max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
ISMLnextGen/dynamicCoro.py
Ravenclaw-OIer/ISML_auto_voter
128
12781851
import asyncio from threading import Thread async def production_task(): i = 0 while 1: # 将consumption这个协程每秒注册一个到运行在线程中的循环,thread_loop每秒会获得一个一直打印i的无限循环任务 asyncio.run_coroutine_threadsafe(consumption(i), thread_loop) # 注意:run_coroutine_threadsafe 这个方法只能用在运行在线程中的循环事件使用 await asyncio.sleep(2) # 必须加await i += 1 async def consumption(i): while True: print("我是第{}任务".format(i)) await asyncio.sleep(1) def start_loop(loop): # 运行事件循环, loop以参数的形式传递进来运行 asyncio.set_event_loop(loop) loop.run_forever() #消费者循环 thread_loop = asyncio.new_event_loop() # 获取一个事件循环 run_loop_thread = Thread(target=start_loop, args=(thread_loop,)) # 将次事件循环运行在一个线程中,防止阻塞当前主线程 run_loop_thread.start() # 运行线程,同时协程事件循环也会运行 #生产者循环 advocate_loop = asyncio.get_event_loop() # 将生产任务的协程注册到这个循环中 advocate_loop.run_until_complete(production_task()) # 运行次循环
3.4375
3
__init__.py
JHP4911/SLAM-on-Raspberry-Pi
5
12781852
''' This file is a modification of the file below to enable map save https://github.com/simondlevy/PyRoboViz/blob/master/roboviz/__init__.py roboviz.py - Python classes for displaying maps and robots Requires: numpy, matplotlib Copyright (C) 2018 <NAME> This file is part of PyRoboViz. PyRoboViz is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PyRoboViz is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. ''' # Essential imports import matplotlib.pyplot as plt import matplotlib.cm as colormap import matplotlib.lines as mlines from mpl_toolkits.mplot3d import Axes3D import numpy as np import datetime # This helps with Raspberry Pi import matplotlib matplotlib.use('TkAgg') class Visualizer(object): # Robot display params ROBOT_HEIGHT_M = 0.5 ROBOT_WIDTH_M = 0.3 def __init__(self, map_size_pixels, map_size_meters, title, show_trajectory=False, zero_angle=0): # Put origin in center self._init(map_size_pixels, map_size_meters, title, -map_size_pixels / 2, show_trajectory, zero_angle) def display(self, x_m, y_m, theta_deg): self._setPose(x_m, y_m, theta_deg) return self._refresh() def _init(self, map_size_pixels, map_size_meters, title, shift, show_trajectory=False, zero_angle=0): # Store constants for update map_size_meters = map_size_meters self.map_size_pixels = map_size_pixels self.map_scale_meters_per_pixel = map_size_meters / float(map_size_pixels) # Create a byte array to display the map with a color overlay self.bgrbytes = bytearray(map_size_pixels * map_size_pixels * 3) # Make a nice big (10"x10") figure fig = plt.figure(figsize=(10,10), facecolor="white") fig.set_facecolor("white") # Added this line to make sure the map background is white plt.rcParams['figure.facecolor'] = 'white' # Store Python ID of figure to detect window close self.figid = id(fig) fig.canvas.set_window_title('SLAM') plt.title(title) # Use an "artist" to speed up map drawing self.img_artist = None # No vehicle to show yet self.vehicle = None # Create axes self.ax = fig.gca() self.ax.set_xlabel('X (m)') self.ax.set_ylabel('Y (m)') # self.ax.grid(False) # Hence we must relabel the axis ticks to show millimeters ticks = np.arange(shift,self.map_size_pixels+shift+100,100) labels = [str(self.map_scale_meters_per_pixel * tick) for tick in ticks] self.ax.set_xticklabels(labels) self.ax.set_yticklabels(labels) self.ax.set_facecolor('w') # Store previous position for trajectory self.prevpos = None self.showtraj = show_trajectory # We base the axis on pixels, to support displaying the map self.ax.set_xlim([shift, self.map_size_pixels+shift]) self.ax.set_ylim([shift, self.map_size_pixels+shift]) # Set up default shift for centering at origin shift = -self.map_size_pixels / 2 # print("shift = " + str(shift)) self.zero_angle = zero_angle self.start_angle = None self.rotate_angle = 0 def _setPose(self, x_m, y_m, theta_deg): ''' Sets vehicle pose: X: left/right (m) Y: forward/back (m) theta: rotation (degrees) ''' # If zero-angle was indicated, grab first angle to compute rotation if self.start_angle is None and self.zero_angle != 0: self.start_angle = theta_deg self.rotate_angle = self.zero_angle - self.start_angle # Rotate by computed angle, or zero if no zero-angle indicated d = self.rotate_angle a = np.radians(d) c = np.cos(a) s = np.sin(a) x_m,y_m = x_m*c-y_m*s, y_m*c+x_m*s # Erase previous vehicle image after first iteration if not self.vehicle is None: self.vehicle.remove() # Use a very short arrow shaft to orient the head of the arrow theta_rad = np.radians(theta_deg+d) c = np.cos(theta_rad) s = np.sin(theta_rad) l = 0.1 dx = l * c dy = l * s s = self.map_scale_meters_per_pixel self.vehicle=self.ax.arrow(x_m/s, y_m/s, dx, dy, head_width=Visualizer.ROBOT_WIDTH_M/s, head_length=Visualizer.ROBOT_HEIGHT_M/s, fc='r', ec='r') # Show trajectory if indicated currpos = self._m2pix(x_m,y_m) if self.showtraj and not self.prevpos is None: if (self.prevpos[0] != 0 and self.prevpos[1] != 0): self.ax.add_line(mlines.Line2D((self.prevpos[0],currpos[0]), (self.prevpos[1],currpos[1]))) self.prevpos = currpos def _refresh(self): # If we have a new figure, something went wrong (closing figure failed) if self.figid != id(plt.gcf()): return False # Added this line to make sure the map background is white plt.rcParams['figure.facecolor'] = 'white' plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['savefig.facecolor'] = 'white' # Redraw current objects without blocking plt.draw() now = datetime.datetime.now() # Create a directory named 'gif' inside the base directory plt.savefig('gif/slamMap' + '- ' + str(now.hour).zfill(2) + '- ' + str(now.minute).zfill(2) + '- ' + str(now.second).zfill(2) + '.png') # Refresh display, setting flag on window close or keyboard interrupt try: plt.pause(.01) # Arbitrary pause to force redraw return True except: return False return True def _m2pix(self, x_m, y_m): s = self.map_scale_meters_per_pixel return x_m/s, y_m/s class MapVisualizer(Visualizer): def __init__(self, map_size_pixels, map_size_meters, title='MapVisualizer', show_trajectory=False): # Put origin in lower left; disallow zero-angle setting Visualizer._init(self, map_size_pixels, map_size_meters, title, 0, show_trajectory, 0) def display(self, x_m, y_m, theta_deg, mapbytes): self._setPose(x_m, y_m, theta_deg) mapimg = np.reshape(np.frombuffer(mapbytes, dtype=np.uint8), (self.map_size_pixels, self.map_size_pixels)) # Pause to allow display to refresh plt.pause(.001) if self.img_artist is None: self.img_artist = self.ax.imshow(mapimg, cmap=colormap.gray) else: self.img_artist.set_data(mapimg) return self._refresh()
2.65625
3
code/nbs/reco-tut-asr-99-10-metrics-calculation.py
sparsh-ai/reco-tut-asr
0
12781853
#!/usr/bin/env python # coding: utf-8 # # Import libraries and data # # Dataset was obtained in the capstone project description (direct link [here](https://d3c33hcgiwev3.cloudfront.net/_429455574e396743d399f3093a3cc23b_capstone.zip?Expires=1530403200&Signature=FECzbTVo6TH7aRh7dXXmrASucl~Cy5mlO94P7o0UXygd13S~Afi38FqCD7g9BOLsNExNB0go0aGkYPtodekxCGblpc3I~R8TCtWRrys~2gciwuJLGiRp4CfNtfp08sFvY9NENaRb6WE2H4jFsAo2Z2IbXV~llOJelI3k-9Waj~M_&Key-Pair-Id=<KEY>)) and splited manually in separated csv files. They were stored at my personal github account (folder link [here](https://github.com/caiomiyashiro/RecommenderSystemsNotebooks/tree/master/data/capstone)) and you can download and paste inside your working directory in order for this notebook to run. # In[1]: import pandas as pd import numpy as np # ## Preprocess data # # Float data came with ',' in the csv and python works with '.', so it treated the number as text. In order to convert them to numbers, I first replaced all the commas by punct and then converted the columns to float. # In[2]: items = pd.read_csv('data/capstone/Capstone Data - Office Products - Items.csv', index_col=0) actual_ratings = pd.read_csv('data/capstone/Capstone Data - Office Products - Ratings.csv', index_col=0) content_based = pd.read_csv('data/capstone/Capstone Data - Office Products - CBF.csv', index_col=0) user_user = pd.read_csv('data/capstone/Capstone Data - Office Products - User-User.csv', index_col=0) item_item = pd.read_csv('data/capstone/Capstone Data - Office Products - Item-Item.csv', index_col=0) matrix_fact = pd.read_csv('data/capstone/Capstone Data - Office Products - MF.csv', index_col=0) pers_bias = pd.read_csv('data/capstone/Capstone Data - Office Products - PersBias.csv', index_col=0) items[['Availability','Price']] = items[['Availability','Price']].apply(lambda col: col.apply(lambda elem: str(elem).replace(',', '.'))).astype(float) # preprocess content_based = content_based.apply(lambda col: col.apply(lambda elem: str(elem).replace(',', '.'))).astype(float) user_user = user_user.apply(lambda col: col.apply(lambda elem: str(elem).replace(',', '.'))).astype(float) item_item = item_item.apply(lambda col: col.apply(lambda elem: str(elem).replace(',', '.'))).astype(float) matrix_fact = matrix_fact.apply(lambda col: col.apply(lambda elem: str(elem).replace(',', '.'))).astype(float) pers_bias = pers_bias.apply(lambda col: col.apply(lambda elem: str(elem).replace(',', '.'))).astype(float) print('items.shape = ' + str(items.shape)) print('actual_ratings.shape = ' + str(actual_ratings.shape)) print('content_based.shape = ' + str(content_based.shape)) print('user_user.shape = ' + str(user_user.shape)) print('item_item.shape = ' + str(item_item.shape)) print('matrix_fact.shape = ' + str(matrix_fact.shape)) print('pers_bias.shape = ' + str(pers_bias.shape)) actual_ratings.head() # # Class RecommenderEvaluator # # In order to become easier to evaluate the metrics, I created a class that receives all the original ratings and predicted ratings for every recommender system and defined functions to extract all the metrics established in section 1 of the capstone report. Lets take a look at a summary of the class before looking at the code: # - **Constructor (init)**: receive all recommendation algorithms, besides the actual rating list and the list of items. All data is contained in the data downloaded from Coursera. Besides storing all recommendation algorithms, the constructor also calculate the 20 most frequent items, which is used in the popularity metric calculation. # # - **get_observed_ratings**: as the ratings matrix is sparse, this method only returns the items a user with id userId has purchased. # # - **get_top_n**: by ordering all the predicted ratings for each recommendation algorithm, we can extract what would be their 'top' recommendation for a given user. Given a parameter $n$, we can then return all the top $n$ recommendations for all the recommendation algorithms. # # - **rmse**: by comparing the observed ratings a given user has given to an item and the predicted rating an algorithm has defined for a user, we can have an idea of how much error the algorithm is predicting the user's ratings. Here we don't work with lists, as usually each user has rated only a few amount of items. So here we get all the items the user has rated, recover these items from the algorithms' recommendations and them calculate the error. # # - **nDCG**: By looking at lists now, we can have an idea of how optimal the ranked lists are. By using the scoring factor defined in the report, we can calculate the overall DCG for the recommenders' lists and then normalise them using the concepts of the nDCG. # # - **Price and avalaibility diversity**: Diversity metric which evaluate how the recommended items' prices vary, *i.e.*, how is the standard deviation of the price. The higher, the better in this case. The same is for the availability index, but here, with higher standard deviations, it means the models are recommending items which are present and not present in local stores. # # - **Popularity**: A popular recommender tries to recommend items which has a high chance of being purchased. In the formulation of this metric, an item has a high chance of being purchased if lots of people have purchased them. In the class constructor, we take the observed ratings data and the item list and select which were the top $n$ (standard = 20) most purchased data. In a recommendation list, we return the ration of how many items were inside this list of top $n$ ones. # In[3]: class RecommenderEvaluator: def __init__(self, items, actual_ratings, content_based, user_user, item_item, matrix_fact, pers_bias): self.items = items self.actual_ratings = actual_ratings # static data containing the average score given by each user self.average_rating_per_userid = actual_ratings.apply(lambda row: np.average(row[~np.isnan(row)])) self.content_based = content_based self.user_user = user_user self.item_item = item_item self.matrix_fact = matrix_fact self.pers_bias = pers_bias # aggregate list. Makes for loops among all recommenders' predictions easier self.recommenders_list = [self.content_based, self.user_user, self.item_item, self.matrix_fact,self.pers_bias] self.recommenders_list_names = ['content_based', 'user_user', 'item_item', 'matrix_fact','pers_bias'] # Used for item popularity metric. # Calculate the 20 most popular items (item which most of the customers bought) N_LIM = 20 perc_users_bought_item = self.actual_ratings.apply(lambda item: np.sum(~np.isnan(item)), axis=0)/actual_ratings.shape[1] sort_pop_items = np.argsort(perc_users_bought_item)[::-1] self.pop_items = perc_users_bought_item.iloc[sort_pop_items][:N_LIM].index.values.astype(np.int) def get_observed_ratings(self, userId): """ Returns all the items a given user evaluated and their ratings. Used mainly by all the metrics calculation :parameter: userId - user id :return: array of rated items. Index is the item id and value is the item rating """ userId = str(userId) filtered_ratings = self.actual_ratings[userId] rated_items = filtered_ratings[~np.isnan(filtered_ratings)] return rated_items def get_top_n(self, userId, n): """ Get the top n recommendations for every recommender in the list given a user id :parameter: userId - user id :parameter: n - max number of recommendations to return :return: dictionary where the key is the recommender's name and the value is an array of size n for the top n recommnendations. """ userId = str(userId) predicted_ratings = dict() for recommender, recommender_name in zip(self.recommenders_list,self.recommenders_list_names): item_ids = recommender[userId].argsort().sort_values()[:n].index.values predicted_ratings[recommender_name] = item_ids return predicted_ratings def rmse(self, userId): """ Root Mean Square Error of the predicted and observed values between the recommender's prediction and the actual ratings :parameter: userId - user id :return: dataframe of containing the rmse from all recommenders given user id """ userId = str(userId) observed_ratings = self.get_observed_ratings(userId) rmse_list = {'rmse': []} for recommender in self.recommenders_list: predicted_ratings = recommender.loc[observed_ratings.index, userId] rmse_list['rmse'].append(np.sqrt(np.average((predicted_ratings - observed_ratings)**2))) rmse_list = pd.DataFrame(rmse_list, index = self.recommenders_list_names) return rmse_list def nDCG(self, userId, top_n = 5, individual_recommendation = None): """ Normalised Discounted Cumulative Gain for all recommenders given user id :parameter: userId - user id :return: dataframe of containing the nDCG from all recommenders given user id """ ri = self.get_observed_ratings(userId) if(individual_recommendation is None): topn = self.get_top_n(userId,top_n) results_pandas_index = self.recommenders_list_names else: topn = individual_recommendation results_pandas_index = list(individual_recommendation.keys()) # 1st step: Given recommendations, transform list into scores (see score transcriptions in the capstone report) scores_all = [] for name, item_list in topn.items(): scores = np.empty_like(item_list) # initialise 'random' array scores[:] = -10 ########################### # check which items returned by the recommender is_already_rated = np.isin(item_list, ri.index.values) # the user already rated. Items users didn't rate scores[~is_already_rated] = 0 # receive score = 0 for index, score in enumerate(scores): if(score != 0): # for each recommended items the user rated if(ri[item_list[index]] < self.average_rating_per_userid[userId] - 1): # score accordingly the report scores[index] = -1 elif((ri[item_list[index]] >= self.average_rating_per_userid[userId] - 1) & (ri[item_list[index]] < self.average_rating_per_userid[userId] + 0.5)): scores[index] = 1 else: scores[index] = 2 scores_all.append(scores) # append all the transformed scores scores_all # 2nd step: Given scores, calculate the model's DCG, ideal DCG and then nDCG nDCG_all = dict() for index_model, scores_model in enumerate(scores_all): # for each model model_DCG = 0 # calculate model's DCG for index, score in enumerate(scores_model): # index_ = index + 1 # model_DCG = model_DCG + score/np.log2(index_ + 1) # ideal_rank_items = np.sort(scores_model)[::-1] # calculate model's ideal DCG ideal_rank_DCG = 0 # for index, ideal_score in enumerate(ideal_rank_items): # index_ = index + 1 # ideal_rank_DCG = ideal_rank_DCG + ideal_score/np.log2(index_ + 1) # if((ideal_rank_DCG == 0) | (np.abs(ideal_rank_DCG) < np.abs(model_DCG))): # if nDCG is 0 or only negative scores came up nDCG = 0 else: # calculate final nDCG when ideal DCG is != 0 nDCG = model_DCG/ideal_rank_DCG nDCG_all[results_pandas_index[index_model]] = nDCG # save each model's nDCG in a dict # convert it to dataframe result_final = pd.DataFrame(nDCG_all, index=range(1)).transpose() result_final.columns = ['nDCG'] return result_final def price_diversity(self,userId,top_n = 5,individual_recommendation = None): """ Mean and standard deviation of the price of the top n products recommended by each algorithm. Intuition for a high price wise diversity recommender is to have a high price standard deviation :parameter: userId - user id :return: dataframe of containing the price's mean and standard deviation from all recommenders given user id """ if(individual_recommendation is None): topn = self.get_top_n(userId,top_n) else: topn = individual_recommendation stats = pd.DataFrame() for key, value in topn.items(): data_filtered = self.items.loc[topn[key]][['Price']].agg(['mean','std']).transpose() data_filtered.index = [key] stats = stats.append(data_filtered) return stats def availability_diversity(self,userId,top_n = 5,individual_recommendation = None): """ Mean and standard deviation of the availabity index of the top n products recommended by each algorithm. Intuition for a high availabity diversity is to have a small mean value in the availabity index :parameter: userId - user id :return: dataframe of containing the availabity index's mean and standard deviation from all recommenders given user id """ if(individual_recommendation is None): topn = self.get_top_n(userId,top_n) else: topn = individual_recommendation stats = pd.DataFrame() for key, value in topn.items(): data_filtered = self.items.loc[topn[key]][['Availability']].agg(['mean','std']).transpose() data_filtered.index = [key] stats = stats.append(data_filtered) return stats def popularity(self, userId,top_n = 5,individual_recommendation = None): """ Return the ratio of how many items of the top n items are among the most popular purchased items. Default is the 20 most purchased items. :parameter: userId - user id :return: dataframe of containing ratio of popular items in the recommended list from all recommenders given user id """ if(individual_recommendation is None): topn = self.get_top_n(userId,top_n) results_pandas_index = self.recommenders_list_names else: topn = individual_recommendation results_pandas_index = list(individual_recommendation.keys()) results = {'popularity': []} for recommender, recommendations in topn.items(): popularity = np.sum(np.isin(recommendations,self.pop_items)) results['popularity'].append(popularity) return pd.DataFrame(results,index = results_pandas_index) def precision_at_n(self, userId, top_n = 5, individual_recommendation = None): if(individual_recommendation is None): topn = self.get_top_n(userId,top_n) results_pandas_index = self.recommenders_list_names else: topn = individual_recommendation results_pandas_index = list(individual_recommendation.keys()) observed_ratings = self.get_observed_ratings(userId).index.values precisions = {'precision_at_'+str(top_n): []} for recommender, recommendations in topn.items(): precisions['precision_at_'+str(top_n)].append(np.sum(np.isin(recommendations, observed_ratings))/top_n) return pd.DataFrame(precisions,index = results_pandas_index) # # Test methods: # # Just to have an idea of the output of each method, lets call all them with a test user. At the next section we will calculate these metrics for all users. # In[4]: userId = '64' re = RecommenderEvaluator(items, actual_ratings, content_based, user_user, item_item, matrix_fact, pers_bias) # ## Test RMSE # In[5]: re.rmse(userId) # ## Test nDCG # In[6]: re.nDCG(userId) # ## Test Diversity - Price and Availability # In[7]: re.price_diversity(userId) # In[8]: re.availability_diversity(userId) # ## Test Popularity # In[9]: re.popularity(userId) # ## Test Precision@N # In[10]: re.precision_at_n(userId) # # Average metrics by all users # # Espefically for user 907, the recommendations from the user user came with all nulls (original dataset). This specifically impacted the RMSE calculation, as one Nan damaged the entire average calculation. So specifically for RMSE we did a separate calculation section. All the other metrics are going the be calculated in the next code block. # In[11]: re = RecommenderEvaluator(items, actual_ratings, content_based, user_user, item_item, matrix_fact, pers_bias) i = 0 count = np.array([0,0,0,0,0]) for userId in actual_ratings.columns: if(userId == '907'): rmse_recommenders = re.rmse(userId).fillna(0) else: rmse_recommenders = re.rmse(userId) count = count + rmse_recommenders['rmse'] # as we didn't use user 907 for user user, divide it by the number of users - 1 denominator = [len(actual_ratings.columns)] * 5 denominator[1] = len(actual_ratings.columns) - 1 print('Average RMSE for all users') count/ denominator # In[12]: count_nDCG = np.array([0,0,0,0,0]) count_diversity_price = np.ndarray([5,2]) count_diversity_availability = np.ndarray([5,2]) count_popularity = np.array([0,0,0,0,0]) count_precision_at_5 = np.array([0,0,0,0,0]) for userId in actual_ratings.columns: nDCG_recommenders = re.nDCG(userId) count_nDCG = count_nDCG + nDCG_recommenders['nDCG'] diversity_price_recommenders = re.price_diversity(userId) count_diversity_price = count_diversity_price + diversity_price_recommenders[['mean','std']] diversity_availability_recommenders = re.availability_diversity(userId) count_diversity_availability = count_diversity_availability + diversity_availability_recommenders[['mean','std']] popularity_recommenders = re.popularity(userId) count_popularity = count_popularity + popularity_recommenders['popularity'] precision_recommenders = re.precision_at_n(userId) count_precision_at_5 = count_precision_at_5 + precision_recommenders['precision_at_5'] print('\n---') print('Average nDCG') print('---\n') print(count_nDCG/len(actual_ratings.columns)) print('\n---') print('Average Price - Diversity Measure') print('---\n') print(count_diversity_price/len(actual_ratings.columns)) print('\n---') print('Average Availability - Diversity Measure') print('---\n') print(count_diversity_availability/len(actual_ratings.columns)) print('\n---') print('Average Popularity') print('---\n') print(count_popularity/len(actual_ratings.columns)) print('---\n') print('Average Precision@5') print('---\n') print(count_precision_at_5/len(actual_ratings.columns)) # # Final Analysis # # In terms of **RMSE**, the user-user collaborative filtering showed to be the most effective, despite it not being significantly better. # # For nDCG rank score, again user user and now item item collaborative filtering were the best. # # In terms of price diversity, the item item algorith was the most diverse, providing products varying ~32 dollars from the mean item price list. Matrix factorisation and user user follow right behind, with price standard deviation around 25 dollars. An interesting factor here was the *pers_bias* algorithm, as it recommended basically cheap products with a low standard deviation. # # For the availabity index, all the algorithms besides the user user managed to recommend items not so present in the local stores **together** with items present in local stores, as we can see they also provided items with availability index high (high standard deviation). # # In terms of popularity, no algorithm actually managed to obtain good scores in the way we defined. So, if the popularity is focused in the future, we can either change the popularity concept or improve mechanics in the recommender so it predict higher scores for the most popular items in the store. # # After this evaluation, it seemed to us that the item-item recommender system had an overall better performance, highlighted in terms of its diversity scores. Unfortunately, the items that item item recommender has suggested are in overall pricy, and we can check if there is any mixture possibility with the pers_bias algorithm, as it really indicated cheap prices and a low price standard deviation. Matrix factorization performed good as well but it didn't outperform any of the other recommenders. # # Hibridization Techniques - Part III # # We are trying four different types of hibridization here. # # 1. Linear ensemble # 2. Non linear ensemble # 3. Top 1 from each recommender # 4. Recommender switching # # The first two options approach the recommender's performance in terms of how good it predicts the users' ratings, so its only evaluation will be in terms of RMSE. # # The third approach have the intuition that, if we get the top 1 recommendation from each algorithm, the resulting 5 item list will have a better performance in terms of identyfing 'good' items to users. In this case, we defined the good items if the recommender suggested an already bought item for an user. Therefore, the final measurement of this hibridization mechanism is through the precision@5, as we end up with a 5 item list. # # The final mixing algorithm has the underlying theory of how collaborative filtering mechanisms perform with items that had not enough users/items in its calculations. As a well known weakness of these recommenders, the idea was to check how many items we would affect if we established a threshold of enough data in order for us to use a collaborative filtering. Otherwise, if the item doesn't have enough support in form of users' ratings we could have a support of a content based recommendation, or even, in last case, a non personalised one. # # # ## Dataset Creation and User Sample Definition # # ### Dataset # # For the first and second approach, we need another perspective on the data. The dataset contains all the existing ratings from all users and concatenates all the predictions made the 5 traditional recommenders. The idea is to use the observed rating as target variable and all recommenders' predictions as dependent variable, *i.e.