max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
goldberg/benchmark.py
daberg/goldberg
0
12782951
<filename>goldberg/benchmark.py import goldberg.algo as algo import graph_tool.flow import time import memory_profiler def benchmark_all(graph, source, target, capacity): graph.edge_properties["capacity"] = capacity original_g = graph results = [] print("Running benchmarks for all implementations") _print_separator() print("Input stats") print() print("Number of vertices: {}".format(graph.num_vertices())) print("Number of edges: {}".format(graph.num_edges())) _print_separator() # BGL implementation name="BGL implementation" graph = original_g.copy() capacity = graph.edge_properties["capacity"] residual_capacity, time, mem = profilerun( graph_tool.flow.push_relabel_max_flow, graph, graph.vertex(original_g.vertex_index[source]), graph.vertex(original_g.vertex_index[target]), capacity ) residual_capacity.a = capacity.get_array() - residual_capacity.get_array() maxflow = sum(residual_capacity[e] for e in target.in_edges()) result = _compose_result(maxflow, time, mem) results.append((name, result)) print("{} run stats".format(name)) print() _print_result(result) _print_separator() # Stack push-relabel implementation name="Stack push-relabel" graph = original_g.copy() capacity = graph.edge_properties["capacity"] flow, time, mem = profilerun( algo.stack_push_relabel, graph, graph.vertex(original_g.vertex_index[source]), graph.vertex(original_g.vertex_index[target]), capacity ) maxflow = sum(flow[e] for e in target.in_edges()) result = _compose_result(maxflow, time, mem) results.append((name, result)) print("{} run stats".format(name)) print() _print_result(result) _print_separator() return results def profilerun(flownet_function, graph, source, target, capacity): start_time = time.time() ret = flownet_function(graph, source, target, capacity) end_time = time.time() time_diff = end_time - start_time interval = time_diff / 1000.0 start_mem = memory_profiler.memory_usage(lambda: None, max_usage=True)[0] end_mem = memory_profiler.memory_usage( (flownet_function, [graph, source, target, capacity]), interval=interval, timeout=time_diff, max_usage=True )[0] mem_diff = end_mem - start_mem return (ret, time_diff * 1000.0, mem_diff * 1024.0) def _compose_result(maxflow, time, memory): result = { "maxflow" : maxflow, "time" : time, "memory" : memory } return result def _print_result(result): print("Computed maximum flow: {}".format(result["maxflow"])) print("Elapsed time: {} ms".format(result["time"])) print("Allocated memory: {} KiB".format(result["memory"])) def _print_separator(): print(separator) separator = "-" * 79
2.5625
3
stepik/3559/66578/step_2/script.py
tshemake/Software-Development
0
12782952
print(12345678987654321 + 98765432123456789)
1.25
1
askme/askme_api/views.py
seattlechem/askme
0
12782953
"""Rest Api views.""" from rest_framework.views import APIView from rest_framework.response import Response from .rectotext import rec_to_text from .search import find from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt from django.utils.decorators import method_decorator from gtts import gTTS import os from askme.settings import BASE_DIR @method_decorator(csrf_exempt, name='dispatch') class AskViewApi(APIView): """Using apiview.""" def post(self, request): """Upload audio file.""" try: f = request.FILES['file'] uploadedFile = open(os.path.join(BASE_DIR, "askme_api/assets/file.wav", "wb")) uploadedFile.write(f.read()) uploadedFile.close() question = rec_to_text() answer = find(question) except KeyError: answer = "Sorry we have some connection problems.\ I didn't catch your request" return JsonResponse({'answer': answer}) @method_decorator(csrf_exempt, name='dispatch') class AudioViewApi(APIView): """Using apiview.""" def post(self, request): """Upload audio file.""" try: uploadedFile = open(os.path.join(BASE_DIR, 'askme/assets/file.wav'), 'wb') f = request.FILES['data'] uploadedFile.write(f.read()) uploadedFile.close() question = rec_to_text() answer = find(question) except KeyError: answer = 'I am sorry. We have some connection issues.\ I couldn\'t get get Your file' tts = gTTS(text=answer, lang='en') fname = os.path.join(BASE_DIR, "askme/assets/good.mp3") tts.save(fname) f = open(fname, "rb") response = HttpResponse() response.write(f.read()) response['Content-Type'] = 'audio/mp3' response['Content-Length'] = os.path.getsize(fname) return response
2.359375
2
monero_glue/protocol/tsx_sign_state.py
ph4r05/monero-agent
20
12782954
<filename>monero_glue/protocol/tsx_sign_state.py from monero_glue.compat.micropython import const class TState(object): """ Transaction state """ START = const(0) INIT = const(1) INP_CNT = const(2) INPUT = const(3) INPUT_DONE = const(4) INPUT_PERM = const(5) INPUT_VINS = const(6) INPUT_ALL_DONE = const(7) OUTPUT = const(8) RSIG = const(9) OUTPUT_DONE = const(10) FINAL_MESSAGE = const(11) SIGNATURE = const(12) SIGNATURE_DONE = const(13) FINAL = const(14) FAIL = const(250) def __init__(self): self.s = self.START self.in_mem = False def state_save(self): return self.s, self.in_mem def state_load(self, x): self.s, self.in_mem = x def init_tsx(self): if self.s != self.START: raise ValueError("Illegal state") self.s = self.INIT def inp_cnt(self, in_mem): if self.s != self.INIT: raise ValueError("Illegal state") self.s = self.INP_CNT self.in_mem = in_mem def input(self): if self.s != self.INP_CNT and self.s != self.INPUT: raise ValueError("Illegal state") self.s = self.INPUT def input_done(self): if self.s != self.INPUT: raise ValueError("Illegal state") self.s = self.INPUT_DONE def input_permutation(self): if self.s != self.INPUT_DONE: raise ValueError("Illegal state") self.s = self.INPUT_PERM def input_vins(self): if self.s != self.INPUT_PERM and self.s != self.INPUT_VINS: raise ValueError("Illegal state") self.s = self.INPUT_VINS def is_input_vins(self): return self.s == self.INPUT_VINS def input_all_done(self): if (not self.in_mem and self.s != self.INPUT_VINS) or ( self.in_mem and self.s != self.INPUT_PERM ): raise ValueError("Illegal state") self.s = self.INPUT_ALL_DONE def set_output(self): if self.s != self.INPUT_ALL_DONE and self.s != self.OUTPUT: raise ValueError("Illegal state") self.s = self.OUTPUT def set_output_done(self): if self.s != self.OUTPUT: raise ValueError("Illegal state") self.s = self.OUTPUT_DONE def set_final_message_done(self): if self.s != self.OUTPUT_DONE: raise ValueError("Illegal state") self.s = self.FINAL_MESSAGE def set_signature(self): if self.s != self.FINAL_MESSAGE and self.s != self.SIGNATURE: raise ValueError("Illegal state") self.s = self.SIGNATURE def set_signature_done(self): if self.s != self.SIGNATURE: raise ValueError("Illegal state") self.s = self.SIGNATURE_DONE def set_final(self): if self.s != self.SIGNATURE_DONE: raise ValueError("Illegal state") self.s = self.FINAL def set_fail(self): self.s = self.FAIL def is_terminal(self): return self.s in [self.FINAL, self.FAIL]
2.203125
2
oldScripts/merged_model.py
hanzy1110/ProbabilisticFatigue
0
12782955
<filename>oldScripts/merged_model.py #%% import pymc3 as pm import arviz as az import pandas as pd import numpy as np from pymc3.gp.util import plot_gp_dist from scipy import stats from typing import Dict import theano.tensor as tt import matplotlib.pyplot as plt def basquin_rel(N, B,b): return B*(N**b) B = 10e5 b = -1e-1 Ns = np.linspace(1e4, 1e7, 200) sigmas = np.array([basquin_rel(val, B,b) for val in Ns]) logN = np.log(Ns) logSigma = np.log(sigmas) variation_coeff = 1 sigmas_rand = sigmas*(1+variation_coeff*np.random.normal(0, scale = .1, size = len(sigmas))) logSrand = np.log(sigmas_rand) fig = plt.figure() ax = fig.gca() ax.plot(Ns, sigmas, label = 'mean') ax.scatter(Ns, sigmas_rand, label = 'obs', color = 'r', marker='x') plt.legend() fig = plt.figure() ax = fig.gca() ax.plot(logN, logSigma, label = 'mean') ax.scatter(logN, logSrand, label = 'obs', color = 'r') plt.legend() def mixture_density(alpha, beta, scalling, x): logp = pm.Weibull.dist(alpha, beta).logp(x) return scalling * tt.exp(logp) data = pd.read_csv('cleansed_csvs/5BBOL2-137_VANO 136_OPGW_807625_19_02_2020.csv') data.set_index(data['Frequency [Hz]']) #%% tot_cycles = np.array(data.iloc[-1,1:], dtype=np.float64) amplitudes = np.array(list(data.columns)[1:], dtype=np.float64) #%% idxs = np.argsort(amplitudes) tot_cycles = np.array([tot_cycles[idx] for idx in idxs]) amplitudes = np.hstack((np.zeros(1), amplitudes)) amplitudes = np.sort(amplitudes) amplitudes /= amplitudes.mean() # tot_cycles /= np.sum(tot_cycles) tot_cycles /= tot_cycles.max() # plt.plot(amplitudes[1:], tot_cycles) plt.hist(tot_cycles, bins = amplitudes) #%% # amplitudes = amplitudes[1:].reshape(-1,1) amplitudes = amplitudes[1:] alpha_0 = np.array([1.5]) beta_0 = np.array([1.]) scalling =np.array([1]) yhat = mixture_density(alpha_0, beta_0, scalling, amplitudes).eval() y = yhat + np.random.normal(loc=0, scale=.1, size=len(yhat)) plt.plot(amplitudes, yhat, label='Approximación') plt.scatter(amplitudes, y, label = 'Approx + Ruido') plt.scatter(amplitudes,tot_cycles, label = 'Datos Observados') plt.legend() #%% with pm.Model() as GUEDE_disp_model: alpha = pm.HalfNormal('Alpha', sigma= 1., shape=1) beta = pm.HalfNormal('Beta', sigma= 1., shape=1) # beta = 1 scalling = pm.HalfNormal('Scale Factor', sigma= 2., shape=1) # scalling = 1 # alpha = pm.Beta('alpha', alpha=2, beta=2, shape=1) # beta = pm.Beta('beta', alpha=2, beta=2, shape=1) noise = pm.HalfNormal('Noise', sigma=1) a = pm.Normal('a', mu=0, sigma = 10) A = pm.HalfCauchy('A', beta = 8) variation_coeff = pm.HalfCauchy('variation_coeff',beta=5) mean = a*logN + A noise_GUEDE = variation_coeff*mean normed_disp = pm.Normal('obs', mixture_density(alpha, beta, scalling, amplitudes), noise, observed=tot_cycles) likelihood = pm.Normal('y', mu = mean, sigma = noise_GUEDE, observed = logSrand) # trace:Dict[str,np.ndarray] = pm.sample_smc() trace:Dict[str,np.ndarray] = pm.sample(draws=4000, chains = 4, tune=2000, target_accept=0.92) print(az.summary(trace)) az.plot_trace(trace) # %% def weibull_samples(a, b, scale = 1, size=None): uniform = np.random.uniform(size=size) return b * (-np.log(uniform/scale)) ** (1 / a) def theano_weibull_samples(a, b, scale = 1, size=None): uniform = np.random.uniform(size=size) return b * (-tt.log(uniform/scale)) ** (1 / a) def Miner_sRule(B,b, n_samples, alpha, beta, scalling): samples = theano_weibull_samples(a=alpha, b=beta, size=n_samples) total_cycles = mixture_density(alpha, beta, scalling, x=samples) * n_samples stresses = 3e9* samples baskin = (stresses/B) ** (1/b) damage = tt.dot(total_cycles, baskin) return damage label = 'damage5' with GUEDE_disp_model: B = tt.exp(A) damage = pm.Deterministic(label, Miner_sRule(B, a, 200000, alpha, beta, scalling)) samples:Dict[str,np.ndarray] = pm.sample_posterior_predictive(trace, samples = 10000, var_names=[label]) # %% plt.hist(samples[label],bins = 40,density=True) # %% def indicator(x:np.ndarray): slice_ = x[x<0] return np.ones_like(slice_).sum() perf = 1-samples[label] p_failure = indicator(perf)/len(perf) print('p_failure--->', p_failure) # %%
1.929688
2
Modulo_1/semana2/Estructura-de-Datos/list/listas-remove.py
rubens233/cocid_python
0
12782956
<reponame>rubens233/cocid_python<filename>Modulo_1/semana2/Estructura-de-Datos/list/listas-remove.py a=["a", "b", "c"] a.remove("a") print(a)
3.171875
3
app/workers/search/schemas/indices.py
d3vzer0/reternal-backend
6
12782957
from pydantic import BaseModel, validator, Field from typing import List, Dict from datetime import datetime class IndicesIn(BaseModel): index: str source: str sourcetype: str class IndiceList(BaseModel): indices: List[IndicesIn] integration: str execution_date: datetime @validator('execution_date', pre=True, always=True) def _get_execution_date(cls, v): return datetime.strptime(v, '%Y-%m-%dT%H:%M:%S.%f')
2.53125
3
trexplot_oldcode.py
hammytheham/trexplot
0
12782958
<reponame>hammytheham/trexplot # coding: utf-8 # Plotting script for TREACTMECH files written by <NAME> - hr0392 at bristol.ac.uk # # Run the script within the directory containing the flowdata, flowvector, stress strain, displacement files. Output by default is within same directory. # # Displacement gives the corner nodes, everything else gives the centre of the cells. # # # import pandas as pd import os import numpy as np import matplotlib.dates as mdates import datetime import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import sys from trexoptions import * #import the option file cwd = os.getcwd() def flowdata_import(): """ Imports the flowdata file from current working directory. Column names are largely preserved. Takes in only the last time step values. Returns a dictionary 'flowfaces' that contains the flowdata for each of the default and user specificed faces. """ flowdata=pd.read_csv(cwd+'/flowdata.tec',sep=r"\s*",skiprows=[0],engine='python') flowdata_modified= flowdata[flowdata.columns[:-1]] flowdata_modified.columns = flowdata.columns[1:] flowdata=flowdata_modified.rename(index=str,columns={'"X(m)"':"X", '"Y(m)"':"Y", '"Z(m)"':"Z", '"P(Pa)"':"Pressure(Pa)", '"T(C)"':"Temperature(C)", '"SatGas"':"SatGas",'"SatLiq"':"SatLiq",'"X1"':"X1", '"X2"':"X2", '"Pcap(Pa)"':"Pcap", '"DGas_kg/m3"':"DGas_kg/m3", '"DLiq_kg/m3"':"DLiq_kg/m3", '"Porosity"':"Porosity", '"Perm_X(m2)"':"Perm_X(m2)", '"Perm_Y(m2)"':"Perm_Y(m2)", '"Perm_Z(m2)"':"Perm_Z(m2)", '"Krel_Gas"':"Krel_Gas", '"Krel_Liq"':"Krel_Liq", '"HGas(J/kg)"':"HGas(J/kg)", '"HLiq(J/kg)"':"HLiq(J/kg)", '"Cp(J/kg/C)"':"Cp(J/kg/C)", '"TC(W/m/C)"':"TC(W/m/C)", '"DBlk_kg/m3"':"DBlk_kg/m3", '"Tdif(m2/s)"':"Tdif(m2/s)"}) #Last time step - top, bottom, side walls val=int(flowdata.loc[flowdata["X"] == 'Zone'][-1:].index[0])#value of the last time zone lastval=int(flowdata.index[-1]) length=lastval - val #length of last time zone zone=flowdata[val+1:lastval+1] zone[zone.columns] = zone[zone.columns].apply(pd.to_numeric, errors='ignore', downcast='float') top,tpval =zone.loc[zone["Z"] == max(zone.Z) ],max(zone.Z) #2D array of the top surface bot,btval =zone.loc[zone["Z"] == min(zone.Z) ],min(zone.Z)#bottom surface MaxY,MxYval=zone.loc[zone["Y"] == max(zone.Y) ],max(zone.Y)#MaxY face MinY,MnYval=zone.loc[zone["Y"] == min(zone.Y) ],min(zone.Y)#MinY face MaxX,MxXval=zone.loc[zone["X"] == max(zone.X) ],max(zone.X)#MaxX face MinX,MnXval=zone.loc[zone["X"] == min(zone.X) ],min(zone.X)#MinX face xsec_x,xsec_x_val=zone.loc[zone["Y"] == zone.Y.unique()[int(len(zone.Y.unique())/2)]],zone.Y.unique()[int(len(zone.Y.unique())/2)] xsec_y,xsec_y_val=zone.loc[zone["X"] == zone.X.unique()[int(len(zone.X.unique())/2)]],zone.X.unique()[int(len(zone.X.unique())/2)] flowfaces={'Top':top,'Bot':bot,'Max-Y':MaxY,'Min-Y':MinY,'Max-X':MaxX,'Min-X':MinX, 'tpval' : tpval, 'btval' : btval, 'MxYval' : MxYval, 'MnYval' : MnYval, 'MxXval' : MxXval, 'MnXval' : MnXval,'xsec_x_half':xsec_x,'xsec_x_half_val':xsec_x_val, 'xsec_y_half':xsec_y,'xsec_y_val_half':xsec_y_val} if op_xsec_X_user == True: for i in list(range(len(xsec_user_xvals))): xsec_x_user,xsec_x_user_val=zone.loc[zone["Y"] == zone.Y.unique()[xsec_user_xvals[i]]],zone.Y.unique()[xsec_user_xvals[i]] flowfaces.update({'xsec_x_user_'+str(xsec_user_xvals[i]):xsec_x_user,'xsec_x_user_val'+str(xsec_user_xvals[i]):xsec_x_user_val}) if op_xsec_Y_user == True: for i in list(range(len(xsec_user_yvals))): xsec_y_user,xsec_y_user_val=zone.loc[zone["X"] == zone.X.unique()[xsec_user_yvals[i]]],zone.X.unique()[xsec_user_yvals[i]] flowfaces.update({'xsec_y_user_'+str(xsec_user_yvals[i]):xsec_y_user,'xsec_y_user_val'+str(xsec_user_yvals[i]):xsec_y_user_val}) return flowfaces def flowvector_import(): """ Imports the flowvector file from current working directory. Column names are largely preserved. Takes in only the last time step values. Returns a dictionary 'vecfaces' that contains the vector data for each of the default and user specificed faces. """ flowvector=pd.read_csv(cwd+'/flowvector.tec',sep=r"\s*",skiprows=[0],engine='python') flowvector_modified= flowvector[flowvector.columns[:-1]] flowvector_modified.columns = flowvector.columns[1:] flowvector=flowvector_modified.rename(index=str,columns={'"X(m)"':"X", '"Y(m)"':"Y",'"Z(m)"':"Z", '"FluxLiq"':"FluxLiq", '"FluxLiq_X"':"FluxLiq_X",'"FluxLiq_Y"':"FluxLiq_Y", '"FluxLiq_Z"':"FluxLiq_Z", '"PorVelLiq"':"PorVelLiq", '"PorVelLiqX"':"PorVelLiqX",'"PorVelLiqY"':"PorVelLiqY", '"PorVelLiqZ"':"PorVelLiqZ", '"FluxGas"':"FluxGas",'"FluxGas_X"':"FluxGas_X",'"FluxGas_Y"':"FluxGas_Y", '"FluxGas_Z"':"FluxGas_Z", '"PorVelGas"':"PorVelGas",'"PorVelGasX"':"PorVelGasX",'"PorVelGasY"':"PorVelGasY", '"PorVelGasZ"':"PorVelGasZ", '"HeatFlux"':"HeatFlux", '"HeatFlux_X"':"HeatFlux_X",'"HeatFlux_Y"':"HeatFlux_Y", '"HeatFlux_Z"':"HeatFlux_Z"}) val=int(flowvector.loc[flowvector["X"] == 'Zone'][-1:].index[0]) lastval=int(flowvector.index[-1]) length=lastval - val zone=flowvector[val+1:lastval+1] zone[zone.columns] = zone[zone.columns].apply(pd.to_numeric, errors='ignore', downcast='float') top,tpval =zone.loc[zone["Z"] == max(zone.Z) ],max(zone.Z) bot,btval =zone.loc[zone["Z"] == min(zone.Z) ],min(zone.Z) MaxY,MxYval=zone.loc[zone["Y"] == max(zone.Y) ],max(zone.Y) MinY,MnYval=zone.loc[zone["Y"] == min(zone.Y) ],min(zone.Y) MaxX,MxXval=zone.loc[zone["X"] == max(zone.X) ],max(zone.X) MinX,MnXval=zone.loc[zone["X"] == min(zone.X) ],min(zone.X) xsec_x,xsec_x_val=zone.loc[zone["Y"] == zone.Y.unique()[int(len(zone.Y.unique())/2)]],zone.Y.unique()[int(len(zone.Y.unique())/2)] xsec_y,xsec_y_val=zone.loc[zone["X"] == zone.X.unique()[int(len(zone.X.unique())/2)]],zone.X.unique()[int(len(zone.X.unique())/2)] vecfaces={'Top':top,'Bot':bot,'Max-Y':MaxY,'Min-Y':MinY,'Max-X':MaxX,'Min-X':MinX, 'tpval' : tpval, 'btval' : btval, 'MxYval' : MxYval, 'MnYval' : MnYval, 'MxXval' : MxXval, 'MnXval' : MnXval,'xsec_x_half':xsec_x,'xsec_x_half_val':xsec_x_val, 'xsec_y_half':xsec_y,'xsec_y_val_half':xsec_y_val} if op_xsec_X_user == True: for i in list(range(len(xsec_user_xvals))): xsec_x_user,xsec_x_user_val=zone.loc[zone["Y"] == zone.Y.unique()[xsec_user_xvals[i]]],zone.Y.unique()[xsec_user_xvals[i]] vecfaces.update({'xsec_x_user_'+str(xsec_user_xvals[i]):xsec_x_user,'xsec_x_user_val'+str(xsec_user_xvals[i]):xsec_x_user_val}) if op_xsec_Y_user == True: for i in list(range(len(xsec_user_yvals))): xsec_y_user,xsec_y_user_val=zone.loc[zone["X"] == zone.X.unique()[xsec_user_yvals[i]]],zone.X.unique()[xsec_user_yvals[i]] vecfaces.update({'xsec_y_user_'+str(xsec_user_yvals[i]):xsec_y_user,'xsec_y_user_val'+str(xsec_user_yvals[i]):xsec_y_user_val}) return vecfaces def displace_import(): """ Imports the displacement file from current working directory. Column names are largely preserved. Takes in only the last time step values. Returns a dictionary 'dispfaces' that contains the vector data for each of the default and user specificed faces. Note I added one to xsec user and half values as you get an extra datapoint for displacement output files. """ column_names=["X","Y","Z","Disp_x","Disp_y","Disp_z"] displace=pd.read_csv(cwd+'/displacement.tec',sep=r"\s+",skiprows=[0,1],usecols=[0,1,2,3,4,5], names=column_names,engine='python') val=int(displace.loc[displace["X"] == 'Zone'][-1:].index[0]) lastval=int(displace.index[-1]) length=lastval - val zone=displace[val+1:lastval+1] zone[zone.columns] = zone[zone.columns].apply(pd.to_numeric, errors='ignore', downcast='float') top,tpval =zone.loc[zone["Z"] == max(zone.Z) ],max(zone.Z) bot,btval =zone.loc[zone["Z"] == min(zone.Z) ],min(zone.Z) MaxY,MxYval=zone.loc[zone["Y"] == max(zone.Y) ],max(zone.Y) MinY,MnYval=zone.loc[zone["Y"] == min(zone.Y) ],min(zone.Y) MaxX,MxXval=zone.loc[zone["X"] == max(zone.X) ],max(zone.X) MinX,MnXval=zone.loc[zone["X"] == min(zone.X) ],min(zone.X) xsec_x,xsec_x_val=zone.loc[zone["Y"] == zone.Y.unique()[int(len(zone.Y.unique())/2)+1]],zone.Y.unique()[int(len(zone.Y.unique())/2)+1] xsec_y,xsec_y_val=zone.loc[zone["X"] == zone.X.unique()[int(len(zone.X.unique())/2)+1]],zone.X.unique()[int(len(zone.X.unique())/2)+1] dispfaces={'Top':top,'Bot':bot,'Max-Y':MaxY,'Min-Y':MinY,'Max-X':MaxX,'Min-X':MinX, 'tpval' : tpval, 'btval' : btval, 'MxYval' : MxYval, 'MnYval' : MnYval, 'MxXval' : MxXval, 'MnXval' : MnXval,'xsec_x_half':xsec_x,'xsec_x_half_val':xsec_x_val, 'xsec_y_half':xsec_y,'xsec_y_val_half':xsec_y_val} if op_xsec_X_user == True: #added one to xsec half values as you get an extra datapoint for i in list(range(len(xsec_user_xvals))): xsec_x_user,xsec_x_user_val=zone.loc[zone["Y"] == zone.Y.unique()[xsec_user_xvals[i]]],zone.Y.unique()[xsec_user_xvals[i]+1] dispfaces.update({'xsec_x_user_'+str(xsec_user_xvals[i]):xsec_x_user,'xsec_x_user_val'+str(xsec_user_xvals[i]):xsec_x_user_val}) if op_xsec_Y_user == True: for i in list(range(len(xsec_user_yvals))): xsec_y_user,xsec_y_user_val=zone.loc[zone["X"] == zone.X.unique()[xsec_user_yvals[i]]],zone.X.unique()[xsec_user_yvals[i]+1] dispfaces.update({'xsec_y_user_'+str(xsec_user_yvals[i]):xsec_y_user,'xsec_y_user_val'+str(xsec_user_yvals[i]):xsec_y_user_val}) return dispfaces def corner_val_import(): """ By default in trexoptions.py op_corner=False the corner values from the displacement output are used. If you set op_corner =True and input into arrays you can override/if no displacement.tec has been output. The reason is that flowvector, data etc all output the value of the centre of the cell. Plotting functions require us to know the indices. These values arent used in the facechoose function (see plotting running order) unless its actually for displacement values (which are recorded as the corner indices). The function returns a shaped 3D mesh 'vals' with each value in the mesh the actual co-ordinate location. """ if op_corner == False: column_names=["X","Y","Z"] displace=pd.read_csv(cwd+'/displacement.tec',sep=r"\s+",skiprows=[0,1],usecols=[0,1,2], names=column_names,engine='python') val=int(displace.loc[displace["X"] == 'Zone'][-1:].index[0]) lastval=int(displace.index[-1]) length=lastval - val zone=displace[val+1:lastval+1] zone[zone.columns] = zone[zone.columns].apply(pd.to_numeric, errors='ignore', downcast='float') zone['xyz'] = list(zip(zone.X,zone.Y,zone.Z)) vals=zone.xyz.values.reshape(len(zone.X.unique()),len(zone.Y.unique()),len(zone.Z.unique())) if op_corner == True: corner_x=op_corner_x corner_y=op_corner_y corner_z=op_corner_z a=[] for z in corner_z: for y in corner_y: for x in corner_x: a.append(tuple([x,y,z])) df1 = pd.DataFrame(data=pd.Series(a)) vals=df1.values.reshape(len(corner_z),len(corner_y),len(corner_x)) return vals def stress_strain_import(): """ Imports the stress-strain file from current working directory. Column names are largely preserved. Takes in only the last time step values. Returns a dictionary 'stressfaces' that contains the stress_strain data for each of the default and user specificed faces. """ column_names=["X","Y","Z","Sigma_xx","Sigma_yy","Sigma_zz","Sigma_yz","Sigma_xz","Sigma_xy", "Strain_xx","Strain_yy","Strain_zz","Strain_yz", "Strain_xz", "Strain_xy","Vol_Strain", "E_fail_xx", "E_fail_yy", "E_fail_zz","E_fail_yz2","E_fail_xz2","E_fail_xy2","E_fail_vol"] stress=pd.read_csv(cwd+'/stress_strain.tec',sep=r"\s+",skiprows=[1],names=column_names,engine='python') val=int(stress.loc[stress["X"] == 'Zone'][-1:].index[0]) lastval=int(stress.index[-1]) length=lastval - val zone=stress[val+1:lastval+1] zone[zone.columns] = zone[zone.columns].apply(pd.to_numeric, errors='ignore', downcast='float') top,tpval = zone.loc[zone["Z"] == max(zone.Z) ],max(zone.Z) bot,btval = zone.loc[zone["Z"] == min(zone.Z) ],min(zone.Z) MaxY,MxYval= zone.loc[zone["Y"] == max(zone.Y) ],max(zone.Y) MinY,MnYval= zone.loc[zone["Y"] == min(zone.Y) ],min(zone.Y) MaxX,MxXval= zone.loc[zone["X"] == max(zone.X) ],max(zone.X) MinX,MnXval= zone.loc[zone["X"] == min(zone.X) ],min(zone.X) xsec_x,xsec_x_val=zone.loc[zone["Y"] == zone.Y.unique()[int(len(zone.Y.unique())/2)]],zone.Y.unique()[int(len(zone.Y.unique())/2)] xsec_y,xsec_y_val=zone.loc[zone["X"] == zone.X.unique()[int(len(zone.X.unique())/2)]],zone.X.unique()[int(len(zone.X.unique())/2)] stressfaces={'Top':top,'Bot':bot,'Max-Y':MaxY,'Min-Y':MinY, 'Max-X':MaxX,'Min-X':MinX,'tpval' : tpval, 'btval' : btval, 'MxYval' : MxYval, 'MnYval' : MnYval, 'MxXval' : MxXval, 'MnXval' : MnXval,'xsec_x_half':xsec_x,'xsec_x_half_val':xsec_x_val, 'xsec_y_half':xsec_y,'xsec_y_val_half':xsec_y_val} if op_xsec_X_user == True: for i in list(range(len(xsec_user_xvals))): xsec_x_user,xsec_x_user_val=zone.loc[zone["Y"] == zone.Y.unique()[xsec_user_xvals[i]]],zone.Y.unique()[xsec_user_xvals[i]] stressfaces.update({'xsec_x_user_'+str(xsec_user_xvals[i]):xsec_x_user,'xsec_x_user_val'+str(xsec_user_xvals[i]):xsec_x_user_val}) if op_xsec_Y_user == True: for i in list(range(len(xsec_user_yvals))): xsec_y_user,xsec_y_user_val=zone.loc[zone["X"] == zone.X.unique()[xsec_user_yvals[i]]],zone.X.unique()[xsec_user_yvals[i]] stressfaces.update({'xsec_y_user_'+str(xsec_user_yvals[i]):xsec_y_user,'xsec_y_user_val'+str(xsec_user_yvals[i]):xsec_y_user_val}) return stressfaces def face_choose(axis1,axis2,param): """ Returns a shapped array based on the input parameter (e.g. porosity) for the face (e.g. top face) """ face_data=np.reshape(param.values,(len(axis1.unique()),len(axis2.unique()))) return face_data def plot_pcolormesh(axis1,axis2,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): """ Plots parameter values for each cell using the pcolormesh function. Uses the corner point values output by corner_point_vals() """ if rotate == True: axis2,axis1 = np.meshgrid(axis1,axis2) else: axis1,axis2 = np.meshgrid(axis1,axis2) fig,ax=plt.subplots(1,1,figsize=(10,10)) ax.set_title(label=('%(name)s surface (%(surlabel)s %(name2).1f) - %(data)s - min/max/mean (%(min).4e /%(max).4e / %(mean).2e) ' %{'name':name,'surlabel':surlabel,'name2':name2,'data':data,'min':np.min(facedata), 'max':np.max(facedata),'mean':np.mean(facedata) }),pad=15) print ("axis1",axis1.size,"axis2",axis2.size,"facedata",facedata.size) c=ax.pcolormesh(axis1,axis2,facedata,edgecolors='k',cmap='jet', vmin=np.min(facedata), vmax=np.max(facedata)) ax.set_xlabel('%(xlabel)s'%{'xlabel':xlabel}) ax.set_ylabel('%(ylabel)s'%{'ylabel':ylabel}) cbar=fig.colorbar(c, ax=ax) cbar.ax.get_yaxis().labelpad = 15 cbar.ax.set_ylabel('%(data)s'%{'data':data}, rotation=270) return fig def plot_contour(axis1,axis2,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): """ Plots contours of the parameter values. Uses the centre of cell cordinates. Optionally, easily could overlay this output ontop of plot_colormesh """ if rotate == True: axis2,axis1 = np.meshgrid(axis1,axis2) else: axis1,axis2 = np.meshgrid(axis1,axis2) fig, ax = plt.subplots() cont = ax.contour(axis1, axis2, facedata, cmap='gist_earth', vmin=facedata.min(), vmax=facedata.max()) #see cont.levels for info on changing ax.set_title(label=('%(name)s surface (%(surlabel)s %(name2).1f) - %(data)s - min/max/mean (%(min).4e /%(max).4e / %(mean).2e) ' %{'name':name,'surlabel':surlabel,'name2':name2,'data':data,'min':np.min(facedata), 'max':np.max(facedata),'mean':np.mean(facedata) }),pad=15) ax.set_xlabel('%(xlabel)s'%{'xlabel':xlabel}) ax.set_ylabel('%(ylabel)s'%{'ylabel':ylabel}) ax.clabel(cont,fmt='%1.1e') return fig def plot_flowvectors_no_cont(axis1,axis2,axis3,axis4,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): """ Following based on this: https://stackoverflow.com/questions/25342072/computing-and-drawing-vector-fields Uses both the centre (or corner for displacement) values (graident function) and the corner values (plotting) for constructing the quiver plot """ if rotate == True: dy,dx=np.gradient(facedata, axis2, axis1) axis4,axis3 = np.meshgrid(axis3,axis4) else: dy,dx=np.gradient(facedata, axis2, axis1) axis3,axis4 = np.meshgrid(axis3,axis4) fig, ax = plt.subplots() quiv=ax.quiver(axis3, axis4, dx, dy,facedata) ax.set_title(label=('%(name)s surface (%(surlabel)s %(name2).1f) - %(data)s - min/max/mean (%(min).4e /%(max).4e / %(mean).2e) ' %{'name':name,'surlabel':surlabel,'name2':name2,'data':data,'min':np.min(facedata), 'max':np.max(facedata),'mean':np.mean(facedata) }),pad=15) ax.set_xlabel('%(xlabel)s'%{'xlabel':xlabel}) ax.set_ylabel('%(ylabel)s'%{'ylabel':ylabel}) cbar=fig.colorbar(quiv, ax=ax) cbar.ax.get_yaxis().labelpad = 15 cbar.ax.set_ylabel('%(data)s'%{'data':data}, rotation=270) return fig def plot_flowvectors_cont(axis1,axis2,axis3,axis4,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): """ Following based on this: https://stackoverflow.com/questions/25342072/computing-and-drawing-vector-fields Uses both the centre (or corner for displacement) values (graident function) and the corner values (plotting) for constructing the quiver plot Overlay of contours of the parameter data. Not of the gradient. """ if rotate == True: dy,dx=np.gradient(facedata, axis2, axis1) axis4,axis3 = np.meshgrid(axis3,axis4) axis2,axis1 = np.meshgrid(axis1,axis2) else: dy,dx=np.gradient(facedata, axis2, axis1) axis3,axis4 = np.meshgrid(axis3,axis4) axis1,axis2 = np.meshgrid(axis1,axis2) fig, ax = plt.subplots() quiv=ax.quiver(axis3, axis4, dx, dy,facedata) cont = ax.contour(axis1, axis2, facedata, cmap='gist_earth', vmin=facedata.min(), vmax=facedata.max()) #see cont.levels for info on changing ax.set_title(label=('%(name)s surface (%(surlabel)s %(name2).1f) - %(data)s - min/max/mean (%(min).4e /%(max).4e / %(mean).2e) ' %{'name':name,'surlabel':surlabel,'name2':name2,'data':data,'min':np.min(facedata), 'max':np.max(facedata),'mean':np.mean(facedata) }),pad=15) ax.set_xlabel('%(xlabel)s'%{'xlabel':xlabel}) ax.set_ylabel('%(ylabel)s'%{'ylabel':ylabel}) cbar=fig.colorbar(quiv, ax=ax) cbar.ax.get_yaxis().labelpad = 15 cbar.ax.set_ylabel('%(data)s'%{'data':data}, rotation=270) ax.clabel(cont,fmt='%1.1e') return fig flowdata_params=[] flowvector_params=[] displacement_params=[] stress_strain_params=[] if op_Porosity == True:flowdata_params.append('Porosity') if op_Perm_X == True:flowdata_params.append('Perm_X(m2)') if op_Perm_Y == True:flowdata_params.append('Perm_Y(m2)') if op_Perm_Z == True:flowdata_params.append('Perm_Z(m2)') if op_Pressure == True:flowdata_params.append('Pressure(Pa)') if op_Temperature == True:flowdata_params.append('Temperature(C)') if op_SatGas == True:flowdata_params.append('SatGas') if op_SatLiq == True:flowdata_params.append('SatLiq') if op_X1 == True:flowdata_params.append('X1') if op_X2 == True:flowdata_params.append('X2') if op_Pcap == True:flowdata_params.append('Pcap') if op_DGas == True:flowdata_params.append('DGas_kg/m3') if op_DLiq == True:flowdata_params.append('DLiq_kg/m3') if op_Krel_Gas == True:flowdata_params.append('Krel_Gas') if op_Krel_Liq == True:flowdata_params.append('Krel_Liq') if op_HGas == True:flowdata_params.append('HGas(J/kg)') if op_HLiq == True:flowdata_params.append('HLiq(J/kg)') if op_Cp == True:flowdata_params.append('Cp(J/kg/C)') if op_TC == True:flowdata_params.append('TC(W/m/C)') if op_DBlk == True:flowdata_params.append('DBlk_kg/m3') if op_Tdif == True:flowdata_params.append('Tdif(m2/s)') if op_FluxLiq == True:flowvector_params.append('FluxLiq') if op_FluxLiq_X == True:flowvector_params.append('FluxLiq_X') if op_FluxLiq_Y == True:flowvector_params.append('FluxLiq_Y') if op_FluxLiq_Z == True:flowvector_params.append('FluxLiq_Z') if op_PorVelLiq == True:flowvector_params.append('PorVelLiq') if op_PorVelLiqX == True:flowvector_params.append('PorVelLiqX') if op_PorVelLiqY == True:flowvector_params.append('PorVelLiqY') if op_PorVelLiqZ == True:flowvector_params.append('PorVelLiqZ') if op_FluxGas == True:flowvector_params.append('FluxGas') if op_FluxGas_X == True:flowvector_params.append('FluxGas_X') if op_FluxGas_Y == True:flowvector_params.append('FluxGas_Y') if op_FluxGas_Z == True:flowvector_params.append('FluxGas_Z') if op_PorVelGas == True:flowvector_params.append('PorVelGas') if op_PorVelGasX == True:flowvector_params.append('PorVelGasX') if op_PorVelGasY == True:flowvector_params.append('PorVelGasY') if op_PorVelGasZ == True:flowvector_params.append('PorVelGasZ') if op_HeatFlux == True:flowvector_params.append('HeatFlux') if op_HeatFlux_X == True:flowvector_params.append('HeatFlux_X') if op_HeatFlux_Y == True:flowvector_params.append('HeatFlux_Y') if op_HeatFlux_Z == True:flowvector_params.append('HeatFlux_Z') if op_Disp_x == True:displacement_params.append('Disp_x') if op_Disp_y == True:displacement_params.append('Disp_y') if op_Disp_z == True:displacement_params.append('Disp_z') if op_Sigma_xx == True:stress_strain_params.append('Sigma_xx') if op_Sigma_yy == True:stress_strain_params.append('Sigma_yy') if op_Sigma_zz == True:stress_strain_params.append('Sigma_zz') if op_Sigma_yz == True:stress_strain_params.append('Sigma_yz') if op_Sigma_xz == True:stress_strain_params.append('Sigma_xz') if op_Sigma_xy == True:stress_strain_params.append('Sigma_xy') if op_Strain_xx == True:stress_strain_params.append('Strain_xx') if op_Strain_yy == True:stress_strain_params.append('Strain_yy') if op_Strain_zz == True:stress_strain_params.append('Strain_zz') if op_Strain_yz == True:stress_strain_params.append('Strain_yz') if op_Strain_xz == True:stress_strain_params.append('Strain_xz') if op_Strain_xy == True:stress_strain_params.append('Strain_xy') if op_Vol_Strain == True:stress_strain_params.append('Vol_Strain') if op_E_fail_xx == True:stress_strain_params.append('E_fail_xx') if op_E_fail_yy == True:stress_strain_params.append('E_fail_yy') if op_E_fail_zz == True:stress_strain_params.append('E_fail_zz') if op_E_fail_yz2 == True:stress_strain_params.append('E_fail_yz2') if op_E_fail_xz2 == True:stress_strain_params.append('E_fail_xz2') if op_E_fail_xy2 == True:stress_strain_params.append('E_fail_xy2') if op_E_fail_vol == True:stress_strain_params.append('E_fail_vol') def corner_point_vals(): """ Collects the shaped 3D mesh 'vals' with each value in the mesh the actual co-ordinate location from the displacement file. corner_val_import returns mesh where cordinates are arranged in a shapped mesh of format [z,y,x]. Here we index e.g. Top_X - top surfaces (so z=0m and 1st value [0]). We also want to look at it along the 1st y-column [0]. i.e a[[0],[0],:] We flatten this and then return a list of the x values of the coordinates which are tuples in (x,y,z) format Returns a dictionary cpvs containing the corner point values for each face's X,Y or Z index Yeh this indexing is really horrible to think about or look at. I'm sure there are better not so custom ways to do this.... """ a=corner_val_import() cpvs={'Top_X':[x[0] for x in a[[0],[0],:].flatten()], 'Top_Y':[x[1] for x in a[[0],:,[0]].flatten()], 'Bot_X':[x[0] for x in a[[-1],[0],:].flatten()], 'Bot_Y':[x[1] for x in a[[-1],:,[0]].flatten()], 'Max-Y_Z':[x[2] for x in a[:,[-1],[0]].flatten()], 'Max-Y_X':[x[0] for x in a[[0],[-1],:].flatten()], 'Min-Y_Z':[x[2] for x in a[:,[0],[0]].flatten()], 'Min-Y_X':[x[0] for x in a[[0],[0],:].flatten()], 'Max-X_Z':[x[2] for x in a[:,[0],[-1]].flatten()], 'Max-X_Y':[x[1] for x in a[[0],:,[-1]].flatten()], 'Min-X_Z':[x[2] for x in a[:,[0],[0]].flatten()], 'Min-X_Y':[x[1] for x in a[[0],:,[0]].flatten()], 'xsec_y_half_Z':[x[2] for x in a[:,[0],[(a[[0],[0],:].size//2)]].flatten()], 'xsec_y_half_Y':[x[1] for x in a[[0],:,[(a[[0],[0],:].size//2)]].flatten()], 'xsec_x_half_Z':[x[2] for x in a[:,[(a[[0],:,[0]].size//2)],[0]].flatten()], 'xsec_x_half_X':[x[0] for x in a[[0],[(a[[0],:,[0]].size//2)],:].flatten()]} if op_xsec_Y_user == True: for i in list(range(len(xsec_user_yvals))): cpvs.update({'xsec_y_user_'+str(xsec_user_yvals[i])+'_Z':[x[2] for x in a[:,[0],[xsec_user_yvals[i]]].flatten()], 'xsec_y_user_'+str(xsec_user_yvals[i])+'_Y':[x[1] for x in a[[0],:,[xsec_user_yvals[i]]].flatten()]}) if op_xsec_X_user == True: for i in list(range(len(xsec_user_xvals))): cpvs.update({'xsec_x_user_'+str(xsec_user_xvals[i])+'_Z':[x[2] for x in a[:,[xsec_user_xvals[i]],[0]].flatten()], 'xsec_x_user_'+str(xsec_user_xvals[i])+'_X':[x[0] for x in a[[0],[xsec_user_xvals[i]],:].flatten()]}) return cpvs def centre_vals(axis): """Short function that simply returns the unique values of an axis - typically the centre cordinate values""" centre=axis.unique() return centre def plotting(faces,name,name2,surlabel,dim1,dim2,xlabel,ylabel,data,rotate): """ Master controlling plotting script, run the individual plotting functions e.g. flow_vectors_cont Returns a dictionary containing the relevant figure """ a=face_choose(faces[name][dim1],faces[name][dim2],faces[name][data]) c=corner_point_vals()[str(name+'_'+dim1)]#displacement values f=corner_point_vals()[str(name+'_'+dim2)] h=centre_vals(faces[name][dim1])#cell centres (flowdata,vector etc) or edges (displacement) j=centre_vals(faces[name][dim2]) if colored_cells==True: pcolor=plot_pcolormesh(f,c,a,data,name,faces[name2],surlabel,xlabel,ylabel,rotate) if contour_plot==True: contour=plot_contour(j,h,a,data,name,faces[name2],surlabel,xlabel,ylabel,rotate) if flow_vectors_no_cont==True: vectors_no_cont=plot_flowvectors_no_cont(j,h,f,c,a,data,name,faces[name2],surlabel,xlabel,ylabel,rotate) if flow_vectors_cont==True: vectors_cont=plot_flowvectors_cont(j,h,f,c,a,data,name,faces[name2],surlabel,xlabel,ylabel,rotate) figdict={pcolor:'pcolor',contour:'contour',vectors_no_cont:'vectors_no_cont',vectors_cont:'vectors_cont'} return