonincreasing(t_D) assert np.all(np.isfinite(t_D)) t_beta = model.transient_beta(t) assert is_float_array_like(t_beta, t) # assert is_monotonic_nonincreasing(t_beta) assert np.all(np.isfinite(t_beta)) t_b = model.transient_b(t) assert is_float_array_like(t_b, t) # assert is_monotonic_nonincreasing(t_b) assert np.all(np.isfinite(t_b)) return True def check_transient_model_rate_cum(model: dca.THM) -> bool: # these are computationally expensive, so check separately t = dca.get_time() with warnings.catch_warnings(record=True) as w: t_N = model.transient_cum(t) assert is_float_array_like(t_N, t) # assert is_monotonic_nondecreasing(t_N) assert np.all(np.isfinite(t_N)) t_q = model.transient_rate(t) assert is_float_array_like(t_q, t) # assert is_monotonic_nonincreasing(t_q) assert np.all(np.isfinite(t_q)) return True def test_time_arrays() -> None: t = dca.get_time() assert is_monotonic_increasing(t) int_t = dca.get_time_monthly_vol() thm = dca.THM(1000, 0.5, 2.0, 1.0, 30.0) def test_nulls() -> None: t = dca.get_time() primary = dca.NullPrimaryPhase() assert np.allclose(primary.rate(t), 0.0) assert np.allclose(primary.cum(t), 0.0) assert np.allclose(primary.D(t), 0.0) assert np.allclose(primary.beta(t), 0.0) assert np.allclose(primary.b(t), 0.0) assert np.allclose(primary._Dfn2(t), 0.0) secondary = dca.NullAssociatedPhase() assert np.allclose(secondary.gor(t), 0.0) assert np.allclose(secondary.cgr(t), 0.0) assert np.allclose(secondary.wor(t), 0.0) assert np.allclose(secondary.rate(t), 0.0) assert np.allclose(secondary.cum(t), 0.0) assert np.allclose(secondary.D(t), 0.0) assert np.allclose(secondary.beta(t), 0.0) assert np.allclose(secondary.b(t), 0.0) assert np.allclose(secondary._Dfn2(t), 0.0) def test_associated() -> None: with pytest.raises(TypeError) as e: sec = dca.AssociatedPhase() # type: ignore with pytest.raises(TypeError) as e: sec = dca.SecondaryPhase() # type: ignore with pytest.raises(TypeError) as e: wtr = dca.WaterPhase() # type: ignore with pytest.raises(TypeError) as e: bth = dca.BothAssociatedPhase() # type: ignore # TODO: use bounds, after we use testing to set them @given( qi=st.floats(1e-10, 1e6), Di=st.floats(1e-10, 1e10), Dinf=st.floats(1e-10, 1e10), n=st.floats(1e-10, 1.0, exclude_max=True) ) def test_PLE(qi: float, Di: float, Dinf: float, n: float) -> None: assume(Dinf <= Di) ple = dca.PLE.from_params((qi, Di, Dinf, n)) ple = dca.PLE(qi, Di, Dinf, n) check_model(ple, qi) @given( qi=st.floats(1e-10, 1e6), tau=st.floats(1e-10, 1e4), n=st.floats(1e-10, 1.0, exclude_max=True) ) def test_SE(qi: float, tau: float, n: float) -> None: se = dca.SE.from_params((qi, tau, n)) se = dca.SE(qi, tau, n) check_model(se, qi) @given( qi=st.floats(1e-10, 1e6), a=st.floats(1.0, 10.0), m=st.floats(1.0, 10.0, exclude_min=True) ) def test_Duong(qi: float, a: float, m: float) -> None: duong = dca.Duong.from_params((qi, a, m)) duong = dca.Duong(qi, a, m) check_model(duong, qi) @given( qi=st.floats(1e-10, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), bf=st.floats(0.0, 2.0), telf=st.floats(0.0, 1e6) ) def test_THM(qi: float, Di: float, bf: float, telf: float) -> None: thm = dca.THM.from_params((qi, Di, 2.0, bf, telf, 0.0, 0.0)) thm = dca.THM(qi, Di, 2.0, bf, telf, 0.0, 0.0) check_model(thm, qi) check_transient_model(thm) thm = dca.THM(qi, Di, 2.0, 0.0, telf) check_model(thm, qi) check_transient_model(thm) @given( qi=st.floats(1e-10, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), bf=st.floats(0.0, 2.0), telf=st.floats(0.0, 1e4), bterm=st.floats(0.0, 1.0), tterm=st.floats(1e-3, 30.0), ) def test_THM_terminal(qi: float, Di: float, bf: float, telf: float, bterm: float, tterm: float) -> None: assume(tterm * dca.DAYS_PER_YEAR > telf) assume(bterm < bf) thm = dca.THM(qi, Di, 2.0, bf, telf, bterm, tterm) check_transient_model(thm) check_model(thm, qi) @given( qi=st.floats(1e-10, 1e6), bf=st.floats(0.0, 2.0), telf=st.floats(0.0, 1e4), bterm=st.floats(0.0, 1.0), tterm=st.floats(5.0, 30.0), ) def test_THM_zero_Di(qi: float, bf: float, telf: float, bterm: float, tterm: float) -> None: assume(tterm * dca.DAYS_PER_YEAR > telf) assume(bterm < bf) thm = dca.THM(qi, 0.0, 2.0, bf, telf, bterm, tterm) check_model(thm, qi) check_transient_model(thm) @given( qi=st.floats(1e-10, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), telf=st.floats(0.0, 1e4), bterm=st.floats(0.0, 0.5), tterm=st.floats(5, 30), ) def test_THM_harmonic(qi: float, Di: float, telf: float, bterm: float, tterm: float) -> None: assume(tterm * dca.DAYS_PER_YEAR > telf) thm = dca.THM(qi, Di, 2.0, 1.0, telf, bterm, tterm) check_model(thm, qi) check_transient_model(thm) def test_THM_transient_extra() -> None: thm = dca.THM(1000.0, 0.80, 2.0, 0.8, 30.0, 0.3, 5.0) check_transient_model(thm) check_transient_model_rate_cum(thm) thm = dca.THM(1000.0, 0.80, 2.0, 0.8, 30.0, 0.06, 0.0) check_transient_model(thm) check_transient_model_rate_cum(thm) thm = dca.THM(1000.0, 1e-10, 2.0, 0.8, 1e-5, 0.5, 0.06) check_transient_model(thm) check_transient_model_rate_cum(thm) with pytest.raises(ValueError) as e: thm = dca.THM(1000.0, 1e-10, 2.0, 0.3, 30.0, .5, 10.0) @given( qi=st.floats(1e-10, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), bf=st.floats(0.0, 2.0), telf=st.floats(0.0, 1e6), bterm=st.floats(1e-3, 0.3) ) @settings(suppress_health_check=[hypothesis.HealthCheck.filter_too_much]) # type: ignore def test_THM_terminal_exp(qi: float, Di: float, bf: float, telf: float, bterm: float) -> None: assume(dca.THM.nominal_from_secant(Di, 2.0) >= dca.THM.nominal_from_tangent(bterm)) thm = dca.THM(qi, Di, 2.0, bf, telf, bterm, 0.0) check_model(thm, qi) check_transient_model(thm) @given( qi=st.floats(0.0, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), bi=st.floats(0.0, 2.0), Dterm=st.floats(0.0, 1.0, exclude_max=True), ) def test_MH(qi: float, Di: float, bi: float, Dterm: float) -> None: assume(dca.MH.nominal_from_secant(Di, bi) >= dca.MH.nominal_from_tangent(Dterm)) mh = dca.MH(qi, Di, bi, Dterm) check_model(mh, qi) mh = dca.MH(qi, 0.0, bi, 0.0) check_model(mh, qi) @given( qi=st.floats(0.0, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), Dterm=st.floats(0.0, 1.0, exclude_max=True), ) def test_MH_harmonic(qi: float, Di: float, Dterm: float) -> None: assume(dca.MH.nominal_from_secant(Di, 1.0) >= dca.MH.nominal_from_tangent(Dterm)) mh = dca.MH(qi, Di, 1.0, Dterm) check_model(mh, qi) @given( qi=st.floats(0.0, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), Dterm=st.floats(0.0, 1.0, exclude_max=True), ) def test_MH_no_validate(qi: float, Di: float, Dterm: float) -> None: assume(dca.MH.nominal_from_secant(Di, 1.0) >= dca.MH.nominal_from_tangent(Dterm)) with pytest.raises(ValueError) as e: mh = dca.MH(qi, Di, 2.5, Dterm) mh = dca.MH(qi, Di, 2.5, Dterm, validate_params=[True, True, False, True]) @given( D=st.floats(0.0, 1.0, exclude_max=True), b=st.floats(0.0, 2.0), ) def test_decline_conv(D: float, b: float) -> None: Dnom = dca.MultisegmentHyperbolic.nominal_from_secant(D, b) _D = dca.MultisegmentHyperbolic.secant_from_nominal(Dnom, b) def test_bound_errors() -> None: with pytest.raises(ValueError) as e: # < lower bound ple = dca.PLE(-1000, 0.8, 0.0, 0.5) with pytest.raises(ValueError) as e: # lower bound excluded ple = dca.PLE(1000, 0.8, 0.0, 0.0) with pytest.raises(ValueError) as e: # > upper bound thm = dca.THM(1000, 0.5, 2.0, 10.0, 30.0) with pytest.raises(ValueError) as e: # upper bound exluded thm = dca.THM(1000, 1.5, 2.0, 0.5, 30.0) with pytest.raises(KeyError) as e: # invalid parameter thm = dca.THM(1000, 0.5, 2.0, 0.5, 30.0) thm.get_param_desc('n') with pytest.raises(ValueError) as e: # invalid parameter sequence length thm = dca.THM.from_params([1000, 0.5, 2.0, 0.5]) def test_terminal_exceeds() -> None: with pytest.raises(ValueError) as e: # Dinf > Di ple = dca.PLE(1000, 0.8, 0.9, 0.5) with pytest.raises(ValueError) as e: # Dterm > Di mh = dca.MH(1000, 0.5, 1.0, 0.9) with pytest.raises(ValueError) as e: # bf > bi thm = dca.THM(1000, 0.8, 1.5, 1.6, 30.0) with pytest.raises(ValueError) as e: # tterm < telf thm = dca.THM(1000, 0.8, 2.0, 1.0, 200.0, 0.3, 100.0 / dca.DAYS_PER_YEAR) @given( qi=st.floats(1e-10, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), bf=st.floats(0.0, 2.0), telf=st.floats(1e-10, 1e4), bterm=st.floats(1e-3, 0.3, exclude_max=True), tterm=st.floats(5.0, 30.0), c=st.floats(1e-10, 1e10), m0=st.floats(-1.0, 1.0), m=st.floats(-1.0, 1.0), t0=st.floats(1e-10, 365.25), ) @settings(deadline=None) # type: ignore def test_yield(qi: float, Di: float, bf: float, telf: float, bterm: float, tterm: float, c: float, m0: float, m: float, t0: float) -> None: assume(tterm * dca.DAYS_PER_YEAR > telf) assume(bterm < bf) thm = dca.THM(qi, Di, 2.0, bf, telf, bterm, tterm) sec = dca.PLYield(c, m0, m, t0) thm.add_secondary(sec) check_yield_model(thm.secondary, 'secondary', qi) thm = dca.THM(qi, Di, 2.0, bf, telf, bterm, tterm) wtr = dca.PLYield(c, m0, m, t0) thm.add_water(wtr) check_yield_model(thm.water, 'water', qi) @given( qi=st.floats(1e-10, 1e6), Di=st.floats(0.0, 1.0, exclude_max=True), bf=st.floats(0.0, 2.0), telf=st.floats(1e-10, 1e4), bterm=st.floats(1e-3, 0.3, exclude_max=True), tterm=st.floats(5.0, 30.0), c=st.floats(1e-10, 1e10), m0=st.floats(-1.0, 1.0), m=st.floats(-1.0, 1.0), t0=st.floats(1e-10, 365.25), _min=st.floats(0, 100.0), _max=st.floats(1e4, 5e5) ) @settings(deadline=None) # type: ignore def test_yield_min_max(qi: float, Di: float, bf: float, telf: float, bterm: float, tterm: float, c: float, m0: float, m: float, t0: float, _min: float, _max: float) -> None: assume(tterm * dca.DAYS_PER_YEAR > telf) assume(bterm < bf) thm = dca.THM(qi, Di, 2.0, bf, telf, bterm, tterm) sec = dca.PLYield(c, m0, m, t0, _min, _max) thm.add_secondary(sec) check_yield_model(thm.secondary, 'secondary', qi) wtr = dca.PLYield(c, m0, m, t0, _min, _max) thm.add_water(wtr) check_yield_model(thm.water, 'water', qi) def test_yield_min_max_invalid() -> None: with pytest.raises(ValueError) as e: y = dca.PLYield(1000.0, 0.0, 0.0, 180.0, 10.0, 1.0) def test_yield_errors() -> None: with pytest.raises(ValueError) as e: # < lower bound ple = dca.PLE(-1000, 0.8, 0.0, 0.5) with pytest.raises(ValueError) as e: # lower bound excluded tplehm = dca.PLE(1000, 0.8, 0.0, 0.0) with pytest.raises(ValueError) as e: # > upper bound thm = dca.THM(1000, 0.5, 2.0, 10.0, 30.0) with pytest.raises(ValueError) as e: # upper bound exluded thm = dca.THM(1000, 1.5, 2.0, 0.5, 30.0) with pytest.raises(KeyError) as e: # invalid parameter thm = dca.THM(1000, 0.5, 2.0, 0.5, 30.0) thm.get_param_desc('n') with pytest.raises(ValueError) as e: # invalid parameter sequence length thm = dca.THM.from_params([1000, 0.5, 2.0, 0.5]) @given( L=st.floats(0.0, 2.0), xlog=st.booleans(), ylog=st.booleans() ) def test_bourdet(L: float, xlog: bool, ylog: bool) -> None: with warnings.catch_warnings(record=True) as w: der = dca.bourdet(q_data, t_data, L, xlog, ylog)
2.515625
3
uibcdf_biblio/demo/__init__.py
uibcdf/UIBCDF_biblio
0
12781410
import pathlib bib = pathlib.Path(__file__).parent.absolute() / 'bibliography.bib' del(pathlib)
1.34375
1
api/server/swagger_server/controllers_impl/catalog_service_controller_impl.py
srishtipithadia/mlx
0
12781411
# Copyright 2021 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import connexion import json import traceback from swagger_server.models import ApiCatalogUploadError from swagger_server.models.api_catalog_upload import ApiCatalogUpload # noqa: E501 from swagger_server.models.api_catalog_upload_response import ApiCatalogUploadResponse from swagger_server.models.api_catalog_upload_item import ApiCatalogUploadItem from swagger_server.models.api_list_catalog_items_response import ApiListCatalogItemsResponse # noqa: E501 from swagger_server.controllers_impl.component_service_controller_impl import list_components, upload_component_from_url from swagger_server.controllers_impl.dataset_service_controller_impl import list_datasets, upload_dataset_from_url from swagger_server.controllers_impl.model_service_controller_impl import list_models, upload_model_from_url from swagger_server.controllers_impl.notebook_service_controller_impl import list_notebooks, upload_notebook_from_url from swagger_server.controllers_impl.pipeline_service_controller_impl import list_pipelines, upload_pipeline_from_url from swagger_server.util import ApiError def list_all_assets(page_token=None, page_size=None, sort_by=None, filter=None): # noqa: E501 """list_all_assets :param page_token: :type page_token: str :param page_size: :type page_size: int :param sort_by: Can be format of \&quot;field_name\&quot;, \&quot;field_name asc\&quot; or \&quot;field_name desc\&quot; Ascending by default. :type sort_by: str :param filter: A string-serialized JSON dictionary with key-value pairs that correspond to the ApiComponent&#39;s attribute names and their respective values to be filtered for. :type filter: str :rtype: ApiListCatalogItemsResponse """ if page_size == 0: return {}, 204 # TODO: do not mis-use page_token as MySQL result offset offset = int(page_token) if page_token and page_token.isdigit() else 0 if page_size or page_token: print(f"WARNING: page_size and page_token are not implemented on {__file__}#list_all_assets()") list_methods = { "components": list_components, "datasets": list_datasets, "models": list_models, "notebooks": list_notebooks, "pipelines": list_pipelines } api_response = ApiListCatalogItemsResponse( components=[], datasets=[], models=[], notebooks=[], pipelines=[], total_size=0) for asset_type, list_method in list_methods.items(): asset_list_response, status = list_method(filter=filter, sort_by=sort_by) if 200 <= status < 300: asset_list = asset_list_response.__getattribute__(asset_type) api_response.__getattribute__(asset_type).extend(asset_list) # TODO: return filtered size or total number of all assets # api_response.total_size += asset_list_response.total_size api_response.total_size += len(asset_list) return api_response, 200 def upload_multiple_assets(body: ApiCatalogUpload): # noqa: E501 """upload_multiple_assets :param body: :type body: ApiCatalogUpload :rtype: ApiCatalogUploadResponse """ if connexion.request.is_json: body = ApiCatalogUpload.from_dict(connexion.request.get_json()) # noqa: E501 def get_access_token_for_url(url: str) -> str: for api_access_token in body.api_access_tokens or []: if api_access_token.url_host in url: return api_access_token.api_token return None upload_methods = { "components": upload_component_from_url, "datasets": upload_dataset_from_url, "models": upload_model_from_url, "notebooks": upload_notebook_from_url, "pipelines": upload_pipeline_from_url } api_response = ApiCatalogUploadResponse( components=[], datasets=[], models=[], notebooks=[], pipelines=[], total_created=0, errors=[], total_errors=0) for asset_type, upload_method in upload_methods.items(): for asset in body.__getattribute__(asset_type) or []: try: api_object, status = upload_method( url=asset.url, name=asset.name, access_token=get_access_token_for_url(asset.url)) if 200 <= status < 300: api_response.__getattribute__(asset_type).append(api_object) api_response.total_created += 1 else: # TODO: remove this? api_error = ApiCatalogUploadError(**asset.to_dict(), error_message=f"THIS SHOULD NOT HAPPEN: {str(api_object).strip()}", status_code=500) api_response.errors.append(api_error) print(f"THIS SHOULD NOT HAPPEN: {api_error}") print(traceback.format_exc()) except ApiError as e: api_error = ApiCatalogUploadError(**asset.to_dict(), error_message=e.message, status_code=e.http_status_code) api_response.errors.append(api_error) except Exception as e: api_error = ApiCatalogUploadError(**asset.to_dict(), error_message=str(e), status_code=500) api_response.errors.append(api_error) print(traceback.format_exc()) api_response.total_errors = len(api_response.errors) response_status = \ 201 if api_response.total_created > 0 and api_response.total_errors == 0 else \ 207 if api_response.total_created > 0 and api_response.total_errors > 0 else \ max([e.status_code for e in api_response.errors]) return api_response, response_status
1.59375
2
pegleg/engine/util/pegleg_managed_document.py
openstack/airship-pegleg
9
12781412
<gh_stars>1-10 # Copyright 2018 AT&T Intellectual Property. All other rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from datetime import datetime import logging from pegleg import config from pegleg.engine.util import git PEGLEG_MANAGED_SCHEMA = 'pegleg/PeglegManagedDocument/v1' ENCRYPTED = 'encrypted' GENERATED = 'generated' STORAGE_POLICY = 'storagePolicy' METADATA = 'metadata' DEFAULT_LAYER = 'site' LOG = logging.getLogger(__name__) __all__ = ['PeglegManagedSecretsDocument'] class PeglegManagedSecretsDocument(object): """Object representing one Pegleg managed secret document.""" def __init__(self, document, generated=False, catalog=None, author=None): """ Parse and wrap an externally generated document in a pegleg managed document. :param document: The content of the source document :type document: dict :param bool generated: A flag to indicate the documents are auto-generated by pegleg (True), or manually created (False). :param catalog: catalog of the generated secret documents. A catalog must be provided, only if generated is True. :type catalog: A subclass of the ABC pegleg.catalogs.base_catalog.BaseCatalog """ self._catalog = catalog self._author = author self._generated = generated if self.is_pegleg_managed_secret(document): self._pegleg_document = document else: self._pegleg_document = self.__wrap( document, generated, catalog, author) self._embedded_document = \ self._pegleg_document['data']['managedDocument'] @staticmethod def __wrap(secrets_document, generated=False, catalog=None, author=None): """ Embeds a valid deckhand document in a pegleg managed document. :param secrets_document: secrets document to be embedded in a pegleg managed document. :type secrets_document: dict :param bool generated: A flag to indicate the documents are auto-generated by pegleg (True), or manually created (False). :return: pegleg manged document with the wrapped original secrets document. :rtype: dict """ layer = secrets_document.get('metadata', {}).get('layeringDefinition', {}).get('layer', DEFAULT_LAYER) layering_definition = OrderedDict( [('abstract', False), ('layer', layer)]) metadata = OrderedDict( [ ( 'name', '{}/{}'.format( secrets_document['schema'], secrets_document['metadata']['name'])), ('schema', 'metadata/Document/v1'), ('labels', secrets_document['metadata'].get('labels', {})), ('layeringDefinition', layering_definition), ('storagePolicy', 'cleartext') ]) data = OrderedDict( [ ( 'managedDocument', OrderedDict( [ ('schema', secrets_document['schema']), ('metadata', secrets_document['metadata']), ('data', secrets_document['data']) ])) ]) doc = OrderedDict( [ ('schema', PEGLEG_MANAGED_SCHEMA), ('metadata', metadata), ('data', data) ]) if generated: doc['data'][GENERATED] = { 'at': datetime.utcnow().isoformat(), 'by': author, 'specifiedBy': { 'repo': git.repo_url(config.get_site_repo()), 'reference': config.get_site_rev() or 'master', 'path': catalog.catalog_path, }, } return doc @staticmethod def is_pegleg_managed_secret(secrets_document): """" Verify if the document is already a pegleg managed secrets document. :return: True if the document is a pegleg managed secrets document, False otherwise. :rtype: bool """ return PEGLEG_MANAGED_SCHEMA in secrets_document.get('schema') @property def embedded_document(self): """ parse the pegleg managed document, and return the embedded document :return: The original secrets document unwrapped from the pegleg managed document. :rtype: dict """ return self._embedded_document @property def name(self): return self._pegleg_document.get('metadata', {}).get('name') @property def data(self): return self._pegleg_document.get('data') @property def pegleg_document(self): return self._pegleg_document def is_encrypted(self): """If the document is already encrypted return True. False otherwise.""" return ENCRYPTED in self.data def is_generated(self): """If the document is already marked auto-generated return True. False otherwise.""" return GENERATED in self.data def is_storage_policy_encrypted(self): """If the document's storagePolicy is set to encrypted return True. False otherwise.""" return STORAGE_POLICY in self._embedded_document[METADATA] \ and ENCRYPTED in self._embedded_document[METADATA][STORAGE_POLICY] def set_encrypted(self, author=None): """Mark the pegleg managed document as encrypted.""" self.data[ENCRYPTED] = {'at': datetime.utcnow().isoformat()} if author: self.data[ENCRYPTED]['by'] = author def set_decrypted(self): """Mark the pegleg managed document as un-encrypted.""" self.data.pop(ENCRYPTED) def set_secret(self, secret): self._embedded_document['data'] = secret def get_secret(self): return self._embedded_document.get('data') def get_layer(self): return self._embedded_document[METADATA]['layeringDefinition']['layer']