* treat this as a regression problems. # In[13]: obs_ratings_list = [] content_based_list = [] user_user_list = [] item_item_list = [] matrix_fact_list = [] pers_bias_list = [] re = RecommenderEvaluator(items, actual_ratings, content_based, user_user, item_item, matrix_fact, pers_bias) for userId in actual_ratings.columns: observed_ratings = re.get_observed_ratings(userId) obs_ratings_list.extend(observed_ratings.values) content_based_list.extend(content_based.loc[observed_ratings.index, userId].values) user_user_list.extend(user_user.loc[observed_ratings.index, userId].values) item_item_list.extend(item_item.loc[observed_ratings.index, userId].values) matrix_fact_list.extend(matrix_fact.loc[observed_ratings.index, userId].values) pers_bias_list.extend(pers_bias.loc[observed_ratings.index, userId].values) dataset = pd.DataFrame({'rating': obs_ratings_list, 'content_based':content_based_list, 'user_user': user_user_list, 'item_item':item_item_list, 'matrix_fact':matrix_fact_list,'pers_bias':pers_bias_list}) dataset = dataset.dropna() dataset.head() # ### In order to have an idea of the results, let's choose 3 users randomly to show the predictions using the new hybrid models # In[14]: np.random.seed(42) sample_users = np.random.choice(actual_ratings.columns, 3).astype(str) print('sample_users: ' + str(sample_users)) # ### Get recommenders' predictions for sample users in order to create input for ensemble models (hybridization I and II) # In[15]: from collections import OrderedDict df_sample = pd.DataFrame() for user in sample_users: content_based_ = re.content_based[user] user_user_ = re.user_user[user] item_item_ = re.item_item[user] matrix_fact_ = re.matrix_fact[user] pers_bias_ = re.pers_bias[user] df_sample = df_sample.append(pd.DataFrame(OrderedDict({'user':user,'item':actual_ratings.index.values,'content_based':content_based_, 'user_user':user_user_, 'item_item':item_item_, 'matrix_fact':matrix_fact_,'pers_bias':pers_bias_})), ignore_index=True) df_sample.head() # # ## Focus on Performance (RMSE) I - Linear Model # In[16]: from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score linear = LinearRegression() print('RMSE for linear ensemble of recommender systems:') np.mean(cross_val_score(linear, dataset.drop('rating', axis=1), dataset['rating'], cv=5)) # ### Predictions for sample users: Creating top 5 recommendations for sample users # In[17]: pred_cols = ['content_based','user_user','item_item','matrix_fact','pers_bias'] predictions = linear.fit(dataset.drop('rating', axis=1), dataset['rating']).predict(df_sample[pred_cols]) recommendations = pd.DataFrame(OrderedDict({'user':df_sample['user'], 'item':df_sample['item'], 'predictions':predictions})) recommendations.groupby('user').apply(lambda df_user : df_user.loc[df_user['predictions'].sort_values(ascending=False)[:5].index.values]) # ## Focus on Performance (RMSE) II - Emsemble # In[18]: from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(random_state=42) print('RMSE for non linear ensemble of recommender systems:') np.mean(cross_val_score(rf, dataset.drop('rating', axis=1), dataset['rating'], cv=5)) # ### Predictions for sample users: # In[19]: predictions = rf.fit(dataset.drop('rating', axis=1), dataset['rating']).predict(df_sample[pred_cols]) recommendations = pd.DataFrame(OrderedDict({'user':df_sample['user'], 'item':df_sample['item'], 'predictions':predictions})) recommendations.groupby('user').apply(lambda df_user : df_user.loc[df_user['predictions'].sort_values(ascending=False)[:5].index.values]) # ## Focus on Recommendations - Top 1 from each Recommender # # With the all top 1 recommender, we can evaluate its performance not just with RMSE, but all the list metrics we evaluated before. As a business constraint, we will also pay more attention to the *precision@5* metric, as a general information on how good is the recommender on providing suggestions that the user will buy, or already bought in this case. # The majority of metrics were in the same scale as the best metrics in the all models comparison. However, it's good to highlight the the top 1 all recommender had the best *precision@5* metric among all recommender, showing to be a **good suitable hibridization mechanism**. # In[20]: count_nDCG = np.array([0]) count_diversity_price = np.ndarray([1,2]) count_diversity_availability = np.ndarray([1,2]) count_popularity = np.array([0]) count_precision = np.array([0]) for userId in actual_ratings.columns: top_n_1 = re.get_top_n(userId,1) user_items = {} user_items['top_1_all'] = [a[0] for a in top_n_1.values()] nDCG_recommenders = re.nDCG(userId, individual_recommendation = user_items) count_nDCG = count_nDCG + nDCG_recommenders['nDCG'] diversity_price_recommenders = re.price_diversity(userId, individual_recommendation = user_items) count_diversity_price = count_diversity_price + diversity_price_recommenders[['mean','std']] diversity_availability_recommenders = re.availability_diversity(userId, individual_recommendation = user_items) count_diversity_availability = count_diversity_availability + diversity_availability_recommenders[['mean','std']] popularity_recommenders = re.popularity(userId, individual_recommendation = user_items) count_popularity = count_popularity + popularity_recommenders['popularity'] precision_recommenders = re.precision_at_n(userId, individual_recommendation = user_items) count_precision = count_precision + precision_recommenders['precision_at_5'] print('\n---') print('Average nDCG') print('---\n') print(count_nDCG/len(actual_ratings.columns)) print('\n---') print('Average Price - Diversity Measure') print('---\n') print(count_diversity_price/len(actual_ratings.columns)) print('\n---') print('Average Availability - Diversity Measure') print('---\n') print(count_diversity_availability/len(actual_ratings.columns)) print('\n---') print('Average Popularity') print('---\n') print(count_popularity/len(actual_ratings.columns)) print('\n---') print('Average Precision@5') print('---\n') print(count_precision/len(actual_ratings.columns)) # ### Predictions for sample users: # In[21]: results = {} for user_sample in sample_users: results[user_sample] = [a[0] for a in list(re.get_top_n(user_sample, 1).values())] results # ## Focus on Recommendations - Switching algorithm # # ### Can we use a Content Based Recommender for items with less evaluations? # # We can see in the cumulative histogram that only around 20% of the rated items had 10 or more ratings. This signals us that maybe we can prioritize the use of a content based recommender or even a non personalised one for the majority of the items which don't have a sufficient amount of ratings in order to make the collaborative filtering algorithms to be stable. # In[23]: import matplotlib.pyplot as plt item_nbr_ratings = actual_ratings.apply(lambda col: np.sum(~np.isnan(col)), axis=1) item_max_nbr_ratings = item_nbr_ratings.max() range_item_max_nbr_ratings = range(item_max_nbr_ratings+1) plt.figure(figsize=(15,3)) plt.subplot(121) nbr_ratings_items = [] for i in range_item_max_nbr_ratings: nbr_ratings_items.append(len(item_nbr_ratings[item_nbr_ratings == i])) plt.plot(nbr_ratings_items) plt.xlabel('Number of ratings') plt.ylabel('Amount of items') plt.title('Histogram of amount of ratings') plt.subplot(122) cum_nbr_ratings_items = [] for i in range(len(nbr_ratings_items)): cum_nbr_ratings_items.append(np.sum(nbr_ratings_items[:i])) cum_nbr_ratings_items = np.array(cum_nbr_ratings_items) plt.plot(cum_nbr_ratings_items/actual_ratings.shape[0]) plt.xlabel('Number of ratings') plt.ylabel('Cumulative distribution') plt.title('Cumulative histogram of amount of ratings'); # In[ ]:
3.109375
3
src/scmdata/__init__.py
chrisroadmap/scmdata
2
12781854
""" scmdata, simple data handling for simple climate model data """ from ._version import get_versions # isort:skip __version__ = get_versions()["version"] del get_versions from scmdata.run import ScmRun, run_append # noqa: F401, E402
1.335938
1
UNIQ/actquant.py
aqui-tna/darts-UNIQ
6
12781855
import torch.nn as nn from UNIQ.quantize import act_quantize, act_noise, check_quantization import torch.nn.functional as F class ActQuant(nn.Module): def __init__(self, quatize_during_training=False, noise_during_training=False, quant=False, noise=False, bitwidth=32): super(ActQuant, self).__init__() self.quant = quant self.noise = noise self.bitwidth = bitwidth self.quatize_during_training = quatize_during_training self.noise_during_training = noise_during_training def update_stage(self, quatize_during_training=False, noise_during_training=False): self.quatize_during_training = quatize_during_training self.noise_during_training = noise_during_training def forward(self, input): if self.quant and (not self.training or (self.training and self.quatize_during_training)): assert (isinstance(self.bitwidth, int)) x = act_quantize.apply(input, self.bitwidth) elif self.noise and self.training and self.noise_during_training: assert (False) x = act_noise.apply(input, bitwidth=self.bitwidth, training=self.training) else: x = F.relu(input) # print('Activation is quantized to {} values'.format(check_quantization(x))) return x
2.421875
2
src/crumblebundle/input/keycodes.py
Peilonrayz/crumblebundle
0
12781856
class _KeyCode: __slots__ = ("_windows", "_unix") raw = False def __init__(self, windows, unix): self._windows = windows self._unix = unix def __repr__(self): return "_KeyCode(windows={self._windows!r}, unix={self._unix!r})".format( self=self ) class KeyCodes: BACKSPACE = _KeyCode(windows="\x08", unix="") TAB = _KeyCode(windows="\t", unix="") ENTER = _KeyCode(windows="\r", unix="") ESCAPE = _KeyCode(windows="\x1b", unix="") SPACE = _KeyCode(windows=" ", unix="") PAGE_UP = _KeyCode(windows="\xe0I", unix="") PAGE_DOWN = _KeyCode(windows="\xe0Q", unix="") END = _KeyCode(windows="\xe0O", unix="") HOME = _KeyCode(windows="\xe0G", unix="") LEFT_ARROW = _KeyCode(windows="\xe0K", unix="") UP_ARROW = _KeyCode(windows="\xe0H", unix="") RIGHT_ARROW = _KeyCode(windows="\xe0M", unix="") DOWN_ARROW = _KeyCode(windows="\xe0P", unix="") INSERT = _KeyCode(windows="\xe0R", unix="") DELETE = _KeyCode(windows="\xe0S", unix="") F1 = _KeyCode(windows="\x00;", unix="") F2 = _KeyCode(windows="\x00<", unix="") F3 = _KeyCode(windows="\x00=", unix="") F4 = _KeyCode(windows="\x00>", unix="") F5 = _KeyCode(windows="\x00?", unix="") F6 = _KeyCode(windows="\x00@", unix="") F7 = _KeyCode(windows="\x00A", unix="") F8 = _KeyCode(windows="\x00B", unix="") F9 = _KeyCode(windows="\x00C", unix="") F10 = _KeyCode(windows="\x00D", unix="") F11 = _KeyCode(windows="\xe0\x85", unix="") F12 = _KeyCode(windows="\xe0\x86", unix="") KEYPAD_0 = _KeyCode(windows="\x00R", unix="") KEYPAD_1 = _KeyCode(windows="\x00O", unix="") KEYPAD_2 = _KeyCode(windows="\x00P", unix="") KEYPAD_3 = _KeyCode(windows="\x00Q", unix="") KEYPAD_4 = _KeyCode(windows="\x00K", unix="") # KEYPAD_5 = _KeyCode(windows='\x00', unix='') KEYPAD_6 = _KeyCode(windows="\x00M", unix="") KEYPAD_7 = _KeyCode(windows="\x00G", unix="") KEYPAD_8 = _KeyCode(windows="\x00H", unix="") KEYPAD_9 = _KeyCode(windows="\x00I", unix="") KEYPAD_DOT = _KeyCode(windows="\x00S", unix="") INTERRUPT = _KeyCode(windows="\x03", unix="") class RawInput: __slots__ = ("value",) raw = True def __init__(self, value): self.value = value
3.203125
3
star_tides/services/databases/mongo/schemas/project_schema.py
STAR-TIDES/kb
2
12781857
<reponame>STAR-TIDES/kb ''' star_tides.services.databases.mongo.schemas.project_schema ''' from marshmallow.utils import EXCLUDE from marshmallow import Schema, fields from marshmallow_enum import EnumField from star_tides.services.databases.mongo.schemas import camelcase from star_tides.services.databases.mongo.schemas.location_schema import LocationSchema from star_tides.services.databases.mongo.schemas.engagement_schema import EngagementSchema from star_tides.services.databases.mongo.models.project_status import ProjectStatus class ProjectSchema(Schema): '''ProjectSchema is the Marshmallow schema subclass for Projects.''' name = fields.String(required=True) location = fields.Nested(LocationSchema, required=True) engagement = fields.Nested(EngagementSchema, required=True) contacts = fields.List(fields.String(), required=False) summary = fields.String(required=True) grants = fields.List(fields.String(), required=False) solution_costs = fields.String(required=False, missing=None) # TODO(ljr): Add this field back in once the Model/MongoEngine bug is fixed. # updates = fields.List(fields.Nested(UpdateSchema), # required=False, missing=[]) notes = fields.String(required=False, missing=None) status = EnumField(ProjectStatus, required=True) class Meta: unknown = EXCLUDE def on_bind_field(self, field_name: str, field_obj: fields.Field) -> None: field_obj.data_key = camelcase(field_obj.data_key or field_name)
2.015625
2
test/test_assertions.py
maxtremaine/sudoku_solver.py
0
12781858
<gh_stars>0 from unittest import TestCase from src.assertions import is_sudoku_file, is_sudoku_string class TestAssertions(TestCase): def test_is_sudoku_file(self): valid_file = '\n'.join([ ' abc def ghi', '1 7__|_4_|__1', '2 __1|___|2__', '3 _6_|2_9|_8_', ' -----------', '4 __3|5_4|9__', '5 1__|___|__4', '6 __2|1_8|5__', ' -----------', '7 _1_|9_6|_7_', '8 __8|___|4__', '9 6__|_2_|__8']) invalid_file = '\n'.join([ ' wbc def ghi', '1 7__|_4_|__1', '2 __1|___|2__', '3 _6_|2_9|_8_', ' -----------', '4 __3|5_4|9__', '5 1__|___|__4', '6 __2|1_8|5__', ' -----------', '7 _1_|9_6|_7_', '8 __8|___|4__', '9 6__|_2_|__8 ']) self.assertTrue(is_sudoku_file(valid_file)) self.assertFalse(is_sudoku_file(invalid_file)) def test_is_sudoku_string(self): valid_puzzle = '________1________2________3________4________5________6________7________8________9' long_puzzle = '________1________2________3________4________5________6________7________8________9_' improper_chars = '________1________2___x____3________4____a___5________6________7________8________9_' self.assertTrue(is_sudoku_string(valid_puzzle)) self.assertFalse(is_sudoku_string(long_puzzle)) self.assertFalse(is_sudoku_string(improper_chars))
3.125
3
badwing/firework.py
kfields/badwing
3
12781859
import random import arcade from badwing.constants import * from badwing.effect import Effect from badwing.particle import AnimatedAlphaParticle #TODO: Some of this will go up into ParticleEffect class Firework(Effect): def __init__(self, position=(0,0), r1=30, r2=40): super().__init__(position) self.radius = random.randint(r1, r2) self.emitters = [] self.make_sparks(position) def draw(self): for e in self.emitters: e.draw() def update(self, delta_time): # prevent list from being mutated (often by callbacks) while iterating over it emitters_to_update = self.emitters.copy() # update for e in emitters_to_update: e.update() # remove emitters that can be reaped to_del = [e for e in emitters_to_update if e.can_reap()] for e in to_del: self.emitters.remove(e) def make_sparks(self, position): spark_texture = random.choice(SPARK_TEXTURES) sparks = arcade.Emitter( center_xy=position, emit_controller=arcade.EmitBurst(self.radius), particle_factory=lambda emitter: AnimatedAlphaParticle( filename_or_texture=spark_texture, change_xy=arcade.rand_in_circle((0.0, 0.0), 9.0), start_alpha=255, duration1=random.uniform(0.6, 1.0), mid_alpha=0, duration2=random.uniform(0.1, 0.2), end_alpha=255, mutation_callback=firework_spark_mutator ) ) self.emitters.append(sparks) def firework_spark_mutator(particle: arcade.FadeParticle): """mutation_callback shared by all fireworks sparks""" # gravity particle.change_y += -0.03 # drag particle.change_x *= 0.92 particle.change_y *= 0.92
2.734375
3
cutter_without_UI.py
Kameron2442/css-cutter
0
12781860
read_file = "YOUR_FILE.css" # The path of the file which will be cut to_keep = ".navbar-" # The class name or prefix of class names that you want to keep file = open(read_file, "r") new_file = "" # String to hold the style rules that are kept get_styles = 0 # Flag for if to_keep in found in a line get_media = 0 # Flag for if a media rule is present flag = 0 # Flag gets activated if a "}" has already been claimed by a previous if-statment for belonging to a style rule. In short, it checks if the "}" belongs to a media rule. for line in file: flag = 0 if get_styles == 1 and "}" not in line: new_file += line if to_keep in line: new_file += line get_styles = 1 if get_styles == 1 and "}" in line: new_file += line get_styles = 0 flag = 1 if to_keep not in line and "{" in line: get_styles = -1 if get_styles == -1 and "}" in line: get_styles = 0 flag = 1 if "media" in line: new_file += line get_media = 1 if get_media == 1 and "}" in line and get_styles == 0 and flag == 0: new_file += line get_media = 0 print(new_file) file = open("output.css", "w") file.write(new_file) file.close()
3.703125
4
tf_quant_finance/math/qmc/__init__.py
slowy07/tf-quant-finance
3,138
12781861
# Lint as: python3 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RQMC support.""" from tf_quant_finance.math.qmc import utils from tf_quant_finance.math.qmc.digital_net import digital_net_sample from tf_quant_finance.math.qmc.digital_net import random_digital_shift from tf_quant_finance.math.qmc.digital_net import random_scrambling_matrices from tf_quant_finance.math.qmc.digital_net import scramble_generating_matrices from tf_quant_finance.math.qmc.lattice_rule import lattice_rule_sample from tf_quant_finance.math.qmc.lattice_rule import random_scrambling_vectors from tf_quant_finance.math.qmc.sobol import sobol_generating_matrices from tf_quant_finance.math.qmc.sobol import sobol_sample from tensorflow.python.util.all_util import remove_undocumented # pylint: disable=g-direct-tensorflow-import _allowed_symbols = [ 'digital_net_sample', 'lattice_rule_sample', 'random_digital_shift', 'random_scrambling_matrices', 'random_scrambling_vectors', 'scramble_generating_matrices', 'sobol_generating_matrices', 'sobol_sample', 'utils', ] remove_undocumented(__name__, _allowed_symbols)
1.609375
2
apex-html-logs.py
ktorstensson/apex-html-logs
0
12781862
<filename>apex-html-logs.py #!/usr/bin/env python # coding: utf-8 ''' apex-html-logs.py Script to summarise APEX html observing logs. <EMAIL> ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import with_statement import argparse import numpy as np import pandas as pd import re from os.path import expanduser from getpass import getuser from glob import glob def read_one_log(filename): '''Read a html obslog to pandas DataFrame Parameters ---------- filename : string obslog html file Returns ------- df : pandas.DataFrame The obslog data ''' print('Reading obslog:', filename) df = pd.read_html(filename, header=0)[0] df['UTC'] = pd.to_datetime(df.UTC, format='%Y-%m-%dU%H:%M:%S') cancelled = df[df['Scan duration'] == -999] df.loc[cancelled.index, 'Scan duration'] = 0 df['Scan duration'] = pd.to_timedelta(df['Scan duration'], unit='s') df['mm PWV'] = df[['mm PWV']].astype(str) df.drop(df[df.Source.isin(['PARK', 'ZENITH', 'RECYCLE', 'RECYCLING']) | (df['mm PWV'] == 'Shutter closed')].index, inplace=True) df['mm PWV'] = df[['mm PWV']].apply(pd.to_numeric) return df def get_line_name(string): '''Get first white spaced delimited part of string''' return string.split()[0] def read_obslogs(dir=None): '''Read APEX html obslogs Parameters ---------- dir : string (optional) Directory with html log files, defaults to ~/obslogs/ Returns ------- df : pandas.DataFrame The obslog data ''' if dir is None: dir = expanduser('~/obslogs/') logs = glob(dir + '*.html') print('') df = read_one_log(logs[0]) for log in logs[1:]: df = pd.concat([df, read_one_log(log)], axis=0) df['Line'] = df['Mol. line'].apply(lambda x: x.split()[0]) df.rename(columns=(lambda x: re.sub('[().]', '', x)), inplace=True) df.rename(columns=(lambda x: re.sub('[ -]', '_', x)), inplace=True) df.rename(columns=(lambda x: x.lower()), inplace=True) df.set_index('utc', inplace=True) df.sort_index(inplace=True) df.reset_index(inplace=True) return df def parse_inputs(): '''Parse optional catalogs and obslogs dir''' parser = argparse.ArgumentParser(description='Summarises APEX html obslogs') parser.add_argument('-s', '--source', type=str, help='Source name') args = parser.parse_args() return args.source def main(): source = parse_inputs() df = read_obslogs(dir=None) if source is None: dfs = df.groupby(['scan_status', 'source', 'line'])[['scan_duration']].sum() else: dfs = df[df.source == source].groupby(['scan_status', 'line'])[['scan_duration']].sum() print(dfs) return df, dfs if __name__ == '__main__': df, dfs = main()
2.71875
3
app/api/v1/routes.py
antonnifo/StackOverflow-lite
8
12781863
"""all routes""" from flask import Blueprint from flask_restful import Api from .questions.views import Questions, Question, UpdateTitle, UpdateQuestion VERSION_UNO = Blueprint('api', __name__, url_prefix='/api/v1') API = Api(VERSION_UNO) API.add_resource(Questions, '/questions') API.add_resource(Question, '/questions/<int:question_id>') API.add_resource(UpdateTitle, '/questions/<int:question_id>/title') API.add_resource(UpdateQuestion, '/questions/<int:question_id>/question')
2.296875
2
cwe_relation_cve/cwe_wrapper.py
pawlaczyk/sarenka_tools
3
12781864
<gh_stars>1-10 class CWEWrapper: def __init__(self, cwe_id, description): self.__cwe_id = cwe_id self.__description = description self.__cve_ids_list = [] def add_cve(self, cve_id): self.__cve_ids_list.extend(cve_id) @property def cve_ids(self): return self.__cve_ids_list @property def cwe_id(self): return self.__cwe_id @property def description(self): return self.__description def __str__(self): return f"CWE_ID: {self.cwe_id}\nDescription: {self.description}" @property def values(self): return {"cwe_id": self.cwe_id, "description": self.description}
2.484375
2
bo/pp/pp_gp_my_distmat.py
ZachZhu7/banana-git
167
12781865
<gh_stars>100-1000 """ Classes for GP models without any PP backend, using a given distance matrix. """ from argparse import Namespace import time import copy import numpy as np from scipy.spatial.distance import cdist from bo.pp.pp_core import DiscPP from bo.pp.gp.gp_utils import kern_exp_quad, kern_matern32, \ get_cholesky_decomp, solve_upper_triangular, solve_lower_triangular, \ sample_mvn, squared_euc_distmat, kern_distmat from bo.util.print_utils import suppress_stdout_stderr class MyGpDistmatPP(DiscPP): """ GPs using a kernel specified by a given distance matrix, without any PP backend """ def __init__(self, data=None, modelp=None, printFlag=True): """ Constructor """ self.set_model_params(modelp) self.set_data(data) self.set_model() super(MyGpDistmatPP,self).__init__() if printFlag: self.print_str() def set_model_params(self, modelp): """ Set self.modelp """ if modelp is None: pass #TODO self.modelp = modelp def set_data(self, data): """ Set self.data """ if data is None: pass #TODO self.data_init = copy.deepcopy(data) self.data = copy.deepcopy(self.data_init) def set_model(self): """ Set GP regression model """ self.model = self.get_model() def get_model(self): """ Returns model object """ return None def infer_post_and_update_samples(self, print_result=False): """ Update self.sample_list """ self.sample_list = [Namespace(ls=self.modelp.kernp.ls, alpha=self.modelp.kernp.alpha, sigma=self.modelp.kernp.sigma)] if print_result: self.print_inference_result() def get_distmat(self, xmat1, xmat2): """ Get distance matrix """ #return squared_euc_distmat(xmat1, xmat2, .5) from data import Data self.distmat = Data.generate_distance_matrix #print('distmat') #print(self.distmat(xmat1, xmat2, self.modelp.distance)) return self.distmat(xmat1, xmat2, self.modelp.distance) def print_inference_result(self): """ Print results of stan inference """ print('*ls pt est = '+str(self.sample_list[0].ls)+'.') print('*alpha pt est = '+str(self.sample_list[0].alpha)+'.') print('*sigma pt est = '+str(self.sample_list[0].sigma)+'.') print('-----') def sample_pp_post_pred(self, nsamp, input_list, full_cov=False): """ Sample from posterior predictive of PP. Inputs: input_list - list of np arrays size=(-1,) Returns: list (len input_list) of np arrays (size=(nsamp,1)).""" samp = self.sample_list[0] postmu, postcov = self.gp_post(self.data.X, self.data.y, input_list, samp.ls, samp.alpha, samp.sigma, full_cov) if full_cov: ppred_list = list(sample_mvn(postmu, postcov, nsamp)) else: ppred_list = list(np.random.normal(postmu.reshape(-1,), postcov.reshape(-1,), size=(nsamp, len(input_list)))) return list(np.stack(ppred_list).T), ppred_list def sample_pp_pred(self, nsamp, input_list, lv=None): """ Sample from predictive of PP for parameter lv. Returns: list (len input_list) of np arrays (size (nsamp,1)).""" if lv is None: lv = self.sample_list[0] postmu, postcov = self.gp_post(self.data.X, self.data.y, input_list, lv.ls, lv.alpha, lv.sigma) pred_list = list(sample_mvn(postmu, postcov, 1)) ###TODO: sample from this mean nsamp times return list(np.stack(pred_list).T), pred_list def gp_post(self, x_train_list, y_train_arr, x_pred_list, ls, alpha, sigma, full_cov=True): """ Compute parameters of GP posterior """ kernel = lambda a, b, c, d: kern_distmat(a, b, c, d, self.get_distmat) k11_nonoise = kernel(x_train_list, x_train_list, ls, alpha) lmat = get_cholesky_decomp(k11_nonoise, sigma, 'try_first') smat = solve_upper_triangular(lmat.T, solve_lower_triangular(lmat, y_train_arr)) k21 = kernel(x_pred_list, x_train_list, ls, alpha) mu2 = k21.dot(smat) k22 = kernel(x_pred_list, x_pred_list, ls, alpha) vmat = solve_lower_triangular(lmat, k21.T) k2 = k22 - vmat.T.dot(vmat) if full_cov is False: k2 = np.sqrt(np.diag(k2)) return mu2, k2 # Utilities def print_str(self): """ Print a description string """ print('*MyGpDistmatPP with modelp='+str(self.modelp)+'.') print('-----')
2.5
2
Practice/subsetprod.py
ashishjayamohan/competitive-programming
0
12781866
<gh_stars>0 T = int(input()) while T: n = int(input()) a = list(map(int, input().split())) a.sort() negs0 = a[-5] * a[-4] * a[-3] * a[-2] * a[-1] negs2 = a[0] * a[1] * a[-1] * a[-2] * a[-3] negs4 = a[0] * a[1] * a[2] * a[3] * a[-1] print(max(negs0, negs2, negs4)) T -= 1
2.265625
2
compiled/construct/position_in_seq.py
smarek/ci_targets
4
12781867
<reponame>smarek/ci_targets from construct import * from construct.lib import * position_in_seq__header_obj = Struct( 'qty_numbers' / Int32ul, ) position_in_seq = Struct( 'numbers' / Array(this.header.qty_numbers, Int8ub), 'header' / Pointer(16, LazyBound(lambda: position_in_seq__header_obj)), ) _schema = position_in_seq
1.726563
2
02/checksum.py
redfast00/advent_of_code_2017
0
12781868
with open("input_2.txt") as spreadsheet: total = 0 for line in spreadsheet.readlines(): numbers = line.split('\t') numbers = [int(number) for number in numbers] difference = max(numbers) - min(numbers) total += difference print(total) def find_divisor(numbers): for number in numbers: for second in numbers: if number % second == 0 and number != second: print(f'{number},{second}') return number / second with open("input_2.txt") as spreadsheet: total = 0 for line in spreadsheet.readlines(): numbers = line.split('\t') numbers = [int(number) for number in numbers] total += find_divisor(numbers) print(total)
3.53125
4
train.py
SkyLord2/Yolo-v1-by-keras
0
12781869
<gh_stars>0 # -*- coding: utf-8 -*- import tensorflow as tf import tensorflow.keras as keras import config as cfg from YOLOv1_beta_1 import YOLOv1Net from utils.pascal_voc import pascal_voc # 需要首先下载数据集 pascal = pascal_voc('train') def get_train_data_by_batch(): while 1: for i in range(0, len(pascal.gt_labels), 64): images, labels = pascal.get() yield (images, labels) def lr_scheduler(epoch): lr = 1e-4 if(epoch <= 75): lr = 1e-2 elif(75 < epoch and epoch <= 105): lr = 1e-3 elif(105 < epoch and epoch <= 135): lr = 1e-4 return lr if __name__ == '__main__': yolo = YOLOv1Net() yolo.compile_model() lr_schedule = tf.keras.callbacks.LearningRateScheduler(lr_scheduler) modelcheck = keras.callbacks.ModelCheckpoint("weights_{epoch:03d}-{val_loss:.4f}.h5", monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1) result = yolo.train_generator(get_train_data_by_batch(), steps_per_epoch=len(pascal.gt_labels) // 64, epochs=135, callbacks=[lr_schedule, modelcheck])
2.5
2
Examples/PDFTool/MergeNew.py
wxh0000mm/TKinterDesigner
1
12781870