figdict def pdfplotting(faces,params,file_name): """ Pdf plotting - opens a pdf file, loops through parameters for selected faces and calls plotting() function Writes the resulting figure to the pdf file. """ pp=PdfPages(filename=file_name) if op_Top == True: for i in list(params): for b in plotting(faces ,'Top' ,'tpval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False): pp.savefig(b) plt.close('all') if op_Bot == True: for i in list(params): for b in plotting(faces ,'Bot' ,'btval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False): pp.savefig(b) plt.close('all') if op_Max_Y== True: for i in list(params): for b in plotting(faces ,'Max-Y','MxYval','Y=','Z','X','X(m)','Z(m)',i,rotate=False): pp.savefig(b) plt.close('all') if op_Min_Y== True: for i in list(params): for b in plotting(faces ,'Min-Y','MnYval','Y=','Z','X','X(m)','Z(m)',i,rotate=False): pp.savefig(b) plt.close('all') if op_Max_X== True: for i in list(params): for b in plotting(faces ,'Max-X','MxXval','X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): pp.savefig(b) plt.close('all') if op_Min_X== True: for i in list(params): for b in plotting(faces ,'Min-X','MnXval','X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): pp.savefig(b) plt.close('all') if op_xsec_Y_half == True: for i in list(params): for a in plotting(faces ,'xsec_y_half','xsec_y_val_half','X=','Y','Z','Y(m)','Z(m)',i,rotate=True ) : pp.savefig(a) plt.close('all') if op_xsec_X_half == True: for i in list(params): for a in plotting(faces ,'xsec_x_half','xsec_x_half_val','Y=','Z','X','X(m)','Z(m)',i,rotate=False ): pp.savefig(a) plt.close('all') if op_xsec_X_user == True: for a in list(range(len(xsec_user_xvals))): for i in list(params): for b in plotting(faces,'xsec_x_user_'+str(xsec_user_xvals[a]), 'xsec_x_user_val'+str(xsec_user_xvals[a]), 'Y=','Z','X','X(m)','Z(m)',i,rotate=False ): pp.savefig(b) plt.close('all') if op_xsec_Y_user == True: for a in list(range(len(xsec_user_yvals))): for i in list(params): for b in plotting(faces,'xsec_y_user_'+str(xsec_user_yvals[a]), 'xsec_y_user_val'+str(xsec_user_yvals[a]), 'X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): pp.savefig(b) plt.close('all') pp.close() def pngplotting(faces,params): """ Save the figure output to a png file in a sub folder called 'trexplot_output_pngs' in the current working directory. """ if op_Top == True: for i in list(params): for b in plotting(faces ,'Top' ,'tpval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False): b.savefig(cwd+'/trexplot_output_pngs/'+'Top'+str(i)) plt.close('all') if op_Bot == True: for i in list(params): for b in plotting(faces ,'Bot' ,'btval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False): b.savefig(cwd+'/trexplot_output_pngs/'+'Bot'+str(i)) plt.close('all') if op_Max_Y== True: for i in list(params): for b in plotting(faces ,'Max-Y','MxYval','Y=','Z','X','X(m)','Z(m)',i,rotate=False): b.savefig(cwd+'/trexplot_output_pngs/'+'Max-Y'+str(i)) plt.close('all') if op_Min_Y== True: for i in list(params): for b in plotting(faces ,'Min-Y','MnYval','Y=','Z','X','X(m)','Z(m)',i,rotate=False): b.savefig(cwd+'/trexplot_output_pngs/'+'Min-Y'+str(i)) plt.close('all') if op_Max_X== True: for i in list(params): for b in plotting(faces ,'Max-X','MxXval','X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): b.savefig(cwd+'/trexplot_output_pngs/'+'Max-X'+str(i)) plt.close('all') if op_Min_X== True: for i in list(params): for b in plotting(faces ,'Min-X','MnXval','X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): b.savefig(cwd+'/trexplot_output_pngs/'+'Min-X'+str(i)) plt.close('all') if op_xsec_Y_half == True: for i in list(params): for b in plotting(faces ,'xsec_y_half','xsec_y_val_half','X=','Y','Z','Y(m)','Z(m)',i,rotate=True ).savefig(cwd+'/trexplot_output_pngs/'+ 'xsec_y_half'+str(i)): b.savefig(cwd+'/trexplot_output_pngs/'+'xsec_y_half'+str(i)) plt.close('all') if op_xsec_X_half == True: for i in list(params): for b in plotting(faces ,'xsec_x_half','xsec_x_half_val','Y=','Z','X','X(m)','Z(m)',i,rotate=False ).savefig(cwd+'/trexplot_output_pngs/'+ 'xsec_x_half'+str(i)): b.savefig(cwd+'/trexplot_output_pngs/'+'xsec_x_half'+str(i)) plt.close('all') if op_xsec_X_user == True: for a in list(range(len(xsec_user_xvals))): for i in list(params): for b in plotting(faces,'xsec_x_user_'+str(xsec_user_xvals[a]), 'xsec_x_user_val'+str(xsec_user_xvals[a]), 'Y=','Z','X','X(m)','Z(m)',i,rotate=False ): b.savefig(cwd+'/trexplot_output_pngs/'+ 'xsec_x_user_val'+str(xsec_user_xvals[a])+str(i)) plt.close('all') if op_xsec_Y_user == True: for a in list(range(len(xsec_user_yvals))): for i in list(params): for b in plotting(faces,'xsec_y_user_'+str(xsec_user_yvals[a]), 'xsec_y_user_val'+str(xsec_user_yvals[a]), 'X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): b.savefig(cwd+'/trexplot_output_pngs/'+ 'xsec_y_user_val'+str(xsec_user_yvals[a])+str(i)) plt.close('all') def fig_return(): """ Return a dictionary containing figures from which they can be modified in other programs """ fig_dictionary={} if op_Top == True: for i in list(params): for b in plotting(faces ,'Top' ,'tpval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False): fig_dictionary.update({'fig_Top'+str(i)+b.key():b}) if op_Bot == True: for i in list(params): for b in plotting(faces ,'Bot' ,'btval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False): fig_dictionary.update({'fig_Bot'+str(i)+b.key():b}) if op_Max_Y== True: for i in list(params): for b in plotting(faces ,'Max-Y' ,'MxYval' ,'Y=','Z','X','X(m)','Z(m)',i,rotate=False): fig_dictionary.update({'fig_Max-Y'+str(i)}) if op_Min_Y== True: for i in list(params): for b in plotting(faces ,'Min-Y' ,'MnYval' ,'Y=','Z','X','X(m)','Z(m)',i,rotate=False): fig_dictionary.update({'fig_Min-Y'+str(i)}) if op_Max_X== True: for i in list(params): for b in plotting(faces ,'Max-X' ,'MxXval' ,'X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): fig_dictionary.update({'fig_Max-X'+str(i)}) if op_Min_X== True: for i in list(params): for b in plotting(faces ,'Min-X' ,'MnXval' ,'X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): fig_dictionary.update({'fig_Min-X'+str(i)}) if op_xsec_Y_half == True: for i in list(params): for b in plotting(faces ,'xsec_y_half','xsec_y_val_half','X=','Y','Z','Y(m)','Z(m)',i,rotate=True): fig_dictionary.update({'fig_xsec_y_half'+str(i)}) if op_xsec_X_half == True: for i in list(params): for b in plotting(faces ,'xsec_x_half','xsec_x_half_val','Y=','Z','X','X(m)','Z(m)',i,rotate=False ): fig_dictionary.update({'fig_xsec_x_half'+str(i)}) if op_xsec_X_user == True: for a in list(range(len(xsec_user_xvals))): for i in list(params): for b in plotting(faces,'xsec_x_user_'+str(xsec_user_xvals[a]), 'xsec_x_user_val'+str(xsec_user_xvals[a]), 'Y=','Z','X','X(m)','Z(m)',i,rotate=False ): fig_dictionary.update({'xsec_x_user_val'+str(xsec_user_xvals[a])+str(i)}) if op_xsec_Y_user == True: for a in list(range(len(xsec_user_yvals))): for i in list(params): for b in plotting(faces,'xsec_y_user_'+str(xsec_user_yvals[a]), 'xsec_y_user_val'+str(xsec_user_yvals[a]), 'X=','Y','Z','Y(m)','Z(m)',i,rotate=True ): fig_dictionary.update({'xsec_y_user_val'+str(xsec_user_yvals[a])+str(i)}) return fig_dictionary def main(): if op_Flowdata==True: flowfaces=flowdata_import() if op_png==True: pngplotting(flowfaces,flowdata_params) if op_pdf==True: pdfplotting(flowfaces,flowdata_params,cwd+"/flow_data.pdf") if op_fig==True: fig_return(flowfaces,flowdata_params) if op_Flowvector==True: flowvecfaces=flowvector_import() if op_png==True: pngplotting(flowvecfaces,flowvector_params) if op_pdf==True: pdfplotting(flowvecfaces,flowvector_params,cwd+"/flow_vector.pdf") # if op_fig==True: # fig_return(flowvecfaces,flowvector_params) if op_Displacement==True: dispfaces=displace_import() if op_png==True: pngplotting(dispfaces,displacement_params) if op_pdf==True: pdfplotting(dispfaces,displacement_params,cwd+"/displacement.pdf") # if op_fig==True: # fig_return(dispfaces,displacement_params) if op_Stress_Strain==True: stressfaces=stress_strain_import() if op_png==True: pngplotting(stressfaces,stress_strain_params) if op_pdf==True: pdfplotting(stressfaces,stress_strain_params,cwd+"/stress_strain.pdf") # if op_fig==True: # fig_return(stressfaces,stress_strain_params) # if op_fig==True: # return fig_dictionary if __name__ == "__main__": main() # In[ ]: #Old code #corner_val_import()[3] #returns all the x and z values for the 3rd value of op_corner_z i.e. 6 or -900 - the reshape order above i dont get but works #corner_val_import()[:,:,[1]].flatten() #how to select[z,y,x] and then flatten ##face and data choosing #def corner_points(cpvs,emptylist): # #function makes a crude iumperfect mesh # B=cpvs # A=emptylist # for i in range(len(B)): # if i == 0: # A[0]=B[i]-((B[i+1]-B[i])/2) # A[i+1]=B[i+1]-((B[i+1]-B[i])/2) # if (i+1)==len(B): # break # else: # A[i+1]=B[i+1]-((B[i+1]-B[i])/2) # print("cp script",A) # return A # # # #def corner_point_vals(axis): # last=np.array(float(axis.unique()[-1])+(float(axis.unique()[-1])-float(axis.unique()[-2]))) # cpvs=np.append(axis.unique(),last) # print(cpvs) # emptylist=np.zeros(len(cpvs)) # return cpvs,emptylist #corner_val_import()[:,:,[1]].flatten() #how to select[z,y,x] #stressfaces.update({'xsec_x_user_'+str(xsec_user_xvals[i]):xsec_x_user, #def plotting(faces,name,name2,surlabel,dim1,dim2,xlabel,ylabel,data,rotate): # a=face_choose(faces[name][dim1],faces[name][dim2],faces[name][data]) # b=corner_point_vals(faces[name][dim1]) # print("B",b[0],"B1",b[1]) #return the corner points and empty list same size # c=corner_points(b[0],b[1]) # returns an array of the correct size filled with correct corners # print("C",c) # e=corner_point_vals(faces[name][dim2]) # f=corner_points(e[0],e[1]) # fig=plot_pcolormesh(f,c,a,data,name,faces[name2],surlabel,xlabel,ylabel,rotate) # return fig #def axes_values(): # #By default the corner values from the displacement output are used. # #google read in xyz coordinate file and make a resulting 3D mesh out of it. # #might aswell do it properly!! Future proof plus eric has more complex meshes. # # if op_corner == True: # xvals=op_corner_x # yvals=op_corner_y # zvals=op_corner_z # else: # xvals=displace_import()['Top']['X'].unique() # yvals=displace_import()['Top']['X'].unique() # zvals=displace_import()['Top']['X'].unique() # # #difa=np.diff(axis1[:]) # #print('difa=',difa) # #difb=np.diff(axis2[:]) # #print('difb=',difb) # dy,dx=np.gradient(facedata, axis2, axis1) # axis2,axis1 = np.meshgrid(axis1,axis2) # # #dy[np.isinf(dy)]=np.nan # #dx[np.isinf(dx)]=np.nan # print(dy,dx) # In[ ]: array=[[5.327318e-08, 5.302213e-08, 5.264198e-08, 5.232477e-08, 5.226435e-08 ,5.258210e-08, 5.325536e-08, 5.410714e-08, 5.487324e-08, 5.532210e-08], [4.953998e-08, 4.913573e-08, 4.851350e-08, 4.795346e-08, 4.774013e-08, 4.807313e-08, 4.894058e-08, 5.009330e-08, 5.113477e-08, 5.174467e-08], [4.280405e-08, 4.201194e-08, 4.078997e-08, 3.962570e-08, 3.900056e-08, 3.931232e-08, 4.059173e-08, 4.244279e-08, 4.411359e-08, 4.509325e-08], [3.548336e-08, 3.381851e-08, 3.131880e-08, 2.888704e-08, 2.730930e-08, 2.739829e-08, 2.930735e-08, 3.251616e-08, 3.536279e-08, 3.705464e-08], [3.500417e-08, 3.167505e-08, 2.698106e-08, 2.250465e-08, 1.925050e-08, 1.868078e-08, 2.108715e-08, 2.641765e-08, 3.093883e-08, 3.376233e-08], [3.829746e-08, 3.372373e-08, 2.752396e-08, 2.174541e-08, 1.738411e-08, 1.632301e-08, 1.880493e-08, 2.553067e-08, 3.106102e-08, 3.467288e-08], [3.978388e-08, 3.471880e-08, 2.794453e-08, 2.168303e-08, 1.691082e-08, 1.566582e-08, 1.815470e-08, 2.540173e-08, 3.130537e-08, 3.522191e-08], [4.169603e-08, 3.606093e-08, 2.863494e-08, 2.183823e-08, 1.660694e-08, 1.515640e-08, 1.763109e-08, 2.546118e-08, 3.177640e-08, 3.604230e-08], [4.410161e-08, 3.780208e-08, 2.963374e-08, 2.224080e-08, 1.649566e-08, 1.481601e-08, 1.725275e-08, 2.573638e-08, 3.250728e-08, 3.717480e-08], [6.536926e-07, 5.937457e-07, 5.085931e-07, 4.250558e-07, 3.587753e-07, 3.242687e-07, 3.190302e-07, 2.625842e-08, 3.353554e-08, 3.866824e-08], [9.520179e-05, 1.094854e-04, 1.194284e-04, 1.099747e-04, 8.360293e-05, 4.614698e-05, 5.924715e-06, 4.173997e-08, 3.490613e-08, 4.058102e-08], [3.640606e-05, 9.214843e-05, 1.146954e-04, 1.063602e-04, 7.358278e-05, 3.175129e-05, 5.873365e-06, 4.257781e-08, 3.667121e-08, 4.298280e-08], [6.332070e-07, 5.813288e-07, 5.036060e-07, 4.240752e-07, 3.599401e-07, 3.255439e-07, 3.182350e-07, 2.993201e-08, 3.889183e-08, 4.595719e-08], [3.944654e-08, 3.513427e-08, 2.901323e-08, 2.219682e-08, 3.109058e-07, 3.500287e-07, 4.238882e-07, 5.178232e-07, 6.159438e-07, 6.885575e-07], [3.861711e-08, 3.470954e-08, 2.903090e-08, 3.828296e-08, 8.048252e-05, 1.259718e-04, 1.641670e-04, 1.778327e-04, 1.617571e-04, 1.398119e-04], [3.809521e-08, 3.453472e-08, 2.924624e-08, 3.887079e-08, 3.825505e-05, 1.088375e-04, 1.580838e-04, 1.710754e-04, 1.385573e-04, 5.521310e-05], [3.783447e-08, 3.457314e-08, 2.963125e-08, 2.365725e-08, 3.137766e-07, 3.520025e-07, 4.232712e-07, 5.124309e-07, 6.007149e-07, 6.616466e-07], [3.779601e-08, 3.479368e-08, 3.016164e-08, 2.447899e-08, 1.688958e-08, 1.840337e-08, 2.337519e-08, 2.980264e-08, 3.612878e-08, 4.082953e-08], [3.794715e-08, 3.516983e-08, 3.081637e-08, 2.541763e-08, 1.846540e-08, 1.961266e-08, 2.407896e-08, 2.992447e-08, 3.567364e-08, 3.988821e-08], [3.826045e-08, 3.567910e-08, 3.157718e-08, 2.645390e-08, 2.005500e-08, 2.090930e-08, 2.492847e-08, 3.026053e-08, 3.550527e-08, 3.930720e-08], [4.079975e-08, 3.913685e-08, 3.626867e-08, 3.260099e-08, 2.884180e-08, 2.843189e-08, 3.028694e-08, 3.316273e-08, 3.604072e-08, 3.798938e-08], [4.907877e-08, 4.811656e-08, 4.639948e-08, 4.425569e-08, 4.228165e-08, 4.159599e-08, 4.209853e-08, 4.325655e-08, 4.450283e-08, 4.532603e-08], [5.567425e-08, 5.506284e-08, 5.397009e-08, 5.263876e-08, 5.144292e-08, 5.083017e-08, 5.085334e-08, 5.129416e-08, 5.184568e-08, 5.221874e-08], [5.914666e-08, 5.868727e-08, 5.787003e-08, 5.688669e-08, 5.599869e-08, 5.545781e-08, 5.533023e-08, 5.550704e-08, 5.579456e-08, 5.599997e-08]] #array= np.multiply(array,1000000) # In[ ]: difa= [0 ,100 ,200 ,300 ,400, 500, 600, 700, 800, 900] difb= [1 ,1 ,1 ,1, 1, 1, 1, 1, 1, 1 , 1, 1, 1 , 1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1] #difb= [100. ,100. ,100. ,100. , 50., 10., 10., 10., 10. , 10. , 10., 10., 10. , 10. # ,10. ,10. ,10. ,10. ,10. ,10. ,100. ,100. ,100. ,100.] # In[ ]: dy,dx=np.gradient(array,difb,difa) dx # In[ ]: x = np.linspace(-90000000,9000000, 30) x # In[ ]: #def plot_flowvectors(axis1,axis2,axis3,axis4,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): # if rotate == True: # dy,dx=np.gradient(facedata, axis2, axis1) # axis4,axis3 = np.meshgrid(axis3,axis4) # else: # dy,dx=np.gradient(facedata, axis2, axis1) # axis3,axis4 = np.meshgrid(axis4,axis3) # # fig, ax = plt.subplots() # ax.quiver(axis3, axis4, dx, dy,facedata) # ax.set(aspect=1, title='Quiver Plot') # plt.show() # return fig #def plot_flowvectors(axis1,axis2,axis3,axis4,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): # if rotate == True: # dy,dx=np.gradient(facedata, axis2, axis1) # axis4,axis3 = np.meshgrid(axis3,axis4) # else: # dy,dx=np.gradient(facedata, axis2, axis1) # axis3,axis4 = np.meshgrid(axis4,axis3) # # fig, ax = plt.subplots() # im=ax.imshow(facedata, extent=[axis3.min(), axis3.max(), axis4.min(), axis4.max()]) # ax.quiver(axis3, axis4, dx, dy,facedata) # ax.set(aspect=1, title='Quiver Plot') # fig.colorbar(im) # plt.show() # return fig #def plot_flowvectors_no_cont(axis1,axis2,axis3,axis4,facedata,data,name,name2,surlabel,xlabel,ylabel,rotate): # """ # Following based on this: https://stackoverflow.com/questions/25342072/computing-and-drawing-vector-fields # Uses # # """ # if rotate == True: # dy,dx=np.gradient(facedata, axis2, axis1) # axis4,axis3 = np.meshgrid(axis3,axis4) # #axis2,axis1 = np.meshgrid(axis1,axis2) # # else: # dy,dx=np.gradient(facedata, axis2, axis1) # axis3,axis4 = np.meshgrid(axis3,axis4) # #axis1,axis2 = np.meshgrid(axis1,axis2) # # if op_Bot == True: # for i in list(params): # b in plotting(faces ,'Bot' ,'btval' ,'Z=','Y','X','X(m)','Y(m)',i,rotate=False).savefig(cwd+'/trexplot_output_pngs/'+'Bot'+str(i)) # b.savefig(cwd+'/trexplot_output_pngs/'+'Bot'+str(i)) # plt.close('all') #
2.359375
2
solutions_automation/vdc/dashboard/monitoring.py
threefoldtech/js-sdk
13
12782959
from solutions_automation.vdc.dashboard.common import CommonChatBot from jumpscale.packages.vdc_dashboard.chats.monitoringstack import InstallMonitoringStack class MonitoringStackAutomated(CommonChatBot, InstallMonitoringStack): pass
1.15625
1
002-V2rayPool/core/conf.py
xhunmon/PythonIsTools
18
12782960
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import configparser import os class Config: __v2ray_core_path = None __v2ray_node_path = None def __init__(self): self.config = configparser.ConfigParser() parent_dir = os.path.dirname(os.path.abspath(__file__)) self.config_path = os.path.join(Config.__v2ray_core_path, 'config.json') self.json_path = os.path.join(parent_dir, 'json_template') # self.config.read(self.config_path) def get_path(self, key): # return self.config.get('path', key) return self.config_path def get_data(self, key): return self.config.get('data', key) def set_data(self, key, value): self.config.set('data', key, value) self.config.write(open(self.config_path, "w")) @staticmethod def set_v2ray_core_path(dir: str): """设置当前v2ray_core程序的目录""" Config.__v2ray_core_path = dir @staticmethod def get_v2ray_core_path(): """获取当前v2ray_core程序的目录""" return Config.__v2ray_core_path @staticmethod def set_v2ray_node_path(dir: str): """设置当前v2ray保存节点的目录""" Config.__v2ray_node_path = dir @staticmethod def get_v2ray_node_path(): """获取当前v2ray保存节点的目录""" return Config.__v2ray_node_path
2.75
3
src/update_all_courses_utils.py
PrincetonUSG/tigersnatch
1
12782961
<gh_stars>1-10 # ---------------------------------------------------------------------- # update_all_courses_utils.py # Contains utilities for update_all_courses.py for the purpose of # multiprocessing (top-level functions required). # ---------------------------------------------------------------------- from mobileapp import MobileApp from database import Database from sys import stderr import time _api = MobileApp() # return all department codes (e.g. COS, ECE, etc.) def get_all_dept_codes(term): # hidden feature of MobileApp API (thanks to <NAME> # from OIT for helping us find this) res = _api.get_courses(term=term, subject="list") try: codes = tuple([k["code"] for k in res["term"][0]["subjects"]]) codes[0] and codes[1] except: raise Exception("failed to get all department codes") return codes # fetches and inserts new course information into the database def process_dept_codes(dept_codes: str, current_term_code: str, hard_reset: bool): try: db = Database() old_enrollments = list( db._db.enrollments.find( {}, {"_id": 0, "classid": 1, "last_notif": 1, "prev_enrollment": 1} ) ) # precompute dictionary of times of last notif old_last_notifs = {} old_prev_enrollments = {} for enrollment in old_enrollments: if "last_notif" in enrollment: old_last_notifs[enrollment["classid"]] = enrollment["last_notif"] if "prev_enrollment" in enrollment: old_prev_enrollments[enrollment["classid"]] = enrollment[ "prev_enrollment" ] courses = _api.get_courses(term=current_term_code, subject=dept_codes) if "subjects" not in courses["term"][0]: raise RuntimeError("no query results") if hard_reset: db.reset_db() else: db.soft_reset_db() n_courses = 0 n_sections = 0 # iterate through all subjects, courses, and classes for subject in courses["term"][0]["subjects"]: print("> processing dept code", subject["code"]) for course in subject["courses"]: courseid = course["course_id"] if db.courses_contains_courseid(courseid): print("already processed courseid", courseid, "- skipping") continue # "new" will contain a single course document to be entered # in the courses (and, in part, the mapppings) collection new = { "courseid": courseid, "displayname": subject["code"] + course["catalog_number"], "displayname_whitespace": subject["code"] + " " + course["catalog_number"], "title": course["title"], "time": time.time(), "has_reserved_seats": course["detail"]["seat_reservations"] == "Y", } for x in course["crosslistings"]: new["displayname"] += "/" + x["subject"] + x["catalog_number"] new["displayname_whitespace"] += ( "/" + x["subject"] + " " + x["catalog_number"] ) print("inserting", new["displayname"], "into mappings") db.add_to_mappings(new) del new["time"] all_new_classes = [] lecture_idx = 0 for class_ in course["classes"]: meetings = class_["schedule"]["meetings"][0] section = class_["section"] # skip dummy sections (end with 99) if section.endswith("99"): continue # skip 0-capacity sections if int(class_["capacity"]) == 0: continue classid = class_["class_number"] # in the (very) occurrence that a class does not have any meetings... start_time_ = ( "Unknown" if "start_time" not in meetings else meetings["start_time"] ) end_time_ = ( "Unknown" if "end_time" not in meetings else meetings["end_time"] ) days_ = ( ["Unknown"] if len(meetings["days"]) == 0 else meetings["days"] ) # new_class will contain a single lecture, precept, # etc. for a given course new_class = { "classid": classid, "section": section, "type_name": class_["type_name"], "start_time": start_time_, "end_time": end_time_, "days": " ".join(days_), "enrollment": int(class_["enrollment"]), "capacity": int(class_["capacity"]), } # new_class_enrollment will contain enrollment and # capacity for a given class within a course new_class_enrollment = { "classid": classid, "courseid": courseid, "section": section, "enrollment": int(class_["enrollment"]), "capacity": int(class_["capacity"]), "swap_out": [], } if not hard_reset and classid in old_last_notifs: print("preserving time of last notif for class", classid) new_class_enrollment["last_notif"] = old_last_notifs[classid] if not hard_reset and classid in old_prev_enrollments: print("preserving previous enrollment for class", classid) new_class_enrollment["prev_enrollment"] = old_prev_enrollments[ classid ] print( "inserting", new["displayname"], new_class["section"], "into enrollments", ) db.add_to_enrollments(new_class_enrollment) # pre-recorded lectures are marked as 01:00 AM start if new_class["start_time"] == "01:00 AM": new_class["start_time"] = "Pre-Recorded" new_class["end_time"] = "" # lectures should appear before other section types if class_["type_name"] == "Lecture": all_new_classes.insert(lecture_idx, new_class) lecture_idx += 1 else: all_new_classes.append(new_class) n_sections += 1 for i, new_class in enumerate(all_new_classes): new[f'class_{new_class["classid"]}'] = new_class print("inserting", new["displayname"], "into courses") db.add_to_courses(new) n_courses += 1 print(f"> processed {n_courses} courses and {n_sections} sections") print(f"> performed a {'hard' if hard_reset else 'soft'} reset") return n_courses, n_sections except Exception as e: print(f"failed to get new course data with exception message {e}", file=stderr) return 0, 0
2.34375
2
examples/ws_subscriptions.py
PetrZufan/cryptoxlib-aio
90
12782962
import logging import os import asyncio from cryptoxlib.CryptoXLib import CryptoXLib from cryptoxlib.PeriodicChecker import PeriodicChecker from cryptoxlib.Pair import Pair from cryptoxlib.clients.binance.BinanceClient import BinanceClient from cryptoxlib.clients.binance.BinanceWebsocket import OrderBookSymbolTickerSubscription from cryptoxlib.version_conversions import async_run LOG = logging.getLogger("cryptoxlib") LOG.setLevel(logging.INFO) LOG.addHandler(logging.StreamHandler()) print(f"Available loggers: {[name for name in logging.root.manager.loggerDict]}\n") async def order_book_update(response: dict) -> None: pass class Subscriptions: def __init__(self): self.subscriptions = [ [ OrderBookSymbolTickerSubscription(Pair("BTC", "USDT"), callbacks = [self.call1]), OrderBookSymbolTickerSubscription(Pair("ETH", "USDT"), callbacks = [self.call1]) ], [ OrderBookSymbolTickerSubscription(Pair("BNB", "USDT"), callbacks = [self.call2]), OrderBookSymbolTickerSubscription(Pair("XRP", "USDT"), callbacks = [self.call2]) ], [ OrderBookSymbolTickerSubscription(Pair("ADA", "USDT"), callbacks = [self.call3]), OrderBookSymbolTickerSubscription(Pair("DOT", "USDT"), callbacks = [self.call3]) ] ] self.subscription_set_ids = [] self.timers = [ PeriodicChecker(100), PeriodicChecker(100), PeriodicChecker(100) ] async def call1(self, response : dict): if self.timers[0].check(): print(response) async def call2(self, response : dict): if self.timers[1].check(): print(response) async def call3(self, response : dict): if self.timers[2].check(): print(response) # global container for various subscription compositions sub = Subscriptions() async def main_loop(client: BinanceClient) -> None: i = 0 sleep_sec = 1 while True: if i == 3: print("Unsubscribing BTC/USDT") await client.unsubscribe_subscriptions([sub.subscriptions[0][0]]) if i == 6: print("Unsubscribing BNB/USDT") await client.unsubscribe_subscriptions([sub.subscriptions[1][0]]) if i == 9: print("Unsubscribing ADA/USDT and DOT/USDT") await client.unsubscribe_subscription_set(sub.subscription_set_ids[2]) if i == 12: print("Unsubscribing all") await client.unsubscribe_all() if i == 15: print("Subscribe BNB/BTC") await client.add_subscriptions(sub.subscription_set_ids[0], [OrderBookSymbolTickerSubscription(Pair("BNB", "BTC"), callbacks = [sub.call1])]) if i == 18: print("Subscribe ETH/USDT again") await client.add_subscriptions(sub.subscription_set_ids[0], [OrderBookSymbolTickerSubscription(Pair("ETH", "USDT"), callbacks = [sub.call1])]) if i == 21: print("Subscribe ADA/USDT and XRP/USDT again") await client.add_subscriptions(sub.subscription_set_ids[1], [OrderBookSymbolTickerSubscription(Pair("ADA", "USDT"), callbacks = [sub.call2]), OrderBookSymbolTickerSubscription(Pair("XRP", "USDT"), callbacks = [sub.call2])]) if i == 24: print("Shutting down websockets.") await client.shutdown_websockets() if i == 27: print("Quitting the main loop.") break i += 1 await asyncio.sleep(sleep_sec) async def run(): api_key = os.environ['APIKEY'] sec_key = os.environ['SECKEY'] client = CryptoXLib.create_binance_client(api_key, sec_key) # initialize three independent websockets sub.subscription_set_ids.append(client.compose_subscriptions(sub.subscriptions[0])) sub.subscription_set_ids.append(client.compose_subscriptions(sub.subscriptions[1])) sub.subscription_set_ids.append(client.compose_subscriptions(sub.subscriptions[2])) try: await asyncio.gather(*[ client.start_websockets(), main_loop(client) ]) except Exception as e: print(f"Out: {e}") await client.close() print("Exiting.") if __name__ == "__main__": async_run(run())
2.25
2
get_sim_face_net.py
chenyu3050/fullbboxrestoration
3
12782963
<filename>get_sim_face_net.py from facenet_pytorch import MTCNN, InceptionResnetV1 import torch import numpy as np import os from PIL import Image import torch.nn as nn def preprocess(path=None,im=None): if path is not None: tmp = np.array(Image.open(path)) else: tmp = im if len(tmp.shape) > 2: tmp = np.transpose(tmp,(2,0,1)) tmp = torch.FloatTensor(tmp) tmp -= tmp.min() tmp /= tmp.max() tmp = tmp * 2 - 1 tmp = nn.Upsample(size = (160,160))(tmp.expand(3,tmp.shape[-1],tmp.shape[-1])[None,...]) return tmp def get_sim(device, path1=None, path2=None, im1=None, im2=None): resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device) mtcnn = MTCNN( image_size=160, margin=0, min_face_size=20, thresholds=[0.6,0.7,0.7], factor=0.709, device=device ) with torch.no_grad(): if path1 is not None: emb1 = resnet(preprocess(path=path1).to(device)) else: emb1 = resnet(preprocess(im=im1).to(device)) if path2 is not None: emb2 = resnet(preprocess(path=path2).to(device)) else: emb2 = resnet(preprocess(im=im2).to(device)) return torch.cosine_similarity(emb1,emb2).item()
2.5625
3
pyptv/client.py
Sumedh-k/pyptv
0
12782964
<reponame>Sumedh-k/pyptv #!/usr/bin/env python from datetime import datetime import hmac from hashlib import sha1 import json import urlparse # TODO: remove in favour of better lib import urllib import requests from pyptv.platform_ import Platform # don't clobber the builtin platform from pyptv.direction import Direction from pyptv.stop import StopFactory from pyptv.line import LineFactory from pyptv.run import RunFactory from pyptv.outlet import OutletFactory from pyptv.disruption import DisruptionFactory from pyptv.location import parse_location from pyptv.utils import parse_datetime_tz API_BASE_URL = "http://timetableapi.ptv.vic.gov.au/" class PTVClient(object): MODES = {"train": 0, "tram": 1, "bus": 2, "vline": 3, "nightrider": 4, "ticket_outlet": 100, } FLAGS = {"RR": "Reservations Required", "GC": "Guaranteed Connection", "DOO": "Drop Off Only", "PUO": "Pick Up Only", "MO": "Mondays only", "TU": "Tuesdays only", "WE": "Wednesdays only", "TH": "Thursdays only", "FR": "Fridays only", "SS": "School days only", } def __init__(self, developer_id=None, api_key=None): self.developer_id = developer_id self.api_key = api_key def api_request(self, api_path, timed=True): """ Call some api end point API request will have proper signing key appended. """ parsed = urlparse.urlparse(api_path) # parse out current query query = urlparse.parse_qsl(parsed.query) # add timestamp if timed: now = datetime.utcnow().replace(microsecond=0).isoformat() + 'Z' query.append(('timestamp', now)) # add developer id query.append(('devid', self.developer_id)) unsigned_query = urllib.urlencode(query) unsigned_parsed = parsed._replace(query=unsigned_query) unsigned_path = unsigned_parsed.geturl() digest = hmac.new(self.api_key, unsigned_path, sha1) signature = digest.hexdigest() query.append(('signature', signature)) signed_query = urllib.urlencode(query) signed_parsed = unsigned_parsed._replace(query=signed_query) signed_path = signed_parsed.geturl() signed_url = urlparse.urljoin(API_BASE_URL, signed_path) req = requests.get(signed_url) data = json.loads(req.content) return data # API methods: def healthcheck(self): """ send off a health check to check the status of the system, the local clock and the API credentials. """ return self.api_request("/v2/healthcheck") def stops_nearby(self, location, mode=None, limit=None, with_distance=False): """ Get stops near a location. location: one of (lat, lon), a Location object, or something that has a location property (which would be a Location object) mode: (optional) filter results for only this tramsport mode limit: (optional) only return this many results with_distance: (optional) return tuples of (Stop, distance) """ lat, lon = parse_location(location) base_path = "/v2/nearme/latitude/{lat}/longitude/{lon}" path = base_path.format(lat=lat, lon=lon) stops = self.api_request(path) stop_factory = StopFactory(self) out = [stop_factory.create(**stop['result']) for stop in stops] # only provide certain stop types if we are provided with a mode if mode is not None: out = [stop for stop in out if stop.transport_type == mode] # enforce limit if provided if limit is not None: out = out[:limit] # convert into tuple of (Stop, distance) if with_distance: out = [(stop, location.distance(stop.location)) for stop in out] return out def transport_pois_by_map(self, poi, location1, location2, griddepth, limit=20): """ list of points of interest within a map grid defined by location1 & location2 poi: either a transport mode or outlet. A list of poi types can be passed in as a comma separated location1 & location2: - are one of (lat, lon), a Location object, or something that has a location property (which would be a Location object). - define the top left corner (location1) and bottom right corner (location2) of a rectangle on a map griddepth: number of cell blocks per cluster limit: minimum number of POIs required to create a cluster as well as the maximum number of POIs returned """ lat1, lon1 = parse_location(location1) lat2, lon2 = parse_location(location2) base_path = "/v2/poi/{poi}/lat1/{lat1}/long1/{lon1}/" + \ "lat2/{lat2}/long2/{lon2}/" + \ "griddepth/{griddepth}/limit/{limit}" poi_ids = ','.join([str(self.MODES[p]) for p in poi.split(',')]) path = base_path.format(poi=poi_ids, lat1=lat1, lon1=lon1, lat2=lat2, lon2=lon2, griddepth=griddepth, limit=limit) data = self.api_request(path) stop_factory = StopFactory(self) outlet_factory = OutletFactory(self) out = {} for k, v in data.items(): if k == "locations": out['locations'] = [] for location in v: # either a Stop of an Outlet if 'transport_type' in location: item = stop_factory.create(**location) else: outlet_type = location.pop('outlet_type') item = outlet_factory.create(transport_type=outlet_type, **location) out['locations'].append(item) else: out[k] = v return out def search(self, term): """ all stops and lines that match the search term """ path = "/v2/search/%s" % urllib.quote(term) data = self.api_request(path) stop_factory = StopFactory(self) line_factory = LineFactory(self) out = [] for result in data: if result['type'] == 'stop': out.append(stop_factory.create(**result['result'])) elif result['type'] == 'line': out.append(line_factory.create(**result['result'])) else: out.append(result) return out def lines_by_mode(self, mode, name=None): """ all the lines for a particular transport mode """ base_path = "/v2/lines/mode/{mode}" mode_id = self.MODES[mode] path = base_path.format(mode=mode_id) if name is not None: path += "?name=%s" % name data = self.api_request(path) line_factory = LineFactory(self) out = [] for line in data: out.append(line_factory.create(**line)) return out def stops_on_a_line(self, mode, line): """ all the stops for a particular transport mode on a given line mode: transport mode line: the line_id of a particular line """ base_path = "/v2/mode/{mode}/line/{line}/stops-for-line" mode_id = self.MODES[mode] path = base_path.format(mode=mode_id, line=line) data = self.api_request(path) stop_factory = StopFactory(self) out = [] for line in data: out.append(stop_factory.create(**line)) return out def _process_departures(self, departures): """ common reponse parser for handling a list of departures """ line_factory = LineFactory(self) stop_factory = StopFactory(self) run_factory = RunFactory(self) out = [] for departure in departures: # - platform # -- direction # --- line platform_details = departure['platform'] direction_details = platform_details.pop('direction') line_details = direction_details.pop('line') line = line_factory.create(**line_details) direction_details['line'] = line direction = Direction(**direction_details) platform_details['direction'] = direction # --- stop stop_details = platform_details.pop('stop') stop = stop_factory.create(**stop_details) platform_details['stop'] = stop platform = Platform(**platform_details) # - run run_details = departure['run'] run = run_factory.create(**run_details) timetable = parse_datetime_tz(departure["time_timetable_utc"]) if departure["time_realtime_utc"] is not None: realtime = parse_datetime_tz(departure["time_realtime_utc"]) else: realtime = None if departure['flags']: flags = ', '.join([self.FLAGS[f] for f in departure['flags'].split('-') if f != 'E']) else: flags = None out.append({"platform": platform, "run": run, "flags": flags, "time_timetable_utc": timetable, "time_realtime_utc": realtime, }) return out def broad_next_departures(self, mode, stop, limit=5): """ departure times at a particular stop, irrespective of line or direction. mode: transport mode stop: stop_id of a stop limit: max results to return """ base_path = "/v2/mode/{mode}/stop/{stop}/" + \ "departures/by-destination/limit/{limit}" mode_id = self.MODES[mode] path = base_path.format(mode=mode_id, stop=stop, limit=limit) departures = self.api_request(path) return self._process_departures(departures["values"]) def specific_next_departures(self, mode, line, stop, direction, limit=5, for_utc=None): """ departure times at a particular stop for a given line and direction mode: transport mode line: line_id of transport line stop: stop_id of a stop on the line direction: direction_id of run's direction limit: max results to return for_utc: (optional) date and time of the request """ base_path = "/v2/mode/{mode}/line/{line}/stop/{stop}/" + \ "directionid/{direction}/departures/all/limit/{limit}" mode_id = self.MODES[mode] path = base_path.format(mode=mode_id, line=line, stop=stop, direction=direction, limit=limit) if for_utc is not None: path += "?for_utc=%s" % for_utc departures = self.api_request(path) return self._process_departures(departures["values"]) def specific_next_departures_gtfs(self, mode, route_id, stop, direction, for_utc=None): """ TODO: explain how this differs from previous method """ base_path = "/v2/mode/{mode}/route_id/{route_id}/stop/{stop}/" + \ "direction/{direction}/departures/all/limit/{limit}" path = base_path.format(mode=mode, route_id=route_id, stop=stop, direction=direction) if for_utc is not None: path += "?for_utc=%s" % for_utc departures = self.api_request(path) return self._process_departures(departures["values"]) def stopping_pattern(self, mode, run, stop, for_utc=None): """ stopping pattern for a particular run from a given stop mode: transport mode run: transport run_id stop: stop_id of a stop for_utc: (optional) date and time of the request """ base_path = "/v2/mode/{mode}/run/{run}/stop/{stop}/stopping-pattern" mode_id = self.MODES[mode] path = base_path.format(mode=mode_id, run=run, stop=stop) if for_utc is not None: path += "?for_utc=%s" % for_utc data = self.api_request(path) return self._process_departures(data['values']) def disruptions(self, modes="general"): """ planned and unplanned disruptions on the transport network. modes: one or more of the following in a comma separted string format: general metro-bus metro-train metro-tram regional-bus regional-coach regional-train """ path = "/v2/disruptions/modes/%s" % modes data = self.api_request(path) factory = DisruptionFactory(self) out = [] for mode, items in data.items(): for item in items: out.append(factory.create(transport_type=mode, **item)) return out