1.945313
2
test_Sony.py
starsdeep/15663-project
16
12781413
<reponame>starsdeep/15663-project<gh_stars>10-100 import argparse import os import torch from data import SonyTestDataset from torch.utils.data import DataLoader from models import Unet import scipy.io from tqdm import tqdm import numpy as np def test(args): # device device = torch.device("cuda:%d" % args.gpu if torch.cuda.is_available() else "cpu") torch.backends.cudnn.benchmark = True # data testset = SonyTestDataset(args.input_dir, args.gt_dir) test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) # model model = Unet() model.load_state_dict(torch.load(args.model)) model.to(device) model.eval() # testing for i, databatch in tqdm(enumerate(test_loader), total=len(test_loader)): input_full, scale_full, gt_full, test_id, ratio = databatch scale_full, gt_full = torch.squeeze(scale_full), torch.squeeze(gt_full) # processing inputs = input_full.to(device) outputs = model(inputs) outputs = outputs.cpu().detach() outputs = torch.squeeze(outputs) outputs = outputs.permute(1, 2, 0) # scaling can clipping outputs, scale_full, gt_full = outputs.numpy(), scale_full.numpy(), gt_full.numpy() scale_full = scale_full * np.mean(gt_full) / np.mean( scale_full) # scale the low-light image to the same mean of the ground truth outputs = np.minimum(np.maximum(outputs, 0), 1) # saving if not os.path.isdir(os.path.join(args.result_dir, 'eval')): os.makedirs(os.path.join(args.result_dir, 'eval')) scipy.misc.toimage(scale_full * 255, high=255, low=0, cmin=0, cmax=255).save( os.path.join(args.result_dir, 'eval', '%05d_00_train_%d_scale.jpg' % (test_id[0], ratio[0]))) scipy.misc.toimage(outputs * 255, high=255, low=0, cmin=0, cmax=255).save( os.path.join(args.result_dir, 'eval', '%05d_00_train_%d_out.jpg' % (test_id[0], ratio[0]))) scipy.misc.toimage(gt_full * 255, high=255, low=0, cmin=0, cmax=255).save( os.path.join(args.result_dir, 'eval', '%05d_00_train_%d_gt.jpg' % (test_id[0], ratio[0]))) if __name__ == '__main__': parser = argparse.ArgumentParser(description="evaluating model") parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--input_dir', type=str, default='./dataset/Sony/short/') parser.add_argument('--gt_dir', type=str, default='./dataset/Sony/long/') parser.add_argument('--result_dir', type=str, default='./result_Sony/') parser.add_argument('--batch_size', type=int, default=1) parser.add_argument('--num_workers', type=int, default=8, help='multi-threads for data loading') parser.add_argument('--model', type=str, required=True) args = parser.parse_args() # Create Output Dir if not os.path.exists(args.result_dir): os.makedirs(args.result_dir) test(args)
2.046875
2
simuvex/procedures/libc___so___6/recvfrom.py
praetorian-inc/simuvex
8
12781414
<gh_stars>1-10 import simuvex ###################################### # recvfrom ###################################### class recvfrom(simuvex.SimProcedure): #pylint:disable=arguments-differ def run(self, fd, dst, length, flags): #pylint:disable=unused-argument data = self.state.posix.read(fd, length) self.state.memory.store(dst, data) return length
2.140625
2
tf_rl/examples/DAgger/Atari/DAgger_CartPole.py
Rowing0914/TF2_RL
8
12781415
<reponame>Rowing0914/TF2_RL import gym, argparse from gym.wrappers import Monitor import numpy as np from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from keras.optimizers import Adam from run_expert import expert_play, OBS_FILE_PATH, ACT_FILE_PATH, ENV_NAME, DQN_Agent_model from load_policy import DQN_Agent OBSERVATION_SPACE = (4,) # for CartPole-v0 NB_ACTIONS = 2 # for CartPole-v0 EPOCHS = 5 BATCH_SIZE = 32 NUM_EPISODES = 10 BETA = 1 def create_model(): """ Using the same architecture as the one of DQN Agent Return: Keras Sequential compiled model """ model = Sequential() model.add(Flatten(input_shape=(1,) + OBSERVATION_SPACE)) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(NB_ACTIONS, activation='softmax')) print(model.summary()) # For a classification problem of actions model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) return model def load_dataset(): """ Loading the dataset which is the demo of the expert in `run_expert.py`. Returns: X: Observations of the game Y: Actions """ X = np.load(OBS_FILE_PATH) Y = np.load(ACT_FILE_PATH) print(X.shape, Y.shape) X = np.reshape(X, (X.shape[0], 1, X.shape[1])) Y = np_utils.to_categorical(Y) return X, Y def train(X, Y, model): """ Train the model with the dataset, then save it in h5 format after the training Returns: trained model """ model.fit(X, Y, epochs=EPOCHS, batch_size=BATCH_SIZE) model.save_weights("./weights/DAgger_weights.h5") model.load_weights("./weights/DAgger_weights.h5") return model def prep_dataset(observations, actions): """ Reshape and format the training dataset Args: observations: a list of observations in an episode actions: a list of actions in an episode Returns: X: Observations of the game Y: Actions """ X = np.array(observations) X = np.reshape(X, (X.shape[0], 1, X.shape[1])) Y = np.array(actions) Y = np_utils.to_categorical(Y) return X, Y def DAgger(expert, model, env, type_policy="deterministic"): """ This is the implemnetation of DAgger algorithm. While the agent plays with the environmen, it remembers the encountered states and actions in a single episode Then when an episode ends, it will update the model with the collected data Args: model: Keras trained model env: Open AI arcade game type_policy: type of policy - deterministic => a model chooses the action having the maximum value of its predicting result - stochastic => a model randomly chooses the action based on its predicting result """ rewards = 0 for i_episode in range(NUM_EPISODES): observation = env.reset() env.render() done = False observations, actions = list(), list() while not done: action_agent = model.predict(observation.reshape(1,1,4))[0] if type_policy == "deterministic": # deterministic policy action_agent = np.argmax(action_agent) elif type_policy == "stochastic": # stochastic policy action_agent = np.random.choice(np.arange(NB_ACTIONS), p=action_agent) # ===== if you want to use an expert for collecting the dataset, open this part! ===== # we assume that beta is 1, so we only rely on the expert for collecting the dataset action_expert = expert.forward(observation) action = BETA*action_expert + (1 - BETA)*action_agent observation, reward, done, info = env.step(action) rewards += reward observations.append(observation) actions.append(action) if done: print("Score: ", rewards) rewards = 0 X, Y = prep_dataset(observations, actions) model = train(X, Y, model) break def DAgger_play(model, env, type_policy="deterministic"): """ This is the implemnetation of DAgger algorithm. While the agent plays with the environmen, it remembers the encountered states and actions in a single episode Then when an episode ends, it will update the model with the collected data Args: model: Keras trained model env: Open AI arcade game type_policy: type of policy - deterministic => a model chooses the action having the maximum value of its predicting result - stochastic => a model randomly chooses the action based on its predicting result """ rewards = 0 for i_episode in range(NUM_EPISODES): observation = env.reset() env.render() done = False while not done: action = model.predict(observation.reshape(1,1,4))[0] if type_policy == "deterministic": # deterministic policy action = np.argmax(action) elif type_policy == "stochastic": # stochastic policy action = np.random.choice(np.arange(NB_ACTIONS), p=action) observation, reward, done, info = env.step(action) rewards += reward if done: print("Score: ", rewards) rewards = 0 break def random_play(env): for i_episode in range(NUM_EPISODES): observation = env.reset() done = False t = 0 rewards = 0 while not done: env.render() action = env.action_space.sample() observation, reward, done, info = env.step(action) rewards += reward if done: print("Score: {0}".format(rewards)) break t += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_weights', type=str, default="./weights/DAgger_weights.h5") parser.add_argument('--type_policy', type=str, default="deterministic") parser.add_argument('--test', action="store_true") parser.add_argument('--random', action="store_true") args = parser.parse_args() env = gym.make(ENV_NAME) expert = DQN_Agent(DQN_Agent_model) if args.test: model = create_model() model.load_weights("./weights/DAgger_weights.h5") DAgger(expert, model, env, args.type_policy) DAgger_play(model, env, args.type_policy) elif args.random: random_play(env) else: model = create_model() X, Y = load_dataset() model = train(X, Y, model) DAgger(expert, model, env, args.type_policy) DAgger_play(model, env, args.type_policy)
2.6875
3
UT330BUI/view/readsave.py
duncanbarth/UT330B
8
12781416
<reponame>duncanbarth/UT330B<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on: 15:25:51 05-Jan-2020 Author: <NAME> This code is licensed under the MIT license """ # %%--------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import os from bokeh.models.widgets import (Button, Div, Panel) from bokeh.layouts import column, row import pandas as pd # %%--------------------------------------------------------------------------- # ReadSave # ----------------------------------------------------------------------------- class ReadSave(): """Reads temperature and humidity data from the 330B and saves the data to disk.""" INSTRUCTIONS = ("""To use this tab, press the buttons in the """ """following order: <br>""" """<ol>""" """ <li>""" """ Connect to UT330B - this button makes the """ """ connection to the device""" """ </li>""" """ <li>""" """ Read UT330B data - this button reads the """ """ temperature and humidity data from the device""" """ </li>""" """ <li>""" """ Write to disk - this button writes the """ """ temperature and humidity data read from the """ """ device to disk, the file name is the most """ """ recent date and time in the data""" """ </li>""" """ <li>""" """ Erase UT330B data - this button erases the """ """ temperature and humidity data from the device """ """ which makes room for more data.""" """ </li>""" """ <li>""" """ Disconnect from UT330B - this button breaks the """ """ connection to the device""" """ </li>""" """</ol>""") # %% def __init__(self, controller): """Method sets up object. First part of two-part initialization.""" self.controller = controller # Instructions header self.instructions_header =\ Div(text="""<span style='font-weight:bold'>""" """How to use this tab</span>""") # Provides instructions on how to use the tab. self.instructions = Div(text=self.INSTRUCTIONS) # Widgets header self.widgets_header =\ Div(text="""<span style='font-weight:bold'>""" """Read, save, erase controls</span>""") # Connects to the UT330B device self.connect =\ Button(label="""Connect to UT330B""", button_type="""success""") # Reads in the data from the UT330B device self.read_ut330b =\ Button(label="""Read UT330B data""", button_type="""success""") # Writes temperature and humidity data to disk. self.write_to_disk =\ Button(label="""Write to disk""", button_type="""success""") # Removes all UT33)B temperature and humidity data from device. self.erase_data =\ Button(label="""Erase UT330B data""", button_type="""success""") # Disconnects from the UT330B device. self.disconnect =\ Button(label="""Disconnect from UT330B""", button_type="""success""") # Status header self.status_header =\ Div(text="""<span style='font-weight:bold'>""" """Connection status</span>""") # Status information on UT330B. self.status = Div(text=self.controller.status) # Layout widget and figures self.layout =\ column(children=[self.instructions_header, self.instructions, self.status_header, self.status, self.widgets_header, row(self.connect, self.read_ut330b, self.write_to_disk, self.erase_data, self.disconnect)], sizing_mode="stretch_both") self.panel = Panel(child=self.layout, title='Read & save') # %% def setup(self): """Method sets up object. Second part of two-part initialization.""" self.connect.on_click(self.callback_connect) self.read_ut330b.on_click(self.callback_read_ut330b) self.write_to_disk.on_click(self.callback_write_to_disk) self.erase_data.on_click(self.callback_erase_data) self.disconnect.on_click(self.callback_disconnect) # %% def update(self): """Method updates object.""" self.status.text = self.controller.status # %% def callback_connect(self): """Callback method for Connect""" self.controller.connect() # %% def callback_read_ut330b(self): """Callback method for Read UT330B""" self.controller.read_data() # %% def callback_write_to_disk(self): """Callback method for Write to disk""" df = pd.DataFrame(self.controller.device_data) if df.empty: self.status.text = ("Can't write data to UT330B because " "there's no data to write.") return df['Timestamp'] = pd.to_datetime(df['Timestamp']) time_str = df['Timestamp'].max().strftime("%Y%m%d_%H%M%S") # Check folder exists, if not, create it dir_path = os.path.dirname(os.path.realpath(__file__)) dir_path = os.path.dirname(dir_path) folder = os.path.join(dir_path, 'data') if not os.path.isdir(folder): os.mkdir(folder) data_file = \ os.path.join(folder, 'UT330_data_{0}.csv'.format(time_str)) df.to_csv(data_file, index=False) self.status.text = "Wrote data to file {0}.".format(data_file) # %% def callback_erase_data(self): """Callback method for Erase data""" self.controller.erase() # %% def callback_disconnect(self): """Callback method for Disconnect""" self.controller.disconnect()
2.5625
3
snowflake_connection/test_connect.py
BigMountainTiger/python-excercise-repository
0
12781417
# https://docs.snowflake.com/en/user-guide/python-connector-install.html # https://pypi.org/project/python-dotenv/ # pip install snowflake-connector-python import os import snowflake.connector from dotenv import load_dotenv load_dotenv() user = os.getenv('SNOWUSER') pwd = os.getenv('<PASSWORD>') account = os.getenv('ACCOUNT') def run(): ctx = snowflake.connector.connect( user = user, password = <PASSWORD>, account = f'{account}.us-east-1' ) cs = ctx.cursor() try: cs.execute("SELECT current_version()") one_row = cs.fetchone() print(one_row[0]) finally: cs.close() ctx.close() if __name__ == '__main__': run()
2.625
3
backend/api/pokemons/urls.py
jaenia/pokebattle
0
12781418
<gh_stars>0 from django.urls import path from . import views urlpatterns = [ path("", views.PokemonListEndpoint.as_view(), name="pokemon_list"), ]
1.507813
2
IMC_GAE_NEW/train.py
WesleyClode/MBIMC-GAE
0
12781419
"""Training GCMC model on the MovieLens data set. The script loads the full graph to the training device. """ import os, time import argparse import logging import random import string import dgl import scipy.sparse as sp import pandas as pd import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F from data import DataSetLoader #from data_custom import DataSetLoader from model import BiDecoder, GCMCLayer, MLPDecoder from utils import get_activation, get_optimizer, torch_total_param_num, torch_net_info, MetricLogger from utils import to_etype_name from sklearn.metrics import ndcg_score #f1 = open(os.path.join(DATA_ROOT, 'EHCF.txt'), 'w') def sample_negative(ratings, sample_rate, item_set): """ input: 1. training rating ::pd.frame 2. sample number::int 3. item_set:a set of item::set """ #"""return all negative items & 100 sampled negative items""" interact_status = ratings.groupby('user_id')['movie_id'].apply(set).reset_index().rename(columns={'itemId': 'interacted_items'}) #print(interact_status) #item_list = set(item_list) interact_status['negative_items'] = interact_status['movie_id'].apply(lambda x: item_set - x) #print(interact_status['negative_items']) interact_status['negative_samples'] = interact_status['negative_items'].apply(lambda x: random.sample(x, sample_rate)) return interact_status[['user_id', 'negative_items', 'negative_samples']] def generate_pair(user_list, num_movie): # 输入user_list num_movie # num_movie 是电影的总数 rating_pairs = (np.array(np.array([[ele] * num_movie for ele in user_list]).flatten(), dtype=np.int64), np.array(np.array([[np.arange(num_movie)] * len(user_list)]).flatten(), dtype=np.int64)) return rating_pairs def generate_dec_graph(rating_pairs, num_user, num_movie): #print(rating_pairs) #print("***:",len(rating_pairs), num_user, num_movie) ones = np.ones_like(rating_pairs[0]) user_movie_ratings_coo = sp.coo_matrix( (ones, rating_pairs), shape=(num_user, num_movie), dtype=np.float32) g = dgl.bipartite_from_scipy(user_movie_ratings_coo, utype='_U', etype='_E', vtype='_V') return dgl.heterograph({('user', 'rate', 'movie'): g.edges()}, num_nodes_dict={'user': num_user, 'movie': num_movie}) class Net(nn.Module): def __init__(self, args): super(Net, self).