#coding=utf-8 #import libs import MergeNew_cmd import MergeNew_sty import Fun import os import tkinter from tkinter import * import tkinter.ttk import tkinter.font #Add your Varial Here: (Keep This Line of comments) #Define UI Class class MergeNew: def __init__(self,root,isTKroot = True): uiName = self.__class__.__name__ Fun.Register(uiName,'UIClass',self) self.root = root style = MergeNew_sty.SetupStyle() if isTKroot == True: root.title("Form1") Fun.CenterDlg(uiName,root,563,375) root['background'] = '#efefef' Form_1= tkinter.Canvas(root,width = 10,height = 4) Form_1.place(x = 0,y = 0,width = 563,height = 375) Form_1.configure(bg = "#efefef") Form_1.configure(highlightthickness = 0) Fun.Register(uiName,'root',root) Fun.Register(uiName,'Form_1',Form_1) #Create the elements of root Button_2= tkinter.Button(root,text="打开文件夹",width = 10,height = 4) Fun.Register(uiName,'Button_2',Button_2) Button_2.place(x = 16,y = 15,width = 109,height = 35) Button_2.configure(command=lambda:MergeNew_cmd.Button_2_onCommand(uiName,"Button_2")) Button_2_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Button_2.configure(font = Button_2_Ft) ListBox_3= tkinter.Listbox(root) Fun.Register(uiName,'ListBox_3',ListBox_3) ListBox_3.place(x = 16,y = 57,width = 210,height = 215) Button_4= tkinter.Button(root,text=">",width = 10,height = 4) Fun.Register(uiName,'Button_4',Button_4) Button_4.place(x = 241,y = 86,width = 80,height = 28) Button_4.configure(command=lambda:MergeNew_cmd.Button_4_onCommand(uiName,"Button_4")) Button_4_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Button_4.configure(font = Button_4_Ft) Button_5= tkinter.Button(root,text=">>",width = 10,height = 4) Fun.Register(uiName,'Button_5',Button_5) Button_5.place(x = 241,y = 132,width = 80,height = 28) Button_5.configure(command=lambda:MergeNew_cmd.Button_5_onCommand(uiName,"Button_5")) Button_5_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Button_5.configure(font = Button_5_Ft) Button_6= tkinter.Button(root,text="<",width = 10,height = 4) Fun.Register(uiName,'Button_6',Button_6) Button_6.place(x = 241,y = 178,width = 80,height = 28) Button_6.configure(command=lambda:MergeNew_cmd.Button_6_onCommand(uiName,"Button_6")) Button_6_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Button_6.configure(font = Button_6_Ft) Button_7= tkinter.Button(root,text="<<",width = 10,height = 4) Fun.Register(uiName,'Button_7',Button_7) Button_7.place(x = 241,y = 222,width = 80,height = 28) Button_7.configure(command=lambda:MergeNew_cmd.Button_7_onCommand(uiName,"Button_7")) Button_7_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Button_7.configure(font = Button_7_Ft) ListBox_8= tkinter.Listbox(root) Fun.Register(uiName,'ListBox_8',ListBox_8) ListBox_8.place(x = 337,y = 59,width = 210,height = 215) Entry_9_Variable = Fun.AddTKVariable(uiName,'Entry_9','') Entry_9= tkinter.Entry(root,textvariable=Entry_9_Variable) Fun.Register(uiName,'Entry_9',Entry_9) Entry_9.place(x = 134,y = 293,width = 199,height = 34) Entry_9.configure(relief = "sunken") Label_10= tkinter.Label(root,text="合并后文件名",width = 10,height = 4) Fun.Register(uiName,'Label_10',Label_10) Label_10.place(x = 15,y = 298,width = 111,height = 24) Label_10.configure(relief = "flat") Label_10_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Label_10.configure(font = Label_10_Ft) Button_11= tkinter.Button(root,text="合并",width = 10,height = 4) Fun.Register(uiName,'Button_11',Button_11) Button_11.place(x = 370,y = 292,width = 115,height = 36) Button_11.configure(command=lambda:MergeNew_cmd.Button_11_onCommand(uiName,"Button_11")) Button_11_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Button_11.configure(font = Button_11_Ft) Label_12= tkinter.Label(root,text="需要合并的文件列表",width = 10,height = 4) Fun.Register(uiName,'Label_12',Label_12) Label_12.place(x = 341,y = 22,width = 205,height = 34) Label_12.configure(relief = "flat") Label_12_Ft=tkinter.font.Font(family='System', size=12,weight='bold',slant='roman',underline=0,overstrike=0) Label_12.configure(font = Label_12_Ft) #Inital all element's Data Fun.InitElementData(uiName) #Add Some Logic Code Here: (Keep This Line of comments) #Create the root of Kinter if __name__ == '__main__': root = tkinter.Tk() MyDlg = MergeNew(root) root.mainloop()
2.984375
3
setup.py
m-vdb/sentry-scrapy
7
12781871
#!/usr/bin/env python from setuptools import setup, find_packages VERSION = '0.2' with open('README.md') as readme: long_description = readme.read() setup( name='sentry-scrapy', version=VERSION, description='Scrapy integration with Sentry SDK (unofficial)', long_description=long_description, long_description_content_type='text/markdown', author='<NAME>', author_email='<EMAIL>', packages=find_packages(), install_requires=['Scrapy', 'sentry-sdk'], license="MIT", keywords="sentry scrapy sdk integration", url='https://github.com/m-vdb/sentry-scrapy', download_url='https://github.com/m-vdb/sentry-scrapy/archive/v{}.tar.gz'.format(VERSION), project_urls={ "Source Code": "https://github.com/m-vdb/sentry-scrapy", } )
1.289063
1
common/appenginepatch/ragendja/auth/models.py
westurner/nhs-social-web
2
12781872
<reponame>westurner/nhs-social-web<gh_stars>1-10 from django.contrib.auth.models import * from django.contrib.auth.models import DjangoCompatibleUser as User
1.257813
1
Crawler/GitCrawler_U.py
FalconLK/FaCoY
24
12781873
#!/usr/bin/jython # -*- coding: utf-8 -*- from subprocess import call # , Popen import requests from os import makedirs, removedirs, walk, remove, listdir, stat, rename from os.path import isdir, join, getmtime, abspath from pymysql import connect from time import strftime, gmtime def many(cur): while True: results = cur.fetchmany(10) if not results: break for result in results: yield result import hashlib def md5(s): return hashlib.md5(s).hexdigest() def read_file(path): with open(path, "r") as f: return f.read() class GitCrawler: def __init__(self, home="/home/hdd/gitArchive/New/New_20161104/"): # 에 저장하겠다. self.base = home #self.home_path = "%s/%s" % (home, strftime('%Y.%m.%d')) self.home_path = "%s" % (home) self.conn = None self.count = 0 def start(self, num): print "Crawling Starts.." # if not isdir(self.home_path): # makedirs(self.home_path) # TODO 이 부분을 localhost 에서 실제 DB서버로 바꾸기만 하면 된다잉.. self.conn = connect(host='localhost', port=3306, user='root', passwd='<PASSWORD>', db='ghtorrent') """ Retrieves Github API urls from MySQL Github Archive and check if repo has been forked at least once """ sql = "SELECT url FROM ghtorrent.projects WHERE language = '\"Java\"' AND forked_from IS NULL AND deleted = 0;" # 5001,5000; cur = self.conn.cursor() cur.execute(sql) print "DB Query... Done..." iterator = 0 for row in many(cur): self.count += 1 if self.count < num: print self.count continue else: iterator = self.count #starts from count url = row[0][1:].strip() url = url[:-1] # url = row[0] self.clone_repo(url) iterator += 1 print str(iterator) + " / 1,541,018" def is_forked(self, url): try: res = requests.get(url, auth=('rsirres', '<PASSWORD>')) data = res.text.encode("utf-8") num_forks = data.split('"forks":')[1].split(",")[0].strip() # print "forked : " + str(num_forks != "0") except Exception as e: # print "Repository is probably unavailable or you reached the limit of your GitHub requests" return False return num_forks != "0" # TODO: Add time and date of download def clone_repo(self, url): project_name = url.split("/")[-1] username = url.split("/")[-2] new_url = "https://github.com/%s/%s" % (username, project_name) project_dir = "%s/%s_%s" % (self.home_path, username, project_name) if not isdir(project_dir): makedirs(project_dir) if self.is_forked(url): print "Clone: %s" % url call(["git", "clone", new_url], cwd=project_dir) self.filter_java_files(project_dir) else: removedirs(project_dir) print "NOt forked===============================" else: # print "Project: %s already exists." % project_dir print "private or already Exist=====================" def filter_java_files(self, directory): # Java file이 아니면 모두 지워라. # from multiprocessing import Process from threading import Thread def remove_non_java_files(directory): non_java_files = (join(dirpath, f) for dirpath, dirnames, files in walk(directory) for f in files if not f.endswith('.java')) for non_java_file in non_java_files: remove(non_java_file) t = Thread(target=remove_non_java_files, args=(directory,)) # edited by Leo t.start() def stats(self): files = (join(dirpath, f) for dirpath, dirnames, files in walk(self.base) for f in files) num_files = 0 duplicates = 0 loc = 0 file_hash_set = set() for f in files: try: f_content = read_file(f) h = md5(f_content) if h in file_hash_set: duplicates += 1 else: file_hash_set.add(h) loc += f_content.count('\n') num_files += 1 except: pass print "Number of files: %s Duplicates: %s, LOC: %s" % (num_files, duplicates, loc) if __name__ == '__main__': crawler = GitCrawler() num = 1 crawler.start(num) crawler.stats()
2.34375
2
pymongo_inmemory/_pim.py
ItsKarma/pymongo_inmemory
25
12781874
import pymongo from .mongod import Mongod class MongoClient(pymongo.MongoClient): def __init__(self, host=None, port=None, **kwargs): self._mongod = Mongod() self._mongod.start() super().__init__(self._mongod.connection_string, **kwargs) def close(self): self._mongod.stop() super().close() def pim_mongodump(self, *args, **kwargs): return self._mongod.mongodump(*args, **kwargs) if __name__ == "__main__": import logging logging.basicConfig(level=logging.DEBUG) m = MongoClient("mongodb://127.0.0.1/something", 27017) m.close()
2.625
3
spinta/datasets/commands/error.py
atviriduomenys/spinta
2
12781875
<filename>spinta/datasets/commands/error.py from typing import Dict from spinta import commands from spinta.datasets.components import Resource, Entity, Attribute @commands.get_error_context.register(Resource) def get_error_context(resource: Resource, *, prefix='this') -> Dict[str, str]: context = commands.get_error_context(resource.dataset, prefix=f'{prefix}.dataset') context['resource'] = f'{prefix}.name' return context @commands.get_error_context.register(Entity) def get_error_context(external: Entity, *, prefix='this') -> Dict[str, str]: context = commands.get_error_context(external.model, prefix=f'{prefix}.model') context['external'] = f'{prefix}.name' return context @commands.get_error_context.register(Attribute) def get_error_context(external: Attribute, *, prefix='this') -> Dict[str, str]: context = commands.get_error_context(external.prop, prefix=f'{prefix}.prop') context['external'] = f'{prefix}.name' return context
2.34375
2
netbox_ddns/migrations/0003_dnsstatus.py
FreedomNetNL/netbox-ddns
58
12781876
# Generated by Django 3.0.5 on 2020-04-15 10:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('ipam', '0036_standardize_description'), ('netbox_ddns', '0002_add_ttl'), ] operations = [ migrations.CreateModel( name='DNSStatus', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False)), ('last_update', models.DateTimeField(auto_now=True)), ('forward_action', models.PositiveSmallIntegerField(blank=True, null=True)), ('forward_rcode', models.PositiveIntegerField(blank=True, null=True)), ('reverse_action', models.PositiveSmallIntegerField(blank=True, null=True)), ('reverse_rcode', models.PositiveIntegerField(blank=True, null=True)), ('ip_address', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='ipam.IPAddress')), ], options={ 'verbose_name': 'DNS status', 'verbose_name_plural': 'DNS status', }, ), ]
1.6875
2
run_tests.py
unistra/schedulesy
1
12781877
import os import shutil import sys import django from django.apps import apps from django.conf import settings from django.test.utils import get_runner def manage_model(model): model._meta.managed = True if __name__ == '__main__': os.environ['DJANGO_SETTINGS_MODULE'] = 'schedulesy.settings.unittest' django.setup() # Set all tested models to "managed = True" for app in settings.LOCAL_APPS: config = ( apps.get_app_config(app.split('.')[-1]) if not app.endswith('Config') else apps.get_app_config(app.split('.')[-3]) ) print(type(config)) list(map(manage_model, config.get_models())) test_apps = ['schedulesy'] if len(sys.argv) <= 1 else sys.argv[1:] TestRunner = get_runner(settings) test_runner = TestRunner( pattern='test_*.py', verbosity=2, interactive=True, failfast=False ) failures = test_runner.run_tests(test_apps) # Delete temporary directory shutil.rmtree(settings.MEDIA_ROOT, ignore_errors=True) sys.exit(failures)
2.03125
2
sentiments.py
asmaaziz/sentiment-analysis
0
12781878
from nltk.sentiment.vader import SentimentIntensityAnalyzer dir= 'C:\\Users\\asmazi01\\dir_path' commentfile= 'input.txt' delim ='\t' fname = dir + '\\' + commentfile with open(fname, encoding='utf-8', errors='ignore') as f: sentences = f.readlines() sid = SentimentIntensityAnalyzer() totalCompoundScore = 0.0 totalNegativeScore = 0.0 totalNeutralScore = 0.0 totalPositiveScore = 0.0 totalNumOfSentences = 0.0 outfpath = fname + '.sentiment.txt' outf = open(outfpath,'wb') outf.write("Sentence\tcompound score\tnegative score\tneutral score\tpositive score\n".encode('utf-8')) for sentence in sentences: if sentence.strip() == "": continue totalNumOfSentences += 1.0 print(sentence) ss = sid.polarity_scores(sentence) outline = "\"" + sentence.strip() + "\"" compScore = 0.0 negScore = 0.0 neuScore = 0.0 posScore = 0.0 for k in sorted(ss): print('{0}: {1}, '.format(k, ss[k]), end='') if k == "compound": compScore = ss[k] if k == "neg": negScore = ss[k] if k == "neu": neuScore = ss[k] if k == "pos": posScore = ss[k] outline = outline + delim \ + str(compScore) + delim \ + str(negScore) + delim \ + str(neuScore) + delim \ + str(posScore) + "\n" totalCompoundScore += compScore totalNegativeScore += negScore totalNeutralScore += neuScore totalPositiveScore += posScore print() outf.write(outline.encode('utf-8')) avgCompoundScore = str(totalCompoundScore/totalNumOfSentences) avgNegativeScore = str(totalNegativeScore/totalNumOfSentences) avgNeutralScore = str(totalNeutralScore/totalNumOfSentences) avgPositiveScore = str(totalPositiveScore/totalNumOfSentences) outline = "total sentence=" + str(int(totalNumOfSentences))\ + delim + avgCompoundScore\ + delim + avgNegativeScore\ + delim + avgNeutralScore\ + delim + avgPositiveScore + "\n" print(outline) #outf.write(outline.encode('utf-8')) outf.close()
2.984375
3
migrations/versions/00034ea37afb_meals_dinner_many2many.py
fennec-fox-cast-team/fennec-fox-fit
0
12781879
"""meals dinner many2many Revision ID: 00034ea37afb Revises: <PASSWORD> Create Date: 2019-12-16 11:54:41.895663 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('dinners_meals', sa.Column('dinner_id', sa.Integer(), nullable=True), sa.Column('meal_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['dinner_id'], ['dinners.id'], ), sa.ForeignKeyConstraint(['meal_id'], ['meals.id'], ) ) op.drop_table('airports') op.add_column('meals', sa.Column('nutrition_value', sa.Float(), nullable=True)) op.add_column('meals', sa.Column('vitamins', sa.String(length=100), nullable=True)) op.add_column('users', sa.Column('role', sa.String(length=20), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'role') op.drop_column('meals', 'vitamins') op.drop_column('meals', 'nutrition_value') op.create_table('airports', sa.Column('IATA_CODE', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('AIRPORT', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('CITY', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('STATE', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('COUNTRY', sa.TEXT(), autoincrement=False, nullable=True), sa.Column('LATITUDE', sa.NUMERIC(precision=7, scale=5), autoincrement=False, nullable=True), sa.Column('LONGITUDE', sa.NUMERIC(precision=8, scale=5), autoincrement=False, nullable=True) ) op.drop_table('dinners_meals') # ### end Alembic commands ###
1.828125
2
tests/test_box.py
ikalnytskyi/picobox
35
12781880
<filename>tests/test_box.py """Test picobox class.""" import collections import inspect import itertools import traceback import picobox import pytest def test_box_put_key(boxclass, supported_key): testbox = boxclass() testbox.put(supported_key, "the-value") assert testbox.get(supported_key) == "the-value" def test_box_put_value(boxclass, supported_value): testbox = boxclass() testbox.put("the-key", supported_value) assert testbox.get("the-key") is supported_value def test_box_put_factory(boxclass): testbox = boxclass() testbox.put("the-key", factory=object) objects = [testbox.get("the-key") for _ in range(10)] assert len(objects) == 10 assert len(set(map(id, objects))) == 10 def test_box_put_factory_singleton_scope(boxclass): testbox = boxclass() testbox.put("the-key", factory=object, scope=picobox.singleton) objects = [testbox.get("the-key") for _ in range(10)] assert len(objects) == 10 assert len(set(map(id, objects))) == 1 def test_box_put_factory_custom_scope(boxclass): class namespacescope(picobox.Scope): def __init__(self): self._store = collections.defaultdict(dict) def set(self, key, value): self._store[namespace][key] = value def get(self, key): return self._store[namespace][key] testbox = boxclass() testbox.put("the-key", factory=object, scope=namespacescope) objects = [] namespace = "one" objects.extend( [ testbox.get("the-key"), testbox.get("the-key"), ] ) namespace = "two" objects.extend( [ testbox.get("the-key"), testbox.get("the-key"), ] ) assert len(objects) == 4 assert len(set(map(id, objects[:2]))) == 1 assert len(set(map(id, objects[2:]))) == 1 assert len(set(map(id, objects))) == 2 def test_box_put_factory_dependency(boxclass): testbox = boxclass() @testbox.pass_("a") def fn(a): return a + 1 testbox.put("a", 13) testbox.put("b", factory=fn) assert testbox.get("b") == 14 def test_box_put_value_and_factory(boxclass): testbox = boxclass() with pytest.raises(ValueError) as excinfo: testbox.put("the-key", 42, factory=object) excinfo.match("either 'value' or 'factory'/'scope' pair must be passed") def test_box_put_value_and_scope(boxclass): testbox = boxclass() with pytest.raises(ValueError) as excinfo: testbox.put("the-key", 42, scope=picobox.threadlocal) excinfo.match("either 'value' or 'factory'/'scope' pair must be passed") def test_box_get_keyerror(boxclass): testbox = boxclass() with pytest.raises(KeyError, match="the-key"): testbox.get("the-key") def test_box_get_default(boxclass): testbox = boxclass() sentinel = object() assert testbox.get("the-key", sentinel) is sentinel @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1,), {"b": 2, "c": 3}, 6), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"b": 2, "c": 3}, 15), ], ) def test_box_pass_a(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("a", 10) @testbox.pass_("a") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"c": 3}, 14), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "c": 3}, 14), ], ) def test_box_pass_b(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("b", 10) @testbox.pass_("b") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1, 2), {}, 13), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"b": 2}, 13), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "b": 2}, 13), ], ) def test_box_pass_c(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("c", 10) @testbox.pass_("c") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1, 2), {}, 13), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"b": 2}, 13), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "b": 2}, 13), ], ) def test_box_pass_c_default(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("c", 10) @testbox.pass_("c") def fn(a, b, c=20): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"c": 3}, 104), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "c": 3}, 104), ((), {"b": 2, "c": 3}, 15), ((), {"c": 3}, 113), ], ) def test_box_pass_ab(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("a", 10) testbox.put("b", 100) @testbox.pass_("a") @testbox.pass_("b") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1, 2), {}, 103), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"b": 2}, 103), ((1,), {"c": 3}, 14), ((1,), {}, 111), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "b": 2}, 103), ((), {"a": 1, "c": 3}, 14), ((), {"a": 1}, 111), ], ) def test_box_pass_bc(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("b", 10) testbox.put("c", 100) @testbox.pass_("b") @testbox.pass_("c") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1, 2), {}, 103), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"b": 2}, 103), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "b": 2}, 103), ((), {"b": 2, "c": 3}, 15), ((), {"b": 2}, 112), ], ) def test_box_pass_ac(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("a", 10) testbox.put("c", 100) @testbox.pass_("a") @testbox.pass_("c") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1, 2), {}, 1003), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"b": 2}, 1003), ((1,), {"c": 3}, 104), ((1,), {}, 1101), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "b": 2}, 1003), ((), {"a": 1, "c": 3}, 104), ((), {"a": 1}, 1101), ((), {}, 1110), ], ) def test_box_pass_abc(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("a", 10) testbox.put("b", 100) testbox.put("c", 1000) @testbox.pass_("a") @testbox.pass_("b") @testbox.pass_("c") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1, 2, 3), {}, 6), ((1, 2), {"c": 3}, 6), ((1,), {"b": 2, "c": 3}, 6), ((1,), {"c": 3}, 14), ((), {"a": 1, "b": 2, "c": 3}, 6), ((), {"a": 1, "c": 3}, 14), ], ) def test_box_pass_d_as_b(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("d", 10) @testbox.pass_("d", as_="b") def fn(a, b, c): return a + b + c assert fn(*args, **kwargs) == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((1,), {}, 1), ((), {"x": 1}, 1), ((), {}, 42), ], ) def test_box_pass_method(args, kwargs, rv, boxclass): testbox = boxclass() testbox.put("x", 42) class Foo: @testbox.pass_("x") def __init__(self, x): self.x = x assert Foo(*args, **kwargs).x == rv @pytest.mark.parametrize( "args, kwargs, rv", [ ((0,), {}, 41), ((), {"x": 0}, 41), ((), {}, 42), ], ) def test_box_pass_key_type(args, kwargs, rv, boxclass): class key: pass testbox = boxclass() testbox.put(key, 1) @testbox.pass_(key, as_="x") def fn(x): return x + 41 assert fn(*args, **kwargs) == rv def test_box_pass_unexpected_argument(boxclass): testbox = boxclass() testbox.put("d", 10) @testbox.pass_("d") def fn(a, b): return a + b with pytest.raises(TypeError) as excinfo: fn(1, 2) assert str(excinfo.value) == "fn() got an unexpected keyword argument 'd'" def test_box_pass_keyerror(boxclass): testbox = boxclass() @testbox.pass_("b") def fn(a, b): return a + b with pytest.raises(KeyError) as excinfo: fn(1) excinfo.match("b") def test_box_pass_optimization(boxclass, request): testbox = boxclass() testbox.put("a", 1) testbox.put("b", 1) testbox.put("d", 1) @testbox.pass_("a") @testbox.pass_("b") @testbox.pass_("d", as_="c") def fn(a, b, c): backtrace = list( itertools.dropwhile( lambda frame: frame[2] != request.function.__name__, traceback.extract_stack(), ) ) return backtrace[1:-1] assert len(fn()) == 1 def test_box_pass_optimization_complex(boxclass, request): testbox = boxclass() testbox.put("a", 1) testbox.put("b", 1) testbox.put("c", 1) testbox.put("d", 1) def passthrough(fn): def wrapper(*args, **kwargs): return fn(*args, **kwargs) return wrapper @testbox.pass_("a") @testbox.pass_("b") @passthrough @testbox.pass_("c") @testbox.pass_("d") def fn(a, b, c, d): backtrace = list( itertools.dropwhile( lambda frame: frame[2] != request.function.__name__, traceback.extract_stack(), ) ) return backtrace[1:-1] assert len(fn()) == 3 def test_chainbox_put_changes_box(): testbox = picobox.Box() testchainbox = picobox.ChainBox(testbox) with pytest.raises(KeyError, match="the-key"): testchainbox.get("the-key") testchainbox.put("the-key", 42) assert testbox.get("the-key") == 42 def test_chainbox_get_chained(): testbox_a = picobox.Box() testbox_a.put("the-key", 42) testbox_b = picobox.Box() testbox_b.put("the-key", 13) testbox_b.put("the-pin", 12) testchainbox = picobox.ChainBox(testbox_a, testbox_b) assert testchainbox.get("the-key") == 42 assert testchainbox.get("the-pin") == 12 def test_chainbox_isinstance_box(): assert isinstance(picobox.ChainBox(), picobox.Box) @pytest.mark.parametrize( "name", [name for name, _ in inspect.getmembers(picobox.Box) if not name.startswith("_")], ) def test_chainbox_box_interface(name): boxsignature = inspect.signature(getattr(picobox.Box(), name)) chainboxsignature = inspect.signature(getattr(picobox.ChainBox(), name)) assert boxsignature == chainboxsignature
2.4375
2
script.py
glaukiol1/sendit-spammer
1
12781881
<gh_stars>1-10 import requests import json import urllib3 import sys urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) headers = { 'Host': 'api.getsendit.com', 'Content-Length': '354', 'Sec-Ch-Ua': '" Not A;Brand";v="99", "Chromium";v="92"', 'App-Id': 'c2ad997f-1bf2-4f2c-b5fd-83926e8f3c65', 'App-Version': '1.0', 'Sec-Ch-Ua-Mobile': '?0', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36', 'Content-Type': 'application/json', 'Accept': '*/*', 'Origin': 'https://web.getsendit.com', 'Sec-Fetch-Site': 'same-site', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Dest': 'empty', 'Referer': 'https://web.getsendit.com/', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'en-US,en;q=0.9', } def main(json_payload,instance_number): rqs = 0 while True: try: response = requests.post('https://api.getsendit.com/v1/posts', headers=headers, data=json_payload, verify=False,timeout=0.9) if (response.json()['status'] == 'success'): rqs = rqs + 1 print(f'\033[92m'+f'[*] REQUEST SUCCESS | instance: {instance_number}') else: print(f"\033[91m[*]NETWORK ERROR| instance: {instance_number}") except: print(f"\033[91m[*]UNKNOWN ERROR | instance: {instance_number}")
2.765625
3
tensortrade/version.py
andrewczgithub/tensortrade
1
12781882
__version__ = "0.0.2-rc0"
1.054688
1
test/test_version.py
dell/dataiq-plugin-example
1
12781883
import unittest from test import AppTest class TestVersion(AppTest): @staticmethod def make_version_request(client, token): return client.get( '/version/', headers={'Authorization': token}) def test_version(self, client, auth_provider): r = TestVersion.make_version_request( client, auth_provider('root', -1)) assert 200 == r.status_code j = r.get_json() assert j is not None version = j['version'] assert '1.0.0.0' == version def test_no_auth(self, client): r = TestVersion.make_version_request( client, '') assert 401 == r.status_code if __name__ == '__main__': unittest.main()
2.875
3
python_dev/send_mail.py
Dloar/stocks_games
0
12781884
<filename>python_dev/send_mail.py ### import smtplib import datetime from python_dev.functions import getDailyChange, getConfigFile from email.message import EmailMessage import warnings warnings.filterwarnings("ignore") config_conn = getConfigFile() daily_looser, daily_gainer, daily_result, percentage_change, portfolio_db = getDailyChange() # sending to multiple people contacts = [config_conn.email_user[0]] msg = EmailMessage() msg['Subject'] = 'Update at ' + datetime.datetime.today().strftime('%Y-%m-%d') msg['From'] = config_conn.email_user[0] msg['To'] = ', '.join(contacts) msg.add_alternative("""\ <!DOCTYPE html> <html> <head></head> <body> <p>Hi!<br> Please see the results. </p> </body> </html> """, subtype='html') msg.add_attachment(daily_looser, subtype='html') msg.add_attachment(""" """) # msg.add_attachment('daily_result, percentage_change) msg.add_attachment(daily_gainer, subtype='html') msg.add_attachment(""" """) msg.add_attachment(portfolio_db, subtype='html') with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: #Google connection SSL smtp.login(user=config_conn.email_user[0], password=config_conn.email_psw[0]) smtp.send_message(msg=msg) # with smtplib.SMTP('smtp.gmail.com', 587) as smtp: #Google connection # smtp.ehlo() # Initiate process # smtp.starttls() # Encrypt # smtp.ehlo() # Reinitiate process # subject = 'test1' # body = 'This is a body of the email' # # msg = f'Subject: {subject}\n\n{body}' # # smtp.sendmail(config_conn.email_user[0], '<EMAIL>', msg=msg) # with smtplib.SMTP('localhost', 1025) as smtp: #localhost connection # subject = 'test1' # body = 'This is a body of the email' # # msg = f'Subject: {subject}\n\n{body}' # # smtp.sendmail(config_conn.email_user[0], '<EMAIL>', msg=msg)
2.6875
3
esanpy/__init__.py
codelibs/esanpy
13
12781885
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import, unicode_literals import argparse from logging import getLogger, Formatter, StreamHandler import os import sys from esanpy import analyzers from esanpy import elasticsearch from esanpy.core import ESRUNNER_VERSION, DEFAULT_CLUSTER_NAME, DEFAULT_HTTP_PORT, DEFAULT_TRANSPORT_PORT,\ DEFAULT_PLUGINS start_server = elasticsearch.start_server stop_server = elasticsearch.stop_server create_analysis = elasticsearch.create_analysis get_analysis = elasticsearch.get_analysis delete_analysis = elasticsearch.delete_analysis analyzer = analyzers.analyzer custom_analyzer = analyzers.custom_analyzer logger = getLogger('esanpy') def parse_args(args): parser = argparse.ArgumentParser(description=None) parser.add_argument('--runner-version', dest='esrunner_version', action='store', default=ESRUNNER_VERSION, help='Elasticsearch cluster name') parser.add_argument('--cluster-name', dest='cluster_name', action='store', default=DEFAULT_CLUSTER_NAME, help='Elasticsearch cluster name') parser.add_argument('--host', dest='host', action='store', default='localhost', help='Elasticsearch host name') parser.add_argument('--http-port', dest='http_port', action='store', default=DEFAULT_HTTP_PORT, type=int, help='Elasticsearch HTTP port') parser.add_argument('--transport-port', dest='transport_port', action='store', default=DEFAULT_TRANSPORT_PORT, type=int, help='Elasticsearch Transport port') parser.add_argument('--analyzer-name', dest='analyzer_name', action='store', default='standard', help='Analyzer name') parser.add_argument('--text', dest='text', action='store', help='Text to analyze') parser.add_argument('--plugin', dest='plugins', action='append', help='Plugins to install') parser.add_argument('--verbose', '-v', dest='verbose', action='store_true', default=False, help='Display debug messages') parser.add_argument('--stop', dest='stop', action='store_true', default=False, help='Stop Elasticsearch on exit') return parser.parse_args(args=args) def configure_logging(options): formatter = Formatter('[%(asctime)s] %(message)s') handler = StreamHandler(sys.stderr) handler.setFormatter(formatter) logger.addHandler(handler) if options.verbose: logger.setLevel(10) else: logger.setLevel(20) def main(args=None): options = parse_args(args) configure_logging(options) plugin_names = DEFAULT_PLUGINS if options.plugins is None else options.plugins start_server(host=options.host, http_port=options.http_port, transport_port=options.transport_port, cluster_name=options.cluster_name, plugin_names=plugin_names, esrunner_version=options.esrunner_version) tokens = analyzer(options.text, analyzer=options.analyzer_name) print('\n'.join(tokens)) if options.stop: stop_server(host=options.host, http_port=options.http_port, esrunner_version=options.esrunner_version) return 0 if __name__ == '__main__': sys.exit(main())