2.25
2
roboticstoolbox/mobile/ParticleFilter.py
Russ76/robotics-toolbox-python
0
12782965
#!/usr/bin/env python3 """ Python EKF Planner @Author: <NAME>, original MATLAB code and Python version @Author: <NAME>, initial MATLAB port Based on code by <NAME>, Oxford University, http://www.robots.ox.ac.uk/~pnewman """ from collections import namedtuple import numpy as np import scipy as sp import matplotlib.pyplot as plt from spatialmath import base """ Monte-carlo based localisation for estimating vehicle pose based on odometry and observations of known landmarks. """ # TODO: refactor this and EKF, RNG, history, common plots, animation, movie class ParticleFilter: def __init__(self, robot, sensor, R, L, nparticles=500, seed=0, x0=None, verbose=False, animate=False, history=True, workspace=None): """ Particle filter :param robot: robot motion model :type robot: :class:`VehicleBase` subclass, :param sensor: vehicle mounted sensor model :type sensor: :class:`SensorBase` subclass :param R: covariance of the zero-mean Gaussian noise added to the particles at each step (diffusion) :type R: ndarray(3,3) :param L: covariance used in the sensor likelihood model :type L: ndarray(2,2) :param nparticles: number of particles, defaults to 500 :type nparticles: int, optional :param seed: random number seed, defaults to 0 :type seed: int, optional :param x0: initial state, defaults to [0, 0, 0] :type x0: array_like(3), optional :param verbose: display extra debug information, defaults to False :type verbose: bool, optional :param history: retain step-by-step history, defaults to True :type history: bool, optional :param workspace: dimension of workspace, see :func:`~spatialmath.base.graphics.expand_dims` :type workspace: scalar, array_like(2), array_like(4) This class implements a Monte-Carlo estimator or particle filter for vehicle state, based on odometry, a landmark map, and landmark observations. The state of each particle is a possible vehicle configuration :math:`(x,y,\theta)`. Bootstrap particle resampling is used. The working area is defined by ``workspace`` or inherited from the landmark map attached to the ``sensor`` (see :func:`~spatialmath.base.graphics.expand_dims`): ============== ======= ======= ``workspace`` x-range y-range ============== ======= ======= A (scalar) -A:A -A:A [A, B] A:B A:B [A, B, C, D] A:B C:D ============== ======= ======= Particles are initially distributed uniform randomly over this area. Example:: V = np.diag([0.02, np.radians(0.5)]) ** 2 robot = Bicycle(covar=V, animation="car", workspace=10) robot.control = RandomPath(workspace=robot) map = LandmarkMap(nlandmarks=20, workspace=robot.workspace) W = np.diag([0.1, np.radians(1)]) ** 2 sensor = RangeBearingSensor(robot, map, covar=W, plot=True) R = np.diag([0.1, 0.1, np.radians(1)]) ** 2 L = np.diag([0.1, 0.1]) pf = ParticleFilter(robot, sensor, R, L, nparticles=1000) pf.run(T=10) map.plot() robot.plot_xy() pf.plot_xy() plt.plot(pf.get_std()[:100,:]) .. note:: Set ``seed=0`` to get different behaviour from run to run. :seealso: :meth:`run` """ self._robot = robot self._sensor = sensor self.R = R self.L = L self.nparticles = nparticles self._animate = animate # self.dim = sensor.map.dim self._history = [] self.x = () self.weight = () self.w0 = 0.05 self._x0 = x0 # create a private random number stream if required self._random = np.random.default_rng(seed) self._seed = seed self._keep_history = history # keep history self._htuple = namedtuple("PFlog", "t odo xest std weights") if workspace is not None: self._dim = base.expand_dims(workspace) else: self._dim = sensor.map.workspace self._workspace = self.robot.workspace self._init() def __str__(self): #ParticleFilter.char Convert to string # # PF.char() is a string representing the state of the ParticleFilter # object in human-readable form. # # See also ParticleFilter.display. def indent(s, n=2): spaces = ' ' * n return s.replace('\n', '\n' + spaces) s = f"ParticleFilter object: {self.nparticles} particles" s += '\nR: ' + base.array2str(self.R) s += '\nL: ' + base.array2str(self.L) if self.robot is not None: s += indent("\nrobot: " + str(self.robot)) if self.sensor is not None: s += indent("\nsensor: " + str(self.sensor)) return s @property def robot(self): """ Get robot object :return: robot used in simulation :rtype: :class:`VehicleBase` subclass """ return self._robot @property def sensor(self): """ Get sensor object :return: sensor used in simulation :rtype: :class:`SensorBase` subclass """ return self._sensor @property def map(self): """ Get map object :return: map used in simulation :rtype: :class:`LandmarkMap` subclass """ return self._map @property def verbose(self): """ Get verbosity state :return: verbosity :rtype: bool """ return self._verbose @property def history(self): """ Get EKF simulation history :return: simulation history :rtype: list of namedtuples At each simulation timestep a namedtuple of is appended to the history list. It contains, for that time step, estimated state and covariance, and sensor observation. :seealso: :meth:`get_t` :meth:`get_xy` :meth:`get_std` :meth:`get_Pnorm` """ return self._history @property def workspace(self): """ Size of robot workspace :return: workspace bounds [xmin, xmax, ymin, ymax] :rtype: ndarray(4) Returns the bounds of the workspace as specified by constructor option ``workspace`` """ return self._workspace @property def random(self): """ Get private random number generator :return: NumPy random number generator :rtype: :class:`numpy.random.Generator` Has methods including: - ``integers(low, high, size, endpoint)`` - ``random(size)`` - ``uniform`` - ``normal(mean, std, size)`` - ``multivariate_normal(mean, covar, size)`` The generator is initialized with the seed provided at constructor time every time ``init`` is called. """ return self._random def _init(self, x0=None): #ParticleFilter.init Initialize the particle filter # # PF.init() initializes the particle distribution and clears the # history. # # Notes:: # - If initial particle states were given to the constructor the states are # set to this value, else a random distribution over the map is used. # - Invoked by the run() method. self.robot.init() self.sensor.init() #clear the history self._history = [] # create a new private random number generator if self._seed is not None: self._random = np.random.default_rng(self._seed) self._t = 0 # initialize particles if x0 is None: x0 = self._x0 if x0 is None: # create initial particle distribution as uniformly randomly distributed # over the map workspace and heading angles x = self.random.uniform(self.workspace[0], self.workspace[1], size=(self.nparticles,)) y = self.random.uniform(self.workspace[2], self.workspace[3], size=(self.nparticles,)) t = self.random.uniform(-np.pi, np.pi, size=(self.nparticles,)) self.x = np.c_[x, y, t] self.weight = np.ones((self.nparticles,)) def run(self, T=10, x0=None): """ Run the particle filter simulation :param T: maximum simulation time in seconds :type T: float :param animate: animate motion of vehicle, defaults to False :type animate: bool, optional :param movie: name of movie file to create, defaults to None :type movie: str, optional Simulates the motion of a vehicle (under the control of a driving agent) and the EKF estimator. The steps are: - initialize the filter, vehicle and vehicle driver agent, sensor - for each time step: - step the vehicle and its driver agent, obtain odometry - take a sensor reading - execute the EKF - save information as a namedtuple to the history list for later display :seealso: :meth:`history` :meth:`landmark` :meth:`landmarks` :meth:`get_xy` :meth:`get_t` :meth:`get_std` :meth:`plot_xy` """ self._init(x0=x0) # anim = Animate(opt.movie) # display the initial particles if self._animate: self.h, = plt.plot(self.x[:, 0], self.x[:, 1], 'go', zorder=0, markersize=3, markeredgecolor='none', alpha=0.3, label='particle') # set(self.h, 'Tag', 'particles') # self.robot.plot() # iterate over time for i in range(round(T / self.robot.dt)): self._step() # anim.add() # anim.close() def _step(self): #fprintf('---- step\n') odo = self.robot.step() # move the robot # update the particles based on odometry self._predict(odo) # get a sensor reading z, lm_id = self.sensor.reading() if z is not None: self._observe(z, lm_id) #fprintf(' observe beacon #d\n', lm_id) self._select() # our estimate is simply the mean of the particles x_est = self.x.mean(axis=0) std_est = self.x.std(axis=0) # std is more complex for angles, need to account for 2pi wrap std_est[2] = np.sqrt(np.sum(base.angdiff(self.x[:,2], x_est[2]) ** 2)) / (self.nparticles-1) # display the updated particles # set(self.h, 'Xdata', self.x(:,1), 'Ydata', self.x(:,2), 'Zdata', self.x(:,3)) if self._animate: self.h.set_xdata(self.x[:, 0]) self.h.set_ydata(self.x[:, 1]) # if ~isempty(self.anim) # self.anim.add() if self._keep_history: hist = self._htuple( self.robot._t, odo.copy(), x_est, std_est, self.weight.copy() ) self._history.append(hist) def plot_pdf(self): """ Plot particle PDF Displays a discrete PDF of vehicle position. Creates a 3D plot where the x- and y-axes are the estimated vehicle position and the z-axis is the particle weight. Each particle is represented by a a vertical line segment of height equal to particle weight. """ ax = base.plotvol3() for (x, y, t), weight in zip(self.x, self.weight): # ax.plot([x, x], [y, y], [0, weight], 'r') ax.plot([x, x], [y, y], [0, weight], 'skyblue', linewidth=3) ax.plot(x, y, weight, 'k.', markersize=6) plt.grid(True) plt.xlabel('X') plt.ylabel('Y') plt.xlim() ax.set_zlabel('particle weight') ax.view_init(29, 59) def _predict(self, odo): # step 2 # update the particle state based on odometry and a random perturbation # Straightforward code: # # for i=1:self.nparticles # x = self.robot.f( self.x(i,:), odo)' + sqrt(self.R)*self.randn[2,0] # x[2] = angdiff(x[2]) # self.x(i,:) = x # # Vectorized code: self.x = self.robot.f(self.x, odo) + \ self.random.multivariate_normal((0, 0, 0), self.R, size=self.nparticles) self.x[:, 2] = base.angdiff(self.x[:, 2]) def _observe(self, z, lm_id): # step 3 # predict observation and score the particles # Straightforward code: # # for p = 1:self.nparticles # # what do we expect observation to be for this particle? # # use the sensor model h(.) # z_pred = self.sensor.h( self.x(p,:), lm_id) # # # how different is it # innov[0] = z[0] - z_pred[0] # innov[1] = angdiff(z[1], z_pred[1]) # # # get likelihood (new importance). Assume Gaussian but any PDF works! # # If predicted obs is very different from actual obs this score will be low # # ie. this particle is not very good at predicting the observation. # # A lower score means it is less likely to be selected for the next generation... # # The weight is never zero. # self.weight(p) = exp(-0.5*innov'*inv(self.L)*innov) + 0.05 # end # # Vectorized code: invL = np.linalg.inv(self.L) z_pred = self.sensor.h(self.x, lm_id) z_pred[:, 0] = z[0] - z_pred[:, 0] z_pred[:, 1] = base.angdiff(z[1], z_pred[:, 1]) LL = -0.5 * np.r_[invL[0,0], invL[1,1], 2*invL[0,1]] e = np.c_[z_pred[:, 0]**2, z_pred[:, 1]**2, z_pred[:,0] * z_pred[:, 1]] @ LL self.weight = np.exp(e) + self.w0 def _select(self): # step 4 # select particles based on their weights # # particles with large weights will occupy a greater percentage of the # y axis in a cummulative plot cdf = np.cumsum(self.weight) / self.weight.sum() # so randomly (uniform) choosing y values is more likely to correspond to # better particles... iselect = self.random.uniform(0, 1, size=(self.nparticles,)) # find the particle that corresponds to each y value (just a look up) interpfun = sp.interpolate.interp1d(cdf, np.arange(self.nparticles), assume_sorted=True, kind='nearest', fill_value='extrapolate') inextgen = interpfun(iselect).astype(np.int) # copy selected particles for next generation.. self.x = self.x[inextgen, :] def get_t(self): """ Get time from simulation :return: simulation time vector :rtype: ndarray(n) Return simulation time vector, starts at zero. The timestep is an attribute of the ``robot`` object. """ return np.array([h.t for h in self._history]) def get_xyt(self): r""" Get estimated vehicle trajectory :return: vehicle trajectory where each row is configuration :math:`(x, y, \theta)` :rtype: ndarray(n,3) :seealso: :meth:`plot_xy` :meth:`run` :meth:`history` """ return np.array([h.xest[:2] for h in self._history]) def get_std(self): r""" Get standard deviation of particles :return: standard deviation of vehicle position estimate :rtype: ndarray(n,2) Return the standard deviation :math:`(\sigma_x, \sigma_y)` of the particle cloud at each time step. :seealso: :meth:`get_xyt` """ return np.array([h.std for h in self._history]) def plot_xy(self, block=False, **kwargs): r""" Plot estimated vehicle position :param args: position arguments passed to :meth:`~matplotlib.axes.Axes.plot` :param kwargs: keywords arguments passed to :meth:`~matplotlib.axes.Axes.plot` :param block: hold plot until figure is closed, defaults to False :type block: bool, optional Plot the estimated vehicle path in the xy-plane. :seealso: :meth:`get_xy` """ xyt = self.get_xyt() plt.plot(xyt[:, 0], xyt[:, 1], **kwargs) # plt.show(block=block)
2.6875
3
pytorch/AdaBoost/ada_boost.py
OpenSourceAI/Algorithm
1
12782966
<filename>pytorch/AdaBoost/ada_boost.py<gh_stars>1-10 # -*- coding: UTF-8 -*- # File Name:ada_boost_torch # Author : <NAME> # Date:2019/2/18 # Description : __author__ = '<NAME>' import torch import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 单层决策树 class DecisionStump: def __init__(self, X, y): self.X = X self.y = y self.N = self.X.size()[0] def train(self, W, steps=100): min_v = float("inf") threshold_value = 0 threshold_pos = 0 threshold_tag = 0 self.W = torch.Tensor(W) for i in range(self.N): # value表示阈值,errcnt表示错误的数量 value, errcnt = self.find_min(i, 1, steps) if (errcnt < min_v): min_v = errcnt threshold_value = value threshold_pos = i threshold_tag = 1 for i in range(self.N): # -1 value, errcnt = self.find_min(i, -1, steps) if (errcnt < min_v): min_v = errcnt threshold_value = value threshold_pos = i threshold_tag = -1 self.threshold_value = threshold_value self.threshold_pos = threshold_pos self.threshold_res = threshold_tag print(self.threshold_value, self.threshold_pos, self.threshold_res) return min_v def find_min(self, i, tag, steps): t = 0 tmp = self.predintrain(self.X, i, t, tag).transpose(0, 1) # print(type(tmp)) # print(type(self.y)) # ttt = tmp != self.y # print("====", (tmp.cpu() != self.y.cpu()).size()) # print(self.W.size()) # errcnt = torch.sum((tmp != self.y).float() * self.W) # print now buttom = torch.min(self.X[i, :]) # 该项属性的最小值,下界 up = torch.max(self.X[i, :]) # 该项属性的最大值,上界 minerr = float("inf") # 将minerr初始化为无穷大 value = 0 # value表示阈值 st = (up - buttom) / steps # 间隔 for t in torch.arange(buttom, up, st): tmp = self.predintrain(self.X, i, t, tag).transpose(0, 1) tmp = tmp.float() errcnt = torch.sum((tmp != self.y).float() * self.W) if errcnt < minerr: minerr = errcnt value = t return value, minerr def predintrain(self, test_set, i, t, tag): # 训练时按照阈值为t时预测结果 test_set = test_set.view(self.N, -1) pre_y = torch.ones((test_set.size()[1], 1)) pre_y[test_set[i, :] * tag < t * tag] = -1 return pre_y def pred(self, test_X): # 弱分类器的预测 test_X = torch.Tensor(test_X).view(self.N, -1) # 转换为N行X列,-1懒得算 pre_y = torch.ones((torch.Tensor(test_X).size()[1], 1)) pre_y[test_X[self.threshold_pos, :] * self.threshold_res < self.threshold_value * self.threshold_res] = -1 return pre_y class AdaBoost: def __init__(self, X, y, Weaker=DecisionStump): self.X = torch.Tensor(X) self.y = torch.Tensor(y).flatten() self.Weaker = Weaker self.sums = torch.zeros(self.y.shape) ''' W为权值,初试情况为均匀分布,即所有样本都为1/n ''' self.W = torch.ones((self.X.size()[1], 1)).flatten() / self.X.size()[1] self.Q = 0 # 弱分类器的实际个数 # M 为弱分类器的最大数量,可以在main函数中修改 def train(self, M=5): self.G = {} # 表示弱分类器的字典 self.alpha = {} # 每个弱分类器的参数 for i in range(M): self.G.setdefault(i) self.alpha.setdefault(i) for i in range(M): # self.G[i]为第i个弱分类器 self.G[i] = self.Weaker(self.X, self.y) e = self.G[i].train(self.W) # 根据当前权值进行该个弱分类器训练 self.alpha[i] = 1.0 / 2 * torch.log((1 - e) / e) # 计算该分类器的系数 res = self.G[i].pred(self.X) # res表示该分类器得出的输出 # 计算当前次数训练精确度 print("weak classfier acc", accuracy_score(self.y, res), "\n======================================================") # Z表示规范化因子 Z = self.W * torch.exp(-self.alpha[i] * self.y * res.transpose(1, 0)) self.W = (Z / Z.sum()).flatten() # 更新权值 self.Q = i # errorcnt返回分错的点的数量,为0则表示perfect if (self.errorcnt(i) == 0): print("%d个弱分类器可以将错误率降到0" % (i + 1)) break def errorcnt(self, t): # 返回错误分类的点 self.sums = self.sums + self.G[t].pred(self.X).flatten() * self.alpha[t] pre_y = torch.zeros_like(torch.Tensor(self.sums)) pre_y[self.sums >= 0] = 1 pre_y[self.sums < 0] = -1 t = (pre_y != self.y).sum() return t def pred(self, test_X): # 测试最终的分类器 test_X = torch.Tensor(test_X) sums = torch.zeros(test_X.size()[1]) for i in range(self.Q + 1): sums = sums + self.G[i].pred(test_X).flatten() * self.alpha[i] pre_y = torch.zeros_like(torch.Tensor(sums)) pre_y[sums >= 0] = 1 pre_y[sums < 0] = -1 return pre_y def main(): # load data dataset = np.loadtxt('data.txt', delimiter=",") x = dataset[:, 0:8] y = dataset[:, 8] # prepare train data x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) # prepare test and train data x_train = x_train.transpose() y_train[y_train == 1] = 1 y_train[y_train == 0] = -1 x_test = x_test.transpose() y_test[y_test == 1] = 1 y_test[y_test == 0] = -1 # train ada = AdaBoost(x_train, y_train) ada.train(50) # predict y_pred = ada.pred(x_test) y_pred = y_pred.numpy() print("total test", len(y_pred)) print("true pred", len(y_pred[y_pred == y_test])) print("acc", accuracy_score(y_test, y_pred)) if __name__ == '__main__': main()
2.34375
2
web/pipeline/migrations/0064_auto_20200826_2058.py
stevenstuber/CIT
10
12782967
# Generated by Django 2.2.13 on 2020-08-26 20:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pipeline', '0063_merge_20200826_2021'), ] operations = [ migrations.RenameField( model_name='censussubdivision', old_name='households_owner_spending_30_pct_income', new_name='households_owner_pct_spending_30_pct_income', ), migrations.RenameField( model_name='censussubdivision', old_name='households_tenant_spending_30_pct_income', new_name='households_tenant_pct_spending_30_pct_income', ), migrations.AddField( model_name='censussubdivision', name='households_owner_count_mortgage', field=models.IntegerField(null=True), ), migrations.AddField( model_name='censussubdivision', name='households_owner_count_spending_30_pct_income', field=models.IntegerField(null=True), ), migrations.AddField( model_name='censussubdivision', name='households_tenant_count_spending_30_pct_income', field=models.IntegerField(null=True), ), migrations.AddField( model_name='censussubdivision', name='households_tenant_count_subsidized_housing', field=models.IntegerField(null=True), ), migrations.AddField( model_name='censussubdivision', name='pop_count_0_14', field=models.IntegerField(null=True), ), migrations.AddField( model_name='censussubdivision', name='pop_count_14_65', field=models.IntegerField(null=True), ), migrations.AddField( model_name='censussubdivision', name='pop_count_65', field=models.IntegerField(null=True), ), ]
1.617188
2
src/node_manger.py
TillJohanndeiter/quorum-cluster
0
12782968
<reponame>TillJohanndeiter/quorum-cluster """ Provides NodeManger which is responsible for events in network """ import time from synchronized_set import SynchronizedSet from observer import Observer from src.message_dict import MessageDict, DEFAULT_MESSAGE, DISPATCH_MESSAGE, \ JSON_SEPARATOR, HANDSHAKE_MESSAGE, MESSAGE_SEPARATOR from src.pinger import INCOMING_MESSAGE, CONNECTION_LOST, PingMan from src.handshake import NEW_ENTERING_NODE, Handshake from src.beans import NodeInformation, node_information_from_json from src.vote_strategy import VoteStrategy, NEW_MASTER, NO_MAJORITY_SHUTDOWN TIME_BETWEEN_HANDSHAKE = 2 class NodeManger(Observer): """ Handel any kind of events lost node, dispatching, reentering or dispatching """ def __init__(self, own_information: NodeInformation, ping_man: PingMan, handshaker: Handshake, message_dict: MessageDict, connected: SynchronizedSet, vote_strategy: VoteStrategy): super(NodeManger, self).__init__() self.own_information = own_information self.ping_man = ping_man self.handshaker = handshaker self.message_dict = message_dict self.connected = connected self.dispatched = SynchronizedSet(set()) self.lost = SynchronizedSet(set()) self.vote_strategy = vote_strategy self.master = None self.running = False def start(self): """ Will calculate init master. Start instance of PingMan and Handshake. After that will start pingman and handshaker :return: None """ self.vote_strategy.calc_new_master(self.connected, self.dispatched, self.lost) try: self.running = True time.sleep(TIME_BETWEEN_HANDSHAKE) self.ping_man.start() time.sleep(TIME_BETWEEN_HANDSHAKE) self.handshaker.start() except KeyboardInterrupt: pass def kill(self): """ End PingMan and Handshake directly. :return: None """ self.ping_man.kill() self.handshaker.kill() self.running = False def dispatch(self): """ Will first end Handshake, then wait unit everybody received dispatch message and then end pingman to ensure that everybody know that shutdown was wanted. :return: None """ self.running = False self.handshaker.kill() self.message_dict.add_dispatch_message(self.own_information, self.connected) self.message_dict.wait_until_everybody_received(self.__own_dispatch_message()) self.connected.clear() self.ping_man.kill() def __own_dispatch_message(self): return DISPATCH_MESSAGE + JSON_SEPARATOR + self.own_information.to_json() def update(self, update_value): """ Handle changes in the network by react to specific events from observed instances :param update_value: Notification about what happened :return: None """ update_value = update_value[0] event = update_value.name if event == NEW_ENTERING_NODE: self.__handle_entering_node(update_value) elif event == INCOMING_MESSAGE: self.__handle_messages(update_value) elif event == CONNECTION_LOST: self.__handle_connection_lost(update_value) elif event == NEW_MASTER: old_master, new_master = update_value.value self.master = new_master elif event == NO_MAJORITY_SHUTDOWN: self.dispatch() def __handle_connection_lost(self, new_value): """ React to lost connection by remove from connected if not dispatched and add to lost. If more lost than connect will init dispatching process. Otherwise will init start of new master calculation :param new_value: :return: """ lost_node = new_value.value self.message_dict.delete_message_for_node(lost_node) if lost_node in self.connected and lost_node not in self.dispatched: self.connected.remove(lost_node) self.lost.add(lost_node) if len(self.lost) > len(self.connected): print('{} dispatching because more lost than connected'.format( self.own_information.name)) if self.running: self.dispatch() else: self.vote_strategy.calc_new_master(self.connected, self.dispatched, self.lost) def __handle_messages(self, new_value): """ Will sort that handshakes will be handheld first to avoid missing information. Each message will be handled by __handle_message. :param new_value: :return: """ messages = str(new_value.value).split(MESSAGE_SEPARATOR) messages.sort(key=lambda x: x.startswith(HANDSHAKE_MESSAGE)) for message in messages: self.__handle_message(message) def __handle_message(self, msg): """ React to different type of messages. :param msg: incoming messages :return: None """ subject = msg.split(JSON_SEPARATOR)[0] if subject == DEFAULT_MESSAGE: json = msg.split(JSON_SEPARATOR)[1] node_info = node_information_from_json(json) self.vote_strategy.vote_for(node_info, self.connected, self.dispatched, self.lost) json = msg.split(JSON_SEPARATOR)[1] node_info = node_information_from_json(json) if subject == DISPATCH_MESSAGE: self.__handle_dispatch_msg(node_info) self.message_dict.delete_message_for_node(node_info) elif subject == HANDSHAKE_MESSAGE: self.__handle_handshake_message(node_info) def __handle_handshake_message(self, node_info): """ Add Node to connected and remove old node form dispatched if new node has same name. After this will initiate calc of new master. :param node_info: new node :return: None """ if node_info != self.own_information: self.message_dict.add_node(node_info) self.__remove_node_from_dispatch_if_same_name(node_info) self.connected.add(node_info) #print('{} add {} to connected len of connected {}. Json {}'.format(self.own_information.name, # node_info.name, # len(self.connected), node_info.to_json())) if node_info in self.dispatched: self.dispatched.remove(node_info) if node_info in self.lost: self.lost.remove(node_info) self.vote_strategy.calc_new_master(self.connected, self.dispatched, self.lost) def __handle_dispatch_msg(self, node_info): """ Remove node from lost or connected and add to dispatch. Will also initiate calculation of new master :param node_info: dispatching node :return: None """ print('{} Dispatched from {}'.format(self.own_information.name, node_info.name)) if node_info in self.connected: self.connected.remove(node_info) if node_info in self.lost: self.lost.remove(node_info) self.dispatched.add(node_info) if len(self.lost) > len(self.connected): print('{} dispatching because more lost than connected'.format( self.own_information.name)) if self.running: self.dispatch() else: self.vote_strategy.calc_new_master(self.connected, self.dispatched, self.lost) def __remove_node_from_dispatch_if_same_name(self, node_info): """ Check if entering node has same name as dispatched node and will delete if both has same name. :param node_info: node to check :return: None """ for old_node in self.dispatched.copy(): if old_node.name == node_info.name and old_node in self.dispatched: self.dispatched.remove(old_node) def __handle_entering_node(self, new_value): """ Will add new node to connected, add handshake in message dict for new node and initiate calculation of new master :param new_value: update with node :return: None """ node_info = new_value.value if node_info != self.own_information: self.message_dict.add_handshake_message(own=self.own_information, target=node_info) self.__remove_node_from_dispatch_if_same_name(node_info) self.connected.add(node_info) self.vote_strategy.calc_new_master(self.connected, self.dispatched, self.lost)
2.390625
2
kata/odds.py
PauloBernal/Codewars
0
12782969
# Solution by PauloBA def odds(values): oddNums = [] for i in values: if i % 2 == 1: oddNums.append(i) return oddNums
3.578125
4
app/routes/api.py
skielred/osmosis
2
12782970
from datetime import datetime import logging from flask import jsonify, request from app import app, db from app.models import Player, Chart, Score from app.ranking import update_pb_for_score, update_player_osmos from app.lazer import process_lazer_payload from . import dumb_decryption @app.route('/versions') def versions(): return jsonify({ 'osu': app.config.get('REQUIRED_OSU_VERSION', 0), 'pusher': app.config.get('REQUIRED_PUSHER_VERSION', 0), }) @app.route('/lazer', methods=['POST']) def lazer_score(): return score(process_lazer_payload(request.json), decrypt=False) @app.route('/score', methods=['POST']) def score(data=None, decrypt=True): data = data or request.data if not data: logging.warning('Empty request') return 'No data', 400 print('got a score!!') print(data) data = dumb_decryption(data) if decrypt else data try: player = Player.query.get(data['player']['id']) if not player: player = Player(data['player']) else: player.update_fields(data['player']) chart = Chart.query.get(data['chart']['chart_id']) if not chart: chart = Chart(data['chart']) else: chart.update_fields(data['chart']) data['score']['hash'] = data['chart'].get('hash') score = Score(data['score'], chart) score.achieved_at = datetime.utcnow() score.player = player score.version = 6 if not score.is_supported(): db.session.rollback() print('score ignored because not supported') return 'Not OK' db.session.add_all([player, chart, score]) db.session.commit() print('pushed to db! ({} played by {})'.format( chart.name, player.username )) score.set_osmos() print('osmos set') print('updating pb if needed') if update_pb_for_score(player, score): print('updated pb returned true') update_player_osmos(player) player.playcount += 1 db.session.commit() except Exception as e: db.session.rollback() logging.warning(f'Malformed score payload: \n{data}') raise logging.warning(e, exc_info=True) return 'OK'
2.359375
2
mdso/data/gen_toeplitz_Rmat.py
artk2019/AISTAT_2019_107
0
12782971
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Generate various Similarity matrix through the MatrixGenerator methods gen_matrix for synthetic data, and gen_E_coli_matrix for DNA data. """ import numpy as np # from scipy import sparse as sp from scipy.linalg import toeplitz def gen_lambdas(type_matrix, n): ''' Generates lambdas to define a toeplitz matrix with diagonal elements t_k = lambdas[k] ''' array_lambdas = np.zeros(n) if type_matrix == 'LinearBanded': # Bandwidth = 10% ? cov = int(np.floor(n/10)) array_lambdas[:cov] = cov - abs(np.arange(cov)) elif type_matrix == 'LinearStrongDecrease': alpha = 0.1 array_lambdas = np.exp(-alpha*np.arange(n)) elif type_matrix == 'CircularBanded': # Bandwidth = 10% ? cov = int(np.floor(n/10)) array_lambdas[:cov] = cov - abs(np.arange(cov)) array_lambdas[-cov:] = array_lambdas[:cov][::-1] elif type_matrix == 'CircularStrongDecrease': alpha = 0.1 array_lambdas = np.exp(-alpha*np.arange(n)) p = int(np.floor(n/2)) array_lambdas[-p:] = array_lambdas[:p][::-1] else: raise ValueError("Unrecognized type_matrix !") return(array_lambdas) def gen_toeplitz_sim(lambdas): '''Build Toeplitz strong-R-matrix''' return(toeplitz(lambdas)) # # # def sym_max(X): # """ # Returns symmetrization of sparse matrix X. # X_sym = max(X, X.T) rather than X + X.T to avoid adding up values when # there are duplicates in the overlap file. # If X is triangular, max(X, X.T) and X + X.T are equal. # # TODO : check how many values are not symmetric # and separate cases where Aij = 0 ... # """ # # dif_mat = X - X.T # dif_mat.data = np.where(dif_mat.data < 0, 1, 0) # return X - X.multiply(dif_mat) + X.T.multiply(dif_mat) class MatrixGenerator(): # Apply permutation def apply_perm(self, perm): ''' Apply a permutation to the similarity matrix. perm is given as a numpy array ''' n_ = self.n # check size is ok if np.shape(perm)[0] != n_: raise ValueError('the size of the permutation matrix does not match that of the\ similarity matrix.') # check perm is a permutation if not (np.sort(perm) == np.arange(n_)).all(): raise ValueError('perm is not considered as a' 'permutation matrix of [0; \cdots; n-1]') self.sim_matrix = self.sim_matrix[perm] self.sim_matrix = self.sim_matrix.T[perm] self.sim_matrix = self.sim_matrix.T return self # Add additive noise def add_sparse_noise(self, noise_prop, noise_eps, law='uniform'): ''' Create a function that add a symetric sparse noise! noiseprop controls the support of the sparse noise noiseeps controls the eps amplitude of the noise ''' n_ = self.n # first find a random support N = np.tril(np.random.rand(n_, n_)) idx = np.where(N > noise_prop) N[idx] = 0 # allocate value on the support [ii, jj] = np.where(N != 0) if law == 'gaussian': N[np.where(N != 0)] = noise_eps * np.abs( np.random.normal(0, 1, len(ii))) elif law == 'uniform': N[np.where(N != 0)] = noise_eps*np.random.rand(1, len(ii)) # symetrize the noise N = N + N.T # Add noise to similarity matrix self.sim_matrix += N return self def gen_matrix(self, n, type_matrix='LinearBanded', apply_perm=True, perm=None, noise_prop=1, noise_ampl=0, law='uniform'): self.n = n lambdas = gen_lambdas(type_matrix, n) self.sim_matrix = gen_toeplitz_sim(lambdas) if apply_perm: if not perm: # generate permutation if not provided by user perm = np.random.permutation(n) self.apply_perm(perm) self.true_perm = perm else: self.true_perm = np.arange(n) if noise_ampl > 0: normed_fro = np.sqrt(np.mean(self.sim_matrix**2)) self.add_sparse_noise(noise_prop, noise_ampl*normed_fro, law=law) return self # # def gen_E_coli_matrix(self, apply_perm=False): # """ # generate similarity matrix from <NAME>i ONT reads [ref Loman et al.] # TODO : # - change the path to data folder if this is a package ? # - recompute reads_pos with minimap2 instead of BWA. # """ # # Read data matrix # data_dir = './data/' # mat_fn = data_dir + 'ecoli_mat.csv' # pos_fn = data_dir + 'ecoli_ref_pos.csv' # mat_idxs = np.genfromtxt(mat_fn, delimiter=',') # reads_pos = np.genfromtxt(pos_fn, delimiter=',') # n_reads = reads_pos.shape[0] # sim_mat = sp.coo_matrix((mat_idxs[:, 2], # (mat_idxs[:, 0]-1, mat_idxs[:, 1]-1)), # shape=(n_reads, n_reads), # dtype='float64').tocsr() # sim_mat = sym_max(sim_mat) # # Remove unaligned reads (unknown ground turh position) # in_idx = np.argwhere(reads_pos < 7e6)[:, 0] # sim_lil = sim_mat.tolil() # self.n = len(in_idx) # if apply_perm: # perm = np.random.permutation(self.n) # self.true_perm = perm # in_idx = in_idx[perm] # else: # self.true_perm = np.arange(self.n) # sim_lil = sim_lil[in_idx, :][:, in_idx] # self.sim_matrix = sim_lil.tocsr() # # return self
2.875
3
core/templatetags/team.py
6ba/bbgo
22
12782972
<filename>core/templatetags/team.py from django import template # from django.contrib.auth.models import User from django.shortcuts import get_object_or_404 from teams.models import Team register = template.Library() @register.inclusion_tag('teams/show_team.html', takes_context=True) def show_team(context, id): """Show team""" user = context['request'].user article = get_object_or_404(Team, pk=id) slot_users = article.slot_users.all() return { 'user': user, 'table': article.table, 'article_id': article.id, 'article_user': article.user, 'slot_in': article.slot, 'empty_slots': article.slot_total - article.slot, 'slot_users': slot_users, }
1.953125
2
mapeo/migrations/0002_auto_20151117_1648.py
shiminasai/plataforma_FADCANIC
0
12782973
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('mapeo', '0001_initial'), ] operations = [ migrations.AddField( model_name='organizaciones', name='slug', field=models.SlugField(default=1, max_length=450, editable=False), preserve_default=False, ), migrations.AlterField( model_name='organizaciones', name='tipo', field=models.IntegerField(choices=[(1, b'Organizaci\xc3\xb3n que apoya y participa con la Campa\xc3\xb1a'), (2, b'Comit\xc3\xa9 comunal'), (3, b'Diplomado de promotor\xc3\xada'), (4, b'Diplomado de comunicaci\xc3\xb3n')]), ), ]
1.742188
2
00_TrackerApp/backend/repositories/user.py
JADSN/ReactCodes
0
12782974
<filename>00_TrackerApp/backend/repositories/user.py # from datetime import datetime, timezone # from schemas import UserItem # from models import UserItem # from dependencies import Session, Depends, HTTPException, status, get_db, oauth2_scheme # from tokenizer import TokenData, SECRET_KEY, ALGORITHM # from hasher import hash_password # from jose import jwt, JWTError # def read_first_user(email: str, db: Session = Depends(get_db)): # item = db.query(UserItem).where(UserItem.email == email) # if not item.first(): # raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, # detail=f"Item with id {id} not found") # db.commit() # user = item.first() # return UserItem(email=user.email, password=<PASSWORD>) # def create(req_body: UserItem, db: Session = Depends(get_db)): # hashed_password = <PASSWORD>_password(req_body.password) # new_data = UserItem( # email=req_body.email, password=<PASSWORD>) # db.add(new_data) # db.commit() # db.refresh(new_data) # return new_data
2.28125
2
dit_helpdesk/hierarchy/migrations/0011_auto_20200910_1653.py
uktrade/dit-helpdesk
3
12782975
# Generated by Django 2.2.13 on 2020-09-10 15:53 from django.db import migrations class Migration(migrations.Migration): dependencies = [("hierarchy", "0010_auto_20200910_1650")] operations = [ migrations.AlterUniqueTogether( name="subheading", unique_together={("commodity_code", "description", "nomenclature_tree")}, ) ]
1.476563
1
src/ghutil/cli/gist/clone.py
jwodder/ghutil
6
12782976