__init__() self._act = get_activation(args.model_activation) self.encoder = nn.ModuleList() self.encoder.append(GCMCLayer(args.rating_vals, args.src_in_units, args.dst_in_units, args.gcn_agg_units, args.gcn_out_units, args.gcn_dropout, args.gcn_agg_accum, agg_act=self._act, share_user_item_param=args.share_param, device=args.device)) self.gcn_agg_accum = args.gcn_agg_accum self.rating_vals = args.rating_vals self.device = args.device self.gcn_agg_units = args.gcn_agg_units self.src_in_units = args.src_in_units for i in range(1, args.layers): if args.gcn_agg_accum == 'stack': gcn_out_units = args.gcn_out_units * len(args.rating_vals) else: gcn_out_units = args.gcn_out_units self.encoder.append(GCMCLayer(args.rating_vals, args.gcn_out_units, args.gcn_out_units, gcn_out_units, args.gcn_out_units, args.gcn_dropout - i*0.1, args.gcn_agg_accum, agg_act=self._act, share_user_item_param=args.share_param, ini = False, device=args.device)) if args.decoder == "Bi": self.decoder = BiDecoder(in_units= args.gcn_out_units, #* args.layers, num_classes=len(args.rating_vals), num_basis=args.gen_r_num_basis_func) ''' self.decoder2 = MLPDecoder(in_units= args.gcn_out_units * 2, num_classes=len(args.rating_vals), num_basis=args.gen_r_num_basis_func) ''' elif args.decoder == "MLP": if args.loss_func == "CE": num_classes = len(args.rating_vals) else: num_classes = 1 self.decoder = MLPDecoder(in_units= args.gcn_out_units * args.layers, num_classes=num_classes, num_basis=args.gen_r_num_basis_func) self.rating_vals = args.rating_vals def forward(self, enc_graph, dec_graph, ufeat, ifeat, Two_Stage = False): user_out = [] movie_out = [] for i in range(0, args.layers): user_o, movie_o = self.encoder[i]( enc_graph, ufeat, ifeat, Two_Stage) if i == 0: user_out = user_o movie_out = movie_o else: user_out += user_o / float(i + 1) movie_out += movie_o /float(i + 1) #user_out.append(user_o) #movie_out.append(movie_o) ufeat = user_o ifeat = movie_o #pred_ratings = self.decoder2(dec_graph, th.cat([user_out[0], user_out[1]], 1), th.cat([movie_out[1], movie_out[0]], 1)) #user_out = th.cat(user_out, 1) #movie_out = th.cat(movie_out, 1) #print("user_out:", user_out[0]) #print("movie_out:", movie_out[0]) pred_ratings = self.decoder(dec_graph, user_out, movie_out) W_r_last = None reg_loss = 0.0 ''' for rating in self.rating_vals: rating = to_etype_name(rating) if W_r_last is not None: reg_loss += th.sum((self.encoder[0].W_r[rating] - W_r_last)**2) W_r_last = self.encoder[0].W_r[rating] #W_r_last_2 = self.encoder_2.W_r[rating] ''' W = th.matmul(self.encoder[0].att, self.encoder[0].basis.view(self.encoder[0].basis_units, -1)) W = W.view(len(self.rating_vals), self.src_in_units, -1) for i, rating in enumerate(self.rating_vals): rating = to_etype_name(rating) if i != 0: reg_loss += -th.sum(th.cosine_similarity(W[i,:,:], W[i-1,:,:], dim=1)) return pred_ratings, reg_loss, user_out, movie_out, W def train(args): print(args) dataset = DataSetLoader(args.data_name, args.device, use_one_hot_fea=args.use_one_hot_fea, symm=args.gcn_agg_norm_symm, test_ratio=args.data_test_ratio, valid_ratio=args.data_valid_ratio, sample_rate = args.sample_rate) print("Loading data finished ...\n") args.src_in_units = dataset.user_feature_shape[1] args.dst_in_units = dataset.movie_feature_shape[1] args.rating_vals = dataset.possible_rating_values ### build the net net = Net(args=args) net = net.to(args.device) nd_possible_rating_values = th.FloatTensor(dataset.possible_rating_values).to(args.device) rating_loss_net = nn.CrossEntropyLoss() learning_rate = args.train_lr optimizer = get_optimizer(args.train_optimizer)(net.parameters(), lr=learning_rate) print("Loading network finished ...\n") ### perpare training data train_gt_labels = dataset.train_labels train_gt_ratings = dataset.train_truths ### prepare the logger NDCG_logger = MetricLogger(['recall50', 'recall100', 'recall200','ndcg50', 'ndcg100', 'ndcg200'], ['%.4f', '%.4f', '%.4f','%.4f', '%.4f', '%.4f'], os.path.join(args.save_dir, 'NDCG.csv')) ### declare the loss information best_valid_rmse = np.inf best_valid_ndcg = -np.inf best_test_ndcg = [] no_better_valid = 0 best_iter = -1 count_rmse = 0 count_num = 0 count_loss = 0 dataset.train_enc_graph = dataset.train_enc_graph.int().to(args.device) dataset.train_dec_graph = dataset.train_dec_graph.int().to(args.device) dataset.valid_enc_graph = dataset.train_enc_graph dataset.valid_dec_graph = dataset.valid_dec_graph.int().to(args.device) dataset.test_enc_graph = dataset.test_enc_graph.int().to(args.device) dataset.test_dec_graph = dataset.test_dec_graph.int().to(args.device) train_m = dataset.train_m test_m = dataset.test_m tset = dataset.tset user_num ,item_num = train_m.shape[0], train_m.shape[1] #dataset.valid_recall_dec_graph = dataset.valid_recall_dec_graph.to(args.device) #dataset.test_recall_dec_graph = dataset.test_recall_dec_graph.to(args.device) print("Start training ...") train_rating_pairs, train_rating_values = dataset._generate_pair_value(dataset.train_rating_info) def update_encode_graph(dataset, train_rating_pairs, train_rating_values, sampled_data): train_rating_pairs_zeros, train_rating_values_zeros = dataset._generate_pair_value_for_zero(dataset.train_rating_info, sampled_data) train_rating_pairs = (np.append(train_rating_pairs[0], train_rating_pairs_zeros[0]), np.append(train_rating_pairs[1], train_rating_pairs_zeros[1])) train_rating_values = np.append(train_rating_values, train_rating_values_zeros) dataset.train_enc_graph = dataset._generate_enc_graph(train_rating_pairs, train_rating_values, add_support = True) dataset.train_enc_graph = dataset.train_enc_graph.int().to(args.device) dataset.valid_enc_graph = dataset.train_enc_graph return dataset.train_enc_graph def sample_data(interact_status, random_number, sample_rate): random.seed(random_number) interact_status['negative_samples'] = interact_status['negative_items'].apply(lambda x: random.sample(x, sample_rate)) return interact_status[['user_id', 'negative_items', 'negative_samples']] seed_list = np.random.randint(0, 10000, (args.train_max_iter,)) Two_Stage = False #sampled_data = sample_data(negitive_all, random_number = seed_list[iter_idx], sample_rate = 3) negitive_all = dataset.negative_all(dataset.train_rating_info) sampled_data = sample_data(negitive_all, random_number = 1, sample_rate = 99) dataset.train_enc_graph = update_encode_graph(dataset, train_rating_pairs, train_rating_values, sampled_data) dataset.valid_enc_graph = dataset.train_enc_graph for iter_idx in range(1, args.train_max_iter): #sampled_data = sample_data(negitive_all, random_number = 1, sample_rate = 3) #dataset.train_enc_graph = update_encode_graph(dataset, train_rating_pairs, train_rating_values, sampled_data) print("iter:",iter_idx) net.train() pred_ratings, reg_loss, user_out, movie_out, W = net(dataset.train_enc_graph, dataset.train_dec_graph, dataset.user_feature, dataset.movie_feature, Two_Stage) loss = rating_loss_net(pred_ratings, train_gt_labels).mean() + args.ARR * reg_loss count_loss += loss.item() optimizer.zero_grad() loss.backward(retain_graph=True) nn.utils.clip_grad_norm_(net.parameters(), args.train_grad_clip) optimizer.step() real_pred_ratings = (th.softmax(pred_ratings, dim=1) * nd_possible_rating_values.view(1, -1)).sum(dim=1) #print(real_pred_ratings.shape) # 对pred的 if iter_idx < 100: if iter_idx % 10 == 0: recall50_, recall100_, recall200_, ndcg50_, ndcg100_, ndcg200_ = \ dev_step(tset, train_m, test_m, net, dataset, args, nd_possible_rating_values) #dev_cold(u_train,i_train, tset, train_m, test_m) NDCG_logger.log(recall50 = recall50_, recall100 = recall100_, recall200 = recall200_, ndcg50 = ndcg50_, ndcg100 = ndcg100_, ndcg200 = ndcg200_) if iter_idx >= 500: recall50, recall100, recall200, ndcg50, ndcg100, ndcg200 = \ dev_step(tset, train_m, test_m, net, dataset, args ,nd_possible_rating_values) NDCG_logger.log(recall50 = recall50_, recall100 = recall100_, recall200 = recall200_, ndcg50 = ndcg50_, ndcg100 = ndcg100_, ndcg200 = ndcg200_) #dev_cold(u_train,i_train, tset, train_m, test_m) NDCG_logger.close() def dev_step(tset, train_m, test_m, net, dataset, args, nd_possible_rating_values): """ Evaluates model on a dev set """ batch_size = 128 #print("tset:",tset) user_te = np.array(list(tset.keys())) #print("user_te:",user_te) user_te2 = user_te[:, np.newaxis] #user_te2 = user_te ll = int(len(user_te) / batch_size) + 1 recall50 = [] recall100 = [] recall200 = [] ndcg50 = [] ndcg100 = [] ndcg200 = [] for batch_num in range(ll): print(batch_num/ll*100,"%") start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, len(user_te)) # u_batch 是每个batch中的一个对user的一个list u_batch = user_te2[start_index:end_index] # batch_users 是这个batch中user的个数 batch_users = end_index - start_index num_user = train_m.shape[0]#user总数 num_movie = train_m.shape[1]#item总数 user_list = user_te[start_index:end_index] batch_rating_pairs = generate_pair(user_list, num_movie) batch_dec_graph = generate_dec_graph(batch_rating_pairs, num_user, num_movie).to(args.device) Two_Stage = False pred_ratings, reg_loss, user_out, movie_out, W = net(dataset.train_enc_graph, batch_dec_graph, dataset.user_feature, dataset.movie_feature, Two_Stage) real_pred_ratings = (th.softmax(pred_ratings, dim=1) * nd_possible_rating_values.view(1, -1)).sum(dim=1) u_b = user_te[start_index:end_index] real_pred_ratings = real_pred_ratings.cpu() #print("pred_shape:", real_pred_ratings.shape) pre = real_pred_ratings.reshape(batch_users, -1) #print("pred_shape:", pre.shape) #pre = np.reshape(real_pred_ratings, (batch_users, num_movie)) pre = pre.detach().numpy() idx = np.zeros_like(pre, dtype=bool) idx[train_m[u_b].nonzero()] = True pre[idx] = -np.inf recall = [] for kj in [50, 100, 200]: idx_topk_part = np.argpartition(-pre, kj, 1) # print pre[np.arange(batch_users)[:, np.newaxis], idx_topk_part[:, :kj]] # print idx_topk_part pre_bin = np.zeros_like(pre, dtype=bool) pre_bin[np.arange(batch_users)[:, np.newaxis], idx_topk_part[:, :kj]] = True # print pre_bin true_bin = np.zeros_like(pre, dtype=bool) true_bin[test_m[u_b].nonzero()] = True tmp = (np.logical_and(true_bin, pre_bin).sum(axis=1)).astype(np.float32) #print("tmp:",tmp) recall.append(tmp / np.minimum(kj, true_bin.sum(axis=1))) #print("recall:",tmp / np.minimum(kj, true_bin.sum(axis=1))) # print tmp #print("recall:",recall) ndcg = [] for kj in [20, 40, 80]: # 获取前20个元素的大致序号 idx_topk_part = np.argpartition(-pre, kj, 1) #print("pre:",pre.shape) # #print("idx_topk_part[:, :kj]:",idx_topk_part[:, :kj]) #获取每个用户对应的前20个预测的index topk_part = pre[np.arange(batch_users)[:, np.newaxis], idx_topk_part[:, :kj]] #print("topk_part:",topk_part[0:2]) idx_part = np.argsort(-topk_part, axis=1) # 将预测分数进行排序,从大到校输出index的值 #print("idx_part:",idx_part[0:2]) idx_topk = idx_topk_part[np.arange(end_index - start_index)[:, np.newaxis], idx_part] # 得到原来的序列中的对应index #print("idx_topk:",idx_topk[0:2]) tp = np.log(2) / np.log(np.arange(2, kj + 2)) test_batch = test_m[u_b] #print("test_batch:",test_batch) DCG = (test_batch[np.arange(batch_users)[:, np.newaxis], idx_topk].toarray() * tp).sum(axis=1) # 就只计算真实结果在预测结果中的第几号的dcg #print("tp:",tp) #print("DCG:",DCG) IDCG = np.array([(tp[:min(n, kj)]).sum() for n in test_batch.getnnz(axis=1)]) #print("IDCG:",np.array([(tp[:min(n, kj)]).sum() # for n in test_batch.getnnz(axis=1)])) ndcg.append(DCG / IDCG) #print("ndcg:",ndcg) recall50.append(recall[0]) recall100.append(recall[1]) recall200.append(recall[2]) ndcg50.append(ndcg[0]) ndcg100.append(ndcg[1]) ndcg200.append(ndcg[2]) recall50 = np.hstack(recall50) recall100 = np.hstack(recall100) recall200 = np.hstack(recall200) ndcg50 = np.hstack(ndcg50) ndcg100 = np.hstack(ndcg100) ndcg200 = np.hstack(ndcg200) print("recall50:",recall50[0:10]) print("ndcg50:", ndcg50.shape) print("recall50:", np.mean(recall50), "ndcg50:",np.mean(ndcg50)) print("recall100:",np.mean(recall100),"ndcg100:", np.mean(ndcg100)) print("recall200:",np.mean(recall200), "ndcg200:",np.mean(ndcg200)) #f1.write(str(np.mean(recall100)) + ' ' + str(np.mean(ndcg100)) + '\n') #f1.flush() return np.mean(recall50), np.mean(recall100), np.mean(recall200), np.mean(ndcg50), np.mean(ndcg100), np.mean(ndcg200) def config(): parser = argparse.ArgumentParser(description='PGMC') parser.add_argument('--seed', default=125, type=int) #123 parser.add_argument('--device', default='1', type=int, help='Running device. E.g `--device 0`, if using cpu, set `--device -1`') parser.add_argument('--save_dir', type=str, help='The saving directory') parser.add_argument('--save_id', type=int, help='The saving log id') parser.add_argument('--silent', action='store_true') parser.add_argument('--data_name', default='yahoo_music', type=str, help='The dataset name: ml-100k, ml-1m, ml-10m, flixster, douban, yahoo_music') parser.add_argument('--data_test_ratio', type=float, default=0.1) ## for ml-100k the test ration is 0.2 parser.add_argument('--data_valid_ratio', type=float, default=0.05) parser.add_argument('--use_one_hot_fea', action='store_true', default=False) parser.add_argument('--model_activation', type=str, default="leaky") parser.add_argument('--sample_rate', type=int, default=1) parser.add_argument('--gcn_dropout', type=float, default=0.7) parser.add_argument('--gcn_agg_norm_symm', type=bool, default=True) parser.add_argument('--gcn_agg_units', type=int, default=1800) parser.add_argument('--gcn_agg_accum', type=str, default="sum") parser.add_argument('--gcn_out_units', type=int, default=75) parser.add_argument('--gen_r_num_basis_func', type=int, default=2) parser.add_argument('--train_max_iter', type=int, default=50000) parser.add_argument('--train_log_interval', type=int, default=1) parser.add_argument('--train_valid_interval', type=int, default=1) parser.add_argument('--train_optimizer', type=str, default="adam") parser.add_argument('--decoder', type=str, default="Bi") parser.add_argument('--train_grad_clip', type=float, default=1.0) parser.add_argument('--train_lr', type=float, default=0.01) parser.add_argument('--train_min_lr', type=float, default=0.001) parser.add_argument('--train_lr_decay_factor', type=float, default=0.5) parser.add_argument('--train_decay_patience', type=int, default=50) parser.add_argument('--layers', type=int, default=1) parser.add_argument('--train_early_stopping_patience', type=int, default=200) parser.add_argument('--share_param', default=True, action='store_true') parser.add_argument('--ARR', type=float, default='0.000004') parser.add_argument('--loss_func', type=str, default='CE') parser.add_argument('--sparse_ratio', type=float, default=0.0) args = parser.parse_args() args.device = th.device(args.device) if args.device >= 0 else th.device('cpu') ### configure save_fir to save all the info now = int(round(time.time()*1000)) now02 = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(now/1000)) if args.save_dir is None: args.save_dir = args.data_name+"_" + ''.join(now02) if args.save_id is None: args.save_id = np.random.randint(20) args.save_dir = os.path.join("log", args.save_dir) if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir) return args if __name__ == '__main__': ''' ml_1m : param, ARR = 0.0000004, gcn_agg_units = 1000, gcn_agg_accum = sum, tmse = 0.8322, valid_ratio = 0.05 ml_100k : param, ARR = 0.000001, gcn_agg_units = 500, gcn_agg_accum = sum, tmse = 0.9046, valid_ratio = 0.05 1lyaer ml_1m : param, ARR = 0.0000005, gcn_agg_units = 2400, gcn_agg_accum = sum, tmse = 0.8305, valid_ratio = 0.05, gcn_out_units = 75 1layer ml_100k : param, pos_emb, ARR = 0.000005, gcn_agg_units = 750, gcn_agg_accum = sum, tmse = 0.8974, valid_ratio = 0.05, gcn_out_units = 75 2layer ml_100k : param, pos_emb, ARR = 0.000005, gcn_agg_units = 750, gcn_agg_accum = sum, tmse = 0.8969, valid_ratio = 0.05, gcn_out_units = 75 2lyaer ml_1m : param, ARR = 0.0000004, gcn_agg_units = 1800, gcn_agg_accum = sum, tmse = 0.8319, valid_ratio = 0.05, gcn_out_units = 75 ''' args = config() np.random.seed(args.seed) th.manual_seed(args.seed) if th.cuda.is_available(): th.cuda.manual_seed_all(args.seed) train(args)
2.703125
3
sequence_analysis_test_1.py
hugodecasta/representron
0
12781420
seq1 = 'defdefdefLLLOOLLLdefdefdef' seq2 = 'abcabcabcLLLOOLLLaaaaaaaaa' def create_network(sequence): net = {'@':sequence[0],None:[]} for i in range(len(sequence)): sym = sequence[i] next_sym = None if i < len(sequence)-1: next_sym = sequence[i+1] if sym not in net: net[sym] = [] net[sym].append(next_sym) return net def is_direct(stack): f_sym = stack[0] for sym in stack: if not sym == f_sym: return False return True def find_episods(net): episods = [] sym_to_process = [net['@']] current_episod = {} while len(sym_to_process) > 0: sym = sym_to_process[0] del sym_to_process[0] stack = net[sym] if current_episod == {}: current_episod['@'] = sym current_episod[sym] = stack if not is_direct(stack): episods.append(current_episod) current_episod = {} else: for ssym in stack: if ssym not in sym_to_process: sym_to_process.append(ssym) return episods net = create_network(seq1) epi = find_episods(net) print(net) print(epi)
2.703125
3
sample/ch6/ma-janome.py
wagase/scraping
0
12781421
<filename>sample/ch6/ma-janome.py from janome.tokenizer import Tokenizer t = Tokenizer() malist = t.tokenize("庭には二羽鶏がいる。") for n in malist: print(n)
2.46875
2
website/CMS/models.py
bubai666sen/Visitor-Manager
0
12781422
from django.db import models # Create your models here. class Page(models.Model): STATUS_CHOICES = ( (1, 'Active'), (2, 'Inactive'), ) PAGE_CHOICES = ( (1, 'Home'), (2, 'About Us'), ) page = models.PositiveSmallIntegerField(choices=PAGE_CHOICES,unique=True) title = models.CharField(max_length = 255, null=True, blank=True) heading = models.CharField(max_length = 255, null=True, blank=True) short_description = models.CharField(max_length = 255, null=True, blank=True) long_description = models.CharField(max_length = 255, null=True, blank=True) image = models.ImageField(upload_to='static/uploads/cms/', null=True, blank=True) background_image = models.ImageField(upload_to='static/uploads/cms/', null=True, blank=True) status = models.PositiveSmallIntegerField(choices=STATUS_CHOICES, null=True, blank=True) def __str__(self): # __unicode__ for Python 2 return self.title + " (" + str(self.page) + ")"
2.328125
2
monroe/solver/solve.py
cypher-me/HAS-Qualifier-Challenges
75
12781423
<filename>monroe/solver/solve.py<gh_stars>10-100 #!/bin/python import os,sys,time from binascii import hexlify, unhexlify from struct import pack, unpack from pwnlib.tubes.remote import remote from pwnlib.elf import ELF def sendEnableTlm(sock): msg = unhexlify("1880C0000011079A3132372E302E302E3100000000000000") sock.send( msg ) print("Enabled TLM") def addSchEntry(sock): msg = unhexlify("1895C000000D0591040005000100010000002A00") sock.send( msg ) print("Added msg-id \"42\" to slot 4, activity 5") sys.stdout.flush() if __name__ == "__main__": Host = os.getenv("HOST", "localhost") Port = int(os.getenv("PORT", 31360)) sockChal = remote(Host, Port) print("Initiating challenge by connecting to "+ str(Host)+":"+ str(Port)) sys.stdout.flush() ticket = os.getenv("TICKET", "") if len(ticket): sockChal.recvline() sockChal.send(ticket + "\n") sockChal.recvuntil(b'tcp:', drop=True) line = sockChal.recvline().strip() print("Connecting to", line) sys.stdout.flush() sockChal.recvuntil(b'CFE_ES_Main entering OPERATIONAL state', drop=True) time.sleep(5) TlmHost,TlmPort = line.split(b":") TlmHost = Host print("Connecting to Tlm server at "+str(TlmHost)+":"+str(TlmPort)) sockTlm = remote(TlmHost, TlmPort) sendEnableTlm(sockTlm) time.sleep(3) addSchEntry(sockTlm) time.sleep(3) addSchEntry(sockTlm) time.sleep(3) #outs = sockTlm.recv(2000) #print(outs) sockTlm.recvuntil(b"flag{",timeout=10) flag = "flag{" + sockTlm.recvuntil("}").decode('utf-8') print(flag) sys.stdout.flush()
2.203125
2
kissim/api/__init__.py
volkamerlab/kissim
15
12781424
<filename>kissim/api/__init__.py """ Defines easy programmatic access for any entry point. """ from .encode import encode from .normalize import normalize from .compare import compare from .weights import weights from .outliers import outliers from .subset import subset
1.265625
1
utils/genomes.py
AndersenLab/pyPipeline
5
12781425