2.171875
2
scripts/experiments/create_q_and_time_for_shortqueries.py
dcs-chalmers/dataloc_vn
0
12781886
<filename>scripts/experiments/create_q_and_time_for_shortqueries.py #!/usr/bin/env python3 # python3 scriptname.py beijing path_to_daysfolder path_to_basefolder import sys sys.path.append('../../') sys.path.append('../datasets/') import time from query import * import paths import argparse parser = argparse.ArgumentParser() parser.add_argument("experiment", choices=["beijing"], type=str, help="Choose which experiment (dataset) to run.") args = parser.parse_args() mode = args.experiment basefolder = paths.beijing_folder ### actually execute start_time = time.time() print("Calculating answer behavior and workload per vehicle...".format(mode)) if mode == "beijing": gen_beijing_timeq_files(basefolder) else: print("This should never have happened. I quit.") quit() time_needed = time.time() - start_time print("...done in {} hrs".format(time_needed/3600))
2.65625
3
src/servicetools/middleware.py
zamj/python-service-tools
0
12781887
<filename>src/servicetools/middleware.py """Starlette middleware for services.""" import logging from time import perf_counter from typing import Any, Callable, Awaitable, Set, Optional from structlog import get_logger from starlette.middleware.base import BaseHTTPMiddleware, DispatchFunction from starlette import status from starlette.requests import Request from starlette.responses import Response from starlette.types import ASGIApp LOGGER = get_logger(__name__) class StructlogRequestMiddleware(BaseHTTPMiddleware): """ Logs information to a structlog logger about each HTTP request. Logging will occur at the start and completion of each request. If a request throws an exception, it will be logged and converted to a 500 response. Any failures responses (400s and 500s) will be logged. A set of failure codes to ignore can be provided to not log certain error codes (for example, ignore all 404 errors). """ def __init__( self, app: ASGIApp, dispatch: DispatchFunction = None, logger: Any = LOGGER, log_level: int = logging.INFO, ignored_status_codes: Optional[Set[int]] = None, ) -> None: """ Create structlog request middleware. :param app: Web application. :param dispatch: Dispatch function. :param logger: Structlog logger to log to. :param log_level: Log level to write at. :param ignored_status_codes: Set of status codes to not report on. """ super().__init__(app, dispatch) self.logger = logger self.log_level = log_level self.ignored_status_codes = ignored_status_codes or set() def __log(self, msg: str, **kwargs: Any) -> None: """Log at the configured level.""" self.logger.log(self.log_level, msg, **kwargs) async def dispatch( self, request: Request, call_next: Callable[[Request], Awaitable[Response]] ) -> Response: """Log information about the request and call the next layer.""" method = request.method endpoint = request.url.path self.__log("HTTP request start", method=method, endpoint=endpoint) start_time = perf_counter() try: response = await call_next(request) except Exception as e: self.__log("Exception Occurred", exc_info=True) raise e end_time = perf_counter() duration = end_time - start_time status_code = response.status_code self.__log( "HTTP request end", method=method, endpoint=endpoint, status_code=status_code, seconds=duration, ) if ( status_code >= status.HTTP_400_BAD_REQUEST and status_code not in self.ignored_status_codes ): self.__log( "HTTP request error", method=method, endpoint=endpoint, status_code=status_code, content=response.body, ) return response
2.34375
2
jobs/baseline.py
GAIPS/ILU-RL
0
12781888
<gh_stars>0 """Baseline: * uses train script for setting up experiment * has to have a command line `tls_type`: `actuated`, `static` TODO: Include config for evaluation """ import os from pathlib import Path from datetime import datetime import sys import json import tempfile import multiprocessing import multiprocessing.pool import time import shutil import argparse import configparser from models.train import main as baseline from ilurl.utils.decorators import processable, benchmarked from ilurl.utils import str2bool # Pipeline components. from jobs.convert2csv import xml2csv from analysis.baseline_plots import main as baseline_plots from ilurl.utils.decorators import safe_run _ERROR_MESSAGE_TEST = ("ERROR: Caught an exception while " "executing analysis/baseline_plots.py script.") test_plots = safe_run(baseline_plots, error_message=_ERROR_MESSAGE_TEST) ILURL_PATH = Path(os.environ['ILURL_HOME']) CONFIG_PATH = ILURL_PATH / 'config' mp = multiprocessing.get_context('spawn') class NoDaemonProcess(mp.Process): @property def daemon(self): return False @daemon.setter def daemon(self, val): pass class NoDaemonContext(type(multiprocessing.get_context('spawn'))): Process = NoDaemonProcess class NonDaemonicPool(multiprocessing.pool.Pool): def __init__(self, *args, **kwargs): kwargs['context'] = NoDaemonContext() super(NonDaemonicPool, self).__init__(*args, **kwargs) def delay_baseline(args): """Delays execution. Parameters: ----------- * args: tuple Position 0: execution delay of the process. Position 1: store the train config file. Returns: ------- * fnc : function An anonymous function to be executed with a given delay """ time.sleep(args[0]) return baseline(args[1]) def get_arguments(): parser = argparse.ArgumentParser( description=""" Script to evaluate actuated, static or random timings. """ ) parser.add_argument('tls_type', type=str, nargs='?', choices=('actuated', 'static', 'webster', 'random', 'max_pressure'), help='Control type.') flags = parser.parse_args() sys.argv = [sys.argv[0]] return flags def baseline_batch(): flags = get_arguments() # Read script arguments from run.config file. run_config = configparser.ConfigParser() run_path = CONFIG_PATH / 'run.config' run_config.read(run_path) num_processors = int(run_config.get('run_args', 'num_processors')) num_runs = int(run_config.get('run_args', 'num_runs')) seeds = json.loads(run_config.get("run_args", "train_seeds")) if len(seeds) != num_runs: raise configparser.Error('Number of seeds in run.config `seeds`' ' must match the number of runs (`num_runs`) argument.') print('Arguments (baseline.py):') print('-----------------------') print('Number of runs: {0}'.format(num_runs)) print('Number of processors: {0}'.format(num_processors)) print('Train seeds: {0}\n'.format(seeds)) # Assess total number of processors. processors_total = mp.cpu_count() print(f'Total number of processors available: {processors_total}\n') # Adjust number of processors. if num_processors > processors_total: num_processors = processors_total print(f'Number of processors downgraded to {num_processors}\n') # Read train.py arguments from train.config file. baseline_config = configparser.ConfigParser() baseline_path = CONFIG_PATH / 'train.config' baseline_config.read(str(baseline_path)) # Setup sumo-tls-type. baseline_config.set('train_args', 'tls_type', flags.tls_type) baseline_config.set('train_args', 'experiment_save_agent', str(False)) # Override train configurations with test parameters. test_config = configparser.ConfigParser() test_path = CONFIG_PATH / 'test.config' test_config.read(test_path.as_posix()) horizon = int(test_config.get('test_args', 'rollout-time')) baseline_config.set('train_args', 'experiment_time', str(horizon)) # Write .xml files for test plots creation. baseline_config.set('train_args', 'sumo_emission', str(True)) timestamp = datetime.now().strftime('%Y%m%d%H%M%S.%f') print(f'Experiment timestamp: {timestamp}') with tempfile.TemporaryDirectory() as tmp_dir: # Create a config file for each train.py # with the respective seed. These config # files are stored in a temporary directory. tmp_path = Path(tmp_dir) baseline_configs = [] for seed in seeds: cfg_path = tmp_path / f'{flags.tls_type}-{seed}.config' baseline_configs.append(cfg_path) # Setup train seed. baseline_config.set("train_args", "experiment_seed", str(seed + 1)) # Write temporary train config file. with cfg_path.open('w') as ft: baseline_config.write(ft) # rvs: directories' names holding experiment data if num_processors > 1: packed_args = [(delay, cfg) for (delay, cfg) in zip(range(len(baseline_configs)), baseline_configs)] pool = NonDaemonicPool(num_processors) rvs = pool.map(delay_baseline, packed_args) pool.close() pool.join() else: rvs = [] for cfg in baseline_configs: rvs.append(delay_baseline((0.0, cfg))) # Create a directory and move newly created files paths = [Path(f) for f in rvs] commons = [p.parent for p in paths] if len(set(commons)) > 1: raise ValueError(f'Directories {set(commons)} must have the same root') dirpath = commons[0] batchpath = dirpath / timestamp if not batchpath.exists(): batchpath.mkdir() # Move files for src in paths: dst = batchpath / src.parts[-1] src.replace(dst) sys.stdout.write(str(batchpath)) return str(batchpath) @processable def baseline_job(): # Suppress textual output. return baseline_batch() if __name__ == '__main__': # 1) Run baseline. experiment_root_path = baseline_batch() # 2) Convert .xml files to .csv files. xml2csv(experiment_root_path=experiment_root_path) # 3) Create plots with metrics plots for final agent. baseline_plots(experiment_root_path) # 4) Clean up and compress files in order # to optimize disk space. print('\nCleaning and compressing files...\n') experiment_root_path = Path(experiment_root_path) for csv_path in experiment_root_path.rglob('*-emission.csv'): Path(csv_path).unlink() shutil.make_archive(experiment_root_path, 'gztar', os.path.dirname(experiment_root_path), experiment_root_path.name) shutil.rmtree(experiment_root_path) print('Experiment folder: {0}'.format(experiment_root_path))
2.21875
2
pelicanconf.py
alphor/jarmac.org
0
12781889
<reponame>alphor/jarmac.org #!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import unicode_literals AUTHOR = '<NAME>' SITENAME = 'No Odd Cycles' SITEURL = 'https://jarmac.org' PATH = 'content' TIMEZONE = 'EST' DEFAULT_LANG = 'en' # Feed generation is usually not desired when developing FEED_ALL_ATOM = None CATEGORY_FEED_ATOM = None TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None # Blogroll # ('Pelican', 'http://getpelican.com/'), # ('Jinja2', 'http://jinja.pocoo.org/'), LINKS = (('Source', 'https://github.com/alphor/jarmac.org'), ('nixOS', '//jarmac.org/category/nixos.html'), ('linux', '//jarmac.org/category/linux.html'), ('meta', '//jarmac.org/category/meta.html'), ('math', '//jarmac.org/category/math.html')) # Social widget SOCIAL = (('Github', 'https://github.com/alphor', '//jarmac.org/theme/img/GitHub-Mark-Light-32px.png'), ('RSS', 'https://jarmac.org/feed', '//jarmac.org/theme/img/feed-icon-28x28.png'),) DEFAULT_PAGINATION = False # Uncomment following line if you want document-relative URLs when developing #RELATIVE_URLS = True ARTICLE_URL = 'posts/{slug}.html' ARTICLE_SAVE_AS = 'posts/{slug}.html' # Begin theme config PLUGIN_PATHS = ['./pelican-plugins'] PLUGINS = ['i18n_subsites'] THEME = './pelican-themes/pelican-bootstrap3' CUSTOM_CSS = 'theme/css/sitewide.css' JINJA_ENVIRONMENT = {'extensions': ['jinja2.ext.i18n']} HIDE_SIDEBAR = True # PIWIK_URL = 'piwik.jarmac.org' # PIWIK_SITE_ID = "'1'" DISABLE_URL_HASH = True FEED_ALL_RSS = 'feed' CATEGORY_FEED_RSS = '%s'
1.539063
2
api/dna.py
narendersinghyadav/dna
0
12781890
import psutil import binascii import socket import ipaddress """ **Module Overview:** This module will interact with Tor to get real time statistical and analytical information. |-is_alive - check tor process is alive or killed |-is_valid_ipv4_address-check for valid ip address |-authenticate- cookie authentication of control port |-get_version- get version of tor |-get_pid- find pid of tor service |-get_info- get information like version,exit policy,network status etc |-set_conf- change the value of one or more configurable variable |-reset_conf-set the configurable variable to default values |-get_conf- Request the value of zero or more configuration variable |-get_ports- retreive informations about listeners of different ports |-get_network_statuses- Router status info (v3 directory style) for all ORs. |-get_exit_policy-The default exit policy lines that Tor will *append* to the ExitPolicy config option. |-prt_check-check validity of ports |-can_exit_to- check whether one can exit through a particular port |-get_circuit- get information about circuits present for use |-port_usage-Usage of particular port |-get_info_relay- retrieve information from database about a particular relay |-status-tell status of a circuit BUILT or not |-build_flag- build flag on circuit and relays |-path- return path of circuit |-created- circuit created info |-signal-signal control port like NEWNYM,RELOAD etc |-get_fingerprint-the contents of the fingerprint file that Tor writes as a relay, or a 551 if we're not a relay currently. !-get_network_status-network status of a relay with given fingerprint """ def is_alive(): for proc in psutil.process_iter(): try: if 'tor' in proc.name().lower(): return True except(psutil.NoSuchProcess,psutil.AccessDenied,psutil.ZombieProcess): pass return False def is_valid_ipv4_address(address): if not isinstance(address, (bytes, str)): return False if address.count('.') != 3: return False for entry in address.split('.'): if not entry.isdigit() or int(entry) < 0 or int(entry) > 255: return False elif entry[0] == '0' and len(entry) > 1: return False return True def authenticate(): control_socket=socket.socket(socket.AF_INET,socket.SOCK_STREAM) control_socket.connect(('127.0.0.1',9051)) signal=bytes('PROTOCOLINFO \r\n','utf-8') control_socket.send(signal) rcv=control_socket.recv(4096).decode('utf-8') rcv=rcv.splitlines() if rcv[0]!='250-PROTOCOLINFO 1': return None cookie_path=rcv[1].split('"') cookie_path=cookie_path[1] f=open(cookie_path,"rb") q=f.read() q=binascii.b2a_hex(q) q=q.decode('utf-8') signal=bytes('AUTHENTICATE ' +q+' \r\n','utf-8') control_socket.send(signal) rcv=control_socket.recv(4096).decode('utf-8').split()[0] if rcv=='250': return control_socket return None def get_version(): control_socket=authenticate() control_socket.send(bytes("GETINFO version \r\n",'utf-8')) result=control_socket.recv(4096) result=result.decode('utf-8') result=result.split('=') result=result[1].split(' ') return result[0] def get_pid(name): control_socket=authenticate() control_socket.send(bytes("GETINFO process/pid \r\n",'utf-8')) result=control_socket.recv(4096) result=result.decode('utf-8') result=result.splitlines() result=result[0].split('=')[1] pid=result return int(pid) def get_info(query): control_socket=authenticate() getinfo='GETINFO '+query+" \r\n" control_socket.send(bytes(getinfo,'utf-8')) result=control_socket.recv(4096) result=result+control_socket.recv(4096) result=result+control_socket.recv(4096) return result def set_conf(name,new_value): control_socket=authenticate() setconf='SETCONF '+name+'='+new_value+' \r\n' control_socket.send(bytes(setconf,'utf-8')) result=control_socket.recv(4096) def reset_conf(name): control_socket=authenticate() setconf='SETCONF '+name+'= \r\n' control_socket.send(bytes(setconf,'utf-8')) result=control_socket.recv(4096) def get_conf(name): control_socket=authenticate() control_socket.send(bytes("GETCONF "+ name+" \r\n",'utf-8')) result=control_socket.recv(4096) result=result.decode('utf-8') if result is None or "=" not in result: return result result=result.split('=') result=' '.join(result[1].split()) return result def get_ports(port_name): control_socket=authenticate() port_name=port_name.lower() control_socket.send(bytes("GETINFO net/listeners/"+ port_name +" \r\n",'utf-8')) result=control_socket.recv(4096) result=result.decode('utf-8') result=result.splitlines() result=result[0].split('=')[1] if len(result.split())>1 and len(result.split()[0].split(':'))>1: result=result.split()[0].split(':')[1][:-1] portlist=[] if result!='': try: value=int(result) portlist.append(value) except ValueError: pass return portlist def get_network_statuses(): control_socket=authenticate() control_socket.send(bytes("GETINFO ns/all \r\n",'utf-8')) controlsocket=control_socket.recv(4096).decode('utf-8') result="" for i in range(0,250): result+=controlsocket controlsocket=control_socket.recv(4096).decode('utf-8') address_list=[] or_list=[] for line in result.splitlines(): if(line[0]=='r'): data=line.split() if(len(data)==9): address_list.append(data[6]) or_list.append(data[7]) else: continue return address_list,or_list def get_exit_policy(): PRIVATE_ADDRESSES = ( '0.0.0.0/8', '169.254.0.0/16', '127.0.0.0/8', '192.168.0.0/16', '10.0.0.0/8', '172.16.0.0/12', ) control_socket=authenticate() control_socket.send(bytes("GETINFO address \r\n",'utf-8')) address=control_socket.recv(4096).decode('utf-8').split('=') if len(address)>=2: address=address[1].splitlines()[0] PRIVATE_ADDRESSES+=(address,) control_socket.send(bytes("GETCONF ExitPolicyRejectPrivate \r\n",'utf-8')) exitpolicy=control_socket.recv(4096).decode('utf-8') exitpolicy=exitpolicy.split('=')[1] exitpolicy=int(exitpolicy) if exitpolicy==1: acceptance='reject' else: acceptence='accept' result="" for ip_address in PRIVATE_ADDRESSES: result+=acceptance+' '+ip_address+':*, ' control_socket.send(bytes("GETINFO exit-policy/default \r\n",'utf-8')) result+=control_socket.recv(4096).decode('utf-8').split('=')[1].replace(',',', ') return result.splitlines()[0] def prt_check(prt,port): prt=prt.split('-') if len(prt)==2: miniport=int(prt[0]) maxiport=int(prt[1]) else: miniport=int(prt[0]) maxiport=int(prt[0]) if port>=miniport and port<=maxiport: return True else: return False def can_exit_to(policy,address,port): policy=policy.split(',') for policy_itr in policy: accept=policy_itr.split()[0] addr=policy_itr.split()[1].split(':')[0] prt=policy_itr.split()[1].split(':')[1] if (addr=='*' or ipaddress.ip_address(address) in ipaddress.ip_network(addr)) and (prt=='*' or prt_check(prt,port)): if(accept=='reject'): return False else: return True return True def get_circuits(): control_socket=authenticate() control_socket.send(bytes("GETINFO circuit-status \r\n","utf-8")) response=control_socket.recv(4096).decode('utf-8') response=response.splitlines() circuit_info=[] response=response[1:-2] for res in response: circuit_info.append("CIRC "+res+"\n") return circuit_info def port_usage(port): file=open('ports.cfg','r') lines=file.readlines() port_usg='' for line in lines: line=line.split() if len(line)>3: if line[0]=='port': if line[1]==str(port): port_usg=line[3] if port_usg!='': return port_usg else: log_trace("BUG failed to find port usages") return None def get_info_relay(query): control_socket=authenticate() control_socket.send(bytes("GETINFO "+query+" \r\n",'utf-8')) response=control_socket.recv(4096).decode('utf-8') if response[0]=='5': return None response=response.splitlines()[0] response=response.split('=')[1] return response def status(circuit_info): if len(circuit_info.split())>2 and circuit_info.split()[2]=='BUILT': return 'BUILT' return 'NOT BUILT' def build_flags(circuit_info): if len(circuit_info.split())<5: return [] circuit_info=circuit_info.split()[4] if len(circuit_info.split('='))<2: return [] circuit_info=circuit_info.split('=')[1] circuit_info=circuit_info.split(',') return circuit_info def path(circuit_info): path_list=[] if len(circuit_info.split())<4: return [] circuit_info=circuit_info.split()[3] circuit_info=circuit_info.split(',') for circ in circuit_info: path_list.append(circ.split('~')) return path_list def created(circuit_info): if(len(circuit_info.split())<7): return '' circuit_info=circuit_info.split()[6] circuit_info=circuit_info.split('=')[1] circuit_info=circuit_info[:10]+" "+circuit_info[11:] return circuit_info def signal(signal_query,control_socket): control_socket.send(bytes("SIGNAL "+ signal_query+" \r\n","utf-8")) response=control_socket.recv(4096).decode('utf-8') if response.split()[0]=='250': return True else: return False def get_fingerprint(): control_socket=authenticate() control_socket.send(bytes("GETINFO fingerprint \r\n",'utf-8')) result=control_socket.recv(4096) response_code=result.decode('utf-8').split() if response_code[0]=='551': return "" fingerprint=result.decode('utf-8').split('=') return fingerprint def get_network_status(fingerprint): control_socket=authenticate() control_socket.send(bytes("GETINFO ns/id/"+fingerprint+" \r\n",'utf-8')) result=control_socket.recv(4096) result=result.decode('utf-8') dict_network_status={} if len(result.split('='))<2: return dict_network_status result=result.split('=')[1] result=result.splitlines() flags=result[2] result=result[1] result=result.split() if len(result)>=9: dict_network_status["dir_port"]=result[8] else: dict_network_status["dir_port"]='None' if len(result)>=7: dict_network_status["or_port"]=result[7] else: dict_network_status["or_port"]="None" dict_network_status["nickname"]=result[1] dict_network_status["published"]=result[4]+" "+result[5] dict_network_status["flags"]=flags.split()[1:] return dict_network_status
2.625
3
src/ssh_server.py
ramonmeza/PythonSSHServerTutorial
4
12781891
import paramiko from src.server_base import ServerBase from src.ssh_server_interface import SshServerInterface from src.shell import Shell class SshServer(ServerBase): def __init__(self, host_key_file, host_key_file_password=None): super(SshServer, self).__init__() self._host_key = paramiko.RSAKey.from_private_key_file(host_key_file, host_key_file_password) def connection_function(self, client): try: # create the SSH transport object session = paramiko.Transport(client) session.add_server_key(self._host_key) # create the server server = SshServerInterface() # start the SSH server try: session.start_server(server=server) except paramiko.SSHException: return # create the channel and get the stdio channel = session.accept() stdio = channel.makefile('rwU') # create the client shell and start it # cmdloop() will block execution of this thread. self.client_shell = Shell(stdio, stdio) self.client_shell.cmdloop() # After execution continues, we can close the session # since the only way execution will continue from # cmdloop() is if we explicitly return True from it, # which we do with the bye command. session.close() except: pass
2.671875
3
python/python-core/datetimes.py
josephobonyo/sigma_coding_youtube
893
12781892
# import our libraries import time import datetime # get today's date today = date.today() print(today) # create a custom date future_date = date(2020, 1, 31) print(future_date) # let's create a time stamp time_stamp = time.time() print(time_stamp) # create a date from a timestamp date_stamp = date.fromtimestamp(time_stamp) print(date_stamp) # get components of a date print(date_stamp.year) print(date_stamp.month) print(date_stamp.day) # ------------------------- PART TWO -------------------------- from datetime import datetime, date, time # create a date and a time my_date = date(2019, 3, 22) my_time = time(12, 30) # create a datetime my_datetime = datetime.combine(my_date, my_time) print(my_datetime) # get the different components print(my_datetime.year) print(my_datetime.month) print(my_datetime.day) print(my_datetime.hour) print(my_datetime.minute)
3.96875
4
Tools/TestSend.py
CasperTheCat/D3D11Wrapper
11
12781893
import socket import time import struct import os import numpy import sys with open(sys.argv[1], "rb") as f: data = f.read()[8:] datarts = numpy.array(struct.unpack("{}Q".format(len(data) // 8), data)) nEvents = 8 HOST = 'localhost' # The remote host PORT = 6666 # The same port as used by the server with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect((HOST, PORT)) index = 0 while True: s.sendall(data[index*8*nEvents:(index+1)*8*nEvents]) index+=1 #s.sendall(b'\x55\x55\x00\x00\x00\x00\x00\x00') time.sleep(datarts[index] / 1000000)
2.59375
3
main.py
Octoleet-Dev/Gingerbread_Checkers
0
12781894
print('welcome to the Gingerbread_Checkers launcher') print('would you like to start a new game?') wu = input('>>>') yes = 'yes' Yes = 'Yes' no = 'no' No = 'no' def y(): print('okay, starting new game') def x(): print('okay then') if wu = yes: y() if wu = Yes y() if wu = no x() if wu = No x() else: print('error code 000: invalid response recived')
3.40625
3
exstracs/exstracs_output.py
bnanita/trafficapi
0
12781895