<reponame>jwodder/ghutil import click from ghutil.git import clone_repo from ghutil.types import Gist @click.command() @click.option('--https', 'url', flag_value='https', help='Clone over HTTPS') @click.option('--ssh', 'url', flag_value='ssh', default=True, help='Clone over SSH [default]') @Gist.argument('gist', implicit=False) @click.argument('dir', required=False) def cli(gist, dir, url): # noqa: B002 """ Clone a gist """ if url == 'https': clone_url = gist.data["git_pull_url"] elif url == 'ssh': # Why isn't this URL returned by the API? clone_url = f'git@gist.github.com:{gist.id}.git' clone_repo(clone_url, dir)
2.78125
3
data_structures/binary_search_tree.py
dushyantss/william-fiset-data-structures-playlist
0
12782977
<reponame>dushyantss/william-fiset-data-structures-playlist from typing import Optional class Node: def __init__(self, value, /, *, left: Node = None, right: Node = None): self.value = value self.left = left self.right = right class BinarySearchTree: def __init__(self): self.root: Optional[Node] = None self.node_count = 0 def __len__(self): return self.node_count def add(self, value) -> bool: if self.contains(value): return False self.root = self.__do_add(self.root, value) self.node_count += 1 return True def remove(self, value) -> bool: if self.contains(value): self.root = self.__do_remove(self.root, value) self.node_count -= 1 return True return False def contains(self, value) -> bool: return self.__do_contains(self.root, value) def __do_add(self, node: Optional[Node], value) -> Node: if not node: node = Node(value) elif value < node.value: node.left = self.__do_add(node.left, value) else: node.right = self.__do_add(node.right, value) return node def __do_remove(self, node: Optional[Node], value) -> Optional[Node]: if node is None: return None if value < node.value: node.left = self.__do_remove(node.left, value) elif value > node.value: node.right = self.__do_remove(node.right, value) elif node.left is None: node = node.right elif node.right is None: node = node.left else: successor = self.__dig_left(node.right) node.value = successor.value node.right = self.__do_remove(node.right, successor.value) return node def __dig_left(self, node: Node) -> Node: while node.left is not None: node = node.left return node def __do_contains(self, node: Optional[Node], value) -> bool: if node is None: return False if value < node.value: return self.__do_contains(node.left, value) elif value > node.value: return self.__do_contains(node.right, value) else: return True
3.71875
4
python programs/variable.py
saddam-gif/Python-crushcourse
0
12782978
print("Hello World") message = "Be humble" print(message) message = "Be humble to the Everyone" print(message)
2.6875
3
modules/objectdetection/object_detection.py
tcastel-ippon/object-detection-serverless
5
12782979
<filename>modules/objectdetection/object_detection.py<gh_stars>1-10 import cv2 import numpy as np def get_output_layers(net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers def draw_prediction( img, class_id, classes, confidence, x, y, x_plus_w, y_plus_h, colors): label = str(classes[class_id]) + str(format(confidence * 100, '.2f')) + '%' color = colors[class_id] cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) def draw_bounding_boxes( image, boxes, indices, class_ids, classes, confidences, colors): for i in indices: i = i[0] box = boxes[i] x = box[0] y = box[1] w = box[2] h = box[3] draw_prediction( image, class_ids[i], classes, confidences[i], round(x), round(y), round( x + w), round( y + h), colors) def keep_relevant_predictions(outs, width, height): class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = center_x - w / 2 y = center_y - h / 2 class_ids.append(class_id) confidences.append(float(confidence)) boxes.append([x, y, w, h]) return boxes, confidences, class_ids def object_detection(image, classes, model_weight_path, model_conf_path): net = cv2.dnn.readNetFromDarknet(model_conf_path, model_weight_path) # prepare model scale = 0.00392 blob = cv2.dnn.blobFromImage( image, scale, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) # Apply model outs = net.forward(get_output_layers(net)) # Keep relevant predictions boxes, confidences, class_ids = keep_relevant_predictions( outs=outs, width=image.shape[1], height=image.shape[0]) # Apply NMS conf_threshold = 0.5 nms_threshold = 0.4 indices = cv2.dnn.NMSBoxes( boxes, confidences, conf_threshold, nms_threshold) # Draw Bounding Box colors = np.random.uniform(0, 255, size=(len(classes), 3)) draw_bounding_boxes( image, boxes, indices, class_ids, classes, confidences, colors)
2.640625
3
dvc/fs/_callback.py
dtrifiro/dvc
0
12782980
from contextlib import ExitStack from functools import wraps from typing import TYPE_CHECKING, Any, Dict, Optional, TypeVar, overload import fsspec from funcy import cached_property if TYPE_CHECKING: from typing import BinaryIO, Callable, TextIO, Union from typing_extensions import ParamSpec from dvc.progress import Tqdm from dvc.ui._rich_progress import RichTransferProgress _P = ParamSpec("_P") _R = TypeVar("_R") class FsspecCallback(fsspec.Callback): """FsspecCallback usable as a context manager, and a few helper methods.""" @overload def wrap_attr(self, fobj: "BinaryIO", method: str = "read") -> "BinaryIO": ... @overload def wrap_attr(self, fobj: "TextIO", method: str = "read") -> "TextIO": ... def wrap_attr( self, fobj: "Union[TextIO, BinaryIO]", method: str = "read" ) -> "Union[TextIO, BinaryIO]": from tqdm.utils import CallbackIOWrapper wrapped = CallbackIOWrapper(self.relative_update, fobj, method) return wrapped def wrap_fn(self, fn: "Callable[_P, _R]") -> "Callable[_P, _R]": @wraps(fn) def wrapped(*args: "_P.args", **kwargs: "_P.kwargs") -> "_R": res = fn(*args, **kwargs) self.relative_update() return res return wrapped def wrap_and_branch(self, fn: "Callable") -> "Callable": """ Wraps a function, and pass a new child callback to it. When the function completes, we increment the parent callback by 1. """ wrapped = self.wrap_fn(fn) @wraps(fn) def func(path1: str, path2: str): kw: Dict[str, Any] = {} with self.branch(path1, path2, kw): return wrapped(path1, path2, **kw) return func def __enter__(self): return self def __exit__(self, *exc_args): self.close() def close(self): """Handle here on exit.""" def relative_update(self, inc: int = 1) -> None: inc = inc if inc is not None else 0 return super().relative_update(inc) def absolute_update(self, value: int) -> None: value = value if value is not None else self.value return super().absolute_update(value) @classmethod def as_callback( cls, maybe_callback: Optional["FsspecCallback"] = None ) -> "FsspecCallback": if maybe_callback is None: return DEFAULT_CALLBACK return maybe_callback @classmethod def as_tqdm_callback( cls, callback: Optional["FsspecCallback"] = None, **tqdm_kwargs: Any, ) -> "FsspecCallback": return callback or TqdmCallback(**tqdm_kwargs) @classmethod def as_rich_callback( cls, callback: Optional["FsspecCallback"] = None, **rich_kwargs ): return callback or RichCallback(**rich_kwargs) def branch( self, path_1: str, path_2: str, kwargs: Dict[str, Any], child: "FsspecCallback" = None, ) -> "FsspecCallback": child = kwargs["callback"] = child or DEFAULT_CALLBACK return child class NoOpCallback(FsspecCallback, fsspec.callbacks.NoOpCallback): pass class TqdmCallback(FsspecCallback): def __init__( self, size: Optional[int] = None, value: int = 0, progress_bar: "Tqdm" = None, **tqdm_kwargs, ): tqdm_kwargs["total"] = size or -1 self._tqdm_kwargs = tqdm_kwargs self._progress_bar = progress_bar self._stack = ExitStack() super().__init__(size=size, value=value) @cached_property def progress_bar(self): from dvc.progress import Tqdm progress_bar = ( self._progress_bar if self._progress_bar is not None else Tqdm(**self._tqdm_kwargs) ) return self._stack.enter_context(progress_bar) def __enter__(self): return self def close(self): self._stack.close() def set_size(self, size): # Tqdm tries to be smart when to refresh, # so we try to force it to re-render. super().set_size(size) self.progress_bar.refresh() def call(self, hook_name=None, **kwargs): self.progress_bar.update_to(self.value, total=self.size) def branch( self, path_1: str, path_2: str, kwargs, child: Optional[FsspecCallback] = None, ): child = child or TqdmCallback(bytes=True, desc=path_1) return super().branch(path_1, path_2, kwargs, child=child) class RichCallback(FsspecCallback): def __init__( self, size: Optional[int] = None, value: int = 0, progress: "RichTransferProgress" = None, desc: str = None, bytes: bool = False, # pylint: disable=redefined-builtin unit: str = None, disable: bool = False, ) -> None: self._progress = progress self.disable = disable self._task_kwargs = { "description": desc or "", "bytes": bytes, "unit": unit, "total": size or 0, "visible": False, "progress_type": None if bytes else "summary", } self._stack = ExitStack() super().__init__(size=size, value=value) @cached_property def progress(self): from dvc.ui import ui from dvc.ui._rich_progress import RichTransferProgress if self._progress is not None: return self._progress progress = RichTransferProgress( transient=True, disable=self.disable, console=ui.error_console, ) return self._stack.enter_context(progress) @cached_property def task(self): return self.progress.add_task(**self._task_kwargs) def __enter__(self): return self def close(self): self.progress.clear_task(self.task) self._stack.close() def call(self, hook_name=None, **kwargs): self.progress.update( self.task, completed=self.value, total=self.size, visible=not self.disable, ) def branch( self, path_1, path_2, kwargs, child: Optional[FsspecCallback] = None ): child = child or RichCallback( progress=self.progress, desc=path_1, bytes=True ) return super().branch(path_1, path_2, kwargs, child=child) DEFAULT_CALLBACK = NoOpCallback()
2.125
2
azure-de10nano-document/sensor-aggregation-reference-design-for-azure/sw/software-code/modules/RfsModule/test/suite_test.py
daisukeiot/terasic-de10-nano-kit
0
12782981
<reponame>daisukeiot/terasic-de10-nano-kit # Copyright (C) 2021 Intel Corporation # Licensed under the MIT license. See LICENSE file in the project root for # full license information. import sys sys.path.append('../') import unittest import gsensor_test as g_test import rfssensor_test as rfs_test import sensor_test as s_test import threshold_test as th_test import thresholdcontroller_test as thc_test g_suite = unittest.TestLoader().loadTestsFromTestCase(g_test.TestGsensor) rfs_suite = unittest.TestLoader().loadTestsFromTestCase(rfs_test.TestRfsSensor) s_suite = unittest.TestLoader().loadTestsFromTestCase(s_test.TestSensor) th_suite = unittest.TestLoader().loadTestsFromTestCase(th_test.TestThreshold) thc_suite = unittest.TestLoader().loadTestsFromTestCase(thc_test.TestThresholdController) suite = unittest.TestSuite([g_suite,rfs_suite,s_suite,th_suite,thc_suite]) runner = unittest.TextTestRunner() runner.run(suite)
1.960938
2
python/ossid/utils/bop_utils.py
r-pad/OSSID_code
1
12782982
<gh_stars>1-10 from datetime import time import os import csv import numpy as np import pandas as pd import subprocess from ossid.config import BOP_TOOLKIT_PATH def saveResultsBop( results, output_folder, result_name, dataset_name, split_name='test', pose_key = 'pose', score_key='score', time_key = 'time', input_unit = 'm', # If input is meter, it will be convert to milimeter run_eval_script=False, # if True, run the BOP evaluation script ): ''' Convert a list of dict containing the pose estimation results to a csv for BOP evaluation script. ''' result_name = result_name.replace("_", "-") output_filename = "%s_%s-%s.csv" % (result_name, dataset_name, split_name) output_path = os.path.join( output_folder, output_filename ) csv_file = open(output_path, mode="w") fieldnames = ["scene_id","im_id","obj_id","score","R","t","time"] csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames) csv_writer.writeheader() for r in results: mat = r[pose_key].copy() mat[:3, 3] = mat[:3, 3] * 1000.0 score = r[score_key] if score_key in r else 1 time = r[time_key] if time_key in r else -1 csv_writer.writerow({ "scene_id": r['scene_id'], "im_id": r['im_id'], "obj_id": r['obj_id'], "score": score, "R": " ".join([str(_) for _ in mat[:3, :3].flatten()]), "t": " ".join([str(_) for _ in mat[:3, 3].flatten()]), "time": time, }) print("BOP logs saved to:", output_path) csv_file.close() if run_eval_script: print("Executing the BOP evaluation script in the background") os.system("cd %s; PYTHONPATH='/' python scripts/eval_bop19.py --renderer_type=cpp --result_filenames=%s" % (BOP_TOOLKIT_PATH, output_filename)) def readResultsBop(path): df = pd.read_csv(path) results = [] for i, r in df.iterrows(): pose = np.eye(4) R = np.asarray([float(_) for _ in r['R'].split(" ")]).reshape((3, 3)) t = np.asarray([float(_) for _ in r['t'].split(" ")]) pose[:3, :3] = R pose[:3, 3] = t results.append({ "obj_id": int(r['obj_id']), "scene_id": int(r['scene_id']), "im_id": int(r['im_id']), "score": float(r['score']), "time": float(r['time']), "pose": pose }) return results
2.4375
2
gui.py
nehal2000/spell-checker
0
12782983
<filename>gui.py from tkinter import* import subprocess from subprocess import* def end(): screen.destroy() def clear(): inputT.delete("1.0",END) outputT.delete("1.0",END) def check(): a= inputT.get("1.0","end") m=len(a) a=a[:m-1] if " " in a or not a.isalpha(): def exit_popup(): er.destroy() inputT.delete("1.0",END) er= Toplevel(screen) x = screen.winfo_x()+150 y = screen.winfo_y()+100 w = 450 h = 250 er.geometry("%dx%d+%d+%d" % (w, h, x, y)) er.title("FATAL ERROR") label1=Label(er,text="INVALID INPUT",font=("Calibri", 22, "bold"), fg="red").place(x=130,y=25) label2=Label(er,text="Enter a single word",font=("Calibri", 15, "bold")).place(x=140,y=70) label3=Label(er,text="Input word must contain alphabets only",font =("Calibri", 15, "bold")).place(x=50,y=110) but=Button(er,text="CONTINUE",bg="red",width="7",height="2",command=exit_popup).place(x=190,y=165) er.mainloop() else : subprocess.call(["g++","edit.cpp","soundex.cpp","spell_check.cpp"]) value = a + '\n' value = bytes(value, 'UTF-8') # Needed in Python 3. proc = Popen("./a.out", stdin=PIPE, stdout=PIPE) out, err = proc.communicate(input=value) out = str(out) out=out[2:len(out)-2] out=out.split(',') for i in out: outputT.insert(END,i+'\t') screen = Tk() screen.geometry("750x500") screen.configure(bg="black") screen.title("SPELL CHECKER") inputL=Label(screen, text="Enter the word", width="15", height="2", font=("Calibri",15, "bold"), bg="black", fg="white") inputL.place(x=55, y=60) outputL=Label(screen,text="Output",width="15",height="2",font=("Calibri",15, "bold"), bg="black", fg="white") outputL.place(x=25, y=120) inputT=Text(screen, width=45, height="2") inputT.place(x=215, y=62) outputT=Text(screen, width=80, height="12") outputT.place(x=55,y=165) checkb=Button(text="CHECK", width="7", height="2", bg="white", command=check) checkb.place(x=600,y=58) clearb=Button(text="CLEAR", width="7", bg="white", height="2", command=clear) clearb.place(x=325,y=405) exitb=Button(text="EXIT", width="5",bg="red", height="1", command=end) exitb.place(x=650,y=430) screen.mainloop()
3.390625
3
test/test_npu/test_ne.py
Ascend/pytorch
1
12782984
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import torch import numpy as np import copy from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestNe(TestCase): def cpu_op_exec_scalar(self, input1, other): output = torch.ne(input1, other) output = output.numpy() return output def npu_op_exec_scalar(self,input1, other): output = torch.ne(input1, other) output1 = output.to("cpu") output2 = output1.numpy() return output2 def cpu_op_exec(self, input1, other): output = torch.ne(input1, other) output = output.numpy() return output def npu_op_exec(self,input1, other): output = torch.ne(input1, other) output = output.to("cpu") output = output.numpy() return output def cpu_op_exec_(self,input1, other): torch.ne_(input1,other) output = input1.numpy() return output def npu_op_exec_(self,input1, other): torch.ne_(input1, other) output = input1.to("cpu") output = output.numpy() return output def cpu_op_exec_scalar_(self,input1, other): torch.ne_(input1,other) output = input1.numpy() return output def npu_op_exec_scalar_(self,input1, other): torch.ne_(input1, other) output = input1.to("cpu") output = output.numpy() return output def cpu_op_exec_scalar_out(self,input1,other, out): torch.ne(input1,other, out=out) output = out.numpy() return output def npu_op_exec_scalar_out(self,input1, other, out): torch.ne(input1, other, out=out) output = out.to("cpu") output = output.numpy() return output def cpu_op_exec_out(self,input1,other, out): torch.ne(input1,other, out=out) output = out.numpy() return output def npu_op_exec_out(self,input1, other, out): torch.ne(input1, other, out=out) output = out.to("cpu") output = output.numpy() return output def test_ne_scalar_common_shape_format(self, device): shape_format = [ [[np.float32,0 , (2,4, 3)], 3], [[np.float32, 3, (2, 3)], 2], [[np.float32, 0, (3, 2)], 8], [[np.int8, 0 , (4, 3)],3], [[np.uint8, -1, (2,4, 3)],3], [[np.int32, 0, (2, 6)],6] ] for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 1, 10) cpu_output = self.cpu_op_exec_scalar(cpu_input1, item[1]) npu_output = self.npu_op_exec_scalar(npu_input1, item[1]) self.assertRtolEqual(cpu_output, npu_output) def test_ne_common_shape_format(self, device): shape_format = [ [[np.float32,0 , (2, 4, 3)], [np.float32,0 , (2, 4, 3)]], [[np.float32, 3, (2, 3)], [np.float32, 3, (2, 3)]], [[np.float32, 0, (3, 2)], [np.float32, 0, (3, 2)]], [[np.int8, 0 , (4, 3)], [np.int8, 0 , (4, 3)]], [[np.uint8, -1, (2,4, 3)], [np.uint8, -1, (2,4, 3)]], [[np.int32, 0, (2, 6)], [np.int32, 0, (2, 6)]], ] for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 1, 10) cpu_input2, npu_input2 = create_common_tensor(item[1], 1, 10) cpu_output = self.cpu_op_exec(cpu_input1, cpu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) self.assertRtolEqual(cpu_output, npu_output) def test_ne_scalar_out_common_shape_format(self, device): shape_format = [ [[np.float32,0 , (2, 4, 3)], 2, [np.bool, 0 , (2, 4, 3)]], [[np.float32, 3, (2, 3)], 3, [np.bool, -1, (2, 3)]], [[np.float32, 0, (3, 2)], 4, [np.bool, 0, (3, 2)]], [[np.int8, 0 , (4, 3)], 5, [np.bool, 0 , (4, 3)]], [[np.uint8, -1, (2,4, 3)], 6, [np.bool, -1, (2,4, 3)]], [[np.int32, 0, (2, 6)], 7, [np.bool, 0, (2, 6)]] ] for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 1, 10) cpu_out, npu_out = create_common_tensor(item[2], 1, 10) cpu_output = self.cpu_op_exec_scalar_out(cpu_input1, item[1], cpu_out) npu_output = self.npu_op_exec_scalar_out(npu_input1, item[1], npu_out) self.assertRtolEqual(cpu_output, npu_output) def test_ne_out_common_shape_format(self, device): shape_format = [ [[np.float32,0 , (2, 4, 3)], [np.float32,0 , (2, 4, 3)], [np.bool, 0 , (2, 4, 3)]], [[np.float32, 3, (2, 3)], [np.float32, 3, (2, 3)], [np.bool, -1, (2, 3)]], [[np.float32, 0, (3, 2)], [np.float32, 0, (3, 2)], [np.bool, 0, (3, 2)]], [[np.int8, 0 , (4, 3)], [np.int8, 0 , (4, 3)], [np.bool, 0 , (4, 3)]], [[np.uint8, -1, (2,4, 3)], [np.uint8, -1, (2,4, 3)], [np.bool, -1, (2,4, 3)]], [[np.int32, 0, (2, 6)], [np.int32, 0, (2, 6)], [np.bool, 0, (2, 6)]] ] for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 1, 10) cpu_input2, npu_input2 = create_common_tensor(item[1], 1, 10) cpu_out, npu_out = create_common_tensor(item[2], 1, 10) cpu_output = self.cpu_op_exec_out(cpu_input1, cpu_input2, cpu_out) npu_output = self.npu_op_exec_out(npu_input1, npu_input2, npu_out) self.assertRtolEqual(cpu_output, npu_output) instantiate_device_type_tests(TestNe, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
2.109375
2
web.py
mukul-git/dbms
1
12782985
<reponame>mukul-git/dbms from flask import Flask, escape, request app = Flask(__name__) @app.route('/') def hello(): name = request.args.get("name", "World") return f'Hello, {escape(name)}!' @app.route('/stats') def stats(): name = request.args.get("table", None) if name is not None: return f'Table {escape(table)} stats' return 'All tables...'
2.265625
2
Lib/site-packages/win32/Demos/win32console_demo.py
raychorn/svn_Python-2.5.1
0
12782986
<gh_stars>0 import win32console, win32con import traceback, time virtual_keys={} for k,v in win32con.__dict__.items(): if k.startswith('VK_'): virtual_keys[v]=k free_console=True try: win32console.AllocConsole() except win32console.error, err_tuple: if err_tuple[0]!=5: raise ## only free console if one was created successfully free_console=False stdout=win32console.GetStdHandle(win32console.STD_OUTPUT_HANDLE) stdin=win32console.GetStdHandle(win32console.STD_INPUT_HANDLE) newbuffer=win32console.CreateConsoleScreenBuffer() newbuffer.SetConsoleActiveScreenBuffer() newbuffer.SetConsoleTextAttribute(win32console.FOREGROUND_RED|win32console.FOREGROUND_INTENSITY |win32console.BACKGROUND_GREEN|win32console.BACKGROUND_INTENSITY) newbuffer.WriteConsole('This is a new screen buffer\n') ## test setting screen buffer and window size ## screen buffer size cannot be smaller than window size window_size=newbuffer.GetConsoleScreenBufferInfo()['Window'] coord=win32console.PyCOORDType(X=window_size.Right+20, Y=window_size.Bottom+20) newbuffer.SetConsoleScreenBufferSize(coord) window_size.Right+=10 window_size.Bottom+=10 newbuffer.SetConsoleWindowInfo(Absolute=True,ConsoleWindow=window_size) ## write some records to the input queue x=win32console.PyINPUT_RECORDType(win32console.KEY_EVENT) x.Char=u'X' x.KeyDown=True x.RepeatCount=1 x.VirtualKeyCode=0x58 x.ControlKeyState=win32con.SHIFT_PRESSED z=win32console.PyINPUT_RECORDType(win32console.KEY_EVENT) z.Char=u'Z' z.KeyDown=True z.RepeatCount=1 z.VirtualKeyCode=0x5a z.ControlKeyState=win32con.SHIFT_PRESSED stdin.WriteConsoleInput([x,z,x]) newbuffer.SetConsoleTextAttribute(win32console.FOREGROUND_RED|win32console.FOREGROUND_INTENSITY |win32console.BACKGROUND_GREEN|win32console.BACKGROUND_INTENSITY) newbuffer.WriteConsole('Press some keys, click some characters with the mouse\n') newbuffer.SetConsoleTextAttribute(win32console.FOREGROUND_BLUE|win32console.FOREGROUND_INTENSITY |win32console.BACKGROUND_RED|win32console.BACKGROUND_INTENSITY) newbuffer.WriteConsole('Hit "End" key to quit\n') breakout=False while not breakout: input_records=stdin.ReadConsoleInput(10) for input_record in input_records: if input_record.EventType==win32console.KEY_EVENT: if input_record.KeyDown: if input_record.Char=='\0': newbuffer.WriteConsole(virtual_keys.get(input_record.VirtualKeyCode, 'VirtualKeyCode: %s' %input_record.VirtualKeyCode)) else: newbuffer.WriteConsole(input_record.Char) if input_record.VirtualKeyCode==win32con.VK_END: breakout=True break elif input_record.EventType==win32console.MOUSE_EVENT: if input_record.EventFlags==0: ## 0 indicates a button event if input_record.ButtonState!=0: ## exclude button releases pos=input_record.MousePosition # switch the foreground and background colors of the character that was clicked attr=newbuffer.ReadConsoleOutputAttribute(Length=1, ReadCoord=pos)[0] new_attr=attr if attr&win32console.FOREGROUND_BLUE: new_attr=(new_attr&~win32console.FOREGROUND_BLUE)|win32console.BACKGROUND_BLUE if attr&win32console.FOREGROUND_RED: new_attr=(new_attr&~win32console.FOREGROUND_RED)|win32console.BACKGROUND_RED if attr&win32console.FOREGROUND_GREEN: new_attr=(new_attr&~win32console.FOREGROUND_GREEN)|win32console.BACKGROUND_GREEN if attr&win32console.BACKGROUND_BLUE: new_attr=(new_attr&~win32console.BACKGROUND_BLUE)|win32console.FOREGROUND_BLUE if attr&win32console.BACKGROUND_RED: new_attr=(new_attr&~win32console.BACKGROUND_RED)|win32console.FOREGROUND_RED if attr&win32console.BACKGROUND_GREEN: new_attr=(new_attr&~win32console.BACKGROUND_GREEN)|win32console.FOREGROUND_GREEN newbuffer.WriteConsoleOutputAttribute((new_attr,),pos) else: newbuffer.WriteConsole(str(input_record)) time.sleep(0.1) stdout.SetConsoleActiveScreenBuffer() newbuffer.Close() if free_console: win32console.FreeConsole()
2.328125
2
filters/puzzle.py
s3h10r/egw-plugins
1
12782987
<filename>filters/puzzle.py #!/usr/bin/env python #coding=utf-8 """ usage example: egw --generator psychedelic -o /tmp/2.png --filter puzzle -c ./einguteswerkzeug/einguteswerkzeug.conf --template ./einguteswerkzeug/templates/square/roland-deason-tPWHTBzQVIM-unsplash.jpg -s 200 --alpha-blend 0.8 --border-size 1 --nopolaroid --noframe --title="hallo" && feh /tmp/2.png egw --generator psychedelic -o /tmp/2.png --filter puzzle -c ./einguteswerkzeug/einguteswerkzeug.conf --template ./einguteswerkzeug/templates/square/roland-deason-tPWHTBzQVIM-unsplash.jpg -s 200 --alpha-blend 0.8 --border-size 0.8 --nopolaroid --noframe --title="hallo" && feh /tmp/2.png """ import logging import math import random import string import sys from PIL import Image, ImageDraw from PIL import Image from einguteswerkzeug.plugins import EGWPluginFilter # --- configure logging log = logging.getLogger(__name__) log.setLevel(logging.INFO) handler = logging.StreamHandler() # console-handler formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) log.addHandler(handler) # --- fmeta = { "name" : "puzzle", "version" : "0.0.8", "description" : "", "author" : "" } class Puzzle(EGWPluginFilter): def __init__(self, **kwargs): super().__init__(**fmeta) # defining mandatory kwargs (addionals to the mandatory of the base-class) add_kwargs = { 'seed' : random.randrange(sys.maxsize), 'block_size' : 100} self._define_mandatory_kwargs(self, **add_kwargs) self.kwargs = kwargs def _generate_image(self): return _puzzle(**self.kwargs) filter = Puzzle() assert isinstance(filter,EGWPluginFilter) def _puzzle(image = None, seed = None, block_size = 100): """ 10 <= block_size >= 2000 """ min_block_size = 10 max_block_size = 2000 if not seed: seed = random.randrange(sys.maxsize) random.seed(seed) log.info("seed: {}".format(seed)) im = image width, height = im.size if width != height: raise Exception("sorry, only square-sized image can be processed.") # --- adjusting block_size if necessary if width % block_size != 0: log.warning("{} % {} = {}. => adjusting blocksize.".format(width, block_size, width % block_size)) block_size_orig = block_size while (width % block_size != 0) and block_size <= max_block_size: block_size += 1 if (width % block_size != 0): block_size = block_size_org while (width % block_size != 0) and (block_size >= min_block_size): block_size -= 1 assert(width % block_size == 0) log.info("block_size adjusted to: {}".format(block_size)) # --- im2 = Image.new("RGB", (width, height), "black") blocks = [] for x in range(int(width / block_size)): for y in range(int(height / block_size)): blocks.append(im.crop((x * block_size, y * block_size, (x + 1) * block_size, (y + 1) * block_size))) random.shuffle(blocks) for x in range(int(width / block_size)): for y in range(int(height / block_size)): im2.paste(blocks.pop().rotate(90 * random.randint(0,3)), (x * block_size, y * block_size)) return im2
2.09375
2
solutions/python3/1202.py
sm2774us/amazon_interview_prep_2021
42
12782988
<filename>solutions/python3/1202.py class Solution: def smallestStringWithSwaps(self, s: str, pairs: List[List[int]]) -> str: class UF: def __init__(self, n): self.p = list(range(n)) def union(self, x, y): self.p[self.find(x)] = self.find(y) def find(self, x): if x != self.p[x]: self.p[x] = self.find(self.p[x]) return self.p[x] uf, res, m = UF(len(s)), [], collections.defaultdict(list) for x,y in pairs: uf.union(x,y) for i in range(len(s)): m[uf.find(i)].append(s[i]) for comp_id in m.keys(): m[comp_id].sort(reverse=True) for i in range(len(s)): res.append(m[uf.find(i)].pop()) return ''.join(res)
3.359375
3
pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_python_scalar.py
wangyum/anaconda
0
12782989
<filename>pkgs/dynd-python-0.7.2-py27_0/lib/python2.7/site-packages/dynd/tests/test_python_scalar.py<gh_stars>0 import sys import unittest from dynd import nd, ndt from datetime import date if sys.version_info >= (3, 0): unicode = str class TestPythonScalar(unittest.TestCase): def test_bool(self): # Boolean true/false a = nd.array(True) self.assertEqual(nd.type_of(a), ndt.bool) self.assertEqual(type(nd.as_py(a)), bool) self.assertEqual(nd.as_py(a), True) a = nd.array(False) self.assertEqual(nd.type_of(a), ndt.bool) self.assertEqual(type(nd.as_py(a)), bool) self.assertEqual(nd.as_py(a), False) def test_int(self): # Integer that fits in 32 bits a = nd.array(10) self.assertEqual(nd.type_of(a), ndt.int32) self.assertEqual(type(nd.as_py(a)), int) self.assertEqual(nd.as_py(a), 10) a = nd.array(-2000000000) self.assertEqual(nd.type_of(a), ndt.int32) self.assertEqual(type(nd.as_py(a)), int) self.assertEqual(nd.as_py(a), -2000000000) # Integer that requires 64 bits a = nd.array(2200000000) self.assertEqual(nd.type_of(a), ndt.int64) self.assertEqual(nd.as_py(a), 2200000000) a = nd.array(-2200000000) self.assertEqual(nd.type_of(a), ndt.int64) self.assertEqual(nd.as_py(a), -2200000000) def test_float(self): # Floating point a = nd.array(5.125) self.assertEqual(nd.type_of(a), ndt.float64) self.assertEqual(type(nd.as_py(a)), float) self.assertEqual(nd.as_py(a), 5.125) def test_complex(self): # Complex floating point a = nd.array(5.125 - 2.5j) self.assertEqual(nd.type_of(a), ndt.complex_float64) self.assertEqual(type(nd.as_py(a)), complex) self.assertEqual(nd.as_py(a), 5.125 - 2.5j) def test_string(self): a = nd.array('abcdef') self.assertEqual(nd.type_of(a), ndt.string) self.assertEqual(type(nd.as_py(a)), unicode) self.assertEqual(nd.as_py(a), u'abcdef') a = nd.array(u'abcdef') self.assertEqual(nd.type_of(a), ndt.string) self.assertEqual(type(nd.as_py(a)), unicode) self.assertEqual(nd.as_py(a), u'abcdef') def test_utf_encodings(self): # Ensure all of the UTF encodings work ok for a basic string x = u'\uc548\ub155 hello' # UTF-8 a = nd.array(x) a = a.cast(ndt.make_fixed_string(16, 'utf_8')) a = a.eval() self.assertEqual(nd.type_of(a), ndt.make_fixed_string(16, 'utf_8')) self.assertEqual(type(nd.as_py(a)), unicode) self.assertEqual(nd.as_py(a), x) # UTF-16 a = nd.array(x) a = a.cast(ndt.make_fixed_string(8, 'utf_16')) a = a.eval() self.assertEqual(nd.type_of(a), ndt.make_fixed_string(8, 'utf_16')) self.assertEqual(type(nd.as_py(a)), unicode) self.assertEqual(nd.as_py(a), x) # UTF-32 a = nd.array(x) a = a.cast(ndt.make_fixed_string(8, 'utf_32')) a = a.eval() self.assertEqual(nd.type_of(a), ndt.make_fixed_string(8, 'utf_32')) self.assertEqual(type(nd.as_py(a)), unicode) self.assertEqual(nd.as_py(a), x) def test_len(self): # Can't get the length of a zero-dimensional dynd array a = nd.array(10) self.assertRaises(ValueError, len, a) if __name__ == '__main__': unittest.main()
2.609375
3
exalt/search.py
DeepDarkOdyssey/exalt
0
12782990
<reponame>DeepDarkOdyssey/exalt<gh_stars>0 from typing import Iterable, Union, List, TypeVar from collections import OrderedDict import re Node = TypeVar("TrieNode") class TrieNode(object): def __init__(self, key: str = ""): self.key = key self.next = {} self.is_word = False @property def is_leaf(self): return len(self.next) == 0 def insert(self, word: str): node = self for char in word: if char not in node.next: node.next[char] = TrieNode(char) node = node.next[char] node.is_word = True def insert_many(self, words: Iterable[str]): for word in words: self.insert(word) def find(self, target: str): node = self for char in target: if char not in node.next: return False node = node.next[char] if node.is_word: return "FullMatch" else: return "Partial" def delete(self, target: str): nodes = [] node = self for char in target: if char not in node.next: return False node = node.next[char] nodes.append(node) node = nodes.pop(-1) if not node.is_word: return False else: node.is_word = False removed_word = [] while True: try: node = nodes.pop(-1) except IndexError: break if node.is_leaf: removed_word.insert(0, nodes[-1].next.pop(node.key).key) return removed_word def show(self, word: str = ""): if self.is_word: print(word) for node in self.next.values(): node.show(word + node.key) class ACNode(TrieNode): def __init__(self, key: str = "", depth: int = 0): super().__init__(key) self.depth = depth self.fail = None def insert(self, word: str): curr = self for char in word: if char not in curr.next: curr.next[char] = ACNode(char, curr.depth + 1) curr = curr.next[char] curr.is_word = True class ACAutomaton(object): def __init__(self, words: Iterable[str]): self.root = ACNode() self.root.insert_many(words) self.add_fails() def add_fails(self): queue = [] for node in self.root.next.values(): node.fail = self.root queue.append(node) while len(queue) > 0: curr: ACNode = queue.pop(0) fail_to = curr.fail for key, node in curr.next.items(): while True: if fail_to is not None and key in fail_to.next: node.fail = fail_to.next[key] break elif fail_to is None: node.fail = self.root break else: fail_to = fail_to.fail queue.append(node) def search(self, target: str): result = [] curr = self.root i = 0 while i < len(target): char = target[i] if char in curr.next: curr = curr.next[char] if curr.is_word: result.append((i - curr.depth + 1, i)) i += 1 else: if curr.fail is None: curr = self.root i += 1 else: curr = curr.fail return result class FuzzyACAutomaton(ACAutomaton): def __init__(self, words: Iterable[str], verbose=False): super().__init__(words, None) self.verbose = verbose def search(self, target: str, max_skip: int = 2): result = [] curr = self.root matched_chars = [] num_chars_skipped = [] num_depth_skipped = [] i = 0 while i < len(target): should_fail = True char = target[i] if char in curr.next: should_fail = False curr = curr.next[char] assert target[i] == curr.key matched_chars.append(char) num_chars_skipped.append(0) num_depth_skipped.append(0) if self.verbose: print(f"id:{i}\tkey:{curr.key}\tdepth:{curr.depth}\tmatched_chars:{matched_chars}\tnum_chars_skipped:{num_chars_skipped}\tnum_depth_skipped:{num_depth_skipped}") if curr.is_word: if self.verbose: print('MATCHED!***********************') result.append( ( i - len(matched_chars), i, "".join((node.key for node in curr.lineage[1:])), ) ) matched_chars.clear() num_chars_skipped.clear() num_depth_skipped.clear() i += 1 elif curr.depth >= 2: previews = target[i : i + max_skip + 1] wildcard = {} nodes = list(curr.next.values()) for _ in range(max_skip + 1): buffer = [] for node in nodes: if node.key not in wildcard: wildcard[node.key] = node for k, n in node.next.items(): if k not in wildcard: buffer.append(n) nodes = buffer preview_matched_chars = [] preview_num_chars_skipped = [] preview_num_depth_skipped = [] for j, p in enumerate(previews): if p in wildcard: should_fail = False prev_depth = curr.depth i += j curr = wildcard[p] assert target[i] == curr.key preview_matched_chars.append(curr.key) preview_num_chars_skipped.append(0) preview_num_depth_skipped.append(curr.depth - prev_depth -1) if self.verbose: print(f"id:{i}\tkey:{curr.key}\tdepth:{curr.depth}\tmatched_chars:{matched_chars}\tnum_chars_skipped:{num_chars_skipped}\tnum_depth_skipped:{num_depth_skipped}") if curr.is_word: if self.verbose: print('MATCHED!***********************') print(''.join([node.key for node in curr.lineage[1:]])) matched_chars.extend(preview_matched_chars) num_chars_skipped.extend(preview_num_chars_skipped) num_depth_skipped.extend(preview_num_depth_skipped) result.append( ( i - len(matched_chars), i, "".join((node.key for node in curr.lineage[1:])), ) ) matched_chars.clear() num_chars_skipped.clear() num_depth_skipped.clear() i += 1 break else: preview_matched_chars.append('') preview_num_chars_skipped.append(1) preview_num_depth_skipped.append(0) if should_fail: if self.verbose: print( f"Match Failed\tchar:{char}\tnext:{list(curr.next.keys())}\tLineage:{[node.key for node in curr.lineage[1:]]}" ) curr = curr.fail if curr is None or curr.is_root: if self.verbose: print("Restart matching!") curr = self.root matched_chars.clear() num_chars_skipped.clear() num_depth_skipped.clear() i += 1 return result def brute_force(target: str, pattern: str) -> int: for i in range(len(target)): j = 0 while j < len(pattern): if pattern[j] == target[i]: i += 1 j += 1 else: break if j == len(pattern): return i - j class KMP(object): def __init__(self, pattern: str): next_array = [-1] * len(pattern) i, j = 0, -1 while i < len(pattern) - 1: if j == -1 or pattern[i] == pattern[j]: i += 1 j += 1 next_array[i] = j else: j = next_array[j] self.pattern = pattern self.next = next_array print(self.next) def match(self, target: str) -> int: i, j = 0, 0 while i < len(target) and j < len(self.pattern): if j == -1 or target[i] == self.pattern[j]: i += 1 j += 1 else: j = self.next[j] if j == len(self.pattern): return i - j if __name__ == "__main__": # words = "banana bananas bandana band apple all beast".split() # root = TrieNode() # root.insert_many(words) # root.show() # root.show_tree() # print('*' * 50) # root.delete('bandana') # root.show() import time words = ["abd", "abdk", "abchijn", "chnit", "ijabdf", "ijaij"] automaton = FuzzyACAutomaton(words) # automaton = ACAutomaton(words) # automaton.root.show() target = "abchnijab dfk" tick = time.time() for start, end in automaton.search(target): print(target[start : end + 1]) tock = time.time() print(f'{tock - tick:.4f}s')
2.8125
3
tests/potential/test__get_symbol_pairs.py
eragasa/mexm-base
1
12782991