<filename>utils/genomes.py import os, sys import yaml from utils import * def fetch_genome(reference_name): """ Downloads a reference genome and prepares for aligment """ from utils import script_dir genome_list = yaml.load(open(script_dir + "/utils/genomes.yaml","r")) makedir("genomes") if reference_name not in genome_list: msg("Reference Genome not available", "error") ftp_loc = genome_list[reference_name] filename = os.path.split(ftp_loc)[1] makedir("{script_dir}/genomes/{reference_name}".format(**locals())) reference_loc = "{script_dir}/genomes/{reference_name}/{filename}".format(**locals()) if not file_exists( reference_loc + ".sa"): print("Downloading {filename}".format(**locals())) os.system("curl {ftp_loc} > {script_dir}/genomes/{reference_name}/{filename}".format(**locals())) # Unzip and rezip with bgzip if filename.endswith(".gz"): os.system("gunzip {reference_loc} && bgzip {reference_loc2}".format(reference_loc=reference_loc, reference_loc2=reference_loc.replace(".gz",""))) print("Indexing {script_dir}/genomes/{reference_name}/{filename}".format(**locals())) os.system("bwa index {script_dir}/genomes/{reference_name}/{filename}".format(**locals())) else: msg("Reference Already downloaded and indexed.", "error") def list_genomes(): """ Prints a list of available genomes. """ genome_list = yaml.load(open(script_dir + "/utils/genomes.yaml","r")) print("") print("\033[1m%-30s\t%-30s\033[0m" % ("Reference Name", "Location")) for k,v in genome_list.items(): print("%-30s\t%-30s" % (k, v)) print("")
2.96875
3
tests/unittests/load_functions/outside_main_code_in_main/main.py
anandagopal6/azure-functions-python-worker
277
12781426
<reponame>anandagopal6/azure-functions-python-worker # This function app is to ensure the code outside main() function # should only get loaded once in __init__.py from .count import invoke, get_invoke_count, reset_count invoke() def main(req): count = get_invoke_count() reset_count() return f'executed count = {count}'
2.1875
2
src/call_variants.py
NCBI-Hackathons/PSST
5
12781427
<reponame>NCBI-Hackathons/PSST<filename>src/call_variants.py #!/usr/bin/env python # Built-in python packages from __future__ import division # This modifies Python 2.7 so that any expression of the form int/int returns a float import getopt import sys import os from itertools import combinations from multiprocessing.dummy import Pool # Project-specific packages from queries_with_ref_bases import query_contains_ref_bases def get_accession_map(fasta_path): ''' Suppose in the FASTA file used as reference for makeblastdb, there are n sequences. Magic-BLAST labels these sequences as the order in which they appear when outputting in tabulated format. For example, suppose that the SNP rs0001 appears second from the top in the FASTA file. Then Magic-BLAST assigns the label '1' to rs0001 whenever it appears in an alignment. This function returns a dictionary that serves as a map from integers (in string datatype) to accessions e.g. accession_map['1'] == rs0001 in our above example. Inputs - (str) fasta_path: path to the FASTA file used as reference for makeblastdb Outputs - (dict) accession_map: the map from integers to accessions ''' accession_map = {} with open(fasta_path,'r') as fasta: id_number = 0 for line in fasta: if line[0] == ">": accession = line[1:].rstrip() accession_map[str(id_number)] = accession id_number += 1 return accession_map def get_mbo_paths(directory): ''' Given a directory, retrieves the paths of all files within the directory whose extension is .mbo Inputs - (str) directory: directory to be scoured for mbo files Outputs - paths: a dictionary where the keys are accessions and the values are paths ''' paths = {} for file in os.listdir(directory): if file.endswith(".mbo"): # We only want the accession number, not the extension as well accession = os.path.basename(file).split('.')[0] path = os.path.join(directory,file) paths[accession] = path return paths def get_sra_alignments(map_paths_and_partition): ''' Given a list of paths as described in the function get_mbo_paths, retrieves the BTOP string for each alignment. Inputs - map_paths_and_partition: a dict which contains the following: - partition: the list of paths to .mbo files to read - paths: a list of pairs where the first entry of the pair is the accession and the second is the path - (dict) accession_map: the map between integers and accessions Outputs - a dictionary where keys are SRA accessions and the values are alignment dictionaries ''' accession_map = map_paths_and_partition['map'] paths = map_paths_and_partition['paths'] partition = map_paths_and_partition['partition'] sra_alignments = {} for accession in partition: path = paths[accession] alignments = [] with open(path,'r') as mbo: for line in mbo: tokens = line.split() # Skip the line if it is commented, the number of fields isn't equal to 25 or # the query read was not aligned if line[0] != "#" and len(tokens) == 25 and tokens[1] != "-": var_acc = accession_map[ tokens[1] ] ref_start = int(tokens[8]) ref_stop = int(tokens[9]) if ref_start > ref_stop: temp = ref_start ref_start = ref_stop ref_stop = temp btop = tokens[16] alignment = { 'var_acc': var_acc, 'ref_start': ref_start,\ 'ref_stop': ref_stop, 'btop': btop } alignments.append( alignment ) sra_alignments[accession] = alignments return sra_alignments def get_var_info(path): ''' Retrieves the flanking sequence lengths for the SNP sequences Inputs - path: path to the file that contains the flanking sequence lengths Outputs - var_info: a dictionary where the keys are SNP accessions and the values are tuples where the first entry\ is the start position of the variant, the second is the stop position of the variant and \ the third is the length of the variant sequence ''' var_info = {} with open(path,'r') as input_file: for line in input_file: tokens = line.split() if len(tokens) == 4: accession = tokens[0] start = int(tokens[1]) stop = int(tokens[2]) length = int(tokens[3]) var_info[accession] = {'start':start,'stop':stop,'length':length} return var_info def call_variants(var_freq): ''' Determines which variants exist in a given SRA dataset given the number of reads that do and do not contain the var Inputs - var_freq: a dict where the keys are SNP accessions and the values are dicts which contain the frequency of reads that do and reads that do not contain the SNP Outputs - variants: dict where the keys are SRA accessions and the value is another dict that contains the homozgyous and heterozygous variants in separate lists ''' variants = {'heterozygous':[],'homozygous':[]} for var_acc in var_freq: frequencies = var_freq[var_acc] true = frequencies['true'] false = frequencies['false'] try: percentage = true/(true+false) if percentage > 0.8: # For now, we use this simple heuristic. variants['homozygous'].append(var_acc) elif percentage > 0.3: variants['heterozygous'].append(var_acc) except ZeroDivisionError: # We ignore division errors because they correspond to no mapped reads pass return variants def call_sra_variants(alignments_and_info): ''' For all SRA accession, determines which variants exist in the SRA dataset Inputs - alignments_and_info: a dict which contains - sra_alignments: dict where the keys are SRA accessions and the values are lists of alignment dicts - var_info: dict where the keys are variant accessions and the values are information concerning the variants - keys: list which contains the keys of the SRA accessions to analyze Outputs - variants: dict where the keys are SRA accessions and the value is another dict that contains the homozgyous and heterozygous variants in separate lists ''' sra_alignments = alignments_and_info['alignments'] var_info = alignments_and_info['alignments'] keys = alignments_and_info['keys'] variants = {} for sra_acc in keys: alignments = sra_alignments[sra_acc] var_freq = {} for alignment in alignments: var_acc = alignment['var_acc'] # Get the flank information info = var_info[var_acc] if var_acc not in var_freq: var_freq[var_acc] = {'true':0,'false':0} # Determine whether the variant exists in the particular SRA dataset var_called = query_contains_ref_bases(alignment,info) if var_called == True: var_freq[var_acc]['true'] += 1 elif var_called == False: var_freq[var_acc]['false'] += 1 sra_variants = call_variants(var_freq) variants[sra_acc] = sra_variants return variants def create_tsv(variants,output_path): ''' Creates a TSV file containing the set of variants each SRA dataset contains. Inputs - variants: dict where the keys are SRA accessions and the value is another dict that contains the homozgyous and heterozygous variants in separate lists - output_path: path to where to construct the output file ''' with open(output_path,'w') as tsv: header = "SRA\tHeterozygous SNPs\tHomozygous SNPs\n" tsv.write(header) for sra_acc in variants: line = "%s" % (sra_acc) sra_variants = variants[sra_acc] line = line + "\t" for var_acc in sra_variants['heterozygous']: line = line + var_acc + "," line = line + "\t" for var_acc in sra_variants['homozygous']: line = line + var_acc + "," tsv.write( line.rstrip() ) tsv.write('\n') def create_variant_matrix(variants): ''' Returns an adjacency matrix that represents the graph constructed out of the variants such that: 1. Every vertex represents a variant and every variant is represented by a vertex 2. An edge (line) connects two vertices if and only if there exists an SRA dataset that contains both of the corresponding variants The matrix is represented by a dictionary of dictionaries. To save memory, we do not store 0 entries or variants without any incident edges. Inputs - variants: dict where the keys are SRA accessions and the value is another dict that contains the homozgyous and heterozygous variants in separate lists Outputs - matrix: a dict which, for any two keys (variants) variant_1 and variant_2, satisfies the following - 1. type(matrix[variant_1]) is DictType 2. type(matrix[variant_1][variant_2]) is IntType and matrix[variant_1][variant_2] >= 1 3. matrix[variant_1][variant_2] == matrix[variant_2][variant_1] all of which holds if and only if variant_1 and variant_2 exist in the dictionaries as keys ''' matrix = {} for sra_acc in variants: sra_variants = variants[sra_acc] all_variants = [] if 'homozygous' in sra_variants: all_variants += sra_variants['homozygous'] if 'heterozygous' in sra_variants: all_variants += sra_variants['heterozygous'] # Get all of the unique 2-combinations of the variants two_combinations = list( combinations(all_variants,2) ) for pair in two_combinations: variant_1 = pair[0] variant_2 = pair[1] if variant_1 not in matrix: matrix[variant_1] = {} if variant_2 not in matrix: matrix[variant_2] = {} if variant_2 not in matrix[variant_1]: matrix[variant_1][variant_2] = 0 if variant_1 not in matrix[variant_2]: matrix[variant_2][variant_1] = 0 matrix[variant_1][variant_2] += 1 matrix[variant_2][variant_1] = matrix[variant_1][variant_2] return matrix def partition(lst,n): ''' Partitions a list into n lists Inputs - (list) lst Outputs - partitioned_lists: a list of lists ''' division = len(lst)/float(n) return [ lst[int(round(division * i)): int(round(division * (i + 1)))] for i in xrange(n) ] def combine_list_of_dicts(list_of_dicts): ''' Given a list of dicts, returns a single dict such that (key,value) pairs from each original dict exists in the new single dict Inputs - list_of_dicts: a list of dicts Outputs - combined_dict ''' combined_dict = list_of_dicts[0] for i in range(1,len(list_of_dicts)): combined_dict.update( list_of_dicts[i] ) return combined_dict def unit_tests(): variants = {} variants['sra_1'] = {'homozygous':['a','b'],'heterozygous':['c','e']} variants['sra_2'] = {'homozygous':['a','c','d']} variants['sra_3'] = {'heterozygous':['b','d','e']} matrix = create_variant_matrix(variants) print(matrix) for variant_1 in matrix: for variant_2 in matrix[variant_1]: left_hand_side = matrix[variant_1][variant_2] right_hand_side = matrix[variant_2][variant_1] assert( left_hand_side >= 1 ) assert( right_hand_side >= 1 ) assert( left_hand_side == right_hand_side ) print("All unit tests passed!") if __name__ == "__main__": help_message = "Description: Given a directory with Magic-BLAST output files where each output file\n" \ + " contains the alignment between an SRA dataset and known variants in a human\n" \ + " genome, this script determines which variants each SRA dataset contains\n" \ + " using a heuristic." usage_message = "Usage: %s\n[-h (help and usage)]\n[-m <directory containing .mbo files>]\n" % (sys.argv[0]) \ + "[-v <path to variant info file>]\n[-f <path to the reference FASTA file>]\n"\ + "[-o <output path for TSV file>]\n[-p <num of threads>]\n[-t <unit tests>]" options = "htm:v:f:o:p:" try: opts,args = getopt.getopt(sys.argv[1:],options) except getopt.GetoptError: print("Error: unable to read command line arguments.") sys.exit(1) if len(sys.argv) == 1: print(help_message) print(usage_message) sys.exit() mbo_directory = None var_info_path = None output_path = None fasta_path = None threads = 1 for opt, arg in opts: if opt == '-h': print(help_message) print(usage_message) sys.exit(0) elif opt == '-m': mbo_directory = arg elif opt == '-v': var_info_path = arg elif opt == '-o': output_path = arg elif opt == '-f': fasta_path = arg elif opt == '-p': threads = arg elif opt == '-t': unit_tests() sys.exit(0) opts_incomplete = False if mbo_directory == None: print("Error: please provide the directory containing your Magic-BLAST output files.") opts_incomplete = True if var_info_path == None: print("Error: please provide the path to the file containing flanking sequence information.") opts_incomplete = True if output_path == None: print("Error: please provide an output path for the TSV file.") opts_incomplete = True if fasta_path == None: print("Error: please provide the path to the FASTA file used as reference for makeblastdb") opts_incomplete = True if opts_incomplete: print(usage_message) sys.exit(1) var_info = get_var_info(var_info_path) accession_map = get_accession_map(fasta_path) paths = get_mbo_paths(mbo_directory) # Retrieve the alignments concurrently get_alignments_threads = min(threads,len(paths.keys())) paths_partitions = partition( paths.keys(), get_alignments_threads ) map_paths_and_partitions = [{'map':accession_map,'paths':paths,'partition':path_partition} \ for path_partition in paths_partitions] pool = Pool(processes=get_alignments_threads) sra_alignments_pool = pool.map(get_sra_alignments,map_paths_and_partitions) pool.close() pool.join() sra_alignments = combine_list_of_dicts(sra_alignments_pool) # Call variants concurrently sra_keys = sra_alignments.keys() variant_call_threads = min( threads, len(sra_keys) ) keys_partitions = partition(sra_keys, variant_call_threads) # alignments, info and key partitions alignments_and_info_part = [{'alignments':sra_alignments,'keys':keys,'info':var_info} for keys in keys_partitions] pool = Pool(processes=variant_call_threads) variants_pool = pool.map(call_sra_variants,alignments_and_info_part) pool.close() pool.join() called_variants = combine_list_of_dicts(variants_pool) create_tsv(called_variants,output_path) matrix = create_variant_matrix(called_variants)
2.921875
3
scheme/tests/16.py
sfailsthy/CS-61A
0
12781428
test = { 'name': 'Problem 16', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" scm> (define y 1) 7f8ce7b9b26d2b5922718b99265fafdc # locked scm> (define f (mu (x) (+ x y))) 17c5c9131eea78a6dfb3175a8e97e160 # locked scm> (define g (lambda (x y) (f (+ x x)))) 280bf507069c60ae8be75781ba444342 # locked scm> (g 3 7) 824c8a87e1a23e1693a36ab2b26e2ceb # locked """, 'hidden': False, 'locked': True } ], 'scored': True, 'setup': '', 'teardown': '', 'type': 'scheme' } ] }
1.757813
2
Torch_rl/model/Network.py
afei339/Torch-rl
1
12781429
<reponame>afei339/Torch-rl<gh_stars>1-10 import torch import numpy as np from torch import nn from collections import OrderedDict from torch.distributions import Normal, Categorical from torch.autograd import Variable from copy import deepcopy # from graphviz import Digraph # # def make_dot(var, params=None): # """ Produces Graphviz representation of PyTorch autograd graph # Blue nodes are the Variables that require grad, orange are Tensors # saved for backward in torch.autograd.Function # Args: # var: output Variable # params: dict of (name, Variable) to add names to node that # require grad (TODO: make optional) # """ # if params is not None: # assert isinstance(params.values()[0], Variable) # param_map = {id(v): k for k, v in params.items()} # # node_attr = dict(style='filled', # shape='box', # align='left', # fontsize='12', # ranksep='0.1', # height='0.2') # dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) # seen = set() # # def size_to_str(size): # return '(' + (', ').join(['%d' % v for v in size]) + ')' # # def add_nodes(var): # if var not in seen: # if torch.is_tensor(var): # dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange') # elif hasattr(var, 'variable'): # u = var.variable # name = param_map[id(u)] if params is not None else '' # node_name = '%s\n %s' % (name, size_to_str(u.size())) # dot.node(str(id(var)), node_name, fillcolor='lightblue') # else: # dot.node(str(id(var)), str(type(var).__name__)) # seen.add(var) # if hasattr(var, 'next_functions'): # for u in var.next_functions: # if u[0] is not None: # dot.edge(str(id(u[0])), str(id(var))) # add_nodes(u[0]) # if hasattr(var, 'saved_tensors'): # for t in var.saved_tensors: # dot.edge(str(id(t)), str(id(var))) # add_nodes(t) # # add_nodes(var.grad_fn) # return dot # # def show(net): # x = Variable(torch.randn(net.layer_infor[0])) # y = net(x) # g = make_dot(y) # # g.view() # return g class DenseNet(nn.Module): def __init__(self, input_size, output_size, hidden_layer=[64, 64], hidden_activate=nn.ReLU(), output_activate=None, BatchNorm = False): super(DenseNet, self).__init__() first_placeholder = np.insert(np.array(hidden_layer), 0, input_size) second_placeholder = np.array(hidden_layer) self._layer_num = np.append(first_placeholder, output_size) self.layer = [] for i in range(len(second_placeholder)): layer = [] layer.append(('linear'+str(i), nn.Linear(first_placeholder[i], second_placeholder[i], bias=True))) layer.append(('activation'+str(i),hidden_activate)) if BatchNorm: layer.append(('BatchNormalization'+str(i), nn.BatchNorm1d(second_placeholder[i], eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))) self.layer.append(nn.Sequential(OrderedDict(layer))) output_layerlayer = [("output_layer",nn.Linear(first_placeholder[-1], output_size, bias=True))] if output_activate is not None: output_layerlayer.append(("output_activation",output_activate)) self.layer.append(nn.Sequential(OrderedDict(output_layerlayer))) self.linears = nn.ModuleList(self.layer) def forward(self, x): for layer in self.linears: x = layer(x) return x @property def layer_infor(self): return list(self._layer_num) def to_gpu(self, device=None): self.linears.cuda(device=device) class LSTM_Dense(nn.Module): def __init__(self, input_size, output_size, lstm_unit=64, lstm_layer=1, dense_layer=[64, 64], hidden_activate=nn.ReLU(), output_activate=None, BatchNorm = False): super(LSTM_Dense, self).__init__() self.lstm_unit = lstm_unit self.hidden_activate = nn.ReLU() self.Dense = DenseNet(lstm_unit, output_size, hidden_layer=dense_layer, hidden_activate=hidden_activate, output_activate=output_activate, BatchNorm=BatchNorm) self._layer_num = [input_size] + [lstm_unit] * lstm_layer + dense_layer + [output_size] self.LSTM = nn.LSTM(input_size=input_size, hidden_size=lstm_unit, num_layers=lstm_layer) def init_H_C(self,batch_size): return (Variable(torch.zeros(1, batch_size, self.lstm_unit)), Variable(torch.zeros(1, batch_size, self.lstm_unit))) def forward(self, x, h_state=None): if h_state is None: h_state = self.init_H_C(x.size()[1]) x, h_state = self.LSTM(x, h_state) x = self.hidden_activate(x) x = self.Dense(x) return x, h_state def to_gpu(self, device=None): self.LSTM.cuda(device=device) self.Dense.cuda(device=device) class CNN_2D_Dense(nn.Module): def __init__(self, input_size, output_size, # CNN_layer kernal_size=[(32, 7), (64, 5), (128, 3)], stride=1, padding=0, padding_mode='zeros', # pooling pooling_way = "Max", pooling_kernal= 2, pooling_stride = 2, # Dense dense_layer = [64, 64], hidden_activate=nn.ReLU(), output_activate=None, BatchNorm = False): super(CNN_2D_Dense, self).