<reponame>bnanita/trafficapi<gh_stars>0 """ Name: ExSTraCS_OutputFileManager.py Authors: <NAME> - Written at Dartmouth College, Hanover, NH, USA Contact: <EMAIL> Created: April 25, 2014 Modified: August 25,2014 Description: This module contains the methods for generating the different output files generated by ExSTraCS. These files are generated at each learning checkpoint, and the last iteration. These include... writePopStats: Summary of the population statistics writePop: Outputs a snapshot of the entire rule population including classifier conditions, classes, and parameters. attCo_Occurence: Calculates and outputs co-occurrence scores for each attribute pair in the dataset. --------------------------------------------------------------------------------------------------------------------------------------------------------- ExSTraCS V2.0: Extended Supervised Tracking and Classifying System - An advanced LCS designed specifically for complex, noisy classification/data mining tasks, such as biomedical/bioinformatics/epidemiological problem domains. This algorithm should be well suited to any supervised learning problem involving classification, prediction, data mining, and knowledge discovery. This algorithm would NOT be suited to function approximation, behavioral modeling, or other multi-step problems. This LCS algorithm is most closely based on the "UCS" algorithm, an LCS introduced by <NAME> and <NAME> (2003) which in turn is based heavily on "XCS", an LCS introduced by Stewart Wilson (1995). Copyright (C) 2014 <NAME> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABLILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA --------------------------------------------------------------------------------------------------------------------------------------------------------- """ #Import Required Modules------------------------------- from exstracs.exstracs_constants import * from exstracs.exstracs_at import * import copy #------------------------------------------------------ class OutputFileManager: def writePopStats(self, outFile, trainEval, testEval, exploreIter, pop, correct): """ Makes output text file which includes all of the parameter settings used in the run as well as all of the evaluation stats including Time Track Output. """ if cons.outputSummary: try: popStatsOut = open(outFile + '_'+ str(exploreIter)+'_PopStats.txt','w') # Outputs Population run stats except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', outFile + '_'+ str(exploreIter)+'_PopStats.txt') raise else: print("Writing Population Statistical Summary File...") #Evaluation of pop popStatsOut.write("Performance Statistics:------------------------------------------------------------------------\n") popStatsOut.write("Training Accuracy\tTesting Accuracy\tTraining Coverage\tTesting Coverage\n") if cons.testFile != 'None': popStatsOut.write(str(trainEval[0])+"\t") popStatsOut.write(str(testEval[0])+"\t") popStatsOut.write(str(trainEval[1]) +"\t") popStatsOut.write(str(testEval[1])+"\n\n") elif cons.trainFile != 'None': popStatsOut.write(str(trainEval[0])+"\t") popStatsOut.write("NA\t") popStatsOut.write(str(trainEval[1]) +"\t") popStatsOut.write("NA\n\n") else: popStatsOut.write("NA\t") popStatsOut.write("NA\t") popStatsOut.write("NA\t") popStatsOut.write("NA\n\n") popStatsOut.write("Population Characterization:------------------------------------------------------------------------\n") popStatsOut.write("MacroPopSize\tMicroPopSize\tGenerality\n") popStatsOut.write(str(len(pop.popSet))+"\t"+ str(pop.microPopSize)+"\t"+str(pop.aveGenerality)+"\n\n") popStatsOut.write("SpecificitySum:------------------------------------------------------------------------\n") headList = cons.env.formatData.trainHeaderList #preserve order of original dataset for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(headList[i])+"\t") else: popStatsOut.write(str(headList[i])+"\n") # Prints out the Specification Sum for each attribute for i in range(len(pop.attributeSpecList)): if i < len(pop.attributeSpecList)-1: popStatsOut.write(str(pop.attributeSpecList[i])+"\t") else: popStatsOut.write(str(pop.attributeSpecList[i])+"\n") popStatsOut.write("\nAccuracySum:------------------------------------------------------------------------\n") for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(headList[i])+"\t") else: popStatsOut.write(str(headList[i])+"\n") # Prints out the Accuracy Weighted Specification Count for each attribute for i in range(len(pop.attributeAccList)): if i < len(pop.attributeAccList)-1: popStatsOut.write(str(pop.attributeAccList[i])+"\t") else: popStatsOut.write(str(pop.attributeAccList[i])+"\n") if cons.onlyRC: # When RC ONLY, there is no AttributeTrackingGlobalSums popStatsOut.write("\nAttributeTrackingGlobalSums:----Rule Compaction ONLY, Attribute Tracking not loaded-----------------\n") for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(headList[i])+"\t") else: popStatsOut.write(str(headList[i])+"\n") for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(0.0)+"\t") else: popStatsOut.write(str(0.0)+"\n") elif cons.doAttributeTracking: popStatsOut.write("\nAttributeTrackingGlobalSums:------------------------------------------------------------------------\n") for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(headList[i])+"\t") else: popStatsOut.write(str(headList[i])+"\n") sumGlobalAttTrack = cons.AT.sumGlobalAttTrack() for i in range(len(sumGlobalAttTrack)): if i < len(sumGlobalAttTrack)-1: popStatsOut.write(str(sumGlobalAttTrack[i])+"\t") else: popStatsOut.write(str(sumGlobalAttTrack[i])+"\n") else: popStatsOut.write("\nAttributeTrackingGlobalSums:----Tracking not applied!-----------------------------------------------\n") for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(headList[i])+"\t") else: popStatsOut.write(str(headList[i])+"\n") for i in range(len(headList)): if i < len(headList)-1: popStatsOut.write(str(0.0)+"\t") else: popStatsOut.write(str(0.0)+"\n") #Time Track --------------------------------------------------------------------------------------------------------- popStatsOut.write("\nRun Time(in minutes):------------------------------------------------------------------------\n") popStatsOut.write(cons.timer.reportTimes()) popStatsOut.write("\nCorrectTrackerSave:------------------------------------------------------------------------\n") for i in range(len(correct)): popStatsOut.write(str(correct[i])+"\t") popStatsOut.close() else: pass def writePop(self, outFile, exploreIter, pop): """ Writes a tab delimited text file specifying the evolved rule population, including conditions, phenotypes, and all rule parameters. """ if cons.outputPopulation: try: rulePopOut = open(outFile + '_'+ str(exploreIter)+'_RulePop.txt','w') # Outputs tab delimited text file of rule population and respective rule stats except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', outFile + '_'+ str(exploreIter)+'_RulePop.txt') raise else: print("Writing Population as Data File...") rulePopOut.write("Specified\tCondition\tPhenotype\tFitness\tAccuracy\tNumerosity\tAveMatchSetSize\tTimeStampGA\tInitTimeStamp\tSpecificity\tDeletionProb\tCorrectCount\tMatchCount\tCorrectCover\tMatchCover\tEpochComplete\n") #Write each classifier-------------------------------------------------------------------------------------------------------------------------------------- for cl in pop.popSet: rulePopOut.write(str(cl.printClassifier())) rulePopOut.close() else: pass def attCo_Occurence(self, outFile, exploreIter, pop): """ Calculates pairwise attribute co-occurence througout all rules in the population.""" if cons.outputAttCoOccur: print("Calculating Attribute Co-occurence Scores...") dataLink = cons.env.formatData dim = dataLink.numAttributes maxAtts = 50 #Test 10 attList = [] #------------------------------------------------------- # IDENTIFY ATTRIBUBTES FOR CO-OCCRRENCE EVALUATION #------------------------------------------------------- if dim <= maxAtts: for i in range(0,dim): attList.append(i) else: tempList = copy.deepcopy(pop.attributeSpecList) tempList = sorted(tempList,reverse=True) maxVal = tempList[maxAtts] overflow = [] for i in range(0,dim): if pop.attributeSpecList[i] >= maxVal: #get roughly the top 50 specified attributes. (may grab some extras, depending on attList.append(i) if pop.attributeSpecList[i] == maxVal: overflow.append(i) while len(attList) > maxAtts: target = random.choice(overflow) attList.remove(target) overflow.remove(target) #print(attList) #------------------------------------------------------- # CO-OCCRRENCE EVALUATION #------------------------------------------------------- comboList = [] castList = [None,None,0,0] #att1, att2, Specificity, Accuracy Weighted Specificity count = 0 dim = dataLink.numAttributes #Specify all attribute pairs. for i in range(0, len(attList)-1): for j in range(i+1,len(attList)): comboList.append(copy.deepcopy(castList)) comboList[count][0] = dataLink.trainHeaderList[attList[i]] comboList[count][1] = dataLink.trainHeaderList[attList[j]] count += 1 for cl in pop.popSet: count = 0 for i in range(len(attList)-1): for j in range(i+1,len(attList)): if attList[i] in cl.specifiedAttList and attList[j] in cl.specifiedAttList: comboList[count][2] += cl.numerosity comboList[count][3] += cl.numerosity * cl.accuracy count += 1 tupleList = [] for i in comboList: tupleList.append((i[0],i[1],i[2],i[3])) sortedComboList = sorted(tupleList,key=lambda test: test[3], reverse=True) print("Writing Attribute Co-occurence scores as data file...") try: f = open(outFile + '_'+ str(exploreIter)+ '_CO.txt', 'w') except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', outFile + '_'+ str(exploreIter)+ '_CO.txt') raise else: for i in range(len(sortedComboList)): for j in range(len(sortedComboList[0])): #att1, att2, count, AWcount if j < len(sortedComboList[0])-1: f.write(str(sortedComboList[i][j])+'\t') else: f.write(str(sortedComboList[i][j])+'\n') f.close() else: pass def save_tracking(self, exploreIter, outFile): if cons.doAttributeTracking: """ Prints out Attribute Tracking scores to txt file. """ try: f = open(outFile + '_'+ str(exploreIter + 1)+'_AttTrack.txt','w') # Outputs tab delimited text file of rule population and respective rule stats except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', outFile + '_'+ str(exploreIter + 1)+'_AttTrack.txt') raise else: print("Writing Attribute Tracking as Data File...") trackingSums = cons.AT.attAccuracySums #------------------------------------------------------------------- f.write(str(cons.labelInstanceID) + '\t') #Write InstanceID label for att in cons.env.formatData.trainHeaderList: f.write(str(att) + '\t') f.write(str(cons.labelPhenotype)+ '\n') #Write phenotype label #--------------------------------------------------------------- for i in range(len(trackingSums)): trackList = trackingSums[i] f.write(str(cons.env.formatData.trainFormatted[i][2])+ '\t') #Write InstanceID for att in trackList: f.write(str(att) + '\t') f.write(str(cons.env.formatData.trainFormatted[i][1]) +'\n') #Write phenotype f.close() def writePredictions(self, exploreIter, outFile, predictionList, realList, predictionSets): if cons.outputTestPredictions: """ Prints out the Testing Predictions to txt file.""" try: f = open(outFile + '_'+ str(exploreIter + 1)+'_Predictions.txt','w') # Outputs tab delimited text file of rule population and respective rule stats except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', outFile + '_'+ str(exploreIter + 1)+'_Predictions.txt') raise else: print("Writing Predictions to File...") f.write(str(cons.labelInstanceID) + '\t'+'Endpoint Predictions'+'\t' + 'True Endpoint') if cons.env.formatData.discretePhenotype: for eachClass in cons.env.formatData.phenotypeList: f.write('\t'+ str(eachClass)) f.write('\n') for i in range(len(predictionList)): f.write(str(cons.env.formatData.testFormatted[i][2])+ '\t') #Write InstanceID f.write(str(predictionList[i])+'\t'+str(realList[i])) if cons.env.formatData.discretePhenotype: propList = [] for eachClass in cons.env.formatData.phenotypeList: propList.append(predictionSets[i][eachClass]) for each in propList: f.write('\t'+ str(each)) f.write('\n') f.close() def editPopStats(self, testEval): """ Takes an existing popStatsFile and edits it to report Testing Accuracy performance, and Testing coverage on a specified testing dataset. """ try: fileObject = open(cons.popRebootPath+"_PopStats.txt", 'rU') # opens each datafile to read. except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', cons.popRebootPath+"_PopStats.txt") raise #Grab the existing file information (only a couple items will change, i.e. testing acccuracy and testing coverage) fileStorage = [] for each in fileObject: fileStorage.append(each) fileObject.close() try: popStatsOut = open(cons.popRebootPath+'_PopStats_Testing.txt','w') # Outputs Population run stats except Exception as inst: print(type(inst)) print(inst.args) print(inst) print('cannot open', cons.popRebootPath+'_PopStats_Testing.txt') raise else: print("Writing Population Statistical Summary File...") for i in range(2): popStatsOut.write(fileStorage[i]) tempList = fileStorage[2].strip().split('\t') popStatsOut.write(str(tempList[0])+"\t") popStatsOut.write(str(testEval[0])+"\t") popStatsOut.write(str(tempList[2]) +"\t") popStatsOut.write(str(testEval[1])+"\n\n") for i in range(4,36): popStatsOut.write(fileStorage[i]) popStatsOut.close()
2.078125
2
session-1/fitting/fitter_apolo.py
Ivan-Solovyev/data-analysis-tutorial
1
12781896
<filename>session-1/fitting/fitter_apolo.py<gh_stars>1-10 #------------------------------------------------------------------------------- import ostap.fitting.models as Models from ostap.utils.timing import timing from ostap.histos.histos import h1_axis from Functions import * #------------------------------------------------------------------------------- im = ROOT.RooRealVar ('im' , 'im' , 2.240 , 2.330 ) pk = ROOT.RooRealVar ('pk' , 'peak ' , 2.2875 , 2.287 , 2.288 ) sg = ROOT.RooRealVar ('sg' , 'sigma' , 0.0045 , 0.003 , 0.070 ) am = ROOT.RooRealVar ('am' , 'asymmetry' , 0.0000 , -0.300 , 0.300 ) bt = ROOT.RooRealVar ('bt' , 'beta' , 1.0000 , 0.500 , 9.999 ) #------------------------------------------------------------------------------- sig_ap = Models.Apollonios2_pdf( 'sig_ap', xvar=im, mean=pk, sigma=sg, asymmetry=am, beta=bt) bkg0 = Models.Bkg_pdf ( 'bkg0' , xvar = im , power = 0 ) # #------------------------------------------------------------------------------- # if __name__=="__main__": #------------------------------------------------------------------------------- model = Models.Fit1D ( signal = sig_ap , background = bkg0 ) #------------------------------------------------------------------------------- rfile = ROOT.TFile("test_file.root","READ") ds = rfile["ds_pi"] dh = ( ds.reduce( ROOT.RooArgSet( im ) , "im>0" ) ).binnedClone() with timing(): r, w = model.fitTo( dh , draw=True, silent=True) r, w = model.fitTo( dh , draw=True, silent=True) # r, w = model.fitTo(ds, draw=True, nbins=100, ncpu=4) #------------------------------------------------------------------------------- print(r) #------------------------------------------------------------------------------- h = w.pullHist() draw_param( r, w, h, 90, im, 0.06*ds.sumEntries(), name="Lc", XTitle ="Mass", Prefix="Apolo2" , Type="png", var_Units = "GeV/c^{2}") #-------------------------------------------------------------------------------
2.203125
2
sample_project/env/lib/python3.9/site-packages/fontTools/misc/roundTools.py
Istiakmorsalin/ML-Data-Science
38,667
12781897
""" Various round-to-integer helpers. """ import math import functools import logging log = logging.getLogger(__name__) __all__ = [ "noRound", "otRound", "maybeRound", "roundFunc", ] def noRound(value): return value def otRound(value): """Round float value to nearest integer towards ``+Infinity``. The OpenType spec (in the section on `"normalization" of OpenType Font Variations <https://docs.microsoft.com/en-us/typography/opentype/spec/otvaroverview#coordinate-scales-and-normalization>`_) defines the required method for converting floating point values to fixed-point. In particular it specifies the following rounding strategy: for fractional values of 0.5 and higher, take the next higher integer; for other fractional values, truncate. This function rounds the floating-point value according to this strategy in preparation for conversion to fixed-point. Args: value (float): The input floating-point value. Returns float: The rounded value. """ # See this thread for how we ended up with this implementation: # https://github.com/fonttools/fonttools/issues/1248#issuecomment-383198166 return int(math.floor(value + 0.5)) def maybeRound(v, tolerance, round=otRound): rounded = round(v) return rounded if abs(rounded - v) <= tolerance else v def roundFunc(tolerance, round=otRound): if tolerance < 0: raise ValueError("Rounding tolerance must be positive") if tolerance == 0: return noRound if tolerance >= .5: return round return functools.partial(maybeRound, tolerance=tolerance, round=round)
3.734375
4
facial_emotion_image.py
richacker/theme_detection
3
12781898
from keras.preprocessing.image import img_to_array from keras.models import load_model import imutils import cv2 import numpy as np import sys # parameters for loading data and images detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'models/_mini_XCEPTION.106-0.65.hdf5' img_path = sys.argv[1] # hyper-parameters for bounding boxes shape # loading models face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ["angry","disgust","scared", "happy", "sad", "surprised","neutral"] #reading the frame orig_frame = cv2.imread(img_path) frame = cv2.imread(img_path,0) faces = face_detection.detectMultiScale(frame,scaleFactor=1.2,minNeighbors=5,minSize=(30,30),flags=cv2.CASCADE_SCALE_IMAGE) if len(faces) > 0: faces = sorted(faces, reverse=True,key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] (fX, fY, fW, fH) = faces roi = frame[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (48, 48)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = emotion_classifier.predict(roi)[0] emotion_probability = np.max(preds) label = EMOTIONS[preds.argmax()] cv2.putText(orig_frame, label, (fX, fY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) cv2.rectangle(orig_frame, (fX, fY), (fX + fW, fY + fH),(0, 0, 255), 2) print(label) cv2.imshow('test_face', orig_frame) cv2.imwrite('test_output/'+img_path.split('/')[-1],orig_frame) if (cv2.waitKey(2000) & 0xFF == ord('q')): sys.exit("Thanks") cv2.destroyAllWindows()
3.171875
3
tests/test_entities.py
shelsoloa/Peachy
2
12781899
<reponame>shelsoloa/Peachy<filename>tests/test_entities.py import peachy engine = None world = None room = None def test_startup(): global engine global world global room engine = peachy.Engine() world = engine.add_world(peachy.World('Test')) room = world.room for i in range(100): room.add(peachy.Entity()) assert len(room) == 100 def test_naming(): t = room[0] t.name = 'test' assert t == room.get_name('test') t.name = '' def test_grouping(): # ents = room.entities[0:10] # ents.clear() pass
2.546875
3
src/ros_tcp_endpoint/tcp_sender.py
Gin-TrungSon/ROS-TCP-Endpoint
67
12781900
<filename>src/ros_tcp_endpoint/tcp_sender.py # Copyright 2020 Unity Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rospy import socket import time import threading import struct from .client import ClientThread from .thread_pauser import ThreadPauser from io import BytesIO # queue module was renamed between python 2 and 3 try: from queue import Queue from queue import Empty except: from Queue import Queue from Queue import Empty class UnityTcpSender: """ Sends messages to Unity. """ def __init__(self): # if we have a valid IP at this point, it was overridden locally so always use that self.sender_id = 1 self.time_between_halt_checks = 5 # Each sender thread has its own queue: this is always the queue for the currently active thread. self.queue = None self.queue_lock = threading.Lock() # variables needed for matching up unity service requests with responses self.next_srv_id = 1001 self.srv_lock = threading.Lock() self.services_waiting = {} def send_unity_info(self, text): if self.queue is not None: command = SysCommand_Log() command.text = text serialized_bytes = ClientThread.serialize_command("__log", command) self.queue.put(serialized_bytes) def send_unity_warning(self, text): if self.queue is not None: command = SysCommand_Log() command.text = text serialized_bytes = ClientThread.serialize_command("__warn", command) self.queue.put(serialized_bytes) def send_unity_error(self, text): if self.queue is not None: command = SysCommand_Log() command.text = text serialized_bytes = ClientThread.serialize_command("__error", command) self.queue.put(serialized_bytes) def send_ros_service_response(self, srv_id, destination, response): if self.queue is not None: command = SysCommand_Service() command.srv_id = srv_id serialized_bytes = ClientThread.serialize_command("__response", command) self.queue.put(serialized_bytes) self.send_unity_message(destination, response) def send_unity_message(self, topic, message): if self.queue is not None: serialized_message = ClientThread.serialize_message(topic, message) self.queue.put(serialized_message) def send_unity_service_request(self, topic, service_class, request): if self.queue is None: return None thread_pauser = ThreadPauser() with self.srv_lock: srv_id = self.next_srv_id self.next_srv_id += 1 self.services_waiting[srv_id] = thread_pauser command = SysCommand_Service() command.srv_id = srv_id serialized_bytes = ClientThread.serialize_command("__request", command) self.queue.put(serialized_bytes) self.send_unity_message(topic, request) # rospy starts a new thread for each service request, # so it won't break anything if we sleep now while waiting for the response thread_pauser.sleep_until_resumed() response = service_class._response_class().deserialize(thread_pauser.result) return response def send_unity_service_response(self, srv_id, data): thread_pauser = None with self.srv_lock: thread_pauser = self.services_waiting[srv_id] del self.services_waiting[srv_id] thread_pauser.resume_with_result(data) def send_topic_list(self): if self.queue is not None: topic_list = SysCommand_TopicsResponse() topics_and_types = rospy.get_published_topics() topic_list.topics = [item[0] for item in topics_and_types] topic_list.types = [item[1] for item in topics_and_types] serialized_bytes = ClientThread.serialize_command("__topic_list", topic_list) self.queue.put(serialized_bytes) def start_sender(self, conn, halt_event): sender_thread = threading.Thread( target=self.sender_loop, args=(conn, self.sender_id, halt_event) ) self.sender_id += 1 # Exit the server thread when the main thread terminates sender_thread.daemon = True sender_thread.start() def sender_loop(self, conn, tid, halt_event): s = None local_queue = Queue() # send an empty message to confirm connection # minimal message: 4 zero bytes for topic length 0, 4 zero bytes for payload length 0 local_queue.put(b"\0\0\0\0\0\0\0\0") with self.queue_lock: self.queue = local_queue try: while not halt_event.is_set(): try: item = local_queue.get(timeout=self.time_between_halt_checks) except Empty: # I'd like to just wait on the queue, but we also need to check occasionally for the connection being closed # (otherwise the thread never terminates.) continue # print("Sender {} sending an item".format(tid)) try: conn.sendall(item) except Exception as e: rospy.logerr("Exception on Send {}".format(e)) break finally: halt_event.set() with self.queue_lock: if self.queue is local_queue: self.queue = None class SysCommand_Log: text = "" class SysCommand_Service: srv_id = 0 class SysCommand_TopicsResponse: topics = [] types = []
2.28125
2
test/tests/del_name_scoping.py
aisk/pyston
1
12781901
<reponame>aisk/pyston x = 1 def f(): if 0: # the del marks 'x' as a name written to in this scope del x print x try: f() except NameError, e: print e
2.671875
3
office365/sharepoint/tenant/administration/sharing_capabilities.py
wreiner/Office365-REST-Python-Client
544
12781902
class SharingCapabilities: def __init__(self): pass Disabled = 0 ExternalUserSharingOnly = 1 ExternalUserAndGuestSharing = 2 ExistingExternalUserSharingOnly = 3
1.734375
2
fixtures/orm.py
Justcoderguy/python_training
0
12781903
from pony.orm import * from models.group import Group from models.contact import Contact from pymysql.converters import encoders, decoders, convert_mysql_timestamp from datetime import datetime _author_ = 'pzqa' class ORMFixture: db = Database() class ORMGroup(db.Entity): _table_ = 'group_list' id = PrimaryKey(int, column='group_id') name = Optional(str, column='group_name') logo = Optional(str, column='group_header') comment = Optional(str, column='group_footer') contacts = Set(lambda: ORMFixture.ORMContact, table='address_in_groups', column='id', reverse='groups', lazy=True) class ORMContact(db.Entity): _table_ = 'addressbook' id = PrimaryKey(int, column='id') f_name = Optional(str, column='firstname') l_name = Optional(str, column='lastname') address_one = Optional(str, column='address') email_one = Optional(str, column='email') email_two = Optional(str, column='email2') email_three = Optional(str, column='email3') home = Optional(str, column='home') mobile = Optional(str, column='mobile') work = Optional(str, column='work') phone_two = Optional(str, column='phone2') deprecated = Optional(datetime, column='deprecated') groups = Set(lambda: ORMFixture.ORMGroup, table='address_in_groups', column='group_id', reverse='contacts', lazy=True) def __init__(self, host, name, admin, password): conv = encoders conv.update(decoders) conv[datetime] = convert_mysql_timestamp self.db.bind('mysql', host=host, database=name, user=admin, password=password, conv=conv) self.db.generate_mapping() sql_debug(True) def convert_groups_to_model(self, groups): def convert(group): return Group(id=str(group.id), name=group.name, logo=group.logo, comment=group.comment) return list(map(convert, groups)) def convert_contacts_to_model(self, contacts): def convert(contact): return Contact(id=str(contact.id), f_name=contact.f_name, l_name=contact.l_name, address_one=contact.address_one, email_one=contact.email_one, email_two=contact.email_two, email_three=contact.email_three, home=contact.home, mobile=contact.mobile, work=contact.work, phone_two=contact.phone_two) return list(map(convert, contacts)) @db_session def get_group_list(self): return self.convert_groups_to_model((select(g for g in ORMFixture.ORMGroup))) @db_session def get_contact_list(self): return self.convert_contacts_to_model((select(c for c in ORMFixture.ORMContact if c.deprecated is None))) @db_session def get_contacts_in_group(self, group): orm_group = list(select(g for g in ORMFixture.ORMGroup if g.id == group.id))[0] return self.convert_contacts_to_model(orm_group.contacts) @db_session def get_contacts_not_in_group(self, group): orm_group = list(select(g for g in ORMFixture.ORMGroup if g.id == group.id))[0] return self.convert_contacts_to_model(( select(c for c in ORMFixture.ORMContact if c.deprecated is None and orm_group not in c.groups)))
2.28125
2
test/correctness/unit/upsert_tests.py
titanous/fdb-document-layer
0
12781904
# # upsert_tests.py # # This source file is part of the FoundationDB open source project # # Copyright 2013-2018 Apple Inc. and the FoundationDB project authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # MongoDB is a registered trademark of MongoDB, Inc. # from pymongo.errors import OperationFailure import itertools import pprint import sys import util from util import MongoModelException pprint = pprint.PrettyPrinter().pformat # test_1 = ("Plain upsert", { 'a': 1 }, { 'b': 1 }, "") # test_2 = ( # "Upsert with selector operators", # { 'a' : { '$gt': 1 } }, # { 'b': 1 }, # "" # ) # test_3 = ( # "Upsert with update operators", # { 'a' : 1 }, # { '$set': { 'a' : 2 } }, # "" # ) test_multiple_disparate_operators_1 = ("Multiple disparate operators 1", { '$and': [{ '$and': [{ 'a': 1 }] }], 'b': { '$gt': 1 } }, { '$set': { 'c': 35 } }, 'mixed') test_logical_1 = ("X", {'$and': [{'a.b.c.d': 1}, {'f': 17}]}, {'$set': {'yf': 17}}, 'mixed') # {$and:[{$and:[{a:1}]}], b:{$gt: 1}} def create_upsert_selector_operator_test(operator, object, depth, update, operator_type): selector = next_selector = {} next_char = 'a' for i in range(0, depth): next_selector[next_char] = {} next_selector = next_selector[next_char] next_char = chr(ord(next_char) + 1) next_selector[operator] = object return ("Upsert operator (%s) depth %s" % (operator, depth), selector, update, operator_type) def create_upsert_dotted_selector_operator_test(operator, object, depth, update, operator_type): selector = {} k = ['a'] next_char = 'b' for i in range(0, depth): k.append(next_char) next_char = chr(ord(next_char) + 1) k_str = '.'.join(k) selector[k_str] = {} selector[k_str][operator] = object return ("Upsert operator (%s) depth %s (dotted selector)" % (operator, depth), selector, update, operator_type) def create_upsert_dotted_selector_operator_test_with_operator_in_initial_position(operator, object, depth, update, operator_type): selector = {} k = ['a'] next_char = 'b' for i in range(0, depth): k.append(next_char) next_char = chr(ord(next_char) + 1) k_str = '.'.join(k) selector[operator] = {} selector[operator][k_str] = object return ("Upsert operator (%s) depth %s (dotted selector)" % (operator, depth), selector, update, operator_type) def create_operator_tests(operators, depth, update, operator_type): return [ func(operator, object, depth, update, operator_type) for name, func in globals().iteritems() if name.startswith('create_upsert_') for operator, object in operators ] def create_operator_permutation_tests(oplist, depth, repeat, update): op_permutations = itertools.product(oplist, repeat=repeat) tests = [] for ops in op_permutations: next_char = 'a' next_selector = selector = {} for i in range(0, depth): for op, obj in ops: next_selector[op] = obj tests.append(("Permutation (%s) depth %s repeat %s" % (ops, depth, repeat), util.OrderedDict(selector), update, 'permutation')) next_selector[next_char] = {} next_selector = next_selector[next_char] next_char = chr(ord(next_char) + 1) return tests def test(collection1, collection2, test): (label, selector, update, operator_type) = test sys.stdout.write('\tTesting \"%s\"... ' % label) update = util.deep_convert_to_ordered(update) collection1.remove() collection2.remove() def up(c, s, u): c.update(s, u, upsert=True, multi=False) errors = [] ret1 = ret2 = [] for c in (collection1, collection2): try: up(c, selector, update) except OperationFailure as e: errors.append("PyMongo upsert failed! Error was: " + str(e)) except MongoModelException as e: errors.append("MongoModel upsert failed! Error was: " + str(e)) if (len(errors)) == 1: print util.alert('FAIL', 'fail') print errors[0] return (False, [], [], operator_type) elif (len(errors)) == 2: print util.alert('PASS', 'okblue') return (True, [], [], operator_type) ret1 = [util.deep_convert_to_unordered(i) for i in collection1.find({})] ret1.sort() ret2 = [util.deep_convert_to_unordered(i) for i in collection2.find({})] ret2.sort() def error_report(msg): print util.indent(msg) print util.indent("Selector was: %s" % pprint(dict(selector))) print util.indent("Update was %s" % pprint(dict(update))) print util.indent("Upsert from collection1: %s" % ret1) print util.indent("Upsert from collection2: %s" % ret2) passed = True try: if len(ret1) + len(ret2) == 0: raise ValueError("NIL") for i in range(0, max(len(ret1), len(ret2))): try: del ret1[i]['_id'] except: pass try: del ret2[i]['_id'] except: pass assert ret1[i] == ret2[i] print util.alert('PASS', 'okgreen') except AssertionError: print util.alert('FAIL', 'fail') error_report("Upserts didn't match!") passed = False except IndexError: print util.alert('FAIL', 'fail') error_report("One or both upserts failed!") passed = False except ValueError as e: print util.alert("PASS (%s)" % str(e), 'okblue') return (passed, ret1, ret2, operator_type) operator_types = { 'comparison_operators': ( ('$gt', 0), ('$gte', 0), ('$in', [17, 2, 3]), ('$in', [17]), ('$lt', 17), ('$lte', 17), ('$ne', 17), ('$nin', [17, 2, 3]), ('$nin', [17]), ('$eq', 17), ), 'logical_operators': ( ('$or', [{ 'a': 17 }, { 'b': 17 }]), ('$or', [{ '$and': [{ 'a': 17 }, { 'b': 17 }] }]), ('$or', [{ '$and': [{ 'a': 17 }, { '$and': [{ 'c': 18 }, { 'd': 19 }] }, { 'b': 17 }] }]), ('$or', [{ '$and': [{ 'a': 17 }, { 'b': 17 }] }, { 'c': 17 }]), ('$or', [{ 'c': 17 }, { '$and': [{ 'a': 17 }, { 'b': 17 }] }]), ('$or', [{ 'c': 17 }, { '$and': [{ 'a': 17 }, { '$and': [{ 'd': 18 }, { 'e': 19 }] }, { 'b': 17 }] }]), ('$or', [{ 'c': 17 }, { '$or': [{ 'a': 17 }, { 'b': 17 }] }]), ('$and', [{ 'a': 17 }, { 'b': 17 }]), ('$and', [{ '$and': [{ 'a': 17 }, { 'b': 17 }] }]), ('$and', [{ 'c': 17 }, { '$and': [{ 'a': 17 }, { 'b': 17 }] }]), ('$and', [{ 'c.d.e.f': 17 }, { '$or': [{ 'a': 17 }, { 'b': 17 }] }]), ('$nor', [{ 'a': 17 }, { 'b': 17 }]), ), 'logical_not_operator': ( # ('$not', 17), # the documentation says `$not` requires an operator expression as its predicate ('a', { '$not': { '$gte': 3 } }), ), 'element_operators': ( ('$exists', True), ('$type', 2), ), 'array_operators': ( ('$all', [17, 2, 3]), # these are breaking for some reason ('$all', []), ('$all', [35]), ('$size', 1), ('$size', 0), ('$size', None), ('$elemMatch', { '$gte': 0, '$lt': 10 }), ('$elemMatch', { '$lt': 10 }), ) } updates = ( # fields { '$set': { 'yf': 17 } }, { '$inc': { 'yf': 17 } }, { '$mul': { 'yf': 2 } }, { '$rename': { 'yf': 'b' } }, { '$setOnInsert': { 'yf': 17 } }, { '$set': { 'yf': 17 } }, { '$unset': { 'yf': '' } }, { '$min': { 'yf': -1 } }, { '$max': { 'yf': 100 } }, # arrays { '$addToSet': { 'yf': [17, 18, 19] } }, { '$pop': { 'yf': 1 } }, { '$pullAll': { 'yf': [17, 18, 19] } }, { '$pull': { 'yf': 17 } }, # {'$pushAll':{'yf':[17,18,19]}}, { '$push': { 'yf': 17 } }, ) tests = [locals()[attr] for attr in dir() if attr.startswith('test_')] oplist = [] for _, operators in operator_types.iteritems(): for op in operators: oplist.append(op) for depth in range(0, 5): for update in updates: for operator_type, operators in operator_types.iteritems(): tests = tests + create_operator_tests(operators, depth, update, operator_type) for repeat in range(1, 2): tests = tests + create_operator_permutation_tests(oplist, depth, repeat, update) def test_all(collection1, collection2, **kwargs): okay = True number_passed = number_failed = 0 to_csv = kwargs.get("to_csv") or "upsert_test.csv" if to_csv: mf = open(to_csv, "a+") mf.truncate() mf.write('|'.join([ 'Operator Type', 'Passed?', 'Return 1', 'Return 2', 'Selector', 'Update', 'Label', 'Collection1', 'Collection2' ]) + '\r\n') for t in tests: passed, r1, r2, operator_type = test(collection1, collection2, t) number_passed = number_passed + 1 if passed else number_passed number_failed = number_failed + 1 if not passed else number_failed okay = passed and okay if to_csv: mf.write("|".join([ t[3], str(passed), str(r1), str(r2), str(dict(t[1])), str(dict(t[2])), t[0], str(collection1), str(collection2), '\r\n' ])) if to_csv: mf.close() print util.alert("Passed: %d, Failed: %d" % (number_passed, number_failed)) return okay
2.453125