<reponame>eragasa/mexm-base import pytest from collections import OrderedDict from mexm.potential import get_symbol_pairs cases = OrderedDict() cases['1sym_str'] = OrderedDict([ ('symbols','Ni'), ('expected_pairs',[['Ni','Ni']]) ]) cases['1sym_list'] = OrderedDict([ ('symbols', ['Ni']), ('expected_pairs',[['Ni','Ni']]) ]) cases['2sym_list'] = OrderedDict([ ('symbols', ['Ni','Al']), ('expected_pairs',[ ['Ni', 'Ni'], ['Ni', 'Al'], ['Al', 'Al'] ]) ]) cases['3sym_list'] = OrderedDict([ ('symbols', ['Fe', 'Ni', 'Cr']), ('expected_pairs',[['Fe', 'Fe'], ['Fe', 'Ni'], ['Fe', 'Cr'], ['Ni', 'Ni'], ['Ni', 'Cr'], ['Cr', 'Cr'] ]) ]) @pytest.mark.parametrize( "symbols,expected_pairs", [tuple(v for v in case.values()) for case in cases.values()] ) def test__get_symbol_pairs(symbols, expected_pairs): assert expected_pairs == get_symbol_pairs(symbols) if __name__ == "__main__": pass
2.265625
2
assessment_plan_modeling/ap_parsing/augmentation_lib_test.py
pedersor/google-research
0
12782992
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for augmentation_lib.""" from typing import Tuple from absl.testing import absltest from assessment_plan_modeling.ap_parsing import ap_parsing_lib from assessment_plan_modeling.ap_parsing import augmentation_lib as aug_lib def tuple_fragment(fragment): return (str(fragment.labeled_char_span), fragment.text, fragment.prefix_delim, fragment.suffix_delim) def fragments_tuple(cluster): return tuple( set([tuple_fragment(fragment) for fragment in cluster.fragments])) class StructuredAPTest(absltest.TestCase): def test_build(self): ap = "\n".join( ["50 yo m with hx of dm2, copd", "dm2: on insulin", "- RISS"]) labeled_char_spans = [ ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=29, end_char=32), ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_DESCRIPTION, start_char=34, end_char=44), ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, start_char=47, end_char=51), ] expected = aug_lib.StructuredAP( prefix_text="50 yo m with hx of dm2, copd", problem_clusters=[ aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=29, end_char=32), text="dm2", prefix_delim=aug_lib._DefaultDelims.PROBLEM_TITLE_PREFIX, suffix_delim=aug_lib._DefaultDelims.PROBLEM_TITLE_SUFFIX), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType .PROBLEM_DESCRIPTION, start_char=34, end_char=44), text="on insulin", prefix_delim=aug_lib._DefaultDelims .PROBLEM_DESCRIPTION_PREFIX, suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, start_char=47, end_char=51), text="RISS", prefix_delim=aug_lib._DefaultDelims.ACTION_ITEM_PREFIX, suffix_delim=""), ]) ]) structured_ap = aug_lib.StructuredAP.build(ap, labeled_char_spans) self.assertEqual(structured_ap, expected) def test_compile(self): structured_ap = aug_lib.StructuredAP( prefix_text="50 yo m with hx of dm2, copd", problem_clusters=[ aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=29, end_char=32), text="dm2", prefix_delim="\n*. ", suffix_delim=": "), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType .PROBLEM_DESCRIPTION, start_char=34, end_char=44), text="on insulin", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, start_char=47, end_char=51), text="RISS", prefix_delim="\n- ", suffix_delim=""), ]) ]) expected = "50 yo m with hx of dm2, copd\n*. dm2: on insulin\n- RISS" result, _ = structured_ap.compile() self.assertEqual(result, expected) def test_compile_with_labels(self): structured_ap = aug_lib.StructuredAP( prefix_text="50 yo m with hx of dm2, copd", problem_clusters=[ # spans are kept from *original* text. aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=29, end_char=32), text="dm2", prefix_delim="\n*. ", suffix_delim=": "), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType .PROBLEM_DESCRIPTION, start_char=34, end_char=44), text="on insulin", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, start_char=47, end_char=51), text="RISS", prefix_delim="\n- ", suffix_delim=""), ]) ]) expected = ( "50 yo m with hx of dm2, copd\n*. dm2: on insulin\n- RISS", [ ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=32, end_char=35), # span_text="dm2" ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_DESCRIPTION, start_char=37, end_char=47), # span_text="on insulin" ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, start_char=50, end_char=54), # span_text="RISS" ]) result_ap_text, result_labeled_char_spans = structured_ap.compile() self.assertEqual((result_ap_text, result_labeled_char_spans), expected) class AugmentationsTest(absltest.TestCase): def setUp(self): super().setUp() self.problem_clusters = [ aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=29, end_char=32), text="dm2", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType .PROBLEM_DESCRIPTION, start_char=34, end_char=44), text="on insulin", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, action_item_type=ap_parsing_lib.ActionItemType.MEDICATIONS, start_char=47, end_char=51), text="RISS", prefix_delim="", suffix_delim="") ]), aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=52, end_char=58), text="anemia", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, action_item_type=ap_parsing_lib.ActionItemType .OBSERVATIONS_LABS, start_char=59, end_char=64), text="trend", prefix_delim="", suffix_delim="") ]), aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=65, end_char=69), text="COPD", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, action_item_type=ap_parsing_lib.ActionItemType.MEDICATIONS, start_char=70, end_char=74), text="nebs", prefix_delim="", suffix_delim="") ]), aug_lib.ProblemCluster(fragments=[ aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, start_char=75, end_char=81), text="sepsis", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType .PROBLEM_DESCRIPTION, start_char=82, end_char=93), text="dd pna, uti", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType .PROBLEM_DESCRIPTION, start_char=94, end_char=117), text="yesterday without fever", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, action_item_type=ap_parsing_lib.ActionItemType.MEDICATIONS, start_char=118, end_char=127), text="cont. abx", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, action_item_type=ap_parsing_lib.ActionItemType .OBSERVATIONS_LABS, start_char=128, end_char=131), text="cis", prefix_delim="", suffix_delim=""), aug_lib.ProblemClusterFragment( labeled_char_span=ap_parsing_lib.LabeledCharSpan( span_type=ap_parsing_lib.LabeledSpanType.ACTION_ITEM, action_item_type=ap_parsing_lib.ActionItemType.CONSULTS, start_char=132, end_char=142), text="id consult", prefix_delim="", suffix_delim="") ]) ] self.ap = aug_lib.StructuredAP( problem_clusters=self.problem_clusters, prefix_text="") def test_shuffle_clusters(self): aug = aug_lib.ShuffleClusters() augmented_ap = aug(self.ap, seed=0) set_problem_clusters = set( [fragments_tuple(cluster) for cluster in self.problem_clusters]) set_aug_clusters = set( [fragments_tuple(cluster) for cluster in augmented_ap.problem_clusters]) self.assertEqual(set_problem_clusters, set_aug_clusters) def test_shuffle_fragments(self): aug = aug_lib.ShuffleFragments() augmented_ap = aug(self.ap, seed=0) self.assertEqual( fragments_tuple(self.problem_clusters[0]), fragments_tuple(augmented_ap.problem_clusters[0])) def test_number_title_augmentation(self): aug = aug_lib.NumberTitlesAugmentation(["\n{:d})"]) augmented_ap = aug(self.ap, seed=0) expected = self.ap for i, cluster in enumerate(expected.problem_clusters): cluster.fragments[0].prefix_delim = f"\n{i+1})" self.assertEqual(expected, augmented_ap) def test_change_delim_augmentation(self): aug = aug_lib.ChangeDelimAugmentation( fragment_types=[ ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE, ap_parsing_lib.LabeledSpanType.PROBLEM_DESCRIPTION, ap_parsing_lib.LabeledSpanType.ACTION_ITEM ], delims=["*"]) augmented_ap = aug(self.ap, seed=0) expected = self.ap for cluster in expected.problem_clusters: for fragment in cluster.fragments: fragment.prefix_delim = "*" self.assertEqual(expected, augmented_ap) def test_apply_augmentations(self): augs = aug_lib.AugmentationSequence( name="test", augmentation_sequence=[ aug_lib.NumberTitlesAugmentation(["\n{}."]), aug_lib.ChangeDelimAugmentation( [ap_parsing_lib.LabeledSpanType.PROBLEM_DESCRIPTION], ["\n-- "]), aug_lib.ChangeDelimAugmentation( [ap_parsing_lib.LabeledSpanType.ACTION_ITEM], ["\n--- "]) ]) results = aug_lib.apply_augmentations(self.ap, augs, seed=0) expected = self.ap for i, cluster in enumerate(expected.problem_clusters): for fragment in cluster.fragments: if fragment.labeled_char_span.span_type == ap_parsing_lib.LabeledSpanType.PROBLEM_TITLE: prefix_delim = f"\n{i+1}." elif fragment.labeled_char_span.span_type == ap_parsing_lib.LabeledSpanType.PROBLEM_DESCRIPTION: prefix_delim = "\n-- " elif fragment.labeled_char_span.span_type == ap_parsing_lib.LabeledSpanType.ACTION_ITEM: prefix_delim = "\n--- " fragment.prefix_delim = prefix_delim self.assertEqual(expected, results) if __name__ == "__main__": absltest.main()
2.234375
2
INEGIpy/setup.py
andreslomeliv/DatosMex
1
12782993
<filename>INEGIpy/setup.py # -*- coding: utf-8 -*- from setuptools import setup NAME = 'INEGIpy' DESCRIPTION = 'Wrap de Python para los APIs del INEGI' URL = 'https://github.com/andreslomeliv/DatosMex/tree/master/INEGIpy' EMAIL = '<EMAIL>' AUTHOR = '<NAME>' REQUIRES_PYTHON = '>=3.6.0' VERSION = '0.1.0' # librerías requeridas REQUIRED = [ 'requests','pandas','matplotlib','seaborn','geopandas','shapely' ] setup( name=NAME, version=VERSION, description=DESCRIPTION, author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=['INEGIpy'], install_requires=REQUIRED, license='MIT' )
1.148438
1
svbench/loaders.py
kcleal/svbench
10
12782994
<reponame>kcleal/svbench from svbench import CallSet, Col import numpy as np from sys import stderr __all__ = ["load_dysgu", "load_lumpy", "load_delly", "load_manta", "load_sniffles", "load_whamg"] def load_dysgu(pth, dataset, caller="dysgu"): c = Col("FORMAT", "PROB", bins=np.arange(0, 1.01, 0.025)) k = Col("FILTER", op="eq", thresh=None) print(f"Loading dysgu, stratified using {c}, keep records with {k}", file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c, keep=[k]) def load_lumpy(pth, dataset, caller="lumpy"): c = Col("INFO", "SU", bins=range(0, 30, 1)) print("Loading lumpy, stratified using. (All records kept)", c, file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c) def load_delly(pth, dataset, caller="delly"): c = Col("QUAL", bins=range(0, 1500, 50)) k = Col("FILTER", op="eq", thresh=None) print(f"Loading delly, stratified using {c}, keep records with {k}", file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c, keep=[k]) def load_whamg(pth, dataset, caller="whamg"): c = Col("INFO", "A", bins=range(0, 20, 1)) k = Col("FILTER", op="eq", thresh=None) print(f"Loading whamg, stratified using {c}, keep records with {k}", file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c, keep=[k]) def load_manta(pth, dataset, caller="manta"): c = Col("QUAL", bins=range(0, 1500, 50)) k = Col("FILTER", op="eq", thresh=None) print(f"Loading manta, stratified using {c}, keep records with {k}", file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c, keep=[k]) def load_sniffles(pth, dataset, caller="sniffles"): c = Col("INFO", "RE", bins=np.arange(0, 20, 1)) k = Col("FILTER", op="eq", thresh=None) print(f"Loading sniffles, stratified using {c}, keep records with {k}", file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c, keep=[k]) def get_svim(pth, dataset, caller="svim"): c = Col("QUAL", bins=np.arange(0, 20, 1)) k = Col("FILTER", op="eq", thresh=None) print(f"Loading svim, stratified using {c}, keep records with {k}", file=stderr) return CallSet(dataset=dataset, caller=caller).load_vcf(pth, stratify=c, keep=[k])
2.078125
2
Modules/LeetCode/Task9.py
Itsuke/Learning-Python
0
12782995
<gh_stars>0 ''' https://leetcode.com/discuss/interview-question/1667337/FacebookMeta-or-Phone-Screen-or-New-Grad-or-Binary-Tree-%2B-Backtrack-problem https://leetcode.com/problems/expression-add-operators/ 123456789 = 100 Using standard integer arithmetic operators +, -, what are those different solutions you can find by inserting the operators between some digits? EX) -1+2-3+4+5+6+78+9 123-45-67+89 # 100 Example 1: Input: num = "123", target = 6 Output: ["1+2+3"] Explanation: "1+2+3" evaluate to 6. ''' #12:51 - gave up, nothing came to my mind ''' funtion no idea List<String> res = new ArrayList<>(); private int helper(String nums, int index, int sum, int S, Map<String, Integer> map, String path){ String encodeString = index + "->" + sum; if (map.containsKey(encodeString)){ return map.get(encodeString); } if (index == nums.length){ if (sum == S){ res.add(path); return 1; }else { return 0; } } int total = 0; for(int j=index+1; j<=nums.length(); j++) { int curNum = Integer.parseInt(nums.substring(i,j)); total += helper(nums, j, sum - curNum, S, map, path + "-" + String.valueOf(curNum)); total += helper(nums, j, sum + curNum, S, map, path + "+" + String.valueOf(curNum)); } map.put(encodeString,total); return total; } ''' # 12:56 ''' def _calculate_possible_variants(number_string, curr_num, target, sum, index, formula, formula_table) if index == (len(number_string) - 1) and sum == target formula_table.append[forumla] # add sum += curr_num formula += "+" + number_string[index] calculate_possible_variants(number_string, number_string[index+1], target, sum, index, formula, formula_table) # subtraction sum -= int(number_string[index]) formula += "-" + number_string[index] calculate_possible_variants(number_string, number_string[index+1], target, sum, index, formula, formula_table) # higher number curr_num = int(str(curr_num) + number_string[index+1]) calculate_possible_variants def calculate_possible_variants(numbers, target) _calculate_possible_variants(numbers, int(numbers[0]), target, 0, 0, "", []) ''' def _calculate_possible_variants(number_string, curr_num, target, my_sum, index, formula, formula_table): def _add(my_sum, formula, formula_table): my_sum += int(curr_num) formula += "+" + number_string[index] formula_table = _calculate_possible_variants(number_string, number_string[index + 1], target, my_sum, index + 1, formula, formula_table) return formula_table def _subtract(my_sum, formula, formula_table): my_sum -= int(number_string[index]) formula += "-" + number_string[index] formula_table = _calculate_possible_variants(number_string, number_string[index + 1], target, my_sum, index +1, formula, formula_table) return formula_table def _combine_numbers(curr_num, formula, formula_table): curr_num = int(str(curr_num) + number_string[index + 1]) formula += curr_num formula_table = _calculate_possible_variants(number_string, number_string[index + 1], target, my_sum, index+1, formula, formula_table) return formula_table _add(my_sum, formula, formula_table) _subtract(my_sum, formula, formula_table) _combine_numbers(curr_num, formula, formula_table) if index == (len(number_string) - 1) and my_sum == target: formula_table.append[forumla] return formula_table elif index == (len(number_string) - 1): return formula_table return formula_table def calculate_possible_variants(numbers, target): _calculate_possible_variants(numbers, int(numbers[0]), target, 0, 0, "", []) calculate_possible_variants("123", 6) # 13:20 - not working
3.59375
4
tests/unit/core/test_test_helpers_unit.py
pranav-byte/tight
9
12782996
# Copyright (c) 2017 lululemon athletica Canada inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tight.core.test_helpers as test_helpers from tight.providers.aws.clients import boto3_client def test_no_boom(): assert True, 'Module can be imported.' def test_prepare_pills_record(): test_helpers.prepare_pills('record', 'some/path', boto3_client.session()) boto3_pill = getattr(test_helpers, 'boto3_pill') dynamo_pill = getattr(test_helpers, 'pill') # Do it again and make sure objects are the same test_helpers.prepare_pills('record', 'some/path', boto3_client.session()) boto3_pill_cached = getattr(test_helpers, 'boto3_pill') dynamo_pill_cached = getattr(test_helpers, 'pill') assert boto3_pill == boto3_pill_cached, 'boto3 pill is cached' assert dynamo_pill == dynamo_pill_cached, 'dynamo pill is cached' def test_prepare_pills_playback(): test_helpers.prepare_pills('playback', 'some/path', boto3_client.session()) boto3_pill = getattr(test_helpers, 'boto3_pill') dynamo_pill = getattr(test_helpers, 'pill') # Do it again and make sure objects are the same test_helpers.prepare_pills('playback', 'some/path', boto3_client.session()) boto3_pill_cached = getattr(test_helpers, 'boto3_pill') dynamo_pill_cached = getattr(test_helpers, 'pill') assert boto3_pill == boto3_pill_cached, 'boto3 pill is cached' assert dynamo_pill == dynamo_pill_cached, 'dynamo pill is cached' def test_placebos_path_playback(): result = test_helpers.placebos_path('/some/absolute/path.py', 'my_namespace') assert result == '/some/absolute/placebos/my_namespace' def test_placebos_path_record(tmpdir): test_file = '{}/some_test.py'.format(tmpdir) with open(test_file, 'w') as tmp_test_file: tmp_test_file.write('') tmpdir.mkdir('placebos') result = test_helpers.placebos_path(test_file, 'some_test', mode='record') assert result == '{}/placebos/some_test'.format(tmpdir) assert os.path.isdir(result), 'Namespaced placebos directory exists' def test_placebos_path_record_placebos_exist(tmpdir): test_file = '{}/some_test.py'.format(tmpdir) with open(test_file, 'w') as tmp_test_file: tmp_test_file.write('') tmpdir.mkdir('placebos') result = test_helpers.placebos_path(test_file, 'some_test', mode='record') assert result == '{}/placebos/some_test'.format(tmpdir) assert os.path.isdir(result), 'Namespaced placebos directory exists' disappearing_file = '{}/i_should_not_exist.txt'.format(result) with open(disappearing_file, 'w') as file_to_make_disappear: file_to_make_disappear.write('make me disappear') assert os.listdir(result)[0] == 'i_should_not_exist.txt' result2 = test_helpers.placebos_path(test_file, 'some_test', mode='record') assert len(os.listdir(result2)) == 0
1.984375
2
relevanceai/dataset/io/export/dict.py
RelevanceAI/RelevanceAI
21
12782997
from relevanceai.utils.decorators.analytics import track from relevanceai.dataset.read import Read class DictExport(Read): @track def to_dict(self, orient: str = "records"): """ Returns the raw list of dicts from Relevance AI Parameters ---------- None Returns ------- list of documents in dictionary format Example ------- .. code-block:: from relevanceai import Client client = Client() dataset_id = "sample_dataset_id" df = client.Dataset(dataset_id) dict = df.to_dict(orient="records") """ if orient == "records": return self.get_all_documents() else: raise NotImplementedError
3.03125
3
models/modules.py
LaudateCorpus1/learning-compressible-subspaces
6
12782998
<filename>models/modules.py # # For licensing see accompanying LICENSE file. # Copyright (C) 2021 Apple Inc. All Rights Reserved. # from typing import Union import torch import torch.nn as nn import torch.nn.functional as F # Convolutions StandardConv = nn.Conv2d class SubspaceConv(nn.Conv2d): def forward(self, x): # call get_weight, which samples from the subspace, then use the # corresponding weight. w = self.get_weight() x = F.conv2d( x, w, self.bias, self.stride, self.padding, self.dilation, self.groups, ) return x class TwoParamConv(SubspaceConv): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weight1 = nn.Parameter(torch.zeros_like(self.weight)) def initialize(self, initialize_fn): initialize_fn(self.weight) initialize_fn(self.weight1) class LinesConv(TwoParamConv): def get_weight(self): w = (1 - self.alpha) * self.weight + self.alpha * self.weight1 return w # BatchNorms StandardBN = nn.BatchNorm2d class SubspaceBN(nn.BatchNorm2d): def forward(self, input): # call get_weight, which samples from the subspace, then use the # corresponding weight. w, b = self.get_weight() # The rest is code in the PyTorch source forward pass for batchnorm. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: if self.num_batches_tracked is not None: self.num_batches_tracked = self.num_batches_tracked + 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float( self.num_batches_tracked ) else: # use exponential moving average exponential_average_factor = self.momentum if self.training: bn_training = True else: bn_training = (self.running_mean is None) and ( self.running_var is None ) return F.batch_norm( input, # If buffers are not to be tracked, ensure that they won't be # updated self.running_mean if not self.training or self.track_running_stats else None, self.running_var if not self.training or self.track_running_stats else None, w, b, bn_training, exponential_average_factor, self.eps, ) class TwoParamBN(SubspaceBN): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weight1 = nn.Parameter(torch.empty([self.num_features])) self.bias1 = nn.Parameter(torch.empty([self.num_features])) torch.nn.init.ones_(self.weight1) torch.nn.init.zeros_(self.bias1) class LinesBN(TwoParamBN): def get_weight(self): w = (1 - self.alpha) * self.weight + self.alpha * self.weight1 b = (1 - self.alpha) * self.bias + self.alpha * self.bias1 return w, b # InstanceNorm def StandardIN(*args, affine=True, **kwargs): return nn.InstanceNorm2d(*args, affine=affine, **kwargs) def _process_num_groups(num_groups: Union[str, int], num_channels: int) -> int: if num_groups == "full": num_groups = num_channels # Set it equal to num_features. else: num_groups = int(num_groups) # If num_groups is greater than num_features, we reduce it. num_groups = min(num_channels, num_groups) return num_groups class SubspaceIN(nn.InstanceNorm2d): def __init__( self, num_features: int, eps: float = 1e-5, momentum: float = 0.1, affine: bool = False, track_running_stats: bool = False, ) -> None: # Override @affine to be true. super().__init__( num_features, eps=eps, momentum=momentum, affine=True, track_running_stats=track_running_stats, ) def forward(self, input): # call get_weight, which samples from the subspace, then use the # corresponding weight. w, b = self.get_weight() # The rest is code in the PyTorch source forward pass for instancenorm. assert self.running_mean is None or isinstance( self.running_mean, torch.Tensor ) assert self.running_var is None or isinstance( self.running_var, torch.Tensor ) return F.instance_norm( input, self.running_mean, self.running_var, w, b, self.training or not self.track_running_stats, self.momentum, self.eps, ) class TwoParamIN(SubspaceIN): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weight1 = nn.Parameter(torch.empty([self.num_features])) self.bias1 = nn.Parameter(torch.empty([self.num_features])) torch.nn.init.ones_(self.weight1) torch.nn.init.zeros_(self.bias1) class LinesIN(TwoParamIN): def get_weight(self): w = (1 - self.alpha) * self.weight + self.alpha * self.weight1 b = (1 - self.alpha) * self.bias + self.alpha * self.bias1 return w, b # GroupNorm def StandardGN(*args, affine=True, **kwargs): num_groups = kwargs.pop("num_groups", "full") num_groups = _process_num_groups(num_groups, args[0]) return nn.GroupNorm(num_groups, *args, affine=affine, **kwargs) class SubspaceGN(nn.GroupNorm): def __init__( self, num_features: int, eps: float = 1e-5, *, num_groups: Union[str, int], ) -> None: num_groups = _process_num_groups(num_groups, num_features) # Override @affine to be true. super().__init__( num_groups, num_features, eps=eps, affine=True, ) self.num_features = num_features def forward(self, input): # call get_weight, which samples from the subspace, then use the # corresponding weight. w, b = self.get_weight() return F.group_norm(input, self.num_groups, w, b, self.eps) class TwoParamGN(SubspaceGN): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weight1 = nn.Parameter(torch.empty([self.num_features])) self.bias1 = nn.Parameter(torch.empty([self.num_features])) torch.nn.init.ones_(self.weight1) torch.nn.init.zeros_(self.bias1) class LinesGN(TwoParamGN): def get_weight(self): w = (1 - self.alpha) * self.weight + self.alpha * self.weight1 b = (1 - self.alpha) * self.bias + self.alpha * self.bias1 return w, b def _get_num_parameters(conv): in_channels = conv.in_channels out_channels = conv.out_channels if hasattr(conv, "in_channels_list"): in_channels_ratio = in_channels / max(conv.in_channels_list) out_channels_ratio = out_channels / max(conv.out_channels_list) else: in_channels_ratio = in_channels / conv.in_channels_max out_channels_ratio = out_channels / conv.out_channels_max ret = conv.weight.numel() ret = max(1, round(ret * in_channels_ratio * out_channels_ratio)) return ret # Adaptive modules (which adjust their number of channels at inference time). # This code contains the norm implementation used in our unstructured sparsity # experiments and baselines. Note that normally, we disallow storing or # recomputing BatchNorm statistics. However, we retain the ability to store # individual BatchNorm statistics purely for sanity-checking purposes (to ensure # our implementation produces similar results to the Universal Slimming paper, # when BatchNorms are stored). But, we don't use these results in any analysis. class AdaptiveNorm(nn.modules.batchnorm._NormBase): def __init__( self, bn_class, bn_func, mode, *args, ratio=1, width_factors_list=None, **kwargs, ): assert mode in ("BatchNorm", "InstanceNorm", "GroupNorm") kwargs_cpy = kwargs.copy() try: track_running_stats = kwargs_cpy.pop("track_running_stats") except KeyError: track_running_stats = False try: self.num_groups = kwargs_cpy.pop("num_groups") except KeyError: self.num_groups = None super().__init__( *args, affine=True, track_running_stats=track_running_stats, **kwargs_cpy, ) num_features = args[0] self.width_factors_list = width_factors_list self.num_features_max = num_features if mode == "BatchNorm" and self.width_factors_list is not None: print( f"Storing extra BatchNorm layers. This should only be used" f"for sanity checking, since it violates our goal of" f"arbitrarily fine-grained compression levels at inference" f"time." ) self.bn = nn.ModuleList( [ bn_class(i, affine=False) for i in [ max(1, round(self.num_features_max * width_factor)) for width_factor in self.width_factors_list ] ] ) if mode == "GroupNorm": if self.num_groups is None: raise ValueError("num_groups is required") if self.num_groups not in ("full", 1): # This must be "full" or 1, or the tensor might not be divisible # by @self.num_groups. raise ValueError(f"Invalid num_groups={self.num_groups}") self.ratio = ratio self.width_factor = None self.ignore_model_profiling = True self.bn_func = bn_func self.mode = mode def get_weight(self): return self.weight, self.bias def forward(self, input): weight, bias = self.get_weight() c = input.shape[1] if ( self.mode == "BatchNorm" and self.width_factors_list is not None and self.width_factor in self.width_factors_list ): # Normally, we expect width_factors_list to be empty, because we # only want to use it if we are running sanity checks (e.g. # recreating the original performance or something). idx = self.width_factors_list.index(self.width_factor) kwargs = { "input": input, "running_mean": self.bn[idx].running_mean[:c], "running_var": self.bn[idx].running_var[:c], "weight": weight[:c], "bias": bias[:c], "training": self.training, "momentum": self.momentum, "eps": self.eps, } elif self.mode in ("InstanceNorm", "BatchNorm"): # Sanity check, since we're not tracking running stats. running_mean = self.running_mean if self.running_mean is not None: running_mean = running_mean[:c] running_var = self.running_var if self.running_var is not None: running_var = running_var[:c] kwargs = { "input": input, "running_mean": running_mean, "running_var": running_var, "weight": weight[:c], "bias": bias[:c], "momentum": self.momentum, "eps": self.eps, } if self.mode == "BatchNorm": kwargs["training"] = self.training elif self.mode == "GroupNorm": num_groups = self.num_groups if num_groups == "full": num_groups = c kwargs = { "input": input, "num_groups": num_groups, "weight": weight[:c], "bias": bias[:c], "eps": self.eps, } else: raise NotImplementedError(f"Invalid mode {self.mode}.") return self.bn_func(**kwargs) class AdaptiveBN(AdaptiveNorm): def __init__(self, *args, **kwargs): norm_class = nn.BatchNorm2d norm_func = F.batch_norm super().__init__(norm_class, norm_func, "BatchNorm", *args, **kwargs) class AdaptiveIN(AdaptiveNorm): def __init__(self, *args, **kwargs): norm_class = nn.InstanceNorm2d norm_func = F.instance_norm super().__init__(norm_class, norm_func, "InstanceNorm", *args, **kwargs) class LinesAdaptiveIN(AdaptiveIN): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weight1 = nn.Parameter(torch.Tensor(self.num_features)) self.bias1 = nn.Parameter(torch.Tensor(self.num_features)) torch.nn.init.ones_(self.weight1) torch.nn.init.zeros_(self.bias1) def get_weight(self): w = (1 - self.alpha) * self.weight + self.alpha * self.weight1 b = (1 - self.alpha) * self.bias + self.alpha * self.bias1 return w, b class AdaptiveConv2d(nn.Conv2d): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, first_layer=False, last_layer=False, ratio=None, ): self.first_layer = first_layer self.last_layer = last_layer if ratio is None: ratio = [1, 1] super(AdaptiveConv2d, self).__init__( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, ) if groups == in_channels: assert in_channels == out_channels self.depthwise = True else: self.depthwise = False self.in_channels_max = in_channels self.out_channels_max = out_channels self.width_factor = None self.ratio = ratio def get_weight(self): return self.weight def forward(self, input): if not self.first_layer: self.in_channels = input.shape[1] if not self.last_layer: self.out_channels = max( 1, round(self.out_channels_max * self.width_factor) ) self.groups = self.in_channels if self.depthwise else 1 weight = self.get_weight() weight = weight[: self.out_channels, : self.in_channels, :, :] assert self.bias is None bias = None y = nn.functional.conv2d( input, weight, bias, self.stride, self.padding, self.dilation, self.groups, ) return y def get_num_parameters(self): return _get_num_parameters(self) class LinesAdaptiveConv2d(AdaptiveConv2d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weight1 = nn.Parameter(torch.empty_like(self.weight)) assert self.bias is None torch.nn.init.ones_(self.weight1) def get_weight(self): w = (1 - self.alpha) * self.weight + self.alpha * self.weight1 return w
2.671875
3
scripts/gen_chainercv_test.py
disktnk/chainer-compiler
116
12782999
<reponame>disktnk/chainer-compiler """Tests for ChainerCV related custom ops.""" import chainer import chainer.functions as F import chainer.links as L import numpy as np import onnx import onnx_script import test_case _has_chnainercv = True try: import chainercv_rpn except ImportError: _has_chnainercv = False def aranges(*shape): r = np.prod(shape) v = np.arange(r).reshape(shape).astype(np.float32) v -= r / 2 + 0.1 return v def _get_scales(): return (1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64) def _get_hs(num_channels): hs = [] for h, w in [(200, 272), (100, 136), (50, 68), (25, 34), (13, 17)]: hs.append(aranges(1, num_channels, h, w)) return hs def _get_rpn_locs_confs(): locs = [] confs = [] for i in [163200, 40800, 10200, 2550, 663]: locs.append(aranges(1, i, 4)) confs.append(aranges(1, i)) return locs, confs def chainercv_test_rpn_decode(test_name): rpn = chainercv_rpn.RPN(_get_scales()) hs = _get_hs(1) locs, confs = _get_rpn_locs_confs() anchors = rpn.anchors(h.shape[2:] for h in hs) in_shape = (1, 3, 800, 1088) rois, roi_indices = rpn.decode( [chainer.Variable(l) for l in locs], [chainer.Variable(c) for c in confs], anchors, in_shape) gb = onnx_script.GraphBuilder(test_name) hs_v = [gb.input('hs_%d' % i, h) for i, h in enumerate(hs)] locs_v = [gb.input('loc_%d' % i, l) for i, l in enumerate(locs)] confs_v = [gb.input('conf_%d' % i, c) for i, c in enumerate(confs)] in_shape_v = gb.input('in_shape', np.array(in_shape)) rois_v = 'rois' roi_indices_v = 'roi_indices' gb.ChainerDoSomething(hs_v + locs_v + confs_v + [in_shape_v], outputs=[rois_v, roi_indices_v], function_name='ChainerCVRPNDecode') gb.output(rois_v, rois) gb.output(roi_indices_v, roi_indices) gb.gen_test() class TestCase(test_case.TestCase): def __init__(self, name, func, **kwargs): super(TestCase, self).__init__('out', name, **kwargs) self.func = func def get_tests(): if not _has_chnainercv: return [] tests = [] def test(name, func, **kwargs): tests.append(TestCase(name, func, **kwargs)) test('chainercv_test_rpn_decode', chainercv_test_rpn_decode) return tests
2.1875
2
project/server/__init__.py
mjhea0/flask-challenge
2
12783000
# project/server/__init__.py import os from flask import Flask, make_response, jsonify app = Flask(__name__) app_settings = os.getenv( 'APP_SETTINGS', 'project.server.config.DevelopmentConfig' ) app.config.from_object(app_settings) from project.server.api.routes import api_blueprint app.register_blueprint(api_blueprint) @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST') return response @app.errorhandler(400) def not_found(error): return make_response(jsonify({ 'status': '400', 'error': 'Not found'}), 400) @app.errorhandler(404) def page_not_found(error): return make_response(jsonify({ 'status': '404', 'error': 'Not Found'}), 404) @app.errorhandler(500) def internal_server(error): return make_response(jsonify({ 'status': '500', 'error': 'Something went wrong'}), 500)
2.546875
3
src/full_constraint.py
LC-John/RangeAnalysis
4
12783001
# -*- coding: utf-8 -*- """ Created on Tue Jul 3 13:10:21 2018 @author: DrLC """ from symtab import build_symtab import constraint import cfg import os, sys from interval import interval class FCG(object): def __init__(self, _cfg={}, _main="", _symtab={}): assert _main in _cfg.keys() self.__entry_set_enable = True self.__name = _main main = constraint.CG(_cfg[_main], _symtab[_main], _main) self.__main = main.get_constraint_nodes() self.__entry = self.__entry_reorder(main.get_entry_nodes(), _symtab[_main]['decl']) self.__return = main.get_return_node() self.__call = [] tb_del = [] for i in self.__main: if type(i) is constraint.CallNode: tb_del.append(i) tmp_func_name = i.get_name().strip().split("(")[0].strip() assert tmp_func_name in _cfg.keys() tmp_func_cg = constraint.CG(_cfg[tmp_func_name], _symtab[tmp_func_name], tmp_func_name) self.__call += tmp_func_cg.get_constraint_nodes() tmp_func_entry = self.__entry_reorder(tmp_func_cg.get_entry_nodes(), _symtab[tmp_func_name]['decl']) for en, prv in zip(tmp_func_entry, i.get_prev()): if en is None: continue prv.del_next(i) prv.add_next(en) en.add_prev(prv) tmp_func_return = tmp_func_cg.get_return_node() assert len(i.get_next()) == 1 nxt = i.get_next()[0] nxt.del_prev(i) nxt.add_prev(tmp_func_return) tmp_func_return.add_next(nxt) for i in tb_del: self.__main.remove(i) self.__constraint = self.__main + self.__call self.__simplify() tb_del = [] for i in self.__main: if i not in self.__constraint: tb_del.append(i) for i in tb_del: self.__main.remove(i) tb_del = [] for i in self.__call: if i not in self.__constraint: tb_del.append(i) for i in tb_del: self.__call.remove(i) def __entry_reorder(self, _entry=[], _funcdecl=None): ret = [] for a in _funcdecl.get_args(): match_flag = False for e in _entry: if e.get_name().startswith(a.get_name()): ret.append(e) match_flag = True break if not match_flag: ret.append(None) return ret def __simplify(self): while self.__backward_simplify_iter(): pass while self.__forward_simplify_iter(): pass tb_del = [] for c in self.__constraint: if len(c.get_next()) == 0 and len(c.get_prev()) == 0: tb_del.append(c) for c in tb_del: self.__constraint.remove(c) def __backward_simplify_iter(self): ret = [] for c in self.__constraint: if c.get_prev() == []: continue tb_del_ = [] for prv in c.get_prev(): if prv not in self.__constraint: tb_del_.append(prv) for i in tb_del_: c.del_prev(i) if c.get_prev() == []: ret.append(c) for i in ret: self.__constraint.remove(i) if i in self.__entry: self.__entry.remove(i) if len(ret) == 0: return False else: return True def __forward_simplify_iter(self): ret = [] if self.__return is None: ret = self.__constraint else: for c in self.__constraint: if (type(c) is constraint.VarNode and len(c.get_next()) == 0 and (not self.__return.get_number() == c.get_number())): ret.append(c) for prv in c.get_prev(): prv.del_next(c) for i in ret: self.__constraint.remove(i) if i in self.__entry: self.__entry.remove(i) if len(ret) == 0: return False else: return True def debug(self): print () print ('Full constraint graph ' + self.__name) if len(self.__entry) == 0: print ('No entry') else: print ('Entry: ', end="") for i in self.__entry: print (str(i.get_number()), end=" ") print () if self.__return is None: print ("No return") else: print ("Return: "+str(self.__return.get_number())) if len(self.__constraint) == 0: print ("No constraint") else: print ("Constraint:") for c in self.__constraint: c.debug() def set_entry_range(self, _range={}): assert len(_range) == len(self.__entry) assert self.__entry_set_enable for en, r in zip(self.__entry, _range): if en is None: continue assert en.get_name().startswith(r[2]) for prv in en.get_prev(): self.__constraint.remove(prv) en.clr_prev() tmp_node = constraint.RangeNode(r[0], r[1]) self.__constraint.append(tmp_node) en.add_prev(tmp_node) tmp_node.add_next(en) self.__entry = [] self.__entry_set_enable = False for c in self.__constraint: if type(c) is constraint.RangeNode and len(c.get_prev()) == 0: assert (len(c.get_next()) == 1) if type(c.get_next()[0]) is constraint.VarNode: c.get_next()[0].set_minmax_widen(c.get_interval()) self.__entry.append(c.get_next()[0]) def get_name(self): return self.__name def get_constraint_nodes(self): return self.__main + self.__call def get_entry_nodes(self): return self.__entry def get_return_node(self): return self.__return def print_help(): print () print ("+---------------------------------+") print ("| |") print ("| Full Constraint Graph |") print ("| by DrLC |") print ("| |") print ("+---------------------------------+") print () print ("Transfer .ssa file to constraint graph, and embed the function calling.") print () print ("Use this command to run.") print (" python3 %s [-P|--path SSA_FILE_PATH]" % sys.argv[0]) print () exit(0) def get_op(): args = sys.argv if '-h' in args or '--help' in args: print_help() if len(args) == 1: path = '../benchmark/t9.ssa' elif len(args) == 3 and args[1] in ['-P', '--path']: path = args[2] else: print_help() return path if __name__ == "__main__": path = get_op() sym_tab = build_symtab(path) with open(path, 'r') as f: lines = f.readlines() _cfg_ = {} for key in sym_tab.keys(): _cfg_[key] = cfg.CFG(lines[sym_tab[key]["lines"][1]:sym_tab[key]["lines"][2]], key) cg = FCG(_cfg_, "foo", sym_tab) cg.debug()
2.265625