__init__() first = [input_size[0]]+[kernal[0] for kernal in kernal_size ] cnnlayer=[] for flag, kernal in enumerate(kernal_size): cnnlayer.append(("cnn" + str(flag), nn.Conv2d(first[flag], kernal[0], kernel_size=kernal[1], stride=stride, padding=padding, padding_mode=padding_mode))) cnnlayer.append(("cnn_activate" + str(flag), deepcopy(hidden_activate))) if pooling_way == "Max": cnnlayer.append(("pooling" + str(flag),torch.nn.MaxPool2d(kernel_size=pooling_kernal, stride=pooling_stride))) elif pooling_way == "Ave": cnnlayer.append(("pooling" + str(flag),torch.nn.AvgPool2d(kernel_size=pooling_kernal, stride=pooling_stride))) self.CNN = nn.Sequential(OrderedDict(cnnlayer)) self.input_dense = self.size_cal(input_size) self.Dendse = DenseNet(self.input_dense, output_size, hidden_layer=dense_layer, hidden_activate=hidden_activate, output_activate=output_activate,BatchNorm=BatchNorm) def size_cal(self, input_size): test_input = torch.rand((1,)+input_size) test_out = self.CNN(test_input) return test_out.size(1)*test_out.size(2)*test_out.size(3) def forward(self, x): x = self.CNN(x) x = x.view(x.size(0), -1) x = self.Dendse(x) return x def to_gpu(self, device=None): self.CNN.cuda(device=device) self.Dense.cuda(device=device) class CNN_2D_LSTM_Dense(nn.Module): def __init__(self, input_size, output_size, # CNN_layer kernal_size=[(32, 7), (64, 5), (128, 3)], stride=1, padding=0, padding_mode='zeros', # pooling pooling_way = "Max", pooling_kernal= 2, pooling_stride = 2, # LSTM lstm_unit=64, lstm_layer=1, # Dense dense_layer = [64, 64], hidden_activate=nn.ReLU(), output_activate=None, BatchNorm = False): super(CNN_2D_LSTM_Dense, self).__init__() first = [input_size[0]]+[kernal[0] for kernal in kernal_size ] if pooling_way == "Max": poollayer = torch.nn.MaxPool2d(kernel_size=pooling_kernal, stride=pooling_stride) elif pooling_way == "Max": poollayer = torch.nn.AvgPool2d(kernel_size=pooling_kernal, stride=pooling_stride) cnnlayer=[] for flag, kernal in enumerate(kernal_size): cnnlayer.append(("cnn" + str(flag), nn.Conv2d(first[flag], kernal[0], kernel_size=kernal[1], stride=stride,padding=padding,padding_mode=padding_mode))) cnnlayer.append(("cnn_activate" + str(flag), deepcopy(hidden_activate))) cnnlayer.append(("pooling" + str(flag), deepcopy(poollayer))) self.CNN = nn.Sequential(OrderedDict(cnnlayer)) self.input_lstm = self.size_cal(input_size) self.lstm_unit = lstm_unit self.LSTM = nn.LSTM(input_size=self.input_lstm, hidden_size=lstm_unit, num_layers=lstm_layer) self.Dendse = DenseNet(lstm_unit, output_size, hidden_layer=dense_layer, hidden_activate=hidden_activate, output_activate=output_activate,BatchNorm=BatchNorm) def init_H_C(self,batch_size): return (Variable(torch.zeros(1, batch_size, self.lstm_unit)), Variable(torch.zeros(1, batch_size, self.lstm_unit))) def size_cal(self, input_size): test_input = torch.rand((1,)+input_size) test_out = self.CNN(test_input) return test_out.size(1)*test_out.size(2)*test_out.size(3) def forward(self, x, h = None): batch_size = x.size(1) squence_size = x.size(0) conjection = () for time in range(squence_size): cnnout = self.CNN(x[time]) cnnout = cnnout.view(batch_size, -1) cnnout = cnnout.unsqueeze(0) conjection = conjection + (cnnout,) x = torch.cat(conjection, dim=0) if h is None: h = self.init_H_C(batch_size) x, h = self.LSTM(x, h) x = self.Dendse(x) return x def to_gpu(self, device=None): self.CNN.cuda(device=device) self.LSTM.cuda(device=device) self.Dense.cuda(device=device)
2.390625
2
layers.py
gemilepus/ShadeSketch
313
12781430
""" ShadeSketch https://github.com/qyzdao/ShadeSketch Learning to Shadow Hand-drawn Sketches <NAME>, <NAME>, <NAME> Copyright (C) 2020 The respective authors and Project HAT. All rights reserved. Licensed under MIT license. """ import tensorflow as tf # import keras keras = tf.keras K = keras.backend Layer = keras.layers.Layer Conv2D = keras.layers.Conv2D InputSpec = keras.layers.InputSpec image_data_format = K.image_data_format activations = keras.activations initializers = keras.initializers regularizers = keras.regularizers constraints = keras.constraints class Composite(Layer): def __init__(self, data_format='channels_last', **kwargs): self.data_format = data_format super(Composite, self).__init__(**kwargs) def call(self, inputs): line_inputs, shade_inputs = inputs return line_inputs + (shade_inputs + 1) * 0.25 def compute_output_shape(self, input_shape): return input_shape[0] class PixelwiseConcat(Layer): def __init__(self, data_format='channels_last', **kwargs): self.data_format = data_format super(PixelwiseConcat, self).__init__(**kwargs) def call(self, inputs): pixel_inputs, unit_inputs = inputs if self.data_format == 'channels_first': repeated_unit_inputs = tf.tile( K.expand_dims(K.expand_dims(unit_inputs, 2), 2), [1, K.shape(pixel_inputs)[2], K.shape(pixel_inputs)[3], 1] ) elif self.data_format == 'channels_last': repeated_unit_inputs = tf.tile( K.expand_dims(K.expand_dims(unit_inputs, 1), 1), [1, K.shape(pixel_inputs)[1], K.shape(pixel_inputs)[2], 1] ) return K.concatenate([pixel_inputs, repeated_unit_inputs]) def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': return (input_shape[0][0], input_shape[0][1] + input_shape[1][1], input_shape[0][2], input_shape[0][3]) elif self.data_format == 'channels_last': return (input_shape[0][0], input_shape[0][1], input_shape[0][2], input_shape[0][3] + input_shape[1][1]) class SubPixelConv2D(Conv2D): def __init__(self, filters, kernel_size, r, padding='same', data_format=None, strides=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(SubPixelConv2D, self).__init__( filters=r * r * filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs) self.r = r if hasattr(tf.nn, 'depth_to_space'): self.depth_to_space = tf.nn.depth_to_space else: self.depth_to_space = tf.depth_to_space def phase_shift(self, I): if self.data_format == 'channels_first': return self.depth_to_space(I, self.r, data_format="NCHW") elif self.data_format == 'channels_last': return self.depth_to_space(I, self.r, data_format="NHWC") def call(self, inputs): return self.phase_shift(super(SubPixelConv2D, self).call(inputs)) def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': n, c, h, w = super(SubPixelConv2D, self).compute_output_shape(input_shape) elif self.data_format == 'channels_last': n, h, w, c = super(SubPixelConv2D, self).compute_output_shape(input_shape) if h is not None: h = int(self.r * h) if w is not None: w = int(self.r * w) c = int(c / (self.r * self.r)) if self.data_format == 'channels_first': return (n, c, h, w) elif self.data_format == 'channels_last': return (n, h, w, c) def get_config(self): config = super(Conv2D, self).get_config() config.pop('rank') config.pop('dilation_rate') config['filters'] /= self.r * self.r config['r'] = self.r return config class SelfAttention(Layer): def __init__(self, data_format='channels_last', activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(SelfAttention, self).__init__(**kwargs) self.data_format = data_format self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 kernel_size = (1, 1) self.filters = int(input_shape[channel_axis]) self.kernel_f = self.add_weight(shape=kernel_size + (self.filters, self.filters // 8), initializer=self.kernel_initializer, name='kernel_f', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.kernel_g = self.add_weight(shape=kernel_size + (self.filters, self.filters // 8), initializer=self.kernel_initializer, name='kernel_g', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.kernel_h = self.add_weight(shape=kernel_size + (self.filters, self.filters), initializer=self.kernel_initializer, name='kernel_h', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias_f = self.add_weight(shape=(self.filters // 8,), initializer=self.bias_initializer, name='bias_f', regularizer=self.bias_regularizer, constraint=self.bias_constraint) self.bias_g = self.add_weight(shape=(self.filters // 8,), initializer=self.bias_initializer, name='bias_g', regularizer=self.bias_regularizer, constraint=self.bias_constraint) self.bias_h = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias_h', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias_f = None self.bias_g = None self.bias_h = None self.gamma = self.add_weight( name='gamma', shape=(1,), initializer=initializers.Constant(0) ) super(SelfAttention, self).build(input_shape) def call(self, inputs): f = K.conv2d(inputs, self.kernel_f, data_format=self.data_format, strides=(1, 1), dilation_rate=(1, 1)) # [bs, h, w, c'] g = K.conv2d(inputs, self.kernel_g, data_format=self.data_format, strides=(1, 1), dilation_rate=(1, 1)) # [bs, h, w, c'] h = K.conv2d(inputs, self.kernel_h, data_format=self.data_format, strides=(1, 1), dilation_rate=(1, 1)) # [bs, h, w, c] if self.use_bias: f = K.bias_add(f, self.bias_f, data_format=self.data_format) # [bs, h, w, c'] g = K.bias_add(g, self.bias_g, data_format=self.data_format) # [bs, h, w, c'] h = K.bias_add(h, self.bias_h, data_format=self.data_format) # [bs, h, w, c] # N = h * w s = K.dot(K.batch_flatten(g), K.transpose(K.batch_flatten(f))) # # [bs, N, N] beta = K.softmax(s) # attention map o = K.dot(beta, K.batch_flatten(h)) # [bs, N, C] o = K.reshape(o, K.shape(inputs)) # [bs, h, w, C] return self.activation(self.gamma * o + inputs) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { 'activation': activations.serialize(self.activation), 'data_format': self.data_format, 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(SelfAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) """ Implementation of Coordinate Channel keras-coordconv MIT License Copyright (c) 2018 <NAME> https://github.com/titu1994/keras-coordconv/blob/master/coord.py """ class _CoordinateChannel(Layer): """ Adds Coordinate Channels to the input tensor. # Arguments rank: An integer, the rank of the input data-uniform, e.g. "2" for 2D convolution. use_radius: Boolean flag to determine whether the radius coordinate should be added for 2D rank inputs or not. data_format: A string, one of `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, ..., channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, ...)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". # Input shape ND tensor with shape: `(samples, channels, *)` if `data_format` is `"channels_first"` or ND tensor with shape: `(samples, *, channels)` if `data_format` is `"channels_last"`. # Output shape ND tensor with shape: `(samples, channels + 2, *)` if `data_format` is `"channels_first"` or 5D tensor with shape: `(samples, *, channels + 2)` if `data_format` is `"channels_last"`. # References: - [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](https://arxiv.org/abs/1807.03247) """ def __init__(self, rank, use_radius=False, data_format='channels_last', **kwargs): super(_CoordinateChannel, self).__init__(**kwargs) if data_format not in [None, 'channels_first', 'channels_last']: raise ValueError('`data_format` must be either "channels_last", "channels_first" ' 'or None.') self.rank = rank self.use_radius = use_radius self.data_format = data_format self.axis = 1 if image_data_format() == 'channels_first' else -1 self.input_spec = InputSpec(min_ndim=2) self.supports_masking = True def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[self.axis] self.input_spec = InputSpec(min_ndim=self.rank + 2, axes={self.axis: input_dim}) self.built = True def call(self, inputs, training=None, mask=None): input_shape = K.shape(inputs) if self.rank == 1: input_shape = [input_shape[i] for i in range(3)] batch_shape, dim, channels = input_shape xx_range = tf.tile(K.expand_dims(K.arange(0, dim), axis=0), K.stack([batch_shape, 1])) xx_range = K.expand_dims(xx_range, axis=-1) xx_channels = K.cast(xx_range, K.floatx()) xx_channels = xx_channels / K.cast(dim - 1, K.floatx()) xx_channels = (xx_channels * 2) - 1. outputs = K.concatenate([inputs, xx_channels], axis=-1) if self.rank == 2: if self.data_format == 'channels_first': inputs = K.permute_dimensions(inputs, [0, 2, 3, 1]) input_shape = K.shape(inputs) input_shape = [input_shape[i] for i in range(4)] batch_shape, dim1, dim2, channels = input_shape xx_ones = tf.ones(K.stack([batch_shape, dim2]), dtype='int32') xx_ones = K.expand_dims(xx_ones, axis=-1) xx_range = tf.tile(K.expand_dims(K.arange(0, dim1), axis=0), K.stack([batch_shape, 1])) xx_range = K.expand_dims(xx_range, axis=1) xx_channels = K.batch_dot(xx_ones, xx_range, axes=[2, 1]) xx_channels = K.expand_dims(xx_channels, axis=-1) xx_channels = K.permute_dimensions(xx_channels, [0, 2, 1, 3]) yy_ones = tf.ones(K.stack([batch_shape, dim1]), dtype='int32') yy_ones = K.expand_dims(yy_ones, axis=1) yy_range = tf.tile(K.expand_dims(K.arange(0, dim2), axis=0), K.stack([batch_shape, 1])) yy_range = K.expand_dims(yy_range, axis=-1) yy_channels = K.batch_dot(yy_range, yy_ones, axes=[2, 1]) yy_channels = K.expand_dims(yy_channels, axis=-1) yy_channels = K.permute_dimensions(yy_channels, [0, 2, 1, 3]) xx_channels = K.cast(xx_channels, K.floatx()) xx_channels = xx_channels / K.cast(dim1 - 1, K.floatx()) xx_channels = (xx_channels * 2) - 1. yy_channels = K.cast(yy_channels, K.floatx()) yy_channels = yy_channels / K.cast(dim2 - 1, K.floatx()) yy_channels = (yy_channels * 2) - 1. outputs = K.concatenate([inputs, xx_channels, yy_channels], axis=-1) if self.use_radius: rr = K.sqrt(K.square(xx_channels - 0.5) + K.square(yy_channels - 0.5)) outputs = K.concatenate([outputs, rr], axis=-1) if self.data_format == 'channels_first': outputs = K.permute_dimensions(outputs, [0, 3, 1, 2]) if self.rank == 3: if self.data_format == 'channels_first': inputs = K.permute_dimensions(inputs, [0, 2, 3, 4, 1]) input_shape = K.shape(inputs) input_shape = [input_shape[i] for i in range(5)] batch_shape, dim1, dim2, dim3, channels = input_shape xx_ones = tf.ones(K.stack([batch_shape, dim3]), dtype='int32') xx_ones = K.expand_dims(xx_ones, axis=-1) xx_range = tf.tile(K.expand_dims(K.arange(0, dim2), axis=0), K.stack([batch_shape, 1])) xx_range = K.expand_dims(xx_range, axis=1) xx_channels = K.batch_dot(xx_ones, xx_range, axes=[2, 1]) xx_channels = K.expand_dims(xx_channels, axis=-1) xx_channels = K.permute_dimensions(xx_channels, [0, 2, 1, 3]) xx_channels = K.expand_dims(xx_channels, axis=1) xx_channels = tf.tile(xx_channels, [1, dim1, 1, 1, 1]) yy_ones = tf.ones(K.stack([batch_shape, dim2]), dtype='int32') yy_ones = K.expand_dims(yy_ones, axis=1) yy_range = tf.tile(K.expand_dims(K.arange(0, dim3), axis=0), K.stack([batch_shape, 1])) yy_range = K.expand_dims(yy_range, axis=-1) yy_channels = K.batch_dot(yy_range, yy_ones, axes=[2, 1]) yy_channels = K.expand_dims(yy_channels, axis=-1) yy_channels = K.permute_dimensions(yy_channels, [0, 2, 1, 3]) yy_channels = K.expand_dims(yy_channels, axis=1) yy_channels = tf.tile(yy_channels, [1, dim1, 1, 1, 1]) zz_range = tf.tile(K.expand_dims(K.arange(0, dim1), axis=0), K.stack([batch_shape, 1])) zz_range = K.expand_dims(zz_range, axis=-1) zz_range = K.expand_dims(zz_range, axis=-1) zz_channels = tf.tile(zz_range, [1, 1, dim2, dim3]) zz_channels = K.expand_dims(zz_channels, axis=-1) xx_channels = K.cast(xx_channels, K.floatx()) xx_channels = xx_channels / K.cast(dim2 - 1, K.floatx()) xx_channels = xx_channels * 2 - 1. yy_channels = K.cast(yy_channels, K.floatx()) yy_channels = yy_channels / K.cast(dim3 - 1, K.floatx()) yy_channels = yy_channels * 2 - 1. zz_channels = K.cast(zz_channels, K.floatx()) zz_channels = zz_channels / K.cast(dim1 - 1, K.floatx()) zz_channels = zz_channels * 2 - 1. outputs = K.concatenate([inputs, zz_channels, xx_channels, yy_channels], axis=-1) if self.data_format == 'channels_first': outputs = K.permute_dimensions(outputs, [0, 4, 1, 2, 3]) return outputs def compute_output_shape(self, input_shape): assert input_shape and len(input_shape) >= 2 assert input_shape[self.axis] if self.use_radius and self.rank == 2: channel_count = 3 else: channel_count = self.rank output_shape = list(input_shape) output_shape[self.axis] = input_shape[self.axis] + channel_count return tuple(output_shape) def get_config(self): config = { 'rank': self.rank, 'use_radius': self.use_radius, 'data_format': self.data_format } base_config = super(_CoordinateChannel, self).get_config() return dict(list(base_config.items()) + list(config.items())) class CoordinateChannel1D(_CoordinateChannel): """ Adds Coordinate Channels to the input tensor of rank 1. # Arguments data_format: A string, one of `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, ..., channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, ...)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". # Input shape 3D tensor with shape: `(batch_size, steps, input_dim)` # Output shape 3D tensor with shape: `(batch_size, steps, input_dim + 2)` # References: - [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](https://arxiv.org/abs/1807.03247) """ def __init__(self, data_format=None, **kwargs): super(CoordinateChannel1D, self).__init__( rank=1, use_radius=False, data_format=data_format, **kwargs ) def get_config(self): config = super(CoordinateChannel1D, self).get_config() config.pop('rank') config.pop('use_radius') return config class CoordinateChannel2D(_CoordinateChannel): """ Adds Coordinate Channels to the input tensor. # Arguments use_radius: Boolean flag to determine whether the radius coordinate should be added for 2D rank inputs or not. data_format: A string, one of `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, ..., channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, ...)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if `data_format` is `"channels_first"` or 4D tensor with shape: `(samples, rows, cols, channels)` if `data_format` is `"channels_last"`. # Output shape 4D tensor with shape: `(samples, channels + 2/3, rows, cols)` if `data_format` is `"channels_first"` or 4D tensor with shape: `(samples, rows, cols, channels + 2/3)` if `data_format` is `"channels_last"`. If `use_radius` is set, then will have 3 additional filers, else only 2 additional filters will be added. # References: - [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](https://arxiv.org/abs/1807.03247) """ def __init__(self, use_radius=False, data_format=None, **kwargs): super(CoordinateChannel2D, self).__init__( rank=2, use_radius=use_radius, data_format=data_format, **kwargs ) def get_config(self): config = super(CoordinateChannel2D, self).get_config() config.pop('rank') return config
2.515625
3
generator.py
ugis22/creatingDCGAN
0
12781431