2
getTheNthNodeFromtheEndOftheLinkedList1.py
kodreanuja/python
0
12781905
<filename>getTheNthNodeFromtheEndOftheLinkedList1.py class Node: def __init__(self, data) -> None: self.data = data self.next = None class LinkedList: def __init__(self) -> None: self.head = None def push(self, data): New_node = Node(data) New_node.next = self.head self.head = New_node def getNthFromLast(self, n): l = 0 current = self.head while current is not None: current = current.next l += 1 if n > l: return " Location not found within the list." current = self.head for i in range(0, l-n): current = current.next return current.data def printList(self): current = self.head while(current): print(current.data, "->", end = " ") current = current.next if __name__ == "__main__": l = LinkedList() l.push(2) l.push(1) l.push(6) l.push(9) l.push(4) l.printList() print("\n") print(l.getNthFromLast(2)) print(l.getNthFromLast(1)) print(l.getNthFromLast(3)) print(l.getNthFromLast(7))
4.03125
4
setup.py
tatp22/3d-positional-encoding
0
12781906
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="positional_encodings", version="5.0.0", author="<NAME>", author_email="<EMAIL>", description="1D, 2D, and 3D Sinusodal Positional Encodings in PyTorch", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/tatp22/multidim-positional-encoding", packages=setuptools.find_packages(), keywords=["transformers", "attention"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", install_requires=["torch", "tensorflow", "numpy"], )
1.5
2
tests/test_assert_equal_dataframe.py
nmbrgts/py-dataframe-show-reader
1
12781907
<gh_stars>1-10 # Copyright 2019 The DataFrame Show Reader Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pyspark.sql import DataFrame, SparkSession from pytest import raises from dataframe_show_reader.assert_equal_dataframe import assert_equal from dataframe_show_reader.dataframe_show_reader import show_output_to_df @pytest.fixture(scope="session") def expected_df(spark_session: SparkSession) -> DataFrame: return show_output_to_df(""" +-----+-----+ |col_a|col_b| +-----+-----+ |1a |1b | |2a |2b | +-----+-----+ """, spark_session) def test_assert_equal_when_dfs_are_equal( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_a|col_b| +-----+-----+ |1a |1b | |2a |2b | +-----+-----+ """, spark_session) # No error or assertion failure should be thrown: assert_equal(expected_df, actual_df) def test_assert_equal_when_actual_df_has_different_value( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_a|col_b| +-----+-----+ |1a |1b | |2a |99999| +-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df, verbose=True) assert 'The DataFrames differ.' == str(exception_info.value) def test_assert_equal_when_column_order_is_different( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_b|col_a| +-----+-----+ |1b |1a | |2b |2a | +-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrame schemas differ.' == str(exception_info.value) def test_assert_equal_when_dfs_are_equal_and_column_is_null( spark_session: SparkSession ): actual_df = show_output_to_df(""" +------+ |col_a | [string] +------+ |null | +------+ """, spark_session) expected_df = show_output_to_df(""" +------+ |col_a | [string] +------+ |null | +------+ """, spark_session) # No error or assertion failure should be thrown: assert_equal(expected_df, actual_df) def test_assert_equal_when_actual_df_has_too_few_rows( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_a|col_b| +-----+-----+ |1a |1b | +-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df, verbose=False) assert 'The DataFrames differ.' == str(exception_info.value) def test_assert_equal_when_actual_df_has_too_many_rows( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_a|col_b| +-----+-----+ |1a |1b | |2a |2b | |3a |3b | +-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrames differ.' == str(exception_info.value) def test_assert_equal_when_actual_df_has_duplicate_last_row( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_a|col_b| +-----+-----+ |1a |1b | |2a |2b | |2a |2b | +-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrames differ.' == str(exception_info.value) def test_assert_equal_when_actual_df_has_too_few_columns( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+ |col_a| +-----+ |1a | |2a | +-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrame schemas differ.' == str(exception_info.value) def test_assert_equal_when_actual_df_has_too_many_columns( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+-----+ |col_a|col_b|col_c| +-----+-----+-----+ |1a |1b |1c | |2a |2b |2c | +-----+-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrame schemas differ.' == str(exception_info.value) def test_assert_equal_when_column_names_do_not_match( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+-----+ |col_a|col_x| +-----+-----+ |1a |1b | |2a |2b | +-----+-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrame schemas differ.' == str(exception_info.value) def test_assert_equal_when_data_types_do_not_match( spark_session: SparkSession): """ Test the fairly subtle case where one DF contains an INT and the other contains a BIGINT, which can be an issue if we try to write a DF containing a BIGINT into a previously existing Hive table defined to contain an INT. """ actual_df = show_output_to_df(""" +------+ |col_a | [bigint] +------+ |1 | +------+ """, spark_session) expected_df = show_output_to_df(""" +------+ |col_a | [int ] +------+ |1 | +------+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(expected_df, actual_df) assert 'The DataFrame schemas differ.' == str(exception_info.value) def test_assert_equal_when_actual_df_is_none( expected_df, spark_session: SparkSession): with raises(AssertionError) as exception_info: assert_equal(expected_df, None) assert 'The actual DataFrame is None, but the expected DataFrame is not.' \ == str(exception_info.value) def test_assert_equal_when_expected_df_is_none( expected_df, spark_session: SparkSession): actual_df = show_output_to_df(""" +-----+ |col_a| +-----+ |1a | +-----+ """, spark_session) with raises(AssertionError) as exception_info: assert_equal(None, actual_df) assert 'The expected DataFrame is None, but the actual DataFrame is not.' \ == str(exception_info.value) def test_assert_equal_when_both_dfs_are_none( expected_df, spark_session: SparkSession): # No error or assertion failure should be thrown: assert_equal(None, None)
2.703125
3
QGL/tools/matrix_tools.py
ty-zhao/QGL
33
12781908
<gh_stars>10-100 """ Tools for manipulating matrices Original Author: <NAME> Copyright 2020 Raytheon BBN Technologies Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from scipy.linalg import expm #Pauli matrices pX = np.array([[0, 1], [1, 0]], dtype=np.complex128) pZ = np.array([[1, 0], [0, -1]], dtype=np.complex128) pY = 1j * pX @ pZ pI = np.eye(2, dtype=np.complex128) #Machine precision _eps = np.finfo(np.complex128).eps #### FUNCTIONS COPIED FROM PYGSTI #### See: https://github.com/pyGSTio/pyGSTi #### PYGSTI NOTICE # Python GST Implementation (PyGSTi) v. 0.9 # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, # LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. # Government retains certain rights in this software. #### END PYGSTI NOTICE #### PYGSTI COPYRRIGHT # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, # LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. # Government retains certain rights in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 or in the # LICENSE file in the root pyGSTi directory. #### END PYGSTI COPYRIGHT def tracenorm(A, tol=np.sqrt(_eps)): """ Compute the trace norm of a matrix A given by: Tr(sqrt{A^dagger * A}) From: https://github.com/pyGSTio/pyGSTi/blob/master/pygsti/tools/optools.py """ if np.linalg.norm(A - np.conjugate(A.T)) < tol: #Hermitian, so just sum eigenvalue magnitudes return np.sum(np.abs(np.linalg.eigvals(A))) else: #Sum of singular values (positive by construction) return np.sum(np.linalg.svd(A, compute_uv=False)) def tracedist(A, B, tol=np.sqrt(_eps)): """ Compute the trace distance between matrices A and B given by: 0.5 * Tr(sqrt{(A-B)^dagger * (A-B)}) From: https://github.com/pyGSTio/pyGSTi/blob/master/pygsti/tools/optools.py """ return 0.5 * tracenorm(A - B) #### END FUNCTIONS COPIED FROM PYGSTI def is_close(A, B, tol=np.sqrt(_eps)): """ Check if two matrices are close in the sense of trace distance. """ if tracedist(A, B) < tol: return True else: A[np.abs(A) < tol] = 0.0 B[np.abs(B) < tol] = 0.0 A /= np.exp(1j*np.angle(A[0,0])) B /= np.exp(1j*np.angle(B[0,0])) return ((tracedist(A, B) < tol) or (tracedist(A, -1.0*B) < tol)) def haar_unitary(d): """ Generate a Haar-random unitary matrix of dimension d. Algorithm from: <NAME>. "How to generate random matrices from the classical compact groups" arXiv: math-ph/0609050 """ assert d > 1, 'Dimension must be > 1!' re_Z = np.random.randn(d*d).reshape((d,d)) im_Z = np.random.randn(d*d).reshape((d,d)) Z = (re_Z + 1j*im_Z)/np.sqrt(2.0) Q, R = np.linalg.qr(Z) L = np.diag(np.diag(R) / np.abs(np.diag(R))) return Q @ L @ Q
1.710938
2
Framework/task.py
Phinner/DiscordBot-Framework
1
12781909
<filename>Framework/task.py<gh_stars>1-10 from asyncio import sleep from concurrent.futures import ThreadPoolExecutor from discord.ext.tasks import Loop from datetime import timedelta class TaskManager(ThreadPoolExecutor): Tasks = dict() # --------------------------------------------------------------------------- # @classmethod def startScheduledTask(cls, name): if name in cls.Tasks: if not cls.Tasks[name].is_running(): cls.Tasks[name].start() else: raise KeyError(f"{name} doesn't exist") @classmethod def startAllScheduledTasks(cls): for task in cls.Tasks.values(): if not task.is_running(): task.start() # --------------------------------------------------------------------------- # @classmethod def scheduledTask(cls, seconds=0, minutes=0, hours=0, count=None, reconnect=True, loop=None, start=None, run=True): """ This function is for scheduling functions to start at a certain hour or date, check https://docs.python.org/3/library/datetime.html to know how to format the "start" dictionary. """ def wrapper(coro): task = Loop(coro, seconds, hours, minutes, count, reconnect, loop) cls.Tasks.update({coro.__name__: task}) @task.before_loop async def before_task(): sleep_time = 0 if start is not None: now = datetime.now() keys = ["year", "month", "day", "hour", "minute", "second"] future = dict(zip(keys, now.timetuple())) future.update(start) future = datetime(**future) while now >= future: future += timedelta(seconds=seconds, minutes=minutes, hours=hours) sleep_time = (future - now).seconds await sleep(sleep_time) if run: task.start() return task return wrapper if __name__ == "__main__": """ Confusing demo lol """ import asyncio from discord import Client manager = TaskManager(max_workers=4) n = 0 def blocking_task(): print("blocking task begin") with open("text.txt", "w") as file: for i in range(100000000): pass print("blocking task end") def bot_main(): print("let us begin") loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) client = Client(loop=loop) @manager.scheduledTask(seconds=5, loop=loop) async def backgroung_bot_task(): global n n += 1 print(i * i) @client.event async def on_message(msg): if msg.author.id == client.user.id: return print(msg) loop.create_task(client.start(input("Bot token please: "), bot=True, reconnect=True)) loop.run_forever() print("out") def Oh_no(): print("zero") g = 1/0 print("no zero ?") def trace(future): print(future) print(future.result()) futures = list() with manager: futures.append(manager.submit(bot_main)) futures.append(manager.submit(blocking_task)) futures.append(manager.submit(Oh_no)) futures.append(manager.submit(blocking_task)) for fut in futures: fut.add_done_callback(trace)
2.9375
3
templates/ws/src/python/pkg_name/common/species.py
roadnarrows-robotics/rnmake
0
12781910
""" A Living organism. Author: @PKG_AUTHOR@ License: @PKG_LICENSE@ """ class Species: """ Species class """ def __init__(self, specific, genus, common=None, appearance=0.0, extinction=0.0, distribution='Earth'): """ Initializer Parameters: _specific Species specific scientific name. _genus Species generic genus scientific name. _common Species common name. _appearance Species (estimated) first appearance, thousands year ago. _extinction Species (estimated) extinction, thousands year ago. Set to zero if species still present. _distribution Geographic region found. """ self._specific = specific.lower() self._genus = genus.capitalize() self._common = common self._appearance = appearance self._extinction = extinction self._distribution = distribution def __repr__(self): """ Return repr(self). """ return f"{self.__module__}.{self.__class__.__name__}" \ f"({self._specific}, {self._genus})" def __str__(self): """ Return str(self). """ return self.binomial_name @property def binomial_name(self): """ Return species binomial name. """ return f"{self._genus} {self._specific}" @property def binomial_short(self): """ Return species short binomial name. """ return f"{self._genus[0]}. {self._specific}" @property def species(self): """ Return species specific scientific name. """ return self._specific @property def genus(self): """ Return species genus scientific name. """ return self._genus @property def common_name(self): """ Return species common name. """ return self._common @property def first_recorded(self): """ Return species first (oldest) evidence in record (kya). """ return self._appearance @property def last_recorded(self): """ Return species last (youngest) evidence in record (kya). """ return self._extinction @property def geographic_distribution(self): """ Return species geographic range. """ return self._distribution def presence_in_record(self): """ Return 2-tuple of species time span. """ return (self._appearance, self._extinction) def is_extinct(self): """ Return True or False. """ return self._extinction > 0.0
3.53125
4
src/test/tests/unit/test_value_simple.py
ylee88/visit
1
12781911
<reponame>ylee88/visit # ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: test_value_simple.py # # Tests: VisIt Test Suite Test Value tests # # Defect ID: none # # Programmer: <NAME>, Sun Jan 10 10:24:59 PST 2021 # # ---------------------------------------------------------------------------- # Basic cases TestSection("Basic") TestValueEQ("test_value_basic_001",100,100) TestValueNE("test_value_basic_002",200,100) TestValueLT("test_value_basic_003",100,200) TestValueLE("test_value_basic_004",100,200) TestValueLE("test_value_basic_005",200,200) TestValueGT("test_value_basic_006",200,100) TestValueGE("test_value_basic_007",200,100) TestValueGE("test_value_basic_008",200,200) TestValueEQ("test_value_basic_009",100.0,100) # Rounding cases TestSection("Precision") TestValueEQ("test_value_prec_001",200.0001,200,3) TestValueEQ("test_value_prec_002",200.0000000001,200,9) TestValueNE("test_value_prec_004",200.0001,200,9) # IN operator TestSection("In Operator") TestValueIN("test_value_in_001",(100,200,300),200) TestValueIN("test_value_in_001",[(0,0), (1,0), (1,-1), (0,1)],(1,-1)) # Custom equivalence operator for TestValueIN def EqMod5(a,b): return a%5 == b%5 # This tests that '35' is IN '(17,18,19,20,21)' by the EqMod5 operator # which says two things are equal if their mod 5 values are equal. So, # '35' is IN the list because 20%5==35%5 (0) TestValueIN("test_value_in_002",(17,18,19,20,21),35,2,EqMod5) # General Python objects wind up being tested as strings TestSection("Objects") TestValueEQ("test_value_object_001",[1,'2',3],"[1, '2', 3]") TestValueLT("test_value_object_002","apple","carrot") TestValueLT("test_value_object_003",(1,1,0),(1,1,1)) Exit()
1.976563
2
setup.py
exitcodezero/picloud-client-python
1
12781912
<reponame>exitcodezero/picloud-client-python from distutils.core import setup setup( name='PiCloud-Client', version='4.0.0', author='<NAME>', author_email='<EMAIL>', packages=['picloud_client'], url='https://github.com/exitcodezero/picloud-client-python', license='LICENSE.txt', description='A Python client for PiCloud', long_description=open('README.txt').read(), install_requires=[ "websocket-client == 0.32.0", "requests == 2.8.1", ], )
1.21875
1
tests/test_gendata.py
arappaport/gendata
0
12781913
import pytest import json from collections import OrderedDict from gendata import gen_permutations, gen_random, prepare_col_opts @pytest.fixture def col_opts_test_data_one_level(): col_opts = OrderedDict() col_opts["Col0"] = { "Value0_A": 0.1, "Value0_B": 0.2, "Value0_C": 0.7 } return dict(col_opts=col_opts, total_cols_exp=1, total_rows_exp=3) @pytest.fixture def col_opts_test_data_two_level(col_opts_test_data_one_level): test_data = col_opts_test_data_one_level col_opts = test_data['col_opts'] col_opts["Col1"] = { "Value1_A_half": 0.5, "Value1_B_half": 0.5 } test_data['total_cols_exp'] += 1 #we added one column test_data['total_rows_exp'] *= 2 # we added 2 values. so 2x expected permutations return test_data @pytest.fixture def col_opts_test_data_three_level(col_opts_test_data_two_level): test_data = col_opts_test_data_two_level col_opts = test_data['col_opts'] col_opts["Col2"] = { "Value2_A_10perc": 0.10, "Value2_B_20perc": 0.20, "Value2_C_30perc": 0.30, "Value2_D_40perc_DEFAULT": "DEFAULT" } test_data['total_cols_exp'] += 1 #we added one column test_data['total_rows_exp'] *= 4 # we added 3 values. so 3x expected permutations return test_data @pytest.fixture def col_opts_test_data_four_level(col_opts_test_data_three_level): test_data = col_opts_test_data_three_level col_opts = test_data['col_opts'] col_opts["Col3"] = { "Value3_A_100perc": "DEFAULT" } test_data['total_cols_exp'] += 1 #we added one column test_data['total_rows_exp'] *= 1 # we added 1 value. No additional rows return test_data def _assert_result_shape(test_data, rows): """ Make sure the row result set is correct shape (#rows, # columns :param col_opts: :param rows: array or rows """ assert test_data assert rows assert len(rows) == test_data['total_rows_exp'] assert len(rows[0].keys()) == test_data['total_cols_exp'] assert len(rows[-1].keys()) == test_data['total_cols_exp'] class Test_gen_permutations(): def test_one_level(self, col_opts_test_data_one_level): test_data = col_opts_test_data_one_level rows = gen_permutations(test_data['col_opts']) _assert_result_shape(test_data, rows) def test_two_level(self, col_opts_test_data_two_level): test_data = col_opts_test_data_two_level rows = gen_permutations(test_data['col_opts']) _assert_result_shape(test_data, rows) def test_three_level(self, col_opts_test_data_three_level): test_data = col_opts_test_data_three_level rows = gen_permutations(test_data['col_opts']) _assert_result_shape(test_data, rows) def test_four_level(self, col_opts_test_data_four_level): test_data = col_opts_test_data_four_level rows = gen_permutations(test_data['col_opts']) _assert_result_shape(test_data, rows)
2.28125
2
src/graph/pie_chart.py
asf174/TopDownNvidia
0
12781914
import matplotlib.pyplot as plt import plotly.graph_objects as go from plotly.subplots import make_subplots class PieChart: """ Class which defines a PieChart graph. Attributes: __fig : fig ; reference to diagram (which contains all graphs) __max_rows : int ; max number of rows __max_cols : int ; max number of cols __numCols : int ; current number of cols added to diagram __numRows : int ; current numer of rows added to diagram __title : str ; title name of diagram __current_title_index : str ; current value of index of title's list __titles : list ; list of titles of each graph """ def __init__(self, rows : int, cols : int, title : str, titles_sub_graphs : list): """Set attributes as arguments.""" specs_l : list[list] = list(list()) specs_sl : list = list() for i in range (0, rows): specs_sl = list() for j in range(0, cols): specs_sl.append({'type' : 'domain'}) specs_l.append(specs_sl) self.__fig = make_subplots(rows = rows, cols = cols, specs = specs_l, subplot_titles = titles_sub_graphs) self.__max_rows : int = rows self.__max_cols : int = cols self.__num_cols : int = 0 self.__num_rows : int = 1 self.__title : str = title self.__titles : list = titles_sub_graphs self.__current_title_index : int = 0 pass def draw(labels : list, sizes : list, explode : list): if len(labels) != len(sizes) or len(labels) != len(explode): return False plt.pie(sizes, explode = explode, labels = labels, autopct='%1.1f%%', shadow = True, startangle = 90) plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.savefig('books_read.png') pass def add_graph(self, labels : list, values : list, legend_group : str) -> bool: if self.__num_cols > self.__max_cols or self.__num_rows > self.__max_rows or self.__current_title_index >= len(self.__titles) : return False self.__num_cols += 1 if self.__num_cols > self.__max_cols: self.__num_cols = 1 self.__num_rows += 1 if self.__num_rows > self.__max_rows: return False self.__fig.add_trace(go.Pie(labels = labels, values = values, showlegend = True, legendgroup = legend_group), row = self.__num_rows, col = self.__num_cols) self.__fig.update_yaxes(title_text = self.__titles[self.__current_title_index], row = self.__num_rows, col = self.__num_rows) self.__current_title_index += 1 return True pass def __set_features(self): """ Set some features.""" plt.tight_layout() self.__fig.update_layout(title = {'text' : self.__title, 'x' : 0.5, 'xanchor': 'center'}, #legend = dict(yanchor = "top", #y = 0.9, xanchor = "right", x = 0.01), legend_title = "Legend", font = dict(size = 12, color = "Black"), legend_traceorder="grouped") pass def show(self): """ Show Graph.""" self.__set_features() self.__fig.show() pass def save(self, file_str : str): """ Save figure in file indicated as argument. Params: file_str : str ; path to file where save figure """ self.__set_features() self.__fig.write_html(file_str) pass
3.359375
3
pyrotein/utils.py
carbonscott/pyrotein
1
12781915