2
setup.py
FrankLeeeee/powerpack
0
12783002
<reponame>FrankLeeeee/powerpack #!/usr/bin/env python import os import subprocess import time from setuptools import find_packages, setup import omnipack def readme(): with open('README.md', encoding='utf-8') as f: content = f.read() return content if __name__ == '__main__': setup( name='omnipack', version=omnipack.__version__, description='A robust collection of useful scripts', long_description=readme(), long_description_content_type="text/markdown", author='<NAME>', author_email='<EMAIL>', url='https://github.com/FrankLeeeee/powerpack', keywords='Python, scripts', packages=find_packages(), classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], license='Apache License 2.0', install_requires=omnipack.read_lines('requirements/requirements.txt'), zip_safe=False, entry_points={'console_scripts': ['omnipack = omnipack.command:cli']})
1.382813
1
Python/DP/ Word Break II/Word Break II DP BOTTOM UP.py
khanhhuynguyenvu/LeetcodeDaily
0
12783003
<filename>Python/DP/ Word Break II/Word Break II DP BOTTOM UP.py from functools import lru_cache class Solution(object): def wordBreak(self, s, wordDict): wordDict = set(wordDict) n = len(s) dp = [[] for i in range(n + 1)] dp[n] = [[]] ans = [] for i in range(n - 1, -1, -1): for j in range(n, -1, -1): word = s[i:j] if word in wordDict: for post_text in dp[j]: dp[i].append([word] + post_text) return [" ".join(track) for track in dp[0]] main = Solution() print(main.wordBreak("pineapplepenapple", ["apple", "pen", "applepen", "pine", "pineapple"]))
3.484375
3
dleamse/dleamse_faiss_index_writer.py
luoxi123/DLEAMSE
3
12783004
<gh_stars>1-10 # -*- coding:utf-8 -*- import os import sys import unittest import numpy as np import pandas as pd import faiss import ast import click DEFAULT_IVF_NLIST = 100 class FaissWriteIndex: def __init__(self): self.tmp = None print("Initialized a faiss index class.") def create_index_for_embedded_spectra(self, database_usi_ids_file, ids_embedded_spectra_path,output_path): """ Create index embedded spectra :param database_ids_file: :param ids_embedded_spectra_path: :param output_path: :return: """ raw_ids, raw_usi, embedded_file_list = [], [], [] if os.path.exists(database_usi_ids_file): database_data = pd.read_csv(database_usi_ids_file, index_col=None) database_ids = database_data["ids"].values.tolist() database_usi = database_data["usi"].values.tolist() # database_ids = np.load(database_ids_file).tolist() else: database_ids, database_usi = [], [] print("\"" + database_usi_ids_file + " \" does not exist, it will be created!") index = self.make_faiss_index_ivf64() if str(ids_embedded_spectra_path).endswith("/"): dir_path = ids_embedded_spectra_path else: dir_path = ids_embedded_spectra_path + "/" embedded_spectra_file_list = os.listdir(ids_embedded_spectra_path) for i in range(len(embedded_spectra_file_list)): if embedded_spectra_file_list[i].endswith("_embedded.txt"): embedded_file_list.append(embedded_spectra_file_list[i]) for j in range(len(embedded_file_list)): embedded_spectra_data = pd.read_csv(dir_path + embedded_file_list[j], sep="\t", index_col=None) ids_data = embedded_spectra_data["ids"].values usi_data = embedded_spectra_data["usi"].values.tolist() spectra_vectors = embedded_spectra_data["embedded_spectra"].values tmp_data = [] for vec in spectra_vectors: tmp_data.append(ast.literal_eval(vec)) tmp_spectra_vectors = np.vstack(tmp_data) tmp_data.clear() # Self checking self_update_id_bool = False if len(ids_data.tolist()) != len(set(ids_data.tolist())): self_update_new_ids = [] self_raw_ids_dict = dict.fromkeys(ids_data.tolist()) for self_new_id in ids_data: self_tmp_id = self_new_id while self_raw_ids_dict.keys().__contains__(self_tmp_id): self_tmp_id += 1 if self_tmp_id != self_new_id: self_update_id_bool = True self_update_new_ids.append(self_tmp_id) print("Need to self-update ids? {}".format(self_update_id_bool)) # Check with database_ids final_ids, update_id_bool = self.check_ids_with_database(database_ids, self_update_new_ids) else: # Check with database_ids final_ids, update_id_bool = self.check_ids_with_database(database_ids, ids_data.tolist()) if update_id_bool is True or self_update_id_bool is True: update_ids_df = pd.DataFrame({"ids": final_ids}) ids_vstack_df = pd.concat([update_ids_df, embedded_spectra_data["usi"], embedded_spectra_data["embedded_spectra"]], axis=1) store_embed_new_file = dir_path + str(embedded_file_list[j]).strip('embedded.txt') + 'new_ids_embedded.txt' ids_vstack_df.to_csv(store_embed_new_file, sep="\t", header=True, index=None, columns=["ids", "usi", "embedded_spectra"]) print("Update ids for " + str(embedded_file_list[j]) + ", and save in new file:" + store_embed_new_file) # index train and add_with_ids index.train(tmp_spectra_vectors.astype('float32')) index.add_with_ids(tmp_spectra_vectors.astype('float32'), np.array(final_ids)) raw_ids.extend(final_ids) raw_usi.extend(usi_data) database_ids.extend(final_ids) database_usi.extend(usi_data) print("Wrote all database usi and ids to {}".format(database_usi_ids_file)) new_database_data = pd.DataFrame({"ids": database_ids, "usi": database_usi}, columns=["ids", "usi"]) new_database_data.to_csv(database_usi_ids_file, header=True, index=False) print("output_path***",output_path) if "../" in output_path: ids_save_file = ".."+output_path.strip('.index') + '_ids_usi.csv' else: ids_save_file = output_path.strip('index').strip(".") + '_ids_usi.csv' print("ids_save_file***",ids_save_file) print("Wrote FAISS index usi and ids to {}".format(ids_save_file)) new_data_df = pd.DataFrame({"ids": raw_ids, "usi": raw_usi}) new_data_df.to_csv(ids_save_file, header=True, index=False) self.write_faiss_index(index, output_path) def merge_indexes(self, input_indexes, output): """ :param input_indexes: :param output: :return: """ all_ids_usi = None index = None i = 0 for input_index in input_indexes: dirname, filename = os.path.split(os.path.abspath(input_index)) # ids # ids_file = input_index.strip(".index")+ "_ids.npy" ids_file = dirname + "/" + filename.strip('.index') + "_ids_usi.csv" ids_usi_data = pd.read_csv(ids_file, index_col=None) if i == 0: all_ids_usi = ids_usi_data i += 1 else: all_ids_usi = pd.concat([all_ids_usi, ids_usi_data]) # index input_index_data = faiss.read_index(input_index) if not index: index = input_index_data else: num = ids_usi_data.shape[0] index.merge_from(input_index_data, num) # Wrote to output file # output_path, output_file = os.path.split(os.path.abspath(output)) dirname, filename = os.path.split(os.path.abspath(output)) ids_save_file = dirname + "/" + filename.strip('.index') + '_ids_usi.csv' # ids_save_file = output_path + "/" + output.strip('.index') + '_ids.npy' all_ids_usi.to_csv(ids_save_file, index=None) print("Wrote FAISS index database ids to {}".format(ids_save_file)) self.write_faiss_index(index, output) def check_ids_with_database(self, database_ids, self_update_new_ids): # Check with database_ids update_id_bool = False final_ids, update_new_ids = [], [] if len(database_ids) != 0: raw_ids_dict = dict.fromkeys(database_ids) for new_id in self_update_new_ids: tmp_id = new_id while raw_ids_dict.keys().__contains__(tmp_id): tmp_id += 1 if tmp_id != new_id: update_id_bool = True update_new_ids.append(tmp_id) final_ids = update_new_ids print("Need to update ids? {}".format(update_id_bool)) else: final_ids = self_update_new_ids return final_ids, update_id_bool def make_faiss_index_flat(self, n_dimensions, index_type='ivfflat'): """ Make a fairly general-purpose FAISS index :param n_dimensions: :param index_type: Type of index to build: flat or ivfflat. ivfflat is much faster. :return: """ print("Making index of type {}".format(index_type)) # if faiss.get_num_gpus(): # gpu_resources = faiss.StandardGpuResources() # if index_type == 'flat': # config = faiss.GpuIndexFlatConfig() # index = faiss.GpuIndexFlatL2(gpu_resources, n_dimensions, config) # elif index_type == 'ivfflat': # config = faiss.GpuIndexIVFFlatConfig() # index = faiss.GpuIndexIVFFlat(gpu_resources, n_dimensions, DEFAULT_IVF_NLIST, faiss.METRIC_L2, config) # else: # raise ValueError("Unknown index_type %s" % index_type) # else: print("Using CPU.") if index_type == 'flat': index = faiss.IndexFlatL2(n_dimensions) elif index_type == 'ivfflat': quantizer = faiss.IndexFlatL2(n_dimensions) index = faiss.IndexIVFFlat(quantizer, n_dimensions, DEFAULT_IVF_NLIST, faiss.METRIC_L2) else: raise ValueError("Unknown index_type %s" % index_type) return index def make_faiss_index_idmap(self, n_dimensions): """ Make a fairly general-purpose FAISS index :param n_dimensions: :return: """ print("Making index ...") tmp_index = faiss.IndexFlatL2(n_dimensions) index = faiss.IndexIDMap(tmp_index) return index def make_faiss_index_ivf64(self): """ Save a FAISS index. If we're on GPU, have to convert to CPU index first :return: """ index = faiss.index_factory(32, "IVF64,Flat") return index def write_faiss_index(self, index, out_filepath): """ Save a FAISS index. If we're on GPU, have to convert to CPU index first :param out_filepath: :param index: :return: """ # if faiss.get_num_gpus(): # print("Converting index from GPU to CPU...") # index = faiss.index_gpu_to_cpu(index) faiss.write_index(index, out_filepath) print("Wrote FAISS index to {}".format(out_filepath)) def read_faiss_index_gpu(self, index_filepath): """ Load a FAISS index. If we're on GPU, then convert it to GPU index :param index_filepath: :return: """ print("read_faiss_index start.") index = faiss.read_index(index_filepath) if faiss.get_num_gpus(): print("read_faiss_index: Converting FAISS index from CPU to GPU.") index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), 0, index) return index
2.515625
3
flyrc/numeric.py
mrflea/flyrc
0
12783005
# This is based upon numerics returned from the Charybdis ircd, which # complies with RFC numerics. # Numerics 001 .. 099 are sent from the server to a local client. RPL_WELCOME = "001" RPL_YOURHOST = "002" RPL_CREATED = "003" RPL_MYINFO = "004" RPL_ISUPPORT = "005" RPL_SNOMASK = "008" RPL_REDIR = "010" RPL_MAP = "015" RPL_MAPMORE = "016" RPL_MAPEND = "017" RPL_SAVENICK = "043" # Numerics 200 .. 399 are sent as replies to commands executed by the client. RPL_TRACELINK = "200" RPL_TRACECONNECTING = "201" RPL_TRACEHANDSHAKE = "202" RPL_TRACEUNKNOWN = "203" RPL_TRACEOPERATOR = "204" RPL_TRACEUSER = "205" RPL_TRACESERVER = "206" RPL_TRACENEWTYPE = "208" RPL_TRACECLASS = "209" RPL_STATSLINKINFO = "211" RPL_STATSCOMMANDS = "212" RPL_STATSCLINE = "213" RPL_STATSNLINE = "214" RPL_STATSILINE = "215" RPL_STATSKLINE = "216" RPL_STATSQLINE = "217" RPL_STATSYLINE = "218" RPL_ENDOFSTATS = "219" RPL_STATSPLINE = "220" RPL_UMODEIS = "221" RPL_STATSFLINE = "224" RPL_STATSDLINE = "225" RPL_SERVLIST = "234" RPL_SERVLISTEND = "235" RPL_STATSLLINE = "241" RPL_STATSUPTIME = "242" RPL_STATSOLINE = "243" RPL_STATSHLINE = "244" RPL_STATSSLINE = "245" RPL_STATSXLINE = "247" RPL_STATSULINE = "248" RPL_STATSDEBUG = "249" RPL_STATSCONN = "250" RPL_LUSERCLIENT = "251" RPL_LUSEROP = "252" RPL_LUSERUNKNOWN = "253" RPL_LUSERCHANNELS = "254" RPL_LUSERME = "255" RPL_ADMINME = "256" RPL_ADMINLOC1 = "257" RPL_ADMINLOC2 = "258" RPL_ADMINEMAIL = "259" RPL_TRACELOG = "261" RPL_ENDOFTRACE = "262" RPL_LOAD2HI = "263" RPL_LOCALUSERS = "265" RPL_GLOBALUSERS = "266" RPL_PRIVS = "270" RPL_WHOISCERTFP = "276" RPL_ACCEPTLIST = "281" RPL_ENDOFACCEPT = "282" RPL_NONE = "300" RPL_AWAY = "301" RPL_USERHOST = "302" RPL_ISON = "303" RPL_TEXT = "304" RPL_UNAWAY = "305" RPL_NOWAWAY = "306" RPL_WHOISUSER = "311" RPL_WHOISSERVER = "312" RPL_WHOISOPERATOR = "313" RPL_WHOWASUSER = "314" RPL_ENDOFWHOWAS = "369" RPL_WHOISCHANOP = "316" RPL_WHOISIDLE = "317" RPL_ENDOFWHOIS = "318" RPL_WHOISCHANNELS = "319" RPL_LISTSTART = "321" RPL_LIST = "322" RPL_LISTEND = "323" RPL_CHANNELMODEIS = "324" RPL_CHANNELMLOCK = "325" RPL_CHANNELURL = "328" RPL_CREATIONTIME = "329" RPL_WHOISLOGGEDIN = "330" RPL_NOTOPIC = "331" RPL_TOPIC = "332" RPL_TOPICWHOTIME = "333" RPL_WHOISACTUALLY = "338" RPL_INVITING = "341" RPL_SUMMONING = "342" RPL_INVITELIST = "346" RPL_ENDOFINVITELIST = "347" RPL_EXCEPTLIST = "348" RPL_ENDOFEXCEPTLIST = "349" RPL_VERSION = "351" RPL_WHOREPLY = "352" RPL_WHOSPCRPL = "354" RPL_ENDOFWHO = "315" RPL_NAMREPLY = "353" RPL_WHOWASREAL = "360" RPL_ENDOFNAMES = "366" RPL_KILLDONE = "361" RPL_CLOSING = "362" RPL_CLOSEEND = "363" RPL_LINKS = "364" RPL_ENDOFLINKS = "365" RPL_BANLIST = "367" RPL_ENDOFBANLIST = "368" RPL_INFO = "371" RPL_MOTD = "372" RPL_INFOSTART = "373" RPL_ENDOFINFO = "374" RPL_MOTDSTART = "375" RPL_ENDOFMOTD = "376" RPL_WHOISHOST = "378" RPL_YOUREOPER = "381" RPL_REHASHING = "382" RPL_MYPORTIS = "384" RPL_NOTOPERANYMORE = "385" RPL_RSACHALLENGE = "386" RPL_TIME = "391" RPL_USERSSTART = "392" RPL_USERS = "393" RPL_ENDOFUSERS = "394" RPL_NOUSERS = "395" RPL_HOSTHIDDEN = "396" # Numerics 400 .. 599 are errors for commands. ERR_NOSUCHNICK = "401" ERR_NOSUCHSERVER = "402" ERR_NOSUCHCHANNEL = "403" ERR_CANNOTSENDTOCHAN = "404" ERR_TOOMANYCHANNELS = "405" ERR_WASNOSUCHNICK = "406" ERR_TOOMANYTARGETS = "407" ERR_NOORIGIN = "409" ERR_INVALIDCAPCMD = "410" ERR_NORECIPIENT = "411" ERR_NOTEXTTOSEND = "412" ERR_NOTOPLEVEL = "413" ERR_WILDTOPLEVEL = "414" ERR_TOOMANYMATCHES = "416" ERR_UNKNOWNCOMMAND = "421" ERR_NOMOTD = "422" ERR_NOADMININFO = "423" ERR_FILEERROR = "424" ERR_NONICKNAMEGIVEN = "431" ERR_ERRONEUSNICKNAME = "432" ERR_NICKNAMEINUSE = "433" ERR_BANNICKCHANGE = "435" ERR_NICKCOLLISION = "436" ERR_UNAVAILRESOURCE = "437" ERR_NICKTOOFAST = "438" ERR_SERVICESDOWN = "440" ERR_USERNOTINCHANNEL = "441" ERR_NOTONCHANNEL = "442" ERR_USERONCHANNEL = "443" ERR_NOLOGIN = "444" ERR_SUMMONDISABLED = "445" ERR_USERSDISABLED = "446" ERR_NOTREGISTERED = "451" ERR_ACCEPTFULL = "456" ERR_ACCEPTEXIST = "457" ERR_ACCEPTNOT = "458" ERR_NEEDMOREPARAMS = "461" ERR_ALREADYREGISTRED = "462" ERR_NOPERMFORHOST = "463" ERR_PASSWDMISMATCH = "464" ERR_YOUREBANNEDCREEP = "465" ERR_YOUWILLBEBANNED = "466" ERR_KEYSET = "467" ERR_LINKCHANNEL = "470" ERR_CHANNELISFULL = "471" ERR_UNKNOWNMODE = "472" ERR_INVITEONLYCHAN = "473" ERR_BANNEDFROMCHAN = "474" ERR_BADCHANNELKEY = "475" ERR_BADCHANMASK = "476" ERR_NEEDREGGEDNICK = "477" ERR_BANLISTFULL = "478" ERR_BADCHANNAME = "479" ERR_THROTTLE = "480" ERR_NOPRIVILEGES = "481" ERR_CHANOPRIVSNEEDED = "482" ERR_CANTKILLSERVER = "483" ERR_ISCHANSERVICE = "484" ERR_BANNEDNICK = "485" ERR_NONONREG = "486" ERR_VOICENEEDED = "489" ERR_NOOPERHOST = "491" ERR_OWNMODE = "494" ERR_UMODEUNKNOWNFLAG = "501" ERR_USERSDONTMATCH = "502" ERR_GHOSTEDCLIENT = "503" ERR_USERNOTONSERV = "504" ERR_WRONGPONG = "513" ERR_DISABLED = "517" ERR_HELPNOTFOUND = "524" # Numerics 600 .. 999: assorted extended numerics. RPL_WHOISSECURE = "671" RPL_MODLIST = "702" RPL_ENDOFMODLIST = "703" RPL_HELPSTART = "704" RPL_HELPTXT = "705" RPL_ENDOFHELP = "706" ERR_TARGCHANGE = "707" RPL_ETRACEFULL = "708" RPL_ETRACE = "709" RPL_KNOCK = "710" RPL_KNOCKDLVR = "711" ERR_TOOMANYKNOCK = "712" ERR_CHANOPEN = "713" ERR_KNOCKONCHAN = "714" ERR_KNOCKDISABLED = "715" ERR_TARGUMODEG = "716" RPL_TARGNOTIFY = "717" RPL_UMODEGMSG = "718" RPL_OMOTDSTART = "720" RPL_OMOTD = "721" RPL_ENDOFOMOTD = "722" ERR_NOPRIVS = "723" RPL_TESTMASK = "724" RPL_TESTLINE = "725" RPL_NOTESTLINE = "726" RPL_TESTMASKGECOS = "727" RPL_QUIETLIST = "728" RPL_ENDOFQUIETLIST = "729" RPL_MONONLINE = "730" RPL_MONOFFLINE = "731" RPL_MONLIST = "732" RPL_ENDOFMONLIST = "733" ERR_MONLISTFULL = "734" RPL_RSACHALLENGE2 = "740" RPL_ENDOFRSACHALLENGE2 = "741" ERR_MLOCKRESTRICTED = "742" RPL_SCANMATCHED = "750" RPL_SCANUMODES = "751" RPL_LOGGEDIN = "900" RPL_LOGGEDOUT = "901" ERR_NICKLOCKED = "902" RPL_SASLSUCCESS = "903" ERR_SASLFAIL = "904" ERR_SASLTOOLONG = "905" ERR_SASLABORTED = "906" ERR_SASLALREADY = "907" ERR_LAST_ERR_MSG = "999"
1.625
2
crc/scripts/failing_script.py
sartography/cr-connect-workflow
2
12783006
from crc.scripts.script import Script from crc.services.failing_service import FailingService class FailingScript(Script): def get_description(self): return """It fails""" def do_task_validate_only(self, task, *args, **kwargs): pass def do_task(self, task, *args, **kwargs): FailingService.fail_as_service()
2.359375
2
booktoshare.py
gozik/booktoshare
0
12783007
<filename>booktoshare.py import click from flask import current_app from app import db, create_app from app.models.auth import User, Role from app.models.books import Book def register(app): @app.cli.command("create_admin") @click.argument("password") def create_admin(password): pass # TODO app = create_app() register(app) @app.shell_context_processor def make_shell_context(): return {'db': db, 'User': User, 'Book': Book}
2.09375
2
distances/migrations/0001_initial.py
tkettu/rokego
0
12783008
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-21 14:57 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Exercise', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sport', models.CharField(choices=[('SK', 'Skiing'), ('RU', 'Running'), ('CY', 'Cycling')], default='RU', max_length=2)), ('time', models.TimeField()), ('distance', models.DecimalField(decimal_places=2, max_digits=6)), ], ), ]
1.78125
2
server/models/base.py
AndrewIjano/distributed-tic-tac-toe
0
12783009
class BaseModel: @property def key(self): raise NotImplementedError() def serialize(self): return vars(self)
2.296875
2
matrix operation.py
Arjitg450/Python-Programs
0
12783010
<reponame>Arjitg450/Python-Programs<filename>matrix operation.py<gh_stars>0 import numpy as np names=['arjit','brett','chetan','deval','farukh','govind','harshit'] ndict={'arjit':'0','brett':'1','chetan':'2','deval':'3','farukh':'4', 'govind':'5','harshit':'6'} year=['2010','2011','2012','2013','2014','2015','2016'] ydict={'2010':'0','2011':'1','2012':'2','2013':'3','2014':'4','2015':'5', '2016':'6'} #marksobtained_in_english arjit=[90.3,88,22,56,78,89,85] brett=[23,81,23,56,73,86,84] chetan=[23,81,23,56,73,86,84] deval=[23,81,23,56,73,86,84] farukh=[23,81,23,56,73,86,84] govind=[23,81,23,56,73,86,84] harshit=[23,81,23,56,73,86,84] marksobtained_in_english=np.array([arjit,brett,chetan,deval,farukh,govind,harshit]) #marksobtained_in_maths arjit=[90.3,88,22,56,78,89,85] brett=[23,81,23,56,73,86,84] chetan=[23,81,23,56,73,86,84] deval=[23,81,23,56,73,86,84] farukh=[23,81,23,56,73,86,84] govind=[23,81,23,56,73,86,84] harshit=[23,81,23,56,73,86,84] marksobtained_in_maths=np.array([arjit,brett,chetan,deval,farukh,govind,harshit]) print((marksobtained_in_maths + marksobtained_in_english/200)*100) print(marksobtained[0][4])
2.953125
3
libhandy/lists/switches.py
jeteokeeffe/gtk-python-examples
0
12783011
import gi gi.require_version('Handy', '0.0') gi.require_version('Gtk', '3.0') from gi.repository import Gtk, Handy class MyWindow(Gtk.Window): def __init__(self): # https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Window.html Gtk.Window.__init__(self) self.set_title("Switches Example") self.connect("destroy", Gtk.main_quit) self.set_size_request(350, 350) # Create List Box # https://lazka.github.io/pgi-docs/Gtk-3.0/classes/ListBox.html box = Gtk.ListBox() box.set_selection_mode(Gtk.SelectionMode.NONE) # use the libhandy function to add separators to listbox rows # https://lazka.github.io/pgi-docs/#Handy-0.0/functions.html#Handy.list_box_separator_header box.set_header_func(Handy.list_box_separator_header) # Add some rows box.add(self.addrow("London")) box.add(self.addrow("Berlin")) box.add(self.addrow("Prague")) # Add List box to main window self.add(box) def addrow(self, title): # https://lazka.github.io/pgi-docs/#Handy-0.0/classes/ActionRow.html row = Handy.ActionRow() row.set_title(title) # Add action to row switch = Gtk.Switch.new() switch.set_valign(Gtk.Align.CENTER) row.add_action(switch) return row # https://lazka.github.io/pgi-docs/#Handy-0.0/functions.html#Handy.init Handy.init() window = MyWindow() window.show_all() Gtk.main()
2.671875
3
convert sph.py
mn270/Recognition-phenomena-TIMIT-
0
12783012
<reponame>mn270/Recognition-phenomena-TIMIT-<filename>convert sph.py from sphfile import SPHFile import glob import os """"Convert SPH file to wav""" dialects_path = "/home/marcin/Pobrane/TIMIT" root_dir = os.path.join(dialects_path, '**/*.WAV') wav_files = glob.glob(root_dir, recursive=True) for wav_file in wav_files: sph = SPHFile(wav_file) txt_file = "" txt_file = wav_file[:-3] + "TXT" f = open(txt_file,'r') for line in f: words = line.split(" ") start_time = (int(words[0])/16000) end_time = (int(words[1])/16000) print("writing file ", wav_file) sph.write_wav(wav_file.replace(".WAV",".wav"),start_time,end_time)
3.078125
3
background/urls.py
Ultimatum22/MediaPanel
0
12783013
<reponame>Ultimatum22/MediaPanel<filename>background/urls.py from django.conf.urls import url, patterns from background import views urlpatterns = patterns('', url(r'^$', views.index, name='index'), url(r'^update/', views.update), )
1.6875
2
arachne/resources/interface.py
shrine-maiden-heavy-industries/arachne
3
12783014
<filename>arachne/resources/interface.py<gh_stars>1-10 # SPDX-License-Identifier: BSD-3-Clause from amaranth.build import * from . import assert_width __all__ = ( 'JTAGResource', 'EthernetResource', 'CANResource', ) def JTAGResource(*args, tck, tms, tdi, tdo, conn = None, attrs = None): ios = [ Subsignal('tck', Pins(tck, dir = 'i', conn = conn, assert_width = 1)), Subsignal('tms', Pins(tms, dir = 'i', conn = conn, assert_width = 1)), Subsignal('tdi', Pins(tdi, dir = 'i', conn = conn, assert_width = 1)), Subsignal('tdo', Pins(tdo, dir = 'oe', conn = conn, assert_width = 1)), ] if attrs is not None: ios.append(attrs) return Resource.family(*args, default_name = 'jtag', ios = ios) def EthernetResource(*args, rxck, rxd, txck, txd, rx_dv = None, rx_err = None, rx_ctl = None, tx_en = None, tx_err = None, tx_ctl = None, col = None, crs = None, mdc = None, mdio = None, conn = None, attrs = None, mdio_attrs = None): assert_width(rxd, (4, 8)) assert_width(txd, (4, 8)) ios = [ Subsignal('rx_clk', Pins(rxck, dir = 'i', conn = conn, assert_width = 1)), Subsignal('rx_dat', Pins(rxd, dir = 'i', conn = conn)), Subsignal('tx_clk', Pins(txck, dir = 'i', conn = conn, assert_width = 1)), Subsignal('tx_dat', Pins(txd, dir = 'o', conn = conn)), ] if rx_dv is not None and rx_err is not None: assert rx_ctl is None ios.append(Subsignal('rx_dv', Pins(rx_dv, dir = 'i', conn = conn, assert_width = 1))) ios.append(Subsignal('rx_err', Pins(rx_err, dir = 'i', conn = conn, assert_width = 1))) elif rx_ctl is not None: ios.append(Subsignal('rx_ctl', Pins(rx_ctl, dir = 'i', conn = conn, assert_width = 1))) else: raise AssertionError('Must specify either MII RXDV + RXER pins or RGMII RXCTL') if tx_en is not None and tx_err is not None: assert tx_ctl is None ios.append(Subsignal('tx_en', Pins(tx_en, dir = 'o', conn = conn, assert_width = 1))) ios.append(Subsignal('tx_err', Pins(tx_err, dir = 'o', conn = conn, assert_width = 1))) if col is not None: ios.append(Subsignal('col', Pins(col, dir = 'i', conn = conn, assert_width = 1))) if crs is not None: ios.append(Subsignal('crs', Pins(crs, dir = 'i', conn = conn, assert_width = 1))) elif tx_ctl is not None: assert col is None and crs is None ios.append(Subsignal('tx_ctl', Pins(tx_ctl, dir = 'o', conn = conn, assert_width = 1))) else: raise AssertionError('Must specify either MII TXDV + TXER pins or RGMII TXCTL') assert (rx_dv is not None and rx_err is not None) == (tx_en is not None and tx_err is not None) assert (rx_ctl is not None) == (tx_ctl is not None) if mdc is not None and mdio is not None: ios.append(Subsignal('mdc', Pins(mdc, dir = 'o', conn = conn, assert_width = 1), mdio_attrs)) ios.append(Subsignal('mdio', Pins(mdio, dir = 'io', conn = conn, assert_width = 1), mdio_attrs)) if attrs is not None: ios.append(attrs) return Resource.family(*args, default_name = 'eth', ios = ios) def CANResource(*args, rx, tx, conn = None, attrs = None): ios = [ Subsignal('rx', Pins(rx, dir = 'o', conn = conn)), Subsignal('tx', Pins(tx, dir = 'o', conn = conn)), ] if attrs is not None: ios.append(attrs) return Resource.family(*args, default_name = 'can', ios = ios)
1.96875
2
src/common/lie/numpy/__init__.py
yewzijian/MultiReg
3
12783015
from .liegroupbase import LieGroupBase from .so3 import SO3 from .so3q import SO3q from .se3 import SE3 from .se3q import SE3q
1.007813
1
events/migrations/0001_initial.py
Akash1S/meethub
428
12783016
# Generated by Django 2.0.4 on 2018-04-21 15:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, unique=True)), ('description', models.TextField(max_length=500)), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('post', models.TextField(max_length=500)), ('created_date', models.DateField(auto_now=True)), ('created_time', models.TimeField(auto_now=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('created_date', 'created_time'), }, ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('details', models.TextField(max_length=1000)), ('venue', models.CharField(max_length=50)), ('date', models.DateField(help_text='Please use the following format: <em>YYYY-MM-DD</em>.')), ('time', models.TimeField()), ('attendees', models.ManyToManyField(blank=True, related_name='attending', to=settings.AUTH_USER_MODEL)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='events', to='events.Category')), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'events', 'verbose_name': 'event', }, ), migrations.AddField( model_name='comment', name='event', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='events.Event'), ), ]
1.867188
2
src/validate_plist_xml/__init__.py
jgstew/validate_plist_xml
0
12783017
""" To support validate_plist_xml as module """ from .validate_plist_xml import main __version__ = "1.0.4"
1.164063
1
kenchi/plotting.py
Y-oHr-N/kenchi
19
12783018
<filename>kenchi/plotting.py import numpy as np from scipy.stats import gaussian_kde from sklearn.metrics import auc, roc_curve from sklearn.utils.validation import check_array, check_symmetric, column_or_1d __all__ = [ 'plot_anomaly_score', 'plot_graphical_model', 'plot_partial_corrcoef', 'plot_roc_curve' ] def plot_anomaly_score( anomaly_score, ax=None, bins='auto', figsize=None, filename=None, hist=True, kde=True, threshold=None, title=None, xlabel='Samples', xlim=None, ylabel='Anomaly score', ylim=None, **kwargs ): """Plot the anomaly score for each sample. Parameters ---------- anomaly_score : array-like of shape (n_samples,) Anomaly score for each sample. ax : matplotlib Axes, default None Target axes instance. bins : int, str or array-like, default 'auto' Number of hist bins. figsize : tuple, default None Tuple denoting figure size of the plot. filename : str, default None If provided, save the current figure. hist : bool, default True If True, plot a histogram of anomaly scores. kde : bool, default True If True, plot a gaussian kernel density estimate. threshold : float, default None Threshold. title : string, default None Axes title. To disable, pass None. xlabel : string, default 'Samples' X axis title label. To disable, pass None. xlim : tuple, default None Tuple passed to ``ax.xlim``. ylabel : string, default 'Anomaly score' Y axis title label. To disable, pass None. ylim : tuple, default None Tuple passed to ``ax.ylim``. **kwargs : dict Other keywords passed to ``ax.plot``. Returns ------- ax : matplotlib Axes Axes on which the plot was drawn. Examples -------- >>> import matplotlib.pyplot as plt >>> from kenchi.datasets import load_wdbc >>> from kenchi.outlier_detection import MiniBatchKMeans >>> from kenchi.plotting import plot_anomaly_score >>> X, _ = load_wdbc(random_state=0, return_X_y=True) >>> det = MiniBatchKMeans(random_state=0).fit(X) >>> anomaly_score = det.anomaly_score(X, normalize=True) >>> plot_anomaly_score( ... anomaly_score, threshold=det.threshold_, linestyle='', marker='.' ... ) # doctest: +ELLIPSIS <matplotlib.axes._subplots.AxesSubplot object at 0x...> >>> plt.show() # doctest: +SKIP .. figure:: images/plot_anomaly_score.png """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable def _get_ax_hist(ax): locator = ax.get_axes_locator() if locator is None: # Create an axes on the right side of ax divider = make_axes_locatable(ax) ax_hist = divider.append_axes( 'right', '20%', pad=0.1, sharey=ax ) return ax_hist for ax_hist in ax.get_figure().get_axes(): locator_hist = ax_hist.get_axes_locator() if ax_hist is ax: continue if locator_hist is None: continue if locator_hist._axes_divider is locator._axes_divider: return ax_hist anomaly_score = column_or_1d(anomaly_score) if ax is None: _, ax = plt.subplots(figsize=figsize) ax.grid(True, linestyle=':') if xlim is None: n_samples, = anomaly_score.shape xlim = (0., n_samples - 1.) ax.set_xlim(xlim) if ylim is None: ylim = (0., 1.05 * np.max(anomaly_score)) ax.set_ylim(ylim) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) line, = ax.plot(anomaly_score, **kwargs) color = line.get_color() if threshold is not None: ax.hlines(threshold, xlim[0], xlim[1], color=color) if hist or kde: ax_hist = _get_ax_hist(ax) ax_hist.grid(True, linestyle=':') ax_hist.tick_params(axis='y', labelleft=False) ax_hist.set_ylim(ylim) if hist: # Draw a histogram ax_hist.hist( anomaly_score, alpha = 0.4, bins = bins, color = color, density = True, orientation = 'horizontal' ) if kde: kernel = gaussian_kde(anomaly_score) ylocs = np.linspace(ylim[0], ylim[1]) # Draw a gaussian kernel density estimate ax_hist.plot(kernel(ylocs), ylocs, color=color) if 'label' in kwargs: ax.legend(loc='upper left') if filename is not None: ax.get_figure().savefig(filename) return ax def plot_roc_curve( y_true, y_score, ax=None, figsize=None, filename=None, title='ROC curve', xlabel='FPR', ylabel='TPR', **kwargs ): """Plot the Receiver Operating Characteristic (ROC) curve. Parameters ---------- y_true : array-like of shape (n_samples,) True Labels. y_score : array-like of shape (n_samples,) Target scores. ax : matplotlib Axes, default None Target axes instance. figsize : tuple, default None Tuple denoting figure size of the plot. filename : str, default None If provided, save the current figure. title : string, default 'ROC curve' Axes title. To disable, pass None. xlabel : string, default 'FPR' X axis title label. To disable, pass None. ylabel : string, default 'TPR' Y axis title label. To disable, pass None. **kwargs : dict Other keywords passed to ``ax.plot``. Returns ------- ax : matplotlib Axes Axes on which the plot was drawn. Examples -------- >>> import matplotlib.pyplot as plt >>> from kenchi.datasets import load_wdbc >>> from kenchi.outlier_detection import MiniBatchKMeans >>> from kenchi.plotting import plot_roc_curve >>> X, y = load_wdbc(random_state=0, return_X_y=True) >>> det = MiniBatchKMeans(random_state=0).fit(X) >>> score_samples = det.score_samples(X) >>> plot_roc_curve(y, score_samples) # doctest: +ELLIPSIS <matplotlib.axes._subplots.AxesSubplot object at 0x...> >>> plt.show() # doctest: +SKIP .. figure:: images/plot_roc_curve.png """ import matplotlib.pyplot as plt fpr, tpr, _ = roc_curve(y_true, y_score) roc_auc = auc(fpr, tpr) if ax is None: _, ax = plt.subplots(figsize=figsize) ax.grid(True, linestyle=':') ax.set_xlim(0., 1.) ax.set_ylim(0., 1.05) if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if 'label' in kwargs: kwargs['label'] += f' (area={roc_auc:1.3f})' else: kwargs['label'] = f'area={roc_auc:1.3f}' ax.plot(fpr, tpr, **kwargs) ax.legend(loc='lower right') if filename is not None: ax.get_figure().savefig(filename) return ax def plot_graphical_model( G, ax=None, figsize=None, filename=None, random_state=None, title='GGM', **kwargs ): """Plot the Gaussian Graphical Model (GGM). Parameters ---------- G : networkx Graph GGM. ax : matplotlib Axes, default None Target axes instance. figsize : tuple, default None Tuple denoting figure size of the plot. filename : str, default None If provided, save the current figure. random_state : int, RandomState instance, default None Seed of the pseudo random number generator. title : string, default 'GGM' Axes title. To disable, pass None. **kwargs : dict Other keywords passed to ``nx.draw_networkx``. Returns ------- ax : matplotlib Axes Axes on which the plot was drawn. Examples -------- >>> import matplotlib.pyplot as plt >>> import networkx as nx >>> from kenchi.plotting import plot_graphical_model >>> from sklearn.datasets import make_sparse_spd_matrix >>> A = make_sparse_spd_matrix(dim=20, norm_diag=True, random_state=0) >>> G = nx.from_numpy_matrix(A) >>> plot_graphical_model(G, random_state=0) # doctest: +ELLIPSIS <matplotlib.axes._subplots.AxesSubplot object at 0x...> >>> plt.show() # doctest: +SKIP .. figure:: images/plot_graphical_model.png """ import matplotlib.pyplot as plt import networkx as nx if ax is None: _, ax = plt.subplots(figsize=figsize) if title is not None: ax.set_title(title) node_size = np.array([30. * (d + 1.) for _, d in G.degree]) pos = nx.spring_layout(G, seed=random_state) width = np.abs([3. * w for _, _, w in G.edges(data='weight')]) # Add the draw_networkx kwargs here kwargs.setdefault('cmap', 'Spectral') kwargs.setdefault('node_size', node_size) kwargs.setdefault('pos', pos) kwargs.setdefault('width', width) # Draw the Gaussian grapchical model nx.draw_networkx(G, ax=ax, **kwargs) # Turn off tick visibility ax.tick_params('x', labelbottom=False, bottom=False) ax.tick_params('y', labelleft=False, left=False) if filename is not None: ax.get_figure().savefig(filename) return ax def plot_partial_corrcoef( partial_corrcoef, ax=None, cbar=True, figsize=None, filename=None, title='Partial correlation', **kwargs ): """Plot the partial correlation coefficient matrix. Parameters ---------- partial_corrcoef : array-like of shape (n_features, n_features) Partial correlation coefficient matrix. ax : matplotlib Axes, default None Target axes instance. cbar : bool, default True. If True, draw a colorbar. figsize : tuple, default None Tuple denoting figure size of the plot. filename : str, default None If provided, save the current figure. title : string, default 'Partial correlation' Axes title. To disable, pass None. **kwargs : dict Other keywords passed to ``ax.pcolormesh``. Returns ------- ax : matplotlib Axes Axes on which the plot was drawn. Examples -------- >>> import matplotlib.pyplot as plt >>> from kenchi.plotting import plot_partial_corrcoef >>> from sklearn.datasets import make_sparse_spd_matrix >>> A = make_sparse_spd_matrix(dim=20, norm_diag=True, random_state=0) >>> plot_partial_corrcoef(A) # doctest: +ELLIPSIS <matplotlib.axes._subplots.AxesSubplot object at 0x...> >>> plt.show() # doctest: +SKIP .. figure:: images/plot_partial_corrcoef.png """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable partial_corrcoef = check_array(partial_corrcoef) partial_corrcoef = check_symmetric(partial_corrcoef, raise_exception=True) if ax is None: _, ax = plt.subplots(figsize=figsize) if title is not None: ax.set_title(title) # Add the pcolormesh kwargs here kwargs.setdefault('cmap', 'RdBu') kwargs.setdefault('edgecolors', 'white') kwargs.setdefault('vmin', -1.) kwargs.setdefault('vmax', 1.) # Draw the heatmap mesh = ax.pcolormesh( np.ma.masked_equal(partial_corrcoef, 0.), **kwargs ) ax.set_aspect('equal') ax.set_facecolor('grey') # Invert the y axis to show the plot in matrix form ax.invert_yaxis() if cbar: # Create an axes on the right side of ax divider = make_axes_locatable(ax) cax = divider.append_axes('right', '5%', pad=0.1) ax.get_figure().colorbar(mesh, cax=cax) if filename is not None: ax.get_figure().savefig(filename) return ax
2.578125
3
django_backend/fleet/serializers.py
CapacitacionDesoft/travels-log
2
12783019
from rest_framework import serializers from .models import Driver, Vehicle class DriverSerializers(serializers.ModelSerializer): class Meta: model = Driver fields = '__all__' class VehicleSerializers(serializers.ModelSerializer): class Meta: model = Vehicle fields = '__all__'
2.15625
2
first.py
FilipCvetko/Testingrepo
0
12783020
<gh_stars>0 print("H222I.")