<gh_stars>0 from typing import Tuple, Union import numpy as np from keras.layers import ( Conv2DTranspose, Reshape, BatchNormalization, Dense, Activation ) from keras.models import Sequential from keras.optimizers import Adam class Generator: def __init__(self, initial_dimensions: Tuple, reshape_dimensions: Tuple, kernel_size: Tuple, stride_size: Tuple, output_channels: Union[int, float], lr: float = 0.00015, beta: float = 0.5, loss: str = 'binary_crossentropy'): """ The parameters that need to be passed are: initial_dimensions: A tuple indicating the dimensions of the noise vector reshape_dimensions: The dimension in which the initial vector is reshaped kernel: The size of the kernel stride: The size of how the window is slided output_channel: If we want a RGB color image, then 3, if grey then 1 lr: the learning rate beta: the beta factor loss: The name of the loss function to calculate how the generator is learning. """ self.initial_dimensions = initial_dimensions self.reshape_dimensions = reshape_dimensions self.kernel_size = kernel_size self.stride_size = stride_size self.first_layer_filter = int(self.reshape_dimensions[2]/2) self.second_layer_filter = int(self.first_layer_filter/2) self.third_layer_filter = int(self.second_layer_filter/2) self.output_channels = output_channels self.lr = lr self.beta = beta self.loss = loss def generator(self): """ The function generates an training_images through a deconvolution neural net. """ # Define type of neural network. Would be sequential. generator = Sequential() # Layer1. Now we project and reshape. generator.add(Dense(units=np.prod(self.reshape_dimensions), kernel_initializer='glorot_normal', input_shape=self.initial_dimensions)) # Reshape generator.add(Reshape(target_shape=self.reshape_dimensions)) # Normalize generator.add(BatchNormalization(momentum=0.5, epsilon=1e-5)) # Activation generator.add(Activation('relu')) # Now we need to add layers. convolution, bias, activate. # Convolution generator.add(Conv2DTranspose(filters=self.first_layer_filter, kernel_size=self.kernel_size, strides=self.stride_size, padding='same', data_format='channels_last', kernel_initializer='glorot_normal')) # Bias generator.add(BatchNormalization(momentum=0.5, epsilon=1e-5)) # Activate generator.add(Activation('relu')) # Convolution generator.add(Conv2DTranspose(filters=self.second_layer_filter, kernel_size=self.kernel_size, strides=self.stride_size, padding='same', data_format='channels_last', kernel_initializer='glorot_normal')) # Bias generator.add(BatchNormalization(momentum=0.5, epsilon=1e-5)) # Activate generator.add(Activation("relu")) # Convolution generator.add(Conv2DTranspose(filters=self.third_layer_filter, kernel_size=self.kernel_size, strides=self.stride_size, padding='same', data_format='channels_last', kernel_initializer='glorot_normal')) # Bias generator.add(BatchNormalization(momentum=0.5, epsilon=1e-5)) # Activate generator.add(Activation('relu')) # Last layer. Convolution generator.add(Conv2DTranspose(filters=self.output_channels, kernel_size=self.kernel_size, strides=self.stride_size, padding='same', data_format='channels_last', kernel_initializer='glorot_normal')) # Activate generator.add(Activation('tanh')) optimizer = Adam(lr=self.lr, beta_1=self.beta) generator.compile(loss=self.loss, optimizer=optimizer, metrics=None) return generator
3.3125
3
src/tests/kafka_test.py
dixonwhitmire/lib-kafka
0
12781432
<reponame>dixonwhitmire/lib-kafka<gh_stars>0 import importlib import os from unittest import mock from unittest.mock import MagicMock from lib_kafka import logging_codes import unittest import concurrent.futures from confluent_kafka.admin import ClusterMetadata, TopicMetadata, PartitionMetadata from confluent_kafka import KafkaError, KafkaException from tests import resources_directory def get_sample_config_path(file_name): return os.path.join(resources_directory, file_name) class TestKafkaApiMethods(unittest.TestCase): def setUp(self) -> None: os.environ["KAFKA_BROKER_CONFIG_FILE"] = get_sample_config_path('kafka.env') os.environ["KAFKA_TOPIC_CONFIG_FILE"] = get_sample_config_path('kafka-topic.json') self.kafka = importlib.import_module('lib_kafka.kafka') @mock.patch("sys.exit") @mock.patch("confluent_kafka.admin.AdminClient.create_topics") def test_create_topics(self, mock_create_topics, mock_sys_exit): self.kafka.create_topics() self.assertTrue(mock_create_topics.called) self.assertEqual(mock_create_topics.call_count, 1) mock_create_topics.reset_mock() f = concurrent.futures.Future() f.set_running_or_notify_cancel() f.set_result(None) mock_create_topics.return_value = {'testTopic1': None, 'testTopic2': f} with self.assertLogs('lib_kafka.kafka', level='ERROR') as cm: self.kafka.create_topics() self.assertTrue(mock_create_topics.called) self.assertEqual(mock_create_topics.call_count, 1) self.assertTrue(mock_sys_exit.called) self.assertTrue(len(cm.output) > 0) mock_create_topics.reset_mock() kafka_error = MagicMock() kafka_error.code.return_value = KafkaError.TOPIC_ALREADY_EXISTS f.result = MagicMock(side_effect=KafkaException(kafka_error)) mock_create_topics.return_value = {'testTopic1': f} with self.assertLogs('lib_kafka.kafka', level='INFO') as cm: self.kafka.create_topics() self.assertTrue(mock_create_topics.called) self.assertEqual(mock_create_topics.call_count, 1) self.assertTrue('INFO:lib_kafka.kafka:' + logging_codes.TOPIC_EXISTS % 'testTopic1' in cm.output) mock_create_topics.reset_mock() kafka_error = MagicMock() kafka_error.code.return_value = KafkaError._TIMED_OUT f.result = MagicMock(side_effect=KafkaException(kafka_error)) mock_create_topics.return_value = {'testTopic1': f} with self.assertLogs('lib_kafka.kafka', level='ERROR') as cm: self.kafka.create_topics() self.assertTrue(mock_create_topics.called) self.assertEqual(mock_create_topics.call_count, 1) self.assertTrue(mock_sys_exit.called) self.assertTrue(len(cm.output) > 0) mock_create_topics.reset_mock() kafka_error = MagicMock() kafka_error.code.return_value = KafkaError.CLUSTER_AUTHORIZATION_FAILED f.result = MagicMock(side_effect=KafkaException(kafka_error)) mock_create_topics.return_value = {'testTopic1': f} with self.assertLogs('lib_kafka.kafka', level='ERROR') as cm: self.kafka.create_topics() self.assertTrue(mock_create_topics.called) self.assertEqual(mock_create_topics.call_count, 1) self.assertTrue(mock_sys_exit.called) self.assertTrue(len(cm.output) > 0) mock_create_topics.reset_mock() f.result = MagicMock(side_effect=Exception) mock_create_topics.return_value = {'testTopic1': f} with self.assertLogs('lib_kafka.kafka', level='ERROR') as cm: self.kafka.create_topics() self.assertTrue(mock_create_topics.called) self.assertEqual(mock_create_topics.call_count, 1) self.assertTrue(mock_sys_exit.called) self.assertTrue(len(cm.output) > 0) mock_create_topics.reset_mock() @mock.patch("sys.exit") @mock.patch("confluent_kafka.admin.AdminClient.delete_topics") def test_delete_topic(self, mock_delete_topics, mock_sys_exit): # Topic delete successful mock_delete_topics.reset_mock() f = concurrent.futures.Future() f.set_running_or_notify_cancel() f.set_result(None) mock_delete_topics.return_value = {'testTopic': f} with self.assertLogs('lib_kafka.kafka', level='INFO') as cm: self.kafka.delete_topics() self.assertTrue(mock_delete_topics.called) self.assertEqual(mock_delete_topics.call_count, 1) self.assertTrue( 'INFO:lib_kafka.kafka:' + logging_codes.DELETE_TOPIC_SUCCESS % 'testTopic' in cm.output) mock_delete_topics.reset_mock() f.result = MagicMock(side_effect=Exception) mock_delete_topics.return_value = {'testTopic': f} with self.assertLogs('lib_kafka.kafka', level='ERROR') as cm: self.kafka.delete_topics() self.assertTrue(mock_delete_topics.called) self.assertEqual(mock_delete_topics.call_count, 1) self.assertTrue(mock_delete_topics.called) self.assertTrue(mock_sys_exit.called) self.assertTrue(len(cm.output) > 0) mock_delete_topics.reset_mock() @mock.patch("confluent_kafka.admin.AdminClient.create_topics") @mock.patch("confluent_kafka.admin.AdminClient.delete_topics") @mock.patch("confluent_kafka.admin.AdminClient.create_partitions") @mock.patch("confluent_kafka.admin.AdminClient.list_topics") def test_update_partitions(self, mock_list_topics, mock_create_partitions, mock_delete_topics, mock_create_topics): cluster_data1 = ClusterMetadata() topic_data1 = TopicMetadata() partition_data1 = PartitionMetadata() partition_data1.replicas = [0] topic_data1.topic = 'topic1' topic_data1.partitions = {0: partition_data1} cluster_data1.topics = {'topic1': topic_data1} mock_list_topics.return_value = cluster_data1 self.kafka.update_topic_list = [ {'name': 'topic1', 'partitions': 1, 'replication_factors': 1, 'recreate_topic': False}] # Same number of partitions as existing with self.assertLogs('lib_kafka.kafka', level='INFO') as cm: self.kafka.update_topics() self.assertTrue(mock_list_topics.called) self.assertEqual(mock_list_topics.call_count, 1) self.assertTrue( 'INFO:lib_kafka.kafka:' + logging_codes.PARTITION_NUM_EQUAL % (1, 1, 'topic1') in cm.output) mock_list_topics.reset_mock() self.kafka.update_topic_list = [ {'name': 'topic1', 'partitions': 2, 'replication_factors': 1, 'recreate_topic': False}] f = concurrent.futures.Future() f.set_running_or_notify_cancel() f.set_result(None) mock_create_partitions.return_value = {'topic1': f} with self.assertLogs('lib_kafka.kafka', level='INFO') as cm: self.kafka.update_topics() self.assertTrue(mock_list_topics.called) self.assertEqual(mock_list_topics.call_count, 1) self.assertTrue(mock_create_partitions.called) self.assertEqual(mock_create_partitions.call_count, 1) self.assertTrue( 'INFO:lib_kafka.kafka:' + logging_codes.ADD_PARTITION_SUCCESS % ('topic1', 2) in cm.output) # Increase number of partitions - success mock_create_partitions.reset_mock() mock_create_partitions.return_value = {'testTopic1': None, 'testTopic2': f} with self.assertLogs('lib_kafka.kafka', level='INFO') as cm: self.kafka.update_topics() self.assertTrue( 'INFO:lib_kafka.kafka:' + logging_codes.ADD_PARTITION_SUCCESS % ('testTopic2', 2) in cm.output) self.assertTrue( any('ERROR:lib_kafka.kafka:' in s for s in cm.output)) # Decrease number of partitions with recreate topic true self.kafka.update_topic_list = [ {'name': 'topic1', 'partitions': 0, 'replication_factors': 1, 'recreate_topic': True}] self.kafka.update_topics() self.assertTrue(mock_delete_topics.called) self.assertTrue(mock_create_topics.called) # Decrease number of partitions with recreate topic False self.kafka.update_topic_list = [ {'name': 'topic1', 'partitions': 0, 'replication_factors': 1, 'recreate_topic': False}] mock_delete_topics.reset_mock() mock_create_topics.reset_mock() self.kafka.update_topics() self.assertFalse(mock_delete_topics.called) self.assertFalse(mock_create_topics.called) # Topic does not exist self.kafka.update_topic_list = [ {'name': 'topic2', 'partitions': 0, 'replication_factors': 1, 'recreate_topic': False}] with self.assertLogs('lib_kafka.kafka', level='INFO') as cm: self.kafka.update_topics() self.assertTrue( 'INFO:lib_kafka.kafka:' + logging_codes.TOPIC_NOT_FOUND % 'topic2' in cm.output) def test_convert_to_bool(self): self.assertFalse(self.kafka._convert_to_bool(None)) self.assertFalse(self.kafka._convert_to_bool('')) self.assertFalse(self.kafka._convert_to_bool(' ')) self.assertFalse(self.kafka._convert_to_bool('False')) self.assertFalse(self.kafka._convert_to_bool('None')) self.assertTrue(self.kafka._convert_to_bool('True')) self.assertTrue(self.kafka._convert_to_bool('TRUE')) if __name__ == '__main__': unittest.main()
2.078125
2
tests/app_test/actions.py
marcosschroh/django-history-actions
1
12781433
<reponame>marcosschroh/django-history-actions<filename>tests/app_test/actions.py from django.utils.translation import ugettext_lazy as _ PROFILE_SAVE_ACTION = 'PROFILE_SAVE_ACTION' ACTIONS = { 'PROFILE_SAVE_ACTION': _('profile save action') }
1.515625
2
education/HADDOCK24/shape-small-molecule/scripts/lig2shape.py
amjjbonvin/haddocking.github.io
12
12781434
<filename>education/HADDOCK24/shape-small-molecule/scripts/lig2shape.py import sys def format_shape_pharm(lig): ligFile = open(lig, 'r') for line in ligFile: if 'HETATM' in line or 'ATOM' in line: resi = int(line.split( )[1]) x = float(line.split( )[6]) y = float(line.split( )[7]) z = float(line.split( )[8]) pharm_info = float(line.split( )[9]) print("ATOM {: >4d} SHA SHA S{: >4d} {: 7.3f} {: 7.3f} {: 7.3f} {:5.2f} 1.00 ".format(resi, resi, x, y, z, pharm_info)) print("END") def format_shape(lig): ligFile = open(lig, 'r') for line in ligFile: if 'HETATM' in line or 'ATOM' in line: resi = int(line.split( )[1]) x = float(line.split( )[6]) y = float(line.split( )[7]) z = float(line.split( )[8]) print("ATOM {: >4d} SHA SHA S{: >4d} {: 7.3f} {: 7.3f} {: 7.3f} 1.00 1.00 ".format(resi, resi, x, y, z)) print("END") if __name__ == "__main__": mode = sys.argv[1] lig = sys.argv[2] if mode == "shape": format_shape(lig) if mode == "pharm": format_shape_pharm(lig)
2.65625
3
src/MQTT/Message/Formatters/JsonFormatter.py
dashford/sentinel-client
0
12781435
import json class JsonFormatter: def __init__(self): pass def format(self, message): return json.dumps(message)
2.5
2
plotCDF.py
faithcomesbyhearing/verse-timing
0
12781436
import pandas as pd import numpy as np import matplotlib.pyplot as plt file="/Users/spanta/Documents/batch_aeneas_scripts/batch_directory/QC_data/BMQBSMN2DA_epo_eng_plot_cdf.csv" data_req = pd.read_table(file, sep=",") arr = data_req.values arr.sort(axis=0) data_req = pd.DataFrame(arr, index=data_req.index, columns=data_req.columns) #sort values per column sorted_values = data_req.apply(lambda x: x.sort_values()) fig, ax = plt.subplots() for col in sorted_values.columns: y = np.linspace(0.,1., len(sorted_values[col].dropna())) ax.plot(sorted_values[col].dropna(), y,label=col) legend = ax.legend(loc='lower right', shadow=True, fontsize='medium') plt.xlim([0, 5]) filename=(file.split('/')[-1]).split('_')[0] plt.savefig('/Users/spanta/Documents/batch_aeneas_scripts/batch_directory/QC_data/'+filename+'.png') #plt.show()
2.625
3
hawkweed/classes/future.py
hellerve/hawkweed
20
12781437
"""A Future class""" from hawkweed.functional.primitives import reduce from hawkweed.classes.repr import Repr class Future(Repr): """A Future class""" def __init__(self, value): """ Takes a binary function (taking success and error, respectively) and builds a Future from it. Complexity: O(1) params: value: the function to encase returns: a Future """ self.value = value self.transforms = [] @staticmethod def of(value): """ Creates a Future from a static value, immediately returning it. Complexity: O(1) params: value: the value to encase returns: a Future """ return Future(lambda res, rej: res(value)) @staticmethod def reject(value): """ Creates a Future from a static value, immediately rejecting it. Complexity: O(1) params: value: the value to encase returns: a Future """ return Future(lambda res, rej: rej(value)) @staticmethod def encase(fun, args=None): """ Encases an ordinary function in a Future. If the function runs as expected the return value will be returned to the success callback. If an exception occurs it will be returned to the error callback. Special behaviour: You need to specify args. If the function does not have any, add args=[]. If you do not a function that takes arguments will be returned. Complexity: O(1) params: fun: the function to encase args: the arguments to pass to the function (defaults to None, override to an empty sequence if no arguments are needed) returns: a Future """ if args is None: return lambda *args: Future.encase(fun, args=args) def res(res, rej): """Internal encase function""" try: return res(fun(*args)) except Exception as e: return rej(e) return Future(res) def __repr__(self): return "Future({})".format(self.value) def apply(self, fun): """ Apply a transformation function fun to the future value. Complexity: Application O(1), Execution O(fun) params: fun: the function to apply returns: a Future """ self.transforms.append(fun) return self def chain(self, future): """ Chains a future to this one. This will intercept any calls to fork insofar as both Futures are chained before any call to the callbacks. Any error in both Futures will result in a call to the error callback. Complexity: O(1) params: future: the Future to chain returns: a Future """ def chained(res, rej): """Internal chain function""" self.value(lambda x: future(x).fork(res, rej), rej) return Future(chained) def fork(self, res, err): """ Registers resolvers for this Future. Complexity: O(1) params: res: the resolver function err: the error function returns: whatever the functions return """ def resolver(trans): """Internal fork function that applies transformations""" try: return res(reduce(lambda acc, x: x(acc), trans, self.transforms)) except Exception as e: if err: return err(e) raise return self.value(resolver, err)
3.5
4
boatsandjoy_api/bookings/payment_gateways.py
bertini36/boatsandjoy-api
0
12781438
from abc import ABC, abstractmethod from decimal import Decimal import stripe from django.conf import settings class PaymentGateway(ABC): @classmethod @abstractmethod def generate_checkout_session_id( cls, name: str, description: str, price: float, ) -> str: pass @classmethod @abstractmethod def get_session_id_from_event(cls, event: dict) -> str: pass @classmethod @abstractmethod def get_customer_email_from_event(cls, event: dict) -> str: pass class StripePaymentGateway(PaymentGateway): @classmethod def generate_checkout_session_id( cls, name: str, description: str, price: Decimal ) -> str: stripe.api_key = settings.STRIPE_SECRET_KEY session = stripe.checkout.Session.create( payment_method_types=['card'], line_items=[ { 'name': name, 'description': description, 'amount': cls._format_price(price), 'currency': 'eur', 'quantity': 1, } ], success_url=( settings.STRIPE_REDIRECT_URL + '?session_id={CHECKOUT_SESSION_ID}' ), cancel_url=settings.STRIPE_REDIRECT_URL, ) return session.id @classmethod def get_session_id_from_event(cls, event: dict) -> str: return event['data']['object']['id'] @classmethod def get_customer_email_from_event(cls, event: dict) -> str: customer_id = event['data']['object']['customer'] stripe.api_key = settings.STRIPE_SECRET_KEY customer = stripe.Customer.retrieve(customer_id) return customer['email'] @staticmethod def _format_price(price): return int(float(price) * 100)
2.09375
2
chromium/tools/telemetry/telemetry/internal/backends/chrome_inspector/tracing_backend_unittest.py
wedataintelligence/vivaldi-source
27
12781439