<filename>pyrotein/utils.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np from operator import itemgetter from itertools import groupby from .atom import constant_atomlabel, constant_aminoacid_code def bin_image(img_orig, binning = 4, mode = 1, nan_replace = 0): ''' Bin an image for faster display. ''' Y, X = img_orig.shape if mode == 0: img_bin = [] for i in range(0, Y, binning): for j in range(0, X, binning): sub_img = img_orig[i : min(i + binning, Y), j : min(j + binning, X)] if np.all(np.isnan(sub_img)): img_bin(append( (i, j, nan_replace) )) else: img_bin.append( (i, j, np.nanmean(sub_img)) ) if mode == 1: img_bin = [] for i in range(0, Y, binning): img_bin_y = [] for j in range(0, X, binning): sub_img = img_orig[i : min(i + binning, Y), j : min(j + binning, X)] if np.all(np.isnan(sub_img)): img_bin_y.append( nan_replace ) else: img_bin_y.append( np.nanmean(sub_img) ) img_bin.append(img_bin_y) return np.array(img_bin) def read_file(file, str_to_num = False, num_type = float, labelcolumn = -1): '''Return all lines in the user supplied parameter file without comments. ''' lines = [] with open(file,'r') as fh: for line in fh.readlines(): # Separate entries by spaces and remove commented lines... words = line.replace('#', ' # ').split() # Omit any thing coming after the pound sign in a line... if "#" in words: words = words[ : words.index("#")] # Save non-empty line... if str_to_num: words[labelcolumn + 1:] = [ num_type(word) for word in words[labelcolumn + 1:] ] if len(words) > 0: lines.append(words) return lines # [[[ Matrix operation ]]] def mat2tril(mat, keepdims = False, offset = 0): ''' Convert a matrix into a lower triangular matrix. mode: - False: return one-dimensional array. - True : return trigular matrix. ''' # Convert full matrix to lower triangular matrix... res = mat * np.tri(len(mat), len(mat), offset) # Convert the lower triangular matrix into a one-dimensional array... if not keepdims: res = res[np.tril_indices(len(mat), offset)] return res def array2tril(ary, length, offset = 0): ''' Convert a one-dimensional array into a lower triangular matrix. ''' # Create an empty matrix with edge size of len... res = np.zeros((length, length)) # Collect indices for members in lower triangular matrix with offset... ver_i, hor_i = np.tril_indices(length, offset) # Find the smaller length for valid assignment... capacity = len(ver_i) area = len(ary) rightmost_index = np.min([area, capacity]) # Update empty matrix with values in the input array... res[ver_i[:rightmost_index], hor_i[:rightmost_index]] = ary[:rightmost_index] return res def fill_nan_with_mean(mat, axis = 0): ''' Fill np.nan with mean value along `axis`. Support two-dimensional matrix only. ''' # Assert mat is 2d... assert len(mat.shape) == 2, "fill_nan_with_mean ONLY supports 2D matrix." # Assert axis is either 0 or 1 only... assert axis == 0 or axis == 1, "fill_nan_with_mean ONLY allows 0 or 1 for axis." # Obtain the axis mean... axis_mean = np.nanmean(mat, axis = axis) # Find the indices that has values of np.nan... nan_i = np.where(np.isnan(mat)) # Replace np.nan with mean... rep_axis = 1 - axis mat[nan_i] = np.take(axis_mean, nan_i[rep_axis]) return None def fill_nan_with_zero(mat): ''' Fill np.nan with zero along `axis`. ''' # Assert mat is 2d... assert len(mat.shape) == 2, "fill_nan_with_mean ONLY supports 2D matrix." # Find the indices that has values of np.nan... nan_i = np.where(np.isnan(mat)) # Replace np.nan with mean... mat[nan_i] = 0.0 return None def group_consecutive_integer(data): ''' As indicated by the function name. Refer to https://docs.python.org/2.6/library/itertools.html#examples for the method. ''' data_export = [] for k, g in groupby(enumerate(data), lambda x: x[0]-x[1]): data_export.append( list(map(itemgetter(1), g)) ) return data_export def get_key_by_max_value(obj_dict): ''' A utility to fetch key corresponding to the max value in a dict. ''' return max(obj_dict.items(), key = lambda x: x[1])[0] def sparse_mask(super_seg, offset = 1, val_offset = 0.0, val_init = 1.0): ''' A mask to remove trivial values from intra-residue distances in a sparse matrix. ''' # Load constant -- atomlabel... label_dict = constant_atomlabel() aa_dict = constant_aminoacid_code() # Calculate the total length of distance matrix... len_list = [ len(label_dict[aa_dict[i]]) for i in super_seg ] len_dmat = np.sum( len_list ) # Form a placeholder matrix with value one by default... dmask = np.zeros( (len_dmat, len_dmat)) dmask[:] = val_init # Assign zero to trivial values that only measure intra-residue distance... len_resi = len(len_list) pos_x, pos_y = sum(len_list[ : offset]), 0 for i, j in zip(len_list[ : len_resi - offset], len_list[ offset :]): dmask[ pos_x : pos_x + j, pos_y : pos_y + i ] = val_offset pos_x += j pos_y += i return dmask def population_density(data, bin_cap = 100): ''' Return population density. bin_cap stands for bin capacity (number of items per bin). ''' # Flatten data... data_flat = data.reshape(-1) # Sort data... data_sort = np.sort(data_flat) # Obtain the length of data... s, = data_sort.shape # Go through the array and figure out bin_val and bin_edge... bin_val = [] bin_edge = [] bin_step = bin_cap for i in range(0, s, bin_cap): if i + bin_cap > s: bin_step = s - i data_seg = data_sort[i : i + bin_step] b, e = data_seg[0], data_seg[-1] den = bin_step / (e - b) bin_val.append(den) bin_edge.append(b) bin_edge.append( data_sort[-1] ) return bin_val, bin_edge def show_population_density(data, bin_cap, filename, rng = [], width = 3.5, height = 2.62, fontsize = 14, linewidth = 1.5, xlabel = 'Distance (\305)', ylabel = 'Population density (1/\305)', linecolor = 'black', cmds = [],): data_val, data_rng = population_density(data, bin_cap = bin_cap) if len(rng) == 0: rng = data_rng[0], data_rng[-1] import GnuplotPy3 gp = GnuplotPy3.GnuplotPy3() gp(f"set terminal postscript eps size {width}, {height} \\") gp(f" enhanced color \\") gp(f" font 'Helvetica,{fontsize}' \\") gp(f" linewidth {linewidth}") gp(f"set output '{filename}.eps'") gp(f"set encoding utf8") gp(f"unset key") gp(f"set xlabel '{xlabel}'") gp(f"set ylabel '{ylabel}'") gp(f"set xrange [{rng[0]}:{rng[1]}]") for cmd in cmds: gp(cmd) gp("plot '-' using 1:2 with lines linewidth 1 linecolor rgb 'black'") for i in range(len(data_val)): if data_rng[i] < rng[0]: continue if data_rng[i+1] > rng[1]: continue gp(f"{data_rng[i]} {data_val[i]}") gp(f"{data_rng[i+1]} {data_val[i]}") gp("e") gp("exit") return None def label_dmat(super_seg, nterm, cterm): # Load constant -- atomlabel... label_dict = constant_atomlabel() aa_dict = constant_aminoacid_code() # Go through residue and build a list of (resi, resn, atom)... label_list = [] for seqi, resi in enumerate(range(nterm, cterm + 1)): aa = super_seg[seqi] resn = aa_dict[aa] atom_list = label_dict[resn] for atm in atom_list: label = f"{resi}.{resn}.{atm}" label_list.append(label) return label_list def tally_list1d(int_list): int_dict = {} for i in int_list: if not i in int_dict: int_dict[i] = 1 int_dict[i] += 1 return int_dict def chunker(seq, size = 60): return (seq[pos:pos + size] for pos in range(0, len(seq), size)) def sort_dict_by_key(_dict): ''' PDB doesn't sort resn by resi by default. This function sorts resn by resi in an ascending order. ''' return { k : v for k, v in sorted(_dict.items(), key = lambda x : x[0]) } def sqeeze_seqi(lbl): ''' I know it's a terrible name. It turns things like this [0, 33], [63, 95] -> [0, 33], [34, 66] ''' len_dict = { k : e - b for k, (b, e) in sorted(labels.items(), key = lambda x: [1][0]) } i_end = 0 sqeezed_lbl = {} for k, l in len_dict.items(): sqeezed_lbl[k] = [ i_end, i_end + l ] i_end += l+1 return sqeezed_lbl
2.609375
3
xchainpy/xchainpy_client/xchainpy_client/models/balance.py
SLjavad/xchainpy-lib
8
12781916
from xchainpy_util.asset import Asset class Balance: _asset = None # Asset _amount = 0 def __init__(self, asset, amount): """ :param asset: asset type :type asset: Asset :param amount: amount :type amount: str """ self._asset = asset self._amount = amount @property def asset(self): return self._asset @asset.setter def asset(self, asset): self._asset = asset @property def amount(self): return self._amount @amount.setter def amount(self, amount): self._amount = amount
2.875
3
src/database/utils/json_response_wrapper.py
jpeirce21/api
2
12781917
<gh_stars>1-10 """ This is a wrapper for a JSON http response specific to the massenergize API. It ensures that the data retrieved is in a json format and adds all possible errors to the caller of a particular route """ from django.http import JsonResponse # from .common import convert_to_json from collections.abc import Iterable from sentry_sdk import capture_message class Json(JsonResponse): def __init__(self, raw_data=None, errors=None, use_full_json=False, do_not_serialize=False): cleaned_data = self.serialize(raw_data, errors, use_full_json, do_not_serialize) super().__init__(cleaned_data, safe=True, json_dumps_params={'indent': 2}) def serialize(self, data, errors, use_full_json=False, do_not_serialize=False): cleaned_data = { "success": not bool(errors), "errors": errors, } try: if not data and not isinstance(data, Iterable): cleaned_data['data'] = None elif isinstance(data, dict) or do_not_serialize: cleaned_data['data'] = data elif isinstance(data, Iterable): cleaned_data['data'] = [ (i.full_json() if use_full_json else i.simple_json()) for i in data ] else: cleaned_data['data'] = data.full_json() except Exception as e: capture_message(str(e), level="error") cleaned_data['errors'] = [e] return cleaned_data #use model to dict #use preloaded model info to check m2m, fk and directs # if use_full_json: # #serialize full objects including m2m # pass # else: # #just don't include the m2ms # pass # return None
2.59375
3
pyaz/netappfiles/volume/export_policy/__init__.py
py-az-cli/py-az-cli
0
12781918
<gh_stars>0 from .... pyaz_utils import _call_az def add(account_name, allowed_clients, cifs, nfsv3, nfsv41, pool_name, resource_group, rule_index, unix_read_only, unix_read_write, volume_name, add=None, force_string=None, remove=None, set=None): ''' Add a new rule to the export policy for a volume. Required Parameters: - account_name -- Name of the ANF account. - allowed_clients -- None - cifs -- Indication that CIFS protocol is allowed - nfsv3 -- Indication that NFSv3 protocol is allowed - nfsv41 -- Indication that NFSv4.1 protocol is allowed - pool_name -- Name of the ANF pool. - resource_group -- Name of resource group. You can configure the default group using `az configure --defaults group=<name>` - rule_index -- None - unix_read_only -- Indication of read only access - unix_read_write -- Indication of read and write access - volume_name -- Name of the ANF volume. Optional Parameters: - add -- Add an object to a list of objects by specifying a path and key value pairs. Example: --add property.listProperty <key=value, string or JSON string> - force_string -- When using 'set' or 'add', preserve string literals instead of attempting to convert to JSON. - remove -- Remove a property or an element from a list. Example: --remove property.list <indexToRemove> OR --remove propertyToRemove - set -- Update an object by specifying a property path and value to set. Example: --set property1.property2=<value> ''' return _call_az("az netappfiles volume export-policy add", locals()) def list(account_name, pool_name, resource_group, volume_name): ''' List the export policy rules for a volume. Required Parameters: - account_name -- Name of the ANF account. - pool_name -- Name of the ANF pool. - resource_group -- Name of resource group. You can configure the default group using `az configure --defaults group=<name>` - volume_name -- Name of the ANF volume. ''' return _call_az("az netappfiles volume export-policy list", locals()) def remove(account_name, pool_name, resource_group, rule_index, volume_name, add=None, force_string=None, remove=None, set=None): ''' Remove a rule from the export policy for a volume by rule index. The current rules can be obtained by performing the subgroup list command. Required Parameters: - account_name -- Name of the ANF account. - pool_name -- Name of the ANF pool. - resource_group -- Name of resource group. You can configure the default group using `az configure --defaults group=<name>` - rule_index -- None - volume_name -- Name of the ANF volume. Optional Parameters: - add -- Add an object to a list of objects by specifying a path and key value pairs. Example: --add property.listProperty <key=value, string or JSON string> - force_string -- When using 'set' or 'add', preserve string literals instead of attempting to convert to JSON. - remove -- Remove a property or an element from a list. Example: --remove property.list <indexToRemove> OR --remove propertyToRemove - set -- Update an object by specifying a property path and value to set. Example: --set property1.property2=<value> ''' return _call_az("az netappfiles volume export-policy remove", locals())
2.265625
2
ehr_functions/models/types/elastic_net.py
fdabek1/EHR-Functions
0
12781919
from ehr_functions.models.types._sklearn import SKLearnModel from sklearn.linear_model import ElasticNet as EN import numpy as np class ElasticNet(SKLearnModel): def __init__(self, round_output=False, **kwargs): super().__init__(EN, kwargs) self.round_output = round_output def predict(self, x): output = super().predict(x) if self.round_output: output = np.round(output) return output
2.5625
3
Microservices/TPM/app/client_api/api_response.py
ShvDanil/Excellent
0
12781920
<filename>Microservices/TPM/app/client_api/api_response.py """ ==================================================================================== Main response from server to client side (in case of project -> other microservice). ==================================================================================== """ # Imports. import app.server_api.router_from_server_to_client as sender from typing import List from fastapi import APIRouter, HTTPException from app.client_api.api_model import Test test = APIRouter() @test.get('/TPM/get-new-test/{level}/{subject}') async def index(level: int, subject: str) -> List[Test]: """ Handles processes of api or raises exception 500 ("internal server exception") if something went wrong. :param level: Student's grade: 9 / 10 / 11. :param subject: Student's subject: 'math' / 'rus'. :return: Server response to client's request. """ # Get response from server side. try: response = await sender.return_test(level, subject) if response is None: raise Exception return response except Exception: raise HTTPException(status_code=500, detail="Something went wrong. We are fixing the bug and developing " "new features.")
2.640625
3
sparrow_cloud/middleware/exception.py
LaEmma/sparrow_cloud
15
12781921
import logging import traceback from django.conf import settings from sparrow_cloud.dingtalk.sender import send_message from sparrow_cloud.middleware.base.base_middleware import MiddlewareMixin logger = logging.getLogger(__name__) MESSAGE_LINE = """ ##### <font color=\"info\"> 服务名称: {service_name}</font> ##### > 进程异常message:<font color=\"warning\">{exception_info}</font> """ class ExceptionMiddleware(MiddlewareMixin): def process_exception(self, request, exception): debug = settings.DEBUG code = getattr(settings, "CLOUD_ERROR_NOTIFICATION_ROBOT", "cloud_error_notification_robot") service_name = getattr(settings, "SERVICE_CONF", None).get("NAME", None) if debug is True: pass else: exception_info = traceback.format_exc()[-800:-1] try: msg = MESSAGE_LINE.format(service_name=service_name, exception_info=exception_info) logger.info("sparrow_cloud log, service process_exception info : {}".format(msg)) send_message(msg=msg, code_list=[code], channel="wechat", message_type="markdown") except Exception as ex: logger.error("sparrow_cloud 发送服务异常信息通知失败,原因: {}".format(ex))
1.921875
2
web_chat/urls.py
yezimai/oldboyProject
0
12781922
<reponame>yezimai/oldboyProject """oldboyProject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include import views urlpatterns = [ url(r'dashboard/', views.dashboard,name='chat'), url(r'load_contact_list/', views.load_contact_list,name='load_contact_list'), url(r'send_msg/', views.send_msg,name='send_msg'), url(r'get_msg/', views.send_msg,name='get_msg'), url(r'file_upload/', views.file_upload,name='file_upload'), url(r'file_upload_progess/', views.file_upload_progess,name='file_upload_progess'), url(r'DelFileCache/', views.DelFileCache,name='DelFileCache'), ]
2.53125
3
tute.py
jccabrejas/tute
0
12781923
from app import app, db from app.models import User, Game, Deck, Ledger, Trick @app.shell_context_processor def make_shell_context(): return {'db': db, 'User': User, 'Game': Game, 'Deck': Deck, 'Ledger': Ledger, 'Trick': Trick, }
1.78125
2
backend/Hrplatform/migrations/0001_initial.py
iamavichawla/AI-based-video-analysis
0
12781924
# Generated by Django 3.2.4 on 2021-07-05 08:53 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Audio_store1', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('record', models.FileField(upload_to='')), ('title', models.CharField(default='my file', max_length=120)), ('wpm', models.IntegerField(blank=True, null=True)), ('pausesandfillerwords', models.IntegerField(blank=True, null=True)), ('pitch', models.IntegerField(blank=True, null=True)), ('duration', models.FloatField(blank=True, null=True)), ('pronunciation', models.FloatField(blank=True, null=True)), ('balance', models.FloatField(blank=True, null=True)), ('spotwords', models.IntegerField(blank=True, null=True)), ('sensitivewords', models.IntegerField(blank=True, null=True)), ], options={ 'db_table': 'Audio_store1', }, ), ]
1.835938
2
code/python/netmiko_router_config.py
opsec7/refs
0
12781925
<filename>code/python/netmiko_router_config.py #!/usr/bin/env python # lima 6/16/2017 # multiprocessing works better in linux... forking is not supported in windows # ... just run this in linux and move on... # # from __future__ import absolute_import, division, print_function import netmiko from multiprocessing import Pool # import my toolbox.py functions import toolbox # from netmiko import ConnectHandler import re import signal signal.signal(signal.SIGPIPE, signal.SIG_DFL) # IOerror on broken pipe # hanlde keyboard interrupt and exit signal.signal(signal.SIGINT, signal.SIG_DFL) device_type = 'cisco_ios' username, password = toolbox.get_credentials() """ different way to feed ips to my_function device_ip = ''' 10.1.1.1 10.1.2.2 '''.strip().splitlines() """ device_ip = toolbox.get_ips('router_list.cfg') def my_function(i): try: connection = netmiko.ConnectHandler( ip=i, device_type=device_type, username=username, password=password) # add global delay to slow devices requiring longer delay: global_delay_factor=60 hostname = connection.find_prompt() # connection.config_mode() # connection.send_command('ssh 10.x.y.0 255.255.255.0 ' + route_lookup(x)) # connection.send_command('clock timezone CST -6') # connection.send_command('clock summer-time CST recurring') y = connection.send_command( 'sh run | s ip access-list standard ACL_SSH_VTY_ACCESS') # for t in y: # if t: # connection.send(xyz) # y = connection.send_command('sh run ssh') connection.disconnect() if y: print '%s: %s --> done' % (hostname, i) print '%s\n' % (y) else: print '%s: %s --> done' % (hostname, i) except Exception as e: print '%s: %s\n\n' % (i, e) # define number of threads to fire up at once pool = Pool(16) pool.map(my_function, device_ip)
2.375
2
metrix/metrix.py
KiriLev/metrix
0
12781926
import time from collections import defaultdict from dataclasses import dataclass from logging import getLogger from typing import Optional @dataclass class Bucket: value: int = 0 last_updated_at: Optional[int] = None def increment(self, timestamp: int): self.value += 1 self.last_updated_at = timestamp def reset(self): self.value = 0 self.last_updated_at = None class Metrix: def __init__(self, ttl: int = 300, debug=False): """ Inits Metrix. Args: ttl (int): Time-to-live in seconds for events. debug (bool): Set to True to enable additional logging. Raises: ValueError: TTL can't be non-positive """ if ttl <= 0: raise ValueError(f"TTL can't be non-positive, got ttl={ttl}") self.ttl = ttl self.debug = debug self._metrics_data = defaultdict(lambda: [Bucket() for _ in range(self.ttl)]) self._start_time = None if self.debug: self._logger = getLogger(name="metrix") def increment(self, metric_name: str) -> None: """ Increments counter for a specified `metric_name`. Args: metric_name (str): Name of metric to increment. """ event_time = int(time.time()) if self._start_time is None: self._start_time = event_time # we use ring buffers to store events so we need to find an index bucket_ind = (event_time - self._start_time) % self.ttl bucket = self._metrics_data[metric_name][bucket_ind] # in case of already used and outdated bucket we need to reset its value before we increment if ( bucket.last_updated_at is not None and bucket.last_updated_at < event_time - self.ttl ): bucket.reset() bucket.increment(event_time) def sum(self, metric_name: str, interval: int) -> int: """ Returns counter value for a specified `metric_name` and specified time range. Args: metric_name (str): Name of metric to retrieve number of occurrences. interval (int): Number of seconds representing range of a query. Returns: sum (int): number """ event_time = int(time.time()) if metric_name not in self._metrics_data: if self.debug: self._logger.debug(f"No events for metric_name={metric_name}") return 0 if interval > self.ttl: interval = self.ttl if self.debug: self._logger.debug(f"Clipped interval={interval} to ttl={self.ttl}") sum_ = 0 for bucket in self._metrics_data[metric_name]: if bucket.last_updated_at is not None: if ( bucket.last_updated_at < event_time - self.ttl ): # reset outdated buckets bucket.reset() elif bucket.last_updated_at > event_time - interval: sum_ += bucket.value return sum_
2.6875
3
src/materia/symmetry/symmetry_operation.py
kijanac/Materia
0
12781927
from __future__ import annotations from typing import Iterable, Optional, Union import materia as mtr import numpy as np import scipy.linalg __all__ = [ "Identity", "Inversion", "Reflection", "ProperRotation", "ImproperRotation", "SymmetryOperation", ] class SymmetryOperation: def __init__( self, matrix: Optional[np.ndarray] = None, determinant: Optional[Union[int, float]] = None, trace: Optional[float] = None, axis: Optional[np.ndarray] = None, ) -> None: if matrix is not None: self.matrix, _ = scipy.linalg.polar(matrix) elif determinant is not None and trace is not None: if axis is None: self.matrix, _ = scipy.linalg.polar( determinant * np.eye(3).astype("float64") ) else: a = mtr.normalize(axis) cos_theta = (trace - determinant) / 2 cos_theta = max(min(cos_theta, 1), -1) theta = np.arccos(cos_theta) self.matrix = mtr.rotation_matrix( axis=a, theta=theta, improper=(determinant == -1) ) else: raise ValueError def __eq__(self, other: SymmetryOperation) -> bool: return hasattr(other, "matrix") and np.allclose( self.matrix, other.matrix, atol=1e-3 ) @property def det(self) -> int: return int(round(np.linalg.det(self.matrix))) @property def tr(self) -> float: return np.trace(self.matrix) @property def cos_theta(self) -> float: return max(min((self.tr - np.sign(self.det)) / 2, 1.0), -1.0) @property def axis(self) -> np.ndarray: # algorithm from scipp.ucsc.edu/~haber/ph116A/rotation_11.pdf if np.isclose(abs(self.tr), 3): return None if np.isclose(self.tr * self.det, -1): S = (np.eye(3) + self.det * self.matrix) / 2 for i in range(3): signs = np.sign(S[:, i]) if not np.allclose(signs, [0, 0, 0]): return signs * np.sqrt(np.abs(np.diag(S))) inds = np.triu_indices(3, k=1) return mtr.normalize( (self.matrix.T - self.matrix)[inds][::-1] * np.array([1, -1, 1]) ) @property def inverse(self) -> SymmetryOperation: return SymmetryOperation(matrix=self.matrix.T) def apply(self, structure: mtr.Structure): return self.matrix @ structure.centered_atomic_positions.value def error(self, structure: mtr.Structure): kdt = scipy.spatial.KDTree(structure.centered_atomic_positions.value.T) dists, _ = np.abs(kdt.query(self.apply(structure).T)) rs = np.abs(self.axis @ structure.centered_atomic_positions.value) return dists / rs def is_symmetry_of(self, structure: mtr.Structure, tolerance: float) -> bool: round_to = round(-np.log(tolerance) / np.log(10)) X = structure.centered_atomic_positions.value return set( tuple(row) for row in self.apply(structure).T.round(round_to) ) == set(tuple(row) for row in X.T.round(round_to)) @property def order(self) -> int: return mtr.periodicity(self.matrix) def __mul__(self, other): return SymmetryOperation(matrix=self.matrix @ other.matrix) class Identity(SymmetryOperation): def __init__(self) -> None: determinant = 1 trace = 3 axis = None super().__init__(determinant=determinant, trace=trace, axis=axis) class Inversion(SymmetryOperation): def __init__(self) -> None: determinant = -1 trace = -3 axis = None super().__init__(determinant=determinant, trace=trace, axis=axis) class Reflection(SymmetryOperation): def __init__(self, axis: Iterable[Union[float, int]]) -> None: determinant = -1 trace = 1 super().__init__(determinant=determinant, trace=trace, axis=axis) class ProperRotation(SymmetryOperation): def __init__(self, order: int, axis: Iterable[Union[float, int]]) -> None: determinant = 1 trace = 2 * np.cos(2 * np.pi / order) + determinant super().__init__(determinant=determinant, trace=trace, axis=axis) def __repr__(self) -> str: return f"ProperRotation(order={self.order})" class ImproperRotation(SymmetryOperation): def __init__(self, order: int, axis: Iterable[Union[float, int]]) -> None: determinant = -1 trace = 2 * np.cos(2 * np.pi / order) + determinant super().__init__(determinant=determinant, trace=trace, axis=axis)
2.328125
2
data/tinyfpga_bx.py
jwise/corescore
94
12781928
<reponame>jwise/corescore ctx.addClock("i_clk", 16) ctx.addClock("clk", 48)
1.117188
1
demo.py
foamliu/Zero-Shot-Learning
22
12781929
<filename>demo.py<gh_stars>10-100 import argparse import json import random import numpy as np import torchvision.transforms as transforms from scipy.misc import imread, imresize, imsave from utils import * normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([normalize]) def main(args): superclass = args['superclass'] if superclass is None: superclass = 'Animals' checkpoint = '{}/BEST_{}_checkpoint.tar'.format(save_folder, superclass) # model checkpoint print('checkpoint: ' + str(checkpoint)) # Load model checkpoint = torch.load(checkpoint) model = checkpoint['model'] W = checkpoint['W'] model = model.to(device) W = W.to(device) # model = model.cuda() model.eval() test_folder = get_test_folder_by_superclass(superclass) files = [os.path.join(test_folder, file) for file in os.listdir(test_folder) if file.lower().endswith('.jpg')] num_test_samples = 10 samples = random.sample(files, num_test_samples) imgs = torch.zeros([num_test_samples, 3, 224, 224], dtype=torch.float, device=device) for i, path in enumerate(samples): # Read images img = imread(path) img = imresize(img, (224, 224)) imsave('images/image_{}_{}.jpg'.format(superclass, i), img) img = img.transpose(2, 0, 1) assert img.shape == (3, 224, 224) assert np.max(img) <= 255 img = torch.FloatTensor(img / 255.) img = transform(img) imgs[i] = img imgs = torch.tensor(imgs) imgs.to(torch.device("cuda")) print('imgs.device: ' + str(imgs.device)) result = [] with torch.no_grad(): X = model(imgs) # (batch_size, 2048) preds = X.mm(W) # (batch_size, 123) attributes_per_class = get_attributes_per_class_by_superclass(superclass) attribute_names = get_attribute_names_by_superclass(superclass) _, scores = batched_KNN(preds, 1, attributes_per_class) for i in range(num_test_samples): embeded = preds[i] embeded = embeded.cpu().numpy() attributes = attribute_names[embeded >= 0.9] attributes = ', '.join(attributes) # print('embeded: ' + str(embeded)) labal_id = scores[i].item() label_name = 'Label_A_%02d' % (labal_id + 1,) print('labal_id: ' + str(labal_id)) result.append( {'i': i, 'labal_id': labal_id, 'label_name': label_name, 'attributes': attributes}) ensure_folder('data') with open('data/result_{}.json'.format(superclass), 'w') as file: json.dump(result, file, indent=4, ensure_ascii=False) if __name__ == '__main__': # Parse arguments ap = argparse.ArgumentParser() ap.add_argument("-s", "--superclass", help="superclass ('Animals', 'Fruits', 'Vehicles', 'Electronics', 'Hairstyles')") args = vars(ap.parse_args()) main(args)
2.265625
2
algorithm.py
dacousb/7old
5
12781930
# 7old # search engine algorithm # that gets data from DB import sqlite3 as sl def searchdb(q): con = sl.connect("results.db") cur = con.cursor() rows = cur.execute("SELECT * FROM RESULT ORDER BY title") result = [] for row in rows: if (q in row[1] # URL and row[1].count('/') <= 3 and (row[1].count('.') == 1 or (row[1].startswith('https://www.') and row[1].count('.') == 2)) and '?' not in row[1]): result.insert(0, row) elif any(q in s for s in row): result.append(row) con.close() return result
3.578125
4
taskflow/monitoring/aws.py
awm33/taskflow
22
12781931
<gh_stars>10-100 import boto3 from .base import MonitorDestination class AWSMonitor(MonitorDestination): def __init__(self, metric_prefix='', metric_namespace='taskflow', *args, **kwargs): self.metric_namespace = metric_namespace self.metric_prefix = metric_prefix self.cloudwatch = boto3.client('cloudwatch') super(AWSMonitor, self).__init__(*args, **kwargs) def heartbeat_scheduler(self, session): self.cloudwatch.put_metric_data( Namespace=self.metric_namespace, MetricData=[ { 'MetricName': self.metric_prefix + 'scheduler_heartbeat', 'Value': 1, 'Unit': 'Count' } ]) def task_retry(self, session, task_instance): self.cloudwatch.put_metric_data( Namespace=self.metric_namespace, MetricData=[ { 'MetricName': self.metric_prefix + 'task_retry', 'Value': 1, 'Unit': 'Count' }, { 'MetricName': self.metric_prefix + 'task_retry', 'Dimensions': [ { 'Name': 'task_name', 'Value': task_instance.task_name } ], 'Value': 1, 'Unit': 'Count' } ]) def task_failed(self, session, task_instance): self.cloudwatch.put_metric_data( Namespace=self.metric_namespace, MetricData=[ { 'MetricName': self.metric_prefix + 'task_failure', 'Value': 1, 'Unit': 'Count' }, { 'MetricName': self.metric_prefix + 'task_failure', 'Dimensions': [ { 'Name': 'task_name', 'Value': task_instance.task_name } ], 'Value': 1, 'Unit': 'Count' } ]) def task_success(self, session, task_instance): self.cloudwatch.put_metric_data( Namespace=self.metric_namespace, MetricData=[ { 'MetricName': self.metric_prefix + 'task_success', 'Value': 1, 'Unit': 'Count' }, { 'MetricName': self.metric_prefix + 'task_success', 'Dimensions': [ { 'Name': 'task_name', 'Value': task_instance.task_name } ], 'Value': 1, 'Unit': 'Count' } ]) def workflow_failed(self, session, workflow_instance): self.cloudwatch.put_metric_data( Namespace=self.metric_namespace, MetricData=[ { 'MetricName': self.metric_prefix + 'workflow_failure', 'Value': 1, 'Unit': 'Count' }, { 'MetricName': self.metric_prefix + 'workflow_failure', 'Dimensions': [ { 'Name': 'workflow_name', 'Value': workflow_instance.workflow_name } ], 'Value': 1, 'Unit': 'Count' } ]) def workflow_success(self, session, workflow_instance): self.cloudwatch.put_metric_data( Namespace=self.metric_namespace, MetricData=[ { 'MetricName': self.metric_prefix + 'workflow_success', 'Value': 1, 'Unit': 'Count' }, { 'MetricName': self.metric_prefix + 'workflow_success', 'Dimensions': [ { 'Name': 'workflow_name', 'Value': workflow_instance.workflow_name } ], 'Value': 1, 'Unit': 'Count' } ])
1.9375
2
eda/lista1/13.py
BrunaNayara/ppca
0
12781932
<gh_stars>0 n = int(input()) c = int(input()) while(c != n): if c < n: print("O número correto é maior.") elif c > n: print("O número correto é menor.") c = int(input()) print("Parabéns! Você acertou.")