1.101563
1
easistrain/func_get_image_matrix.py
woutdenolf/easistrain
0
12783021
<gh_stars>0 import h5py import numpy as np ### This function get the image matrix from the h5 file and convert it to float64 ### ### root_data: the path of the folder where the h5 file is saved ### h5file: The name of the h5 file from which the matrix of the image will be extracted ### scan: The name of the group on which the concerned measurement are saved ### detector name: The name of the detector def get_image_matrix(root_data, h5file, scan, detector_name): r_h5file = h5py.File(root_data + "/" + h5file, "r") image = r_h5file["/" + scan + "/measurement/" + detector_name] if np.ndim(image) == 2: print(np.shape(image)) image_matrix = np.float64(image) else: print(np.shape(image)) print("### The image matrix is not a 2D squared matrix") image_matrix = np.float64(image[0, :, :]) return image_matrix
3.265625
3
useful/text_to_mp3/test04.py
xmark2/practice
0
12783022
<gh_stars>0 from gtts import gTTS import os import glob from pathlib import Path def readfile(file): with open(file, encoding="utf-8") as f: data = f.read() return data def list_files(path,file_type): # path = './input' # files = [f for f in glob.glob(path + "**/*."+file_type, recursive=True)] files = glob.glob(path + "/**/*."+file_type, recursive=True) # for subpath in subpaths: # subfiles = [f for f in glob.glob(subpath + "**/*."+file_type, recursive=True)] # # files = files +subfiles # print(subfiles) return files # def list_files2(path,file_type): # for file_type in Path(path).rglob('*'): # print(file_type) def textmp3(file): print(file) try: mytext = readfile(file) # print(mytext) tts = gTTS(text=mytext, lang='hu') filename = file.replace('txt','mp3') print(filename+" saved") tts.save(filename) except: pass # os.system(filename+"mpg321.mp3") def main(): # print(list_files('txt')) print(list_files('./input','txt')) # subpaths = os.listdir('./input') # subpaths = ['./input/'+x for x in subpaths] # filesNew = [] # for subpath in subpaths: # filesNew.extend(list_files(subpath,'txt')) files = list_files('./input','txt') for file in files: # print(file) textmp3(file) # print(subpaths) # textmp3('szoveg1.txt') if __name__ == '__main__': main() # print('hello')
3.078125
3
src/lib/interfaces/iqueueprocessor.py
itsmylin/wechat-robinhood
13
12783023
<filename>src/lib/interfaces/iqueueprocessor.py # Define an interface for possible future implementations of queue processors for other messenger platforms class IQueueProcessor(object): def process_message(self, message): raise Exception('Not implemented')
2.5
2
tencect_s_class/pg03_excel/excel.py
ww35133634/chenxusheng
0
12783024
""" python 操作 Excel """ import xlrd import xlwt # #读取Excel文件 # workbook = xlrd.open_workbook(filename) # #获取所有表名 # sheet_names = workbook.sheets() # # # #通过索引顺序获取一个工作表 # sheet0 = workbook.sheets()[0] # # # or # sheet1 = workbook.sheet_by_index(1) # # #通过表名获取一个工作表 # sheet3 = workbook.sheet1 # # for i in sheet_names: # print(sheet3) def read_xlrd(excelTestFile): data = xlrd.open_workbook(excelTestFile) # 打开路径下的文件,并读取 table = data.sheet_by_index(0) # 根据sheet的索引,确定表格;也可以根据sheet名称确定,如:table = data.sheet_by_name('用户表') for rowNum in range(table.nrows): # excel表格中的有效行数,从0开始 rowVale = table.row_values(rowNum) # row_values返回该行中所有数据组成的一个列表 for colNum in range(table.ncols): # excel表格中的有效列数,从0开始 if rowNum > 0 and colNum == 0: print(int(rowVale[0])) else: print(rowVale[colNum]) print("#############################") if __name__ == '__main__': excelFile = r"C:\Users\CXS\Desktop\公司文件\机架信息.xlsm" read_xlrd(excelTestFile=excelFile)
3.71875
4
zoinks/cogs/coolsville.py
geoffhouy/zoinks
0
12783025
<reponame>geoffhouy/zoinks import zoinks.bot from zoinks.bot import ZOINKS import discord from discord.ext import commands import logging logger = logging.getLogger(__name__) COOLSVILLE_GUILD_ID = 0 COOLSVILLE_RULES_CHANNEL_ID = 0 COOLSVILLE_NOTIFICATIONS_CHANNEL_ID = 0 COOLSVILLE_GUEST_ROLE_ID = 0 COOLSVILLE_CONTENT_CREATOR_ROLE_ID = 0 COOLSVILLE_PIN_DISABLED_CHANNEL_IDS = (0, 1) def message_from_video_embed(video_embed: dict, member: discord.Member): """Builds a message from the specified embedded video. :param video_embed: The embedded video in the original message. :param member: The member who sent the original message. :type video_embed: dict :type member: discord.Member :return: The new message with content and an embed. :rtype: tuple """ provider = video_embed.get('provider').get('name') embed = discord.Embed( title=video_embed.get('title') if provider == 'YouTube' else video_embed.get('description'), description=video_embed.get('description') if provider == 'YouTube' else '', url=video_embed.get('url'), color=0xFF0000 if provider == 'YouTube' else 0x6441A4) embed.set_author( name=video_embed.get('author').get('name') if provider == 'YouTube' else video_embed.get('title').split('-')[0], url=video_embed.get('author').get('url') if provider == 'YouTube' else video_embed.get('url')) embed.set_image( url=video_embed.get('thumbnail').get('url')) content = f'Hey @everyone, {member.mention}' if provider == 'YouTube': content = f'{content} uploaded a new YouTube video!' else: content = f'{content} is now live on Twitch!' return content, embed class Coolsville: """Represents a cog for a Discord bot. This cog provides utilities exclusively for the Coolsville server. The above module constants dictate which guild, channels, and roles will be used. """ def __init__(self, bot: ZOINKS): """Constructs a new Coolsville object. :param bot: The currently running Discord bot. :type bot: ZOINKS """ self.bot = bot self.pin_threshold = 10 logger.info(f'{self.__class__.__name__} loaded') async def on_member_join(self, member): """Automates the new member experience. 1. Assigns the 'Guest' role to the new member. 2. Sends the new member a message suggesting to read the '#rules' channel. Note: In Coolsville, the 'Guest' role can only read and write in the '#rules' channel. :param member: The member that joined the guild. :type member: discord.Member :return: None """ if member.guild.id != COOLSVILLE_GUILD_ID: return if member.bot: return await member.add_roles(discord.Object(id=COOLSVILLE_GUEST_ROLE_ID)) rules_channel = self.bot.get_guild(id=COOLSVILLE_GUILD_ID).get_channel(channel_id=COOLSVILLE_RULES_CHANNEL_ID) await member.send(embed=discord.Embed( title='👋 Welcome', description=f'Like, welcome to {member.guild}!\n\nPlease remember to read over ' f'{rules_channel.mention} to familiarize yourself with what\'s allowed in ' f'{member.guild}.\n\n If you have any comments, questions, or concerns, ' 'please contact an Administrator or a Moderator.\n\nEnjoy your stay!', color=zoinks.bot.color)) logger.info(f'{member} joined {member.guild}') async def on_member_update(self, before, after): """Notifies guild members that a 'Content Creator' just started streaming on Twitch. :param before: The member before being updated. :param after: The member after being updated. :type before: discord.Member :type after: discord.Member :return: None """ if after.guild.id != COOLSVILLE_GUILD_ID: return if COOLSVILLE_CONTENT_CREATOR_ROLE_ID not in [role.id for role in after.roles]: return if (isinstance(after.activity, discord.Streaming) and after.activity.twitch_name is not None and not isinstance(before.activity, discord.Streaming)): notifications_channel = self.bot.get_guild( id=COOLSVILLE_GUILD_ID).get_channel( id=COOLSVILLE_NOTIFICATIONS_CHANNEL_ID) await notifications_channel.send( content=f'Hey @everyone, {after.mention} is now live on Twitch!', embed=discord.Embed( title=f'🎥 Twitch', description=f'@everyone, {after.activity.name} is playing `{after.activity.details}`!', url=f'https://www.twitch.tv/{after.activity.twitch_name}', color=0x6441A4)) async def on_message(self, message): """Notifies guild members that a 'Content Creator' just uploaded a YouTube video or started streaming on Twitch. When a direct message containing a link to the YouTube video, the Twitch stream, or any combination of either is received from a 'Content Creator', the bot will highlight all guild members in the specified '#notifications' channel. :param message: The message being processed. :type message: discord.Message :return: None """ if not isinstance(message.channel, discord.DMChannel): return guild = self.bot.get_guild(id=COOLSVILLE_GUILD_ID) if message.author not in guild.members: return member = guild.get_member(user_id=message.author.id) if COOLSVILLE_CONTENT_CREATOR_ROLE_ID not in [role.id for role in member.roles]: return if not message.embeds: return notifications_channel = guild.get_channel(channel_id=COOLSVILLE_NOTIFICATIONS_CHANNEL_ID) for video_embed in message.embeds: video_embed = video_embed.to_dict() provider = video_embed.get('provider') if provider is None or (provider.get('name') != 'Twitch' and provider.get('name') != 'YouTube'): continue content, embed = message_from_video_embed(video_embed, member) await notifications_channel.send(content=content, embed=embed) async def on_raw_reaction_add(self, payload): """Pins a message after receiving (self.pin_threshold) pins of the same emoji. :param payload: The details of the reaction. :type payload: discord.RawReactionActionEvent :return: None """ if payload.guild_id != COOLSVILLE_GUILD_ID: return if payload.channel_id in COOLSVILLE_PIN_DISABLED_CHANNEL_IDS: return channel = self.bot.get_channel(id=payload.channel_id) if len(await channel.pins()) == 50: return message = await channel.get_message(id=payload.message_id) if message.pinned: return reaction = next((reaction for reaction in message.reactions if reaction.count >= self.pin_threshold), None) reactor = self.bot.get_guild(COOLSVILLE_GUILD_ID).get_member(user_id=payload.user_id) if reaction is not None: await message.pin() await channel.send(embed=discord.Embed( title='📌 Pin', description=f'Congratulations {message.author.mention}, ' f'your message has been pinned after receiving a {reaction.emoji} from {reactor.mention}!', color=zoinks.bot.color )) @commands.command(hidden=True) @commands.has_role(name='Guest') @commands.check(lambda ctx: ctx.guild and ctx.guild.id == COOLSVILLE_GUILD_ID and ctx.channel.id == COOLSVILLE_RULES_CHANNEL_ID) async def verify(self, ctx): """Grants basic access to guests.""" await ctx.author.remove_roles(discord.Object(id=COOLSVILLE_GUEST_ROLE_ID)) await ctx.author.send(embed=discord.Embed( title='✅ Verified', description=f'You\'ve been verified in {ctx.guild}!', color=zoinks.bot.color)) await ctx.message.delete() logger.info(f'{ctx.author} verified in {ctx.guild}') def setup(bot): bot.add_cog(Coolsville(bot))
2.828125
3
source/slask/denavit_hartenberg_symbolic.py
johnsjob/master-thesis
0
12783026
from __future__ import division #--------------------------# import sys #--------------------------# import sympy as s from sympy import cos, sin, pi from sympy.matrices import Matrix as mat #=====================================================# from helperfunctions import matmul_series sys.path.append("../int/misc-tools/") import parsingtools as parse #--------------------------------------------------------------------# def diff_mat(M,param): diff = lambda y: s.diff(y,param) sh = M.shape return mat(map(diff, M)).reshape(*sh) #--------------------------------------------------------------------# def matmul_series( *args ): return reduce(s.Matrix.multiply, args) #--------------------------------------------------------------------# def _spin_tensor_diff_mat_ang(R,ang): return matmul_series(diff_mat(mat_rot_z(ang),ang), mat_rot_z(ang).T) #--------------------------------------------------------------------# def spin_tensor(R,ang): dang_dt = s.sympify('d'+str(ang)+'/dt') return _spin_tensor_diff_mat_ang(R,ang) * dang_dt #--------------------------------------------------------------------# def mat_trans_x( tx ): return mat([[1, 0, 0, tx], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) #--------------------------------------------------------------------# def mat_trans_z( tz ): return mat([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, tz], [0, 0, 0, 1]]) #--------------------------------------------------------------------# def mat_rot_x( ang ): #convert to radians c = cos(ang) s = sin(ang) return mat([[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0], [0, 0, 0, 1]]) #--------------------------------------------------------------------# def mat_rot_z( ang ): #convert to radians c = cos(ang) s = sin(ang) return mat([[c, -s, 0, 0], [s, c, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) #--------------------------------------------------------------------# def transform_to_next(A, alpha, D, theta): Rz_J = mat_rot_z(theta) Tz_J = mat_trans_z(D) Tx_I = mat_trans_x(A) Rx_I = mat_rot_x(alpha) return matmul_series(Rz_J, Tz_J, Tx_I, Rx_I) #--------------------------------------------------------------------# def DH_params( *params ): nbr_of_sections = int(len(params) / 4) if len(params) == 1 and type(params[0]) in [list, tuple]: raise ArithmeticError("Function does not use lists or tuples, please unpack using *.") elif not (len(params) % 4 == 0): raise ArithmeticError("Invalid number of Denavit-Hartenberg parameters.") matrices = [] for k in xrange(0, nbr_of_sections): A, alpha, D, theta = params[4*k:4*k+4] matrices.append( transform_to_next(A, alpha, D, theta) ) return matmul_series(*matrices) #--------------------------------------------------------------------# def calc_tool_IRB120(a=None,b=None,c=None,d=None,e=None,f=None): if a is None: a = s.sympify('a') if b is None: b = s.sympify('b') if c is None: c = s.sympify('c') if d is None: d = s.sympify('d') if e is None: e = s.sympify('e') if f is None: f = s.sympify('f') flange = DH_params( 0, 90,0.290,180+a, 0.270,0,0,90+b, -0.070, 90, 0, 180+c, 0, 90, 0.302, 180+d, 0, 90, 0, 180+e, 0, 0, 0.072, 0+f ) return flange #--------------------------------------------------------------------# def custom_round(v, prec = 1e-4): coef = 1 / prec return n.round(v * coef) / coef #--------------------------------------------------------------------# if __name__ == '__main__': a = s.sympify('a')
2.109375
2
learning_object/collection/manager/modify_one.py
dsvalenciah/ROAp
4
12783027
<gh_stars>1-10 """ Contains utility functions to works with learning-object modify. """ from datetime import datetime from manager.exceptions.learning_object import ( LearningObjectNotFoundError, LearningObjectSchemaError, LearningObjectMetadataSchemaError ) import re from marshmallowjson.marshmallowjson import Definition from manager.exceptions.user import UserPermissionError from manager.schemas.learning_object import LearningObject from manager.utils.i18n_error import ErrorTranslator def check_user_permission(user, learning_object): learning_object_creator_id = learning_object.get('creator_id') user_id = user.get('_id') user_role = user.get('role') _ = user.get('language') if user_role != 'administrator': if user_id != learning_object_creator_id: raise UserPermissionError( _('User is not own of this learning object.') ) def get_lom_schema(db_client, lom_schema_id): return db_client.lom_schema.find_one({'_id': lom_schema_id}).get('lom') def modify_one(db_client, old_learning_object_id, new_learning_object, user): """Modify learning object.""" old_learning_object = db_client.learning_objects.find_one({ '_id': old_learning_object_id }) _ = user.get('language') if not old_learning_object: raise LearningObjectNotFoundError(_('Learning Object _id not found.')) check_user_permission(user, old_learning_object) old_lom_schema = get_lom_schema( db_client, old_learning_object.get('lom_schema_id') ) LearningObjectMetadata = Definition(old_lom_schema).top() new_learning_object, errors = LearningObject( exclude=['_id', 'creator_id', 'lom_schema_id'] ).dump(new_learning_object) if errors: raise LearningObjectSchemaError(errors) new_learning_object_metadata = new_learning_object.get('metadata') errors = LearningObjectMetadata.validate( new_learning_object_metadata ) if errors: print(LearningObjectMetadata.fields['annotation'].schema.fields) errors_translator = ErrorTranslator(_) raise LearningObjectMetadataSchemaError(errors_translator.i18n_error(errors)) new_learning_object.update({ 'modified': datetime.now().strftime('%Y-%m-%d %H:%M:%S'), }) db_client.learning_objects.update_one( {'_id': old_learning_object.get('_id')}, {'$set': new_learning_object} )
2.109375
2
packs/reamaze/actions/article_create.py
userlocalhost2000/st2contrib
164
12783028
<gh_stars>100-1000 from lib.actions import BaseAction class ArticleCreate(BaseAction): def run(self, title, body, topic=None, status=0): if topic: topic = self._convert_slug(topic) path = '/topics/%s/articles' % topic else: path = '/articles' payload = self._create_article(title=title, body=body, status=status) response = self._api_post(path, json=payload) return response def _create_article(self, title, body, status=0): payload = { 'article': { 'title': title, 'body': body, 'status': int(status) } } return payload
2.515625
3
day-08/part-1/silvestre.py
badouralix/adventofcode-2018
31
12783029
from tool.runners.python import SubmissionPy class SilvestreSubmission(SubmissionPy): def run(self, s): arr = list(map(int, s.splitlines()[0].split())) def sum_meta(arr, i_node): n_child = arr[i_node] n_meta = arr[i_node + 1] i_next = i_node + 2 ret = 0 for _ in range(n_child): i_next, tmp = sum_meta(arr, i_next) ret += tmp return i_next + n_meta, ret + sum(arr[i_next:i_next+n_meta]) return sum_meta(arr, 0)[1]
2.453125
2
ABC/181/C.py
yu9824/AtCoder
0
12783030
# list(map(int, input().split())) # int(input()) import sys sys.setrecursionlimit(10 ** 9) from itertools import combinations def main(*args): N, XY = args def difference(p1, p2): return p2[0] - p1[0], p2[1] - p1[1] for c in combinations(XY, r = 3): p1, p2, p3 = c # p = (x, y) diff12 = difference(p1, p2) diff13 = difference(p1, p3) if diff12[1] * diff13[0] == diff13[1] * diff12[0]: print('Yes') break else: print('No') if __name__ == '__main__': N = int(input()) args = [N] args.append({tuple(map(int, input().split())) for n in range(N)}) main(*args)
2.671875
3
Preprocessor.py
beckylum0216/MurdochNet_Yale_tf
0
12783031
<reponame>beckylum0216/MurdochNet_Yale_tf import cv2 import numpy as np class ProcessImage(object): def __init__(self, imgWidth, imgHeight, rawImage): self.a = 0 self.b = 0 self.c = self.a + imgWidth self.d = self.b + imgHeight self.width = imgWidth self.height = imgHeight self.image = rawImage def DetectFace(self): face_cascade = cv2.CascadeClassifier("./haar_cascade/haarcascade_frontalface_default.xml") self.faces = face_cascade.detectMultiScale(self.image, 1.05, 3) for x, y, w, h in self.faces: cv2.rectangle(self.image, (x, y), (x + w, y + h), (0, 255, 255), 2) print("x: ", x, " y: ", y, " w: ", w, " h: ",h) #cv2.imshow("detected face", self.image) #cv2.waitKey(0) #cv2.destroyAllWindows() return self.faces def CropImage(self): self.croppedImg = np.empty([self.faces[0][2], self.faces[0][3]], np.uint8) self.width = self.faces[0][2] self.height = self.faces[0][3] for ii in range(self.faces[0][2]): for jj in range(self.faces[0][3]): self.croppedImg[ii][jj] = self.image[ii + self.faces[0][1]][jj + self.faces[0][0]] #print("cropped image: ", croppedImg[ii][jj]) #cv2.imshow("cropped image", self.croppedImg) return self.croppedImg def ScaleImage(self, targetImage, targetWidth, targetHeight): dimension = (targetWidth, targetHeight) resizedImg = cv2.resize(targetImage, dimension, interpolation=cv2.INTER_AREA) # cv2.imshow("resized img", resizedImg) # cv2.waitKey(0) # cv2.destroyAllWindows() return resizedImg def ApplyGaborFilter(self, targetImage): gabor_filter = cv2.getGaborKernel((self.width, self.height), 2.0, np.pi/8, 20.0, 0.5, 0, ktype=cv2.CV_32F) self.gaborImg = cv2.filter2D(targetImage, cv2.CV_8UC3, gabor_filter) #cv2.imshow("cropped gabor: ", self.gaborImg) return self.gaborImg
2.90625
3
setup.py
VJftw/invoke-tools
2
12783032
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ from os import path from subprocess import check_output # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() version = check_output('git describe --abbrev=0'.split(' ')).decode( 'utf-8').strip() setup( name='invoke-tools', version=version, description='A set of tools to use the Invoke task runner easier in a work-flow.', url='https://github.com/VJftw/invoke-tools', author='<NAME>', author_email='<EMAIL>', license='MIT', zip_safe=False, packages=find_packages(), install_requires=['docker', 'invoke', 'psutil', 'py-cpuinfo', 'gitpython', 'requests'], extras_require={ 'test': ['nose', 'coverage', 'rednose'] }, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], keywords='invoke tools' )
1.695313
2
transformer_anatomy/downstream_multi_head_exp.py
heartcored98/Trasnformer_Anatomy
16
12783033
import sys import time import pandas as pd from os import listdir from os.path import isfile, join import json from .tasks import * PATH_BERT = '/home/users/whwodud98/pytorch-pretrained-BERT' sys.path.insert(0, PATH_BERT) PATH_SENTEVAL = '/home/users/whwodud98/bert/SentEval' PATH_TO_DATA = '/home/users/whwodud98/bert/SentEval/data/' PATH_TO_CACHE = '/home/users/whwodud98/bert/cache/' sys.path.insert(0, PATH_SENTEVAL) import senteval def get_results(dir_path='./mlp_results'): columns = ['data_path', 'cache_path', 'result_path', 'batch_size', 'cbatch_size', 'nhid', 'optim', 'kfold', 'tenacity', 'usepytorch', 'epoch_size', 'device'] filenames = [f for f in listdir(dir_path) if isfile(join(dir_path, f)) if '.json' in f] list_result = [] for filename in filenames: with open(join(dir_path, filename), 'r') as infile: # print(filename) results = json.load(infile) for key, result in results.items(): list_result.append(result) df = pd.DataFrame(list_result)[['acc', 'devacc', 'devpearson', 'pearson', 'head', 'layer', 'task', 'model_name', 'location']] for column in columns: try: df = df.drop(columns=column) except: pass return df def get_top_heads(model_name, task, metric='devacc', dir_path='./ds_linear_head_wise_results'): df = get_results(dir_path=dir_path) df = df.loc[df['model_name'] == model_name] print(df) df = df.loc[df['head'] >= 0] df = df.loc[df['task'] == task] # Choose task df = df.sort_values(by=[metric], ascending=False) list_head = [] for index, row in df.iterrows(): list_head.append((row['layer'], row['head'])) return list_head def save_exp_result(exp_result, task): del exp_result['model'] exp_key = '{}_{}'.format(exp_result['num_head'], exp_result['location']) result_name = "{}_{}.json".format(exp_result['model_name'], task) result_dir = exp_result['result_path'] onlyfiles = [f for f in listdir(result_dir) if isfile(join(result_dir, f))] if result_name in onlyfiles: with open(join(result_dir, result_name), 'r') as f: results = json.load(f) with open(join(result_dir, result_name), 'w') as f: results[exp_key] = exp_result json.dump(results, f) print("Append exp result at {} with key {}".format(result_name, exp_key)) else: results = {} with open(join(result_dir, result_name), 'w') as f: results[exp_key] = exp_result json.dump(results, f) print("Create new exp result at {} with key {}".format(result_name, exp_key)) def prepare(params, _): task = params['current_task'] model = params['model'] location = params['location'] model.prepare(task, location) def batcher(params, batch): model = params['model'] location = params['location'] head_size = params['head_size'] sentences = [' '.join(s) for s in batch] embedding = model.encode(sentences, params['heads'], head_size, location) return embedding def experiment(model, task, args): ts = time.time() params = vars(args) params['model'] = model params['classifier'] = {'nhid': args.nhid, 'optim': args.optim, 'tenacity': args.tenacity, 'epoch_size': args.epoch_size, 'dropout': args.dropout, 'batch_size': args.cbatch_size} params['heads'] = get_top_heads(args.model_name, task)[:args.num_head] # select first top n-heads se = senteval.engine.SE(params, batcher, prepare) result = se.eval([task]) if task in ['SICKRelatedness']: params['devpearson'] = result[task]['devpearson'] params['pearson'] = result[task]['pearson'] elif task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark']: params['pearson'] = result[task]['all']['pearson']['mean'] else: params['devacc'] = result[task]['devacc'] params['acc'] = result[task]['acc'] model.save_cache(task, args.location) te = time.time() print("result: {}, took: {:3.1f} sec".format(result, te - ts)) return params
2.0625
2
blog/urls.py
shinnlove/datacheck
1
12783034
<filename>blog/urls.py<gh_stars>1-10 from django.urls import path,include import blog.views from django.conf.urls import url urlpatterns=[ path('hello_world',blog.views.hello_world), path('content',blog.views.article_content), url(r'^index/', blog.views.index), url(r'^index2/', blog.views.index2), #url(r'all',blog.all,name='all'), ]
1.898438
2
apps/core/models/photos.py
CosmosTUe/Cosmos
1
12783035
<gh_stars>1-10 from django.db import models from django.urls import reverse class PhotoAlbum(models.Model): title = models.CharField(max_length=255) date = models.DateField() album_cover = models.ImageField(upload_to="photos") def get_absolute_url(self): return reverse("cosmos_core:photo_album-list") def __str__(self): return "PhotoAlbum: {" + self.title + "}" class PhotoObject(models.Model): photo = models.ImageField(upload_to="photos") album = models.ForeignKey(PhotoAlbum, on_delete=models.CASCADE, related_name="has_photos") def __str__(self): return "PhotoObject: {" + str(self.photo) + "}"
2.21875
2
test_Reader.py
mgood13/bme590hrm
0
12783036
def test_csvfinder(): """Tests that the finder finds all the correct files :returns test_files: List of .csv files """ from Reader import csvfinder test_files = csvfinder() assert test_files.count('poorform') == 0 assert test_files.count('wrongend') == 0 assert test_files.count('false.csv') == 1 assert test_files.count('mess.csv') == 1 assert test_files.count('poorform.csv') == 1 assert test_files.count('tab.csv') == 1 assert test_files.count('test_data1.csv') == 1 assert test_files.count('words.csv') == 1 assert test_files.count('test1.csv') == 1 assert test_files.count('test2.csv') == 1 return test_files def test_csvchecker(): """Tests that the check function discards and keeps correct files :returns check_files: Dictionary of valid csv files """ from Reader import csvchecker test_files = test_csvfinder() check_files = csvchecker(test_files) assert 'false.csv' not in check_files assert 'mess.csv' not in check_files assert 'poorform.csv' not in check_files assert 'tab.csv' not in check_files assert 'false.csv' not in check_files assert 'test2.csv' not in check_files assert 'test1.csv' in check_files assert 'test_data1.csv' in check_files assert 'words.csv' in check_files return check_files def test_floatcheck(): """Tests to ensure that certain files are removed from the csv file list """ from Reader import floatcheck check_files = test_csvchecker() float_files = floatcheck(check_files) assert 'words.csv' not in float_files assert 'test1.csv' not in float_files assert 'test_data1.csv' in float_files
3.625
4
scripts/validate_schemas.py
slebras/sample_service_validator_config
0
12783037
import sys import yaml from jsonschema import validate if len(sys.argv) != 3: raise RuntimeError(f'Please provide validation file and json schema file as arguments to validate_schemas.py') merged_file = sys.argv[1] json_schema_file = sys.argv[2] with open(json_schema_file) as f: _META_VAL_JSONSCHEMA = yaml.safe_load(f) # _META_VAL_JSONSCHEMA = { # 'type': 'object', # 'definitions': { # 'validator_set': { # 'type': 'object', # # validate values only # 'additionalProperties': { # 'type': 'object', # 'properties': { # 'key_metadata': { # 'type': 'object', # 'additionalProperties': { # 'type': ['number', 'boolean', 'string', 'null'] # } # }, # 'validators': { # 'type': 'array', # 'items': { # 'type': 'object', # 'properties': { # 'module': {'type': 'string'}, # 'callable_builder': {'type': 'string'}, # 'parameters': {'type': 'object'} # }, # 'additionalProperties': False, # 'required': ['module', 'callable_builder'] # } # } # }, # 'required': ['validators'] # } # }, # 'additionalProperties': False, # }, # 'properties': { # 'validators': {'$ref': '#/definitions/validator_set'}, # 'prefix_validators': {'$ref': '#/definitions/validator_set'}, # }, # 'additionalProperties': False # } files = [ "validation_files/ENIGMA-noops.yml", "validation_files/SESAR-noops.yml", "validation_files/SESAR.yml", "validation_files/ENIGMA.yml", "validation_files/miscellaneous.yml", merged_file, "metadata_validation.yml" ] for file in files: with open(file) as f: cfg = yaml.safe_load(f) validate(instance=cfg, schema=_META_VAL_JSONSCHEMA)
2.328125
2
setup.py
tudou0002/NEAT
1
12783038
<filename>setup.py import setuptools with open("README.md", "r") as fh: long_description = fh.read() with open('requirements.txt', 'r') as f: install_requires = list() for line in f: re = line.strip() if re: install_requires.append(re) setuptools.setup( name="nameextractor", version="0.0.1", author="<NAME>", author_email="<EMAIL>", description="female name extractor", long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ), install_requires=install_requires )
1.953125
2
util/util.py
LSnyd/MedMeshCNN
15
12783039
from __future__ import print_function import torch import numpy as np import os # from torch_scatter import scatter_add def mkdir(path): if not os.path.exists(path): os.makedirs(path) MESH_EXTENSIONS = [ '.obj', ] def is_mesh_file(filename): return any(filename.endswith(extension) for extension in MESH_EXTENSIONS) def pad(input_arr, target_length, val=0, dim=1): shp = input_arr.shape npad = [(0, 0) for _ in range(len(shp))] npad[dim] = (0, target_length - shp[dim]) return np.pad(input_arr, pad_width=npad, mode='constant', constant_values=val) def seg_accuracy(predicted, ssegs, meshes): correct = 0 ssegs = ssegs.squeeze(-1) correct_mat = ssegs.gather(2, predicted.cpu().unsqueeze(dim=2)) for mesh_id, mesh in enumerate(meshes): correct_vec = correct_mat[mesh_id, :mesh.edges_count, 0] edge_areas = torch.from_numpy(mesh.get_edge_areas()) correct += (correct_vec.float() * edge_areas).sum() return correct def intersection_over_union(preds, target, num_classes): preds, target = torch.nn.functional.one_hot(preds, num_classes), torch.nn.functional.one_hot(target, num_classes) iou = torch.zeros(num_classes, dtype=torch.float32) for idx, pred in enumerate(preds): i = (pred & target[idx]).sum(dim=0) u = (pred | target[idx]).sum(dim=0) iou = iou.add(i.cpu().to(torch.float) / u.cpu().to(torch.float)) return iou def mean_iou_calc(pred, target, num_classes): #Removal of padded labels marked with -1 slimpred = [] slimtarget = [] for batch in range(pred.shape[0]): if (target[batch] == -1).any(): slimLabels = target[batch][target[batch]!=-1] slimtarget.append(slimLabels) slimpred.append(pred[batch][:slimLabels.size()[0]]) pred = torch.stack(slimpred,0) target = torch.stack(slimtarget, 0) iou = intersection_over_union(pred, target, num_classes) mean_iou = iou.mean(dim=-1) return mean_iou, iou def print_network(net): """Print the total number of parameters in the network Parameters: network """ print('---------- Network initialized -------------') num_params = 0 for param in net.parameters(): num_params += param.numel() print('[Network] Total number of parameters : %.3f M' % (num_params / 1e6)) print('-----------------------------------------------') def get_heatmap_color(value, minimum=0, maximum=1): minimum, maximum = float(minimum), float(maximum) ratio = 2 * (value - minimum) / (maximum - minimum) b = int(max(0, 255 * (1 - ratio))) r = int(max(0, 255 * (ratio - 1))) g = 255 - b - r return r, g, b def normalize_np_array(np_array): min_value = np.min(np_array) max_value = np.max(np_array) return (np_array - min_value) / (max_value - min_value) def calculate_entropy(np_array): entropy = 0 np_array /= np.sum(np_array) for a in np_array: if a != 0: entropy -= a * np.log(a) entropy /= np.log(np_array.shape[0]) return entropy def pad_with(vector, pad_width, iaxis, kwargs): pad_value = kwargs.get('padder', 10) vector[:pad_width[0]] = pad_value vector[-pad_width[1]:] = pad_value def myindexrowselect(groups, mask_index, device): sparseIndices = groups._indices() newIndices = [] for i, value in enumerate(mask_index): #Get index from relevant indices index = (sparseIndices[0] == value).nonzero() #Get rows by index sparseRow = [sparseIndices[:, value] for value in index] sparseRow = torch.cat(sparseRow,1)[1] singleRowIndices = torch.squeeze(torch.full((1,len(sparseRow)),i, dtype=torch.long),0).to(sparseRow.device) indices = torch.stack((singleRowIndices,sparseRow)) newIndices.append(indices) allNewIndices = torch.cat(newIndices,1) #Create new tensor groups = torch.sparse_coo_tensor(indices=allNewIndices, values=torch.ones(allNewIndices.shape[1], dtype=torch.float), size=(len(mask_index), groups.shape[1])) return groups
2.203125
2
kitsune/questions/urls_api.py
AndrewDVXI/kitsune
929
12783040
from rest_framework import routers from kitsune.questions.api import QuestionViewSet, AnswerViewSet router = routers.SimpleRouter() router.register(r"question", QuestionViewSet) router.register(r"answer", AnswerViewSet) urlpatterns = router.urls
1.632813
2
tenable.py
rohit-k-das/vulnerability-management-reporter
0
12783041