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import time import unittest from telemetry import decorators from telemetry.internal.backends.chrome_inspector import tracing_backend from telemetry.internal.backends.chrome_inspector.tracing_backend import _DevToolsStreamReader from telemetry.testing import fakes from telemetry.testing import simple_mock from telemetry.testing import tab_test_case from telemetry.timeline import model as model_module from telemetry.timeline import tracing_config class TracingBackendTest(tab_test_case.TabTestCase): # Number of consecutively requested memory dumps. _REQUESTED_DUMP_COUNT = 3 @classmethod def CustomizeBrowserOptions(cls, options): options.AppendExtraBrowserArgs([ # Memory maps currently cannot be retrieved on sandboxed processes. # See crbug.com/461788. '--no-sandbox', # Workaround to disable periodic memory dumps. See crbug.com/513692. '--enable-memory-benchmarking' ]) def setUp(self): super(TracingBackendTest, self).setUp() self._tracing_controller = self._browser.platform.tracing_controller if not self._tracing_controller.IsChromeTracingSupported(): self.skipTest('Browser does not support tracing, skipping test.') if not self._browser.supports_memory_dumping: self.skipTest('Browser does not support memory dumping, skipping test.') @decorators.Disabled('win') # crbug.com/570955 def testDumpMemorySuccess(self): # Check that dumping memory before tracing starts raises an exception. self.assertRaises(Exception, self._browser.DumpMemory) # Start tracing with memory dumps enabled. config = tracing_config.TracingConfig() config.tracing_category_filter.AddDisabledByDefault( 'disabled-by-default-memory-infra') config.enable_chrome_trace = True self._tracing_controller.StartTracing(config) # Request several memory dumps in a row and test that they were all # successfully created with unique IDs. expected_dump_ids = [] for _ in xrange(self._REQUESTED_DUMP_COUNT): dump_id = self._browser.DumpMemory() self.assertIsNotNone(dump_id) self.assertNotIn(dump_id, expected_dump_ids) expected_dump_ids.append(dump_id) trace_data = self._tracing_controller.StopTracing() # Check that dumping memory after tracing stopped raises an exception. self.assertRaises(Exception, self._browser.DumpMemory) # Test that trace data is parsable. model = model_module.TimelineModel(trace_data) self.assertGreater(len(model.processes), 0) # Test that the resulting model contains the requested memory dumps in the # correct order (and nothing more). actual_dump_ids = [d.dump_id for d in model.IterGlobalMemoryDumps()] self.assertEqual(actual_dump_ids, expected_dump_ids) @decorators.Disabled('win') # crbug.com/570955 def testDumpMemoryFailure(self): # Check that dumping memory before tracing starts raises an exception. self.assertRaises(Exception, self._browser.DumpMemory) # Start tracing with memory dumps disabled. config = tracing_config.TracingConfig() config.enable_chrome_trace = True self._tracing_controller.StartTracing(config) # Check that the method returns None if the dump was not successful. self.assertIsNone(self._browser.DumpMemory()) trace_data = self._tracing_controller.StopTracing() # Check that dumping memory after tracing stopped raises an exception. self.assertRaises(Exception, self._browser.DumpMemory) # Test that trace data is parsable. model = model_module.TimelineModel(trace_data) self.assertGreater(len(model.processes), 0) # Test that the resulting model contains no memory dumps. self.assertEqual(len(list(model.IterGlobalMemoryDumps())), 0) class TracingBackendUnitTest(unittest.TestCase): def setUp(self): self._mock_timer = simple_mock.MockTimer(tracing_backend) self._inspector_socket = fakes.FakeInspectorWebsocket(self._mock_timer) def tearDown(self): self._mock_timer.Restore() def testCollectTracingDataTimeout(self): self._inspector_socket.AddEvent( 'Tracing.dataCollected', {'value': [{'ph': 'B'}]}, 9) self._inspector_socket.AddEvent( 'Tracing.dataCollected', {'value': [{'ph': 'E'}]}, 19) self._inspector_socket.AddEvent('Tracing.tracingComplete', {}, 35) backend = tracing_backend.TracingBackend(self._inspector_socket) # The third response is 16 seconds after the second response, so we expect # a TracingTimeoutException. with self.assertRaises(tracing_backend.TracingTimeoutException): backend._CollectTracingData(10) self.assertEqual(2, len(backend._trace_events)) self.assertFalse(backend._has_received_all_tracing_data) def testCollectTracingDataNoTimeout(self): self._inspector_socket.AddEvent( 'Tracing.dataCollected', {'value': [{'ph': 'B'}]}, 9) self._inspector_socket.AddEvent( 'Tracing.dataCollected', {'value': [{'ph': 'E'}]}, 14) self._inspector_socket.AddEvent('Tracing.tracingComplete', {}, 19) backend = tracing_backend.TracingBackend(self._inspector_socket) backend._CollectTracingData(10) self.assertEqual(2, len(backend._trace_events)) self.assertTrue(backend._has_received_all_tracing_data) def testCollectTracingDataFromStream(self): self._inspector_socket.AddEvent( 'Tracing.tracingComplete', {'stream': '42'}, 1) self._inspector_socket.AddAsyncResponse( 'IO.read', {'data': '[{},{},{'}, 2) self._inspector_socket.AddAsyncResponse( 'IO.read', {'data': '},{},{}]', 'eof': True}, 3) backend = tracing_backend.TracingBackend(self._inspector_socket) backend._CollectTracingData(10) self.assertEqual(5, len(backend._trace_events)) self.assertTrue(backend._has_received_all_tracing_data) def testDumpMemorySuccess(self): self._inspector_socket.AddResponseHandler( 'Tracing.requestMemoryDump', lambda req: {'result': {'success': True, 'dumpGuid': '42abc'}}) backend = tracing_backend.TracingBackend(self._inspector_socket) self.assertEqual(backend.DumpMemory(), '42abc') def testDumpMemoryFailure(self): self._inspector_socket.AddResponseHandler( 'Tracing.requestMemoryDump', lambda req: {'result': {'success': False, 'dumpGuid': '42abc'}}) backend = tracing_backend.TracingBackend(self._inspector_socket) self.assertIsNone(backend.DumpMemory()) class DevToolsStreamPerformanceTest(unittest.TestCase): def setUp(self): self._mock_timer = simple_mock.MockTimer(tracing_backend) self._inspector_socket = fakes.FakeInspectorWebsocket(self._mock_timer) def _MeasureReadTime(self, count): mock_time = self._mock_timer.time() + 1 payload = ','.join(['{}'] * 5000) self._inspector_socket.AddAsyncResponse('IO.read', {'data': '[' + payload}, mock_time) startClock = time.clock() done = {'done': False} def mark_done(data): del data # unused done['done'] = True reader = _DevToolsStreamReader(self._inspector_socket, 'dummy') reader.Read(mark_done) while not done['done']: mock_time += 1 if count > 0: self._inspector_socket.AddAsyncResponse('IO.read', {'data': payload}, mock_time) elif count == 0: self._inspector_socket.AddAsyncResponse('IO.read', {'data': payload + ']', 'eof': True}, mock_time) count -= 1 self._inspector_socket.DispatchNotifications(10) return time.clock() - startClock def testReadTime(self): t1k = self._MeasureReadTime(1000) t10k = self._MeasureReadTime(10000) # Time is an illusion, CPU time is doubly so, allow great deal of tolerance. toleranceFactor = 5 self.assertLess(t10k / t1k, 10000 / 1000 * toleranceFactor)
2.046875
2
examples/engines/common.py
sergunya17/catalyst
4
12781440
from functools import partial from catalyst import dl, SETTINGS E2E = { "de": dl.DeviceEngine, "dp": dl.DataParallelEngine, "ddp": dl.DistributedDataParallelEngine, } if SETTINGS.amp_required: E2E.update( {"amp-dp": dl.DataParallelAMPEngine, "amp-ddp": dl.DistributedDataParallelAMPEngine} ) if SETTINGS.apex_required: E2E.update( {"apex-dp": dl.DataParallelAPEXEngine, "apex-ddp": dl.DistributedDataParallelAPEXEngine} ) if SETTINGS.deepspeed_required: E2E.update({"ds-ddp": dl.DistributedDataParallelDeepSpeedEngine}) if SETTINGS.fairscale_required: E2E.update( { "fs-pp": dl.PipelineParallelFairScaleEngine, "fs-ddp": dl.SharedDataParallelFairScaleEngine, "fs-ddp-amp": dl.SharedDataParallelFairScaleAMPEngine, # for some reason we could catch a bug with FairScale flatten wrapper here, so... "fs-fddp": partial( dl.FullySharedDataParallelFairScaleEngine, ddp_kwargs={"flatten_parameters": False} ), } ) if SETTINGS.xla_required: E2E.update({"xla": dl.XLAEngine, "xla-ddp": dl.DistributedXLAEngine})
1.992188
2
game-server/src/server/models.py
joniumGit/distributed-minesweeper
0
12781441
<gh_stars>0 import os from typing import List, Optional, Iterable from minesweeper.game import Minesweeper, Status from pydantic import BaseModel, conint, Field, root_validator, validator MAX_WIDTH = int(os.getenv('DS_MAX_WIDTH', '256')) MAX_HEIGHT = int(os.getenv('DS_MAX_HEIGHT', '256')) class Square(BaseModel): x: conint(ge=0) y: conint(ge=0) open: Optional[bool] flag: Optional[bool] mine: Optional[bool] value: Optional[conint(ge=0, lt=9)] class Squares(BaseModel): status: Status items: Iterable[Square] class Start(BaseModel): width: conint(gt=0, lt=MAX_WIDTH) height: conint(gt=0, lt=MAX_HEIGHT) mines: conint(gt=0) = Field(..., description='Maximum is calculated via (width - 1)(height - 1)') @validator("width") def validate_width(cls, value): assert value < MAX_WIDTH, "Field too wide" return value @validator("height") def validate_height(cls, value): assert value < MAX_HEIGHT, "Field too tall" return value @root_validator(pre=False, skip_on_failure=True) def validate_combination(cls, value): from minesweeper.logic import check_dims width = value.get('width') height = value.get('height') mines = value.get('mines') check_dims(width, height, mines) return value class Result(BaseModel): status: Optional[Status] mine: Optional[bool] items: List[Square] = Field(default_factory=list) class Config: arbitrary_types_allowed = True class Move(BaseModel): x: conint(ge=0) y: conint(ge=0) @classmethod def adapt(cls, game: Minesweeper): """ Modify model constraints to reflect current game """ from pydantic import BaseConfig from pydantic.fields import ModelField cls.__fields__['x'] = ModelField( name='x', type_=conint(ge=0, lt=game.width), model_config=BaseConfig, class_validators=None ) cls.__fields__['y'] = ModelField( name='y', type_=conint(ge=0, lt=game.height), model_config=BaseConfig, class_validators=None ) cls.__schema_cache__.clear() def to_url(self): return f'x={self.x}&y={self.y}' __all__ = [ 'Square', 'Squares', 'Start', 'Result', 'Move' ]
2.703125
3
example/avr/mk-avr-kalman-sim.e.py
martinmoene/kalman-estimator
20
12781442
#!/usr/bin/env python # Copyright 2018 by <NAME> # # https://github.com/martinmoene/kalman-estimator # # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt) import os nt = 'double' nt = 'fp32_t' std = 'c++17' opt = '-O2' mcu = 'atmega328p' fcpu = '16000000L' filename = 'avr-kalman-sim.cpp' verbose = '-vv' include = '../../include' tpl = 'python ../../script/avr-gcc.py {verbose} -std={std} {opt} -mmcu={mcu} -fcpu={fcpu} -DKE_NUMERIC_TYPE={nt} -I{include} {filename}' cmd = tpl.format(nt=nt, verbose=verbose, std=std, opt=opt, mcu=mcu, fcpu=fcpu, include=include, filename=filename) print( cmd ) os.system( cmd )
2
2
back-end/authorizer/authorizer.py
jjanczyszyn/serverless-instagram
18
12781443
<gh_stars>10-100 """ based on https://github.com/awslabs/aws-apigateway-lambda-authorizer-blueprints/ blob/master/blueprints/python/api-gateway-authorizer-python.py """ import jwt import os import re SECRET = os.environ['AUTH0_SECRET'] AUTH0_CLIENT_ID = os.environ['AUTH0_CLIENT_ID'] def handler(event, context): auth_token = event['authorizationToken'] if not auth_token: raise Exception('Unauthorized') token = auth_token.split(' ')[1] try: payload = jwt.decode(token, SECRET, algorithms=['HS256'], audience=AUTH0_CLIENT_ID) except jwt.InvalidTokenError: raise Exception('Unauthorized') else: return get_auth_response(payload['email'], event) def get_auth_response(principal_id, event): """ Builds auth response allowing all methods """ aws_region, aws_account_id, api_gateway_info = event['methodArn'].split(':')[3:] api_gateway_id, stage = api_gateway_info.split('/')[:2] # tmp = event['methodArn'].split(':') # api_gateway_arn_tmp = tmp[5].split('/') # aws_account_id = tmp[4] # rest_api_id = api_gateway_arn_tmp[0] # aws_region = tmp[3] # stage = api_gateway_arn_tmp[1] policy = AuthPolicy(principal_id, aws_account_id, api_gateway_id, aws_region, stage) policy.allow_all_methods() auth_response = policy.build() context = { 'user_id': principal_id } auth_response['context'] = context return auth_response class HttpVerb: GET = "GET" POST = "POST" PUT = "PUT" PATCH = "PATCH" HEAD = "HEAD" DELETE = "DELETE" OPTIONS = "OPTIONS" ALL = "*" class AuthPolicy(object): # The policy version used for the evaluation. This should always be '2012-10-17' version = "2012-10-17" # The regular expression used to validate resource paths for the policy path_regex = "^[/.a-zA-Z0-9-\*]+$" def __init__(self, principal_id, aws_account_id, rest_api_id='*', region='*', stage='*'): self.aws_account_id = aws_account_id self.principal_id = principal_id self.allow_methods = [] self.deny_methods = [] self.rest_api_id = rest_api_id self.region = region self.stage = stage def _add_method(self, effect, verb, resource, conditions): """ Adds a method to the internal lists of allowed or denied methods. Each object in the internal list contains a resource ARN and a condition statement. The condition statement can be null. """ if verb != "*" and not hasattr(HttpVerb, verb): raise NameError("Invalid HTTP verb " + verb + ". Allowed verbs in HttpVerb class") resource_pattern = re.compile(self.path_regex) if not resource_pattern.match(resource): raise NameError("Invalid resource path: " + resource + ". Path should match " + self.path_regex) if resource[:1] == "/": resource = resource[1:] resource_arn = ( "arn:aws:execute-api:" + self.region + ":" + self.aws_account_id + ":" + self.rest_api_id + "/" + self.stage + "/" + verb + "/" + resource ) if effect.lower() == "allow": self.allow_methods.append({ 'resourceArn': resource_arn, 'conditions': conditions }) elif effect.lower() == "deny": self.deny_methods.append({ 'resourceArn': resource_arn, 'conditions': conditions }) @staticmethod def _get_empty_statement(effect): """ Returns an empty statement object prepopulated with the correct action and the desired effect. """ statement = { 'Action': 'execute-api:Invoke', 'Effect': effect[:1].upper() + effect[1:].lower(), 'Resource': [] } return statement def _get_statement_for_effect(self, effect, methods): """ This function loops over an array of objects containing a resourceArn and conditions statement and generates the array of statements for the policy. """ statements = [] if len(methods) > 0: statement = self._get_empty_statement(effect) for method in methods: if not method['conditions']: statement['Resource'].append(method['resourceArn']) else: conditional_statement = self._get_empty_statement(effect) conditional_statement['Resource'].append(method['resourceArn']) conditional_statement['Condition'] = method['conditions'] statements.append(conditional_statement) statements.append(statement) return statements def allow_all_methods(self): """ Adds a '*' allow to the policy to authorize access to all methods of an API """ self._add_method("Allow", HttpVerb.ALL, "*", []) def build(self): """ Generates the policy document based on the internal lists of allowed and denied conditions. This will generate a policy with two main statements for the effect: one statement for Allow and one statement for Deny. Methods that includes conditions will have their own statement in the policy. """ if not (self.allow_methods or self.deny_methods): raise NameError("No statements defined for the policy") policy = { 'principalId': self.principal_id, 'policyDocument': { 'Version': self.version, 'Statement': [] } } policy['policyDocument']['Statement'].extend( self._get_statement_for_effect("Allow", self.allow_methods) ) policy['policyDocument']['Statement'].extend( self._get_statement_for_effect("Deny", self.deny_methods) ) return policy
2.203125
2
lib/improver/wxcode/wxcode_utilities.py
TomekTrzeciak/improver
0
12781444
<filename>lib/improver/wxcode/wxcode_utilities.py # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2019 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """This module defines the utilities required for wxcode plugin """ from collections import OrderedDict import iris import numpy as np from iris.exceptions import CoordinateNotFoundError import improver.utilities.solar as solar _WX_DICT_IN = {0: 'Clear_Night', 1: 'Sunny_Day', 2: 'Partly_Cloudy_Night', 3: 'Partly_Cloudy_Day', 4: 'Dust', 5: 'Mist', 6: 'Fog', 7: 'Cloudy', 8: 'Overcast', 9: 'Light_Shower_Night', 10: 'Light_Shower_Day', 11: 'Drizzle', 12: 'Light_Rain', 13: 'Heavy_Shower_Night', 14: 'Heavy_Shower_Day', 15: 'Heavy_Rain', 16: 'Sleet_Shower_Night', 17: 'Sleet_Shower_Day', 18: 'Sleet', 19: 'Hail_Shower_Night', 20: 'Hail_Shower_Day', 21: 'Hail', 22: 'Light_Snow_Shower_Night', 23: 'Light_Snow_Shower_Day', 24: 'Light_Snow', 25: 'Heavy_Snow_Shower_Night', 26: 'Heavy_Snow_Shower_Day', 27: 'Heavy_Snow', 28: 'Thunder_Shower_Night', 29: 'Thunder_Shower_Day', 30: 'Thunder'} WX_DICT = OrderedDict(sorted(_WX_DICT_IN.items(), key=lambda t: t[0])) DAYNIGHT_CODES = [1, 3, 10, 14, 17, 20, 23, 26, 29] def add_wxcode_metadata(cube): """ Add weather code metadata to a cube Args: cube (iris.cube.Cube): Cube which needs weather code metadata added. Returns: cube (iris.cube.Cube): Cube with weather code metadata added. """ cube.long_name = "weather_code" cube.standard_name = None cube.var_name = None cube.units = "1" wx_keys = np.array(list(WX_DICT.keys())) cube.attributes.update({'weather_code': wx_keys}) wxstring = " ".join(WX_DICT.values()) cube.attributes.update({'weather_code_meaning': wxstring}) return cube def expand_nested_lists(query, key): """ Produce flat lists from list and nested lists. Args: query (dict): A single query from the decision tree. key (str): A string denoting the field to be taken from the dict. Returns: items (list): A 1D list containing all the values for a given key. """ items = [] for item in query[key]: if isinstance(item, list): items.extend(item) else: items.extend([item]) return items def update_daynight(cubewx): """ Update weather cube depending on whether it is day or night Args: cubewx(iris.cube.Cube): Cube containing only daytime weather symbols. Returns: cubewx_daynight(iris.cube.Cube): Cube containing day and night weather symbols Raises: CoordinateNotFoundError : cube must have time coordinate. """ if not cubewx.coords("time"): msg = ("cube must have time coordinate ") raise CoordinateNotFoundError(msg) time_dim = cubewx.coord_dims('time') if not time_dim: cubewx_daynight = iris.util.new_axis(cubewx.copy(), 'time') else: cubewx_daynight = cubewx.copy() daynightplugin = solar.DayNightMask() daynight_mask = daynightplugin.process(cubewx_daynight) # Loop over the codes which decrease by 1 if a night time value # e.g. 1 - sunny day becomes 0 - clear night. for val in DAYNIGHT_CODES: index = np.where(cubewx_daynight.data == val) # Where day leave as is, where night correct weather # code to value - 1. cubewx_daynight.data[index] = np.where( daynight_mask.data[index] == daynightplugin.day, cubewx_daynight.data[index], cubewx_daynight.data[index] - 1) if not time_dim: cubewx_daynight = iris.util.squeeze(cubewx_daynight) return cubewx_daynight
1.5
2
smartmin/perms.py
nickhargreaves/smartmin
166
12781445
from django.contrib.auth.models import Permission def assign_perm(perm, group): """ Assigns a permission to a group """ if not isinstance(perm, Permission): try: app_label, codename = perm.split('.', 1) except ValueError: raise ValueError("For global permissions, first argument must be in" " format: 'app_label.codename' (is %r)" % perm) perm = Permission.objects.get(content_type__app_label=app_label, codename=codename) group.permissions.add(perm) return perm def remove_perm(perm, group): """ Removes a permission from a group """ if not isinstance(perm, Permission): try: app_label, codename = perm.split('.', 1) except ValueError: raise ValueError("For global permissions, first argument must be in" " format: 'app_label.codename' (is %r)" % perm) perm = Permission.objects.get(content_type__app_label=app_label, codename=codename) group.permissions.remove(perm) return
2.40625
2
src/sst/elements/scheduler/simulations/python_scripts_Jan_2017/emberLoad.py
feldergast/sst-elements
2
12781446