3.953125
4
DS-400/Medium/213-House Robber II/DP.py
ericchen12377/Leetcode-Algorithm-Python
2
12781933
class Solution(object): def rob(self, nums): """ :type nums: List[int] :rtype: int """ def robber(nums): if not nums: return 0 if len(nums) <= 2: return max(nums) dp = [0] * len(nums) dp[0] = nums[0] dp[1] = max(nums[0], nums[1]) for x in range(2, len(nums)): dp[x] = max(dp[x - 1], nums[x] + dp[x - 2]) return dp[-1] n = len(nums) if n == 0: return 0 if n == 1: return nums[0] choice1 = nums[:n-1] choice2 = nums[1:] return max(robber(choice1), robber(choice2))
3.234375
3
lino_book/projects/migs/__init__.py
lino-framework/lino_book
3
12781934
<gh_stars>1-10 # -*- coding: UTF-8 -*- # Copyright 2015-2017 Rumma & Ko Ltd # License: BSD (see file COPYING for details) """A copy of the :ref:`noi` as a ticket management demo, for testing Django migrations. .. autosummary:: :toctree: settings """
0.925781
1
Basic_app/urls.py
Achan40/Portfolio_FullStack
0
12781935
from django.conf.urls import url from Basic_app import views from pathlib import Path urlpatterns = [ # The about page will be the homepage url(r'^$',views.AboutView.as_view(),name='about'), # Creating contact page url(r'^contact/$',views.Contact_View,name='contact_create'), # Contact confirmation page url(r'^contact/confirm/$',views.ContactConfirmed.as_view(),name='contact_confirm'), # List of Contacts page url(r'^contact/contact_list/$',views.ContactList.as_view(),name='contact_list'), # List of projects url(r'^projects/$',views.ProjectList.as_view(),name='project_list'), # New project creation,updating, and deleting url(r'^projects/new/$',views.ProjectCreate.as_view(),name='project_create'), url(r'^projects/(?P<pk>\d+)/edit/$',views.ProjectUpdate.as_view(),name='project_edit'), url(r'^projects/(?P<pk>\d+)/remove/$',views.ProjectDelete.as_view(),name='project_remove'), # Url for project detail generated by primary key url(r'^projects/(?P<pk>\d+)$',views.ProjectDetailView.as_view(),name='project_detail'), ]
2.203125
2
chester/openingbook.py
bsamseth/chester
0
12781936
import chess import chess.polyglot import random def play_from_opening_book( book, max_depth=10, fen=chess.STARTING_FEN, random_seed=None ): """Play out moves from an opening book and return the resulting board. From the given `fen` starting position, draw weighted random moves from the opening book to a maximum depth of `2 * max_depth` plies. Whenever there are no move moves in the book, the play stops and the board returned. If a seed integer is given, then this will always return the same final position. Arguments --------- book: str Path to a polyglot opening book file. max_depth: int, optional The maximum depth to play to. The number of moves (plies) made will at most be 2 times this. Default is 10. fen: str, optional Starting position in FEN notation. Default is the standard opening position. random_seed: int, optional Seed the random number generator to produce the same results each call. Default is to not seed, and so successive calls will in general yield different boards. Returns ------- A `chess.Board` with the resulting position. """ if random_seed is not None: random.seed(random_seed) board = chess.Board(fen) with chess.polyglot.MemoryMappedReader(book) as reader: try: for _ in range(2 * max_depth): move = reader.weighted_choice(board).move() board.push(move) except IndexError: pass return board
3.953125
4
crystallus/wyckoff_cfg_generator.py
yoshida-lab/crystallus
0
12781937
<filename>crystallus/wyckoff_cfg_generator.py # Copyright 2021 TsumiNa # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from typing import Dict, Sequence, Union from .core import WyckoffCfgGenerator as _WYG class WyckoffCfgGenerator(object): def __init__( self, composition, *, max_recurrent: int = 1_000, n_jobs: int = -1, priority: Union[Dict[int, Dict[str, float]], None] = None, ): """A generator for possible Wyckoff configuration generation. Parameters ---------- max_recurrent: Max recurrent until generate a reasonable structure, by default 5_000 n_jobs: Number of cpu cores when parallel calculation, by default -1 priority: Priorities for Wyckoff letters. By default, a Wyckoff letter will be sampled from an Uniform distribution of the all available letters. Give this parameter will overwrite the corresponding priority list of Wyckoff letters. For example, space group 167 has Wyckoff letters `[a, b, c, d, e, f]` By default, all their priority values are equal to `1`. Now, we want to lift the priority of PW `a`, `b` and `d` and never use `e`, we can give parameter `priority` a values like this: `{167: {a: 2, b: 2, d: 2, e: 0}}`. After that, the new priority change to `{a: 2, b: 2, c: 1, d: 2, e: 0, f: 1}`. When generating, the priority list will be normalized as this `{a: 2/8, b: 2/8, c: 1/8, d: 2/8 e: 0/8, f: 1/8}`. composition: Composition of compounds in the primitive cell; should be formated as {<element symbol>: <ratio in float>}. """ self._wyg = _WYG(composition, max_recurrent=max_recurrent, n_jobs=n_jobs, priority=priority) self._priority = priority self._composition = composition @property def max_recurrent(self): return self._wyg.max_recurrent @property def n_jobs(self): return self._wyg.n_jobs @property def composition(self): return deepcopy(self._composition) @property def priority(self): return deepcopy(self._priority) @n_jobs.setter def n_jobs(self, n): self._wyg.n_jobs = n def gen_one(self, *, spacegroup_num: int): """Try to generate a possible Wyckoff configuration under the given space group. Parameters ---------- spacegroup_num: Space group number. Returns ------- Dict Wyckoff configuration set, which is a dict with format like: {"Li": ["a", "c"], "O": ["i"]}. Here, the "Li" is an available element symbol and ["a", "c"] is a list which contains coresponding Wyckoff letters. For convenience, dict will be sorted by keys. """ return self._wyg.gen_one(spacegroup_num) def gen_many(self, size: int, *, spacegroup_num: Union[int, Sequence[int]]): """Try to generate possible Wyckoff configuration sets. Parameters ---------- size: How many times to try for one space group. spacegroup_num: Spacegroup numbers to generate Wyckoff configurations. Returns ------- Dict[int, List[Dict]], List[Dict] A collection contains spacegroup number and it's corresponding Wyckoff configurations (wy_cfg). If only one spacegroup number was given, will only return the list of wy_cfgs, otherwise return in dict with spacegroup number as key. wy_cfgs will be formated as {element 1: [Wyckoff_letter, Wyckoff_letter, ...], element 2: [...], ...}. """ if isinstance(spacegroup_num, int): spacegroup_num = (spacegroup_num,) return self._wyg.gen_many(size, *spacegroup_num) def gen_many_iter(self, size: int, *, spacegroup_num: Union[int, Sequence[int]]): """Try to generate possible Wyckoff configuration sets. Parameters ---------- size: How many times to try for one space group. spacegroup_num: Spacegroup numbers to generate Wyckoff configurations. Yields ------ Dict[int, List[Dict]], List[Dict] A collection contains spacegroup number and it's corresponding Wyckoff configurations (wy_cfg). If only one spacegroup number was given, will only return the list of wy_cfgs, otherwise return in dict with spacegroup number as key. wy_cfgs will be formated as {element 1: [Wyckoff_letter, Wyckoff_letter, ...], element 2: [...], ...}. """ if isinstance(spacegroup_num, int): spacegroup_num = (spacegroup_num,) for sp_num in spacegroup_num: yield sp_num, self._wyg.gen_many(size, sp_num) def __repr__(self): return f"WyckoffCfgGenerator(\ \n max_recurrent={self.max_recurrent},\ \n n_jobs={self.n_jobs}\ \n priority={self._priority}\ \n composition={self._composition}\ \n)"
2.1875
2
amr_interop_bridge/scripts/fake_battery_percentage.py
LexxPluss/amr_interop_bridge
1
12781938
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy from std_msgs.msg import Float64 if __name__ == "__main__": rospy.init_node("fake_battery_percentage") pub = rospy.Publisher("battery_percentage", Float64, queue_size=1) battery_percentage = rospy.get_param("~battery_percentage", 100) publish_rate = rospy.get_param("~publish_rate", 1) loop_rate = rospy.Rate(publish_rate) while not rospy.is_shutdown(): battery_percentage -= 0.1 if battery_percentage < 0: battery_percentage = 0 battery_percentage_msg = battery_percentage pub.publish(battery_percentage_msg) loop_rate.sleep()
2.453125
2
dl/layers/layer_base.py
nuka137/DeepLearningFramework
10
12781939
<reponame>nuka137/DeepLearningFramework class LayerBase: name_counter = {} def __init__(self): cls = self.__class__ if self.id() not in cls.name_counter: cls.name_counter[self.id()] = 0 self.name_ = "{}_{}".format(self.id(), cls.name_counter[self.id()]) cls.name_counter[self.id()] += 1 def id(self): raise NotImplementedError() def name(self): return self.name_ def initialize_parameters(self, initializer=None): pass def parameters(self): return {} def gradients(self): return {} def forward(self, x): raise NotImplementedError() def backward(self, x): raise NotImplementedError()
2.921875
3
rcs_back/containers_app/admin.py
e-kondr01/rcs_back
0
12781940
from django.contrib import admin from .models import ( Building, BuildingPart, Container, EmailToken, FullContainerReport, TankTakeoutCompany, ) class ContainerAdmin(admin.ModelAdmin): readonly_fields = [ "mass", "activated_at", "avg_fill_time", "calc_avg_fill_time", "avg_takeout_wait_time", "cur_fill_time", "cur_takeout_wait_time", "last_full_report", "last_emptied_report", "ignore_reports_count", "is_full", "check_time_conditions", "requested_activation" ] class BuildingPartAdmin(admin.ModelAdmin): readonly_fields = [ "current_mass", "meets_mass_takeout_condition", "meets_time_takeout_condition", "needs_takeout", "containers_for_takeout", "container_count" ] class BuildingAdmin(admin.ModelAdmin): readonly_fields = [ "current_mass", "meets_mass_takeout_condition", "meets_time_takeout_condition", "needs_takeout", "containers_for_takeout", "container_count", "calculated_collected_mass", "confirmed_collected_mass", "avg_fill_speed" ] class FullContainerReportAdmin(admin.ModelAdmin): readonly_fields = [ "takeout_wait_time" ] admin.site.register(Container, ContainerAdmin) admin.site.register(Building, BuildingAdmin) admin.site.register(BuildingPart, BuildingPartAdmin) admin.site.register(FullContainerReport, FullContainerReportAdmin) admin.site.register(EmailToken) admin.site.register(TankTakeoutCompany)
1.90625
2
rescuemap/migrations/0009_auto_20191106_0006.py
Corruption13/SOS-APP
2
12781941
<filename>rescuemap/migrations/0009_auto_20191106_0006.py # Generated by Django 2.2.6 on 2019-11-05 18:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rescuemap', '0008_auto_20191105_2328'), ] operations = [ migrations.RemoveField( model_name='victim', name='time', ), migrations.AddField( model_name='victim', name='time_of_creation', field=models.DateTimeField(null=True), ), ]
1.5625
2
Classification/LibLinear/src/test/scripts/generate_test_data.py
em3ndez/tribuo
1,091
12781942
# Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import os def generate_data(mode='train', problem_type='binary'): assert mode == 'train' or mode == 'test' rng = np.random.RandomState(1) if problem_type == 'binary': labels = ['POS', 'NEG'] else: labels = ['POS', 'NEG', 'NEU'] texts = ['aaa', 'bbb', 'ccc'] counts = {label: 0 for label in labels} if mode == 'train': n = 1000 else: n = 100 lns = [] for i in range(n): y = rng.choice(labels) counts[y] += 1 x = rng.choice(texts) lns.append('%s##%s\n' % (y, x)) print(counts) with open('%s_input_%s.tribuo' % (mode, problem_type), 'w') as f: for ln in lns: f.write(ln) def generate_models(): lltypes = [ 'L2R_LR', 'L2R_L2LOSS_SVC_DUAL', 'L2R_L2LOSS_SVC', 'L2R_L1LOSS_SVC_DUAL', 'MCSVM_CS', 'L1R_L2LOSS_SVC', 'L1R_LR', 'L2R_LR_DUAL' ] for lltype in lltypes: cmd = './src/test/scripts/generate-model.sh %s %s %s %s' % (lltype, lltype, 'train_input_binary.tribuo', 'test_input_binary.tribuo') print(cmd) os.system(cmd) # multiclass model lltype = 'L2R_LR' cmd = './src/test/scripts/generate-model.sh %s %s %s %s' % (lltype, lltype+'_multiclass', 'train_input_multiclass.tribuo', 'test_input_multiclass.tribuo') print(cmd) os.system(cmd) if __name__ == '__main__': generate_data(mode='train') generate_data(mode='test') generate_data(mode='train', problem_type='multiclass') generate_data(mode='test', problem_type='multiclass') generate_models()
2.125
2
market.py
rasimandiran/Gen-dqn
2
12781943
<gh_stars>1-10 # Environment for DQN import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler class Market(object): LOOK_BACK = 24 def __init__(self, data): self.fee = 0.001 self.data = data self.data.index = pd.to_datetime(self.data.index, unit="ms") self.data_5min = self.data.resample("5min").apply(dict(high="max", low="min", close="last", volume="sum")) self.data_10min = self.data.resample("10min").apply(dict(high="max", low="min", close="last", volume="sum")) self.data_15min = self.data.resample("15min").apply(dict(high="max", low="min", close="last", volume="sum")) self.data_30min = self.data.resample("30min").apply(dict(high="max", low="min", close="last", volume="sum")) self.data_1h = self.data.resample("1h").apply(dict(high="max", low="min", close="last", volume="sum")) self.data_1h["real_high"] = self.data_1h.high self.data_1h["real_low"] = self.data_1h.low self.data_1h["real_close"] = self.data_1h.close # indicators for col in self.data_1h.columns: if "real_" not in col: self.data_5min[col] = self.data_5min[col].pct_change() self.data_10min[col] = self.data_10min[col].pct_change() self.data_15min[col] = self.data_15min[col].pct_change() self.data_30min[col] = self.data_30min[col].pct_change() self.data_1h[col] = self.data_1h[col].pct_change() self.data_5min[col] = self.data_5min[col].replace([-np.Inf, np.Inf], [0, 1]) self.data_10min[col] = self.data_10min[col].replace([-np.Inf, np.Inf], [0, 1]) self.data_15min[col] = self.data_15min[col].replace([-np.Inf, np.Inf], [0, 1]) self.data_30min[col] = self.data_30min[col].replace([-np.Inf, np.Inf], [0, 1]) self.data_1h[col] = self.data_1h[col].replace([-np.Inf, np.Inf], [0, 1]) self.data_5min = self.data_5min.dropna() self.data_10min = self.data_10min.dropna() self.data_15min = self.data_15min.dropna() self.data_30min = self.data_30min.dropna() self.data_1h = self.data_1h.dropna() self.prices = self.data_1h.loc[:, ["real_high", "real_low", "real_close"]] self.data_1h = self.data_1h.drop(["real_high", "real_low", "real_close"], axis=1) self.step_size = len(self.data_1h.iloc[24:-24]) self.state_space_size = (self.get_state(0)[3].shape[0], self.get_state(0)[3].shape[1], self.get_state(0)[3].shape[2]+1) def get_state(self, t): t=24+t state = [] state.append(self.data_5min.loc[self.data_5min.index<self.data_1h.iloc[t].name].tail(self.LOOK_BACK).values) state.append(self.data_10min.loc[self.data_10min.index<self.data_1h.iloc[t].name].tail(self.LOOK_BACK).values) state.append(self.data_15min.loc[self.data_15min.index<self.data_1h.iloc[t].name].tail(self.LOOK_BACK).values) state.append(self.data_30min.loc[self.data_30min.index<self.data_1h.iloc[t].name].tail(self.LOOK_BACK).values) state.append(self.data_1h.loc[self.data_1h.index<=self.data_1h.iloc[t].name].tail(self.LOOK_BACK).values) next_state = [] next_state.append(self.data_5min.loc[self.data_5min.index<self.data_1h.iloc[t+1].name].tail(self.LOOK_BACK).values) next_state.append(self.data_10min.loc[self.data_10min.index<self.data_1h.iloc[t+1].name].tail(self.LOOK_BACK).values) next_state.append(self.data_15min.loc[self.data_15min.index<self.data_1h.iloc[t+1].name].tail(self.LOOK_BACK).values) next_state.append(self.data_30min.loc[self.data_30min.index<self.data_1h.iloc[t+1].name].tail(self.LOOK_BACK).values) next_state.append(self.data_1h.loc[self.data_1h.index<=self.data_1h.iloc[t+1].name].tail(self.LOOK_BACK).values) scaler = MinMaxScaler(feature_range=(0,1)) state = np.array([scaler.fit_transform(s) for s in state]) next_state = np.array([scaler.fit_transform(s) for s in next_state]) return self.prices.iloc[t].real_low, self.prices.iloc[t].real_high, self.prices.iloc[t].real_close, state, next_state def buy(self, amount, price): return (amount/price)*(1-self.fee) def sell(self, qty, price): return (qty*price)*(1-self.fee)
2.671875
3
seq_alignment/__init__.py
ryanlstevens/seq_alignment
1
12781944
<gh_stars>1-10 # Make global + local similarity class visible to next module from .global_similarity import global_similarity from .local_similarity import local_similarity
1.257813
1
scripts/find_includes.py
colin-zhou/fast-ta
13
12781945
<gh_stars>10-100 import subprocess import sys import os from sysconfig import get_paths # Attempt to see if running python installation has everything we need. found_include = False found_numpy_include = False subversion = None if sys.version_info[0] == 3: print(get_paths()['include']) found_include = True subversion = sys.version_info[1] try: import numpy print(numpy.get_include()) found_numpy_include = True except ImportError: pass if not found_include: try: x = subprocess.check_output(["python3", "--version"]).strip().decode() # error is raised if it does not exist print(subprocess.check_output("python3 -c'from sysconfig import get_paths;print(get_paths()[\"include\"])'", shell=True).strip().decode()) found_include = True subversion = int(x.split("3.")[1][0]) if not found_numpy_include: try: print(subprocess.check_output('python3 -c"import numpy;print(numpy.get_include())"', shell=True).strip().decode()) found_numpy_include = True except: pass except: pass if not found_include: for i in range(1, 10): try: subprocess.check_output(["python3.%i"%i, "--version"]) # ensure error is raised if it does not exist print(subprocess.check_output("python3.%i -c'from sysconfig import get_paths;print(get_paths()[\"include\"])'"%i, shell=True).strip().decode()) subversion = i found_include = True if not found_numpy_include: try: print(subprocess.check_output('python3.%i -c"import numpy;print(numpy.get_include())"'%i, shell=True).strip().decode()) found_numpy_include = True except: pass break except: pass if not found_include: raise ModuleNotFoundError("Python Includes were not found!") elif not found_numpy_include: raise ModuleNotFoundError("NumPy Includes were not found!") if os.name == 'nt': lpath = get_paths()['include'].replace("Include", 'libs') if os.path.exists(lpath+'\\python3%i.lib'%subversion) and os.path.exists(lpath+'\\python3%i_d.lib'%subversion): print(lpath+'\\python3%i.lib'%subversion) print(lpath+'\\python3%i_d.lib'%subversion) else: raise ModuleNotFoundError("Debug binaries not installed for Python version 3.%i! Re-run the installer with the option selected."%subversion)
2.640625
3
pyspark_apps/process/movies_csv_to_parquet.py
edithhuang2019/emr-demo
21
12781946
#!/usr/bin/env python3 # Process raw CSV data and output Parquet # Author: <NAME> (November 2020) import argparse from pyspark.sql import SparkSession def main(): args = parse_args() spark = SparkSession \ .builder \ .appName("movie-ratings-csv-to-parquet") \ .getOrCreate() for file in ["credits", "keywords", "links", "links_small", "movies_metadata", "ratings", "ratings_small"]: convert_to_parquet(spark, file, args) def convert_to_parquet(spark, file, args): df_bakery = spark.read \ .format("csv") \ .option("header", "true") \ .option("delimiter", ",") \ .option("inferSchema", "true") \ .load(f"s3a://{args.bronze_bucket}/movie_ratings/{file}.csv") df_bakery.write \ .format("parquet") \ .save(f"s3a://{args.silver_bucket}/movie_ratings/{file}/", mode="overwrite") def parse_args(): """Parse argument values from command-line""" parser = argparse.ArgumentParser(description="Arguments required for script.") parser.add_argument("--bronze-bucket", required=True, help="Raw data location") parser.add_argument("--silver-bucket", required=True, help="Processed data location") args = parser.parse_args() return args if __name__ == "__main__": main()
3.234375
3
src/experiment.py
LightnessOfBeing/Understanding-Clouds
4
12781947
import collections import os import pandas as pd from catalyst.dl import ConfigExperiment from segmentation_models_pytorch.encoders import get_preprocessing_fn from sklearn.model_selection import train_test_split from src.augmentations import get_transforms from src.dataset import CloudDataset class Experiment(ConfigExperiment): def get_datasets(self, **kwargs): path = kwargs.get("path", None) df_train_name = kwargs.get("df_train_name", None) df_pl_name = kwargs.get("df_pl_name", None) image_folder = kwargs.get("image_folder", None) encoder_name = kwargs.get("model_name", None) test_mode = kwargs.get("test_mode", None) type = kwargs.get("type", None) height = kwargs.get("height", None) width = kwargs.get("width", None) if type == "train": df_train = pd.read_csv(os.path.join(path, df_train_name)) if df_pl_name is not None: df_pl = pd.read_csv(os.path.join(path, df_pl_name)) df_train = df_train.append(df_pl) print( f"Pseudo-labels named {df_pl_name} {len(df_pl) / 4} added to train df" ) if test_mode: df_train = df_train[:150] df_train["label"] = df_train["Image_Label"].apply(lambda x: x.split("_")[1]) df_train["im_id"] = df_train["Image_Label"].apply(lambda x: x.split("_")[0]) id_mask_count = ( df_train.loc[~df_train["EncodedPixels"].isnull(), "Image_Label"] .apply(lambda x: x.split("_")[0]) .value_counts() .reset_index() .rename(columns={"index": "img_id", "Image_Label": "count"}) .sort_values(["count", "img_id"]) ) assert len(id_mask_count["img_id"].values) == len( id_mask_count["img_id"].unique() ) train_ids, valid_ids = train_test_split( id_mask_count["img_id"].values, random_state=42, stratify=id_mask_count["count"], test_size=0.1, ) df_test = pd.read_csv(os.path.join(path, "sample_submission.csv")) df_test["label"] = df_test["Image_Label"].apply(lambda x: x.split("_")[1]) df_test["im_id"] = df_test["Image_Label"].apply(lambda x: x.split("_")[0]) test_ids = ( df_test["Image_Label"] .apply(lambda x: x.split("_")[0]) .drop_duplicates() .values ) preprocess_fn = get_preprocessing_fn(encoder_name, pretrained="imagenet") if type != "test": train_dataset = CloudDataset( df=df_train, path=path, img_ids=train_ids, image_folder=image_folder, transforms=get_transforms("train"), preprocessing_fn=preprocess_fn, height=height, width=width, ) valid_dataset = CloudDataset( df=df_train, path=path, img_ids=valid_ids, image_folder=image_folder, transforms=get_transforms("valid"), preprocessing_fn=preprocess_fn, height=height, width=width, ) test_dataset = CloudDataset( df=df_test, path=path, img_ids=test_ids, image_folder="test_images", transforms=get_transforms("valid"), preprocessing_fn=preprocess_fn, height=height, width=width, ) datasets = collections.OrderedDict() if type == "train": datasets["train"] = train_dataset datasets["valid"] = valid_dataset elif type == "postprocess": datasets["infer"] = valid_dataset elif type == "test": datasets["infer"] = test_dataset return datasets
2.4375
2
readme_generator/test_scaffold.py
chelseadole/401-final-project
6
12781948
<gh_stars>1-10 """Test file for ensure scaffolding functionality.""" # from readme_generator.make_scaffold import dependencies, license, setup_dict, user_data # def test_user_data_populated_in_make_scaffold(): # """Test that make_scaffold creates a populated user_data dict.""" # assert len(user_data) > 0 # assert "url" in user_data.keys() # def test_make_scaffold_creates_license(): # """Test that make_scaffold creates a populated license.""" # assert isinstance(license, str) # assert "license" in license # def test_make_scaffold_creates_setup_dict_and_contains_info(): # """Test that setup_dict is created successfully in make_scaffold.""" # assert isinstance(setup_dict, dict) # assert "version" in setup_dict.keys() # assert isinstance(setup_dict['author'], list) # def test_dependencies_are_gathered(): # """Test that dependencies are gathered.""" # assert isinstance(dependencies, list) # assert len(dependencies) > 0
2.453125
2
keras_wide_deep_98_table_15GB/python/intermediate_output.py
WenqiJiang/FPGA-Accelerator-for-Recommender-Systems
4
12781949
############ This program is not successful ############## import pandas as pd import numpy as np import argparse import pandas as pd from datetime import datetime import tensorflow as tf # from tensorflow import keras from tensorflow.keras.layers import Input, Embedding, Dense, Flatten, Activation, concatenate # from tensorflow.keras.layers.advanced_activations import ReLU # from tensorflow.keras.layers.normalization import BatchNormalization from tensorflow.keras.models import Model, load_model from tensorflow.keras.utils import plot_model from lib.read_conf import Config from lib.dataset import input_fn from train import Wide_and_Deep class Wide_and_Deep_Intermediate_Output(Wide_and_Deep): def __init__(self, mode="deep"): super().__init__(mode) def predict_intermediate(self, layer_name="dense_1"): if not self.model: self.load_model() input_data = self.get_dataset(mode="pred", batch_size=128) # print("Input data shape: {}".format(len(input_data))) self.model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) intermediate_layer_model = tf.keras.Model(inputs=self.model.input, outputs=self.model.get_layer(layer_name).output) result = intermediate_output = intermediate_layer_model.predict(input_data) print("result: {}".format(result)) print("result shape:{}".format(result.shape)) if __name__ == '__main__': # mode = "wide and deep" mode = "deep" # wide_deep_net = Wide_and_Deep_Intermediate_Output(mode) wide_deep_net = Wide_and_Deep(mode) wide_deep_net.load_model() get_3rd_layer_output = tf.keras.backend.function([wide_deep_net.model.layers[0].input], [wide_deep_net.model.layers[3].output]) layer_output = get_3rd_layer_output([x])[0] # wide_deep_net.predict_model() # wide_deep_net.predict_intermediate()
2.90625
3
parsers/api_check.py
Bassem95/Test26
105
12781950
<reponame>Bassem95/Test26 # -*- coding: utf-8 -*- #!/usr/bin/python """ """ import requests import time from raven import Client client = Client( 'https://aee9ceb609b549fe8a85339e69c74150:8604fd36d8b04fbd9a70a81bdada5cdf@sentry.io/1223891') key = "<KEY>" def check_api(word): query_string = { 'api-key': key, 'q': '"%s"' % word} req = requests.get('https://api.nytimes.com/svc/search/v2/articlesearch.json', params=query_string, verify=False) if req.status_code in set([429, 529, 504]): time.sleep(50) client.captureMessage("NYT API RATELIMIT") return check_api(word) if req.status_code == 500: client.captureMessage("NYT API 500", extra={ 'req':req, 'word': word, }) return False result = req.json() num_results = len(result['response']['docs']) return num_results < 2
2.640625
3