import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import datetime import logging import time import concurrent.futures from dataclasses import dataclass, field from typing import List, Tuple, Dict import re import netaddr import ConfigParser import os logger = logging.getLogger(__name__) MAX_THREADS = 14 # Get max number of threads for multi-threading # Read credentials for tenable Config = ConfigParser.ConfigParser() Config.read(os.path.join(os.path.abspath(os.path.dirname(__file__)),'settings.ini')) tenable_client_id = Config.get('Settings', 'Tenable_Client_Id') tenable_secret_id = Config.get('Settings', 'Tenable_Secret_Id') tenable_gcp_tag = Config.get('Settings', 'Tenable_GCP_tag') tenable_workstations_tag = Config.get('Settings', 'Tenable_Workstation_tag') tenable_api = "https://cloud.tenable.com" # Generate session with max of 3 retries and interval of 1 second def session_generator() -> requests.sessions.Session: session = requests.Session() retry = Retry(connect=3, backoff_factor=0.5) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session @dataclass # A class to contain all the necessary fields to create report class TenableVulnerability: plugin_name: str resolution: str additional_links: List[str] ip: str dns: str os: str cves: List[str] plugin_family: str exploit_available: bool cvss_score: float temporal_score: float vpr_score: float zone: str = field(init=False, default='') # Critical/Non-critical Asset nessus_criticiality: str = field(init=False, default='') vulnerability_type: str = field(init=False, default='') actual_criticality: str = field(init=False, default='') host_risk: str = field(init=False, default='') platform: str = field(init=False, default='') def __post_init__(self): self.get_type() self.nessus_criticiality_insight() self.platform_based_on_os() self.modify_solution() def get_type(self): self.vulnerability_type = 'config' if self.plugin_family.lower() == 'Windows : Microsoft Bulletins'.lower(): self.vulnerability_type = 'package' elif 'update ' in self.resolution.lower() or 'Update Set' in self.plugin_name or 'upgrade ' in self.resolution.lower() or 'MS KB' in self.plugin_name: self.vulnerability_type = 'package' elif 'Apply the client registry key workaround and the server registry key workaround suggested by Microsoft in the advisory.' == self.resolution: self.vulnerability_type = 'config' elif re.search('.* KB\d{3,} .*', self.resolution, flags=re.I) or 'patch' in self.resolution: self.vulnerability_type = 'package' def platform_based_on_os(self): if 'windows' in self.os.lower(): self.platform = 'Windows' elif 'mac' in self.os.lower(): self.platform = 'Mac' else: self.platform = 'Linux' def modify_solution(self): if self.vulnerability_type == 'package' and self.platform == 'Windows': if 'Microsoft has released the following security updates to address this issue:' in self.resolution or 'Apply the following security updates ' in self.resolution or 'Apply Service Stack ' in self.resolution or 'Microsoft has released KB' in self.resolution or 'Install Microsoft KB' in self.resolution: get_security_kb = re.findall(r"KB\d{4,}", self.resolution, flags=re.IGNORECASE) if not get_security_kb: get_security_kb = re.findall(r"\d{4,}", self.resolution, flags=re.IGNORECASE) get_security_kb = ["KB%s" % security_kb for security_kb in get_security_kb] if get_security_kb: self.resolution = ','.join(get_security_kb).replace("'", '').replace('"', '').replace(' ', '') elif 'Apply '.lower() in self.resolution.lower(): # get_security_kb = re.findall(r".*Security .* (KB\d{4,}) or Cumulative.*", self.resolution, flags=re.IGNORECASE) if not get_security_kb: # Apply security update KB4022715 as well as refer to the KB article for additional information get_security_kb = re.findall(r".*Security .* (KB\d{4,})", self.resolution, flags=re.IGNORECASE) if not get_security_kb: # Apply Cumulative Update KB4056890 or KB4057142 as well as || Apply Cumulative Update KB4493509 * get_security_kb = re.findall(r".*Cumulative .* (KB\d{4,})", self.resolution, flags=re.IGNORECASE) if get_security_kb: self.resolution = ','.join(get_security_kb).replace("'", '').replace('"', '').replace(' ', '') elif 'MS' in self.plugin_name and 'KB' not in self.resolution: get_security_bulletin_number = re.findall(r"^MS\d{2,}-\d{3,}", self.plugin_name, flags=re.IGNORECASE) if len(get_security_bulletin_number) == 1: year = get_security_bulletin_number[0].split('-')[0].replace('MS', '') link = "https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/20%s/%s" % (year, get_security_bulletin_number[0].lower()) self.resolution = link elif 'ADV' in self.plugin_name and ' KB' not in self.resolution: get_ADV = re.findall(r"^ADV\d{4,}", self.plugin_name, flags=re.IGNORECASE) if len(get_ADV) == 1: ADV = get_ADV[0].split(':')[0] link = "https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/%s" % ADV.upper() self.resolution = link elif ('Microsoft has released a set of ' in self.resolution or 'Apply the appropriate patches according to the' in self.resolution or 'Microsoft has released security updates for ' in self.resolution or 'Microsoft has released a security update to ' in self.resolution): self.resolution = self.additional_links[0] elif self.vulnerability_type == 'package' and self.platform == 'Linux': """ Modify Linux Solution that you want in the report as per your Linux box """ if 'Update ' in self.resolution: self.resolution = 'yum update -y ' for cve in self.cves: self.resolution = '%s --cve %s ' % (self.resolution, cve) def nessus_criticiality_insight(self): if self.exploit_available: if self.vpr_score > 0.0: if self.vpr_score >= 7: self.nessus_criticiality = 'High' elif self.vpr_score >= 4: self.nessus_criticiality = 'Medium' else: self.nessus_criticiality = 'Low' elif self.temporal_score > 0.0: if self.temporal_score >= 7: self.nessus_criticiality = 'High' elif self.temporal_score >= 4: self.nessus_criticiality = 'Medium' else: self.nessus_criticiality = 'Low' elif self.cvss_score > 0.0: if self.cvss_score >= 7: self.nessus_criticiality = 'High' elif self.cvss_score >= 4: self.nessus_criticiality = 'Medium' else: self.nessus_criticiality = 'Low' else: if self.vpr_score > 0.0: if self.vpr_score >= 7: self.nessus_criticiality = 'Medium' elif self.vpr_score >= 4: self.nessus_criticiality = 'Medium' else: self.nessus_criticiality = 'Low' elif self.temporal_score > 0.0: if self.temporal_score >= 7: self.nessus_criticiality = 'Medium' elif self.temporal_score >= 4: self.nessus_criticiality = 'Medium' else: self.nessus_criticiality = 'Low' elif self.cvss_score > 0.0: if self.cvss_score >= 7: self.nessus_criticiality = 'Medium' elif self.cvss_score >= 4: self.nessus_criticiality = 'Medium' else: self.nessus_criticiality = 'Low' def get_host_risk(self): """ Use a combination of host dns (self.dns) and the zone that host is in to define host risk For example: haproxy_box = re.search('.*haproxy.*', self.dns, flags=re.IGNORECASE) web_box = re.search('.*web.*', self.dns, flags=re.IGNORECASE) app_box = re.search('.*app.*', self.dns, flags=re.IGNORECASE) proxy_box = re.search('^proxy.*', self.dns, flags=re.IGNORECASE) if self.zone == 'DMZ': if self.platform == 'Linux': if web_box or haproxy_box: self.host_risk = 'High' elif app_box: self.host_risk = 'Medium' elif self.zone == 'Secure': if self.platform == 'Linux': if app_box: self.host_risk = 'High' elif proxy_box: self.host_risk = 'Medium' """ def actual_criticality_insight(self): if self.host_risk == 'High': if self.nessus_criticiality == 'Low': self.actual_criticality = 'Medium' elif self.nessus_criticiality == 'Medium': self.actual_criticality = 'High' elif self.nessus_criticiality == 'High': self.actual_criticality = 'High' elif self.host_risk == 'Medium': if self.nessus_criticiality == 'Low': self.actual_criticality = 'Medium' elif self.nessus_criticiality == 'Medium': self.actual_criticality = 'Medium' elif self.nessus_criticiality == 'High': self.actual_criticality = 'High' elif self.host_risk == 'Low': if self.nessus_criticiality == 'Low': self.actual_criticality = 'Low' elif self.nessus_criticiality == 'Medium': self.actual_criticality = 'Low' elif self.nessus_criticiality == 'High': self.actual_criticality = 'Medium' else: self.actual_criticality = 'Unknown' # Initiate download of all vulnerable assets def initiate_download_vulnerabilities(tag: str) -> str: logger.info("Initiating download of %s vulnerabilities seen in the last 15 days" % tag) uuid = None headers = {'X-ApiKeys': 'accessKey=%s; secretKey=%s' % (tenable_client_id, tenable_secret_id), 'Content-Type': 'application/json'} session = session_generator() data = { "num_assets": 1000, "filters": { "severity": ["low", "medium", "high", "critical"], "since": int((datetime.datetime.now() - datetime.timedelta(days=15)).strftime("%s")), "tag.Source": [tag] } } resp = session.post("%s/vulns/export" % tenable_api, headers=headers, json=data) response = resp.json() if resp.ok: uuid = response['export_uuid'] elif resp.status_code == 429: logger.warning("Exceed rate limit.") time.sleep(60) # TO DO: # Check header to see if spits out retry. # print(resp.header) uuid = initiate_download_vulnerabilities(tag) else: logger.error('ERROR %s: %s' % (resp.status_code, resp.text)) logger.error('Unable to make rest call to initiate download all %s vulnerabilities' % tag) return uuid # Check if report is ready for download def check_vulnerabilities_download_status(uuid: str) -> Tuple[str,List[int]]: logger.info("Checking download status of vulnerabilities for file %s" % uuid) headers = {'X-ApiKeys': 'accessKey=%s; secretKey=%s' % (tenable_client_id, tenable_secret_id), 'Content-Type': 'application/json'} session = session_generator() status = None chunks = [] resp = session.get("%s/vulns/export/%s/status" % (tenable_api, uuid), headers=headers) if resp.ok: response = resp.json() status = response['status'] if status == 'FINISHED': chunks.extend(response['chunks_available']) elif resp.status_code == 429: logger.warning("Exceed rate limit.") time.sleep(60) # TO DO: # Check header to see if spits out retry. # print(resp.header) status, chunks = check_vulnerabilities_download_status(uuid) else: logger.error('ERROR %s: %s' % (resp.status_code, resp.text)) logger.error('Unable to make rest call to get status of file download %s' % uuid) return status, chunks def parse_vulnerabilities(vulnerability: Dict) -> TenableVulnerability: if 'exploit_available' in vulnerability['plugin'] and vulnerability['plugin']['exploit_available']: exploit_available = True else: exploit_available = False if 'cvss3_temporal_score' in vulnerability['plugin']: temporal_score = vulnerability['plugin']['cvss3_temporal_score'] elif 'cvss_temporal_score' in vulnerability['plugin']: temporal_score = vulnerability['plugin']['cvss_temporal_score'] else: temporal_score = 0.0 if 'cvss3_base_score' in vulnerability['plugin']: base_score = vulnerability['plugin']['cvss3_base_score'] elif 'cvss_base_score' in vulnerability['plugin']: base_score = vulnerability['plugin']['cvss_base_score'] else: base_score = 0.0 if 'vpr' in vulnerability['plugin']: if 'score' in vulnerability['plugin']['vpr']: vpr = vulnerability['plugin']['vpr']['score'] else: vpr = 0.0 else: vpr = 0.0 if 'see_also' in vulnerability['plugin']: additional_links = [vulnerability['plugin']['see_also'][0]] else: additional_links = [] if 'cve' in vulnerability['plugin']: cves = vulnerability['plugin']['cve'] else: cves = [] vulnobj = TenableVulnerability( vulnerability['plugin']['name'], vulnerability['plugin']['solution'].replace('\r', '').replace('\n', ' '), additional_links, vulnerability['asset']['ipv4'], vulnerability['asset']['fqdn'] or vulnerability['asset']['hostname'], vulnerability['asset']['operating_system'][0] or '', cves, vulnerability['plugin']['family'], exploit_available, base_score, temporal_score, vpr ) return vulnobj # Get vulnerability of only those whose agents were last seen in 30 days def download_vulnerabilities(uuid: str, chunk_id: int, agents: List[str]) -> List[TenableVulnerability]: vulnerabilities = [] logger.info("Fetching list of vulnerabilities for chunk %d" % chunk_id) headers = {'X-ApiKeys': 'accessKey=%s; secretKey=%s' % (tenable_client_id, tenable_secret_id), 'Content-Type': 'application/json'} session = session_generator() resp = session.get("%s/vulns/export/%s/chunks/%d" % (tenable_api, uuid, chunk_id), headers=headers) if resp.ok: response = resp.json() with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor: fs = [executor.submit(parse_vulnerabilities, vulnerability) for vulnerability in response if (agents and 'agent_uuid' in vulnerability['asset'] and vulnerability['asset']['agent_uuid'] in agents) or not agents] for future in concurrent.futures.as_completed(fs): vulnerabilities.append(future.result()) elif resp.status_code == 429: logger.warning("Exceed rate limit.") time.sleep(60) # TO DO: # Check header to see if spits out retry. # print(resp.header) vulnerabilities = download_vulnerabilities(uuid, chunk_id, agents) else: logger.error('ERROR %s: %s' % (resp.status_code, resp.text)) logger.error('Unable to make rest call to download vulnerabilities for chunk %d' % chunk_id) return vulnerabilities # Get any scanner id as all devices agents are associated with all scanners def get_any_scanner_id() -> int: headers = {'X-ApiKeys': 'accessKey=%s; secretKey=%s' % (tenable_client_id, tenable_secret_id), 'Content-Type': 'application/json'} session = session_generator() r = session.get("%s/scanners" % tenable_api, headers=headers) if r.ok: response = r.json() scanner_id = response['scanners'][0]['id'] logger.info("Received Tenable Scanner ID") return scanner_id else: logger.error('Unable to make rest call to get scanner id') logger.error('ERROR %s: %s' % (r.status_code, r.text)) return 0 # Fetch the groups (id and text) associated with the scanner def get_agent_groups(scanner_id: int) -> Dict[int, str]: logger.info("Fetching all agent groups...") agent_group_ids = {} headers = {'X-ApiKeys': 'accessKey=%s; secretKey=%s' % (tenable_client_id, tenable_secret_id), 'Content-Type': 'application/json'} session = session_generator() agent_group_request = session.get("%s/scanners/%d/agent-groups" % (tenable_api, scanner_id), headers=headers) if agent_group_request.ok: agent_group_response = agent_group_request.json() for agent_group in agent_group_response['groups']: agent_group_ids[agent_group['id']] = agent_group['name'] logger.info("Completed collecting all agent groups") return agent_group_ids # Fetches all agents in a particular agent group def get_agents_in_agent_group(scanner_id: int, group_id: int) -> List[str]: agents = [] offset = 0 session = session_generator() logger.info("Getting all agents belonging to group id %d", group_id) while True: headers = {'X-ApiKeys': 'accessKey=%s; secretKey=%s' % (tenable_client_id, tenable_secret_id), 'Content-Type': 'application/json'} agent_request = session.get( "%s/scanners/%d/agent-groups/%s?limit=5000&offset=%d" % (tenable_api, scanner_id, group_id, offset), headers=headers) if agent_request.ok: agent_response = agent_request.json() for agent in agent_response['agents']: if 'last_scanned' in agent and agent['last_scanned'] and agent['last_scanned'] >= int((datetime.datetime.now() - datetime.timedelta(days=30)).strftime("%s")): agents.append(agent['uuid'].replace('-', '')) # Tackle pagination if agent_response['pagination']['total'] - offset <= 5000: break else: offset = offset + 5000 else: logger.error('Error %d:%s', agent_request.status_code, agent_request.text) return agents # Fetch all gcp agents def get_gcp_agents(scanner_id: int) -> List[str]: ''' Fetch Agents from Groups for GCP based on Agent Group Name ''' agents = [] logger.info("Getting all gcp servers") agent_group_ids = get_agent_groups(scanner_id) if agent_group_ids: # Map based on the value to the group id and fetch agents accordingly for group_id in agent_group_ids: if 'GCP' in agent_group_ids[group_id]: agents.extend(get_agents_in_agent_group(scanner_id, group_id)) else: pass agents = list(set(agents)) logger.info('Found %d gcp agents' % len(agents)) return agents # Fetch all workstation agents def get_workstation_agents(scanner_id:int) -> List[str]: ''' Fetch Agents from Groups for Workstations based on Agent Group Name ''' agents = [] logger.info("Getting all workstation agents") agent_group_ids = get_agent_groups(scanner_id) if agent_group_ids: # Map based on the value to the group id and fetch agents accordingly for group_id in agent_group_ids: if 'Workstations' in agent_group_ids[group_id]: agents.extend(get_agents_in_agent_group(scanner_id, group_id)) else: pass agents = list(set(agents)) logger.info('Found %d workstation agents' % len(agents)) return agents def get_rerouted_url(link): link_dict = {} resp = requests.get(link) link_dict[link] = resp.url return link_dict def mapping_security_zone(iplist: List[str]) -> Dict[str, str]: """ Fake list of ranges for GCP """ dmz_range = list(netaddr.IPNetwork('192.168.0.0/24')) secure_range = list(netaddr.IPNetwork('192.168.2.0/22')) ip_zone = {} for ip in iplist: if netaddr.IPAddress(ip) in dmz_range: ip_zone[ip] = 'DMZ' elif netaddr.IPAddress(ip) in secure_range: ip_zone[ip] = 'Secure' return ip_zone def fetch_gcp_vulnerabilities() -> List[TenableVulnerability]: agents = [] vulnerabilities = [] uuid = initiate_download_vulnerabilities(tenable_gcp_tag) if uuid is not None: status, chunks = check_vulnerabilities_download_status(uuid) while status != 'FINISHED': time.sleep(10) status, chunks = check_vulnerabilities_download_status(uuid) with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor: fs = [executor.submit(download_vulnerabilities, uuid, chunk_id, agents) for chunk_id in chunks] for future in concurrent.futures.as_completed(fs): if future.result() is not None: vulnerabilities.extend(future.result()) logger.info('Mapping info links to rerouted link') links = [] for vulnerability in vulnerabilities: links.extend(vulnerability.additional_links) links = list(set(links)) map_link_to_its_rerouted_url = {} with concurrent.futures.ThreadPoolExecutor(max_workers=1000) as executor: for link_dict in executor.map(get_rerouted_url, links): map_link_to_its_rerouted_url.update(link_dict) for vulnerability in vulnerabilities: temp_links_holder = [] for link in vulnerability.additional_links: if link in map_link_to_its_rerouted_url: temp_links_holder.append(map_link_to_its_rerouted_url[link]) vulnerability.additional_links = temp_links_holder # Map zones to IPs vulnerable_ips = list(set(vulnerability.ip for vulnerability in vulnerabilities)) logging.info('Mapping security zone to %d IPs' % len(vulnerable_ips)) ip_zone_mapping = mapping_security_zone(vulnerable_ips) for vulnerability in vulnerabilities: if vulnerability.ip in ip_zone_mapping: vulnerability.zone = ip_zone_mapping[vulnerability.ip] logger.info("Found %d IPs that are not tagged to zones" % len(set([vulnerability.ip for vulnerability in vulnerabilities if not vulnerability.zone]))) for vulnerability in vulnerabilities: vulnerability.get_host_risk() logging.info('Getting actual criticality of the vulnerabilities') for vulnerability in vulnerabilities: vulnerability.actual_criticality_insight() logger.info('Found %d vulnerabilities for GCP' % len(vulnerabilities)) return vulnerabilities def fetch_workstation_vulnerabilities() -> List[TenableVulnerability]: vulnerabilities = [] scanner_id = get_any_scanner_id() if scanner_id > 0: agents = get_workstation_agents(scanner_id) uuid = initiate_download_vulnerabilities(tenable_workstations_tag) if uuid is not None and agents: status, chunks = check_vulnerabilities_download_status(uuid) while status != 'FINISHED': time.sleep(10) status, chunks = check_vulnerabilities_download_status(uuid) with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor: fs = [executor.submit(download_vulnerabilities, uuid, chunk_id, agents) for chunk_id in chunks] for future in concurrent.futures.as_completed(fs): if future.result(): vulnerabilities.extend(future.result()) logger.info('Mapping info links to rerouted link') links = [] for vulnerability in vulnerabilities: links.extend(vulnerability.additional_links) links = list(set(links)) map_link_to_its_rerouted_url = {} with concurrent.futures.ThreadPoolExecutor(max_workers=1000) as executor: for link_dict in executor.map(get_rerouted_url, links): map_link_to_its_rerouted_url.update(link_dict) for vulnerability in vulnerabilities: temp_links_holder = [] for link in vulnerability.additional_links: if link in map_link_to_its_rerouted_url: temp_links_holder.append(map_link_to_its_rerouted_url[link]) vulnerability.additional_links = temp_links_holder for vulnerability in vulnerabilities: vulnerability.actual_criticality_insight() logger.info('Found %d vulnerabilities for workstations' % len(vulnerabilities)) return vulnerabilities
2.25
2
migrations/versions/26dbeb68791e_.py
gesiscss/binder_gallery
4
12783042
<reponame>gesiscss/binder_gallery """empty message Revision ID: 2<PASSWORD> Revises: <PASSWORD> Create Date: 2019-08-05 11:09:30.843900 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = '2<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('repo', sa.Column('last_ref', sa.String(), server_default='master', nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('repo', 'last_ref') # ### end Alembic commands ###
1.195313
1
tests/test_modify_group.py
bloodes/adressbook
0
12783043
from models.model_group import Group import random def test_modify_some_group(app, db, check_ui): if len(db.get_group_list()) == 0: app.group.create_new_group(Group(group_name='a', group_header='b', group_footer='c')) old_groups = db.get_group_list() group = random.choice(old_groups) new_group = Group(group_name='k', group_header='b', group_footer='y') new_group.group_id = group.group_id app.group.modify_group_by_id(new_group, group.group_id) new_groups = db.get_group_list() old_groups.remove(group) old_groups.append(new_group) assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) if check_ui: assert sorted(new_groups, key=Group.id_or_max) == sorted(app.group.get_group_list(), key=Group.id_or_max)
2.4375
2
main4.py
tamurata/E04a-Sprites
0
12783044
#!/usr/bin/env python3 import utils, os, random, time, open_color, arcade utils.check_version((3,7)) SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 SCREEN_TITLE = "Sprites Example" class MyGame(arcade.Window): def __init__(self): super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) arcade.set_background_color(open_color.white) self.animal_list = arcade.SpriteList() def setup(self): self.animal_sprite = arcade.Sprite("assets/Side/detail_crystal.png", 2.0) self.animal_sprite.center_x = 400 self.animal_sprite.center_y = 300 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/detail_dirt.png", 2.0) self.animal_sprite.center_x = 500 self.animal_sprite.center_y = 300 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/detail_tree.png", 2.0) self.animal_sprite.center_x = 450 self.animal_sprite.center_y = 150 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/detail_rocks.png", 2.0) self.animal_sprite.center_x = 200 self.animal_sprite.center_y = 100 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/snow_tile_bump.png", 2.0) self.animal_sprite.center_x = 650 self.animal_sprite.center_y = 50 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/snow_tile_hill.png", 2.0) self.animal_sprite.center_x = 600 self.animal_sprite.center_y = 400 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/snow_tile_riverFall.png", 2.0) self.animal_sprite.center_x = 450 self.animal_sprite.center_y = 100 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/snow_tile_spawn.png", 2.0) self.animal_sprite.center_x = 350 self.animal_sprite.center_y = 350 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/towerRound_base.png", 2.0) self.animal_sprite.center_x = 680 self.animal_sprite.center_y = 133 self.animal_list.append(self.animal_sprite) self.animal_sprite = arcade.Sprite("assets/Side/towerRound_crystals.png", 2.0) self.animal_sprite.center_x = 250 self.animal_sprite.center_y = 550 self.animal_list.append(self.animal_sprite) def on_draw(self): arcade.start_render() self.animal_list.draw() def update(self, delta_time): pass def on_mouse_motion(self, x, y, dx, dy): self.animal_sprite.center_x = x self.animal_sprite.center_y = y def main(): """ Main method """ window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main()
2.9375
3
train.py
dogydev/COVID-Efficientnet-Pytorch
5
12783045
import logging import os import numpy as np from sklearn.metrics import classification_report import torch from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.nn import CrossEntropyLoss from data.dataset import COVIDxFolder from data import transforms from torch.utils.data import DataLoader from model import architecture import util import config log = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def save_model(model, config): if isinstance(model, torch.nn.DataParallel): # Save without the DataParallel module model_dict = model.module.state_dict() else: model_dict = model.state_dict() state = { "state_dict": model_dict, "global_step": config['global_step'], "clf_report": config['clf_report'] } f1_macro = config['clf_report']['macro avg']['f1-score'] * 100 name = "{}_F1_{:.2f}_step_{}.pth".format(config['name'], f1_macro, config['global_step']) model_path = os.path.join(config['save_dir'], name) torch.save(state, model_path) log.info("Saved model to {}".format(model_path)) def validate(data_loader, model, best_score, global_step, cfg): model.eval() gts, predictions = [], [] log.info("Validation started...") for data in data_loader: imgs, labels = data imgs = util.to_device(imgs, gpu=cfg.gpu) with torch.no_grad(): logits = model(imgs) probs = model.module.probability(logits) preds = torch.argmax(probs, dim=1).cpu().numpy() labels = labels.cpu().detach().numpy() predictions.extend(preds) gts.extend(labels) predictions = np.array(predictions, dtype=np.int32) gts = np.array(gts, dtype=np.int32) acc, f1, prec, rec = util.clf_metrics(predictions=predictions, targets=gts, average="macro") report = classification_report(gts, predictions, output_dict=True) log.info("VALIDATION | Accuracy {:.4f} | F1 {:.4f} | Precision {:.4f} | " "Recall {:.4f}".format(acc, f1, prec, rec)) if acc > best_score: save_config = { 'name': config.name, 'save_dir': config.ckpts_dir, 'global_step': global_step, 'clf_report': report } save_model(model=model, config=save_config) best_score = acc log.info("Validation end") model.train() return best_score def main(): if config.gpu and not torch.cuda.is_available(): raise ValueError("GPU not supported or enabled on this system.") use_gpu = config.gpu log.info("Loading train dataset") train_dataset = COVIDxFolder(config.train_imgs, config.train_labels, transforms.train_transforms(config.width, config.height)) train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, drop_last=True, num_workers=config.n_threads, pin_memory=use_gpu) log.info("Number of training examples {}".format(len(train_dataset))) log.info("Loading val dataset") val_dataset = COVIDxFolder(config.val_imgs, config.val_labels, transforms.val_transforms(config.width, config.height)) val_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.n_threads, pin_memory=use_gpu) log.info("Number of validation examples {}".format(len(val_dataset))) if config.weights: #state = torch.load(config.weights) state = None log.info("Loaded model weights from: {}".format(config.weights)) else: state = None state_dict = state["state_dict"] if state else None model = architecture.COVIDNext50(n_classes=config.n_classes) if state_dict: model = util.load_model_weights(model=model, state_dict=state_dict) if use_gpu: model.cuda() model = torch.nn.DataParallel(model) optim_layers = filter(lambda p: p.requires_grad, model.parameters()) # optimizer and lr scheduler optimizer = Adam(optim_layers, lr=config.lr, weight_decay=config.weight_decay) scheduler = ReduceLROnPlateau(optimizer=optimizer, factor=config.lr_reduce_factor, patience=config.lr_reduce_patience, mode='max', min_lr=1e-7) # Load the last global_step from the checkpoint if existing global_step = 0 if state is None else state['global_step'] + 1 class_weights = util.to_device(torch.FloatTensor(config.loss_weights), gpu=use_gpu) loss_fn = CrossEntropyLoss() # Reset the best metric score best_score = -1 for epoch in range(config.epochs): log.info("Started epoch {}/{}".format(epoch + 1, config.epochs)) for data in train_loader: imgs, labels = data imgs = util.to_device(imgs, gpu=use_gpu) labels = util.to_device(labels, gpu=use_gpu) logits = model(imgs) loss = loss_fn(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() if global_step % config.log_steps == 0 and global_step > 0: probs = model.module.probability(logits) preds = torch.argmax(probs, dim=1).detach().cpu().numpy() labels = labels.cpu().detach().numpy() acc, f1, _, _ = util.clf_metrics(preds, labels) lr = util.get_learning_rate(optimizer) log.info("Step {} | TRAINING batch: Loss {:.4f} | F1 {:.4f} | " "Accuracy {:.4f} | LR {:.2e}".format(global_step, loss.item(), f1, acc, lr)) if global_step % config.eval_steps == 0 and global_step > 0: best_score = validate(val_loader, model, best_score=best_score, global_step=global_step, cfg=config) scheduler.step(best_score) global_step += 1 if __name__ == '__main__': seed = config.random_seed if seed: np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) main()
2.03125
2
minos/auth_token/exceptions.py
minos-framework/minos-auth-token
5
12783046
class TokenConfigException(Exception): """Base Api Gateway Exception.""" class NoTokenException(TokenConfigException): """Exception to be raised when token is not available.""" class ApiGatewayConfigException(TokenConfigException): """Base config exception."""
1.992188
2
scripts/appsetup.py
tdude92/pengumoneymaker
0
12783047
<gh_stars>0 import pyautogui import time print("Please move your mouse to the icon of an open browser running club penguin on the task bar.") print("Capturing in...") for i in range(10, 0, -1): print("", i, " ", end = "\r") time.sleep(1) mouse_pos = pyautogui.position() print("Position successfully captured.") with open("browser_pos.txt", "w") as write_file: write_file.write(str(mouse_pos.x) + " " + str(mouse_pos.y))
2.828125
3
waymo_kitti_converter/tools/lidar_to_image_test.py
anhvth/Pseudo_Lidar_V2
0
12783048
import cv2 import numpy as np from calibration import get_calib_from_file # kitti # name = '000000' # pc_pathname = '/home/alex/github/waymo_to_kitti_converter/tools/kitti/velodyne/'+name+'.bin' # img_pathname = '/home/alex/github/waymo_to_kitti_converter/tools/kitti/image_2/'+name+'.png' # calib_pathname = '/home/alex/github/waymo_to_kitti_converter/tools/kitti/calib/'+name+'.txt' # waymo-kitti name = '00000-00001' pc_pathname = '/home/alex/github/waymo_to_kitti_converter/tools/waymo_kitti/velodyne/'+name+'.bin' img_pathname = '/home/alex/github/waymo_to_kitti_converter/tools/waymo_kitti/image_0/'+name+'.png' calib_pathname = '/home/alex/github/waymo_to_kitti_converter/tools/waymo_kitti/calib/'+name+'.txt' def cart_to_homo(mat): mat = np.vstack([mat, np.ones((1, mat.shape[1]))]) return mat def pc_to_pt(pc, V2C, R0, P): def cart2hom(pts_3d): """ Input: nx3 points in Cartesian Oupput: nx4 points in Homogeneous by pending 1 """ n = pts_3d.shape[0] pts_3d_hom = np.hstack((pts_3d, np.ones((n, 1)))) return pts_3d_hom def project_velo_to_ref(pts_3d_velo): pts_3d_velo = cart2hom(pts_3d_velo) # nx4 return np.dot(pts_3d_velo, np.transpose(V2C)) def project_ref_to_rect(pts_3d_ref): """ Input and Output are nx3 points """ return np.transpose(np.dot(R0, np.transpose(pts_3d_ref))) def project_rect_to_image(pts_3d_rect): """ Input: nx3 points in rect camera coord. Output: nx2 points in image2 coord. """ pts_3d_rect = cart2hom(pts_3d_rect) pts_2d = np.dot(pts_3d_rect, np.transpose(P)) # nx3 pts_2d[:, 0] /= pts_2d[:, 2] pts_2d[:, 1] /= pts_2d[:, 2] return pts_2d[:, 0:2] # filter behind ind = pc[:, 0] > 0 # lidar: x is front pc = pc[ind, :] print('pc', pc) ref = project_velo_to_ref(pc) print('ref',ref) rect = project_ref_to_rect(ref) print('rect', rect) depth = rect[:, 2] print(rect.shape, depth.shape) image = project_rect_to_image(rect) return image, depth def main(): calib = get_calib_from_file(calib_pathname) v2c = calib['Tr_velo2cam'] r0 = calib['R0'] px = calib['P2'] # v2c = np.array([ # [7.533745000000e-03, -9.999714000000e-01, -6.166020000000e-04, -4.069766000000e-03], # [1.480249000000e-02, 7.280733000000e-04, -9.998902000000e-01, -7.631618000000e-02], # [9.998621000000e-01, 7.523790000000e-03, 1.480755000000e-02, -2.717806000000e-01]]) # r0 = np.array([ # [9.999239000000e-01, 9.837760000000e-03, -7.445048000000e-03], # [-9.869795000000e-03, 9.999421000000e-01, -4.278459000000e-03], # [7.402527000000e-03, 4.351614000000e-03, 9.999631000000e-01]]) # px = np.array([ # [7.215377000000e+02, 0.000000000000e+00, 6.095593000000e+02, 4.485728000000e+01], # [0.000000000000e+00, 7.215377000000e+02, 1.728540000000e+02, 2.163791000000e-01], # [0.000000000000e+00, 0.000000000000e+00, 1.000000000000e+00, 2.745884000000e-03]]) pc = np.fromfile(pc_pathname, dtype=np.float32).reshape((-1, 4))[:, :3] # filter all behind image plane keep = [] for i in range(pc.shape[0]): p = pc[i, :] if p[0] > 0: keep.append(p) # pc = np.vstack(keep) # # tmp = np.eye(4) # tmp[:3, :3] = r0 # r0 = tmp # pc = np.transpose(pc) # (n,3) -> (3,n) # pc = cart_to_homo(pc) # (3,n) -> (4,n) # # v2c = cart_to_homo(v2c) # (3,4) -> (4,4) # # print(px.shape, r0.shape, v2c.shape, pc.shape) pt, depth = pc_to_pt(pc, v2c, r0, px) print(pt.shape, depth.shape) # pt = px @ r0 @ v2c @ pc # print(pt.shape) # pt = pt[:2] / pt[2] print(pt) import matplotlib.pyplot as plt cmap = plt.cm.get_cmap("hsv", 256) cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255 # draw img = cv2.imread(img_pathname) for i in range(pt.shape[0]): x = pt[i, 0] y = pt[i, 1] color = cmap[np.clip(640/depth[i], 0, 255).astype(np.int), :] # if 0 < x < 1920 and 0 < y < 1080: # print('yah') # print(int(x), int(y)) cv2.circle(img, (int(x), int(y)), 1, tuple(color), -1) cv2.namedWindow('image', cv2.WINDOW_NORMAL) while True: cv2.imshow('image', img) key = cv2.waitKey(1) if key == 27: # exit break elif key != -1: print('Undefined key:', key) if __name__ == '__main__': main()
2.515625
3
app.py
DARK-art108/Cotton-Leaf-Disease-Detection
11
12783049
from __future__ import division, print_function # coding=utf-8 import sys import os import glob import re import numpy as np import tensorflow as tf import pathlib import wget # from tensorflow.compat.v1.compat import ConfigProto # from tensorflow.compat.v1 import InteractiveSession #from tensorflow.python.client.session import InteractiveSession # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.2 # config.gpu_options.allow_growth = True # session = InteractiveSession(config=config) # Keras from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image # Flask utils from flask import Flask, redirect, url_for, request, render_template from werkzeug.utils import secure_filename # from gevent.pywsgi import WSGIServer # Model saved with Keras model.save() MODEL_PATH = 'model_resnet.hdf5' MODEL_URL = 'https://github.com/DARK-art108/Cotton-Leaf-Disease-Prediction/releases/download/v1.0/model_resnet.hdf5' UPLOAD_FOLDER = os.path.join(os.path.dirname(__file__), 'static', 'uploads') # Download model if not present while not pathlib.Path(MODEL_PATH).is_file(): print(f'Model {MODEL_PATH} not found. Downloading...') wget.download(MODEL_URL) # Define a flask app app = Flask(__name__) # Define upload path app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # Developing in the absence of TensorFlow :P (Python 3.9.0 x64) # def load_model(aa): # class a: # @staticmethod # def predict(*args): # return 1 # return a() # class image: # @staticmethod # def load_img(path, target_size): # return 'a' # @staticmethod # def img_to_array(img): # return 'v' # Load your trained model model = load_model(MODEL_PATH) def model_predict(img_path, model): print(img_path) img = image.load_img(img_path, target_size=(224, 224)) # Preprocessing the image x = image.img_to_array(img) # x = np.true_divide(x, 255) ## Scaling x = x / 255 x = np.expand_dims(x, axis=0) # Be careful how your trained model deals with the input # otherwise, it won't make correct prediction! # x = preprocess_input(x) preds = model.predict(x) preds = np.argmax(preds, axis=1) if preds == 0: preds = "The leaf is a diseased cotton leaf." elif preds == 1: preds = "The leaf is a diseased cotton plant." elif preds == 2: preds = "The leaf is a fresh cotton leaf." else: preds = "The leaf is a fresh cotton plant." return preds @app.route('/', methods=['GET', 'POST']) def index(): # Main page if request.method == 'POST': # Get the file from post request print(request.files, request.form, request.args) f = None if 'image' in request.files: f = request.files['image'] if f: # Save the file to ./uploads file_path = os.path.join( app.config['UPLOAD_FOLDER'], secure_filename(f.filename)) f.save(file_path) # Make prediction preds = model_predict(file_path, model) result = preds return render_template('index.html', result=result, img=secure_filename(f.filename)) return render_template('index.html', result=None, err='Failed to receive file') # First time return render_template('index.html', result=None) if __name__ == '__main__': app.run(port=5001, debug=True)
2.203125
2
cell_imaging_utils/__init__.py
lionben89/BGU_cell_imaging_utils
0
12783050
<reponame>lionben89/BGU_cell_imaging_utils from cell_imaging_utils.datasets_metadata.table.datasetes_metadata_csv import DatasetMetadataSCV from cell_imaging_utils.datasets_metadata.dict.datasetes_metadata_pickle import DatasetMetadataPickle __author__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "1.0.0" def get_module_version(): return __version__ __all__ = ["DatasetMetadataSCV", "DatasetMetadataPickle"]
1.492188
1