import sys,getopt #sys.path.insert(0, 'PATH') sys.path.insert(0, '/mnt/nokrb/fkaplan3/SST/git/sst/sst-elements/src/sst/elements/ember/test') import sst from sst.merlin import * import loadInfo from loadInfo import * import networkConfig from networkConfig import * import random import defaultParams import defaultSim import chamaOpenIBParams import chamaPSMParams import bgqParams import exaParams debug = 0 emberVerbose = 0 embermotifLog = '' emberrankmapper = '' embermapFile = '' networkStatOut = '' statNodeList = [] jobid = 0 loadFile = '' workList = [] workFlow = [] numCores = 1 numNodes = 0 platform = 'default' netFlitSize = '' netBW = '' netPktSize = '' netTopo = '' netShape = '' rtrArb = '' routingAlg = '' host_bw = '' group_bw = '' global_bw = '' global_link_arrangement = '' rndmPlacement = False #rndmPlacement = True bgPercentage = int(0) bgMean = 1000 bgStddev = 300 bgMsgSize = 1000 motifDefaults = { 'cmd' : "", 'printStats' : 0, 'api': "HadesMP", 'spyplotmode': 0 } try: opts, args = getopt.getopt(sys.argv[1:], "", ["topo=", "shape=", "routingAlg=", "link_arrangement=", "debug=","platform=","numNodes=", "numCores=","loadFile=","cmdLine=","printStats=","networkStatOut=","randomPlacement=", "emberVerbose=","netBW=","netPktSize=","netFlitSize=", "rtrArb=","embermotifLog=", "rankmapper=", "mapFile=", "host_bw=","group_bw=","global_bw=", "bgPercentage=","bgMean=","bgStddev=","bgMsgSize="]) except getopt.GetoptError as err: print str(err) sys.exit(2) for o, a in opts: if o in ("--shape"): netShape = a elif o in ("--platform"): platform = a elif o in ("--routingAlg"): routingAlg = a elif o in ("--numCores"): numCores = a elif o in ("--numNodes"): numNodes = a elif o in ("--debug"): debug = a elif o in ("--loadFile"): loadFile = a elif o in ("--cmdLine"): motif = dict.copy(motifDefaults) motif['cmd'] = a workFlow.append( motif ) elif o in ("--topo"): netTopo = a elif o in ("--printStats"): motifDefaults['printStats'] = a elif o in ("--networkStatOut"): networkStatOut = a elif o in ("--emberVerbose"): emberVerbose = a elif o in ("--embermotifLog"): embermotifLog = a elif o in ("--rankmapper"): emberrankmapper = a elif o in ("--mapFile"): embermapFile = a elif o in ("--netBW"): netBW = a elif o in ("--host_bw"): host_bw = a elif o in ("--group_bw"): group_bw = a elif o in ("--global_bw"): global_bw = a elif o in ("--link_arrangement"): global_link_arrangement = a elif o in ("--netFlitSize"): netFlitSize = a elif o in ("--netPktSize"): netPktSize = a elif o in ("--rtrArb"): rtrArb = a elif o in ("--randomPlacement"): if a == "True": rndmPlacement = True elif o in ("--bgPercentage"): bgPercentage = int(a) elif o in ("--bgMean"): bgMean = int(a) elif o in ("--bgStddev"): bgStddev = int(a) elif o in ("--bgMsgSize"): bgMsgSize = int(a) else: assert False, "unhandle option" if 1 == len(sys.argv): workFlow, numNodes, numCores = defaultSim.getWorkFlow( motifDefaults ) platform, netTopo, netShape = defaultSim.getNetwork( ) if workFlow: workList.append( [jobid, workFlow] ) jobid += 1 print "EMBER: platform: {0}".format( platform ) platNetConfig = {} if platform == "default": nicParams = defaultParams.nicParams networkParams = defaultParams.networkParams hermesParams = defaultParams.hermesParams emberParams = defaultParams.emberParams elif platform == "chamaPSM": nicParams = chamaPSMParams.nicParams networkParams = chamaPSMParams.networkParams hermesParams = chamaPSMParams.hermesParams emberParams = chamaPSMParams.emberParams platNetConfig = chamaPSMParams.netConfig elif platform == "chamaOpenIB": nicParams = chamaOpenIBParams.nicParams networkParams = chamaOpenIBParams.networkParams hermesParams = chamaOpenIBParams.hermesParams emberParams = chamaOpenIBParams.emberParams platNetConfig = chamaOpenIBParams.netConfig elif platform == "bgq": nicParams = bgqParams.nicParams networkParams = bgqParams.networkParams hermesParams = bgqParams.hermesParams emberParams = bgqParams.emberParams platNetConfig = bgqParams.netConfig elif platform == "exa": nicParams = exaParams.nicParams networkParams = exaParams.networkParams hermesParams = exaParams.hermesParams emberParams = exaParams.emberParams platNetConfig = exaParams.netConfig if netBW: networkParams['link_bw'] = netBW #nicParams['link_bw'] = "1GB/s" nicParams['link_bw'] = netBW if netFlitSize: networkParams['flitSize'] = netFlitSize if netPktSize: networkParams['packetSize'] = netPktSize if "" == netTopo: if platNetConfig['topology']: netTopo = platNetConfig['topology'] else: sys.exit("What topo? [torus|fattree|dragonfly]") if "" == netShape: if platNetConfig['shape']: netShape = platNetConfig['shape'] else: sys.exit("Error: " + netTopo + " needs shape") if "torus" == netTopo: topoInfo = TorusInfo(netShape) topo = topoTorus() elif "fattree" == netTopo: topoInfo = FattreeInfo(netShape) topo = topoFatTree() elif "dragonfly" == netTopo: topoInfo = DragonFlyInfo(netShape) if "" != routingAlg: topoInfo.params["dragonfly:algorithm"] = routingAlg if routingAlg == "valiant": nicParams['module'] = "merlin.reorderlinkcontrol" if "" != host_bw: topoInfo.params["link_bw:host"] = host_bw if "" != group_bw: topoInfo.params["link_bw:group"] = group_bw if "" != global_bw: topoInfo.params["link_bw:global"] = global_bw topo = topoDragonFly() elif "dragonfly2" == netTopo: print "netTopo is dragonfly2" topoInfo = DragonFly2Info(netShape) topoInfo.params["dragonfly:intergroup_links"] = 1 topoInfo.params["xbar_bw"] = netBW #topoInfo.params["xbar_bw"] = "17GB/s" if "" != routingAlg: topoInfo.params["dragonfly:algorithm"] = routingAlg print routingAlg if routingAlg == "valiant": nicParams['module'] = "merlin.reorderlinkcontrol" if "" != host_bw: topoInfo.params["link_bw:host"] = host_bw if "" != group_bw: topoInfo.params["link_bw:group"] = group_bw if "" != global_bw: topoInfo.params["link_bw:global"] = global_bw topo = topoDragonFly2() print topo #Set global link arrangements #print global_link_arrangement if "" == global_link_arrangement: global_link_arrangement = "absolute" if global_link_arrangement == "relative" or global_link_arrangement == "circulant": topo.setRoutingModeRelative() if global_link_arrangement == "circulant": ngrp = int(topoInfo.params["dragonfly:num_groups"]) glm = [] for i in range(int(ngrp/2)): glm.append(i) if ngrp - 2 - i != i: glm.append(ngrp - 2 - i) topo.setGlobalLinkMap(glm) else: sys.exit("how did we get here") if rtrArb: print "EMBER: network: topology={0} shape={1} arbitration={2}".format(netTopo,netShape,rtrArb) else: print "EMBER: network: topology={0} shape={1}".format(netTopo,netShape) if int(numNodes) == 0: numNodes = int(topoInfo.getNumNodes()) if int(numNodes) > int(topoInfo.getNumNodes()): sys.exit("need more nodes want " + str(numNodes) + ", have " + str(topoInfo.getNumNodes())) print "EMBER: numNodes={0} numNics={1}".format(numNodes, topoInfo.getNumNodes() ) emptyNids = [] if jobid > 0 and rndmPlacement: print "EMBER: random placement" hermesParams["hermesParams.mapType"] = 'random' random.seed( 0xf00dbeef ) nidList="" nids = random.sample( xrange( int(topoInfo.getNumNodes())), int(numNodes) ) #nids.sort() allNids = [] for num in range ( 0, int( topoInfo.getNumNodes()) ): allNids.append( num ) emptyNids = list( set(allNids).difference( set(nids) ) ) while nids: nidList += str(nids.pop(0)) if nids: nidList +="," tmp = workList[0] tmp = tmp[1] for x in tmp: x['cmd'] = "-nidList=" + nidList + " " + x['cmd'] random.shuffle( emptyNids ) XXX = [] if rndmPlacement and bgPercentage > 0: if bgPercentage > 100: sys.exit( "fatal: bgPercentage " + str(bgPercentage) ); count = 0 bgPercentage = float(bgPercentage) / 100.0 avail = int( topoInfo.getNumNodes() * bgPercentage ) bgMotifs, r = divmod( avail - int(numNodes), 2 ) print "EMBER: netAlloced {0}%, bg motifs {1}, mean {2} ns, stddev {3} ns, msgsize {4} bytes".\ format(int(bgPercentage*100),bgMotifs,bgMean,bgStddev,bgMsgSize) while ( count < bgMotifs ) : workFlow = [] nidList = "-nidList=" + str(emptyNids[ count * 2 ] ) + "," + str(emptyNids[ count * 2 + 1]) motif = dict.copy(motifDefaults) motif['cmd'] = nidList + " Init" workFlow.append( motif ) motif = dict.copy(motifDefaults) x,y = divmod( count , 60 ) motif['cmd'] = nidList + " TrafficGen mean="+str(bgMean)+ " stddev=" + \ str(bgStddev) + " messageSize="+str(bgMsgSize) + " startDelay=" + str( y * 500 ) workFlow.append( motif ) motif = dict.copy(motifDefaults) motif['cmd'] = nidList + " Fini" workFlow.append( motif ) workList.append( [ jobid, workFlow ] ) jobid += 1 count += 1 nicParams['verboseLevel'] = debug hermesParams['hermesParams.verboseLevel'] = debug hermesParams['hermesParams.nicParams.verboseLevel'] = debug hermesParams['hermesParams.functionSM.verboseLevel'] = debug hermesParams['hermesParams.ctrlMsg.verboseLevel'] = debug emberParams['verbose'] = emberVerbose if embermotifLog: emberParams['motifLog'] = embermotifLog if emberrankmapper: emberParams['rankmapper'] = emberrankmapper if embermapFile: emberParams['mapFile'] = embermapFile print "EMBER: network: BW={0} pktSize={1} flitSize={2}".format( networkParams['link_bw'], networkParams['packetSize'], networkParams['flitSize']) sst.merlin._params["link_lat"] = networkParams['link_lat'] sst.merlin._params["link_bw"] = networkParams['link_bw'] sst.merlin._params["xbar_bw"] = networkParams['link_bw'] #sst.merlin._params["xbar_bw"] = "17GB/s" sst.merlin._params["flit_size"] = networkParams['flitSize'] sst.merlin._params["input_latency"] = networkParams['input_latency'] sst.merlin._params["output_latency"] = networkParams['output_latency'] sst.merlin._params["input_buf_size"] = networkParams['buffer_size'] sst.merlin._params["output_buf_size"] = networkParams['buffer_size'] if rtrArb: sst.merlin._params["xbar_arb"] = "merlin." + rtrArb sst.merlin._params.update( topoInfo.getNetworkParams() ) epParams = {} epParams.update(emberParams) epParams.update(hermesParams) loadInfo = LoadInfo( nicParams, epParams, numNodes, numCores, topoInfo.getNumNodes() ) if len(loadFile) > 0: if len(workList) > 0: sys.exit("Error: can't specify both loadFile and cmdLine"); loadInfo.initFile( motifDefaults, loadFile, statNodeList ) else: if len(workList) > 0: if len(loadFile) > 0: sys.exit("Error: can't specify both loadFile and cmdLine"); loadInfo.initWork( workList, statNodeList ) else: sys.exit("Error: need a loadFile or cmdLine") topo.prepParams() topo.setEndPointFunc( loadInfo.setNode ) topo.build() ''' sst.setStatisticLoadLevel(8) sst.setStatisticOutput("sst.statOutputCSV") sst.setStatisticOutputOptions( {"filepath" : "%s" %(networkStatOut), "separator" : ", " } ) sst.enableAllStatisticsForComponentType("merlin.hr_router") '''
1.515625
2
tests/test_reply.py
LaudateCorpus1/apostello
69
12781447
<reponame>LaudateCorpus1/apostello<filename>tests/test_reply.py<gh_stars>10-100 import pytest from tests.conftest import twilio_vcr from apostello.models import Recipient, RecipientGroup from apostello.reply import InboundSms from apostello.utils import fetch_default_reply @pytest.mark.django_db class TestConstructReply: """Tests apostello.reply:InboundSms.construct_reply function.""" def test_no_existing_keyword(self, recipients): msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "nope"}) reply = msg.construct_reply() assert reply == fetch_default_reply("keyword_no_match").replace("%name%", "John") def test_existing_keyword(self, recipients, keywords): msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "test msg"}) reply = msg.construct_reply() assert reply == "Test custom response with John" @twilio_vcr def test_name(self, recipients): msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "name <NAME>"}) reply = msg.construct_reply() assert "John" in str(reply) def test_name_never_contact(self, recipients): recipients["beza"].never_contact = True recipients["beza"].save() msg = InboundSms({"From": str(recipients["beza"].number), "Body": "name"}) reply = msg.construct_reply() assert len(reply) == 0 @twilio_vcr def test_only_one_name(self, recipients): msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "name JohnCalvin"}) reply = msg.construct_reply() assert "Something went wrong" in reply @twilio_vcr def test_stop_start(self, recipients): msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "stop "}) reply = msg.construct_reply() assert len(reply) == 0 assert Recipient.objects.get(pk=recipients["calvin"].pk).is_blocking msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "start "}) reply = msg.construct_reply() assert Recipient.objects.get(pk=recipients["calvin"].pk).is_blocking is False assert "signing up" in reply @twilio_vcr def test_existing_keyword_new_contact(self, keywords): msg = InboundSms({"From": "+447927401749", "Body": "test msg"}) reply = msg.construct_reply() assert reply == "Thanks new person!" @twilio_vcr def test_existing_keyword_new_contact(self, keywords): msg = InboundSms({"From": "+447927401749", "Body": "2test msg"}) reply = msg.construct_reply() assert reply == fetch_default_reply("default_no_keyword_auto_reply").replace("%name%", "Unknown") def test_is_blocking_reply(self, recipients): msg = InboundSms({"From": str(recipients["wesley"].number), "Body": "test"}) reply = msg.construct_reply() assert len(reply) == 0 def test_do_not_reply(self, recipients): msg = InboundSms({"From": str(recipients["beza"].number), "Body": "test"}) reply = msg.construct_reply() assert len(reply) == 0 def test_never_contact(self, recipients): recipients["beza"].never_contact = True recipients["beza"].save() msg = InboundSms({"From": str(recipients["beza"].number), "Body": "test"}) reply = msg.construct_reply() assert len(reply) == 0 def test_switch_off_no_keyword_reply(self, recipients): from site_config.models import DefaultResponses dr = DefaultResponses.get_solo() dr.keyword_no_match = "" dr.clean() dr.save() msg = InboundSms({"From": str(recipients["calvin"].number), "Body": "test"}) reply = msg.construct_reply() assert len(reply) == 0 def test_contact_added_to_group_keyword(self, recipients, groups, keywords): populated_group = groups["test_group"] empty_group = groups["empty_group"] assert empty_group.recipient_set.count() == 0 assert populated_group.recipient_set.count() == 2 test_keyword = keywords["test"] test_keyword.linked_groups.add(empty_group, populated_group) test_keyword.save() msg = InboundSms({"From": str(recipients["beza"].number), "Body": "test"}) reply = msg.construct_reply() grp1 = RecipientGroup.objects.get(name="Empty Group") assert grp1.recipient_set.all().count() == 1 grp2 = RecipientGroup.objects.get(name="Test Group") assert grp2.recipient_set.all().count() == 3 # let's repeat to test case where contact already in group: reply = msg.construct_reply() grp = RecipientGroup.objects.get(name="Empty Group") assert grp.recipient_set.count() == 1
2.28125
2
mockerena/models/schema.py
FanThreeSixty/mockerena
1
12781448
"""Definition for mockerena schema .. codeauthor:: <NAME> <<EMAIL>> """ from copy import deepcopy SCHEMA = { "item_title": "schema", "schema": { "schema": { "type": "string", "minlength": 3, "maxlength": 64, "unique": True, "required": True }, "num_rows": { "type": "integer", "min": 1, "default": 1000 }, "file_format": { "type": "string", "required": True }, "file_name": { "type": "string", "minlength": 3, "maxlength": 64, "unique": True, "required": True }, "include_header": {"type": "boolean"}, "exclude_null": {"type": "boolean"}, "is_nested": {"type": "boolean"}, "delimiter": {"type": "string"}, "key_separator": {"type": "string"}, "quote_character": {"type": "string"}, "template": {"type": "string"}, "root_node": {"type": "string"}, "table_name": { "type": "string" }, "columns": { "type": "list", "schema": { "type": "dict", "schema": { "type": {"type": "string"}, "name": {"type": "string"}, "format": {"type": "string"}, "args": {"type": "dict"}, "percent_empty": { "type": "float", "min": 0, "max": 1 }, "truncate": {"type": "boolean"}, "function": {"type": "string"}, "description": {"type": "string"} } } }, "responses": { "type": "list", "items": [ { "type": "dict", "schema": { "status_code": { "type": "integer", "min": 100, "max": 599 }, "headers": {"type": "dict", "allow_unknown": True}, "content_type": {"type": "string"}, "data": {"type": "string"}, "weight": { "type": "integer", "min": 1 } } } ] } }, "additional_lookup": { "url": 'regex("[\\w]+")', "field": "schema" }, } # Build a schema for custom_schema route CUSTOM_SCHEMA = deepcopy(SCHEMA["schema"]) del CUSTOM_SCHEMA["schema"]["unique"] del CUSTOM_SCHEMA["file_name"]["unique"]
2.171875
2
examples/python/keras/func_cifar10_alexnet.py
NodLabs/FlexFlow
1
12781449
# Copyright 2020 Stanford University, Los Alamos National Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from flexflow.keras.models import Model, Sequential from flexflow.keras.layers import Input, Flatten, Dense, Activation, Conv2D, MaxPooling2D, Concatenate, concatenate import flexflow.keras.optimizers from flexflow.keras.datasets import mnist from flexflow.keras.datasets import cifar10 from flexflow.keras import losses from flexflow.keras import metrics from flexflow.keras.callbacks import Callback, VerifyMetrics, EpochVerifyMetrics from accuracy import ModelAccuracy import flexflow.core as ff import numpy as np import argparse import gc from PIL import Image def top_level_task(): num_samples = 10000 (x_train, y_train), (x_test, y_test) = cifar10.load_data(num_samples) full_input_np = np.zeros((num_samples, 3, 229, 229), dtype=np.float32) for i in range(0, num_samples): image = x_train[i, :, :, :] image = image.transpose(1, 2, 0) pil_image = Image.fromarray(image) pil_image = pil_image.resize((229,229), Image.NEAREST) image = np.array(pil_image, dtype=np.float32) image = image.transpose(2, 0, 1) full_input_np[i, :, :, :] = image if (i == 0): print(image) full_input_np /= 255 y_train = y_train.astype('int32') full_label_np = y_train input_tensor = Input(shape=(3, 229, 229), dtype="float32") output = Conv2D(filters=64, input_shape=(3,229,229), kernel_size=(11,11), strides=(4,4), padding=(2,2), activation="relu")(input_tensor) output = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding="valid")(output) output = Conv2D(filters=192, kernel_size=(5,5), strides=(1,1), padding=(2,2), activation="relu")(output) output = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding="valid")(output) output = Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")(output) output = Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")(output) output = Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding=(1,1), activation="relu")(output) output = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding="valid")(output) output = Flatten()(output) output = Dense(4096, activation="relu")(output) output = Dense(4096, activation="relu")(output) output = Dense(10)(output) output = Activation("softmax")(output) model = Model(input_tensor, output) opt = flexflow.keras.optimizers.SGD(learning_rate=0.01) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy', 'sparse_categorical_crossentropy']) print(model.summary()) model.fit(full_input_np, full_label_np, epochs=40, callbacks=[VerifyMetrics(ModelAccuracy.CIFAR10_ALEXNET), EpochVerifyMetrics(ModelAccuracy.CIFAR10_ALEXNET)]) if __name__ == "__main__": print("Functional API, cifar10 alexnet") top_level_task() gc.collect()
2.328125
2
intro/app/schemas.py
bmugenya/FastAPI
0
12781450
<filename>intro/app/schemas.py from pydantic import BaseModel,EmailStr from typing import Optional from datetime import datetime class Post(BaseModel): title:str content:str class User(BaseModel): email: EmailStr password:str class Token(BaseModel): access_token: str token_type: str class TokenData(BaseModel): username: Optional[str] = None class PostCreate(Post): title:str content:str email: EmailStr
2.53125
3